arXiv Papers with Code in Computer Vision (July 2025 - December 2025)

Paperid: 1, https://arxiv.org/pdf/2512.25075.pdf   GitHub GitHub
Authors:Zhening Huang, Hyeonho Jeong, Xuelin Chen, Yulia Gryaditskaya, Tuanfeng Y. Wang, Joan Lasenby, Chun-Hao Huang
Title: SpaceTimePilot: Generative Rendering of Dynamic Scenes Across Space and Time
Abstract:
We present SpaceTimePilot, a video diffusion model that disentangles space and time for controllable generative rendering. Given a monocular video, SpaceTimePilot can independently alter the camera viewpoint and the motion sequence within the generative process, re-rendering the scene for continuous and arbitrary exploration across space and time. To achieve this, we introduce an effective animation time-embedding mechanism in the diffusion process, allowing explicit control of the output video's motion sequence with respect to that of the source video. As no datasets provide paired videos of the same dynamic scene with continuous temporal variations, we propose a simple yet effective temporal-warping training scheme that repurposes existing multi-view datasets to mimic temporal differences. This strategy effectively supervises the model to learn temporal control and achieve robust space-time disentanglement. To further enhance the precision of dual control, we introduce two additional components: an improved camera-conditioning mechanism that allows altering the camera from the first frame, and CamxTime, the first synthetic space-and-time full-coverage rendering dataset that provides fully free space-time video trajectories within a scene. Joint training on the temporal-warping scheme and the CamxTime dataset yields more precise temporal control. We evaluate SpaceTimePilot on both real-world and synthetic data, demonstrating clear space-time disentanglement and strong results compared to prior work. Project page: https://zheninghuang.github.io/Space-Time-Pilot/ Code: https://github.com/ZheningHuang/spacetimepilot

Authors:Yi-Chuan Huang, Hao-Jen Chien, Chin-Yang Lin, Ying-Huan Chen, Yu-Lun Liu
Title: GaMO: Geometry-aware Multi-view Diffusion Outpainting for Sparse-View 3D Reconstruction
Abstract:
Recent advances in 3D reconstruction have achieved remarkable progress in high-quality scene capture from dense multi-view imagery, yet struggle when input views are limited. Various approaches, including regularization techniques, semantic priors, and geometric constraints, have been implemented to address this challenge. Latest diffusion-based methods have demonstrated substantial improvements by generating novel views from new camera poses to augment training data, surpassing earlier regularization and prior-based techniques. Despite this progress, we identify three critical limitations in these state-of-the-art approaches: inadequate coverage beyond known view peripheries, geometric inconsistencies across generated views, and computationally expensive pipelines. We introduce GaMO (Geometry-aware Multi-view Outpainter), a framework that reformulates sparse-view reconstruction through multi-view outpainting. Instead of generating new viewpoints, GaMO expands the field of view from existing camera poses, which inherently preserves geometric consistency while providing broader scene coverage. Our approach employs multi-view conditioning and geometry-aware denoising strategies in a zero-shot manner without training. Extensive experiments on Replica and ScanNet++ demonstrate state-of-the-art reconstruction quality across 3, 6, and 9 input views, outperforming prior methods in PSNR and LPIPS, while achieving a $25\times$ speedup over SOTA diffusion-based methods with processing time under 10 minutes. Project page: https://yichuanh.github.io/GaMO/

Authors:Jiageng Liu, Weijie Lyu, Xueting Li, Yejie Guo, Ming-Hsuan Yang
Title: Edit3r: Instant 3D Scene Editing from Sparse Unposed Images
Abstract:
We present Edit3r, a feed-forward framework that reconstructs and edits 3D scenes in a single pass from unposed, view-inconsistent, instruction-edited images. Unlike prior methods requiring per-scene optimization, Edit3r directly predicts instruction-aligned 3D edits, enabling fast and photorealistic rendering without optimization or pose estimation. A key challenge in training such a model lies in the absence of multi-view consistent edited images for supervision. We address this with (i) a SAM2-based recoloring strategy that generates reliable, cross-view-consistent supervision, and (ii) an asymmetric input strategy that pairs a recolored reference view with raw auxiliary views, encouraging the network to fuse and align disparate observations. At inference, our model effectively handles images edited by 2D methods such as InstructPix2Pix, despite not being exposed to such edits during training. For large-scale quantitative evaluation, we introduce DL3DV-Edit-Bench, a benchmark built on the DL3DV test split, featuring 20 diverse scenes, 4 edit types and 100 edits in total. Comprehensive quantitative and qualitative results show that Edit3r achieves superior semantic alignment and enhanced 3D consistency compared to recent baselines, while operating at significantly higher inference speed, making it promising for real-time 3D editing applications.

Authors:Dian Shao, Mingfei Shi, Like Liu
Title: FineTec: Fine-Grained Action Recognition Under Temporal Corruption via Skeleton Decomposition and Sequence Completion
Abstract:
Recognizing fine-grained actions from temporally corrupted skeleton sequences remains a significant challenge, particularly in real-world scenarios where online pose estimation often yields substantial missing data. Existing methods often struggle to accurately recover temporal dynamics and fine-grained spatial structures, resulting in the loss of subtle motion cues crucial for distinguishing similar actions. To address this, we propose FineTec, a unified framework for Fine-grained action recognition under Temporal Corruption. FineTec first restores a base skeleton sequence from corrupted input using context-aware completion with diverse temporal masking. Next, a skeleton-based spatial decomposition module partitions the skeleton into five semantic regions, further divides them into dynamic and static subgroups based on motion variance, and generates two augmented skeleton sequences via targeted perturbation. These, along with the base sequence, are then processed by a physics-driven estimation module, which utilizes Lagrangian dynamics to estimate joint accelerations. Finally, both the fused skeleton position sequence and the fused acceleration sequence are jointly fed into a GCN-based action recognition head. Extensive experiments on both coarse-grained (NTU-60, NTU-120) and fine-grained (Gym99, Gym288) benchmarks show that FineTec significantly outperforms previous methods under various levels of temporal corruption. Specifically, FineTec achieves top-1 accuracies of 89.1% and 78.1% on the challenging Gym99-severe and Gym288-severe settings, respectively, demonstrating its robustness and generalizability. Code and datasets could be found at https://smartdianlab.github.io/projects-FineTec/.

Authors:Xu He, Haoxian Zhang, Hejia Chen, Changyuan Zheng, Liyang Chen, Songlin Tang, Jiehui Huang, Xiaoqiang Liu, Pengfei Wan, Zhiyong Wu
Title: From Inpainting to Editing: A Self-Bootstrapping Framework for Context-Rich Visual Dubbing
Abstract:
Audio-driven visual dubbing aims to synchronize a video's lip movements with new speech, but is fundamentally challenged by the lack of ideal training data: paired videos where only a subject's lip movements differ while all other visual conditions are identical. Existing methods circumvent this with a mask-based inpainting paradigm, where an incomplete visual conditioning forces models to simultaneously hallucinate missing content and sync lips, leading to visual artifacts, identity drift, and poor synchronization. In this work, we propose a novel self-bootstrapping framework that reframes visual dubbing from an ill-posed inpainting task into a well-conditioned video-to-video editing problem. Our approach employs a Diffusion Transformer, first as a data generator, to synthesize ideal training data: a lip-altered companion video for each real sample, forming visually aligned video pairs. A DiT-based audio-driven editor is then trained on these pairs end-to-end, leveraging the complete and aligned input video frames to focus solely on precise, audio-driven lip modifications. This complete, frame-aligned input conditioning forms a rich visual context for the editor, providing it with complete identity cues, scene interactions, and continuous spatiotemporal dynamics. Leveraging this rich context fundamentally enables our method to achieve highly accurate lip sync, faithful identity preservation, and exceptional robustness against challenging in-the-wild scenarios. We further introduce a timestep-adaptive multi-phase learning strategy as a necessary component to disentangle conflicting editing objectives across diffusion timesteps, thereby facilitating stable training and yielding enhanced lip synchronization and visual fidelity. Additionally, we propose ContextDubBench, a comprehensive benchmark dataset for robust evaluation in diverse and challenging practical application scenarios.

Authors:Alexander C. Li, Ananya Kumar, Deepak Pathak
Title: Generative Classifiers Avoid Shortcut Solutions
Abstract:
Discriminative approaches to classification often learn shortcuts that hold in-distribution but fail even under minor distribution shift. This failure mode stems from an overreliance on features that are spuriously correlated with the label. We show that generative classifiers, which use class-conditional generative models, can avoid this issue by modeling all features, both core and spurious, instead of mainly spurious ones. These generative classifiers are simple to train, avoiding the need for specialized augmentations, strong regularization, extra hyperparameters, or knowledge of the specific spurious correlations to avoid. We find that diffusion-based and autoregressive generative classifiers achieve state-of-the-art performance on five standard image and text distribution shift benchmarks and reduce the impact of spurious correlations in realistic applications, such as medical or satellite datasets. Finally, we carefully analyze a Gaussian toy setting to understand the inductive biases of generative classifiers, as well as the data properties that determine when generative classifiers outperform discriminative ones.

Authors:Siyuan Hu, Kevin Qinghong Lin, Mike Zheng Shou
Title: ShowUI-$π$: Flow-based Generative Models as GUI Dexterous Hands
Abstract:
Building intelligent agents capable of dexterous manipulation is essential for achieving human-like automation in both robotics and digital environments. However, existing GUI agents rely on discrete click predictions (x,y), which prohibits free-form, closed-loop trajectories (e.g. dragging a progress bar) that require continuous, on-the-fly perception and adjustment. In this work, we develop ShowUI-$π$, the first flow-based generative model as GUI dexterous hand, featuring the following designs: (i) Unified Discrete-Continuous Actions, integrating discrete clicks and continuous drags within a shared model, enabling flexible adaptation across diverse interaction modes; (ii) Flow-based Action Generation for drag modeling, which predicts incremental cursor adjustments from continuous visual observations via a lightweight action expert, ensuring smooth and stable trajectories; (iii) Drag Training data and Benchmark, where we manually collect and synthesize 20K drag trajectories across five domains (e.g. PowerPoint, Adobe Premiere Pro), and introduce ScreenDrag, a benchmark with comprehensive online and offline evaluation protocols for assessing GUI agents' drag capabilities. Our experiments show that proprietary GUI agents still struggle on ScreenDrag (e.g. Operator scores 13.27, and the best Gemini-2.5-CUA reaches 22.18). In contrast, ShowUI-$π$ achieves 26.98 with only 450M parameters, underscoring both the difficulty of the task and the effectiveness of our approach. We hope this work advances GUI agents toward human-like dexterous control in digital world. The code is available at https://github.com/showlab/showui-pi.

Authors:Wentao Zhang, Tao Fang, Lina Lu, Lifei Wang, Weihe Zhong
Title: CPJ: Explainable Agricultural Pest Diagnosis via Caption-Prompt-Judge with LLM-Judged Refinement
Abstract:
Accurate and interpretable crop disease diagnosis is essential for agricultural decision-making, yet existing methods often rely on costly supervised fine-tuning and perform poorly under domain shifts. We propose Caption--Prompt--Judge (CPJ), a training-free few-shot framework that enhances Agri-Pest VQA through structured, interpretable image captions. CPJ employs large vision-language models to generate multi-angle captions, refined iteratively via an LLM-as-Judge module, which then inform a dual-answer VQA process for both recognition and management responses. Evaluated on CDDMBench, CPJ significantly improves performance: using GPT-5-mini captions, GPT-5-Nano achieves \textbf{+22.7} pp in disease classification and \textbf{+19.5} points in QA score over no-caption baselines. The framework provides transparent, evidence-based reasoning, advancing robust and explainable agricultural diagnosis without fine-tuning. Our code and data are publicly available at: https://github.com/CPJ-Agricultural/CPJ-Agricultural-Diagnosis.

Authors:Karthik Dharmarajan, Wenlong Huang, Jiajun Wu, Li Fei-Fei, Ruohan Zhang
Title: Dream2Flow: Bridging Video Generation and Open-World Manipulation with 3D Object Flow
Abstract:
Generative video modeling has emerged as a compelling tool to zero-shot reason about plausible physical interactions for open-world manipulation. Yet, it remains a challenge to translate such human-led motions into the low-level actions demanded by robotic systems. We observe that given an initial image and task instruction, these models excel at synthesizing sensible object motions. Thus, we introduce Dream2Flow, a framework that bridges video generation and robotic control through 3D object flow as an intermediate representation. Our method reconstructs 3D object motions from generated videos and formulates manipulation as object trajectory tracking. By separating the state changes from the actuators that realize those changes, Dream2Flow overcomes the embodiment gap and enables zero-shot guidance from pre-trained video models to manipulate objects of diverse categories-including rigid, articulated, deformable, and granular. Through trajectory optimization or reinforcement learning, Dream2Flow converts reconstructed 3D object flow into executable low-level commands without task-specific demonstrations. Simulation and real-world experiments highlight 3D object flow as a general and scalable interface for adapting video generation models to open-world robotic manipulation. Videos and visualizations are available at https://dream2flow.github.io/.

Authors:Xiang Liu, Yimin Zhou, Jinxiang Wang, Yujun Huang, Shuzhao Xie, Shiyu Qin, Mingyao Hong, Jiawei Li, Yaowei Wang, Zhi Wang, Shu-Tao Xia, Bin Chen
Title: Splatwizard: A Benchmark Toolkit for 3D Gaussian Splatting Compression
Abstract:
The recent advent of 3D Gaussian Splatting (3DGS) has marked a significant breakthrough in real-time novel view synthesis. However, the rapid proliferation of 3DGS-based algorithms has created a pressing need for standardized and comprehensive evaluation tools, especially for compression task. Existing benchmarks often lack the specific metrics necessary to holistically assess the unique characteristics of different methods, such as rendering speed, rate distortion trade-offs memory efficiency, and geometric accuracy. To address this gap, we introduce Splatwizard, a unified benchmark toolkit designed specifically for benchmarking 3DGS compression models. Splatwizard provides an easy-to-use framework to implement new 3DGS compression model and utilize state-of-the-art techniques proposed by previous work. Besides, an integrated pipeline that automates the calculation of key performance indicators, including image-based quality metrics, chamfer distance of reconstruct mesh, rendering frame rates, and computational resource consumption is included in the framework as well. Code is available at https://github.com/splatwizard/splatwizard

Authors:Jibin Song, Mingi Kwon, Jaeseok Jeong, Youngjung Uh
Title: FlowBlending: Stage-Aware Multi-Model Sampling for Fast and High-Fidelity Video Generation
Abstract:
In this work, we show that the impact of model capacity varies across timesteps: it is crucial for the early and late stages but largely negligible during the intermediate stage. Accordingly, we propose FlowBlending, a stage-aware multi-model sampling strategy that employs a large model and a small model at capacity-sensitive stages and intermediate stages, respectively. We further introduce simple criteria to choose stage boundaries and provide a velocity-divergence analysis as an effective proxy for identifying capacity-sensitive regions. Across LTX-Video (2B/13B) and WAN 2.1 (1.3B/14B), FlowBlending achieves up to 1.65x faster inference with 57.35% fewer FLOPs, while maintaining the visual fidelity, temporal coherence, and semantic alignment of the large models. FlowBlending is also compatible with existing sampling-acceleration techniques, enabling up to 2x additional speedup. Project page is available at: https://jibin86.github.io/flowblending_project_page.

Authors:Kai Ye, Xiaotong You, Jianghang Lin, Jiayi Ji, Pingyang Dai, Liujuan Cao
Title: Evolving, Not Training: Zero-Shot Reasoning Segmentation via Evolutionary Prompting
Abstract:
Reasoning Segmentation requires models to interpret complex, context-dependent linguistic queries to achieve pixel-level localization. Current dominant approaches rely heavily on Supervised Fine-Tuning (SFT) or Reinforcement Learning (RL). However, SFT suffers from catastrophic forgetting and domain dependency, while RL is often hindered by training instability and rigid reliance on predefined reward functions. Although recent training-free methods circumvent these training burdens, they are fundamentally limited by a static inference paradigm. These methods typically rely on a single-pass "generate-then-segment" chain, which suffers from insufficient reasoning depth and lacks the capability to self-correct linguistic hallucinations or spatial misinterpretations. In this paper, we challenge these limitations and propose EVOL-SAM3, a novel zero-shot framework that reformulates reasoning segmentation as an inference-time evolutionary search process. Instead of relying on a fixed prompt, EVOL-SAM3 maintains a population of prompt hypotheses and iteratively refines them through a "Generate-Evaluate-Evolve" loop. We introduce a Visual Arena to assess prompt fitness via reference-free pairwise tournaments, and a Semantic Mutation operator to inject diversity and correct semantic errors. Furthermore, a Heterogeneous Arena module integrates geometric priors with semantic reasoning to ensure robust final selection. Extensive experiments demonstrate that EVOL-SAM3 not only substantially outperforms static baselines but also significantly surpasses fully supervised state-of-the-art methods on the challenging ReasonSeg benchmark in a zero-shot setting. The code is available at https://github.com/AHideoKuzeA/Evol-SAM3.

Authors:Yuanhao Cai, Kunpeng Li, Menglin Jia, Jialiang Wang, Junzhe Sun, Feng Liang, Weifeng Chen, Felix Juefei-Xu, Chu Wang, Ali Thabet, Xiaoliang Dai, Xuan Ju, Alan Yuille, Ji Hou
Title: PhyGDPO: Physics-Aware Groupwise Direct Preference Optimization for Physically Consistent Text-to-Video Generation
Abstract:
Recent advances in text-to-video (T2V) generation have achieved good visual quality, yet synthesizing videos that faithfully follow physical laws remains an open challenge. Existing methods mainly based on graphics or prompt extension struggle to generalize beyond simple simulated environments or learn implicit physical reasoning. The scarcity of training data with rich physics interactions and phenomena is also a problem. In this paper, we first introduce a Physics-Augmented video data construction Pipeline, PhyAugPipe, that leverages a vision-language model (VLM) with chain-of-thought reasoning to collect a large-scale training dataset, PhyVidGen-135K. Then we formulate a principled Physics-aware Groupwise Direct Preference Optimization, PhyGDPO, framework that builds upon the groupwise Plackett-Luce probabilistic model to capture holistic preferences beyond pairwise comparisons. In PhyGDPO, we design a Physics-Guided Rewarding (PGR) scheme that embeds VLM-based physics rewards to steer optimization toward physical consistency. We also propose a LoRA-Switch Reference (LoRA-SR) scheme that eliminates memory-heavy reference duplication for efficient training. Experiments show that our method significantly outperforms state-of-the-art open-source methods on PhyGenBench and VideoPhy2. Please check our project page at https://caiyuanhao1998.github.io/project/PhyGDPO for more video results. Our code, models, and data will be released at https://github.com/caiyuanhao1998/Open-PhyGDPO

Authors:Prasiddha Siwakoti, Atefeh Khoshkhahtinat, Piyush M. Mehta, Barbara J. Thompson, Michael S. F. Kirk, Daniel da Silva
Title: Spectral and Spatial Graph Learning for Multispectral Solar Image Compression
Abstract:
High-fidelity compression of multispectral solar imagery remains challenging for space missions, where limited bandwidth must be balanced against preserving fine spectral and spatial details. We present a learned image compression framework tailored to solar observations, leveraging two complementary modules: (1) the Inter-Spectral Windowed Graph Embedding (iSWGE), which explicitly models inter-band relationships by representing spectral channels as graph nodes with learned edge features; and (2) the Windowed Spatial Graph Attention and Convolutional Block Attention (WSGA-C), which combines sparse graph attention with convolutional attention to reduce spatial redundancy and emphasize fine-scale structures. Evaluations on the SDOML dataset across six extreme ultraviolet (EUV) channels show that our approach achieves a 20.15%reduction in Mean Spectral Information Divergence (MSID), up to 1.09% PSNR improvement, and a 1.62% log transformed MS-SSIM gain over strong learned baselines, delivering sharper and spectrally faithful reconstructions at comparable bits-per-pixel rates. The code is publicly available at https://github.com/agyat4/sgraph .

Authors:Bohong Chen, Haiyang Liu
Title: DyStream: Streaming Dyadic Talking Heads Generation via Flow Matching-based Autoregressive Model
Abstract:
Generating realistic, dyadic talking head video requires ultra-low latency. Existing chunk-based methods require full non-causal context windows, introducing significant delays. This high latency critically prevents the immediate, non-verbal feedback required for a realistic listener. To address this, we present DyStream, a flow matching-based autoregressive model that could generate video in real-time from both speaker and listener audio. Our method contains two key designs: (1) we adopt a stream-friendly autoregressive framework with flow-matching heads for probabilistic modeling, and (2) We propose a causal encoder enhanced by a lookahead module to incorporate short future context (e.g., 60 ms) to improve quality while maintaining low latency. Our analysis shows this simple-and-effective method significantly surpass alternative causal strategies, including distillation and generative encoder. Extensive experiments show that DyStream could generate video within 34 ms per frame, guaranteeing the entire system latency remains under 100 ms. Besides, it achieves state-of-the-art lip-sync quality, with offline and online LipSync Confidence scores of 8.13 and 7.61 on HDTF, respectively. The model, weights and codes are available.

Authors:Song Wang, Lingdong Kong, Xiaolu Liu, Hao Shi, Wentong Li, Jianke Zhu, Steven C. H. Hoi
Title: Forging Spatial Intelligence: A Roadmap of Multi-Modal Data Pre-Training for Autonomous Systems
Abstract:
The rapid advancement of autonomous systems, including self-driving vehicles and drones, has intensified the need to forge true Spatial Intelligence from multi-modal onboard sensor data. While foundation models excel in single-modal contexts, integrating their capabilities across diverse sensors like cameras and LiDAR to create a unified understanding remains a formidable challenge. This paper presents a comprehensive framework for multi-modal pre-training, identifying the core set of techniques driving progress toward this goal. We dissect the interplay between foundational sensor characteristics and learning strategies, evaluating the role of platform-specific datasets in enabling these advancements. Our central contribution is the formulation of a unified taxonomy for pre-training paradigms: ranging from single-modality baselines to sophisticated unified frameworks that learn holistic representations for advanced tasks like 3D object detection and semantic occupancy prediction. Furthermore, we investigate the integration of textual inputs and occupancy representations to facilitate open-world perception and planning. Finally, we identify critical bottlenecks, such as computational efficiency and model scalability, and propose a roadmap toward general-purpose multi-modal foundation models capable of achieving robust Spatial Intelligence for real-world deployment.

Authors:Nan Jiang, Zimo He, Wanhe Yu, Lexi Pang, Yunhao Li, Hongjie Li, Jieming Cui, Yuhan Li, Yizhou Wang, Yixin Zhu, Siyuan Huang
Title: UniAct: Unified Motion Generation and Action Streaming for Humanoid Robots
Abstract:
A long-standing objective in humanoid robotics is the realization of versatile agents capable of following diverse multimodal instructions with human-level flexibility. Despite advances in humanoid control, bridging high-level multimodal perception with whole-body execution remains a significant bottleneck. Existing methods often struggle to translate heterogeneous instructions -- such as language, music, and trajectories -- into stable, real-time actions. Here we show that UniAct, a two-stage framework integrating a fine-tuned MLLM with a causal streaming pipeline, enables humanoid robots to execute multimodal instructions with sub-500 ms latency. By unifying inputs through a shared discrete codebook via FSQ, UniAct ensures cross-modal alignment while constraining motions to a physically grounded manifold. This approach yields a 19% improvement in the success rate of zero-shot tracking of imperfect reference motions. We validate UniAct on UniMoCap, our 20-hour humanoid motion benchmark, demonstrating robust generalization across diverse real-world scenarios. Our results mark a critical step toward responsive, general-purpose humanoid assistants capable of seamless interaction through unified perception and control.

Authors:Zhi Li, Yaqi Wang, Bingtao Ma, Yifan Zhang, Huiyu Zhou, Shuai Wang
Title: Physically-Grounded Manifold Projection with Foundation Priors for Metal Artifact Reduction in Dental CBCT
Abstract:
Metal artifacts in Dental CBCT severely obscure anatomical structures, hindering diagnosis. Current deep learning for Metal Artifact Reduction (MAR) faces limitations: supervised methods suffer from spectral blurring due to "regression-to-the-mean", while unsupervised ones risk structural hallucinations. Denoising Diffusion Models (DDPMs) offer realism but rely on slow, stochastic iterative sampling, unsuitable for clinical use. To resolve this, we propose the Physically-Grounded Manifold Projection (PGMP) framework. First, our Anatomically-Adaptive Physics Simulation (AAPS) pipeline synthesizes high-fidelity training pairs via Monte Carlo spectral modeling and patient-specific digital twins, bridging the synthetic-to-real gap. Second, our DMP-Former adapts the Direct x-Prediction paradigm, reformulating restoration as a deterministic manifold projection to recover clean anatomy in a single forward pass, eliminating stochastic sampling. Finally, a Semantic-Structural Alignment (SSA) module anchors the solution using priors from medical foundation models (MedDINOv3), ensuring clinical plausibility. Experiments on synthetic and multi-center clinical datasets show PGMP outperforms state-of-the-art methods on unseen anatomy, setting new benchmarks in efficiency and diagnostic reliability. Code and data: https://github.com/ricoleehduu/PGMP

Authors:Rahul Medicharla, Alper Yilmaz
Title: MotivNet: Evolving Meta-Sapiens into an Emotionally Intelligent Foundation Model
Abstract:
In this paper, we introduce MotivNet, a generalizable facial emotion recognition model for robust real-world application. Current state-of-the-art FER models tend to have weak generalization when tested on diverse data, leading to deteriorated performance in the real world and hindering FER as a research domain. Though researchers have proposed complex architectures to address this generalization issue, they require training cross-domain to obtain generalizable results, which is inherently contradictory for real-world application. Our model, MotivNet, achieves competitive performance across datasets without cross-domain training by using Meta-Sapiens as a backbone. Sapiens is a human vision foundational model with state-of-the-art generalization in the real world through large-scale pretraining of a Masked Autoencoder. We propose MotivNet as an additional downstream task for Sapiens and define three criteria to evaluate MotivNet's viability as a Sapiens task: benchmark performance, model similarity, and data similarity. Throughout this paper, we describe the components of MotivNet, our training approach, and our results showing MotivNet is generalizable across domains. We demonstrate that MotivNet can be benchmarked against existing SOTA models and meets the listed criteria, validating MotivNet as a Sapiens downstream task, and making FER more incentivizing for in-the-wild application. The code is available at https://github.com/OSUPCVLab/EmotionFromFaceImages.

Authors:Shuyun Wang, Haiyang Sun, Bing Wang, Hangjun Ye, Xin Yu
Title: Mirage: One-Step Video Diffusion for Photorealistic and Coherent Asset Editing in Driving Scenes
Abstract:
Vision-centric autonomous driving systems rely on diverse and scalable training data to achieve robust performance. While video object editing offers a promising path for data augmentation, existing methods often struggle to maintain both high visual fidelity and temporal coherence. In this work, we propose \textbf{Mirage}, a one-step video diffusion model for photorealistic and coherent asset editing in driving scenes. Mirage builds upon a text-to-video diffusion prior to ensure temporal consistency across frames. However, 3D causal variational autoencoders often suffer from degraded spatial fidelity due to compression, and directly passing 3D encoder features to decoder layers breaks temporal causality. To address this, we inject temporally agnostic latents from a pretrained 2D encoder into the 3D decoder to restore detail while preserving causal structures. Furthermore, because scene objects and inserted assets are optimized under different objectives, their Gaussians exhibit a distribution mismatch that leads to pose misalignment. To mitigate this, we introduce a two-stage data alignment strategy combining coarse 3D alignment and fine 2D refinement, thereby improving alignment and providing cleaner supervision. Extensive experiments demonstrate that Mirage achieves high realism and temporal consistency across diverse editing scenarios. Beyond asset editing, Mirage can also generalize to other video-to-video translation tasks, serving as a reliable baseline for future research. Our code is available at https://github.com/wm-research/mirage.

Authors:Pieter M. Blok, Haozhou Wang, Hyun Kwon Suh, Peicheng Wang, James Burridge, Wei Guo
Title: PointRAFT: 3D deep learning for high-throughput prediction of potato tuber weight from partial point clouds
Abstract:
Potato yield is a key indicator for optimizing cultivation practices in agriculture. Potato yield can be estimated on harvesters using RGB-D cameras, which capture three-dimensional (3D) information of individual tubers moving along the conveyor belt. However, point clouds reconstructed from RGB-D images are incomplete due to self-occlusion, leading to systematic underestimation of tuber weight. To address this, we introduce PointRAFT, a high-throughput point cloud regression network that directly predicts continuous 3D shape properties, such as tuber weight, from partial point clouds. Rather than reconstructing full 3D geometry, PointRAFT infers target values directly from raw 3D data. Its key architectural novelty is an object height embedding that incorporates tuber height as an additional geometric cue, improving weight prediction under practical harvesting conditions. PointRAFT was trained and evaluated on 26,688 partial point clouds collected from 859 potato tubers across four cultivars and three growing seasons on an operational harvester in Japan. On a test set of 5,254 point clouds from 172 tubers, PointRAFT achieved a mean absolute error of 12.0 g and a root mean squared error of 17.2 g, substantially outperforming a linear regression baseline and a standard PointNet++ regression network. With an average inference time of 6.3 ms per point cloud, PointRAFT supports processing rates of up to 150 tubers per second, meeting the high-throughput requirements of commercial potato harvesters. Beyond potato weight estimation, PointRAFT provides a versatile regression network applicable to a wide range of 3D phenotyping and robotic perception tasks. The code, network weights, and a subset of the dataset are publicly available at https://github.com/pieterblok/pointraft.git.

Authors:Xingyu Zhou, Qifan Li, Xiaobin Hu, Hai Chen, Shuhang Gu
Title: Guiding a Diffusion Transformer with the Internal Dynamics of Itself
Abstract:
The diffusion model presents a powerful ability to capture the entire (conditional) data distribution. However, due to the lack of sufficient training and data to learn to cover low-probability areas, the model will be penalized for failing to generate high-quality images corresponding to these areas. To achieve better generation quality, guidance strategies such as classifier free guidance (CFG) can guide the samples to the high-probability areas during the sampling stage. However, the standard CFG often leads to over-simplified or distorted samples. On the other hand, the alternative line of guiding diffusion model with its bad version is limited by carefully designed degradation strategies, extra training and additional sampling steps. In this paper, we proposed a simple yet effective strategy Internal Guidance (IG), which introduces an auxiliary supervision on the intermediate layer during training process and extrapolates the intermediate and deep layer's outputs to obtain generative results during sampling process. This simple strategy yields significant improvements in both training efficiency and generation quality on various baselines. On ImageNet 256x256, SiT-XL/2+IG achieves FID=5.31 and FID=1.75 at 80 and 800 epochs. More impressively, LightningDiT-XL/1+IG achieves FID=1.34 which achieves a large margin between all of these methods. Combined with CFG, LightningDiT-XL/1+IG achieves the current state-of-the-art FID of 1.19.

Authors:Yu-Tang Chang, Pin-Wei Chen, Shih-Fang Chen
Title: Deep Global Clustering for Hyperspectral Image Segmentation: Concepts, Applications, and Open Challenges
Abstract:
Hyperspectral imaging (HSI) analysis faces computational bottlenecks due to massive data volumes that exceed available memory. While foundation models pre-trained on large remote sensing datasets show promise, their learned representations often fail to transfer to domain-specific applications like close-range agricultural monitoring where spectral signatures, spatial scales, and semantic targets differ fundamentally. This report presents Deep Global Clustering (DGC), a conceptual framework for memory-efficient HSI segmentation that learns global clustering structure from local patch observations without pre-training. DGC operates on small patches with overlapping regions to enforce consistency, enabling training in under 30 minutes on consumer hardware while maintaining constant memory usage. On a leaf disease dataset, DGC achieves background-tissue separation (mean IoU 0.925) and demonstrates unsupervised disease detection through navigable semantic granularity. However, the framework suffers from optimization instability rooted in multi-objective loss balancing: meaningful representations emerge rapidly but degrade due to cluster over-merging in feature space. We position this work as intellectual scaffolding - the design philosophy has merit, but stable implementation requires principled approaches to dynamic loss balancing. Code and data are available at https://github.com/b05611038/HSI_global_clustering.

Authors:Haoran He, Yuxiao Ye, Jie Liu, Jiajun Liang, Zhiyong Wang, Ziyang Yuan, Xintao Wang, Hangyu Mao, Pengfei Wan, Ling Pan
Title: GARDO: Reinforcing Diffusion Models without Reward Hacking
Abstract:
Fine-tuning diffusion models via online reinforcement learning (RL) has shown great potential for enhancing text-to-image alignment. However, since precisely specifying a ground-truth objective for visual tasks remains challenging, the models are often optimized using a proxy reward that only partially captures the true goal. This mismatch often leads to reward hacking, where proxy scores increase while real image quality deteriorates and generation diversity collapses. While common solutions add regularization against the reference policy to prevent reward hacking, they compromise sample efficiency and impede the exploration of novel, high-reward regions, as the reference policy is usually sub-optimal. To address the competing demands of sample efficiency, effective exploration, and mitigation of reward hacking, we propose Gated and Adaptive Regularization with Diversity-aware Optimization (GARDO), a versatile framework compatible with various RL algorithms. Our key insight is that regularization need not be applied universally; instead, it is highly effective to selectively penalize a subset of samples that exhibit high uncertainty. To address the exploration challenge, GARDO introduces an adaptive regularization mechanism wherein the reference model is periodically updated to match the capabilities of the online policy, ensuring a relevant regularization target. To address the mode collapse issue in RL, GARDO amplifies the rewards for high-quality samples that also exhibit high diversity, encouraging mode coverage without destabilizing the optimization process. Extensive experiments across diverse proxy rewards and hold-out unseen metrics consistently show that GARDO mitigates reward hacking and enhances generation diversity without sacrificing sample efficiency or exploration, highlighting its effectiveness and robustness.

Authors:Yijie Qian, Juncheng Wang, Yuxiang Feng, Chao Xu, Wang Lu, Yang Liu, Baigui Sun, Yiqiang Chen, Yong Liu, Shujun Wang
Title: Think Before You Move: Latent Motion Reasoning for Text-to-Motion Generation
Abstract:
Current state-of-the-art paradigms predominantly treat Text-to-Motion (T2M) generation as a direct translation problem, mapping symbolic language directly to continuous poses. While effective for simple actions, this System 1 approach faces a fundamental theoretical bottleneck we identify as the Semantic-Kinematic Impedance Mismatch: the inherent difficulty of grounding semantically dense, discrete linguistic intent into kinematically dense, high-frequency motion data in a single shot. In this paper, we argue that the solution lies in an architectural shift towards Latent System 2 Reasoning. Drawing inspiration from Hierarchical Motor Control in cognitive science, we propose Latent Motion Reasoning (LMR) that reformulates generation as a two-stage Think-then-Act decision process. Central to LMR is a novel Dual-Granularity Tokenizer that disentangles motion into two distinct manifolds: a compressed, semantically rich Reasoning Latent for planning global topology, and a high-frequency Execution Latent for preserving physical fidelity. By forcing the model to autoregressively reason (plan the coarse trajectory) before it moves (instantiates the frames), we effectively bridge the ineffability gap between language and physics. We demonstrate LMR's versatility by implementing it for two representative baselines: T2M-GPT (discrete) and MotionStreamer (continuous). Extensive experiments show that LMR yields non-trivial improvements in both semantic alignment and physical plausibility, validating that the optimal substrate for motion planning is not natural language, but a learned, motion-aligned concept space. Codes and demos can be found in \hyperlink{https://chenhaoqcdyq.github.io/LMR/}{https://chenhaoqcdyq.github.io/LMR/}

Authors:Wenzheng Zeng, Difei Gao, Mike Zheng Shou, Hwee Tou Ng
Title: Factorized Learning for Temporally Grounded Video-Language Models
Abstract:
Recent video-language models have shown great potential for video understanding, but still struggle with accurate temporal grounding for event-level perception. We observe that two main factors in video understanding (i.e., temporal grounding and textual response) form a logical hierarchy: accurate temporal evidence grounding lays the foundation for reliable textual response. However, existing works typically handle these two tasks in a coupled manner without a clear logical structure, leading to sub-optimal objectives. We address this from a factorized learning perspective. We first propose D$^2$VLM, a framework that decouples the learning of these two tasks while also emphasizing their inherent dependency. We adopt a "grounding then answering with evidence referencing" paradigm and introduce evidence tokens for evidence grounding, which emphasize event-level visual semantic capture beyond the focus on timestamp representation in existing works. To further facilitate the learning of these two tasks, we introduce a novel factorized preference optimization (FPO) algorithm. Unlike standard preference optimization, FPO explicitly incorporates probabilistic temporal grounding modeling into the optimization objective, enabling preference learning for both temporal grounding and textual response. We also construct a synthetic dataset to address the lack of suitable datasets for factorized preference learning with explicit temporal grounding. Experiments on various tasks demonstrate the clear advantage of our approach. Our source code is available at https://github.com/nusnlp/d2vlm.

Authors:Yunkai Dang, Donghao Wang, Jiacheng Yang, Yifan Jiang, Meiyi Zhu, Yuekun Yang, Cong Wang, Qi Fan, Wenbin Li, Yang Gao
Title: FUSE-RSVLM: Feature Fusion Vision-Language Model for Remote Sensing
Abstract:
Large vision-language models (VLMs) exhibit strong performance across various tasks. However, these VLMs encounter significant challenges when applied to the remote sensing domain due to the inherent differences between remote sensing images and natural images. Existing remote sensing VLMs often fail to extract fine-grained visual features and suffer from visual forgetting during deep language processing. To address this, we introduce MF-RSVLM, a Multi-Feature Fusion Remote Sensing Vision--Language Model that effectively extracts and fuses visual features for RS understanding. MF-RSVLM learns multi-scale visual representations and combines global context with local details, improving the capture of small and complex structures in RS scenes. A recurrent visual feature injection scheme ensures the language model remains grounded in visual evidence and reduces visual forgetting during generation. Extensive experiments on diverse RS benchmarks show that MF-RSVLM achieves state-of-the-art or highly competitive performance across remote sensing classification, image captioning, and VQA tasks. Our code is publicly available at https://github.com/Yunkaidang/RSVLM.

Authors:Huibin Li, Haoran Liu, Mingzhe Liu, Yulong Xiao, Peng Li, Guibin Zan
Title: U-Net-Like Spiking Neural Networks for Single Image Dehazing
Abstract:
Image dehazing is a critical challenge in computer vision, essential for enhancing image clarity in hazy conditions. Traditional methods often rely on atmospheric scattering models, while recent deep learning techniques, specifically Convolutional Neural Networks (CNNs) and Transformers, have improved performance by effectively analyzing image features. However, CNNs struggle with long-range dependencies, and Transformers demand significant computational resources. To address these limitations, we propose DehazeSNN, an innovative architecture that integrates a U-Net-like design with Spiking Neural Networks (SNNs). DehazeSNN captures multi-scale image features while efficiently managing local and long-range dependencies. The introduction of the Orthogonal Leaky-Integrate-and-Fire Block (OLIFBlock) enhances cross-channel communication, resulting in superior dehazing performance with reduced computational burden. Our extensive experiments show that DehazeSNN is highly competitive to state-of-the-art methods on benchmark datasets, delivering high-quality haze-free images with a smaller model size and less multiply-accumulate operations. The proposed dehazing method is publicly available at https://github.com/HaoranLiu507/DehazeSNN.

Authors:Yulong Zou, Bo Liu, Cun-Jing Zheng, Yuan-ming Geng, Siyue Li, Qiankun Zuo, Shuihua Wang, Yudong Zhang, Jin Hong
Title: MGML: A Plug-and-Play Meta-Guided Multi-Modal Learning Framework for Incomplete Multimodal Brain Tumor Segmentation
Abstract:
Leveraging multimodal information from Magnetic Resonance Imaging (MRI) plays a vital role in lesion segmentation, especially for brain tumors. However, in clinical practice, multimodal MRI data are often incomplete, making it challenging to fully utilize the available information. Therefore, maximizing the utilization of this incomplete multimodal information presents a crucial research challenge. We present a novel meta-guided multi-modal learning (MGML) framework that comprises two components: meta-parameterized adaptive modality fusion and consistency regularization module. The meta-parameterized adaptive modality fusion (Meta-AMF) enables the model to effectively integrate information from multiple modalities under varying input conditions. By generating adaptive soft-label supervision signals based on the available modalities, Meta-AMF explicitly promotes more coherent multimodal fusion. In addition, the consistency regularization module enhances segmentation performance and implicitly reinforces the robustness and generalization of the overall framework. Notably, our approach does not alter the original model architecture and can be conveniently integrated into the training pipeline for end-to-end model optimization. We conducted extensive experiments on the public BraTS2020 and BraTS2023 datasets. Compared to multiple state-of-the-art methods from previous years, our method achieved superior performance. On BraTS2020, for the average Dice scores across fifteen missing modality combinations, building upon the baseline, our method obtained scores of 87.55, 79.36, and 62.67 for the whole tumor (WT), the tumor core (TC), and the enhancing tumor (ET), respectively. We have made our source code publicly available at https://github.com/worldlikerr/MGML.

Authors:Lvmin Zhang, Shengqu Cai, Muyang Li, Chong Zeng, Beijia Lu, Anyi Rao, Song Han, Gordon Wetzstein, Maneesh Agrawala
Title: Pretraining Frame Preservation in Autoregressive Video Memory Compression
Abstract:
We present PFP, a neural network structure to compress long videos into short contexts, with an explicit pretraining objective to preserve the high-frequency details of single frames at arbitrary temporal positions. The baseline model can compress a 20-second video into a context at about 5k length, where random frames can be retrieved with perceptually preserved appearances. Such pretrained models can be directly fine-tuned as memory encoders for autoregressive video models, enabling long history memory with low context cost and relatively low fidelity loss. We evaluate the framework with ablative settings and discuss the trade-offs of possible neural architecture designs.

Authors:Hau-Shiang Shiu, Chin-Yang Lin, Zhixiang Wang, Chi-Wei Hsiao, Po-Fan Yu, Yu-Chih Chen, Yu-Lun Liu
Title: Stream-DiffVSR: Low-Latency Streamable Video Super-Resolution via Auto-Regressive Diffusion
Abstract:
Diffusion-based video super-resolution (VSR) methods achieve strong perceptual quality but remain impractical for latency-sensitive settings due to reliance on future frames and expensive multi-step denoising. We propose Stream-DiffVSR, a causally conditioned diffusion framework for efficient online VSR. Operating strictly on past frames, it combines a four-step distilled denoiser for fast inference, an Auto-regressive Temporal Guidance (ARTG) module that injects motion-aligned cues during latent denoising, and a lightweight temporal-aware decoder with a Temporal Processor Module (TPM) that enhances detail and temporal coherence. Stream-DiffVSR processes 720p frames in 0.328 seconds on an RTX4090 GPU and significantly outperforms prior diffusion-based methods. Compared with the online SOTA TMP, it boosts perceptual quality (LPIPS +0.095) while reducing latency by over 130x. Stream-DiffVSR achieves the lowest latency reported for diffusion-based VSR, reducing initial delay from over 4600 seconds to 0.328 seconds, thereby making it the first diffusion VSR method suitable for low-latency online deployment. Project page: https://jamichss.github.io/stream-diffvsr-project-page/

Authors:Shaocong Xu, Songlin Wei, Qizhe Wei, Zheng Geng, Hong Li, Licheng Shen, Qianpu Sun, Shu Han, Bin Ma, Bohan Li, Chongjie Ye, Yuhang Zheng, Nan Wang, Saining Zhang, Hao Zhao
Title: Diffusion Knows Transparency: Repurposing Video Diffusion for Transparent Object Depth and Normal Estimation
Abstract:
Transparent objects remain notoriously hard for perception systems: refraction, reflection and transmission break the assumptions behind stereo, ToF and purely discriminative monocular depth, causing holes and temporally unstable estimates. Our key observation is that modern video diffusion models already synthesize convincing transparent phenomena, suggesting they have internalized the optical rules. We build TransPhy3D, a synthetic video corpus of transparent/reflective scenes: 11k sequences rendered with Blender/Cycles. Scenes are assembled from a curated bank of category-rich static assets and shape-rich procedural assets paired with glass/plastic/metal materials. We render RGB + depth + normals with physically based ray tracing and OptiX denoising. Starting from a large video diffusion model, we learn a video-to-video translator for depth (and normals) via lightweight LoRA adapters. During training we concatenate RGB and (noisy) depth latents in the DiT backbone and co-train on TransPhy3D and existing frame-wise synthetic datasets, yielding temporally consistent predictions for arbitrary-length input videos. The resulting model, DKT, achieves zero-shot SOTA on real and synthetic video benchmarks involving transparency: ClearPose, DREDS (CatKnown/CatNovel), and TransPhy3D-Test. It improves accuracy and temporal consistency over strong image/video baselines, and a normal variant sets the best video normal estimation results on ClearPose. A compact 1.3B version runs at ~0.17 s/frame. Integrated into a grasping stack, DKT's depth boosts success rates across translucent, reflective and diffuse surfaces, outperforming prior estimators. Together, these results support a broader claim: "Diffusion knows transparency." Generative video priors can be repurposed, efficiently and label-free, into robust, temporally coherent perception for challenging real-world manipulation.

Authors:Jichen Feng, Yifan Zhang, Chenggong Zhang, Yifu Lu, Shilong Liu, Mengdi Wang
Title: Web World Models
Abstract:
Language agents increasingly require persistent worlds in which they can act, remember, and learn. Existing approaches sit at two extremes: conventional web frameworks provide reliable but fixed contexts backed by databases, while fully generative world models aim for unlimited environments at the expense of controllability and practical engineering. In this work, we introduce the Web World Model (WWM), a middle ground where world state and ``physics'' are implemented in ordinary web code to ensure logical consistency, while large language models generate context, narratives, and high-level decisions on top of this structured latent state. We build a suite of WWMs on a realistic web stack, including an infinite travel atlas grounded in real geography, fictional galaxy explorers, web-scale encyclopedic and narrative worlds, and simulation- and game-like environments. Across these systems, we identify practical design principles for WWMs: separating code-defined rules from model-driven imagination, representing latent state as typed web interfaces, and utilizing deterministic generation to achieve unlimited but structured exploration. Our results suggest that web stacks themselves can serve as a scalable substrate for world models, enabling controllable yet open-ended environments. Project Page: https://github.com/Princeton-AI2-Lab/Web-World-Models.

Authors:Keda Tao, Wenjie Du, Bohan Yu, Weiqiang Wang, Jian Liu, Huan Wang
Title: OmniAgent: Audio-Guided Active Perception Agent for Omnimodal Audio-Video Understanding
Abstract:
Omnimodal large language models have made significant strides in unifying audio and visual modalities; however, they often lack the fine-grained cross-modal understanding and have difficulty with multimodal alignment. To address these limitations, we introduce OmniAgent, a fully audio-guided active perception agent that dynamically orchestrates specialized tools to achieve more fine-grained audio-visual reasoning. Unlike previous works that rely on rigid, static workflows and dense frame-captioning, this paper demonstrates a paradigm shift from passive response generation to active multimodal inquiry. OmniAgent employs dynamic planning to autonomously orchestrate tool invocation on demand, strategically concentrating perceptual attention on task-relevant cues. Central to our approach is a novel coarse-to-fine audio-guided perception paradigm, which leverages audio cues to localize temporal events and guide subsequent reasoning. Extensive empirical evaluations on three audio-video understanding benchmarks demonstrate that OmniAgent achieves state-of-the-art performance, surpassing leading open-source and proprietary models by substantial margins of 10% - 20% accuracy.

Authors:Shu Pu, Boya Zeng, Kaichen Zhou, Mengyu Wang, Zhuang Liu
Title: Memorization in 3D Shape Generation: An Empirical Study
Abstract:
Generative models are increasingly used in 3D vision to synthesize novel shapes, yet it remains unclear whether their generation relies on memorizing training shapes. Understanding their memorization could help prevent training data leakage and improve the diversity of generated results. In this paper, we design an evaluation framework to quantify memorization in 3D generative models and study the influence of different data and modeling designs on memorization. We first apply our framework to quantify memorization in existing methods. Next, through controlled experiments with a latent vector-set (Vecset) diffusion model, we find that, on the data side, memorization depends on data modality, and increases with data diversity and finer-grained conditioning; on the modeling side, it peaks at a moderate guidance scale and can be mitigated by longer Vecsets and simple rotation augmentation. Together, our framework and analysis provide an empirical understanding of memorization in 3D generative models and suggest simple yet effective strategies to reduce it without degrading generation quality. Our code is available at https://github.com/zlab-princeton/3d_mem.

Authors:Damiano Marsili, Aditya Mehta, Ryan Y. Lin, Georgia Gkioxari
Title: Same or Not? Enhancing Visual Perception in Vision-Language Models
Abstract:
Vision-language models (VLMs) excel at broad visual understanding but remain coarse-grained, exhibit visual biases, and miss subtle visual details. Existing training corpora reinforce this limitation by emphasizing general recognition ("Is it a cat or a dog?") over fine-grained perception. To address this, we introduce a new training corpus and task designed to enhance the perceptual abilities of VLMs. TWIN is a large-scale dataset of 561,000 image-pair queries that task models to determine whether two visually similar images depict the same object, encouraging attention to nuanced visual cues. The dataset spans a diverse range of everyday objects across contexts, viewpoints, and appearances. Fine-tuning VLMs on TWIN yields notable gains in fine-grained recognition, even on unseen domains such as art, animals, plants, and landmarks. To quantify these gains, we introduce FGVQA, a benchmark suite of 12,000 queries that repurposes fine-grained recognition and retrieval datasets from multiple domains. While existing VLMs struggle on FGVQA, when fine-tuned on TWIN they improve by up to 19.3%, without compromising performance on general VQA benchmarks. Finally, our TWIN dataset scales favorably with object annotations, and our analysis shows that scale is key to performance. We envision TWIN as a drop-in addition to open-source VLM training corpora, advancing perceptual precision of future models. Project webpage: https://glab-caltech.github.io/twin/

Authors:Zhaoming Kong, Xiaowei Yang, Jiahuan Zhang
Title: Image Denoising Using Global and Local Circulant Representation
Abstract:
The proliferation of imaging devices and countless image data generated every day impose an increasingly high demand on efficient and effective image denoising. In this paper, we establish a theoretical connection between principal component analysis (PCA) and the Haar transform under circulant representation, and present a computationally simple denoising algorithm. The proposed method, termed Haar-tSVD, exploits a unified tensor singular value decomposition (t-SVD) projection combined with Haar transform to efficiently capture global and local patch correlations. Haar-tSVD operates as a one-step, parallelizable plug-and-play denoiser that eliminates the need for learning local bases, thereby striking a balance between denoising speed and performance. Besides, an adaptive noise estimation scheme is introduced to improve robustness according to eigenvalue analysis of the circulant structure. To further enhance the performance under severe noise conditions, we integrate deep neural networks with Haar-tSVD based on the established Haar-PCA relationship. Experimental results on various denoising datasets demonstrate the efficiency and effectiveness of proposed method for noise removal. Our code is publicly available at https://github.com/ZhaomingKong/Haar-tSVD.

Authors:Siyu Jiao, Yiheng Lin, Yujie Zhong, Qi She, Wei Zhou, Xiaohan Lan, Zilong Huang, Fei Yu, Yingchen Yu, Yunqing Zhao, Yao Zhao, Yunchao Wei
Title: ThinkGen: Generalized Thinking for Visual Generation
Abstract:
Recent progress in Multimodal Large Language Models (MLLMs) demonstrates that Chain-of-Thought (CoT) reasoning enables systematic solutions to complex understanding tasks. However, its extension to generation tasks remains nascent and limited by scenario-specific mechanisms that hinder generalization and adaptation. In this work, we present ThinkGen, the first think-driven visual generation framework that explicitly leverages MLLM's CoT reasoning in various generation scenarios. ThinkGen employs a decoupled architecture comprising a pretrained MLLM and a Diffusion Transformer (DiT), wherein the MLLM generates tailored instructions based on user intent, and DiT produces high-quality images guided by these instructions. We further propose a separable GRPO-based training paradigm (SepGRPO), alternating reinforcement learning between the MLLM and DiT modules. This flexible design enables joint training across diverse datasets, facilitating effective CoT reasoning for a wide range of generative scenarios. Extensive experiments demonstrate that ThinkGen achieves robust, state-of-the-art performance across multiple generation benchmarks. Code is available: https://github.com/jiaosiyuu/ThinkGen

Authors:Zongsheng Cao, Yangfan He, Anran Liu, Jun Xie, Feng Chen, Zepeng Wang
Title: PurifyGen: A Risk-Discrimination and Semantic-Purification Model for Safe Text-to-Image Generation
Abstract:
Recent advances in diffusion models have notably enhanced text-to-image (T2I) generation quality, but they also raise the risk of generating unsafe content. Traditional safety methods like text blacklisting or harmful content classification have significant drawbacks: they can be easily circumvented or require extensive datasets and extra training. To overcome these challenges, we introduce PurifyGen, a novel, training-free approach for safe T2I generation that retains the model's original weights. PurifyGen introduces a dual-stage strategy for prompt purification. First, we evaluate the safety of each token in a prompt by computing its complementary semantic distance, which measures the semantic proximity between the prompt tokens and concept embeddings from predefined toxic and clean lists. This enables fine-grained prompt classification without explicit keyword matching or retraining. Tokens closer to toxic concepts are flagged as risky. Second, for risky prompts, we apply a dual-space transformation: we project toxic-aligned embeddings into the null space of the toxic concept matrix, effectively removing harmful semantic components, and simultaneously align them into the range space of clean concepts. This dual alignment purifies risky prompts by both subtracting unsafe semantics and reinforcing safe ones, while retaining the original intent and coherence. We further define a token-wise strategy to selectively replace only risky token embeddings, ensuring minimal disruption to safe content. PurifyGen offers a plug-and-play solution with theoretical grounding and strong generalization to unseen prompts and models. Extensive testing shows that PurifyGen surpasses current methods in reducing unsafe content across five datasets and competes well with training-dependent approaches. The code can refer to https://github.com/AI-Researcher-Team/PurifyGen.

Authors:Donghao Zhou, Jingyu Lin, Guibao Shen, Quande Liu, Jialin Gao, Lihao Liu, Lan Du, Cunjian Chen, Chi-Wing Fu, Xiaowei Hu, Pheng-Ann Heng
Title: IdentityStory: Taming Your Identity-Preserving Generator for Human-Centric Story Generation
Abstract:
Recent visual generative models enable story generation with consistent characters from text, but human-centric story generation faces additional challenges, such as maintaining detailed and diverse human face consistency and coordinating multiple characters across different images. This paper presents IdentityStory, a framework for human-centric story generation that ensures consistent character identity across multiple sequential images. By taming identity-preserving generators, the framework features two key components: Iterative Identity Discovery, which extracts cohesive character identities, and Re-denoising Identity Injection, which re-denoises images to inject identities while preserving desired context. Experiments on the ConsiStory-Human benchmark demonstrate that IdentityStory outperforms existing methods, particularly in face consistency, and supports multi-character combinations. The framework also shows strong potential for applications such as infinite-length story generation and dynamic character composition.

Authors:Zongsheng Cao, Yangfan He, Anran Liu, Feng Chen, Zepeng Wang, Jun Xie
Title: TV-RAG: A Temporal-aware and Semantic Entropy-Weighted Framework for Long Video Retrieval and Understanding
Abstract:
Large Video Language Models (LVLMs) have rapidly emerged as the focus of multimedia AI research. Nonetheless, when confronted with lengthy videos, these models struggle: their temporal windows are narrow, and they fail to notice fine-grained semantic shifts that unfold over extended durations. Moreover, mainstream text-based retrieval pipelines, which rely chiefly on surface-level lexical overlap, ignore the rich temporal interdependence among visual, audio, and subtitle channels. To mitigate these limitations, we propose TV-RAG, a training-free architecture that couples temporal alignment with entropy-guided semantics to improve long-video reasoning. The framework contributes two main mechanisms: \emph{(i)} a time-decay retrieval module that injects explicit temporal offsets into the similarity computation, thereby ranking text queries according to their true multimedia context; and \emph{(ii)} an entropy-weighted key-frame sampler that selects evenly spaced, information-dense frames, reducing redundancy while preserving representativeness. By weaving these temporal and semantic signals together, TV-RAG realises a dual-level reasoning routine that can be grafted onto any LVLM without re-training or fine-tuning. The resulting system offers a lightweight, budget-friendly upgrade path and consistently surpasses most leading baselines across established long-video benchmarks such as Video-MME, MLVU, and LongVideoBench, confirming the effectiveness of our model. The code can be found at https://github.com/AI-Researcher-Team/TV-RAG.

Authors:Yuxin Wen, Qing Shuai, Di Kang, Jing Li, Cheng Wen, Yue Qian, Ningxin Jiao, Changhai Chen, Weijie Chen, Yiran Wang, Jinkun Guo, Dongyue An, Han Liu, Yanyu Tong, Chao Zhang, Qing Guo, Juan Chen, Qiao Zhang, Youyi Zhang, Zihao Yao, Cheng Zhang, Hong Duan, Xiaoping Wu, Qi Chen, Fei Cheng, Liang Dong, Peng He, Hao Zhang, Jiaxin Lin, Chao Zhang, Zhongyi Fan, Yifan Li, Zhichao Hu, Yuhong Liu, Linus, Jie Jiang, Xiaolong Li, Linchao Bao
Title: HY-Motion 1.0: Scaling Flow Matching Models for Text-To-Motion Generation
Abstract:
We present HY-Motion 1.0, a series of state-of-the-art, large-scale, motion generation models capable of generating 3D human motions from textual descriptions. HY-Motion 1.0 represents the first successful attempt to scale up Diffusion Transformer (DiT)-based flow matching models to the billion-parameter scale within the motion generation domain, delivering instruction-following capabilities that significantly outperform current open-source benchmarks. Uniquely, we introduce a comprehensive, full-stage training paradigm -- including large-scale pretraining on over 3,000 hours of motion data, high-quality fine-tuning on 400 hours of curated data, and reinforcement learning from both human feedback and reward models -- to ensure precise alignment with the text instruction and high motion quality. This framework is supported by our meticulous data processing pipeline, which performs rigorous motion cleaning and captioning. Consequently, our model achieves the most extensive coverage, spanning over 200 motion categories across 6 major classes. We release HY-Motion 1.0 to the open-source community to foster future research and accelerate the transition of 3D human motion generation models towards commercial maturity.

Authors:Bohan Xiao, Peiyong Wang, Qisheng He, Ming Dong
Title: Deterministic Image-to-Image Translation via Denoising Brownian Bridge Models with Dual Approximators
Abstract:
Image-to-Image (I2I) translation involves converting an image from one domain to another. Deterministic I2I translation, such as in image super-resolution, extends this concept by guaranteeing that each input generates a consistent and predictable output, closely matching the ground truth (GT) with high fidelity. In this paper, we propose a denoising Brownian bridge model with dual approximators (Dual-approx Bridge), a novel generative model that exploits the Brownian bridge dynamics and two neural network-based approximators (one for forward and one for reverse process) to produce faithful output with negligible variance and high image quality in I2I translations. Our extensive experiments on benchmark datasets including image generation and super-resolution demonstrate the consistent and superior performance of Dual-approx Bridge in terms of image quality and faithfulness to GT when compared to both stochastic and deterministic baselines. Project page and code: https://github.com/bohan95/dual-app-bridge

Authors:Zongsheng Cao, Yangfan He, Anran Liu, Jun Xie, Feng Chen, Zepeng Wang
Title: CoFi-Dec: Hallucination-Resistant Decoding via Coarse-to-Fine Generative Feedback in Large Vision-Language Models
Abstract:
Large Vision-Language Models (LVLMs) have achieved impressive progress in multi-modal understanding and generation. However, they still tend to produce hallucinated content that is inconsistent with the visual input, which limits their reliability in real-world applications. We propose \textbf{CoFi-Dec}, a training-free decoding framework that mitigates hallucinations by integrating generative self-feedback with coarse-to-fine visual conditioning. Inspired by the human visual process from global scene perception to detailed inspection, CoFi-Dec first generates two intermediate textual responses conditioned on coarse- and fine-grained views of the original image. These responses are then transformed into synthetic images using a text-to-image model, forming multi-level visual hypotheses that enrich grounding cues. To unify the predictions from these multiple visual conditions, we introduce a Wasserstein-based fusion mechanism that aligns their predictive distributions into a geometrically consistent decoding trajectory. This principled fusion reconciles high-level semantic consistency with fine-grained visual grounding, leading to more robust and faithful outputs. Extensive experiments on six hallucination-focused benchmarks show that CoFi-Dec substantially reduces both entity-level and semantic-level hallucinations, outperforming existing decoding strategies. The framework is model-agnostic, requires no additional training, and can be seamlessly applied to a wide range of LVLMs. The implementation is available at https://github.com/AI-Researcher-Team/CoFi-Dec.

Authors:Taha Emre, Arunava Chakravarty, Thomas Pinetz, Dmitrii Lachinov, Martin J. Menten, Hendrik Scholl, Sobha Sivaprasad, Daniel Rueckert, Andrew Lotery, Stefan Sacu, Ursula Schmidt-Erfurth, Hrvoje Bogunović
Title: Stochastic Siamese MAE Pretraining for Longitudinal Medical Images
Abstract:
Temporally aware image representations are crucial for capturing disease progression in 3D volumes of longitudinal medical datasets. However, recent state-of-the-art self-supervised learning approaches like Masked Autoencoding (MAE), despite their strong representation learning capabilities, lack temporal awareness. In this paper, we propose STAMP (Stochastic Temporal Autoencoder with Masked Pretraining), a Siamese MAE framework that encodes temporal information through a stochastic process by conditioning on the time difference between the 2 input volumes. Unlike deterministic Siamese approaches, which compare scans from different time points but fail to account for the inherent uncertainty in disease evolution, STAMP learns temporal dynamics stochastically by reframing the MAE reconstruction loss as a conditional variational inference objective. We evaluated STAMP on two OCT and one MRI datasets with multiple visits per patient. STAMP pretrained ViT models outperformed both existing temporal MAE methods and foundation models on different late stage Age-Related Macular Degeneration and Alzheimer's Disease progression prediction which require models to learn the underlying non-deterministic temporal dynamics of the diseases.

Authors:Jesse Brouwers, Xiaoyan Xing, Alexander Timans
Title: Towards Integrating Uncertainty for Domain-Agnostic Segmentation
Abstract:
Foundation models for segmentation such as the Segment Anything Model (SAM) family exhibit strong zero-shot performance, but remain vulnerable in shifted or limited-knowledge domains. This work investigates whether uncertainty quantification can mitigate such challenges and enhance model generalisability in a domain-agnostic manner. To this end, we (1) curate UncertSAM, a benchmark comprising eight datasets designed to stress-test SAM under challenging segmentation conditions including shadows, transparency, and camouflage; (2) evaluate a suite of lightweight, post-hoc uncertainty estimation methods; and (3) assess a preliminary uncertainty-guided prediction refinement step. Among evaluated approaches, a last-layer Laplace approximation yields uncertainty estimates that correlate well with segmentation errors, indicating a meaningful signal. While refinement benefits are preliminary, our findings underscore the potential of incorporating uncertainty into segmentation models to support robust, domain-agnostic performance. Our benchmark and code are made publicly available.

Authors:Dohyun Kim, Seungwoo Lyu, Seung Wook Kim, Paul Hongsuck Seo
Title: Direct Diffusion Score Preference Optimization via Stepwise Contrastive Policy-Pair Supervision
Abstract:
Diffusion models have achieved impressive results in generative tasks such as text-to-image synthesis, yet they often struggle to fully align outputs with nuanced user intent and maintain consistent aesthetic quality. Existing preference-based training methods like Diffusion Direct Preference Optimization help address these issues but rely on costly and potentially noisy human-labeled datasets. In this work, we introduce Direct Diffusion Score Preference Optimization (DDSPO), which directly derives per-timestep supervision from winning and losing policies when such policies are available. Unlike prior methods that operate solely on final samples, DDSPO provides dense, transition-level signals across the denoising trajectory. In practice, we avoid reliance on labeled data by automatically generating preference signals using a pretrained reference model: we contrast its outputs when conditioned on original prompts versus semantically degraded variants. This practical strategy enables effective score-space preference supervision without explicit reward modeling or manual annotations. Empirical results demonstrate that DDSPO improves text-image alignment and visual quality, outperforming or matching existing preference-based methods while requiring significantly less supervision. Our implementation is available at: https://dohyun-as.github.io/DDSPO

Authors:Henglin Liu, Nisha Huang, Chang Liu, Jiangpeng Yan, Huijuan Huang, Jixuan Ying, Tong-Yee Lee, Pengfei Wan, Xiangyang Ji
Title: Bridging Cognitive Gap: Hierarchical Description Learning for Artistic Image Aesthetics Assessment
Abstract:
The aesthetic quality assessment task is crucial for developing a human-aligned quantitative evaluation system for AIGC. However, its inherently complex nature, spanning visual perception, cognition, and emotion, poses fundamental challenges. Although aesthetic descriptions offer a viable representation of this complexity, two critical challenges persist: (1) data scarcity and imbalance: existing dataset overly focuses on visual perception and neglects deeper dimensions due to the expensive manual annotation; and (2) model fragmentation: current visual networks isolate aesthetic attributes with multi-branch encoder, while multimodal methods represented by contrastive learning struggle to effectively process long-form textual descriptions. To resolve challenge (1), we first present the Refined Aesthetic Description (RAD) dataset, a large-scale (70k), multi-dimensional structured dataset, generated via an iterative pipeline without heavy annotation costs and easy to scale. To address challenge (2), we propose ArtQuant, an aesthetics assessment framework for artistic images which not only couples isolated aesthetic dimensions through joint description generation, but also better models long-text semantics with the help of LLM decoders. Besides, theoretical analysis confirms this symbiosis: RAD's semantic adequacy (data) and generation paradigm (model) collectively minimize prediction entropy, providing mathematical grounding for the framework. Our approach achieves state-of-the-art performance on several datasets while requiring only 33% of conventional training epochs, narrowing the cognitive gap between artistic images and aesthetic judgment. We will release both code and dataset to support future research.

Authors:Mohammad Nasirzadeh, Jafar Tahmoresnezhad, Parviz Rashidi-Khazaee
Title: A unified framework for detecting point and collective anomalies in operating system logs via collaborative transformers
Abstract:
Log anomaly detection is crucial for preserving the security of operating systems. Depending on the source of log data collection, various information is recorded in logs that can be considered log modalities. In light of this intuition, unimodal methods often struggle by ignoring the different modalities of log data. Meanwhile, multimodal methods fail to handle the interactions between these modalities. Applying multimodal sentiment analysis to log anomaly detection, we propose CoLog, a framework that collaboratively encodes logs utilizing various modalities. CoLog utilizes collaborative transformers and multi-head impressed attention to learn interactions among several modalities, ensuring comprehensive anomaly detection. To handle the heterogeneity caused by these interactions, CoLog incorporates a modality adaptation layer, which adapts the representations from different log modalities. This methodology enables CoLog to learn nuanced patterns and dependencies within the data, enhancing its anomaly detection capabilities. Extensive experiments demonstrate CoLog's superiority over existing state-of-the-art methods. Furthermore, in detecting both point and collective anomalies, CoLog achieves a mean precision of 99.63%, a mean recall of 99.59%, and a mean F1 score of 99.61% across seven benchmark datasets for log-based anomaly detection. The comprehensive detection capabilities of CoLog make it highly suitable for cybersecurity, system monitoring, and operational efficiency. CoLog represents a significant advancement in log anomaly detection, providing a sophisticated and effective solution to point and collective anomaly detection through a unified framework and a solution to the complex challenges automatic log data analysis poses. We also provide the implementation of CoLog at https://github.com/NasirzadehMoh/CoLog.

Authors:Niki Amini-Naieni, Andrew Zisserman
Title: CountGD++: Generalized Prompting for Open-World Counting
Abstract:
The flexibility and accuracy of methods for automatically counting objects in images and videos are limited by the way the object can be specified. While existing methods allow users to describe the target object with text and visual examples, the visual examples must be manually annotated inside the image, and there is no way to specify what not to count. To address these gaps, we introduce novel capabilities that expand how the target object can be specified. Specifically, we extend the prompt to enable what not to count to be described with text and/or visual examples, introduce the concept of `pseudo-exemplars' that automate the annotation of visual examples at inference, and extend counting models to accept visual examples from both natural and synthetic external images. We also use our new counting model, CountGD++, as a vision expert agent for an LLM. Together, these contributions expand the prompt flexibility of multi-modal open-world counting and lead to significant improvements in accuracy, efficiency, and generalization across multiple datasets. Code is available at https://github.com/niki-amini-naieni/CountGDPlusPlus.

Authors:Shin seong Kim, Minjung Shin, Hyunin Cho, Youngjung Uh
Title: ASemConsist: Adaptive Semantic Feature Control for Training-Free Identity-Consistent Generation
Abstract:
Recent text-to-image diffusion models have significantly improved visual quality and text alignment. However, generating a sequence of images while preserving consistent character identity across diverse scene descriptions remains a challenging task. Existing methods often struggle with a trade-off between maintaining identity consistency and ensuring per-image prompt alignment. In this paper, we introduce a novel framework, ASemconsist, that addresses this challenge through selective text embedding modification, enabling explicit semantic control over character identity without sacrificing prompt alignment. Furthermore, based on our analysis of padding embeddings in FLUX, we propose a semantic control strategy that repurposes padding embeddings as semantic containers. Additionally, we introduce an adaptive feature-sharing strategy that automatically evaluates textual ambiguity and applies constraints only to the ambiguous identity prompt. Finally, we propose a unified evaluation protocol, the Consistency Quality Score (CQS), which integrates identity preservation and per-image text alignment into a single comprehensive metric, explicitly capturing performance imbalances between the two metrics. Our framework achieves state-of-the-art performance, effectively overcoming prior trade-offs. Project page: https://minjung-s.github.io/asemconsist

Authors:Tianchen Deng, Xuefeng Chen, Yi Chen, Qu Chen, Yuyao Xu, Lijin Yang, Le Xu, Yu Zhang, Bo Zhang, Wuxiong Huang, Hesheng Wang
Title: GaussianDWM: 3D Gaussian Driving World Model for Unified Scene Understanding and Multi-Modal Generation
Abstract:
Driving World Models (DWMs) have been developing rapidly with the advances of generative models. However, existing DWMs lack 3D scene understanding capabilities and can only generate content conditioned on input data, without the ability to interpret or reason about the driving environment. Moreover, current approaches represent 3D spatial information with point cloud or BEV features do not accurately align textual information with the underlying 3D scene. To address these limitations, we propose a novel unified DWM framework based on 3D Gaussian scene representation, which enables both 3D scene understanding and multi-modal scene generation, while also enabling contextual enrichment for understanding and generation tasks. Our approach directly aligns textual information with the 3D scene by embedding rich linguistic features into each Gaussian primitive, thereby achieving early modality alignment. In addition, we design a novel task-aware language-guided sampling strategy that removes redundant 3D Gaussians and injects accurate and compact 3D tokens into LLM. Furthermore, we design a dual-condition multi-modal generation model, where the information captured by our vision-language model is leveraged as a high-level language condition in combination with a low-level image condition, jointly guiding the multi-modal generation process. We conduct comprehensive studies on the nuScenes, and NuInteract datasets to validate the effectiveness of our framework. Our method achieves state-of-the-art performance. We will release the code publicly on GitHub https://github.com/dtc111111/GaussianDWM.

Authors:Jingyu Li, Xiaolong Zhao, Zhe Liu, Wenxiao Wu, Li Zhang
Title: GeoTeacher: Geometry-Guided Semi-Supervised 3D Object Detection
Abstract:
Semi-supervised 3D object detection, aiming to explore unlabeled data for boosting 3D object detectors, has emerged as an active research area in recent years. Some previous methods have shown substantial improvements by either employing heterogeneous teacher models to provide high-quality pseudo labels or enforcing feature-perspective consistency between the teacher and student networks. However, these methods overlook the fact that the model usually tends to exhibit low sensitivity to object geometries with limited labeled data, making it difficult to capture geometric information, which is crucial for enhancing the student model's ability in object perception and localization. In this paper, we propose GeoTeacher to enhance the student model's ability to capture geometric relations of objects with limited training data, especially unlabeled data. We design a keypoint-based geometric relation supervision module that transfers the teacher model's knowledge of object geometry to the student, thereby improving the student's capability in understanding geometric relations. Furthermore, we introduce a voxel-wise data augmentation strategy that increases the diversity of object geometries, thereby further improving the student model's ability to comprehend geometric structures. To preserve the integrity of distant objects during augmentation, we incorporate a distance-decay mechanism into this strategy. Moreover, GeoTeacher can be combined with different SS3D methods to further improve their performance. Extensive experiments on the ONCE and Waymo datasets indicate the effectiveness and generalization of our method and we achieve the new state-of-the-art results. Code will be available at https://github.com/SII-Whaleice/GeoTeacher

Authors:Mingyuan Zhang, Yue Bai, Yifan Wang, Yiyang Huang, Yun Fu
Title: Rethinking Fine-Tuning: Unlocking Hidden Capabilities in Vision-Language Models
Abstract:
Explorations in fine-tuning Vision-Language Models (VLMs), such as Low-Rank Adaptation (LoRA) from Parameter Efficient Fine-Tuning (PEFT), have made impressive progress. However, most approaches rely on explicit weight updates, overlooking the extensive representational structures already encoded in pre-trained models that remain underutilized. Recent works have demonstrated that Mask Fine-Tuning (MFT) can be a powerful and efficient post-training paradigm for language models. Instead of updating weights, MFT assigns learnable gating scores to each weight, allowing the model to reorganize its internal subnetworks for downstream task adaptation. In this paper, we rethink fine-tuning for VLMs from a structural reparameterization perspective grounded in MFT. We apply MFT to the language and projector components of VLMs with different language backbones and compare against strong PEFT baselines. Experiments show that MFT consistently surpasses LoRA variants and even full fine-tuning, achieving high performance without altering the frozen backbone. Our findings reveal that effective adaptation can emerge not only from updating weights but also from reestablishing connections among the model's existing knowledge. Code available at: https://github.com/Ming-K9/MFT-VLM

Authors:Yi Zhou, Xuechao Zou, Shun Zhang, Kai Li, Shiying Wang, Jingming Chen, Congyan Lang, Tengfei Cao, Pin Tao, Yuanchun Shi
Title: Toward Stable Semi-Supervised Remote Sensing Segmentation via Co-Guidance and Co-Fusion
Abstract:
Semi-supervised remote sensing (RS) image semantic segmentation offers a promising solution to alleviate the burden of exhaustive annotation, yet it fundamentally struggles with pseudo-label drift, a phenomenon where confirmation bias leads to the accumulation of errors during training. In this work, we propose Co2S, a stable semi-supervised RS segmentation framework that synergistically fuses priors from vision-language models and self-supervised models. Specifically, we construct a heterogeneous dual-student architecture comprising two distinct ViT-based vision foundation models initialized with pretrained CLIP and DINOv3 to mitigate error accumulation and pseudo-label drift. To effectively incorporate these distinct priors, an explicit-implicit semantic co-guidance mechanism is introduced that utilizes text embeddings and learnable queries to provide explicit and implicit class-level guidance, respectively, thereby jointly enhancing semantic consistency. Furthermore, a global-local feature collaborative fusion strategy is developed to effectively fuse the global contextual information captured by CLIP with the local details produced by DINOv3, enabling the model to generate highly precise segmentation results. Extensive experiments on six popular datasets demonstrate the superiority of the proposed method, which consistently achieves leading performance across various partition protocols and diverse scenarios. Project page is available at https://xavierjiezou.github.io/Co2S/.

Authors:Wenyuan Huang, Zhao Wang, Zhou Wei, Ting Huang, Fang Zhao, Jian Yang, Zhenyu Zhang
Title: OpenGround: Active Cognition-based Reasoning for Open-World 3D Visual Grounding
Abstract:
3D visual grounding aims to locate objects based on natural language descriptions in 3D scenes. Existing methods rely on a pre-defined Object Lookup Table (OLT) to query Visual Language Models (VLMs) for reasoning about object locations, which limits the applications in scenarios with undefined or unforeseen targets. To address this problem, we present OpenGround, a novel zero-shot framework for open-world 3D visual grounding. Central to OpenGround is the Active Cognition-based Reasoning (ACR) module, which is designed to overcome the fundamental limitation of pre-defined OLTs by progressively augmenting the cognitive scope of VLMs. The ACR module performs human-like perception of the target via a cognitive task chain and actively reasons about contextually relevant objects, thereby extending VLM cognition through a dynamically updated OLT. This allows OpenGround to function with both pre-defined and open-world categories. We also propose a new dataset named OpenTarget, which contains over 7000 object-description pairs to evaluate our method in open-world scenarios. Extensive experiments demonstrate that OpenGround achieves competitive performance on Nr3D, state-of-the-art on ScanRefer, and delivers a substantial 17.6% improvement on OpenTarget. Project Page at https://why-102.github.io/openground.io/.

Authors:Han-Wei Kung, Tuomas Varanka, Nicu Sebe
Title: Reverse Personalization
Abstract:
Recent text-to-image diffusion models have demonstrated remarkable generation of realistic facial images conditioned on textual prompts and human identities, enabling creating personalized facial imagery. However, existing prompt-based methods for removing or modifying identity-specific features rely either on the subject being well-represented in the pre-trained model or require model fine-tuning for specific identities. In this work, we analyze the identity generation process and introduce a reverse personalization framework for face anonymization. Our approach leverages conditional diffusion inversion, allowing direct manipulation of images without using text prompts. To generalize beyond subjects in the model's training data, we incorporate an identity-guided conditioning branch. Unlike prior anonymization methods, which lack control over facial attributes, our framework supports attribute-controllable anonymization. We demonstrate that our method achieves a state-of-the-art balance between identity removal, attribute preservation, and image quality. Source code and data are available at https://github.com/hanweikung/reverse-personalization .

Authors:Shizhou Zhang, Xueqiang Lv, Yinghui Xing, Qirui Wu, Di Xu, Chen Zhao, Yanning Zhang
Title: YOLO-IOD: Towards Real Time Incremental Object Detection
Abstract:
Current methods for incremental object detection (IOD) primarily rely on Faster R-CNN or DETR series detectors; however, these approaches do not accommodate the real-time YOLO detection frameworks. In this paper, we first identify three primary types of knowledge conflicts that contribute to catastrophic forgetting in YOLO-based incremental detectors: foreground-background confusion, parameter interference, and misaligned knowledge distillation. Subsequently, we introduce YOLO-IOD, a real-time Incremental Object Detection (IOD) framework that is constructed upon the pretrained YOLO-World model, facilitating incremental learning via a stage-wise parameter-efficient fine-tuning process. Specifically, YOLO-IOD encompasses three principal components: 1) Conflict-Aware Pseudo-Label Refinement (CPR), which mitigates the foreground-background confusion by leveraging the confidence levels of pseudo labels and identifying potential objects relevant to future tasks. 2) Importancebased Kernel Selection (IKS), which identifies and updates the pivotal convolution kernels pertinent to the current task during the current learning stage. 3) Cross-Stage Asymmetric Knowledge Distillation (CAKD), which addresses the misaligned knowledge distillation conflict by transmitting the features of the student target detector through the detection heads of both the previous and current teacher detectors, thereby facilitating asymmetric distillation between existing and newly introduced categories. We further introduce LoCo COCO, a more realistic benchmark that eliminates data leakage across stages. Experiments on both conventional and LoCo COCO benchmarks show that YOLO-IOD achieves superior performance with minimal forgetting.

Authors:Qihang Peng, Xuesong Chen, Chenye Yang, Shaoshuai Shi, Hongsheng Li
Title: ColaVLA: Leveraging Cognitive Latent Reasoning for Hierarchical Parallel Trajectory Planning in Autonomous Driving
Abstract:
Autonomous driving requires generating safe and reliable trajectories from complex multimodal inputs. Traditional modular pipelines separate perception, prediction, and planning, while recent end-to-end (E2E) systems learn them jointly. Vision-language models (VLMs) further enrich this paradigm by introducing cross-modal priors and commonsense reasoning, yet current VLM-based planners face three key challenges: (i) a mismatch between discrete text reasoning and continuous control, (ii) high latency from autoregressive chain-of-thought decoding, and (iii) inefficient or non-causal planners that limit real-time deployment. We propose ColaVLA, a unified vision-language-action framework that transfers reasoning from text to a unified latent space and couples it with a hierarchical, parallel trajectory decoder. The Cognitive Latent Reasoner compresses scene understanding into compact, decision-oriented meta-action embeddings through ego-adaptive selection and only two VLM forward passes. The Hierarchical Parallel Planner then generates multi-scale, causality-consistent trajectories in a single forward pass. Together, these components preserve the generalization and interpretability of VLMs while enabling efficient, accurate and safe trajectory generation. Experiments on the nuScenes benchmark show that ColaVLA achieves state-of-the-art performance in both open-loop and closed-loop settings with favorable efficiency and robustness.

Authors:Kai Liu, Jungang Li, Yuchong Sun, Shengqiong Wu, Jianzhang Gao, Daoan Zhang, Wei Zhang, Sheng Jin, Sicheng Yu, Geng Zhan, Jiayi Ji, Fan Zhou, Liang Zheng, Shuicheng Yan, Hao Fei, Tat-Seng Chua
Title: JavisGPT: A Unified Multi-modal LLM for Sounding-Video Comprehension and Generation
Abstract:
This paper presents JavisGPT, the first unified multimodal large language model (MLLM) for Joint Audio-Video (JAV) comprehension and generation. JavisGPT adopts a concise encoder-LLM-decoder architecture, featuring a SyncFusion module for spatio-temporal audio-video fusion and synchrony-aware learnable queries to bridge a pretrained JAV-DiT generator. This design enables temporally coherent video-audio understanding and generation from multimodal instructions. We design an effective three-stage training pipeline consisting of multimodal pretraining, audio-video fine-tuning, and large-scale instruction-tuning, to progressively build multimodal comprehension and generation from existing vision-language models. To support this, we further construct JavisInst-Omni, a high-quality instruction dataset with over 200K GPT-4o-curated audio-video-text dialogues that span diverse and multi-level comprehension and generation scenarios. Extensive experiments on JAV comprehension and generation benchmarks show that JavisGPT outperforms existing MLLMs, particularly in complex and temporally synchronized settings.

Authors:Weiwei Li, Junzhuo Liu, Yuanyuan Ren, Yuchen Zheng, Yahao Liu, Wen Li
Title: Let Samples Speak: Mitigating Spurious Correlation by Exploiting the Clusterness of Samples
Abstract:
Deep learning models are known to often learn features that spuriously correlate with the class label during training but are irrelevant to the prediction task. Existing methods typically address this issue by annotating potential spurious attributes, or filtering spurious features based on some empirical assumptions (e.g., simplicity of bias). However, these methods may yield unsatisfactory performance due to the intricate and elusive nature of spurious correlations in real-world data. In this paper, we propose a data-oriented approach to mitigate the spurious correlation in deep learning models. We observe that samples that are influenced by spurious features tend to exhibit a dispersed distribution in the learned feature space. This allows us to identify the presence of spurious features. Subsequently, we obtain a bias-invariant representation by neutralizing the spurious features based on a simple grouping strategy. Then, we learn a feature transformation to eliminate the spurious features by aligning with this bias-invariant representation. Finally, we update the classifier by incorporating the learned feature transformation and obtain an unbiased model. By integrating the aforementioned identifying, neutralizing, eliminating and updating procedures, we build an effective pipeline for mitigating spurious correlation. Experiments on image and NLP debiasing benchmarks show an improvement in worst group accuracy of more than 20% compared to standard empirical risk minimization (ERM). Codes and checkpoints are available at https://github.com/davelee-uestc/nsf_debiasing .

Authors:Hualie Jiang, Ziyang Song, Zhiqiang Lou, Rui Xu, Minglang Tan
Title: Depth Anything in $360^\circ$: Towards Scale Invariance in the Wild
Abstract:
Panoramic depth estimation provides a comprehensive solution for capturing complete $360^\circ$ environmental structural information, offering significant benefits for robotics and AR/VR applications. However, while extensively studied in indoor settings, its zero-shot generalization to open-world domains lags far behind perspective images, which benefit from abundant training data. This disparity makes transferring capabilities from the perspective domain an attractive solution. To bridge this gap, we present Depth Anything in $360^\circ$ (DA360), a panoramic-adapted version of Depth Anything V2. Our key innovation involves learning a shift parameter from the ViT backbone, transforming the model's scale- and shift-invariant output into a scale-invariant estimate that directly yields well-formed 3D point clouds. This is complemented by integrating circular padding into the DPT decoder to eliminate seam artifacts, ensuring spatially coherent depth maps that respect spherical continuity. Evaluated on standard indoor benchmarks and our newly curated outdoor dataset, Metropolis, DA360 shows substantial gains over its base model, achieving over 50\% and 10\% relative depth error reduction on indoor and outdoor benchmarks, respectively. Furthermore, DA360 significantly outperforms robust panoramic depth estimation methods, achieving about 30\% relative error improvement compared to PanDA across all three test datasets and establishing new state-of-the-art performance for zero-shot panoramic depth estimation.

Authors:Jingchao Wang, Kaiwen Zhou, Zhijian Wu, Kunhua Ji, Dingjiang Huang, Yefeng Zheng
Title: VPTracker: Global Vision-Language Tracking via Visual Prompt and MLLM
Abstract:
Vision-Language Tracking aims to continuously localize objects described by a visual template and a language description. Existing methods, however, are typically limited to local search, making them prone to failures under viewpoint changes, occlusions, and rapid target movements. In this work, we introduce the first global tracking framework based on Multimodal Large Language Models (VPTracker), exploiting their powerful semantic reasoning to locate targets across the entire image space. While global search improves robustness and reduces drift, it also introduces distractions from visually or semantically similar objects. To address this, we propose a location-aware visual prompting mechanism that incorporates spatial priors into the MLLM. Specifically, we construct a region-level prompt based on the target's previous location, enabling the model to prioritize region-level recognition and resort to global inference only when necessary. This design retains the advantages of global tracking while effectively suppressing interference from distracting visual content. Extensive experiments show that our approach significantly enhances tracking stability and target disambiguation under challenging scenarios, opening a new avenue for integrating MLLMs into visual tracking. Code is available at https://github.com/jcwang0602/VPTracker.

Authors:Johnathan Xie, Stefan Stojanov, Cristobal Eyzaguirre, Daniel L. K. Yamins, Jiajun Wu
Title: Autoregressive Flow Matching for Motion Prediction
Abstract:
Motion prediction has been studied in different contexts with models trained on narrow distributions and applied to downstream tasks in human motion prediction and robotics. Simultaneously, recent efforts in scaling video prediction have demonstrated impressive visual realism, yet they struggle to accurately model complex motions despite massive scale. Inspired by the scaling of video generation, we develop autoregressive flow matching (ARFM), a new method for probabilistic modeling of sequential continuous data and train it on diverse video datasets to generate future point track locations over long horizons. To evaluate our model, we develop benchmarks for evaluating the ability of motion prediction models to predict human and robot motion. Our model is able to predict complex motions, and we demonstrate that conditioning robot action prediction and human motion prediction on predicted future tracks can significantly improve downstream task performance. Code and models publicly available at: https://github.com/Johnathan-Xie/arfm-motion-prediction.

Authors:Qiankun Li, Feng He, Huabao Chen, Xin Ning, Kun Wang, Zengfu Wang
Title: Unleashing Foundation Vision Models: Adaptive Transfer for Diverse Data-Limited Scientific Domains
Abstract:
In the big data era, the computer vision field benefits from large-scale datasets such as LAION-2B, LAION-400M, and ImageNet-21K, Kinetics, on which popular models like the ViT and ConvNeXt series have been pre-trained, acquiring substantial knowledge. However, numerous downstream tasks in specialized and data-limited scientific domains continue to pose significant challenges. In this paper, we propose a novel Cluster Attention Adapter (CLAdapter), which refines and adapts the rich representations learned from large-scale data to various data-limited downstream tasks. Specifically, CLAdapter introduces attention mechanisms and cluster centers to personalize the enhancement of transformed features through distribution correlation and transformation matrices. This enables models fine-tuned with CLAdapter to learn distinct representations tailored to different feature sets, facilitating the models' adaptation from rich pre-trained features to various downstream scenarios effectively. In addition, CLAdapter's unified interface design allows for seamless integration with multiple model architectures, including CNNs and Transformers, in both 2D and 3D contexts. Through extensive experiments on 10 datasets spanning domains such as generic, multimedia, biological, medical, industrial, agricultural, environmental, geographical, materials science, out-of-distribution (OOD), and 3D analysis, CLAdapter achieves state-of-the-art performance across diverse data-limited scientific domains, demonstrating its effectiveness in unleashing the potential of foundation vision models via adaptive transfer. Code is available at https://github.com/qklee-lz/CLAdapter.

Authors:Amir El-Ghoussani, André Kaup, Nassir Navab, Gustavo Carneiro, Vasileios Belagiannis
Title: Visual Autoregressive Modelling for Monocular Depth Estimation
Abstract:
We propose a monocular depth estimation method based on visual autoregressive (VAR) priors, offering an alternative to diffusion-based approaches. Our method adapts a large-scale text-to-image VAR model and introduces a scale-wise conditional upsampling mechanism with classifier-free guidance. Our approach performs inference in ten fixed autoregressive stages, requiring only 74K synthetic samples for fine-tuning, and achieves competitive results. We report state-of-the-art performance in indoor benchmarks under constrained training conditions, and strong performance when applied to outdoor datasets. This work establishes autoregressive priors as a complementary family of geometry-aware generative models for depth estimation, highlighting advantages in data scalability, and adaptability to 3D vision tasks. Code available at "https://github.com/AmirMaEl/VAR-Depth".

Authors:Mohamad Alansari, Muzammal Naseer, Hasan Al Marzouqi, Naoufel Werghi, Sajid Javed
Title: Rethinking Memory Design in SAM-Based Visual Object Tracking
Abstract:
\noindent Memory has become the central mechanism enabling robust visual object tracking in modern segmentation-based frameworks. Recent methods built upon Segment Anything Model 2 (SAM2) have demonstrated strong performance by refining how past observations are stored and reused. However, existing approaches address memory limitations in a method-specific manner, leaving the broader design principles of memory in SAM-based tracking poorly understood. Moreover, it remains unclear how these memory mechanisms transfer to stronger, next-generation foundation models such as Segment Anything Model 3 (SAM3). In this work, we present a systematic memory-centric study of SAM-based visual object tracking. We first analyze representative SAM2-based trackers and show that most methods primarily differ in how short-term memory frames are selected, while sharing a common object-centric representation. Building on this insight, we faithfully reimplement these memory mechanisms within the SAM3 framework and conduct large-scale evaluations across ten diverse benchmarks, enabling a controlled analysis of memory design independent of backbone strength. Guided by our empirical findings, we propose a unified hybrid memory framework that explicitly decomposes memory into short-term appearance memory and long-term distractor-resolving memory. This decomposition enables the integration of existing memory policies in a modular and principled manner. Extensive experiments demonstrate that the proposed framework consistently improves robustness under long-term occlusion, complex motion, and distractor-heavy scenarios on both SAM2 and SAM3 backbones. Code is available at: https://github.com/HamadYA/SAM3_Tracking_Zoo. \textbf{This is a preprint. Some results are being finalized and may be updated in a future revision.}

Authors:Marwan Taher, Ignacio Alzugaray, Kirill Mazur, Xin Kong, Andrew J. Davison
Title: KV-Tracker: Real-Time Pose Tracking with Transformers
Abstract:
Multi-view 3D geometry networks offer a powerful prior but are prohibitively slow for real-time applications. We propose a novel way to adapt them for online use, enabling real-time 6-DoF pose tracking and online reconstruction of objects and scenes from monocular RGB videos. Our method rapidly selects and manages a set of images as keyframes to map a scene or object via $π^3$ with full bidirectional attention. We then cache the global self-attention block's key-value (KV) pairs and use them as the sole scene representation for online tracking. This allows for up to $15\times$ speedup during inference without the fear of drift or catastrophic forgetting. Our caching strategy is model-agnostic and can be applied to other off-the-shelf multi-view networks without retraining. We demonstrate KV-Tracker on both scene-level tracking and the more challenging task of on-the-fly object tracking and reconstruction without depth measurements or object priors. Experiments on the TUM RGB-D, 7-Scenes, Arctic and OnePose datasets show the strong performance of our system while maintaining high frame-rates up to ${\sim}27$ FPS.

Authors:Tanish Baranwal, Himanshu Gaurav Singh, Jathushan Rajasegaran, Jitendra Malik
Title: Tracking by Predicting 3-D Gaussians Over Time
Abstract:
We propose Video Gaussian Masked Autoencoders (Video-GMAE), a self-supervised approach for representation learning that encodes a sequence of images into a set of Gaussian splats moving over time. Representing a video as a set of Gaussians enforces a reasonable inductive bias: that 2-D videos are often consistent projections of a dynamic 3-D scene. We find that tracking emerges when pretraining a network with this architecture. Mapping the trajectory of the learnt Gaussians onto the image plane gives zero-shot tracking performance comparable to state-of-the-art. With small-scale finetuning, our models achieve 34.6% improvement on Kinetics, and 13.1% on Kubric datasets, surpassing existing self-supervised video approaches. The project page and code are publicly available at https://videogmae.org/ and https://github.com/tekotan/video-gmae.

Authors:Md Abu Obaida Zishan, Annajiat Alim Rasel
Title: SonoVision: A Computer Vision Approach for Helping Visually Challenged Individuals Locate Objects with the Help of Sound Cues
Abstract:
Locating objects for the visually impaired is a significant challenge and is something no one can get used to over time. However, this hinders their independence and could push them towards risky and dangerous scenarios. Hence, in the spirit of making the visually challenged more self-sufficient, we present SonoVision, a smart-phone application that helps them find everyday objects using sound cues through earphones/headphones. This simply means, if an object is on the right or left side of a user, the app makes a sinusoidal sound in a user's respective ear through ear/headphones. However, to indicate objects located directly in front, both the left and right earphones are rung simultaneously. These sound cues could easily help a visually impaired individual locate objects with the help of their smartphones and reduce the reliance on people in their surroundings, consequently making them more independent. This application is made with the flutter development platform and uses the Efficientdet-D2 model for object detection in the backend. We believe the app will significantly assist the visually impaired in a safe and user-friendly manner with its capacity to work completely offline. Our application can be accessed here https://github.com/MohammedZ666/SonoVision.git.

Authors:Zibin Liu, Banglei Guana, Yang Shanga, Zhenbao Yu, Yifei Bian, Qifeng Yu
Title: LECalib: Line-Based Event Camera Calibration
Abstract:
Camera calibration is an essential prerequisite for event-based vision applications. Current event camera calibration methods typically involve using flashing patterns, reconstructing intensity images, and utilizing the features extracted from events. Existing methods are generally time-consuming and require manually placed calibration objects, which cannot meet the needs of rapidly changing scenarios. In this paper, we propose a line-based event camera calibration framework exploiting the geometric lines of commonly-encountered objects in man-made environments, e.g., doors, windows, boxes, etc. Different from previous methods, our method detects lines directly from event streams and leverages an event-line calibration model to generate the initial guess of camera parameters, which is suitable for both planar and non-planar lines. Then, a non-linear optimization is adopted to refine camera parameters. Both simulation and real-world experiments have demonstrated the feasibility and accuracy of our method, with validation performed on monocular and stereo event cameras. The source code is released at https://github.com/Zibin6/line_based_event_camera_calib.

Authors:Xin Yu, Xiaojuan Qi, Zhengqi Li, Kai Zhang, Richard Zhang, Zhe Lin, Eli Shechtman, Tianyu Wang, Yotam Nitzan
Title: Self-Evaluation Unlocks Any-Step Text-to-Image Generation
Abstract:
We introduce the Self-Evaluating Model (Self-E), a novel, from-scratch training approach for text-to-image generation that supports any-step inference. Self-E learns from data similarly to a Flow Matching model, while simultaneously employing a novel self-evaluation mechanism: it evaluates its own generated samples using its current score estimates, effectively serving as a dynamic self-teacher. Unlike traditional diffusion or flow models, it does not rely solely on local supervision, which typically necessitates many inference steps. Unlike distillation-based approaches, it does not require a pretrained teacher. This combination of instantaneous local learning and self-driven global matching bridges the gap between the two paradigms, enabling the training of a high-quality text-to-image model from scratch that excels even at very low step counts. Extensive experiments on large-scale text-to-image benchmarks show that Self-E not only excels in few-step generation, but is also competitive with state-of-the-art Flow Matching models at 50 steps. We further find that its performance improves monotonically as inference steps increase, enabling both ultra-fast few-step generation and high-quality long-trajectory sampling within a single unified model. To our knowledge, Self-E is the first from-scratch, any-step text-to-image model, offering a unified framework for efficient and scalable generation.

Authors:Jianrong Zhang, Hehe Fan, Yi Yang
Title: DeMoGen: Towards Decompositional Human Motion Generation with Energy-Based Diffusion Models
Abstract:
Human motions are compositional: complex behaviors can be described as combinations of simpler primitives. However, existing approaches primarily focus on forward modeling, e.g., learning holistic mappings from text to motion or composing a complex motion from a set of motion concepts. In this paper, we consider the inverse perspective: decomposing a holistic motion into semantically meaningful sub-components. We propose DeMoGen, a compositional training paradigm for decompositional learning that employs an energy-based diffusion model. This energy formulation directly captures the composed distribution of multiple motion concepts, enabling the model to discover them without relying on ground-truth motions for individual concepts. Within this paradigm, we introduce three training variants to encourage a decompositional understanding of motion: 1. DeMoGen-Exp explicitly trains on decomposed text prompts; 2. DeMoGen-OSS performs orthogonal self-supervised decomposition; 3. DeMoGen-SC enforces semantic consistency between original and decomposed text embeddings. These variants enable our approach to disentangle reusable motion primitives from complex motion sequences. We also demonstrate that the decomposed motion concepts can be flexibly recombined to generate diverse and novel motions, generalizing beyond the training distribution. Additionally, we construct a text-decomposed dataset to support compositional training, serving as an extended resource to facilitate text-to-motion generation and motion composition.

Authors:Naishan Zheng, Jie Huang, Qingpei Guo, Feng Zhao
Title: VideoScaffold: Elastic-Scale Visual Hierarchies for Streaming Video Understanding in MLLMs
Abstract:
Understanding long videos with multimodal large language models (MLLMs) remains challenging due to the heavy redundancy across frames and the need for temporally coherent representations. Existing static strategies, such as sparse sampling, frame compression, and clustering, are optimized for offline settings and often produce fragmented or over-compressed outputs when applied to continuous video streams. We present VideoScaffold, a dynamic representation framework designed for streaming video understanding. It adaptively adjusts event granularity according to video duration while preserving fine-grained visual semantics. VideoScaffold introduces two key components: Elastic-Scale Event Segmentation (EES), which performs prediction-guided segmentation to dynamically refine event boundaries, and Hierarchical Event Consolidation (HEC), which progressively aggregates semantically related segments into multi-level abstractions. Working in concert, EES and HEC enable VideoScaffold to transition smoothly from fine-grained frame understanding to abstract event reasoning as the video stream unfolds. Extensive experiments across both offline and streaming video understanding benchmarks demonstrate that VideoScaffold achieves state-of-the-art performance. The framework is modular and plug-and-play, seamlessly extending existing image-based MLLMs to continuous video comprehension. The code is available at https://github.com/zheng980629/VideoScaffold.

Authors:Kenneth Xu, Songhan Wu
Title: Tiny-YOLOSAM: Fast Hybrid Image Segmentation
Abstract:
The Segment Anything Model (SAM) enables promptable, high-quality segmentation but is often too computationally expensive for latency-critical settings. TinySAM is a lightweight, distilled SAM variant that preserves strong zero-shot mask quality, yet its "segment-everything" mode still requires hundreds of prompts and remains slow in practice. We first replicate TinySAM on COCO val2017 using official checkpoints, matching the reported AP within 0.03%, establishing a reliable experimental baseline. Building on this, we propose Tiny-YOLOSAM, a fast hybrid pipeline that uses a recent YOLO detector (YOLOv12) to generate box prompts for TinySAM on salient foreground objects, and supplements uncovered regions with sparse point prompts sampled only where YOLO-guided masks provide no coverage. On COCO val2017, the hybrid system substantially improves class-agnostic coverage (AR from 16.4% to 77.1%, mIoU from 19.2% to 67.8%) while reducing end-to-end runtime from 49.20s/image to 10.39s/image (4.7x) on an Apple M1 Pro CPU. These results suggest detector-guided prompting combined with targeted sparse sampling as an effective alternative to dense "segment-everything" prompting for practical full-scene segmentation.

Authors:Xitong Ling, Minxi Ouyang, Xiaoxiao Li, Jiawen Li, Ying Chen, Yuxuan Sun, Xinrui Chen, Tian Guan, Xiaoping Liu, Yonghong He
Title: HookMIL: Revisiting Context Modeling in Multiple Instance Learning for Computational Pathology
Abstract:
Multiple Instance Learning (MIL) has enabled weakly supervised analysis of whole-slide images (WSIs) in computational pathology. However, traditional MIL approaches often lose crucial contextual information, while transformer-based variants, though more expressive, suffer from quadratic complexity and redundant computations. To address these limitations, we propose HookMIL, a context-aware and computationally efficient MIL framework that leverages compact, learnable hook tokens for structured contextual aggregation. These tokens can be initialized from (i) key-patch visual features, (ii) text embeddings from vision-language pathology models, and (iii) spatially grounded features from spatial transcriptomics-vision models. This multimodal initialization enables Hook Tokens to incorporate rich textual and spatial priors, accelerating convergence and enhancing representation quality. During training, Hook tokens interact with instances through bidirectional attention with linear complexity. To further promote specialization, we introduce a Hook Diversity Loss that encourages each token to focus on distinct histopathological patterns. Additionally, a hook-to-hook communication mechanism refines contextual interactions while minimizing redundancy. Extensive experiments on four public pathology datasets demonstrate that HookMIL achieves state-of-the-art performance, with improved computational efficiency and interpretability. Codes are available at https://github.com/lingxitong/HookMIL.

Authors:Dawnena Key
Title: Real-Time American Sign Language Recognition Using 3D Convolutional Neural Networks and LSTM: Architecture, Training, and Deployment
Abstract:
This paper presents a real-time American Sign Language (ASL) recognition system utilizing a hybrid deep learning architecture combining 3D Convolutional Neural Networks (3D CNN) with Long Short-Term Memory (LSTM) networks. The system processes webcam video streams to recognize word-level ASL signs, addressing communication barriers for over 70 million deaf and hard-of-hearing individuals worldwide. Our architecture leverages 3D convolutions to capture spatial-temporal features from video frames, followed by LSTM layers that model sequential dependencies inherent in sign language gestures. Trained on the WLASL dataset (2,000 common words), ASL-LEX lexical database (~2,700 signs), and a curated set of 100 expert-annotated ASL signs, the system achieves F1-scores ranging from 0.71 to 0.99 across sign classes. The model is deployed on AWS infrastructure with edge deployment capability on OAK-D cameras for real-time inference. We discuss the architecture design, training methodology, evaluation metrics, and deployment considerations for practical accessibility applications.

Authors:Zhi Ouyang, Dian Zheng, Xiao-Ming Wu, Jian-Jian Jiang, Kun-Yu Lin, Jingke Meng, Wei-Shi Zheng
Title: ProEdit: Inversion-based Editing From Prompts Done Right
Abstract:
Inversion-based visual editing provides an effective and training-free way to edit an image or a video based on user instructions. Existing methods typically inject source image information during the sampling process to maintain editing consistency. However, this sampling strategy overly relies on source information, which negatively affects the edits in the target image (e.g., failing to change the subject's atributes like pose, number, or color as instructed). In this work, we propose ProEdit to address this issue both in the attention and the latent aspects. In the attention aspect, we introduce KV-mix, which mixes KV features of the source and the target in the edited region, mitigating the influence of the source image on the editing region while maintaining background consistency. In the latent aspect, we propose Latents-Shift, which perturbs the edited region of the source latent, eliminating the influence of the inverted latent on the sampling. Extensive experiments on several image and video editing benchmarks demonstrate that our method achieves SOTA performance. In addition, our design is plug-and-play, which can be seamlessly integrated into existing inversion and editing methods, such as RF-Solver, FireFlow and UniEdit.

Authors:Momir Adžemović
Title: Learning Association via Track-Detection Matching for Multi-Object Tracking
Abstract:
Multi-object tracking aims to maintain object identities over time by associating detections across video frames. Two dominant paradigms exist in literature: tracking-by-detection methods, which are computationally efficient but rely on handcrafted association heuristics, and end-to-end approaches, which learn association from data at the cost of higher computational complexity. We propose Track-Detection Link Prediction (TDLP), a tracking-by-detection method that performs per-frame association via link prediction between tracks and detections, i.e., by predicting the correct continuation of each track at every frame. TDLP is architecturally designed primarily for geometric features such as bounding boxes, while optionally incorporating additional cues, including pose and appearance. Unlike heuristic-based methods, TDLP learns association directly from data without handcrafted rules, while remaining modular and computationally efficient compared to end-to-end trackers. Extensive experiments on multiple benchmarks demonstrate that TDLP consistently surpasses state-of-the-art performance across both tracking-by-detection and end-to-end methods. Finally, we provide a detailed analysis comparing link prediction with metric learning-based association and show that link prediction is more effective, particularly when handling heterogeneous features such as detection bounding boxes. Our code is available at \href{https://github.com/Robotmurlock/TDLP}{https://github.com/Robotmurlock/TDLP}.

Authors:Jiayu Hu, Beibei Li, Jiangwei Xia, Yanjun Qin, Bing Ji, Zhongshi He
Title: Look Closer! An Adversarial Parametric Editing Framework for Hallucination Mitigation in VLMs
Abstract:
While Vision-Language Models (VLMs) have garnered increasing attention in the AI community due to their promising practical applications, they exhibit persistent hallucination issues, generating outputs misaligned with visual inputs. Recent studies attribute these hallucinations to VLMs' over-reliance on linguistic priors and insufficient visual feature integration, proposing heuristic decoding calibration strategies to mitigate them. However, the non-trainable nature of these strategies inherently limits their optimization potential. To this end, we propose an adversarial parametric editing framework for Hallucination mitigation in VLMs, which follows an \textbf{A}ctivate-\textbf{L}ocate-\textbf{E}dit \textbf{A}dversarially paradigm. Specifically, we first construct an activation dataset that comprises grounded responses (positive samples attentively anchored in visual features) and hallucinatory responses (negative samples reflecting LLM prior bias and internal knowledge artifacts). Next, we identify critical hallucination-prone parameter clusters by analyzing differential hidden states of response pairs. Then, these clusters are fine-tuned using prompts injected with adversarial tuned prefixes that are optimized to maximize visual neglect, thereby forcing the model to prioritize visual evidence over inherent parametric biases. Evaluations on both generative and discriminative VLM tasks demonstrate the significant effectiveness of ALEAHallu in alleviating hallucinations. Our code is available at https://github.com/hujiayu1223/ALEAHallu.

Authors:Qi Lai, JunYan Li, Qiang Cai, Lei Wang, Tao Yan, XiaoKun Liang
Title: A Lightweight Multi-Scale Attention Framework for Real-Time Spinal Endoscopic Instance Segmentation
Abstract:
Real-time instance segmentation for spinal endoscopy is important for identifying and protecting critical anatomy during surgery, but it is difficult because of the narrow field of view, specular highlights, smoke/bleeding, unclear boundaries, and large scale changes. Deployment is also constrained by limited surgical hardware, so the model must balance accuracy and speed and remain stable under small-batch (even batch-1) training. We propose LMSF-A, a lightweight multi-scale attention framework co-designed across backbone, neck, and head. The backbone uses a C2f-Pro module that combines RepViT-style re-parameterized convolution (RVB) with efficient multi-scale attention (EMA), enabling multi-branch training while collapsing into a single fast path for inference. The neck improves cross-scale consistency and boundary detail using Scale-Sequence Feature Fusion (SSFF) and Triple Feature Encoding (TFE), which strengthens high-resolution features. The head adopts a Lightweight Multi-task Shared Head (LMSH) with shared convolutions and GroupNorm to reduce parameters and support batch-1 stability. We also release the clinically reviewed PELD dataset (61 patients, 610 images) with instance masks for adipose tissue, bone, ligamentum flavum, and nerve. Experiments show that LMSF-A is highly competitive (or even better than) in all evaluation metrics and much lighter than most instance segmentation methods requiring only 1.8M parameters and 8.8 GFLOPs, and it generalizes well to a public teeth benchmark. Code and dataset: https://github.com/hhwmortal/PELD-Instance-segmentation.

Authors:Zhuoyu Wu, Wenhui Ou, Qiawei Zheng, Jiayan Yang, Quanjun Wang, Wenqi Fang, Zheng Wang, Yongkui Yang, Heshan Li
Title: RT-Focuser: A Real-Time Lightweight Model for Edge-side Image Deblurring
Abstract:
Motion blur caused by camera or object movement severely degrades image quality and poses challenges for real-time applications such as autonomous driving, UAV perception, and medical imaging. In this paper, a lightweight U-shaped network tailored for real-time deblurring is presented and named RT-Focuser. To balance speed and accuracy, we design three key components: Lightweight Deblurring Block (LD) for edge-aware feature extraction, Multi-Level Integrated Aggregation module (MLIA) for encoder integration, and Cross-source Fusion Block (X-Fuse) for progressive decoder refinement. Trained on a single blurred input, RT-Focuser achieves 30.67 dB PSNR with only 5.85M parameters and 15.76 GMACs. It runs 6ms per frame on GPU and mobile, exceeds 140 FPS on both, showing strong potential for deployment on the edge. The official code and usage are available on: https://github.com/ReaganWu/RT-Focuser.

Authors:Jiahao Fan, Yuxin Qin, Wei Feng, Yanyin Chen, Yaoyu Li, Ao Ma, Yixiu Li, Li Zhuang, Haoyi Bian, Zheng Zhang, Jingjing Lv, Junjie Shen, Ching Law
Title: AutoPP: Towards Automated Product Poster Generation and Optimization
Abstract:
Product posters blend striking visuals with informative text to highlight the product and capture customer attention. However, crafting appealing posters and manually optimizing them based on online performance is laborious and resource-consuming. To address this, we introduce AutoPP, an automated pipeline for product poster generation and optimization that eliminates the need for human intervention. Specifically, the generator, relying solely on basic product information, first uses a unified design module to integrate the three key elements of a poster (background, text, and layout) into a cohesive output. Then, an element rendering module encodes these elements into condition tokens, efficiently and controllably generating the product poster. Based on the generated poster, the optimizer enhances its Click-Through Rate (CTR) by leveraging online feedback. It systematically replaces elements to gather fine-grained CTR comparisons and utilizes Isolated Direct Preference Optimization (IDPO) to attribute CTR gains to isolated elements. Our work is supported by AutoPP1M, the largest dataset specifically designed for product poster generation and optimization, which contains one million high-quality posters and feedback collected from over one million users. Experiments demonstrate that AutoPP achieves state-of-the-art results in both offline and online settings. Our code and dataset are publicly available at: https://github.com/JD-GenX/AutoPP

Authors:Tianchen Deng, Wenhua Wu, Kunzhen Wu, Guangming Wang, Siting Zhu, Shenghai Yuan, Xun Chen, Guole Shen, Zhe Liu, Hesheng Wang
Title: Reloc-VGGT: Visual Re-localization with Geometry Grounded Transformer
Abstract:
Visual localization has traditionally been formulated as a pair-wise pose regression problem. Existing approaches mainly estimate relative poses between two images and employ a late-fusion strategy to obtain absolute pose estimates. However, the late motion average is often insufficient for effectively integrating spatial information, and its accuracy degrades in complex environments. In this paper, we present the first visual localization framework that performs multi-view spatial integration through an early-fusion mechanism, enabling robust operation in both structured and unstructured environments. Our framework is built upon the VGGT backbone, which encodes multi-view 3D geometry, and we introduce a pose tokenizer and projection module to more effectively exploit spatial relationships from multiple database views. Furthermore, we propose a novel sparse mask attention strategy that reduces computational cost by avoiding the quadratic complexity of global attention, thereby enabling real-time performance at scale. Trained on approximately eight million posed image pairs, Reloc-VGGT demonstrates strong accuracy and remarkable generalization ability. Extensive experiments across diverse public datasets consistently validate the effectiveness and efficiency of our approach, delivering high-quality camera pose estimates in real time while maintaining robustness to unseen environments. Our code and models will be publicly released upon acceptance.https://github.com/dtc111111/Reloc-VGGT.

Authors:Haodong Lei, Hongsong Wang, Xin Geng, Liang Wang, Pan Zhou
Title: Fast Inference of Visual Autoregressive Model with Adjacency-Adaptive Dynamical Draft Trees
Abstract:
Autoregressive (AR) image models achieve diffusion-level quality but suffer from sequential inference, requiring approximately 2,000 steps for a 576x576 image. Speculative decoding with draft trees accelerates LLMs yet underperforms on visual AR models due to spatially varying token prediction difficulty. We identify a key obstacle in applying speculative decoding to visual AR models: inconsistent acceptance rates across draft trees due to varying prediction difficulties in different image regions. We propose Adjacency-Adaptive Dynamical Draft Trees (ADT-Tree), an adjacency-adaptive dynamic draft tree that dynamically adjusts draft tree depth and width by leveraging adjacent token states and prior acceptance rates. ADT-Tree initializes via horizontal adjacency, then refines depth/width via bisectional adaptation, yielding deeper trees in simple regions and wider trees in complex ones. The empirical evaluations on MS-COCO 2017 and PartiPrompts demonstrate that ADT-Tree achieves speedups of 3.13xand 3.05x, respectively. Moreover, it integrates seamlessly with relaxed sampling methods such as LANTERN, enabling further acceleration. Code is available at https://github.com/Haodong-Lei-Ray/ADT-Tree.

Authors:Chuangxin Zhang, Guangfeng Lin, Enhui Zhao, Kaiyang Liao, Yajun Chen
Title: Scalable Class-Incremental Learning Based on Parametric Neural Collapse
Abstract:
Incremental learning often encounter challenges such as overfitting to new data and catastrophic forgetting of old data. Existing methods can effectively extend the model for new tasks while freezing the parameters of the old model, but ignore the necessity of structural efficiency to lead to the feature difference between modules and the class misalignment due to evolving class distributions. To address these issues, we propose scalable class-incremental learning based on parametric neural collapse (SCL-PNC) that enables demand-driven, minimal-cost backbone expansion by adapt-layer and refines the static into a dynamic parametric Equiangular Tight Frame (ETF) framework according to incremental class. This method can efficiently handle the model expansion question with the increasing number of categories in real-world scenarios. Additionally, to counteract feature drift in serial expansion models, the parallel expansion framework is presented with a knowledge distillation algorithm to align features across expansion modules. Therefore, SCL-PNC can not only design a dynamic and extensible ETF classifier to address class misalignment due to evolving class distributions, but also ensure feature consistency by an adapt-layer with knowledge distillation between extended modules. By leveraging neural collapse, SCL-PNC induces the convergence of the incremental expansion model through a structured combination of the expandable backbone, adapt-layer, and the parametric ETF classifier. Experiments on standard benchmarks demonstrate the effectiveness and efficiency of our proposed method. Our code is available at https://github.com/zhangchuangxin71-cyber/dynamic_ ETF2. Keywords: Class incremental learning; Catastrophic forgetting; Neural collapse;Knowledge distillation; Expanded model.

Authors:Evgeny Alves Limarenko, Anastasiia Studenikina
Title: BertsWin: Resolving Topological Sparsity in 3D Masked Autoencoders via Component-Balanced Structural Optimization
Abstract:
The application of self-supervised learning (SSL) and Vision Transformers (ViTs) approaches demonstrates promising results in the field of 2D medical imaging, but the use of these methods on 3D volumetric images is fraught with difficulties. Standard Masked Autoencoders (MAE), which are state-of-the-art solution for 2D, have a hard time capturing three-dimensional spatial relationships, especially when 75% of tokens are discarded during pre-training. We propose BertsWin, a hybrid architecture combining full BERT-style token masking using Swin Transformer windows, to enhance spatial context learning in 3D during SSL pre-training. Unlike the classic MAE, which processes only visible areas, BertsWin introduces a complete 3D grid of tokens (masked and visible), preserving the spatial topology. And to smooth out the quadratic complexity of ViT, single-level local Swin windows are used. We introduce a structural priority loss function and evaluate the results of cone beam computed tomography of the temporomandibular joints. The subsequent assessment includes TMJ segmentation on 3D CT scans. We demonstrate that the BertsWin architecture, by maintaining a complete three-dimensional spatial topology, inherently accelerates semantic convergence by a factor of 5.8x compared to standard ViT-MAE baselines. Furthermore, when coupled with our proposed GradientConductor optimizer, the full BertsWin framework achieves a 15-fold reduction in training epochs (44 vs 660) required to reach state-of-the-art reconstruction fidelity. Analysis reveals that BertsWin achieves this acceleration without the computational penalty typically associated with dense volumetric processing. At canonical input resolutions, the architecture maintains theoretical FLOP parity with sparse ViT baselines, resulting in a significant net reduction in total computational resources due to faster convergence.

Authors:Xindi Zhang, Dechao Meng, Steven Xiao, Qi Wang, Peng Zhang, Bang Zhang
Title: SyncAnyone: Implicit Disentanglement via Progressive Self-Correction for Lip-Syncing in the wild
Abstract:
High-quality AI-powered video dubbing demands precise audio-lip synchronization, high-fidelity visual generation, and faithful preservation of identity and background. Most existing methods rely on a mask-based training strategy, where the mouth region is masked in talking-head videos, and the model learns to synthesize lip movements from corrupted inputs and target audios. While this facilitates lip-sync accuracy, it disrupts spatiotemporal context, impairing performance on dynamic facial motions and causing instability in facial structure and background consistency. To overcome this limitation, we propose SyncAnyone, a novel two-stage learning framework that achieves accurate motion modeling and high visual fidelity simultaneously. In Stage 1, we train a diffusion-based video transformer for masked mouth inpainting, leveraging its strong spatiotemporal modeling to generate accurate, audio-driven lip movements. However, due to input corruption, minor artifacts may arise in the surrounding facial regions and the background. In Stage 2, we develop a mask-free tuning pipeline to address mask-induced artifacts. Specifically, on the basis of the Stage 1 model, we develop a data generation pipeline that creates pseudo-paired training samples by synthesizing lip-synced videos from the source video and random sampled audio. We further tune the stage 2 model on this synthetic data, achieving precise lip editing and better background consistency. Extensive experiments show that our method achieves state-of-the-art results in visual quality, temporal coherence, and identity preservation under in-the wild lip-syncing scenarios.

Authors:Steven Xiao, Xindi Zhang, Dechao Meng, Qi Wang, Peng Zhang, Bang Zhang
Title: Knot Forcing: Taming Autoregressive Video Diffusion Models for Real-time Infinite Interactive Portrait Animation
Abstract:
Real-time portrait animation is essential for interactive applications such as virtual assistants and live avatars, requiring high visual fidelity, temporal coherence, ultra-low latency, and responsive control from dynamic inputs like reference images and driving signals. While diffusion-based models achieve strong quality, their non-causal nature hinders streaming deployment. Causal autoregressive video generation approaches enable efficient frame-by-frame generation but suffer from error accumulation, motion discontinuities at chunk boundaries, and degraded long-term consistency. In this work, we present a novel streaming framework named Knot Forcing for real-time portrait animation that addresses these challenges through three key designs: (1) a chunk-wise generation strategy with global identity preservation via cached KV states of the reference image and local temporal modeling using sliding window attention; (2) a temporal knot module that overlaps adjacent chunks and propagates spatio-temporal cues via image-to-video conditioning to smooth inter-chunk motion transitions; and (3) A "running ahead" mechanism that dynamically updates the reference frame's temporal coordinate during inference, keeping its semantic context ahead of the current rollout frame to support long-term coherence. Knot Forcing enables high-fidelity, temporally consistent, and interactive portrait animation over infinite sequences, achieving real-time performance with strong visual stability on consumer-grade GPUs.

Authors:Zheng Yin, Chengjian Li, Xiangbo Shu, Meiqi Cao, Rui Yan, Jinhui Tang
Title: Spatiotemporal-Untrammelled Mixture of Experts for Multi-Person Motion Prediction
Abstract:
Comprehensively and flexibly capturing the complex spatio-temporal dependencies of human motion is critical for multi-person motion prediction. Existing methods grapple with two primary limitations: i) Inflexible spatiotemporal representation due to reliance on positional encodings for capturing spatiotemporal information. ii) High computational costs stemming from the quadratic time complexity of conventional attention mechanisms. To overcome these limitations, we propose the Spatiotemporal-Untrammelled Mixture of Experts (ST-MoE), which flexibly explores complex spatio-temporal dependencies in human motion and significantly reduces computational cost. To adaptively mine complex spatio-temporal patterns from human motion, our model incorporates four distinct types of spatiotemporal experts, each specializing in capturing different spatial or temporal dependencies. To reduce the potential computational overhead while integrating multiple experts, we introduce bidirectional spatiotemporal Mamba as experts, each sharing bidirectional temporal and spatial Mamba in distinct combinations to achieve model efficiency and parameter economy. Extensive experiments on four multi-person benchmark datasets demonstrate that our approach not only outperforms state-of-art in accuracy but also reduces model parameter by 41.38% and achieves a 3.6x speedup in training. The code is available at https://github.com/alanyz106/ST-MoE.

Authors:Zhiwen Yang, Jinglin Xu, Yuxin Pen
Title: CausalFSFG: Rethinking Few-Shot Fine-Grained Visual Categorization from Causal Perspective
Abstract:
Few-shot fine-grained visual categorization (FS-FGVC) focuses on identifying various subcategories within a common superclass given just one or few support examples. Most existing methods aim to boost classification accuracy by enriching the extracted features with discriminative part-level details. However, they often overlook the fact that the set of support samples acts as a confounding variable, which hampers the FS-FGVC performance by introducing biased data distribution and misguiding the extraction of discriminative features. To address this issue, we propose a new causal FS-FGVC (CausalFSFG) approach inspired by causal inference for addressing biased data distributions through causal intervention. Specifically, based on the structural causal model (SCM), we argue that FS-FGVC infers the subcategories (i.e., effect) from the inputs (i.e., cause), whereas both the few-shot condition disturbance and the inherent fine-grained nature (i.e., large intra-class variance and small inter-class variance) lead to unobservable variables that bring spurious correlations, compromising the final classification performance. To further eliminate the spurious correlations, our CausalFSFG approach incorporates two key components: (1) Interventional multi-scale encoder (IMSE) conducts sample-level interventions, (2) Interventional masked feature reconstruction (IMFR) conducts feature-level interventions, which together reveal real causalities from inputs to subcategories. Extensive experiments and thorough analyses on the widely-used public datasets, including CUB-200-2011, Stanford Dogs, and Stanford Cars, demonstrate that our CausalFSFG achieves new state-of-the-art performance. The code is available at https://github.com/PKU-ICST-MIPL/CausalFSFG_TMM.

Authors:Rongpei Hong, Jian Lang, Ting Zhong, Yong Wang, Fan Zhou
Title: TAMEing Long Contexts in Personalization: Towards Training-Free and State-Aware MLLM Personalized Assistant
Abstract:
Multimodal Large Language Model (MLLM) Personalization is a critical research problem that facilitates personalized dialogues with MLLMs targeting specific entities (known as personalized concepts). However, existing methods and benchmarks focus on the simple, context-agnostic visual identification and textual replacement of the personalized concept (e.g., "A yellow puppy" -> "Your puppy Mochi"), overlooking the ability to support long-context conversations. An ideal personalized MLLM assistant is capable of engaging in long-context dialogues with humans and continually improving its experience quality by learning from past dialogue histories. To bridge this gap, we propose LCMP, the first Long-Context MLLM Personalization evaluation benchmark. LCMP assesses the capability of MLLMs in perceiving variations of personalized concepts and generating contextually appropriate personalized responses that reflect these variations. As a strong baseline for LCMP, we introduce a novel training-free and state-aware framework TAME. TAME endows MLLMs with double memories to manage the temporal and persistent variations of each personalized concept in a differentiated manner. In addition, TAME incorporates a new training-free Retrieve-then-Align Augmented Generation (RA2G) paradigm. RA2G introduces an alignment step to extract the contextually fitted information from the multi-memory retrieved knowledge to the current questions, enabling better interactions for complex real-world user queries. Experiments on LCMP demonstrate that TAME achieves the best performance, showcasing remarkable and evolving interaction experiences in long-context scenarios.

Authors:Jian Lang, Rongpei Hong, Ting Zhong, Leiting Chen, Qiang Gao, Fan Zhou
Title: From Shallow Humor to Metaphor: Towards Label-Free Harmful Meme Detection via LMM Agent Self-Improvement
Abstract:
The proliferation of harmful memes on online media poses significant risks to public health and stability. Existing detection methods heavily rely on large-scale labeled data for training, which necessitates substantial manual annotation efforts and limits their adaptability to the continually evolving nature of harmful content. To address these challenges, we present ALARM, the first lAbeL-free hARmful Meme detection framework powered by Large Multimodal Model (LMM) agent self-improvement. The core innovation of ALARM lies in exploiting the expressive information from "shallow" memes to iteratively enhance its ability to tackle more complex and subtle ones. ALARM consists of a novel Confidence-based Explicit Meme Identification mechanism that isolates the explicit memes from the original dataset and assigns them pseudo-labels. Besides, a new Pairwise Learning Guided Agent Self-Improvement paradigm is introduced, where the explicit memes are reorganized into contrastive pairs (positive vs. negative) to refine a learner LMM agent. This agent autonomously derives high-level detection cues from these pairs, which in turn empower the agent itself to handle complex and challenging memes effectively. Experiments on three diverse datasets demonstrate the superior performance and strong adaptability of ALARM to newly evolved memes. Notably, our method even outperforms label-driven methods. These results highlight the potential of label-free frameworks as a scalable and promising solution for adapting to novel forms and topics of harmful memes in dynamic online environments.

Authors:Linxuan Fan, Juntao Jiang, Weixuan Liu, Zhucun Xue, Jiajun Lv, Jiangning Zhang, Yong Liu
Title: UltraLBM-UNet: Ultralight Bidirectional Mamba-based Model for Skin Lesion Segmentation
Abstract:
Skin lesion segmentation is a crucial step in dermatology for guiding clinical decision-making. However, existing methods for accurate, robust, and resource-efficient lesion analysis have limitations, including low performance and high computational complexity. To address these limitations, we propose UltraLBM-UNet, a lightweight U-Net variant that integrates a bidirectional Mamba-based global modeling mechanism with multi-branch local feature perception. The proposed architecture integrates efficient local feature injection with bidirectional state-space modeling, enabling richer contextual interaction across spatial dimensions while maintaining computational compactness suitable for point-of-care deployment. Extensive experiments on the ISIC 2017, ISIC 2018, and PH2 datasets demonstrate that our model consistently achieves state-of-the-art segmentation accuracy, outperforming existing lightweight and Mamba counterparts with only 0.034M parameters and 0.060 GFLOPs. In addition, we introduce a hybrid knowledge distillation strategy to train an ultra-compact student model, where the distilled variant UltraLBM-UNet-T, with only 0.011M parameters and 0.019 GFLOPs, achieves competitive segmentation performance. These results highlight the suitability of UltraLBM-UNet for point-of-care deployment, where accurate and robust lesion analyses are essential. The source code is publicly available at https://github.com/LinLinLin-X/UltraLBM-UNet.

Authors:Dongchen Han, Tianyu Li, Ziyi Wang, Gao Huang
Title: Vision Transformers are Circulant Attention Learners
Abstract:
The self-attention mechanism has been a key factor in the advancement of vision Transformers. However, its quadratic complexity imposes a heavy computational burden in high-resolution scenarios, restricting the practical application. Previous methods attempt to mitigate this issue by introducing handcrafted patterns such as locality or sparsity, which inevitably compromise model capacity. In this paper, we present a novel attention paradigm termed \textbf{Circulant Attention} by exploiting the inherent efficient pattern of self-attention. Specifically, we first identify that the self-attention matrix in vision Transformers often approximates the Block Circulant matrix with Circulant Blocks (BCCB), a kind of structured matrix whose multiplication with other matrices can be performed in $\mathcal{O}(N\log N)$ time. Leveraging this interesting pattern, we explicitly model the attention map as its nearest BCCB matrix and propose an efficient computation algorithm for fast calculation. The resulting approach closely mirrors vanilla self-attention, differing only in its use of BCCB matrices. Since our design is inspired by the inherent efficient paradigm, it not only delivers $\mathcal{O}(N\log N)$ computation complexity, but also largely maintains the capacity of standard self-attention. Extensive experiments on diverse visual tasks demonstrate the effectiveness of our approach, establishing circulant attention as a promising alternative to self-attention for vision Transformer architectures. Code is available at https://github.com/LeapLabTHU/Circulant-Attention.

Authors:Henglin Liu, Huijuan Huang, Jing Wang, Chang Liu, Xiu Li, Xiangyang Ji
Title: DiverseGRPO: Mitigating Mode Collapse in Image Generation via Diversity-Aware GRPO
Abstract:
Reinforcement learning (RL), particularly GRPO, improves image generation quality significantly by comparing the relative performance of images generated within the same group. However, in the later stages of training, the model tends to produce homogenized outputs, lacking creativity and visual diversity, which restricts its application scenarios. This issue can be analyzed from both reward modeling and generation dynamics perspectives. First, traditional GRPO relies on single-sample quality as the reward signal, driving the model to converge toward a few high-reward generation modes while neglecting distribution-level diversity. Second, conventional GRPO regularization neglects the dominant role of early-stage denoising in preserving diversity, causing a misaligned regularization budget that limits the achievable quality--diversity trade-off. Motivated by these insights, we revisit the diversity degradation problem from both reward modeling and generation dynamics. At the reward level, we propose a distributional creativity bonus based on semantic grouping. Specifically, we construct a distribution-level representation via spectral clustering over samples generated from the same caption, and adaptively allocate exploratory rewards according to group sizes to encourage the discovery of novel visual modes. At the generation level, we introduce a structure-aware regularization, which enforces stronger early-stage constraints to preserve diversity without compromising reward optimization efficiency. Experiments demonstrate that our method achieves a 13\%--18\% improvement in semantic diversity under matched quality scores, establishing a new Pareto frontier between image quality and diversity for GRPO-based image generation.

Authors:Puyun Wang, Kaimin Yu, Huayang He, Xianyu Wu
Title: MuS-Polar3D: A Benchmark Dataset for Computational Polarimetric 3D Imaging under Multi-Scattering Conditions
Abstract:
Polarization-based underwater 3D imaging exploits polarization cues to suppress background scattering, exhibiting distinct advantages in turbid water. Although data-driven polarization-based underwater 3D reconstruction methods show great potential, existing public datasets lack sufficient diversity in scattering and observation conditions, hindering fair comparisons among different approaches, including single-view and multi-view polarization imaging methods. To address this limitation, we construct MuS-Polar3D, a benchmark dataset comprising polarization images of 42 objects captured under seven quantitatively controlled scattering conditions and five viewpoints, together with high-precision 3D models (+/- 0.05 mm accuracy), normal maps, and foreground masks. The dataset supports multiple vision tasks, including normal estimation, object segmentation, descattering, and 3D reconstruction. Inspired by computational imaging, we further decouple underwater 3D reconstruction under scattering into a two-stage pipeline, namely descattering followed by 3D reconstruction, from an imaging-chain perspective. Extensive evaluations using multiple baseline methods under complex scattering conditions demonstrate the effectiveness of the proposed benchmark, achieving a best mean angular error of 15.49 degrees. To the best of our knowledge, MuS-Polar3D is the first publicly available benchmark dataset for quantitative turbidity underwater polarization-based 3D imaging, enabling accurate reconstruction and fair algorithm evaluation under controllable scattering conditions. The dataset and code are publicly available at https://github.com/WangPuyun/MuS-Polar3D.

Authors:Xinzhe Xie, Buyu Guo, Bolin Li, Shuangyan He, Yanzhen Gu, Qingyan Jiang, Peiliang Li
Title: Generative Multi-Focus Image Fusion
Abstract:
Multi-focus image fusion aims to generate an all-in-focus image from a sequence of partially focused input images. Existing fusion algorithms generally assume that, for every spatial location in the scene, there is at least one input image in which that location is in focus. Furthermore, current fusion models often suffer from edge artifacts caused by uncertain focus estimation or hard-selection operations in complex real-world scenarios. To address these limitations, we propose a generative multi-focus image fusion framework, termed GMFF, which operates in two sequential stages. In the first stage, deterministic fusion is implemented using StackMFF V4, the latest version of the StackMFF series, and integrates the available focal plane information to produce an initial fused image. The second stage, generative restoration, is realized through IFControlNet, which leverages the generative capabilities of latent diffusion models to reconstruct content from missing focal planes, restore fine details, and eliminate edge artifacts. Each stage is independently developed and functions seamlessly in a cascaded manner. Extensive experiments demonstrate that GMFF achieves state-of-the-art fusion performance and exhibits significant potential for practical applications, particularly in scenarios involving complex multi-focal content. The implementation is publicly available at https://github.com/Xinzhe99/StackMFF-Series.

Authors:Xiao Jin, Liang Diao, Qixin Xiao, Yifan Hu, Ziqi Zhang, Yuchen Liu, Haisong Gu
Title: CCAD: Compressed Global Feature Conditioned Anomaly Detection
Abstract:
Anomaly detection holds considerable industrial significance, especially in scenarios with limited anomalous data. Currently, reconstruction-based and unsupervised representation-based approaches are the primary focus. However, unsupervised representation-based methods struggle to extract robust features under domain shift, whereas reconstruction-based methods often suffer from low training efficiency and performance degradation due to insufficient constraints. To address these challenges, we propose a novel method named Compressed Global Feature Conditioned Anomaly Detection (CCAD). CCAD synergizes the strengths of both paradigms by adapting global features as a new modality condition for the reconstruction model. Furthermore, we design an adaptive compression mechanism to enhance both generalization and training efficiency. Extensive experiments demonstrate that CCAD consistently outperforms state-of-the-art methods in terms of AUC while achieving faster convergence. In addition, we contribute a reorganized and re-annotated version of the DAGM 2007 dataset with new annotations to further validate our method's effectiveness. The code for reproducing main results is available at https://github.com/chloeqxq/CCAD.

Authors:Christina Liu, Alan Q. Wang, Joy Hsu, Jiajun Wu, Ehsan Adeli
Title: A Tool Bottleneck Framework for Clinically-Informed and Interpretable Medical Image Understanding
Abstract:
Recent tool-use frameworks powered by vision-language models (VLMs) improve image understanding by grounding model predictions with specialized tools. Broadly, these frameworks leverage VLMs and a pre-specified toolbox to decompose the prediction task into multiple tool calls (often deep learning models) which are composed to make a prediction. The dominant approach to composing tools is using text, via function calls embedded in VLM-generated code or natural language. However, these methods often perform poorly on medical image understanding, where salient information is encoded as spatially-localized features that are difficult to compose or fuse via text alone. To address this, we propose a tool-use framework for medical image understanding called the Tool Bottleneck Framework (TBF), which composes VLM-selected tools using a learned Tool Bottleneck Model (TBM). For a given image and task, TBF leverages an off-the-shelf medical VLM to select tools from a toolbox that each extract clinically-relevant features. Instead of text-based composition, these tools are composed by the TBM, which computes and fuses the tool outputs using a neural network before outputting the final prediction. We propose a simple and effective strategy for TBMs to make predictions with any arbitrary VLM tool selection. Overall, our framework not only improves tool-use in medical imaging contexts, but also yields more interpretable, clinically-grounded predictors. We evaluate TBF on tasks in histopathology and dermatology and find that these advantages enable our framework to perform on par with or better than deep learning-based classifiers, VLMs, and state-of-the-art tool-use frameworks, with particular gains in data-limited regimes. Our code is available at https://github.com/christinaliu2020/tool-bottleneck-framework.

Authors:Li-Zhong Szu-Tu, Ting-Lin Wu, Chia-Jui Chang, He Syu, Yu-Lun Liu
Title: Beyond Memorization: A Multi-Modal Ordinal Regression Benchmark to Expose Popularity Bias in Vision-Language Models
Abstract:
We expose a significant popularity bias in state-of-the-art vision-language models (VLMs), which achieve up to 34% higher accuracy on famous buildings compared to ordinary ones, indicating a reliance on memorization over generalizable understanding. To systematically investigate this, we introduce the largest open benchmark for this task: the YearGuessr dataset, a collection of 55,546 building images with multi-modal attributes from 157 countries, annotated with continuous ordinal labels of their construction year (1001-2024), GPS data, and page-view counts as a proxy for popularity. Using this dataset, we frame the construction year prediction task as ordinal regression and introduce popularity-aware interval accuracy metrics to quantify this bias. Our resulting benchmark of 30+ models, including our YearCLIP model, confirms that VLMs excel on popular, memorized items but struggle significantly with unrecognized subjects, exposing a critical flaw in their reasoning capabilities. Project page: https://sytwu.github.io/BeyondMemo/

Authors:Changwei Wu, Yifei Chen, Yuxin Du, Mingxuan Liu, Jinying Zong, Beining Wu, Jie Dong, Feiwei Qin, Yunkang Cao, Qiyuan Tian
Title: AnyAD: Unified Any-Modality Anomaly Detection in Incomplete Multi-Sequence MRI
Abstract:
Reliable anomaly detection in brain MRI remains challenging due to the scarcity of annotated abnormal cases and the frequent absence of key imaging modalities in real clinical workflows. Existing single-class or multi-class anomaly detection (AD) models typically rely on fixed modality configurations, require repetitive training, or fail to generalize to unseen modality combinations, limiting their clinical scalability. In this work, we present a unified Any-Modality AD framework that performs robust anomaly detection and localization under arbitrary MRI modality availability. The framework integrates a dual-pathway DINOv2 encoder with a feature distribution alignment mechanism that statistically aligns incomplete-modality features with full-modality representations, enabling stable inference even with severe modality dropout. To further enhance semantic consistency, we introduce an Intrinsic Normal Prototypes (INPs) extractor and an INP-guided decoder that reconstruct only normal anatomical patterns while naturally amplifying abnormal deviations. Through randomized modality masking and indirect feature completion during training, the model learns to adapt to all modality configurations without re-training. Extensive experiments on BraTS2018, MU-Glioma-Post, and Pretreat-MetsToBrain-Masks demonstrate that our approach consistently surpasses state-of-the-art industrial and medical AD baselines across 7 modality combinations, achieving superior generalization. This study establishes a scalable paradigm for multimodal medical AD under real-world, imperfect modality conditions. Our source code is available at https://github.com/wuchangw/AnyAD.

Authors:Jiawei Liu, Junqiao Li, Jiangfan Deng, Gen Li, Siyu Zhou, Zetao Fang, Shanshan Lao, Zengde Deng, Jianing Zhu, Tingting Ma, Jiayi Li, Yunqiu Wang, Qian He, Xinglong Wu
Title: DreaMontage: Arbitrary Frame-Guided One-Shot Video Generation
Abstract:
The "one-shot" technique represents a distinct and sophisticated aesthetic in filmmaking. However, its practical realization is often hindered by prohibitive costs and complex real-world constraints. Although emerging video generation models offer a virtual alternative, existing approaches typically rely on naive clip concatenation, which frequently fails to maintain visual smoothness and temporal coherence. In this paper, we introduce DreaMontage, a comprehensive framework designed for arbitrary frame-guided generation, capable of synthesizing seamless, expressive, and long-duration one-shot videos from diverse user-provided inputs. To achieve this, we address the challenge through three primary dimensions. (i) We integrate a lightweight intermediate-conditioning mechanism into the DiT architecture. By employing an Adaptive Tuning strategy that effectively leverages base training data, we unlock robust arbitrary-frame control capabilities. (ii) To enhance visual fidelity and cinematic expressiveness, we curate a high-quality dataset and implement a Visual Expression SFT stage. In addressing critical issues such as subject motion rationality and transition smoothness, we apply a Tailored DPO scheme, which significantly improves the success rate and usability of the generated content. (iii) To facilitate the production of extended sequences, we design a Segment-wise Auto-Regressive (SAR) inference strategy that operates in a memory-efficient manner. Extensive experiments demonstrate that our approach achieves visually striking and seamlessly coherent one-shot effects while maintaining computational efficiency, empowering users to transform fragmented visual materials into vivid, cohesive one-shot cinematic experiences.

Authors:Dao Sy Duy Minh, Huynh Trung Kiet, Nguyen Lam Phu Quy, Phu-Hoa Pham, Tran Chi Nguyen
Title: Leveraging Lightweight Entity Extraction for Scalable Event-Based Image Retrieval
Abstract:
Retrieving images from natural language descriptions is a core task at the intersection of computer vision and natural language processing, with wide-ranging applications in search engines, media archiving, and digital content management. However, real-world image-text retrieval remains challenging due to vague or context-dependent queries, linguistic variability, and the need for scalable solutions. In this work, we propose a lightweight two-stage retrieval pipeline that leverages event-centric entity extraction to incorporate temporal and contextual signals from real-world captions. The first stage performs efficient candidate filtering using BM25 based on salient entities, while the second stage applies BEiT-3 models to capture deep multimodal semantics and rerank the results. Evaluated on the OpenEvents v1 benchmark, our method achieves a mean average precision of 0.559, substantially outperforming prior baselines. These results highlight the effectiveness of combining event-guided filtering with long-text vision-language modeling for accurate and efficient retrieval in complex, real-world scenarios. Our code is available at https://github.com/PhamPhuHoa-23/Event-Based-Image-Retrieval

Authors:Shi Quan Foo, Chi-Ho Wong, Zhihan Gao, Dit-Yan Yeung, Ka-Hing Wong, Wai-Kin Wong
Title: STLDM: Spatio-Temporal Latent Diffusion Model for Precipitation Nowcasting
Abstract:
Precipitation nowcasting is a critical spatio-temporal prediction task for society to prevent severe damage owing to extreme weather events. Despite the advances in this field, the complex and stochastic nature of this task still poses challenges to existing approaches. Specifically, deterministic models tend to produce blurry predictions while generative models often struggle with poor accuracy. In this paper, we present a simple yet effective model architecture termed STLDM, a diffusion-based model that learns the latent representation from end to end alongside both the Variational Autoencoder and the conditioning network. STLDM decomposes this task into two stages: a deterministic forecasting stage handled by the conditioning network, and an enhancement stage performed by the latent diffusion model. Experimental results on multiple radar datasets demonstrate that STLDM achieves superior performance compared to the state of the art, while also improving inference efficiency. The code is available in https://github.com/sqfoo/stldm_official.

Authors:Jaeseong Lee, Junyeong Ahn, Taewoong Kang, Jaegul Choo
Title: TexAvatars : Hybrid Texel-3D Representations for Stable Rigging of Photorealistic Gaussian Head Avatars
Abstract:
Constructing drivable and photorealistic 3D head avatars has become a central task in AR/XR, enabling immersive and expressive user experiences. With the emergence of high-fidelity and efficient representations such as 3D Gaussians, recent works have pushed toward ultra-detailed head avatars. Existing approaches typically fall into two categories: rule-based analytic rigging or neural network-based deformation fields. While effective in constrained settings, both approaches often fail to generalize to unseen expressions and poses, particularly in extreme reenactment scenarios. Other methods constrain Gaussians to the global texel space of 3DMMs to reduce rendering complexity. However, these texel-based avatars tend to underutilize the underlying mesh structure. They apply minimal analytic deformation and rely heavily on neural regressors and heuristic regularization in UV space, which weakens geometric consistency and limits extrapolation to complex, out-of-distribution deformations. To address these limitations, we introduce TexAvatars, a hybrid avatar representation that combines the explicit geometric grounding of analytic rigging with the spatial continuity of texel space. Our approach predicts local geometric attributes in UV space via CNNs, but drives 3D deformation through mesh-aware Jacobians, enabling smooth and semantically meaningful transitions across triangle boundaries. This hybrid design separates semantic modeling from geometric control, resulting in improved generalization, interpretability, and stability. Furthermore, TexAvatars captures fine-grained expression effects, including muscle-induced wrinkles, glabellar lines, and realistic mouth cavity geometry, with high fidelity. Our method achieves state-of-the-art performance under extreme pose and expression variations, demonstrating strong generalization in challenging head reenactment settings.

Authors:Yongkun Du, Zhineng Chen, Yazhen Xie, Weikang Baiand, Hao Feng, Wei Shi, Yuchen Su, Can Huang, Yu-Gang Jiang
Title: UniRec-0.1B: Unified Text and Formula Recognition with 0.1B Parameters
Abstract:
Text and formulas constitute the core informational components of many documents. Accurately and efficiently recognizing both is crucial for developing robust and generalizable document parsing systems. Recently, vision-language models (VLMs) have achieved impressive unified recognition of text and formulas. However, they are large-sized and computationally demanding, restricting their usage in many applications. In this paper, we propose UniRec-0.1B, a unified recognition model with only 0.1B parameters. It is capable of performing text and formula recognition at multiple levels, including characters, words, lines, paragraphs, and documents. To implement this task, we first establish UniRec40M, a large-scale dataset comprises 40 million text, formula and their mix samples, enabling the training of a powerful yet lightweight model. Secondly, we identify two challenges when building such a lightweight but unified expert model. They are: structural variability across hierarchies and semantic entanglement between textual and formulaic content. To tackle these, we introduce a hierarchical supervision training that explicitly guides structural comprehension, and a semantic-decoupled tokenizer that separates text and formula representations. Finally, we develop a comprehensive evaluation benchmark covering Chinese and English documents from multiple domains and with multiple levels. Experimental results on this and public benchmarks demonstrate that UniRec-0.1B outperforms both general-purpose VLMs and leading document parsing expert models, while achieving a 2-9$\times$ speedup, validating its effectiveness and efficiency. Codebase and Dataset: https://github.com/Topdu/OpenOCR.

Authors:Tianchen Deng, Xun Chen, Ziming Li, Hongming Shen, Danwei Wang, Javier Civera, Hesheng Wang
Title: UniPR-3D: Towards Universal Visual Place Recognition with Visual Geometry Grounded Transformer
Abstract:
Visual Place Recognition (VPR) has been traditionally formulated as a single-image retrieval task. Using multiple views offers clear advantages, yet this setting remains relatively underexplored and existing methods often struggle to generalize across diverse environments. In this work we introduce UniPR-3D, the first VPR architecture that effectively integrates information from multiple views. UniPR-3D builds on a VGGT backbone capable of encoding multi-view 3D representations, which we adapt by designing feature aggregators and fine-tune for the place recognition task. To construct our descriptor, we jointly leverage the 3D tokens and intermediate 2D tokens produced by VGGT. Based on their distinct characteristics, we design dedicated aggregation modules for 2D and 3D features, allowing our descriptor to capture fine-grained texture cues while also reasoning across viewpoints. To further enhance generalization, we incorporate both single- and multi-frame aggregation schemes, along with a variable-length sequence retrieval strategy. Our experiments show that UniPR-3D sets a new state of the art, outperforming both single- and multi-view baselines and highlighting the effectiveness of geometry-grounded tokens for VPR. Our code and models will be made publicly available on Github https://github.com/dtc111111/UniPR-3D.

Authors:Kaustubh Kundu, Hrishav Bakul Barua, Lucy Robertson-Bell, Zhixi Cai, Kalin Stefanov
Title: DexAvatar: 3D Sign Language Reconstruction with Hand and Body Pose Priors
Abstract:
The trend in sign language generation is centered around data-driven generative methods that require vast amounts of precise 2D and 3D human pose data to achieve an acceptable generation quality. However, currently, most sign language datasets are video-based and limited to automatically reconstructed 2D human poses (i.e., keypoints) and lack accurate 3D information. Furthermore, existing state-of-the-art for automatic 3D human pose estimation from sign language videos is prone to self-occlusion, noise, and motion blur effects, resulting in poor reconstruction quality. In response to this, we introduce DexAvatar, a novel framework to reconstruct bio-mechanically accurate fine-grained hand articulations and body movements from in-the-wild monocular sign language videos, guided by learned 3D hand and body priors. DexAvatar achieves strong performance in the SGNify motion capture dataset, the only benchmark available for this task, reaching an improvement of 35.11% in the estimation of body and hand poses compared to the state-of-the-art. The official website of this work is: https://github.com/kaustesseract/DexAvatar.

Authors:Rui-qing Sun, Xingshan Yao, Tian Lan, Jia-Ling Shi, Chen-Hao Cui, Hui-Yang Zhao, Zhijing Wu, Chen Yang, Xian-Ling Mao
Title: Efficient and Robust Video Defense Framework against 3D-field Personalized Talking Face
Abstract:
State-of-the-art 3D-field video-referenced Talking Face Generation (TFG) methods synthesize high-fidelity personalized talking-face videos in real time by modeling 3D geometry and appearance from reference portrait video. This capability raises significant privacy concerns regarding malicious misuse of personal portraits. However, no efficient defense framework exists to protect such videos against 3D-field TFG methods. While image-based defenses could apply per-frame 2D perturbations, they incur prohibitive computational costs, severe video quality degradation, failing to disrupt 3D information for video protection. To address this, we propose a novel and efficient video defense framework against 3D-field TFG methods, which protects portrait video by perturbing the 3D information acquisition process while maintain high-fidelity video quality. Specifically, our method introduces: (1) a similarity-guided parameter sharing mechanism for computational efficiency, and (2) a multi-scale dual-domain attention module to jointly optimize spatial-frequency perturbations. Extensive experiments demonstrate that our proposed framework exhibits strong defense capability and achieves a 47x acceleration over the fastest baseline while maintaining high fidelity. Moreover, it remains robust against scaling operations and state-of-the-art purification attacks, and the effectiveness of our design choices is further validated through ablation studies. Our project is available at https://github.com/Richen7418/VDF.

Authors:Xiangzuo Wu, Chengwei Ren, Jun Zhou, Xiu Li, Yuan Liu
Title: MVInverse: Feed-forward Multi-view Inverse Rendering in Seconds
Abstract:
Multi-view inverse rendering aims to recover geometry, materials, and illumination consistently across multiple viewpoints. When applied to multi-view images, existing single-view approaches often ignore cross-view relationships, leading to inconsistent results. In contrast, multi-view optimization methods rely on slow differentiable rendering and per-scene refinement, making them computationally expensive and hard to scale. To address these limitations, we introduce a feed-forward multi-view inverse rendering framework that directly predicts spatially varying albedo, metallic, roughness, diffuse shading, and surface normals from sequences of RGB images. By alternating attention across views, our model captures both intra-view long-range lighting interactions and inter-view material consistency, enabling coherent scene-level reasoning within a single forward pass. Due to the scarcity of real-world training data, models trained on existing synthetic datasets often struggle to generalize to real-world scenes. To overcome this limitation, we propose a consistency-based finetuning strategy that leverages unlabeled real-world videos to enhance both multi-view coherence and robustness under in-the-wild conditions. Extensive experiments on benchmark datasets demonstrate that our method achieves state-of-the-art performance in terms of multi-view consistency, material and normal estimation quality, and generalization to real-world imagery. Project page: https://maddog241.github.io/mvinverse-page/

Authors:Zhi-Song Liu, Chenhang He, Roland Maier, Andreas Rupp
Title: PUFM++: Point Cloud Upsampling via Enhanced Flow Matching
Abstract:
Recent advances in generative modeling have demonstrated strong promise for high-quality point cloud upsampling. In this work, we present PUFM++, an enhanced flow-matching framework for reconstructing dense and accurate point clouds from sparse, noisy, and partial observations. PUFM++ improves flow matching along three key axes: (i) geometric fidelity, (ii) robustness to imperfect input, and (iii) consistency with downstream surface-based tasks. We introduce a two-stage flow-matching strategy that first learns a direct, straight-path flow from sparse inputs to dense targets, and then refines it using noise-perturbed samples to approximate the terminal marginal distribution better. To accelerate and stabilize inference, we propose a data-driven adaptive time scheduler that improves sampling efficiency based on interpolation behavior. We further impose on-manifold constraints during sampling to ensure that generated points remain aligned with the underlying surface. Finally, we incorporate a recurrent interface network~(RIN) to strengthen hierarchical feature interactions and boost reconstruction quality. Extensive experiments on synthetic benchmarks and real-world scans show that PUFM++ sets a new state of the art in point cloud upsampling, delivering superior visual fidelity and quantitative accuracy across a wide range of tasks. Code and pretrained models are publicly available at https://github.com/Holmes-Alan/Enhanced_PUFM.

Authors:Hongxing Fan, Shuyu Zhao, Jiayang Ao, Lu Sheng
Title: Reasoning-Driven Amodal Completion: Collaborative Agents and Perceptual Evaluation
Abstract:
Amodal completion, the task of inferring invisible object parts, faces significant challenges in maintaining semantic consistency and structural integrity. Prior progressive approaches are inherently limited by inference instability and error accumulation. To tackle these limitations, we present a Collaborative Multi-Agent Reasoning Framework that explicitly decouples Semantic Planning from Visual Synthesis. By employing specialized agents for upfront reasoning, our method generates a structured, explicit plan before pixel generation, enabling visually and semantically coherent single-pass synthesis. We integrate this framework with two critical mechanisms: (1) a self-correcting Verification Agent that employs Chain-of-Thought reasoning to rectify visible region segmentation and identify residual occluders strictly within the Semantic Planning phase, and (2) a Diverse Hypothesis Generator that addresses the ambiguity of invisible regions by offering diverse, plausible semantic interpretations, surpassing the limited pixel-level variations of standard random seed sampling. Furthermore, addressing the limitations of traditional metrics in assessing inferred invisible content, we introduce the MAC-Score (MLLM Amodal Completion Score), a novel human-aligned evaluation metric. Validated against human judgment and ground truth, these metrics establish a robust standard for assessing structural completeness and semantic consistency with visible context. Extensive experiments demonstrate that our framework significantly outperforms state-of-the-art methods across multiple datasets. Our project is available at: https://fanhongxing.github.io/remac-page.

Authors:Shengguang Wu, Xiaohan Wang, Yuhui Zhang, Hao Zhu, Serena Yeung-Levy
Title: Transductive Visual Programming: Evolving Tool Libraries from Experience for Spatial Reasoning
Abstract:
Spatial reasoning in 3D scenes requires precise geometric calculations that challenge vision-language models. Visual programming addresses this by decomposing problems into steps calling specialized tools, yet existing methods rely on either fixed toolsets or speculative tool induction before solving problems, resulting in suboptimal programs and poor utilization of induced tools. We present Transductive Visual Programming (TVP), a novel framework that builds new tools from its own experience rather than speculation. TVP first solves problems using basic tools while accumulating experiential solutions into an Example Library, then abstracts recurring patterns from these programs into reusable higher-level tools for an evolving Tool Library. This allows TVP to tackle new problems with increasingly powerful tools learned from experience. On Omni3D-Bench, TVP achieves state-of-the-art performance, outperforming GPT-4o by 22% and the previous best visual programming system by 11%. Our transductively learned tools are used 5x more frequently as core program dependency than inductively created ones, demonstrating more effective tool discovery and reuse. The evolved tools also show strong generalization to unseen spatial tasks, achieving superior performance on benchmarks from SpatialScore-Hard collection without any testset-specific modification. Our work establishes experience-driven transductive tool creation as a powerful paradigm for building self-evolving visual programming agents that effectively tackle challenging spatial reasoning tasks. We release our code at https://transductive-visualprogram.github.io/.

Authors:Tingfeng Xian, Wenlve Zhou, Zhiheng Zhou, Zhelin Li
Title: Beyond Weight Adaptation: Feature-Space Domain Injection for Cross-Modal Ship Re-Identification
Abstract:
Cross-Modality Ship Re-Identification (CMS Re-ID) is critical for achieving all-day and all-weather maritime target tracking, yet it is fundamentally challenged by significant modality discrepancies. Mainstream solutions typically rely on explicit modality alignment strategies; however, this paradigm heavily depends on constructing large-scale paired datasets for pre-training. To address this, grounded in the Platonic Representation Hypothesis, we explore the potential of Vision Foundation Models (VFMs) in bridging modality gaps. Recognizing the suboptimal performance of existing generic Parameter-Efficient Fine-Tuning (PEFT) methods that operate within the weight space, particularly on limited-capacity models, we shift the optimization perspective to the feature space and propose a novel PEFT strategy termed Domain Representation Injection (DRI). Specifically, while keeping the VFM fully frozen to maximize the preservation of general knowledge, we design a lightweight, learnable Offset Encoder to extract domain-specific representations rich in modality and identity attributes from raw inputs. Guided by the contextual information of intermediate features at different layers, a Modulator adaptively transforms these representations. Subsequently, they are injected into the intermediate layers via additive fusion, dynamically reshaping the feature distribution to adapt to the downstream task without altering the VFM's pre-trained weights. Extensive experimental results demonstrate the superiority of our method, achieving State-of-the-Art (SOTA) performance with minimal trainable parameters. For instance, on the HOSS-ReID dataset, we attain 57.9\% and 60.5\% mAP using only 1.54M and 7.05M parameters, respectively. The code is available at https://github.com/TingfengXian/DRI.

Authors:Putu Indah Githa Cahyani, Komang David Dananjaya Suartana, Novanto Yudistira
Title: Input-Adaptive Visual Preprocessing for Efficient Fast Vision-Language Model Inference
Abstract:
Vision-Language Models (VLMs) have demonstrated strong performance on multimodal reasoning tasks, but their deployment remains challenging due to high inference latency and computational cost, particularly when processing high-resolution visual inputs. While recent architectures such as FastVLM improve efficiency through optimized vision encoders, existing pipelines still rely on static visual preprocessing, leading to redundant computation for visually simple inputs. In this work, we propose an adaptive visual preprocessing method that dynamically adjusts input resolution and spatial coverage based on image content characteristics. The proposed approach combines content-aware image analysis, adaptive resolution selection, and content-aware cropping to reduce visual redundancy prior to vision encoding. Importantly, the method is integrated with FastVLM without modifying its architecture or requiring retraining. We evaluate the proposed method on a subset of the DocVQA dataset in an inference-only setting, focusing on efficiency-oriented metrics. Experimental results show that adaptive preprocessing reduces per-image inference time by over 50\%, lowers mean full generation time, and achieves a consistent reduction of more than 55\% in visual token count compared to the baseline pipeline. These findings demonstrate that input-aware preprocessing is an effective and lightweight strategy for improving deployment-oriented efficiency of vision-language models. To facilitate reproducibility, our implementation is provided as a fork of the FastVLM repository, incorporating the files for the proposed method, and is available at https://github.com/kmdavidds/mlfastlm.

Authors:Francesco Banelli, Antonio Terpin, Alan Bonomi, Raffaello D'Andrea
Title: Flow Gym
Abstract:
Flow Gym is a toolkit for research and deployment of flow-field quantification methods inspired by OpenAI Gym and Stable-Baselines3. It uses SynthPix as synthetic image generation engine and provides a unified interface for the testing, deployment and training of (learning-based) algorithms for flow-field quantification from a number of consecutive images of tracer particles. It also contains a growing number of integrations of existing algorithms and stable (re-)implementations in JAX.

Authors:Jianhong Bai, Xiaoshi Wu, Xintao Wang, Xiao Fu, Yuanxing Zhang, Qinghe Wang, Xiaoyu Shi, Menghan Xia, Zuozhu Liu, Haoji Hu, Pengfei Wan, Kun Gai
Title: SemanticGen: Video Generation in Semantic Space
Abstract:
State-of-the-art video generative models typically learn the distribution of video latents in the VAE space and map them to pixels using a VAE decoder. While this approach can generate high-quality videos, it suffers from slow convergence and is computationally expensive when generating long videos. In this paper, we introduce SemanticGen, a novel solution to address these limitations by generating videos in the semantic space. Our main insight is that, due to the inherent redundancy in videos, the generation process should begin in a compact, high-level semantic space for global planning, followed by the addition of high-frequency details, rather than directly modeling a vast set of low-level video tokens using bi-directional attention. SemanticGen adopts a two-stage generation process. In the first stage, a diffusion model generates compact semantic video features, which define the global layout of the video. In the second stage, another diffusion model generates VAE latents conditioned on these semantic features to produce the final output. We observe that generation in the semantic space leads to faster convergence compared to the VAE latent space. Our method is also effective and computationally efficient when extended to long video generation. Extensive experiments demonstrate that SemanticGen produces high-quality videos and outperforms state-of-the-art approaches and strong baselines.

Authors:Runtao Liu, Ziyi Liu, Jiaqi Tang, Yue Ma, Renjie Pi, Jipeng Zhang, Qifeng Chen
Title: LongVideoAgent: Multi-Agent Reasoning with Long Videos
Abstract:
Recent advances in multimodal LLMs and systems that use tools for long-video QA point to the promise of reasoning over hour-long episodes. However, many methods still compress content into lossy summaries or rely on limited toolsets, weakening temporal grounding and missing fine-grained cues. We propose a multi-agent framework in which a master LLM coordinates a grounding agent to localize question-relevant segments and a vision agent to extract targeted textual observations. The master agent plans with a step limit, and is trained with reinforcement learning to encourage concise, correct, and efficient multi-agent cooperation. This design helps the master agent focus on relevant clips via grounding, complements subtitles with visual detail, and yields interpretable trajectories. On our proposed LongTVQA and LongTVQA+ which are episode-level datasets aggregated from TVQA/TVQA+, our multi-agent system significantly outperforms strong non-agent baselines. Experiments also show reinforcement learning further strengthens reasoning and planning for the trained agent. Code and data will be shared at https://longvideoagent.github.io/.

Authors:Xuanhua He, Tianyu Yang, Ke Cao, Ruiqi Wu, Cheng Meng, Yong Zhang, Zhuoliang Kang, Xiaoming Wei, Qifeng Chen
Title: Active Intelligence in Video Avatars via Closed-loop World Modeling
Abstract:
Current video avatar generation methods excel at identity preservation and motion alignment but lack genuine agency, they cannot autonomously pursue long-term goals through adaptive environmental interaction. We address this by introducing L-IVA (Long-horizon Interactive Visual Avatar), a task and benchmark for evaluating goal-directed planning in stochastic generative environments, and ORCA (Online Reasoning and Cognitive Architecture), the first framework enabling active intelligence in video avatars. ORCA embodies Internal World Model (IWM) capabilities through two key innovations: (1) a closed-loop OTAR cycle (Observe-Think-Act-Reflect) that maintains robust state tracking under generative uncertainty by continuously verifying predicted outcomes against actual generations, and (2) a hierarchical dual-system architecture where System 2 performs strategic reasoning with state prediction while System 1 translates abstract plans into precise, model-specific action captions. By formulating avatar control as a POMDP and implementing continuous belief updating with outcome verification, ORCA enables autonomous multi-step task completion in open-domain scenarios. Extensive experiments demonstrate that ORCA significantly outperforms open-loop and non-reflective baselines in task success rate and behavioral coherence, validating our IWM-inspired design for advancing video avatar intelligence from passive animation to active, goal-oriented behavior.

Authors:Soowon Son, Honggyu An, Chaehyun Kim, Hyunah Ko, Jisu Nam, Dahyun Chung, Siyoon Jin, Jung Yi, Jaewon Min, Junhwa Hur, Seungryong Kim
Title: Repurposing Video Diffusion Transformers for Robust Point Tracking
Abstract:
Point tracking aims to localize corresponding points across video frames, serving as a fundamental task for 4D reconstruction, robotics, and video editing. Existing methods commonly rely on shallow convolutional backbones such as ResNet that process frames independently, lacking temporal coherence and producing unreliable matching costs under challenging conditions. Through systematic analysis, we find that video Diffusion Transformers (DiTs), pre-trained on large-scale real-world videos with spatio-temporal attention, inherently exhibit strong point tracking capability and robustly handle dynamic motions and frequent occlusions. We propose DiTracker, which adapts video DiTs through: (1) query-key attention matching, (2) lightweight LoRA tuning, and (3) cost fusion with a ResNet backbone. Despite training with 8 times smaller batch size, DiTracker achieves state-of-the-art performance on challenging ITTO benchmark and matches or outperforms state-of-the-art models on TAP-Vid benchmarks. Our work validates video DiT features as an effective and efficient foundation for point tracking.

Authors:Dhruv Anand, Ehsan Shareghi
Title: Cube Bench: A Benchmark for Spatial Visual Reasoning in MLLMs
Abstract:
We introduce Cube Bench, a Rubik's-cube benchmark for evaluating spatial and sequential reasoning in multimodal large language models (MLLMs). The benchmark decomposes performance into five skills: (i) reconstructing cube faces from images and text, (ii) choosing the optimal next move, (iii) predicting the outcome of a candidate move without applying it, (iv) executing multi-step plans while recovering from mistakes, and (v) detecting and revising one's own errors. Using a shared set of scrambled cube states, identical prompts and parsers, and a single distance-to-solved metric, we compare recent MLLMs side by side as a function of scramble depth. Across seven MLLMs, accuracy drops sharply with depth; once a trajectory stalls or diverges, models rarely recover, and high face-reconstruction accuracy does not guarantee competent action selection or multi-step execution. A pronounced closed- vs open-source gap emerges: the strongest closed model leads on both single-step perception tasks and multi-step control tasks, while open-weight models cluster near chance on the hardest settings; yet even the best MLLM degrades at higher cube complexity. A simple self-correction via reflective thinking yields modest gains but can also introduce overthinking. Cube Bench offers a compact, reproducible probe of sequential spatial reasoning in MLLMs.

Authors:Long Nguyen, Micha Fauth, Bernhard Jaeger, Daniel Dauner, Maximilian Igl, Andreas Geiger, Kashyap Chitta
Title: LEAD: Minimizing Learner-Expert Asymmetry in End-to-End Driving
Abstract:
Simulators can generate virtually unlimited driving data, yet imitation learning policies in simulation still struggle to achieve robust closed-loop performance. Motivated by this gap, we empirically study how misalignment between privileged expert demonstrations and sensor-based student observations can limit the effectiveness of imitation learning. More precisely, experts have significantly higher visibility (e.g., ignoring occlusions) and far lower uncertainty (e.g., knowing other vehicles' actions), making them difficult to imitate reliably. Furthermore, navigational intent (i.e., the route to follow) is under-specified in student models at test time via only a single target point. We demonstrate that these asymmetries can measurably limit driving performance in CARLA and offer practical interventions to address them. After careful modifications to narrow the gaps between expert and student, our TransFuser v6 (TFv6) student policy achieves a new state of the art on all major publicly available CARLA closed-loop benchmarks, reaching 95 DS on Bench2Drive and more than doubling prior performances on Longest6~v2 and Town13. Additionally, by integrating perception supervision from our dataset into a shared sim-to-real pipeline, we show consistent gains on the NAVSIM and Waymo Vision-Based End-to-End driving benchmarks. Our code, data, and models are publicly available at https://github.com/autonomousvision/lead.

Authors:Yiming Zhao, Yuanpeng Gao, Yuxuan Luo, Jiwei Duan, Shisong Lin, Longfei Xiong, Zhouhui Lian
Title: UTDesign: A Unified Framework for Stylized Text Editing and Generation in Graphic Design Images
Abstract:
AI-assisted graphic design has emerged as a powerful tool for automating the creation and editing of design elements such as posters, banners, and advertisements. While diffusion-based text-to-image models have demonstrated strong capabilities in visual content generation, their text rendering performance, particularly for small-scale typography and non-Latin scripts, remains limited. In this paper, we propose UTDesign, a unified framework for high-precision stylized text editing and conditional text generation in design images, supporting both English and Chinese scripts. Our framework introduces a novel DiT-based text style transfer model trained from scratch on a synthetic dataset, capable of generating transparent RGBA text foregrounds that preserve the style of reference glyphs. We further extend this model into a conditional text generation framework by training a multi-modal condition encoder on a curated dataset with detailed text annotations, enabling accurate, style-consistent text synthesis conditioned on background images, prompts, and layout specifications. Finally, we integrate our approach into a fully automated text-to-design (T2D) pipeline by incorporating pre-trained text-to-image (T2I) models and an MLLM-based layout planner. Extensive experiments demonstrate that UTDesign achieves state-of-the-art performance among open-source methods in terms of stylistic consistency and text accuracy, and also exhibits unique advantages compared to proprietary commercial approaches. Code and data for this paper are available at https://github.com/ZYM-PKU/UTDesign.

Authors:Linfei Li, Lin Zhang, Zhong Wang, Ying Shen
Title: SmartSplat: Feature-Smart Gaussians for Scalable Compression of Ultra-High-Resolution Images
Abstract:
Recent advances in generative AI have accelerated the production of ultra-high-resolution visual content, posing significant challenges for efficient compression and real-time decoding on end-user devices. Inspired by 3D Gaussian Splatting, recent 2D Gaussian image models improve representation efficiency, yet existing methods struggle to balance compression ratio and reconstruction fidelity in ultra-high-resolution scenarios. To address this issue, we propose SmartSplat, a highly adaptive and feature-aware GS-based image compression framework that supports arbitrary image resolutions and compression ratios. SmartSplat leverages image-aware features such as gradients and color variances, introducing a Gradient-Color Guided Variational Sampling strategy together with an Exclusion-based Uniform Sampling scheme to improve the non-overlapping coverage of Gaussian primitives in pixel space. In addition, we propose a Scale-Adaptive Gaussian Color Sampling method to enhance color initialization across scales. Through joint optimization of spatial layout, scale, and color initialization, SmartSplat efficiently captures both local structures and global textures using a limited number of Gaussians, achieving high reconstruction quality under strong compression. Extensive experiments on DIV8K and a newly constructed 16K dataset demonstrate that SmartSplat consistently outperforms state-of-the-art methods at comparable compression ratios and exceeds their compression limits, showing strong scalability and practical applicability. The code is publicly available at https://github.com/lif314/SmartSplat.

Authors:Jinghao Shi, Jianing Song
Title: BiCoR-Seg: Bidirectional Co-Refinement Framework for High-Resolution Remote Sensing Image Segmentation
Abstract:
High-resolution remote sensing image semantic segmentation (HRSS) is a fundamental yet critical task in the field of Earth observation. However, it has long faced the challenges of high inter-class similarity and large intra-class variability. Existing approaches often struggle to effectively inject abstract yet strongly discriminative semantic knowledge into pixel-level feature learning, leading to blurred boundaries and class confusion in complex scenes. To address these challenges, we propose Bidirectional Co-Refinement Framework for HRSS (BiCoR-Seg). Specifically, we design a Heatmap-driven Bidirectional Information Synergy Module (HBIS), which establishes a bidirectional information flow between feature maps and class embeddings by generating class-level heatmaps. Based on HBIS, we further introduce a hierarchical supervision strategy, where the interpretable heatmaps generated by each HBIS module are directly utilized as low-resolution segmentation predictions for supervision, thereby enhancing the discriminative capacity of shallow features. In addition, to further improve the discriminability of the embedding representations, we propose a cross-layer class embedding Fisher Discriminative Loss to enforce intra-class compactness and enlarge inter-class separability. Extensive experiments on the LoveDA, Vaihingen, and Potsdam datasets demonstrate that BiCoR-Seg achieves outstanding segmentation performance while offering stronger interpretability. The released code is available at https://github.com/ShiJinghao566/BiCoR-Seg.

Authors:Binfeng Wang, Di Wang, Haonan Guo, Ying Fu, Jing Zhang
Title: Degradation-Aware Metric Prompting for Hyperspectral Image Restoration
Abstract:
Unified hyperspectral image (HSI) restoration aims to recover various degraded HSIs using a single model, offering great practical value. However, existing methods often depend on explicit degradation priors (e.g., degradation labels) as prompts to guide restoration, which are difficult to obtain due to complex and mixed degradations in real-world scenarios. To address this challenge, we propose a Degradation-Aware Metric Prompting (DAMP) framework. Instead of relying on predefined degradation priors, we design spatial-spectral degradation metrics to continuously quantify multi-dimensional degradations, serving as Degradation Prompts (DP). These DP enable the model to capture cross-task similarities in degradation distributions and enhance shared feature learning. Furthermore, we introduce a Spatial-Spectral Adaptive Module (SSAM) that dynamically modulates spatial and spectral feature extraction through learnable parameters. By integrating SSAM as experts within a Mixture-of-Experts architecture, and using DP as the gating router, the framework enables adaptive, efficient, and robust restoration under diverse, mixed, or unseen degradations. Extensive experiments on natural and remote sensing HSI datasets show that DAMP achieves state-of-the-art performance and demonstrates exceptional generalization capability. Code is publicly available at https://github.com/MiliLab/DAMP.

Authors:Nathan Roos, Ekaterina Iakovleva, Ani Gjergji, Vito Paolo Pastore, Enzo Tartaglione
Title: How I Met Your Bias: Investigating Bias Amplification in Diffusion Models
Abstract:
Diffusion-based generative models demonstrate state-of-the-art performance across various image synthesis tasks, yet their tendency to replicate and amplify dataset biases remains poorly understood. Although previous research has viewed bias amplification as an inherent characteristic of diffusion models, this work provides the first analysis of how sampling algorithms and their hyperparameters influence bias amplification. We empirically demonstrate that samplers for diffusion models -- commonly optimized for sample quality and speed -- have a significant and measurable effect on bias amplification. Through controlled studies with models trained on Biased MNIST, Multi-Color MNIST and BFFHQ, and with Stable Diffusion, we show that sampling hyperparameters can induce both bias reduction and amplification, even when the trained model is fixed. Source code is available at https://github.com/How-I-met-your-bias/how_i_met_your_bias.

Authors:Zhaoyang Jia, Jiahao Li, Bin Li, Houqiang Li, Yan Lu
Title: Generative Latent Coding for Ultra-Low Bitrate Image Compression
Abstract:
Most existing image compression approaches perform transform coding in the pixel space to reduce its spatial redundancy. However, they encounter difficulties in achieving both high-realism and high-fidelity at low bitrate, as the pixel-space distortion may not align with human perception. To address this issue, we introduce a Generative Latent Coding (GLC) architecture, which performs transform coding in the latent space of a generative vector-quantized variational auto-encoder (VQ-VAE), instead of in the pixel space. The generative latent space is characterized by greater sparsity, richer semantic and better alignment with human perception, rendering it advantageous for achieving high-realism and high-fidelity compression. Additionally, we introduce a categorical hyper module to reduce the bit cost of hyper-information, and a code-prediction-based supervision to enhance the semantic consistency. Experiments demonstrate that our GLC maintains high visual quality with less than 0.04 bpp on natural images and less than 0.01 bpp on facial images. On the CLIC2020 test set, we achieve the same FID as MS-ILLM with 45% fewer bits. Furthermore, the powerful generative latent space enables various applications built on our GLC pipeline, such as image restoration and style transfer. The code is available at https://github.com/jzyustc/GLC.

Authors:Grega Šuštar, Jer Pelhan, Alan Lukežič, Matej Kristan
Title: CoDi -- an exemplar-conditioned diffusion model for low-shot counting
Abstract:
Low-shot object counting addresses estimating the number of previously unobserved objects in an image using only few or no annotated test-time exemplars. A considerable challenge for modern low-shot counters are dense regions with small objects. While total counts in such situations are typically well addressed by density-based counters, their usefulness is limited by poor localization capabilities. This is better addressed by point-detection-based counters, which are based on query-based detectors. However, due to limited number of pre-trained queries, they underperform on images with very large numbers of objects, and resort to ad-hoc techniques like upsampling and tiling. We propose CoDi, the first latent diffusion-based low-shot counter that produces high-quality density maps on which object locations can be determined by non-maxima suppression. Our core contribution is the new exemplar-based conditioning module that extracts and adjusts the object prototypes to the intermediate layers of the denoising network, leading to accurate object location estimation. On FSC benchmark, CoDi outperforms state-of-the-art by 15% MAE, 13% MAE and 10% MAE in the few-shot, one-shot, and reference-less scenarios, respectively, and sets a new state-of-the-art on MCAC benchmark by outperforming the top method by 44% MAE. The code is available at https://github.com/gsustar/CoDi.

Authors:Niraj Prakash Kini, Shiau-Rung Tsai, Guan-Hsun Lin, Wen-Hsiao Peng, Ching-Wen Ma, Jenq-Neng Hwang
Title: milliMamba: Specular-Aware Human Pose Estimation via Dual mmWave Radar with Multi-Frame Mamba Fusion
Abstract:
Millimeter-wave radar offers a privacy-preserving and lighting-invariant alternative to RGB sensors for Human Pose Estimation (HPE) task. However, the radar signals are often sparse due to specular reflection, making the extraction of robust features from radar signals highly challenging. To address this, we present milliMamba, a radar-based 2D human pose estimation framework that jointly models spatio-temporal dependencies across both the feature extraction and decoding stages. Specifically, given the high dimensionality of radar inputs, we adopt a Cross-View Fusion Mamba encoder to efficiently extract spatio-temporal features from longer sequences with linear complexity. A Spatio-Temporal-Cross Attention decoder then predicts joint coordinates across multiple frames. Together, this spatio-temporal modeling pipeline enables the model to leverage contextual cues from neighboring frames and joints to infer missing joints caused by specular reflections. To reinforce motion smoothness, we incorporate a velocity loss alongside the standard keypoint loss during training. Experiments on the TransHuPR and HuPR datasets demonstrate that our method achieves significant performance improvements, exceeding the baselines by 11.0 AP and 14.6 AP, respectively, while maintaining reasonable complexity. Code: https://github.com/NYCU-MAPL/milliMamba

Authors:Jingqi Tian, Yiheng Du, Haoji Zhang, Yuji Wang, Isaac Ning Lee, Xulong Bai, Tianrui Zhu, Jingxuan Niu, Yansong Tang
Title: DDAVS: Disentangled Audio Semantics and Delayed Bidirectional Alignment for Audio-Visual Segmentation
Abstract:
Audio-Visual Segmentation (AVS) aims to localize sound-producing objects at the pixel level by jointly leveraging auditory and visual information. However, existing methods often suffer from multi-source entanglement and audio-visual misalignment, which lead to biases toward louder or larger objects while overlooking weaker, smaller, or co-occurring sources. To address these challenges, we propose DDAVS, a Disentangled Audio Semantics and Delayed Bidirectional Alignment framework. To mitigate multi-source entanglement, DDAVS employs learnable queries to extract audio semantics and anchor them within a structured semantic space derived from an audio prototype memory bank. This is further optimized through contrastive learning to enhance discriminability and robustness. To alleviate audio-visual misalignment, DDAVS introduces dual cross-attention with delayed modality interaction, improving the robustness of multimodal alignment. Extensive experiments on the AVS-Objects and VPO benchmarks demonstrate that DDAVS consistently outperforms existing approaches, exhibiting strong performance across single-source, multi-source, and multi-instance scenarios. These results validate the effectiveness and generalization ability of our framework under challenging real-world audio-visual segmentation conditions. Project page: https://trilarflagz.github.io/DDAVS-page/

Authors:Hao Li, Fabian Deuser, Wenping Yin, Steffen Knoblauch, Wufan Zhao, Filip Biljecki, Yong Xue, Wei Huang
Title: Towards Generative Location Awareness for Disaster Response: A Probabilistic Cross-view Geolocalization Approach
Abstract:
As Earth's climate changes, it is impacting disasters and extreme weather events across the planet. Record-breaking heat waves, drenching rainfalls, extreme wildfires, and widespread flooding during hurricanes are all becoming more frequent and more intense. Rapid and efficient response to disaster events is essential for climate resilience and sustainability. A key challenge in disaster response is to accurately and quickly identify disaster locations to support decision-making and resources allocation. In this paper, we propose a Probabilistic Cross-view Geolocalization approach, called ProbGLC, exploring new pathways towards generative location awareness for rapid disaster response. Herein, we combine probabilistic and deterministic geolocalization models into a unified framework to simultaneously enhance model explainability (via uncertainty quantification) and achieve state-of-the-art geolocalization performance. Designed for rapid diaster response, the ProbGLC is able to address cross-view geolocalization across multiple disaster events as well as to offer unique features of probabilistic distribution and localizability score. To evaluate the ProbGLC, we conduct extensive experiments on two cross-view disaster datasets (i.e., MultiIAN and SAGAINDisaster), consisting diverse cross-view imagery pairs of multiple disaster types (e.g., hurricanes, wildfires, floods, to tornadoes). Preliminary results confirms the superior geolocalization accuracy (i.e., 0.86 in Acc@1km and 0.97 in Acc@25km) and model explainability (i.e., via probabilistic distributions and localizability scores) of the proposed ProbGLC approach, highlighting the great potential of leveraging generative cross-view approach to facilitate location awareness for better and faster disaster response. The data and code is publicly available at https://github.com/bobleegogogo/ProbGLC

Authors:Zepeng Xin, Kaiyu Li, Luodi Chen, Wanchen Li, Yuchen Xiao, Hui Qiao, Weizhan Zhang, Deyu Meng, Xiangyong Cao
Title: SegEarth-R2: Towards Comprehensive Language-guided Segmentation for Remote Sensing Images
Abstract:
Effectively grounding complex language to pixels in remote sensing (RS) images is a critical challenge for applications like disaster response and environmental monitoring. Current models can parse simple, single-target commands but fail when presented with complex geospatial scenarios, e.g., segmenting objects at various granularities, executing multi-target instructions, and interpreting implicit user intent. To drive progress against these failures, we present LaSeRS, the first large-scale dataset built for comprehensive training and evaluation across four critical dimensions of language-guided segmentation: hierarchical granularity, target multiplicity, reasoning requirements, and linguistic variability. By capturing these dimensions, LaSeRS moves beyond simple commands, providing a benchmark for complex geospatial reasoning. This addresses a critical gap: existing datasets oversimplify, leading to sensitivity-prone real-world models. We also propose SegEarth-R2, an MLLM architecture designed for comprehensive language-guided segmentation in RS, which directly confronts these challenges. The model's effectiveness stems from two key improvements: (1) a spatial attention supervision mechanism specifically handles the localization of small objects and their components, and (2) a flexible and efficient segmentation query mechanism that handles both single-target and multi-target scenarios. Experimental results demonstrate that our SegEarth-R2 achieves outstanding performance on LaSeRS and other benchmarks, establishing a powerful baseline for the next generation of geospatial segmentation. All data and code will be released at https://github.com/earth-insights/SegEarth-R2.

Authors:Zhenhao Li, Shaohan Yi, Zheng Liu, Leonartinus Gao, Minh Ngoc Le, Ambrose Ling, Zhuoran Wang, Md Amirul Islam, Zhixiang Chi, Yuanhao Yu
Title: Few-Shot-Based Modular Image-to-Video Adapter for Diffusion Models
Abstract:
Diffusion models (DMs) have recently achieved impressive photorealism in image and video generation. However, their application to image animation remains limited, even when trained on large-scale datasets. Two primary challenges contribute to this: the high dimensionality of video signals leads to a scarcity of training data, causing DMs to favor memorization over prompt compliance when generating motion; moreover, DMs struggle to generalize to novel motion patterns not present in the training set, and fine-tuning them to learn such patterns, especially using limited training data, is still under-explored. To address these limitations, we propose Modular Image-to-Video Adapter (MIVA), a lightweight sub-network attachable to a pre-trained DM, each designed to capture a single motion pattern and scalable via parallelization. MIVAs can be efficiently trained on approximately ten samples using a single consumer-grade GPU. At inference time, users can specify motion by selecting one or multiple MIVAs, eliminating the need for prompt engineering. Extensive experiments demonstrate that MIVA enables more precise motion control while maintaining, or even surpassing, the generation quality of models trained on significantly larger datasets.

Authors:Peng Gao, Ke Li, Di Wang, Yongshan Zhu, Yiming Zhang, Xuemei Luo, Yifeng Wang
Title: A Dual-Branch Local-Global Framework for Cross-Resolution Land Cover Mapping
Abstract:
Cross-resolution land cover mapping aims to produce high-resolution semantic predictions from coarse or low-resolution supervision, yet the severe resolution mismatch makes effective learning highly challenging. Existing weakly supervised approaches often struggle to align fine-grained spatial structures with coarse labels, leading to noisy supervision and degraded mapping accuracy. To tackle this problem, we propose DDTM, a dual-branch weakly supervised framework that explicitly decouples local semantic refinement from global contextual reasoning. Specifically, DDTM introduces a diffusion-based branch to progressively refine fine-scale local semantics under coarse supervision, while a transformer-based branch enforces long-range contextual consistency across large spatial extents. In addition, we design a pseudo-label confidence evaluation module to mitigate noise induced by cross-resolution inconsistencies and to selectively exploit reliable supervisory signals. Extensive experiments demonstrate that DDTM establishes a new state-of-the-art on the Chesapeake Bay benchmark, achieving 66.52\% mIoU and substantially outperforming prior weakly supervised methods. The code is available at https://github.com/gpgpgp123/DDTM.

Authors:Yuechen Yang, Junlin Guo, Yanfan Zhu, Jialin Yue, Junchao Zhu, Yu Wang, Shilin Zhao, Haichun Yang, Xingyi Guo, Jovan Tanevski, Laura Barisoni, Avi Z. Rosenberg, Yuankai Huo
Title: HistoWAS: A Pathomics Framework for Large-Scale Feature-Wide Association Studies of Tissue Topology and Patient Outcomes
Abstract:
High-throughput "pathomic" analysis of Whole Slide Images (WSIs) offers new opportunities to study tissue characteristics and for biomarker discovery. However, the clinical relevance of the tissue characteristics at the micro- and macro-environment level is limited by the lack of tools that facilitate the measurement of the spatial interaction of individual structure characteristics and their association with clinical parameters. To address these challenges, we introduce HistoWAS (Histology-Wide Association Study), a computational framework designed to link tissue spatial organization to clinical outcomes. Specifically, HistoWAS implements (1) a feature space that augments conventional metrics with 30 topological and spatial features, adapted from Geographic Information Systems (GIS) point pattern analysis, to quantify tissue micro-architecture; and (2) an association study engine, inspired by Phenome-Wide Association Studies (PheWAS), that performs mass univariate regression for each feature with statistical correction. As a proof of concept, we applied HistoWAS to analyze a total of 102 features (72 conventional object-level features and our 30 spatial features) using 385 PAS-stained WSIs from 206 participants in the Kidney Precision Medicine Project (KPMP). The code and data have been released to https://github.com/hrlblab/histoWAS.

Authors:Houston H. Zhang, Tao Zhang, Baoze Lin, Yuanqi Xue, Yincheng Zhu, Huan Liu, Li Gu, Linfeng Ye, Ziqiang Wang, Xinxin Zuo, Yang Wang, Yuanhao Yu, Zhixiang Chi
Title: Widget2Code: From Visual Widgets to UI Code via Multimodal LLMs
Abstract:
User interface to code (UI2Code) aims to generate executable code that can faithfully reconstruct a given input UI. Prior work focuses largely on web pages and mobile screens, leaving app widgets underexplored. Unlike web or mobile UIs with rich hierarchical context, widgets are compact, context-free micro-interfaces that summarize key information through dense layouts and iconography under strict spatial constraints. Moreover, while (image, code) pairs are widely available for web or mobile UIs, widget designs are proprietary and lack accessible markup. We formalize this setting as the Widget-to-Code (Widget2Code) and introduce an image-only widget benchmark with fine-grained, multi-dimensional evaluation metrics. Benchmarking shows that although generalized multimodal large language models (MLLMs) outperform specialized UI2Code methods, they still produce unreliable and visually inconsistent code. To address these limitations, we develop a baseline that jointly advances perceptual understanding and structured code generation. At the perceptual level, we follow widget design principles to assemble atomic components into complete layouts, equipped with icon retrieval and reusable visualization modules. At the system level, we design an end-to-end infrastructure, WidgetFactory, which includes a framework-agnostic widget-tailored domain-specific language (WidgetDSL) and a compiler that translates it into multiple front-end implementations (e.g., React, HTML/CSS). An adaptive rendering module further refines spatial dimensions to satisfy compactness constraints. Together, these contributions substantially enhance visual fidelity, establishing a strong baseline and unified infrastructure for future Widget2Code research.

Authors:Weichen Fan, Haiwen Diao, Quan Wang, Dahua Lin, Ziwei Liu
Title: The Prism Hypothesis: Harmonizing Semantic and Pixel Representations via Unified Autoencoding
Abstract:
Deep representations across modalities are inherently intertwined. In this paper, we systematically analyze the spectral characteristics of various semantic and pixel encoders. Interestingly, our study uncovers a highly inspiring and rarely explored correspondence between an encoder's feature spectrum and its functional role: semantic encoders primarily capture low-frequency components that encode abstract meaning, whereas pixel encoders additionally retain high-frequency information that conveys fine-grained detail. This heuristic finding offers a unifying perspective that ties encoder behavior to its underlying spectral structure. We define it as the Prism Hypothesis, where each data modality can be viewed as a projection of the natural world onto a shared feature spectrum, just like the prism. Building on this insight, we propose Unified Autoencoding (UAE), a model that harmonizes semantic structure and pixel details via an innovative frequency-band modulator, enabling their seamless coexistence. Extensive experiments on ImageNet and MS-COCO benchmarks validate that our UAE effectively unifies semantic abstraction and pixel-level fidelity into a single latent space with state-of-the-art performance.

Authors:Zixuan Ye, Quande Liu, Cong Wei, Yuanxing Zhang, Xintao Wang, Pengfei Wan, Kun Gai, Wenhan Luo
Title: Visual-Aware CoT: Achieving High-Fidelity Visual Consistency in Unified Models
Abstract:
Recently, the introduction of Chain-of-Thought (CoT) has largely improved the generation ability of unified models. However, it is observed that the current thinking process during generation mainly focuses on the text consistency with the text prompt, ignoring the \textbf{visual context consistency} with the visual reference images during the multi-modal generation, e.g., multi-reference generation. The lack of such consistency results in the failure in maintaining key visual features (like human ID, object attribute, style). To this end, we integrate the visual context consistency into the reasoning of unified models, explicitly motivating the model to sustain such consistency by 1) Adaptive Visual Planning: generating structured visual check list to figure out the visual element of needed consistency keeping, and 2) Iterative Visual Correction: performing self-reflection with the guidance of check lists and refining the generated result in an iterative manner. To achieve this, we use supervised finetuning to teach the model how to plan the visual checking, conduct self-reflection and self-refinement, and use flow-GRPO to further enhance the visual consistency through a customized visual checking reward. The experiments show that our method outperforms both zero-shot unified models and those with text CoTs in multi-modal generation, demonstrating higher visual context consistency.

Authors:Mingrui Wu, Zhaozhi Wang, Fangjinhua Wang, Jiaolong Yang, Marc Pollefeys, Tong Zhang
Title: From Indoor to Open World: Revealing the Spatial Reasoning Gap in MLLMs
Abstract:
While Multimodal Large Language Models (MLLMs) have achieved impressive performance on semantic tasks, their spatial intelligence--crucial for robust and grounded AI systems--remains underdeveloped. Existing benchmarks fall short of diagnosing this limitation: they either focus on overly simplified qualitative reasoning or rely on domain-specific indoor data, constrained by the lack of outdoor datasets with verifiable metric ground truth. To bridge this gap, we introduce a large-scale benchmark built from pedestrian-perspective videos captured with synchronized stereo cameras, LiDAR, and IMU/GPS sensors. This dataset provides metrically precise 3D information, enabling the automatic generation of spatial reasoning questions that span a hierarchical spectrum--from qualitative relational reasoning to quantitative metric and kinematic understanding. Evaluations reveal that the performance gains observed in structured indoor benchmarks vanish in open-world settings. Further analysis using synthetic abnormal scenes and blinding tests confirms that current MLLMs depend heavily on linguistic priors instead of grounded visual reasoning. Our benchmark thus provides a principled platform for diagnosing these limitations and advancing physically grounded spatial intelligence.

Authors:Xinyao Liao, Qiyuan He, Kai Xu, Xiaoye Qu, Yicong Li, Wei Wei, Angela Yao
Title: VA-$π$: Variational Policy Alignment for Pixel-Aware Autoregressive Generation
Abstract:
Autoregressive (AR) visual generation relies on tokenizers to map images to and from discrete sequences. However, tokenizers are trained to reconstruct clean images from ground-truth tokens, while AR generators are optimized only for token likelihood. This misalignment leads to generated token sequences that may decode into low-quality images, without direct supervision from the pixel space. We propose VA-$π$, a lightweight post-training framework that directly optimizes AR models with a principled pixel-space objective. VA-$π$ formulates the generator-tokenizer alignment as a variational optimization, deriving an evidence lower bound (ELBO) that unifies pixel reconstruction and autoregressive modeling. To optimize under the discrete token space, VA-$π$ introduces a reinforcement-based alignment strategy that treats the AR generator as a policy, uses pixel-space reconstruction quality as its intrinsic reward. The reward is measured by how well the predicted token sequences can reconstruct the original image under teacher forcing, giving the model direct pixel-level guidance without expensive free-running sampling. The regularization term of the ELBO serves as a natural regularizer, maintaining distributional consistency of tokens. VA-$π$ enables rapid adaptation of existing AR generators, without neither tokenizer retraining nor external reward models. With only 1% ImageNet-1K data and 25 minutes of tuning, it reduces FID from 14.36 to 7.65 and improves IS from 86.55 to 116.70 on LlamaGen-XXL, while also yielding notable gains in the text-to-image task on GenEval for both visual generation model (LlamaGen: from 0.306 to 0.339) and unified multi-modal model (Janus-Pro: from 0.725 to 0.744). Code is available at https://github.com/Lil-Shake/VA-Pi.

Authors:Hanyang Kong, Xingyi Yang, Xiaoxu Zheng, Xinchao Wang
Title: WorldWarp: Propagating 3D Geometry with Asynchronous Video Diffusion
Abstract:
Generating long-range, geometrically consistent video presents a fundamental dilemma: while consistency demands strict adherence to 3D geometry in pixel space, state-of-the-art generative models operate most effectively in a camera-conditioned latent space. This disconnect causes current methods to struggle with occluded areas and complex camera trajectories. To bridge this gap, we propose WorldWarp, a framework that couples a 3D structural anchor with a 2D generative refiner. To establish geometric grounding, WorldWarp maintains an online 3D geometric cache built via Gaussian Splatting (3DGS). By explicitly warping historical content into novel views, this cache acts as a structural scaffold, ensuring each new frame respects prior geometry. However, static warping inevitably leaves holes and artifacts due to occlusions. We address this using a Spatio-Temporal Diffusion (ST-Diff) model designed for a "fill-and-revise" objective. Our key innovation is a spatio-temporal varying noise schedule: blank regions receive full noise to trigger generation, while warped regions receive partial noise to enable refinement. By dynamically updating the 3D cache at every step, WorldWarp maintains consistency across video chunks. Consequently, it achieves state-of-the-art fidelity by ensuring that 3D logic guides structure while diffusion logic perfects texture. Project page: \href{https://hyokong.github.io/worldwarp-page/}{https://hyokong.github.io/worldwarp-page/}.

Authors:Jiaqi Peng, Wenzhe Cai, Yuqiang Yang, Tai Wang, Yuan Shen, Jiangmiao Pang
Title: LoGoPlanner: Localization Grounded Navigation Policy with Metric-aware Visual Geometry
Abstract:
Trajectory planning in unstructured environments is a fundamental and challenging capability for mobile robots. Traditional modular pipelines suffer from latency and cascading errors across perception, localization, mapping, and planning modules. Recent end-to-end learning methods map raw visual observations directly to control signals or trajectories, promising greater performance and efficiency in open-world settings. However, most prior end-to-end approaches still rely on separate localization modules that depend on accurate sensor extrinsic calibration for self-state estimation, thereby limiting generalization across embodiments and environments. We introduce LoGoPlanner, a localization-grounded, end-to-end navigation framework that addresses these limitations by: (1) finetuning a long-horizon visual-geometry backbone to ground predictions with absolute metric scale, thereby providing implicit state estimation for accurate localization; (2) reconstructing surrounding scene geometry from historical observations to supply dense, fine-grained environmental awareness for reliable obstacle avoidance; and (3) conditioning the policy on implicit geometry bootstrapped by the aforementioned auxiliary tasks, thereby reducing error propagation. We evaluate LoGoPlanner in both simulation and real-world settings, where its fully end-to-end design reduces cumulative error while metric-aware geometry memory enhances planning consistency and obstacle avoidance, leading to more than a 27.3\% improvement over oracle-localization baselines and strong generalization across embodiments and environments. The code and models have been made publicly available on the https://steinate.github.io/logoplanner.github.io.

Authors:Marta Hasny, Laura Daza, Keno Bressem, Maxime Di Folco, Julia Schnabel
Title: No Data? No Problem: Robust Vision-Tabular Learning with Missing Values
Abstract:
Large-scale medical biobanks provide imaging data complemented by extensive tabular information, such as demographics or clinical measurements. However, this abundance of tabular attributes does not reflect real-world datasets, where only a subset of attributes may be available. This discrepancy calls for methods that can leverage all the tabular data during training while remaining robust to missing values at inference. To address this challenge, we propose RoVTL (Robust Vision-Tabular Learning), a framework designed to handle any level of tabular data availability, from 0% to 100%. RoVTL comprises two key stages: contrastive pretraining, where we introduce tabular attribute missingness as data augmentation to promote robustness, and downstream task tuning using a gated cross-attention module for multimodal fusion. During fine-tuning, we employ a novel Tabular More vs. Fewer loss that ranks performance based on the amount of available tabular data. Combined with disentangled gradient learning, this enables consistent performance across all tabular data completeness scenarios. We evaluate RoVTL on cardiac MRI scans from the UK Biobank, demonstrating superior robustness to missing tabular data compared to prior methods. Furthermore, RoVTL successfully generalizes to an external cardiac MRI dataset for multimodal disease classification, and extends to the natural images domain, achieving robust performance on a car advertisements dataset. The code is available at https://github.com/marteczkah/RoVTL.

Authors:Eric Guzman, Joel Meyers
Title: Deep Learning for Primordial $B$-mode Extraction
Abstract:
The search for primordial gravitational waves is a central goal of cosmic microwave background (CMB) surveys. Isolating the characteristic $B$-mode polarization signal sourced by primordial gravitational waves is challenging for several reasons: the amplitude of the signal is inherently small; astrophysical foregrounds produce $B$-mode polarization contaminating the signal; and secondary $B$-mode polarization fluctuations are produced via the conversion of $E$ modes. Current and future low-noise, multi-frequency observations enable sufficient precision to address the first two of these challenges such that secondary $B$ modes will become the bottleneck for improved constraints on the amplitude of primordial gravitational waves. The dominant source of secondary $B$-mode polarization is gravitational lensing by large scale structure. Various strategies have been developed to estimate the lensing deflection and to reverse its effects the CMB, thus reducing confusion from lensing $B$ modes in the search for primordial gravitational waves. However, a few complications remain. First, there may be additional sources of secondary $B$-mode polarization, for example from patchy reionization or from cosmic polarization rotation. Second, the statistics of delensed CMB maps can become complicated and non-Gaussian, especially when advanced lensing reconstruction techniques are applied. We previously demonstrated how a deep learning network, ResUNet-CMB, can provide nearly optimal simultaneous estimates of multiple sources of secondary $B$-mode polarization. In this paper, we show how deep learning can be applied to estimate and remove multiple sources of secondary $B$-mode polarization, and we further show how this technique can be used in a likelihood analysis to produce nearly optimal, unbiased estimates of the amplitude of primordial gravitational waves.

Authors:Ziqiao Peng, Yi Chen, Yifeng Ma, Guozhen Zhang, Zhiyao Sun, Zixiang Zhou, Youliang Zhang, Zhengguang Zhou, Zhaoxin Fan, Hongyan Liu, Yuan Zhou, Qinglin Lu, Jun He
Title: ActAvatar: Temporally-Aware Precise Action Control for Talking Avatars
Abstract:
Despite significant advances in talking avatar generation, existing methods face critical challenges: insufficient text-following capability for diverse actions, lack of temporal alignment between actions and audio content, and dependency on additional control signals such as pose skeletons. We present ActAvatar, a framework that achieves phase-level precision in action control through textual guidance by capturing both action semantics and temporal context. Our approach introduces three core innovations: (1) Phase-Aware Cross-Attention (PACA), which decomposes prompts into a global base block and temporally-anchored phase blocks, enabling the model to concentrate on phase-relevant tokens for precise temporal-semantic alignment; (2) Progressive Audio-Visual Alignment, which aligns modality influence with the hierarchical feature learning process-early layers prioritize text for establishing action structure while deeper layers emphasize audio for refining lip movements, preventing modality interference; (3) A two-stage training strategy that first establishes robust audio-visual correspondence on diverse data, then injects action control through fine-tuning on structured annotations, maintaining both audio-visual alignment and the model's text-following capabilities. Extensive experiments demonstrate that ActAvatar significantly outperforms state-of-the-art methods in both action control and visual quality.

Authors:Kaiwen Zhang, Liming Jiang, Angtian Wang, Jacob Zhiyuan Fang, Tiancheng Zhi, Qing Yan, Hao Kang, Xin Lu, Xingang Pan
Title: StoryMem: Multi-shot Long Video Storytelling with Memory
Abstract:
Visual storytelling requires generating multi-shot videos with cinematic quality and long-range consistency. Inspired by human memory, we propose StoryMem, a paradigm that reformulates long-form video storytelling as iterative shot synthesis conditioned on explicit visual memory, transforming pre-trained single-shot video diffusion models into multi-shot storytellers. This is achieved by a novel Memory-to-Video (M2V) design, which maintains a compact and dynamically updated memory bank of keyframes from historical generated shots. The stored memory is then injected into single-shot video diffusion models via latent concatenation and negative RoPE shifts with only LoRA fine-tuning. A semantic keyframe selection strategy, together with aesthetic preference filtering, further ensures informative and stable memory throughout generation. Moreover, the proposed framework naturally accommodates smooth shot transitions and customized story generation applications. To facilitate evaluation, we introduce ST-Bench, a diverse benchmark for multi-shot video storytelling. Extensive experiments demonstrate that StoryMem achieves superior cross-shot consistency over previous methods while preserving high aesthetic quality and prompt adherence, marking a significant step toward coherent minute-long video storytelling.

Authors:Chi Zhang, Braedon Gunn, Andrew M. Read-Fuller
Title: SlicerOrbitSurgerySim: An Open-Source Platform for Virtual Registration and Quantitative Comparison of Preformed Orbital Plates
Abstract:
Poor adaptation of orbital implants remains a major contributor to postoperative complications and revision surgery. Although preformed orbital plates are widely used to reduce cost and operative time compared with customized implants, surgeons currently lack publicly available tools and standardized metrics to quantitatively compare plate fit across vendors, sizes, and patient anatomy. We developed SlicerOrbitSurgerySim, an open-source extension for the 3D Slicer platform that enables interactive virtual registration, evaluation, and comparison of multiple preformed orbital plates in a patient-specific virtual planning environment. The software generates reproducible quantitative plate-to-orbit distance metrics and visualization tools that support both patient-specific planning and population-level statistical analysis of plate adaptability. By facilitating objective comparison of implant designs and placement strategies, this tool aims to improve preoperative decision-making, reduce intraoperative plate modification, and promote collaborative research and surgical education. Pilot studies, sample datasets, and detailed tutorials are provided to support testing, transparency, and reproducibility.

Authors:Ziyang Song, Zelin Zang, Zuyao Chen, Xusheng Liang, Dong Yi, Jinlin Wu, Hongbin Liu, Jiebo Luo, Zhen. Lei
Title: Anatomy-R1: Enhancing Anatomy Reasoning in Multimodal Large Language Models via Anatomical Similarity Curriculum and Group Diversity Augmentation
Abstract:
Multimodal Large Language Models (MLLMs) have achieved impressive progress in natural image reasoning, yet their potential in medical imaging remains underexplored, especially in clinical anatomical surgical images. Anatomy understanding tasks demand precise understanding and clinically coherent answers, which are difficult to achieve due to the complexity of medical data and the scarcity of high-quality expert annotations. These challenges limit the effectiveness of conventional Supervised Fine-Tuning (SFT) strategies. While recent work has demonstrated that Group Relative Policy Optimization (GRPO) can enhance reasoning in MLLMs without relying on large amounts of data, we find two weaknesses that hinder GRPO's reasoning performance in anatomy recognition: 1) knowledge cannot be effectively shared between different anatomical structures, resulting in uneven information gain and preventing the model from converging, and 2) the model quickly converges to a single reasoning path, suppressing the exploration of diverse strategies. To overcome these challenges, we propose two novel methods. First, we implement a progressive learning strategy called Anatomical Similarity Curriculum Learning by controlling question difficulty via the similarity of answer choices, enabling the model to master complex problems incrementally. Second, we utilize question augmentation referred to as Group Diversity Question Augmentation to expand the model's search space for difficult queries, mitigating the tendency to produce uniform responses. Comprehensive experiments on the SGG-VQA and OmniMedVQA benchmarks show our method achieves a significant improvement across the two benchmarks, demonstrating its effectiveness in enhancing the medical reasoning capabilities of MLLMs. The code can be found in https://github.com/tomato996/Anatomy-R1

Authors:Shaochen Bi, Yuting He, Weiming Wang, Hao Chen
Title: Dynamic Stream Network for Combinatorial Explosion Problem in Deformable Medical Image Registration
Abstract:
Combinatorial explosion problem caused by dual inputs presents a critical challenge in Deformable Medical Image Registration (DMIR). Since DMIR processes two images simultaneously as input, the combination relationships between features has grown exponentially, ultimately the model considers more interfering features during the feature modeling process. Introducing dynamics in the receptive fields and weights of the network enable the model to eliminate the interfering features combination and model the potential feature combination relationships. In this paper, we propose the Dynamic Stream Network (DySNet), which enables the receptive fields and weights to be dynamically adjusted. This ultimately enables the model to ignore interfering feature combinations and model the potential feature relationships. With two key innovations: 1) Adaptive Stream Basin (AdSB) module dynamically adjusts the shape of the receptive field, thereby enabling the model to focus on the feature relationships with greater correlation. 2) Dynamic Stream Attention (DySA) mechanism generates dynamic weights to search for more valuable feature relationships. Extensive experiments have shown that DySNet consistently outperforms the most advanced DMIR methods, highlighting its outstanding generalization ability. Our code will be released on the website: https://github.com/ShaochenBi/DySNet.

Authors:Yi Xin, Siqi Luo, Qi Qin, Haoxing Chen, Kaiwen Zhu, Zhiwei Zhang, Yangfan He, Rongchao Zhang, Jinbin Bai, Shuo Cao, Bin Fu, Junjun He, Yihao Liu, Yuewen Cao, Xiaohong Liu
Title: dMLLM-TTS: Self-Verified and Efficient Test-Time Scaling for Diffusion Multi-Modal Large Language Models
Abstract:
Diffusion Multi-modal Large Language Models (dMLLMs) have recently emerged as a novel architecture unifying image generation and understanding. However, developing effective and efficient Test-Time Scaling (TTS) methods to unlock their full generative potential remains an underexplored challenge. To address this, we propose dMLLM-TTS, a novel framework operating on two complementary scaling axes: (1) trajectory exploration scaling to enhance the diversity of generated hypotheses, and (2) iterative refinement scaling for stable generation. Conventional TTS approaches typically perform linear search across these two dimensions, incurring substantial computational costs of O(NT) and requiring an external verifier for best-of-N selection. To overcome these limitations, we propose two innovations. First, we design an efficient hierarchical search algorithm with O(N+T) complexity that adaptively expands and prunes sampling trajectories. Second, we introduce a self-verified feedback mechanism that leverages the dMLLMs' intrinsic image understanding capabilities to assess text-image alignment, eliminating the need for external verifier. Extensive experiments on the GenEval benchmark across three representative dMLLMs (e.g., Lumina-DiMOO, MMaDA, Muddit) show that our framework substantially improves generation quality while achieving up to 6x greater efficiency than linear search. Project page: https://github.com/Alpha-VLLM/Lumina-DiMOO.

Authors:Zhongwei Chen, Hai-Jun Rong, Zhao-Xu Yang, Guoqi Li
Title: Efficient Spike-driven Transformer for High-performance Drone-View Geo-Localization
Abstract:
Traditional drone-view geo-localization (DVGL) methods based on artificial neural networks (ANNs) have achieved remarkable performance. However, ANNs rely on dense computation, which results in high power consumption. In contrast, spiking neural networks (SNNs), which benefit from spike-driven computation, inherently provide low power consumption. Regrettably, the potential of SNNs for DVGL has yet to be thoroughly investigated. Meanwhile, the inherent sparsity of spike-driven computation for representation learning scenarios also results in loss of critical information and difficulties in learning long-range dependencies when aligning heterogeneous visual data sources. To address these, we propose SpikeViMFormer, the first SNN framework designed for DVGL. In this framework, a lightweight spike-driven transformer backbone is adopted to extract coarse-grained features. To mitigate the loss of critical information, the spike-driven selective attention (SSA) block is designed, which uses a spike-driven gating mechanism to achieve selective feature enhancement and highlight discriminative regions. Furthermore, a spike-driven hybrid state space (SHS) block is introduced to learn long-range dependencies using a hybrid state space. Moreover, only the backbone is utilized during the inference stage to reduce computational cost. To ensure backbone effectiveness, a novel hierarchical re-ranking alignment learning (HRAL) strategy is proposed. It refines features via neighborhood re-ranking and maintains cross-batch consistency to directly optimize the backbone. Experimental results demonstrate that SpikeViMFormer outperforms state-of-the-art SNNs. Compared with advanced ANNs, it also achieves competitive performance.Our code is available at https://github.com/ISChenawei/SpikeViMFormer

Authors:Yayuan Li, Jian Zhang, Jintao Guo, Zihan Cheng, Lei Qi, Yinghuan Shi, Yang Gao
Title: MAGIC: Achieving Superior Model Merging via Magnitude Calibration
Abstract:
The proliferation of pre-trained models has given rise to a wide array of specialised, fine-tuned models. Model merging aims to merge the distinct capabilities of these specialised models into a unified model, requiring minimal or even no additional training. A core objective of model merging is to ensure the merged model retains the behavioural characteristics of the specialised models, typically achieved through feature alignment. We identify that features consist of two critical components: direction and magnitude. Prior research has predominantly focused on directional alignment, while the influence of magnitude remains largely neglected, despite its pronounced vulnerability to perturbations introduced by common merging operations (e.g., parameter fusion and sparsification). Such perturbations to magnitude inevitably lead to feature deviations in the merged model from the specialised models, resulting in subsequent performance degradation. To address this, we propose MAGnItude Calibration (MAGIC), a plug-and-play framework that rectifies layer-wise magnitudes in feature and weight spaces, with three variants. Specifically, our Feature Space Calibration (FSC) realigns the merged model's features using a small set of unlabelled data, while Weight Space Calibration (WSC) extends this calibration to the weight space without requiring additional data. Combining these yields Dual Space Calibration (DSC). Comprehensive experiments demonstrate that MAGIC consistently boosts performance across diverse Computer Vision tasks (+4.3% on eight datasets) and NLP tasks (+8.0% on Llama) without additional training. Our code is available at: https://github.com/lyymuwu/MAGIC

Authors:Xu Zhang, Junyao Ge, Yang Zheng, Kaitai Guo, Jimin Liang
Title: Bridging Semantics and Geometry: A Decoupled LVLM-SAM Framework for Reasoning Segmentation in Remote Sensing
Abstract:
Large Vision-Language Models (LVLMs) hold great promise for advancing remote sensing (RS) analysis, yet existing reasoning segmentation frameworks couple linguistic reasoning and pixel prediction through end-to-end supervised fine-tuning, leading to weak geometric grounding and limited generalization across tasks. To address this, we developed Think2Seg-RS, a decoupled framework that trains an LVLM prompter to control a frozen Segment Anything Model (SAM) via structured geometric prompts. Through a mask-only reinforcement learning objective, the LVLM learns to translate abstract semantic reasoning into spatially grounded actions, achieving state-of-the-art performance on the EarthReason dataset. Remarkably, the learned prompting policy generalizes zero-shot to multiple referring segmentation benchmarks, exposing a distinct divide between semantic-level and instance-level grounding. We further found that compact segmenters outperform larger ones under semantic-level supervision, and that negative prompts are ineffective in heterogeneous aerial backgrounds. Together, these findings establish semantic-level reasoning segmentation as a new paradigm for geospatial understanding, opening the way toward unified, interpretable LVLM-driven Earth observation. Our code and model are available at https://github.com/Ricardo-XZ/Think2Seg-RS.

Authors:Kyungwon Cho, Hanbyul Joo
Title: Hand-Aware Egocentric Motion Reconstruction with Sequence-Level Context
Abstract:
Egocentric vision systems are becoming widely available, creating new opportunities for human-computer interaction. A core challenge is estimating the wearer's full-body motion from first-person videos, which is crucial for understanding human behavior. However, this task is difficult since most body parts are invisible from the egocentric view. Prior approaches mainly rely on head trajectories, leading to ambiguity, or assume continuously tracked hands, which is unrealistic for lightweight egocentric devices. In this work, we present HaMoS, the first hand-aware, sequence-level diffusion framework that directly conditions on both head trajectory and intermittently visible hand cues caused by field-of-view limitations and occlusions, as in real-world egocentric devices. To overcome the lack of datasets pairing diverse camera views with human motion, we introduce a novel augmentation method that models such real-world conditions. We also demonstrate that sequence-level contexts such as body shape and field-of-view are crucial for accurate motion reconstruction, and thus employ local attention to infer long sequences efficiently. Experiments on public benchmarks show that our method achieves state-of-the-art accuracy and temporal smoothness, demonstrating a practical step toward reliable in-the-wild egocentric 3D motion understanding.

Authors:Carla Crivoi, Radu Tudor Ionescu
Title: Machine Unlearning in the Era of Quantum Machine Learning: An Empirical Study
Abstract:
We present the first comprehensive empirical study of machine unlearning (MU) in hybrid quantum-classical neural networks. While MU has been extensively explored in classical deep learning, its behavior within variational quantum circuits (VQCs) and quantum-augmented architectures remains largely unexplored. First, we adapt a broad suite of unlearning methods to quantum settings, including gradient-based, distillation-based, regularization-based and certified techniques. Second, we introduce two new unlearning strategies tailored to hybrid models. Experiments across Iris, MNIST, and Fashion-MNIST, under both subset removal and full-class deletion, reveal that quantum models can support effective unlearning, but outcomes depend strongly on circuit depth, entanglement structure, and task complexity. Shallow VQCs display high intrinsic stability with minimal memorization, whereas deeper hybrid models exhibit stronger trade-offs between utility, forgetting strength, and alignment with retrain oracle. We find that certain methods, e.g. EU-k, LCA, and Certified Unlearning, consistently provide the best balance across metrics. These findings establish baseline empirical insights into quantum machine unlearning and highlight the need for quantum-aware algorithms and theoretical guarantees, as quantum machine learning systems continue to expand in scale and capability. We publicly release our code at: https://github.com/CrivoiCarla/HQML.

Authors:Marios Thoma, Zenonas Theodosiou, Harris Partaourides, Vassilis Vassiliades, Loizos Michael, Andreas Lanitis
Title: PEDESTRIAN: An Egocentric Vision Dataset for Obstacle Detection on Pavements
Abstract:
Walking has always been a primary mode of transportation and is recognized as an essential activity for maintaining good health. Despite the need for safe walking conditions in urban environments, sidewalks are frequently obstructed by various obstacles that hinder free pedestrian movement. Any object obstructing a pedestrian's path can pose a safety hazard. The advancement of pervasive computing and egocentric vision techniques offers the potential to design systems that can automatically detect such obstacles in real time, thereby enhancing pedestrian safety. The development of effective and efficient identification algorithms relies on the availability of comprehensive and well-balanced datasets of egocentric data. In this work, we introduce the PEDESTRIAN dataset, comprising egocentric data for 29 different obstacles commonly found on urban sidewalks. A total of 340 videos were collected using mobile phone cameras, capturing a pedestrian's point of view. Additionally, we present the results of a series of experiments that involved training several state-of-the-art deep learning algorithms using the proposed dataset, which can be used as a benchmark for obstacle detection and recognition tasks. The dataset can be used for training pavement obstacle detectors to enhance the safety of pedestrians in urban areas.

Authors:Wendong Bu, Kaihang Pan, Yuze Lin, Jiacheng Li, Kai Shen, Wenqiao Zhang, Juncheng Li, Jun Xiao, Siliang Tang
Title: OmniMoGen: Unifying Human Motion Generation via Learning from Interleaved Text-Motion Instructions
Abstract:
Large language models (LLMs) have unified diverse linguistic tasks within a single framework, yet such unification remains unexplored in human motion generation. Existing methods are confined to isolated tasks, limiting flexibility for free-form and omni-objective generation. To address this, we propose OmniMoGen, a unified framework that enables versatile motion generation through interleaved text-motion instructions. Built upon a concise RVQ-VAE and transformer architecture, OmniMoGen supports end-to-end instruction-driven motion generation. We construct X2Mo, a large-scale dataset of over 137K interleaved text-motion instructions, and introduce AnyContext, a benchmark for evaluating interleaved motion generation. Experiments show that OmniMoGen achieves state-of-the-art performance on text-to-motion, motion editing, and AnyContext, exhibiting emerging capabilities such as compositional editing, self-reflective generation, and knowledge-informed generation. These results mark a step toward the next intelligent motion generation. Project Page: https://OmniMoGen.github.io/.

Authors:Tiantian Li, Xinjie Zhang, Xingtong Ge, Tongda Xu, Dailan He, Jun Zhang, Yan Wang
Title: GaussianImage++: Boosted Image Representation and Compression with 2D Gaussian Splatting
Abstract:
Implicit neural representations (INRs) have achieved remarkable success in image representation and compression, but they require substantial training time and memory. Meanwhile, recent 2D Gaussian Splatting (GS) methods (\textit{e.g.}, GaussianImage) offer promising alternatives through efficient primitive-based rendering. However, these methods require excessive Gaussian primitives to maintain high visual fidelity. To exploit the potential of GS-based approaches, we present GaussianImage++, which utilizes limited Gaussian primitives to achieve impressive representation and compression performance. Firstly, we introduce a distortion-driven densification mechanism. It progressively allocates Gaussian primitives according to signal intensity. Secondly, we employ context-aware Gaussian filters for each primitive, which assist in the densification to optimize Gaussian primitives based on varying image content. Thirdly, we integrate attribute-separated learnable scalar quantizers and quantization-aware training, enabling efficient compression of primitive attributes. Experimental results demonstrate the effectiveness of our method. In particular, GaussianImage++ outperforms GaussianImage and INRs-based COIN in representation and compression performance while maintaining real-time decoding and low memory usage.

Authors:Khanh Nguyen, Dasith de Silva Edirimuni, Ghulam Mubashar Hassan, Ajmal Mian
Title: Retrieving Objects from 3D Scenes with Box-Guided Open-Vocabulary Instance Segmentation
Abstract:
Locating and retrieving objects from scene-level point clouds is a challenging problem with broad applications in robotics and augmented reality. This task is commonly formulated as open-vocabulary 3D instance segmentation. Although recent methods demonstrate strong performance, they depend heavily on SAM and CLIP to generate and classify 3D instance masks from images accompanying the point cloud, leading to substantial computational overhead and slow processing that limit their deployment in real-world settings. Open-YOLO 3D alleviates this issue by using a real-time 2D detector to classify class-agnostic masks produced directly from the point cloud by a pretrained 3D segmenter, eliminating the need for SAM and CLIP and significantly reducing inference time. However, Open-YOLO 3D often fails to generalize to object categories that appear infrequently in the 3D training data. In this paper, we propose a method that generates 3D instance masks for novel objects from RGB images guided by a 2D open-vocabulary detector. Our approach inherits the 2D detector's ability to recognize novel objects while maintaining efficient classification, enabling fast and accurate retrieval of rare instances from open-ended text queries. Our code will be made available at https://github.com/ndkhanh360/BoxOVIS.

Authors:Ruiqi Ma, Yu Yan, Chunhong Zhang, Minghao Yin, XinChao Liu, Zhihong Jin, Zheng Hu
Title: Watch Closely: Mitigating Object Hallucinations in Large Vision-Language Models with Disentangled Decoding
Abstract:
Large Vision-Language Models (LVLMs) bridge the gap between visual and linguistic modalities, demonstrating strong potential across a variety of domains. However, despite significant progress, LVLMs still suffer from severe hallucination issues in object recognition tasks. These models often fail to accurately identify certain objects, leading to text generation that appears fluent but does not correspond to the visual content, which can have serious consequences in real-world applications. Recently, several methods have been proposed to alleviate LVLM hallucinations, but most focus solely on reducing hallucinations in the language modality. To mitigate hallucinations in both the language and visual modalities, we introduce Hallucination Disentangled Decoding (HDD) method that requires no training. HDD enhances the original image by segmenting it and selecting images that augment the original, while also utilizing a blank image to eliminate language prior hallucinations in both the original and segmented images. This design not only reduces the model's dependence on language priors but also enhances its visual performance. (Code: https://github.com/rickeyhhh/Hallucination-Disentangled-Decoding)

Authors:Zelin Zhao, Xinyu Gong, Bangya Liu, Ziyang Song, Jun Zhang, Suhui Wu, Yongxin Chen, Hao Zhang
Title: CETCAM: Camera-Controllable Video Generation via Consistent and Extensible Tokenization
Abstract:
Achieving precise camera control in video generation remains challenging, as existing methods often rely on camera pose annotations that are difficult to scale to large and dynamic datasets and are frequently inconsistent with depth estimation, leading to train-test discrepancies. We introduce CETCAM, a camera-controllable video generation framework that eliminates the need for camera annotations through a consistent and extensible tokenization scheme. CETCAM leverages recent advances in geometry foundation models, such as VGGT, to estimate depth and camera parameters and converts them into unified, geometry-aware tokens. These tokens are seamlessly integrated into a pretrained video diffusion backbone via lightweight context blocks. Trained in two progressive stages, CETCAM first learns robust camera controllability from diverse raw video data and then refines fine-grained visual quality using curated high-fidelity datasets. Extensive experiments across multiple benchmarks demonstrate state-of-the-art geometric consistency, temporal stability, and visual realism. Moreover, CETCAM exhibits strong adaptability to additional control modalities, including inpainting and layout control, highlighting its flexibility beyond camera control. The project page is available at https://sjtuytc.github.io/CETCam_project_page.github.io/.

Authors:Akshit Achara, Peter Triantafillou, Esther Puyol-Antón, Alexander Hammers, Andrew P. King
Title: Localising Shortcut Learning in Pixel Space via Ordinal Scoring Correlations for Attribution Representations (OSCAR)
Abstract:
Deep neural networks often exploit shortcuts. These are spurious cues which are associated with output labels in the training data but are unrelated to task semantics. When the shortcut features are associated with sensitive attributes, shortcut learning can lead to biased model performance. Existing methods for localising and understanding shortcut learning are mostly based upon qualitative, image-level inspection and assume cues are human-visible, limiting their use in domains such as medical imaging. We introduce OSCAR (Ordinal Scoring Correlations for Attribution Representations), a model-agnostic framework for quantifying shortcut learning and localising shortcut features. OSCAR converts image-level task attribution maps into dataset-level rank profiles of image regions and compares them across three models: a balanced baseline model (BA), a test model (TS), and a sensitive attribute predictor (SA). By computing pairwise, partial, and deviation-based correlations on these rank profiles, we produce a set of quantitative metrics that characterise the degree of shortcut reliance for TS, together with a ranking of image-level regions that contribute most to it. Experiments on CelebA, CheXpert, and ADNI show that our correlations are (i) stable across seeds and partitions, (ii) sensitive to the level of association between shortcut features and output labels in the training data, and (iii) able to distinguish localised from diffuse shortcut features. As an illustration of the utility of our method, we show how worst-group performance disparities can be reduced using a simple test-time attenuation approach based on the identified shortcut regions. OSCAR provides a lightweight, pixel-space audit that yields statistical decision rules and spatial maps, enabling users to test, localise, and mitigate shortcut reliance. The code is available at https://github.com/acharaakshit/oscar

Authors:Kaidi Liang, Ke Li, Xianbiao Hu, Ruwen Qin
Title: CrashChat: A Multimodal Large Language Model for Multitask Traffic Crash Video Analysis
Abstract:
Automating crash video analysis is essential to leverage the growing availability of driving video data for traffic safety research and accountability attribution in autonomous driving. Crash video analysis is a challenging multitask problem due to the complex spatiotemporal dynamics of crash events in video data and the diverse analytical requirements involved. It requires capabilities spanning crash recognition, temporal grounding, and high-level video understanding. Existing models, however, cannot perform all these tasks within a unified framework, and effective training strategies for such models remain underexplored. To fill these gaps, this paper proposes CrashChat, a multimodal large language model (MLLM) for multitask traffic crash analysis, built upon VideoLLaMA3. CrashChat acquires domain-specific knowledge through instruction fine-tuning and employs a novel multitask learning strategy based on task decoupling and grouping, which maximizes the benefit of joint learning within and across task groups while mitigating negative transfer. Numerical experiments on consolidated public datasets demonstrate that CrashChat consistently outperforms existing MLLMs across model scales and traditional vision-based methods, achieving state-of-the-art performance. It reaches near-perfect accuracy in crash recognition, a 176\% improvement in crash localization, and a 40\% improvement in the more challenging pre-crash localization. Compared to general MLLMs, it substantially enhances textual accuracy and content coverage in crash description and reasoning tasks, with 0.18-0.41 increases in BLEU scores and 0.18-0.42 increases in ROUGE scores. Beyond its strong performance, CrashChat is a convenient, end-to-end analytical tool ready for practical implementation. The dataset and implementation code for CrashChat are available at https://github.com/Liangkd/CrashChat.

Authors:Ziyuan Tao, Chuanzhi Xu, Sandaru Jayawardana, Wei Bao, Kanchana Thilakarathna, Teng Joon Lim
Title: FedVideoMAE: Efficient Privacy-Preserving Federated Video Moderation
Abstract:
The rapid growth of short-form video platforms increases the need for privacy-preserving moderation, as cloud-based pipelines expose raw videos to privacy risks, high bandwidth costs, and inference latency. To address these challenges, we propose an on-device federated learning framework for video violence detection that integrates self-supervised VideoMAE representations, LoRA-based parameter-efficient adaptation, and defense-in-depth privacy protection. Our approach reduces the trainable parameter count to 5.5M (~3.5% of a 156M backbone) and incorporates DP-SGD with configurable privacy budgets and secure aggregation. Experiments on RWF-2000 with 40 clients achieve 77.25% accuracy without privacy protection and 65-66% under strong differential privacy, while reducing communication cost by $28.3\times$ compared to full-model federated learning. The code is available at: {https://github.com/zyt-599/FedVideoMAE}

Authors:Guohui Zhang, Hu Yu, Xiaoxiao Ma, Yaning Pan, Hang Xu, Feng Zhao
Title: MaskFocus: Focusing Policy Optimization on Critical Steps for Masked Image Generation
Abstract:
Reinforcement learning (RL) has demonstrated significant potential for post-training language models and autoregressive visual generative models, but adapting RL to masked generative models remains challenging. The core factor is that policy optimization requires accounting for the probability likelihood of each step due to its multi-step and iterative refinement process. This reliance on entire sampling trajectories introduces high computational cost, whereas natively optimizing random steps often yields suboptimal results. In this paper, we present MaskFocus, a novel RL framework that achieves effective policy optimization for masked generative models by focusing on critical steps. Specifically, we determine the step-level information gain by measuring the similarity between the intermediate images at each sampling step and the final generated image. Crucially, we leverage this to identify the most critical and valuable steps and execute focused policy optimization on them. Furthermore, we design a dynamic routing sampling mechanism based on entropy to encourage the model to explore more valuable masking strategies for samples with low entropy. Extensive experiments on multiple Text-to-Image benchmarks validate the effectiveness of our method.

Authors:Yuan Chen, Zichen Wen, Yuzhou Wu, Xuyang Liu, Shuang Chen, Junpeng Ma, Weijia Li, Conghui He, Linfeng Zhang
Title: IPCV: Information-Preserving Compression for MLLM Visual Encoders
Abstract:
Multimodal Large Language Models (MLLMs) deliver strong vision-language performance but at high computational cost, driven by numerous visual tokens processed by the Vision Transformer (ViT) encoder. Existing token pruning strategies are inadequate: LLM-stage token pruning overlooks the ViT's overhead, while conventional ViT token pruning, without language guidance, risks discarding textually critical visual cues and introduces feature distortions amplified by the ViT's bidirectional attention. To meet these challenges, we propose IPCV, a training-free, information-preserving compression framework for MLLM visual encoders. IPCV enables aggressive token pruning inside the ViT via Neighbor-Guided Reconstruction (NGR) that temporarily reconstructs pruned tokens to participate in attention with minimal overhead, then fully restores them before passing to the LLM. Besides, we introduce Attention Stabilization (AS) to further alleviate the negative influence from token pruning by approximating the K/V of pruned tokens. It can be directly applied to previous LLM-side token pruning methods to enhance their performance. Extensive experiments show that IPCV substantially reduces end-to-end computation and outperforms state-of-the-art training-free token compression methods across diverse image and video benchmarks. Our code is available at https://github.com/Perkzi/IPCV.

Authors:Kaican Li, Lewei Yao, Jiannan Wu, Tiezheng Yu, Jierun Chen, Haoli Bai, Lu Hou, Lanqing Hong, Wei Zhang, Nevin L. Zhang
Title: InSight-o3: Empowering Multimodal Foundation Models with Generalized Visual Search
Abstract:
The ability for AI agents to "think with images" requires a sophisticated blend of reasoning and perception. However, current open multimodal agents still largely fall short on the reasoning aspect crucial for real-world tasks like analyzing documents with dense charts/diagrams and navigating maps. To address this gap, we introduce O3-Bench, a new benchmark designed to evaluate multimodal reasoning with interleaved attention to visual details. O3-Bench features challenging problems that require agents to piece together subtle visual information from distinct image areas through multi-step reasoning. The problems are highly challenging even for frontier systems like OpenAI o3, which only obtains 40.8% accuracy on O3-Bench. To make progress, we propose InSight-o3, a multi-agent framework consisting of a visual reasoning agent (vReasoner) and a visual search agent (vSearcher) for which we introduce the task of generalized visual search -- locating relational, fuzzy, or conceptual regions described in free-form language, beyond just simple objects or figures in natural images. We then present a multimodal LLM purpose-trained for this task via reinforcement learning. As a plug-and-play agent, our vSearcher empowers frontier multimodal models (as vReasoners), significantly improving their performance on a wide range of benchmarks. This marks a concrete step towards powerful o3-like open systems. Our code and dataset can be found at https://github.com/m-Just/InSight-o3 .

Authors:Tianrui Zhu, Shiyi Zhang, Zhirui Sun, Jingqi Tian, Yansong Tang
Title: Memorize-and-Generate: Towards Long-Term Consistency in Real-Time Video Generation
Abstract:
Frame-level autoregressive (frame-AR) models have achieved significant progress, enabling real-time video generation comparable to bidirectional diffusion models and serving as a foundation for interactive world models and game engines. However, current approaches in long video generation typically rely on window attention, which naively discards historical context outside the window, leading to catastrophic forgetting and scene inconsistency; conversely, retaining full history incurs prohibitive memory costs. To address this trade-off, we propose Memorize-and-Generate (MAG), a framework that decouples memory compression and frame generation into distinct tasks. Specifically, we train a memory model to compress historical information into a compact KV cache, and a separate generator model to synthesize subsequent frames utilizing this compressed representation. Furthermore, we introduce MAG-Bench to strictly evaluate historical memory retention. Extensive experiments demonstrate that MAG achieves superior historical scene consistency while maintaining competitive performance on standard video generation benchmarks.

Authors:Kewei Wei, Bocheng Hu, Jie Cao, Xiaohan Chen, Zhengxi Lu, Wubing Xia, Weili Xu, Jiaao Wu, Junchen He, Mingyu Jia, Ciyun Zhao, Ye Sun, Yizhi Li, Zhonghan Zhao, Jian Zhang, Gaoang Wang
Title: $M^3-Verse$: A "Spot the Difference" Challenge for Large Multimodal Models
Abstract:
Modern Large Multimodal Models (LMMs) have demonstrated extraordinary ability in static image and single-state spatial-temporal understanding. However, their capacity to comprehend the dynamic changes of objects within a shared spatial context between two distinct video observations, remains largely unexplored. This ability to reason about transformations within a consistent environment is particularly crucial for advancements in the field of spatial intelligence. In this paper, we introduce $M^3-Verse$, a Multi-Modal, Multi-State, Multi-Dimensional benchmark, to formally evaluate this capability. It is built upon paired videos that provide multi-perspective observations of an indoor scene before and after a state change. The benchmark contains a total of 270 scenes and 2,932 questions, which are categorized into over 50 subtasks that probe 4 core capabilities. We evaluate 16 state-of-the-art LMMs and observe their limitations in tracking state transitions. To address these challenges, we further propose a simple yet effective baseline that achieves significant performance improvements in multi-state perception. $M^3-Verse$ thus provides a challenging new testbed to catalyze the development of next-generation models with a more holistic understanding of our dynamic visual world. You can get the construction pipeline from https://github.com/Wal-K-aWay/M3-Verse_pipeline and full benchmark data from https://www.modelscope.cn/datasets/WalKaWay/M3-Verse.

Authors:Jongmin Park, Minh-Quan Viet Bui, Juan Luis Gonzalez Bello, Jaeho Moon, Jihyong Oh, Munchurl Kim
Title: EcoSplat: Efficiency-controllable Feed-forward 3D Gaussian Splatting from Multi-view Images
Abstract:
Feed-forward 3D Gaussian Splatting (3DGS) enables efficient one-pass scene reconstruction, providing 3D representations for novel view synthesis without per-scene optimization. However, existing methods typically predict pixel-aligned primitives per-view, producing an excessive number of primitives in dense-view settings and offering no explicit control over the number of predicted Gaussians. To address this, we propose EcoSplat, the first efficiency-controllable feed-forward 3DGS framework that adaptively predicts the 3D representation for any given target primitive count at inference time. EcoSplat adopts a two-stage optimization process. The first stage is Pixel-aligned Gaussian Training (PGT) where our model learns initial primitive prediction. The second stage is Importance-aware Gaussian Finetuning (IGF) stage where our model learns rank primitives and adaptively adjust their parameters based on the target primitive count. Extensive experiments across multiple dense-view settings show that EcoSplat is robust and outperforms state-of-the-art methods under strict primitive-count constraints, making it well-suited for flexible downstream rendering tasks.

Authors:Qixiang Chen, Cheng Zhang, Chi-Wing Fu, Jingwen Ye, Jianfei Cai
Title: OpenView: Empowering MLLMs with Out-of-view VQA
Abstract:
Recent multimodal large language models (MLLMs) show great potential in natural image understanding. Yet, they perform well, mainly on reasoning in-view contents within the image frame. This paper presents the first study on out-of-view (OOV) understanding, i.e., the ability to reason objects, activities, and scenes beyond the visible frame of a perspective view. Our technical contributions are threefold. First, we design OpenView, a four-stage pipeline to massively generate multi-choice VQA by leveraging panoramic imagery to enable context-rich and spatial-grounded VQA synthesis with free-view framing. Second, we curate OpenView-Dataset, a high-quality synthetic dataset from diverse real-world panoramas to empower MLLMs upon supervised fine-tuning. Third, we build OpenView-Bench, a benchmark that jointly measures choice and rationale accuracy for interpretable and diagnosable evaluation. Experimental results show that despite having a large gap from human performance in OOV VQA answer selection, upon empowered by OpenView, multiple MLLMs can consistently boost their performance, uplifted from 48.6% to 64.1% on average. Code, benchmark, and data will be available at https://github.com/q1xiangchen/OpenView.

Authors:Benyamin Hosseiny, Kamirul Kamirul, Odysseas Pappas, Alin Achim
Title: NASTaR: NovaSAR Automated Ship Target Recognition Dataset
Abstract:
Synthetic Aperture Radar (SAR) offers a unique capability for all-weather, space-based maritime activity monitoring by capturing and imaging strong reflections from ships at sea. A well-defined challenge in this domain is ship type classification. Due to the high diversity and complexity of ship types, accurate recognition is difficult and typically requires specialized deep learning models. These models, however, depend on large, high-quality ground-truth datasets to achieve robust performance and generalization. Furthermore, the growing variety of SAR satellites operating at different frequencies and spatial resolutions has amplified the need for more annotated datasets to enhance model accuracy. To address this, we present the NovaSAR Automated Ship Target Recognition (NASTaR) dataset. This dataset comprises of 3415 ship patches extracted from NovaSAR S-band imagery, with labels matched to AIS data. It includes distinctive features such as 23 unique classes, inshore/offshore separation, and an auxiliary wake dataset for patches where ship wakes are visible. We validated the dataset applicability across prominent ship-type classification scenarios using benchmark deep learning models. Results demonstrate over 60% accuracy for classifying four major ship types, over 70% for a three-class scenario, more than 75% for distinguishing cargo from tanker ships, and over 87% for identifying fishing vessels. The NASTaR dataset is available at https://10.5523/bris, while relevant codes for benchmarking and analysis are available at https://github.com/benyaminhosseiny/nastar.

Authors:Seyed Ehsan Marjani Bajestani, Giovanni Beltrame
Title: E-RGB-D: Real-Time Event-Based Perception with Structured Light
Abstract:
Event-based cameras (ECs) have emerged as bio-inspired sensors that report pixel brightness changes asynchronously, offering unmatched speed and efficiency in vision sensing. Despite their high dynamic range, temporal resolution, low power consumption, and computational simplicity, traditional monochrome ECs face limitations in detecting static or slowly moving objects and lack color information essential for certain applications. To address these challenges, we present a novel approach that integrates a Digital Light Processing (DLP) projector, forming Active Structured Light (ASL) for RGB-D sensing. By combining the benefits of ECs and projection-based techniques, our method enables the detection of color and the depth of each pixel separately. Dynamic projection adjustments optimize bandwidth, ensuring selective color data acquisition and yielding colorful point clouds without sacrificing spatial resolution. This integration, facilitated by a commercial TI LightCrafter 4500 projector and a monocular monochrome EC, not only enables frameless RGB-D sensing applications but also achieves remarkable performance milestones. With our approach, we achieved a color detection speed equivalent to 1400 fps and 4 kHz of pixel depth detection, significantly advancing the realm of computer vision across diverse fields from robotics to 3D reconstruction methods. Our code is publicly available: https://github.com/MISTLab/event_based_rgbd_ros

Authors:Badr Moufad, Navid Bagheri Shouraki, Alain Oliviero Durmus, Thomas Hirtz, Eric Moulines, Jimmy Olsson, Yazid Janati
Title: Efficient Zero-Shot Inpainting with Decoupled Diffusion Guidance
Abstract:
Diffusion models have emerged as powerful priors for image editing tasks such as inpainting and local modification, where the objective is to generate realistic content that remains consistent with observed regions. In particular, zero-shot approaches that leverage a pretrained diffusion model, without any retraining, have been shown to achieve highly effective reconstructions. However, state-of-the-art zero-shot methods typically rely on a sequence of surrogate likelihood functions, whose scores are used as proxies for the ideal score. This procedure however requires vector-Jacobian products through the denoiser at every reverse step, introducing significant memory and runtime overhead. To address this issue, we propose a new likelihood surrogate that yields simple and efficient to sample Gaussian posterior transitions, sidestepping the backpropagation through the denoiser network. Our extensive experiments show that our method achieves strong observation consistency compared with fine-tuned baselines and produces coherent, high-quality reconstructions, all while significantly reducing inference cost. Code is available at https://github.com/YazidJanati/ding.

Authors:Zhangshuo Qi, Jingyi Xu, Luqi Cheng, Shichen Wen, Yiming Ma, Guangming Xiong
Title: UniMPR: A Unified Framework for Multimodal Place Recognition with Heterogeneous Sensor Configurations
Abstract:
Place recognition is a critical component of autonomous vehicles and robotics, enabling global localization in GPS-denied environments. Recent advances have spurred significant interest in multimodal place recognition (MPR), which leverages complementary strengths of multiple modalities. Despite its potential, most existing MPR methods still face three key challenges: (1) dynamically adapting to various modality inputs within a unified framework, (2) maintaining robustness with missing or degraded modalities, and (3) generalizing across diverse sensor configurations and setups. In this paper, we propose UniMPR, a unified framework for multimodal place recognition. Using only one trained model, it can seamlessly adapt to any combination of common perceptual modalities (e.g., camera, LiDAR, radar). To tackle the data heterogeneity, we unify all inputs within a polar BEV feature space. Subsequently, the polar BEVs are fed into a multi-branch network to exploit discriminative intra-model and inter-modal features from any modality combinations. To fully exploit the network's generalization capability and robustness, we construct a large-scale training set from multiple datasets and introduce an adaptive label assignment strategy for extensive pre-training. Experiments on seven datasets demonstrate that UniMPR achieves state-of-the-art performance under varying sensor configurations, modality combinations, and environmental conditions. Our code will be released at https://github.com/QiZS-BIT/UniMPR.

Authors:Se-Young Jang, Su-Yeon Yoon, Jae-Woong Jung, Dong-Hun Lee, Seong-Hun Choi, Soo-Kyung Jun, Yu-Bin Kim, Young-Seon Ju, Kyounggon Kim
Title: Building UI/UX Dataset for Dark Pattern Detection and YOLOv12x-based Real-Time Object Recognition Detection System
Abstract:
With the accelerating pace of digital transformation and the widespread adoption of online platforms, both social and technical concerns regarding dark patterns-user interface designs that undermine users' ability to make informed and rational choices-have become increasingly prominent. As corporate online platforms grow more sophisticated in their design strategies, there is a pressing need for proactive and real-time detection technologies that go beyond the predominantly reactive approaches employed by regulatory authorities. In this paper, we propose a visual dark pattern detection framework that improves both detection accuracy and real-time performance. To this end, we constructed a proprietary visual object detection dataset by manually collecting 4,066 UI/UX screenshots containing dark patterns from 194 websites across six major industrial sectors in South Korea and abroad. The collected images were annotated with five representative UI components commonly associated with dark patterns: Button, Checkbox, Input Field, Pop-up, and QR Code. This dataset has been publicly released to support further research and development in the field. To enable real-time detection, this study adopted the YOLOv12x object detection model and applied transfer learning to optimize its performance for visual dark pattern recognition. Experimental results demonstrate that the proposed approach achieves a high detection accuracy of 92.8% in terms of mAP@50, while maintaining a real-time inference speed of 40.5 frames per second (FPS), confirming its effectiveness for practical deployment in online environments. Furthermore, to facilitate future research and contribute to technological advancements, the dataset constructed in this study has been made publicly available at https://github.com/B4E2/B4E2-DarkPattern-YOLO-DataSet.

Authors:Junho Lee, Kwanseok Kim, Joonseok Lee
Title: Is There a Better Source Distribution than Gaussian? Exploring Source Distributions for Image Flow Matching
Abstract:
Flow matching has emerged as a powerful generative modeling approach with flexible choices of source distribution. While Gaussian distributions are commonly used, the potential for better alternatives in high-dimensional data generation remains largely unexplored. In this paper, we propose a novel 2D simulation that captures high-dimensional geometric properties in an interpretable 2D setting, enabling us to analyze the learning dynamics of flow matching during training. Based on this analysis, we derive several key insights about flow matching behavior: (1) density approximation can paradoxically degrade performance due to mode discrepancy, (2) directional alignment suffers from path entanglement when overly concentrated, (3) Gaussian's omnidirectional coverage ensures robust learning, and (4) norm misalignment incurs substantial learning costs. Building on these insights, we propose a practical framework that combines norm-aligned training with directionally-pruned sampling. This approach maintains the robust omnidirectional supervision essential for stable flow learning, while eliminating initializations in data-sparse regions during inference. Importantly, our pruning strategy can be applied to any flow matching model trained with a Gaussian source, providing immediate performance gains without the need for retraining. Empirical evaluations demonstrate consistent improvements in both generation quality and sampling efficiency. Our findings provide practical insights and guidelines for source distribution design and introduce a readily applicable technique for improving existing flow matching models. Our code is available at https://github.com/kwanseokk/SourceFM.

Authors:Hao Li, Daiwei Lu, Jiacheng Wang, Robert J. Webster, Ipek Oguz
Title: EndoStreamDepth: Temporally Consistent Monocular Depth Estimation for Endoscopic Video Streams
Abstract:
This work presents EndoStreamDepth, a monocular depth estimation framework for endoscopic video streams. It provides accurate depth maps with sharp anatomical boundaries for each frame, temporally consistent predictions across frames, and real-time throughput. Unlike prior work that uses batched inputs, EndoStreamDepth processes individual frames with a temporal module to propagate inter-frame information. The framework contains three main components: (1) a single-frame depth network with endoscopy-specific transformation to produce accurate depth maps, (2) multi-level Mamba temporal modules that leverage inter-frame information to improve accuracy and stabilize predictions, and (3) a hierarchical design with comprehensive multi-scale supervision, where complementary loss terms jointly improve local boundary sharpness and global geometric consistency. We conduct comprehensive evaluations on two publicly available colonoscopy depth estimation datasets. Compared to state-of-the-art monocular depth estimation methods, EndoStreamDepth substantially improves performance, and it produces depth maps with sharp, anatomically aligned boundaries, which are essential to support downstream tasks such as automation for robotic surgery. The code is publicly available at https://github.com/MedICL-VU/EndoStreamDepth

Authors:Thomas Boudras, Martin Schwartz, Rasmus Fensholt, Martin Brandt, Ibrahim Fayad, Jean-Pierre Wigneron, Gabriel Belouze, Fajwel Fogel, Philippe Ciais
Title: SERA-H: Beyond Native Sentinel Spatial Limits for High-Resolution Canopy Height Mapping
Abstract:
High-resolution mapping of canopy height is essential for forest management and biodiversity monitoring. Although recent studies have led to the advent of deep learning methods using satellite imagery to predict height maps, these approaches often face a trade-off between data accessibility and spatial resolution. To overcome these limitations, we present SERA-H, an end-to-end model combining a super-resolution module (EDSR) and temporal attention encoding (UTAE). Trained under the supervision of high-density LiDAR data (ALS), our model generates 2.5 m resolution height maps from freely available Sentinel-1 and Sentinel-2 (10 m) time series data. Evaluated on an open-source benchmark dataset in France, SERA-H, with a MAE of 2.6 m and a coefficient of determination of 0.82, not only outperforms standard Sentinel-1/2 baselines but also achieves performance comparable to or better than methods relying on commercial very high-resolution imagery (SPOT-6/7, PlanetScope, Maxar). These results demonstrate that combining high-resolution supervision with the spatiotemporal information embedded in time series enables the reconstruction of details beyond the input sensors' native resolution. SERA-H opens the possibility of freely mapping forests with high revisit frequency, achieving accuracy comparable to that of costly commercial imagery. The source code is available at https://github.com/ThomasBoudras/SERA-H#

Authors:Karthik Prabhakar
Title: NystagmusNet: Explainable Deep Learning for Photosensitivity Risk Prediction
Abstract:
Nystagmus patients with photosensitivity face significant daily challenges due to involuntary eye movements exacerbated by environmental brightness conditions. Current assistive solutions are limited to symptomatic treatments without predictive personalization. This paper proposes NystagmusNet, an AI-driven system that predicts high-risk visual environments and recommends real-time visual adaptations. Using a dual-branch convolutional neural network trained on synthetic and augmented datasets, the system estimates a photosensitivity risk score based on environmental brightness and eye movement variance. The model achieves 75% validation accuracy on synthetic data. Explainability techniques including SHAP and GradCAM are integrated to highlight environmental risk zones, improving clinical trust and model interpretability. The system includes a rule-based recommendation engine for adaptive filter suggestions. Future directions include deployment via smart glasses and reinforcement learning for personalized recommendations.

Authors:Shilong Zhang, He Zhang, Zhifei Zhang, Chongjian Ge, Shuchen Xue, Shaoteng Liu, Mengwei Ren, Soo Ye Kim, Yuqian Zhou, Qing Liu, Daniil Pakhomov, Kai Zhang, Zhe Lin, Ping Luo
Title: Both Semantics and Reconstruction Matter: Making Representation Encoders Ready for Text-to-Image Generation and Editing
Abstract:
Modern Latent Diffusion Models (LDMs) typically operate in low-level Variational Autoencoder (VAE) latent spaces that are primarily optimized for pixel-level reconstruction. To unify vision generation and understanding, a burgeoning trend is to adopt high-dimensional features from representation encoders as generative latents. However, we empirically identify two fundamental obstacles in this paradigm: (1) the discriminative feature space lacks compact regularization, making diffusion models prone to off-manifold latents that lead to inaccurate object structures; and (2) the encoder's inherently weak pixel-level reconstruction hinders the generator from learning accurate fine-grained geometry and texture. In this paper, we propose a systematic framework to adapt understanding-oriented encoder features for generative tasks. We introduce a semantic-pixel reconstruction objective to regularize the latent space, enabling the compression of both semantic information and fine-grained details into a highly compact representation (96 channels with 16x16 spatial downsampling). This design ensures that the latent space remains semantically rich and achieves state-of-the-art image reconstruction, while remaining compact enough for accurate generation. Leveraging this representation, we design a unified Text-to-Image (T2I) and image editing model. Benchmarking against various feature spaces, we demonstrate that our approach achieves state-of-the-art reconstruction, faster convergence, and substantial performance gains in both T2I and editing tasks, validating that representation encoders can be effectively adapted into robust generative components.

Authors:Vongani H. Maluleke, Kie Horiuchi, Lea Wilken, Evonne Ng, Jitendra Malik, Angjoo Kanazawa
Title: Diffusion Forcing for Multi-Agent Interaction Sequence Modeling
Abstract:
Understanding and generating multi-person interactions is a fundamental challenge with broad implications for robotics and social computing. While humans naturally coordinate in groups, modeling such interactions remains difficult due to long temporal horizons, strong inter-agent dependencies, and variable group sizes. Existing motion generation methods are largely task-specific and do not generalize to flexible multi-agent generation. We introduce MAGNet (Multi-Agent Diffusion Forcing Transformer), a unified autoregressive diffusion framework for multi-agent motion generation that supports a wide range of interaction tasks through flexible conditioning and sampling. MAGNet performs dyadic prediction, partner inpainting, and full multi-agent motion generation within a single model, and can autoregressively generate ultra-long sequences spanning hundreds of v. Building on Diffusion Forcing, we introduce key modifications that explicitly model inter-agent coupling during autoregressive denoising, enabling coherent coordination across agents. As a result, MAGNet captures both tightly synchronized activities (e.g, dancing, boxing) and loosely structured social interactions. Our approach performs on par with specialized methods on dyadic benchmarks while naturally extending to polyadic scenarios involving three or more interacting people, enabled by a scalable architecture that is agnostic to the number of agents. We refer readers to the supplemental video, where the temporal dynamics and spatial coordination of generated interactions are best appreciated. Project page: https://von31.github.io/MAGNet/

Authors:Haiwen Feng, Long Lian, Lisa Dunlap, Jiahao Shu, XuDong Wang, Renhao Wang, Trevor Darrell, Alane Suhr, Angjoo Kanazawa
Title: Visually Prompted Benchmarks Are Surprisingly Fragile
Abstract:
A key challenge in evaluating VLMs is testing models' ability to analyze visual content independently from their textual priors. Recent benchmarks such as BLINK probe visual perception through visual prompting, where questions about visual content are paired with coordinates to which the question refers, with the coordinates explicitly marked in the image itself. While these benchmarks are an important part of VLM evaluation, we find that existing models are surprisingly fragile to seemingly irrelevant details of visual prompting: simply changing a visual marker from red to blue can completely change rankings among models on a leaderboard. By evaluating nine commonly-used open- and closed-source VLMs on two visually prompted tasks, we demonstrate how details in benchmark setup, including visual marker design and dataset size, have a significant influence on model performance and leaderboard rankings. These effects can even be exploited to lift weaker models above stronger ones; for instance, slightly increasing the size of the visual marker results in open-source InternVL3-8B ranking alongside or better than much larger proprietary models like Gemini 2.5 Pro. We further show that low-level inference choices that are often ignored in benchmarking, such as JPEG compression levels in API calls, can also cause model lineup changes. These details have substantially larger impacts on visually prompted benchmarks than on conventional semantic VLM evaluations. To mitigate this instability, we curate existing datasets to create VPBench, a larger visually prompted benchmark with 16 visual marker variants. VPBench and additional analysis tools are released at https://lisadunlap.github.io/vpbench/.

Authors:Balram Singh, Ram Prakash Sharma, Somnath Dey
Title: Interpretable Plant Leaf Disease Detection Using Attention-Enhanced CNN
Abstract:
Plant diseases pose a significant threat to global food security, necessitating accurate and interpretable disease detection methods. This study introduces an interpretable attention-guided Convolutional Neural Network (CNN), CBAM-VGG16, for plant leaf disease detection. By integrating Convolution Block Attention Module (CBAM) at each convolutional stage, the model enhances feature extraction and disease localization. Trained on five diverse plant disease datasets, our approach outperforms recent techniques, achieving high accuracy (up to 98.87%) and demonstrating robust generalization. Here, we show the effectiveness of our method through comprehensive evaluation and interpretability analysis using CBAM attention maps, Grad-CAM, Grad-CAM++, and Layer-wise Relevance Propagation (LRP). This study advances the application of explainable AI in agricultural diagnostics, offering a transparent and reliable system for smart farming. The code of our proposed work is available at https://github.com/BS0111/PlantAttentionCBAM.

Authors:Roshan Kenia, Xiaoman Zhang, Pranav Rajpurkar
Title: ReX-MLE: The Autonomous Agent Benchmark for Medical Imaging Challenges
Abstract:
Autonomous coding agents built on large language models (LLMs) can now solve many general software and machine learning tasks, but they remain ineffective on complex, domain-specific scientific problems. Medical imaging is a particularly demanding domain, requiring long training cycles, high-dimensional data handling, and specialized preprocessing and validation pipelines, capabilities not fully measured in existing agent benchmarks. To address this gap, we introduce ReX-MLE, a benchmark of 20 challenges derived from high-impact medical imaging competitions spanning diverse modalities and task types. Unlike prior ML-agent benchmarks, ReX-MLE evaluates full end-to-end workflows, requiring agents to independently manage data preprocessing, model training, and submission under realistic compute and time constraints. Evaluating state-of-the-art agents (AIDE, ML-Master, R&D-Agent) with different LLM backends (GPT-5, Gemini, Claude), we observe a severe performance gap: most submissions rank in the 0th percentile compared to human experts. Failures stem from domain-knowledge and engineering limitations. ReX-MLE exposes these bottlenecks and provides a foundation for developing domain-aware autonomous AI systems.

Authors:Yitong Wang, Fangyun Wei, Hongyang Zhang, Bo Dai, Yan Lu
Title: Animate Any Character in Any World
Abstract:
Recent advances in world models have greatly enhanced interactive environment simulation. Existing methods mainly fall into two categories: (1) static world generation models, which construct 3D environments without active agents, and (2) controllable-entity models, which allow a single entity to perform limited actions in an otherwise uncontrollable environment. In this work, we introduce AniX, leveraging the realism and structural grounding of static world generation while extending controllable-entity models to support user-specified characters capable of performing open-ended actions. Users can provide a 3DGS scene and a character, then direct the character through natural language to perform diverse behaviors from basic locomotion to object-centric interactions while freely exploring the environment. AniX synthesizes temporally coherent video clips that preserve visual fidelity with the provided scene and character, formulated as a conditional autoregressive video generation problem. Built upon a pre-trained video generator, our training strategy significantly enhances motion dynamics while maintaining generalization across actions and characters. Our evaluation covers a broad range of aspects, including visual quality, character consistency, action controllability, and long-horizon coherence.

Authors:Simon Giebenhain, Tobias Kirschstein, Liam Schoneveld, Davide Davoli, Zhe Chen, Matthias Nießner
Title: Pix2NPHM: Learning to Regress NPHM Reconstructions From a Single Image
Abstract:
Neural Parametric Head Models (NPHMs) are a recent advancement over mesh-based 3d morphable models (3DMMs) to facilitate high-fidelity geometric detail. However, fitting NPHMs to visual inputs is notoriously challenging due to the expressive nature of their underlying latent space. To this end, we propose Pix2NPHM, a vision transformer (ViT) network that directly regresses NPHM parameters, given a single image as input. Compared to existing approaches, the neural parametric space allows our method to reconstruct more recognizable facial geometry and accurate facial expressions. For broad generalization, we exploit domain-specific ViTs as backbones, which are pretrained on geometric prediction tasks. We train Pix2NPHM on a mixture of 3D data, including a total of over 100K NPHM registrations that enable direct supervision in SDF space, and large-scale 2D video datasets, for which normal estimates serve as pseudo ground truth geometry. Pix2NPHM not only allows for 3D reconstructions at interactive frame rates, it is also possible to improve geometric fidelity by a subsequent inference-time optimization against estimated surface normals and canonical point maps. As a result, we achieve unprecedented face reconstruction quality that can run at scale on in-the-wild data.

Authors:Cheng Peng, Zhuo Su, Liao Wang, Chen Guo, Zhaohu Li, Chengjiang Long, Zheng Lv, Jingxiang Sun, Chenyangguang Zhang, Yebin Liu
Title: FlexAvatar: Flexible Large Reconstruction Model for Animatable Gaussian Head Avatars with Detailed Deformation
Abstract:
We present FlexAvatar, a flexible large reconstruction model for high-fidelity 3D head avatars with detailed dynamic deformation from single or sparse images, without requiring camera poses or expression labels. It leverages a transformer-based reconstruction model with structured head query tokens as canonical anchor to aggregate flexible input-number-agnostic, camera-pose-free and expression-free inputs into a robust canonical 3D representation. For detailed dynamic deformation, we introduce a lightweight UNet decoder conditioned on UV-space position maps, which can produce detailed expression-dependent deformations in real time. To better capture rare but critical expressions like wrinkles and bared teeth, we also adopt a data distribution adjustment strategy during training to balance the distribution of these expressions in the training set. Moreover, a lightweight 10-second refinement can further enhances identity-specific details in extreme identities without affecting deformation quality. Extensive experiments demonstrate that our FlexAvatar achieves superior 3D consistency, detailed dynamic realism compared with previous methods, providing a practical solution for animatable 3D avatar creation.

Authors:Zhongwei Zhang, Fuchen Long, Wei Li, Zhaofan Qiu, Wu Liu, Ting Yao, Tao Mei
Title: Region-Constraint In-Context Generation for Instructional Video Editing
Abstract:
The In-context generation paradigm recently has demonstrated strong power in instructional image editing with both data efficiency and synthesis quality. Nevertheless, shaping such in-context learning for instruction-based video editing is not trivial. Without specifying editing regions, the results can suffer from the problem of inaccurate editing regions and the token interference between editing and non-editing areas during denoising. To address these, we present ReCo, a new instructional video editing paradigm that novelly delves into constraint modeling between editing and non-editing regions during in-context generation. Technically, ReCo width-wise concatenates source and target video for joint denoising. To calibrate video diffusion learning, ReCo capitalizes on two regularization terms, i.e., latent and attention regularization, conducting on one-step backward denoised latents and attention maps, respectively. The former increases the latent discrepancy of the editing region between source and target videos while reducing that of non-editing areas, emphasizing the modification on editing area and alleviating outside unexpected content generation. The latter suppresses the attention of tokens in the editing region to the tokens in counterpart of the source video, thereby mitigating their interference during novel object generation in target video. Furthermore, we propose a large-scale, high-quality video editing dataset, i.e., ReCo-Data, comprising 500K instruction-video pairs to benefit model training. Extensive experiments conducted on four major instruction-based video editing tasks demonstrate the superiority of our proposal.

Authors:Di Wu, Feng Yang, Wenhui Zhao, Jinwen Yu, Pan Liao, Benlian Xu, Dingwen Zhang
Title: StereoMV2D: A Sparse Temporal Stereo-Enhanced Framework for Robust Multi-View 3D Object Detection
Abstract:
Multi-view 3D object detection is a fundamental task in autonomous driving perception, where achieving a balance between detection accuracy and computational efficiency remains crucial. Sparse query-based 3D detectors efficiently aggregate object-relevant features from multi-view images through a set of learnable queries, offering a concise and end-to-end detection paradigm. Building on this foundation, MV2D leverages 2D detection results to provide high-quality object priors for query initialization, enabling higher precision and recall. However, the inherent depth ambiguity in single-frame 2D detections still limits the accuracy of 3D query generation. To address this issue, we propose StereoMV2D, a unified framework that integrates temporal stereo modeling into the 2D detection-guided multi-view 3D detector. By exploiting cross-temporal disparities of the same object across adjacent frames, StereoMV2D enhances depth perception and refines the query priors, while performing all computations efficiently within 2D regions of interest (RoIs). Furthermore, a dynamic confidence gating mechanism adaptively evaluates the reliability of temporal stereo cues through learning statistical patterns derived from the inter-frame matching matrix together with appearance consistency, ensuring robust detection under object appearance and occlusion. Extensive experiments on the nuScenes and Argoverse 2 datasets demonstrate that StereoMV2D achieves superior detection performance without incurring significant computational overhead. Code will be available at https://github.com/Uddd821/StereoMV2D.

Authors:Svetlana Krasnova, Emiliya Starikova, Ilia Naletov, Andrey Krylov, Dmitry Sorokin
Title: MGRegBench: A Novel Benchmark Dataset with Anatomical Landmarks for Mammography Image Registration
Abstract:
Robust mammography registration is essential for clinical applications like tracking disease progression and monitoring longitudinal changes in breast tissue. However, progress has been limited by the absence of public datasets and standardized benchmarks. Existing studies are often not directly comparable, as they use private data and inconsistent evaluation frameworks. To address this, we present MGRegBench, a public benchmark dataset for mammogram registration. It comprises over 5,000 image pairs, with 100 containing manual anatomical landmarks and segmentation masks for rigorous evaluation. This makes MGRegBench one of the largest public 2D registration datasets with manual annotations. Using this resource, we benchmarked diverse registration methods including classical (ANTs), learning-based (VoxelMorph, TransMorph), implicit neural representation (IDIR), a classic mammography-specific approach, and a recent state-of-the-art deep learning method MammoRegNet. The implementations were adapted to this modality from the authors' implementations or re-implemented from scratch. Our contributions are: (1) the first public dataset of this scale with manual landmarks and masks for mammography registration; (2) the first like-for-like comparison of diverse methods on this modality; and (3) an extensive analysis of deep learning-based registration. We publicly release our code and data to establish a foundational resource for fair comparisons and catalyze future research. The source code and data are at https://github.com/KourtKardash/MGRegBench.

Authors:N. A. Adarsh Pritam, Jeba Shiney O, Sanyam Jain
Title: SkinGenBench: Generative Model and Preprocessing Effects for Synthetic Dermoscopic Augmentation in Melanoma Diagnosis
Abstract:
This work introduces SkinGenBench, a systematic biomedical imaging benchmark that investigates how preprocessing complexity interacts with generative model choice for synthetic dermoscopic image augmentation and downstream melanoma diagnosis. Using a curated dataset of 14,116 dermoscopic images from HAM10000 and MILK10K across five lesion classes, we evaluate the two representative generative paradigms: StyleGAN2-ADA and Denoising Diffusion Probabilistic Models (DDPMs) under basic geometric augmentation and advanced artifact removal pipelines. Synthetic melanoma images are assessed using established perceptual and distributional metrics (FID, KID, IS), feature space analysis, and their impact on diagnostic performance across five downstream classifiers. Experimental results demonstrate that generative architecture choice has a stronger influence on both image fidelity and diagnostic utility than preprocessing complexity. StyleGAN2-ADA consistently produced synthetic images more closely aligned with real data distributions, achieving the lowest FID (~65.5) and KID (~0.05), while diffusion models generated higher variance samples at the cost of reduces perceptual fidelity and class anchoring. Advanced artifact removal yielded only marginal improvements in generative metrics and provided limited downstream diagnostic gains, suggesting possible suppression of clinically relevant texture cues. In contrast, synthetic data augmentation substantially improved melanoma detection with 8-15% absolute gains in melanoma F1-score, and ViT-B/16 achieving F1~0.88 and ROC-AUC~0.98, representing an improvement of approximately 14% over non-augmented baselines. Our code can be found at https://github.com/adarsh-crafts/SkinGenBench

Authors:Qilong Wang, Xiaofan Ming, Zhenyi Lin, Jinwen Li, Dongwei Ren, Wangmeng Zuo, Qinghua Hu
Title: RoomEditor++: A Parameter-Sharing Diffusion Architecture for High-Fidelity Furniture Synthesis
Abstract:
Virtual furniture synthesis, which seamlessly integrates reference objects into indoor scenes while maintaining geometric coherence and visual realism, holds substantial promise for home design and e-commerce applications. However, this field remains underexplored due to the scarcity of reproducible benchmarks and the limitations of existing image composition methods in achieving high-fidelity furniture synthesis while preserving background integrity. To overcome these challenges, we first present RoomBench++, a comprehensive and publicly available benchmark dataset tailored for this task. It consists of 112,851 training pairs and 1,832 testing pairs drawn from both real-world indoor videos and realistic home design renderings, thereby supporting robust training and evaluation under practical conditions. Then, we propose RoomEditor++, a versatile diffusion-based architecture featuring a parameter-sharing dual diffusion backbone, which is compatible with both U-Net and DiT architectures. This design unifies the feature extraction and inpainting processes for reference and background images. Our in-depth analysis reveals that the parameter-sharing mechanism enforces aligned feature representations, facilitating precise geometric transformations, texture preservation, and seamless integration. Extensive experiments validate that RoomEditor++ is superior over state-of-the-art approaches in terms of quantitative metrics, qualitative assessments, and human preference studies, while highlighting its strong generalization to unseen indoor scenes and general scenes without task-specific fine-tuning. The dataset and source code are available at \url{https://github.com/stonecutter-21/roomeditor}.

Authors:Mehdi Hosseinzadeh, Shin-Fang Chng, Yi Xu, Simon Lucey, Ian Reid, Ravi Garg
Title: G3Splat: Geometrically Consistent Generalizable Gaussian Splatting
Abstract:
3D Gaussians have recently emerged as an effective scene representation for real-time splatting and accurate novel-view synthesis, motivating several works to adapt multi-view structure prediction networks to regress per-pixel 3D Gaussians from images. However, most prior work extends these networks to predict additional Gaussian parameters -- orientation, scale, opacity, and appearance -- while relying almost exclusively on view-synthesis supervision. We show that a view-synthesis loss alone is insufficient to recover geometrically meaningful splats in this setting. We analyze and address the ambiguities of learning 3D Gaussian splats under self-supervision for pose-free generalizable splatting, and introduce G3Splat, which enforces geometric priors to obtain geometrically consistent 3D scene representations. Trained on RE10K, our approach achieves state-of-the-art performance in (i) geometrically consistent reconstruction, (ii) relative pose estimation, and (iii) novel-view synthesis. We further demonstrate strong zero-shot generalization on ScanNet, substantially outperforming prior work in both geometry recovery and relative pose estimation. Code and pretrained models are released on our project page (https://m80hz.github.io/g3splat/).

Authors:Yunqi Gao, Leyuan Liu, Yuhan Li, Changxin Gao, Yuanyuan Liu, Jingying Chen
Title: ClothHMR: 3D Mesh Recovery of Humans in Diverse Clothing from Single Image
Abstract:
With 3D data rapidly emerging as an important form of multimedia information, 3D human mesh recovery technology has also advanced accordingly. However, current methods mainly focus on handling humans wearing tight clothing and perform poorly when estimating body shapes and poses under diverse clothing, especially loose garments. To this end, we make two key insights: (1) tailoring clothing to fit the human body can mitigate the adverse impact of clothing on 3D human mesh recovery, and (2) utilizing human visual information from large foundational models can enhance the generalization ability of the estimation. Based on these insights, we propose ClothHMR, to accurately recover 3D meshes of humans in diverse clothing. ClothHMR primarily consists of two modules: clothing tailoring (CT) and FHVM-based mesh recovering (MR). The CT module employs body semantic estimation and body edge prediction to tailor the clothing, ensuring it fits the body silhouette. The MR module optimizes the initial parameters of the 3D human mesh by continuously aligning the intermediate representations of the 3D mesh with those inferred from the foundational human visual model (FHVM). ClothHMR can accurately recover 3D meshes of humans wearing diverse clothing, precisely estimating their body shapes and poses. Experimental results demonstrate that ClothHMR significantly outperforms existing state-of-the-art methods across benchmark datasets and in-the-wild images. Additionally, a web application for online fashion and shopping powered by ClothHMR is developed, illustrating that ClothHMR can effectively serve real-world usage scenarios. The code and model for ClothHMR are available at: \url{https://github.com/starVisionTeam/ClothHMR}.

Authors:Qijian Tian, Xin Tan, Jiayu Ying, Xuhong Wang, Yuan Xie, Lizhuang Ma
Title: FLEG: Feed-Forward Language Embedded Gaussian Splatting from Any Views
Abstract:
We present FLEG, a feed-forward network that reconstructs language-embedded 3D Gaussians from any views. Previous straightforward solutions combine feed-forward reconstruction with Gaussian heads but suffer from fixed input views and insufficient 3D training data. In contrast, we propose a 3D-annotation-free training framework for 2D-to-3D lifting from arbitrary uncalibrated and unposed multi-view images. Since the framework does not require 3D annotations, we can leverage large-scale video data with easily obtained 2D instance information to enrich semantic embedding. We also propose an instance-guided contrastive learning to align 2D semantics with the 3D representations. In addition, to mitigate the high memory and computational cost of dense views, we further propose a geometry-semantic hierarchical sparsification strategy. Our FLEG efficiently reconstructs language-embedded 3D Gaussian representation in a feed-forward manner from arbitrary sparse or dense views, jointly producing accurate geometry, high-fidelity appearance, and language-aligned semantics. Extensive experiments show that it outperforms existing methods on various related tasks. Project page: https://fangzhou2000.github.io/projects/fleg.

Authors:Siemen Brussee, Pieter A. Valkema, Jurre A. J. Weijer, Thom Doeleman, Anne M. R. Schrader, Jesper Kers
Title: PathBench-MIL: A Comprehensive AutoML and Benchmarking Framework for Multiple Instance Learning in Histopathology
Abstract:
We introduce PathBench-MIL, an open-source AutoML and benchmarking framework for multiple instance learning (MIL) in histopathology. The system automates end-to-end MIL pipeline construction, including preprocessing, feature extraction, and MIL-aggregation, and provides reproducible benchmarking of dozens of MIL models and feature extractors. PathBench-MIL integrates visualization tooling, a unified configuration system, and modular extensibility, enabling rapid experimentation and standardization across datasets and tasks. PathBench-MIL is publicly available at https://github.com/Sbrussee/PathBench-MIL

Authors:Hoiyeong Jin, Hyojin Jang, Jeongho Kim, Junha Hyung, Kinam Kim, Dongjin Kim, Huijin Choi, Hyeonji Kim, Jaegul Choo
Title: InsertAnywhere: Bridging 4D Scene Geometry and Diffusion Models for Realistic Video Object Insertion
Abstract:
Recent advances in diffusion-based video generation have opened new possibilities for controllable video editing, yet realistic video object insertion (VOI) remains challenging due to limited 4D scene understanding and inadequate handling of occlusion and lighting effects. We present InsertAnywhere, a new VOI framework that achieves geometrically consistent object placement and appearance-faithful video synthesis. Our method begins with a 4D aware mask generation module that reconstructs the scene geometry and propagates user specified object placement across frames while maintaining temporal coherence and occlusion consistency. Building upon this spatial foundation, we extend a diffusion based video generation model to jointly synthesize the inserted object and its surrounding local variations such as illumination and shading. To enable supervised training, we introduce ROSE++, an illumination aware synthetic dataset constructed by transforming the ROSE object removal dataset into triplets of object removed video, object present video, and a VLM generated reference image. Through extensive experiments, we demonstrate that our framework produces geometrically plausible and visually coherent object insertions across diverse real world scenarios, significantly outperforming existing research and commercial models.

Authors:Yun He, Francesco Pittaluga, Ziyu Jiang, Matthias Zwicker, Manmohan Chandraker, Zaid Tasneem
Title: LangDriveCTRL: Natural Language Controllable Driving Scene Editing with Multi-modal Agents
Abstract:
LangDriveCTRL is a natural-language-controllable framework for editing real-world driving videos to synthesize diverse traffic scenarios. It leverages explicit 3D scene decomposition to represent driving videos as a scene graph, containing static background and dynamic objects. To enable fine-grained editing and realism, it incorporates an agentic pipeline in which an Orchestrator transforms user instructions into execution graphs that coordinate specialized agents and tools. Specifically, an Object Grounding Agent establishes correspondence between free-form text descriptions and target object nodes in the scene graph; a Behavior Editing Agent generates multi-object trajectories from language instructions; and a Behavior Reviewer Agent iteratively reviews and refines the generated trajectories. The edited scene graph is rendered and then refined using a video diffusion tool to address artifacts introduced by object insertion and significant view changes. LangDriveCTRL supports both object node editing (removal, insertion and replacement) and multi-object behavior editing from a single natural-language instruction. Quantitatively, it achieves nearly $2\times$ higher instruction alignment than the previous SoTA, with superior structural preservation, photorealism, and traffic realism. Project page is available at: https://yunhe24.github.io/langdrivectrl/.

Authors:Jiaze Li, Jingyang Chen, Yuxun Qu, Shijie Xu, Zhenru Lin, Junyou Zhu, Boshen Xu, Wenhui Tan, Pei Fu, Jianzhong Ju, Zhenbo Luo, Jian Luan
Title: Xiaomi MiMo-VL-Miloco Technical Report
Abstract:
We open-source MiMo-VL-Miloco-7B and its quantized variant MiMo-VL-Miloco-7B-GGUF, a pair of home-centric vision-language models that achieve strong performance on both home-scenario understanding and general multimodal reasoning. Built on the MiMo-VL-7B backbone, MiMo-VL-Miloco-7B is specialized for smart-home environments, attaining leading F1 scores on gesture recognition and common home-scenario understanding, while also delivering consistent gains across video benchmarks such as Video-MME, Video-MMMU, and Charades-STA, as well as language understanding benchmarks including MMMU-Pro and MMLU-Pro. In our experiments, MiMo-VL-Miloco-7B outperforms strong closed-source and open-source baselines on home-scenario understanding and several multimodal reasoning benchmarks. To balance specialization and generality, we design a two-stage training pipeline that combines supervised fine-tuning with reinforcement learning based on Group Relative Policy Optimization, leveraging efficient multi-domain data. We further incorporate chain-of-thought supervision and token-budget-aware reasoning, enabling the model to learn knowledge in a data-efficient manner while also performing reasoning efficiently. Our analysis shows that targeted home-scenario training not only enhances activity and gesture understanding, but also improves text-only reasoning with only modest trade-offs on document-centric tasks. Model checkpoints, quantized GGUF weights, and our home-scenario evaluation toolkit are publicly available at https://github.com/XiaoMi/xiaomi-mimo-vl-miloco to support research and deployment in real-world smart-home applications.

Authors:Yunkai Dang, Meiyi Zhu, Donghao Wang, Yizhuo Zhang, Jiacheng Yang, Qi Fan, Yuekun Yang, Wenbin Li, Feng Miao, Yang Gao
Title: A Benchmark for Ultra-High-Resolution Remote Sensing MLLMs
Abstract:
Multimodal large language models (MLLMs) demonstrate strong perception and reasoning performance on existing remote sensing (RS) benchmarks. However, most prior benchmarks rely on low-resolution imagery, and some high-resolution benchmarks suffer from flawed reasoning-task designs. We show that text-only LLMs can perform competitively with multimodal vision-language models on RS reasoning tasks without access to images, revealing a critical mismatch between current benchmarks and the intended evaluation of visual understanding. To enable faithful assessment, we introduce RSHR-Bench, a super-high-resolution benchmark for RS visual understanding and reasoning. RSHR-Bench contains 5,329 full-scene images with a long side of at least 4,000 pixels, with up to about 3 x 10^8 pixels per image, sourced from widely used RS corpora and UAV collections. We design four task families: multiple-choice VQA, open-ended VQA, image captioning, and single-image evaluation. These tasks cover nine perception categories and four reasoning types, supporting multi-turn and multi-image dialog. To reduce reliance on language priors, we apply adversarial filtering with strong LLMs followed by rigorous human verification. Overall, we construct 3,864 VQA tasks, 3,913 image captioning tasks, and 500 fully human-written or verified single-image evaluation VQA pairs. Evaluations across open-source, closed-source, and RS-specific VLMs reveal persistent performance gaps in super-high-resolution scenarios. Code: https://github.com/Yunkaidang/RSHR

Authors:Siqi Yang, Zilve Gao, Haibo Qiu, Fanfan Liu, Peng Shi, Zhixiong Zeng, Qingmin Liao, Lin Ma
Title: Learning When to Look: A Disentangled Curriculum for Strategic Perception in Multimodal Reasoning
Abstract:
Multimodal Large Language Models (MLLMs) demonstrate significant potential but remain brittle in complex, long-chain visual reasoning tasks. A critical failure mode is "visual forgetting", where models progressively lose visual grounding as reasoning extends, a phenomenon aptly described as "think longer, see less". We posit this failure stems from current training paradigms prematurely entangling two distinct cognitive skills: (1) abstract logical reasoning "how-to-think") and (2) strategic visual perception ("when-to-look"). This creates a foundational cold-start deficiency -- weakening abstract reasoning -- and a strategic perception deficit, as models lack a policy for when to perceive. In this paper, we propose a novel curriculum-based framework to disentangle these skills. First, we introduce a disentangled Supervised Fine-Tuning (SFT) curriculum that builds a robust abstract reasoning backbone on text-only data before anchoring it to vision with a novel Perception-Grounded Chain-of-Thought (PG-CoT) paradigm. Second, we resolve the strategic perception deficit by formulating timing as a reinforcement learning problem. We design a Pivotal Perception Reward that teaches the model when to look by coupling perceptual actions to linguistic markers of cognitive uncertainty (e.g., "wait", "verify"), thereby learning an autonomous grounding policy. Our contributions include the formalization of these two deficiencies and the development of a principled, two-stage framework to address them, transforming the model from a heuristic-driven observer to a strategic, grounded reasoner. \textbf{Code}: \url{https://github.com/gaozilve-max/learning-when-to-look}.

Authors:Son Tung Nguyen, Tobias Fischer, Alejandro Fontan, Michael Milford
Title: Robust Scene Coordinate Regression via Geometrically-Consistent Global Descriptors
Abstract:
Recent learning-based visual localization methods use global descriptors to disambiguate visually similar places, but existing approaches often derive these descriptors from geometric cues alone (e.g., covisibility graphs), limiting their discriminative power and reducing robustness in the presence of noisy geometric constraints. We propose an aggregator module that learns global descriptors consistent with both geometrical structure and visual similarity, ensuring that images are close in descriptor space only when they are visually similar and spatially connected. This corrects erroneous associations caused by unreliable overlap scores. Using a batch-mining strategy based solely on the overlap scores and a modified contrastive loss, our method trains without manual place labels and generalizes across diverse environments. Experiments on challenging benchmarks show substantial localization gains in large-scale environments while preserving computational and memory efficiency. Code is available at \href{https://github.com/sontung/robust\_scr}{github.com/sontung/robust\_scr}.

Authors:Xiao Liang, Yuxuan An, Di Wang, Jiawei Hu, Zhicheng Jiao, Bin Jing, Quan Wang
Title: CheXPO-v2: Preference Optimization for Chest X-ray VLMs with Knowledge Graph Consistency
Abstract:
Medical Vision-Language Models (VLMs) are prone to hallucinations, compromising clinical reliability. While reinforcement learning methods like Group Relative Policy Optimization (GRPO) offer a low-cost alignment solution, their reliance on sparse, outcome-based rewards inadvertently encourages models to "overthink" -- generating verbose, convoluted, and unverifiable Chain-of-Thought reasoning to justify answers. This focus on outcomes obscures factual errors and poses significant safety risks. To address this, we propose CheXPO-v2, a novel alignment framework that shifts from outcome to process supervision. Our core innovation is a Knowledge Graph Consistency Reward mechanism driven by Entity-Relation Matching. By explicitly parsing reasoning steps into structured "Disease, Relation, Anatomy" triplets, we provide fine-grained supervision that penalizes incoherent logic and hallucinations at the atomic level. Integrating this with a hard-example mining strategy, our approach significantly outperforms GRPO and state-of-the-art models on benchmarks like MIMIC-CXR-VQA. Crucially, CheXPO-v2 achieves new state-of-the-art accuracy using only 5k samples, demonstrating exceptional data efficiency while producing clinically sound and verifiable reasoning. The project source code is publicly available at: https://github.com/ecoxial2007/CheX-Phi4MM.

Authors:Kai Liu, Zeli Lin, Weibo Wang, Linghe Kong, Yulun Zhang
Title: Fose: Fusion of One-Step Diffusion and End-to-End Network for Pansharpening
Abstract:
Pansharpening is a significant image fusion task that fuses low-resolution multispectral images (LRMSI) and high-resolution panchromatic images (PAN) to obtain high-resolution multispectral images (HRMSI). The development of the diffusion models (DM) and the end-to-end models (E2E model) has greatly improved the frontier of pansharping. DM takes the multi-step diffusion to obtain an accurate estimation of the residual between LRMSI and HRMSI. However, the multi-step process takes large computational power and is time-consuming. As for E2E models, their performance is still limited by the lack of prior and simple structure. In this paper, we propose a novel four-stage training strategy to obtain a lightweight network Fose, which fuses one-step DM and an E2E model. We perform one-step distillation on an enhanced SOTA DM for pansharping to compress the inference process from 50 steps to only 1 step. Then we fuse the E2E model with one-step DM with lightweight ensemble blocks. Comprehensive experiments are conducted to demonstrate the significant improvement of the proposed Fose on three commonly used benchmarks. Moreover, we achieve a 7.42 speedup ratio compared to the baseline DM while achieving much better performance. The code and model are released at https://github.com/Kai-Liu001/Fose.

Authors:Junying Wang, Yuanlu Xu, Edith Tretschk, Ziyan Wang, Anastasia Ianina, Aljaz Bozic, Ulrich Neumann, Tony Tung
Title: DGH: Dynamic Gaussian Hair
Abstract:
The creation of photorealistic dynamic hair remains a major challenge in digital human modeling because of the complex motions, occlusions, and light scattering. Existing methods often resort to static capture and physics-based models that do not scale as they require manual parameter fine-tuning to handle the diversity of hairstyles and motions, and heavy computation to obtain high-quality appearance. In this paper, we present Dynamic Gaussian Hair (DGH), a novel framework that efficiently learns hair dynamics and appearance. We propose: (1) a coarse-to-fine model that learns temporally coherent hair motion dynamics across diverse hairstyles; (2) a strand-guided optimization module that learns a dynamic 3D Gaussian representation for hair appearance with support for differentiable rendering, enabling gradient-based learning of view-consistent appearance under motion. Unlike prior simulation-based pipelines, our approach is fully data-driven, scales with training data, and generalizes across various hairstyles and head motion sequences. Additionally, DGH can be seamlessly integrated into a 3D Gaussian avatar framework, enabling realistic, animatable hair for high-fidelity avatar representation. DGH achieves promising geometry and appearance results, providing a scalable, data-driven alternative to physics-based simulation and rendering.

Authors:Panagiota Gatoula, George Dimas, Dimitris K. Iakovidis
Title: Interpretable Similarity of Synthetic Image Utility
Abstract:
Synthetic medical image data can unlock the potential of deep learning (DL)-based clinical decision support (CDS) systems through the creation of large scale, privacy-preserving, training sets. Despite the significant progress in this field, there is still a largely unanswered research question: "How can we quantitatively assess the similarity of a synthetically generated set of images with a set of real images in a given application domain?". Today, answers to this question are mainly provided via user evaluation studies, inception-based measures, and the classification performance achieved on synthetic images. This paper proposes a novel measure to assess the similarity between synthetically generated and real sets of images, in terms of their utility for the development of DL-based CDS systems. Inspired by generalized neural additive models, and unlike inception-based measures, the proposed measure is interpretable (Interpretable Utility Similarity, IUS), explaining why a synthetic dataset could be more useful than another one in the context of a CDS system based on clinically relevant image features. The experimental results on publicly available datasets from various color medical imaging modalities including endoscopic, dermoscopic and fundus imaging, indicate that selecting synthetic images of high utility similarity using IUS can result in relative improvements of up to 54.6% in terms of classification performance. The generality of IUS for synthetic data assessment is demonstrated also for greyscale X-ray and ultrasound imaging modalities. IUS implementation is available at https://github.com/innoisys/ius

Authors:Min-Jung Kim, Jeongho Kim, Hoiyeong Jin, Junha Hyung, Jaegul Choo
Title: Infinite-Homography as Robust Conditioning for Camera-Controlled Video Generation
Abstract:
Recent progress in video diffusion models has spurred growing interest in camera-controlled novel-view video generation for dynamic scenes, aiming to provide creators with cinematic camera control capabilities in post-production. A key challenge in camera-controlled video generation is ensuring fidelity to the specified camera pose, while maintaining view consistency and reasoning about occluded geometry from limited observations. To address this, existing methods either train trajectory-conditioned video generation model on trajectory-video pair dataset, or estimate depth from the input video to reproject it along a target trajectory and generate the unprojected regions. Nevertheless, existing methods struggle to generate camera-pose-faithful, high-quality videos for two main reasons: (1) reprojection-based approaches are highly susceptible to errors caused by inaccurate depth estimation; and (2) the limited diversity of camera trajectories in existing datasets restricts learned models. To address these limitations, we present InfCam, a depth-free, camera-controlled video-to-video generation framework with high pose fidelity. The framework integrates two key components: (1) infinite homography warping, which encodes 3D camera rotations directly within the 2D latent space of a video diffusion model. Conditioning on this noise-free rotational information, the residual parallax term is predicted through end-to-end training to achieve high camera-pose fidelity; and (2) a data augmentation pipeline that transforms existing synthetic multiview datasets into sequences with diverse trajectories and focal lengths. Experimental results demonstrate that InfCam outperforms baseline methods in camera-pose accuracy and visual fidelity, generalizing well from synthetic to real-world data. Link to our project page:https://emjay73.github.io/InfCam/

Authors:Chiao-An Yang, Ryo Hachiuma, Sifei Liu, Subhashree Radhakrishnan, Raymond A. Yeh, Yu-Chiang Frank Wang, Min-Hung Chen
Title: 4D-RGPT: Toward Region-level 4D Understanding via Perceptual Distillation
Abstract:
Despite advances in Multimodal LLMs (MLLMs), their ability to reason over 3D structures and temporal dynamics remains limited, constrained by weak 4D perception and temporal understanding. Existing 3D and 4D Video Question Answering (VQA) benchmarks also emphasize static scenes and lack region-level prompting. We tackle these issues by introducing: (a) 4D-RGPT, a specialized MLLM designed to capture 4D representations from video inputs with enhanced temporal perception; (b) Perceptual 4D Distillation (P4D), a training framework that transfers 4D representations from a frozen expert model into 4D-RGPT for comprehensive 4D perception; and (c) R4D-Bench, a benchmark for depth-aware dynamic scenes with region-level prompting, built via a hybrid automated and human-verified pipeline. Our 4D-RGPT achieves notable improvements on both existing 4D VQA benchmarks and the proposed R4D-Bench benchmark.

Authors:Mohammed Irfan Kurpath, Jaseel Muhammad Kaithakkodan, Jinxing Zhou, Sahal Shaji Mullappilly, Mohammad Almansoori, Noor Ahsan, Beknur Kalmakhanbet, Sambal Shikhar, Rishabh Lalla, Jean Lahoud, Mariette Awad, Fahad Shahbaz Khan, Salman Khan, Rao Muhammad Anwer, Hisham Cholakkal
Title: A Benchmark and Agentic Framework for Omni-Modal Reasoning and Tool Use in Long Videos
Abstract:
Long-form multimodal video understanding requires integrating vision, speech, and ambient audio with coherent long-range reasoning. Existing benchmarks emphasize either temporal length or multimodal richness, but rarely both and while some incorporate open-ended questions and advanced metrics, they mostly rely on single-score accuracy, obscuring failure modes. We introduce LongShOTBench, a diagnostic benchmark with open-ended, intent-driven questions; single- and multi-turn dialogues; and tasks requiring multimodal reasoning and agentic tool use across video, audio, and speech. Each item includes a reference answer and graded rubric for interpretable, and traceable evaluation. LongShOTBench is produced via a scalable, human-validated pipeline to ensure coverage and reproducibility. All samples in our LongShOTBench are human-verified and corrected. Furthermore, we present LongShOTAgent, an agentic system that analyzes long videos via preprocessing, search, and iterative refinement. On LongShOTBench, state-of-the-art MLLMs show large gaps: Gemini-2.5-Flash achieves 52.95%, open-source models remain below 30%, and LongShOTAgent attains 44.66%. These results underscore the difficulty of real-world long-form video understanding. LongShOTBench provides a practical, reproducible foundation for evaluating and improving MLLMs. All resources are available on GitHub: https://github.com/mbzuai-oryx/longshot.

Authors:Hao Li, Daiwei Lu, Xing Yao, Nicholas Kavoussi, Ipek Oguz
Title: Endo-SemiS: Towards Robust Semi-Supervised Image Segmentation for Endoscopic Video
Abstract:
In this paper, we present Endo-SemiS, a semi-supervised segmentation framework for providing reliable segmentation of endoscopic video frames with limited annotation. EndoSemiS uses 4 strategies to improve performance by effectively utilizing all available data, particularly unlabeled data: (1) Cross-supervision between two individual networks that supervise each other; (2) Uncertainty-guided pseudo-labels from unlabeled data, which are generated by selecting high-confidence regions to improve their quality; (3) Joint pseudolabel supervision, which aggregates reliable pixels from the pseudo-labels of both networks to provide accurate supervision for unlabeled data; and (4) Mutual learning, where both networks learn from each other at the feature and image levels, reducing variance and guiding them toward a consistent solution. Additionally, a separate corrective network that utilizes spatiotemporal information from endoscopy video to improve segmentation performance. Endo-SemiS is evaluated on two clinical applications: kidney stone laser lithotomy from ureteroscopy and polyp screening from colonoscopy. Compared to state-of-the-art segmentation methods, Endo-SemiS substantially achieves superior results on both datasets with limited labeled data. The code is publicly available at https://github.com/MedICL-VU/Endo-SemiS

Authors:Hanlin Wang, Hao Ouyang, Qiuyu Wang, Yue Yu, Yihao Meng, Wen Wang, Ka Leong Cheng, Shuailei Ma, Qingyan Bai, Yixuan Li, Cheng Chen, Yanhong Zeng, Xing Zhu, Yujun Shen, Qifeng Chen
Title: The World is Your Canvas: Painting Promptable Events with Reference Images, Trajectories, and Text
Abstract:
We present WorldCanvas, a framework for promptable world events that enables rich, user-directed simulation by combining text, trajectories, and reference images. Unlike text-only approaches and existing trajectory-controlled image-to-video methods, our multimodal approach combines trajectories -- encoding motion, timing, and visibility -- with natural language for semantic intent and reference images for visual grounding of object identity, enabling the generation of coherent, controllable events that include multi-agent interactions, object entry/exit, reference-guided appearance and counterintuitive events. The resulting videos demonstrate not only temporal coherence but also emergent consistency, preserving object identity and scene despite temporary disappearance. By supporting expressive world events generation, WorldCanvas advances world models from passive predictors to interactive, user-shaped simulators. Our project page is available at: https://worldcanvas.github.io/.

Authors:Jinjie Mai, Chaoyang Wang, Guocheng Gordon Qian, Willi Menapace, Sergey Tulyakov, Bernard Ghanem, Peter Wonka, Ashkan Mirzaei
Title: EasyV2V: A High-quality Instruction-based Video Editing Framework
Abstract:
While image editing has advanced rapidly, video editing remains less explored, facing challenges in consistency, control, and generalization. We study the design space of data, architecture, and control, and introduce \emph{EasyV2V}, a simple and effective framework for instruction-based video editing. On the data side, we compose existing experts with fast inverses to build diverse video pairs, lift image edit pairs into videos via single-frame supervision and pseudo pairs with shared affine motion, mine dense-captioned clips for video pairs, and add transition supervision to teach how edits unfold. On the model side, we observe that pretrained text-to-video models possess editing capability, motivating a simplified design. Simple sequence concatenation for conditioning with light LoRA fine-tuning suffices to train a strong model. For control, we unify spatiotemporal control via a single mask mechanism and support optional reference images. Overall, EasyV2V works with flexible inputs, e.g., video+text, video+mask+text, video+mask+reference+text, and achieves state-of-the-art video editing results, surpassing concurrent and commercial systems. Project page: https://snap-research.github.io/easyv2v/

Authors:Sicheng Zuo, Zixun Xie, Wenzhao Zheng, Shaoqing Xu, Fang Li, Shengyin Jiang, Long Chen, Zhi-Xin Yang, Jiwen Lu
Title: DVGT: Driving Visual Geometry Transformer
Abstract:
Perceiving and reconstructing 3D scene geometry from visual inputs is crucial for autonomous driving. However, there still lacks a driving-targeted dense geometry perception model that can adapt to different scenarios and camera configurations. To bridge this gap, we propose a Driving Visual Geometry Transformer (DVGT), which reconstructs a global dense 3D point map from a sequence of unposed multi-view visual inputs. We first extract visual features for each image using a DINO backbone, and employ alternating intra-view local attention, cross-view spatial attention, and cross-frame temporal attention to infer geometric relations across images. We then use multiple heads to decode a global point map in the ego coordinate of the first frame and the ego poses for each frame. Unlike conventional methods that rely on precise camera parameters, DVGT is free of explicit 3D geometric priors, enabling flexible processing of arbitrary camera configurations. DVGT directly predicts metric-scaled geometry from image sequences, eliminating the need for post-alignment with external sensors. Trained on a large mixture of driving datasets including nuScenes, OpenScene, Waymo, KITTI, and DDAD, DVGT significantly outperforms existing models on various scenarios. Code is available at https://github.com/wzzheng/DVGT.

Authors:Chaoyang Wang, Kaituo Feng, Dongyang Chen, Zhongyu Wang, Zhixun Li, Sicheng Gao, Meng Meng, Xu Zhou, Manyuan Zhang, Yuzhang Shang, Xiangyu Yue
Title: AdaTooler-V: Adaptive Tool-Use for Images and Videos
Abstract:
Recent advances have shown that multimodal large language models (MLLMs) benefit from multimodal interleaved chain-of-thought (CoT) with vision tool interactions. However, existing open-source models often exhibit blind tool-use reasoning patterns, invoking vision tools even when they are unnecessary, which significantly increases inference overhead and degrades model performance. To this end, we propose AdaTooler-V, an MLLM that performs adaptive tool-use by determining whether a visual problem truly requires tools. First, we introduce AT-GRPO, a reinforcement learning algorithm that adaptively adjusts reward scales based on the Tool Benefit Score of each sample, encouraging the model to invoke tools only when they provide genuine improvements. Moreover, we construct two datasets to support training: AdaTooler-V-CoT-100k for SFT cold start and AdaTooler-V-300k for RL with verifiable rewards across single-image, multi-image, and video data. Experiments across twelve benchmarks demonstrate the strong reasoning capability of AdaTooler-V, outperforming existing methods in diverse visual reasoning tasks. Notably, AdaTooler-V-7B achieves an accuracy of 89.8\% on the high-resolution benchmark V*, surpassing the commercial proprietary model GPT-4o and Gemini 1.5 Pro. All code, models, and data are released.

Authors:Guibao Shen, Yihua Du, Wenhang Ge, Jing He, Chirui Chang, Donghao Zhou, Zhen Yang, Luozhou Wang, Xin Tao, Ying-Cong Chen
Title: StereoPilot: Learning Unified and Efficient Stereo Conversion via Generative Priors
Abstract:
The rapid growth of stereoscopic displays, including VR headsets and 3D cinemas, has led to increasing demand for high-quality stereo video content. However, producing 3D videos remains costly and complex, while automatic Monocular-to-Stereo conversion is hindered by the limitations of the multi-stage ``Depth-Warp-Inpaint'' (DWI) pipeline. This paradigm suffers from error propagation, depth ambiguity, and format inconsistency between parallel and converged stereo configurations. To address these challenges, we introduce UniStereo, the first large-scale unified dataset for stereo video conversion, covering both stereo formats to enable fair benchmarking and robust model training. Building upon this dataset, we propose StereoPilot, an efficient feed-forward model that directly synthesizes the target view without relying on explicit depth maps or iterative diffusion sampling. Equipped with a learnable domain switcher and a cycle consistency loss, StereoPilot adapts seamlessly to different stereo formats and achieves improved consistency. Extensive experiments demonstrate that StereoPilot significantly outperforms state-of-the-art methods in both visual fidelity and computational efficiency. Project page: https://hit-perfect.github.io/StereoPilot/.

Authors:Xin Lin, Meixi Song, Dizhe Zhang, Wenxuan Lu, Haodong Li, Bo Du, Ming-Hsuan Yang, Truong Nguyen, Lu Qi
Title: Depth Any Panoramas: A Foundation Model for Panoramic Depth Estimation
Abstract:
In this work, we present a panoramic metric depth foundation model that generalizes across diverse scene distances. We explore a data-in-the-loop paradigm from the view of both data construction and framework design. We collect a large-scale dataset by combining public datasets, high-quality synthetic data from our UE5 simulator and text-to-image models, and real panoramic images from the web. To reduce domain gaps between indoor/outdoor and synthetic/real data, we introduce a three-stage pseudo-label curation pipeline to generate reliable ground truth for unlabeled images. For the model, we adopt DINOv3-Large as the backbone for its strong pre-trained generalization, and introduce a plug-and-play range mask head, sharpness-centric optimization, and geometry-centric optimization to improve robustness to varying distances and enforce geometric consistency across views. Experiments on multiple benchmarks (e.g., Stanford2D3D, Matterport3D, and Deep360) demonstrate strong performance and zero-shot generalization, with particularly robust and stable metric predictions in diverse real-world scenes. The project page can be found at: \href{https://insta360-research-team.github.io/DAP_website/} {https://insta360-research-team.github.io/DAP\_website/}

Authors:Qihang Rao, Borui Zhang, Wenzhao Zheng, Jie Zhou, Jiwen Lu
Title: SFTok: Bridging the Performance Gap in Discrete Tokenizers
Abstract:
Recent advances in multimodal models highlight the pivotal role of image tokenization in high-resolution image generation. By compressing images into compact latent representations, tokenizers enable generative models to operate in lower-dimensional spaces, thereby improving computational efficiency and reducing complexity. Discrete tokenizers naturally align with the autoregressive paradigm but still lag behind continuous ones, limiting their adoption in multimodal systems. To address this, we propose \textbf{SFTok}, a discrete tokenizer that incorporates a multi-step iterative mechanism for precise reconstruction. By integrating \textbf{self-forcing guided visual reconstruction} and \textbf{debias-and-fitting training strategy}, SFTok resolves the training-inference inconsistency in multi-step process, significantly enhancing image reconstruction quality. At a high compression rate of only 64 tokens per image, SFTok achieves state-of-the-art reconstruction quality on ImageNet (rFID = 1.21) and demonstrates exceptional performance in class-to-image generation tasks (gFID = 2.29).

Authors:Yuanchen Ju, Yongyuan Liang, Yen-Jen Wang, Nandiraju Gireesh, Yuanliang Ju, Seungjae Lee, Qiao Gu, Elvis Hsieh, Furong Huang, Koushil Sreenath
Title: MomaGraph: State-Aware Unified Scene Graphs with Vision-Language Model for Embodied Task Planning
Abstract:
Mobile manipulators in households must both navigate and manipulate. This requires a compact, semantically rich scene representation that captures where objects are, how they function, and which parts are actionable. Scene graphs are a natural choice, yet prior work often separates spatial and functional relations, treats scenes as static snapshots without object states or temporal updates, and overlooks information most relevant for accomplishing the current task. To address these limitations, we introduce MomaGraph, a unified scene representation for embodied agents that integrates spatial-functional relationships and part-level interactive elements. However, advancing such a representation requires both suitable data and rigorous evaluation, which have been largely missing. We thus contribute MomaGraph-Scenes, the first large-scale dataset of richly annotated, task-driven scene graphs in household environments, along with MomaGraph-Bench, a systematic evaluation suite spanning six reasoning capabilities from high-level planning to fine-grained scene understanding. Built upon this foundation, we further develop MomaGraph-R1, a 7B vision-language model trained with reinforcement learning on MomaGraph-Scenes. MomaGraph-R1 predicts task-oriented scene graphs and serves as a zero-shot task planner under a Graph-then-Plan framework. Extensive experiments demonstrate that our model achieves state-of-the-art results among open-source models, reaching 71.6% accuracy on the benchmark (+11.4% over the best baseline), while generalizing across public benchmarks and transferring effectively to real-robot experiments.

Authors:Kaixin Ding, Yang Zhou, Xi Chen, Miao Yang, Jiarong Ou, Rui Chen, Xin Tao, Hengshuang Zhao
Title: Alchemist: Unlocking Efficiency in Text-to-Image Model Training via Meta-Gradient Data Selection
Abstract:
Recent advances in Text-to-Image (T2I) generative models, such as Imagen, Stable Diffusion, and FLUX, have led to remarkable improvements in visual quality. However, their performance is fundamentally limited by the quality of training data. Web-crawled and synthetic image datasets often contain low-quality or redundant samples, which lead to degraded visual fidelity, unstable training, and inefficient computation. Hence, effective data selection is crucial for improving data efficiency. Existing approaches rely on costly manual curation or heuristic scoring based on single-dimensional features in Text-to-Image data filtering. Although meta-learning based method has been explored in LLM, there is no adaptation for image modalities. To this end, we propose **Alchemist**, a meta-gradient-based framework to select a suitable subset from large-scale text-image data pairs. Our approach automatically learns to assess the influence of each sample by iteratively optimizing the model from a data-centric perspective. Alchemist consists of two key stages: data rating and data pruning. We train a lightweight rater to estimate each sample's influence based on gradient information, enhanced with multi-granularity perception. We then use the Shift-Gsampling strategy to select informative subsets for efficient model training. Alchemist is the first automatic, scalable, meta-gradient-based data selection framework for Text-to-Image model training. Experiments on both synthetic and web-crawled datasets demonstrate that Alchemist consistently improves visual quality and downstream performance. Training on an Alchemist-selected 50% of the data can outperform training on the full dataset.

Authors:Yushi Hu, Reyhane Askari-Hemmat, Melissa Hall, Emily Dinan, Luke Zettlemoyer, Marjan Ghazvininejad
Title: Multimodal RewardBench 2: Evaluating Omni Reward Models for Interleaved Text and Image
Abstract:
Reward models (RMs) are essential for training large language models (LLMs), but remain underexplored for omni models that handle interleaved image and text sequences. We introduce Multimodal RewardBench 2 (MMRB2), the first comprehensive benchmark for reward models on multimodal understanding and (interleaved) generation. MMRB2 spans four tasks: text-to-image, image editing, interleaved generation, and multimodal reasoning ("thinking-with-images"), providing 1,000 expert-annotated preference pairs per task from 23 models and agents across 21 source tasks. MMRB2 is designed with: (1) practical but challenging prompts; (2) responses from state-of-the-art models and agents; and (3) preference pairs with strong human-expert consensus, curated via an ensemble filtering strategy. Using MMRB2, we study existing judges for each subtask, including multimodal LLM-as-a-judge and models trained with human preferences. The latest Gemini 3 Pro attains 75-80% accuracy. GPT-5 and Gemini 2.5 Pro reach 66-75% accuracy, compared to >90% for humans, yet surpass the widely used GPT-4o (59%). The best performing open-source model Qwen3-VL-32B achieves similar accuracies as Gemini 2.5 Flash (64%). We also show that MMRB2 performance strongly correlates with downstream task success using Best-of-N sampling and conduct an in-depth analysis that shows key areas to improve the reward models going forward.

Authors:Jinghuan Shang, Harsh Patel, Ran Gong, Karl Schmeckpeper
Title: Sceniris: A Fast Procedural Scene Generation Framework
Abstract:
Synthetic 3D scenes are essential for developing Physical AI and generative models. Existing procedural generation methods often have low output throughput, creating a significant bottleneck in scaling up dataset creation. In this work, we introduce Sceniris, a highly efficient procedural scene generation framework for rapidly generating large-scale, collision-free scene variations. Sceniris also provides an optional robot reachability check, providing manipulation-feasible scenes for robot tasks. Sceniris is designed for maximum efficiency by addressing the primary performance limitations of the prior method, Scene Synthesizer. Leveraging batch sampling and faster collision checking in cuRobo, Sceniris achieves at least 234x speed-up over Scene Synthesizer. Sceniris also expands the object-wise spatial relationships available in prior work to support diverse scene requirements. Our code is available at https://github.com/rai-inst/sceniris

Authors:Valay Bundele, Mehran Hosseinzadeh, Hendrik P. A. Lensch
Title: Memory-Enhanced SAM3 for Occlusion-Robust Surgical Instrument Segmentation
Abstract:
Accurate surgical instrument segmentation in endoscopic videos is crucial for computer-assisted interventions, yet remains challenging due to frequent occlusions, rapid motion, specular artefacts, and long-term instrument re-entry. While SAM3 provides a powerful spatio-temporal framework for video object segmentation, its performance in surgical scenes is limited by indiscriminate memory updates, fixed memory capacity, and weak identity recovery after occlusions. We propose ReMeDI-SAM3, a training-free memory-enhanced extension of SAM3, that addresses these limitations through three components: (i) relevance-aware memory filtering with a dedicated occlusion-aware memory for storing pre-occlusion frames, (ii) a piecewise interpolation scheme that expands the effective memory capacity, and (iii) a feature-based re-identification module with temporal voting for reliable post-occlusion identity disambiguation. Together, these components mitigate error accumulation and enable reliable recovery after occlusions. Evaluations on EndoVis17 and EndoVis18 under a zero-shot setting show absolute mcIoU improvements of around 7% and 16%, respectively, over vanilla SAM3, outperforming even prior training-based approaches. Project page: https://valaybundele.github.io/remedi-sam3/.

Authors:Tomáš Souček, Pierre Fernandez, Hady Elsahar, Sylvestre-Alvise Rebuffi, Valeriu Lacatusu, Tuan Tran, Tom Sander, Alexandre Mourachko
Title: Pixel Seal: Adversarial-only training for invisible image and video watermarking
Abstract:
Invisible watermarking is essential for tracing the provenance of digital content. However, training state-of-the-art models remains notoriously difficult, with current approaches often struggling to balance robustness against true imperceptibility. This work introduces Pixel Seal, which sets a new state-of-the-art for image and video watermarking. We first identify three fundamental issues of existing methods: (i) the reliance on proxy perceptual losses such as MSE and LPIPS that fail to mimic human perception and result in visible watermark artifacts; (ii) the optimization instability caused by conflicting objectives, which necessitates exhaustive hyperparameter tuning; and (iii) reduced robustness and imperceptibility of watermarks when scaling models to high-resolution images and videos. To overcome these issues, we first propose an adversarial-only training paradigm that eliminates unreliable pixel-wise imperceptibility losses. Second, we introduce a three-stage training schedule that stabilizes convergence by decoupling robustness and imperceptibility. Third, we address the resolution gap via high-resolution adaptation, employing JND-based attenuation and training-time inference simulation to eliminate upscaling artifacts. We thoroughly evaluate the robustness and imperceptibility of Pixel Seal on different image types and across a wide range of transformations, and show clear improvements over the state-of-the-art. We finally demonstrate that the model efficiently adapts to video via temporal watermark pooling, positioning Pixel Seal as a practical and scalable solution for reliable provenance in real-world image and video settings.

Authors:Emmanuel D. Muñiz-De-León, Jorge A. Rosales-de-Golferichs, Ana S. Muñoz-Rodríguez, Alejandro I. Trejo-Castro, Eduardo de Avila-Armenta, Antonio Martínez-Torteya
Title: Radiology Report Generation with Layer-Wise Anatomical Attention
Abstract:
Automatic radiology report generation is a promising application of multimodal deep learning, aiming to reduce reporting workload and improve consistency. However, current state-of-the-art (SOTA) systems - such as Multimodal AI for Radiology Applications (MAIRA-2) and Medical Pathways Language Model-Multimodal (MedPaLM-M) - depend on large-scale multimodal training, clinical metadata, and multiple imaging views, making them resource-intensive and inaccessible for most settings. We introduce a compact image-to-text architecture that generates the Findings section of chest X-ray reports from a single frontal image. The model combines a frozen Self-Distillation with No Labels v3 (DINOv3) Vision Transformer (ViT) encoder with a Generative Pre-trained Transformer 2 (GPT-2) decoder enhanced by layer-wise anatomical attention. This mechanism integrates lung and heart segmentation masks through hierarchical Gaussian smoothing, biasing attention toward clinically relevant regions without adding trainable parameters. Evaluated on the official Medical Information Mart for Intensive Care-Chest X-ray (MIMIC-CXR) dataset using Chest Radiograph Expert (CheXpert) and Radiology Graph (RadGraph) metrics, our approach achieved substantial gains: CheXpert Macro-F1 for five key pathologies increased by 168% (0.083 -> 0.238) and Micro-F1 by 146% (0.137 -> 0.337), while broader performance across 14 observations improved by 86% (0.170 -> 0.316). Structural coherence also improved, with RadGraph F1 rising by 9.7%. Despite its small size and purely image-conditioned design, the model demonstrates that decoder-level anatomical guidance improves spatial grounding and enhances coherence in clinically relevant regions. The source code is publicly available at: https://github.com/devMuniz02/UDEM-CXR-Reporting-Thesis-2025.

Authors:Marius Dähling, Sebastian Krebs, J. Marius Zöllner
Title: DenseBEV: Transforming BEV Grid Cells into 3D Objects
Abstract:
In current research, Bird's-Eye-View (BEV)-based transformers are increasingly utilized for multi-camera 3D object detection. Traditional models often employ random queries as anchors, optimizing them successively. Recent advancements complement or replace these random queries with detections from auxiliary networks. We propose a more intuitive and efficient approach by using BEV feature cells directly as anchors. This end-to-end approach leverages the dense grid of BEV queries, considering each cell as a potential object for the final detection task. As a result, we introduce a novel two-stage anchor generation method specifically designed for multi-camera 3D object detection. To address the scaling issues of attention with a large number of queries, we apply BEV-based Non-Maximum Suppression, allowing gradients to flow only through non-suppressed objects. This ensures efficient training without the need for post-processing. By using BEV features from encoders such as BEVFormer directly as object queries, temporal BEV information is inherently embedded. Building on the temporal BEV information already embedded in our object queries, we introduce a hybrid temporal modeling approach by integrating prior detections to further enhance detection performance. Evaluating our method on the nuScenes dataset shows consistent and significant improvements in NDS and mAP over the baseline, even with sparser BEV grids and therefore fewer initial anchors. It is particularly effective for small objects, enhancing pedestrian detection with a 3.8% mAP increase on nuScenes and an 8% increase in LET-mAP on Waymo. Applying our method, named DenseBEV, to the challenging Waymo Open dataset yields state-of-the-art performance, achieving a LET-mAP of 60.7%, surpassing the previous best by 5.4%. Code is available at https://github.com/mdaehl/DenseBEV.

Authors:Shuting Zhao, Zeyu Xiao, Xinrong Chen
Title: KineST: A Kinematics-guided Spatiotemporal State Space Model for Human Motion Tracking from Sparse Signals
Abstract:
Full-body motion tracking plays an essential role in AR/VR applications, bridging physical and virtual interactions. However, it is challenging to reconstruct realistic and diverse full-body poses based on sparse signals obtained by head-mounted displays, which are the main devices in AR/VR scenarios. Existing methods for pose reconstruction often incur high computational costs or rely on separately modeling spatial and temporal dependencies, making it difficult to balance accuracy, temporal coherence, and efficiency. To address this problem, we propose KineST, a novel kinematics-guided state space model, which effectively extracts spatiotemporal dependencies while integrating local and global pose perception. The innovation comes from two core ideas. Firstly, in order to better capture intricate joint relationships, the scanning strategy within the State Space Duality framework is reformulated into kinematics-guided bidirectional scanning, which embeds kinematic priors. Secondly, a mixed spatiotemporal representation learning approach is employed to tightly couple spatial and temporal contexts, balancing accuracy and smoothness. Additionally, a geometric angular velocity loss is introduced to impose physically meaningful constraints on rotational variations for further improving motion stability. Extensive experiments demonstrate that KineST has superior performance in both accuracy and temporal consistency within a lightweight framework. Project page: https://kaka-1314.github.io/KineST/

Authors:Zhiyang Guo, Ori Zhang, Jax Xiang, Alan Zhao, Wengang Zhou, Houqiang Li
Title: Make-It-Poseable: Feed-forward Latent Posing Model for 3D Humanoid Character Animation
Abstract:
Posing 3D characters is a fundamental task in computer graphics and vision. However, existing methods like auto-rigging and pose-conditioned generation often struggle with challenges such as inaccurate skinning weight prediction, topological imperfections, and poor pose conformance, limiting their robustness and generalizability. To overcome these limitations, we introduce Make-It-Poseable, a novel feed-forward framework that reformulates character posing as a latent-space transformation problem. Instead of deforming mesh vertices as in traditional pipelines, our method reconstructs the character in new poses by directly manipulating its latent representation. At the core of our method is a latent posing transformer that manipulates shape tokens based on skeletal motion. This process is facilitated by a dense pose representation for precise control. To ensure high-fidelity geometry and accommodate topological changes, we also introduce a latent-space supervision strategy and an adaptive completion module. Our method demonstrates superior performance in posing quality. It also naturally extends to 3D editing applications like part replacement and refinement.

Authors:Giorgos Petsangourakis, Christos Sgouropoulos, Bill Psomas, Theodoros Giannakopoulos, Giorgos Sfikas, Ioannis Kakogeorgiou
Title: REGLUE Your Latents with Global and Local Semantics for Entangled Diffusion
Abstract:
Latent diffusion models (LDMs) achieve state-of-the-art image synthesis, yet their reconstruction-style denoising objective provides only indirect semantic supervision: high-level semantics emerge slowly, requiring longer training and limiting sample quality. Recent works inject semantics from Vision Foundation Models (VFMs) either externally via representation alignment or internally by jointly modeling only a narrow slice of VFM features inside the diffusion process, under-utilizing the rich, nonlinear, multi-layer spatial semantics available. We introduce REGLUE (Representation Entanglement with Global-Local Unified Encoding), a unified latent diffusion framework that jointly models (i) VAE image latents, (ii) compact local (patch-level) VFM semantics, and (iii) a global (image-level) [CLS] token within a single SiT backbone. A lightweight convolutional semantic compressor nonlinearly aggregates multi-layer VFM features into a low-dimensional, spatially structured representation, which is entangled with the VAE latents in the diffusion process. An external alignment loss further regularizes internal representations toward frozen VFM targets. On ImageNet 256x256, REGLUE consistently improves FID and accelerates convergence over SiT-B/2 and SiT-XL/2 baselines, as well as over REPA, ReDi, and REG. Extensive experiments show that (a) spatial VFM semantics are crucial, (b) non-linear compression is key to unlocking their full benefit, and (c) global tokens and external alignment act as complementary, lightweight enhancements within our global-local-latent joint modeling framework. The code is available at https://github.com/giorgospets/reglue .

Authors:Danxu Liu, Di Wang, Hebaixu Wang, Haoyang Chen, Wentao Jiang, Yilin Cheng, Haonan Guo, Wei Cui, Jing Zhang
Title: SARMAE: Masked Autoencoder for SAR Representation Learning
Abstract:
Synthetic Aperture Radar (SAR) imagery plays a critical role in all-weather, day-and-night remote sensing applications. However, existing SAR-oriented deep learning is constrained by data scarcity, while the physically grounded speckle noise in SAR imagery further hampers fine-grained semantic representation learning. To address these challenges, we propose SARMAE, a Noise-Aware Masked Autoencoder for self-supervised SAR representation learning. Specifically, we construct SAR-1M, the first million-scale SAR dataset, with additional paired optical images, to enable large-scale pre-training. Building upon this, we design Speckle-Aware Representation Enhancement (SARE), which injects SAR-specific speckle noise into masked autoencoders to facilitate noise-aware and robust representation learning. Furthermore, we introduce Semantic Anchor Representation Constraint (SARC), which leverages paired optical priors to align SAR features and ensure semantic consistency. Extensive experiments across multiple SAR datasets demonstrate that SARMAE achieves state-of-the-art performance on classification, detection, and segmentation tasks. Code and models will be available at https://github.com/MiliLab/SARMAE.

Authors:Linghui Shen, Mingyue Cui, Xingyi Yang
Title: DeContext as Defense: Safe Image Editing in Diffusion Transformers
Abstract:
In-context diffusion models allow users to modify images with remarkable ease and realism. However, the same power raises serious privacy concerns: personal images can be easily manipulated for identity impersonation, misinformation, or other malicious uses, all without the owner's consent. While prior work has explored input perturbations to protect against misuse in personalized text-to-image generation, the robustness of modern, large-scale in-context DiT-based models remains largely unexamined. In this paper, we propose DeContext, a new method to safeguard input images from unauthorized in-context editing. Our key insight is that contextual information from the source image propagates to the output primarily through multimodal attention layers. By injecting small, targeted perturbations that weaken these cross-attention pathways, DeContext breaks this flow, effectively decouples the link between input and output. This simple defense is both efficient and robust. We further show that early denoising steps and specific transformer blocks dominate context propagation, which allows us to concentrate perturbations where they matter most. Experiments on Flux Kontext and Step1X-Edit show that DeContext consistently blocks unwanted image edits while preserving visual quality. These results highlight the effectiveness of attention-based perturbations as a powerful defense against image manipulation. Code is available at https://github.com/LinghuiiShen/DeContext.

Authors:Yifan Zhou, Zeqi Xiao, Tianyi Wei, Shuai Yang, Xingang Pan
Title: Trainable Log-linear Sparse Attention for Efficient Diffusion Transformers
Abstract:
Diffusion Transformers (DiTs) set the state of the art in visual generation, yet their quadratic self-attention cost fundamentally limits scaling to long token sequences. Recent Top-K sparse attention approaches reduce the computation of DiTs by compressing tokens into block-wise representation and selecting a small set of relevant key blocks, but still suffer from (i) quadratic selection cost on compressed tokens and (ii) increasing K required to maintain model quality as sequences grow. We identify that their inefficiency is due to the single-level design, as a single coarse level is insufficient to represent the global structure. In this paper, we introduce Log-linear Sparse Attention (LLSA), a trainable sparse attention mechanism for extremely long token sequences that reduces both selection and attention costs from quadratic to log-linear complexity by utilizing a hierarchical structure. LLSA performs hierarchical Top-K selection, progressively adopting sparse Top-K selection with the indices found at the previous level, and introduces a Hierarchical KV Enrichment mechanism that preserves global context while using fewer tokens of different granularity during attention computation. To support efficient training, we develop a high-performance GPU implementation that uses only sparse indices for both the forward and backward passes, eliminating the need for dense attention masks. We evaluate LLSA on high-resolution pixel-space image generation without using patchification and VAE encoding. LLSA accelerates attention inference by 28.27x and DiT training by 6.09x on 256x256 pixel token sequences, while maintaining generation quality. The results demonstrate that LLSA offers a promising direction for training long-sequence DiTs efficiently. Code is available at: https://github.com/SingleZombie/LLSA

Authors:Jintao Tong, Jiaqi Gu, Yujing Lou, Lubin Fan, Yixiong Zou, Yue Wu, Jieping Ye, Ruixuan Li
Title: Sketch-in-Latents: Eliciting Unified Reasoning in MLLMs
Abstract:
While Multimodal Large Language Models (MLLMs) excel at visual understanding tasks through text reasoning, they often fall short in scenarios requiring visual imagination. Unlike current works that take predefined external toolkits or generate images during thinking, however, humans can form flexible visual-text imagination and interactions during thinking without predefined toolkits, where one important reason is that humans construct the visual-text thinking process in a unified space inside the brain. Inspired by this capability, given that current MLLMs already encode visual and text information in the same feature space, we hold that visual tokens can be seamlessly inserted into the reasoning process carried by text tokens, where ideally, all visual imagination processes can be encoded by the latent features. To achieve this goal, we propose Sketch-in-Latents (SkiLa), a novel paradigm for unified multi-modal reasoning that expands the auto-regressive capabilities of MLLMs to natively generate continuous visual embeddings, termed latent sketch tokens, as visual thoughts. During multi-step reasoning, the model dynamically alternates between textual thinking mode for generating textual think tokens and visual sketching mode for generating latent sketch tokens. A latent visual semantics reconstruction mechanism is proposed to ensure these latent sketch tokens are semantically grounded. Extensive experiments demonstrate that SkiLa achieves superior performance on vision-centric tasks while exhibiting strong generalization to diverse general multi-modal benchmarks. Codes will be released at https://github.com/TungChintao/SkiLa.

Authors:Nico Albert Disch, Saikat Roy, Constantin Ulrich, Yannick Kirchhoff, Maximilian Rokuss, Robin Peretzke, David Zimmerer, Klaus Maier-Hein
Title: CRONOS: Continuous Time Reconstruction for 4D Medical Longitudinal Series
Abstract:
Forecasting how 3D medical scans evolve over time is important for disease progression, treatment planning, and developmental assessment. Yet existing models either rely on a single prior scan, fixed grid times, or target global labels, which limits voxel-level forecasting under irregular sampling. We present CRONOS, a unified framework for many-to-one prediction from multiple past scans that supports both discrete (grid-based) and continuous (real-valued) timestamps in one model, to the best of our knowledge the first to achieve continuous sequence-to-image forecasting for 3D medical data. CRONOS learns a spatio-temporal velocity field that transports context volumes toward a target volume at an arbitrary time, while operating directly in 3D voxel space. Across three public datasets spanning Cine-MRI, perfusion CT, and longitudinal MRI, CRONOS outperforms other baselines, while remaining computationally competitive. We will release code and evaluation protocols to enable reproducible, multi-dataset benchmarking of multi-context, continuous-time forecasting.

Authors:Kirill Mazur, Marwan Taher, Andrew J. Davison
Title: 4D Primitive-Mâché: Glueing Primitives for Persistent 4D Scene Reconstruction
Abstract:
We present a dynamic reconstruction system that receives a casual monocular RGB video as input, and outputs a complete and persistent reconstruction of the scene. In other words, we reconstruct not only the the currently visible parts of the scene, but also all previously viewed parts, which enables replaying the complete reconstruction across all timesteps. Our method decomposes the scene into a set of rigid 3D primitives, which are assumed to be moving throughout the scene. Using estimated dense 2D correspondences, we jointly infer the rigid motion of these primitives through an optimisation pipeline, yielding a 4D reconstruction of the scene, i.e. providing 3D geometry dynamically moving through time. To achieve this, we also introduce a mechanism to extrapolate motion for objects that become invisible, employing motion-grouping techniques to maintain continuity. The resulting system enables 4D spatio-temporal awareness, offering capabilities such as replayable 3D reconstructions of articulated objects through time, multi-object scanning, and object permanence. On object scanning and multi-object datasets, our system significantly outperforms existing methods both quantitatively and qualitatively.

Authors:Kejun Liu, Yuanyuan Liu, Lin Wei, Chang Tang, Yibing Zhan, Zijing Chen, Zhe Chen
Title: Smile on the Face, Sadness in the Eyes: Bridging the Emotion Gap with a Multimodal Dataset of Eye and Facial Behaviors
Abstract:
Emotion Recognition (ER) is the process of analyzing and identifying human emotions from sensing data. Currently, the field heavily relies on facial expression recognition (FER) because visual channel conveys rich emotional cues. However, facial expressions are often used as social tools rather than manifestations of genuine inner emotions. To understand and bridge this gap between FER and ER, we introduce eye behaviors as an important emotional cue and construct an Eye-behavior-aided Multimodal Emotion Recognition (EMER) dataset. To collect data with genuine emotions, spontaneous emotion induction paradigm is exploited with stimulus material, during which non-invasive eye behavior data, like eye movement sequences and eye fixation maps, is captured together with facial expression videos. To better illustrate the gap between ER and FER, multi-view emotion labels for mutimodal ER and FER are separately annotated. Furthermore, based on the new dataset, we design a simple yet effective Eye-behavior-aided MER Transformer (EMERT) that enhances ER by bridging the emotion gap. EMERT leverages modality-adversarial feature decoupling and a multitask Transformer to model eye behaviors as a strong complement to facial expressions. In the experiment, we introduce seven multimodal benchmark protocols for a variety of comprehensive evaluations of the EMER dataset. The results show that the EMERT outperforms other state-of-the-art multimodal methods by a great margin, revealing the importance of modeling eye behaviors for robust ER. To sum up, we provide a comprehensive analysis of the importance of eye behaviors in ER, advancing the study on addressing the gap between FER and ER for more robust ER performance. Our EMER dataset and the trained EMERT models will be publicly available at https://github.com/kejun1/EMER.

Authors:Masashi Hatano, Saptarshi Sinha, Jacob Chalk, Wei-Hong Li, Hideo Saito, Dima Damen
Title: Prime and Reach: Synthesising Body Motion for Gaze-Primed Object Reach
Abstract:
Human motion generation is a challenging task that aims to create realistic motion imitating natural human behaviour. We focus on the well-studied behaviour of priming an object/location for pick up or put down -- that is, the spotting of an object/location from a distance, known as gaze priming, followed by the motion of approaching and reaching the target location. To that end, we curate, for the first time, 23.7K gaze-primed human motion sequences for reaching target object locations from five publicly available datasets, i.e., HD-EPIC, MoGaze, HOT3D, ADT, and GIMO. We pre-train a text-conditioned diffusion-based motion generation model, then fine-tune it conditioned on goal pose or location, on our curated sequences. Importantly, we evaluate the ability of the generated motion to imitate natural human movement through several metrics, including the 'Reach Success' and a newly introduced 'Prime Success' metric. On the largest dataset, HD-EPIC, our model achieves 60% prime success and 89% reach success when conditioned on the goal object location.

Authors:Amna Amir, Erchan Aptoula
Title: MACL: Multi-Label Adaptive Contrastive Learning Loss for Remote Sensing Image Retrieval
Abstract:
Semantic overlap among land-cover categories, highly imbalanced label distributions, and complex inter-class co-occurrence patterns constitute significant challenges for multi-label remote-sensing image retrieval. In this article, Multi-Label Adaptive Contrastive Learning (MACL) is introduced as an extension of contrastive learning to address them. It integrates label-aware sampling, frequency-sensitive weighting, and dynamic-temperature scaling to achieve balanced representation learning across both common and rare categories. Extensive experiments on three benchmark datasets (DLRSD, ML-AID, and WHDLD), show that MACL consistently outperforms contrastive-loss based baselines, effectively mitigating semantic imbalance and delivering more reliable retrieval performance in large-scale remote-sensing archives. Code, pretrained models, and evaluation scripts will be released at https://github.com/amna/MACL upon acceptance.

Authors:Satya Narayana Panda, Vaishnavi Kukkala, Spandana Iyer
Title: AI-Powered Dermatological Diagnosis: From Interpretable Models to Clinical Implementation A Comprehensive Framework for Accessible and Trustworthy Skin Disease Detection
Abstract:
Dermatological conditions affect 1.9 billion people globally, yet accurate diagnosis remains challenging due to limited specialist availability and complex clinical presentations. Family history significantly influences skin disease susceptibility and treatment responses, but is often underutilized in diagnostic processes. This research addresses the critical question: How can AI-powered systems integrate family history data with clinical imaging to enhance dermatological diagnosis while supporting clinical trial validation and real-world implementation? We developed a comprehensive multi-modal AI framework that combines deep learning-based image analysis with structured clinical data, including detailed family history patterns. Our approach employs interpretable convolutional neural networks integrated with clinical decision trees that incorporate hereditary risk factors. The methodology includes prospective clinical trials across diverse healthcare settings to validate AI-assisted diagnosis against traditional clinical assessment. In this work, validation was conducted with healthcare professionals to assess AI-assisted outputs against clinical expectations; prospective clinical trials across diverse healthcare settings are proposed as future work. The integrated AI system demonstrates enhanced diagnostic accuracy when family history data is incorporated, particularly for hereditary skin conditions such as melanoma, psoriasis, and atopic dermatitis. Expert feedback indicates potential for improved early detection and more personalized recommendations; formal clinical trials are planned. The framework is designed for integration into clinical workflows while maintaining interpretability through explainable AI mechanisms.

Authors:Zhihao Zhang, Xuejun Yang, Weihua Liu, Mouquan Shen
Title: Learning High-Quality Initial Noise for Single-View Synthesis with Diffusion Models
Abstract:
Single-view novel view synthesis (NVS) models based on diffusion models have recently attracted increasing attention, as they can generate a series of novel view images from a single image prompt and camera pose information as conditions. It has been observed that in diffusion models, certain high-quality initial noise patterns lead to better generation results than others. However, there remains a lack of dedicated learning frameworks that enable NVS models to learn such high-quality noise. To obtain high-quality initial noise from random Gaussian noise, we make the following contributions. First, we design a discretized Euler inversion method to inject image semantic information into random noise, thereby constructing paired datasets of random and high-quality noise. Second, we propose a learning framework based on an encoder-decoder network (EDN) that directly transforms random noise into high-quality noise. Experiments demonstrate that the proposed EDN can be seamlessly plugged into various NVS models, such as SV3D and MV-Adapter, achieving significant performance improvements across multiple datasets. Code is available at: https://github.com/zhihao0512/EDN.

Authors:Yueyang Hu, Haiyong Jiang, Haoxuan Song, Jun Xiao, Hao Pan
Title: SegGraph: Leveraging Graphs of SAM Segments for Few-Shot 3D Part Segmentation
Abstract:
This work presents a novel framework for few-shot 3D part segmentation. Recent advances have demonstrated the significant potential of 2D foundation models for low-shot 3D part segmentation. However, it is still an open problem that how to effectively aggregate 2D knowledge from foundation models to 3D. Existing methods either ignore geometric structures for 3D feature learning or neglects the high-quality grouping clues from SAM, leading to under-segmentation and inconsistent part labels. We devise a novel SAM segment graph-based propagation method, named SegGraph, to explicitly learn geometric features encoded within SAM's segmentation masks. Our method encodes geometric features by modeling mutual overlap and adjacency between segments while preserving intra-segment semantic consistency. We construct a segment graph, conceptually similar to an atlas, where nodes represent segments and edges capture their spatial relationships (overlap/adjacency). Each node adaptively modulates 2D foundation model features, which are then propagated via a graph neural network to learn global geometric structures. To enforce intra-segment semantic consistency, we map segment features to 3D points with a novel view-direction-weighted fusion attenuating contributions from low-quality segments. Extensive experiments on PartNet-E demonstrate that our method outperforms all competing baselines by at least 6.9 percent mIoU. Further analysis reveals that SegGraph achieves particularly strong performance on small components and part boundaries, demonstrating its superior geometric understanding. The code is available at: https://github.com/YueyangHu2000/SegGraph.

Authors:Ren Nakagawa, Yang Yang, Risa Shinoda, Hiroaki Santo, Kenji Oyama, Fumio Okura, Takenao Ohkawa
Title: Interaction-via-Actions: Cattle Interaction Detection with Joint Learning of Action-Interaction Latent Space
Abstract:
This paper introduces a method and application for automatically detecting behavioral interactions between grazing cattle from a single image, which is essential for smart livestock management in the cattle industry, such as for detecting estrus. Although interaction detection for humans has been actively studied, a non-trivial challenge lies in cattle interaction detection, specifically the lack of a comprehensive behavioral dataset that includes interactions, as the interactions of grazing cattle are rare events. We, therefore, propose CattleAct, a data-efficient method for interaction detection by decomposing interactions into the combinations of actions by individual cattle. Specifically, we first learn an action latent space from a large-scale cattle action dataset. Then, we embed rare interactions via the fine-tuning of the pre-trained latent space using contrastive learning, thereby constructing a unified latent space of actions and interactions. On top of the proposed method, we develop a practical working system integrating video and GPS inputs. Experiments on a commercial-scale pasture demonstrate the accurate interaction detection achieved by our method compared to the baselines. Our implementation is available at https://github.com/rakawanegan/CattleAct.

Authors:Shunkun Liang, Banglei Guan, Zhenbao Yu, Dongcai Tan, Pengju Sun, Zibin Liu, Qifeng Yu, Yang Shang
Title: Flexible Camera Calibration using a Collimator System
Abstract:
Camera calibration is a crucial step in photogrammetry and 3D vision applications. This paper introduces a novel camera calibration method using a designed collimator system. Our collimator system provides a reliable and controllable calibration environment for the camera. Exploiting the unique optical geometry property of our collimator system, we introduce an angle invariance constraint and further prove that the relative motion between the calibration target and camera conforms to a spherical motion model. This constraint reduces the original 6DOF relative motion between target and camera to a 3DOF pure rotation motion. Using spherical motion constraint, a closed-form linear solver for multiple images and a minimal solver for two images are proposed for camera calibration. Furthermore, we propose a single collimator image calibration algorithm based on the angle invariance constraint. This algorithm eliminates the requirement for camera motion, providing a novel solution for flexible and fast calibration. The performance of our method is evaluated in both synthetic and real-world experiments, which verify the feasibility of calibration using the collimator system and demonstrate that our method is superior to existing baseline methods. Demo code is available at https://github.com/LiangSK98/CollimatorCalibration

Authors:Jintao Zhang, Kaiwen Zheng, Kai Jiang, Haoxu Wang, Ion Stoica, Joseph E. Gonzalez, Jianfei Chen, Jun Zhu
Title: TurboDiffusion: Accelerating Video Diffusion Models by 100-200 Times
Abstract:
We introduce TurboDiffusion, a video generation acceleration framework that can speed up end-to-end diffusion generation by 100-200x while maintaining video quality. TurboDiffusion mainly relies on several components for acceleration: (1) Attention acceleration: TurboDiffusion uses low-bit SageAttention and trainable Sparse-Linear Attention (SLA) to speed up attention computation. (2) Step distillation: TurboDiffusion adopts rCM for efficient step distillation. (3) W8A8 quantization: TurboDiffusion quantizes model parameters and activations to 8 bits to accelerate linear layers and compress the model. In addition, TurboDiffusion incorporates several other engineering optimizations. We conduct experiments on the Wan2.2-I2V-14B-720P, Wan2.1-T2V-1.3B-480P, Wan2.1-T2V-14B-720P, and Wan2.1-T2V-14B-480P models. Experimental results show that TurboDiffusion achieves 100-200x speedup for video generation even on a single RTX 5090 GPU, while maintaining comparable video quality. The GitHub repository, which includes model checkpoints and easy-to-use code, is available at https://github.com/thu-ml/TurboDiffusion.

Authors:Dwip Dalal, Utkarsh Mishra, Narendra Ahuja, Nebojsa Jojic
Title: City Navigation in the Wild: Exploring Emergent Navigation from Web-Scale Knowledge in MLLMs
Abstract:
Leveraging multimodal large language models (MLLMs) to develop embodied agents offers significant promise for addressing complex real-world tasks. However, current evaluation benchmarks remain predominantly language-centric or heavily reliant on simulated environments, rarely probing the nuanced, knowledge-intensive reasoning essential for practical, real-world scenarios. To bridge this critical gap, we introduce the task of Sparsely Grounded Visual Navigation, explicitly designed to evaluate the sequential decision-making abilities of MLLMs in challenging, knowledge-intensive real-world environments. We operationalize this task with CityNav, a comprehensive benchmark encompassing four diverse global cities, specifically constructed to assess raw MLLM-driven agents in city navigation. Agents are required to rely solely on visual inputs and internal multimodal reasoning to sequentially navigate 50+ decision points without additional environmental annotations or specialized architectural modifications. Crucially, agents must autonomously achieve localization through interpreting city-specific cues and recognizing landmarks, perform spatial reasoning, and strategically plan and execute routes to their destinations. Through extensive evaluations, we demonstrate that current state-of-the-art MLLMs and standard reasoning techniques (e.g., Chain-of-Thought, Reflection) significantly underperform in this challenging setting. To address this, we propose Verbalization of Path (VoP), which explicitly grounds the agent's internal reasoning by probing an explicit cognitive map (key landmarks and directions toward the destination) from the MLLMs, substantially enhancing navigation success. Project Webpage: https://dwipddalal.github.io/AgentNav/

Authors:Lena Giebeler, Deepa Krishnaswamy, David Clunie, Jakob Wasserthal, Lalith Kumar Shiyam Sundar, Andres Diaz-Pinto, Klaus H. Maier-Hein, Murong Xu, Bjoern Menze, Steve Pieper, Ron Kikinis, Andrey Fedorov
Title: In search of truth: Evaluating concordance of AI-based anatomy segmentation models
Abstract:
Purpose AI-based methods for anatomy segmentation can help automate characterization of large imaging datasets. The growing number of similar in functionality models raises the challenge of evaluating them on datasets that do not contain ground truth annotations. We introduce a practical framework to assist in this task. Approach We harmonize the segmentation results into a standard, interoperable representation, which enables consistent, terminology-based labeling of the structures. We extend 3D Slicer to streamline loading and comparison of these harmonized segmentations, and demonstrate how standard representation simplifies review of the results using interactive summary plots and browser-based visualization using OHIF Viewer. To demonstrate the utility of the approach we apply it to evaluating segmentation of 31 anatomical structures (lungs, vertebrae, ribs, and heart) by six open-source models - TotalSegmentator 1.5 and 2.6, Auto3DSeg, MOOSE, MultiTalent, and CADS - for a sample of Computed Tomography (CT) scans from the publicly available National Lung Screening Trial (NLST) dataset. Results We demonstrate the utility of the framework in enabling automating loading, structure-wise inspection and comparison across models. Preliminary results ascertain practical utility of the approach in allowing quick detection and review of problematic results. The comparison shows excellent agreement segmenting some (e.g., lung) but not all structures (e.g., some models produce invalid vertebrae or rib segmentations). Conclusions The resources developed are linked from https://imagingdatacommons.github.io/segmentation-comparison/ including segmentation harmonization scripts, summary plots, and visualization tools. This work assists in model evaluation in absence of ground truth, ultimately enabling informed model selection.

Authors:Davide Caffagni, Sara Sarto, Marcella Cornia, Lorenzo Baraldi, Pier Luigi Dovesi, Shaghayegh Roohi, Mark Granroth-Wilding, Rita Cucchiara
Title: Seeing Beyond Words: Self-Supervised Visual Learning for Multimodal Large Language Models
Abstract:
Multimodal Large Language Models (MLLMs) have recently demonstrated impressive capabilities in connecting vision and language, yet their proficiency in fundamental visual reasoning tasks remains limited. This limitation can be attributed to the fact that MLLMs learn visual understanding primarily from textual descriptions, which constitute a subjective and inherently incomplete supervisory signal. Furthermore, the modest scale of multimodal instruction tuning compared to massive text-only pre-training leads MLLMs to overfit language priors while overlooking visual details. To address these issues, we introduce JARVIS, a JEPA-inspired framework for self-supervised visual enhancement in MLLMs. Specifically, we integrate the I-JEPA learning paradigm into the standard vision-language alignment pipeline of MLLMs training. Our approach leverages frozen vision foundation models as context and target encoders, while training the predictor, implemented as the early layers of an LLM, to learn structural and semantic regularities from images without relying exclusively on language supervision. Extensive experiments on standard MLLM benchmarks show that JARVIS consistently improves performance on vision-centric benchmarks across different LLM families, without degrading multimodal reasoning abilities. Our source code is publicly available at: https://github.com/aimagelab/JARVIS.

Authors:Tian Liu, Anwesha Basu, James Caverlee, Shu Kong
Title: Surely Large Multimodal Models (Don't) Excel in Visual Species Recognition?
Abstract:
Visual Species Recognition (VSR) is pivotal to biodiversity assessment and conservation, evolution research, and ecology and ecosystem management. Training a machine-learned model for VSR typically requires vast amounts of annotated images. Yet, species-level annotation demands domain expertise, making it realistic for domain experts to annotate only a few examples. These limited labeled data motivate training an ''expert'' model via few-shot learning (FSL). Meanwhile, advanced Large Multimodal Models (LMMs) have demonstrated prominent performance on general recognition tasks. It is straightforward to ask whether LMMs excel in the highly specialized VSR task and whether they outshine FSL expert models. Somewhat surprisingly, we find that LMMs struggle in this task, despite using various established prompting techniques. LMMs even significantly underperform FSL expert models, which are as simple as finetuning a pretrained visual encoder on the few-shot images. However, our in-depth analysis reveals that LMMs can effectively post-hoc correct the expert models' incorrect predictions. Briefly, given a test image, when prompted with the top predictions from an FSL expert model, LMMs can recover the ground-truth label. Building on this insight, we derive a simple method called Post-hoc Correction (POC), which prompts an LMM to re-rank the expert model's top predictions using enriched prompts that include softmax confidence scores and few-shot visual examples. Across five challenging VSR benchmarks, POC outperforms prior art of FSL by +6.4% in accuracy without extra training, validation, or manual intervention. Importantly, POC generalizes to different pretrained backbones and LMMs, serving as a plug-and-play module to significantly enhance existing FSL methods.

Authors:Jinjing Zhao, Fangyun Wei, Zhening Liu, Hongyang Zhang, Chang Xu, Yan Lu
Title: Spatia: Video Generation with Updatable Spatial Memory
Abstract:
Existing video generation models struggle to maintain long-term spatial and temporal consistency due to the dense, high-dimensional nature of video signals. To overcome this limitation, we propose Spatia, a spatial memory-aware video generation framework that explicitly preserves a 3D scene point cloud as persistent spatial memory. Spatia iteratively generates video clips conditioned on this spatial memory and continuously updates it through visual SLAM. This dynamic-static disentanglement design enhances spatial consistency throughout the generation process while preserving the model's ability to produce realistic dynamic entities. Furthermore, Spatia enables applications such as explicit camera control and 3D-aware interactive editing, providing a geometrically grounded framework for scalable, memory-driven video generation.

Authors:Lihe Yang, Shang-Wen Li, Yang Li, Xinjie Lei, Dong Wang, Abdelrahman Mohamed, Hengshuang Zhao, Hu Xu
Title: In Pursuit of Pixel Supervision for Visual Pre-training
Abstract:
At the most basic level, pixels are the source of the visual information through which we perceive the world. Pixels contain information at all levels, ranging from low-level attributes to high-level concepts. Autoencoders represent a classical and long-standing paradigm for learning representations from pixels or other raw inputs. In this work, we demonstrate that autoencoder-based self-supervised learning remains competitive today and can produce strong representations for downstream tasks, while remaining simple, stable, and efficient. Our model, codenamed "Pixio", is an enhanced masked autoencoder (MAE) with more challenging pre-training tasks and more capable architectures. The model is trained on 2B web-crawled images with a self-curation strategy with minimal human curation. Pixio performs competitively across a wide range of downstream tasks in the wild, including monocular depth estimation (e.g., Depth Anything), feed-forward 3D reconstruction (i.e., MapAnything), semantic segmentation, and robot learning, outperforming or matching DINOv3 trained at similar scales. Our results suggest that pixel-space self-supervised learning can serve as a promising alternative and a complement to latent-space approaches.

Authors:Lunbin Zeng, Jingfeng Yao, Bencheng Liao, Hongyuan Tao, Wenyu Liu, Xinggang Wang
Title: DiffusionVL: Translating Any Autoregressive Models into Diffusion Vision Language Models
Abstract:
In recent multimodal research, the diffusion paradigm has emerged as a promising alternative to the autoregressive paradigm (AR), owing to its unique decoding advantages. However, due to the capability limitations of the base diffusion language model, the performance of the diffusion vision language model (dVLM) still lags significantly behind that of mainstream models. This leads to a simple yet fundamental question: Is it possible to construct dVLMs based on existing powerful AR models? In response, we propose DiffusionVL, a dVLM family that could be translated from any powerful AR models. Through simple fine-tuning, we successfully adapt AR pre-trained models into the diffusion paradigm. This approach yields two key observations: (1) The paradigm shift from AR-based multimodal models to diffusion is remarkably effective. (2) Direct conversion of an AR language model to a dVLM is also feasible, achieving performance competitive with LLaVA-style visual-instruction-tuning. Further, we introduce a block-decoding design into dVLMs that supports arbitrary-length generation and KV cache reuse, achieving a significant inference speedup. We conduct a large number of experiments. Despite training with less than 5% of the data required by prior methods, DiffusionVL achieves a comprehensive performance improvement-a 34.4% gain on the MMMU-Pro (vision) bench and 37.5% gain on the MME (Cog.) bench-alongside a 2x inference speedup. The model and code are released at https://github.com/hustvl/DiffusionVL.

Authors:Yuwei Guo, Ceyuan Yang, Hao He, Yang Zhao, Meng Wei, Zhenheng Yang, Weilin Huang, Dahua Lin
Title: End-to-End Training for Autoregressive Video Diffusion via Self-Resampling
Abstract:
Autoregressive video diffusion models hold promise for world simulation but are vulnerable to exposure bias arising from the train-test mismatch. While recent works address this via post-training, they typically rely on a bidirectional teacher model or online discriminator. To achieve an end-to-end solution, we introduce Resampling Forcing, a teacher-free framework that enables training autoregressive video models from scratch and at scale. Central to our approach is a self-resampling scheme that simulates inference-time model errors on history frames during training. Conditioned on these degraded histories, a sparse causal mask enforces temporal causality while enabling parallel training with frame-level diffusion loss. To facilitate efficient long-horizon generation, we further introduce history routing, a parameter-free mechanism that dynamically retrieves the top-k most relevant history frames for each query. Experiments demonstrate that our approach achieves performance comparable to distillation-based baselines while exhibiting superior temporal consistency on longer videos owing to native-length training.

Authors:Kyle Sargent, Ruiqi Gao, Philipp Henzler, Charles Herrmann, Aleksander Holynski, Li Fei-Fei, Jiajun Wu, Jason Zhang
Title: VLIC: Vision-Language Models As Perceptual Judges for Human-Aligned Image Compression
Abstract:
Evaluations of image compression performance which include human preferences have generally found that naive distortion functions such as MSE are insufficiently aligned to human perception. In order to align compression models to human perception, prior work has employed differentiable perceptual losses consisting of neural networks calibrated on large-scale datasets of human psycho-visual judgments. We show that, surprisingly, state-of-the-art vision-language models (VLMs) can replicate binary human two-alternative forced choice (2AFC) judgments zero-shot when asked to reason about the differences between pairs of images. Motivated to exploit the powerful zero-shot visual reasoning capabilities of VLMs, we propose Vision-Language Models for Image Compression (VLIC), a diffusion-based image compression system designed to be post-trained with binary VLM judgments. VLIC leverages existing techniques for diffusion model post-training with preferences, rather than distilling the VLM judgments into a separate perceptual loss network. We show that calibrating this system on VLM judgments produces competitive or state-of-the-art performance on human-aligned visual compression depending on the dataset, according to perceptual metrics and large-scale user studies. We additionally conduct an extensive analysis of the VLM-based reward design and training procedure and share important insights. More visuals are available at https://kylesargent.github.io/vlic

Authors:Yifei Li, Wenzhao Zheng, Yanran Zhang, Runze Sun, Yu Zheng, Lei Chen, Jie Zhou, Jiwen Lu
Title: Skyra: AI-Generated Video Detection via Grounded Artifact Reasoning
Abstract:
The misuse of AI-driven video generation technologies has raised serious social concerns, highlighting the urgent need for reliable AI-generated video detectors. However, most existing methods are limited to binary classification and lack the necessary explanations for human interpretation. In this paper, we present Skyra, a specialized multimodal large language model (MLLM) that identifies human-perceivable visual artifacts in AI-generated videos and leverages them as grounded evidence for both detection and explanation. To support this objective, we construct ViF-CoT-4K for Supervised Fine-Tuning (SFT), which represents the first large-scale AI-generated video artifact dataset with fine-grained human annotations. We then develop a two-stage training strategy that systematically enhances our model's spatio-temporal artifact perception, explanation capability, and detection accuracy. To comprehensively evaluate Skyra, we introduce ViF-Bench, a benchmark comprising 3K high-quality samples generated by over ten state-of-the-art video generators. Extensive experiments demonstrate that Skyra surpasses existing methods across multiple benchmarks, while our evaluation yields valuable insights for advancing explainable AI-generated video detection.

Authors:Tianze Luo, Haotian Yuan, Zhuang Liu
Title: SoFlow: Solution Flow Models for One-Step Generative Modeling
Abstract:
The multi-step denoising process in diffusion and Flow Matching models causes major efficiency issues, which motivates research on few-step generation. We present Solution Flow Models (SoFlow), a framework for one-step generation from scratch. By analyzing the relationship between the velocity function and the solution function of the velocity ordinary differential equation (ODE), we propose a Flow Matching loss and a solution consistency loss to train our models. The Flow Matching loss allows our models to provide estimated velocity fields for Classifier-Free Guidance (CFG) during training, which improves generation performance. Notably, our consistency loss does not require the calculation of the Jacobian-vector product (JVP), a common requirement in recent works that is not well-optimized in deep learning frameworks like PyTorch. Experimental results indicate that, when trained from scratch using the same Diffusion Transformer (DiT) architecture and an equal number of training epochs, our models achieve better FID-50K scores than MeanFlow models on the ImageNet 256x256 dataset.

Authors:Jiacheng Cui, Bingkui Tong, Xinyue Bi, Xiaohan Zhao, Jiacheng Liu, Zhiqiang Shen
Title: Hard Labels In! Rethinking the Role of Hard Labels in Mitigating Local Semantic Drift
Abstract:
Soft labels generated by teacher models have become a dominant paradigm for knowledge transfer and recent large-scale dataset distillation such as SRe2L, RDED, LPLD, offering richer supervision than conventional hard labels. However, we observe that when only a limited number of crops per image are used, soft labels are prone to local semantic drift: a crop may visually resemble another class, causing its soft embedding to deviate from the ground-truth semantics of the original image. This mismatch between local visual content and global semantic meaning introduces systematic errors and distribution misalignment between training and testing. In this work, we revisit the overlooked role of hard labels and show that, when appropriately integrated, they provide a powerful content-agnostic anchor to calibrate semantic drift. We theoretically characterize the emergence of drift under few soft-label supervision and demonstrate that hybridizing soft and hard labels restores alignment between visual content and semantic supervision. Building on this insight, we propose a new training paradigm, Hard Label for Alleviating Local Semantic Drift (HALD), which leverages hard labels as intermediate corrective signals while retaining the fine-grained advantages of soft labels. Extensive experiments on dataset distillation and large-scale conventional classification benchmarks validate our approach, showing consistent improvements in generalization. On ImageNet-1K, we achieve 42.7% with only 285M storage for soft labels, outperforming prior state-of-the-art LPLD by 9.0%. Our findings re-establish the importance of hard labels as a complementary tool, and call for a rethinking of their role in soft-label-dominated training.

Authors:Yu Zheng, Jie Hu, Kailun Yang, Jiaming Zhang
Title: OccSTeP: Benchmarking 4D Occupancy Spatio-Temporal Persistence
Abstract:
Autonomous driving requires a persistent understanding of 3D scenes that is robust to temporal disturbances and accounts for potential future actions. We introduce a new concept of 4D Occupancy Spatio-Temporal Persistence (OccSTeP), which aims to address two tasks: (1) reactive forecasting: ''what will happen next'' and (2) proactive forecasting: "what would happen given a specific future action". For the first time, we create a new OccSTeP benchmark with challenging scenarios (e.g., erroneous semantic labels and dropped frames). To address this task, we propose OccSTeP-WM, a tokenizer-free world model that maintains a dense voxel-based scene state and incrementally fuses spatio-temporal context over time. OccSTeP-WM leverages a linear-complexity attention backbone and a recurrent state-space module to capture long-range spatial dependencies while continually updating the scene memory with ego-motion compensation. This design enables online inference and robust performance even when historical sensor input is missing or noisy. Extensive experiments prove the effectiveness of the OccSTeP concept and our OccSTeP-WM, yielding an average semantic mIoU of 23.70% (+6.56% gain) and occupancy IoU of 35.89% (+9.26% gain). The data and code will be open source at https://github.com/FaterYU/OccSTeP.

Authors:Shengming Yin, Zekai Zhang, Zecheng Tang, Kaiyuan Gao, Xiao Xu, Kun Yan, Jiahao Li, Yilei Chen, Yuxiang Chen, Heung-Yeung Shum, Lionel M. Ni, Jingren Zhou, Junyang Lin, Chenfei Wu
Title: Qwen-Image-Layered: Towards Inherent Editability via Layer Decomposition
Abstract:
Recent visual generative models often struggle with consistency during image editing due to the entangled nature of raster images, where all visual content is fused into a single canvas. In contrast, professional design tools employ layered representations, allowing isolated edits while preserving consistency. Motivated by this, we propose \textbf{Qwen-Image-Layered}, an end-to-end diffusion model that decomposes a single RGB image into multiple semantically disentangled RGBA layers, enabling \textbf{inherent editability}, where each RGBA layer can be independently manipulated without affecting other content. To support variable-length decomposition, we introduce three key components: (1) an RGBA-VAE to unify the latent representations of RGB and RGBA images; (2) a VLD-MMDiT (Variable Layers Decomposition MMDiT) architecture capable of decomposing a variable number of image layers; and (3) a Multi-stage Training strategy to adapt a pretrained image generation model into a multilayer image decomposer. Furthermore, to address the scarcity of high-quality multilayer training images, we build a pipeline to extract and annotate multilayer images from Photoshop documents (PSD). Experiments demonstrate that our method significantly surpasses existing approaches in decomposition quality and establishes a new paradigm for consistent image editing. Our code and models are released on \href{https://github.com/QwenLM/Qwen-Image-Layered}{https://github.com/QwenLM/Qwen-Image-Layered}

Authors:Tobias Kirschstein, Simon Giebenhain, Matthias Nießner
Title: FlexAvatar: Learning Complete 3D Head Avatars with Partial Supervision
Abstract:
We introduce FlexAvatar, a method for creating high-quality and complete 3D head avatars from a single image. A core challenge lies in the limited availability of multi-view data and the tendency of monocular training to yield incomplete 3D head reconstructions. We identify the root cause of this issue as the entanglement between driving signal and target viewpoint when learning from monocular videos. To address this, we propose a transformer-based 3D portrait animation model with learnable data source tokens, so-called bias sinks, which enables unified training across monocular and multi-view datasets. This design leverages the strengths of both data sources during inference: strong generalization from monocular data and full 3D completeness from multi-view supervision. Furthermore, our training procedure yields a smooth latent avatar space that facilitates identity interpolation and flexible fitting to an arbitrary number of input observations. In extensive evaluations on single-view, few-shot, and monocular avatar creation tasks, we verify the efficacy of FlexAvatar. Many existing methods struggle with view extrapolation while FlexAvatar generates complete 3D head avatars with realistic facial animations. Website: https://tobias-kirschstein.github.io/flexavatar/

Authors:Shashank Mishra, Karan Patil, Didier Stricker, Jason Rambach
Title: IMKD: Intensity-Aware Multi-Level Knowledge Distillation for Camera-Radar Fusion
Abstract:
High-performance Radar-Camera 3D object detection can be achieved by leveraging knowledge distillation without using LiDAR at inference time. However, existing distillation methods typically transfer modality-specific features directly to each sensor, which can distort their unique characteristics and degrade their individual strengths. To address this, we introduce IMKD, a radar-camera fusion framework based on multi-level knowledge distillation that preserves each sensor's intrinsic characteristics while amplifying their complementary strengths. IMKD applies a three-stage, intensity-aware distillation strategy to enrich the fused representation across the architecture: (1) LiDAR-to-Radar intensity-aware feature distillation to enhance radar representations with fine-grained structural cues, (2) LiDAR-to-Fused feature intensity-guided distillation to selectively highlight useful geometry and depth information at the fusion level, fostering complementarity between the modalities rather than forcing them to align, and (3) Camera-Radar intensity-guided fusion mechanism that facilitates effective feature alignment and calibration. Extensive experiments on the nuScenes benchmark show that IMKD reaches 67.0% NDS and 61.0% mAP, outperforming all prior distillation-based radar-camera fusion methods. Our code and models are available at https://github.com/dfki-av/IMKD/.

Authors:Ditmar Hadera, Jan Cech, Miroslav Purkrabek, Matej Hoffmann
Title: BLANKET: Anonymizing Faces in Infant Video Recordings
Abstract:
Ensuring the ethical use of video data involving human subjects, particularly infants, requires robust anonymization methods. We propose BLANKET (Baby-face Landmark-preserving ANonymization with Keypoint dEtection consisTency), a novel approach designed to anonymize infant faces in video recordings while preserving essential facial attributes. Our method comprises two stages. First, a new random face, compatible with the original identity, is generated via inpainting using a diffusion model. Second, the new identity is seamlessly incorporated into each video frame through temporally consistent face swapping with authentic expression transfer. The method is evaluated on a dataset of short video recordings of babies and is compared to the popular anonymization method, DeepPrivacy2. Key metrics assessed include the level of de-identification, preservation of facial attributes, impact on human pose estimation (as an example of a downstream task), and presence of artifacts. Both methods alter the identity, and our method outperforms DeepPrivacy2 in all other respects. The code is available as an easy-to-use anonymization demo at https://github.com/ctu-vras/blanket-infant-face-anonym.

Authors:Daiqing Wu, Dongbao Yang, Can Ma, Yu Zhou
Title: EmoCaliber: Advancing Reliable Visual Emotion Comprehension via Confidence Verbalization and Calibration
Abstract:
Visual Emotion Comprehension (VEC) aims to infer sentiment polarities or emotion categories from affective cues embedded in images. In recent years, Multimodal Large Language Models (MLLMs) have established a popular paradigm in VEC, leveraging their generalizability to unify VEC tasks defined under diverse emotion taxonomies. While this paradigm achieves notable success, it typically formulates VEC as a deterministic task, requiring the model to output a single, definitive emotion label for each image. Such a formulation insufficiently accounts for the inherent subjectivity of emotion perception, overlooking alternative interpretations that may be equally plausible to different viewers. To address this limitation, we propose equipping MLLMs with capabilities to verbalize their confidence in emotion predictions. This additional signal provides users with an estimate of both the plausibility of alternative interpretations and the MLLMs' self-assessed competence, thereby enhancing reliability in practice. Building on this insight, we introduce a three-stage training framework that progressively endows with structured reasoning, teaches to verbalize confidence, and calibrates confidence expression, culminating in EmoCaliber, a confidence-aware MLLM for VEC. Through fair and comprehensive evaluations on the unified benchmark VECBench, EmoCaliber demonstrates overall superiority against existing methods in both emotion prediction and confidence estimation. These results validate the effectiveness of our approach and mark a feasible step toward more reliable VEC systems. Project page: https://github.com/wdqqdw/EmoCaliber.

Authors:Yuxiang Shi, Zhe Li, Yanwen Wang, Hao Zhu, Xun Cao, Ligang Liu
Title: DeX-Portrait: Disentangled and Expressive Portrait Animation via Explicit and Latent Motion Representations
Abstract:
Portrait animation from a single source image and a driving video is a long-standing problem. Recent approaches tend to adopt diffusion-based image/video generation models for realistic and expressive animation. However, none of these diffusion models realizes high-fidelity disentangled control between the head pose and facial expression, hindering applications like expression-only or pose-only editing and animation. To address this, we propose DeX-Portrait, a novel approach capable of generating expressive portrait animation driven by disentangled pose and expression signals. Specifically, we represent the pose as an explicit global transformation and the expression as an implicit latent code. First, we design a powerful motion trainer to learn both pose and expression encoders for extracting precise and decomposed driving signals. Then we propose to inject the pose transformation into the diffusion model through a dual-branch conditioning mechanism, and the expression latent through cross attention. Finally, we design a progressive hybrid classifier-free guidance for more faithful identity consistency. Experiments show that our method outperforms state-of-the-art baselines on both animation quality and disentangled controllability.

Authors:Seyed Abolfazl Ghasemzadeh, Alexandre Alahi, Christophe De Vleeschouwer
Title: RUMPL: Ray-Based Transformers for Universal Multi-View 2D to 3D Human Pose Lifting
Abstract:
Estimating 3D human poses from 2D images remains challenging due to occlusions and projective ambiguity. Multi-view learning-based approaches mitigate these issues but often fail to generalize to real-world scenarios, as large-scale multi-view datasets with 3D ground truth are scarce and captured under constrained conditions. To overcome this limitation, recent methods rely on 2D pose estimation combined with 2D-to-3D pose lifting trained on synthetic data. Building on our previous MPL framework, we propose RUMPL, a transformer-based 3D pose lifter that introduces a 3D ray-based representation of 2D keypoints. This formulation makes the model independent of camera calibration and the number of views, enabling universal deployment across arbitrary multi-view configurations without retraining or fine-tuning. A new View Fusion Transformer leverages learned fused-ray tokens to aggregate information along rays, further improving multi-view consistency. Extensive experiments demonstrate that RUMPL reduces MPJPE by up to 53% compared to triangulation and over 60% compared to transformer-based image-representation baselines. Results on new benchmarks, including in-the-wild multi-view and multi-person datasets, confirm its robustness and scalability. The framework's source code is available at https://github.com/aghasemzadeh/OpenRUMPL

Authors:Simon Gutwein, Arthur Longuefosse, Jun Seita, Sabine Taschner-Mandl, Roxane Licandro
Title: Preserving Marker Specificity with Lightweight Channel-Independent Representation Learning
Abstract:
Multiplexed tissue imaging measures dozens of protein markers per cell, yet most deep learning models still apply early channel fusion, assuming shared structure across markers. We investigate whether preserving marker independence, combined with deliberately shallow architectures, provides a more suitable inductive bias for self-supervised representation learning in multiplex data than increasing model scale. Using a Hodgkin lymphoma CODEX dataset with 145,000 cells and 49 markers, we compare standard early-fusion CNNs with channel-separated architectures, including a marker-aware baseline and our novel shallow Channel-Independent Model (CIM-S) with 5.5K parameters. After contrastive pretraining and linear evaluation, early-fusion models show limited ability to retain marker-specific information and struggle particularly with rare-cell discrimination. Channel-independent architectures, and CIM-S in particular, achieve substantially stronger representations despite their compact size. These findings are consistent across multiple self-supervised frameworks, remain stable across augmentation settings, and are reproducible across both the 49-marker and reduced 18-marker settings. These results show that lightweight, channel-independent architectures can match or surpass deep early-fusion CNNs and foundation models for multiplex representation learning. Code is available at https://github.com/SimonBon/CIM-S.

Authors:Junjie Chen, Fei Wang, Zhihao Huang, Qing Zhou, Kun Li, Dan Guo, Linfeng Zhang, Xun Yang
Title: Towards Seamless Interaction: Causal Turn-Level Modeling of Interactive 3D Conversational Head Dynamics
Abstract:
Human conversation involves continuous exchanges of speech and nonverbal cues such as head nods, gaze shifts, and facial expressions that convey attention and emotion. Modeling these bidirectional dynamics in 3D is essential for building expressive avatars and interactive robots. However, existing frameworks often treat talking and listening as independent processes or rely on non-causal full-sequence modeling, hindering temporal coherence across turns. We present TIMAR (Turn-level Interleaved Masked AutoRegression), a causal framework for 3D conversational head generation that models dialogue as interleaved audio-visual contexts. It fuses multimodal information within each turn and applies turn-level causal attention to accumulate conversational history, while a lightweight diffusion head predicts continuous 3D head dynamics that captures both coordination and expressive variability. Experiments on the DualTalk benchmark show that TIMAR reduces Fréchet Distance and MSE by 15-30% on the test set, and achieves similar gains on out-of-distribution data. The source code will be released in the GitHub repository https://github.com/CoderChen01/towards-seamleass-interaction.

Authors:Yuxin Jiang, Yunkang Cao, Weiming Shen
Title: Prototypical Learning Guided Context-Aware Segmentation Network for Few-Shot Anomaly Detection
Abstract:
Few-shot anomaly detection (FSAD) denotes the identification of anomalies within a target category with a limited number of normal samples. Existing FSAD methods largely rely on pre-trained feature representations to detect anomalies, but the inherent domain gap between pre-trained representations and target FSAD scenarios is often overlooked. This study proposes a Prototypical Learning Guided Context-Aware Segmentation Network (PCSNet) to address the domain gap, thereby improving feature descriptiveness in target scenarios and enhancing FSAD performance. In particular, PCSNet comprises a prototypical feature adaption (PFA) sub-network and a context-aware segmentation (CAS) sub-network. PFA extracts prototypical features as guidance to ensure better feature compactness for normal data while distinct separation from anomalies. A pixel-level disparity classification loss is also designed to make subtle anomalies more distinguishable. Then a CAS sub-network is introduced for pixel-level anomaly localization, where pseudo anomalies are exploited to facilitate the training process. Experimental results on MVTec and MPDD demonstrate the superior FSAD performance of PCSNet, with 94.9% and 80.2% image-level AUROC in an 8-shot scenario, respectively. Real-world applications on automotive plastic part inspection further demonstrate that PCSNet can achieve promising results with limited training samples. Code is available at https://github.com/yuxin-jiang/PCSNet.

Authors:Yingying Wang, Xuanhua He, Chen Wu, Jialing Huang, Suiyun Zhang, Rui Liu, Xinghao Ding, Haoxuan Che
Title: MMMamba: A Versatile Cross-Modal In Context Fusion Framework for Pan-Sharpening and Zero-Shot Image Enhancement
Abstract:
Pan-sharpening aims to generate high-resolution multispectral (HRMS) images by integrating a high-resolution panchromatic (PAN) image with its corresponding low-resolution multispectral (MS) image. To achieve effective fusion, it is crucial to fully exploit the complementary information between the two modalities. Traditional CNN-based methods typically rely on channel-wise concatenation with fixed convolutional operators, which limits their adaptability to diverse spatial and spectral variations. While cross-attention mechanisms enable global interactions, they are computationally inefficient and may dilute fine-grained correspondences, making it difficult to capture complex semantic relationships. Recent advances in the Multimodal Diffusion Transformer (MMDiT) architecture have demonstrated impressive success in image generation and editing tasks. Unlike cross-attention, MMDiT employs in-context conditioning to facilitate more direct and efficient cross-modal information exchange. In this paper, we propose MMMamba, a cross-modal in-context fusion framework for pan-sharpening, with the flexibility to support image super-resolution in a zero-shot manner. Built upon the Mamba architecture, our design ensures linear computational complexity while maintaining strong cross-modal interaction capacity. Furthermore, we introduce a novel multimodal interleaved (MI) scanning mechanism that facilitates effective information exchange between the PAN and MS modalities. Extensive experiments demonstrate the superior performance of our method compared to existing state-of-the-art (SOTA) techniques across multiple tasks and benchmarks.

Authors:Kaixing Long, Danyi Weng, Yun Mi, Zhentai Zhang, Yanmeng Lu, Jian Geng, Zhitao Zhou, Liming Zhong, Qianjin Feng, Wei Yang, Lei Cao
Title: Cross-modal ultra-scale learning with tri-modalities of renal biopsy images for glomerular multi-disease auxiliary diagnosis
Abstract:
Constructing a multi-modal automatic classification model based on three types of renal biopsy images can assist pathologists in glomerular multi-disease identification. However, the substantial scale difference between transmission electron microscopy (TEM) image features at the nanoscale and optical microscopy (OM) or immunofluorescence microscopy (IM) images at the microscale poses a challenge for existing multi-modal and multi-scale models in achieving effective feature fusion and improving classification accuracy. To address this issue, we propose a cross-modal ultra-scale learning network (CMUS-Net) for the auxiliary diagnosis of multiple glomerular diseases. CMUS-Net utilizes multiple ultrastructural information to bridge the scale difference between nanometer and micrometer images. Specifically, we introduce a sparse multi-instance learning module to aggregate features from TEM images. Furthermore, we design a cross-modal scale attention module to facilitate feature interaction, enhancing pathological semantic information. Finally, multiple loss functions are combined, allowing the model to weigh the importance among different modalities and achieve precise classification of glomerular diseases. Our method follows the conventional process of renal biopsy pathology diagnosis and, for the first time, performs automatic classification of multiple glomerular diseases including IgA nephropathy (IgAN), membranous nephropathy (MN), and lupus nephritis (LN) based on images from three modalities and two scales. On an in-house dataset, CMUS-Net achieves an ACC of 95.37+/-2.41%, an AUC of 99.05+/-0.53%, and an F1-score of 95.32+/-2.41%. Extensive experiments demonstrate that CMUS-Net outperforms other well-known multi-modal or multi-scale methods and show its generalization capability in staging MN. Code is available at https://github.com/SMU-GL-Group/MultiModal_lkx/tree/main.

Authors:Mengshi Qi, Yeteng Wu, Xianlin Zhang, Huadong Ma
Title: Explainable Action Form Assessment by Exploiting Multimodal Chain-of-Thoughts Reasoning
Abstract:
Evaluating whether human action is standard or not and providing reasonable feedback to improve action standardization is very crucial but challenging in real-world scenarios. However, current video understanding methods are mainly concerned with what and where the action is, which is unable to meet the requirements. Meanwhile, most of the existing datasets lack the labels indicating the degree of action standardization, and the action quality assessment datasets lack explainability and detailed feedback. Therefore, we define a new Human Action Form Assessment (AFA) task, and introduce a new diverse dataset CoT-AFA, which contains a large scale of fitness and martial arts videos with multi-level annotations for comprehensive video analysis. We enrich the CoT-AFA dataset with a novel Chain-of-Thought explanation paradigm. Instead of offering isolated feedback, our explanations provide a complete reasoning process--from identifying an action step to analyzing its outcome and proposing a concrete solution. Furthermore, we propose a framework named Explainable Fitness Assessor, which can not only judge an action but also explain why and provide a solution. This framework employs two parallel processing streams and a dynamic gating mechanism to fuse visual and semantic information, thereby boosting its analytical capabilities. The experimental results demonstrate that our method has achieved improvements in explanation generation (e.g., +16.0% in CIDEr), action classification (+2.7% in accuracy) and quality assessment (+2.1% in accuracy), revealing great potential of CoT-AFA for future studies. Our dataset and source code is available at https://github.com/MICLAB-BUPT/EFA.

Authors:Ziyu Shang, Haoran Liu, Rongchao Zhang, Zhiqian Wei, Tongtong Feng
Title: PMMD: A pose-guided multi-view multi-modal diffusion for person generation
Abstract:
Generating consistent human images with controllable pose and appearance is essential for applications in virtual try on, image editing, and digital human creation. Current methods often suffer from occlusions, garment style drift, and pose misalignment. We propose Pose-guided Multi-view Multimodal Diffusion (PMMD), a diffusion framework that synthesizes photorealistic person images conditioned on multi-view references, pose maps, and text prompts. A multimodal encoder jointly models visual views, pose features, and semantic descriptions, which reduces cross modal discrepancy and improves identity fidelity. We further design a ResCVA module to enhance local detail while preserving global structure, and a cross modal fusion module that integrates image semantics with text throughout the denoising pipeline. Experiments on the DeepFashion MultiModal dataset show that PMMD outperforms representative baselines in consistency, detail preservation, and controllability. Project page and code are available at https://github.com/ZANMANGLOOPYE/PMMD.

Authors:Chenxiao Zhang, Runshi Zhang, Junchen Wang
Title: Tracking spatial temporal details in ultrasound long video via wavelet analysis and memory bank
Abstract:
Medical ultrasound videos are widely used for medical inspections, disease diagnosis and surgical planning. High-fidelity lesion area and target organ segmentation constitutes a key component of the computer-assisted surgery workflow. The low contrast levels and noisy backgrounds of ultrasound videos cause missegmentation of organ boundary, which may lead to small object losses and increase boundary segmentation errors. Object tracking in long videos also remains a significant research challenge. To overcome these challenges, we propose a memory bank-based wavelet filtering and fusion network, which adopts an encoder-decoder structure to effectively extract fine-grained detailed spatial features and integrate high-frequency (HF) information. Specifically, memory-based wavelet convolution is presented to simultaneously capture category, detailed information and utilize adjacent information in the encoder. Cascaded wavelet compression is used to fuse multiscale frequency-domain features and expand the receptive field within each convolutional layer. A long short-term memory bank using cross-attention and memory compression mechanisms is designed to track objects in long video. To fully utilize the boundary-sensitive HF details of feature maps, an HF-aware feature fusion module is designed via adaptive wavelet filters in the decoder. In extensive benchmark tests conducted on four ultrasound video datasets (two thyroid nodule, the thyroid gland, the heart datasets) compared with the state-of-the-art methods, our method demonstrates marked improvements in segmentation metrics. In particular, our method can more accurately segment small thyroid nodules, demonstrating its effectiveness for cases involving small ultrasound objects in long video. The code is available at https://github.com/XiAooZ/MWNet.

Authors:Nalini M. Singh, Tiffany Chien, Arthur R. C. McCray, Colin Ophus, Laura Waller
Title: A Gaussian Parameterization for Direct Atomic Structure Identification in Electron Tomography
Abstract:
Atomic electron tomography (AET) enables the determination of 3D atomic structures by acquiring a sequence of 2D tomographic projection measurements of a particle and then computationally solving for its underlying 3D representation. Classical tomography algorithms solve for an intermediate volumetric representation that is post-processed into the atomic structure of interest. In this paper, we reformulate the tomographic inverse problem to solve directly for the locations and properties of individual atoms. We parameterize an atomic structure as a collection of Gaussians, whose positions and properties are learnable. This representation imparts a strong physical prior on the learned structure, which we show yields improved robustness to real-world imaging artifacts. Simulated experiments and a proof-of-concept result on experimentally-acquired data confirm our method's potential for practical applications in materials characterization and analysis with Transmission Electron Microscopy (TEM). Our code is available at https://github.com/nalinimsingh/gaussian-atoms.

Authors:Huaying Zhang, Atsushi Hashimoto, Tosho Hirasawa
Title: Evaluating the Capability of Video Question Generation for Expert Knowledge Elicitation
Abstract:
Skilled human interviewers can extract valuable information from experts. This raises a fundamental question: what makes some questions more effective than others? To address this, a quantitative evaluation of question-generation models is essential. Video question generation (VQG) is a topic for video question answering (VideoQA), where questions are generated for given answers. Their evaluation typically focuses on the ability to answer questions, rather than the quality of generated questions. In contrast, we focus on the question quality in eliciting unseen knowledge from human experts. For a continuous improvement of VQG models, we propose a protocol that evaluates the ability by simulating question-answering communication with experts using a question-to-answer retrieval. We obtain the retriever by constructing a novel dataset, EgoExoAsk, which comprises 27,666 QA pairs generated from Ego-Exo4D's expert commentary annotation. The EgoExoAsk training set is used to obtain the retriever, and the benchmark is constructed on the validation set with Ego-Exo4D video segments. Experimental results demonstrate our metric reasonably aligns with question generation settings: models accessing richer context are evaluated better, supporting that our protocol works as intended. The EgoExoAsk dataset is available in https://github.com/omron-sinicx/VQG4ExpertKnowledge .

Authors:Zhenzhi Wang, Jian Wang, Ke Ma, Dahua Lin, Bing Zhou
Title: TalkVerse: Democratizing Minute-Long Audio-Driven Video Generation
Abstract:
We introduce TalkVerse, a large-scale, open corpus for single-person, audio-driven talking video generation designed to enable fair, reproducible comparison across methods. While current state-of-the-art systems rely on closed data or compute-heavy models, TalkVerse offers 2.3 million high-resolution (720p/1080p) audio-video synchronized clips totaling 6.3k hours. These are curated from over 60k hours of video via a transparent pipeline that includes scene-cut detection, aesthetic assessment, strict audio-visual synchronization checks, and comprehensive annotations including 2D skeletons and structured visual/audio-style captions. Leveraging TalkVerse, we present a reproducible 5B DiT baseline built on Wan2.2-5B. By utilizing a video VAE with a high downsampling ratio and a sliding window mechanism with motion-frame context, our model achieves minute-long generation with low drift. It delivers comparable lip-sync and visual quality to the 14B Wan-S2V model but with 10$\times$ lower inference cost. To enhance storytelling in long videos, we integrate an MLLM director to rewrite prompts based on audio and visual cues. Furthermore, our model supports zero-shot video dubbing via controlled latent noise injection. We open-source the dataset, training recipes, and 5B checkpoints to lower barriers for research in audio-driven human video generation. Project Page: https://zhenzhiwang.github.io/talkverse/

Authors:Huzheng Yang, Katherine Xu, Andrew Lu, Michael D. Grossberg, Yutong Bai, Jianbo Shi
Title: Vibe Spaces for Creatively Connecting and Expressing Visual Concepts
Abstract:
Creating new visual concepts often requires connecting distinct ideas through their most relevant shared attributes -- their vibe. We introduce Vibe Blending, a novel task for generating coherent and meaningful hybrids that reveals these shared attributes between images. Achieving such blends is challenging for current methods, which struggle to identify and traverse nonlinear paths linking distant concepts in latent space. We propose Vibe Space, a hierarchical graph manifold that learns low-dimensional geodesics in feature spaces like CLIP, enabling smooth and semantically consistent transitions between concepts. To evaluate creative quality, we design a cognitively inspired framework combining human judgments, LLM reasoning, and a geometric path-based difficulty score. We find that Vibe Space produces blends that humans consistently rate as more creative and coherent than current methods.

Authors:Yuqun Zhang, Yuxuan Zhao, Sijia Chen
Title: PyFi: Toward Pyramid-like Financial Image Understanding for VLMs via Adversarial Agents
Abstract:
This paper proposes PyFi, a novel framework for pyramid-like financial image understanding that enables vision language models (VLMs) to reason through question chains in a progressive, simple-to-complex manner. At the core of PyFi is PyFi-600K, a dataset comprising 600K financial question-answer pairs organized into a reasoning pyramid: questions at the base require only basic perception, while those toward the apex demand increasing levels of capability in financial visual understanding and expertise. This data is scalable because it is synthesized without human annotations, using PyFi-adv, a multi-agent adversarial mechanism under the Monte Carlo Tree Search (MCTS) paradigm, in which, for each image, a challenger agent competes with a solver agent by generating question chains that progressively probe deeper capability levels in financial visual reasoning. Leveraging this dataset, we present fine-grained, hierarchical, and comprehensive evaluations of advanced VLMs in the financial domain. Moreover, fine-tuning Qwen2.5-VL-3B and Qwen2.5-VL-7B on the pyramid-structured question chains enables these models to answer complex financial questions by decomposing them into sub-questions with gradually increasing reasoning demands, yielding average accuracy improvements of 19.52% and 8.06%, respectively, on the dataset. All resources of code, dataset and models are available at: https://github.com/AgenticFinLab/PyFi .

Authors:Ryan Cartularo
Title: SepsisSuite: Beyond Risk Stratification -- A Comparative Analysis of Deep Fusion vs. Expert Stacking for Prescriptive Sepsis AI
Abstract:
Sepsis accounts for nearly 20% of global ICU admissions, yet conventional prediction models often fail to effectively integrate heterogeneous data streams, remaining either siloed by modality or reliant on brittle early fusion. In this work, we present a rigorous architectural comparison between End-to-End Deep Fusion and Context-Aware Stacking for sepsis tasks. We initially hypothesized that a novel Quad-Modal Hierarchical Gated Attention Network -- termed SepsisFusionFormer -- would resolve complex cross-modal interactions between vitals, text, and imaging. However, experiments on MIMIC-IV revealed that SepsisFusionFormer suffered from "attention starvation" in the small antibiotic cohort ($N \approx 2,100$), resulting in overfitting (AUC 0.66). This counterintuitive result informed the design of SepsisLateFusion, a "leaner" Context-Aware Mixture-of-Experts (MoE) architecture. By treating modalities as orthogonal experts -- the "Historian" (Static), the "Monitor" (Temporal), and the "Reader" (NLP) -- and dynamically gating them via a CatBoost meta-learner, we achieved State-of-the-Art (SOTA) performance: 0.915 AUC for prediction 4 hours prior to clinical onset. By calibrating the decision threshold for clinical safety, we reduced missed cases by 48% relative to the default operating point, thus opening a true preventative window for timely intervention over reactive alerts. Furthermore, for the novel prescriptive task of multi-class antibiotic selection, we demonstrate that a Quad-Modal Ensemble achieved the highest performance (0.72 AUC). These models are integrated into SepsisSuite, a deployment-ready Python framework for clinical decision support. SepsisSuite is available for free at: https://github.com/RyanCartularo/SepsisSuite-Info

Authors:Sihui Ji, Xi Chen, Shuai Yang, Xin Tao, Pengfei Wan, Hengshuang Zhao
Title: MemFlow: Flowing Adaptive Memory for Consistent and Efficient Long Video Narratives
Abstract:
The core challenge for streaming video generation is maintaining the content consistency in long context, which poses high requirement for the memory design. Most existing solutions maintain the memory by compressing historical frames with predefined strategies. However, different to-generate video chunks should refer to different historical cues, which is hard to satisfy with fixed strategies. In this work, we propose MemFlow to address this problem. Specifically, before generating the coming chunk, we dynamically update the memory bank by retrieving the most relevant historical frames with the text prompt of this chunk. This design enables narrative coherence even if new event happens or scenario switches in future frames. In addition, during generation, we only activate the most relevant tokens in the memory bank for each query in the attention layers, which effectively guarantees the generation efficiency. In this way, MemFlow achieves outstanding long-context consistency with negligible computation burden (7.9% speed reduction compared with the memory-free baseline) and keeps the compatibility with any streaming video generation model with KV cache.

Authors:Yue Zhao, Hanwen Jiang, Zhenlin Xu, Chutong Yang, Ehsan Adeli, Philipp Krähenbühl
Title: Spherical Leech Quantization for Visual Tokenization and Generation
Abstract:
Non-parametric quantization has received much attention due to its efficiency on parameters and scalability to a large codebook. In this paper, we present a unified formulation of different non-parametric quantization methods through the lens of lattice coding. The geometry of lattice codes explains the necessity of auxiliary loss terms when training auto-encoders with certain existing lookup-free quantization variants such as BSQ. As a step forward, we explore a few possible candidates, including random lattices, generalized Fibonacci lattices, and densest sphere packing lattices. Among all, we find the Leech lattice-based quantization method, which is dubbed as Spherical Leech Quantization ($Λ_{24}$-SQ), leads to both a simplified training recipe and an improved reconstruction-compression tradeoff thanks to its high symmetry and even distribution on the hypersphere. In image tokenization and compression tasks, this quantization approach achieves better reconstruction quality across all metrics than BSQ, the best prior art, while consuming slightly fewer bits. The improvement also extends to state-of-the-art auto-regressive image generation frameworks.

Authors:Zihan Wang, Jiashun Wang, Jeff Tan, Yiwen Zhao, Jessica Hodgins, Shubham Tulsiani, Deva Ramanan
Title: CRISP: Contact-Guided Real2Sim from Monocular Video with Planar Scene Primitives
Abstract:
We introduce CRISP, a method that recovers simulatable human motion and scene geometry from monocular video. Prior work on joint human-scene reconstruction relies on data-driven priors and joint optimization with no physics in the loop, or recovers noisy geometry with artifacts that cause motion tracking policies with scene interactions to fail. In contrast, our key insight is to recover convex, clean, and simulation-ready geometry by fitting planar primitives to a point cloud reconstruction of the scene, via a simple clustering pipeline over depth, normals, and flow. To reconstruct scene geometry that might be occluded during interactions, we make use of human-scene contact modeling (e.g., we use human posture to reconstruct the occluded seat of a chair). Finally, we ensure that human and scene reconstructions are physically-plausible by using them to drive a humanoid controller via reinforcement learning. Our approach reduces motion tracking failure rates from 55.2\% to 6.9\% on human-centric video benchmarks (EMDB, PROX), while delivering a 43\% faster RL simulation throughput. We further validate it on in-the-wild videos including casually-captured videos, Internet videos, and even Sora-generated videos. This demonstrates CRISP's ability to generate physically-valid human motion and interaction environments at scale, greatly advancing real-to-sim applications for robotics and AR/VR.

Authors:Jianfeng Xiang, Xiaoxue Chen, Sicheng Xu, Ruicheng Wang, Zelong Lv, Yu Deng, Hongyuan Zhu, Yue Dong, Hao Zhao, Nicholas Jing Yuan, Jiaolong Yang
Title: Native and Compact Structured Latents for 3D Generation
Abstract:
Recent advancements in 3D generative modeling have significantly improved the generation realism, yet the field is still hampered by existing representations, which struggle to capture assets with complex topologies and detailed appearance. This paper present an approach for learning a structured latent representation from native 3D data to address this challenge. At its core is a new sparse voxel structure called O-Voxel, an omni-voxel representation that encodes both geometry and appearance. O-Voxel can robustly model arbitrary topology, including open, non-manifold, and fully-enclosed surfaces, while capturing comprehensive surface attributes beyond texture color, such as physically-based rendering parameters. Based on O-Voxel, we design a Sparse Compression VAE which provides a high spatial compression rate and a compact latent space. We train large-scale flow-matching models comprising 4B parameters for 3D generation using diverse public 3D asset datasets. Despite their scale, inference remains highly efficient. Meanwhile, the geometry and material quality of our generated assets far exceed those of existing models. We believe our approach offers a significant advancement in 3D generative modeling.

Authors:Zizhang Li, Cheng Zhang, Zhengqin Li, Henry Howard-Jenkins, Zhaoyang Lv, Chen Geng, Jiajun Wu, Richard Newcombe, Jakob Engel, Zhao Dong
Title: ART: Articulated Reconstruction Transformer
Abstract:
We introduce ART, Articulated Reconstruction Transformer -- a category-agnostic, feed-forward model that reconstructs complete 3D articulated objects from only sparse, multi-state RGB images. Previous methods for articulated object reconstruction either rely on slow optimization with fragile cross-state correspondences or use feed-forward models limited to specific object categories. In contrast, ART treats articulated objects as assemblies of rigid parts, formulating reconstruction as part-based prediction. Our newly designed transformer architecture maps sparse image inputs to a set of learnable part slots, from which ART jointly decodes unified representations for individual parts, including their 3D geometry, texture, and explicit articulation parameters. The resulting reconstructions are physically interpretable and readily exportable for simulation. Trained on a large-scale, diverse dataset with per-part supervision, and evaluated across diverse benchmarks, ART achieves significant improvements over existing baselines and establishes a new state of the art for articulated object reconstruction from image inputs.

Authors:Gabriele Accarino, Viviana Acquaviva, Sara Shamekh, Duncan Watson-Parris, David Lawrence
Title: WaveSim: A Wavelet-based Multi-scale Similarity Metric for Weather and Climate Fields
Abstract:
We introduce WaveSim, a multi-scale similarity metric for the evaluation of spatial fields in weather and climate applications. WaveSim exploits wavelet transforms to decompose input fields into scale-specific wavelet coefficients. The metric is built by multiplying three orthogonal components derived from these coefficients: Magnitude, which quantifies similarities in the energy distribution of the coefficients, i.e., the intensity of the field; Displacement, which captures spatial shift by comparing the centers of mass of normalized energy distributions; and Structure, which assesses pattern organization independent of location and amplitude. Each component yields a scale-specific similarity score ranging from 0 (no similarity) to 1 (perfect similarity), which are then combined across scales to produce an overall similarity measure. We first evaluate WaveSim using synthetic test cases, applying controlled spatial and temporal perturbations to systematically assess its sensitivity and expected behavior. We then demonstrate its applicability to physically relevant case studies of key modes of climate variability in Earth System Models. Traditional point-wise metrics lack a mechanism for attributing errors to physical scales or modes of dissimilarity. By operating in the wavelet domain and decomposing the signal along independent axes, WaveSim bypasses these limitations and provides an interpretable and diagnostically rich framework for assessing similarity in complex fields. Additionally, the WaveSim framework allows users to place emphasis on a specific scale or component, and lends itself to user-specific model intercomparison, model evaluation, and calibration and training of forecasting systems. We provide a PyTorch-ready implementation of WaveSim, along with all evaluation scripts, at: https://github.com/gabrieleaccarino/wavesim.

Authors:Lihong Wang, Liangqi Li, Weiwei Feng, Jiamin Wu, Changtao Miao, Tieru Wu, Rui Ma, Bo Zhang, Zhe Li
Title: ViRC: Enhancing Visual Interleaved Mathematical CoT with Reason Chunking
Abstract:
CoT has significantly enhanced the reasoning ability of LLMs while it faces challenges when extended to multimodal domains, particularly in mathematical tasks. Existing MLLMs typically perform textual reasoning solely from a single static mathematical image, overlooking dynamic visual acquisition during reasoning. In contrast, humans repeatedly examine visual image and employ step-by-step reasoning to prove intermediate propositions. This strategy of decomposing the problem-solving process into key logical nodes adheres to Miller's Law in cognitive science. Inspired by this insight, we propose a ViRC framework for multimodal mathematical tasks, introducing a Reason Chunking mechanism that structures multimodal mathematical CoT into consecutive Critical Reasoning Units (CRUs) to simulate human expert problem-solving patterns. CRUs ensure intra-unit textual coherence for intermediate proposition verification while integrating visual information across units to generate subsequent propositions and support structured reasoning. To this end, we present CRUX dataset by using three visual tools and four reasoning patterns to provide explicitly annotated CRUs across multiple reasoning paths for each mathematical problem. Leveraging the CRUX dataset, we propose a progressive training strategy inspired by human cognitive learning, which includes Instructional SFT, Practice SFT, and Strategic RL, aimed at further strengthening the Reason Chunking ability of the model. The resulting ViRC-7B model achieves a 18.8% average improvement over baselines across multiple mathematical benchmarks. Code is available at https://github.com/Leon-LihongWang/ViRC.

Authors:Atsuyuki Miyai, Shota Onohara, Jeonghun Baek, Kiyoharu Aizawa
Title: JMMMU-Pro: Image-based Japanese Multi-discipline Multimodal Understanding Benchmark via Vibe Benchmark Construction
Abstract:
This paper introduces JMMMU-Pro, an image-based Japanese Multi-discipline Multimodal Understanding Benchmark, and Vibe Benchmark Construction, a scalable construction method. Following the evolution from MMMU to MMMU-Pro, JMMMU-Pro extends JMMMU by composing the question image and question text into a single image, thereby creating a benchmark that requires integrated visual-textual understanding through visual perception. To build JMMMU-Pro, we propose Vibe Benchmark Construction, a methodology in which an image generative model (e.g., Nano Banana Pro) produces candidate visual questions, and humans verify the outputs and, when necessary, regenerate with adjusted prompts to ensure quality. By leveraging Nano Banana Pro's highly realistic image generation capabilities and its ability to embed clean Japanese text, we construct a high-quality benchmark at low cost, covering a wide range of background and layout designs. Experimental results show that all open-source LMMs struggle substantially with JMMMU-Pro, underscoring JMMMU-Pro as an important benchmark for guiding future efforts in the open-source community. We believe that JMMMU-Pro provides a more rigorous evaluation tool for assessing the Japanese capabilities of LMMs and that our Vibe Benchmark Construction also offers an efficient guideline for future development of image-based VQA benchmarks.

Authors:Zhiwen Yang, Jiaju Zhang, Yang Yi, Jian Liang, Bingzheng Wei, Yan Xu
Title: TAT: Task-Adaptive Transformer for All-in-One Medical Image Restoration
Abstract:
Medical image restoration (MedIR) aims to recover high-quality medical images from their low-quality counterparts. Recent advancements in MedIR have focused on All-in-One models capable of simultaneously addressing multiple different MedIR tasks. However, due to significant differences in both modality and degradation types, using a shared model for these diverse tasks requires careful consideration of two critical inter-task relationships: task interference, which occurs when conflicting gradient update directions arise across tasks on the same parameter, and task imbalance, which refers to uneven optimization caused by varying learning difficulties inherent to each task. To address these challenges, we propose a task-adaptive Transformer (TAT), a novel framework that dynamically adapts to different tasks through two key innovations. First, a task-adaptive weight generation strategy is introduced to mitigate task interference by generating task-specific weight parameters for each task, thereby eliminating potential gradient conflicts on shared weight parameters. Second, a task-adaptive loss balancing strategy is introduced to dynamically adjust loss weights based on task-specific learning difficulties, preventing task domination or undertraining. Extensive experiments demonstrate that our proposed TAT achieves state-of-the-art performance in three MedIR tasks--PET synthesis, CT denoising, and MRI super-resolution--both in task-specific and All-in-One settings. Code is available at https://github.com/Yaziwel/TAT.

Authors:Andreas Lolos, Theofilos Christodoulou, Aris L. Moustakas, Stergios Christodoulidis, Maria Vakalopoulou
Title: CAPRMIL: Context-Aware Patch Representations for Multiple Instance Learning
Abstract:
In computational pathology, weak supervision has become the standard for deep learning due to the gigapixel scale of WSIs and the scarcity of pixel-level annotations, with Multiple Instance Learning (MIL) established as the principal framework for slide-level model training. In this paper, we introduce a novel setting for MIL methods, inspired by proceedings in Neural Partial Differential Equation (PDE) Solvers. Instead of relying on complex attention-based aggregation, we propose an efficient, aggregator-agnostic framework that removes the complexity of correlation learning from the MIL aggregator. CAPRMIL produces rich context-aware patch embeddings that promote effective correlation learning on downstream tasks. By projecting patch features -- extracted using a frozen patch encoder -- into a small set of global context/morphology-aware tokens and utilizing multi-head self-attention, CAPRMIL injects global context with linear computational complexity with respect to the bag size. Paired with a simple Mean MIL aggregator, CAPRMIL matches state-of-the-art slide-level performance across multiple public pathology benchmarks, while reducing the total number of trainable parameters by 48%-92.8% versus SOTA MILs, lowering FLOPs during inference by 52%-99%, and ranking among the best models on GPU memory efficiency and training time. Our results indicate that learning rich, context-aware instance representations before aggregation is an effective and scalable alternative to complex pooling for whole-slide analysis. Our code is available at https://github.com/mandlos/CAPRMIL

Authors:Alessia Micieli, Giovanni Maria Farinella, Francesco Ragusa
Title: SignIT: A Comprehensive Dataset and Multimodal Analysis for Italian Sign Language Recognition
Abstract:
In this work we present SignIT, a new dataset to study the task of Italian Sign Language (LIS) recognition. The dataset is composed of 644 videos covering 3.33 hours. We manually annotated videos considering a taxonomy of 94 distinct sign classes belonging to 5 macro-categories: Animals, Food, Colors, Emotions and Family. We also extracted 2D keypoints related to the hands, face and body of the users. With the dataset, we propose a benchmark for the sign recognition task, adopting several state-of-the-art models showing how temporal information, 2D keypoints and RGB frames can be influence the performance of these models. Results show the limitations of these models on this challenging LIS dataset. We release data and annotations at the following link: https://fpv-iplab.github.io/SignIT/.

Authors:Weiheng Zhao, Zilong Huang, Jiashi Feng, Xinggang Wang
Title: SuperCLIP: CLIP with Simple Classification Supervision
Abstract:
Contrastive Language-Image Pretraining (CLIP) achieves strong generalization in vision-language tasks by aligning images and texts in a shared embedding space. However, recent findings show that CLIP-like models still underutilize fine-grained semantic signals in text, and this issue becomes even more pronounced when dealing with long and detailed captions. This stems from CLIP's training objective, which optimizes only global image-text similarity and overlooks token-level supervision - limiting its ability to achieve fine-grained visual-text alignment. To address this, we propose SuperCLIP, a simple yet effective framework that augments contrastive learning with classification-based supervision. By adding only a lightweight linear layer to the vision encoder, SuperCLIP leverages token-level cues to enhance visual-textual alignment - with just a 0.077% increase in total FLOPs, and no need for additional annotated data. Experiments show that SuperCLIP consistently improves zero-shot classification, image-text retrieval, and purely visual tasks. These gains hold regardless of whether the model is trained on original web data or rich re-captioned data, demonstrating SuperCLIP's ability to recover textual supervision in both cases. Furthermore, SuperCLIP alleviates CLIP's small-batch performance drop through classification-based supervision that avoids reliance on large batch sizes. Code and models will be made open source.

Authors:Leon Sick, Lukas Hoyer, Dominik Engel, Pedro Hermosilla, Timo Ropinski
Title: S2D: Sparse-To-Dense Keymask Distillation for Unsupervised Video Instance Segmentation
Abstract:
In recent years, the state-of-the-art in unsupervised video instance segmentation has heavily relied on synthetic video data, generated from object-centric image datasets such as ImageNet. However, video synthesis by artificially shifting and scaling image instance masks fails to accurately model realistic motion in videos, such as perspective changes, movement by parts of one or multiple instances, or camera motion. To tackle this issue, we propose an unsupervised video instance segmentation model trained exclusively on real video data. We start from unsupervised instance segmentation masks on individual video frames. However, these single-frame segmentations exhibit temporal noise and their quality varies through the video. Therefore, we establish temporal coherence by identifying high-quality keymasks in the video by leveraging deep motion priors. The sparse keymask pseudo-annotations are then used to train a segmentation model for implicit mask propagation, for which we propose a Sparse-To-Dense Distillation approach aided by a Temporal DropLoss. After training the final model on the resulting dense labelset, our approach outperforms the current state-of-the-art across various benchmarks.

Authors:Mischa Dombrowski, Felix Nützel, Bernhard Kainz
Title: LCMem: A Universal Model for Robust Image Memorization Detection
Abstract:
Recent advances in generative image modeling have achieved visual realism sufficient to deceive human experts, yet their potential for privacy preserving data sharing remains insufficiently understood. A central obstacle is the absence of reliable memorization detection mechanisms, limited quantitative evaluation, and poor generalization of existing privacy auditing methods across domains. To address this, we propose to view memorization detection as a unified problem at the intersection of re-identification and copy detection, whose complementary goals cover both identity consistency and augmentation-robust duplication, and introduce Latent Contrastive Memorization Network (LCMem), a cross-domain model evaluated jointly on both tasks. LCMem achieves this through a two-stage training strategy that first learns identity consistency before incorporating augmentation-robust copy detection. Across six benchmark datasets, LCMem achieves improvements of up to 16 percentage points on re-identification and 30 percentage points on copy detection, enabling substantially more reliable memorization detection at scale. Our results show that existing privacy filters provide limited performance and robustness, highlighting the need for stronger protection mechanisms. We show that LCMem sets a new standard for cross-domain privacy auditing, offering reliable and scalable memorization detection. Code and model is publicly available at https://github.com/MischaD/LCMem.

Authors:Martin Röhn, Nora Gourmelon, Vincent Christlein
Title: EcoScapes: LLM-Powered Advice for Crafting Sustainable Cities
Abstract:
Climate adaptation is vital for the sustainability and sometimes the mere survival of our urban areas. However, small cities often struggle with limited personnel resources and integrating vast amounts of data from multiple sources for a comprehensive analysis. To overcome these challenges, this paper proposes a multi-layered system combining specialized LLMs, satellite imagery analysis and a knowledge base to aid in developing effective climate adaptation strategies. The corresponding code can be found at https://github.com/Photon-GitHub/EcoScapes.

Authors:Ankita Raj, Kaashika Prajaapat, Tapan Kumar Gandhi, Chetan Arora
Title: Mimicking Human Visual Development for Learning Robust Image Representations
Abstract:
The human visual system is remarkably adept at adapting to changes in the input distribution; a capability modern convolutional neural networks (CNNs) still struggle to match. Drawing inspiration from the developmental trajectory of human vision, we propose a progressive blurring curriculum to improve the generalization and robustness of CNNs. Human infants are born with poor visual acuity, gradually refining their ability to perceive fine details. Mimicking this process, we begin training CNNs on highly blurred images during the initial epochs and progressively reduce the blur as training advances. This approach encourages the network to prioritize global structures over high-frequency artifacts, improving robustness against distribution shifts and noisy inputs. Challenging prior claims that blurring in the initial training epochs imposes a stimulus deficit and irreversibly harms model performance, we reveal that early-stage blurring enhances generalization with minimal impact on in-domain accuracy. Our experiments demonstrate that the proposed curriculum reduces mean corruption error (mCE) by up to 8.30% on CIFAR-10-C and 4.43% on ImageNet-100-C datasets, compared to standard training without blurring. Unlike static blur-based augmentation, which applies blurred images randomly throughout training, our method follows a structured progression, yielding consistent gains across various datasets. Furthermore, our approach complements other augmentation techniques, such as CutMix and MixUp, and enhances both natural and adversarial robustness against common attack methods. Code is available at https://github.com/rajankita/Visual_Acuity_Curriculum.

Authors:Xiaoqian Shen, Min-Hung Chen, Yu-Chiang Frank Wang, Mohamed Elhoseiny, Ryo Hachiuma
Title: Zoom-Zero: Reinforced Coarse-to-Fine Video Understanding via Temporal Zoom-in
Abstract:
Grounded video question answering (GVQA) aims to localize relevant temporal segments in videos and generate accurate answers to a given question; however, large video-language models (LVLMs) exhibit limited temporal awareness. Although existing approaches based on Group Relative Policy Optimization (GRPO) attempt to improve temporal grounding, they still struggle to faithfully ground their answers in the relevant video evidence, leading to temporal mislocalization and hallucinations. In this work, we present Zoom-Zero, a coarse-to-fine framework that first localizes query-relevant segments and then temporally zooms into the most salient frames for finer-grained visual verification. Our method addresses the limits of GRPO for the GVQA task with two key innovations: (i) a zoom-in accuracy reward that validates the fidelity of temporal grounding prediction and facilitates fine-grained visual verification on grounded frames; (ii) token-selective credit assignment, which attributes rewards to the tokens responsible for temporal localization or answer generation, mitigating GRPO's issue in handling multi-faceted reward signals. Our proposed method advances grounded video question answering, improving temporal grounding by 5.2\% on NExT-GQA and 4.6\% on ReXTime, while also enhancing average answer accuracy by 2.4\%. Additionally, the coarse-to-fine zoom-in during inference further benefits long-form video understanding by preserving critical visual details without compromising global context, yielding an average improvement of 6.4\% on long-video benchmarks.

Authors:Qingyuan Cai, Linxin Zhang, Xuecai Hu, Saihui Hou, Yongzhen Huang
Title: FastDDHPose: Towards Unified, Efficient, and Disentangled 3D Human Pose Estimation
Abstract:
Recent approaches for monocular 3D human pose estimation (3D HPE) have achieved leading performance by directly regressing 3D poses from 2D keypoint sequences. Despite the rapid progress in 3D HPE, existing methods are typically trained and evaluated under disparate frameworks, lacking a unified framework for fair comparison. To address these limitations, we propose Fast3DHPE, a modular framework that facilitates rapid reproduction and flexible development of new methods. By standardizing training and evaluation protocols, Fast3DHPE enables fair comparison across 3D human pose estimation methods while significantly improving training efficiency. Within this framework, we introduce FastDDHPose, a Disentangled Diffusion-based 3D Human Pose Estimation method which leverages the strong latent distribution modeling capability of diffusion models to explicitly model the distributions of bone length and bone direction while avoiding further amplification of hierarchical error accumulation. Moreover, we design an efficient Kinematic-Hierarchical Spatial and Temporal Denoiser that encourages the model to focus on kinematic joint hierarchies while avoiding unnecessary modeling of overly complex joint topologies. Extensive experiments on Human3.6M and MPI-INF-3DHP show that the Fast3DHPE framework enables fair comparison of all methods while significantly improving training efficiency. Within this unified framework, FastDDHPose achieves state-of-the-art performance with strong generalization and robustness in in-the-wild scenarios. The framework and models will be released at: https://github.com/Andyen512/Fast3DHPE

Authors:Rui-Yang Ju, KokSheik Wong, Yanlin Jin, Jen-Shiun Chiang
Title: MFE-GAN: Efficient GAN-based Framework for Document Image Enhancement and Binarization with Multi-scale Feature Extraction
Abstract:
Document image enhancement and binarization are commonly performed prior to document analysis and recognition tasks for improving the efficiency and accuracy of optical character recognition (OCR) systems. This is because directly recognizing text in degraded documents, particularly in color images, often results in unsatisfactory recognition performance. To address these issues, existing methods train independent generative adversarial networks (GANs) for different color channels to remove shadows and noise, which, in turn, facilitates efficient text information extraction. However, deploying multiple GANs results in long training and inference times. To reduce both training and inference times of document image enhancement and binarization models, we propose MFE-GAN, an efficient GAN-based framework with multi-scale feature extraction (MFE), which incorporates Haar wavelet transformation (HWT) and normalization to process document images before feeding them into GANs for training. In addition, we present novel generators, discriminators, and loss functions to improve the model's performance, and we conduct ablation studies to demonstrate their effectiveness. Experimental results on the Benchmark, Nabuco, and CMATERdb datasets demonstrate that the proposed MFE-GAN significantly reduces the total training and inference times while maintaining comparable performance with respect to state-of-the-art (SOTA) methods. The implementation of this work is available at https://ruiyangju.github.io/MFE-GAN.

Authors:Hao Chen, Junyang Chen, Jinshan Pan, Jiangxin Dong
Title: Bridging Fidelity-Reality with Controllable One-Step Diffusion for Image Super-Resolution
Abstract:
Recent diffusion-based one-step methods have shown remarkable progress in the field of image super-resolution, yet they remain constrained by three critical limitations: (1) inferior fidelity performance caused by the information loss from compression encoding of low-quality (LQ) inputs; (2) insufficient region-discriminative activation of generative priors; (3) misalignment between text prompts and their corresponding semantic regions. To address these limitations, we propose CODSR, a controllable one-step diffusion network for image super-resolution. First, we propose an LQ-guided feature modulation module that leverages original uncompressed information from LQ inputs to provide high-fidelity conditioning for the diffusion process. We then develop a region-adaptive generative prior activation method to effectively enhance perceptual richness without sacrificing local structural fidelity. Finally, we employ a text-matching guidance strategy to fully harness the conditioning potential of text prompts. Extensive experiments demonstrate that CODSR achieves superior perceptual quality and competitive fidelity compared with state-of-the-art methods with efficient one-step inference.

Authors:Ignacio Alzugaray, Marwan Taher, Andrew J. Davison
Title: ACE-SLAM: Scene Coordinate Regression for Neural Implicit Real-Time SLAM
Abstract:
We present a novel neural RGB-D Simultaneous Localization And Mapping (SLAM) system that learns an implicit map of the scene in real time. For the first time, we explore the use of Scene Coordinate Regression (SCR) as the core implicit map representation in a neural SLAM pipeline, a paradigm that trains a lightweight network to directly map 2D image features to 3D global coordinates. SCR networks provide efficient, low-memory 3D map representations, enable extremely fast relocalization, and inherently preserve privacy, making them particularly suitable for neural implicit SLAM. Our system is the first one to achieve strict real-time in neural implicit RGB-D SLAM by relying on a SCR-based representation. We introduce a novel SCR architecture specifically tailored for this purpose and detail the critical design choices required to integrate SCR into a live SLAM pipeline. The resulting framework is simple yet flexible, seamlessly supporting both sparse and dense features, and operates reliably in dynamic environments without special adaptation. We evaluate our approach on established synthetic and real-world benchmarks, demonstrating competitive performance against the state of the art. Project Page: https://github.com/ialzugaray/ace-slam

Authors:Jiaheng Li, Qiyu Dai, Lihan Li, Praneeth Chakravarthula, He Sun, Baoquan Chen, Wenzheng Chen
Title: Robust Single-shot Structured Light 3D Imaging via Neural Feature Decoding
Abstract:
We consider the problem of active 3D imaging using single-shot structured light systems, which are widely employed in commercial 3D sensing devices such as Apple Face ID and Intel RealSense. Traditional structured light methods typically decode depth correspondences through pixel-domain matching algorithms, resulting in limited robustness under challenging scenarios like occlusions, fine-structured details, and non-Lambertian surfaces. Inspired by recent advances in neural feature matching, we propose a learning-based structured light decoding framework that performs robust correspondence matching within feature space rather than the fragile pixel domain. Our method extracts neural features from the projected patterns and captured infrared (IR) images, explicitly incorporating their geometric priors by building cost volumes in feature space, achieving substantial performance improvements over pixel-domain decoding approaches. To further enhance depth quality, we introduce a depth refinement module that leverages strong priors from large-scale monocular depth estimation models, improving fine detail recovery and global structural coherence. To facilitate effective learning, we develop a physically-based structured light rendering pipeline, generating nearly one million synthetic pattern-image pairs with diverse objects and materials for indoor settings. Experiments demonstrate that our method, trained exclusively on synthetic data with multiple structured light patterns, generalizes well to real-world indoor environments, effectively processes various pattern types without retraining, and consistently outperforms both commercial structured light systems and passive stereo RGB-based depth estimation methods. Project page: https://namisntimpot.github.io/NSLweb/.

Authors:Zongyao Li, Kengo Ishida, Satoshi Yamazaki, Xiaotong Ji, Jianquan Liu
Title: KFS-Bench: Comprehensive Evaluation of Key Frame Sampling in Long Video Understanding
Abstract:
We propose KFS-Bench, the first benchmark for key frame sampling in long video question answering (QA), featuring multi-scene annotations to enable direct and robust evaluation of sampling strategies. Key frame sampling is crucial for efficient long-form video understanding. In long video QA, selecting informative frames enables multimodal large language models (MLLMs) to improve both accuracy and efficiency. KFS-Bench addresses the limitation of prior works that only indirectly assess frame selection quality via QA accuracy. By providing ground-truth annotations of multiple disjoint scenes required per question, KFS-Bench allows us to directly analyze how different sampling approaches capture essential content across an entire long video. Using KFS-Bench, we conduct a comprehensive study of key frame sampling methods and identify that not only sampling precision but also scene coverage and sampling balance are the key factors influencing QA performance. Regarding all the factors, we design a novel sampling quality metric that correlates with QA accuracy. Furthermore, we develop a novel key frame sampling method that leverages question-video relevance to balance sampling diversity against question-frame similarity, thereby improving coverage of relevant scenes. Our adaptively balanced sampling approach achieves superior performance in both key frame sampling and QA performance. The benchmark is available at https://github.com/NEC-VID/KFS-Bench.

Authors:Zhuo Zhang, Yonghui Liu, Meijie Zhang, Feiyang Tan, Yikang Ding
Title: CLAIM: Camera-LiDAR Alignment with Intensity and Monodepth
Abstract:
In this paper, we unleash the potential of the powerful monodepth model in camera-LiDAR calibration and propose CLAIM, a novel method of aligning data from the camera and LiDAR. Given the initial guess and pairs of images and LiDAR point clouds, CLAIM utilizes a coarse-to-fine searching method to find the optimal transformation minimizing a patched Pearson correlation-based structure loss and a mutual information-based texture loss. These two losses serve as good metrics for camera-LiDAR alignment results and require no complicated steps of data processing, feature extraction, or feature matching like most methods, rendering our method simple and adaptive to most scenes. We validate CLAIM on public KITTI, Waymo, and MIAS-LCEC datasets, and the experimental results demonstrate its superior performance compared with the state-of-the-art methods. The code is available at https://github.com/Tompson11/claim.

Authors:Dawid Malarz, Artur Kasymov, Filip Manjak, Maciej Zięba, Przemysław Spurek
Title: From Unlearning to UNBRANDING: A Benchmark for Trademark-Safe Text-to-Image Generation
Abstract:
The rapid progress of text-to-image diffusion models raises significant concerns regarding the unauthorized reproduction of trademarked content. While prior work targets general concepts (e.g., styles, celebrities), it fails to address specific brand identifiers. Crucially, we note that brand recognition is multi-dimensional, extending beyond explicit logos to encompass distinctive structural features (e.g., a car's front grille). To tackle this, we introduce unbranding, a novel task for the fine-grained removal of both trademarks and subtle structural brand features, while preserving semantic coherence. To facilitate research, we construct a comprehensive benchmark dataset. Recognizing that existing brand detectors are limited to logos and fail to capture abstract trade dress (e.g., the shape of a Coca-Cola bottle), we introduce a novel evaluation metric based on Vision Language Models (VLMs). This VLM-based metric uses a question-answering framework to probe images for both explicit logos and implicit, holistic brand characteristics. Furthermore, we observe that as model fidelity increases, with newer systems (SDXL, FLUX) synthesizing brand identifiers more readily than older models (Stable Diffusion), the urgency of the unbranding challenge is starkly highlighted. Our results, validated by our VLM metric, confirm unbranding is a distinct, practically relevant problem requiring specialized techniques. Project Page: https://gmum.github.io/UNBRANDING/.

Authors:Alban Gauthier, Valentin Deschaintre, Alexandre Lanvin, Fredo Durand, Adrien Bousseau, George Drettakis
Title: An evaluation of SVBRDF Prediction from Generative Image Models for Appearance Modeling of 3D Scenes
Abstract:
Digital content creation is experiencing a profound change with the advent of deep generative models. For texturing, conditional image generators now allow the synthesis of realistic RGB images of a 3D scene that align with the geometry of that scene. For appearance modeling, SVBRDF prediction networks recover material parameters from RGB images. Combining these technologies allows us to quickly generate SVBRDF maps for multiple views of a 3D scene, which can be merged to form a SVBRDF texture atlas of that scene. In this paper, we analyze the challenges and opportunities for SVBRDF prediction in the context of such a fast appearance modeling pipeline. On the one hand, single-view SVBRDF predictions might suffer from multiview incoherence and yield inconsistent texture atlases. On the other hand, generated RGB images, and the different modalities on which they are conditioned, can provide additional information for SVBRDF estimation compared to photographs. We compare neural architectures and conditions to identify designs that achieve high accuracy and coherence. We find that, surprisingly, a standard UNet is competitive with more complex designs. Project page: http://repo-sam.inria.fr/nerphys/svbrdf-evaluation

Authors:Jitesh Jain, Jialuo Li, Zixian Ma, Jieyu Zhang, Chris Dongjoo Kim, Sangho Lee, Rohun Tripathi, Tanmay Gupta, Christopher Clark, Humphrey Shi
Title: SAGE: Training Smart Any-Horizon Agents for Long Video Reasoning with Reinforcement Learning
Abstract:
As humans, we are natural any-horizon reasoners, i.e., we can decide whether to iteratively skim long videos or watch short ones in full when necessary for a given task. With this in mind, one would expect video reasoning models to reason flexibly across different durations. However, SOTA models are still trained to predict answers in a single turn while processing a large number of frames, akin to watching an entire long video, requiring significant resources. This raises the question: Is it possible to develop performant any-horizon video reasoning systems? Inspired by human behavior, we first propose SAGE, an agent system that performs multi-turn reasoning on long videos while handling simpler problems in a single turn. Secondly, we introduce an easy synthetic data generation pipeline using Gemini-2.5-Flash to train the orchestrator, SAGE-MM, which lies at the core of SAGE. We further propose an effective RL post-training recipe essential for instilling any-horizon reasoning ability in SAGE-MM. Thirdly, we curate SAGE-Bench with an average duration of greater than 700 seconds for evaluating video reasoning ability in real-world entertainment use cases. Lastly, we empirically validate the effectiveness of our system, data, and RL recipe, observing notable improvements of up to 6.1% on open-ended video reasoning tasks, as well as an impressive 8.2% improvement on videos longer than 10 minutes.

Authors:Wenda Li, Meng Wu, Sungmin Eum, Heesung Kwon, Qing Qu
Title: Coarse-to-Fine Hierarchical Alignment for UAV-based Human Detection using Diffusion Models
Abstract:
Training object detectors demands extensive, task-specific annotations, yet this requirement becomes impractical in UAV-based human detection due to constantly shifting target distributions and the scarcity of labeled images. As a remedy, synthetic simulators are adopted to generate annotated data, with a low annotation cost. However, the domain gap between synthetic and real images hinders the model from being effectively applied to the target domain. Accordingly, we introduce Coarse-to-Fine Hierarchical Alignment (CFHA), a three-stage diffusion-based framework designed to transform synthetic data for UAV-based human detection, narrowing the domain gap while preserving the original synthetic labels. CFHA explicitly decouples global style and local content domain discrepancies and bridges those gaps using three modules: (1) Global Style Transfer -- a diffusion model aligns color, illumination, and texture statistics of synthetic images to the realistic style, using only a small real reference set; (2) Local Refinement -- a super-resolution diffusion model is used to facilitate fine-grained and photorealistic details for the small objects, such as human instances, preserving shape and boundary integrity; (3) Hallucination Removal -- a module that filters out human instances whose visual attributes do not align with real-world data to make the human appearance closer to the target distribution. Extensive experiments on public UAV Sim2Real detection benchmarks demonstrate that our methods significantly improve the detection accuracy compared to the non-transformed baselines. Specifically, our method achieves up to $+14.1$ improvement of mAP50 on Semantic-Drone benchmark. Ablation studies confirm the complementary roles of the global and local stages and highlight the importance of hierarchical alignment. The code is released at \href{https://github.com/liwd190019/CFHA}{this url}.

Authors:Yannan He, Garvita Tiwari, Xiaohan Zhang, Pankaj Bora, Tolga Birdal, Jan Eric Lenssen, Gerard Pons-Moll
Title: MoLingo: Motion-Language Alignment for Text-to-Motion Generation
Abstract:
We introduce MoLingo, a text-to-motion (T2M) model that generates realistic, lifelike human motion by denoising in a continuous latent space. Recent works perform latent space diffusion, either on the whole latent at once or auto-regressively over multiple latents. In this paper, we study how to make diffusion on continuous motion latents work best. We focus on two questions: (1) how to build a semantically aligned latent space so diffusion becomes more effective, and (2) how to best inject text conditioning so the motion follows the description closely. We propose a semantic-aligned motion encoder trained with frame-level text labels so that latents with similar text meaning stay close, which makes the latent space more diffusion-friendly. We also compare single-token conditioning with a multi-token cross-attention scheme and find that cross-attention gives better motion realism and text-motion alignment. With semantically aligned latents, auto-regressive generation, and cross-attention text conditioning, our model sets a new state of the art in human motion generation on standard metrics and in a user study. We will release our code and models for further research and downstream usage.

Authors:Huaiyuan Xiao, Fadi Dornaika, Jingjun Bi
Title: Enhancing Semi-Supervised Multi-View Graph Convolutional Networks via Supervised Contrastive Learning and Self-Training
Abstract:
The advent of graph convolutional network (GCN)-based multi-view learning provides a powerful framework for integrating structural information from heterogeneous views, enabling effective modeling of complex multi-view data. However, existing methods often fail to fully exploit the complementary information across views, leading to suboptimal feature representations and limited performance. To address this, we propose MV-SupGCN, a semi-supervised GCN model that integrates several complementary components with clear motivations and mutual reinforcement. First, to better capture discriminative features and improve model generalization, we design a joint loss function that combines Cross-Entropy loss with Supervised Contrastive loss, encouraging the model to simultaneously minimize intra-class variance and maximize inter-class separability in the latent space. Second, recognizing the instability and incompleteness of single graph construction methods, we combine both KNN-based and semi-supervised graph construction approaches on each view, thereby enhancing the robustness of the data structure representation and reducing generalization error. Third, to effectively utilize abundant unlabeled data and enhance semantic alignment across multiple views, we propose a unified framework that integrates contrastive learning in order to enforce consistency among multi-view embeddings and capture meaningful inter-view relationships, together with pseudo-labeling, which provides additional supervision applied to both the cross-entropy and contrastive loss functions to enhance model generalization. Extensive experiments demonstrate that MV-SupGCN consistently surpasses state-of-the-art methods across multiple benchmarks, validating the effectiveness of our integrated approach. The source code is available at https://github.com/HuaiyuanXiao/MVSupGCN

Authors:Md. Najib Hasan, Imran Ahmad, Sourav Basak Shuvo, Md. Mahadi Hasan Ankon, Sunanda Das, Nazmul Siddique, Hui Wang
Title: DL$^3$M: A Vision-to-Language Framework for Expert-Level Medical Reasoning through Deep Learning and Large Language Models
Abstract:
Medical image classifiers detect gastrointestinal diseases well, but they do not explain their decisions. Large language models can generate clinical text, yet they struggle with visual reasoning and often produce unstable or incorrect explanations. This leaves a gap between what a model sees and the type of reasoning a clinician expects. We introduce a framework that links image classification with structured clinical reasoning. A new hybrid model, MobileCoAtNet, is designed for endoscopic images and achieves high accuracy across eight stomach-related classes. Its outputs are then used to drive reasoning by several LLMs. To judge this reasoning, we build two expert-verified benchmarks covering causes, symptoms, treatment, lifestyle, and follow-up care. Thirty-two LLMs are evaluated against these gold standards. Strong classification improves the quality of their explanations, but none of the models reach human-level stability. Even the best LLMs change their reasoning when prompts vary. Our study shows that combining DL with LLMs can produce useful clinical narratives, but current LLMs remain unreliable for high-stakes medical decisions. The framework provides a clearer view of their limits and a path for building safer reasoning systems. The complete source code and datasets used in this study are available at https://github.com/souravbasakshuvo/DL3M.

Authors:Susung Hong, Chongjian Ge, Zhifei Zhang, Jui-Hsien Wang
Title: DiffusionBrowser: Interactive Diffusion Previews via Multi-Branch Decoders
Abstract:
Video diffusion models have revolutionized generative video synthesis, but they are imprecise, slow, and can be opaque during generation -- keeping users in the dark for a prolonged period. In this work, we propose DiffusionBrowser, a model-agnostic, lightweight decoder framework that allows users to interactively generate previews at any point (timestep or transformer block) during the denoising process. Our model can generate multi-modal preview representations that include RGB and scene intrinsics at more than 4$\times$ real-time speed (less than 1 second for a 4-second video) that convey consistent appearance and motion to the final video. With the trained decoder, we show that it is possible to interactively guide the generation at intermediate noise steps via stochasticity reinjection and modal steering, unlocking a new control capability. Moreover, we systematically probe the model using the learned decoders, revealing how scene, object, and other details are composed and assembled during the otherwise black-box denoising process.

Authors:Yuanwen Yue, Damien Robert, Jianyuan Wang, Sunghwan Hong, Jan Dirk Wegner, Christian Rupprecht, Konrad Schindler
Title: LitePT: Lighter Yet Stronger Point Transformer
Abstract:
Modern neural architectures for 3D point cloud processing contain both convolutional layers and attention blocks, but the best way to assemble them remains unclear. We analyse the role of different computational blocks in 3D point cloud networks and find an intuitive behaviour: convolution is adequate to extract low-level geometry at high-resolution in early layers, where attention is expensive without bringing any benefits; attention captures high-level semantics and context in low-resolution, deep layers more efficiently. Guided by this design principle, we propose a new, improved 3D point cloud backbone that employs convolutions in early stages and switches to attention for deeper layers. To avoid the loss of spatial layout information when discarding redundant convolution layers, we introduce a novel, training-free 3D positional encoding, PointROPE. The resulting LitePT model has $3.6\times$ fewer parameters, runs $2\times$ faster, and uses $2\times$ less memory than the state-of-the-art Point Transformer V3, but nonetheless matches or even outperforms it on a range of tasks and datasets. Code and models are available at: https://github.com/prs-eth/LitePT.

Authors:Jingfeng Yao, Yuda Song, Yucong Zhou, Xinggang Wang
Title: Towards Scalable Pre-training of Visual Tokenizers for Generation
Abstract:
The quality of the latent space in visual tokenizers (e.g., VAEs) is crucial for modern generative models. However, the standard reconstruction-based training paradigm produces a latent space that is biased towards low-level information, leading to a foundation flaw: better pixel-level accuracy does not lead to higher-quality generation. This implies that pouring extensive compute into visual tokenizer pre-training translates poorly to improved performance in generation. We identify this as the ``pre-training scaling problem`` and suggest a necessary shift: to be effective for generation, a latent space must concisely represent high-level semantics. We present VTP, a unified visual tokenizer pre-training framework, pioneering the joint optimization of image-text contrastive, self-supervised, and reconstruction losses. Our large-scale study reveals two principal findings: (1) understanding is a key driver of generation, and (2) much better scaling properties, where generative performance scales effectively with compute, parameters, and data allocated to the pretraining of the visual tokenizer. After large-scale pre-training, our tokenizer delivers a competitive profile (78.2 zero-shot accuracy and 0.36 rFID on ImageNet) and 4.1 times faster convergence on generation compared to advanced distillation methods. More importantly, it scales effectively: without modifying standard DiT training specs, solely investing more FLOPS in pretraining VTP achieves 65.8\% FID improvement in downstream generation, while conventional autoencoder stagnates very early at 1/10 FLOPS. Our pre-trained models are available at https://github.com/MiniMax-AI/VTP.

Authors:Lu Ling, Yunhao Ge, Yichen Sheng, Aniket Bera
Title: I-Scene: 3D Instance Models are Implicit Generalizable Spatial Learners
Abstract:
Generalization remains the central challenge for interactive 3D scene generation. Existing learning-based approaches ground spatial understanding in limited scene dataset, restricting generalization to new layouts. We instead reprogram a pre-trained 3D instance generator to act as a scene level learner, replacing dataset-bounded supervision with model-centric spatial supervision. This reprogramming unlocks the generator transferable spatial knowledge, enabling generalization to unseen layouts and novel object compositions. Remarkably, spatial reasoning still emerges even when the training scenes are randomly composed objects. This demonstrates that the generator's transferable scene prior provides a rich learning signal for inferring proximity, support, and symmetry from purely geometric cues. Replacing widely used canonical space, we instantiate this insight with a view-centric formulation of the scene space, yielding a fully feed-forward, generalizable scene generator that learns spatial relations directly from the instance model. Quantitative and qualitative results show that a 3D instance generator is an implicit spatial learner and reasoner, pointing toward foundation models for interactive 3D scene understanding and generation. Project page: https://luling06.github.io/I-Scene-project/

Authors:Tianye Ding, Yiming Xie, Yiqing Liang, Moitreya Chatterjee, Pedro Miraldo, Huaizu Jiang
Title: LASER: Layer-wise Scale Alignment for Training-Free Streaming 4D Reconstruction
Abstract:
Recent feed-forward reconstruction models like VGGT and $π^3$ achieve impressive reconstruction quality but cannot process streaming videos due to quadratic memory complexity, limiting their practical deployment. While existing streaming methods address this through learned memory mechanisms or causal attention, they require extensive retraining and may not fully leverage the strong geometric priors of state-of-the-art offline models. We propose LASER, a training-free framework that converts an offline reconstruction model into a streaming system by aligning predictions across consecutive temporal windows. We observe that simple similarity transformation ($\mathrm{Sim}(3)$) alignment fails due to layer depth misalignment: monocular scale ambiguity causes relative depth scales of different scene layers to vary inconsistently between windows. To address this, we introduce layer-wise scale alignment, which segments depth predictions into discrete layers, computes per-layer scale factors, and propagates them across both adjacent windows and timestamps. Extensive experiments show that LASER achieves state-of-the-art performance on camera pose estimation and point map reconstruction %quality with offline models while operating at 14 FPS with 6 GB peak memory on a RTX A6000 GPU, enabling practical deployment for kilometer-scale streaming videos. Project website: $\href{https://neu-vi.github.io/LASER/}{\texttt{https://neu-vi.github.io/LASER/}}$

Authors:Ziqi Ma, Hongqiao Chen, Yisong Yue, Georgia Gkioxari
Title: Feedforward 3D Editing via Text-Steerable Image-to-3D
Abstract:
Recent progress in image-to-3D has opened up immense possibilities for design, AR/VR, and robotics. However, to use AI-generated 3D assets in real applications, a critical requirement is the capability to edit them easily. We present a feedforward method, Steer3D, to add text steerability to image-to-3D models, which enables editing of generated 3D assets with language. Our approach is inspired by ControlNet, which we adapt to image-to-3D generation to enable text steering directly in a forward pass. We build a scalable data engine for automatic data generation, and develop a two-stage training recipe based on flow-matching training and Direct Preference Optimization (DPO). Compared to competing methods, Steer3D more faithfully follows the language instruction and maintains better consistency with the original 3D asset, while being 2.4x to 28.5x faster. Steer3D demonstrates that it is possible to add a new modality (text) to steer the generation of pretrained image-to-3D generative models with 100k data. Project website: https://glab-caltech.github.io/steer3d/

Authors:Xiaohu Huang, Hao Zhou, Qiangpeng Yang, Shilei Wen, Kai Han
Title: JoVA: Unified Multimodal Learning for Joint Video-Audio Generation
Abstract:
In this paper, we present JoVA, a unified framework for joint video-audio generation. Despite recent encouraging advances, existing methods face two critical limitations. First, most existing approaches can only generate ambient sounds and lack the capability to produce human speech synchronized with lip movements. Second, recent attempts at unified human video-audio generation typically rely on explicit fusion or modality-specific alignment modules, which introduce additional architecture design and weaken the model simplicity of the original transformers. To address these issues, JoVA employs joint self-attention across video and audio tokens within each transformer layer, enabling direct and efficient cross-modal interaction without the need for additional alignment modules. Furthermore, to enable high-quality lip-speech synchronization, we introduce a simple yet effective mouth-area loss based on facial keypoint detection, which enhances supervision on the critical mouth region during training without compromising architectural simplicity. Extensive experiments on benchmarks demonstrate that JoVA outperforms or is competitive with both unified and audio-driven state-of-the-art methods in lip-sync accuracy, speech quality, and overall video-audio generation fidelity. Our results establish JoVA as an elegant framework for high-quality multimodal generation.

Authors:Kunhee Kim, NaHyeon Park, Kibeom Hong, Hyunjung Shim
Title: Directional Textual Inversion for Personalized Text-to-Image Generation
Abstract:
Textual Inversion (TI) is an efficient approach to text-to-image personalization but often fails on complex prompts. We trace these failures to embedding norm inflation: learned tokens drift to out-of-distribution magnitudes, degrading prompt conditioning in pre-norm Transformers. Empirically, we show semantics are primarily encoded by direction in CLIP token space, while inflated norms harm contextualization; theoretically, we analyze how large magnitudes attenuate positional information and hinder residual updates in pre-norm blocks. We propose Directional Textual Inversion (DTI), which fixes the embedding magnitude to an in-distribution scale and optimizes only direction on the unit hypersphere via Riemannian SGD. We cast direction learning as MAP with a von Mises-Fisher prior, yielding a constant-direction prior gradient that is simple and efficient to incorporate. Across personalization tasks, DTI improves text fidelity over TI and TI-variants while maintaining subject similarity. Crucially, DTI's hyperspherical parameterization enables smooth, semantically coherent interpolation between learned concepts (slerp), a capability that is absent in standard TI. Our findings suggest that direction-only optimization is a robust and scalable path for prompt-faithful personalization.

Authors:Enshen Zhou, Cheng Chi, Yibo Li, Jingkun An, Jiayuan Zhang, Shanyu Rong, Yi Han, Yuheng Ji, Mengzhen Liu, Pengwei Wang, Zhongyuan Wang, Lu Sheng, Shanghang Zhang
Title: RoboTracer: Mastering Spatial Trace with Reasoning in Vision-Language Models for Robotics
Abstract:
Spatial tracing, as a fundamental embodied interaction ability for robots, is inherently challenging as it requires multi-step metric-grounded reasoning compounded with complex spatial referring and real-world metric measurement. However, existing methods struggle with this compositional task. To this end, we propose RoboTracer, a 3D-aware VLM that first achieves both 3D spatial referring and measuring via a universal spatial encoder and a regression-supervised decoder to enhance scale awareness during supervised fine-tuning (SFT). Moreover, RoboTracer advances multi-step metric-grounded reasoning via reinforcement fine-tuning (RFT) with metric-sensitive process rewards, supervising key intermediate perceptual cues to accurately generate spatial traces. To support SFT and RFT training, we introduce TraceSpatial, a large-scale dataset of 30M QA pairs, spanning outdoor/indoor/tabletop scenes and supporting complex reasoning processes (up to 9 steps). We further present TraceSpatial-Bench, a challenging benchmark filling the gap to evaluate spatial tracing. Experimental results show that RoboTracer surpasses baselines in spatial understanding, measuring, and referring, with an average success rate of 79.1%, and also achieves SOTA performance on TraceSpatial-Bench by a large margin, exceeding Gemini-2.5-Pro by 36% accuracy. Notably, RoboTracer can be integrated with various control policies to execute long-horizon, dynamic tasks across diverse robots (UR5, G1 humanoid) in cluttered real-world scenes.

Authors:Haoyu Fu, Diankun Zhang, Zongchuang Zhao, Jianfeng Cui, Hongwei Xie, Bing Wang, Guang Chen, Dingkang Liang, Xiang Bai
Title: MindDrive: A Vision-Language-Action Model for Autonomous Driving via Online Reinforcement Learning
Abstract:
Current Vision-Language-Action (VLA) paradigms in autonomous driving primarily rely on Imitation Learning (IL), which introduces inherent challenges such as distribution shift and causal confusion. Online Reinforcement Learning offers a promising pathway to address these issues through trial-and-error learning. However, applying online reinforcement learning to VLA models in autonomous driving is hindered by inefficient exploration in continuous action spaces. To overcome this limitation, we propose MindDrive, a VLA framework comprising a large language model (LLM) with two distinct sets of LoRA parameters. The one LLM serves as a Decision Expert for scenario reasoning and driving decision-making, while the other acts as an Action Expert that dynamically maps linguistic decisions into feasible trajectories. By feeding trajectory-level rewards back into the reasoning space, MindDrive enables trial-and-error learning over a finite set of discrete linguistic driving decisions, instead of operating directly in a continuous action space. This approach effectively balances optimal decision-making in complex scenarios, human-like driving behavior, and efficient exploration in online reinforcement learning. Using the lightweight Qwen-0.5B LLM, MindDrive achieves Driving Score (DS) of 78.04 and Success Rate (SR) of 55.09% on the challenging Bench2Drive benchmark. To the best of our knowledge, this is the first work to demonstrate the effectiveness of online reinforcement learning for the VLA model in autonomous driving.

Authors:Junchao Zhu, Ruining Deng, Junlin Guo, Tianyuan Yao, Chongyu Qu, Juming Xiong, Siqi Lu, Zhengyi Lu, Yanfan Zhu, Marilyn Lionts, Yuechen Yang, Yalin Zheng, Yu Wang, Shilin Zhao, Haichun Yang, Yuankai Huo
Title: SCR2-ST: Combine Single Cell with Spatial Transcriptomics for Efficient Active Sampling via Reinforcement Learning
Abstract:
Spatial transcriptomics (ST) is an emerging technology that enables researchers to investigate the molecular relationships underlying tissue morphology. However, acquiring ST data remains prohibitively expensive, and traditional fixed-grid sampling strategies lead to redundant measurements of morphologically similar or biologically uninformative regions, thus resulting in scarce data that constrain current methods. The well-established single-cell sequencing field, however, could provide rich biological data as an effective auxiliary source to mitigate this limitation. To bridge these gaps, we introduce SCR2-ST, a unified framework that leverages single-cell prior knowledge to guide efficient data acquisition and accurate expression prediction. SCR2-ST integrates a single-cell guided reinforcement learning-based (SCRL) active sampling and a hybrid regression-retrieval prediction network SCR2Net. SCRL combines single-cell foundation model embeddings with spatial density information to construct biologically grounded reward signals, enabling selective acquisition of informative tissue regions under constrained sequencing budgets. SCR2Net then leverages the actively sampled data through a hybrid architecture combining regression-based modeling with retrieval-augmented inference, where a majority cell-type filtering mechanism suppresses noisy matches and retrieved expression profiles serve as soft labels for auxiliary supervision. We evaluated SCR2-ST on three public ST datasets, demonstrating SOTA performance in both sampling efficiency and prediction accuracy, particularly under low-budget scenarios. Code is publicly available at: https://github.com/hrlblab/SCR2ST

Authors:Jianxiong Gao, Zhaoxi Chen, Xian Liu, Junhao Zhuang, Chengming Xu, Jianfeng Feng, Yu Qiao, Yanwei Fu, Chenyang Si, Ziwei Liu
Title: LongVie 2: Multimodal Controllable Ultra-Long Video World Model
Abstract:
Building video world models upon pretrained video generation systems represents an important yet challenging step toward general spatiotemporal intelligence. A world model should possess three essential properties: controllability, long-term visual quality, and temporal consistency. To this end, we take a progressive approach-first enhancing controllability and then extending toward long-term, high-quality generation. We present LongVie 2, an end-to-end autoregressive framework trained in three stages: (1) Multi-modal guidance, which integrates dense and sparse control signals to provide implicit world-level supervision and improve controllability; (2) Degradation-aware training on the input frame, bridging the gap between training and long-term inference to maintain high visual quality; and (3) History-context guidance, which aligns contextual information across adjacent clips to ensure temporal consistency. We further introduce LongVGenBench, a comprehensive benchmark comprising 100 high-resolution one-minute videos covering diverse real-world and synthetic environments. Extensive experiments demonstrate that LongVie 2 achieves state-of-the-art performance in long-range controllability, temporal coherence, and visual fidelity, and supports continuous video generation lasting up to five minutes, marking a significant step toward unified video world modeling.

Authors:Haoyue Zhang, Meera Chappidi, Erolcan Sayar, Helen Richards, Zhijun Chen, Lucas Liu, Roxanne Wadia, Peter A Humphrey, Fady Ghali, Alberto Contreras-Sanz, Peter Black, Jonathan Wright, Stephanie Harmon, Michael Haffner
Title: DA-SSL: self-supervised domain adaptor to leverage foundational models in turbt histopathology slides
Abstract:
Recent deep learning frameworks in histopathology, particularly multiple instance learning (MIL) combined with pathology foundational models (PFMs), have shown strong performance. However, PFMs exhibit limitations on certain cancer or specimen types due to domain shifts - these cancer types were rarely used for pretraining or specimens contain tissue-based artifacts rarely seen within the pretraining population. Such is the case for transurethral resection of bladder tumor (TURBT), which are essential for diagnosing muscle-invasive bladder cancer (MIBC), but contain fragmented tissue chips and electrocautery artifacts and were not widely used in publicly available PFMs. To address this, we propose a simple yet effective domain-adaptive self-supervised adaptor (DA-SSL) that realigns pretrained PFM features to the TURBT domain without fine-tuning the foundational model itself. We pilot this framework for predicting treatment response in TURBT, where histomorphological features are currently underutilized and identifying patients who will benefit from neoadjuvant chemotherapy (NAC) is challenging. In our multi-center study, DA-SSL achieved an AUC of 0.77+/-0.04 in five-fold cross-validation and an external test accuracy of 0.84, sensitivity of 0.71, and specificity of 0.91 using majority voting. Our results demonstrate that lightweight domain adaptation with self-supervision can effectively enhance PFM-based MIL pipelines for clinically challenging histopathology tasks. Code is Available at https://github.com/zhanghaoyue/DA_SSL_TURBT.

Authors:Fu-Yun Wang, Hao Zhou, Liangzhe Yuan, Sanghyun Woo, Boqing Gong, Bohyung Han, Ming-Hsuan Yang, Han Zhang, Yukun Zhu, Ting Liu, Long Zhao
Title: Image Diffusion Preview with Consistency Solver
Abstract:
The slow inference process of image diffusion models significantly degrades interactive user experiences. To address this, we introduce Diffusion Preview, a novel paradigm employing rapid, low-step sampling to generate preliminary outputs for user evaluation, deferring full-step refinement until the preview is deemed satisfactory. Existing acceleration methods, including training-free solvers and post-training distillation, struggle to deliver high-quality previews or ensure consistency between previews and final outputs. We propose ConsistencySolver derived from general linear multistep methods, a lightweight, trainable high-order solver optimized via Reinforcement Learning, that enhances preview quality and consistency. Experimental results demonstrate that ConsistencySolver significantly improves generation quality and consistency in low-step scenarios, making it ideal for efficient preview-and-refine workflows. Notably, it achieves FID scores on-par with Multistep DPM-Solver using 47% fewer steps, while outperforming distillation baselines. Furthermore, user studies indicate our approach reduces overall user interaction time by nearly 50% while maintaining generation quality. Code is available at https://github.com/G-U-N/consolver.

Authors:Marianne Rakic, Siyu Gai, Etienne Chollet, John V. Guttag, Adrian V. Dalca
Title: Pancakes: Consistent Multi-Protocol Image Segmentation Across Biomedical Domains
Abstract:
A single biomedical image can be meaningfully segmented in multiple ways, depending on the desired application. For instance, a brain MRI can be segmented according to tissue types, vascular territories, broad anatomical regions, fine-grained anatomy, or pathology, etc. Existing automatic segmentation models typically either (1) support only a single protocol, the one they were trained on, or (2) require labor-intensive manual prompting to specify the desired segmentation. We introduce Pancakes, a framework that, given a new image from a previously unseen domain, automatically generates multi-label segmentation maps for multiple plausible protocols, while maintaining semantic consistency across related images. Pancakes introduces a new problem formulation that is not currently attainable by existing foundation models. In a series of experiments on seven held-out datasets, we demonstrate that our model can significantly outperform existing foundation models in producing several plausible whole-image segmentations, that are semantically coherent across images.

Authors:Piyush Bagad, Andrew Zisserman
Title: TARA: Simple and Efficient Time Aware Retrieval Adaptation of MLLMs for Video Understanding
Abstract:
Our objective is to build a general time-aware video-text embedding model for retrieval. To that end, we propose a simple and efficient recipe, dubbed TARA (Time Aware Retrieval Adaptation), to adapt Multimodal LLMs (MLLMs) to a time-aware video-text embedding model without using any video data at all. For evaluating time-awareness in retrieval, we propose a new benchmark with temporally opposite (chiral) actions as hard negatives and curated splits for chiral and non-chiral actions. We show that TARA outperforms all existing video-text models on this chiral benchmark while also achieving strong results on standard benchmarks. Furthermore, we discover additional benefits of TARA beyond time-awareness: (i) TARA embeddings are negation-aware as shown in NegBench benchmark that evaluates negation in video retrieval, (ii) TARA achieves state of the art performance on verb and adverb understanding in videos. Overall, TARA yields a strong, versatile, time-aware video-text embedding model with state of the art zero-shot performance.

Authors:Jiangning Zhang, Junwei Zhu, Zhenye Gan, Donghao Luo, Chuming Lin, Feifan Xu, Xu Peng, Jianlong Hu, Yuansen Liu, Yijia Hong, Weijian Cao, Han Feng, Xu Chen, Chencan Fu, Keke He, Xiaobin Hu, Chengjie Wang
Title: Soul: Breathe Life into Digital Human for High-fidelity Long-term Multimodal Animation
Abstract:
We propose a multimodal-driven framework for high-fidelity long-term digital human animation termed $\textbf{Soul}$, which generates semantically coherent videos from a single-frame portrait image, text prompts, and audio, achieving precise lip synchronization, vivid facial expressions, and robust identity preservation. We construct Soul-1M, containing 1 million finely annotated samples with a precise automated annotation pipeline (covering portrait, upper-body, full-body, and multi-person scenes) to mitigate data scarcity, and we carefully curate Soul-Bench for comprehensive and fair evaluation of audio-/text-guided animation methods. The model is built on the Wan2.2-5B backbone, integrating audio-injection layers and multiple training strategies together with threshold-aware codebook replacement to ensure long-term generation consistency. Meanwhile, step/CFG distillation and a lightweight VAE are used to optimize inference efficiency, achieving an 11.4$\times$ speedup with negligible quality loss. Extensive experiments show that Soul significantly outperforms current leading open-source and commercial models on video quality, video-text alignment, identity preservation, and lip-synchronization accuracy, demonstrating broad applicability in real-world scenarios such as virtual anchors and film production. Project page at https://zhangzjn.github.io/projects/Soul/

Authors:Jiangning Zhang, Junwei Zhu, Teng Hu, Yabiao Wang, Donghao Luo, Weijian Cao, Zhenye Gan, Xiaobin Hu, Zhucun Xue, Chengjie Wang
Title: Transform Trained Transformer: Accelerating Naive 4K Video Generation Over 10$\times$
Abstract:
Native 4K (2160$\times$3840) video generation remains a critical challenge due to the quadratic computational explosion of full-attention as spatiotemporal resolution increases, making it difficult for models to strike a balance between efficiency and quality. This paper proposes a novel Transformer retrofit strategy termed $\textbf{T3}$ ($\textbf{T}$ransform $\textbf{T}$rained $\textbf{T}$ransformer) that, without altering the core architecture of full-attention pretrained models, significantly reduces compute requirements by optimizing their forward logic. Specifically, $\textbf{T3-Video}$ introduces a multi-scale weight-sharing window attention mechanism and, via hierarchical blocking together with an axis-preserving full-attention design, can effect an "attention pattern" transformation of a pretrained model using only modest compute and data. Results on 4K-VBench show that $\textbf{T3-Video}$ substantially outperforms existing approaches: while delivering performance improvements (+4.29$\uparrow$ VQA and +0.08$\uparrow$ VTC), it accelerates native 4K video generation by more than 10$\times$. Project page at https://zhangzjn.github.io/projects/T3-Video

Authors:Thalyssa Baiocco-Rodrigues, Antoine Olivier, Reda Belbahri, Thomas Duboudin, Pierre-Antoine Bannier, Benjamin Adjadj, Katharina Von Loga, Nathan Noiry, Maxime Touzot, Hector Roux de Bezieux
Title: IMILIA: interpretable multiple instance learning for inflammation prediction in IBD from H&E whole slide images
Abstract:
As the therapeutic target for Inflammatory Bowel Disease (IBD) shifts toward histologic remission, the accurate assessment of microscopic inflammation has become increasingly central for evaluating disease activity and response to treatment. In this work, we introduce IMILIA (Interpretable Multiple Instance Learning for Inflammation Analysis), an end-to-end framework designed for the prediction of inflammation presence in IBD digitized slides stained with hematoxylin and eosin (H&E), followed by the automated computation of markers characterizing tissue regions driving the predictions. IMILIA is composed of an inflammation prediction module, consisting of a Multiple Instance Learning (MIL) model, and an interpretability module, divided in two blocks: HistoPLUS, for cell instance detection, segmentation and classification; and EpiSeg, for epithelium segmentation. IMILIA achieves a cross-validation ROC-AUC of 0.83 on the discovery cohort, and a ROC-AUC of 0.99 and 0.84 on two external validation cohorts. The interpretability module yields biologically consistent insights: tiles with higher predicted scores show increased densities of immune cells (lymphocytes, plasmocytes, neutrophils and eosinophils), whereas lower-scored tiles predominantly contain normal epithelial cells. Notably, these patterns were consistent across all datasets. Code and models to partially replicate the results on the public IBDColEpi dataset can be found at https://github.com/owkin/imilia.

Authors:Noa Cohen, Nurit Spingarn-Eliezer, Inbar Huberman-Spiegelglas, Tomer Michaeli
Title: MineTheGap: Automatic Mining of Biases in Text-to-Image Models
Abstract:
Text-to-Image (TTI) models generate images based on text prompts, which often leave certain aspects of the desired image ambiguous. When faced with these ambiguities, TTI models have been shown to exhibit biases in their interpretations. These biases can have societal impacts, e.g., when showing only a certain race for a stated occupation. They can also affect user experience when creating redundancy within a set of generated images instead of spanning diverse possibilities. Here, we introduce MineTheGap - a method for automatically mining prompts that cause a TTI model to generate biased outputs. Our method goes beyond merely detecting bias for a given prompt. Rather, it leverages a genetic algorithm to iteratively refine a pool of prompts, seeking for those that expose biases. This optimization process is driven by a novel bias score, which ranks biases according to their severity, as we validate on a dataset with known biases. For a given prompt, this score is obtained by comparing the distribution of generated images to the distribution of LLM-generated texts that constitute variations on the prompt. Code and examples are available on the project's webpage.

Authors:Qingyu Shi, Size Wu, Jinbin Bai, Kaidong Yu, Yujing Wang, Yunhai Tong, Xiangtai Li, Xuelong Li
Title: RecTok: Reconstruction Distillation along Rectified Flow
Abstract:
Visual tokenizers play a crucial role in diffusion models. The dimensionality of latent space governs both reconstruction fidelity and the semantic expressiveness of the latent feature. However, a fundamental trade-off is inherent between dimensionality and generation quality, constraining existing methods to low-dimensional latent spaces. Although recent works have leveraged vision foundation models to enrich the semantics of visual tokenizers and accelerate convergence, high-dimensional tokenizers still underperform their low-dimensional counterparts. In this work, we propose RecTok, which overcomes the limitations of high-dimensional visual tokenizers through two key innovations: flow semantic distillation and reconstruction--alignment distillation. Our key insight is to make the forward flow in flow matching semantically rich, which serves as the training space of diffusion transformers, rather than focusing on the latent space as in previous works. Specifically, our method distills the semantic information in VFMs into the forward flow trajectories in flow matching. And we further enhance the semantics by introducing a masked feature reconstruction loss. Our RecTok achieves superior image reconstruction, generation quality, and discriminative performance. It achieves state-of-the-art results on the gFID-50K under both with and without classifier-free guidance settings, while maintaining a semantically rich latent space structure. Furthermore, as the latent dimensionality increases, we observe consistent improvements. Code and model are available at https://shi-qingyu.github.io/rectok.github.io.

Authors:Ahmed Abul Hasanaath, Hamzah Luqman
Title: USTM: Unified Spatial and Temporal Modeling for Continuous Sign Language Recognition
Abstract:
Continuous sign language recognition (CSLR) requires precise spatio-temporal modeling to accurately recognize sequences of gestures in videos. Existing frameworks often rely on CNN-based spatial backbones combined with temporal convolution or recurrent modules. These techniques fail in capturing fine-grained hand and facial cues and modeling long-range temporal dependencies. To address these limitations, we propose the Unified Spatio-Temporal Modeling (USTM) framework, a spatio-temporal encoder that effectively models complex patterns using a combination of a Swin Transformer backbone enhanced with lightweight temporal adapter with positional embeddings (TAPE). Our framework captures fine-grained spatial features alongside short and long-term temporal context, enabling robust sign language recognition from RGB videos without relying on multi-stream inputs or auxiliary modalities. Extensive experiments on benchmarked datasets including PHOENIX14, PHOENIX14T, and CSL-Daily demonstrate that USTM achieves state-of-the-art performance against RGB-based as well as multi-modal CSLR approaches, while maintaining competitive performance against multi-stream approaches. These results highlight the strength and efficacy of the USTM framework for CSLR. The code is available at https://github.com/gufranSabri/USTM

Authors:Patryk Niżeniec, Marcin Iwanowski
Title: Computer vision training dataset generation for robotic environments using Gaussian splatting
Abstract:
This paper introduces a novel pipeline for generating large-scale, highly realistic, and automatically labeled datasets for computer vision tasks in robotic environments. Our approach addresses the critical challenges of the domain gap between synthetic and real-world imagery and the time-consuming bottleneck of manual annotation. We leverage 3D Gaussian Splatting (3DGS) to create photorealistic representations of the operational environment and objects. These assets are then used in a game engine where physics simulations create natural arrangements. A novel, two-pass rendering technique combines the realism of splats with a shadow map generated from proxy meshes. This map is then algorithmically composited with the image to add both physically plausible shadows and subtle highlights, significantly enhancing realism. Pixel-perfect segmentation masks are generated automatically and formatted for direct use with object detection models like YOLO. Our experiments show that a hybrid training strategy, combining a small set of real images with a large volume of our synthetic data, yields the best detection and segmentation performance, confirming this as an optimal strategy for efficiently achieving robust and accurate models.

Authors:Lorenzo Pettinari, Sidaty El Hadramy, Michael Wehrli, Philippe C. Cattin, Daniel Studer, Carol C. Hasler, Maria Licci
Title: End2Reg: Learning Task-Specific Segmentation for Markerless Registration in Spine Surgery
Abstract:
Purpose: Intraoperative navigation in spine surgery demands millimeter-level accuracy. Current systems based on intraoperative radiographic imaging and bone-anchored markers are invasive, radiation-intensive and workflow disruptive. Recent markerless RGB-D registration methods offer a promising alternative, but existing approaches rely on weak segmentation labels to isolate relevant anatomical structures, which can propagate errors throughout registration. Methods: We present End2Reg an end-to-end deep learning framework that jointly optimizes segmentation and registration, eliminating the need for weak segmentation labels and manual steps. The network learns segmentation masks specifically optimized for registration, guided solely by the registration objective without direct segmentation supervision. Results: The proposed framework achieves state-of-the-art performance on ex- and in-vivo benchmarks, reducing median Target Registration Error by 32% to 1.83mm and mean Root Mean Square Error by 45% to 3.95mm, respectively. An ablation study confirms that end-to-end optimization significantly improves registration accuracy. Conclusion: The presented end-to-end RGB-D registration pipeline removes dependency on weak labels and manual steps, advancing towards fully automatic, markerless intraoperative navigation. Code and interactive visualizations are available at: https://lorenzopettinari.github.io/end-2-reg/.

Authors:Anran Qi, Changjian Li, Adrien Bousseau, Niloy J. Mitra
Title: Beyond the Visible: Disocclusion-Aware Editing via Proxy Dynamic Graphs
Abstract:
We address image-to-video generation with explicit user control over the final frame's disoccluded regions. Current image-to-video pipelines produce plausible motion but struggle to generate predictable, articulated motions while enforcing user-specified content in newly revealed areas. Our key idea is to separate motion specification from appearance synthesis: we introduce a lightweight, user-editable Proxy Dynamic Graph (PDG) that deterministically yet approximately drives part motion, while a frozen diffusion prior is used to synthesize plausible appearance that follows that motion. In our training-free pipeline, the user loosely annotates and reposes a PDG, from which we compute a dense motion flow to leverage diffusion as a motion-guided shader. We then let the user edit appearance in the disoccluded areas of the image, and exploit the visibility information encoded by the PDG to perform a latent-space composite that reconciles motion with user intent in these areas. This design yields controllable articulation and user control over disocclusions without fine-tuning. We demonstrate clear advantages against state-of-the-art alternatives towards images turned into short videos of articulated objects, furniture, vehicles, and deformables. Our method mixes generative control, in the form of loose pose and structure, with predictable controls, in the form of appearance specification in the final frame in the disoccluded regions, unlocking a new image-to-video workflow. Code will be released on acceptance. Project page: https://anranqi.github.io/beyond-visible.github.io/

Authors:Zhihang Liu, Xiaoyi Bao, Pandeng Li, Junjie Zhou, Zhaohe Liao, Yefei He, Kaixun Jiang, Chen-Wei Xie, Yun Zheng, Hongtao Xie
Title: ShowTable: Unlocking Creative Table Visualization with Collaborative Reflection and Refinement
Abstract:
While existing generation and unified models excel at general image generation, they struggle with tasks requiring deep reasoning, planning, and precise data-to-visual mapping abilities beyond general scenarios. To push beyond the existing limitations, we introduce a new and challenging task: creative table visualization, requiring the model to generate an infographic that faithfully and aesthetically visualizes the data from a given table. To address this challenge, we propose ShowTable, a pipeline that synergizes MLLMs with diffusion models via a progressive self-correcting process. The MLLM acts as the central orchestrator for reasoning the visual plan and judging visual errors to provide refined instructions, the diffusion execute the commands from MLLM, achieving high-fidelity results. To support this task and our pipeline, we introduce three automated data construction pipelines for training different modules. Furthermore, we introduce TableVisBench, a new benchmark with 800 challenging instances across 5 evaluation dimensions, to assess performance on this task. Experiments demonstrate that our pipeline, instantiated with different models, significantly outperforms baselines, highlighting its effective multi-modal reasoning, generation, and error correction capabilities.

Authors:Shu Yu, Chaochao Lu
Title: LINA: Learning INterventions Adaptively for Physical Alignment and Generalization in Diffusion Models
Abstract:
Diffusion models (DMs) have achieved remarkable success in image and video generation. However, they still struggle with (1) physical alignment and (2) out-of-distribution (OOD) instruction following. We argue that these issues stem from the models' failure to learn causal directions and to disentangle causal factors for novel recombination. We introduce the Causal Scene Graph (CSG) and the Physical Alignment Probe (PAP) dataset to enable diagnostic interventions. This analysis yields three key insights. First, DMs struggle with multi-hop reasoning for elements not explicitly determined in the prompt. Second, the prompt embedding contains disentangled representations for texture and physics. Third, visual causal structure is disproportionately established during the initial, computationally limited denoising steps. Based on these findings, we introduce LINA (Learning INterventions Adaptively), a novel framework that learns to predict prompt-specific interventions, which employs (1) targeted guidance in the prompt and visual latent spaces, and (2) a reallocated, causality-aware denoising schedule. Our approach enforces both physical alignment and OOD instruction following in image and video DMs, achieving state-of-the-art performance on challenging causal generation tasks and the Winoground dataset. Our project page is at https://opencausalab.github.io/LINA.

Authors:Jiaqi Wang, Weijia Wu, Yi Zhan, Rui Zhao, Ming Hu, James Cheng, Wei Liu, Philip Torr, Kevin Qinghong Lin
Title: Video Reality Test: Can AI-Generated ASMR Videos fool VLMs and Humans?
Abstract:
Recent advances in video generation have produced vivid content that are often indistinguishable from real videos, making AI-generated video detection an emerging societal challenge. Prior AIGC detection benchmarks mostly evaluate video without audio, target broad narrative domains, and focus on classification solely. Yet it remains unclear whether state-of-the-art video generation models can produce immersive, audio-paired videos that reliably deceive humans and VLMs. To this end, we introduce Video Reality Test, an ASMR-sourced video benchmark suite for testing perceptual realism under tight audio-visual coupling, featuring the following dimensions: (i) Immersive ASMR video-audio sources. Built on carefully curated real ASMR videos, the benchmark targets fine-grained action-object interactions with diversity across objects, actions, and backgrounds. (ii) Peer-Review evaluation. An adversarial creator-reviewer protocol where video generation models act as creators aiming to fool reviewers, while VLMs serve as reviewers seeking to identify fakeness. Our experimental findings show: The best creator Veo3.1-Fast even fools most VLMs: the strongest reviewer (Gemini 2.5-Pro) achieves only 56% accuracy (random 50%), far below that of human experts (81.25%). Adding audio improves real-fake discrimination, yet superficial cues such as watermarks can still significantly mislead models. These findings delineate the current boundary of video generation realism and expose limitations of VLMs in perceptual fidelity and audio-visual consistency. Our code is available at https://github.com/video-reality-test/video-reality-test.

Authors:Foivos Paraperas Papantoniou, Stathis Galanakis, Rolandos Alexandros Potamias, Bernhard Kainz, Stefanos Zafeiriou
Title: STARCaster: Spatio-Temporal AutoRegressive Video Diffusion for Identity- and View-Aware Talking Portraits
Abstract:
This paper presents STARCaster, an identity-aware spatio-temporal video diffusion model that addresses both speech-driven portrait animation and free-viewpoint talking portrait synthesis, given an identity embedding or reference image, within a unified framework. Existing 2D speech-to-video diffusion models depend heavily on reference guidance, leading to limited motion diversity. At the same time, 3D-aware animation typically relies on inversion through pre-trained tri-plane generators, which often leads to imperfect reconstructions and identity drift. We rethink reference- and geometry-based paradigms in two ways. First, we deviate from strict reference conditioning at pre-training by introducing softer identity constraints. Second, we address 3D awareness implicitly within the 2D video domain by leveraging the inherent multi-view nature of video data. STARCaster adopts a compositional approach progressing from ID-aware motion modeling, to audio-visual synchronization via lip reading-based supervision, and finally to novel view animation through temporal-to-spatial adaptation. To overcome the scarcity of 4D audio-visual data, we propose a decoupled learning approach in which view consistency and temporal coherence are trained independently. A self-forcing training scheme enables the model to learn from longer temporal contexts than those generated at inference, mitigating the overly static animations common in existing autoregressive approaches. Comprehensive evaluations demonstrate that STARCaster generalizes effectively across tasks and identities, consistently surpassing prior approaches in different benchmarks.

Authors:Francesco Ragusa, Michele Mazzamuto, Rosario Forte, Irene D'Ambra, James Fort, Jakob Engel, Antonino Furnari, Giovanni Maria Farinella
Title: Ego-EXTRA: video-language Egocentric Dataset for EXpert-TRAinee assistance
Abstract:
We present Ego-EXTRA, a video-language Egocentric Dataset for EXpert-TRAinee assistance. Ego-EXTRA features 50 hours of unscripted egocentric videos of subjects performing procedural activities (the trainees) while guided by real-world experts who provide guidance and answer specific questions using natural language. Following a ``Wizard of OZ'' data collection paradigm, the expert enacts a wearable intelligent assistant, looking at the activities performed by the trainee exclusively from their egocentric point of view, answering questions when asked by the trainee, or proactively interacting with suggestions during the procedures. This unique data collection protocol enables Ego-EXTRA to capture a high-quality dialogue in which expert-level feedback is provided to the trainee. Two-way dialogues between experts and trainees are recorded, transcribed, and used to create a novel benchmark comprising more than 15k high-quality Visual Question Answer sets, which we use to evaluate Multimodal Large Language Models. The results show that Ego-EXTRA is challenging and highlight the limitations of current models when used to provide expert-level assistance to the user. The Ego-EXTRA dataset is publicly available to support the benchmark of egocentric video-language assistants: https://fpv-iplab.github.io/Ego-EXTRA/.

Authors:Zhuo Chen, Chengqun Yang, Zhuo Su, Zheng Lv, Jingnan Gao, Xiaoyuan Zhang, Xiaokang Yang, Yichao Yan
Title: POLAR: A Portrait OLAT Dataset and Generative Framework for Illumination-Aware Face Modeling
Abstract:
Face relighting aims to synthesize realistic portraits under novel illumination while preserving identity and geometry. However, progress remains constrained by the limited availability of large-scale, physically consistent illumination data. To address this, we introduce POLAR, a large-scale and physically calibrated One-Light-at-a-Time (OLAT) dataset containing over 200 subjects captured under 156 lighting directions, multiple views, and diverse expressions. Building upon POLAR, we develop a flow-based generative model POLARNet that predicts per-light OLAT responses from a single portrait, capturing fine-grained and direction-aware illumination effects while preserving facial identity. Unlike diffusion or background-conditioned methods that rely on statistical or contextual cues, our formulation models illumination as a continuous, physically interpretable transformation between lighting states, enabling scalable and controllable relighting. Together, POLAR and POLARNet form a unified illumination learning framework that links real data, generative synthesis, and physically grounded relighting, establishing a self-sustaining "chicken-and-egg" cycle for scalable and reproducible portrait illumination. Our project page: https://rex0191.github.io/POLAR/.

Authors:Peter Kocsis, Lukas Höllein, Matthias Nießner
Title: Intrinsic Image Fusion for Multi-View 3D Material Reconstruction
Abstract:
We introduce Intrinsic Image Fusion, a method that reconstructs high-quality physically based materials from multi-view images. Material reconstruction is highly underconstrained and typically relies on analysis-by-synthesis, which requires expensive and noisy path tracing. To better constrain the optimization, we incorporate single-view priors into the reconstruction process. We leverage a diffusion-based material estimator that produces multiple, but often inconsistent, candidate decompositions per view. To reduce the inconsistency, we fit an explicit low-dimensional parametric function to the predictions. We then propose a robust optimization framework using soft per-view prediction selection together with confidence-based soft multi-view inlier set to fuse the most consistent predictions of the most confident views into a consistent parametric material space. Finally, we use inverse path tracing to optimize for the low-dimensional parameters. Our results outperform state-of-the-art methods in material disentanglement on both synthetic and real scenes, producing sharp and clean reconstructions suitable for high-quality relighting.

Authors:Shanghua Liu, Majharulislam Babor, Christoph Verduyn, Breght Vandenberghe, Bruno Betoni Parodi, Cornelia Weltzien, Marina M. -C. Höhne
Title: LeafTrackNet: A Deep Learning Framework for Robust Leaf Tracking in Top-Down Plant Phenotyping
Abstract:
High resolution phenotyping at the level of individual leaves offers fine-grained insights into plant development and stress responses. However, the full potential of accurate leaf tracking over time remains largely unexplored due to the absence of robust tracking methods-particularly for structurally complex crops such as canola. Existing plant-specific tracking methods are typically limited to small-scale species or rely on constrained imaging conditions. In contrast, generic multi-object tracking (MOT) methods are not designed for dynamic biological scenes. Progress in the development of accurate leaf tracking models has also been hindered by a lack of large-scale datasets captured under realistic conditions. In this work, we introduce CanolaTrack, a new benchmark dataset comprising 5,704 RGB images with 31,840 annotated leaf instances spanning the early growth stages of 184 canola plants. To enable accurate leaf tracking over time, we introduce LeafTrackNet, an efficient framework that combines a YOLOv10-based leaf detector with a MobileNetV3-based embedding network. During inference, leaf identities are maintained over time through an embedding-based memory association strategy. LeafTrackNet outperforms both plant-specific trackers and state-of-the-art MOT baselines, achieving a 9% HOTA improvement on CanolaTrack. With our work we provide a new standard for leaf-level tracking under realistic conditions and we provide CanolaTrack - the largest dataset for leaf tracking in agriculture crops, which will contribute to future research in plant phenotyping. Our code and dataset are publicly available at https://github.com/shl-shawn/LeafTrackNet.

Authors:Vivek Alumootil, Tuan-Anh Vu, M. Khalid Jawed
Title: DePT3R: Joint Dense Point Tracking and 3D Reconstruction of Dynamic Scenes in a Single Forward Pass
Abstract:
Current methods for dense 3D point tracking in dynamic scenes typically rely on pairwise processing, require known camera poses, or assume a temporal ordering to input frames, constraining their flexibility and applicability. Additionally, recent advances have successfully enabled efficient 3D reconstruction from large-scale, unposed image collections, underscoring opportunities for unified approaches to dynamic scene understanding. Motivated by this, we propose DePT3R, a novel framework that simultaneously performs dense point tracking and 3D reconstruction of dynamic scenes from multiple images in a single forward pass. This multi-task learning is achieved by extracting deep spatio-temporal features with a powerful backbone and regressing pixel-wise maps with dense prediction heads. Crucially, DePT3R operates without requiring camera poses, substantially enhancing its adaptability and efficiency-especially important in dynamic environments with rapid changes. We validate DePT3R on several challenging benchmarks involving dynamic scenes, demonstrating strong performance and significant improvements in memory efficiency over existing state-of-the-art methods. Data and codes are available via the open repository: https://github.com/StructuresComp/DePT3R

Authors:Ziqiang Zhu, Bowei Yang
Title: UniVCD: A New Method for Unsupervised Change Detection in the Open-Vocabulary Era
Abstract:
Change detection (CD) identifies scene changes from multi-temporal observations and is widely used in urban development and environmental monitoring. Most existing CD methods rely on supervised learning, making performance strongly dataset-dependent and incurring high annotation costs; they typically focus on a few predefined categories and generalize poorly to diverse scenes. With the rise of vision foundation models such as SAM2 and CLIP, new opportunities have emerged to relax these constraints. We propose Unified Open-Vocabulary Change Detection (UniVCD), an unsupervised, open-vocabulary change detection method built on frozen SAM2 and CLIP. UniVCD detects category-agnostic changes across diverse scenes and imaging geometries without any labeled data or paired change images. A lightweight feature alignment module is introduced to bridge the spatially detailed representations from SAM2 and the semantic priors from CLIP, enabling high-resolution, semantically aware change estimation while keeping the number of trainable parameters small. On top of this, a streamlined post-processing pipeline is further introduced to suppress noise and pseudo-changes, improving the detection accuracy for objects with well-defined boundaries. Experiments on several public BCD (Binary Change Detection) and SCD (Semantic Change Detection) benchmarks show that UniVCD achieves consistently strong performance and matches or surpasses existing open-vocabulary CD methods in key metrics such as F1 and IoU. The results demonstrate that unsupervised change detection with frozen vision foundation models and lightweight multi-modal alignment is a practical and effective paradigm for open-vocabulary CD. Code and pretrained models will be released at https://github.com/Die-Xie/UniVCD.

Authors:Jaeyoon Kim, Yoonki Cho, Sung-Eui Yoon
Title: Towards Test-time Efficient Visual Place Recognition via Asymmetric Query Processing
Abstract:
Visual Place Recognition (VPR) has advanced significantly with high-capacity foundation models like DINOv2, achieving remarkable performance. Nonetheless, their substantial computational cost makes deployment on resource-constrained devices impractical. In this paper, we introduce an efficient asymmetric VPR framework that incorporates a high-capacity gallery model for offline feature extraction with a lightweight query network for online processing. A key challenge in this setting is ensuring compatibility between these heterogeneous networks, which conventional approaches address through computationally expensive k-NN-based compatible training. To overcome this, we propose a geographical memory bank that structures gallery features using geolocation metadata inherent in VPR databases, eliminating the need for exhaustive k-NN computations. Additionally, we introduce an implicit embedding augmentation technique that enhances the query network to model feature variations despite its limited capacity. Extensive experiments demonstrate that our method not only significantly reduces computational costs but also outperforms existing asymmetric retrieval techniques, establishing a new aspect for VPR in resource-limited environments. The code is available at https://github.com/jaeyoon1603/AsymVPR

Authors:Nikolai Goncharov, James L. Gray, Donald G. Dansereau
Title: Light Field Based 6DoF Tracking of Previously Unobserved Objects
Abstract:
Object tracking is an important step in robotics and reautonomous driving pipelines, which has to generalize to previously unseen and complex objects. Existing high-performing methods often rely on pre-captured object views to build explicit reference models, which restricts them to a fixed set of known objects. However, such reference models can struggle with visually complex appearance, reducing the quality of tracking. In this work, we introduce an object tracking method based on light field images that does not depend on a pre-trained model, while being robust to complex visual behavior, such as reflections. We extract semantic and geometric features from light field inputs using vision foundation models and convert them into view-dependent Gaussian splats. These splats serve as a unified object representation, supporting differentiable rendering and pose optimization. We further introduce a light field object tracking dataset containing challenging reflective objects with precise ground truth poses. Experiments demonstrate that our method is competitive with state-of-the-art model-based trackers in these difficult cases, paving the way toward universal object tracking in robotic systems. Code/data available at https://github.com/nagonch/LiFT-6DoF.

Authors:Jiayin Lu, Ying Jiang, Yin Yang, Chenfanfu Jiang
Title: VoroLight: Learning Quality Volumetric Voronoi Meshes from General Inputs
Abstract:
We present VoroLight, a differentiable framework for 3D shape reconstruction based on Voronoi meshing. Our approach generates smooth, watertight surfaces and topologically consistent volumetric meshes directly from diverse inputs, including images, implicit shape level-set fields, point clouds and meshes. VoroLight operates in three stages: it first initializes a surface using a differentiable Voronoi formulation, then refines surface quality through a polygon-face sphere training stage, and finally reuses the differentiable Voronoi formulation for volumetric optimization with additional interior generator points. Project page: https://jiayinlu19960224.github.io/vorolight/

Authors:Ziheng Qin, Yuheng Ji, Renshuai Tao, Yuxuan Tian, Yuyang Liu, Yipu Wang, Xiaolong Zheng
Title: Scaling Up AI-Generated Image Detection via Generator-Aware Prototypes
Abstract:
The pursuit of a universal AI-generated image (AIGI) detector often relies on aggregating data from numerous generators to improve generalization. However, this paper identifies a paradoxical phenomenon we term the Benefit then Conflict dilemma, where detector performance stagnates and eventually degrades as source diversity expands. Our systematic analysis, diagnoses this failure by identifying two core issues: severe data-level heterogeneity, which causes the feature distributions of real and synthetic images to increasingly overlap, and a critical model-level bottleneck from fixed, pretrained encoders that cannot adapt to the rising complexity. To address these challenges, we propose Generator-Aware Prototype Learning (GAPL), a framework that constrain representation with a structured learning paradigm. GAPL learns a compact set of canonical forgery prototypes to create a unified, low-variance feature space, effectively countering data heterogeneity.To resolve the model bottleneck, it employs a two-stage training scheme with Low-Rank Adaptation, enhancing its discriminative power while preserving valuable pretrained knowledge. This approach establishes a more robust and generalizable decision boundary. Through extensive experiments, we demonstrate that GAPL achieves state-of-the-art performance, showing superior detection accuracy across a wide variety of GAN and diffusion-based generators. Code is available at https://github.com/UltraCapture/GAPL

Authors:Anja Sheppard, Parker Ewen, Joey Wilson, Advaith V. Sethuraman, Benard Adewole, Anran Li, Yuzhen Chen, Ram Vasudevan, Katherine A. Skinner
Title: SLIM-VDB: A Real-Time 3D Probabilistic Semantic Mapping Framework
Abstract:
This paper introduces SLIM-VDB, a new lightweight semantic mapping system with probabilistic semantic fusion for closed-set or open-set dictionaries. Advances in data structures from the computer graphics community, such as OpenVDB, have demonstrated significantly improved computational and memory efficiency in volumetric scene representation. Although OpenVDB has been used for geometric mapping in robotics applications, semantic mapping for scene understanding with OpenVDB remains unexplored. In addition, existing semantic mapping systems lack support for integrating both fixed-category and open-language label predictions within a single framework. In this paper, we propose a novel 3D semantic mapping system that leverages the OpenVDB data structure and integrates a unified Bayesian update framework for both closed- and open-set semantic fusion. Our proposed framework, SLIM-VDB, achieves significant reduction in both memory and integration times compared to current state-of-the-art semantic mapping approaches, while maintaining comparable mapping accuracy. An open-source C++ codebase with a Python interface is available at https://github.com/umfieldrobotics/slim-vdb.

Authors:Siyuan Yao, Dongxiu Liu, Taotao Li, Shengjie Li, Wenqi Ren, Xiaochun Cao
Title: UAGLNet: Uncertainty-Aggregated Global-Local Fusion Network with Cooperative CNN-Transformer for Building Extraction
Abstract:
Building extraction from remote sensing images is a challenging task due to the complex structure variations of the buildings. Existing methods employ convolutional or self-attention blocks to capture the multi-scale features in the segmentation models, while the inherent gap of the feature pyramids and insufficient global-local feature integration leads to inaccurate, ambiguous extraction results. To address this issue, in this paper, we present an Uncertainty-Aggregated Global-Local Fusion Network (UAGLNet), which is capable to exploit high-quality global-local visual semantics under the guidance of uncertainty modeling. Specifically, we propose a novel cooperative encoder, which adopts hybrid CNN and transformer layers at different stages to capture the local and global visual semantics, respectively. An intermediate cooperative interaction block (CIB) is designed to narrow the gap between the local and global features when the network becomes deeper. Afterwards, we propose a Global-Local Fusion (GLF) module to complementarily fuse the global and local representations. Moreover, to mitigate the segmentation ambiguity in uncertain regions, we propose an Uncertainty-Aggregated Decoder (UAD) to explicitly estimate the pixel-wise uncertainty to enhance the segmentation accuracy. Extensive experiments demonstrate that our method achieves superior performance to other state-of-the-art methods. Our code is available at https://github.com/Dstate/UAGLNet

Authors:Sebastien Tchitchek, Mohamed Kissi, Julien Tierny
Title: Continuous Edit Distance, Geodesics and Barycenters of Time-varying Persistence Diagrams
Abstract:
We introduce the Continuous Edit Distance (CED), a geodesic and elastic distance for time-varying persistence diagrams (TVPDs). The CED extends edit-distance ideas to TVPDs by combining local substitution costs with penalized deletions/insertions, controlled by two parameters: \(α\) (trade-off between temporal misalignment and diagram discrepancy) and \(β\) (gap penalty). We also provide an explicit construction of CED-geodesics. Building on these ingredients, we present two practical barycenter solvers, one stochastic and one greedy, that monotonically decrease the CED Frechet energy. Empirically, the CED is robust to additive perturbations (both temporal and spatial), recovers temporal shifts, and supports temporal pattern search. On real-life datasets, the CED achieves clustering performance comparable or better than standard elastic dissimilarities, while our clustering based on CED-barycenters yields superior classification results. Overall, the CED equips TVPD analysis with a principled distance, interpretable geodesics, and practical barycenters, enabling alignment, comparison, averaging, and clustering directly in the space of TVPDs. A C++ implementation is provided for reproducibility at the following address https://github.com/sebastien-tchitchek/ContinuousEditDistance.

Authors:Abhinav Kumar, Tristan Aumentado-Armstrong, Lazar Valkov, Gopal Sharma, Alex Levinshtein, Radek Grzeszczuk, Suren Kumar
Title: Qonvolution: Towards Learning High-Frequency Signals with Queried Convolution
Abstract:
Accurately learning high-frequency signals is a challenge in computer vision and graphics, as neural networks often struggle with these signals due to spectral bias or optimization difficulties. While current techniques like Fourier encodings have made great strides in improving performance, there remains scope for improvement when presented with high-frequency information. This paper introduces Queried-Convolutions (Qonvolutions), a simple yet powerful modification using the neighborhood properties of convolution. Qonvolution convolves a low-frequency signal with queries (such as coordinates) to enhance the learning of intricate high-frequency signals. We empirically demonstrate that Qonvolutions enhance performance across a variety of high-frequency learning tasks crucial to both the computer vision and graphics communities, including 1D regression, 2D super-resolution, 2D image regression, and novel view synthesis (NVS). In particular, by combining Gaussian splatting with Qonvolutions for NVS, we showcase state-of-the-art performance on real-world complex scenes, even outperforming powerful radiance field models on image quality.

Authors:Zhe Liu, Runhui Huang, Rui Yang, Siming Yan, Zining Wang, Lu Hou, Di Lin, Xiang Bai, Hengshuang Zhao
Title: DrivePI: Spatial-aware 4D MLLM for Unified Autonomous Driving Understanding, Perception, Prediction and Planning
Abstract:
Although multi-modal large language models (MLLMs) have shown strong capabilities across diverse domains, their application in generating fine-grained 3D perception and prediction outputs in autonomous driving remains underexplored. In this paper, we propose DrivePI, a novel spatial-aware 4D MLLM that serves as a unified Vision-Language-Action (VLA) framework that is also compatible with vision-action (VA) models. Our method jointly performs spatial understanding, 3D perception (i.e., 3D occupancy), prediction (i.e., occupancy flow), and planning (i.e., action outputs) in parallel through end-to-end optimization. To obtain both precise geometric information and rich visual appearance, our approach integrates point clouds, multi-view images, and language instructions within a unified MLLM architecture. We further develop a data engine to generate text-occupancy and text-flow QA pairs for 4D spatial understanding. Remarkably, with only a 0.5B Qwen2.5 model as MLLM backbone, DrivePI as a single unified model matches or exceeds both existing VLA models and specialized VA models. Specifically, compared to VLA models, DrivePI outperforms OpenDriveVLA-7B by 2.5% mean accuracy on nuScenes-QA and reduces collision rate by 70% over ORION (from 0.37% to 0.11%) on nuScenes. Against specialized VA models, DrivePI surpasses FB-OCC by 10.3 RayIoU for 3D occupancy on OpenOcc, reduces the mAVE from 0.591 to 0.509 for occupancy flow on OpenOcc, and achieves 32% lower L2 error than VAD (from 0.72m to 0.49m) for planning on nuScenes. Code will be available at https://github.com/happinesslz/DrivePI

Authors:Zhenya Yang, Zhe Liu, Yuxiang Lu, Liping Hou, Chenxuan Miao, Siyi Peng, Bailan Feng, Xiang Bai, Hengshuang Zhao
Title: GenieDrive: Towards Physics-Aware Driving World Model with 4D Occupancy Guided Video Generation
Abstract:
Physics-aware driving world model is essential for drive planning, out-of-distribution data synthesis, and closed-loop evaluation. However, existing methods often rely on a single diffusion model to directly map driving actions to videos, which makes learning difficult and leads to physically inconsistent outputs. To overcome these challenges, we propose GenieDrive, a novel framework designed for physics-aware driving video generation. Our approach starts by generating 4D occupancy, which serves as a physics-informed foundation for subsequent video generation. 4D occupancy contains rich physical information, including high-resolution 3D structures and dynamics. To facilitate effective compression of such high-resolution occupancy, we propose a VAE that encodes occupancy into a latent tri-plane representation, reducing the latent size to only 58% of that used in previous methods. We further introduce Mutual Control Attention (MCA) to accurately model the influence of control on occupancy evolution, and we jointly train the VAE and the subsequent prediction module in an end-to-end manner to maximize forecasting accuracy. Together, these designs yield a 7.2% improvement in forecasting mIoU at an inference speed of 41 FPS, while using only 3.47 M parameters. Additionally, a Normalized Multi-View Attention is introduced in the video generation model to generate multi-view driving videos with guidance from our 4D occupancy, significantly improving video quality with a 20.7% reduction in FVD. Experiments demonstrate that GenieDrive enables highly controllable, multi-view consistent, and physics-aware driving video generation.

Authors:Boyuan Li, Sipeng Zheng, Bin Cao, Ruihua Song, Zongqing Lu
Title: Robust Motion Generation using Part-level Reliable Data from Videos
Abstract:
Extracting human motion from large-scale web videos offers a scalable solution to the data scarcity issue in character animation. However, some human parts in many video frames cannot be seen due to off-screen captures or occlusions. It brings a dilemma: discarding the data missing any part limits scale and diversity, while retaining it compromises data quality and model performance. To address this problem, we propose leveraging credible part-level data extracted from videos to enhance motion generation via a robust part-aware masked autoregression model. First, we decompose a human body into five parts and detect the parts clearly seen in a video frame as "credible". Second, the credible parts are encoded into latent tokens by our proposed part-aware variational autoencoder. Third, we propose a robust part-level masked generation model to predict masked credible parts, while ignoring those noisy parts. In addition, we contribute K700-M, a challenging new benchmark comprising approximately 200k real-world motion sequences, for evaluation. Experimental results indicate that our method successfully outperforms baselines on both clean and noisy datasets in terms of motion quality, semantic consistency and diversity. Project page: https://boyuaner.github.io/ropar-main/

Authors:Fatimah Zohra, Chen Zhao, Hani Itani, Bernard Ghanem
Title: $β$-CLIP: Text-Conditioned Contrastive Learning for Multi-Granular Vision-Language Alignment
Abstract:
CLIP achieves strong zero-shot image-text retrieval by aligning global vision and text representations, yet it falls behind on fine-grained tasks even when fine-tuned on long, detailed captions. In this work, we propose $β$-CLIP, a multi-granular text-conditioned contrastive learning framework designed to achieve hierarchical alignment between multiple textual granularities-from full captions to sentences and phrases-and their corresponding visual regions. For each level of granularity, $β$-CLIP utilizes cross-attention to dynamically pool image patches, producing contextualized visual embeddings. To address the semantic overlap inherent in this hierarchy, we introduce the $β$-Contextualized Contrastive Alignment Loss ($β$-CAL). This objective parameterizes the trade-off between strict query-specific matching and relaxed intra-image contextualization, supporting both soft Cross-Entropy and hard Binary Cross-Entropy formulations. Through extensive experiments, we demonstrate that $β$-CLIP significantly improves dense alignment: achieving 91.8% T2I 92.3% I2T at R@1 on Urban1K and 30.9% on FG-OVD (Hard), setting state-of-the-art among methods trained without hard negatives. $β$-CLIP establishes a robust, adaptive baseline for dense vision-language correspondence. The code and models are released at https://github.com/fzohra/B-CLIP.

Authors:Yuran Wang, Bohan Zeng, Chengzhuo Tong, Wenxuan Liu, Yang Shi, Xiaochen Ma, Hao Liang, Yuanxing Zhang, Wentao Zhang
Title: Scone: Bridging Composition and Distinction in Subject-Driven Image Generation via Unified Understanding-Generation Modeling
Abstract:
Subject-driven image generation has advanced from single- to multi-subject composition, while neglecting distinction, the ability to identify and generate the correct subject when inputs contain multiple candidates. This limitation restricts effectiveness in complex, realistic visual settings. We propose Scone, a unified understanding-generation method that integrates composition and distinction. Scone enables the understanding expert to act as a semantic bridge, conveying semantic information and guiding the generation expert to preserve subject identity while minimizing interference. A two-stage training scheme first learns composition, then enhances distinction through semantic alignment and attention-based masking. We also introduce SconeEval, a benchmark for evaluating both composition and distinction across diverse scenarios. Experiments demonstrate that Scone outperforms existing open-source models in composition and distinction tasks on two benchmarks. Our model, benchmark, and training data are available at: https://github.com/Ryann-Ran/Scone.

Authors:Wonseok Choi, Sohwi Lim, Nam Hyeon-Woo, Moon Ye-Bin, Dong-Ju Jeong, Jinyoung Hwang, Tae-Hyun Oh
Title: Patch-wise Retrieval: A Bag of Practical Techniques for Instance-level Matching
Abstract:
Instance-level image retrieval aims to find images containing the same object as a given query, despite variations in size, position, or appearance. To address this challenging task, we propose Patchify, a simple yet effective patch-wise retrieval framework that offers high performance, scalability, and interpretability without requiring fine-tuning. Patchify divides each database image into a small number of structured patches and performs retrieval by comparing these local features with a global query descriptor, enabling accurate and spatially grounded matching. To assess not just retrieval accuracy but also spatial correctness, we introduce LocScore, a localization-aware metric that quantifies whether the retrieved region aligns with the target object. This makes LocScore a valuable diagnostic tool for understanding and improving retrieval behavior. We conduct extensive experiments across multiple benchmarks, backbones, and region selection strategies, showing that Patchify outperforms global methods and complements state-of-the-art reranking pipelines. Furthermore, we apply Product Quantization for efficient large-scale retrieval and highlight the importance of using informative features during compression, which significantly boosts performance. Project website: https://wons20k.github.io/PatchwiseRetrieval/

Authors:Tingyan Wen, Haoyu Li, Yihuang Chen, Xing Zhou, Lifei Zhu, Xueqian Wang
Title: No Cache Left Idle: Accelerating diffusion model via Extreme-slimming Caching
Abstract:
Diffusion models achieve remarkable generative quality, but computational overhead scales with step count, model depth, and sequence length. Feature caching is effective since adjacent timesteps yield highly similar features. However, an inherent trade-off remains: aggressive timestep reuse offers large speedups but can easily cross the critical line, hurting fidelity, while block- or token-level reuse is safer but yields limited computational savings. We present X-Slim (eXtreme-Slimming Caching), a training-free, cache-based accelerator that, to our knowledge, is the first unified framework to exploit cacheable redundancy across timesteps, structure (blocks), and space (tokens). Rather than simply mixing levels, X-Slim introduces a dual-threshold controller that turns caching into a push-then-polish process: it first pushes reuse at the timestep level up to an early-warning line, then switches to lightweight block- and token-level refresh to polish the remaining redundancy, and triggers full inference once the critical line is crossed to reset accumulated error. At each level, context-aware indicators decide when and where to cache. Across diverse tasks, X-Slim advances the speed-quality frontier. On FLUX.1-dev and HunyuanVideo, it reduces latency by up to 4.97x and 3.52x with minimal perceptual loss. On DiT-XL/2, it reaches 3.13x acceleration and improves FID by 2.42 over prior methods.

Authors:Qi Sun, Can Wang, Jiaxiang Shang, Wensen Feng, Jing Liao
Title: Animus3D: Text-driven 3D Animation via Motion Score Distillation
Abstract:
We present Animus3D, a text-driven 3D animation framework that generates motion field given a static 3D asset and text prompt. Previous methods mostly leverage the vanilla Score Distillation Sampling (SDS) objective to distill motion from pretrained text-to-video diffusion, leading to animations with minimal movement or noticeable jitter. To address this, our approach introduces a novel SDS alternative, Motion Score Distillation (MSD). Specifically, we introduce a LoRA-enhanced video diffusion model that defines a static source distribution rather than pure noise as in SDS, while another inversion-based noise estimation technique ensures appearance preservation when guiding motion. To further improve motion fidelity, we incorporate explicit temporal and spatial regularization terms that mitigate geometric distortions across time and space. Additionally, we propose a motion refinement module to upscale the temporal resolution and enhance fine-grained details, overcoming the fixed-resolution constraints of the underlying video model. Extensive experiments demonstrate that Animus3D successfully animates static 3D assets from diverse text prompts, generating significantly more substantial and detailed motion than state-of-the-art baselines while maintaining high visual integrity. Code will be released at https://qiisun.github.io/animus3d_page.

Authors:Ke Zhang, Yiqun Mei, Jiacong Xu, Vishal M. Patel
Title: Endless World: Real-Time 3D-Aware Long Video Generation
Abstract:
Producing long, coherent video sequences with stable 3D structure remains a major challenge, particularly in streaming scenarios. Motivated by this, we introduce Endless World, a real-time framework for infinite, 3D-consistent video generation.To support infinite video generation, we introduce a conditional autoregressive training strategy that aligns newly generated content with existing video frames. This design preserves long-range dependencies while remaining computationally efficient, enabling real-time inference on a single GPU without additional training overhead.Moreover, our Endless World integrates global 3D-aware attention to provide continuous geometric guidance across time. Our 3D injection mechanism enforces physical plausibility and geometric consistency throughout extended sequences, addressing key challenges in long-horizon and dynamic scene synthesis.Extensive experiments demonstrate that Endless World produces long, stable, and visually coherent videos, achieving competitive or superior performance to existing methods in both visual fidelity and spatial consistency. Our project has been available on https://bwgzk-keke.github.io/EndlessWorld/.

Authors:Hyunkoo Lee, Wooseok Jang, Jini Yang, Taehwan Kim, Sangoh Kim, Sangwon Jung, Seungryong Kim
Title: V-Warper: Appearance-Consistent Video Diffusion Personalization via Value Warping
Abstract:
Video personalization aims to generate videos that faithfully reflect a user-provided subject while following a text prompt. However, existing approaches often rely on heavy video-based finetuning or large-scale video datasets, which impose substantial computational cost and are difficult to scale. Furthermore, they still struggle to maintain fine-grained appearance consistency across frames. To address these limitations, we introduce V-Warper, a training-free coarse-to-fine personalization framework for transformer-based video diffusion models. The framework enhances fine-grained identity fidelity without requiring any additional video training. (1) A lightweight coarse appearance adaptation stage leverages only a small set of reference images, which are already required for the task. This step encodes global subject identity through image-only LoRA and subject-embedding adaptation. (2) A inference-time fine appearance injection stage refines visual fidelity by computing semantic correspondences from RoPE-free mid-layer query--key features. These correspondences guide the warping of appearance-rich value representations into semantically aligned regions of the generation process, with masking ensuring spatial reliability. V-Warper significantly improves appearance fidelity while preserving prompt alignment and motion dynamics, and it achieves these gains efficiently without large-scale video finetuning.

Authors:Maurya Goyal, Anuj Singh, Hadi Jamali-Rad
Title: Unified Control for Inference-Time Guidance of Denoising Diffusion Models
Abstract:
Aligning diffusion model outputs with downstream objectives is essential for improving task-specific performance. Broadly, inference-time training-free approaches for aligning diffusion models can be categorized into two main strategies: sampling-based methods, which explore multiple candidate outputs and select those with higher reward signals, and gradient-guided methods, which use differentiable reward approximations to directly steer the generation process. In this work, we propose a universal algorithm, UniCoDe, which brings together the strengths of sampling and gradient-based guidance into a unified framework. UniCoDe integrates local gradient signals during sampling, thereby addressing the sampling inefficiency inherent in complex reward-based sampling approaches. By cohesively combining these two paradigms, UniCoDe enables more efficient sampling while offering better trade-offs between reward alignment and divergence from the diffusion unconditional prior. Empirical results demonstrate that UniCoDe remains competitive with state-of-the-art baselines across a range of tasks. The code is available at https://github.com/maurya-goyal10/UniCoDe

Authors:Björn Lütjens, Patrick Alexander, Raf Antwerpen, Til Widmann, Guido Cervone, Marco Tedesco
Title: MeltwaterBench: Deep learning for spatiotemporal downscaling of surface meltwater
Abstract:
The Greenland ice sheet is melting at an accelerated rate due to processes that are not fully understood and hard to measure. The distribution of surface meltwater can help understand these processes and is observable through remote sensing, but current maps of meltwater face a trade-off: They are either high-resolution in time or space, but not both. We develop a deep learning model that creates gridded surface meltwater maps at daily 100m resolution by fusing data streams from remote sensing observations and physics-based models. In particular, we spatiotemporally downscale regional climate model (RCM) outputs using synthetic aperture radar (SAR), passive microwave (PMW), and a digital elevation model (DEM) over the Helheim Glacier in Eastern Greenland from 2017-2023. Using SAR-derived meltwater as "ground truth", we show that a deep learning-based method that fuses all data streams is over 10 percentage points more accurate over our study area than existing non deep learning-based approaches that only rely on a regional climate model (83% vs. 95% Acc.) or passive microwave observations (72% vs. 95% Acc.). Alternatively, creating a gridded product through a running window calculation with SAR data underestimates extreme melt events, but also achieves notable accuracy (90%) and does not rely on deep learning. We evaluate standard deep learning methods (UNet and DeepLabv3+), and publish our spatiotemporally aligned dataset as a benchmark, MeltwaterBench, for intercomparisons with more complex data-driven downscaling methods. The code and data are available at $\href{https://github.com/blutjens/hrmelt}{github.com/blutjens/hrmelt}$.

Authors:Tejas Panambur, Ishan Rajendrakumar Dave, Chongjian Ge, Ersin Yumer, Xue Bai
Title: CreativeVR: Diffusion-Prior-Guided Approach for Structure and Motion Restoration in Generative and Real Videos
Abstract:
Modern text-to-video (T2V) diffusion models can synthesize visually compelling clips, yet they remain brittle at fine-scale structure: even state-of-the-art generators often produce distorted faces and hands, warped backgrounds, and temporally inconsistent motion. Such severe structural artifacts also appear in very low-quality real-world videos. Classical video restoration and super-resolution (VR/VSR) methods, in contrast, are tuned for synthetic degradations such as blur and downsampling and tend to stabilize these artifacts rather than repair them, while diffusion-prior restorers are usually trained on photometric noise and offer little control over the trade-off between perceptual quality and fidelity. We introduce CreativeVR, a diffusion-prior-guided video restoration framework for AI-generated (AIGC) and real videos with severe structural and temporal artifacts. Our deep-adapter-based method exposes a single precision knob that controls how strongly the model follows the input, smoothly trading off between precise restoration on standard degradations and stronger structure- and motion-corrective behavior on challenging content. Our key novelty is a temporally coherent degradation module used during training, which applies carefully designed transformations that produce realistic structural failures. To evaluate AIGC-artifact restoration, we propose the AIGC54 benchmark with FIQA, semantic and perceptual metrics, and multi-aspect scoring. CreativeVR achieves state-of-the-art results on videos with severe artifacts and performs competitively on standard video restoration benchmarks, while running at practical throughput (about 13 FPS at 720p on a single 80-GB A100). Project page: https://daveishan.github.io/creativevr-webpage/.

Authors:Xianghui Xie, Bowen Wen, Yan Chang, Hesam Rabeti, Jiefeng Li, Ye Yuan, Gerard Pons-Moll, Stan Birchfield
Title: CARI4D: Category Agnostic 4D Reconstruction of Human-Object Interaction
Abstract:
Accurate capture of human-object interaction from ubiquitous sensors like RGB cameras is important for applications in human understanding, gaming, and robot learning. However, inferring 4D interactions from a single RGB view is highly challenging due to the unknown object and human information, depth ambiguity, occlusion, and complex motion, which hinder consistent 3D and temporal reconstruction. Previous methods simplify the setup by assuming ground truth object template or constraining to a limited set of object categories. We present CARI4D, the first category-agnostic method that reconstructs spatially and temporarily consistent 4D human-object interaction at metric scale from monocular RGB videos. To this end, we propose a pose hypothesis selection algorithm that robustly integrates the individual predictions from foundation models, jointly refine them through a learned render-and-compare paradigm to ensure spatial, temporal and pixel alignment, and finally reasoning about intricate contacts for further refinement satisfying physical constraints. Experiments show that our method outperforms prior art by 38% on in-distribution dataset and 36% on unseen dataset in terms of reconstruction error. Our model generalizes beyond the training categories and thus can be applied zero-shot to in-the-wild internet videos. Our code and pretrained models will be publicly released.

Authors:Nolan Koblischke, Liam Parker, Francois Lanusse, Irina Espejo Morales, Jo Bovy, Shirley Ho
Title: Semantic search for 100M+ galaxy images using AI-generated captions
Abstract:
Finding scientifically interesting phenomena through slow, manual labeling campaigns severely limits our ability to explore the billions of galaxy images produced by telescopes. In this work, we develop a pipeline to create a semantic search engine from completely unlabeled image data. Our method leverages Vision-Language Models (VLMs) to generate descriptions for galaxy images, then contrastively aligns a pre-trained multimodal astronomy foundation model with these embedded descriptions to produce searchable embeddings at scale. We find that current VLMs provide descriptions that are sufficiently informative to train a semantic search model that outperforms direct image similarity search. Our model, AION-Search, achieves state-of-the-art zero-shot performance on finding rare phenomena despite training on randomly selected images with no deliberate curation for rare cases. Furthermore, we introduce a VLM-based re-ranking method that nearly doubles the recall for our most challenging targets in the top-100 results. For the first time, AION-Search enables flexible semantic search scalable to 140 million galaxy images, enabling discovery from previously infeasible searches. More broadly, our work provides an approach for making large, unlabeled scientific image archives semantically searchable, expanding data exploration capabilities in fields from Earth observation to microscopy. The code, data, and app are publicly available at https://github.com/NolanKoblischke/AION-Search

Authors:Jingmin Zhu, Anqi Zhu, James Bailey, Jun Liu, Hossein Rahmani, Mohammed Bennamoun, Farid Boussaid, Qiuhong Ke
Title: DynaPURLS: Dynamic Refinement of Part-aware Representations for Skeleton-based Zero-Shot Action Recognition
Abstract:
Zero-shot skeleton-based action recognition (ZS-SAR) is fundamentally constrained by prevailing approaches that rely on aligning skeleton features with static, class-level semantics. This coarse-grained alignment fails to bridge the domain shift between seen and unseen classes, thereby impeding the effective transfer of fine-grained visual knowledge. To address these limitations, we introduce \textbf{DynaPURLS}, a unified framework that establishes robust, multi-scale visual-semantic correspondences and dynamically refines them at inference time to enhance generalization. Our framework leverages a large language model to generate hierarchical textual descriptions that encompass both global movements and local body-part dynamics. Concurrently, an adaptive partitioning module produces fine-grained visual representations by semantically grouping skeleton joints. To fortify this fine-grained alignment against the train-test domain shift, DynaPURLS incorporates a dynamic refinement module. During inference, this module adapts textual features to the incoming visual stream via a lightweight learnable projection. This refinement process is stabilized by a confidence-aware, class-balanced memory bank, which mitigates error propagation from noisy pseudo-labels. Extensive experiments on three large-scale benchmark datasets, including NTU RGB+D 60/120 and PKU-MMD, demonstrate that DynaPURLS significantly outperforms prior art, setting new state-of-the-art records. The source code is made publicly available at https://github.com/Alchemist0754/DynaPURLS

Authors:Futa Waseda, Shojiro Yamabe, Daiki Shiono, Kento Sasaki, Tsubasa Takahashi
Title: Read or Ignore? A Unified Benchmark for Typographic-Attack Robustness and Text Recognition in Vision-Language Models
Abstract:
Large vision-language models (LVLMs) are vulnerable to typographic attacks, where misleading text within an image overrides visual understanding. Existing evaluation protocols and defenses, largely focused on object recognition, implicitly encourage ignoring text to achieve robustness; however, real-world scenarios often require joint reasoning over both objects and text (e.g., recognizing pedestrians while reading traffic signs). To address this, we introduce a novel task, Read-or-Ignore VQA (RIO-VQA), which formalizes selective text use in visual question answering (VQA): models must decide, from context, when to read text and when to ignore it. For evaluation, we present the Read-or-Ignore Benchmark (RIO-Bench), a standardized dataset and protocol that, for each real image, provides same-scene counterfactuals (read / ignore) by varying only the textual content and question type. Using RIO-Bench, we show that strong LVLMs and existing defenses fail to balance typographic robustness and text-reading capability, highlighting the need for improved approaches. Finally, RIO-Bench enables a novel data-driven defense that learns adaptive selective text use, moving beyond prior non-adaptive, text-ignoring defenses. Overall, this work reveals a fundamental misalignment between the existing evaluation scope and real-world requirements, providing a principled path toward reliable LVLMs. Our Project Page is at https://turingmotors.github.io/rio-vqa/.

Authors:Ranjan Sapkota, Konstantinos I. Roumeliotis, Manoj Karkee, Nikolaos D. Tselikas
Title: Generalization vs. Specialization: Evaluating Segment Anything Model (SAM3) Zero-Shot Segmentation Against Fine-Tuned YOLO Detectors
Abstract:
Deep learning has advanced two fundamentally different paradigms for instance segmentation: specialized models optimized through task-specific fine-tuning and generalist foundation models capable of zero-shot segmentation. This work presents a comprehensive comparison between SAM3 (Segment Anything Model, also called SAMv3) operating in zero-shot mode and three variants of Ultralytics YOLO11 (nano, medium, and large) fine-tuned for instance segmentation. The evaluation is conducted on the MinneApple dataset, a dense benchmark comprising 670 orchard images with 28,179 annotated apple instances, enabling rigorous validation of model behavior under high object density and occlusion. Our analysis shows IoU choices can inflate performance gaps by up to 30%. At the appropriate IoU = 0.15 threshold, YOLO models achieve 68.9%, 72.2%, and 71.9% F1, while SAM3 reaches 59.8% in pure zero-shot mode. However, YOLO exhibits steep degradation 48-50 points across IoU ranges whereas SAM3 drops only 4 points, revealing 12 times superior boundary stability of SAM3. This highlights the strength of SAMv3 in mask precision versus specialization in detection completeness of YOLO11. We provide open-source code, evaluation pipelines, and methodological recommendations, contributing to a deeper understanding of when specialized fine-tuned models or generalist foundation models are preferable for dense instance segmentation tasks. This project repository is available on GitHub as https://github.com/Applied-AI-Research-Lab/Segment-Anything-Model-SAM3-Zero-Shot-Segmentation-Against-Fine-Tuned-YOLO-Detectors

Authors:Mingwang Xu, Jiahao Cui, Feipeng Cai, Hanlin Shang, Zhihao Zhu, Shan Luan, Yifang Xu, Neng Zhang, Yaoyi Li, Jia Cai, Siyu Zhu
Title: WAM-Diff: A Masked Diffusion VLA Framework with MoE and Online Reinforcement Learning for Autonomous Driving
Abstract:
End-to-end autonomous driving systems based on vision-language-action (VLA) models integrate multimodal sensor inputs and language instructions to generate planning and control signals. While autoregressive large language models and continuous diffusion policies are prevalent, the potential of discrete masked diffusion for trajectory generation remains largely unexplored. This paper presents WAM-Diff, a VLA framework that employs masked diffusion to iteratively refine a discrete sequence representing future ego-trajectories. Our approach features three key innovations: a systematic adaptation of masked diffusion for autonomous driving that supports flexible, non-causal decoding orders; scalable model capacity via a sparse MoE architecture trained jointly on motion prediction and driving-oriented visual question answering (VQA); and online reinforcement learning using Group Sequence Policy Optimization (GSPO) to optimize sequence-level driving rewards. Remarkably, our model achieves 91.0 PDMS on NAVSIM-v1 and 89.7 EPDMS on NAVSIM-v2, demonstrating the effectiveness of masked diffusion for autonomous driving. The approach provides a promising alternative to autoregressive and diffusion-based policies, supporting scenario-aware decoding strategies for trajectory generation. The code for this paper will be released publicly at: https://github.com/fudan-generative-vision/WAM-Diff

Authors:Tekleab G. Gebremedhin, Hailom S. Asegede, Bruh W. Tesheme, Tadesse B. Gebremichael, Kalayu G. Redae
Title: Automated Plant Disease and Pest Detection System Using Hybrid Lightweight CNN-MobileViT Models for Diagnosis of Indigenous Crops
Abstract:
Agriculture supports over 80% of the population in the Tigray region of Ethiopia, where infrastructural disruptions limit access to expert crop disease diagnosis. We present an offline-first detection system centered on a newly curated indigenous cactus-fig (Opuntia ficus-indica) dataset consisting of 3,587 field images across three core symptom classes. Given deployment constraints in post-conflict edge environments, we benchmark three mobile-efficient architectures: a custom lightweight CNN, EfficientNet-Lite1, and the CNN-Transformer hybrid MobileViT-XS. While the broader system contains independent modules for potato, apple, and corn, this study isolates cactus-fig model performance to evaluate attention sensitivity and inductive bias transfer on indigenous morphology alone. Results establish a clear Pareto trade-off: EfficientNet-Lite1 achieves 90.7% test accuracy, the lightweight CNN reaches 89.5% with the most favorable deployment profile (42 ms inference latency, 4.8 MB model size), and MobileViT-XS delivers 97.3% mean cross-validation accuracy, demonstrating that MHSA-based global reasoning disambiguates pest clusters from two dimensional fungal lesions more reliably than local texture CNN kernels. The ARM compatible models are deployed in a Tigrigna and Amharic localized Flutter application supporting fully offline inference on Cortex-A53 class devices, strengthening inclusivity for food security critical diagnostics.

Authors:Reuben R Shamir
Title: Soft Decision Tree classifier: explainable and extendable PyTorch implementation
Abstract:
We implemented a Soft Decision Tree (SDT) and a Short-term Memory Soft Decision Tree (SM-SDT) using PyTorch. The methods were extensively tested on simulated and clinical datasets. The SDT was visualized to demonstrate the potential for its explainability. SDT, SM-SDT, and XGBoost demonstrated similar area under the curve (AUC) values. These methods were better than Random Forest, Logistic Regression, and Decision Tree. The results on clinical datasets suggest that, aside from a decision tree, all tested classification methods yield comparable results. The code and datasets are available online on GitHub: https://github.com/KI-Research-Institute/Soft-Decision-Tree

Authors:Ye Fang, Tong Wu, Valentin Deschaintre, Duygu Ceylan, Iliyan Georgiev, Chun-Hao Paul Huang, Yiwei Hu, Xuelin Chen, Tuanfeng Yang Wang
Title: V-RGBX: Video Editing with Accurate Controls over Intrinsic Properties
Abstract:
Large-scale video generation models have shown remarkable potential in modeling photorealistic appearance and lighting interactions in real-world scenes. However, a closed-loop framework that jointly understands intrinsic scene properties (e.g., albedo, normal, material, and irradiance), leverages them for video synthesis, and supports editable intrinsic representations remains unexplored. We present V-RGBX, the first end-to-end framework for intrinsic-aware video editing. V-RGBX unifies three key capabilities: (1) video inverse rendering into intrinsic channels, (2) photorealistic video synthesis from these intrinsic representations, and (3) keyframe-based video editing conditioned on intrinsic channels. At the core of V-RGBX is an interleaved conditioning mechanism that enables intuitive, physically grounded video editing through user-selected keyframes, supporting flexible manipulation of any intrinsic modality. Extensive qualitative and quantitative results show that V-RGBX produces temporally consistent, photorealistic videos while propagating keyframe edits across sequences in a physically plausible manner. We demonstrate its effectiveness in diverse applications, including object appearance editing and scene-level relighting, surpassing the performance of prior methods.

Authors:Junjie Ye, Rong Xue, Basile Van Hoorick, Pavel Tokmakov, Muhammad Zubair Irshad, Yue Wang, Vitor Guizilini
Title: AnchorDream: Repurposing Video Diffusion for Embodiment-Aware Robot Data Synthesis
Abstract:
The collection of large-scale and diverse robot demonstrations remains a major bottleneck for imitation learning, as real-world data acquisition is costly and simulators offer limited diversity and fidelity with pronounced sim-to-real gaps. While generative models present an attractive solution, existing methods often alter only visual appearances without creating new behaviors, or suffer from embodiment inconsistencies that yield implausible motions. To address these limitations, we introduce AnchorDream, an embodiment-aware world model that repurposes pretrained video diffusion models for robot data synthesis. AnchorDream conditions the diffusion process on robot motion renderings, anchoring the embodiment to prevent hallucination while synthesizing objects and environments consistent with the robot's kinematics. Starting from only a handful of human teleoperation demonstrations, our method scales them into large, diverse, high-quality datasets without requiring explicit environment modeling. Experiments show that the generated data leads to consistent improvements in downstream policy learning, with relative gains of 36.4% in simulator benchmarks and nearly double performance in real-world studies. These results suggest that grounding generative world models in robot motion provides a practical path toward scaling imitation learning.

Authors:Peiqing Yang, Shangchen Zhou, Kai Hao, Qingyi Tao
Title: MatAnyone 2: Scaling Video Matting via a Learned Quality Evaluator
Abstract:
Video matting remains limited by the scale and realism of existing datasets. While leveraging segmentation data can enhance semantic stability, the lack of effective boundary supervision often leads to segmentation-like mattes lacking fine details. To this end, we introduce a learned Matting Quality Evaluator (MQE) that assesses semantic and boundary quality of alpha mattes without ground truth. It produces a pixel-wise evaluation map that identifies reliable and erroneous regions, enabling fine-grained quality assessment. The MQE scales up video matting in two ways: (1) as an online matting-quality feedback during training to suppress erroneous regions, providing comprehensive supervision, and (2) as an offline selection module for data curation, improving annotation quality by combining the strengths of leading video and image matting models. This process allows us to build a large-scale real-world video matting dataset, VMReal, containing 28K clips and 2.4M frames. To handle large appearance variations in long videos, we introduce a reference-frame training strategy that incorporates long-range frames beyond the local window for effective training. Our MatAnyone 2 achieves state-of-the-art performance on both synthetic and real-world benchmarks, surpassing prior methods across all metrics.

Authors:Mohammad Dehghanmanshadi, Wallapak Tavanapong
Title: Reducing Domain Gap with Diffusion-Based Domain Adaptation for Cell Counting
Abstract:
Generating realistic synthetic microscopy images is critical for training deep learning models in label-scarce environments, such as cell counting with many cells per image. However, traditional domain adaptation methods often struggle to bridge the domain gap when synthetic images lack the complex textures and visual patterns of real samples. In this work, we adapt the Inversion-Based Style Transfer (InST) framework originally designed for artistic style transfer to biomedical microscopy images. Our method combines latent-space Adaptive Instance Normalization with stochastic inversion in a diffusion model to transfer the style from real fluorescence microscopy images to synthetic ones, while weakly preserving content structure. We evaluate the effectiveness of our InST-based synthetic dataset for downstream cell counting by pre-training and fine-tuning EfficientNet-B0 models on various data sources, including real data, hard-coded synthetic data, and the public Cell200-s dataset. Models trained with our InST-synthesized images achieve up to 37\% lower Mean Absolute Error (MAE) compared to models trained on hard-coded synthetic data, and a 52\% reduction in MAE compared to models trained on Cell200-s (from 53.70 to 25.95 MAE). Notably, our approach also outperforms models trained on real data alone (25.95 vs. 27.74 MAE). Further improvements are achieved when combining InST-synthesized data with lightweight domain adaptation techniques such as DACS with CutMix. These findings demonstrate that InST-based style transfer most effectively reduces the domain gap between synthetic and real microscopy data. Our approach offers a scalable path for enhancing cell counting performance while minimizing manual labeling effort. The source code and resources are publicly available at: https://github.com/MohammadDehghan/InST-Microscopy.

Authors:Minglei Shi, Haolin Wang, Borui Zhang, Wenzhao Zheng, Bohan Zeng, Ziyang Yuan, Xiaoshi Wu, Yuanxing Zhang, Huan Yang, Xintao Wang, Pengfei Wan, Kun Gai, Jie Zhou, Jiwen Lu
Title: SVG-T2I: Scaling Up Text-to-Image Latent Diffusion Model Without Variational Autoencoder
Abstract:
Visual generation grounded in Visual Foundation Model (VFM) representations offers a highly promising unified pathway for integrating visual understanding, perception, and generation. Despite this potential, training large-scale text-to-image diffusion models entirely within the VFM representation space remains largely unexplored. To bridge this gap, we scale the SVG (Self-supervised representations for Visual Generation) framework, proposing SVG-T2I to support high-quality text-to-image synthesis directly in the VFM feature domain. By leveraging a standard text-to-image diffusion pipeline, SVG-T2I achieves competitive performance, reaching 0.75 on GenEval and 85.78 on DPG-Bench. This performance validates the intrinsic representational power of VFMs for generative tasks. We fully open-source the project, including the autoencoder and generation model, together with their training, inference, evaluation pipelines, and pre-trained weights, to facilitate further research in representation-driven visual generation.

Authors:Yilmaz Korkmaz, Jay N. Paranjape, Celso M. de Melo, Vishal M. Patel
Title: Referring Change Detection in Remote Sensing Imagery
Abstract:
Change detection in remote sensing imagery is essential for applications such as urban planning, environmental monitoring, and disaster management. Traditional change detection methods typically identify all changes between two temporal images without distinguishing the types of transitions, which can lead to results that may not align with specific user needs. Although semantic change detection methods have attempted to address this by categorizing changes into predefined classes, these methods rely on rigid class definitions and fixed model architectures, making it difficult to mix datasets with different label sets or reuse models across tasks, as the output channels are tightly coupled with the number and type of semantic classes. To overcome these limitations, we introduce Referring Change Detection (RCD), which leverages natural language prompts to detect specific classes of changes in remote sensing images. By integrating language understanding with visual analysis, our approach allows users to specify the exact type of change they are interested in. However, training models for RCD is challenging due to the limited availability of annotated data and severe class imbalance in existing datasets. To address this, we propose a two-stage framework consisting of (I) \textbf{RCDNet}, a cross-modal fusion network designed for referring change detection, and (II) \textbf{RCDGen}, a diffusion-based synthetic data generation pipeline that produces realistic post-change images and change maps for a specified category using only pre-change image, without relying on semantic segmentation masks and thereby significantly lowering the barrier to scalable data creation. Experiments across multiple datasets show that our framework enables scalable and targeted change detection. Project website is here: https://yilmazkorkmaz1.github.io/RCD.

Authors:Alan Bonomi, Francesco Banelli, Antonio Terpin
Title: Particle Image Velocimetry Refinement via Consensus ADMM
Abstract:
Particle Image Velocimetry (PIV) is an imaging technique in experimental fluid dynamics that quantifies flow fields around bluff bodies by analyzing the displacement of neutrally buoyant tracer particles immersed in the fluid. Traditional PIV approaches typically depend on tuning parameters specific to the imaging setup, making the performance sensitive to variations in illumination, flow conditions, and seeding density. On the other hand, even state-of-the-art machine learning methods for flow quantification are fragile outside their training set. In our experiments, we observed that flow quantification would improve if different tunings (or algorithms) were applied to different regions of the same image pair. In this work, we parallelize the instantaneous flow quantification with multiple algorithms and adopt a consensus framework based on the alternating direction method of multipliers, seamlessly incorporating priors such as smoothness and incompressibility. We perform several numerical experiments to demonstrate the benefits of this approach. For instance, we achieve a decrease in end-point-error of up to 20% of a dense-inverse-search estimator at an inference rate of 60Hz, and we show how this performance boost can be increased further with outlier rejection. Our method is implemented in JAX, effectively exploiting hardware acceleration, and integrated in Flow Gym, enabling (i) reproducible comparisons with the state-of-the-art, (ii) testing different base algorithms, (iii) straightforward deployment for active fluids control applications.

Authors:Luca Cazzola, Ahed Alboody
Title: Kinetic Mining in Context: Few-Shot Action Synthesis via Text-to-Motion Distillation
Abstract:
The acquisition cost for large, annotated motion datasets remains a critical bottleneck for skeletal-based Human Activity Recognition (HAR). Although Text-to-Motion (T2M) generative models offer a compelling, scalable source of synthetic data, their training objectives, which emphasize general artistic motion, and dataset structures fundamentally differ from HAR's requirements for kinematically precise, class-discriminative actions. This disparity creates a significant domain gap, making generalist T2M models ill-equipped for generating motions suitable for HAR classifiers. To address this challenge, we propose KineMIC (Kinetic Mining In Context), a transfer learning framework for few-shot action synthesis. KineMIC adapts a T2M diffusion model to an HAR domain by hypothesizing that semantic correspondences in the text encoding space can provide soft supervision for kinematic distillation. We operationalize this via a kinetic mining strategy that leverages CLIP text embeddings to establish correspondences between sparse HAR labels and T2M source data. This process guides fine-tuning, transforming the generalist T2M backbone into a specialized few-shot Action-to-Motion generator. We validate KineMIC using HumanML3D as the source T2M dataset and a subset of NTU RGB+D 120 as the target HAR domain, randomly selecting just 10 samples per action class. Our approach generates significantly more coherent motions, providing a robust data augmentation source that delivers a +23.1% accuracy points improvement. Animated illustrations and supplementary materials are available at (https://lucazzola.github.io/publications/kinemic).

Authors:Jiapeng Tang, Kai Li, Chengxiang Yin, Liuhao Ge, Fei Jiang, Jiu Xu, Matthias Nießner, Christian Häne, Timur Bagautdinov, Egor Zakharov, Peihong Guo
Title: FactorPortrait: Controllable Portrait Animation via Disentangled Expression, Pose, and Viewpoint
Abstract:
We introduce FactorPortrait, a video diffusion method for controllable portrait animation that enables lifelike synthesis from disentangled control signals of facial expressions, head movement, and camera viewpoints. Given a single portrait image, a driving video, and camera trajectories, our method animates the portrait by transferring facial expressions and head movements from the driving video while simultaneously enabling novel view synthesis from arbitrary viewpoints. We utilize a pre-trained image encoder to extract facial expression latents from the driving video as control signals for animation generation. Such latents implicitly capture nuanced facial expression dynamics with identity and pose information disentangled, and they are efficiently injected into the video diffusion transformer through our proposed expression controller. For camera and head pose control, we employ Plücker ray maps and normal maps rendered from 3D body mesh tracking. To train our model, we curate a large-scale synthetic dataset containing diverse combinations of camera viewpoints, head poses, and facial expression dynamics. Extensive experiments demonstrate that our method outperforms existing approaches in realism, expressiveness, control accuracy, and view consistency.

Authors:Maik Dannecker, Steven Jia, Nil Stolt-Ansó, Nadine Girard, Guillaume Auzias, François Rousseau, Daniel Rueckert
Title: Fast and Explicit: Slice-to-Volume Reconstruction via 3D Gaussian Primitives with Analytic Point Spread Function Modeling
Abstract:
Recovering high-fidelity 3D images from sparse or degraded 2D images is a fundamental challenge in medical imaging, with broad applications ranging from 3D ultrasound reconstruction to MRI super-resolution. In the context of fetal MRI, high-resolution 3D reconstruction of the brain from motion-corrupted low-resolution 2D acquisitions is a prerequisite for accurate neurodevelopmental diagnosis. While implicit neural representations (INRs) have recently established state-of-the-art performance in self-supervised slice-to-volume reconstruction (SVR), they suffer from a critical computational bottleneck: accurately modeling the image acquisition physics requires expensive stochastic Monte Carlo sampling to approximate the point spread function (PSF). In this work, we propose a shift from neural network based implicit representations to Gaussian based explicit representations. By parameterizing the HR 3D image volume as a field of anisotropic Gaussian primitives, we leverage the property of Gaussians being closed under convolution and thus derive a \textit{closed-form analytical solution} for the forward model. This formulation reduces the previously intractable acquisition integral to an exact covariance addition ($\mathbfΣ_{obs} = \mathbfΣ_{HR} + \mathbfΣ_{PSF}$), effectively bypassing the need for compute-intensive stochastic sampling while ensuring exact gradient propagation. We demonstrate that our approach matches the reconstruction quality of self-supervised state-of-the-art SVR frameworks while delivering a 5$\times$--10$\times$ speed-up on neonatal and fetal data. With convergence often reached in under 30 seconds, our framework paves the way towards translation into clinical routine of real-time fetal 3D MRI. Code will be public at {https://github.com/m-dannecker/Gaussian-Primitives-for-Fast-SVR}.

Authors:Chunyi Li, Longfei Li, Zicheng Zhang, Xiaohong Liu, Min Tang, Weisi Lin, Guangtao Zhai
Title: Using GUI Agent for Electronic Design Automation
Abstract:
Graphical User Interface (GUI) agents adopt an end-to-end paradigm that maps a screenshot to an action sequence, thereby automating repetitive tasks in virtual environments. However, existing GUI agents are evaluated almost exclusively on commodity software such as Microsoft Word and Excel. Professional Computer-Aided Design (CAD) suites promise an order-of-magnitude higher economic return, yet remain the weakest performance domain for existing agents and are still far from replacing expert Electronic-Design-Automation (EDA) engineers. We therefore present the first systematic study that deploys GUI agents for EDA workflows. Our contributions are: (1) a large-scale dataset named GUI-EDA, including 5 CAD tools and 5 physical domains, comprising 2,000+ high-quality screenshot-answer-action pairs recorded by EDA scientists and engineers during real-world component design; (2) a comprehensive benchmark that evaluates 30+ mainstream GUI agents, demonstrating that EDA tasks constitute a major, unsolved challenge; and (3) an EDA-specialized metric named EDAgent, equipped with a reflection mechanism that achieves reliable performance on industrial CAD software and, for the first time, outperforms Ph.D. students majored in Electrical Engineering. This work extends GUI agents from generic office automation to specialized, high-value engineering domains and offers a new avenue for advancing EDA productivity. The dataset will be released at: https://github.com/aiben-ch/GUI-EDA.

Authors:Sam Gijsen, Marc-Andre Schulz, Kerstin Ritter
Title: Brain-Semantoks: Learning Semantic Tokens of Brain Dynamics with a Self-Distilled Foundation Model
Abstract:
The development of foundation models for functional magnetic resonance imaging (fMRI) time series holds significant promise for predicting phenotypes related to disease and cognition. Current models, however, are often trained using a mask-and-reconstruct objective on small brain regions. This focus on low-level information leads to representations that are sensitive to noise and temporal fluctuations, necessitating extensive fine-tuning for downstream tasks. We introduce Brain-Semantoks, a self-supervised framework designed specifically to learn abstract representations of brain dynamics. Its architecture is built on two core innovations: a semantic tokenizer that aggregates noisy regional signals into robust tokens representing functional networks, and a self-distillation objective that enforces representational stability across time. We show that this objective is stabilized through a novel training curriculum, ensuring the model robustly learns meaningful features from low signal-to-noise time series. We demonstrate that learned representations enable strong performance on a variety of downstream tasks even when only using a linear probe. Furthermore, we provide comprehensive scaling analyses indicating more unlabeled data reliably results in out-of-distribution performance gains without domain adaptation.

Authors:Valentina Lilova, Toyesh Chakravorty, Julian I. Bibo, Emma Boccaletti, Brandon Li, Lívia Baxová, Cees G. M. Snoek, Mohammadreza Salehi
Title: Evaluating Foundation Models' 3D Understanding Through Multi-View Correspondence Analysis
Abstract:
Benchmarking 3D spatial understanding of foundation models is essential for real-world applications such as robotics and autonomous driving. Existing evaluations often rely on downstream finetuning with linear heads or task-specific decoders, making it difficult to isolate the intrinsic 3D reasoning ability of pretrained encoders. In this work, we introduce a novel benchmark for in-context 3D scene understanding that requires no finetuning and directly probes the quality of dense visual features. Building on the Hummingbird framework, which evaluates in-context 2D scene understanding, we extend the setup to the 3D Multi-View ImageNet (MVImgNet) dataset. Given a set of images from objects in specific angles (keys), we benchmark the performance of segmenting novel views (queries) and report the scores in 4 categories of easy, medium, hard, and extreme based on the key-query view contrast. We benchmark 8 state-of-the-art foundation models and show DINO-based encoders remain competitive across large viewpoint shifts, while 3D-aware models like VGGT require dedicated multi-view adjustments. Our code is publicly available at https://github.com/ToyeshC/open-hummingbird-3d-eval .

Authors:Zhendi Gong, Xin Chen
Title: SSL-MedSAM2: A Semi-supervised Medical Image Segmentation Framework Powered by Few-shot Learning of SAM2
Abstract:
Despite the success of deep learning based models in medical image segmentation, most state-of-the-art (SOTA) methods perform fully-supervised learning, which commonly rely on large scale annotated training datasets. However, medical image annotation is highly time-consuming, hindering its clinical applications. Semi-supervised learning (SSL) has been emerged as an appealing strategy in training with limited annotations, largely reducing the labelling cost. We propose a novel SSL framework SSL-MedSAM2, which contains a training-free few-shot learning branch TFFS-MedSAM2 based on the pretrained large foundation model Segment Anything Model 2 (SAM2) for pseudo label generation, and an iterative fully-supervised learning branch FSL-nnUNet based on nnUNet for pseudo label refinement. The results on MICCAI2025 challenge CARE-LiSeg (Liver Segmentation) demonstrate an outstanding performance of SSL-MedSAM2 among other methods. The average dice scores on the test set in GED4 and T1 MRI are 0.9710 and 0.9648 respectively, and the Hausdorff distances are 20.07 and 21.97 respectively. The code is available via https://github.com/naisops/SSL-MedSAM2/tree/main.

Authors:Ekaterina Kalinicheva, Florian Helen, Stéphane Mermoz, Florian Mouret, Milena Planells
Title: Super-Resolved Canopy Height Mapping from Sentinel-2 Time Series Using LiDAR HD Reference Data across Metropolitan France
Abstract:
Fine-scale forest monitoring is essential for understanding canopy structure and its dynamics, which are key indicators of carbon stocks, biodiversity, and forest health. Deep learning is particularly effective for this task, as it integrates spectral, temporal, and spatial signals that jointly reflect the canopy structure. To address this need, we introduce THREASURE-Net, a novel end-to-end framework for Tree Height Regression And Super-Resolution. The model is trained on Sentinel-2 time series using reference height metrics derived from LiDAR HD data at multiple spatial resolutions over Metropolitan France to produce annual height maps. We evaluate three model variants, producing tree-height predictions at 2.5 m, 5 m, and 10 m resolution. THREASURE-Net does not rely on any pretrained model nor on reference very high resolution optical imagery to train its super-resolution module; instead, it learns solely from LiDAR-derived height information. Our approach outperforms existing state-of-the-art methods based on Sentinel data and is competitive with methods based on very high resolution imagery. It can be deployed to generate high-precision annual canopy-height maps, achieving mean absolute errors of 2.62 m, 2.72 m, and 2.88 m at 2.5 m, 5 m, and 10 m resolution, respectively. These results highlight the potential of THREASURE-Net for scalable and cost-effective structural monitoring of temperate forests using only freely available satellite data. The source code for THREASURE-Net is available at: https://github.com/Global-Earth-Observation/threasure-net.

Authors:Jingmin Zhu, Anqi Zhu, Hossein Rahmani, Jun Liu, Mohammed Bennamoun, Qiuhong Ke
Title: Boosting Skeleton-based Zero-Shot Action Recognition with Training-Free Test-Time Adaptation
Abstract:
We introduce Skeleton-Cache, the first training-free test-time adaptation framework for skeleton-based zero-shot action recognition (SZAR), aimed at improving model generalization to unseen actions during inference. Skeleton-Cache reformulates inference as a lightweight retrieval process over a non-parametric cache that stores structured skeleton representations, combining both global and fine-grained local descriptors. To guide the fusion of descriptor-wise predictions, we leverage the semantic reasoning capabilities of large language models (LLMs) to assign class-specific importance weights. By integrating these structured descriptors with LLM-guided semantic priors, Skeleton-Cache dynamically adapts to unseen actions without any additional training or access to training data. Extensive experiments on NTU RGB+D 60/120 and PKU-MMD II demonstrate that Skeleton-Cache consistently boosts the performance of various SZAR backbones under both zero-shot and generalized zero-shot settings. The code is publicly available at https://github.com/Alchemist0754/Skeleton-Cache.

Authors:Agustin Martin Picard, Thibaut Boissin, Varshini Subhash, Rémi Cadène, Thomas Fel
Title: Back to the Baseline: Examining Baseline Effects on Explainability Metrics
Abstract:
Attribution methods are among the most prevalent techniques in Explainable Artificial Intelligence (XAI) and are usually evaluated and compared using Fidelity metrics, with Insertion and Deletion being the most popular. These metrics rely on a baseline function to alter the pixels of the input image that the attribution map deems most important. In this work, we highlight a critical problem with these metrics: the choice of a given baseline will inevitably favour certain attribution methods over others. More concerningly, even a simple linear model with commonly used baselines contradicts itself by designating different optimal methods. A question then arises: which baseline should we use? We propose to study this problem through two desirable properties of a baseline: (i) that it removes information and (ii) that it does not produce overly out-of-distribution (OOD) images. We first show that none of the tested baselines satisfy both criteria, and there appears to be a trade-off among current baselines: either they remove information or they produce a sequence of OOD images. Finally, we introduce a novel baseline by leveraging recent work in feature visualisation to artificially produce a model-dependent baseline that removes information without being overly OOD, thus improving on the trade-off when compared to other existing baselines. Our code is available at https://github.com/deel-ai-papers/Back-to-the-Baseline

Authors:Zhifan Zhu, Yifei Huang, Yoichi Sato, Dima Damen
Title: The N-Body Problem: Parallel Execution from Single-Person Egocentric Video
Abstract:
Humans can intuitively parallelise complex activities, but can a model learn this from observing a single person? Given one egocentric video, we introduce the N-Body Problem: how N individuals, can hypothetically perform the same set of tasks observed in this video. The goal is to maximise speed-up, but naive assignment of video segments to individuals often violates real-world constraints, leading to physically impossible scenarios like two people using the same object or occupying the same space. To address this, we formalise the N-Body Problem and propose a suite of metrics to evaluate both performance (speed-up, task coverage) and feasibility (spatial collisions, object conflicts and causal constraints). We then introduce a structured prompting strategy that guides a Vision-Language Model (VLM) to reason about the 3D environment, object usage, and temporal dependencies to produce a viable parallel execution. On 100 videos from EPIC-Kitchens and HD-EPIC, our method for N = 2 boosts action coverage by 45% over a baseline prompt for Gemini 2.5 Pro, while simultaneously slashing collision rates, object and causal conflicts by 55%, 45% and 55% respectively.

Authors:Kuan Wang, Yanjun Qin, Mengge Lu, Liejun Wang, Xiaoming Tao
Title: Assisted Refinement Network Based on Channel Information Interaction for Camouflaged and Salient Object Detection
Abstract:
Camouflaged Object Detection (COD) stands as a significant challenge in computer vision, dedicated to identifying and segmenting objects visually highly integrated with their backgrounds. Current mainstream methods have made progress in cross-layer feature fusion, but two critical issues persist during the decoding stage. The first is insufficient cross-channel information interaction within the same-layer features, limiting feature expressiveness. The second is the inability to effectively co-model boundary and region information, making it difficult to accurately reconstruct complete regions and sharp boundaries of objects. To address the first issue, we propose the Channel Information Interaction Module (CIIM), which introduces a horizontal-vertical integration mechanism in the channel dimension. This module performs feature reorganization and interaction across channels to effectively capture complementary cross-channel information. To address the second issue, we construct a collaborative decoding architecture guided by prior knowledge. This architecture generates boundary priors and object localization maps through Boundary Extraction (BE) and Region Extraction (RE) modules, then employs hybrid attention to collaboratively calibrate decoded features, effectively overcoming semantic ambiguity and imprecise boundaries. Additionally, the Multi-scale Enhancement (MSE) module enriches contextual feature representations. Extensive experiments on four COD benchmark datasets validate the effectiveness and state-of-the-art performance of the proposed model. We further transferred our model to the Salient Object Detection (SOD) task and demonstrated its adaptability across downstream tasks, including polyp segmentation, transparent object detection, and industrial and road defect detection. Code and experimental results are publicly available at: https://github.com/akuan1234/ARNet-v2.

Authors:Yixuan Zhang, Qing Xu, Yue Li, Xiangjian He, Qian Zhang, Mainul Haque, Rong Qu, Wenting Duan, Zhen Chen
Title: FreqDINO: Frequency-Guided Adaptation for Generalized Boundary-Aware Ultrasound Image Segmentation
Abstract:
Ultrasound image segmentation is pivotal for clinical diagnosis, yet challenged by speckle noise and imaging artifacts. Recently, DINOv3 has shown remarkable promise in medical image segmentation with its powerful representation capabilities. However, DINOv3, pre-trained on natural images, lacks sensitivity to ultrasound-specific boundary degradation. To address this limitation, we propose FreqDINO, a frequency-guided segmentation framework that enhances boundary perception and structural consistency. Specifically, we devise a Multi-scale Frequency Extraction and Alignment (MFEA) strategy to separate low-frequency structures and multi-scale high-frequency boundary details, and align them via learnable attention. We also introduce a Frequency-Guided Boundary Refinement (FGBR) module that extracts boundary prototypes from high-frequency components and refines spatial features. Furthermore, we design a Multi-task Boundary-Guided Decoder (MBGD) to ensure spatial coherence between boundary and semantic predictions. Extensive experiments demonstrate that FreqDINO surpasses state-of-the-art methods with superior achieves remarkable generalization capability. The code is at https://github.com/MingLang-FD/FreqDINO.

Authors:Jingchao Wu, Zejian Kang, Haibo Liu, Yuanchen Fei, Xiangru Huang
Title: KeyframeFace: From Text to Expressive Facial Keyframes
Abstract:
Generating dynamic 3D facial animation from natural language requires understanding both temporally structured semantics and fine-grained expression changes. Existing datasets and methods mainly focus on speech-driven animation or unstructured expression sequences and therefore lack the semantic grounding and temporal structures needed for expressive human performance generation. In this work, we introduce KeyframeFace, a large-scale multimodal dataset designed for text-to-animation research through keyframe-level supervision. KeyframeFace provides 2,100 expressive scripts paired with monocular videos, per-frame ARKit coefficients, contextual backgrounds, complex emotions, manually defined keyframes, and multi-perspective annotations based on ARKit coefficients and images via Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs). Beyond the dataset, we propose the first text-to-animation framework that explicitly leverages LLM priors for interpretable facial motion synthesis. This design aligns the semantic understanding capabilities of LLMs with the interpretable structure of ARKit's coefficients, enabling high-fidelity expressive animation. KeyframeFace and our LLM-based framework together establish a new foundation for interpretable, keyframe-guided, and context-aware text-to-animation. Code and data are available at https://github.com/wjc12345123/KeyframeFace.

Authors:Yuxuan Han, Xin Ming, Tianxiao Li, Zhuofan Shen, Qixuan Zhang, Lan Xu, Feng Xu
Title: WildCap: Facial Appearance Capture in the Wild via Hybrid Inverse Rendering
Abstract:
Existing methods achieve high-quality facial appearance capture under controllable lighting, which increases capture cost and limits usability. We propose WildCap, a novel method for high-quality facial appearance capture from a smartphone video recorded in the wild. To disentangle high-quality reflectance from complex lighting effects in in-the-wild captures, we propose a novel hybrid inverse rendering framework. Specifically, we first apply a data-driven method, i.e., SwitchLight, to convert the captured images into more constrained conditions and then adopt model-based inverse rendering. However, unavoidable local artifacts in network predictions, such as shadow-baking, are non-physical and thus hinder accurate inverse rendering of lighting and material. To address this, we propose a novel texel grid lighting model to explain non-physical effects as clean albedo illuminated by local physical lighting. During optimization, we jointly sample a diffusion prior for reflectance maps and optimize the lighting, effectively resolving scale ambiguity between local lights and albedo. Our method achieves significantly better results than prior arts in the same capture setup, closing the quality gap between in-the-wild and controllable recordings by a large margin. Our code will be released \href{https://yxuhan.github.io/WildCap/index.html}{\textcolor{magenta}{here}}.

Authors:Kechun Xu, Zhenjie Zhu, Anzhe Chen, Shuqi Zhao, Qing Huang, Yifei Yang, Haojian Lu, Rong Xiong, Masayoshi Tomizuka, Yue Wang
Title: Seeing to Act, Prompting to Specify: A Bayesian Factorization of Vision Language Action Policy
Abstract:
The pursuit of out-of-distribution generalization in Vision-Language-Action (VLA) models is often hindered by catastrophic forgetting of the Vision-Language Model (VLM) backbone during fine-tuning. While co-training with external reasoning data helps, it requires experienced tuning and data-related overhead. Beyond such external dependencies, we identify an intrinsic cause within VLA datasets: modality imbalance, where language diversity is much lower than visual and action diversity. This imbalance biases the model toward visual shortcuts and language forgetting. To address this, we introduce BayesVLA, a Bayesian factorization that decomposes the policy into a visual-action prior, supporting seeing-to-act, and a language-conditioned likelihood, enabling prompt-to-specify. This inherently preserves generalization and promotes instruction following. We further incorporate pre- and post-contact phases to better leverage pre-trained foundation models. Information-theoretic analysis formally validates our effectiveness in mitigating shortcut learning. Extensive experiments show superior generalization to unseen instructions, objects, and environments compared to existing methods. Project page is available at: https://xukechun.github.io/papers/BayesVLA.

Authors:Qi Yang, Geert Van Der Auwera, Zhu Li
Title: Lightweight 3D Gaussian Splatting Compression via Video Codec
Abstract:
Current video-based GS compression methods rely on using Parallel Linear Assignment Sorting (PLAS) to convert 3D GS into smooth 2D maps, which are computationally expensive and time-consuming, limiting the application of GS on lightweight devices. In this paper, we propose a Lightweight 3D Gaussian Splatting (GS) Compression method based on Video codec (LGSCV). First, a two-stage Morton scan is proposed to generate blockwise 2D maps that are friendly for canonical video codecs in which the coding units (CU) are square blocks. A 3D Morton scan is used to permute GS primitives, followed by a 2D Morton scan to map the ordered GS primitives to 2D maps in a blockwise style. However, although the blockwise 2D maps report close performance to the PLAS map in high-bitrate regions, they show a quality collapse at medium-to-low bitrates. Therefore, a principal component analysis (PCA) is used to reduce the dimensionality of spherical harmonics (SH), and a MiniPLAS, which is flexible and fast, is designed to permute the primitives within certain block sizes. Incorporating SH PCA and MiniPLAS leads to a significant gain in rate-distortion (RD) performance, especially at medium and low bitrates. MiniPLAS can also guide the setting of the codec CU size configuration and significantly reduce encoding time. Experimental results on the MPEG dataset demonstrate that the proposed LGSCV achieves over 20% RD gain compared with state-of-the-art methods, while reducing 2D map generation time to approximately 1 second and cutting encoding time by 50%. The code is available at https://github.com/Qi-Yangsjtu/LGSCV .

Authors:Yiwei Lyu, Chenhui Zhao, Soumyanil Banerjee, Shixuan Liu, Akshay Rao, Akhil Kondepudi, Honglak Lee, Todd C. Hollon
Title: Learning complete and explainable visual representations from itemized text supervision
Abstract:
Training vision models with language supervision enables general and transferable representations. However, many visual domains, especially non-object-centric domains such as medical imaging and remote sensing, contain itemized text annotations: multiple text items describing distinct and semantically independent findings within a single image. Such supervision differs from standard multi-caption supervision, where captions are redundant or highly overlapping. Here, we introduce ItemizedCLIP, a framework for learning complete and explainable visual representations from itemized text supervision. ItemizedCLIP employs a cross-attention module to produce text item-conditioned visual embeddings and a set of tailored objectives that jointly enforce item independence (distinct regions for distinct items) and representation completeness (coverage of all items). Across four domains with naturally itemized text supervision (brain MRI, head CT, chest CT, remote sensing) and one additional synthetically itemized dataset, ItemizedCLIP achieves substantial improvements in zero-shot performance and fine-grained interpretability over baselines. The resulting ItemizedCLIP representations are semantically grounded, item-differentiable, complete, and visually interpretable. Our code is available at https://github.com/MLNeurosurg/ItemizedCLIP.

Authors:Bowen Wen, Shaurya Dewan, Stan Birchfield
Title: Fast-FoundationStereo: Real-Time Zero-Shot Stereo Matching
Abstract:
Stereo foundation models achieve strong zero-shot generalization but remain computationally prohibitive for real-time applications. Efficient stereo architectures, on the other hand, sacrifice robustness for speed and require costly per-domain fine-tuning. To bridge this gap, we present Fast-FoundationStereo, a family of architectures that achieve, for the first time, strong zero-shot generalization at real-time frame rate. We employ a divide-and-conquer acceleration strategy with three components: (1) knowledge distillation to compress the hybrid backbone into a single efficient student; (2) blockwise neural architecture search for automatically discovering optimal cost filtering designs under latency budgets, reducing search complexity exponentially; and (3) structured pruning for eliminating redundancy in the iterative refinement module. Furthermore, we introduce an automatic pseudo-labeling pipeline used to curate 1.4M in-the-wild stereo pairs to supplement synthetic training data and facilitate knowledge distillation. The resulting model can run over 10x faster than FoundationStereo while closely matching its zero-shot accuracy, thus establishing a new state-of-the-art among real-time methods. Project page: https://nvlabs.github.io/Fast-FoundationStereo/

Authors:Felix O'Mahony, Roberto Cipolla, Ayush Tewari
Title: VDAWorld: World Modelling via VLM-Directed Abstraction and Simulation
Abstract:
Generative video models, a leading approach to world modeling, face fundamental limitations. They often violate physical and logical rules, lack interactivity, and operate as opaque black boxes ill-suited for building structured, queryable worlds. To overcome these challenges, we propose a new paradigm focused on distilling an image caption pair into a tractable, abstract representation optimized for simulation. We introduce VDAWorld, a framework where a Vision-Language Model (VLM) acts as an intelligent agent to orchestrate this process. The VLM autonomously constructs a grounded (2D or 3D) scene representation by selecting from a suite of vision tools, and accordingly chooses a compatible physics simulator (e.g., rigid body, fluid) to act upon it. VDAWorld can then infer latent dynamics from the static scene to predict plausible future states. Our experiments show that this combination of intelligent abstraction and adaptive simulation results in a versatile world model capable of producing high quality simulations across a wide range of dynamic scenarios.

Authors:Ao Liang, Lingdong Kong, Tianyi Yan, Hongsi Liu, Wesley Yang, Ziqi Huang, Wei Yin, Jialong Zuo, Yixuan Hu, Dekai Zhu, Dongyue Lu, Youquan Liu, Guangfeng Jiang, Linfeng Li, Xiangtai Li, Long Zhuo, Lai Xing Ng, Benoit R. Cottereau, Changxin Gao, Liang Pan, Wei Tsang Ooi, Ziwei Liu
Title: WorldLens: Full-Spectrum Evaluations of Driving World Models in Real World
Abstract:
Generative world models are reshaping embodied AI, enabling agents to synthesize realistic 4D driving environments that look convincing but often fail physically or behaviorally. Despite rapid progress, the field still lacks a unified way to assess whether generated worlds preserve geometry, obey physics, or support reliable control. We introduce WorldLens, a full-spectrum benchmark evaluating how well a model builds, understands, and behaves within its generated world. It spans five aspects -- Generation, Reconstruction, Action-Following, Downstream Task, and Human Preference -- jointly covering visual realism, geometric consistency, physical plausibility, and functional reliability. Across these dimensions, no existing world model excels universally: those with strong textures often violate physics, while geometry-stable ones lack behavioral fidelity. To align objective metrics with human judgment, we further construct WorldLens-26K, a large-scale dataset of human-annotated videos with numerical scores and textual rationales, and develop WorldLens-Agent, an evaluation model distilled from these annotations to enable scalable, explainable scoring. Together, the benchmark, dataset, and agent form a unified ecosystem for measuring world fidelity -- standardizing how future models are judged not only by how real they look, but by how real they behave.

Authors:Yukai Shi, Weiyu Li, Zihao Wang, Hongyang Li, Xingyu Chen, Ping Tan, Lei Zhang
Title: SceneMaker: Open-set 3D Scene Generation with Decoupled De-occlusion and Pose Estimation Model
Abstract:
We propose a decoupled 3D scene generation framework called SceneMaker in this work. Due to the lack of sufficient open-set de-occlusion and pose estimation priors, existing methods struggle to simultaneously produce high-quality geometry and accurate poses under severe occlusion and open-set settings. To address these issues, we first decouple the de-occlusion model from 3D object generation, and enhance it by leveraging image datasets and collected de-occlusion datasets for much more diverse open-set occlusion patterns. Then, we propose a unified pose estimation model that integrates global and local mechanisms for both self-attention and cross-attention to improve accuracy. Besides, we construct an open-set 3D scene dataset to further extend the generalization of the pose estimation model. Comprehensive experiments demonstrate the superiority of our decoupled framework on both indoor and open-set scenes. Our codes and datasets is released at https://idea-research.github.io/SceneMaker/.

Authors:Tsai-Shien Chen, Aliaksandr Siarohin, Guocheng Gordon Qian, Kuan-Chieh Jackson Wang, Egor Nemchinov, Moayed Haji-Ali, Riza Alp Guler, Willi Menapace, Ivan Skorokhodov, Anil Kag, Jun-Yan Zhu, Sergey Tulyakov
Title: Omni-Attribute: Open-vocabulary Attribute Encoder for Visual Concept Personalization
Abstract:
Visual concept personalization aims to transfer only specific image attributes, such as identity, expression, lighting, and style, into unseen contexts. However, existing methods rely on holistic embeddings from general-purpose image encoders, which entangle multiple visual factors and make it difficult to isolate a single attribute. This often leads to information leakage and incoherent synthesis. To address this limitation, we introduce Omni-Attribute, the first open-vocabulary image attribute encoder designed to learn high-fidelity, attribute-specific representations. Our approach jointly designs the data and model: (i) we curate semantically linked image pairs annotated with positive and negative attributes to explicitly teach the encoder what to preserve or suppress; and (ii) we adopt a dual-objective training paradigm that balances generative fidelity with contrastive disentanglement. The resulting embeddings prove effective for open-vocabulary attribute retrieval, personalization, and compositional generation, achieving state-of-the-art performance across multiple benchmarks.

Authors:Sicheng Mo, Thao Nguyen, Richard Zhang, Nick Kolkin, Siddharth Srinivasan Iyer, Eli Shechtman, Krishna Kumar Singh, Yong Jae Lee, Bolei Zhou, Yuheng Li
Title: Group Diffusion: Enhancing Image Generation by Unlocking Cross-Sample Collaboration
Abstract:
In this work, we explore an untapped signal in diffusion model inference. While all previous methods generate images independently at inference, we instead ask if samples can be generated collaboratively. We propose Group Diffusion, unlocking the attention mechanism to be shared across images, rather than limited to just the patches within an image. This enables images to be jointly denoised at inference time, learning both intra and inter-image correspondence. We observe a clear scaling effect - larger group sizes yield stronger cross-sample attention and better generation quality. Furthermore, we introduce a qualitative measure to capture this behavior and show that its strength closely correlates with FID. Built on standard diffusion transformers, our GroupDiff achieves up to 32.2% FID improvement on ImageNet-256x256. Our work reveals cross-sample inference as an effective, previously unexplored mechanism for generative modeling.

Authors:Qitao Zhao, Hao Tan, Qianqian Wang, Sai Bi, Kai Zhang, Kalyan Sunkavalli, Shubham Tulsiani, Hanwen Jiang
Title: E-RayZer: Self-supervised 3D Reconstruction as Spatial Visual Pre-training
Abstract:
Self-supervised pre-training has revolutionized foundation models for languages, individual 2D images and videos, but remains largely unexplored for learning 3D-aware representations from multi-view images. In this paper, we present E-RayZer, a self-supervised large 3D Vision model that learns truly 3D-aware representations directly from unlabeled images. Unlike prior self-supervised methods such as RayZer that infer 3D indirectly through latent-space view synthesis, E-RayZer operates directly in 3D space, performing self-supervised 3D reconstruction with Explicit geometry. This formulation eliminates shortcut solutions and yields representations that are geometrically grounded. To ensure convergence and scalability, we introduce a novel fine-grained learning curriculum that organizes training from easy to hard samples and harmonizes heterogeneous data sources in an entirely unsupervised manner. Experiments demonstrate that E-RayZer significantly outperforms RayZer on pose estimation, matches or sometimes surpasses fully supervised reconstruction models such as VGGT. Furthermore, its learned representations outperform leading visual pre-training models (e.g., DINOv3, CroCo v2, VideoMAE V2, and RayZer) when transferring to 3D downstream tasks, establishing E-RayZer as a new paradigm for 3D-aware visual pre-training.

Authors:Yiwen Tang, Zoey Guo, Kaixin Zhu, Ray Zhang, Qizhi Chen, Dongzhi Jiang, Junli Liu, Bohan Zeng, Haoming Song, Delin Qu, Tianyi Bai, Dan Xu, Wentao Zhang, Bin Zhao
Title: Are We Ready for RL in Text-to-3D Generation? A Progressive Investigation
Abstract:
Reinforcement learning (RL), earlier proven to be effective in large language and multi-modal models, has been successfully extended to enhance 2D image generation recently. However, applying RL to 3D generation remains largely unexplored due to the higher spatial complexity of 3D objects, which require globally consistent geometry and fine-grained local textures. This makes 3D generation significantly sensitive to reward designs and RL algorithms. To address these challenges, we conduct the first systematic study of RL for text-to-3D autoregressive generation across several dimensions. (1) Reward designs: We evaluate reward dimensions and model choices, showing that alignment with human preference is crucial, and that general multi-modal models provide robust signal for 3D attributes. (2) RL algorithms: We study GRPO variants, highlighting the effectiveness of token-level optimization, and further investigate the scaling of training data and iterations. (3) Text-to-3D Benchmarks: Since existing benchmarks fail to measure implicit reasoning abilities in 3D generation models, we introduce MME-3DR. (4) Advanced RL paradigms: Motivated by the natural hierarchy of 3D generation, we propose Hi-GRPO, which optimizes the global-to-local hierarchical 3D generation through dedicated reward ensembles. Based on these insights, we develop AR3D-R1, the first RL-enhanced text-to-3D model, expert from coarse shape to texture refinement. We hope this study provides insights into RL-driven reasoning for 3D generation. Code is released at https://github.com/Ivan-Tang-3D/3DGen-R1.

Authors:Jiawei Yang, Ziyu Chen, Yurong You, Yan Wang, Yiming Li, Yuxiao Chen, Boyi Li, Boris Ivanovic, Marco Pavone, Yue Wang
Title: Towards Efficient and Effective Multi-Camera Encoding for End-to-End Driving
Abstract:
We present Flex, an efficient and effective scene encoder that addresses the computational bottleneck of processing high-volume multi-camera data in end-to-end autonomous driving. Flex employs a small set of learnable scene tokens to jointly encode information from all image tokens across different cameras and timesteps. By design, our approach is geometry-agnostic, learning a compact scene representation directly from data without relying on the explicit 3D inductive biases, such as Bird-Eye-View (BEV), occupancy or tri-plane representations, which are common in prior work. This holistic encoding strategy aggressively compresses the visual input for the downstream Large Language Model (LLM) based policy model. Evaluated on a large-scale proprietary dataset of 20,000 driving hours, our Flex achieves 2.2x greater inference throughput while improving driving performance by a large margin compared to state-of-the-art methods. Furthermore, we show that these compact scene tokens develop an emergent capability for scene decomposition without any explicit supervision. Our findings challenge the prevailing assumption that 3D priors are necessary, demonstrating that a data-driven, joint encoding strategy offers a more scalable, efficient and effective path for future autonomous driving systems.

Authors:Sharath Girish, Viacheslav Ivanov, Tsai-Shien Chen, Hao Chen, Aliaksandr Siarohin, Sergey Tulyakov
Title: AlcheMinT: Fine-grained Temporal Control for Multi-Reference Consistent Video Generation
Abstract:
Recent advances in subject-driven video generation with large diffusion models have enabled personalized content synthesis conditioned on user-provided subjects. However, existing methods lack fine-grained temporal control over subject appearance and disappearance, which are essential for applications such as compositional video synthesis, storyboarding, and controllable animation. We propose AlcheMinT, a unified framework that introduces explicit timestamps conditioning for subject-driven video generation. Our approach introduces a novel positional encoding mechanism that unlocks the encoding of temporal intervals, associated in our case with subject identities, while seamlessly integrating with the pretrained video generation model positional embeddings. Additionally, we incorporate subject-descriptive text tokens to strengthen binding between visual identity and video captions, mitigating ambiguity during generation. Through token-wise concatenation, AlcheMinT avoids any additional cross-attention modules and incurs negligible parameter overhead. We establish a benchmark evaluating multiple subject identity preservation, video fidelity, and temporal adherence. Experimental results demonstrate that AlcheMinT achieves visual quality matching state-of-the-art video personalization methods, while, for the first time, enabling precise temporal control over multi-subject generation within videos. Project page is at https://snap-research.github.io/Video-AlcheMinT

Authors:Xiang Fan, Sharath Girish, Vivek Ramanujan, Chaoyang Wang, Ashkan Mirzaei, Petr Sushko, Aliaksandr Siarohin, Sergey Tulyakov, Ranjay Krishna
Title: OmniView: An All-Seeing Diffusion Model for 3D and 4D View Synthesis
Abstract:
Prior approaches injecting camera control into diffusion models have focused on specific subsets of 4D consistency tasks: novel view synthesis, text-to-video with camera control, image-to-video, amongst others. Therefore, these fragmented approaches are trained on disjoint slices of available 3D/4D data. We introduce OmniView, a unified framework that generalizes across a wide range of 4D consistency tasks. Our method separately represents space, time, and view conditions, enabling flexible combinations of these inputs. For example, OmniView can synthesize novel views from static, dynamic, and multiview inputs, extrapolate trajectories forward and backward in time, and create videos from text or image prompts with full camera control. OmniView is competitive with task-specific models across diverse benchmarks and metrics, improving image quality scores among camera-conditioned diffusion models by up to 33\% in multiview NVS LLFF dataset, 60\% in dynamic NVS Neural 3D Video benchmark, 20\% in static camera control on RE-10K, and reducing camera trajectory errors by 4x in text-conditioned video generation. With strong generalizability in one model, OmniView demonstrates the feasibility of a generalist 4D video model. Project page is available at https://snap-research.github.io/OmniView/

Authors:Yulu Gan, Ligeng Zhu, Dandan Shan, Baifeng Shi, Hongxu Yin, Boris Ivanovic, Song Han, Trevor Darrell, Jitendra Malik, Marco Pavone, Boyi Li
Title: FoundationMotion: Auto-Labeling and Reasoning about Spatial Movement in Videos
Abstract:
Motion understanding is fundamental to physical reasoning, enabling models to infer dynamics and predict future states. However, state-of-the-art models still struggle on recent motion benchmarks, primarily due to the scarcity of large-scale, fine-grained motion datasets. Existing motion datasets are often constructed from costly manual annotation, severely limiting scalability. To address this challenge, we introduce FoundationMotion, a fully automated data curation pipeline that constructs large-scale motion datasets. Our approach first detects and tracks objects in videos to extract their trajectories, then leverages these trajectories and video frames with Large Language Models (LLMs) to generate fine-grained captions and diverse question-answer pairs about motion and spatial reasoning. Using datasets produced by this pipeline, we fine-tune open-source models including NVILA-Video-15B and Qwen2.5-7B, achieving substantial improvements in motion understanding without compromising performance on other tasks. Notably, our models outperform strong closed-source baselines like Gemini-2.5 Flash and large open-source models such as Qwen2.5-VL-72B across diverse motion understanding datasets and benchmarks. FoundationMotion thus provides a scalable solution for curating fine-grained motion datasets that enable effective fine-tuning of diverse models to enhance motion understanding and spatial reasoning capabilities.

Authors:Peiying Zhang, Nanxuan Zhao, Matthew Fisher, Yiran Xu, Jing Liao, Difan Liu
Title: DuetSVG: Unified Multimodal SVG Generation with Internal Visual Guidance
Abstract:
Recent vision-language model (VLM)-based approaches have achieved impressive results on SVG generation. However, because they generate only text and lack visual signals during decoding, they often struggle with complex semantics and fail to produce visually appealing or geometrically coherent SVGs. We introduce DuetSVG, a unified multimodal model that jointly generates image tokens and corresponding SVG tokens in an end-to-end manner. DuetSVG is trained on both image and SVG datasets. At inference, we apply a novel test-time scaling strategy that leverages the model's native visual predictions as guidance to improve SVG decoding quality. Extensive experiments show that our method outperforms existing methods, producing visually faithful, semantically aligned, and syntactically clean SVGs across a wide range of applications.

Authors:Kehong Gong, Zhengyu Wen, Weixia He, Mingxi Xu, Qi Wang, Ning Zhang, Zhengyu Li, Dongze Lian, Wei Zhao, Xiaoyu He, Mingyuan Zhang
Title: MoCapAnything: Unified 3D Motion Capture for Arbitrary Skeletons from Monocular Videos
Abstract:
Motion capture now underpins content creation far beyond digital humans, yet most existing pipelines remain species- or template-specific. We formalize this gap as Category-Agnostic Motion Capture (CAMoCap): given a monocular video and an arbitrary rigged 3D asset as a prompt, the goal is to reconstruct a rotation-based animation such as BVH that directly drives the specific asset. We present MoCapAnything, a reference-guided, factorized framework that first predicts 3D joint trajectories and then recovers asset-specific rotations via constraint-aware inverse kinematics. The system contains three learnable modules and a lightweight IK stage: (1) a Reference Prompt Encoder that extracts per-joint queries from the asset's skeleton, mesh, and rendered images; (2) a Video Feature Extractor that computes dense visual descriptors and reconstructs a coarse 4D deforming mesh to bridge the gap between video and joint space; and (3) a Unified Motion Decoder that fuses these cues to produce temporally coherent trajectories. We also curate Truebones Zoo with 1038 motion clips, each providing a standardized skeleton-mesh-render triad. Experiments on both in-domain benchmarks and in-the-wild videos show that MoCapAnything delivers high-quality skeletal animations and exhibits meaningful cross-species retargeting across heterogeneous rigs, enabling scalable, prompt-driven 3D motion capture for arbitrary assets. Project page: https://animotionlab.github.io/MoCapAnything/

Authors:Kehong Gong, Zhengyu Wen, Mingxi Xu, Weixia He, Qi Wang, Ning Zhang, Zhengyu Li, Chenbin Li, Dongze Lian, Wei Zhao, Xiaoyu He, Mingyuan Zhang
Title: SWiT-4D: Sliding-Window Transformer for Lossless and Parameter-Free Temporal 4D Generation
Abstract:
Despite significant progress in 4D content generation, the conversion of monocular videos into high-quality animated 3D assets with explicit 4D meshes remains considerably challenging. The scarcity of large-scale, naturally captured 4D mesh datasets further limits the ability to train generalizable video-to-4D models from scratch in a purely data-driven manner. Meanwhile, advances in image-to-3D generation, supported by extensive datasets, offer powerful prior models that can be leveraged. To better utilize these priors while minimizing reliance on 4D supervision, we introduce SWiT-4D, a Sliding-Window Transformer for lossless, parameter-free temporal 4D mesh generation. SWiT-4D integrates seamlessly with any Diffusion Transformer (DiT)-based image-to-3D generator, adding spatial-temporal modeling across video frames while preserving the original single-image forward process, enabling 4D mesh reconstruction from videos of arbitrary length. To recover global translation, we further introduce an optimization-based trajectory module tailored for static-camera monocular videos. SWiT-4D demonstrates strong data efficiency: with only a single short (<10s) video for fine-tuning, it achieves high-fidelity geometry and stable temporal consistency, indicating practical deployability under extremely limited 4D supervision. Comprehensive experiments on both in-domain zoo-test sets and challenging out-of-domain benchmarks (C4D, Objaverse, and in-the-wild videos) show that SWiT-4D consistently outperforms existing baselines in temporal smoothness. Project page: https://animotionlab.github.io/SWIT4D/

Authors:Jianqi Chen, Biao Zhang, Xiangjun Tang, Peter Wonka
Title: PoseGAM: Robust Unseen Object Pose Estimation via Geometry-Aware Multi-View Reasoning
Abstract:
6D object pose estimation, which predicts the transformation of an object relative to the camera, remains challenging for unseen objects. Existing approaches typically rely on explicitly constructing feature correspondences between the query image and either the object model or template images. In this work, we propose PoseGAM, a geometry-aware multi-view framework that directly predicts object pose from a query image and multiple template images, eliminating the need for explicit matching. Built upon recent multi-view-based foundation model architectures, the method integrates object geometry information through two complementary mechanisms: explicit point-based geometry and learned features from geometry representation networks. In addition, we construct a large-scale synthetic dataset containing more than 190k objects under diverse environmental conditions to enhance robustness and generalization. Extensive evaluations across multiple benchmarks demonstrate our state-of-the-art performance, yielding an average AR improvement of 5.1% over prior methods and achieving up to 17.6% gains on individual datasets, indicating strong generalization to unseen objects. Project page: https://windvchen.github.io/PoseGAM/ .

Authors:Jaskirat Singh, Xingjian Leng, Zongze Wu, Liang Zheng, Richard Zhang, Eli Shechtman, Saining Xie
Title: What matters for Representation Alignment: Global Information or Spatial Structure?
Abstract:
Representation alignment (REPA) guides generative training by distilling representations from a strong, pretrained vision encoder to intermediate diffusion features. We investigate a fundamental question: what aspect of the target representation matters for generation, its \textit{global} \revision{semantic} information (e.g., measured by ImageNet-1K accuracy) or its spatial structure (i.e. pairwise cosine similarity between patch tokens)? Prevalent wisdom holds that stronger global semantic performance leads to better generation as a target representation. To study this, we first perform a large-scale empirical analysis across 27 different vision encoders and different model scales. The results are surprising; spatial structure, rather than global performance, drives the generation performance of a target representation. To further study this, we introduce two straightforward modifications, which specifically accentuate the transfer of \emph{spatial} information. We replace the standard MLP projection layer in REPA with a simple convolution layer and introduce a spatial normalization layer for the external representation. Surprisingly, our simple method (implemented in $<$4 lines of code), termed iREPA, consistently improves convergence speed of REPA, across a diverse set of vision encoders, model sizes, and training variants (such as REPA, REPA-E, Meanflow, JiT etc). %, etc. Our work motivates revisiting the fundamental working mechanism of representational alignment and how it can be leveraged for improved training of generative models. The code and project page are available at https://end2end-diffusion.github.io/irepa

Authors:Chenyu Zhang, Yiwen Ma, Lanjun Wang, Wenhui Li, Yi Tu, An-An Liu
Title: Metaphor-based Jailbreaking Attacks on Text-to-Image Models
Abstract:
Text-to-image~(T2I) models commonly incorporate defense mechanisms to prevent the generation of sensitive images. Unfortunately, recent jailbreaking attacks have shown that adversarial prompts can effectively bypass these mechanisms and induce T2I models to produce sensitive content, revealing critical safety vulnerabilities. However, existing attack methods implicitly assume that the attacker knows the type of deployed defenses, which limits their effectiveness against unknown or diverse defense mechanisms. In this work, we introduce \textbf{MJA}, a \textbf{m}etaphor-based \textbf{j}ailbreaking \textbf{a}ttack method inspired by the Taboo game, aiming to effectively and efficiently attack diverse defense mechanisms without prior knowledge of their type by generating metaphor-based adversarial prompts. Specifically, MJA consists of two modules: an LLM-based multi-agent generation module~(MLAG) and an adversarial prompt optimization module~(APO). MLAG decomposes the generation of metaphor-based adversarial prompts into three subtasks: metaphor retrieval, context matching, and adversarial prompt generation. Subsequently, MLAG coordinates three LLM-based agents to generate diverse adversarial prompts by exploring various metaphors and contexts. To enhance attack efficiency, APO first trains a surrogate model to predict the attack results of adversarial prompts and then designs an acquisition strategy to adaptively identify optimal adversarial prompts. Extensive experiments on T2I models with various external and internal defense mechanisms demonstrate that MJA outperforms six baseline methods, achieving stronger attack performance while using fewer queries. Code is available in https://github.com/datar001/metaphor-based-jailbreaking-attack.

Authors:Yuan-Ming Li, Qize Yang, Nan Lei, Shenghao Fu, Ling-An Zeng, Jian-Fang Hu, Xihan Wei, Wei-Shi Zheng
Title: IRG-MotionLLM: Interleaving Motion Generation, Assessment and Refinement for Text-to-Motion Generation
Abstract:
Recent advances in motion-aware large language models have shown remarkable promise for unifying motion understanding and generation tasks. However, these models typically treat understanding and generation separately, limiting the mutual benefits that could arise from interactive feedback between tasks. In this work, we reveal that motion assessment and refinement tasks act as crucial bridges to enable bidirectional knowledge flow between understanding and generation. Leveraging this insight, we propose Interleaved Reasoning for Motion Generation (IRMoGen), a novel paradigm that tightly couples motion generation with assessment and refinement through iterative text-motion dialogue. To realize this, we introduce IRG-MotionLLM, the first model that seamlessly interleaves motion generation, assessment, and refinement to improve generation performance. IRG-MotionLLM is developed progressively with a novel three-stage training scheme, initializing and subsequently enhancing native IRMoGen capabilities. To facilitate this development, we construct an automated data engine to synthesize interleaved reasoning annotations from existing text-motion datasets. Extensive experiments demonstrate that: (i) Assessment and refinement tasks significantly improve text-motion alignment; (ii) Interleaving motion generation, assessment, and refinement steps yields consistent performance gains across training stages; and (iii) IRG-MotionLLM clearly outperforms the baseline model and achieves advanced performance on standard text-to-motion generation benchmarks. Cross-evaluator testing further validates its effectiveness. Code & Data: https://github.com/HumanMLLM/IRG-MotionLLM/tree/main.

Authors:Luigi Piccinelli, Thiemo Wandel, Christos Sakaridis, Wim Abbeloos, Luc Van Gool
Title: Video Depth Propagation
Abstract:
Depth estimation in videos is essential for visual perception in real-world applications. However, existing methods either rely on simple frame-by-frame monocular models, leading to temporal inconsistencies and inaccuracies, or use computationally demanding temporal modeling, unsuitable for real-time applications. These limitations significantly restrict general applicability and performance in practical settings. To address this, we propose VeloDepth, an efficient and robust online video depth estimation pipeline that effectively leverages spatiotemporal priors from previous depth predictions and performs deep feature propagation. Our method introduces a novel Propagation Module that refines and propagates depth features and predictions using flow-based warping coupled with learned residual corrections. In addition, our design structurally enforces temporal consistency, resulting in stable depth predictions across consecutive frames with improved efficiency. Comprehensive zero-shot evaluation on multiple benchmarks demonstrates the state-of-the-art temporal consistency and competitive accuracy of VeloDepth, alongside its significantly faster inference compared to existing video-based depth estimators. VeloDepth thus provides a practical, efficient, and accurate solution for real-time depth estimation suitable for diverse perception tasks. Code and models are available at https://github.com/lpiccinelli-eth/velodepth

Authors:Lars Mescheder, Wei Dong, Shiwei Li, Xuyang Bai, Marcel Santos, Peiyun Hu, Bruno Lecouat, Mingmin Zhen, Amaël Delaunoy, Tian Fang, Yanghai Tsin, Stephan R. Richter, Vladlen Koltun
Title: Sharp Monocular View Synthesis in Less Than a Second
Abstract:
We present SHARP, an approach to photorealistic view synthesis from a single image. Given a single photograph, SHARP regresses the parameters of a 3D Gaussian representation of the depicted scene. This is done in less than a second on a standard GPU via a single feedforward pass through a neural network. The 3D Gaussian representation produced by SHARP can then be rendered in real time, yielding high-resolution photorealistic images for nearby views. The representation is metric, with absolute scale, supporting metric camera movements. Experimental results demonstrate that SHARP delivers robust zero-shot generalization across datasets. It sets a new state of the art on multiple datasets, reducing LPIPS by 25-34% and DISTS by 21-43% versus the best prior model, while lowering the synthesis time by three orders of magnitude. Code and weights are provided at https://github.com/apple/ml-sharp

Authors:Romain Seailles, Jean-Baptiste Masson, Jean Ponce, Julien Mairal
Title: Optimal transport unlocks end-to-end learning for single-molecule localization
Abstract:
Single-molecule localization microscopy (SMLM) allows reconstructing biology-relevant structures beyond the diffraction limit by detecting and localizing individual fluorophores -- fluorescent molecules stained onto the observed specimen -- over time to reconstruct super-resolved images. Currently, efficient SMLM requires non-overlapping emitting fluorophores, leading to long acquisition times that hinders live-cell imaging. Recent deep-learning approaches can handle denser emissions, but they rely on variants of non-maximum suppression (NMS) layers, which are unfortunately non-differentiable and may discard true positives with their local fusion strategy. In this presentation, we reformulate the SMLM training objective as a set-matching problem, deriving an optimal-transport loss that eliminates the need for NMS during inference and enables end-to-end training. Additionally, we propose an iterative neural network that integrates knowledge of the microscope's optical system inside our model. Experiments on synthetic benchmarks and real biological data show that both our new loss function and architecture surpass the state of the art at moderate and high emitter densities. Code is available at https://github.com/RSLLES/SHOT.

Authors:Qintong Zhang, Junyuan Zhang, Zhifei Ren, Linke Ouyang, Zichen Wen, Junbo Niu, Yuan Qu, Bin Wang, Ka-Ho Chow, Conghui He, Wentao Zhang
Title: DOCR-Inspector: Fine-Grained and Automated Evaluation of Document Parsing with VLM
Abstract:
Document parsing aims to transform unstructured PDF images into semi-structured data, facilitating the digitization and utilization of information in diverse domains. While vision language models (VLMs) have significantly advanced this task, achieving reliable, high-quality parsing in real-world scenarios remains challenging. Common practice often selects the top-performing model on standard benchmarks. However, these benchmarks may carry dataset-specific biases, leading to inconsistent model rankings and limited correlation with real-world performance. Moreover, benchmark metrics typically provide only overall scores, which can obscure distinct error patterns in output. This raises a key challenge: how can we reliably and comprehensively assess document parsing quality in the wild? We address this problem with DOCR-Inspector, which formalizes document parsing assessment as fine-grained error detection and analysis. Leveraging VLM-as-a-Judge, DOCR-Inspector analyzes a document image and its parsed output, identifies all errors, assigns them to one of 28 predefined types, and produces a comprehensive quality assessment. To enable this capability, we construct DOCRcase-200K for training and propose the Chain-of-Checklist reasoning paradigm to enable the hierarchical structure of parsing quality assessment. For empirical validation, we introduce DOCRcaseBench, a set of 882 real-world document parsing cases with manual annotations. On this benchmark, DOCR-Inspector-7B outperforms commercial models like Gemini 2.5 Pro, as well as leading open-source models. Further experiments demonstrate that its quality assessments provide valuable guidance for parsing results refinement, making DOCR-Inspector both a practical evaluator and a driver for advancing document parsing systems at scale. Model and code are released at: https://github.com/ZZZZZQT/DOCR-Inspector.

Authors:Wenlong Jiao, Heyang Lee, Ping Wang, Pengfei Zhu, Qinghua Hu, Dongwei Ren
Title: Unleashing Degradation-Carrying Features in Symmetric U-Net: Simpler and Stronger Baselines for All-in-One Image Restoration
Abstract:
All-in-one image restoration aims to handle diverse degradations (e.g., noise, blur, adverse weather) within a unified framework, yet existing methods increasingly rely on complex architectures (e.g., Mixture-of-Experts, diffusion models) and elaborate degradation prompt strategies. In this work, we reveal a critical insight: well-crafted feature extraction inherently encodes degradation-carrying information, and a symmetric U-Net architecture is sufficient to unleash these cues effectively. By aligning feature scales across encoder-decoder and enabling streamlined cross-scale propagation, our symmetric design preserves intrinsic degradation signals robustly, rendering simple additive fusion in skip connections sufficient for state-of-the-art performance. Our primary baseline, SymUNet, is built on this symmetric U-Net and achieves better results across benchmark datasets than existing approaches while reducing computational cost. We further propose a semantic enhanced variant, SE-SymUNet, which integrates direct semantic injection from frozen CLIP features via simple cross-attention to explicitly amplify degradation priors. Extensive experiments on several benchmarks validate the superiority of our methods. Both baselines SymUNet and SE-SymUNet establish simpler and stronger foundations for future advancements in all-in-one image restoration. The source code is available at https://github.com/WenlongJiao/SymUNet.

Authors:Pasquale De Marinis, Gennaro Vessio, Giovanna Castellano
Title: Take a Peek: Efficient Encoder Adaptation for Few-Shot Semantic Segmentation via LoRA
Abstract:
Few-shot semantic segmentation (FSS) aims to segment novel classes in query images using only a small annotated support set. While prior research has mainly focused on improving decoders, the encoder's limited ability to extract meaningful features for unseen classes remains a key bottleneck. In this work, we introduce \textit{Take a Peek} (TaP), a simple yet effective method that enhances encoder adaptability for both FSS and cross-domain FSS (CD-FSS). TaP leverages Low-Rank Adaptation (LoRA) to fine-tune the encoder on the support set with minimal computational overhead, enabling fast adaptation to novel classes while mitigating catastrophic forgetting. Our method is model-agnostic and can be seamlessly integrated into existing FSS pipelines. Extensive experiments across multiple benchmarks--including COCO $20^i$, Pascal $5^i$, and cross-domain datasets such as DeepGlobe, ISIC, and Chest X-ray--demonstrate that TaP consistently improves segmentation performance across diverse models and shot settings. Notably, TaP delivers significant gains in complex multi-class scenarios, highlighting its practical effectiveness in realistic settings. A rank sensitivity analysis also shows that strong performance can be achieved even with low-rank adaptations, ensuring computational efficiency. By addressing a critical limitation in FSS--the encoder's generalization to novel classes--TaP paves the way toward more robust, efficient, and generalizable segmentation systems. The code is available at https://github.com/pasqualedem/TakeAPeek.

Authors:Maurice Rohr, Tobias Reinhardt, Tizian Dege, Justus Thies, Christoph Hoog Antink
Title: 3D Blood Pulsation Maps
Abstract:
We present Pulse3DFace, the first dataset of its kind for estimating 3D blood pulsation maps. These maps can be used to develop models of dynamic facial blood pulsation, enabling the creation of synthetic video data to improve and validate remote pulse estimation methods via photoplethysmography imaging. Additionally, the dataset facilitates research into novel multi-view-based approaches for mitigating illumination effects in blood pulsation analysis. Pulse3DFace consists of raw videos from 15 subjects recorded at 30 Hz with an RGB camera from 23 viewpoints, blood pulse reference measurements, and facial 3D scans generated using monocular structure-from-motion techniques. It also includes processed 3D pulsation maps compatible with the texture space of the 3D head model FLAME. These maps provide signal-to-noise ratio, local pulse amplitude, phase information, and supplementary data. We offer a comprehensive evaluation of the dataset's illumination conditions, map consistency, and its ability to capture physiologically meaningful features in the facial and neck skin regions.

Authors:Wenfei Guan, Jilin Mei, Tong Shen, Xumin Wu, Shuo Wang, Cheng Min, Yu Hu
Title: Beyond Endpoints: Path-Centric Reasoning for Vectorized Off-Road Network Extraction
Abstract:
Deep learning has advanced vectorized road extraction in urban settings, yet off-road environments remain underexplored and challenging. A significant domain gap causes advanced models to fail in wild terrains due to two key issues: lack of large-scale vectorized datasets and structural weakness in prevailing methods. Models such as SAM-Road employ a node-centric paradigm that reasons at sparse endpoints, making them fragile to occlusions and ambiguous junctions in off-road scenes, leading to topological errors. This work addresses these limitations in two complementary ways. First, we release WildRoad, a global off-road road network dataset constructed efficiently with a dedicated interactive annotation tool tailored for road-network labeling. Second, we introduce MaGRoad (Mask-aware Geodesic Road network extractor), a path-centric framework that aggregates multi-scale visual evidence along candidate paths to infer connectivity robustly. Extensive experiments show that MaGRoad achieves state-of-the-art performance on our challenging WildRoad benchmark while generalizing well to urban datasets. A streamlined pipeline also yields roughly 2.5x faster inference, improving practical applicability. Together, the dataset and path-centric paradigm provide a stronger foundation for mapping roads in the wild. We release both the dataset and code at https://github.com/xiaofei-guan/MaGRoad.

Authors:Cong Pang, Hongtao Yu, Zixuan Chen, Lewei Lu, Xin Lou
Title: Towards Fine-Grained Recognition with Large Visual Language Models: Benchmark and Optimization Strategies
Abstract:
Large Vision Language Models (LVLMs) have made remarkable progress, enabling sophisticated vision-language interaction and dialogue applications. However, existing benchmarks primarily focus on reasoning tasks, often neglecting fine-grained recognition, which is crucial for practical application scenarios. To address this gap, we introduce the Fine-grained Recognition Open World (FROW) benchmark, designed for detailed evaluation of LVLMs with GPT-4o. On the basis of that, we propose a novel optimization strategy from two perspectives: \textit{data construction} and \textit{training process}, to improve the performance of LVLMs. Our dataset includes mosaic data, which combines multiple short-answer responses, and open-world data, generated from real-world questions and answers using GPT-4o, creating a comprehensive framework for evaluating fine-grained recognition in LVLMs. Experiments show that mosaic data improves category recognition accuracy by 1\% and open-world data boosts FROW benchmark accuracy by 10\%-20\% and content accuracy by 6\%-12\%. Meanwhile, incorporating fine-grained data into the pre-training phase can improve the model's category recognition accuracy by up to 10\%. The benchmark will be available at https://github.com/pc-inno/FROW.

Authors:Zhankuo Xu, Chaoran Feng, Yingtao Li, Jianbin Zhao, Jiashu Yang, Wangbo Yu, Li Yuan, Yonghong Tian
Title: Breaking the Vicious Cycle: Coherent 3D Gaussian Splatting from Sparse and Motion-Blurred Views
Abstract:
3D Gaussian Splatting (3DGS) has emerged as a state-of-the-art method for novel view synthesis. However, its performance heavily relies on dense, high-quality input imagery, an assumption that is often violated in real-world applications, where data is typically sparse and motion-blurred. These two issues create a vicious cycle: sparse views ignore the multi-view constraints necessary to resolve motion blur, while motion blur erases high-frequency details crucial for aligning the limited views. Thus, reconstruction often fails catastrophically, with fragmented views and a low-frequency bias. To break this cycle, we introduce CoherentGS, a novel framework for high-fidelity 3D reconstruction from sparse and blurry images. Our key insight is to address these compound degradations using a dual-prior strategy. Specifically, we combine two pre-trained generative models: a specialized deblurring network for restoring sharp details and providing photometric guidance, and a diffusion model that offers geometric priors to fill in unobserved regions of the scene. This dual-prior strategy is supported by several key techniques, including a consistency-guided camera exploration module that adaptively guides the generative process, and a depth regularization loss that ensures geometric plausibility. We evaluate CoherentGS through both quantitative and qualitative experiments on synthetic and real-world scenes, using as few as 3, 6, and 9 input views. Our results demonstrate that CoherentGS significantly outperforms existing methods, setting a new state-of-the-art for this challenging task. The code and video demos are available at https://potatobigroom.github.io/CoherentGS/.

Authors:Sunqi Fan, Jiashuo Cui, Meng-Hao Guo, Shuojin Yang
Title: Tool-Augmented Spatiotemporal Reasoning for Streamlining Video Question Answering Task
Abstract:
Video Question Answering (VideoQA) task serves as a critical playground for evaluating whether foundation models can effectively perceive, understand, and reason about dynamic real-world scenarios. However, existing Multimodal Large Language Models (MLLMs) struggle with simultaneously modeling spatial relationships within video frames and understanding the causal dynamics of temporal evolution on complex and reasoning-intensive VideoQA task. In this work, we equip MLLM with a comprehensive and extensible Video Toolkit, to enhance MLLM's spatiotemporal reasoning capabilities and ensure the harmony between the quantity and diversity of tools. To better control the tool invocation sequence and avoid toolchain shortcut issues, we propose a Spatiotemporal Reasoning Framework (STAR) that strategically schedules temporal and spatial tools, thereby progressively localizing the key area in the video. Our STAR framework enhances GPT-4o using lightweight tools, achieving an 8.2% gain on VideoMME and 4.6% on LongVideoBench. We believe that our proposed Video Toolkit and STAR framework make an important step towards building autonomous and intelligent video analysis assistants. The code is publicly available at https://github.com/fansunqi/VideoTool.

Authors:Yiheng Lyu, Lian Xu, Mohammed Bennamoun, Farid Boussaid, Coen Arrow, Girish Dwivedi
Title: Hybrid Transformer-Mamba Architecture for Weakly Supervised Volumetric Medical Segmentation
Abstract:
Weakly supervised semantic segmentation offers a label-efficient solution to train segmentation models for volumetric medical imaging. However, existing approaches often rely on 2D encoders that neglect the inherent volumetric nature of the data. We propose TranSamba, a hybrid Transformer-Mamba architecture designed to capture 3D context for weakly supervised volumetric medical segmentation. TranSamba augments a standard Vision Transformer backbone with Cross-Plane Mamba blocks, which leverage the linear complexity of state space models for efficient information exchange across neighboring slices. The information exchange enhances the pairwise self-attention within slices computed by the Transformer blocks, directly contributing to the attention maps for object localization. TranSamba achieves effective volumetric modeling with time complexity that scales linearly with the input volume depth and maintains constant memory usage for batch processing. Extensive experiments on three datasets demonstrate that TranSamba establishes new state-of-the-art performance, consistently outperforming existing methods across diverse modalities and pathologies. Our source code and trained models are openly accessible at: https://github.com/YihengLyu/TranSamba.

Authors:Shresth Grover, Priyank Pathak, Akash Kumar, Vibhav Vineet, Yogesh S Rawat
Title: CoSPlan: Corrective Sequential Planning via Scene Graph Incremental Updates
Abstract:
Large-scale Vision-Language Models (VLMs) exhibit impressive complex reasoning capabilities but remain largely unexplored in visual sequential planning, i.e., executing multi-step actions towards a goal. Additionally, practical sequential planning often involves non-optimal (erroneous) steps, challenging VLMs to detect and correct such steps. We propose Corrective Sequential Planning Benchmark (CoSPlan) to evaluate VLMs in error-prone, vision-based sequential planning tasks across 4 domains: maze navigation, block rearrangement, image reconstruction,and object reorganization. CoSPlan assesses two key abilities: Error Detection (identifying non-optimal action) and Step Completion (correcting and completing action sequences to reach the goal). Despite using state-of-the-art reasoning techniques such as Chain-of-Thought and Scene Graphs, VLMs (e.g. Intern-VLM and Qwen2) struggle on CoSPlan, failing to leverage contextual cues to reach goals. Addressing this, we propose a novel training-free method, Scene Graph Incremental updates (SGI), which introduces intermediate reasoning steps between the initial and goal states. SGI helps VLMs reason about sequences, yielding an average performance gain of 5.2%. In addition to enhancing reliability in corrective sequential planning, SGI generalizes to traditional planning tasks such as Plan-Bench and VQA. Project Page : https://shroglck.github.io/cos_plan/

Authors:Xiaoxue Wu, Xinyuan Chen, Yaohui Wang, Yu Qiao
Title: ShotDirector: Directorially Controllable Multi-Shot Video Generation with Cinematographic Transitions
Abstract:
Shot transitions play a pivotal role in multi-shot video generation, as they determine the overall narrative expression and the directorial design of visual storytelling. However, recent progress has primarily focused on low-level visual consistency across shots, neglecting how transitions are designed and how cinematographic language contributes to coherent narrative expression. This often leads to mere sequential shot changes without intentional film-editing patterns. To address this limitation, we propose ShotDirector, an efficient framework that integrates parameter-level camera control and hierarchical editing-pattern-aware prompting. Specifically, we adopt a camera control module that incorporates 6-DoF poses and intrinsic settings to enable precise camera information injection. In addition, a shot-aware mask mechanism is employed to introduce hierarchical prompts aware of professional editing patterns, allowing fine-grained control over shot content. Through this design, our framework effectively combines parameter-level conditions with high-level semantic guidance, achieving film-like controllable shot transitions. To facilitate training and evaluation, we construct ShotWeaver40K, a dataset that captures the priors of film-like editing patterns, and develop a set of evaluation metrics for controllable multi-shot video generation. Extensive experiments demonstrate the effectiveness of our framework.

Authors:Yixin Wan, Lei Ke, Wenhao Yu, Kai-Wei Chang, Dong Yu
Title: MotionEdit: Benchmarking and Learning Motion-Centric Image Editing
Abstract:
We introduce MotionEdit, a novel dataset for motion-centric image editing-the task of modifying subject actions and interactions while preserving identity, structure, and physical plausibility. Unlike existing image editing datasets that focus on static appearance changes or contain only sparse, low-quality motion edits, MotionEdit provides high-fidelity image pairs depicting realistic motion transformations extracted and verified from continuous videos. This new task is not only scientifically challenging but also practically significant, powering downstream applications such as frame-controlled video synthesis and animation. To evaluate model performance on the novel task, we introduce MotionEdit-Bench, a benchmark that challenges models on motion-centric edits and measures model performance with generative, discriminative, and preference-based metrics. Benchmark results reveal that motion editing remains highly challenging for existing state-of-the-art diffusion-based editing models. To address this gap, we propose MotionNFT (Motion-guided Negative-aware Fine Tuning), a post-training framework that computes motion alignment rewards based on how well the motion flow between input and model-edited images matches the ground-truth motion, guiding models toward accurate motion transformations. Extensive experiments on FLUX.1 Kontext and Qwen-Image-Edit show that MotionNFT consistently improves editing quality and motion fidelity of both base models on the motion editing task without sacrificing general editing ability, demonstrating its effectiveness. Our code is at https://github.com/elainew728/motion-edit/.

Authors:Hongsin Lee, Hye Won Chung
Title: Sample-wise Adaptive Weighting for Transfer Consistency in Adversarial Distillation
Abstract:
Adversarial distillation in the standard min-max adversarial training framework aims to transfer adversarial robustness from a large, robust teacher network to a compact student. However, existing work often neglects to incorporate state-of-the-art robust teachers. Through extensive analysis, we find that stronger teachers do not necessarily yield more robust students-a phenomenon known as robust saturation. While typically attributed to capacity gaps, we show that such explanations are incomplete. Instead, we identify adversarial transferability-the fraction of student-crafted adversarial examples that remain effective against the teacher-as a key factor in successful robustness transfer. Based on this insight, we propose Sample-wise Adaptive Adversarial Distillation (SAAD), which reweights training examples by their measured transferability without incurring additional computational cost. Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet show that SAAD consistently improves AutoAttack robustness over prior methods. Our code is available at https://github.com/HongsinLee/saad.

Authors:Rui Wang, Yimu Sun, Jingxing Guo, Huisi Wu, Jing Qin
Title: GDKVM: Echocardiography Video Segmentation via Spatiotemporal Key-Value Memory with Gated Delta Rule
Abstract:
Accurate segmentation of cardiac chambers in echocardiography sequences is crucial for the quantitative analysis of cardiac function, aiding in clinical diagnosis and treatment. The imaging noise, artifacts, and the deformation and motion of the heart pose challenges to segmentation algorithms. While existing methods based on convolutional neural networks, Transformers, and space-time memory networks have improved segmentation accuracy, they often struggle with the trade-off between capturing long-range spatiotemporal dependencies and maintaining computational efficiency with fine-grained feature representation. In this paper, we introduce GDKVM, a novel architecture for echocardiography video segmentation. The model employs Linear Key-Value Association (LKVA) to effectively model inter-frame correlations, and introduces Gated Delta Rule (GDR) to efficiently store intermediate memory states. Key-Pixel Feature Fusion (KPFF) module is designed to integrate local and global features at multiple scales, enhancing robustness against boundary blurring and noise interference. We validated GDKVM on two mainstream echocardiography video datasets (CAMUS and EchoNet-Dynamic) and compared it with various state-of-the-art methods. Experimental results show that GDKVM outperforms existing approaches in terms of segmentation accuracy and robustness, while ensuring real-time performance. Code is available at https://github.com/wangrui2025/GDKVM.

Authors:Eunho Lee, Chaehyeon Song, Seunghoon Jeong, Ayoung Kim
Title: THE-Pose: Topological Prior with Hybrid Graph Fusion for Estimating Category-Level 6D Object Pose
Abstract:
Category-level object pose estimation requires both global context and local structure to ensure robustness against intra-class variations. However, 3D graph convolution (3D-GC) methods only focus on local geometry and depth information, making them vulnerable to complex objects and visual ambiguities. To address this, we present THE-Pose, a novel category-level 6D pose estimation framework that leverages a topological prior via surface embedding and hybrid graph fusion. Specifically, we extract consistent and invariant topological features from the image domain, effectively overcoming the limitations inherent in existing 3D-GC based methods. Our Hybrid Graph Fusion (HGF) module adaptively integrates the topological features with point-cloud features, seamlessly bridging 2D image context and 3D geometric structure. These fused features ensure stability for unseen or complicated objects, even under significant occlusions. Extensive experiments on the REAL275 dataset show that THE-Pose achieves a 35.8% improvement over the 3D-GC baseline (HS-Pose) and surpasses the previous state-of-the-art by 7.2% across all key metrics. The code is avaialbe on https://github.com/EHxxx/THE-Pose

Authors:Tian Liu, Anwesha Basu, James Caverlee, Shu Kong
Title: Solving Semi-Supervised Few-Shot Learning from an Auto-Annotation Perspective
Abstract:
Semi-supervised few-shot learning (SSFSL) formulates real-world applications like ''auto-annotation'', as it aims to learn a model over a few labeled and abundant unlabeled examples to annotate the unlabeled ones. Despite the availability of powerful open-source Vision-Language Models (VLMs) and their pretraining data, the SSFSL literature largely neglects these open-source resources. In contrast, the related area few-shot learning (FSL) has already exploited them to boost performance. Arguably, to achieve auto-annotation in the real world, SSFSL should leverage such open-source resources. To this end, we start by applying established SSL methods to finetune a VLM. Counterintuitively, they significantly underperform FSL baselines. Our in-depth analysis reveals the root cause: VLMs produce rather ''flat'' distributions of softmax probabilities. This results in zero utilization of unlabeled data and weak supervision signals. We address this issue with embarrassingly simple techniques: classifier initialization and temperature tuning. They jointly increase the confidence scores of pseudo-labels, improving the utilization rate of unlabeled data, and strengthening supervision signals. Building on this, we propose: Stage-Wise Finetuning with Temperature Tuning (SWIFT), which enables existing SSL methods to effectively finetune a VLM on limited labeled data, abundant unlabeled data, and task-relevant but noisy data retrieved from the VLM's pretraining set. Extensive experiments on five SSFSL benchmarks show that SWIFT outperforms recent FSL and SSL methods by $\sim$5 accuracy points. SWIFT even rivals supervised learning, which finetunes VLMs with the unlabeled data being labeled with ground truth!

Authors:Jia Cheng Hu, Roberto Cavicchioli, Alessandro Capotondi
Title: Diffusion Is Your Friend in Show, Suggest and Tell
Abstract:
Diffusion Denoising models demonstrated impressive results across generative Computer Vision tasks, but they still fail to outperform standard autoregressive solutions in the discrete domain, and only match them at best. In this work, we propose a different paradigm by adopting diffusion models to provide suggestions to the autoregressive generation rather than replacing them. By doing so, we combine the bidirectional and refining capabilities of the former with the strong linguistic structure provided by the latter. To showcase its effectiveness, we present Show, Suggest and Tell (SST), which achieves State-of-the-Art results on COCO, among models in a similar setting. In particular, SST achieves 125.1 CIDEr-D on the COCO dataset without Reinforcement Learning, outperforming both autoregressive and diffusion model State-of-the-Art results by 1.5 and 2.5 points. On top of the strong results, we performed extensive experiments to validate the proposal and analyze the impact of the suggestion module. Results demonstrate a positive correlation between suggestion and caption quality, overall indicating a currently underexplored but promising research direction. Code will be available at: https://github.com/jchenghu/show\_suggest\_tell.

Authors:Woojin Lee, Hyugjae Chang, Jaeho Moon, Jaehyup Lee, Munchurl Kim
Title: ABBSPO: Adaptive Bounding Box Scaling and Symmetric Prior based Orientation Prediction for Detecting Aerial Image Objects
Abstract:
Weakly supervised oriented object detection (WS-OOD) has gained attention as a cost-effective alternative to fully supervised methods, providing both efficiency and high accuracy. Among weakly supervised approaches, horizontal bounding box (HBox)-supervised OOD stands out for its ability to directly leverage existing HBox annotations while achieving the highest accuracy under weak supervision settings. This paper introduces adaptive bounding box scaling and symmetry-prior-based orientation prediction, called ABBSPO, a framework for WS-OOD. Our ABBSPO addresses limitations of previous HBox-supervised OOD methods, which compare ground truth (GT) HBoxes directly with the minimum circumscribed rectangles of predicted RBoxes, often leading to inaccurate scale estimation. To overcome this, we propose: (i) Adaptive Bounding Box Scaling (ABBS), which appropriately scales GT HBoxes to optimize for the size of each predicted RBox, ensuring more accurate scale prediction; and (ii) a Symmetric Prior Angle (SPA) loss that exploits inherent symmetry of aerial objects for self-supervised learning, resolving issues in previous methods where learning collapses when predictions for all three augmented views (original, rotated, and flipped) are consistently incorrect. Extensive experimental results demonstrate that ABBSPO achieves state-of-the-art performance, outperforming existing methods.

Authors:Patrick Noras, Jun Myeong Choi, Didier Stricker, Pieter Peers, Roni Sengupta
Title: GAINS: Gaussian-based Inverse Rendering from Sparse Multi-View Captures
Abstract:
Recent advances in Gaussian Splatting-based inverse rendering extend Gaussian primitives with shading parameters and physically grounded light transport, enabling high-quality material recovery from dense multi-view captures. However, these methods degrade sharply under sparse-view settings, where limited observations lead to severe ambiguity between geometry, reflectance, and lighting. We introduce GAINS (Gaussian-based Inverse rendering from Sparse multi-view captures), a two-stage inverse rendering framework that leverages learning-based priors to stabilize geometry and material estimation. GAINS first refines geometry using monocular depth/normal and diffusion priors, then employs segmentation, intrinsic image decomposition (IID), and diffusion priors to regularize material recovery. Extensive experiments on synthetic and real-world datasets show that GAINS significantly improves material parameter accuracy, relighting quality, and novel-view synthesis compared to state-of-the-art Gaussian-based inverse rendering methods, especially under sparse-view settings. Project page: https://patrickbail.github.io/gains/

Authors:Xinyu Liu, Hangjie Yuan, Yujie Wei, Jiazheng Xing, Yujin Han, Jiahao Pan, Yanbiao Ma, Chi-Min Chan, Kang Zhao, Shiwei Zhang, Wenhan Luo, Yike Guo
Title: ReViSE: Towards Reason-Informed Video Editing in Unified Models with Self-Reflective Learning
Abstract:
Video unified models exhibit strong capabilities in understanding and generation, yet they struggle with reason-informed visual editing even when equipped with powerful internal vision-language models (VLMs). We attribute this gap to two factors: 1) existing datasets are inadequate for training and evaluating reasoning-aware video editing, and 2) an inherent disconnect between the models' reasoning and editing capabilities, which prevents the rich understanding from effectively instructing the editing process. Bridging this gap requires an integrated framework that connects reasoning with visual transformation. To address this gap, we introduce the Reason-Informed Video Editing (RVE) task, which requires reasoning about physical plausibility and causal dynamics during editing. To support systematic evaluation, we construct RVE-Bench, a comprehensive benchmark with two complementary subsets: Reasoning-Informed Video Editing and In-Context Video Generation. These subsets cover diverse reasoning dimensions and real-world editing scenarios. Building upon this foundation, we propose the ReViSE, a Self-Reflective Reasoning (SRF) framework that unifies generation and evaluation within a single architecture. The model's internal VLM provides intrinsic feedback by assessing whether the edited video logically satisfies the given instruction. The differential feedback that refines the generator's reasoning behavior during training. Extensive experiments on RVE-Bench demonstrate that ReViSE significantly enhances editing accuracy and visual fidelity, achieving a 32% improvement of the Overall score in the reasoning-informed video editing subset over state-of-the-art methods.

Authors:Junting Chen, Yunchuan Li, Panfeng Jiang, Jiacheng Du, Zixuan Chen, Chenrui Tie, Jiajun Deng, Lin Shao
Title: LISN: Language-Instructed Social Navigation with VLM-based Controller Modulating
Abstract:
Towards human-robot coexistence, socially aware navigation is significant for mobile robots. Yet existing studies on this area focus mainly on path efficiency and pedestrian collision avoidance, which are essential but represent only a fraction of social navigation. Beyond these basics, robots must also comply with user instructions, aligning their actions to task goals and social norms expressed by humans. In this work, we present LISN-Bench, the first simulation-based benchmark for language-instructed social navigation. Built on Rosnav-Arena 3.0, it is the first standardized social navigation benchmark to incorporate instruction following and scene understanding across diverse contexts. To address this task, we further propose Social-Nav-Modulator, a fast-slow hierarchical system where a VLM agent modulates costmaps and controller parameters. Decoupling low-level action generation from the slower VLM loop reduces reliance on high-frequency VLM inference while improving dynamic avoidance and perception adaptability. Our method achieves an average success rate of 91.3%, which is greater than 63% than the most competitive baseline, with most of the improvements observed in challenging tasks such as following a person in a crowd and navigating while strictly avoiding instruction-forbidden regions. The project website is at: https://social-nav.github.io/LISN-project/

Authors:Reza Ahmari, Ahmad Mohammadi, Vahid Hemmati, Mohammed Mynuddin, Parham Kebria, Mahmoud Nabil Mahmoud, Xiaohong Yuan, Abdollah Homaifar
Title: Visual Heading Prediction for Autonomous Aerial Vehicles
Abstract:
The integration of Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) is increasingly central to the development of intelligent autonomous systems for applications such as search and rescue, environmental monitoring, and logistics. However, precise coordination between these platforms in real-time scenarios presents major challenges, particularly when external localization infrastructure such as GPS or GNSS is unavailable or degraded [1]. This paper proposes a vision-based, data-driven framework for real-time UAV-UGV integration, with a focus on robust UGV detection and heading angle prediction for navigation and coordination. The system employs a fine-tuned YOLOv5 model to detect UGVs and extract bounding box features, which are then used by a lightweight artificial neural network (ANN) to estimate the UAV's required heading angle. A VICON motion capture system was used to generate ground-truth data during training, resulting in a dataset of over 13,000 annotated images collected in a controlled lab environment. The trained ANN achieves a mean absolute error of 0.1506° and a root mean squared error of 0.1957°, offering accurate heading angle predictions using only monocular camera inputs. Experimental evaluations achieve 95% accuracy in UGV detection. This work contributes a vision-based, infrastructure- independent solution that demonstrates strong potential for deployment in GPS/GNSS-denied environments, supporting reliable multi-agent coordination under realistic dynamic conditions. A demonstration video showcasing the system's real-time performance, including UGV detection, heading angle prediction, and UAV alignment under dynamic conditions, is available at: https://github.com/Kooroshraf/UAV-UGV-Integration

Authors:Pius Horn, Janis Keuper
Title: Benchmarking Document Parsers on Mathematical Formula Extraction from PDFs
Abstract:
Correctly parsing mathematical formulas from PDFs is critical for training large language models and building scientific knowledge bases from academic literature, yet existing benchmarks either exclude formulas entirely or lack semantically-aware evaluation metrics. We introduce a novel benchmarking framework centered on synthetically generated PDFs with precise LaTeX ground truth, enabling systematic control over layout, formulas, and content characteristics. A key methodological contribution is pioneering LLM-as-a-judge for semantic formula assessment, combined with a robust two-stage matching pipeline that handles parser output inconsistencies. Through human validation on 250 formula pairs (750 ratings from 30 evaluators), we demonstrate that LLM-based evaluation achieves substantially higher correlation with human judgment (Pearson r=0.78) compared to CDM (r=0.34) and text similarity (r~0). Evaluating 20+ contemporary PDF parsers (including specialized OCR models, vision-language models, and rule-based approaches) across 100 synthetic documents with 2,000+ formulas reveals significant performance disparities. Our findings provide crucial insights for practitioners selecting parsers for downstream applications and establish a robust, scalable methodology that enables reproducible evaluation of PDF formula extraction quality. Code and benchmark data: https://github.com/phorn1/pdf-parse-bench

Authors:Fengli Wu, Vaidehi Patil, Jaehong Yoon, Yue Zhang, Mohit Bansal
Title: MedForget: Hierarchy-Aware Multimodal Unlearning Testbed for Medical AI
Abstract:
Pretrained Multimodal Large Language Models (MLLMs) are increasingly deployed in medical AI systems for clinical reasoning, diagnosis support, and report generation. However, their training on sensitive patient data raises critical privacy and compliance challenges under regulations such as HIPAA and GDPR, which enforce the "right to be forgotten". Unlearning, the process of tuning models to selectively remove the influence of specific training data points, offers a potential solution, yet its effectiveness in complex medical settings remains underexplored. To systematically study this, we introduce MedForget, a Hierarchy-Aware Multimodal Unlearning Testbed with explicit retain and forget splits and evaluation sets containing rephrased variants. MedForget models hospital data as a nested hierarchy (Institution -> Patient -> Study -> Section), enabling fine-grained assessment across eight organizational levels. The benchmark contains 3840 multimodal (image, question, answer) instances, each hierarchy level having a dedicated unlearning target, reflecting distinct unlearning challenges. Experiments with four SOTA unlearning methods on three tasks (generation, classification, cloze) show that existing methods struggle to achieve complete, hierarchy-aware forgetting without reducing diagnostic performance. To test whether unlearning truly deletes hierarchical pathways, we introduce a reconstruction attack that progressively adds hierarchical level context to prompts. Models unlearned at a coarse granularity show strong resistance, while fine-grained unlearning leaves models vulnerable to such reconstruction. MedForget provides a practical, HIPAA-aligned testbed for building compliant medical AI systems.

Authors:Yijing Chen, Yihan Wu, Kaisi Guan, Yuchen Ren, Yuyue Wang, Ruihua Song, Liyun Ru
Title: ChronusOmni: Improving Time Awareness of Omni Large Language Models
Abstract:
Time awareness is a fundamental ability of omni large language models, especially for understanding long videos and answering complex questions. Previous approaches mainly target vision-language scenarios and focus on the explicit temporal grounding questions, such as identifying when a visual event occurs or determining what event happens at aspecific time. However, they often make insufficient use of the audio modality, and overlook implicit temporal grounding across modalities--for example, identifying what is visually present when a character speaks, or determining what is said when a visual event occurs--despite such cross-modal temporal relations being prevalent in real-world scenarios. In this paper, we propose ChronusOmni, an omni large language model designed to enhance temporal awareness for both explicit and implicit audiovisual temporal grounding. First, we interleave text-based timestamp tokens with visual and audio representations at each time unit, enabling unified temporal modeling across modalities. Second, to enforce correct temporal ordering and strengthen fine-grained temporal reasoning, we incorporate reinforcement learning with specially designed reward functions. Moreover, we construct ChronusAV, a temporally-accurate, modality-complete, and cross-modal-aligned dataset to support the training and evaluation on audiovisual temporal grounding task. Experimental results demonstrate that ChronusOmni achieves state-of-the-art performance on ChronusAV with more than 30% improvement and top results on most metrics upon other temporal grounding benchmarks. This highlights the strong temporal awareness of our model across modalities, while preserving general video and audio understanding capabilities.

Authors:Xianghao Kong, Zeyu Zhang, Yuwei Guo, Zhuoran Zhao, Songchun Zhang, Anyi Rao
Title: Composing Concepts from Images and Videos via Concept-prompt Binding
Abstract:
Visual concept composition, which aims to integrate different elements from images and videos into a single, coherent visual output, still falls short in accurately extracting complex concepts from visual inputs and flexibly combining concepts from both images and videos. We introduce Bind & Compose, a one-shot method that enables flexible visual concept composition by binding visual concepts with corresponding prompt tokens and composing the target prompt with bound tokens from various sources. It adopts a hierarchical binder structure for cross-attention conditioning in Diffusion Transformers to encode visual concepts into corresponding prompt tokens for accurate decomposition of complex visual concepts. To improve concept-token binding accuracy, we design a Diversify-and-Absorb Mechanism that uses an extra absorbent token to eliminate the impact of concept-irrelevant details when training with diversified prompts. To enhance the compatibility between image and video concepts, we present a Temporal Disentanglement Strategy that decouples the training process of video concepts into two stages with a dual-branch binder structure for temporal modeling. Evaluations demonstrate that our method achieves superior concept consistency, prompt fidelity, and motion quality over existing approaches, opening up new possibilities for visual creativity.

Authors:Seon-Hoon Kim, Hyeji Sim, Youeyun Jung, Ok-Chul Jung, Yerin Kim
Title: LiM-YOLO: Less is More with Pyramid Level Shift and Normalized Auxiliary Branch for Ship Detection in Optical Remote Sensing Imagery
Abstract:
Applying general-purpose object detectors to ship detection in satellite imagery presents significant challenges due to the extreme scale disparity and morphological anisotropy of maritime targets. Standard architectures utilizing stride-32 (P5) layers often fail to resolve narrow vessels, resulting in spatial feature dilution. In this work, we propose LiM-YOLO, a specialized detector designed to resolve these domain-specific conflicts. Based on a statistical analysis of ship scales, we introduce a Pyramid Level Shift Strategy that reconfigures the detection head to P2-P4. This shift ensures compliance with Nyquist sampling criteria for small objects while eliminating the computational redundancy of deep layers. To further enhance training stability on high-resolution inputs, we incorporate a Group Normalized Convolutional Block for Linear Projection (GN-CBLinear), which mitigates gradient volatility in micro-batch settings. Validated on SODA-A, DOTA-v1.5, FAIR1M-v2.0, and ShipRSImageNet-V1, LiM-YOLO demonstrates superior detection accuracy and efficiency compared to state-of-the-art models. The code is available at https://github.com/egshkim/LiM-YOLO.

Authors:Antonio Terpin, Alan Bonomi, Francesco Banelli, Raffaello D'Andrea
Title: SynthPix: A lightspeed PIV images generator
Abstract:
We describe SynthPix, a synthetic image generator for Particle Image Velocimetry (PIV) with a focus on performance and parallelism on accelerators, implemented in JAX. SynthPix supports the same configuration parameters as existing tools but achieves a throughput several orders of magnitude higher in image-pair generation per second. SynthPix was developed to enable the training of data-hungry reinforcement learning methods for flow estimation and for reducing the iteration times during the development of fast flow estimation methods used in recent active fluids control studies with real-time PIV feedback. We believe SynthPix to be useful for the fluid dynamics community, and in this paper we describe the main ideas behind this software package.

Authors:Tao Zhang, Yuyang Hong, Yang Xia, Kun Ding, Zeyu Zhang, Ying Wang, Shiming Xiang, Chunhong Pan
Title: IF-Bench: Benchmarking and Enhancing MLLMs for Infrared Images with Generative Visual Prompting
Abstract:
Recent advances in multimodal large language models (MLLMs) have led to impressive progress across various benchmarks. However, their capability in understanding infrared images remains unexplored. To address this gap, we introduce IF-Bench, the first high-quality benchmark designed for evaluating multimodal understanding of infrared images. IF-Bench consists of 499 images sourced from 23 infrared datasets and 680 carefully curated visual question-answer pairs, covering 10 essential dimensions of image understanding. Based on this benchmark, we systematically evaluate over 40 open-source and closed-source MLLMs, employing cyclic evaluation, bilingual assessment, and hybrid judgment strategies to enhance the reliability of the results. Our analysis reveals how model scale, architecture, and inference paradigms affect infrared image comprehension, providing valuable insights for this area. Furthermore, we propose a training-free generative visual prompting (GenViP) method, which leverages advanced image editing models to translate infrared images into semantically and spatially aligned RGB counterparts, thereby mitigating domain distribution shifts. Extensive experiments demonstrate that our method consistently yields significant performance improvements across a wide range of MLLMs. The benchmark and code are available at https://github.com/casiatao/IF-Bench.

Authors:Ünal Akünal, Markus Bujotzek, Stefan Denner, Benjamin Hamm, Klaus Kades, Philipp Schader, Jonas Scherer, Marco Nolden, Peter Neher, Ralf Floca, Klaus Maier-Hein
Title: Kaapana: A Comprehensive Open-Source Platform for Integrating AI in Medical Imaging Research Environments
Abstract:
Developing generalizable AI for medical imaging requires both access to large, multi-center datasets and standardized, reproducible tooling within research environments. However, leveraging real-world imaging data in clinical research environments is still hampered by strict regulatory constraints, fragmented software infrastructure, and the challenges inherent in conducting large-cohort multicentre studies. This leads to projects that rely on ad-hoc toolchains that are hard to reproduce, difficult to scale beyond single institutions and poorly suited for collaboration between clinicians and data scientists. We present Kaapana, a comprehensive open-source platform for medical imaging research that is designed to bridge this gap. Rather than building single-use, site-specific tooling, Kaapana provides a modular, extensible framework that unifies data ingestion, cohort curation, processing workflows and result inspection under a common user interface. By bringing the algorithm to the data, it enables institutions to keep control over their sensitive data while still participating in distributed experimentation and model development. By integrating flexible workflow orchestration with user-facing applications for researchers, Kaapana reduces technical overhead, improves reproducibility and enables conducting large-scale, collaborative, multi-centre imaging studies. We describe the core concepts of the platform and illustrate how they can support diverse use cases, from local prototyping to nation-wide research networks. The open-source codebase is available at https://github.com/kaapana/kaapana

Authors:Yousef Azizi Movahed, Fatemeh Ziaeetabar
Title: Beyond Sequences: A Benchmark for Atomic Hand-Object Interaction Using a Static RNN Encoder
Abstract:
Reliably predicting human intent in hand-object interactions is an open challenge for computer vision. Our research concentrates on a fundamental sub-problem: the fine-grained classification of atomic interaction states, namely 'approaching', 'grabbing', and 'holding'. To this end, we introduce a structured data engineering process that converts raw videos from the MANIAC dataset into 27,476 statistical-kinematic feature vectors. Each vector encapsulates relational and dynamic properties from a short temporal window of motion. Our initial hypothesis posited that sequential modeling would be critical, leading us to compare static classifiers (MLPs) against temporal models (RNNs). Counter-intuitively, the key discovery occurred when we set the sequence length of a Bidirectional RNN to one (seq_length=1). This modification converted the network's function, compelling it to act as a high-capacity static feature encoder. This architectural change directly led to a significant accuracy improvement, culminating in a final score of 97.60%. Of particular note, our optimized model successfully overcame the most challenging transitional class, 'grabbing', by achieving a balanced F1-score of 0.90. These findings provide a new benchmark for low-level hand-object interaction recognition using structured, interpretable features and lightweight architectures.

Authors:Yiwu Zhong, Zi-Yuan Hu, Yin Li, Liwei Wang
Title: Rethinking Chain-of-Thought Reasoning for Videos
Abstract:
Chain-of-thought (CoT) reasoning has been highly successful in solving complex tasks in natural language processing, and recent multimodal large language models (MLLMs) have extended this paradigm to video reasoning. However, these models typically build on lengthy reasoning chains and large numbers of input visual tokens. Motivated by empirical observations from our benchmark study, we hypothesize that concise reasoning combined with a reduced set of visual tokens can be sufficient for effective video reasoning. To evaluate this hypothesis, we design and validate an efficient post-training and inference framework that enhances a video MLLM's reasoning capability. Our framework enables models to operate on compressed visual tokens and generate brief reasoning traces prior to answering. The resulting models achieve substantially improved inference efficiency, deliver competitive performance across diverse benchmarks, and avoid reliance on manual CoT annotations or supervised fine-tuning. Collectively, our results suggest that long, human-like CoT reasoning may not be necessary for general video reasoning, and that concise reasoning can be both effective and efficient. Our code will be released at https://github.com/LaVi-Lab/Rethink_CoT_Video.

Authors:Alberto Rota, Mert Kiray, Mert Asim Karaoglu, Patrick Ruhkamp, Elena De Momi, Nassir Navab, Benjamin Busam
Title: UnReflectAnything: RGB-Only Highlight Removal by Rendering Synthetic Specular Supervision
Abstract:
Specular highlights distort appearance, obscure texture, and hinder geometric reasoning in both natural and surgical imagery. We present UnReflectAnything, an RGB-only framework that removes highlights from a single image by predicting a highlight map together with a reflection-free diffuse reconstruction. The model uses a frozen vision transformer encoder to extract multi-scale features, a lightweight head to localize specular regions, and a token-level inpainting module that restores corrupted feature patches before producing the final diffuse image. To overcome the lack of paired supervision, we introduce a Virtual Highlight Synthesis pipeline that renders physically plausible specularities using monocular geometry, Fresnel-aware shading, and randomized lighting which enables training on arbitrary RGB images with correct geometric structure. UnReflectAnything generalizes across natural and surgical domains where non-Lambertian surfaces and non-uniform lighting create severe highlights and it achieves competitive performance with state-of-the-art results on several benchmarks. Project Page: https://alberto-rota.github.io/UnReflectAnything/

Authors:Hongyou Zhou, Cederic Aßmann, Alaa Bejaoui, Heiko Tzschätzsch, Mark Heyland, Julian Zierke, Niklas Tuttle, Sebastian Hölzl, Timo Auer, David A. Back, Marc Toussaint
Title: Masked Registration and Autoencoding of CT Images for Predictive Tibia Reconstruction
Abstract:
Surgical planning for complex tibial fractures can be challenging for surgeons, as the 3D structure of the later desirable bone alignment may be difficult to imagine. To assist in such planning, we address the challenge of predicting a patient-specific reconstruction target from a CT of the fractured tibia. Our approach combines neural registration and autoencoder models. Specifically, we first train a modified spatial transformer network (STN) to register a raw CT to a standardized coordinate system of a jointly trained tibia prototype. Subsequently, various autoencoder (AE) architectures are trained to model healthy tibial variations. Both the STN and AE models are further designed to be robust to masked input, allowing us to apply them to fractured CTs and decode to a prediction of the patient-specific healthy bone in standard coordinates. Our contributions include: i) a 3D-adapted STN for global spatial registration, ii) a comparative analysis of AEs for bone CT modeling, and iii) the extension of both to handle masked inputs for predictive generation of healthy bone structures. Project page: https://github.com/HongyouZhou/repair

Authors:Jinmiao Zhao, Chuang Yu, Zelin Shi, Yunpeng Liu, Yingdi Zhang
Title: Gradient-Guided Learning Network for Infrared Small Target Detection
Abstract:
Recently, infrared small target detection has attracted extensive attention. However, due to the small size and the lack of intrinsic features of infrared small targets, the existing methods generally have the problem of inaccurate edge positioning and the target is easily submerged by the background. Therefore, we propose an innovative gradient-guided learning network (GGL-Net). Specifically, we are the first to explore the introduction of gradient magnitude images into the deep learning-based infrared small target detection method, which is conducive to emphasizing the edge details and alleviating the problem of inaccurate edge positioning of small targets. On this basis, we propose a novel dual-branch feature extraction network that utilizes the proposed gradient supplementary module (GSM) to encode raw gradient information into deeper network layers and embeds attention mechanisms reasonably to enhance feature extraction ability. In addition, we construct a two-way guidance fusion module (TGFM), which fully considers the characteristics of feature maps at different levels. It can facilitate the effective fusion of multi-scale feature maps and extract richer semantic information and detailed information through reasonable two-way guidance. Extensive experiments prove that GGL-Net has achieves state-of-the-art results on the public real NUAA-SIRST dataset and the public synthetic NUDT-SIRST dataset. Our code has been integrated into https://github.com/YuChuang1205/MSDA-Net

Authors:Anabia Sohail, Mohamad Alansari, Ahmed Abughali, Asmaa Chehab, Abdelfatah Ahmed, Divya Velayudhan, Sajid Javed, Hasan Al Marzouqi, Ameena Saad Al-Sumaiti, Junaid Kashir, Naoufel Werghi
Title: Cytoplasmic Strings Analysis in Human Embryo Time-Lapse Videos using Deep Learning Framework
Abstract:
Infertility is a major global health issue, and while in-vitro fertilization has improved treatment outcomes, embryo selection remains a critical bottleneck. Time-lapse imaging enables continuous, non-invasive monitoring of embryo development, yet most automated assessment methods rely solely on conventional morphokinetic features and overlook emerging biomarkers. Cytoplasmic Strings, thin filamentous structures connecting the inner cell mass and trophectoderm in expanded blastocysts, have been associated with faster blastocyst formation, higher blastocyst grades, and improved viability. However, CS assessment currently depends on manual visual inspection, which is labor-intensive, subjective, and severely affected by detection and subtle visual appearance. In this work, we present, to the best of our knowledge, the first computational framework for CS analysis in human IVF embryos. We first design a human-in-the-loop annotation pipeline to curate a biologically validated CS dataset from TLI videos, comprising 13,568 frames with highly sparse CS-positive instances. Building on this dataset, we propose a two-stage deep learning framework that (i) classifies CS presence at the frame level and (ii) localizes CS regions in positive cases. To address severe imbalance and feature uncertainty, we introduce the Novel Uncertainty-aware Contractive Embedding (NUCE) loss, which couples confidence-aware reweighting with an embedding contraction term to form compact, well-separated class clusters. NUCE consistently improves F1-score across five transformer backbones, while RF-DETR-based localization achieves state-of-the-art (SOTA) detection performance for thin, low-contrast CS structures. The source code will be made publicly available at: https://github.com/HamadYA/CS_Detection.

Authors:Jaehyun Kim, Seungwon Choi, Tae-Wan Kim
Title: Sequential Testing for Descriptor-Agnostic LiDAR Loop Closure in Repetitive Environments
Abstract:
We propose a descriptor-agnostic, multi-frame loop closure verification method that formulates LiDAR loop closure as a truncated Sequential Probability Ratio Test (SPRT). Instead of deciding from a single descriptor comparison or using fixed thresholds with late-stage Iterative Closest Point (ICP) vetting, the verifier accumulates a short temporal stream of descriptor similarities between a query and each candidate. It then issues an accept/reject decision adaptively once sufficient multi-frame evidence has been observed, according to user-specified Type-I/II error design targets. This precision-first policy is designed to suppress false positives in structurally repetitive indoor environments. We evaluate the verifier on a five-sequence library dataset, using a fixed retrieval front-end with several representative LiDAR global descriptors. Performance is assessed via segment-level K-hit precision-recall and absolute trajectory error (ATE) and relative pose error (RPE) after pose graph optimization. Across descriptors, the sequential verifier consistently improves precision and reduces the impact of aliased loops compared with single-frame and heuristic multi-frame baselines. Our implementation and dataset will be released at: https://github.com/wanderingcar/snu_library_dataset.

Authors:Zhe Li, Hadrien Reynaud, Johanna P Müller, Bernhard Kainz
Title: Label-free Motion-Conditioned Diffusion Model for Cardiac Ultrasound Synthesis
Abstract:
Ultrasound echocardiography is essential for the non-invasive, real-time assessment of cardiac function, but the scarcity of labelled data, driven by privacy restrictions and the complexity of expert annotation, remains a major obstacle for deep learning methods. We propose the Motion Conditioned Diffusion Model (MCDM), a label-free latent diffusion framework that synthesises realistic echocardiography videos conditioned on self-supervised motion features. To extract these features, we design the Motion and Appearance Feature Extractor (MAFE), which disentangles motion and appearance representations from videos. Feature learning is further enhanced by two auxiliary objectives: a re-identification loss guided by pseudo appearance features and an optical flow loss guided by pseudo flow fields. Evaluated on the EchoNet-Dynamic dataset, MCDM achieves competitive video generation performance, producing temporally coherent and clinically realistic sequences without reliance on manual labels. These results demonstrate the potential of self-supervised conditioning for scalable echocardiography synthesis. Our code is available at https://github.com/ZheLi2020/LabelfreeMCDM.

Authors:Hai Ci, Xiaokang Liu, Pei Yang, Yiren Song, Mike Zheng Shou
Title: H2R-Grounder: A Paired-Data-Free Paradigm for Translating Human Interaction Videos into Physically Grounded Robot Videos
Abstract:
Robots that learn manipulation skills from everyday human videos could acquire broad capabilities without tedious robot data collection. We propose a video-to-video translation framework that converts ordinary human-object interaction videos into motion-consistent robot manipulation videos with realistic, physically grounded interactions. Our approach does not require any paired human-robot videos for training only a set of unpaired robot videos, making the system easy to scale. We introduce a transferable representation that bridges the embodiment gap: by inpainting the robot arm in training videos to obtain a clean background and overlaying a simple visual cue (a marker and arrow indicating the gripper's position and orientation), we can condition a generative model to insert the robot arm back into the scene. At test time, we apply the same process to human videos (inpainting the person and overlaying human pose cues) and generate high-quality robot videos that mimic the human's actions. We fine-tune a SOTA video diffusion model (Wan 2.2) in an in-context learning manner to ensure temporal coherence and leveraging of its rich prior knowledge. Empirical results demonstrate that our approach achieves significantly more realistic and grounded robot motions compared to baselines, pointing to a promising direction for scaling up robot learning from unlabeled human videos. Project page: https://showlab.github.io/H2R-Grounder/

Authors:Yang Cheng, Ziteng Cui, Shenghan Su, Lin Gu, Zenghui Zhang
Title: Perception-Inspired Color Space Design for Photo White Balance Editing
Abstract:
White balance (WB) is a key step in the image signal processor (ISP) pipeline that mitigates color casts caused by varying illumination and restores the scene's true colors. Currently, sRGB-based WB editing for post-ISP WB correction is widely used to address color constancy failures in the ISP pipeline when the original camera RAW is unavailable. However, additive color models (e.g., sRGB) are inherently limited by fixed nonlinear transformations and entangled color channels, which often impede their generalization to complex lighting conditions. To address these challenges, we propose a novel framework for WB correction that leverages a perception-inspired Learnable HSI (LHSI) color space. Built upon a cylindrical color model that naturally separates luminance from chromatic components, our framework further introduces dedicated parameters to enhance this disentanglement and learnable mapping to adaptively refine the flexibility. Moreover, a new Mamba-based network is introduced, which is tailored to the characteristics of the proposed LHSI color space. Experimental results on benchmark datasets demonstrate the superiority of our method, highlighting the potential of perception-inspired color space design in computational photography. The source code is available at https://github.com/YangCheng58/WB_Color_Space.

Authors:Ke Xing, Xiaojie Jin, Longfei Li, Yuyang Yin, Hanwen Liang, Guixun Luo, Chen Fang, Jue Wang, Konstantinos N. Plataniotis, Yao Zhao, Yunchao Wei
Title: StereoWorld: Geometry-Aware Monocular-to-Stereo Video Generation
Abstract:
The growing adoption of XR devices has fueled strong demand for high-quality stereo video, yet its production remains costly and artifact-prone. To address this challenge, we present StereoWorld, an end-to-end framework that repurposes a pretrained video generator for high-fidelity monocular-to-stereo video generation. Our framework jointly conditions the model on the monocular video input while explicitly supervising the generation with a geometry-aware regularization to ensure 3D structural fidelity. A spatio-temporal tiling scheme is further integrated to enable efficient, high-resolution synthesis. To enable large-scale training and evaluation, we curate a high-definition stereo video dataset containing over 11M frames aligned to natural human interpupillary distance (IPD). Extensive experiments demonstrate that StereoWorld substantially outperforms prior methods, generating stereo videos with superior visual fidelity and geometric consistency. The project webpage is available at https://ke-xing.github.io/StereoWorld/.

Authors:Yuan Ma, Junlin Hou, Chao Zhang, Yukun Zhou, Zongyuan Ge, Haoran Xie, Lie Ju
Title: Benchmarking Real-World Medical Image Classification with Noisy Labels: Challenges, Practice, and Outlook
Abstract:
Learning from noisy labels remains a major challenge in medical image analysis, where annotation demands expert knowledge and substantial inter-observer variability often leads to inconsistent or erroneous labels. Despite extensive research on learning with noisy labels (LNL), the robustness of existing methods in medical imaging has not been systematically assessed. To address this gap, we introduce LNMBench, a comprehensive benchmark for Label Noise in Medical imaging. LNMBench encompasses \textbf{10} representative methods evaluated across 7 datasets, 6 imaging modalities, and 3 noise patterns, establishing a unified and reproducible framework for robustness evaluation under realistic conditions. Comprehensive experiments reveal that the performance of existing LNL methods degrades substantially under high and real-world noise, highlighting the persistent challenges of class imbalance and domain variability in medical data. Motivated by these findings, we further propose a simple yet effective improvement to enhance model robustness under such conditions. The LNMBench codebase is publicly released to facilitate standardized evaluation, promote reproducible research, and provide practical insights for developing noise-resilient algorithms in both research and real-world medical applications.The codebase is publicly available on https://github.com/myyy777/LNMBench.

Authors:Shivanshu Agnihotri, Snehashis Majhi, Deepak Ranjan Nayak, Debesh Jha
Title: From SAM to DINOv2: Towards Distilling Foundation Models to Lightweight Baselines for Generalized Polyp Segmentation
Abstract:
Accurate polyp segmentation during colonoscopy is critical for the early detection of colorectal cancer and still remains challenging due to significant size, shape, and color variations, and the camouflaged nature of polyps. While lightweight baseline models such as U-Net, U-Net++, and PraNet offer advantages in terms of easy deployment and low computational cost, they struggle to deal with the above issues, leading to limited segmentation performance. In contrast, large-scale vision foundation models such as SAM, DINOv2, OneFormer, and Mask2Former have exhibited impressive generalization performance across natural image domains. However, their direct transfer to medical imaging tasks (e.g., colonoscopic polyp segmentation) is not straightforward, primarily due to the scarcity of large-scale datasets and lack of domain-specific knowledge. To bridge this gap, we propose a novel distillation framework, Polyp-DiFoM, that transfers the rich representations of foundation models into lightweight segmentation baselines, allowing efficient and accurate deployment in clinical settings. In particular, we infuse semantic priors from the foundation models into canonical architectures such as U-Net and U-Net++ and further perform frequency domain encoding for enhanced distillation, corroborating their generalization capability. Extensive experiments are performed across five benchmark datasets, such as Kvasir-SEG, CVC-ClinicDB, ETIS, ColonDB, and CVC-300. Notably, Polyp-DiFoM consistently outperforms respective baseline models significantly, as well as the state-of-the-art model, with nearly 9 times reduced computation overhead. The code is available at https://github.com/lostinrepo/PolypDiFoM.

Authors:Songhan Wu
Title: Traffic Scene Small Target Detection Method Based on YOLOv8n-SPTS Model for Autonomous Driving
Abstract:
This paper focuses on the key issue in autonomous driving: small target recognition in dynamic perception. Existing algorithms suffer from poor detection performance due to missing small target information, scale imbalance, and occlusion. We propose an improved YOLOv8n-SPTS model, which enhances the detection accuracy of small traffic targets through three key innovations: First, optimizing the feature extraction module. In the Backbone Bottleneck structure of YOLOv8n, 4 traditional convolution modules are replaced with Space-to-Depth Convolution (SPD-Conv) modules. This module retains fine-grained information through space-to-depth conversion, reduces information loss, and enhances the ability to capture features of low-resolution small targets. Second, enhancing feature fusion capability. The Spatial Pyramid Pooling - Fast Cross Stage Partial Connection (SPPFCSPC) module is introduced to replace the original SPPF module, integrating the multi-scale feature extraction from Spatial Pyramid Pooling (SPP) and the feature fusion mechanism of Cross Stage Partial Connection (CSP), thereby improving the model's contextual understanding of complex scenes and multi-scale feature expression ability. Third, designing a dedicated detection structure for small targets. A Triple-Stage Feature Pyramid (TSFP) structure is proposed, which adds a 160*160 small target detection head to the original detection heads to fully utilize high-resolution features in shallow layers; meanwhile, redundant large target detection heads are removed to balance computational efficiency. Comparative experiments on the VisDrone2019-DET dataset show that YOLOv8n-SPTS model ranks first in precision (61.9%), recall (48.3%), mAP@0.5 (52.6%), and mAP@0.5:0.95 (32.6%). Visualization results verify that the miss rate of small targets such as pedestrians and bicycles in occluded and dense scenes is significantly reduced.

Authors:Sukhrobbek Ilyosbekov
Title: MelanomaNet: Explainable Deep Learning for Skin Lesion Classification
Abstract:
Automated skin lesion classification using deep learning has shown remarkable accuracy, yet clinical adoption remains limited due to the "black box" nature of these models. We present MelanomaNet, an explainable deep learning system for multi-class skin lesion classification that addresses this gap through four complementary interpretability mechanisms. Our approach combines an EfficientNet V2 backbone with GradCAM++ attention visualization, automated ABCDE clinical criterion extraction, Fast Concept Activation Vectors (FastCAV) for concept-based explanations, and Monte Carlo Dropout uncertainty quantification. We evaluate our system on the ISIC 2019 dataset containing 25,331 dermoscopic images across 9 diagnostic categories. Our model achieves 85.61% accuracy with a weighted F1 score of 0.8564, while providing clinically meaningful explanations that align model attention with established dermatological assessment criteria. The uncertainty quantification module decomposes prediction confidence into epistemic and aleatoric components, enabling automatic flagging of unreliable predictions for clinical review. Our results demonstrate that high classification performance can be achieved alongside comprehensive interpretability, potentially facilitating greater trust and adoption in clinical dermatology workflows. The source code is available at https://github.com/suxrobgm/explainable-melanoma

Authors:Zhichao Yang, Tianjiao Gu, Jianjie Wang, Feiyu Lin, Xiangfei Sheng, Pengfei Chen, Leida Li
Title: LongT2IBench: A Benchmark for Evaluating Long Text-to-Image Generation with Graph-structured Annotations
Abstract:
The increasing popularity of long Text-to-Image (T2I) generation has created an urgent need for automatic and interpretable models that can evaluate the image-text alignment in long prompt scenarios. However, the existing T2I alignment benchmarks predominantly focus on short prompt scenarios and only provide MOS or Likert scale annotations. This inherent limitation hinders the development of long T2I evaluators, particularly in terms of the interpretability of alignment. In this study, we contribute LongT2IBench, which comprises 14K long text-image pairs accompanied by graph-structured human annotations. Given the detail-intensive nature of long prompts, we first design a Generate-Refine-Qualify annotation protocol to convert them into textual graph structures that encompass entities, attributes, and relations. Through this transformation, fine-grained alignment annotations are achieved based on these granular elements. Finally, the graph-structed annotations are converted into alignment scores and interpretations to facilitate the design of T2I evaluation models. Based on LongT2IBench, we further propose LongT2IExpert, a LongT2I evaluator that enables multi-modal large language models (MLLMs) to provide both quantitative scores and structured interpretations through an instruction-tuning process with Hierarchical Alignment Chain-of-Thought (CoT). Extensive experiments and comparisons demonstrate the superiority of the proposed LongT2IExpert in alignment evaluation and interpretation. Data and code have been released in https://welldky.github.io/LongT2IBench-Homepage/.

Authors:Sangwoon Kwak, Weeyoung Kwon, Jun Young Jeong, Geonho Kim, Won-Sik Cheong, Jihyong Oh
Title: MoRel: Long-Range Flicker-Free 4D Motion Modeling via Anchor Relay-based Bidirectional Blending with Hierarchical Densification
Abstract:
Recent advances in 4D Gaussian Splatting (4DGS) have extended the high-speed rendering capability of 3D Gaussian Splatting (3DGS) into the temporal domain, enabling real-time rendering of dynamic scenes. However, one of the major remaining challenges lies in modeling long-range motion-contained dynamic videos, where a naive extension of existing methods leads to severe memory explosion, temporal flickering, and failure to handle appearing or disappearing occlusions over time. To address these challenges, we propose a novel 4DGS framework characterized by an Anchor Relay-based Bidirectional Blending (ARBB) mechanism, named MoRel, which enables temporally consistent and memory-efficient modeling of long-range dynamic scenes. Our method progressively constructs locally canonical anchor spaces at key-frame time index and models inter-frame deformations at the anchor level, enhancing temporal coherence. By learning bidirectional deformations between KfA and adaptively blending them through learnable opacity control, our approach mitigates temporal discontinuities and flickering artifacts. We further introduce a Feature-variance-guided Hierarchical Densification (FHD) scheme that effectively densifies KfA's while keeping rendering quality, based on an assigned level of feature-variance. To effectively evaluate our model's capability to handle real-world long-range 4D motion, we newly compose long-range 4D motion-contained dataset, called SelfCap$_{\text{LR}}$. It has larger average dynamic motion magnitude, captured at spatially wider spaces, compared to previous dynamic video datasets. Overall, our MoRel achieves temporally coherent and flicker-free long-range 4D reconstruction while maintaining bounded memory usage, demonstrating both scalability and efficiency in dynamic Gaussian-based representations.

Authors:Lalit Maurya, Saurabh Kaushik, Beth Tellman
Title: GLACIA: Instance-Aware Positional Reasoning for Glacial Lake Segmentation via Multimodal Large Language Model
Abstract:
Glacial lake monitoring bears great significance in mitigating the anticipated risk of Glacial Lake Outburst Floods. However, existing segmentation methods based on convolutional neural networks (CNNs) and Vision Transformers (ViTs), remain constrained to pixel-level predictions, lacking high-level global scene semantics and human-interpretable reasoning. To address this, we introduce GLACIA (\textbf{G}lacial \textbf{LA}ke segmentation with \textbf{C}ontextual \textbf{I}nstance \textbf{A}wareness), the first framework that integrates large language models with segmentation capabilities to produce both accurate segmentation masks and corresponding spatial reasoning outputs. We construct the Glacial Lake Position Reasoning (GLake-Pos) dataset pipeline, which provides diverse, spatially grounded question-answer pairs designed to overcome the lack of instance-aware positional reasoning data in remote sensing. Comparative evaluation demonstrate that GLACIA (mIoU: 87.30) surpasses state-of-the-art method based on CNNs (mIoU: 78.55 - 79.01), ViTs (mIoU: 69.27 - 81.75), Geo-foundation models (mIoU: 76.37 - 87.10), and reasoning based segmentation methods (mIoU: 60.12 - 75.66). Our approach enables intuitive disaster preparedness and informed policy-making in the context of rapidly changing glacial environments by facilitating natural language interaction, thereby supporting more efficient and interpretable decision-making. The code is released on https://github.com/lalitmaurya47/GLACIA

Authors:Aditya Ganeshan, Matheus Gadelha, Thibault Groueix, Zhiqin Chen, Siddhartha Chaudhuri, Vladimir Kim, Wang Yifan, Daniel Ritchie
Title: Residual Primitive Fitting of 3D Shapes with SuperFrusta
Abstract:
We introduce a framework for converting 3D shapes into compact and editable assemblies of analytic primitives, directly addressing the persistent trade-off between reconstruction fidelity and parsimony. Our approach combines two key contributions: a novel primitive, termed SuperFrustum, and an iterative fiting algorithm, Residual Primitive Fitting (ResFit). SuperFrustum is an analytical primitive that is simultaneously (1) expressive, being able to model various common solids such as cylinders, spheres, cones & their tapered and bent forms, (2) editable, being compactly parameterized with 8 parameters, and (3) optimizable, with a sign distance field differentiable w.r.t. its parameters almost everywhere. ResFit is an unsupervised procedure that interleaves global shape analysis with local optimization, iteratively fitting primitives to the unexplained residual of a shape to discover a parsimonious yet accurate decompositions for each input shape. On diverse 3D benchmarks, our method achieves state-of-the-art results, improving IoU by over 9 points while using nearly half as many primitives as prior work. The resulting assemblies bridge the gap between dense 3D data and human-controllable design, producing high-fidelity and editable shape programs.

Authors:Frédéric Fortier-Chouinard, Yannick Hold-Geoffroy, Valentin Deschaintre, Matheus Gadelha, Jean-François Lalonde
Title: GimbalDiffusion: Gravity-Aware Camera Control for Video Generation
Abstract:
Recent progress in text-to-video generation has achieved remarkable realism, yet fine-grained control over camera motion and orientation remains elusive. Existing approaches typically encode camera trajectories through relative or ambiguous representations, limiting explicit geometric control. We introduce GimbalDiffusion, a framework that enables camera control grounded in physical-world coordinates, using gravity as a global reference. Instead of describing motion relative to previous frames, our method defines camera trajectories in an absolute coordinate system, allowing precise and interpretable control over camera parameters without requiring an initial reference frame. We leverage panoramic 360-degree videos to construct a wide variety of camera trajectories, well beyond the predominantly straight, forward-facing trajectories seen in conventional video data. To further enhance camera guidance, we introduce null-pitch conditioning, an annotation strategy that reduces the model's reliance on text content when conflicting with camera specifications (e.g., generating grass while the camera points towards the sky). Finally, we establish a benchmark for camera-aware video generation by rebalancing SpatialVID-HQ for comprehensive evaluation under wide camera pitch variation. Together, these contributions advance the controllability and robustness of text-to-video models, enabling precise, gravity-aligned camera manipulation within generative frameworks.

Authors:Mizanur Rahman Jewel, Mohamed Elmahallawy, Sanjay Madria, Samuel Frimpong
Title: Explaining the Unseen: Multimodal Vision-Language Reasoning for Situational Awareness in Underground Mining Disasters
Abstract:
Underground mining disasters produce pervasive darkness, dust, and collapses that obscure vision and make situational awareness difficult for humans and conventional systems. To address this, we propose MDSE, Multimodal Disaster Situation Explainer, a novel vision-language framework that automatically generates detailed textual explanations of post-disaster underground scenes. MDSE has three-fold innovations: (i) Context-Aware Cross-Attention for robust alignment of visual and textual features even under severe degradation; (ii) Segmentation-aware dual pathway visual encoding that fuses global and region-specific embeddings; and (iii) Resource-Efficient Transformer-Based Language Model for expressive caption generation with minimal compute cost. To support this task, we present the Underground Mine Disaster (UMD) dataset--the first image-caption corpus of real underground disaster scenes--enabling rigorous training and evaluation. Extensive experiments on UMD and related benchmarks show that MDSE substantially outperforms state-of-the-art captioning models, producing more accurate and contextually relevant descriptions that capture crucial details in obscured environments, improving situational awareness for underground emergency response. The code is at https://github.com/mizanJewel/Multimodal-Disaster-Situation-Explainer.

Authors:Erfan Nourbakhsh, Nasrin Sanjari, Ali Nourbakhsh
Title: KD-OCT: Efficient Knowledge Distillation for Clinical-Grade Retinal OCT Classification
Abstract:
Age-related macular degeneration (AMD) and choroidal neovascularization (CNV)-related conditions are leading causes of vision loss worldwide, with optical coherence tomography (OCT) serving as a cornerstone for early detection and management. However, deploying state-of-the-art deep learning models like ConvNeXtV2-Large in clinical settings is hindered by their computational demands. Therefore, it is desirable to develop efficient models that maintain high diagnostic performance while enabling real-time deployment. In this study, a novel knowledge distillation framework, termed KD-OCT, is proposed to compress a high-performance ConvNeXtV2-Large teacher model, enhanced with advanced augmentations, stochastic weight averaging, and focal loss, into a lightweight EfficientNet-B2 student for classifying normal, drusen, and CNV cases. KD-OCT employs real-time distillation with a combined loss balancing soft teacher knowledge transfer and hard ground-truth supervision. The effectiveness of the proposed method is evaluated on the Noor Eye Hospital (NEH) dataset using patient-level cross-validation. Experimental results demonstrate that KD-OCT outperforms comparable multi-scale or feature-fusion OCT classifiers in efficiency-accuracy balance, achieving near-teacher performance with substantial reductions in model size and inference time. Despite the compression, the student model exceeds most existing frameworks, facilitating edge deployment for AMD screening. Code is available at https://github.com/erfan-nourbakhsh/KD-OCT.

Authors:Lownish Rai Sookha, Nikhil Pakhale, Mudasir Ganaie, Abhinav Dhall
Title: A Survey of Body and Face Motion: Datasets, Performance Evaluation Metrics and Generative Techniques
Abstract:
Body and face motion play an integral role in communication. They convey crucial information on the participants. Advances in generative modeling and multi-modal learning have enabled motion generation from signals such as speech, conversational context and visual cues. However, generating expressive and coherent face and body dynamics remains challenging due to the complex interplay of verbal / non-verbal cues and individual personality traits. This survey reviews body and face motion generation, covering core concepts, representations techniques, generative approaches, datasets and evaluation metrics. We highlight future directions to enhance the realism, coherence and expressiveness of avatars in dyadic settings. To the best of our knowledge, this work is the first comprehensive review to cover both body and face motion. Detailed resources are listed on https://lownish23csz0010.github.io/mogen/.

Authors:Yixuan Zhu, Jiaqi Feng, Wenzhao Zheng, Yuan Gao, Xin Tao, Pengfei Wan, Jie Zhou, Jiwen Lu
Title: Astra: General Interactive World Model with Autoregressive Denoising
Abstract:
Recent advances in diffusion transformers have empowered video generation models to generate high-quality video clips from texts or images. However, world models with the ability to predict long-horizon futures from past observations and actions remain underexplored, especially for general-purpose scenarios and various forms of actions. To bridge this gap, we introduce Astra, an interactive general world model that generates real-world futures for diverse scenarios (e.g., autonomous driving, robot grasping) with precise action interactions (e.g., camera motion, robot action). We propose an autoregressive denoising architecture and use temporal causal attention to aggregate past observations and support streaming outputs. We use a noise-augmented history memory to avoid over-reliance on past frames to balance responsiveness with temporal coherence. For precise action control, we introduce an action-aware adapter that directly injects action signals into the denoising process. We further develop a mixture of action experts that dynamically route heterogeneous action modalities, enhancing versatility across diverse real-world tasks such as exploration, manipulation, and camera control. Astra achieves interactive, consistent, and general long-term video prediction and supports various forms of interactions. Experiments across multiple datasets demonstrate the improvements of Astra in fidelity, long-range prediction, and action alignment over existing state-of-the-art world models.

Authors:Youming Deng, Songyou Peng, Junyi Zhang, Kathryn Heal, Tiancheng Sun, John Flynn, Steve Marschner, Lucy Chai
Title: Selfi: Self Improving Reconstruction Engine via 3D Geometric Feature Alignment
Abstract:
Novel View Synthesis (NVS) has traditionally relied on models with explicit 3D inductive biases combined with known camera parameters from Structure-from-Motion (SfM) beforehand. Recent vision foundation models like VGGT take an orthogonal approach -- 3D knowledge is gained implicitly through training data and loss objectives, enabling feed-forward prediction of both camera parameters and 3D representations directly from a set of uncalibrated images. While flexible, VGGT features lack explicit multi-view geometric consistency, and we find that improving such 3D feature consistency benefits both NVS and pose estimation tasks. We introduce Selfi, a self-improving 3D reconstruction pipeline via feature alignment, transforming a VGGT backbone into a high-fidelity 3D reconstruction engine by leveraging its own outputs as pseudo-ground-truth. Specifically, we train a lightweight feature adapter using a reprojection-based consistency loss, which distills VGGT outputs into a new geometrically-aligned feature space that captures spatial proximity in 3D. This enables state-of-the-art performance in both NVS and camera pose estimation, demonstrating that feature alignment is a highly beneficial step for downstream 3D reasoning.

Authors:Chuhan Zhang, Guillaume Le Moing, Skanda Koppula, Ignacio Rocco, Liliane Momeni, Junyu Xie, Shuyang Sun, Rahul Sukthankar, Joëlle K. Barral, Raia Hadsell, Zoubin Ghahramani, Andrew Zisserman, Junlin Zhang, Mehdi S. M. Sajjadi
Title: Efficiently Reconstructing Dynamic Scenes One D4RT at a Time
Abstract:
Understanding and reconstructing the complex geometry and motion of dynamic scenes from video remains a formidable challenge in computer vision. This paper introduces D4RT, a simple yet powerful feedforward model designed to efficiently solve this task. D4RT utilizes a unified transformer architecture to jointly infer depth, spatio-temporal correspondence, and full camera parameters from a single video. Its core innovation is a novel querying mechanism that sidesteps the heavy computation of dense, per-frame decoding and the complexity of managing multiple, task-specific decoders. Our decoding interface allows the model to independently and flexibly probe the 3D position of any point in space and time. The result is a lightweight and highly scalable method that enables remarkably efficient training and inference. We demonstrate that our approach sets a new state of the art, outperforming previous methods across a wide spectrum of 4D reconstruction tasks. We refer to the project webpage for animated results: https://d4rt-paper.github.io/.

Authors:Simon de Moreau, Andrei Bursuc, Hafid El-Idrissi, Fabien Moutarde
Title: LiDAS: Lighting-driven Dynamic Active Sensing for Nighttime Perception
Abstract:
Nighttime environments pose significant challenges for camera-based perception, as existing methods passively rely on the scene lighting. We introduce Lighting-driven Dynamic Active Sensing (LiDAS), a closed-loop active illumination system that combines off-the-shelf visual perception models with high-definition headlights. Rather than uniformly brightening the scene, LiDAS dynamically predicts an optimal illumination field that maximizes downstream perception performance, i.e., decreasing light on empty areas to reallocate it on object regions. LiDAS enables zero-shot nighttime generalization of daytime-trained models through adaptive illumination control. Trained on synthetic data and deployed zero-shot in real-world closed-loop driving scenarios, LiDAS enables +18.7% mAP50 and +5.0% mIoU over standard low-beam at equal power. It maintains performances while reducing energy use by 40%. LiDAS complements domain-generalization methods, further strengthening robustness without retraining. By turning readily available headlights into active vision actuators, LiDAS offers a cost-effective solution to robust nighttime perception.

Authors:Damiano Marsili, Georgia Gkioxari
Title: No Labels, No Problem: Training Visual Reasoners with Multimodal Verifiers
Abstract:
Visual reasoning is challenging, requiring both precise object grounding and understanding complex spatial relationships. Existing methods fall into two camps: language-only chain-of-thought approaches, which demand large-scale (image, query, answer) supervision, and program-synthesis approaches which use pre-trained models and avoid training, but suffer from flawed logic and erroneous grounding. We propose an annotation-free training framework that improves both reasoning and grounding. Our framework uses AI-powered verifiers: an LLM verifier refines LLM reasoning via reinforcement learning, while a VLM verifier strengthens visual grounding through automated hard-negative mining, eliminating the need for ground truth labels. This design combines the strengths of modern AI systems: advanced language-only reasoning models for decomposing spatial queries into simpler subtasks, and strong vision specialist models improved via performant VLM critics. We evaluate our approach across diverse spatial reasoning tasks, and show that our method improves visual reasoning and surpasses open-source and proprietary models, while with our improved visual grounding model we further outperform recent text-only visual reasoning methods. Project webpage: https://glab-caltech.github.io/valor/

Authors:Amit Bendkhale
Title: Tri-Bench: Stress-Testing VLM Reliability on Spatial Reasoning under Camera Tilt and Object Interference
Abstract:
Verifiable geometric reasoning is a critical component for trustworthy and controllable agentic AI. Despite impressive capabilities, Vision-Language Models (VLMs) often fail under realistic scene changes. We present Tri-Bench, a compact benchmark of planar triangle problems that isolates relative geometric reasoning while stressing two deployment-critical factors: camera pose (planar vs. tilted) and scene context via object interference (10 everyday objects). To test verifiability and control, we evaluate four recent VLMs using a single, fixed prompt whose guardrail explicitly describes a surrounding square border, enabling correct answers via homography. We evaluate six simple tasks over binary and continuous targets, and observe that the overall accuracy with respect to 3D ground truth is modest, ~69% on average (best ~75%, worst ~64%). The same responses align even more closely with 2D projections in the image plane, where mean accuracy is ~72%. All four VLMs consistently fail, with accuracy falling to ~0%, on recognizing minority shape classes (equilateral, isosceles, right-angled triangles). Additionally, overall VLM accuracy degrades by ~4.1% under camera tilt. This demonstrates that models fail to correctly utilize the explicit frame-of-reference hint provided in the prompt and default to 2D image plane cues. Finally, we find that object interference has no significant effect on VLM accuracy.

Authors:Hongyuan Tao, Bencheng Liao, Shaoyu Chen, Haoran Yin, Qian Zhang, Wenyu Liu, Xinggang Wang
Title: InfiniteVL: Synergizing Linear and Sparse Attention for Highly-Efficient, Unlimited-Input Vision-Language Models
Abstract:
Window attention and linear attention represent two principal strategies for mitigating the quadratic complexity and ever-growing KV cache in Vision-Language Models (VLMs). However, we observe that window-based VLMs suffer performance degradation when sequence length exceeds the window size, while linear attention underperforms on information-intensive tasks such as OCR and document understanding. To overcome these limitations, we propose InfiniteVL, a linear-complexity VLM architecture that synergizes sliding window attention (SWA) with Gated DeltaNet. For achieving competitive multimodal performance under constrained resources, we design a three-stage training strategy comprising distillation pretraining, instruction tuning, and long-sequence SFT. Remarkably, using less than 2\% of the training data required by leading VLMs, InfiniteVL not only substantially outperforms previous linear-complexity VLMs but also matches the performance of leading Transformer-based VLMs, while demonstrating effective long-term memory retention. Compared to similar-sized Transformer-based VLMs accelerated by FlashAttention-2, InfiniteVL achieves over 3.6\times inference speedup while maintaining constant latency and memory footprint. In streaming video understanding scenarios, it sustains a stable 24 FPS real-time prefill speed while preserving long-term memory cache. Code and models are available at https://github.com/hustvl/InfiniteVL.

Authors:Yiming Hao, Mutian Xu, Chongjie Ye, Jie Qin, Shunlin Lu, Yipeng Qin, Xiaoguang Han
Title: LoFA: Learning to Predict Personalized Priors for Fast Adaptation of Visual Generative Models
Abstract:
Personalizing visual generative models to meet specific user needs has gained increasing attention, yet current methods like Low-Rank Adaptation (LoRA) remain impractical due to their demand for task-specific data and lengthy optimization. While a few hypernetwork-based approaches attempt to predict adaptation weights directly, they struggle to map fine-grained user prompts to complex LoRA distributions, limiting their practical applicability. To bridge this gap, we propose LoFA, a general framework that efficiently predicts personalized priors for fast model adaptation. We first identify a key property of LoRA: structured distribution patterns emerge in the relative changes between LoRA and base model parameters. Building on this, we design a two-stage hypernetwork: first predicting relative distribution patterns that capture key adaptation regions, then using these to guide final LoRA weight prediction. Extensive experiments demonstrate that our method consistently predicts high-quality personalized priors within seconds, across multiple tasks and user prompts, even outperforming conventional LoRA that requires hours of processing. Project page: https://jaeger416.github.io/lofa/.

Authors:Ruihang Chu, Yefei He, Zhekai Chen, Shiwei Zhang, Xiaogang Xu, Bin Xia, Dingdong Wang, Hongwei Yi, Xihui Liu, Hengshuang Zhao, Yu Liu, Yingya Zhang, Yujiu Yang
Title: Wan-Move: Motion-controllable Video Generation via Latent Trajectory Guidance
Abstract:
We present Wan-Move, a simple and scalable framework that brings motion control to video generative models. Existing motion-controllable methods typically suffer from coarse control granularity and limited scalability, leaving their outputs insufficient for practical use. We narrow this gap by achieving precise and high-quality motion control. Our core idea is to directly make the original condition features motion-aware for guiding video synthesis. To this end, we first represent object motions with dense point trajectories, allowing fine-grained control over the scene. We then project these trajectories into latent space and propagate the first frame's features along each trajectory, producing an aligned spatiotemporal feature map that tells how each scene element should move. This feature map serves as the updated latent condition, which is naturally integrated into the off-the-shelf image-to-video model, e.g., Wan-I2V-14B, as motion guidance without any architecture change. It removes the need for auxiliary motion encoders and makes fine-tuning base models easily scalable. Through scaled training, Wan-Move generates 5-second, 480p videos whose motion controllability rivals Kling 1.5 Pro's commercial Motion Brush, as indicated by user studies. To support comprehensive evaluation, we further design MoveBench, a rigorously curated benchmark featuring diverse content categories and hybrid-verified annotations. It is distinguished by larger data volume, longer video durations, and high-quality motion annotations. Extensive experiments on MoveBench and the public dataset consistently show Wan-Move's superior motion quality. Code, models, and benchmark data are made publicly available.

Authors:Samuel Ebimobowei Johnny, Blessed Guda, Emmanuel Enejo Aaron, Assane Gueye
Title: Pose-Based Sign Language Spotting via an End-to-End Encoder Architecture
Abstract:
Automatic Sign Language Recognition (ASLR) has emerged as a vital field for bridging the gap between deaf and hearing communities. However, the problem of sign-to-sign retrieval or detecting a specific sign within a sequence of continuous signs remains largely unexplored. We define this novel task as Sign Language Spotting. In this paper, we present a first step toward sign language retrieval by addressing the challenge of detecting the presence or absence of a query sign video within a sentence-level gloss or sign video. Unlike conventional approaches that rely on intermediate gloss recognition or text-based matching, we propose an end-to-end model that directly operates on pose keypoints extracted from sign videos. Our architecture employs an encoder-only backbone with a binary classification head to determine whether the query sign appears within the target sequence. By focusing on pose representations instead of raw RGB frames, our method significantly reduces computational cost and mitigates visual noise. We evaluate our approach on the Word Presence Prediction dataset from the WSLP 2025 shared task, achieving 61.88\% accuracy and 60.00\% F1-score. These results demonstrate the effectiveness of our pose-based framework for Sign Language Spotting, establishing a strong foundation for future research in automatic sign language retrieval and verification. Code is available at https://github.com/EbimoJohnny/Pose-Based-Sign-Language-Spotting

Authors:Kaiyu Li, Shengqi Zhang, Yupeng Deng, Zhi Wang, Deyu Meng, Xiangyong Cao
Title: SegEarth-OV3: Exploring SAM 3 for Open-Vocabulary Semantic Segmentation in Remote Sensing Images
Abstract:
Most existing methods for training-free Open-Vocabulary Semantic Segmentation (OVSS) are based on CLIP. While these approaches have made progress, they often face challenges in precise localization or require complex pipelines to combine separate modules, especially in remote sensing scenarios where numerous dense and small targets are present. Recently, Segment Anything Model 3 (SAM 3) was proposed, unifying segmentation and recognition in a promptable framework. In this paper, we present a preliminary exploration of applying SAM 3 to the remote sensing OVSS task without any training. First, we implement a mask fusion strategy that combines the outputs from SAM 3's semantic segmentation head and the Transformer decoder (instance head). This allows us to leverage the strengths of both heads for better land coverage. Second, we utilize the presence score from the presence head to filter out categories that do not exist in the scene, reducing false positives caused by the vast vocabulary sizes and patch-level processing in geospatial scenes. We evaluate our method on extensive remote sensing datasets. Experiments show that this simple adaptation achieves promising performance, demonstrating the potential of SAM 3 for remote sensing OVSS. Our code is released at https://github.com/earth-insights/SegEarth-OV-3.

Authors:Athena Psalta, Vasileios Tsironis, Konstantinos Karantzalos
Title: What really matters for person re-identification? A Mixture-of-Experts Framework for Semantic Attribute Importance
Abstract:
State-of-the-art person re-identification methods achieve impressive accuracy but remain largely opaque, leaving open the question: which high-level semantic attributes do these models actually rely on? We propose MoSAIC-ReID, a Mixture-of-Experts framework that systematically quantifies the importance of pedestrian attributes for re-identification. Our approach uses LoRA-based experts, each linked to a single attribute, and an oracle router that enables controlled attribution analysis. While MoSAIC-ReID achieves competitive performance on Market-1501 and DukeMTMC under the assumption that attribute annotations are available at test time, its primary value lies in providing a large-scale, quantitative study of attribute importance across intrinsic and extrinsic cues. Using generalized linear models, statistical tests, and feature-importance analyses, we reveal which attributes, such as clothing colors and intrinsic characteristics, contribute most strongly, while infrequent cues (e.g. accessories) have limited effect. This work offers a principled framework for interpretable ReID and highlights the requirements for integrating explicit semantic knowledge in practice. Code is available at https://github.com/psaltaath/MoSAIC-ReID

Authors:Zhenyu Zhang, Guangyao Chen, Yixiong Zou, Zhimeng Huang, Yuhua Li
Title: Decoupling Template Bias in CLIP: Harnessing Empty Prompts for Enhanced Few-Shot Learning
Abstract:
The Contrastive Language-Image Pre-Training (CLIP) model excels in few-shot learning by aligning visual and textual representations. Our study shows that template-sample similarity (TSS), defined as the resemblance between a text template and an image sample, introduces bias. This bias leads the model to rely on template proximity rather than true sample-to-category alignment, reducing both accuracy and robustness in classification. We present a framework that uses empty prompts, textual inputs that convey the idea of "emptiness" without category information. These prompts capture unbiased template features and offset TSS bias. The framework employs two stages. During pre-training, empty prompts reveal and reduce template-induced bias within the CLIP encoder. During few-shot fine-tuning, a bias calibration loss enforces correct alignment between images and their categories, ensuring the model focuses on relevant visual cues. Experiments across multiple benchmarks demonstrate that our template correction method significantly reduces performance fluctuations caused by TSS, yielding higher classification accuracy and stronger robustness. The repository of this project is available at https://github.com/zhenyuZ-HUST/Decoupling-Template-Bias-in-CLIP.

Authors:Zhen Zou, Xiaoxiao Ma, Jie Huang, Zichao Yu, Feng Zhao
Title: Fast-ARDiff: An Entropy-informed Acceleration Framework for Continuous Space Autoregressive Generation
Abstract:
Autoregressive(AR)-diffusion hybrid paradigms combine AR's structured modeling with diffusion's photorealistic synthesis, yet suffer from high latency due to sequential AR generation and iterative denoising. In this work, we tackle this bottleneck and propose a unified AR-diffusion framework Fast-ARDiff that jointly optimizes both components, accelerating AR speculative decoding while simultaneously facilitating faster diffusion decoding. Specifically: (1) The entropy-informed speculative strategy encourages draft model to produce higher-entropy representations aligned with target model's entropy characteristics, mitigating entropy mismatch and high rejection rates caused by draft overconfidence. (2) For diffusion decoding, rather than treating it as an independent module, we integrate it into the same end-to-end framework using a dynamic scheduler that prioritizes AR optimization to guide the diffusion part in further steps. The diffusion part is optimized through a joint distillation framework combining trajectory and distribution matching, ensuring stable training and high-quality synthesis with extremely few steps. During inference, shallow feature entropy from AR module is used to pre-filter low-entropy drafts, avoiding redundant computation and improving latency. Fast-ARDiff achieves state-of-the-art acceleration across diverse models: on ImageNet 256$\times$256, TransDiff attains 4.3$\times$ lossless speedup, and NextStep-1 achieves 3$\times$ acceleration on text-conditioned generation. Code will be available at https://github.com/aSleepyTree/Fast-ARDiff.

Authors:Yunzhu Zhang, Zeyu Pan, Zhengwen Zeng, Shuheng Shen, Changhua Meng, Linchao Zhu
Title: MVP: Multiple View Prediction Improves GUI Grounding
Abstract:
GUI grounding, which translates natural language instructions into precise pixel coordinates, is essential for developing practical GUI agents. However, we observe that existing grounding models exhibit significant coordinate prediction instability, minor visual perturbations (e.g. cropping a few pixels) can drastically alter predictions, flipping results between correct and incorrect. This instability severely undermines model performance, especially for samples with high-resolution and small UI elements. To address this issue, we propose Multi-View Prediction (MVP), a training-free framework that enhances grounding performance through multi-view inference. Our key insight is that while single-view predictions may be unstable, aggregating predictions from multiple carefully cropped views can effectively distinguish correct coordinates from outliers. MVP comprises two components: (1) Attention-Guided View Proposal, which derives diverse views guided by instruction-to-image attention scores, and (2) Multi-Coordinates Clustering, which ensembles predictions by selecting the centroid of the densest spatial cluster. Extensive experiments demonstrate MVP's effectiveness across various models and benchmarks. Notably, on ScreenSpot-Pro, MVP boosts UI-TARS-1.5-7B to 56.1%, GTA1-7B to 61.7%, Qwen3VL-8B-Instruct to 65.3%, and Qwen3VL-32B-Instruct to 74.0%. The code is available at https://github.com/ZJUSCL/MVP.

Authors:Wenxi Yang, Yuzhong Zhao, Fang Wan, Qixiang Ye
Title: Thinking with Images via Self-Calling Agent
Abstract:
Thinking-with-images paradigms have showcased remarkable visual reasoning capability by integrating visual information as dynamic elements into the Chain-of-Thought (CoT). However, optimizing interleaved multimodal CoT (iMCoT) through reinforcement learning remains challenging, as it relies on scarce high-quality reasoning data. In this study, we propose Self-Calling Chain-of-Thought (sCoT), a novel visual reasoning paradigm that reformulates iMCoT as a language-only CoT with self-calling. Specifically, a main agent decomposes the complex visual reasoning task to atomic subtasks and invokes its virtual replicas, i.e. parameter-sharing subagents, to solve them in isolated context. sCoT enjoys substantial training effectiveness and efficiency, as it requires no explicit interleaving between modalities. sCoT employs group-relative policy optimization to reinforce effective reasoning behavior to enhance optimization. Experiments on HR-Bench 4K show that sCoT improves the overall reasoning performance by up to $1.9\%$ with $\sim 75\%$ fewer GPU hours compared to strong baseline approaches. Code is available at https://github.com/YWenxi/think-with-images-through-self-calling.

Authors:Jianan Li, Xiao Chen, Tao Huang, Tien-Tsin Wong
Title: Learning to Control Physically-simulated 3D Characters via Generating and Mimicking 2D Motions
Abstract:
Video data is more cost-effective than motion capture data for learning 3D character motion controllers, yet synthesizing realistic and diverse behaviors directly from videos remains challenging. Previous approaches typically rely on off-the-shelf motion reconstruction techniques to obtain 3D trajectories for physics-based imitation. These reconstruction methods struggle with generalizability, as they either require 3D training data (potentially scarce) or fail to produce physically plausible poses, hindering their application to challenging scenarios like human-object interaction (HOI) or non-human characters. We tackle this challenge by introducing Mimic2DM, a novel motion imitation framework that learns the control policy directly and solely from widely available 2D keypoint trajectories extracted from videos. By minimizing the reprojection error, we train a general single-view 2D motion tracking policy capable of following arbitrary 2D reference motions in physics simulation, using only 2D motion data. The policy, when trained on diverse 2D motions captured from different or slightly different viewpoints, can further acquire 3D motion tracking capabilities by aggregating multiple views. Moreover, we develop a transformer-based autoregressive 2D motion generator and integrate it into a hierarchical control framework, where the generator produces high-quality 2D reference trajectories to guide the tracking policy. We show that the proposed approach is versatile and can effectively learn to synthesize physically plausible and diverse motions across a range of domains, including dancing, soccer dribbling, and animal movements, without any reliance on explicit 3D motion data. Project Website: https://jiann-li.github.io/mimic2dm/

Authors:Ada Gorgun, Fawaz Sammani, Nikos Deligiannis, Bernt Schiele, Jonas Fischer
Title: Temporal Concept Dynamics in Diffusion Models via Prompt-Conditioned Interventions
Abstract:
Diffusion models are usually evaluated by their final outputs, gradually denoising random noise into meaningful images. Yet, generation unfolds along a trajectory, and analyzing this dynamic process is crucial for understanding how controllable, reliable, and predictable these models are in terms of their success/failure modes. In this work, we ask the question: when does noise turn into a specific concept (e.g., age) and lock in the denoising trajectory? We propose PCI (Prompt-Conditioned Intervention) to study this question. PCI is a training-free and model-agnostic framework for analyzing concept dynamics through diffusion time. The central idea is the analysis of Concept Insertion Success (CIS), defined as the probability that a concept inserted at a given timestep is preserved and reflected in the final image, offering a way to characterize the temporal dynamics of concept formation. Applied to several state-of-the-art text-to-image diffusion models and a broad taxonomy of concepts, PCI reveals diverse temporal behaviors across diffusion models, in which certain phases of the trajectory are more favorable to specific concepts even within the same concept type. These findings also provide actionable insights for text-driven image editing, highlighting when interventions are most effective without requiring access to model internals or training, and yielding quantitatively stronger edits that achieve a balance of semantic accuracy and content preservation than strong baselines. Code is available at: https://github.com/adagorgun/PCI-Prompt-Controlled-Interventions

Authors:Yuning Gong, Yifei Liu, Yifan Zhan, Muyao Niu, Xueying Li, Yuanjun Liao, Jiaming Chen, Yuanyuan Gao, Jiaqi Chen, Minming Chen, Li Zhou, Yuning Zhang, Wei Wang, Xiaoqing Hou, Huaxi Huang, Shixiang Tang, Le Ma, Dingwen Zhang, Xue Yang, Junchi Yan, Yanchi Zhang, Yinqiang Zheng, Xiao Sun, Zhihang Zhong
Title: Visionary: The World Model Carrier Built on WebGPU-Powered Gaussian Splatting Platform
Abstract:
Neural rendering, particularly 3D Gaussian Splatting (3DGS), has evolved rapidly and become a key component for building world models. However, existing viewer solutions remain fragmented, heavy, or constrained by legacy pipelines, resulting in high deployment friction and limited support for dynamic content and generative models. In this work, we present Visionary, an open, web-native platform for real-time various Gaussian Splatting and meshes rendering. Built on an efficient WebGPU renderer with per-frame ONNX inference, Visionary enables dynamic neural processing while maintaining a lightweight, "click-to-run" browser experience. It introduces a standardized Gaussian Generator contract, which not only supports standard 3DGS rendering but also allows plug-and-play algorithms to generate or update Gaussians each frame. Such inference also enables us to apply feedforward generative post-processing. The platform further offers a plug in three.js library with a concise TypeScript API for seamless integration into existing web applications. Experiments show that, under identical 3DGS assets, Visionary achieves superior rendering efficiency compared to current Web viewers due to GPU-based primitive sorting. It already supports multiple variants, including MLP-based 3DGS, 4DGS, neural avatars, and style transformation or enhancement networks. By unifying inference and rendering directly in the browser, Visionary significantly lowers the barrier to reproduction, comparison, and deployment of 3DGS-family methods, serving as a unified World Model Carrier for both reconstructive and generative paradigms.

Authors:Qing Xu, Kun Yuan, Yuxiang Luo, Yuhao Zhai, Wenting Duan, Nassir Navab, Zhen Chen
Title: LapFM: A Laparoscopic Segmentation Foundation Model via Hierarchical Concept Evolving Pre-training
Abstract:
Surgical segmentation is pivotal for scene understanding yet remains hindered by annotation scarcity and semantic inconsistency across diverse procedures. Existing approaches typically fine-tune natural foundation models (e.g., SAM) with limited supervision, functioning merely as domain adapters rather than surgical foundation models. Consequently, they struggle to generalize across the vast variability of surgical targets. To bridge this gap, we present LapFM, a foundation model designed to evolve robust segmentation capabilities from massive unlabeled surgical images. Distinct from medical foundation models relying on inefficient self-supervised proxy tasks, LapFM leverages a Hierarchical Concept Evolving Pre-training paradigm. First, we establish a Laparoscopic Concept Hierarchy (LCH) via a hierarchical mask decoder with parent-child query embeddings, unifying diverse entities (i.e., Anatomy, Tissue, and Instrument) into a scalable knowledge structure with cross-granularity semantic consistency. Second, we propose a Confidence-driven Evolving Labeling that iteratively generates and filters pseudo-labels based on hierarchical consistency, progressively incorporating reliable samples from unlabeled images into training. This process yields LapBench-114K, a large-scale benchmark comprising 114K image-mask pairs. Extensive experiments demonstrate that LapFM significantly outperforms state-of-the-art methods, establishing new standards for granularity-adaptive generalization in universal laparoscopic segmentation. The source code is available at https://github.com/xq141839/LapFM.

Authors:Mingqi Gao, Yunqi Miao, Jungong Han
Title: SAM-Body4D: Training-Free 4D Human Body Mesh Recovery from Videos
Abstract:
Human Mesh Recovery (HMR) aims to reconstruct 3D human pose and shape from 2D observations and is fundamental to human-centric understanding in real-world scenarios. While recent image-based HMR methods such as SAM 3D Body achieve strong robustness on in-the-wild images, they rely on per-frame inference when applied to videos, leading to temporal inconsistency and degraded performance under occlusions. We address these issues without extra training by leveraging the inherent human continuity in videos. We propose SAM-Body4D, a training-free framework for temporally consistent and occlusion-robust HMR from videos. We first generate identity-consistent masklets using a promptable video segmentation model, then refine them with an Occlusion-Aware module to recover missing regions. The refined masklets guide SAM 3D Body to produce consistent full-body mesh trajectories, while a padding-based parallel strategy enables efficient multi-human inference. Experimental results demonstrate that SAM-Body4D achieves improved temporal stability and robustness in challenging in-the-wild videos, without any retraining. Our code and demo are available at: https://github.com/gaomingqi/sam-body4d.

Authors:Samitha Nuwan Thilakarathna, Ercan Avsar, Martin Mathias Nielsen, Malte Pedersen
Title: Towards Visual Re-Identification of Fish using Fine-Grained Classification for Electronic Monitoring in Fisheries
Abstract:
Accurate fisheries data are crucial for effective and sustainable marine resource management. With the recent adoption of Electronic Monitoring (EM) systems, more video data is now being collected than can be feasibly reviewed manually. This paper addresses this challenge by developing an optimized deep learning pipeline for automated fish re-identification (Re-ID) using the novel AutoFish dataset, which simulates EM systems with conveyor belts with six similarly looking fish species. We demonstrate that key Re-ID metrics (R1 and mAP@k) are substantially improved by using hard triplet mining in conjunction with a custom image transformation pipeline that includes dataset-specific normalization. By employing these strategies, we demonstrate that the Vision Transformer-based Swin-T architecture consistently outperforms the Convolutional Neural Network-based ResNet-50, achieving peak performance of 41.65% mAP@k and 90.43% Rank-1 accuracy. An in-depth analysis reveals that the primary challenge is distinguishing visually similar individuals of the same species (Intra-species errors), where viewpoint inconsistency proves significantly more detrimental than partial occlusion. The source code and documentation are available at: https://github.com/msamdk/Fish_Re_Identification.git

Authors:Ali Sakour
Title: Conditional Morphogenesis: Emergent Generation of Structural Digits via Neural Cellular Automata
Abstract:
Biological systems exhibit remarkable morphogenetic plasticity, where a single genome can encode various specialized cellular structures triggered by local chemical signals. In the domain of Deep Learning, Differentiable Neural Cellular Automata (NCA) have emerged as a paradigm to mimic this self-organization. However, existing NCA research has predominantly focused on continuous texture synthesis or single-target object recovery, leaving the challenge of class-conditional structural generation largely unexplored. In this work, we propose a novel Conditional Neural Cellular Automata (c-NCA) architecture capable of growing distinct topological structures - specifically MNIST digits - from a single generic seed, guided solely by a spatially broadcasted class vector. Unlike traditional generative models (e.g., GANs, VAEs) that rely on global reception fields, our model enforces strict locality and translation equivariance. We demonstrate that by injecting a one-hot condition into the cellular perception field, a single set of local rules can learn to break symmetry and self-assemble into ten distinct geometric attractors. Experimental results show that our c-NCA achieves stable convergence, correctly forming digit topologies from a single pixel, and exhibits robustness characteristic of biological systems. This work bridges the gap between texture-based NCAs and structural pattern formation, offering a lightweight, biologically plausible alternative for conditional generation.

Authors:Jiahao Lu, Weitao Xiong, Jiacheng Deng, Peng Li, Tianyu Huang, Zhiyang Dou, Cheng Lin, Sai-Kit Yeung, Yuan Liu
Title: TrackingWorld: World-centric Monocular 3D Tracking of Almost All Pixels
Abstract:
Monocular 3D tracking aims to capture the long-term motion of pixels in 3D space from a single monocular video and has witnessed rapid progress in recent years. However, we argue that the existing monocular 3D tracking methods still fall short in separating the camera motion from foreground dynamic motion and cannot densely track newly emerging dynamic subjects in the videos. To address these two limitations, we propose TrackingWorld, a novel pipeline for dense 3D tracking of almost all pixels within a world-centric 3D coordinate system. First, we introduce a tracking upsampler that efficiently lifts the arbitrary sparse 2D tracks into dense 2D tracks. Then, to generalize the current tracking methods to newly emerging objects, we apply the upsampler to all frames and reduce the redundancy of 2D tracks by eliminating the tracks in overlapped regions. Finally, we present an efficient optimization-based framework to back-project dense 2D tracks into world-centric 3D trajectories by estimating the camera poses and the 3D coordinates of these 2D tracks. Extensive evaluations on both synthetic and real-world datasets demonstrate that our system achieves accurate and dense 3D tracking in a world-centric coordinate frame.

Authors:Chang Liu, Hongliang Yuan, Lianghao Zhang, Sichao Wang, Jianwei Guo, Shi-Sheng Huang
Title: HybridSplat: Fast Reflection-baked Gaussian Tracing using Hybrid Splatting
Abstract:
Rendering complex reflection of real-world scenes using 3D Gaussian splatting has been a quite promising solution for photorealistic novel view synthesis, but still faces bottlenecks especially in rendering speed and memory storage. This paper proposes a new Hybrid Splatting(HybridSplat) mechanism for Gaussian primitives. Our key idea is a new reflection-baked Gaussian tracing, which bakes the view-dependent reflection within each Gaussian primitive while rendering the reflection using tile-based Gaussian splatting. Then we integrate the reflective Gaussian primitives with base Gaussian primitives using a unified hybrid splatting framework for high-fidelity scene reconstruction. Moreover, we further introduce a pipeline-level acceleration for the hybrid splatting, and reflection-sensitive Gaussian pruning to reduce the model size, thus achieving much faster rendering speed and lower memory storage while preserving the reflection rendering quality. By extensive evaluation, our HybridSplat accelerates about 7x rendering speed across complex reflective scenes from Ref-NeRF, NeRF-Casting with 4x fewer Gaussian primitives than similar ray-tracing based Gaussian splatting baselines, serving as a new state-of-the-art method especially for complex reflective scenes.

Authors:Alexander Goslin
Title: Terrain Diffusion: A Diffusion-Based Successor to Perlin Noise in Infinite, Real-Time Terrain Generation
Abstract:
For decades, procedural worlds have been built on procedural noise functions such as Perlin noise, which are fast and infinite, yet fundamentally limited in realism and large-scale coherence. We introduce Terrain Diffusion, a generative framework that bridges the fidelity of diffusion models with the properties that made procedural noise indispensable: seamless infinite extent, seed-consistency, and constant-time random access. At its core is InfiniteDiffusion, a novel algorithm for infinite generation that reformulates standard diffusion sampling for unbounded domains. While noise functions remain near-instant, our framework outpaces orbital velocity by 9 times on a consumer GPU, enabling realistic terrain generation at interactive rates. We integrate a hierarchical stack of diffusion models to couple planetary context with local detail, a compact Laplacian encoding to stabilize outputs across Earth-scale dynamic ranges, and an open-source infinite-tensor framework for constant-memory manipulation of unbounded tensors. Together, these components position diffusion models as a practical, scalable foundation for the next generation of infinite virtual worlds.

Authors:Taewoong Kang, Kinam Kim, Dohyeon Kim, Minho Park, Junha Hyung, Jaegul Choo
Title: EgoX: Egocentric Video Generation from a Single Exocentric Video
Abstract:
Egocentric perception enables humans to experience and understand the world directly from their own point of view. Translating exocentric (third-person) videos into egocentric (first-person) videos opens up new possibilities for immersive understanding but remains highly challenging due to extreme camera pose variations and minimal view overlap. This task requires faithfully preserving visible content while synthesizing unseen regions in a geometrically consistent manner. To achieve this, we present EgoX, a novel framework for generating egocentric videos from a single exocentric input. EgoX leverages the pretrained spatio temporal knowledge of large-scale video diffusion models through lightweight LoRA adaptation and introduces a unified conditioning strategy that combines exocentric and egocentric priors via width and channel wise concatenation. Additionally, a geometry-guided self-attention mechanism selectively attends to spatially relevant regions, ensuring geometric coherence and high visual fidelity. Our approach achieves coherent and realistic egocentric video generation while demonstrating strong scalability and robustness across unseen and in-the-wild videos.

Authors:Yuanpeng Chen, Hui Song, Wei Tao, ShanHui Mo, Shuang Zhang, Xiao Hua, TianKun Zhao
Title: FastBEV++: Fast by Algorithm, Deployable by Design
Abstract:
The advancement of camera-only Bird's-Eye-View(BEV) perception is currently impeded by a fundamental tension between state-of-the-art performance and on-vehicle deployment tractability. This bottleneck stems from a deep-rooted dependency on computationally prohibitive view transformations and bespoke, platform-specific kernels. This paper introduces FastBEV++, a framework engineered to reconcile this tension, demonstrating that high performance and deployment efficiency can be achieved in unison via two guiding principles: Fast by Algorithm and Deployable by Design. We realize the "Deployable by Design" principle through a novel view transformation paradigm that decomposes the monolithic projection into a standard Index-Gather-Reshape pipeline. Enabled by a deterministic pre-sorting strategy, this transformation is executed entirely with elementary, operator native primitives (e.g Gather, Matrix Multiplication), which eliminates the need for specialized CUDA kernels and ensures fully TensorRT-native portability. Concurrently, our framework is "Fast by Algorithm", leveraging this decomposed structure to seamlessly integrate an end-to-end, depth-aware fusion mechanism. This jointly learned depth modulation, further bolstered by temporal aggregation and robust data augmentation, significantly enhances the geometric fidelity of the BEV representation.Empirical validation on the nuScenes benchmark corroborates the efficacy of our approach. FastBEV++ establishes a new state-of-the-art 0.359 NDS while maintaining exceptional real-time performance, exceeding 134 FPS on automotive-grade hardware (e.g Tesla T4). By offering a solution that is free of custom plugins yet highly accurate, FastBEV++ presents a mature and scalable design philosophy for production autonomous systems. The code is released at: https://github.com/ymlab/advanced-fastbev

Authors:Ziwei Yao, Qiyang Wan, Ruiping Wang, Xilin Chen
Title: VisKnow: Constructing Visual Knowledge Base for Object Understanding
Abstract:
Understanding objects is fundamental to computer vision. Beyond object recognition that provides only a category label as typical output, in-depth object understanding represents a comprehensive perception of an object category, involving its components, appearance characteristics, inter-category relationships, contextual background knowledge, etc. Developing such capability requires sufficient multi-modal data, including visual annotations such as parts, attributes, and co-occurrences for specific tasks, as well as textual knowledge to support high-level tasks like reasoning and question answering. However, these data are generally task-oriented and not systematically organized enough to achieve the expected understanding of object categories. In response, we propose the Visual Knowledge Base that structures multi-modal object knowledge as graphs, and present a construction framework named VisKnow that extracts multi-modal, object-level knowledge for object understanding. This framework integrates enriched aligned text and image-source knowledge with region annotations at both object and part levels through a combination of expert design and large-scale model application. As a specific case study, we construct AnimalKB, a structured animal knowledge base covering 406 animal categories, which contains 22K textual knowledge triplets extracted from encyclopedic documents, 420K images, and corresponding region annotations. A series of experiments showcase how AnimalKB enhances object-level visual tasks such as zero-shot recognition and fine-grained VQA, and serves as challenging benchmarks for knowledge graph completion and part segmentation. Our findings highlight the potential of automatically constructing visual knowledge bases to advance visual understanding and its practical applications. The project page is available at https://vipl-vsu.github.io/VisKnow.

Authors:Lirong Zheng, Yanshan Li, Rui Yu, Kaihao Zhang
Title: Fourier-RWKV: A Multi-State Perception Network for Efficient Image Dehazing
Abstract:
Image dehazing is crucial for reliable visual perception, yet it remains highly challenging under real-world non-uniform haze conditions. Although Transformer-based methods excel at capturing global context, their quadratic computational complexity hinders real-time deployment. To address this, we propose Fourier Receptance Weighted Key Value (Fourier-RWKV), a novel dehazing framework based on a Multi-State Perception paradigm. The model achieves comprehensive haze degradation modeling with linear complexity by synergistically integrating three distinct perceptual states: (1) Spatial-form Perception, realized through the Deformable Quad-directional Token Shift (DQ-Shift) operation, which dynamically adjusts receptive fields to accommodate local haze variations; (2) Frequency-domain Perception, implemented within the Fourier Mix block, which extends the core WKV attention mechanism of RWKV from the spatial domain to the Fourier domain, preserving the long-range dependencies essential for global haze estimation while mitigating spatial attenuation; (3) Semantic-relation Perception, facilitated by the Semantic Bridge Module (SBM), which utilizes Dynamic Semantic Kernel Fusion (DSK-Fusion) to precisely align encoder-decoder features and suppress artifacts. Extensive experiments on multiple benchmarks demonstrate that Fourier-RWKV delivers state-of-the-art performance across diverse haze scenarios while significantly reducing computational overhead, establishing a favorable trade-off between restoration quality and practical efficiency. Code is available at: https://github.com/Dilizlr/Fourier-RWKV.

Authors:Chandler Timm C. Doloriel, Habib Ullah, Kristian Hovde Liland, Fadi Al Machot, Ngai-Man Cheung
Title: Towards Sustainable Universal Deepfake Detection with Frequency-Domain Masking
Abstract:
Universal deepfake detection aims to identify AI-generated images across a broad range of generative models, including unseen ones. This requires robust generalization to new and unseen deepfakes, which emerge frequently, while minimizing computational overhead to enable large-scale deepfake screening, a critical objective in the era of Green AI. In this work, we explore frequency-domain masking as a training strategy for deepfake detectors. Unlike traditional methods that rely heavily on spatial features or large-scale pretrained models, our approach introduces random masking and geometric transformations, with a focus on frequency masking due to its superior generalization properties. We demonstrate that frequency masking not only enhances detection accuracy across diverse generators but also maintains performance under significant model pruning, offering a scalable and resource-conscious solution. Our method achieves state-of-the-art generalization on GAN- and diffusion-generated image datasets and exhibits consistent robustness under structured pruning. These results highlight the potential of frequency-based masking as a practical step toward sustainable and generalizable deepfake detection. Code and models are available at: [https://github.com/chandlerbing65nm/FakeImageDetection](https://github.com/chandlerbing65nm/FakeImageDetection).

Authors:Elifnur Sunger, Tales Imbiriba, Peter Campbell, Deniz Erdogmus, Stratis Ioannidis, Jennifer Dy
Title: SSplain: Sparse and Smooth Explainer for Retinopathy of Prematurity Classification
Abstract:
Neural networks are frequently used in medical diagnosis. However, due to their black-box nature, model explainers are used to help clinicians understand better and trust model outputs. This paper introduces an explainer method for classifying Retinopathy of Prematurity (ROP) from fundus images. Previous methods fail to generate explanations that preserve input image structures such as smoothness and sparsity. We introduce Sparse and Smooth Explainer (SSplain), a method that generates pixel-wise explanations while preserving image structures by enforcing smoothness and sparsity. This results in realistic explanations to enhance the understanding of the given black-box model. To achieve this goal, we define an optimization problem with combinatorial constraints and solve it using the Alternating Direction Method of Multipliers (ADMM). Experimental results show that SSplain outperforms commonly used explainers in terms of both post-hoc accuracy and smoothness analyses. Additionally, SSplain identifies features that are consistent with domain-understandable features that clinicians consider as discriminative factors for ROP. We also show SSplain's generalization by applying it to additional publicly available datasets. Code is available at https://github.com/neu-spiral/SSplain.

Authors:Zekai Luo, Zongze Du, Zhouhang Zhu, Hao Zhong, Muzhi Zhu, Wen Wang, Yuling Xi, Chenchen Jing, Hao Chen, Chunhua Shen
Title: Preserving Source Video Realism: High-Fidelity Face Swapping for Cinematic Quality
Abstract:
Video face swapping is crucial in film and entertainment production, where achieving high fidelity and temporal consistency over long and complex video sequences remains a significant challenge. Inspired by recent advances in reference-guided image editing, we explore whether rich visual attributes from source videos can be similarly leveraged to enhance both fidelity and temporal coherence in video face swapping. Building on this insight, this work presents LivingSwap, the first video reference guided face swapping model. Our approach employs keyframes as conditioning signals to inject the target identity, enabling flexible and controllable editing. By combining keyframe conditioning with video reference guidance, the model performs temporal stitching to ensure stable identity preservation and high-fidelity reconstruction across long video sequences. To address the scarcity of data for reference-guided training, we construct a paired face-swapping dataset, Face2Face, and further reverse the data pairs to ensure reliable ground-truth supervision. Extensive experiments demonstrate that our method achieves state-of-the-art results, seamlessly integrating the target identity with the source video's expressions, lighting, and motion, while significantly reducing manual effort in production workflows. Project webpage: https://aim-uofa.github.io/LivingSwap

Authors:Hongjun Wang, Yitong Jiang, Collin McCarthy, David Wehr, Hanrong Ye, Xinhao Li, Ka Chun Cheung, Wonmin Byeon, Jinwei Gu, Ke Chen, Kai Han, Hongxu Yin, Pavlo Molchanov, Jan Kautz, Sifei Liu
Title: GSPN-2: Efficient Parallel Sequence Modeling
Abstract:
Efficient vision transformer remains a bottleneck for high-resolution images and long-video related real-world applications. Generalized Spatial Propagation Network (GSPN) addresses this by replacing quadratic self-attention with a line-scan propagation scheme, bringing the cost close to linear in the number of rows or columns, while retaining accuracy. Despite this advancement, the existing GSPN implementation still suffers from (i) heavy overhead due to repeatedly launching GPU kernels, (ii) excessive data transfers from global GPU memory, and (iii) redundant computations caused by maintaining separate propagation weights for each channel. We introduce GSPN-2, a joint algorithm-system redesign. In particular, we eliminate thousands of micro-launches from the previous implementation into one single 2D kernel, explicitly pin one warp to each channel slice, and stage the previous column's activations in shared memory. On the model side, we introduce a compact channel propagation strategy that replaces per-channel matrices, trimming parameters, and align naturally with the affinity map used in transformer attention. Experiments demonstrate GSPN-2's effectiveness across image classification and text-to-image synthesis tasks, matching transformer-level accuracy with significantly lower computational cost. GSPN-2 establishes a new efficiency frontier for modeling global spatial context in vision applications through its unique combination of structured matrix transformations and GPU-optimized implementation. Project page: https://whj363636.github.io/GSPN2/

Authors:Yi-Chuan Huang, Jiewen Chan, Hao-Jen Chien, Yu-Lun Liu
Title: Voxify3D: Pixel Art Meets Volumetric Rendering
Abstract:
Voxel art is a distinctive stylization widely used in games and digital media, yet automated generation from 3D meshes remains challenging due to conflicting requirements of geometric abstraction, semantic preservation, and discrete color coherence. Existing methods either over-simplify geometry or fail to achieve the pixel-precise, palette-constrained aesthetics of voxel art. We introduce Voxify3D, a differentiable two-stage framework bridging 3D mesh optimization with 2D pixel art supervision. Our core innovation lies in the synergistic integration of three components: (1) orthographic pixel art supervision that eliminates perspective distortion for precise voxel-pixel alignment; (2) patch-based CLIP alignment that preserves semantics across discretization levels; (3) palette-constrained Gumbel-Softmax quantization enabling differentiable optimization over discrete color spaces with controllable palette strategies. This integration addresses fundamental challenges: semantic preservation under extreme discretization, pixel-art aesthetics through volumetric rendering, and end-to-end discrete optimization. Experiments show superior performance (37.12 CLIP-IQA, 77.90\% user preference) across diverse characters and controllable abstraction (2-8 colors, 20x-50x resolutions). Project page: https://yichuanh.github.io/Voxify-3D/

Authors:Thao Nguyen, Sicheng Mo, Krishna Kumar Singh, Yilin Wang, Jing Shi, Nicholas Kolkin, Eli Shechtman, Yong Jae Lee, Yuheng Li
Title: Relational Visual Similarity
Abstract:
Humans do not just see attribute similarity -- we also see relational similarity. An apple is like a peach because both are reddish fruit, but the Earth is also like a peach: its crust, mantle, and core correspond to the peach's skin, flesh, and pit. This ability to perceive and recognize relational similarity, is arguable by cognitive scientist to be what distinguishes humans from other species. Yet, all widely used visual similarity metrics today (e.g., LPIPS, CLIP, DINO) focus solely on perceptual attribute similarity and fail to capture the rich, often surprising relational similarities that humans perceive. How can we go beyond the visible content of an image to capture its relational properties? How can we bring images with the same relational logic closer together in representation space? To answer these questions, we first formulate relational image similarity as a measurable problem: two images are relationally similar when their internal relations or functions among visual elements correspond, even if their visual attributes differ. We then curate 114k image-caption dataset in which the captions are anonymized -- describing the underlying relational logic of the scene rather than its surface content. Using this dataset, we finetune a Vision-Language model to measure the relational similarity between images. This model serves as the first step toward connecting images by their underlying relational structure rather than their visible appearance. Our study shows that while relational similarity has a lot of real-world applications, existing image similarity models fail to capture it -- revealing a critical gap in visual computing.

Authors:Jiehui Huang, Yuechen Zhang, Xu He, Yuan Gao, Zhi Cen, Bin Xia, Yan Zhou, Xin Tao, Pengfei Wan, Jiaya Jia
Title: UnityVideo: Unified Multi-Modal Multi-Task Learning for Enhancing World-Aware Video Generation
Abstract:
Recent video generation models demonstrate impressive synthesis capabilities but remain limited by single-modality conditioning, constraining their holistic world understanding. This stems from insufficient cross-modal interaction and limited modal diversity for comprehensive world knowledge representation. To address these limitations, we introduce UnityVideo, a unified framework for world-aware video generation that jointly learns across multiple modalities (segmentation masks, human skeletons, DensePose, optical flow, and depth maps) and training paradigms. Our approach features two core components: (1) dynamic noising to unify heterogeneous training paradigms, and (2) a modality switcher with an in-context learner that enables unified processing via modular parameters and contextual learning. We contribute a large-scale unified dataset with 1.3M samples. Through joint optimization, UnityVideo accelerates convergence and significantly enhances zero-shot generalization to unseen data. We demonstrate that UnityVideo achieves superior video quality, consistency, and improved alignment with physical world constraints. Code and data can be found at: https://github.com/dvlab-research/UnityVideo

Authors:Haoyang He, Jie Wang, Jiangning Zhang, Zhucun Xue, Xingyuan Bu, Qiangpeng Yang, Shilei Wen, Lei Xie
Title: OpenVE-3M: A Large-Scale High-Quality Dataset for Instruction-Guided Video Editing
Abstract:
The quality and diversity of instruction-based image editing datasets are continuously increasing, yet large-scale, high-quality datasets for instruction-based video editing remain scarce. To address this gap, we introduce OpenVE-3M, an open-source, large-scale, and high-quality dataset for instruction-based video editing. It comprises two primary categories: spatially-aligned edits (Global Style, Background Change, Local Change, Local Remove, Local Add, and Subtitles Edit) and non-spatially-aligned edits (Camera Multi-Shot Edit and Creative Edit). All edit types are generated via a meticulously designed data pipeline with rigorous quality filtering. OpenVE-3M surpasses existing open-source datasets in terms of scale, diversity of edit types, instruction length, and overall quality. Furthermore, to address the lack of a unified benchmark in the field, we construct OpenVE-Bench, containing 431 video-edit pairs that cover a diverse range of editing tasks with three key metrics highly aligned with human judgment. We present OpenVE-Edit, a 5B model trained on our dataset that demonstrates remarkable efficiency and effectiveness by setting a new state-of-the-art on OpenVE-Bench, outperforming all prior open-source models including a 14B baseline. Project page is at https://github.com/lewandofskee/OpenVE.

Authors:Shai Krakovsky, Gal Fiebelman, Sagie Benaim, Hadar Averbuch-Elor
Title: Lang3D-XL: Language Embedded 3D Gaussians for Large-scale Scenes
Abstract:
Embedding a language field in a 3D representation enables richer semantic understanding of spatial environments by linking geometry with descriptive meaning. This allows for a more intuitive human-computer interaction, enabling querying or editing scenes using natural language, and could potentially improve tasks like scene retrieval, navigation, and multimodal reasoning. While such capabilities could be transformative, in particular for large-scale scenes, we find that recent feature distillation approaches cannot effectively learn over massive Internet data due to challenges in semantic feature misalignment and inefficiency in memory and runtime. To this end, we propose a novel approach to address these challenges. First, we introduce extremely low-dimensional semantic bottleneck features as part of the underlying 3D Gaussian representation. These are processed by rendering and passing them through a multi-resolution, feature-based, hash encoder. This significantly improves efficiency both in runtime and GPU memory. Second, we introduce an Attenuated Downsampler module and propose several regularizations addressing the semantic misalignment of ground truth 2D features. We evaluate our method on the in-the-wild HolyScenes dataset and demonstrate that it surpasses existing approaches in both performance and efficiency.

Authors:Gyeongjin Kang, Seungkwon Yang, Seungtae Nam, Younggeun Lee, Jungwoo Kim, Eunbyung Park
Title: Multi-view Pyramid Transformer: Look Coarser to See Broader
Abstract:
We propose Multi-view Pyramid Transformer (MVP), a scalable multi-view transformer architecture that directly reconstructs large 3D scenes from tens to hundreds of images in a single forward pass. Drawing on the idea of ``looking broader to see the whole, looking finer to see the details," MVP is built on two core design principles: 1) a local-to-global inter-view hierarchy that gradually broadens the model's perspective from local views to groups and ultimately the full scene, and 2) a fine-to-coarse intra-view hierarchy that starts from detailed spatial representations and progressively aggregates them into compact, information-dense tokens. This dual hierarchy achieves both computational efficiency and representational richness, enabling fast reconstruction of large and complex scenes. We validate MVP on diverse datasets and show that, when coupled with 3D Gaussian Splatting as the underlying 3D representation, it achieves state-of-the-art generalizable reconstruction quality while maintaining high efficiency and scalability across a wide range of view configurations.

Authors:Zhaochong An, Menglin Jia, Haonan Qiu, Zijian Zhou, Xiaoke Huang, Zhiheng Liu, Weiming Ren, Kumara Kahatapitiya, Ding Liu, Sen He, Chenyang Zhang, Tao Xiang, Fanny Yang, Serge Belongie, Tian Xie
Title: OneStory: Coherent Multi-Shot Video Generation with Adaptive Memory
Abstract:
Storytelling in real-world videos often unfolds through multiple shots -- discontinuous yet semantically connected clips that together convey a coherent narrative. However, existing multi-shot video generation (MSV) methods struggle to effectively model long-range cross-shot context, as they rely on limited temporal windows or single keyframe conditioning, leading to degraded performance under complex narratives. In this work, we propose OneStory, enabling global yet compact cross-shot context modeling for consistent and scalable narrative generation. OneStory reformulates MSV as a next-shot generation task, enabling autoregressive shot synthesis while leveraging pretrained image-to-video (I2V) models for strong visual conditioning. We introduce two key modules: a Frame Selection module that constructs a semantically-relevant global memory based on informative frames from prior shots, and an Adaptive Conditioner that performs importance-guided patchification to generate compact context for direct conditioning. We further curate a high-quality multi-shot dataset with referential captions to mirror real-world storytelling patterns, and design effective training strategies under the next-shot paradigm. Finetuned from a pretrained I2V model on our curated 60K dataset, OneStory achieves state-of-the-art narrative coherence across diverse and complex scenes in both text- and image-conditioned settings, enabling controllable and immersive long-form video storytelling.

Authors:Sen Ye, Jianning Pei, Mengde Xu, Shuyang Gu, Chunyu Wang, Liwei Wang, Han Hu
Title: Distribution Matching Variational AutoEncoder
Abstract:
Most visual generative models compress images into a latent space before applying diffusion or autoregressive modelling. Yet, existing approaches such as VAEs and foundation model aligned encoders implicitly constrain the latent space without explicitly shaping its distribution, making it unclear which types of distributions are optimal for modeling. We introduce \textbf{Distribution-Matching VAE} (\textbf{DMVAE}), which explicitly aligns the encoder's latent distribution with an arbitrary reference distribution via a distribution matching constraint. This generalizes beyond the Gaussian prior of conventional VAEs, enabling alignment with distributions derived from self-supervised features, diffusion noise, or other prior distributions. With DMVAE, we can systematically investigate which latent distributions are more conducive to modeling, and we find that SSL-derived distributions provide an excellent balance between reconstruction fidelity and modeling efficiency, reaching gFID equals 3.2 on ImageNet with only 64 training epochs. Our results suggest that choosing a suitable latent distribution structure (achieved via distribution-level alignment), rather than relying on fixed priors, is key to bridging the gap between easy-to-model latents and high-fidelity image synthesis. Code is avaliable at https://github.com/sen-ye/dmvae.

Authors:Mayank Anand, Ujair Alam, Surya Prakash, Priya Shukla, Gora Chand Nandi, Domenec Puig
Title: UltrasODM: A Dual Stream Optical Flow Mamba Network for 3D Freehand Ultrasound Reconstruction
Abstract:
Clinical ultrasound acquisition is highly operator-dependent, where rapid probe motion and brightness fluctuations often lead to reconstruction errors that reduce trust and clinical utility. We present UltrasODM, a dual-stream framework that assists sonographers during acquisition through calibrated per-frame uncertainty, saliency-based diagnostics, and actionable prompts. UltrasODM integrates (i) a contrastive ranking module that groups frames by motion similarity, (ii) an optical-flow stream fused with Dual-Mamba temporal modules for robust 6-DoF pose estimation, and (iii) a Human-in-the-Loop (HITL) layer combining Bayesian uncertainty, clinician-calibrated thresholds, and saliency maps highlighting regions of low confidence. When uncertainty exceeds the threshold, the system issues unobtrusive alerts suggesting corrective actions such as re-scanning highlighted regions or slowing the sweep. Evaluated on a clinical freehand ultrasound dataset, UltrasODM reduces drift by 15.2%, distance error by 12.1%, and Hausdorff distance by 10.1% relative to UltrasOM, while producing per-frame uncertainty and saliency outputs. By emphasizing transparency and clinician feedback, UltrasODM improves reconstruction reliability and supports safer, more trustworthy clinical workflows. Our code is publicly available at https://github.com/AnandMayank/UltrasODM.

Authors:Jialv Zou, Shaoyu Chen, Bencheng Liao, Zhiyu Zheng, Yuehao Song, Lefei Zhang, Qian Zhang, Wenyu Liu, Xinggang Wang
Title: DiffusionDriveV2: Reinforcement Learning-Constrained Truncated Diffusion Modeling in End-to-End Autonomous Driving
Abstract:
Generative diffusion models for end-to-end autonomous driving often suffer from mode collapse, tending to generate conservative and homogeneous behaviors. While DiffusionDrive employs predefined anchors representing different driving intentions to partition the action space and generate diverse trajectories, its reliance on imitation learning lacks sufficient constraints, resulting in a dilemma between diversity and consistent high quality. In this work, we propose DiffusionDriveV2, which leverages reinforcement learning to both constrain low-quality modes and explore for superior trajectories. This significantly enhances the overall output quality while preserving the inherent multimodality of its core Gaussian Mixture Model. First, we use scale-adaptive multiplicative noise, ideal for trajectory planning, to promote broad exploration. Second, we employ intra-anchor GRPO to manage advantage estimation among samples generated from a single anchor, and inter-anchor truncated GRPO to incorporate a global perspective across different anchors, preventing improper advantage comparisons between distinct intentions (e.g., turning vs. going straight), which can lead to further mode collapse. DiffusionDriveV2 achieves 91.2 PDMS on the NAVSIM v1 dataset and 85.5 EPDMS on the NAVSIM v2 dataset in closed-loop evaluation with an aligned ResNet-34 backbone, setting a new record. Further experiments validate that our approach resolves the dilemma between diversity and consistent high quality for truncated diffusion models, achieving the best trade-off. Code and model will be available at https://github.com/hustvl/DiffusionDriveV2

Authors:Sangha Park, Seungryong Yoo, Jisoo Mok, Sungroh Yoon
Title: SAVE: Sparse Autoencoder-Driven Visual Information Enhancement for Mitigating Object Hallucination
Abstract:
Although Multimodal Large Language Models (MLLMs) have advanced substantially, they remain vulnerable to object hallucination caused by language priors and visual information loss. To address this, we propose SAVE (Sparse Autoencoder-Driven Visual Information Enhancement), a framework that mitigates hallucination by steering the model along Sparse Autoencoder (SAE) latent features. A binary object-presence question-answering probe identifies the SAE features most indicative of the model's visual information processing, referred to as visual understanding features. Steering the model along these identified features reinforces grounded visual understanding and effectively reduces hallucination. With its simple design, SAVE outperforms state-of-the-art training-free methods on standard benchmarks, achieving a 10\%p improvement in CHAIR\_S and consistent gains on POPE and MMHal-Bench. Extensive evaluations across multiple models and layers confirm the robustness and generalizability of our approach. Further analysis reveals that steering along visual understanding features suppresses the generation of uncertain object tokens and increases attention to image tokens, mitigating hallucination. Code is released at https://github.com/wiarae/SAVE.

Authors:Fan Yang, Heyuan Li, Peihao Li, Weihao Yuan, Lingteng Qiu, Chaoyue Song, Cheng Chen, Yisheng He, Shifeng Zhang, Xiaoguang Han, Steven Hoi, Guosheng Lin
Title: ViSA: 3D-Aware Video Shading for Real-Time Upper-Body Avatar Creation
Abstract:
Generating high-fidelity upper-body 3D avatars from one-shot input image remains a significant challenge. Current 3D avatar generation methods, which rely on large reconstruction models, are fast and capable of producing stable body structures, but they often suffer from artifacts such as blurry textures and stiff, unnatural motion. In contrast, generative video models show promising performance by synthesizing photorealistic and dynamic results, but they frequently struggle with unstable behavior, including body structural errors and identity drift. To address these limitations, we propose a novel approach that combines the strengths of both paradigms. Our framework employs a 3D reconstruction model to provide robust structural and appearance priors, which in turn guides a real-time autoregressive video diffusion model for rendering. This process enables the model to synthesize high-frequency, photorealistic details and fluid dynamics in real time, effectively reducing texture blur and motion stiffness while preventing the structural inconsistencies common in video generation methods. By uniting the geometric stability of 3D reconstruction with the generative capabilities of video models, our method produces high-fidelity digital avatars with realistic appearance and dynamic, temporally coherent motion. Experiments demonstrate that our approach significantly reduces artifacts and achieves substantial improvements in visual quality over leading methods, providing a robust and efficient solution for real-time applications such as gaming and virtual reality. Project page: https://lhyfst.github.io/visa

Authors:Leo Fillioux, Enzo Ferrante, Paul-Henry Cournède, Maria Vakalopoulou, Stergios Christodoulidis
Title: PVeRA: Probabilistic Vector-Based Random Matrix Adaptation
Abstract:
Large foundation models have emerged in the last years and are pushing performance boundaries for a variety of tasks. Training or even finetuning such models demands vast datasets and computational resources, which are often scarce and costly. Adaptation methods provide a computationally efficient solution to address these limitations by allowing such models to be finetuned on small amounts of data and computing power. This is achieved by appending new trainable modules to frozen backbones with only a fraction of the trainable parameters and fitting only these modules on novel tasks. Recently, the VeRA adapter was shown to excel in parameter-efficient adaptations by utilizing a pair of frozen random low-rank matrices shared across all layers. In this paper, we propose PVeRA, a probabilistic version of the VeRA adapter, which modifies the low-rank matrices of VeRA in a probabilistic manner. This modification naturally allows handling inherent ambiguities in the input and allows for different sampling configurations during training and testing. A comprehensive evaluation was performed on the VTAB-1k benchmark and seven adapters, with PVeRA outperforming VeRA and other adapters. Our code for training models with PVeRA and benchmarking all adapters is available https://github.com/leofillioux/pvera.

Authors:Sangha Park, Eunji Kim, Yeongtak Oh, Jooyoung Choi, Sungroh Yoon
Title: Guiding What Not to Generate: Automated Negative Prompting for Text-Image Alignment
Abstract:
Despite substantial progress in text-to-image generation, achieving precise text-image alignment remains challenging, particularly for prompts with rich compositional structure or imaginative elements. To address this, we introduce Negative Prompting for Image Correction (NPC), an automated pipeline that improves alignment by identifying and applying negative prompts that suppress unintended content. We begin by analyzing cross-attention patterns to explain why both targeted negatives-those directly tied to the prompt's alignment error-and untargeted negatives-tokens unrelated to the prompt but present in the generated image-can enhance alignment. To discover useful negatives, NPC generates candidate prompts using a verifier-captioner-proposer framework and ranks them with a salient text-space score, enabling effective selection without requiring additional image synthesis. On GenEval++ and Imagine-Bench, NPC outperforms strong baselines, achieving 0.571 vs. 0.371 on GenEval++ and the best overall performance on Imagine-Bench. By guiding what not to generate, NPC provides a principled, fully automated route to stronger text-image alignment in diffusion models. Code is released at https://github.com/wiarae/NPC.

Authors:Arslan Artykov, Corentin Sautier, Vincent Lepetit
Title: sim2art: Accurate Articulated Object Modeling from a Single Video using Synthetic Training Data Only
Abstract:
Understanding articulated objects is a fundamental challenge in robotics and digital twin creation. To effectively model such objects, it is essential to recover both part segmentation and the underlying joint parameters. Despite the importance of this task, previous work has largely focused on setups like multi-view systems, object scanning, or static cameras. In this paper, we present the first data-driven approach that jointly predicts part segmentation and joint parameters from monocular video captured with a freely moving camera. Trained solely on synthetic data, our method demonstrates strong generalization to real-world objects, offering a scalable and practical solution for articulated object understanding. Our approach operates directly on casually recorded video, making it suitable for real-time applications in dynamic environments. Project webpage: https://aartykov.github.io/sim2art/

Authors:Sujoy Nath, Arkaprabha Basu, Sharanya Dasgupta, Swagatam Das
Title: HalluShift++: Bridging Language and Vision through Internal Representation Shifts for Hierarchical Hallucinations in MLLMs
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in vision-language understanding tasks. While these models often produce linguistically coherent output, they often suffer from hallucinations, generating descriptions that are factually inconsistent with the visual content, potentially leading to adverse consequences. Therefore, the assessment of hallucinations in MLLM has become increasingly crucial in the model development process. Contemporary methodologies predominantly depend on external LLM evaluators, which are themselves susceptible to hallucinations and may present challenges in terms of domain adaptation. In this study, we propose the hypothesis that hallucination manifests as measurable irregularities within the internal layer dynamics of MLLMs, not merely due to distributional shifts but also in the context of layer-wise analysis of specific assumptions. By incorporating such modifications, \textsc{\textsc{HalluShift++}} broadens the efficacy of hallucination detection from text-based large language models (LLMs) to encompass multimodal scenarios. Our codebase is available at https://github.com/C0mRD/HalluShift_Plus.

Authors:Ronan John, Aditya Kesari, Vincenzo DiMatteo, Kristin Dana
Title: EgoCampus: Egocentric Pedestrian Eye Gaze Model and Dataset
Abstract:
We address the challenge of predicting human visual attention during real-world navigation by measuring and modeling egocentric pedestrian eye gaze in an outdoor campus setting. We introduce the EgoCampus dataset, which spans 25 unique outdoor paths over 6 km across a university campus with recordings from more than 80 distinct human pedestrians, resulting in a diverse set of gaze-annotated videos. The system used for collection, Meta's Project Aria glasses, integrates eye tracking, front-facing RGB cameras, inertial sensors, and GPS to provide rich data from the human perspective. Unlike many prior egocentric datasets that focus on indoor tasks or exclude eye gaze information, our work emphasizes visual attention while subjects walk in outdoor campus paths. Using this data, we develop EgoCampusNet, a novel method to predict eye gaze of navigating pedestrians as they move through outdoor environments. Our contributions provide both a new resource for studying real-world attention and a resource for future work in gaze prediction models for navigation. Dataset and code are available upon request, and will be made publicly available at a later date at https://github.com/ComputerVisionRutgers/EgoCampus .

Authors:Zhiqi Li, Wenhuan Li, Tengfei Wang, Zhenwei Wang, Junta Wu, Haoyuan Wang, Yunhan Yang, Zehuan Huang, Yang Li, Peidong Liu, Chunchao Guo
Title: MoCA: Mixture-of-Components Attention for Scalable Compositional 3D Generation
Abstract:
Compositionality is critical for 3D object and scene generation, but existing part-aware 3D generation methods suffer from poor scalability due to quadratic global attention costs when increasing the number of components. In this work, we present MoCA, a compositional 3D generative model with two key designs: (1) importance-based component routing that selects top-k relevant components for sparse global attention, and (2) unimportant components compression that preserve contextual priors of unselected components while reducing computational complexity of global attention. With these designs, MoCA enables efficient, fine-grained compositional 3D asset creation with scalable number of components. Extensive experiments show MoCA outperforms baselines on both compositional object and scene generation tasks. Project page: https://lizhiqi49.github.io/MoCA

Authors:Jingna Qiu, Frauke Wilm, Mathias Öttl, Jonas Utz, Maja Schlereth, Moritz Schillinger, Marc Aubreville, Katharina Breininger
Title: Decomposition Sampling for Efficient Region Annotations in Active Learning
Abstract:
Active learning improves annotation efficiency by selecting the most informative samples for annotation and model training. While most prior work has focused on selecting informative images for classification tasks, we investigate the more challenging setting of dense prediction, where annotations are more costly and time-intensive, especially in medical imaging. Region-level annotation has been shown to be more efficient than image-level annotation for these tasks. However, existing methods for representative annotation region selection suffer from high computational and memory costs, irrelevant region choices, and heavy reliance on uncertainty sampling. We propose decomposition sampling (DECOMP), a new active learning sampling strategy that addresses these limitations. It enhances annotation diversity by decomposing images into class-specific components using pseudo-labels and sampling regions from each class. Class-wise predictive confidence further guides the sampling process, ensuring that difficult classes receive additional annotations. Across ROI classification, 2-D segmentation, and 3-D segmentation, DECOMP consistently surpasses baseline methods by better sampling minority-class regions and boosting performance on these challenging classes. Code is in https://github.com/JingnaQiu/DECOMP.git.

Authors:Hanshi Wang, Zijian Cai, Jin Gao, Yiwei Zhang, Weiming Hu, Ke Wang, Zhipeng Zhang
Title: Online Segment Any 3D Thing as Instance Tracking
Abstract:
Online, real-time, and fine-grained 3D segmentation constitutes a fundamental capability for embodied intelligent agents to perceive and comprehend their operational environments. Recent advancements employ predefined object queries to aggregate semantic information from Vision Foundation Models (VFMs) outputs that are lifted into 3D point clouds, facilitating spatial information propagation through inter-query interactions. Nevertheless, perception is an inherently dynamic process, rendering temporal understanding a critical yet overlooked dimension within these prevailing query-based pipelines. Therefore, to further unlock the temporal environmental perception capabilities of embodied agents, our work reconceptualizes online 3D segmentation as an instance tracking problem (AutoSeg3D). Our core strategy involves utilizing object queries for temporal information propagation, where long-term instance association promotes the coherence of features and object identities, while short-term instance update enriches instant observations. Given that viewpoint variations in embodied robotics often lead to partial object visibility across frames, this mechanism aids the model in developing a holistic object understanding beyond incomplete instantaneous views. Furthermore, we introduce spatial consistency learning to mitigate the fragmentation problem inherent in VFMs, yielding more comprehensive instance information for enhancing the efficacy of both long-term and short-term temporal learning. The temporal information exchange and consistency learning facilitated by these sparse object queries not only enhance spatial comprehension but also circumvent the computational burden associated with dense temporal point cloud interactions. Our method establishes a new state-of-the-art, surpassing ESAM by 2.8 AP on ScanNet200 and delivering consistent gains on ScanNet, SceneNN, and 3RScan datasets.

Authors:Yahong Wang, Juncheng Wu, Zhangkai Ni, Longzhen Yang, Yihang Liu, Chengmei Yang, Ying Wen, Xianfeng Tang, Hui Liu, Yuyin Zhou, Lianghua He
Title: All You Need Are Random Visual Tokens? Demystifying Token Pruning in VLLMs
Abstract:
Vision Large Language Models (VLLMs) incur high computational costs due to their reliance on hundreds of visual tokens to represent images. While token pruning offers a promising solution for accelerating inference, this paper, however, identifies a key observation: in deeper layers (e.g., beyond the 20th), existing training-free pruning methods perform no better than random pruning. We hypothesize that this degradation is caused by "vanishing token information", where visual tokens progressively lose their salience with increasing network depth. To validate this hypothesis, we quantify a token's information content by measuring the change in the model output probabilities upon its removal. Using this proposed metric, our analysis of the information of visual tokens across layers reveals three key findings: (1) As layers deepen, the information of visual tokens gradually becomes uniform and eventually vanishes at an intermediate layer, which we term as "information horizon", beyond which the visual tokens become redundant; (2) The position of this horizon is not static; it extends deeper for visually intensive tasks, such as Optical Character Recognition (OCR), compared to more general tasks like Visual Question Answering (VQA); (3) This horizon is also strongly correlated with model capacity, as stronger VLLMs (e.g., Qwen2.5-VL) employ deeper visual tokens than weaker models (e.g., LLaVA-1.5). Based on our findings, we show that simple random pruning in deep layers efficiently balances performance and efficiency. Moreover, integrating random pruning consistently enhances existing methods. Using DivPrune with random pruning achieves state-of-the-art results, maintaining 96.9% of Qwen-2.5-VL-7B performance while pruning 50% of visual tokens. The code will be publicly available at https://github.com/YahongWang1/Information-Horizon.

Authors:Kassoum Sanogo, Renzo Ardiccioni
Title: Toward More Reliable Artificial Intelligence: Reducing Hallucinations in Vision-Language Models
Abstract:
Vision-language models (VLMs) frequently generate hallucinated content plausible but incorrect claims about image content. We propose a training-free self-correction framework enabling VLMs to iteratively refine responses through uncertainty-guided visual re-attention. Our method combines multidimensional uncertainty quantification (token entropy, attention dispersion, semantic consistency, claim confidence) with attention-guided cropping of under-explored regions. Operating entirely with frozen, pretrained VLMs, our framework requires no gradient updates. We validate our approach on the POPE and MMHAL BENCH benchmarks using the Qwen2.5-VL-7B [23] architecture. Experimental results demonstrate that our method reduces hallucination rates by 9.8 percentage points compared to the baseline, while improving object existence accuracy by 4.7 points on adversarial splits. Furthermore, qualitative analysis confirms that uncertainty-guided re-attention successfully grounds corrections in visual evidence where standard decoding fails. We validate our approach on Qwen2.5-VL-7B [23], with plans to extend validation across diverse architectures in future versions. We release our code and methodology to facilitate future research in trustworthy multimodal systems.

Authors:Ryota Okumura, Kaede Shiohara, Toshihiko Yamasaki
Title: ControlVP: Interactive Geometric Refinement of AI-Generated Images with Consistent Vanishing Points
Abstract:
Recent text-to-image models, such as Stable Diffusion, have achieved impressive visual quality, yet they often suffer from geometric inconsistencies that undermine the structural realism of generated scenes. One prominent issue is vanishing point inconsistency, where projections of parallel lines fail to converge correctly in 2D space. This leads to structurally implausible geometry that degrades spatial realism, especially in architectural scenes. We propose ControlVP, a user-guided framework for correcting vanishing point inconsistencies in generated images. Our approach extends a pre-trained diffusion model by incorporating structural guidance derived from building contours. We also introduce geometric constraints that explicitly encourage alignment between image edges and perspective cues. Our method enhances global geometric consistency while maintaining visual fidelity comparable to the baselines. This capability is particularly valuable for applications that require accurate spatial structure, such as image-to-3D reconstruction. The dataset and source code are available at https://github.com/RyotaOkumura/ControlVP .

Authors:Xiangpeng Yang, Ji Xie, Yiyuan Yang, Yan Huang, Min Xu, Qiang Wu
Title: Unified Video Editing with Temporal Reasoner
Abstract:
Existing video editing methods face a critical trade-off: expert models offer precision but rely on task-specific priors like masks, hindering unification; conversely, unified temporal in-context learning models are mask-free but lack explicit spatial cues, leading to weak instruction-to-region mapping and imprecise localization. To resolve this conflict, we propose VideoCoF, a novel Chain-of-Frames approach inspired by Chain-of-Thought reasoning. VideoCoF enforces a ``see, reason, then edit" procedure by compelling the video diffusion model to first predict reasoning tokens (edit-region latents) before generating the target video tokens. This explicit reasoning step removes the need for user-provided masks while achieving precise instruction-to-region alignment and fine-grained video editing. Furthermore, we introduce a RoPE alignment strategy that leverages these reasoning tokens to ensure motion alignment and enable length extrapolation beyond the training duration. We demonstrate that with a minimal data cost of only 50k video pairs, VideoCoF achieves state-of-the-art performance on VideoCoF-Bench, validating the efficiency and effectiveness of our approach. Our code, weight, data are available at https://github.com/knightyxp/VideoCoF.

Authors:Bin Li, Ruichi Zhang, Han Liang, Jingyan Zhang, Juze Zhang, Xin Chen, Lan Xu, Jingyi Yu, Jingya Wang
Title: InterAgent: Physics-based Multi-agent Command Execution via Diffusion on Interaction Graphs
Abstract:
Humanoid agents are expected to emulate the complex coordination inherent in human social behaviors. However, existing methods are largely confined to single-agent scenarios, overlooking the physically plausible interplay essential for multi-agent interactions. To bridge this gap, we propose InterAgent, the first end-to-end framework for text-driven physics-based multi-agent humanoid control. At its core, we introduce an autoregressive diffusion transformer equipped with multi-stream blocks, which decouples proprioception, exteroception, and action to mitigate cross-modal interference while enabling synergistic coordination. We further propose a novel interaction graph exteroception representation that explicitly captures fine-grained joint-to-joint spatial dependencies to facilitate network learning. Additionally, within it we devise a sparse edge-based attention mechanism that dynamically prunes redundant connections and emphasizes critical inter-agent spatial relations, thereby enhancing the robustness of interaction modeling. Extensive experiments demonstrate that InterAgent consistently outperforms multiple strong baselines, achieving state-of-the-art performance. It enables producing coherent, physically plausible, and semantically faithful multi-agent behaviors from only text prompts. Our code and data will be released to facilitate future research.

Authors:Zhifan Zhu, Siddhant Bansal, Shashank Tripathi, Dima Damen
Title: Reconstructing Objects along Hand Interaction Timelines in Egocentric Video
Abstract:
We introduce the task of Reconstructing Objects along Hand Interaction Timelines (ROHIT). We first define the Hand Interaction Timeline (HIT) from a rigid object's perspective. In a HIT, an object is first static relative to the scene, then is held in hand following contact, where its pose changes. This is usually followed by a firm grip during use, before it is released to be static again w.r.t. to the scene. We model these pose constraints over the HIT, and propose to propagate the object's pose along the HIT enabling superior reconstruction using our proposed Constrained Optimisation and Propagation (COP) framework. Importantly, we focus on timelines with stable grasps - i.e. where the hand is stably holding an object, effectively maintaining constant contact during use. This allows us to efficiently annotate, study, and evaluate object reconstruction in videos without 3D ground truth. We evaluate our proposed task, ROHIT, over two egocentric datasets, HOT3D and in-the-wild EPIC-Kitchens. In HOT3D, we curate 1.2K clips of stable grasps. In EPIC-Kitchens, we annotate 2.4K clips of stable grasps including 390 object instances across 9 categories from videos of daily interactions in 141 environments. Without 3D ground truth, we utilise 2D projection error to assess the reconstruction. Quantitatively, COP improves stable grasp reconstruction by 6.2-11.3% and HIT reconstruction by up to 24.5% with constrained pose propagation.

Authors:Đorđe Nedeljković
Title: GlimmerNet: A Lightweight Grouped Dilated Depthwise Convolutions for UAV-Based Emergency Monitoring
Abstract:
Convolutional Neural Networks (CNNs) have proven highly effective for edge and mobile vision tasks due to their computational efficiency. While many recent works seek to enhance CNNs with global contextual understanding via self-attention-based Vision Transformers, these approaches often introduce significant computational overhead. In this work, we demonstrate that it is possible to retain strong global perception without relying on computationally expensive components. We present GlimmerNet, an ultra-lightweight convolutional network built on the principle of separating receptive field diversity from feature recombination. GlimmerNet introduces Grouped Dilated Depthwise Convolutions(GDBlocks), which partition channels into groups with distinct dilation rates, enabling multi-scale feature extraction at no additional parameter cost. To fuse these features efficiently, we design a novel Aggregator module that recombines cross-group representations using grouped pointwise convolution, significantly lowering parameter overhead. With just 31K parameters and 29% fewer FLOPs than the most recent baseline, GlimmerNet achieves a new state-of-the-art weighted F1-score of 0.966 on the UAV-focused AIDERv2 dataset. These results establish a new accuracy-efficiency trade-off frontier for real-time emergency monitoring on resource-constrained UAV platforms. Our implementation is publicly available at https://github.com/djordjened92/gdd-cnn.

Authors:Chunhui Zhang, Li Liu, Zhipeng Zhang, Yong Wang, Hao Wen, Xi Zhou, Shiming Ge, Yanfeng Wang
Title: How Far are Modern Trackers from UAV-Anti-UAV? A Million-Scale Benchmark and New Baseline
Abstract:
Unmanned Aerial Vehicles (UAVs) offer wide-ranging applications but also pose significant safety and privacy violation risks in areas like airport and infrastructure inspection, spurring the rapid development of Anti-UAV technologies in recent years. However, current Anti-UAV research primarily focuses on RGB, infrared (IR), or RGB-IR videos captured by fixed ground cameras, with little attention to tracking target UAVs from another moving UAV platform. To fill this gap, we propose a new multi-modal visual tracking task termed UAV-Anti-UAV, which involves a pursuer UAV tracking a target adversarial UAV in the video stream. Compared to existing Anti-UAV tasks, UAV-Anti-UAV is more challenging due to severe dual-dynamic disturbances caused by the rapid motion of both the capturing platform and the target. To advance research in this domain, we construct a million-scale dataset consisting of 1,810 videos, each manually annotated with bounding boxes, a language prompt, and 15 tracking attributes. Furthermore, we propose MambaSTS, a Mamba-based baseline method for UAV-Anti-UAV tracking, which enables integrated spatial-temporal-semantic learning. Specifically, we employ Mamba and Transformer models to learn global semantic and spatial features, respectively, and leverage the state space model's strength in long-sequence modeling to establish video-level long-term context via a temporal token propagation mechanism. We conduct experiments on the UAV-Anti-UAV dataset to validate the effectiveness of our method. A thorough experimental evaluation of 50 modern deep tracking algorithms demonstrates that there is still significant room for improvement in the UAV-Anti-UAV domain. The dataset and codes will be available at {\color{magenta}https://github.com/983632847/Awesome-Multimodal-Object-Tracking}.

Authors:Luís Marnoto, Alexandre Bernardino, Bruno Martins
Title: Generalized Referring Expression Segmentation on Aerial Photos
Abstract:
Referring expression segmentation is a fundamental task in computer vision that integrates natural language understanding with precise visual localization of target regions. Considering aerial imagery (e.g., modern aerial photos collected through drones, historical photos from aerial archives, high-resolution satellite imagery, etc.) presents unique challenges because spatial resolution varies widely across datasets, the use of color is not consistent, targets often shrink to only a few pixels, and scenes contain very high object densities and objects with partial occlusions. This work presents Aerial-D, a new large-scale referring expression segmentation dataset for aerial imagery, comprising 37,288 images with 1,522,523 referring expressions that cover 259,709 annotated targets, spanning across individual object instances, groups of instances, and semantic regions covering 21 distinct classes that range from vehicles and infrastructure to land coverage types. The dataset was constructed through a fully automatic pipeline that combines systematic rule-based expression generation with a Large Language Model (LLM) enhancement procedure that enriched both the linguistic variety and the focus on visual details within the referring expressions. Filters were additionally used to simulate historic imaging conditions for each scene. We adopted the RSRefSeg architecture, and trained models on Aerial-D together with prior aerial datasets, yielding unified instance and semantic segmentation from text for both modern and historical images. Results show that the combined training achieves competitive performance on contemporary benchmarks, while maintaining strong accuracy under monochrome, sepia, and grainy degradations that appear in archival aerial photography. The dataset, trained models, and complete software pipeline are publicly available at https://luispl77.github.io/aerial-d .

Authors:Ziyang Mai, Yu-Wing Tai
Title: ContextAnyone: Context-Aware Diffusion for Character-Consistent Text-to-Video Generation
Abstract:
Text-to-video (T2V) generation has advanced rapidly, yet maintaining consistent character identities across scenes remains a major challenge. Existing personalization methods often focus on facial identity but fail to preserve broader contextual cues such as hairstyle, outfit, and body shape, which are critical for visual coherence. We propose \textbf{ContextAnyone}, a context-aware diffusion framework that achieves character-consistent video generation from text and a single reference image. Our method jointly reconstructs the reference image and generates new video frames, enabling the model to fully perceive and utilize reference information. Reference information is effectively integrated into a DiT-based diffusion backbone through a novel Emphasize-Attention module that selectively reinforces reference-aware features and prevents identity drift across frames. A dual-guidance loss combines diffusion and reference reconstruction objectives to enhance appearance fidelity, while the proposed Gap-RoPE positional embedding separates reference and video tokens to stabilize temporal modeling. Experiments demonstrate that ContextAnyone outperforms existing reference-to-video methods in identity consistency and visual quality, generating coherent and context-preserving character videos across diverse motions and scenes. Project page: \href{https://github.com/ziyang1106/ContextAnyone}{https://github.com/ziyang1106/ContextAnyone}.

Authors:Mingning Guo, Mengwei Wu, Shaoxian Li, Haifeng Li, Chao Tao
Title: Towards Accurate UAV Image Perception: Guiding Vision-Language Models with Stronger Task Prompts
Abstract:
Existing image perception methods based on VLMs generally follow a paradigm wherein models extract and analyze image content based on user-provided textual task prompts. However, such methods face limitations when applied to UAV imagery, which presents challenges like target confusion, scale variations, and complex backgrounds. These challenges arise because VLMs' understanding of image content depends on the semantic alignment between visual and textual tokens. When the task prompt is simplistic and the image content is complex, achieving effective alignment becomes difficult, limiting the model's ability to focus on task-relevant information. To address this issue, we introduce AerialVP, the first agent framework for task prompt enhancement in UAV image perception. AerialVP proactively extracts multi-dimensional auxiliary information from UAV images to enhance task prompts, overcoming the limitations of traditional VLM-based approaches. Specifically, the enhancement process includes three stages: (1) analyzing the task prompt to identify the task type and enhancement needs, (2) selecting appropriate tools from the tool repository, and (3) generating enhanced task prompts based on the analysis and selected tools. To evaluate AerialVP, we introduce AerialSense, a comprehensive benchmark for UAV image perception that includes Aerial Visual Reasoning, Aerial Visual Question Answering, and Aerial Visual Grounding tasks. AerialSense provides a standardized basis for evaluating model generalization and performance across diverse resolutions, lighting conditions, and both urban and natural scenes. Experimental results demonstrate that AerialVP significantly enhances task prompt guidance, leading to stable and substantial performance improvements in both open-source and proprietary VLMs. Our work will be available at https://github.com/lostwolves/AerialVP.

Authors:Mai Tsujimoto, Junjue Wang, Weihao Xuan, Naoto Yokoya
Title: Geo3DVQA: Evaluating Vision-Language Models for 3D Geospatial Reasoning from Aerial Imagery
Abstract:
Three-dimensional geospatial analysis is critical to applications in urban planning, climate adaptation, and environmental assessment. Current methodologies depend on costly, specialized sensors (e.g., LiDAR and multispectral), which restrict global accessibility. Existing sensor-based and rule-driven methods further struggle with tasks requiring the integration of multiple 3D cues, handling diverse queries, and providing interpretable reasoning. We hereby present Geo3DVQA, a comprehensive benchmark for evaluating vision-language models (VLMs) in height-aware, 3D geospatial reasoning using RGB-only remote sensing imagery. Unlike conventional sensor-based frameworks, Geo3DVQA emphasizes realistic scenarios that integrate elevation, sky view factors, and land cover patterns. The benchmark encompasses 110k curated question-answer pairs spanning 16 task categories across three complexity levels: single-feature inference, multi-feature reasoning, and application-level spatial analysis. The evaluation of ten state-of-the-art VLMs highlights the difficulty of RGB-to-3D reasoning. GPT-4o and Gemini-2.5-Flash achieved only 28.6% and 33.0% accuracy respectively, while domain-specific fine-tuning of Qwen2.5-VL-7B achieved 49.6% (+24.8 points). These results reveal both the limitations of current VLMs and the effectiveness of domain adaptation. Geo3DVQA introduces new challenge frontiers for scalable, accessible, and holistic 3D geospatial analysis. The dataset and code will be released upon publication at https://github.com/mm1129/Geo3DVQA.

Authors:Cheng Zhang, Boying Li, Meng Wei, Yan-Pei Cao, Camilo Cruz Gambardella, Dinh Phung, Jianfei Cai
Title: Unified Camera Positional Encoding for Controlled Video Generation
Abstract:
Transformers have emerged as a universal backbone across 3D perception, video generation, and world models for autonomous driving and embodied AI, where understanding camera geometry is essential for grounding visual observations in three-dimensional space. However, existing camera encoding methods often rely on simplified pinhole assumptions, restricting generalization across the diverse intrinsics and lens distortions in real-world cameras. We introduce Relative Ray Encoding, a geometry-consistent representation that unifies complete camera information, including 6-DoF poses, intrinsics, and lens distortions. To evaluate its capability under diverse controllability demands, we adopt camera-controlled text-to-video generation as a testbed task. Within this setting, we further identify pitch and roll as two components effective for Absolute Orientation Encoding, enabling full control over the initial camera orientation. Together, these designs form UCPE (Unified Camera Positional Encoding), which integrates into a pretrained video Diffusion Transformer through a lightweight spatial attention adapter, adding less than 1% trainable parameters while achieving state-of-the-art camera controllability and visual fidelity. To facilitate systematic training and evaluation, we construct a large video dataset covering a wide range of camera motions and lens types. Extensive experiments validate the effectiveness of UCPE in camera-controllable video generation and highlight its potential as a general camera representation for Transformers across future multi-view, video, and 3D tasks. Code will be available at https://github.com/chengzhag/UCPE.

Authors:Fang Zhou, Zhiqiang Chen, Martin Pavlovski, Yizhong Zhang
Title: ReLKD: Inter-Class Relation Learning with Knowledge Distillation for Generalized Category Discovery
Abstract:
Generalized Category Discovery (GCD) faces the challenge of categorizing unlabeled data containing both known and novel classes, given only labels for known classes. Previous studies often treat each class independently, neglecting the inherent inter-class relations. Obtaining such inter-class relations directly presents a significant challenge in real-world scenarios. To address this issue, we propose ReLKD, an end-to-end framework that effectively exploits implicit inter-class relations and leverages this knowledge to enhance the classification of novel classes. ReLKD comprises three key modules: a target-grained module for learning discriminative representations, a coarse-grained module for capturing hierarchical class relations, and a distillation module for transferring knowledge from the coarse-grained module to refine the target-grained module's representation learning. Extensive experiments on four datasets demonstrate the effectiveness of ReLKD, particularly in scenarios with limited labeled data. The code for ReLKD is available at https://github.com/ZhouF-ECNU/ReLKD.

Authors:Cheng Yu
Title: Understanding Diffusion Models via Code Execution
Abstract:
Diffusion models have achieved remarkable performance in generative modeling, yet their theoretical foundations are often intricate, and the gap between mathematical formulations in papers and practical open-source implementations can be difficult to bridge. Existing tutorials primarily focus on deriving equations, offering limited guidance on how diffusion models actually operate in code. To address this, we present a concise implementation of approximately 300 lines that explains diffusion models from a code-execution perspective. Our minimal example preserves the essential components -- including forward diffusion, reverse sampling, the noise-prediction network, and the training loop -- while removing unnecessary engineering details. This technical report aims to provide researchers with a clear, implementation-first understanding of how diffusion models work in practice and how code and theory correspond. Our code and pre-trained models are available at: https://github.com/disanda/GM/tree/main/DDPM-DDIM-ClassifierFree.

Authors:Xiujie Song, Qi Jia, Shota Watanabe, Xiaoyi Pang, Ruijie Chen, Mengyue Wu, Kenny Q. Zhu
Title: Generating Storytelling Images with Rich Chains-of-Reasoning
Abstract:
An image can convey a compelling story by presenting rich, logically connected visual clues. These connections form Chains-of-Reasoning (CoRs) within the image, enabling viewers to infer events, causal relationships, and other information, thereby understanding the underlying story. In this paper, we focus on these semantically rich images and define them as Storytelling Images. Such images have diverse applications beyond illustration creation and cognitive screening, leveraging their ability to convey multi-layered information visually and inspire active interpretation. However, due to their complex semantic nature, Storytelling Images are inherently challenging to create, and thus remain relatively scarce. To address this challenge, we introduce the Storytelling Image Generation task, which explores how generative AI models can be leveraged to create such images. Specifically, we propose a two-stage pipeline, StorytellingPainter, which combines the creative reasoning abilities of Large Language Models (LLMs) with the visual synthesis capabilities of Text-to-Image (T2I) models to generate Storytelling Images. Alongside this pipeline, we develop a dedicated evaluation framework comprising three main evaluators: a Semantic Complexity Evaluator, a KNN-based Diversity Evaluator and a Story-Image Alignment Evaluator. Given the critical role of story generation in the Storytelling Image Generation task and the performance disparity between open-source and proprietary LLMs, we further explore tailored training strategies to reduce this gap, resulting in a series of lightweight yet effective models named Mini-Storytellers. Experimental results demonstrate the feasibility and effectiveness of our approaches. The code is available at https://github.com/xiujiesong/StorytellingImageGeneration.

Authors:Seokhyun Youn, Soohyun Lee, Geonho Kim, Weeyoung Kwon, Sung-Ho Bae, Jihyong Oh
Title: SUCCESS-GS: Survey of Compactness and Compression for Efficient Static and Dynamic Gaussian Splatting
Abstract:
3D Gaussian Splatting (3DGS) has emerged as a powerful explicit representation enabling real-time, high-fidelity 3D reconstruction and novel view synthesis. However, its practical use is hindered by the massive memory and computational demands required to store and render millions of Gaussians. These challenges become even more severe in 4D dynamic scenes. To address these issues, the field of Efficient Gaussian Splatting has rapidly evolved, proposing methods that reduce redundancy while preserving reconstruction quality. This survey provides the first unified overview of efficient 3D and 4D Gaussian Splatting techniques. For both 3D and 4D settings, we systematically categorize existing methods into two major directions, Parameter Compression and Restructuring Compression, and comprehensively summarize the core ideas and methodological trends within each category. We further cover widely used datasets, evaluation metrics, and representative benchmark comparisons. Finally, we discuss current limitations and outline promising research directions toward scalable, compact, and real-time Gaussian Splatting for both static and dynamic 3D scene representation.

Authors:Shravan Venkatraman, Rakesh Raj Madavan, Pavan Kumar S, Muthu Subash Kavitha
Title: TIDE: Two-Stage Inverse Degradation Estimation with Guided Prior Disentanglement for Underwater Image Restoration
Abstract:
Underwater image restoration is essential for marine applications ranging from ecological monitoring to archaeological surveys, but effectively addressing the complex and spatially varying nature of underwater degradations remains a challenge. Existing methods typically apply uniform restoration strategies across the entire image, struggling to handle multiple co-occurring degradations that vary spatially and with water conditions. We introduce TIDE, a $\underline{t}$wo stage $\underline{i}$nverse $\underline{d}$egradation $\underline{e}$stimation framework that explicitly models degradation characteristics and applies targeted restoration through specialized prior decomposition. Our approach disentangles the restoration process into multiple specialized hypotheses that are adaptively fused based on local degradation patterns, followed by a progressive refinement stage that corrects residual artifacts. Specifically, TIDE decomposes underwater degradations into four key factors, namely color distortion, haze, detail loss, and noise, and designs restoration experts specialized for each. By generating specialized restoration hypotheses, TIDE balances competing degradation factors and produces natural results even in highly degraded regions. Extensive experiments across both standard benchmarks and challenging turbid water conditions show that TIDE achieves competitive performance on reference based fidelity metrics while outperforming state of the art methods on non reference perceptual quality metrics, with strong improvements in color correction and contrast enhancement. Our code is available at: https://rakesh-123-cryp.github.io/TIDE.

Authors:Dahyeon Kye, Jeahun Sung, MinKyu Jeon, Jihyong Oh
Title: CHIMERA: Adaptive Cache Injection and Semantic Anchor Prompting for Zero-shot Image Morphing with Morphing-oriented Metrics
Abstract:
Diffusion models exhibit remarkable generative ability, yet achieving smooth and semantically consistent image morphing remains a challenge. Existing approaches often yield abrupt transitions or over-saturated appearances due to the lack of adaptive structural and semantic alignments. We propose CHIMERA, a zero-shot diffusion-based framework that formulates morphing as a cached inversion-guided denoising process. To handle large semantic and appearance disparities, we propose Adaptive Cache Injection and Semantic Anchor Prompting. Adaptive Cache Injection (ACI) caches down, mid, and up blocks features from both inputs during DDIM inversion and re-injects them adaptively during denoising, enabling spatial and semantic alignment in depth- and time-adaptive manners and enabling natural feature fusion and smooth transitions. Semantic Anchor Prompting (SAP) leverages a vision-language model to generate a shared anchor prompt that serves as a semantic anchor, bridging dissimilar inputs and guiding the denoising process toward coherent results. Finally, we introduce the Global-Local Consistency Score (GLCS), a morphing-oriented metric that simultaneously evaluates the global harmonization of the two inputs and the smoothness of the local morphing transition. Extensive experiments and user studies show that CHIMERA achieves smoother and more semantically aligned transitions than existing methods, establishing a new state of the art in image morphing. The code and project page will be publicly released.

Authors:Fenghua Weng, Chaochao Lu, Xia Hu, Wenqi Shao, Wenjie Wang
Title: Think-Reflect-Revise: A Policy-Guided Reflective Framework for Safety Alignment in Large Vision Language Models
Abstract:
As multimodal reasoning improves the overall capabilities of Large Vision Language Models (LVLMs), recent studies have begun to explore safety-oriented reasoning, aiming to enhance safety awareness by analyzing potential safety risks during the reasoning process before generating the final response. Although such approaches improve safety awareness and interpretability, this single-pass think-then-answer paradigm remains vulnerable to contextual or visual jailbreak attacks. This reveals a critical flaw: single-pass reasoning may overlook explicit harmful content in its own output. Our key insight is to exploit this wasted signal through reflection, which can effectively leverage the malicious content revealed in the first-pass reasoning to enable genuine self-correction and prevent unsafe generations. Motivated by this, we propose Think-Reflect-Revise (TRR), a three-stage training framework designed to enhance the safety alignment of LVLMs through policy-guided self-reflection. We first build a Reflective Safety Reasoning (ReSafe) dataset with 5,000 examples that follow a think-reflect-revise process. We then fine-tune the target model using the ReSafe dataset to initialize reflective behavior, and finally reinforce policy-guided reflection through reinforcement learning. Experimental results show that TRR substantially improves the safety performance of LVLMs across both safety-awareness benchmarks and jailbreak attack evaluations, increasing the overall safe response rate from 42.8% to 87.7% on Qwen2.5-VL-7B, while preserving stable performance on general benchmarks such as MMMU and MMStar. The project page is available at https://think-reflect-revise.github.io/.

Authors:Siyang Jiang, Mu Yuan, Xiang Ji, Bufang Yang, Zeyu Liu, Lilin Xu, Yang Li, Yuting He, Liran Dong, Wenrui Lu, Zhenyu Yan, Xiaofan Jiang, Wei Gao, Hongkai Chen, Guoliang Xing
Title: A Large-Scale Multimodal Dataset and Benchmarks for Human Activity Scene Understanding and Reasoning
Abstract:
Multimodal human action recognition (HAR) leverages complementary sensors for activity classification. Beyond recognition, recent advances in large language models (LLMs) enable detailed descriptions and causal reasoning, motivating new tasks: human action understanding (HAU) and human action reasoning (HARn). However, most LLMs, especially large vision language models (LVLMs), struggle with non-RGB modalities such as depth, IMU, and mmWave due to the lack of large-scale data-caption resources. Existing HAR datasets mainly provide coarse data-label annotations, which are insufficient to capture fine-grained action dynamics needed for HAU and HARn. We consider two ground-truth pair types: (1) data label (discrete category) and (2) data caption (textual description). Naively generating captions from labels often lacks logical and spatiotemporal consistency. We introduce CUHK-X, a large-scale multimodal dataset and benchmark suite for HAR, HAU, and HARn. CUHK-X contains 58,445 samples covering 40 actions performed by 30 participants across two indoor environments. To improve caption consistency, we propose a prompt-based scene creation method that leverages LLMs to generate logically connected activity sequences, followed by human validation. CUHK-X includes three benchmarks with six evaluation tasks. Experiments report average accuracies of 76.52% (HAR), 40.76% (HAU), and 70.25% (HARn). CUHK-X aims to enable the community to apply and develop data-intensive learning methods for robust, multimodal human activity analysis. Project page and code: https://openaiotlab.github.io/CUHK-X/ and https://github.com/openaiotlab/CUHK-X.

Authors:Nithin Sivakumaran, Justin Chih-Yao Chen, David Wan, Yue Zhang, Jaehong Yoon, Elias Stengel-Eskin, Mohit Bansal
Title: DART: Leveraging Multi-Agent Disagreement for Tool Recruitment in Multimodal Reasoning
Abstract:
Specialized visual tools can augment large language models or vision language models with expert knowledge (e.g., grounding, spatial reasoning, medical knowledge, etc.), but knowing which tools to call (and when to call them) can be challenging. We introduce DART, a multi-agent framework that uses disagreements between multiple debating visual agents to identify useful visual tools (e.g., object detection, OCR, spatial reasoning, etc.) that can resolve inter-agent disagreement. These tools allow for fruitful multi-agent discussion by introducing new information, and by providing tool-aligned agreement scores that highlight agents in agreement with expert tools, thereby facilitating discussion. We utilize an aggregator agent to select the best answer by providing the agent outputs and tool information. We test DART on four diverse benchmarks and show that our approach improves over multi-agent debate as well as over single agent tool-calling frameworks, beating the next-strongest baseline (multi-agent debate with a judge model) by 3.4% and 2.4% on A-OKVQA and MMMU respectively. We also find that DART adapts well to new tools in applied domains, with a 1.3% improvement on the M3D medical dataset over other strong tool-calling, single agent, and multi-agent baselines. Additionally, we measure text overlap across rounds to highlight the rich discussion in DART compared to existing multi-agent methods. Finally, we study the tool call distribution, finding that diverse tools are reliably used to help resolve disagreement.

Authors:Zebin Xing, Yupeng Zheng, Qichao Zhang, Zhixing Ding, Pengxuan Yang, Songen Gu, Zhongpu Xia, Dongbin Zhao
Title: Mimir: Hierarchical Goal-Driven Diffusion with Uncertainty Propagation for End-to-End Autonomous Driving
Abstract:
End-to-end autonomous driving has emerged as a pivotal direction in the field of autonomous systems. Recent works have demonstrated impressive performance by incorporating high-level guidance signals to steer low-level trajectory planners. However, their potential is often constrained by inaccurate high-level guidance and the computational overhead of complex guidance modules. To address these limitations, we propose Mimir, a novel hierarchical dual-system framework capable of generating robust trajectories relying on goal points with uncertainty estimation: (1) Unlike previous approaches that deterministically model, we estimate goal point uncertainty with a Laplace distribution to enhance robustness; (2) To overcome the slow inference speed of the guidance system, we introduce a multi-rate guidance mechanism that predicts extended goal points in advance. Validated on challenging Navhard and Navtest benchmarks, Mimir surpasses previous state-of-the-art methods with a 20% improvement in the driving score EPDMS, while achieving 1.6 times improvement in high-level module inference speed without compromising accuracy. The code and models will be released soon to promote reproducibility and further development. The code is available at https://github.com/ZebinX/Mimir-Uncertainty-Driving

Authors:Shengjie Lu, Zhibin Wan, Jiejie Liu, Quan Zhang, Mingjie Sun
Title: Training-free Clothing Region of Interest Self-correction for Virtual Try-On
Abstract:
VTON (Virtual Try-ON) aims at synthesizing the target clothing on a certain person, preserving the details of the target clothing while keeping the rest of the person unchanged. Existing methods suffer from the discrepancies between the generated clothing results and the target ones, in terms of the patterns, textures and boundaries. Therefore, we propose to use an energy function to impose constraints on the attention map extracted through the generation process. Thus, at each generation step, the attention can be more focused on the clothing region of interest, thereby influencing the generation results to be more consistent with the target clothing details. Furthermore, to address the limitation that existing evaluation metrics concentrate solely on image realism and overlook the alignment with target elements, we design a new metric, Virtual Try-on Inception Distance (VTID), to bridge this gap and ensure a more comprehensive assessment. On the VITON-HD and DressCode datasets, our approach has outperformed the previous state-of-the-art (SOTA) methods by 1.4%, 2.3%, 12.3%, and 5.8% in the traditional metrics of LPIPS, FID, KID, and the new VTID metrics, respectively. Additionally, by applying the generated data to downstream Clothing-Change Re-identification (CC-Reid) methods, we have achieved performance improvements of 2.5%, 1.1%, and 1.6% on the LTCC, PRCC, VC-Clothes datasets in the metrics of Rank-1. The code of our method is public at https://github.com/MrWhiteSmall/CSC-VTON.git.

Authors:Jaeyoon Lee, Hojoon Jung, Sungtae Hwang, Jihyong Oh, Jongwon Choi
Title: COREA: Coarse-to-Fine 3D Representation Alignment Between Relightable 3D Gaussians and SDF via Bidirectional 3D-to-3D Supervision
Abstract:
We present COREA, the first unified framework that jointly learns relightable 3D Gaussians and a Signed Distance Field (SDF) for accurate geometry reconstruction and faithful relighting. While recent 3D Gaussian Splatting (3DGS) methods have extended toward mesh reconstruction and physically-based rendering (PBR), their geometry is still learned from 2D renderings, leading to coarse surfaces and unreliable BRDF-lighting decomposition. To address these limitations, COREA introduces a coarse-to-fine bidirectional 3D-to-3D alignment strategy that allows geometric signals to be learned directly in 3D space. Within this strategy, depth provides coarse alignment between the two representations, while depth gradients and normals refine fine-scale structure, and the resulting geometry supports stable BRDF-lighting decomposition. A density-control mechanism further stabilizes Gaussian growth, balancing geometric fidelity with memory efficiency. Experiments on standard benchmarks demonstrate that COREA achieves superior performance in novel-view synthesis, mesh reconstruction, and PBR within a unified framework.

Authors:Chen-Yang Wang, Gepeng Ji, Song Shao, Ming-Ming Cheng, Deng-Ping Fan
Title: Context-measure: Contextualizing Metric for Camouflage
Abstract:
Camouflage is primarily context-dependent yet current metrics for camouflaged scenarios overlook this critical factor. Instead, these metrics are originally designed for evaluating general or salient objects, with an inherent assumption of uncorrelated spatial context. In this paper, we propose a new contextualized evaluation paradigm, Context-measure, built upon a probabilistic pixel-aware correlation framework. By incorporating spatial dependencies and pixel-wise camouflage quantification, our measure better aligns with human perception. Extensive experiments across three challenging camouflaged object segmentation datasets show that Context-measure delivers more reliability than existing context-independent metrics. Our measure can provide a foundational evaluation benchmark for various computer vision applications involving camouflaged patterns, such as agricultural, industrial, and medical scenarios. Code is available at https://github.com/pursuitxi/Context-measure.

Authors:Changliang Xia, Chengyou Jia, Minnan Luo, Zhuohang Dang, Xin Shen, Bowen Ping
Title: $\mathrm{D}^{\mathrm{3}}$-Predictor: Noise-Free Deterministic Diffusion for Dense Prediction
Abstract:
Although diffusion models with strong visual priors have emerged as powerful dense prediction backboens, they overlook a core limitation: the stochastic noise at the core of diffusion sampling is inherently misaligned with dense prediction that requires a deterministic mapping from image to geometry. In this paper, we show that this stochastic noise corrupts fine-grained spatial cues and pushes the model toward timestep-specific noise objectives, consequently destroying meaningful geometric structure mappings. To address this, we introduce $\mathrm{D}^{\mathrm{3}}$-Predictor, a noise-free deterministic framework built by reformulating a pretrained diffusion model without stochasticity noise. Instead of relying on noisy inputs to leverage diffusion priors, $\mathrm{D}^{\mathrm{3}}$-Predictor views the pretrained diffusion network as an ensemble of timestep-dependent visual experts and self-supervisedly aggregates their heterogeneous priors into a single, clean, and complete geometric prior. Meanwhile, we utilize task-specific supervision to seamlessly adapt this noise-free prior to dense prediction tasks. Extensive experiments on various dense prediction tasks demonstrate that $\mathrm{D}^{\mathrm{3}}$-Predictor achieves competitive or state-of-the-art performance in diverse scenarios. In addition, it requires less than half the training data previously used and efficiently performs inference in a single step. Our code, data, and checkpoints are publicly available at https://x-gengroup.github.io/HomePage_D3-Predictor/.

Authors:Shravan Venkatraman, Muthu Subash Kavitha, Joe Dhanith P R, V Manikandarajan, Jia Wu
Title: Can We Go Beyond Visual Features? Neural Tissue Relation Modeling for Relational Graph Analysis in Non-Melanoma Skin Histology
Abstract:
Histopathology image segmentation is essential for delineating tissue structures in skin cancer diagnostics, but modeling spatial context and inter-tissue relationships remains a challenge, especially in regions with overlapping or morphologically similar tissues. Current convolutional neural network (CNN)-based approaches operate primarily on visual texture, often treating tissues as independent regions and failing to encode biological context. To this end, we introduce Neural Tissue Relation Modeling (NTRM), a novel segmentation framework that augments CNNs with a tissue-level graph neural network to model spatial and functional relationships across tissue types. NTRM constructs a graph over predicted regions, propagates contextual information via message passing, and refines segmentation through spatial projection. Unlike prior methods, NTRM explicitly encodes inter-tissue dependencies, enabling structurally coherent predictions in boundary-dense zones. On the benchmark Histopathology Non-Melanoma Skin Cancer Segmentation Dataset, NTRM outperforms state-of-the-art methods, achieving a robust Dice similarity coefficient that is 4.9\% to 31.25\% higher than the best-performing models among the evaluated approaches. Our experiments indicate that relational modeling offers a principled path toward more context-aware and interpretable histological segmentation, compared to local receptive-field architectures that lack tissue-level structural awareness. Our code is available at https://github.com/shravan-18/NTRM.

Authors:Zijian Zhou, Shikun Liu, Haozhe Liu, Haonan Qiu, Zhaochong An, Weiming Ren, Zhiheng Liu, Xiaoke Huang, Kam Woh Ng, Tian Xie, Xiao Han, Yuren Cong, Hang Li, Chuyan Zhu, Aditya Patel, Tao Xiang, Sen He
Title: Scaling Zero-Shot Reference-to-Video Generation
Abstract:
Reference-to-video (R2V) generation aims to synthesize videos that align with a text prompt while preserving the subject identity from reference images. However, current R2V methods are hindered by the reliance on explicit reference image-video-text triplets, whose construction is highly expensive and difficult to scale. We bypass this bottleneck by introducing Saber, a scalable zero-shot framework that requires no explicit R2V data. Trained exclusively on video-text pairs, Saber employs a masked training strategy and a tailored attention-based model design to learn identity-consistent and reference-aware representations. Mask augmentation techniques are further integrated to mitigate copy-paste artifacts common in reference-to-video generation. Moreover, Saber demonstrates remarkable generalization capabilities across a varying number of references and achieves superior performance on the OpenS2V-Eval benchmark compared to methods trained with R2V data.

Authors:Wangkai Li, Rui Sun, Bohao Liao, Zhaoyang Li, Tianzhu Zhang
Title: Balanced Learning for Domain Adaptive Semantic Segmentation
Abstract:
Unsupervised domain adaptation (UDA) for semantic segmentation aims to transfer knowledge from a labeled source domain to an unlabeled target domain. Despite the effectiveness of self-training techniques in UDA, they struggle to learn each class in a balanced manner due to inherent class imbalance and distribution shift in both data and label space between domains. To address this issue, we propose Balanced Learning for Domain Adaptation (BLDA), a novel approach to directly assess and alleviate class bias without requiring prior knowledge about the distribution shift. First, we identify over-predicted and under-predicted classes by analyzing the distribution of predicted logits. Subsequently, we introduce a post-hoc approach to align the logits distributions across different classes using shared anchor distributions. To further consider the network's need to generate unbiased pseudo-labels during self-training, we estimate logits distributions online and incorporate logits correction terms into the loss function. Moreover, we leverage the resulting cumulative density as domain-shared structural knowledge to connect the source and target domains. Extensive experiments on two standard UDA semantic segmentation benchmarks demonstrate that BLDA consistently improves performance, especially for under-predicted classes, when integrated into various existing methods. Code is available at https://github.com/Woof6/BLDA.

Authors:Wancheng Feng, Chen An, Zhenliang He, Meina Kan, Shiguang Shan, Lukun Wang
Title: JoPano: Unified Panorama Generation via Joint Modeling
Abstract:
Panorama generation has recently attracted growing interest in the research community, with two core tasks, text-to-panorama and view-to-panorama generation. However, existing methods still face two major challenges: their U-Net-based architectures constrain the visual quality of the generated panoramas, and they usually treat the two core tasks independently, which leads to modeling redundancy and inefficiency. To overcome these challenges, we propose a joint-face panorama (JoPano) generation approach that unifies the two core tasks within a DiT-based model. To transfer the rich generative capabilities of existing DiT backbones learned from natural images to the panorama domain, we propose a Joint-Face Adapter built on the cubemap representation of panoramas, which enables a pretrained DiT to jointly model and generate different views of a panorama. We further apply Poisson Blending to reduce seam inconsistencies that often appear at the boundaries between cube faces. Correspondingly, we introduce Seam-SSIM and Seam-Sobel metrics to quantitatively evaluate the seam consistency. Moreover, we propose a condition switching mechanism that unifies text-to-panorama and view-to-panorama tasks within a single model. Comprehensive experiments show that JoPano can generate high-quality panoramas for both text-to-panorama and view-to-panorama generation tasks, achieving state-of-the-art performance on FID, CLIP-FID, IS, and CLIP-Score metrics.

Authors:Mohammed Q. Alkhatib, Ali Jamali, Swalpa Kumar Roy
Title: SceneMixer: Exploring Convolutional Mixing Networks for Remote Sensing Scene Classification
Abstract:
Remote sensing scene classification plays a key role in Earth observation by enabling the automatic identification of land use and land cover (LULC) patterns from aerial and satellite imagery. Despite recent progress with convolutional neural networks (CNNs) and vision transformers (ViTs), the task remains challenging due to variations in spatial resolution, viewpoint, orientation, and background conditions, which often reduce the generalization ability of existing models. To address these challenges, this paper proposes a lightweight architecture based on the convolutional mixer paradigm. The model alternates between spatial mixing through depthwise convolutions at multiple scales and channel mixing through pointwise operations, enabling efficient extraction of both local and contextual information while keeping the number of parameters and computations low. Extensive experiments were conducted on the AID and EuroSAT benchmarks. The proposed model achieved overall accuracy, average accuracy, and Kappa values of 74.7%, 74.57%, and 73.79 on the AID dataset, and 93.90%, 93.93%, and 93.22 on EuroSAT, respectively. These results demonstrate that the proposed approach provides a good balance between accuracy and efficiency compared with widely used CNN- and transformer-based models. Code will be publicly available on: https://github.com/mqalkhatib/SceneMixer

Authors:Wangkai Li, Rui Sun, Zhaoyang Li, Tianzhu Zhang
Title: Towards Robust Pseudo-Label Learning in Semantic Segmentation: An Encoding Perspective
Abstract:
Pseudo-label learning is widely used in semantic segmentation, particularly in label-scarce scenarios such as unsupervised domain adaptation (UDA) and semisupervised learning (SSL). Despite its success, this paradigm can generate erroneous pseudo-labels, which are further amplified during training due to utilization of one-hot encoding. To address this issue, we propose ECOCSeg, a novel perspective for segmentation models that utilizes error-correcting output codes (ECOC) to create a fine-grained encoding for each class. ECOCSeg offers several advantages. First, an ECOC-based classifier is introduced, enabling model to disentangle classes into attributes and handle partial inaccurate bits, improving stability and generalization in pseudo-label learning. Second, a bit-level label denoising mechanism is developed to generate higher-quality pseudo-labels, providing adequate and robust supervision for unlabeled images. ECOCSeg can be easily integrated with existing methods and consistently demonstrates significant improvements on multiple UDA and SSL benchmarks across different segmentation architectures. Code is available at https://github.com/Woof6/ECOCSeg.

Authors:Yulin Li, Haokun Gui, Ziyang Fan, Junjie Wang, Bin Kang, Bin Chen, Zhuotao Tian
Title: Less Is More, but Where? Dynamic Token Compression via LLM-Guided Keyframe Prior
Abstract:
Recent advances in Video Large Language Models (VLLMs) have achieved remarkable video understanding capabilities, yet face critical efficiency bottlenecks due to quadratic computational growth with lengthy visual token sequences of long videos. While existing keyframe sampling methods can improve temporal modeling efficiency, additional computational cost is introduced before feature encoding, and the binary frame selection paradigm is found suboptimal. Therefore, in this work, we propose Dynamic Token compression via LLM-guided Keyframe prior (DyToK), a training-free paradigm that enables dynamic token compression by harnessing VLLMs' inherent attention mechanisms. Our analysis reveals that VLLM attention layers naturally encoding query-conditioned keyframe priors, by which DyToK dynamically adjusts per-frame token retention ratios, prioritizing semantically rich frames while suppressing redundancies. Extensive experiments demonstrate that DyToK achieves state-of-the-art efficiency-accuracy tradeoffs. DyToK shows plug-and-play compatibility with existing compression methods, such as VisionZip and FastV, attaining 4.3x faster inference while preserving accuracy across multiple VLLMs, such as LLaVA-OneVision and Qwen2.5-VL. Code is available at https://github.com/yu-lin-li/DyToK .

Authors:Kaixuan Lu, Mehmet Onurcan Kaya, Dim P. Papadopoulos
Title: Boosting Unsupervised Video Instance Segmentation with Automatic Quality-Guided Self-Training
Abstract:
Video Instance Segmentation (VIS) faces significant annotation challenges due to its dual requirements of pixel-level masks and temporal consistency labels. While recent unsupervised methods like VideoCutLER eliminate optical flow dependencies through synthetic data, they remain constrained by the synthetic-to-real domain gap. We present AutoQ-VIS, a novel unsupervised framework that bridges this gap through quality-guided self-training. Our approach establishes a closed-loop system between pseudo-label generation and automatic quality assessment, enabling progressive adaptation from synthetic to real videos. Experiments demonstrate state-of-the-art performance with 52.6 $\text{AP}_{50}$ on YouTubeVIS-2019 $\texttt{val}$ set, surpassing the previous state-of-the-art VideoCutLER by 4.4%, while requiring no human annotations. This demonstrates the viability of quality-aware self-training for unsupervised VIS. We will release the code at https://github.com/wcbup/AutoQ-VIS.

Authors:Jiahao Wang, Zhongwei Jiang, Wenchao Sun, Jiaru Zhong, Haibao Yu, Yuner Zhang, Chenyang Lu, Chuang Zhang, Lei He, Shaobing Xu, Jianqiang Wang
Title: SparseCoop: Cooperative Perception with Kinematic-Grounded Queries
Abstract:
Cooperative perception is critical for autonomous driving, overcoming the inherent limitations of a single vehicle, such as occlusions and constrained fields-of-view. However, current approaches sharing dense Bird's-Eye-View (BEV) features are constrained by quadratically-scaling communication costs and the lack of flexibility and interpretability for precise alignment across asynchronous or disparate viewpoints. While emerging sparse query-based methods offer an alternative, they often suffer from inadequate geometric representations, suboptimal fusion strategies, and training instability. In this paper, we propose SparseCoop, a fully sparse cooperative perception framework for 3D detection and tracking that completely discards intermediate BEV representations. Our framework features a trio of innovations: a kinematic-grounded instance query that uses an explicit state vector with 3D geometry and velocity for precise spatio-temporal alignment; a coarse-to-fine aggregation module for robust fusion; and a cooperative instance denoising task to accelerate and stabilize training. Experiments on V2X-Seq and Griffin datasets show SparseCoop achieves state-of-the-art performance. Notably, it delivers this with superior computational efficiency, low transmission cost, and strong robustness to communication latency. Code is available at https://github.com/wang-jh18-SVM/SparseCoop.

Authors:Jan Held, Sanghyun Son, Renaud Vandeghen, Daniel Rebain, Matheus Gadelha, Yi Zhou, Anthony Cioppa, Ming C. Lin, Marc Van Droogenbroeck, Andrea Tagliasacchi
Title: MeshSplatting: Differentiable Rendering with Opaque Meshes
Abstract:
Primitive-based splatting methods like 3D Gaussian Splatting have revolutionized novel view synthesis with real-time rendering. However, their point-based representations remain incompatible with mesh-based pipelines that power AR/VR and game engines. We present MeshSplatting, a mesh-based reconstruction approach that jointly optimizes geometry and appearance through differentiable rendering. By enforcing connectivity via restricted Delaunay triangulation and refining surface consistency, MeshSplatting creates end-to-end smooth, visually high-quality meshes that render efficiently in real-time 3D engines. On Mip-NeRF360, it boosts PSNR by +0.69 dB over the current state-of-the-art MiLo for mesh-based novel view synthesis, while training 2x faster and using 2x less memory, bridging neural rendering and interactive 3D graphics for seamless real-time scene interaction. The project page is available at https://meshsplatting.github.io/.

Authors:Zhihua Fang, Shumei Tao, Junxu Wang, Liang He
Title: XM-ALIGN: Unified Cross-Modal Embedding Alignment for Face-Voice Association
Abstract:
This paper introduces our solution, XM-ALIGN (Unified Cross-Modal Embedding Alignment Framework), proposed for the FAME challenge at ICASSP 2026. Our framework combines explicit and implicit alignment mechanisms, significantly improving cross-modal verification performance in both "heard" and "unheard" languages. By extracting feature embeddings from both face and voice encoders and jointly optimizing them using a shared classifier, we employ mean squared error (MSE) as the embedding alignment loss to ensure tight alignment between modalities. Additionally, data augmentation strategies are applied during model training to enhance generalization. Experimental results show that our approach demonstrates superior performance on the MAV-Celeb dataset. The code will be released at https://github.com/PunkMale/XM-ALIGN.

Authors:Weiqi Li, Xuanyu Zhang, Bin Chen, Jingfen Xie, Yan Wang, Kexin Zhang, Junlin Li, Li Zhang, Jian Zhang, Shijie Zhao
Title: UARE: A Unified Vision-Language Model for Image Quality Assessment, Restoration, and Enhancement
Abstract:
Image quality assessment (IQA) and image restoration are fundamental problems in low-level vision. Although IQA and restoration are closely connected conceptually, most existing work treats them in isolation. Recent advances in unified multimodal understanding-generation models demonstrate promising results and indicate that stronger understanding can improve generative performance. This motivates a single model that unifies IQA and restoration and explicitly studies how IQA can guide restoration, a setting that remains largely underexplored yet highly valuable. In this paper, we propose UARE, to our knowledge the first Unified vision-language model for image quality Assessment, Restoration, and Enhancement. Built on pretrained unified understanding and generation models, we introduce a two-stage training framework. First, a progressive, easy-to-hard schedule expands from single-type distortions to higher-order mixed degradations, enabling UARE to handle multiple degradations. Second, we perform unified fine-tuning of quality understanding and restoration with interleaved text-image data, aligning IQA signals with restoration objectives. Through multi-task co-training, UARE leverages IQA to boost restoration and enhancement performance. Extensive experiments across IQA, restoration, and enhancement tasks demonstrate the effectiveness of UARE. The code and models will be available at https://github.com/lwq20020127/UARE.

Authors:Jisoo Park, Seonghak Lee, Guisik Kim, Taewoo Kim, Junseok Kwon
Title: Lightweight Wasserstein Audio-Visual Model for Unified Speech Enhancement and Separation
Abstract:
Speech Enhancement (SE) and Speech Separation (SS) have traditionally been treated as distinct tasks in speech processing. However, real-world audio often involves both background noise and overlapping speakers, motivating the need for a unified solution. While recent approaches have attempted to integrate SE and SS within multi-stage architectures, these approaches typically involve complex, parameter-heavy models and rely on supervised training, limiting scalability and generalization. In this work, we propose UniVoiceLite, a lightweight and unsupervised audio-visual framework that unifies SE and SS within a single model. UniVoiceLite leverages lip motion and facial identity cues to guide speech extraction and employs Wasserstein distance regularization to stabilize the latent space without requiring paired noisy-clean data. Experimental results demonstrate that UniVoiceLite achieves strong performance in both noisy and multi-speaker scenarios, combining efficiency with robust generalization. The source code is available at https://github.com/jisoo-o/UniVoiceLite.

Authors:Shida Gao, Feng Xue, Xiangfeng Wang, Anlong Ming, Teng Long, Yihua Shao, Haozhe Wang, Zhaowen Lin, Wei Wang, Nicu Sebe
Title: 1 + 1 > 2: Detector-Empowered Video Large Language Model for Spatio-Temporal Grounding and Reasoning
Abstract:
Spatio-temporal grounding and reasoning aims to locate the temporal segment and spatial region of an event in a video given a user query, while also reasoning about semantics such as causality, temporal order, and action relationships. To achieve this, current MLLMs primarily treats bounding boxes as text tokens and generates them autoregressively. However, such autoregressive spatial decoding leads to very-long output sequences, causing spatial errors to accumulated over time and the localization results to progressively drift across a video. To address this, we present a Detector-Empowered Video LLM, short for DEViL, which couples a Video LLM with an open-vocabulary detector (OVD). Specifically, the MLLM and detector are connected via a reference-semantic token (RST) that distills the user query into a rich semantic representation. Unlike tokens that merely serve as spatial prompts or segmentor switches, the RST functions as both a control signal and a replacement for the OVD's text embedding, enabling end-to-end learning of both referential understanding and spatial localization. Furthermore, we propose a tube-mined temporal regularization (TTReg) within OVD, which drives the OVD to generate temporally-consistent queries for target objects, thereby ensuring effective temporal association. Experiments demonstrate that DEViL achieves strong performance across various fine-grained video understanding tasks, particularly STVG and GroundedVQA. Code will be released on https://github.com/gaostar123/DeViL.

Authors:Kazuya Nishimura, Haruka Hirose, Ryoma Bise, Kaito Shiku, Yasuhiro Kojima
Title: Learning Relative Gene Expression Trends from Pathology Images in Spatial Transcriptomics
Abstract:
Gene expression estimation from pathology images has the potential to reduce the RNA sequencing cost. Point-wise loss functions have been widely used to minimize the discrepancy between predicted and absolute gene expression values. However, due to the complexity of the sequencing techniques and intrinsic variability across cells, the observed gene expression contains stochastic noise and batch effects, and estimating the absolute expression values accurately remains a significant challenge. To mitigate this, we propose a novel objective of learning relative expression patterns rather than absolute levels. We assume that the relative expression levels of genes exhibit consistent patterns across independent experiments, even when absolute expression values are affected by batch effects and stochastic noise in tissue samples. Based on the assumption, we model the relation and propose a novel loss function called STRank that is robust to noise and batch effects. Experiments using synthetic datasets and real datasets demonstrate the effectiveness of the proposed method. The code is available at https://github.com/naivete5656/STRank.

Authors:Tongda Xu, Wendi Zheng, Jiajun He, Jose Miguel Hernandez-Lobato, Yan Wang, Ya-Qin Zhang, Jie Tang
Title: Vector Quantization using Gaussian Variational Autoencoder
Abstract:
Vector quantized variational autoencoder (VQ-VAE) is a discrete auto-encoder that compresses images into discrete tokens. It is difficult to train due to discretization. In this paper, we propose a simple yet effective technique, dubbed Gaussian Quant (GQ), that converts a Gaussian VAE with certain constraint into a VQ-VAE without training. GQ generates random Gaussian noise as a codebook and finds the closest noise to the posterior mean. Theoretically, we prove that when the logarithm of the codebook size exceeds the bits-back coding rate of the Gaussian VAE, a small quantization error is guaranteed. Practically, we propose a heuristic to train Gaussian VAE for effective GQ, named target divergence constraint (TDC). Empirically, we show that GQ outperforms previous VQ-VAEs, such as VQGAN, FSQ, LFQ, and BSQ, on both UNet and ViT architectures. Furthermore, TDC also improves upon previous Gaussian VAE discretization methods, such as TokenBridge. The source code is provided in https://github.com/tongdaxu/VQ-VAE-from-Gaussian-VAE.

Authors:Xiaojun Jia, Jie Liao, Qi Guo, Teng Ma, Simeng Qin, Ranjie Duan, Tianlin Li, Yihao Huang, Zhitao Zeng, Dongxian Wu, Yiming Li, Wenqi Ren, Xiaochun Cao, Yang Liu
Title: OmniSafeBench-MM: A Unified Benchmark and Toolbox for Multimodal Jailbreak Attack-Defense Evaluation
Abstract:
Recent advances in multi-modal large language models (MLLMs) have enabled unified perception-reasoning capabilities, yet these systems remain highly vulnerable to jailbreak attacks that bypass safety alignment and induce harmful behaviors. Existing benchmarks such as JailBreakV-28K, MM-SafetyBench, and HADES provide valuable insights into multi-modal vulnerabilities, but they typically focus on limited attack scenarios, lack standardized defense evaluation, and offer no unified, reproducible toolbox. To address these gaps, we introduce OmniSafeBench-MM, which is a comprehensive toolbox for multi-modal jailbreak attack-defense evaluation. OmniSafeBench-MM integrates 13 representative attack methods, 15 defense strategies, and a diverse dataset spanning 9 major risk domains and 50 fine-grained categories, structured across consultative, imperative, and declarative inquiry types to reflect realistic user intentions. Beyond data coverage, it establishes a three-dimensional evaluation protocol measuring (1) harmfulness, distinguished by a granular, multi-level scale ranging from low-impact individual harm to catastrophic societal threats, (2) intent alignment between responses and queries, and (3) response detail level, enabling nuanced safety-utility analysis. We conduct extensive experiments on 10 open-source and 8 closed-source MLLMs to reveal their vulnerability to multi-modal jailbreak. By unifying data, methodology, and evaluation into an open-source, reproducible platform, OmniSafeBench-MM provides a standardized foundation for future research. The code is released at https://github.com/jiaxiaojunQAQ/OmniSafeBench-MM.

Authors:Yuhao Su, Anwesa Choudhuri, Zhongpai Gao, Benjamin Planche, Van Nguyen Nguyen, Meng Zheng, Yuhan Shen, Arun Innanje, Terrence Chen, Ehsan Elhamifar, Ziyan Wu
Title: MedGRPO: Multi-Task Reinforcement Learning for Heterogeneous Medical Video Understanding
Abstract:
Large vision-language models struggle with medical video understanding, where spatial precision, temporal reasoning, and clinical semantics are critical. To address this, we first introduce \textbf{MedVidBench}, a large-scale benchmark of 531,850 video-instruction pairs across 8 medical sources spanning video, segment, and frame-level tasks, curated through a rigorous quality assurance pipeline with expert-guided prompting and dual-model validation. While supervised fine-tuning on MedVidBench yields noticeable gains, standard Reinforcement Learning (RL) fails due to imbalanced reward scales across datasets, which destabilizes optimization and leads to training collapse. To overcome this, we introduce \textbf{MedGRPO}, a novel RL framework for balanced multi-dataset training with two key innovations: (1) \emph{cross-dataset reward normalization} that maps each dataset's median performance to a common reward value, ensuring fair optimization regardless of difficulty, and (2) a \emph{medical LLM judge} that evaluates caption quality on five clinical dimensions through comparative similarity scoring. Supervised fine-tuning Qwen2.5-VL-7B on MedVidBench substantially outperforms GPT-4.1 and Gemini-2.5-Flash across all tasks, demonstrating MedVidBench's efficacy, while our MedGRPO framework further improves upon the SFT baseline across grounding and captioning tasks. Our work establishes a foundational benchmark and robust training methodology for advancing vision-language models in medical domains. Our project website is available at https://yuhaosu.github.io/MedGRPO/.

Authors:Dung Thuy Nguyen, Quang Nguyen, Preston K. Robinette, Eli Jiang, Taylor T. Johnson, Kevin Leach
Title: SUGAR: A Sweeter Spot for Generative Unlearning of Many Identities
Abstract:
Recent advances in 3D-aware generative models have enabled high-fidelity image synthesis of human identities. However, this progress raises urgent questions around user consent and the ability to remove specific individuals from a model's output space. We address this by introducing SUGAR, a framework for scalable generative unlearning that enables the removal of many identities (simultaneously or sequentially) without retraining the entire model. Rather than projecting unwanted identities to unrealistic outputs or relying on static template faces, SUGAR learns a personalized surrogate latent for each identity, diverting reconstructions to visually coherent alternatives while preserving the model's quality and diversity. We further introduce a continual utility preservation objective that guards against degradation as more identities are forgotten. SUGAR achieves state-of-the-art performance in removing up to 200 identities, while delivering up to a 700% improvement in retention utility compared to existing baselines. Our code is publicly available at https://github.com/judydnguyen/SUGAR-Generative-Unlearn.

Authors:Ramazan Fazylov, Sergey Zagoruyko, Aleksandr Parkin, Stamatis Lefkimmiatis, Ivan Laptev
Title: AGORA: Adversarial Generation Of Real-time Animatable 3D Gaussian Head Avatars
Abstract:
The generation of high-fidelity, animatable 3D human avatars remains a core challenge in computer graphics and vision, with applications in VR, telepresence, and entertainment. Existing approaches based on implicit representations like NeRFs suffer from slow rendering and dynamic inconsistencies, while 3D Gaussian Splatting (3DGS) methods are typically limited to static head generation, lacking dynamic control. We bridge this gap by introducing AGORA, a novel framework that extends 3DGS within a generative adversarial network to produce animatable avatars. Our key contribution is a lightweight, FLAME-conditioned deformation branch that predicts per-Gaussian residuals, enabling identity-preserving, fine-grained expression control while allowing real-time inference. Expression fidelity is enforced via a dual-discriminator training scheme leveraging synthetic renderings of the parametric mesh. AGORA generates avatars that are not only visually realistic but also precisely controllable. Quantitatively, we outperform state-of-the-art NeRF-based methods on expression accuracy while rendering at 250+ FPS on a single GPU, and, notably, at $\sim$9 FPS under CPU-only inference - representing, to our knowledge, the first demonstration of practical CPU-only animatable 3DGS avatar synthesis. This work represents a significant step toward practical, high-performance digital humans. Project website: https://ramazan793.github.io/AGORA/

Authors:Tianshan Zhang, Zeyu Zhang, Hao Tang
Title: DragMesh: Interactive 3D Generation Made Easy
Abstract:
While generative models have excelled at creating static 3D content, the pursuit of systems that understand how objects move and respond to interactions remains a fundamental challenge. Current methods for articulated motion lie at a crossroads: they are either physically consistent but too slow for real-time use, or generative but violate basic kinematic constraints. We present DragMesh, a robust framework for real-time interactive 3D articulation built around a lightweight motion generation core. Our core contribution is a novel decoupled kinematic reasoning and motion generation framework. First, we infer the latent joint parameters by decoupling semantic intent reasoning (which determines the joint type) from geometric regression (which determines the axis and origin using our Kinematics Prediction Network (KPP-Net)). Second, to leverage the compact, continuous, and singularity-free properties of dual quaternions for representing rigid body motion, we develop a novel Dual Quaternion VAE (DQ-VAE). This DQ-VAE receives these predicted priors, along with the original user drag, to generate a complete, plausible motion trajectory. To ensure strict adherence to kinematics, we inject the joint priors at every layer of the DQ-VAE's non-autoregressive Transformer decoder using FiLM (Feature-wise Linear Modulation) conditioning. This persistent, multi-scale guidance is complemented by a numerically-stable cross-product loss to guarantee axis alignment. This decoupled design allows DragMesh to achieve real-time performance and enables plausible, generative articulation on novel objects without retraining, offering a practical step toward generative 3D intelligence. Code: https://github.com/AIGeeksGroup/DragMesh. Website: https://aigeeksgroup.github.io/DragMesh.

Authors:Chunwei Tian, Jingyuan Xie, Lingjun Li, Wangmeng Zuo, Yanning Zhang, David Zhang
Title: A Perception CNN for Facial Expression Recognition
Abstract:
Convolutional neural networks (CNNs) can automatically learn data patterns to express face images for facial expression recognition (FER). However, they may ignore effect of facial segmentation of FER. In this paper, we propose a perception CNN for FER as well as PCNN. Firstly, PCNN can use five parallel networks to simultaneously learn local facial features based on eyes, cheeks and mouth to realize the sensitive capture of the subtle changes in FER. Secondly, we utilize a multi-domain interaction mechanism to register and fuse between local sense organ features and global facial structural features to better express face images for FER. Finally, we design a two-phase loss function to restrict accuracy of obtained sense information and reconstructed face images to guarantee performance of obtained PCNN in FER. Experimental results show that our PCNN achieves superior results on several lab and real-world FER benchmarks: CK+, JAFFE, FER2013, FERPlus, RAF-DB and Occlusion and Pose Variant Dataset. Its code is available at https://github.com/hellloxiaotian/PCNN.

Authors:Yi Huo, Lei Zhang
Title: OCFER-Net: Recognizing Facial Expression in Online Learning System
Abstract:
Recently, online learning is very popular, especially under the global epidemic of COVID-19. Besides knowledge distribution, emotion interaction is also very important. It can be obtained by employing Facial Expression Recognition (FER). Since the FER accuracy is substantial in assisting teachers to acquire the emotional situation, the project explores a series of FER methods and finds that few works engage in exploiting the orthogonality of convolutional matrix. Therefore, it enforces orthogonality on kernels by a regularizer, which extracts features with more diversity and expressiveness, and delivers OCFER-Net. Experiments are carried out on FER-2013, which is a challenging dataset. Results show superior performance over baselines by 1.087. The code of the research project is publicly available on https://github.com/YeeHoran/OCFERNet.

Authors:Yi Huo, Yun Ge
Title: VAD-Net: Multidimensional Facial Expression Recognition in Intelligent Education System
Abstract:
Current FER (Facial Expression Recognition) dataset is mostly labeled by emotion categories, such as happy, angry, sad, fear, disgust, surprise, and neutral which are limited in expressiveness. However, future affective computing requires more comprehensive and precise emotion metrics which could be measured by VAD(Valence-Arousal-Dominance) multidimension parameters. To address this, AffectNet has tried to add VA (Valence and Arousal) information, but still lacks D(Dominance). Thus, the research introduces VAD annotation on FER2013 dataset, takes the initiative to label D(Dominance) dimension. Then, to further improve network capacity, it enforces orthogonalized convolution on it, which extracts more diverse and expressive features and will finally increase the prediction accuracy. Experiment results show that D dimension could be measured but is difficult to obtain compared with V and A dimension no matter in manual annotation or regression network prediction. Secondly, the ablation test by introducing orthogonal convolution verifies that better VAD prediction could be obtained in the configuration of orthogonal convolution. Therefore, the research provides an initiative labelling for D dimension on FER dataset, and proposes a better prediction network for VAD prediction through orthogonal convolution. The newly built VAD annotated FER2013 dataset could act as a benchmark to measure VAD multidimensional emotions, while the orthogonalized regression network based on ResNet could act as the facial expression recognition baseline for VAD emotion prediction. The newly labeled dataset and implementation code is publicly available on https://github.com/YeeHoran/VAD-Net .

Authors:Yuji Wang, Wenlong Liu, Jingxuan Niu, Haoji Zhang, Yansong Tang
Title: VG-Refiner: Towards Tool-Refined Referring Grounded Reasoning via Agentic Reinforcement Learning
Abstract:
Tool-integrated visual reasoning (TiVR) has demonstrated great potential in enhancing multimodal problem-solving. However, existing TiVR paradigms mainly focus on integrating various visual tools through reinforcement learning, while neglecting to design effective response mechanisms for handling unreliable or erroneous tool outputs. This limitation is particularly pronounced in referring and grounding tasks, where inaccurate detection tool predictions often mislead TiVR models into generating hallucinated reasoning. To address this issue, we propose the VG-Refiner, the first framework aiming at the tool-refined referring grounded reasoning. Technically, we introduce a two-stage think-rethink mechanism that enables the model to explicitly analyze and respond to tool feedback, along with a refinement reward that encourages effective correction in response to poor tool results. In addition, we propose two new metrics and establish fair evaluation protocols to systematically measure the refinement ability of current models. We adopt a small amount of task-specific data to enhance the refinement capability of VG-Refiner, achieving a significant improvement in accuracy and correction ability on referring and reasoning grounding benchmarks while preserving the general capabilities of the pretrained model.

Authors:Kaicheng Yang, Kaisen Yang, Baiting Wu, Xun Zhang, Qianrui Yang, Haotong Qin, He Zhang, Yulun Zhang
Title: TreeQ: Pushing the Quantization Boundary of Diffusion Transformer via Tree-Structured Mixed-Precision Search
Abstract:
Diffusion Transformers (DiTs) have emerged as a highly scalable and effective backbone for image generation, outperforming U-Net architectures in both scalability and performance. However, their real-world deployment remains challenging due to high computational and memory demands. Mixed-Precision Quantization (MPQ), designed to push the limits of quantization, has demonstrated remarkable success in advancing U-Net quantization to sub-4bit settings while significantly reducing computational and memory overhead. Nevertheless, its application to DiT architectures remains limited and underexplored. In this work, we propose TreeQ, a unified framework addressing key challenges in DiT quantization. First, to tackle inefficient search and proxy misalignment, we introduce Tree Structured Search (TSS). This DiT-specific approach leverages the architecture's linear properties to traverse the solution space in O(n) time while improving objective accuracy through comparison-based pruning. Second, to unify optimization objectives, we propose Environmental Noise Guidance (ENG), which aligns Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT) configurations using a single hyperparameter. Third, to mitigate information bottlenecks in ultra-low-bit regimes, we design the General Monarch Branch (GMB). This structured sparse branch prevents irreversible information loss, enabling finer detail generation. Through extensive experiments, our TreeQ framework demonstrates state-of-the-art performance on DiT-XL/2 under W3A3 and W4A4 PTQ/PEFT settings. Notably, our work is the first to achieve near-lossless 4-bit PTQ performance on DiT models. The code and models will be available at https://github.com/racoonykc/TreeQ

Authors:Haoyu Zhang, Junhan Luo, Yugang Cao, Siran Peng, Jie Huang, Liangjian-Deng
Title: S2WMamba: A Spectral-Spatial Wavelet Mamba for Pansharpening
Abstract:
Pansharpening fuses a high-resolution PAN image with a low-resolution multispectral (LRMS) image to produce an HRMS image. A key difficulty is that jointly processing PAN and MS often entangles spatial detail with spectral fidelity. We propose S2WMamba, which explicitly disentangles frequency information and then performs lightweight cross-modal interaction. Concretely, a 2D Haar DWT is applied to PAN to localize spatial edges and textures, while a channel-wise 1D Haar DWT treats each pixel's spectrum as a 1D signal to separate low/high-frequency components and limit spectral distortion. The resulting Spectral branch injects wavelet-extracted spatial details into MS features, and the Spatial branch refines PAN features using spectra from the 1D pyramid; the two branches exchange information through Mamba-based cross-modulation that models long-range dependencies with linear complexity. A multi-scale dynamic gate (multiplicative + additive) then adaptively fuses branch outputs.On WV3, GF2, and QB, S2WMamba matches or surpasses recent strong baselines (FusionMamba, CANNet, U2Net, ARConv), improving PSNR by up to 0.23 dB and reaching HQNR 0.956 on full-resolution WV3. Ablations justify the choice of 2D/1D DWT placement, parallel dual branches, and the fusion gate. Our code is available at https://github.com/KagUYa66/S2WMamba.

Authors:Hengzhuang Li, Xinsong Zhang, Qiming Peng, Bin Luo, Han Hu, Dengyang Jiang, Han-Jia Ye, Teng Zhang, Hai Jin
Title: Unleashing the Intrinsic Visual Representation Capability of Multimodal Large Language Models
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated remarkable proficiency in multimodal tasks. Despite their impressive performance, MLLMs suffer from the modality imbalance issue, where visual information is often underutilized compared to textual representations in deeper layers, leading to degraded visual performance or hallucinations. This issue stems from the predominant reliance on next-text-token-prediction during training, which fails to provide direct visual supervisory signals, resulting in progressive homogenization of visual representations throughout the layers. To this end, we propose Latent Visual Reconstruction (LaVer), a novel training framework that facilitates MLLMs in learning more discriminative visual representations via masked image modeling in the joint latent semantic space of LLM. Our method offers direct visual activation to MLLMs, which exhibit increased visual attention allocation, indicating enhanced utilization of visual information. Extensive experiments across diverse benchmarks prove the superiority of our approach in various scenarios, especially those requiring dense visual capabilities. Code of LaVer is available at https://github.com/Fir-lat/LaVer.

Authors:Chaoyang Wang, Yangfan He, Yiyang Zhou, Yixuan Wang, Jiaqi Liu, Peng Xia, Zhengzhong Tu, Mohit Bansal, Huaxiu Yao
Title: Knowing the Answer Isn't Enough: Fixing Reasoning Path Failures in LVLMs
Abstract:
We reveal a critical yet underexplored flaw in Large Vision-Language Models (LVLMs): even when these models know the correct answer, they frequently arrive there through incorrect reasoning paths. The core issue is not a lack of knowledge, but a path selection bias within the vast reasoning search space. Although LVLMs are often capable of sampling correct solution trajectories, they disproportionately favor unstable or logically inconsistent ones, leading to erratic and unreliable outcomes. The substantial disparity between Pass@K (with large K) and Pass@1 across numerous models provides compelling evidence that such failures primarily stem from misreasoning rather than ignorance. To systematically investigate and address this issue, we propose PSO (Path-Select Optimization), a two-stage post-training framework designed to enhance both the reasoning performance and stability of existing LVLMs. In the first stage, we employ Group Relative Policy Optimization (GRPO) with template and answer-based rewards to cultivate structured, step-by-step reasoning. In the second stage, we conduct online preference optimization, where the model samples reasoning paths from GRPO-generated data, self-evaluates them, and aligns itself toward the preferred trajectories. Incorrect or suboptimal paths are concurrently stored in a Negative Replay Memory (NRM) as hard negatives, which are periodically revisited to prevent the model from repeating prior mistakes and to facilitate continual reasoning refinement. Extensive experiments show that PSO effectively prunes invalid reasoning paths, substantially enhances reasoning accuracy (with 7.4% improvements on average), and yields more stable and consistent chains of thought. Our code will be available at https://github.com/aiming-lab/PSO.

Authors:Akis Linardos, Sarthak Pati, Ujjwal Baid, Brandon Edwards, Patrick Foley, Kevin Ta, Verena Chung, Micah Sheller, Muhammad Irfan Khan, Mojtaba Jafaritadi, Elina Kontio, Suleiman Khan, Leon Mächler, Ivan Ezhov, Suprosanna Shit, Johannes C. Paetzold, Gustav Grimberg, Manuel A. Nickel, David Naccache, Vasilis Siomos, Jonathan Passerat-Palmbach, Giacomo Tarroni, Daewoon Kim, Leonard L. Klausmann, Prashant Shah, Bjoern Menze, Dimitrios Makris, Spyridon Bakas
Title: The MICCAI Federated Tumor Segmentation (FeTS) Challenge 2024: Efficient and Robust Aggregation Methods for Federated Learning
Abstract:
We present the design and results of the MICCAI Federated Tumor Segmentation (FeTS) Challenge 2024, which focuses on federated learning (FL) for glioma sub-region segmentation in multi-parametric MRI and evaluates new weight aggregation methods aimed at improving robustness and efficiency. Six participating teams were evaluated using a standardized FL setup and a multi-institutional dataset derived from the BraTS glioma benchmark, consisting of 1,251 training cases, 219 validation cases, and 570 hidden test cases with segmentations for enhancing tumor (ET), tumor core (TC), and whole tumor (WT). Teams were ranked using a cumulative scoring system that considered both segmentation performance, measured by Dice Similarity Coefficient (DSC) and the 95th percentile Hausdorff Distance (HD95), and communication efficiency assessed through the convergence score. A PID-controller-based method achieved the top overall ranking, obtaining mean DSC values of 0.733, 0.761, and 0.751 for ET, TC, and WT, respectively, with corresponding HD95 values of 33.922 mm, 33.623 mm, and 32.309 mm, while also demonstrating the highest communication efficiency with a convergence score of 0.764. These findings advance the state of federated learning for medical imaging, surpassing top-performing methods from previous challenge iterations and highlighting PID controllers as effective mechanisms for stabilizing and optimizing weight aggregation in FL. The challenge code is available at https://github.com/FeTS-AI/Challenge.

Authors:Yifang Xu, Jiahao Cui, Feipeng Cai, Zhihao Zhu, Hanlin Shang, Shan Luan, Mingwang Xu, Neng Zhang, Yaoyi Li, Jia Cai, Siyu Zhu
Title: WAM-Flow: Parallel Coarse-to-Fine Motion Planning via Discrete Flow Matching for Autonomous Driving
Abstract:
We introduce WAM-Flow, a vision-language-action (VLA) model that casts ego-trajectory planning as discrete flow matching over a structured token space. In contrast to autoregressive decoders, WAM-Flow performs fully parallel, bidirectional denoising, enabling coarse-to-fine refinement with a tunable compute-accuracy trade-off. Specifically, the approach combines a metric-aligned numerical tokenizer that preserves scalar geometry via triplet-margin learning, a geometry-aware flow objective and a simulator-guided GRPO alignment that integrates safety, ego progress, and comfort rewards while retaining parallel generation. A multi-stage adaptation converts a pre-trained auto-regressive backbone (Janus-1.5B) from causal decoding to non-causal flow model and strengthens road-scene competence through continued multimodal pretraining. Thanks to the inherent nature of consistency model training and parallel decoding inference, WAM-Flow achieves superior closed-loop performance against autoregressive and diffusion-based VLA baselines, with 1-step inference attaining 89.1 PDMS and 5-step inference reaching 90.3 PDMS on NAVSIM v1 benchmark. These results establish discrete flow matching as a new promising paradigm for end-to-end autonomous driving. The code will be publicly available soon.

Authors:Runjia Li, Moayed Haji-Ali, Ashkan Mirzaei, Chaoyang Wang, Arpit Sahni, Ivan Skorokhodov, Aliaksandr Siarohin, Tomas Jakab, Junlin Han, Sergey Tulyakov, Philip Torr, Willi Menapace
Title: EgoEdit: Dataset, Real-Time Streaming Model, and Benchmark for Egocentric Video Editing
Abstract:
We study instruction-guided editing of egocentric videos for interactive AR applications. While recent AI video editors perform well on third-person footage, egocentric views present unique challenges - including rapid egomotion and frequent hand-object interactions - that create a significant domain gap. Moreover, existing offline editing pipelines suffer from high latency, limiting real-time interaction. To address these issues, we present a complete ecosystem for egocentric video editing. First, we construct EgoEditData, a carefully designed and manually curated dataset specifically designed for egocentric editing scenarios, featuring rich hand-object interactions, while explicitly preserving hands. Second, we develop EgoEdit, an instruction-following egocentric video editor that supports real-time streaming inference on a single GPU. Finally, we introduce EgoEditBench, an evaluation suite targeting instruction faithfulness, hand and interaction preservation, and temporal stability under egomotion. Across both egocentric and general editing tasks, EgoEdit produces temporally stable, instruction-faithful results with interactive latency. It achieves clear gains on egocentric editing benchmarks-where existing methods struggle-while maintaining performance comparable to the strongest baselines on general editing tasks. EgoEditData and EgoEditBench will be made public for the research community. See our website at https://snap-research.github.io/EgoEdit

Authors:Wenyi Mo, Tianyu Zhang, Yalong Bai, Ligong Han, Ying Ba, Dimitris N. Metaxas
Title: PrefGen: Multimodal Preference Learning for Preference-Conditioned Image Generation
Abstract:
Preference-conditioned image generation seeks to adapt generative models to individual users, producing outputs that reflect personal aesthetic choices beyond the given textual prompt. Despite recent progress, existing approaches either fail to capture nuanced user preferences or lack effective mechanisms to encode personalized visual signals. In this work, we propose a multimodal framework that leverages multimodal large language models (MLLMs) to extract rich user representations and inject them into diffusion-based image generation. We train the MLLM with a preference-oriented visual question answering task to capture fine-grained semantic cues. To isolate preference-relevant features, we introduce two complementary probing tasks: inter-user discrimination to distinguish between different users, and intra-user discrimination to separate liked from disliked content. To ensure compatibility with diffusion text encoders, we design a maximum mean discrepancy-based alignment loss that bridges the modality gap while preserving multimodal structure. The resulting embeddings are used to condition the generator, enabling faithful adherence to both prompts and user preferences. Extensive experiments demonstrate that our method substantially outperforms strong baselines in both image quality and preference alignment, highlighting the effectiveness of representation extraction and alignment for personalized generation.

Authors:Wenhao Li, Chengwei Ma, Weixin Mao
Title: VAT: Vision Action Transformer by Unlocking Full Representation of ViT
Abstract:
In robot learning, Vision Transformers (ViTs) are standard for visual perception, yet most methods discard valuable information by using only the final layer's features. We argue this provides an insufficient representation and propose the Vision Action Transformer (VAT), a novel architecture that is extended from ViT and unlocks the full feature hierarchy of ViT. VAT processes specialized action tokens with visual features across all transformer layers, enabling a deep and progressive fusion of perception and action generation. On a suite of simulated manipulation tasks, VAT achieves a 98.15\% average success rate across four LIBERO benchmarks, establishing a new state-of-the-art by outperforming prior methods like OpenVLA-OFT. Our work presents not only a powerful model for imitation learning but also demonstrates the critical importance of leveraging the complete ''representation trajectory'' of vision models to advance robotic policy. The GitHub URL for the project code is https://github.com/sellerbubble/VAT.

Authors:Yi Liu, Jingyu Song, Vedanth Kallakuri, Katherine A. Skinner
Title: FishDetector-R1: Unified MLLM-Based Framework with Reinforcement Fine-Tuning for Weakly Supervised Fish Detection, Segmentation, and Counting
Abstract:
Analyzing underwater fish imagery is critical for ecological monitoring but remains difficult due to visual degradation and costly annotations. We introduce FishDetector-R1, a unified MLLM-based framework for fish detection, segmentation, and counting under weak supervision. On the DeepFish dataset, our framework achieves substantial gains over baselines, improving AP by 20% and mIoU by 10%, while reducing MAE by 30% and GAME by 35%. These improvements stem from two key components: a novel detect-to-count prompt that enforces spatially consistent detections and counts, and Reinforcement Learning from Verifiable Reward (RLVR) with a complementary scalable paradigm leveraging sparse point labels. Ablation studies further validate the effectiveness of this reward design. Moreover, the improvement generalizes well to other underwater datasets, confirming strong cross-domain robustness. Overall, FishDetector-R1 provides a reliable and scalable solution for accurate marine visual understanding via weak supervision. The project page for FishDetector-R1 is https://umfieldrobotics.github.io/FishDetector-R1.

Authors:Hokin Deng
Title: Video Models Start to Solve Chess, Maze, Sudoku, Mental Rotation, and Raven' Matrices
Abstract:
We show that video generation models could reason now. Testing on tasks such as chess, maze, Sudoku, mental rotation, and Raven's Matrices, leading models such as Sora-2 achieve sixty percent success rates. We establish a robust experimental paradigm centered on the "Task Pair" design. We build a code framework, with 39 models available already, that supports this paradigm and allows for easy scaling - users can add models and tasks efficiently. We show our automated evaluation strongly correlates with human judgment, and therefore this paradigm is highly scalable. We see an opportunity, given the availability of our paradigm, to do reinforcement learning for improving reasoning in video models. You could checkout all of our raw $\href{https://grow-ai-like-a-child.com/video-reason/}{results}$ and our $\href{https://github.com/hokindeng/VMEvalKit}{VMEvalKit}$ codebase.

Authors:Hongyu Li, Manyuan Zhang, Dian Zheng, Ziyu Guo, Yimeng Jia, Kaituo Feng, Hao Yu, Yexin Liu, Yan Feng, Peng Pei, Xunliang Cai, Linjiang Huang, Hongsheng Li, Si Liu
Title: EditThinker: Unlocking Iterative Reasoning for Any Image Editor
Abstract:
Instruction-based image editing has emerged as a prominent research area, which, benefiting from image generation foundation models, have achieved high aesthetic quality, making instruction-following capability the primary challenge. Existing approaches improve instruction adherence via supervised or reinforcement learning, yet single-turn success rates remain limited due to inherent stochasticity and a lack of deliberation. In this work, we propose a deliberative editing framework to 'think' while they edit, which simulates the human cognitive loop by iteratively executing a Think-while-Edit cycle: Critiquing results and Refining instructions , followed by Repeating the generation until satisfactory. Specifically, we train a single MLLM, EditThinker, to act as the reasoning engine of this framework, which jointly produce the critique score, reasoning process, and refined instructions. We employ reinforcement learning to align the EditThinker's thinking with its editing, thereby generating more targeted instruction improvements. Extensive experiments on four benchmarks demonstrate that our approach significantly improves the instruction-following capability of any image editing model by a large margin. We will release our data construction framework, datasets, and models to benefit the community.

Authors:Zhiyuan Jiang, Shenghao Xie, Wenyi Li, Wenqiang Zu, Peihang Li, Jiahao Qiu, Siqi Pei, Lei Ma, Tiejun Huang, Mengdi Wang, Shilong Liu
Title: Zoom in, Click out: Unlocking and Evaluating the Potential of Zooming for GUI Grounding
Abstract:
Grounding is a fundamental capability for building graphical user interface (GUI) agents. Although existing approaches rely on large-scale bounding box supervision, they still face various challenges, such as cross-platform generalization, complex layout analysis, and fine-grained element localization. In this paper, we investigate zoom as a strong yet underexplored prior for GUI grounding, and propose a training-free method, ZoomClick. By characterizing four key properties of zoom (i.e., pre-zoom, depth, shrink size, minimal crop size), we unlock its full capabilities for dynamic spatial focusing and adaptive context switching. Experiments demonstrate that our method significantly boosts the performance of both general vision-language and specialized GUI grounding models, achieving state-of-the-art results on several mainstream benchmarks; for example, UI-Venus-72B attains a 73.1% success rate on ScreenSpot-Pro. Furthermore, we present GUIZoom-Bench, a benchmark for evaluating model adaptability to zoom, aiming to inspire future research on improving zoom for further training and test-time scaling in GUI grounding tasks.

Authors:Muhammet Cagri Yeke, Samil Sirin, Kivilcim Yuksel, Abdurrahman Gumus
Title: Phase-OTDR Event Detection Using Image-Based Data Transformation and Deep Learning
Abstract:
This study focuses on event detection in optical fibers, specifically classifying six events using the Phase-OTDR system. A novel approach is introduced to enhance Phase-OTDR data analysis by transforming 1D data into grayscale images through techniques such as Gramian Angular Difference Field, Gramian Angular Summation Field, and Recurrence Plot. These grayscale images are combined into a multi-channel RGB representation, enabling more robust and adaptable analysis using transfer learning models. The proposed methodology achieves high classification accuracies of 98.84% and 98.24% with the EfficientNetB0 and DenseNet121 models, respectively. A 5-fold cross-validation process confirms the reliability of these models, with test accuracy rates of 99.07% and 98.68%. Using a publicly available Phase-OTDR dataset, the study demonstrates an efficient approach to understanding optical fiber events while reducing dataset size and improving analysis efficiency. The results highlight the transformative potential of image-based analysis in interpreting complex fiber optic sensing data, offering significant advancements in the accuracy and reliability of fiber optic monitoring systems. The codes and the corresponding image-based dataset are made publicly available on GitHub to support further research: https://github.com/miralab-ai/Phase-OTDR-event-detection.

Authors:Fubao Zhu, Zhanyuan Jia, Zhiguo Wang, Huan Huang, Danyang Sun, Chuang Han, Yanting Li, Jiaofen Nan, Chen Zhao, Weihua Zhou
Title: UG-FedDA: Uncertainty-Guided Federated Domain Adaptation for Multi-Center Alzheimer's Disease Detection
Abstract:
Alzheimer's disease (AD) is an irreversible neurodegenerative disorder, and early diagnosis is critical for timely intervention. However, most existing classification frameworks face challenges in multicenter studies, as they often neglect inter-site heterogeneity and lack mechanisms to quantify uncertainty, which limits their robustness and clinical applicability. To address these issues, we proposed Uncertainty-Guided Federated Domain Adaptation (UG-FedDA), a novel multicenter AD classification framework that integrates uncertainty quantification (UQ) with federated domain adaptation to handle cross-site structure magnetic resonance imaging (MRI) heterogeneity under privacy constraints. Our approach extracts multi-template region-of-interest (RoI) features using a self-attention transformer, capturing both regional representations and their interactions. UQ is integrated to guide feature alignment, mitigating source-target distribution shifts by down-weighting uncertain samples. Experiments are conducted on three public datasets: the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Australian Imaging, Biomarkers and Lifestyle study (AIBL), and the Open Access Series of Imaging Studies (OASIS). UG-FedDA achieved consistent cross-domain improvements in accuracy, sensitivity, and area under the ROC curve across three classification tasks: AD vs. normal controls (NC), mild cognitive impairment (MCI) vs. AD, and NC vs. MCI. For NC vs. AD, UG-FedDA achieves accuracies of 90.54%, 89.04%, and 77.78% on ADNI, AIBL and OASIS datasets, respectively. For MCI vs. AD, accuracies are 80.20% (ADNI), 71.91% (AIBL), and 79.73% (OASIS). For NC vs. MCI, results are 76.87% (ADNI), 73.91% (AIBL), and 83.73% (OASIS). These results demonstrate that the proposed framework not only adapts efficiently across multiple sites but also preserves strict privacy.

Authors:Saurav Jha, M. Jehanzeb Mirza, Wei Lin, Shiqi Yang, Sarath Chandar
Title: Probing the effectiveness of World Models for Spatial Reasoning through Test-time Scaling
Abstract:
Vision-Language Models (VLMs) remain limited in spatial reasoning tasks that require multi-view understanding and embodied perspective shifts. Recent approaches such as MindJourney attempt to mitigate this gap through test-time scaling where a world model imagines action-conditioned trajectories and a heuristic verifier selects helpful views from such trajectories. In this work, we systematically examine how such test-time verifiers behave across benchmarks, uncovering both their promise and their pitfalls. Our uncertainty-based analyses show that MindJourney's verifier provides little meaningful calibration, and that random scoring often reduces answer entropy equally well, thus exposing systematic action biases and unreliable reward signals. To mitigate these, we introduce a Verification through Spatial Assertions (ViSA) framework that grounds the test-time reward in verifiable, frame-anchored micro-claims. This principled verifier consistently improves spatial reasoning on the SAT-Real benchmark and corrects trajectory-selection biases through more balanced exploratory behavior. However, on the challenging MMSI-Bench, none of the verifiers, including ours, achieve consistent scaling, suggesting that the current world models form an information bottleneck where imagined views fail to enrich fine-grained reasoning. Together, these findings chart the bad, good, and ugly aspects of test-time verification for world-model-based reasoning. Our code is available at https://github.com/chandar-lab/visa-for-mindjourney.

Authors:Jiahua Dong, Xudong Wang, Wenqi Liang, Zongyan Han, Meng Cao, Duzhen Zhang, Hanbin Zhao, Zhi Han, Salman Khan, Fahad Shahbaz Khan
Title: Bring Your Dreams to Life: Continual Text-to-Video Customization
Abstract:
Customized text-to-video generation (CTVG) has recently witnessed great progress in generating tailored videos from user-specific text. However, most CTVG methods assume that personalized concepts remain static and do not expand incrementally over time. Additionally, they struggle with forgetting and concept neglect when continuously learning new concepts, including subjects and motions. To resolve the above challenges, we develop a novel Continual Customized Video Diffusion (CCVD) model, which can continuously learn new concepts to generate videos across various text-to-video generation tasks by tackling forgetting and concept neglect. To address catastrophic forgetting, we introduce a concept-specific attribute retention module and a task-aware concept aggregation strategy. They can capture the unique characteristics and identities of old concepts during training, while combining all subject and motion adapters of old concepts based on their relevance during testing. Besides, to tackle concept neglect, we develop a controllable conditional synthesis to enhance regional features and align video contexts with user conditions, by incorporating layer-specific region attention-guided noise estimation. Extensive experimental comparisons demonstrate that our CCVD outperforms existing CTVG models. The code is available at https://github.com/JiahuaDong/CCVD.

Authors:Maryam Yousefi, Soodeh Bakhshandeh
Title: Curvature-Regularized Variational Autoencoder for 3D Scene Reconstruction from Sparse Depth
Abstract:
When depth sensors provide only 5% of needed measurements, reconstructing complete 3D scenes becomes difficult. Autonomous vehicles and robots cannot tolerate the geometric errors that sparse reconstruction introduces. We propose curvature regularization through a discrete Laplacian operator, achieving 18.1% better reconstruction accuracy than standard variational autoencoders. Our contribution challenges an implicit assumption in geometric deep learning: that combining multiple geometric constraints improves performance. A single well-designed regularization term not only matches but exceeds the effectiveness of complex multi-term formulations. The discrete Laplacian offers stable gradients and noise suppression with just 15% training overhead and zero inference cost. Code and models are available at https://github.com/Maryousefi/GeoVAE-3D.

Authors:Yong En Kok, Bowen Deng, Alexander Bentley, Andrew J. Parkes, Michael G. Somekh, Amanda J. Wright, Michael P. Pound
Title: Physics-Informed Graph Neural Network with Frequency-Aware Learning for Optical Aberration Correction
Abstract:
Optical aberrations significantly degrade image quality in microscopy, particularly when imaging deeper into samples. These aberrations arise from distortions in the optical wavefront and can be mathematically represented using Zernike polynomials. Existing methods often address only mild aberrations on limited sample types and modalities, typically treating the problem as a black-box mapping without leveraging the underlying optical physics of wavefront distortions. We propose ZRNet, a physics-informed framework that jointly performs Zernike coefficient prediction and optical image Restoration. We contribute a Zernike Graph module that explicitly models physical relationships between Zernike polynomials based on their azimuthal degrees-ensuring that learned corrections align with fundamental optical principles. To further enforce physical consistency between image restoration and Zernike prediction, we introduce a Frequency-Aware Alignment (FAA) loss, which better aligns Zernike coefficient prediction and image features in the Fourier domain. Extensive experiments on CytoImageNet demonstrates that our approach achieves state-of-the-art performance in both image restoration and Zernike coefficient prediction across diverse microscopy modalities and biological samples with complex, large-amplitude aberrations. Code is available at https://github.com/janetkok/ZRNet.

Authors:Yeobin Hong, Suhyeon Lee, Hyungjin Chung, Jong Chul Ye
Title: InverseCrafter: Efficient Video ReCapture as a Latent Domain Inverse Problem
Abstract:
Recent approaches to controllable 4D video generation often rely on fine-tuning pre-trained Video Diffusion Models (VDMs). This dominant paradigm is computationally expensive, requiring large-scale datasets and architectural modifications, and frequently suffers from catastrophic forgetting of the model's original generative priors. Here, we propose InverseCrafter, an efficient inpainting inverse solver that reformulates the 4D generation task as an inpainting problem solved in the latent space. The core of our method is a principled mechanism to encode the pixel space degradation operator into a continuous, multi-channel latent mask, thereby bypassing the costly bottleneck of repeated VAE operations and backpropagation. InverseCrafter not only achieves comparable novel view generation and superior measurement consistency in camera control tasks with near-zero computational overhead, but also excels at general-purpose video inpainting with editing. Code is available at https://github.com/yeobinhong/InverseCrafter.

Authors:Talha Enes Koksal, Abdurrahman Gumus
Title: Deep Learning-Based Real-Time Sequential Facial Expression Analysis Using Geometric Features
Abstract:
Facial expression recognition is a crucial component in enhancing human-computer interaction and developing emotion-aware systems. Real-time detection and interpretation of facial expressions have become increasingly important for various applications, from user experience personalization to intelligent surveillance systems. This study presents a novel approach to real-time sequential facial expression recognition using deep learning and geometric features. The proposed method utilizes MediaPipe FaceMesh for rapid and accurate facial landmark detection. Geometric features, including Euclidean distances and angles, are extracted from these landmarks. Temporal dynamics are incorporated by analyzing feature differences between consecutive frames, enabling the detection of onset, apex, and offset phases of expressions. For classification, a ConvLSTM1D network followed by multilayer perceptron blocks is employed. The method's performance was evaluated on multiple publicly available datasets, including CK+, Oulu-CASIA (VIS and NIR), and MMI. Accuracies of 93%, 79%, 77%, and 68% were achieved respectively. Experiments with composite datasets were also conducted to assess the model's generalization capabilities. The approach demonstrated real-time applicability, processing approximately 165 frames per second on consumer-grade hardware. This research contributes to the field of facial expression analysis by providing a fast, accurate, and adaptable solution. The findings highlight the potential for further advancements in emotion-aware technologies and personalized user experiences, paving the way for more sophisticated human-computer interaction systems. To facilitate further research in this field, the complete source code for this study has been made publicly available on GitHub: https://github.com/miralab-ai/facial-expression-analysis.

Authors:Shuai Dong, Siyuan Wang, Xingyu Liu, Zhongyu Wei
Title: Interleaved Latent Visual Reasoning with Selective Perceptual Modeling
Abstract:
Interleaved reasoning paradigms enhance Multimodal Large Language Models (MLLMs) with visual feedback but are hindered by the prohibitive computational cost of repeatedly re-encoding pixel-dense images. A promising alternative, latent visual reasoning, circumvents this bottleneck yet currently forces a critical trade-off: methods either sacrifice precise perceptual modeling by over-compressing features or fail to model dynamic problems due to static, non-interleaved structures. We introduce Interleaved Latent Visual Reasoning (ILVR), a framework that unifies dynamic state evolution with precise perceptual modeling. ILVR interleaves textual generation with latent visual representations that act as specific, evolving cues for subsequent reasoning. To enable this, we employ a self-supervision strategy where a Momentum Teacher Model selectively distills relevant features from helper images into sparse supervision targets. This adaptive selection mechanism guides the model to autonomously generate context-aware visual signals. Extensive experiments on multimodal reasoning benchmarks demonstrate that ILVR significantly outperforms existing approaches, effectively bridging the gap between fine-grained perception and sequential multimodal reasoning.

Authors:Georgy Perevozchikov, Nancy Mehta, Egor Ershov, Radu Timofte
Title: Experts-Guided Unbalanced Optimal Transport for ISP Learning from Unpaired and/or Paired Data
Abstract:
Learned Image Signal Processing (ISP) pipelines offer powerful end-to-end performance but are critically dependent on large-scale paired raw-to-sRGB datasets. This reliance on costly-to-acquire paired data remains a significant bottleneck. To address this challenge, we introduce a novel, unsupervised training framework based on Optimal Transport capable of training arbitrary ISP architectures in both unpaired and paired modes. We are the first to successfully apply Unbalanced Optimal Transport (UOT) for this complex, cross-domain translation task. Our UOT-based framework provides robustness to outliers in the target sRGB data, allowing it to discount atypical samples that would be prohibitively costly to map. A key component of our framework is a novel ``committee of expert discriminators,'' a hybrid adversarial regularizer. This committee guides the optimal transport mapping by providing specialized, targeted gradients to correct specific ISP failure modes, including color fidelity, structural artifacts, and frequency-domain realism. To demonstrate the superiority of our approach, we retrained existing state-of-the-art ISP architectures using our paired and unpaired setups. Our experiments show that while our framework, when trained in paired mode, exceeds the performance of the original paired methods across all metrics, our unpaired mode concurrently achieves quantitative and qualitative performance that rivals, and in some cases surpasses, the original paired-trained counterparts. The code and pre-trained models are available at: https://github.com/gosha20777/EGUOT-ISP.git.

Authors:Pasquale De Marinis, Pieter M. Blok, Uzay Kaymak, Rogier Brussee, Gennaro Vessio, Giovanna Castellano
Title: DistillFSS: Synthesizing Few-Shot Knowledge into a Lightweight Segmentation Model
Abstract:
Cross-Domain Few-Shot Semantic Segmentation (CD-FSS) seeks to segment unknown classes in unseen domains using only a few annotated examples. This setting is inherently challenging: source and target domains exhibit substantial distribution shifts, label spaces are disjoint, and support images are scarce--making standard episodic methods unreliable and computationally demanding at test time. To address these constraints, we propose DistillFSS, a framework that embeds support-set knowledge directly into a model's parameters through a teacher--student distillation process. By internalizing few-shot reasoning into a dedicated layer within the student network, DistillFSS eliminates the need for support images at test time, enabling fast, lightweight inference, while allowing efficient extension to novel classes in unseen domains through rapid teacher-driven specialization. Combined with fine-tuning, the approach scales efficiently to large support sets and significantly reduces computational overhead. To evaluate the framework under realistic conditions, we introduce a new CD-FSS benchmark spanning medical imaging, industrial inspection, and remote sensing, with disjoint label spaces and variable support sizes. Experiments show that DistillFSS matches or surpasses state-of-the-art baselines, particularly in multi-class and multi-shot scenarios, while offering substantial efficiency gains. The code is available at https://github.com/pasqualedem/DistillFSS.

Authors:Chinthani Sugandhika, Chen Li, Deepu Rajan, Basura Fernando
Title: VOST-SGG: VLM-Aided One-Stage Spatio-Temporal Scene Graph Generation
Abstract:
Spatio-temporal scene graph generation (ST-SGG) aims to model objects and their evolving relationships across video frames, enabling interpretable representations for downstream reasoning tasks such as video captioning and visual question answering. Despite recent advancements in DETR-style single-stage ST-SGG models, they still suffer from several key limitations. First, while these models rely on attention-based learnable queries as a core component, these learnable queries are semantically uninformed and instance-agnostically initialized. Second, these models rely exclusively on unimodal visual features for predicate classification. To address these challenges, we propose VOST-SGG, a VLM-aided one-stage ST-SGG framework that integrates the common sense reasoning capabilities of vision-language models (VLMs) into the ST-SGG pipeline. First, we introduce the dual-source query initialization strategy that disentangles what to attend to from where to attend, enabling semantically grounded what-where reasoning. Furthermore, we propose a multi-modal feature bank that fuses visual, textual, and spatial cues derived from VLMs for improved predicate classification. Extensive experiments on the Action Genome dataset demonstrate that our approach achieves state-of-the-art performance, validating the effectiveness of integrating VLM-aided semantic priors and multi-modal features for ST-SGG. We will release the code at https://github.com/LUNAProject22/VOST.

Authors:Yuhua Wen, Qifei Li, Yingying Zhou, Yingming Gao, Zhengqi Wen, Jianhua Tao, Ya Li
Title: DashFusion: Dual-stream Alignment with Hierarchical Bottleneck Fusion for Multimodal Sentiment Analysis
Abstract:
Multimodal sentiment analysis (MSA) integrates various modalities, such as text, image, and audio, to provide a more comprehensive understanding of sentiment. However, effective MSA is challenged by alignment and fusion issues. Alignment requires synchronizing both temporal and semantic information across modalities, while fusion involves integrating these aligned features into a unified representation. Existing methods often address alignment or fusion in isolation, leading to limitations in performance and efficiency. To tackle these issues, we propose a novel framework called Dual-stream Alignment with Hierarchical Bottleneck Fusion (DashFusion). Firstly, dual-stream alignment module synchronizes multimodal features through temporal and semantic alignment. Temporal alignment employs cross-modal attention to establish frame-level correspondences among multimodal sequences. Semantic alignment ensures consistency across the feature space through contrastive learning. Secondly, supervised contrastive learning leverages label information to refine the modality features. Finally, hierarchical bottleneck fusion progressively integrates multimodal information through compressed bottleneck tokens, which achieves a balance between performance and computational efficiency. We evaluate DashFusion on three datasets: CMU-MOSI, CMU-MOSEI, and CH-SIMS. Experimental results demonstrate that DashFusion achieves state-of-the-art performance across various metrics, and ablation studies confirm the effectiveness of our alignment and fusion techniques. The codes for our experiments are available at https://github.com/ultramarineX/DashFusion.

Authors:Chinthani Sugandhika, Chen Li, Deepu Rajan, Basura Fernando
Title: Know-Show: Benchmarking Video-Language Models on Spatio-Temporal Grounded Reasoning
Abstract:
Large Video-Language Models (Video-LMs) have achieved impressive progress in multimodal understanding, yet their reasoning remains weakly grounded in space and time. We present Know-Show, a new benchmark designed to evaluate spatio-temporal grounded reasoning, the ability of a model to reason about actions and their semantics while simultaneously grounding its inferences in visual and temporal evidence. Know-Show unifies reasoning and localization within a single evaluation framework consisting of five complementary scenarios across spatial (person, object, person-object, and hand-object) and temporal dimensions. Built from Charades, Action Genome, and Ego4D with 2.5K human-authored questions, the benchmark exposes significant gaps between current Video-LMs and human reasoning. To bridge this gap, we propose GRAM, a training-free plug-in that augments Video-LMs with fine-grained grounding through attention-based video token selection and explicit timestamp encoding. Extensive experiments across open and closed Video-LMs (Qwen, VideoLLaVA, GPT-4o, and Gemini, etc.) reveal that existing models struggle to "show what they know" and vice versa, especially in fine-grained hand-object interactions. Know-Show establishes a unified standard for assessing grounded reasoning in video-language understanding and provides insights toward developing interpretable and reliable multimodal reasoning systems. We will release the dataset and the code at https://github.com/LUNAProject22/Know-Show.

Authors:Chuang Yu, Jinmiao Zhao, Yunpeng Liu, Yaokun Li, Xiujun Shu, Yuanhao Feng, Bo Wang, Yimian Dai, Xiangyu Yue
Title: Rethinking Infrared Small Target Detection: A Foundation-Driven Efficient Paradigm
Abstract:
While large-scale visual foundation models (VFMs) exhibit strong generalization across diverse visual domains, their potential for single-frame infrared small target (SIRST) detection remains largely unexplored. To fill this gap, we systematically introduce the frozen representations from VFMs into the SIRST task for the first time and propose a Foundation-Driven Efficient Paradigm (FDEP), which can seamlessly adapt to existing encoder-decoder-based methods and significantly improve accuracy without additional inference overhead. Specifically, a Semantic Alignment Modulation Fusion (SAMF) module is designed to achieve dynamic alignment and deep fusion of the global semantic priors from VFMs with task-specific features. Meanwhile, to avoid the inference time burden introduced by VFMs, we propose a Collaborative Optimization-based Implicit Self-Distillation (CO-ISD) strategy, which enables implicit semantic transfer between the main and lightweight branches through parameter sharing and synchronized backpropagation. In addition, to unify the fragmented evaluation system, we construct a Holistic SIRST Evaluation (HSE) metric that performs multi-threshold integral evaluation at both pixel-level confidence and target-level robustness, providing a stable and comprehensive basis for fair model comparison. Extensive experiments demonstrate that the SIRST detection networks equipped with our FDEP framework achieve state-of-the-art (SOTA) performance on multiple public datasets. Our code is available at https://github.com/YuChuang1205/FDEP-Framework

Authors:Mai Tsujimoto
Title: Concept-based Explainable Data Mining with VLM for 3D Detection
Abstract:
Rare-object detection remains a challenging task in autonomous driving systems, particularly when relying solely on point cloud data. Although Vision-Language Models (VLMs) exhibit strong capabilities in image understanding, their potential to enhance 3D object detection through intelligent data mining has not been fully explored. This paper proposes a novel cross-modal framework that leverages 2D VLMs to identify and mine rare objects from driving scenes, thereby improving 3D object detection performance. Our approach synthesizes complementary techniques such as object detection, semantic feature extraction, dimensionality reduction, and multi-faceted outlier detection into a cohesive, explainable pipeline that systematically identifies rare but critical objects in driving scenes. By combining Isolation Forest and t-SNE-based outlier detection methods with concept-based filtering, the framework effectively identifies semantically meaningful rare objects. A key strength of this approach lies in its ability to extract and annotate targeted rare object concepts such as construction vehicles, motorcycles, and barriers. This substantially reduces the annotation burden and focuses only on the most valuable training samples. Experiments on the nuScenes dataset demonstrate that this concept-guided data mining strategy enhances the performance of 3D object detection models while utilizing only a fraction of the training data, with particularly notable improvements for challenging object categories such as trailers and bicycles compared with the same amount of random data. This finding has substantial implications for the efficient curation of datasets in safety-critical autonomous systems.

Authors:Jialin Li, Yiwei Ren, Kai Pan, Dong Wei, Pujin Cheng, Xian Wu, Xiaoying Tang
Title: UniFS: Unified Multi-Contrast MRI Reconstruction via Frequency-Spatial Fusion
Abstract:
Recently, Multi-Contrast MR Reconstruction (MCMR) has emerged as a hot research topic that leverages high-quality auxiliary modalities to reconstruct undersampled target modalities of interest. However, existing methods often struggle to generalize across different k-space undersampling patterns, requiring the training of a separate model for each specific pattern, which limits their practical applicability. To address this challenge, we propose UniFS, a Unified Frequency-Spatial Fusion model designed to handle multiple k-space undersampling patterns for MCMR tasks without any need for retraining. UniFS integrates three key modules: a Cross-Modal Frequency Fusion module, an Adaptive Mask-Based Prompt Learning module, and a Dual-Branch Complementary Refinement module. These modules work together to extract domain-invariant features from diverse k-space undersampling patterns while dynamically adapt to their own variations. Another limitation of existing MCMR methods is their tendency to focus solely on spatial information while neglect frequency characteristics, or extract only shallow frequency features, thus failing to fully leverage complementary cross-modal frequency information. To relieve this issue, UniFS introduces an adaptive prompt-guided frequency fusion module for k-space learning, significantly enhancing the model's generalization performance. We evaluate our model on the BraTS and HCP datasets with various k-space undersampling patterns and acceleration factors, including previously unseen patterns, to comprehensively assess UniFS's generalizability. Experimental results across multiple scenarios demonstrate that UniFS achieves state-of-the-art performance. Our code is available at https://github.com/LIKP0/UniFS.

Authors:Takara Taniguchi, Yudai Ueda, Atsuya Muramatsu, Kohki Hashimoto, Ryo Yagi, Hideya Ochiai, Chaodit Aswakul
Title: University Building Recognition Dataset in Thailand for the mission-oriented IoT sensor system
Abstract:
Many industrial sectors have been using of machine learning at inference mode on edge devices. Future directions show that training on edge devices is promising due to improvements in semiconductor performance. Wireless Ad Hoc Federated Learning (WAFL) has been proposed as a promising approach for collaborative learning with device-to-device communication among edges. In particular, WAFL with Vision Transformer (WAFL-ViT) has been tested on image recognition tasks with the UTokyo Building Recognition Dataset (UTBR). Since WAFL-ViT is a mission-oriented sensor system, it is essential to construct specific datasets by each mission. In our work, we have developed the Chulalongkorn University Building Recognition Dataset (CUBR), which is specialized for Chulalongkorn University as a case study in Thailand. Additionally, our results also demonstrate that training on WAFL scenarios achieves better accuracy than self-training scenarios. Dataset is available in https://github.com/jo2lxq/wafl/.

Authors:Jiangtong Tan, Lin Liu, Jie Huanng, Xiaopeng Zhang, Qi Tian, Feng Zhao
Title: ParaUni: Enhance Generation in Unified Multimodal Model with Reinforcement-driven Hierarchical Parallel Information Interaction
Abstract:
Unified multimodal models significantly improve visual generation by combining vision-language models (VLMs) with diffusion models. However, existing methods struggle to fully balance sufficient interaction and flexible implementation due to vast representation difference. Considering abundant and hierarchical information in VLM's layers from low-level details to high-level semantics, we propose \textbf{ParaUni}. It extracts features from variants VLM's layers in a \textbf{Para}llel way for comprehensive information interaction and retains a flexible separation architecture to enhance generation in \textbf{Uni}fied multimodal model. Concretely, visual features from all VLM's layers are fed in parallel into a Layer Integration Module (LIM), which efficiently integrates fine-grained details and semantic abstractions and provides the fused representation as a condition to the diffusion model. To further enhance performance, we reveal that these hierarchical layers respond unequally to different rewards in Reinforcement Learning (RL). Crucially, we design a Layer-wise Dynamic Adjustment Mechanism (LDAM) to facilitate multiple reward improvements that aligns the hierarchical properties of these layers using RL. Extensive experiments show ParaUni leverages complementary multi-layer features to substantially improve generation quality and shows strong potential for multiple reward advances during RL stages. Code is available at https://github.com/JosephTiTan/ParaUni.

Authors:Yida Lin, Bing Xue, Mengjie Zhang, Sam Schofield, Richard Green
Title: Performance Evaluation of Deep Learning for Tree Branch Segmentation in Autonomous Forestry Systems
Abstract:
UAV-based autonomous forestry operations require rapid and precise tree branch segmentation for safe navigation and automated pruning across varying pixel resolutions and operational conditions. We evaluate different deep learning methods at three resolutions (256x256, 512x512, 1024x1024) using the Urban Street Tree Dataset, employing standard metrics (IoU, Dice) and specialized measures including Thin Structure IoU (TS-IoU) and Connectivity Preservation Rate (CPR). Among 22 configurations tested, U-Net with MiT-B4 backbone achieves strong performance at 256x256. At 512x512, MiT-B4 leads in IoU, Dice, TS-IoU, and Boundary-F1. At 1024x1024, U-Net+MiT-B3 shows the best validation performance for IoU/Dice and precision, while U-Net++ excels in boundary quality. PSPNet provides the most efficient option (2.36/9.43/37.74 GFLOPs) with 25.7/19.6/11.8 percentage point IoU reductions compared to top performers at respective resolutions. These results establish multi-resolution benchmarks for accuracy-efficiency trade-offs in embedded forestry systems. Implementation is available at https://github.com/BennyLinntu/PerformanceTreeBranchSegmentation.

Authors:Zhuoyuan Wu, Xurui Yang, Jiahui Huang, Yue Wang, Jun Gao
Title: The Dynamic Prior: Understanding 3D Structures for Casual Dynamic Videos
Abstract:
Estimating accurate camera poses, 3D scene geometry, and object motion from in-the-wild videos is a long-standing challenge for classical structure from motion pipelines due to the presence of dynamic objects. Recent learning-based methods attempt to overcome this challenge by training motion estimators to filter dynamic objects and focus on the static background. However, their performance is largely limited by the availability of large-scale motion segmentation datasets, resulting in inaccurate segmentation and, therefore, inferior structural 3D understanding. In this work, we introduce the Dynamic Prior (\ourmodel) to robustly identify dynamic objects without task-specific training, leveraging the powerful reasoning capabilities of Vision-Language Models (VLMs) and the fine-grained spatial segmentation capacity of SAM2. \ourmodel can be seamlessly integrated into state-of-the-art pipelines for camera pose optimization, depth reconstruction, and 4D trajectory estimation. Extensive experiments on both synthetic and real-world videos demonstrate that \ourmodel not only achieves state-of-the-art performance on motion segmentation, but also significantly improves accuracy and robustness for structural 3D understanding.

Authors:Shizhan Liu, Xinran Deng, Zhuoyi Yang, Jiayan Teng, Xiaotao Gu, Jie Tang
Title: Delving into Latent Spectral Biasing of Video VAEs for Superior Diffusability
Abstract:
Latent diffusion models pair VAEs with diffusion backbones, and the structure of VAE latents strongly influences the difficulty of diffusion training. However, existing video VAEs typically focus on reconstruction fidelity, overlooking latent structure. We present a statistical analysis of video VAE latent spaces and identify two spectral properties essential for diffusion training: a spatio-temporal frequency spectrum biased toward low frequencies, and a channel-wise eigenspectrum dominated by a few modes. To induce these properties, we propose two lightweight, backbone-agnostic regularizers: Local Correlation Regularization and Latent Masked Reconstruction. Experiments show that our Spectral-Structured VAE (SSVAE) achieves a $3\times$ speedup in text-to-video generation convergence and a 10\% gain in video reward, outperforming strong open-source VAEs. The code is available at https://github.com/zai-org/SSVAE.

Authors:Sanchit Kaul, Joseph Luna, Shray Arora
Title: PoolNet: Deep Learning for 2D to 3D Video Process Validation
Abstract:
Lifting Structure-from-Motion (SfM) information from sequential and non-sequential image data is a time-consuming and computationally expensive task. In addition to this, the majority of publicly available data is unfit for processing due to inadequate camera pose variation, obscuring scene elements, and noisy data. To solve this problem, we introduce PoolNet, a versatile deep learning framework for frame-level and scene-level validation of in-the-wild data. We demonstrate that our model successfully differentiates SfM ready scenes from those unfit for processing while significantly undercutting the amount of time state of the art algorithms take to obtain structure-from-motion data.

Authors:Yang Zheng, Hao Tan, Kai Zhang, Peng Wang, Leonidas Guibas, Gordon Wetzstein, Wang Yifan
Title: SplatPainter: Interactive Authoring of 3D Gaussians from 2D Edits via Test-Time Training
Abstract:
The rise of 3D Gaussian Splatting has revolutionized photorealistic 3D asset creation, yet a critical gap remains for their interactive refinement and editing. Existing approaches based on diffusion or optimization are ill-suited for this task, as they are often prohibitively slow, destructive to the original asset's identity, or lack the precision for fine-grained control. To address this, we introduce \ourmethod, a state-aware feedforward model that enables continuous editing of 3D Gaussian assets from user-provided 2D view(s). Our method directly predicts updates to the attributes of a compact, feature-rich Gaussian representation and leverages Test-Time Training to create a state-aware, iterative workflow. The versatility of our approach allows a single architecture to perform diverse tasks, including high-fidelity local detail refinement, local paint-over, and consistent global recoloring, all at interactive speeds, paving the way for fluid and intuitive 3D content authoring.

Authors:Kevin Cannons, Saeed Ranjbar Alvar, Mohammad Asiful Hossain, Ahmad Rezaei, Mohsen Gholami, Alireza Heidarikhazaei, Zhou Weimin, Yong Zhang, Mohammad Akbari
Title: From Segments to Scenes: Temporal Understanding in Autonomous Driving via Vision-Language Model
Abstract:
Temporal understanding in autonomous driving (AD) remains a significant challenge, even for recent state-of-the-art (SoTA) Vision-Language Models (VLMs). Prior work has introduced datasets and benchmarks aimed at improving temporal reasoning, but these have emphasized other video content, including sports, cooking, and movies. No existing benchmark focuses exclusively on the unique challenges of temporal understanding in ego-centric AD footage. To fill this gap, the Temporal Understanding in Autonomous Driving (TAD) benchmark is presented, which evaluates VLMs' ability to capture the dynamic relationships between actions in AD. TAD comprises nearly 6,000 question-answer (QA) pairs, spanning 7 human-designed tasks. In addition, an evaluation is performed that consists of 9 closed- and open-source generalist models as well as SoTA AD specialist models. When applied to TAD, current SoTA models demonstrated substandard accuracies, largely due to imperfect fine-grained motion understanding. To improve motion understanding and overall accuracy on TAD, two novel training-free solutions are proposed: Scene-CoT, that leverages Chain-of-Thought (CoT) and TCogMap, which incorporates an ego-centric temporal cognitive map. The proposed approaches are integrated with existing VLMs and improve average accuracy on TAD by up to 17.72%. By introducing TAD, benchmarking multiple SoTA models, and proposing effective enhancements, this work aims to catalyze future research on temporal understanding in AD. The benchmark and evaluation code are available at \href{https://huggingface.co/datasets/vbdai/TAD}{Hugging Face} and \href{https://github.com/vbdi/tad_bench}{Github}, respectively.

Authors:Ahmet Berke Gokmen, Ajad Chhatkuli, Luc Van Gool, Danda Pani Paudel
Title: Inferring Compositional 4D Scenes without Ever Seeing One
Abstract:
Scenes in the real world are often composed of several static and dynamic objects. Capturing their 4-dimensional structures, composition and spatio-temporal configuration in-the-wild, though extremely interesting, is equally hard. Therefore, existing works often focus on one object at a time, while relying on some category-specific parametric shape model for dynamic objects. This can lead to inconsistent scene configurations, in addition to being limited to the modeled object categories. We propose COM4D (Compositional 4D), a method that consistently and jointly predicts the structure and spatio-temporal configuration of 4D/3D objects using only static multi-object or dynamic single object supervision. We achieve this by a carefully designed training of spatial and temporal attentions on 2D video input. The training is disentangled into learning from object compositions on the one hand, and single object dynamics throughout the video on the other, thus completely avoiding reliance on 4D compositional training data. At inference time, our proposed attention mixing mechanism combines these independently learned attentions, without requiring any 4D composition examples. By alternating between spatial and temporal reasoning, COM4D reconstructs complete and persistent 4D scenes with multiple interacting objects directly from monocular videos. Furthermore, COM4D provides state-of-the-art results in existing separate problems of 4D object and composed 3D reconstruction despite being purely data-driven.

Authors:Yunfei Zhang, Yizhuo He, Yuanxun Shao, Zhengtao Yao, Haoyan Xu, Junhao Dong, Zhen Yao, Zhikang Dong
Title: ChromouVQA: Benchmarking Vision-Language Models under Chromatic Camouflaged Images
Abstract:
Vision-Language Models (VLMs) have advanced multimodal understanding, yet still struggle when targets are embedded in cluttered backgrounds requiring figure-ground segregation. To address this, we introduce ChromouVQA, a large-scale, multi-task benchmark based on Ishihara-style chromatic camouflaged images. We extend classic dot plates with multiple fill geometries and vary chromatic separation, density, size, occlusion, and rotation, recording full metadata for reproducibility. The benchmark covers nine vision-question-answering tasks, including recognition, counting, comparison, and spatial reasoning. Evaluations of humans and VLMs reveal large gaps, especially under subtle chromatic contrast or disruptive geometric fills. We also propose a model-agnostic contrastive recipe aligning silhouettes with their camouflaged renderings, improving recovery of global shapes. ChromouVQA provides a compact, controlled benchmark for reproducible evaluation and extension. Code and dataset are available at https://github.com/Chromou-VQA-Benchmark/Chromou-VQA.

Authors:Zihao Wu
Title: InvarDiff: Cross-Scale Invariance Caching for Accelerated Diffusion Models
Abstract:
Diffusion models deliver high-fidelity synthesis but remain slow due to iterative sampling. We empirically observe there exists feature invariance in deterministic sampling, and present InvarDiff, a training-free acceleration method that exploits the relative temporal invariance across timestep-scale and layer-scale. From a few deterministic runs, we compute a per-timestep, per-layer, per-module binary cache plan matrix and use a re-sampling correction to avoid drift when consecutive caches occur. Using quantile-based change metrics, this matrix specifies which module at which step is reused rather than recomputed. The same invariance criterion is applied at the step scale to enable cross-timestep caching, deciding whether an entire step can reuse cached results. During inference, InvarDiff performs step-first and layer-wise caching guided by this matrix. When applied to DiT and FLUX, our approach reduces redundant compute while preserving fidelity. Experiments show that InvarDiff achieves $2$-$3\times$ end-to-end speed-ups with minimal impact on standard quality metrics. Qualitatively, we observe almost no degradation in visual quality compared with full computations.

Authors:Tianling Xu, Shengzhe Gan, Leslie Gu, Yuelei Li, Fangneng Zhan, Hanspeter Pfister
Title: AREA3D: Active Reconstruction Agent with Unified Feed-Forward 3D Perception and Vision-Language Guidance
Abstract:
Active 3D reconstruction enables an agent to autonomously select viewpoints to efficiently obtain accurate and complete scene geometry, rather than passively reconstructing scenes from pre-collected images. However, existing active reconstruction methods often rely on hand-crafted geometric heuristics, which can lead to redundant observations without substantially improving reconstruction quality. To address this limitation, we propose AREA3D, an active reconstruction agent that leverages feed-forward 3D reconstruction models and vision-language guidance. Our framework decouples view-uncertainty modeling from the underlying feed-forward reconstructor, enabling precise uncertainty estimation without expensive online optimization. In addition, an integrated vision-language model provides high-level semantic guidance, encouraging informative and diverse viewpoints beyond purely geometric cues. Extensive experiments on both scene-level and object-level benchmarks demonstrate that AREA3D achieves state-of-the-art reconstruction accuracy, particularly in the sparse-view regime. Code will be made available at: https://github.com/TianlingXu/AREA3D .

Authors:Hao-Jen Chien, Yi-Chuan Huang, Chung-Ho Wu, Wei-Lun Chao, Yu-Lun Liu
Title: Splannequin: Freezing Monocular Mannequin-Challenge Footage with Dual-Detection Splatting
Abstract:
Synthesizing high-fidelity frozen 3D scenes from monocular Mannequin-Challenge (MC) videos is a unique problem distinct from standard dynamic scene reconstruction. Instead of focusing on modeling motion, our goal is to create a frozen scene while strategically preserving subtle dynamics to enable user-controlled instant selection. To achieve this, we introduce a novel application of dynamic Gaussian splatting: the scene is modeled dynamically, which retains nearby temporal variation, and a static scene is rendered by fixing the model's time parameter. However, under this usage, monocular capture with sparse temporal supervision introduces artifacts like ghosting and blur for Gaussians that become unobserved or occluded at weakly supervised timestamps. We propose Splannequin, an architecture-agnostic regularization that detects two states of Gaussian primitives, hidden and defective, and applies temporal anchoring. Under predominantly forward camera motion, hidden states are anchored to their recent well-observed past states, while defective states are anchored to future states with stronger supervision. Our method integrates into existing dynamic Gaussian pipelines via simple loss terms, requires no architectural changes, and adds zero inference overhead. This results in markedly improved visual quality, enabling high-fidelity, user-selectable frozen-time renderings, validated by a 96% user preference. Project page: https://chien90190.github.io/splannequin/

Authors:Dongzhi Jiang, Renrui Zhang, Haodong Li, Zhuofan Zong, Ziyu Guo, Jun He, Claire Guo, Junyan Ye, Rongyao Fang, Weijia Li, Rui Liu, Hongsheng Li
Title: DraCo: Draft as CoT for Text-to-Image Preview and Rare Concept Generation
Abstract:
Recent unified multimodal large language models (MLLMs) have shown impressive capabilities, incorporating chain-of-thought (CoT) reasoning for enhanced text-to-image generation. However, existing approaches remain limited, either treating the model merely as a standalone generator or relying on abstract textual planning. To this end, we propose Draft-as-CoT (DraCo), a novel interleaved reasoning paradigm that fully leverages both textual and visual contents in CoT for better planning and verification. Our method first generates a low-resolution draft image as preview, providing more concrete and structural visual planning and guidance. Then, we employ the model's inherent understanding capability to verify potential semantic misalignments between the draft and input prompt, and performs refinement through selective corrections with super-resolution. In this way, our approach addresses two fundamental challenges: the coarse-grained nature of textual planning and the difficulty in generating rare attribute combinations. To support training, we curate DraCo-240K, aiming to enhance three atomic capabilities spanning general correction, instance manipulation, and layout reorganization. Supported by DraCo-CFG, a specialized classifier-free guidance (CFG) strategy for interleaved reasoning, DraCo achieves a tremendous increase on GenEval (+8%), Imagine-Bench (+0.91), and GenEval++ (+3%), significantly outperforming direct generation and other generation methods empowered by CoT.

Authors:Rundong Luo, Noah Snavely, Wei-Chiu Ma
Title: ShadowDraw: From Any Object to Shadow-Drawing Compositional Art
Abstract:
We introduce ShadowDraw, a framework that transforms ordinary 3D objects into shadow-drawing compositional art. Given a 3D object, our system predicts scene parameters, including object pose and lighting, together with a partial line drawing, such that the cast shadow completes the drawing into a recognizable image. To this end, we optimize scene configurations to reveal meaningful shadows, employ shadow strokes to guide line drawing generation, and adopt automatic evaluation to enforce shadow-drawing coherence and visual quality. Experiments show that ShadowDraw produces compelling results across diverse inputs, from real-world scans and curated datasets to generative assets, and naturally extends to multi-object scenes, animations, and physical deployments. Our work provides a practical pipeline for creating shadow-drawing art and broadens the design space of computational visual art, bridging the gap between algorithmic design and artistic storytelling. Check out our project page https://red-fairy.github.io/ShadowDraw/ for more results and an end-to-end real-world demonstration of our pipeline!

Authors:Yu Zeng, Charles Ochoa, Mingyuan Zhou, Vishal M. Patel, Vitor Guizilini, Rowan McAllister
Title: NeuralRemaster: Phase-Preserving Diffusion for Structure-Aligned Generation
Abstract:
Standard diffusion corrupts data using Gaussian noise whose Fourier coefficients have random magnitudes and random phases. While effective for unconditional or text-to-image generation, corrupting phase components destroys spatial structure, making it ill-suited for tasks requiring geometric consistency, such as re-rendering, simulation enhancement, and image-to-image translation. We introduce Phase-Preserving Diffusion ϕ-PD, a model-agnostic reformulation of the diffusion process that preserves input phase while randomizing magnitude, enabling structure-aligned generation without architectural changes or additional parameters. We further propose Frequency-Selective Structured (FSS) noise, which provides continuous control over structural rigidity via a single frequency-cutoff parameter. ϕ-PD adds no inference-time cost and is compatible with any diffusion model for images or videos. Across photorealistic and stylized re-rendering, as well as sim-to-real enhancement for driving planners, ϕ-PD produces controllable, spatially aligned results. When applied to the CARLA simulator, ϕ-PD improves CARLA-to-Waymo planner performance by 50\%. The method is complementary to existing conditioning approaches and broadly applicable to image-to-image and video-to-video generation. Videos, additional examples, and code are available on our \href{https://yuzeng-at-tri.github.io/ppd-page/}{project page}.

Authors:Haobo Yuan, Yueyi Sun, Yanwei Li, Tao Zhang, Xueqing Deng, Henghui Ding, Lu Qi, Anran Wang, Xiangtai Li, Ming-Hsuan Yang
Title: Visual Reasoning Tracer: Object-Level Grounded Reasoning Benchmark
Abstract:
Recent advances in Multimodal Large Language Models (MLLMs) have significantly improved performance on tasks such as visual grounding and visual question answering. However, the reasoning processes of these models remain largely opaque; they typically output only final predictions without revealing the intermediate steps or fine-grained evidence (e.g., pixels, locations) that lead to the result. This contrasts with human intelligence, which naturally operates through a chain of visual reasoning. To address this limitation, we introduce the Visual Reasoning Tracer (VRT) task, which requires models to not only localize the target object but also explicitly predict the intermediate objects that form the reasoning path. To advance research in this area, we contribute: (1) VRT-Bench, a human-annotated benchmark for evaluating visual reasoning; (2) a new metric for assessing the quality of reasoning traces; and (3) VRT-80k, a large-scale dataset for reasoning model training. Our experiments reveal that while existing models often produce the correct final output, they struggle to ground their intermediate reasoning. In contrast, models trained on VRT-80k achieve substantial improvements in tracing the reasoning path.

Authors:Jung Yi, Wooseok Jang, Paul Hyunbin Cho, Jisu Nam, Heeji Yoon, Seungryong Kim
Title: Deep Forcing: Training-Free Long Video Generation with Deep Sink and Participative Compression
Abstract:
Recent advances in autoregressive video diffusion have enabled real-time frame streaming, yet existing solutions still suffer from temporal repetition, drift, and motion deceleration. We find that naively applying StreamingLLM-style attention sinks to video diffusion leads to fidelity degradation and motion stagnation. To overcome this, we introduce Deep Forcing, which consists of two training-free mechanisms that address this without any fine-tuning. Specifically, 1) Deep Sink dedicates half of the sliding window to persistent sink tokens and re-aligns their temporal RoPE phase to the current timeline, stabilizing global context during long rollouts. 2) Participative Compression performs importance-aware KV cache pruning that preserves only tokens actively participating in recent attention while safely discarding redundant and degraded history, minimizing error accumulation under out-of-distribution length generation. Together, these components enable over 12x extrapolation (e.g. 5s-trained to 60s+ generation) with better imaging quality than LongLive, better aesthetic quality than RollingForcing, almost maintaining overall consistency, and substantial gains in dynamic degree, all while maintaining real-time generation. Our results demonstrate that training-free KV-cache management can match or exceed training-based approaches for autoregressively streaming long-video generation.

Authors:Yiming Wang, Qihang Zhang, Shengqu Cai, Tong Wu, Jan Ackermann, Zhengfei Kuang, Yang Zheng, Frano Rajič, Siyu Tang, Gordon Wetzstein
Title: BulletTime: Decoupled Control of Time and Camera Pose for Video Generation
Abstract:
Emerging video diffusion models achieve high visual fidelity but fundamentally couple scene dynamics with camera motion, limiting their ability to provide precise spatial and temporal control. We introduce a 4D-controllable video diffusion framework that explicitly decouples scene dynamics from camera pose, enabling fine-grained manipulation of both scene dynamics and camera viewpoint. Our framework takes continuous world-time sequences and camera trajectories as conditioning inputs, injecting them into the video diffusion model through a 4D positional encoding in the attention layer and adaptive normalizations for feature modulation. To train this model, we curate a unique dataset in which temporal and camera variations are independently parameterized; this dataset will be made public. Experiments show that our model achieves robust real-world 4D control across diverse timing patterns and camera trajectories, while preserving high generation quality and outperforming prior work in controllability. See our website for video results: https://19reborn.github.io/Bullet4D/

Authors:Xianfeng Wu, Yajing Bai, Minghan Li, Xianzu Wu, Xueqi Zhao, Zhongyuan Lai, Wenyu Liu, Xinggang Wang
Title: 4DLangVGGT: 4D Language-Visual Geometry Grounded Transformer
Abstract:
Constructing 4D language fields is crucial for embodied AI, augmented/virtual reality, and 4D scene understanding, as they provide enriched semantic representations of dynamic environments and enable open-vocabulary querying in complex scenarios. However, existing approaches to 4D semantic field construction primarily rely on scene-specific Gaussian splatting, which requires per-scene optimization, exhibits limited generalization, and is difficult to scale to real-world applications. To address these limitations, we propose 4DLangVGGT, the first Transformer-based feed-forward unified framework for 4D language grounding, that jointly integrates geometric perception and language alignment within a single architecture. 4DLangVGGT has two key components: the 4D Visual Geometry Transformer, StreamVGGT, which captures spatio-temporal geometric representations of dynamic scenes; and the Semantic Bridging Decoder (SBD), which projects geometry-aware features into a language-aligned semantic space, thereby enhancing semantic interpretability while preserving structural fidelity. Unlike prior methods that depend on costly per-scene optimization, 4DLangVGGT can be jointly trained across multiple dynamic scenes and directly applied during inference, achieving both deployment efficiency and strong generalization. This design significantly improves the practicality of large-scale deployment and establishes a new paradigm for open-vocabulary 4D scene understanding. Experiments on HyperNeRF and Neu3D datasets demonstrate that our approach not only generalizes effectively but also achieves state-of-the-art performance, achieving up to 2% gains under per-scene training and 1% improvements under multi-scene training. Our code released in https://github.com/hustvl/4DLangVGGT

Authors:Yanran Zhang, Ziyi Wang, Wenzhao Zheng, Zheng Zhu, Jie Zhou, Jiwen Lu
Title: Joint 3D Geometry Reconstruction and Motion Generation for 4D Synthesis from a Single Image
Abstract:
Generating interactive and dynamic 4D scenes from a single static image remains a core challenge. Most existing generate-then-reconstruct and reconstruct-then-generate methods decouple geometry from motion, causing spatiotemporal inconsistencies and poor generalization. To address these, we extend the reconstruct-then-generate framework to jointly perform Motion generation and geometric Reconstruction for 4D Synthesis (MoRe4D). We first introduce TrajScene-60K, a large-scale dataset of 60,000 video samples with dense point trajectories, addressing the scarcity of high-quality 4D scene data. Based on this, we propose a diffusion-based 4D Scene Trajectory Generator (4D-STraG) to jointly generate geometrically consistent and motion-plausible 4D point trajectories. To leverage single-view priors, we design a depth-guided motion normalization strategy and a motion-aware module for effective geometry and dynamics integration. We then propose a 4D View Synthesis Module (4D-ViSM) to render videos with arbitrary camera trajectories from 4D point track representations. Experiments show that MoRe4D generates high-quality 4D scenes with multi-view consistency and rich dynamic details from a single image. Code: https://github.com/Zhangyr2022/MoRe4D.

Authors:Nicolas Houdré, Diego Marcos, Hugo Riffaud de Turckheim, Dino Ienco, Laurent Wendling, Camille Kurtz, Sylvain Lobry
Title: RAMEN: Resolution-Adjustable Multimodal Encoder for Earth Observation
Abstract:
Earth observation (EO) data spans a wide range of spatial, spectral, and temporal resolutions, from high-resolution optical imagery to low resolution multispectral products or radar time series. While recent foundation models have improved multimodal integration for learning meaningful representations, they often expect fixed input resolutions or are based on sensor-specific encoders limiting generalization across heterogeneous EO modalities. To overcome these limitations we introduce RAMEN, a resolution-adjustable multimodal encoder that learns a shared visual representation across EO data in a fully sensor-agnostic manner. RAMEN treats the modality and spatial and temporal resolutions as key input data features, enabling coherent analysis across modalities within a unified latent space. Its main methodological contribution is to define spatial resolution as a controllable output parameter, giving users direct control over the desired level of detail at inference and allowing explicit trade-offs between spatial precision and computational cost. We train a single, unified transformer encoder reconstructing masked multimodal EO data drawn from diverse sources, ensuring generalization across sensors and resolutions. Once pretrained, RAMEN transfers effectively to both known and unseen sensor configurations and outperforms larger state-of-the-art models on the community-standard PANGAEA benchmark, containing various multi-sensor and multi-resolution downstream tasks. Our code and pretrained model are available at https://github.com/nicolashoudre/RAMEN.

Authors:Qiong Chang, Weimin Wang, Junpei Zhong, Jun Miyazaki
Title: A dynamic memory assignment strategy for dilation-based ICP algorithm on embedded GPUs
Abstract:
This paper proposes a memory-efficient optimization strategy for the high-performance point cloud registration algorithm VANICP, enabling lightweight execution on embedded GPUs with constrained hardware resources. VANICP is a recently published acceleration framework that significantly improves the computational efficiency of point-cloud-based applications. By transforming the global nearest neighbor search into a localized process through a dilation-based information propagation mechanism, VANICP greatly reduces the computational complexity of the NNS. However, its original implementation demands a considerable amount of memory, which restricts its deployment in resource-constrained environments such as embedded systems. To address this issue, we propose a GPU-oriented dynamic memory assignment strategy that optimizes the memory usage of the dilation operation. Furthermore, based on this strategy, we construct an enhanced version of the VANICP framework that achieves over 97% reduction in memory consumption while preserving the original performance. Source code is published on: https://github.com/changqiong/VANICP4Em.git.

Authors:NaHyeon Park, Kunhee Kim, Junsuk Choe, Hyunjung Shim
Title: Rethinking the Use of Vision Transformers for AI-Generated Image Detection
Abstract:
Rich feature representations derived from CLIP-ViT have been widely utilized in AI-generated image detection. While most existing methods primarily leverage features from the final layer, we systematically analyze the contributions of layer-wise features to this task. Our study reveals that earlier layers provide more localized and generalizable features, often surpassing the performance of final-layer features in detection tasks. Moreover, we find that different layers capture distinct aspects of the data, each contributing uniquely to AI-generated image detection. Motivated by these findings, we introduce a novel adaptive method, termed MoLD, which dynamically integrates features from multiple ViT layers using a gating-based mechanism. Extensive experiments on both GAN- and diffusion-generated images demonstrate that MoLD significantly improves detection performance, enhances generalization across diverse generative models, and exhibits robustness in real-world scenarios. Finally, we illustrate the scalability and versatility of our approach by successfully applying it to other pre-trained ViTs, such as DINOv2.

Authors:Zhijian Shu, Cheng Lin, Tao Xie, Wei Yin, Ben Li, Zhiyuan Pu, Weize Li, Yao Yao, Xun Cao, Xiaoyang Guo, Xiao-Xiao Long
Title: LiteVGGT: Boosting Vanilla VGGT via Geometry-aware Cached Token Merging
Abstract:
3D vision foundation models like Visual Geometry Grounded Transformer (VGGT) have advanced greatly in geometric perception. However, it is time-consuming and memory-intensive for long sequences, limiting application to large-scale scenes beyond hundreds of images. To address this, we propose LiteVGGT, achieving up to 10x speedup and substantial memory reduction, enabling efficient processing of 1000-image scenes. We derive two key insights for 3D reconstruction: (1) tokens from local image regions have inherent geometric correlations, leading to high similarity and computational redundancy; (2) token similarity across adjacent network layers remains stable, allowing for reusable merge decisions. Guided by these, we design a simple yet efficient strategy, dubbed geometry-aware cached token merging. We analyze each token's geometric importance, optimizing anchor token selection to better preserve key information for reconstruction. We also cache and reuse merge indices across layers, substantially reducing latency with minimal accuracy impact. This strategy retains VGGT's core performance, enabling efficient fine-tuning and FP8 quantization for further gains. Extensive experiments validate LiteVGGT's effectiveness, scalability, and robustness. Project page: https://garlicba.github.io/LiteVGGT/

Authors:Yueming Pan, Ruoyu Feng, Qi Dai, Yuqi Wang, Wenfeng Lin, Mingyu Guo, Chong Luo, Nanning Zheng
Title: Semantics Lead the Way: Harmonizing Semantic and Texture Modeling with Asynchronous Latent Diffusion
Abstract:
Latent Diffusion Models (LDMs) inherently follow a coarse-to-fine generation process, where high-level semantic structure is generated slightly earlier than fine-grained texture. This indicates the preceding semantics potentially benefit texture generation by providing a semantic anchor. Recent advances have integrated semantic priors from pretrained visual encoders to further enhance LDMs, yet they still denoise semantic and VAE-encoded texture synchronously, neglecting such ordering. Observing these, we propose Semantic-First Diffusion (SFD), a latent diffusion paradigm that explicitly prioritizes semantic formation. SFD first constructs composite latents by combining a compact semantic latent, which is extracted from a pretrained visual encoder via a dedicated Semantic VAE, with the texture latent. The core of SFD is to denoise the semantic and texture latents asynchronously using separate noise schedules: semantics precede textures by a temporal offset, providing clearer high-level guidance for texture refinement and enabling natural coarse-to-fine generation. On ImageNet 256x256 with guidance, SFD achieves FID 1.06 (LightningDiT-XL) and FID 1.04 (1.0B LightningDiT-XXL), while achieving up to 100x faster convergence than the original DiT. SFD also improves existing methods like ReDi and VA-VAE, demonstrating the effectiveness of asynchronous, semantics-led modeling. Project page and code: https://yuemingpan.github.io/SFD.github.io/.

Authors:Jiawen Wen, Yu Hu, Suixuan Qiu, Jinshan Huang, Xiaowen Chu
Title: SDG-Track: A Heterogeneous Observer-Follower Framework for High-Resolution UAV Tracking on Embedded Platforms
Abstract:
Real-time tracking of small unmanned aerial vehicles (UAVs) on edge devices faces a fundamental resolution-speed conflict. Downsampling high-resolution imagery to standard detector input sizes causes small target features to collapse below detectable thresholds. Yet processing native 1080p frames on resource-constrained platforms yields insufficient throughput for smooth gimbal control. We propose SDG-Track, a Sparse Detection-Guided Tracker that adopts an Observer-Follower architecture to reconcile this conflict. The Observer stream runs a high-capacity detector at low frequency on the GPU to provide accurate position anchors from 1920x1080 frames. The Follower stream performs high-frequency trajectory interpolation via ROI-constrained sparse optical flow on the CPU. To handle tracking failures from occlusion or model drift caused by spectrally similar distractors, we introduce Dual-Space Recovery, a training-free re-acquisition mechanism combining color histogram matching with geometric consistency constraints. Experiments on a ground-to-air tracking station demonstrate that SDG-Track achieves 35.1 FPS system throughput while retaining 97.2\% of the frame-by-frame detection precision. The system successfully tracks agile FPV drones under real-world operational conditions on an NVIDIA Jetson Orin Nano. Our paper code is publicly available at https://github.com/Jeffry-wen/SDG-Track

Authors:Xin He, Longhui Wei, Jianbo Ouyang, Lingxi Xie, Qi Tian
Title: EMMA: Efficient Multimodal Understanding, Generation, and Editing with a Unified Architecture
Abstract:
We propose EMMA, an efficient and unified architecture for multimodal understanding, generation and editing. Specifically, EMMA primarily consists of 1) An efficient autoencoder with a 32x compression ratio, which significantly reduces the number of tokens required for generation. This also ensures the training balance between understanding and generation tasks by applying the same compression ratio to images. 2) Channel-wise concatenation instead of token-wise concatenation among visual understanding and generation tokens, which further reduces the visual tokens in unified architectures. 3) A shared-and-decoupled network that enables mutual improvements across tasks while meeting the task-specific modeling requirements. 4) A mixture-of-experts mechanism adopted for visual understanding encoder, which substantially improves perceptual capabilities with a few parameters increase. Extensive experiments have shown that EMMA-4B can significantly outperform state-of-the-art unified multimodal approaches (e.g., BAGEL-7B) in both efficiency and performance, while also achieving competitive results compared to recent multimodal understanding and generation experts (e.g., Qwen3-VL and Qwen-Image). We believe that EMMA lays a solid foundation for the future development of unified multimodal architectures.

Authors:Chia-Hao Chen, Zi-Xin Zou, Yan-Pei Cao, Ze Yuan, Guan Luo, Xiaojuan Qi, Ding Liang, Song-Hai Zhang, Yuan-Chen Guo
Title: LaFiTe: A Generative Latent Field for 3D Native Texturing
Abstract:
Generating high-fidelity, seamless textures directly on 3D surfaces, what we term 3D-native texturing, remains a fundamental open challenge, with the potential to overcome long-standing limitations of UV-based and multi-view projection methods. However, existing native approaches are constrained by the absence of a powerful and versatile latent representation, which severely limits the fidelity and generality of their generated textures. We identify this representation gap as the principal barrier to further progress. We introduce LaFiTe, a framework that addresses this challenge by learning to generate textures as a 3D generative sparse latent color field. At its core, LaFiTe employs a variational autoencoder (VAE) to encode complex surface appearance into a sparse, structured latent space, which is subsequently decoded into a continuous color field. This representation achieves unprecedented fidelity, exceeding state-of-the-art methods by >10 dB PSNR in reconstruction, by effectively disentangling texture appearance from mesh topology and UV parameterization. Building upon this strong representation, a conditional rectified-flow model synthesizes high-quality, coherent textures across diverse styles and geometries. Extensive experiments demonstrate that LaFiTe not only sets a new benchmark for 3D-native texturing but also enables flexible downstream applications such as material synthesis and texture super-resolution, paving the way for the next generation of 3D content creation workflows.

Authors:Bowen Ping, Chengyou Jia, Minnan Luo, Changliang Xia, Xin Shen, Zhuohang Dang, Hangwei Qian
Title: PaCo-RL: Advancing Reinforcement Learning for Consistent Image Generation with Pairwise Reward Modeling
Abstract:
Consistent image generation requires faithfully preserving identities, styles, and logical coherence across multiple images, which is essential for applications such as storytelling and character design. Supervised training approaches struggle with this task due to the lack of large-scale datasets capturing visual consistency and the complexity of modeling human perceptual preferences. In this paper, we argue that reinforcement learning (RL) offers a promising alternative by enabling models to learn complex and subjective visual criteria in a data-free manner. To achieve this, we introduce PaCo-RL, a comprehensive framework that combines a specialized consistency reward model with an efficient RL algorithm. The first component, PaCo-Reward, is a pairwise consistency evaluator trained on a large-scale dataset constructed via automated sub-figure pairing. It evaluates consistency through a generative, autoregressive scoring mechanism enhanced by task-aware instructions and CoT reasons. The second component, PaCo-GRPO, leverages a novel resolution-decoupled optimization strategy to substantially reduce RL cost, alongside a log-tamed multi-reward aggregation mechanism that ensures balanced and stable reward optimization. Extensive experiments across the two representative subtasks show that PaCo-Reward significantly improves alignment with human perceptions of visual consistency, and PaCo-GRPO achieves state-of-the-art consistency performance with improved training efficiency and stability. Together, these results highlight the promise of PaCo-RL as a practical and scalable solution for consistent image generation. The project page is available at https://x-gengroup.github.io/HomePage_PaCo-RL/.

Authors:Yizi Chen, Sidi Wu, Tianyi Xiao, Nina Wiedemann, Loic Landrieu
Title: Order Matters: 3D Shape Generation from Sequential VR Sketches
Abstract:
VR sketching lets users explore and iterate on ideas directly in 3D, offering a faster and more intuitive alternative to conventional CAD tools. However, existing sketch-to-shape models ignore the temporal ordering of strokes, discarding crucial cues about structure and design intent. We introduce VRSketch2Shape, the first framework and multi-category dataset for generating 3D shapes from sequential VR sketches. Our contributions are threefold: (i) an automated pipeline that generates sequential VR sketches from arbitrary shapes, (ii) a dataset of over 20k synthetic and 900 hand-drawn sketch-shape pairs across four categories, and (iii) an order-aware sketch encoder coupled with a diffusion-based 3D generator. Our approach yields higher geometric fidelity than prior work, generalizes effectively from synthetic to real sketches with minimal supervision, and performs well even on partial sketches. All data and models will be released open-source at https://chenyizi086.github.io/VRSketch2Shape_website.

Authors:Xinning Chai, Zhengxue Cheng, Yuhong Zhang, Hengsheng Zhang, Yingsheng Qin, Yucai Yang, Rong Xie, Li Song
Title: OmniScaleSR: Unleashing Scale-Controlled Diffusion Prior for Faithful and Realistic Arbitrary-Scale Image Super-Resolution
Abstract:
Arbitrary-scale super-resolution (ASSR) overcomes the limitation of traditional super-resolution (SR) methods that operate only at fixed scales (e.g., 4x), enabling a single model to handle arbitrary magnification. Most existing ASSR approaches rely on implicit neural representation (INR), but its regression-driven feature extraction and aggregation intrinsically limit the ability to synthesize fine details, leading to low realism. Recent diffusion-based realistic image super-resolution (Real-ISR) models leverage powerful pre-trained diffusion priors and show impressive results at the 4x setting. We observe that they can also achieve ASSR because the diffusion prior implicitly adapts to scale by encouraging high-realism generation. However, without explicit scale control, the diffusion process cannot be properly adjusted for different magnification levels, resulting in excessive hallucination or blurry outputs, especially under ultra-high scales. To address these issues, we propose OmniScaleSR, a diffusion-based realistic arbitrary-scale SR framework designed to achieve both high fidelity and high realism. We introduce explicit, diffusion-native scale control mechanisms that work synergistically with implicit scale adaptation, enabling scale-aware and content-aware modulation of the diffusion process. In addition, we incorporate multi-domain fidelity enhancement designs to further improve reconstruction accuracy. Extensive experiments on bicubic degradation benchmarks and real-world datasets show that OmniScaleSR surpasses state-of-the-art methods in both fidelity and perceptual realism, with particularly strong performance at large magnification factors. Code will be released at https://github.com/chaixinning/OmniScaleSR.

Authors:Yipu Wang, Yuheng Ji, Yuyang Liu, Enshen Zhou, Ziqiang Yang, Yuxuan Tian, Ziheng Qin, Yue Liu, Huajie Tan, Cheng Chi, Zhiyuan Ma, Daniel Dajun Zeng, Xiaolong Zheng
Title: Towards Cross-View Point Correspondence in Vision-Language Models
Abstract:
Cross-view correspondence is a fundamental capability for spatial understanding and embodied AI. However, it is still far from being realized in Vision-Language Models (VLMs), especially in achieving precise point-level correspondence, which is crucial for precise affordance interaction. So we propose the Cross-View Point Correspondence (CVPC) task and CrossPoint-Bench, a comprehensive benchmark with hierarchical design, inspired by the human cognitive process of "perceive", "reason", and "correspond". Our evaluation shows the state-of-the-art models (e.g., Gemini-2.5-Pro) still fall far behind humans, with a gap of over 54.65% in overall accuracy, exposing a challenge in transitioning from coarse-grained judgement to fine-grained coordinate prediction. To address this problem, we construct CrossPoint-378K, a dataset with 378K question-answering pairs across 900 scenes, focused on actionable affordance regions that better reflect real-world manipulation and interaction scenarios. Furthermore, we propose CroPond that trained on the CrossPoint-378K dataset. Our CroPond achieves state-of-the-art performance on CrossPoint-Bench, surpassing Gemini-2.5-Pro by 39.7% accuracy, which offers a foundation for advancing future work on cross-view correspondence. The benchmark, dataset, and model are publicly available at https://github.com/WangYipu2002/CrossPoint.

Authors:Bowen Zheng, Ran Cheng
Title: Rethinking Decoupled Knowledge Distillation: A Predictive Distribution Perspective
Abstract:
In the history of knowledge distillation, the focus has once shifted over time from logit-based to feature-based approaches. However, this transition has been revisited with the advent of Decoupled Knowledge Distillation (DKD), which re-emphasizes the importance of logit knowledge through advanced decoupling and weighting strategies. While DKD marks a significant advancement, its underlying mechanisms merit deeper exploration. As a response, we rethink DKD from a predictive distribution perspective. First, we introduce an enhanced version, the Generalized Decoupled Knowledge Distillation (GDKD) loss, which offers a more versatile method for decoupling logits. Then we pay particular attention to the teacher model's predictive distribution and its impact on the gradients of GDKD loss, uncovering two critical insights often overlooked: (1) the partitioning by the top logit considerably improves the interrelationship of non-top logits, and (2) amplifying the focus on the distillation loss of non-top logits enhances the knowledge extraction among them. Utilizing these insights, we further propose a streamlined GDKD algorithm with an efficient partition strategy to handle the multimodality of teacher models' predictive distribution. Our comprehensive experiments conducted on a variety of benchmarks, including CIFAR-100, ImageNet, Tiny-ImageNet, CUB-200-2011, and Cityscapes, demonstrate GDKD's superior performance over both the original DKD and other leading knowledge distillation methods. The code is available at https://github.com/ZaberKo/GDKD.

Authors:Youze Huang, Penghui Ruan, Bojia Zi, Xianbiao Qi, Jianan Wang, Rong Xiao
Title: Refaçade: Editing Object with Given Reference Texture
Abstract:
Recent advances in diffusion models have brought remarkable progress in image and video editing, yet some tasks remain underexplored. In this paper, we introduce a new task, Object Retexture, which transfers local textures from a reference object to a target object in images or videos. To perform this task, a straightforward solution is to use ControlNet conditioned on the source structure and the reference texture. However, this approach suffers from limited controllability for two reasons: conditioning on the raw reference image introduces unwanted structural information, and it fails to disentangle the visual texture and structure information of the source. To address this problem, we propose Refaçade, a method that consists of two key designs to achieve precise and controllable texture transfer in both images and videos. First, we employ a texture remover trained on paired textured/untextured 3D mesh renderings to remove appearance information while preserving the geometry and motion of source videos. Second, we disrupt the reference global layout using a jigsaw permutation, encouraging the model to focus on local texture statistics rather than the global layout of the object. Extensive experiments demonstrate superior visual quality, precise editing, and controllability, outperforming strong baselines in both quantitative and human evaluations. Code is available at https://github.com/fishZe233/Refacade.

Authors:Chentao Shen, Sizhe Zheng, Bingqian Wu, Yaohua Feng, Yuanchen Fei, Mingyu Mei, Hanwen Jiang, Xiangru Huang
Title: Auto3R: Automated 3D Reconstruction and Scanning via Data-driven Uncertainty Quantification
Abstract:
Traditional high-quality 3D scanning and reconstruction typically relies on human labor to plan the scanning procedure. With the rapid development of embodied systems such as drones and robots, there is a growing demand of performing accurate 3D scanning and reconstruction in an fully automated manner. We introduce Auto3R, a data-driven uncertainty quantification model that is designed to automate the 3D scanning and reconstruction of scenes and objects, including objects with non-lambertian and specular materials. Specifically, in a process of iterative 3D reconstruction and scanning, Auto3R can make efficient and accurate prediction of uncertainty distribution over potential scanning viewpoints, without knowing the ground truth geometry and appearance. Through extensive experiments, Auto3R achieves superior performance that outperforms the state-of-the-art methods by a large margin. We also deploy Auto3R on a robot arm equipped with a camera and demonstrate that Auto3R can be used to effectively digitize real-world 3D objects and delivers ready-to-use and photorealistic digital assets. Our homepage: https://tomatoma00.github.io/auto3r.github.io .

Authors:Chenlin Xu, Lei Zhang, Lituan Wang, Xinyu Pu, Pengfei Ma, Guangwu Qian, Zizhou Wang, Yan Wang
Title: Boundary-Aware Test-Time Adaptation for Zero-Shot Medical Image Segmentation
Abstract:
Due to the scarcity of annotated data and the substantial computational costs of model, conventional tuning methods in medical image segmentation face critical challenges. Current approaches to adapting pretrained models, including full-parameter and parameter-efficient fine-tuning, still rely heavily on task-specific training on downstream tasks. Therefore, zero-shot segmentation has gained increasing attention, especially with foundation models such as SAM demonstrating promising generalization capabilities. However, SAM still faces notable limitations on medical datasets due to domain shifts, making efficient zero-shot enhancement an urgent research goal. To address these challenges, we propose BA-TTA-SAM, a task-agnostic test-time adaptation framework that significantly enhances the zero-shot segmentation performance of SAM via test-time adaptation. This framework integrates two key mechanisms: (1) The encoder-level Gaussian prompt injection embeds Gaussian-based prompts directly into the image encoder, providing explicit guidance for initial representation learning. (2) The cross-layer boundary-aware attention alignment exploits the hierarchical feature interactions within the ViT backbone, aligning deep semantic responses with shallow boundary cues. Experiments on four datasets, including ISIC, Kvasir, BUSI, and REFUGE, show an average improvement of 12.4\% in the DICE score compared with SAM's zero-shot segmentation performance. The results demonstrate that our method consistently outperforms state-of-the-art models in medical image segmentation. Our framework significantly enhances the generalization ability of SAM, without requiring any source-domain training data. Extensive experiments on publicly available medical datasets strongly demonstrate the superiority of our framework. Our code is available at https://github.com/Emilychenlin/BA-TTA-SAM.

Authors:Liuzhou Zhang, Jiarui Ye, Yuanlei Wang, Ming Zhong, Mingju Cao, Wanke Xia, Bowen Zeng, Zeyu Zhang, Hao Tang
Title: EgoLCD: Egocentric Video Generation with Long Context Diffusion
Abstract:
Generating long, coherent egocentric videos is difficult, as hand-object interactions and procedural tasks require reliable long-term memory. Existing autoregressive models suffer from content drift, where object identity and scene semantics degrade over time. To address this challenge, we introduce EgoLCD, an end-to-end framework for egocentric long-context video generation that treats long video synthesis as a problem of efficient and stable memory management. EgoLCD combines a Long-Term Sparse KV Cache for stable global context with an attention-based short-term memory, extended by LoRA for local adaptation. A Memory Regulation Loss enforces consistent memory usage, and Structured Narrative Prompting provides explicit temporal guidance. Extensive experiments on the EgoVid-5M benchmark demonstrate that EgoLCD achieves state-of-the-art performance in both perceptual quality and temporal consistency, effectively mitigating generative forgetting and representing a significant step toward building scalable world models for embodied AI. Code: https://github.com/AIGeeksGroup/EgoLCD. Website: https://aigeeksgroup.github.io/EgoLCD.

Authors:Min Zhao, Bokai Yan, Xue Yang, Hongzhou Zhu, Jintao Zhang, Shilong Liu, Chongxuan Li, Jun Zhu
Title: UltraImage: Rethinking Resolution Extrapolation in Image Diffusion Transformers
Abstract:
Recent image diffusion transformers achieve high-fidelity generation, but struggle to generate images beyond these scales, suffering from content repetition and quality degradation. In this work, we present UltraImage, a principled framework that addresses both issues. Through frequency-wise analysis of positional embeddings, we identify that repetition arises from the periodicity of the dominant frequency, whose period aligns with the training resolution. We introduce a recursive dominant frequency correction to constrain it within a single period after extrapolation. Furthermore, we find that quality degradation stems from diluted attention and thus propose entropy-guided adaptive attention concentration, which assigns higher focus factors to sharpen local attention for fine detail and lower ones to global attention patterns to preserve structural consistency. Experiments show that UltraImage consistently outperforms prior methods on Qwen-Image and Flux (around 4K) across three generation scenarios, reducing repetition and improving visual fidelity. Moreover, UltraImage can generate images up to 6K*6K without low-resolution guidance from a training resolution of 1328p, demonstrating its extreme extrapolation capability. Project page is available at \href{https://thu-ml.github.io/ultraimage.github.io/}{https://thu-ml.github.io/ultraimage.github.io/}.

Authors:Tianci Huo, Lingfeng Qi, Yuhan Chen, Qihong Xue, Jinyuan Shao, Hai Yu, Jie Li, Zhanhua Zhang, Guofa Li
Title: Shift-Window Meets Dual Attention: A Multi-Model Architecture for Specular Highlight Removal
Abstract:
Inevitable specular highlights in practical environments severely impair the visual performance, thus degrading the task effectiveness and efficiency. Although there exist considerable methods that focus on local information from convolutional neural network models or global information from transformer models, the single-type model falls into a modeling dilemma between local fine-grained details and global long-range dependencies, thus deteriorating for specular highlights with different scales. Therefore, to accommodate specular highlights of all scales, we propose a multi-model architecture for specular highlight removal (MM-SHR) that effectively captures fine-grained features in highlight regions and models long-range dependencies between highlight and highlight-free areas. Specifically, we employ convolution operations to extract local details in the shallow layers of MM-SHR, and utilize the attention mechanism to capture global features in the deep layers, ensuring both operation efficiency and removal accuracy. To model long-range dependencies without compromising computational complexity, we utilize a coarse-to-fine manner and propose Omni-Directional Attention Integration Block(OAIBlock) and Adaptive Region-Aware Hybrid-Domain Dual Attention Convolutional Network(HDDAConv) , which leverage omni-directiona pixel-shifting and window-dividing operations at the raw features to achieve specular highlight removal. Extensive experimental results on three benchmark tasks and six types of surface materials demonstrate that MM-SHR outperforms state-of-the-art methods in both accuracy and efficiency for specular highlight removal. The implementation will be made publicly available at https://github.com/Htcicv/MM-SHR.

Authors:Changjin Kim, HyeokJun Lee, YoungJoon Yoo
Title: GuidNoise: Single-Pair Guided Diffusion for Generalized Noise Synthesis
Abstract:
Recent image denoising methods have leveraged generative modeling for real noise synthesis to address the costly acquisition of real-world noisy data. However, these generative models typically require camera metadata and extensive target-specific noisy-clean image pairs, often showing limited generalization between settings. In this paper, to mitigate the prerequisites, we propose a Single-Pair Guided Diffusion for generalized noise synthesis GuidNoise, which uses a single noisy/clean pair as the guidance, often easily obtained by itself within a training set. To train GuidNoise, which generates synthetic noisy images from the guidance, we introduce a guidance-aware affine feature modification (GAFM) and a noise-aware refine loss to leverage the inherent potential of diffusion models. This loss function refines the diffusion model's backward process, making the model more adept at generating realistic noise distributions. The GuidNoise synthesizes high-quality noisy images under diverse noise environments without additional metadata during both training and inference. Additionally, GuidNoise enables the efficient generation of noisy-clean image pairs at inference time, making synthetic noise readily applicable for augmenting training data. This self-augmentation significantly improves denoising performance, especially in practical scenarios with lightweight models and limited training data. The code is available at https://github.com/chjinny/GuidNoise.

Authors:Sidan Zhu, Hongteng Xu, Dixin Luo
Title: Self-Paced and Self-Corrective Masked Prediction for Movie Trailer Generation
Abstract:
As a challenging video editing task, movie trailer generation involves selecting and reorganizing movie shots to create engaging trailers. Currently, most existing automatic trailer generation methods employ a "selection-then-ranking" paradigm (i.e., first selecting key shots and then ranking them), which suffers from inevitable error propagation and limits the quality of the generated trailers. Beyond this paradigm, we propose a new self-paced and self-corrective masked prediction method called SSMP, which achieves state-of-the-art results in automatic trailer generation via bi-directional contextual modeling and progressive self-correction. In particular, SSMP trains a Transformer encoder that takes the movie shot sequences as prompts and generates corresponding trailer shot sequences accordingly. The model is trained via masked prediction, reconstructing each trailer shot sequence from its randomly masked counterpart. The mask ratio is self-paced, allowing the task difficulty to adapt to the model and thereby improving model performance. When generating a movie trailer, the model fills the shot positions with high confidence at each step and re-masks the remaining positions for the next prediction, forming a progressive self-correction mechanism that is analogous to how human editors work. Both quantitative results and user studies demonstrate the superiority of SSMP in comparison to existing automatic movie trailer generation methods. Demo is available at: https://github.com/Dixin-Lab/SSMP.

Authors:Manar Alnaasan, Md Selim Sarowar, Sungho Kim
Title: Explainable Parkinsons Disease Gait Recognition Using Multimodal RGB-D Fusion and Large Language Models
Abstract:
Accurate and interpretable gait analysis plays a crucial role in the early detection of Parkinsons disease (PD),yet most existing approaches remain limited by single-modality inputs, low robustness, and a lack of clinical transparency. This paper presents an explainable multimodal framework that integrates RGB and Depth (RGB-D) data to recognize Parkinsonian gait patterns under realistic conditions. The proposed system employs dual YOLOv11-based encoders for modality-specific feature extraction, followed by a Multi-Scale Local-Global Extraction (MLGE) module and a Cross-Spatial Neck Fusion mechanism to enhance spatial-temporal representation. This design captures both fine-grained limb motion (e.g., reduced arm swing) and overall gait dynamics (e.g., short stride or turning difficulty), even in challenging scenarios such as low lighting or occlusion caused by clothing. To ensure interpretability, a frozen Large Language Model (LLM) is incorporated to translate fused visual embeddings and structured metadata into clinically meaningful textual explanations. Experimental evaluations on multimodal gait datasets demonstrate that the proposed RGB-D fusion framework achieves higher recognition accuracy, improved robustness to environmental variations, and clear visual-linguistic reasoning compared with single-input baselines. By combining multimodal feature learning with language-based interpretability, this study bridges the gap between visual recognition and clinical understanding, offering a novel vision-language paradigm for reliable and explainable Parkinsons disease gait analysis. Code:https://github.com/manaralnaasan/RGB-D_parkinson-LLM

Authors:Xiangyi Gao, Danpei Zhao, Bo Yuan, Wentao Li
Title: Dual-Stream Spectral Decoupling Distillation for Remote Sensing Object Detection
Abstract:
Knowledge distillation is an effective and hardware-friendly method, which plays a key role in lightweighting remote sensing object detection. However, existing distillation methods often encounter the issue of mixed features in remote sensing images (RSIs), and neglect the discrepancies caused by subtle feature variations, leading to entangled knowledge confusion. To address these challenges, we propose an architecture-agnostic distillation method named Dual-Stream Spectral Decoupling Distillation (DS2D2) for universal remote sensing object detection tasks. Specifically, DS2D2 integrates explicit and implicit distillation grounded in spectral decomposition. Firstly, the first-order wavelet transform is applied for spectral decomposition to preserve the critical spatial characteristics of RSIs. Leveraging this spatial preservation, a Density-Independent Scale Weight (DISW) is designed to address the challenges of dense and small object detection common in RSIs. Secondly, we show implicit knowledge hidden in subtle student-teacher feature discrepancies, which significantly influence predictions when activated by detection heads. This implicit knowledge is extracted via full-frequency and high-frequency amplifiers, which map feature differences to prediction deviations. Extensive experiments on DIOR and DOTA datasets validate the effectiveness of the proposed method. Specifically, on DIOR dataset, DS2D2 achieves improvements of 4.2% in AP50 for RetinaNet and 3.8% in AP50 for Faster R-CNN, outperforming existing distillation approaches. The source code will be available at https://github.com/PolarAid/DS2D2.

Authors:Geunhyuk Youk, Jihyong Oh, Munchurl Kim
Title: FMA-Net++: Motion- and Exposure-Aware Real-World Joint Video Super-Resolution and Deblurring
Abstract:
Real-world video restoration is plagued by complex degradations from motion coupled with dynamically varying exposure - a key challenge largely overlooked by prior works and a common artifact of auto-exposure or low-light capture. We present FMA-Net++, a framework for joint video super-resolution and deblurring that explicitly models this coupled effect of motion and dynamically varying exposure. FMA-Net++ adopts a sequence-level architecture built from Hierarchical Refinement with Bidirectional Propagation blocks, enabling parallel, long-range temporal modeling. Within each block, an Exposure Time-aware Modulation layer conditions features on per-frame exposure, which in turn drives an exposure-aware Flow-Guided Dynamic Filtering module to infer motion- and exposure-aware degradation kernels. FMA-Net++ decouples degradation learning from restoration: the former predicts exposure- and motion-aware priors to guide the latter, improving both accuracy and efficiency. To evaluate under realistic capture conditions, we introduce REDS-ME (multi-exposure) and REDS-RE (random-exposure) benchmarks. Trained solely on synthetic data, FMA-Net++ achieves state-of-the-art accuracy and temporal consistency on our new benchmarks and GoPro, outperforming recent methods in both restoration quality and inference speed, and generalizes well to challenging real-world videos.

Authors:Kai-Po Chang, Wei-Yuan Cheng, Chi-Pin Huang, Fu-En Yang, Yu-Chiang Frank Wang
Title: Mitigating Object and Action Hallucinations in Multimodal LLMs via Self-Augmented Contrastive Alignment
Abstract:
Recent advancement in multimodal LLMs (MLLMs) has demonstrated their remarkable capability to generate descriptive captions for input videos. However, these models suffer from factual inaccuracies in the generated descriptions, causing severe hallucination issues. While prior works have explored alleviating hallucinations for static images, jointly mitigating visual object and temporal action hallucinations for dynamic videos remains a challenging and unsolved task. To tackle this challenge, we propose a Self-Augmented Contrastive Alignment (SANTA) framework for enabling object and action faithfulness by exempting the spurious correlations and enforcing the emphasis on visual facts. SANTA employs a hallucinative self-augmentation scheme to identify the potential hallucinations that lie in the MLLM and transform the original captions to the contrasted negatives. Furthermore, we develop a tracklet-phrase contrastive alignment to match the regional objects and relation-guided actions with their corresponding visual and temporal phrases. Extensive experiments demonstrate that SANTA outperforms existing methods in alleviating object and action hallucinations, yielding superior performance on the hallucination examination benchmarks.

Authors:Mainak Singha, Masih Aminbeidokhti, Paolo Casari, Elisa Ricci, Subhankar Roy
Title: How (Mis)calibrated is Your Federated CLIP and What To Do About It?
Abstract:
While vision-language models like CLIP have been extensively studied, their calibration, crucial for reliable predictions, has received limited attention. Although a few prior works have examined CLIP calibration in offline settings, the impact of fine-tuning CLIP in a federated learning (FL) setup remains unexplored. In this work, we investigate how FL affects CLIP calibration and propose strategies to improve reliability in this distributed setting. We first analyze Textual Prompt Tuning approaches and show that they degrade calibration metrics when operating under FL. We also evaluate existing in-training calibration techniques across four global aggregation methods, finding that they provide limited improvements. Our results suggest that the key challenge lies not only in how we aggregate or calibrate, but in which components we choose to fine-tune. Motivated by this insight, we propose $\text{FL}^2\text{oRA}$, a straightforward LoRA-based approach that naturally improves calibration in FL, and we analyze the factors behind its effectiveness. Experiments on multiple benchmarks demonstrate that $\text{FL}^2\text{oRA}$ consistently produces well-calibrated models, reducing the need for explicit calibration procedures. Codes are available at https://github.com/mainaksingha01/FL2oRA.

Authors:Zitian Zhang, Iliyan Georgiev, Michael Fischer, Yannick Hold-Geoffroy, Jean-François Lalonde, Valentin Deschaintre
Title: UniLight: A Unified Representation for Lighting
Abstract:
Lighting has a strong influence on visual appearance, yet understanding and representing lighting in images remains notoriously difficult. Various lighting representations exist, such as environment maps, irradiance, spherical harmonics, or text, but they are incompatible, which limits cross-modal transfer. We thus propose UniLight, a joint latent space as lighting representation, that unifies multiple modalities within a shared embedding. Modality-specific encoders for text, images, irradiance, and environment maps are trained contrastively to align their representations, with an auxiliary spherical-harmonics prediction task reinforcing directional understanding. Our multi-modal data pipeline enables large-scale training and evaluation across three tasks: lighting-based retrieval, environment-map generation, and lighting control in diffusion-based image synthesis. Experiments show that our representation captures consistent and transferable lighting features, enabling flexible manipulation across modalities.

Authors:Bishoy Galoaa, Xiangyu Bai, Shayda Moezzi, Utsav Nandi, Sai Siddhartha Vivek Dhir Rangoju, Somaieh Amraee, Sarah Ostadabbas
Title: Look Around and Pay Attention: Multi-camera Point Tracking Reimagined with Transformers
Abstract:
This paper presents LAPA (Look Around and Pay Attention), a novel end-to-end transformer-based architecture for multi-camera point tracking that integrates appearance-based matching with geometric constraints. Traditional pipelines decouple detection, association, and tracking, leading to error propagation and temporal inconsistency in challenging scenarios. LAPA addresses these limitations by leveraging attention mechanisms to jointly reason across views and time, establishing soft correspondences through a cross-view attention mechanism enhanced with geometric priors. Instead of relying on classical triangulation, we construct 3D point representations via attention-weighted aggregation, inherently accommodating uncertainty and partial observations. Temporal consistency is further maintained through a transformer decoder that models long-range dependencies, preserving identities through extended occlusions. Extensive experiments on challenging datasets, including our newly created multi-camera (MC) versions of TAPVid-3D panoptic and PointOdyssey, demonstrate that our unified approach significantly outperforms existing methods, achieving 37.5% APD on TAPVid-3D-MC and 90.3% APD on PointOdyssey-MC, particularly excelling in scenarios with complex motions and occlusions. Code is available at https://github.com/ostadabbas/Look-Around-and-Pay-Attention-LAPA-

Authors:Qinyu Zhao, Guangting Zheng, Tao Yang, Rui Zhu, Xingjian Leng, Stephen Gould, Liang Zheng
Title: SimFlow: Simplified and End-to-End Training of Latent Normalizing Flows
Abstract:
Normalizing Flows (NFs) learn invertible mappings between the data and a Gaussian distribution. Prior works usually suffer from two limitations. First, they add random noise to training samples or VAE latents as data augmentation, introducing complex pipelines including extra noising and denoising steps. Second, they use a pretrained and frozen VAE encoder, resulting in suboptimal reconstruction and generation quality. In this paper, we find that the two issues can be solved in a very simple way: just fixing the variance (which would otherwise be predicted by the VAE encoder) to a constant (e.g., 0.5). On the one hand, this method allows the encoder to output a broader distribution of tokens and the decoder to learn to reconstruct clean images from the augmented token distribution, avoiding additional noise or denoising design. On the other hand, fixed variance simplifies the VAE evidence lower bound, making it stable to train an NF with a VAE jointly. On the ImageNet $256 \times 256$ generation task, our model SimFlow obtains a gFID score of 2.15, outperforming the state-of-the-art method STARFlow (gFID 2.40). Moreover, SimFlow can be seamlessly integrated with the end-to-end representation alignment (REPA-E) method and achieves an improved gFID of 1.91, setting a new state of the art among NFs.

Authors:Siyi Chen, Mikaela Angelina Uy, Chan Hee Song, Faisal Ladhak, Adithyavairavan Murali, Qing Qu, Stan Birchfield, Valts Blukis, Jonathan Tremblay
Title: SpaceTools: Tool-Augmented Spatial Reasoning via Double Interactive RL
Abstract:
Vision Language Models (VLMs) demonstrate strong qualitative visual understanding, but struggle with metrically precise spatial reasoning required for embodied applications. The agentic paradigm promises that VLMs can use a wide variety of tools that could augment these capabilities, such as depth estimators, segmentation models, and pose estimators. Yet it remains an open challenge how to realize this vision without solely relying on handcrafted prompting strategies or enforcing fixed, predefined tool pipelines that limit VLMs' ability to discover optimal tool-use patterns. Reinforcement Learning could overcome this gap, but has so far been limited to reasoning with a single visual tool due to the large search space in multi-tool reasoning. We introduce Double Interactive Reinforcement Learning (DIRL), a two-phase training framework where VLMs learn to coordinate multiple tools through interactive exploration and feedback. In the teaching phase, we combine demonstrations from a single tool specialist trained via interactive RL with traces from a frontier model using all tools. In the exploration phase, the model further refines multi-tool coordination through continued RL. Our model, SpaceTools, with tool-augmented spatial reasoning ability, achieves state-of-the-art performance on spatial understanding benchmarks (RoboSpatial-Home, BLINK, BOP-ASK) and demonstrates reliable real-world manipulation using a 7-DOF robot as a tool. DIRL provides substantial improvements over the vanilla SFT (+12% on RoboSpatial) and RL (+16% on RoboSpatial) baselines. Project page: https://spacetools.github.io/.

Authors:Honggyu An, Jaewoo Jung, Mungyeom Kim, Sunghwan Hong, Chaehyun Kim, Kazumi Fukuda, Minkyeong Jeon, Jisang Han, Takuya Narihira, Hyuna Ko, Junsu Kim, Yuki Mitsufuji, Seungryong Kim
Title: C3G: Learning Compact 3D Representations with 2K Gaussians
Abstract:
Reconstructing and understanding 3D scenes from unposed sparse views in a feed-forward manner remains as a challenging task in 3D computer vision. Recent approaches use per-pixel 3D Gaussian Splatting for reconstruction, followed by a 2D-to-3D feature lifting stage for scene understanding. However, they generate excessive redundant Gaussians, causing high memory overhead and sub-optimal multi-view feature aggregation, leading to degraded novel view synthesis and scene understanding performance. We propose C3G, a novel feed-forward framework that estimates compact 3D Gaussians only at essential spatial locations, minimizing redundancy while enabling effective feature lifting. We introduce learnable tokens that aggregate multi-view features through self-attention to guide Gaussian generation, ensuring each Gaussian integrates relevant visual features across views. We then exploit the learned attention patterns for Gaussian decoding to efficiently lift features. Extensive experiments on pose-free novel view synthesis, 3D open-vocabulary segmentation, and view-invariant feature aggregation demonstrate our approach's effectiveness. Results show that a compact yet geometrically meaningful representation is sufficient for high-quality scene reconstruction and understanding, achieving superior memory efficiency and feature fidelity compared to existing methods.

Authors:Farhana Hossain Swarnali, Miaomiao Zhang, Tonmoy Hossain
Title: Learning Group Actions In Disentangled Latent Image Representations
Abstract:
Modeling group actions on latent representations enables controllable transformations of high-dimensional image data. Prior works applying group-theoretic priors or modeling transformations typically operate in the high-dimensional data space, where group actions apply uniformly across the entire input, making it difficult to disentangle the subspace that varies under transformations. While latent-space methods offer greater flexibility, they still require manual partitioning of latent variables into equivariant and invariant subspaces, limiting the ability to robustly learn and operate group actions within the representation space. To address this, we introduce a novel end-to-end framework that for the first time learns group actions on latent image manifolds, automatically discovering transformation-relevant structures without manual intervention. Our method uses learnable binary masks with straight-through estimation to dynamically partition latent representations into transformation-sensitive and invariant components. We formulate this within a unified optimization framework that jointly learns latent disentanglement and group transformation mappings. The framework can be seamlessly integrated with any standard encoder-decoder architecture. We validate our approach on five 2D/3D image datasets, demonstrating its ability to automatically learn disentangled latent factors for group actions in diverse data, while downstream classification tasks confirm the effectiveness of the learned representations. Our code is publicly available at https://github.com/farhanaswarnali/Learning-Group-Actions-In-Disentangled-Latent-Image-Representations .

Authors:Jisang Han, Sunghwan Hong, Jaewoo Jung, Wooseok Jang, Honggyu An, Qianqian Wang, Seungryong Kim, Chen Feng
Title: Emergent Outlier View Rejection in Visual Geometry Grounded Transformers
Abstract:
Reliable 3D reconstruction from in-the-wild image collections is often hindered by "noisy" images-irrelevant inputs with little or no view overlap with others. While traditional Structure-from-Motion pipelines handle such cases through geometric verification and outlier rejection, feed-forward 3D reconstruction models lack these explicit mechanisms, leading to degraded performance under in-the-wild conditions. In this paper, we discover that the existing feed-forward reconstruction model, e.g., VGGT, despite lacking explicit outlier-rejection mechanisms or noise-aware training, can inherently distinguish distractor images. Through an in-depth analysis under varying proportions of synthetic distractors, we identify a specific layer that naturally exhibits outlier-suppressing behavior. Further probing reveals that this layer encodes discriminative internal representations that enable an effective noise-filtering capability, which we simply leverage to perform outlier-view rejection in feed-forward 3D reconstruction without any additional fine-tuning or supervision. Extensive experiments on both controlled and in-the-wild datasets demonstrate that this implicit filtering mechanism is consistent and generalizes well across diverse scenarios.

Authors:Hang Xu, Linjiang Huang, Feng Zhao
Title: Highly Efficient Test-Time Scaling for T2I Diffusion Models with Text Embedding Perturbation
Abstract:
Test-time scaling (TTS) aims to achieve better results by increasing random sampling and evaluating samples based on rules and metrics. However, in text-to-image(T2I) diffusion models, most related works focus on search strategies and reward models, yet the impact of the stochastic characteristic of noise in T2I diffusion models on the method's performance remains unexplored. In this work, we analyze the effects of randomness in T2I diffusion models and explore a new format of randomness for TTS: text embedding perturbation, which couples with existing randomness like SDE-injected noise to enhance generative diversity and quality. We start with a frequency-domain analysis of these formats of randomness and their impact on generation, and find that these two randomness exhibit complementary behavior in the frequency domain: spatial noise favors low-frequency components (early steps), while text embedding perturbation enhances high-frequency details (later steps), thereby compensating for the potential limitations of spatial noise randomness in high-frequency manipulation. Concurrently, text embedding demonstrates varying levels of tolerance to perturbation across different dimensions of the generation process. Specifically, our method consists of two key designs: (1) Introducing step-based text embedding perturbation, combining frequency-guided noise schedules with spatial noise perturbation. (2) Adapting the perturbation intensity selectively based on their frequency-specific contributions to generation and tolerance to perturbation. Our approach can be seamlessly integrated into existing TTS methods and demonstrates significant improvements on multiple benchmarks with almost no additional computation. Code is available at \href{https://github.com/xuhang07/TEP-Diffusion}{https://github.com/xuhang07/TEP-Diffusion}.

Authors:Sheng-Hao Liao, Shang-Fu Chen, Tai-Ming Huang, Wen-Huang Cheng, Kai-Lung Hua
Title: DirectDrag: High-Fidelity, Mask-Free, Prompt-Free Drag-based Image Editing via Readout-Guided Feature Alignment
Abstract:
Drag-based image editing using generative models provides intuitive control over image structures. However, existing methods rely heavily on manually provided masks and textual prompts to preserve semantic fidelity and motion precision. Removing these constraints creates a fundamental trade-off: visual artifacts without masks and poor spatial control without prompts. To address these limitations, we propose DirectDrag, a novel mask- and prompt-free editing framework. DirectDrag enables precise and efficient manipulation with minimal user input while maintaining high image fidelity and accurate point alignment. DirectDrag introduces two key innovations. First, we design an Auto Soft Mask Generation module that intelligently infers editable regions from point displacement, automatically localizing deformation along movement paths while preserving contextual integrity through the generative model's inherent capacity. Second, we develop a Readout-Guided Feature Alignment mechanism that leverages intermediate diffusion activations to maintain structural consistency during point-based edits, substantially improving visual fidelity. Despite operating without manual mask or prompt, DirectDrag achieves superior image quality compared to existing methods while maintaining competitive drag accuracy. Extensive experiments on DragBench and real-world scenarios demonstrate the effectiveness and practicality of DirectDrag for high-quality, interactive image manipulation. Project Page: https://frakw.github.io/DirectDrag/. Code is available at: https://github.com/frakw/DirectDrag.

Authors:Jin-Ting He, Fu-Jen Tsai, Yan-Tsung Peng, Min-Hung Chen, Chia-Wen Lin, Yen-Yu Lin
Title: BlurDM: A Blur Diffusion Model for Image Deblurring
Abstract:
Diffusion models show promise for dynamic scene deblurring; however, existing studies often fail to leverage the intrinsic nature of the blurring process within diffusion models, limiting their full potential. To address it, we present a Blur Diffusion Model (BlurDM), which seamlessly integrates the blur formation process into diffusion for image deblurring. Observing that motion blur stems from continuous exposure, BlurDM implicitly models the blur formation process through a dual-diffusion forward scheme, diffusing both noise and blur onto a sharp image. During the reverse generation process, we derive a dual denoising and deblurring formulation, enabling BlurDM to recover the sharp image by simultaneously denoising and deblurring, given pure Gaussian noise conditioned on the blurred image as input. Additionally, to efficiently integrate BlurDM into deblurring networks, we perform BlurDM in the latent space, forming a flexible prior generation network for deblurring. Extensive experiments demonstrate that BlurDM significantly and consistently enhances existing deblurring methods on four benchmark datasets. The source code is available at https://github.com/Jin-Ting-He/BlurDM.

Authors:Lianyu Pang, Ji Zhou, Qiping Wang, Baoquan Zhao, Zhenguo Yang, Qing Li, Xudong Mao
Title: Training for Identity, Inference for Controllability: A Unified Approach to Tuning-Free Face Personalization
Abstract:
Tuning-free face personalization methods have developed along two distinct paradigms: text embedding approaches that map facial features into the text embedding space, and adapter-based methods that inject features through auxiliary cross-attention layers. While both paradigms have shown promise, existing methods struggle to simultaneously achieve high identity fidelity and flexible text controllability. We introduce UniID, a unified tuning-free framework that synergistically integrates both paradigms. Our key insight is that when merging these approaches, they should mutually reinforce only identity-relevant information while preserving the original diffusion prior for non-identity attributes. We realize this through a principled training-inference strategy: during training, we employ an identity-focused learning scheme that guides both branches to capture identity features exclusively; at inference, we introduce a normalized rescaling mechanism that recovers the text controllability of the base diffusion model while enabling complementary identity signals to enhance each other. This principled design enables UniID to achieve high-fidelity face personalization with flexible text controllability. Extensive experiments against six state-of-the-art methods demonstrate that UniID achieves superior performance in both identity preservation and text controllability. Code will be available at https://github.com/lyuPang/UniID

Authors:Donghun Ryou, Inju Ha, Sanghyeok Chu, Bohyung Han
Title: Beyond the Ground Truth: Enhanced Supervision for Image Restoration
Abstract:
Deep learning-based image restoration has achieved significant success. However, when addressing real-world degradations, model performance is limited by the quality of ground-truth images in datasets due to practical constraints in data acquisition. To address this limitation, we propose a novel framework that enhances existing ground truth images to provide higher-quality supervision for real-world restoration. Our framework generates perceptually enhanced ground truth images using super-resolution by incorporating adaptive frequency masks, which are learned by a conditional frequency mask generator. These masks guide the optimal fusion of frequency components from the original ground truth and its super-resolved variants, yielding enhanced ground truth images. This frequency-domain mixup preserves the semantic consistency of the original content while selectively enriching perceptual details, preventing hallucinated artifacts that could compromise fidelity. The enhanced ground truth images are used to train a lightweight output refinement network that can be seamlessly integrated with existing restoration models. Extensive experiments demonstrate that our approach consistently improves the quality of restored images. We further validate the effectiveness of both supervision enhancement and output refinement through user studies. Code is available at https://github.com/dhryougit/Beyond-the-Ground-Truth.

Authors:Youxin Pang, Yong Zhang, Ruizhi Shao, Xiang Deng, Feng Gao, Xu Xiaoming, Xiaoming Wei, Yebin Liu
Title: UniMo: Unifying 2D Video and 3D Human Motion with an Autoregressive Framework
Abstract:
We propose UniMo, an innovative autoregressive model for joint modeling of 2D human videos and 3D human motions within a unified framework, enabling simultaneous generation and understanding of these two modalities for the first time. Current methods predominantly focus on generating one modality given another as the condition or integrating either of them with other modalities such as text and audio. Unifying 2D videos and 3D motions for simultaneous optimization and generation remains largely unexplored, presenting significant challenges due to their substantial structural and distributional differences. Inspired by the LLM's ability to unify different modalities, our method models videos and 3D motions as a unified tokens sequence, utilizing separate embedding layers to mitigate distribution gaps. Additionally, we devise a sequence modeling strategy that integrates two distinct tasks within a single framework, proving the effectiveness of unified modeling. Moreover, to efficiently align with visual tokens and preserve 3D spatial information, we design a novel 3D motion tokenizer with a temporal expansion strategy, using a single VQ-VAE to produce quantized motion tokens. It features multiple expert decoders that handle body shapes, translation, global orientation, and body poses for reliable 3D motion reconstruction. Extensive experiments demonstrate that our method simultaneously generates corresponding videos and motions while performing accurate motion capture. This work taps into the capacity of LLMs to fuse diverse data types, paving the way for integrating human-centric information into existing models and potentially enabling multimodal, controllable joint modeling of humans, objects, and scenes.

Authors:Shuai Yang, Junxin Lin, Yifan Zhou, Ziwei Liu, Chen Change Loy
Title: Zero-Shot Video Translation and Editing with Frame Spatial-Temporal Correspondence
Abstract:
The remarkable success in text-to-image diffusion models has motivated extensive investigation of their potential for video applications. Zero-shot techniques aim to adapt image diffusion models for videos without requiring further model training. Recent methods largely emphasize integrating inter-frame correspondence into attention mechanisms. However, the soft constraint applied to identify the valid features to attend is insufficient, which could lead to temporal inconsistency. In this paper, we present FRESCO, which integrates intra-frame correspondence with inter-frame correspondence to formulate a more robust spatial-temporal constraint. This enhancement ensures a consistent transformation of semantically similar content between frames. Our method goes beyond attention guidance to explicitly optimize features, achieving high spatial-temporal consistency with the input video, significantly enhancing the visual coherence of manipulated videos. We verify FRESCO adaptations on two zero-shot tasks of video-to-video translation and text-guided video editing. Comprehensive experiments demonstrate the effectiveness of our framework in generating high-quality, coherent videos, highlighting a significant advance over current zero-shot methods.

Authors:Letian Zhou, Songhua Liu, Xinchao Wang
Title: CoDA: From Text-to-Image Diffusion Models to Training-Free Dataset Distillation
Abstract:
Prevailing Dataset Distillation (DD) methods leveraging generative models confront two fundamental limitations. First, despite pioneering the use of diffusion models in DD and delivering impressive performance, the vast majority of approaches paradoxically require a diffusion model pre-trained on the full target dataset, undermining the very purpose of DD and incurring prohibitive training costs. Second, although some methods turn to general text-to-image models without relying on such target-specific training, they suffer from a significant distributional mismatch, as the web-scale priors encapsulated in these foundation models fail to faithfully capture the target-specific semantics, leading to suboptimal performance. To tackle these challenges, we propose Core Distribution Alignment (CoDA), a framework that enables effective DD using only an off-the-shelf text-to-image model. Our key idea is to first identify the "intrinsic core distribution" of the target dataset using a robust density-based discovery mechanism. We then steer the generative process to align the generated samples with this core distribution. By doing so, CoDA effectively bridges the gap between general-purpose generative priors and target semantics, yielding highly representative distilled datasets. Extensive experiments suggest that, without relying on a generative model specifically trained on the target dataset, CoDA achieves performance on par with or even superior to previous methods with such reliance across all benchmarks, including ImageNet-1K and its subsets. Notably, it establishes a new state-of-the-art accuracy of 60.4% at the 50-images-per-class (IPC) setup on ImageNet-1K. Our code is available on the project webpage: https://github.com/zzzlt422/CoDA

Authors:Mengyuan Liu, Jinfu Liu, Yongkang Jiang, Bin He
Title: Heatmap Pooling Network for Action Recognition from RGB Videos
Abstract:
Human action recognition (HAR) in videos has garnered widespread attention due to the rich information in RGB videos. Nevertheless, existing methods for extracting deep features from RGB videos face challenges such as information redundancy, susceptibility to noise and high storage costs. To address these issues and fully harness the useful information in videos, we propose a novel heatmap pooling network (HP-Net) for action recognition from videos, which extracts information-rich, robust and concise pooled features of the human body in videos through a feedback pooling module. The extracted pooled features demonstrate obvious performance advantages over the previously obtained pose data and heatmap features from videos. In addition, we design a spatial-motion co-learning module and a text refinement modulation module to integrate the extracted pooled features with other multimodal data, enabling more robust action recognition. Extensive experiments on several benchmarks namely NTU RGB+D 60, NTU RGB+D 120, Toyota-Smarthome and UAV-Human consistently verify the effectiveness of our HP-Net, which outperforms the existing human action recognition methods. Our code is publicly available at: https://github.com/liujf69/HPNet-Action.

Authors:Zirun Guo, Minjie Hong, Feng Zhang, Kai Jia, Tao Jin
Title: Thinking with Programming Vision: Towards a Unified View for Thinking with Images
Abstract:
Multimodal large language models (MLLMs) that think with images can interactively use tools to reason about visual inputs, but current approaches often rely on a narrow set of tools with limited real-world necessity and scalability. In this work, we first reveal a critical and previously overlooked weakness: even state-of-the-art MLLMs are surprisingly brittle, showing significant performance degradation on images with simple orientation changes or natural corruptions, underscoring the need for more robust tool-based reasoning. To address this, we propose CodeVision, a flexible and scalable code-as-tool framework where the model generates code as a universal interface to invoke any image operation, moving beyond fixed tool registries. We train our model using a two-stage methodology, beginning with Supervised Fine-Tuning (SFT) on a high-quality dataset curated for complex, multi-turn tool composition and error recovery, followed by Reinforcement Learning (RL) with a novel and dense process reward function to encourage strategic and efficient tool use. To facilitate this research, we construct new SFT and RL datasets and introduce a challenging new benchmark suite designed to rigorously evaluate robustness to orientation changes and multi-tool reasoning. Experiments on Qwen2.5-VL and Qwen3-VL series show that our approach significantly improves model performance and fosters emergent capabilities such as flexible tool composition, efficient chained execution, and robust error recovery from runtime feedback. Code is available at https://github.com/ByteDance-BandAI/CodeVision.

Authors:Ge-Peng Ji, Jingyi Liu, Deng-Ping Fan, Nick Barnes
Title: Colon-X: Advancing Intelligent Colonoscopy from Multimodal Understanding to Clinical Reasoning
Abstract:
In this study, we present Colon-X, an open initiative aimed at advancing multimodal intelligence in colonoscopy. We begin by constructing ColonVQA, the most comprehensive multimodal dataset ever built for colonoscopy, featuring over 1.1M+ visual question answering entries across 76 clinical findings and 18 multimodal tasks. Beyond serving as a community-wide data foundation, we further investigate a critical yet underexplored transition in colonoscopy - evolving from multimodal understanding to clinical reasoning: (a) To capture the current landscape of multimodal understanding behaviors, we systematically assess the generalizability of 22 multimodal large language models and examine their reliability under human-induced perturbations. The results reveal that clinical outputs from leading MLLMs remain far from robust and trustworthy. (b) To narrow this gap, we further explore reasoning-centric intelligence tailored for colonoscopy. Specifically, we curate ColonReason, a clinically grounded reasoning dataset annotated through a multi-expert debating pipeline, and develop ColonR1, the first R1-styled model incorporating task-adaptive rewarding and gradient-stable optimization techniques. Under data-scarce conditions, our ColonR1 achieves 56.61% overall accuracy, outperforming supervised fine-tuning by 25.22%, and sets a new reasoning-enabled baseline for multimodal colonoscopy analysis. All data and model resources are publicly available at https://github.com/ai4colonoscopy/Colon-X.

Authors:Qi'ao Xu, Tianwen Qian, Yuqian Fu, Kailing Li, Yang Jiao, Jiacheng Zhang, Xiaoling Wang, Liang He
Title: ToG-Bench: Task-Oriented Spatio-Temporal Grounding in Egocentric Videos
Abstract:
A core capability towards general embodied intelligence lies in localizing task-relevant objects from an egocentric perspective, formulated as Spatio-Temporal Video Grounding (STVG). Despite recent progress, existing STVG studies remain largely confined to object-centric and descriptive instructions, neglecting the task-oriented reasoning that is crucial for embodied agents to accomplish goal-directed interactions. To bridge this gap, we introduce \textbf{ToG-Bench}, the first task-oriented spatio-temporal video grounding benchmark for egocentric videos. ToG-Bench is characterized by three key features: (1) \textbf{Task-oriented Grounding}, which requires identifying and localizing objects based on intended tasks rather than straightforward descriptions; (2) \textbf{Explicit-Implicit Dual Grounding}, where target objects can be either explicitly mentioned or implicitly inferred by contextual reasoning; (3) \textbf{One-to-Many Grounding}, where a single instruction may correspond to multiple objects involved in task execution. Built upon videos sourced from ScanNet, ToG-Bench comprises 100 annotated clips with 2,704 task-oriented grounding instructions, constructed via a semi-automated pipeline that combines foundation model annotation and human refinement. In addition, we introduce a set of task-level evaluation metrics tailored for multi-object and explicit-implicit object grounding, and systematically benchmark seven state-of-the-art MLLMs. Extensive experiments reveal the intrinsic challenges of task-oriented STVG and substantial performance gaps across explicit-implicit and multi-object grounding, highlighting the difficulty of bridging perception and interaction in embodied scenarios. Data and code will be released at: \href{https://github.com/qaxuDev/ToG-Bench}{https://github.com/qaxuDev/ToG-Bench}..

Authors:Ivan Yee Lee, Cheng Yang, Taylor Berg-Kirkpatrick
Title: Optical Context Compression Is Just (Bad) Autoencoding
Abstract:
DeepSeek-OCR demonstrates that rendered text can be reconstructed with high fidelity from a small number of vision tokens. This finding has sparked excitement about vision-based context compression for language models. But the evaluation stops at reconstruction; whether these representations help language modeling remains untested. We test two assumptions implicit in the optical-compression narrative: that vision-based compression provides unique advantages for text reconstruction from compressed representations, and that DeepSeek-OCR's reconstruction results are evidence that vision-based compression will be useful for language modeling. Comparing their vision encoder against simple alternatives--parameter-free mean pooling and a learned hierarchical encoder--we find that these simple approaches match or surpass vision for reconstruction at matched compression ratios, and outperform it for language modeling--where vision-based compression fails to beat truncation. The excitement around optical context compression outpaces the evidence. Code and checkpoints are available at https://github.com/ivnle/bad-autoencoding

Authors:Muhammed Burak Kizil, Enes Sanli, Niloy J. Mitra, Erkut Erdem, Aykut Erdem, Duygu Ceylan
Title: LAMP: Language-Assisted Motion Planning for Controllable Video Generation
Abstract:
Video generation has achieved remarkable progress in visual fidelity and controllability, enabling conditioning on text, layout, or motion. Among these, motion control - specifying object dynamics and camera trajectories - is essential for composing complex, cinematic scenes, yet existing interfaces remain limited. We introduce LAMP that leverages large language models (LLMs) as motion planners to translate natural language descriptions into explicit 3D trajectories for dynamic objects and (relatively defined) cameras. LAMP defines a motion domain-specific language (DSL), inspired by cinematography conventions. By harnessing program synthesis capabilities of LLMs, LAMP generates structured motion programs from natural language, which are deterministically mapped to 3D trajectories. We construct a large-scale procedural dataset pairing natural text descriptions with corresponding motion programs and 3D trajectories. Experiments demonstrate LAMP's improved performance in motion controllability and alignment with user intent compared to state-of-the-art alternatives establishing the first framework for generating both object and camera motions directly from natural language specifications. Code, models and data are available on our project page.

Authors:Haoran Zhou, Gim Hee Lee
Title: Motion4D: Learning 3D-Consistent Motion and Semantics for 4D Scene Understanding
Abstract:
Recent advancements in foundation models for 2D vision have substantially improved the analysis of dynamic scenes from monocular videos. However, despite their strong generalization capabilities, these models often lack 3D consistency, a fundamental requirement for understanding scene geometry and motion, thereby causing severe spatial misalignment and temporal flickering in complex 3D environments. In this paper, we present Motion4D, a novel framework that addresses these challenges by integrating 2D priors from foundation models into a unified 4D Gaussian Splatting representation. Our method features a two-part iterative optimization framework: 1) Sequential optimization, which updates motion and semantic fields in consecutive stages to maintain local consistency, and 2) Global optimization, which jointly refines all attributes for long-term coherence. To enhance motion accuracy, we introduce a 3D confidence map that dynamically adjusts the motion priors, and an adaptive resampling process that inserts new Gaussians into under-represented regions based on per-pixel RGB and semantic errors. Furthermore, we enhance semantic coherence through an iterative refinement process that resolves semantic inconsistencies by alternately optimizing the semantic fields and updating prompts of SAM2. Extensive evaluations demonstrate that our Motion4D significantly outperforms both 2D foundation models and existing 3D-based approaches across diverse scene understanding tasks, including point-based tracking, video object segmentation, and novel view synthesis. Our code is available at https://hrzhou2.github.io/motion4d-web/.

Authors:Fuchen Zheng, Xinyi Chen, Weixuan Li, Quanjun Li, Junhua Zhou, Xiaojiao Guo, Xuhang Chen, Chi-Man Pun, Shoujun Zhou
Title: HBFormer: A Hybrid-Bridge Transformer for Microtumor and Miniature Organ Segmentation
Abstract:
Medical image segmentation is a cornerstone of modern clinical diagnostics. While Vision Transformers that leverage shifted window-based self-attention have established new benchmarks in this field, they are often hampered by a critical limitation: their localized attention mechanism struggles to effectively fuse local details with global context. This deficiency is particularly detrimental to challenging tasks such as the segmentation of microtumors and miniature organs, where both fine-grained boundary definition and broad contextual understanding are paramount. To address this gap, we propose HBFormer, a novel Hybrid-Bridge Transformer architecture. The 'Hybrid' design of HBFormer synergizes a classic U-shaped encoder-decoder framework with a powerful Swin Transformer backbone for robust hierarchical feature extraction. The core innovation lies in its 'Bridge' mechanism, a sophisticated nexus for multi-scale feature integration. This bridge is architecturally embodied by our novel Multi-Scale Feature Fusion (MFF) decoder. Departing from conventional symmetric designs, the MFF decoder is engineered to fuse multi-scale features from the encoder with global contextual information. It achieves this through a synergistic combination of channel and spatial attention modules, which are constructed from a series of dilated and depth-wise convolutions. These components work in concert to create a powerful feature bridge that explicitly captures long-range dependencies and refines object boundaries with exceptional precision. Comprehensive experiments on challenging medical image segmentation datasets, including multi-organ, liver tumor, and bladder tumor benchmarks, demonstrate that HBFormer achieves state-of-the-art results, showcasing its outstanding capabilities in microtumor and miniature organ segmentation. Code and models are available at: https://github.com/lzeeorno/HBFormer.

Authors:Yizhi Zhang, Lei Fan, Zhulin Tao, Donglin Di, Yang Song, Sidong Liu, Cong Cong
Title: Cross-Stain Contrastive Learning for Paired Immunohistochemistry and Histopathology Slide Representation Learning
Abstract:
Universal, transferable whole-slide image (WSI) representations are central to computational pathology. Incorporating multiple markers (e.g., immunohistochemistry, IHC) alongside H&E enriches H&E-based features with diverse, biologically meaningful information. However, progress is limited by the scarcity of well-aligned multi-stain datasets. Inter-stain misalignment shifts corresponding tissue across slides, hindering consistent patch-level features and degrading slide-level embeddings. To address this, we curated a slide-level aligned, five-stain dataset (H&E, HER2, KI67, ER, PGR) to enable paired H&E-IHC learning and robust cross-stain representation. Leveraging this dataset, we propose Cross-Stain Contrastive Learning (CSCL), a two-stage pretraining framework with a lightweight adapter trained using patch-wise contrastive alignment to improve the compatibility of H&E features with corresponding IHC-derived contextual cues, and slide-level representation learning with Multiple Instance Learning (MIL), which uses a cross-stain attention fusion module to integrate stain-specific patch features and a cross-stain global alignment module to enforce consistency among slide-level embeddings across different stains. Experiments on cancer subtype classification, IHC biomarker status classification, and survival prediction show consistent gains, yielding high-quality, transferable H&E slide-level representations. The code and data are available at https://github.com/lily-zyz/CSCL.

Authors:Huy Quang Ung, Guillaume Habault, Yasutaka Nishimura, Hao Niu, Roberto Legaspi, Tomoki Oya, Ryoichi Kojima, Masato Taya, Chihiro Ono, Atsunori Minamikawa, Yan Liu
Title: CartoMapQA: A Fundamental Benchmark Dataset Evaluating Vision-Language Models on Cartographic Map Understanding
Abstract:
The rise of Visual-Language Models (LVLMs) has unlocked new possibilities for seamlessly integrating visual and textual information. However, their ability to interpret cartographic maps remains largely unexplored. In this paper, we introduce CartoMapQA, a benchmark specifically designed to evaluate LVLMs' understanding of cartographic maps through question-answering tasks. The dataset includes over 2000 samples, each composed of a cartographic map, a question (with open-ended or multiple-choice answers), and a ground-truth answer. These tasks span key low-, mid- and high-level map interpretation skills, including symbol recognition, embedded information extraction, scale interpretation, and route-based reasoning. Our evaluation of both open-source and proprietary LVLMs reveals persistent challenges: models frequently struggle with map-specific semantics, exhibit limited geospatial reasoning, and are prone to Optical Character Recognition (OCR)-related errors. By isolating these weaknesses, CartoMapQA offers a valuable tool for guiding future improvements in LVLM architectures. Ultimately, it supports the development of models better equipped for real-world applications that depend on robust and reliable map understanding, such as navigation, geographic search, and urban planning. Our source code and data are openly available to the research community at: https://github.com/ungquanghuy-kddi/CartoMapQA.git

Authors:Subin Kim, Sangwoo Mo, Mamshad Nayeem Rizve, Yiran Xu, Difan Liu, Jinwoo Shin, Tobias Hinz
Title: Rethinking Prompt Design for Inference-time Scaling in Text-to-Visual Generation
Abstract:
Achieving precise alignment between user intent and generated visuals remains a central challenge in text-to-visual generation, as a single attempt often fails to produce the desired output. To handle this, prior approaches mainly scale the visual generation process (e.g., increasing sampling steps or seeds), but this quickly leads to a quality plateau. This limitation arises because the prompt, crucial for guiding generation, is kept fixed. To address this, we propose Prompt Redesign for Inference-time Scaling, coined PRIS, a framework that adaptively revises the prompt during inference in response to the scaled visual generations. The core idea of PRIS is to review the generated visuals, identify recurring failure patterns across visuals, and redesign the prompt accordingly before regenerating the visuals with the revised prompt. To provide precise alignment feedback for prompt revision, we introduce a new verifier, element-level factual correction, which evaluates the alignment between prompt attributes and generated visuals at a fine-grained level, achieving more accurate and interpretable assessments than holistic measures. Extensive experiments on both text-to-image and text-to-video benchmarks demonstrate the effectiveness of our approach, including a 15% gain on VBench 2.0. These results highlight that jointly scaling prompts and visuals is key to fully leveraging scaling laws at inference-time. Visualizations are available at the website: https://subin-kim-cv.github.io/PRIS.

Authors:Yiyi Cai, Yuhan Wu, Kunhang Li, You Zhou, Bo Zheng, Haiyang Liu
Title: FloodDiffusion: Tailored Diffusion Forcing for Streaming Motion Generation
Abstract:
We present FloodDiffusion, a new framework for text-driven, streaming human motion generation. Given time-varying text prompts, FloodDiffusion generates text-aligned, seamless motion sequences with real-time latency. Unlike existing methods that rely on chunk-by-chunk or auto-regressive model with diffusion head, we adopt a diffusion forcing framework to model this time-series generation task under time-varying control events. We find that a straightforward implementation of vanilla diffusion forcing (as proposed for video models) fails to model real motion distributions. We demonstrate that to guarantee modeling the output distribution, the vanilla diffusion forcing must be tailored to: (i) train with a bi-directional attention instead of casual attention; (ii) implement a lower triangular time scheduler instead of a random one; (iii) utilize a continues time-varying way to introduce text conditioning. With these improvements, we demonstrate in the first time that the diffusion forcing-based framework achieves state-of-the-art performance on the streaming motion generation task, reaching an FID of 0.057 on the HumanML3D benchmark. Models, code, and weights are available. https://shandaai.github.io/FloodDiffusion/

Authors:Seogkyu Jeon, Kibeom Hong, Hyeran Byun
Title: Exploiting Domain Properties in Language-Driven Domain Generalization for Semantic Segmentation
Abstract:
Recent domain generalized semantic segmentation (DGSS) studies have achieved notable improvements by distilling semantic knowledge from Vision-Language Models (VLMs). However, they overlook the semantic misalignment between visual and textual contexts, which arises due to the rigidity of a fixed context prompt learned on a single source domain. To this end, we present a novel domain generalization framework for semantic segmentation, namely Domain-aware Prompt-driven Masked Transformer (DPMFormer). Firstly, we introduce domain-aware prompt learning to facilitate semantic alignment between visual and textual cues. To capture various domain-specific properties with a single source dataset, we propose domain-aware contrastive learning along with the texture perturbation that diversifies the observable domains. Lastly, to establish a framework resilient against diverse environmental changes, we have proposed the domain-robust consistency learning which guides the model to minimize discrepancies of prediction from original and the augmented images. Through experiments and analyses, we demonstrate the superiority of the proposed framework, which establishes a new state-of-the-art on various DGSS benchmarks. The code is available at https://github.com/jone1222/DPMFormer.

Authors:Chen Hu, Mingyu Zhou, Shuai Yuan, Hongbo Hu, Xiangyu Qiu, Junhai Luo, Tian Pu, Xiyin Li
Title: Difference Decomposition Networks for Infrared Small Target Detection
Abstract:
Infrared small target detection (ISTD) faces two major challenges: a lack of discernible target texture and severe background clutter, which results in the background obscuring the target. To enhance targets and suppress backgrounds, we propose the Basis Decomposition Module (BDM) as an extensible and lightweight module based on basis decomposition, which decomposes a complex feature into several basis features and enhances certain information while eliminating redundancy. Extending BDM leads to a series of modules, including the Spatial Difference Decomposition Module (SD$^\mathrm{2}$M), Spatial Difference Decomposition Downsampling Module (SD$^\mathrm{3}$M), and Temporal Difference Decomposition Module (TD$^\mathrm{2}$M). Based on these modules, we develop the Spatial Difference Decomposition Network (SD$^\mathrm{2}$Net) for single-frame ISTD (SISTD) and the Spatiotemporal Difference Decomposition Network (STD$^\mathrm{2}$Net) for multi-frame ISTD (MISTD). SD$^\mathrm{2}$Net integrates SD$^\mathrm{2}$M and SD$^\mathrm{3}$M within an adapted U-shaped architecture. We employ TD$^\mathrm{2}$M to introduce motion information, which transforms SD$^\mathrm{2}$Net into STD$^\mathrm{2}$Net. Extensive experiments on SISTD and MISTD datasets demonstrate state-of-the-art (SOTA) performance. On the SISTD task, SD$^\mathrm{2}$Net performs well compared to most established networks. On the MISTD datasets, STD$^\mathrm{2}$Net achieves a mIoU of 87.68\%, outperforming SD$^\mathrm{2}$Net, which achieves a mIoU of 64.97\%. Our codes are available: https://github.com/greekinRoma/IRSTD_HC_Platform.

Authors:Yunpeng Bai, Shaoheng Fang, Chaohui Yu, Fan Wang, Qixing Huang
Title: GeoVideo: Introducing Geometric Regularization into Video Generation Model
Abstract:
Recent advances in video generation have enabled the synthesis of high-quality and visually realistic clips using diffusion transformer models. However, most existing approaches operate purely in the 2D pixel space and lack explicit mechanisms for modeling 3D structures, often resulting in temporally inconsistent geometries, implausible motions, and structural artifacts. In this work, we introduce geometric regularization losses into video generation by augmenting latent diffusion models with per-frame depth prediction. We adopted depth as the geometric representation because of the great progress in depth prediction and its compatibility with image-based latent encoders. Specifically, to enforce structural consistency over time, we propose a multi-view geometric loss that aligns the predicted depth maps across frames within a shared 3D coordinate system. Our method bridges the gap between appearance generation and 3D structure modeling, leading to improved spatio-temporal coherence, shape consistency, and physical plausibility. Experiments across multiple datasets show that our approach produces significantly more stable and geometrically consistent results than existing baselines.

Authors:Xieji Li, Siyuan Yan, Yingsheng Liu, H. Peter Soyer, Monika Janda, Victoria Mar, Zongyuan Ge
Title: Multi-Aspect Knowledge-Enhanced Medical Vision-Language Pretraining with Multi-Agent Data Generation
Abstract:
Vision-language pretraining (VLP) has emerged as a powerful paradigm in medical image analysis, enabling representation learning from large-scale image-text pairs without relying on expensive manual annotations. However, existing methods often struggle with the noise inherent in web-collected data and the complexity of unstructured long medical texts. To address these challenges, we propose a novel VLP framework integrating a Multi-Agent data GENeration (MAGEN) system and Ontology-based Multi-Aspect Knowledge-Enhanced (O-MAKE) pretraining. First, MAGEN enhances data quality by synthesizing knowledge-enriched descriptions via a foundation model-assisted captioning and retrieval-based verification pipeline. Second, O-MAKE addresses the difficulty of learning from long, unstructured texts by decomposing them into distinct knowledge aspects. This facilitates fine-grained alignment at both global and patch levels, while explicitly modeling medical concept relationships through ontology-guided mechanisms. We validate our framework in the field of dermatology, where comprehensive experiments demonstrate the effectiveness of each component. Our approach achieves state-of-the-art zero-shot performance on disease classification and cross-modal retrieval tasks across eight datasets. Our code and the augmented dataset Derm1M-AgentAug, comprising over 400k skin-image-text pairs, will be released at https://github.com/SiyuanYan1/Derm1M.

Authors:Lingjun Zhao, Yandong Luo, James Hay, Lu Gan
Title: ShelfGaussian: Shelf-Supervised Open-Vocabulary Gaussian-based 3D Scene Understanding
Abstract:
We introduce ShelfGaussian, an open-vocabulary multi-modal Gaussian-based 3D scene understanding framework supervised by off-the-shelf vision foundation models (VFMs). Gaussian-based methods have demonstrated superior performance and computational efficiency across a wide range of scene understanding tasks. However, existing methods either model objects as closed-set semantic Gaussians supervised by annotated 3D labels, neglecting their rendering ability, or learn open-set Gaussian representations via purely 2D self-supervision, leading to degraded geometry and limited to camera-only settings. To fully exploit the potential of Gaussians, we propose a Multi-Modal Gaussian Transformer that enables Gaussians to query features from diverse sensor modalities, and a Shelf-Supervised Learning Paradigm that efficiently optimizes Gaussians with VFM features jointly at 2D image and 3D scene levels. We evaluate ShelfGaussian on various perception and planning tasks. Experiments on Occ3D-nuScenes demonstrate its state-of-the-art zero-shot semantic occupancy prediction performance. ShelfGaussian is further evaluated on an unmanned ground vehicle (UGV) to assess its in the-wild performance across diverse urban scenarios. Project website: https://lunarlab-gatech.github.io/ShelfGaussian/.

Authors:Nan Zhou, Huandong Wang, Jiahao Li, Han Li, Yali Song, Qiuhua Wang, Yong Li, Xinlei Chen
Title: FireSentry: A Multi-Modal Spatio-temporal Benchmark Dataset for Fine-Grained Wildfire Spread Forecasting
Abstract:
Fine-grained wildfire spread prediction is crucial for enhancing emergency response efficacy and decision-making precision. However, existing research predominantly focuses on coarse spatiotemporal scales and relies on low-resolution satellite data, capturing only macroscopic fire states while fundamentally constraining high-precision localized fire dynamics modeling capabilities. To bridge this gap, we present FireSentry, a provincial-scale multi-modal wildfire dataset characterized by sub-meter spatial and sub-second temporal resolution. Collected using synchronized UAV platforms, FireSentry provides visible and infrared video streams, in-situ environmental measurements, and manually validated fire masks. Building on FireSentry, we establish a comprehensive benchmark encompassing physics-based, data-driven, and generative models, revealing the limitations of existing mask-only approaches. Our analysis proposes FiReDiff, a novel dual-modality paradigm that first predicts future video sequences in the infrared modality, and then precisely segments fire masks in the mask modality based on the generated dynamics. FiReDiff achieves state-of-the-art performance, with video quality gains of 39.2% in PSNR, 36.1% in SSIM, 50.0% in LPIPS, 29.4% in FVD, and mask accuracy gains of 3.3% in AUPRC, 59.1% in F1 score, 42.9% in IoU, and 62.5% in MSE when applied to generative models. The FireSentry benchmark dataset and FiReDiff paradigm collectively advance fine-grained wildfire forecasting and dynamic disaster simulation. The processed benchmark dataset is publicly available at: https://github.com/Munan222/FireSentry-Benchmark-Dataset.

Authors:Yeganeh Ghamary, Victoria Wu, Hooman Vaseli, Christina Luong, Teresa Tsang, Siavash Bigdeli, Purang Abolmaesumi
Title: ProtoEFNet: Dynamic Prototype Learning for Inherently Interpretable Ejection Fraction Estimation in Echocardiography
Abstract:
Ejection fraction (EF) is a crucial metric for assessing cardiac function and diagnosing conditions such as heart failure. Traditionally, EF estimation requires manual tracing and domain expertise, making the process time-consuming and subject to interobserver variability. Most current deep learning methods for EF prediction are black-box models with limited transparency, which reduces clinical trust. Some post-hoc explainability methods have been proposed to interpret the decision-making process after the prediction is made. However, these explanations do not guide the model's internal reasoning and therefore offer limited reliability in clinical applications. To address this, we introduce ProtoEFNet, a novel video-based prototype learning model for continuous EF regression. The model learns dynamic spatiotemporal prototypes that capture clinically meaningful cardiac motion patterns. Additionally, the proposed Prototype Angular Separation (PAS) loss enforces discriminative representations across the continuous EF spectrum. Our experiments on the EchonetDynamic dataset show that ProtoEFNet can achieve accuracy on par with its non-interpretable counterpart while providing clinically relevant insight. The ablation study shows that the proposed loss boosts performance with a 2% increase in F1 score from 77.67$\pm$2.68 to 79.64$\pm$2.10. Our source code is available at: https://github.com/DeepRCL/ProtoEF

Authors:Thomas Monninger, Zihan Zhang, Steffen Staab, Sihao Ding
Title: NavMapFusion: Diffusion-based Fusion of Navigation Maps for Online Vectorized HD Map Construction
Abstract:
Accurate environmental representations are essential for autonomous driving, providing the foundation for safe and efficient navigation. Traditionally, high-definition (HD) maps are providing this representation of the static road infrastructure to the autonomous system a priori. However, because the real world is constantly changing, such maps must be constructed online from on-board sensor data. Navigation-grade standard-definition (SD) maps are widely available, but their resolution is insufficient for direct deployment. Instead, they can be used as coarse prior to guide the online map construction process. We propose NavMapFusion, a diffusion-based framework that performs iterative denoising conditioned on high-fidelity sensor data and on low-fidelity navigation maps. This paper strives to answer: (1) How can coarse, potentially outdated navigation maps guide online map construction? (2) What advantages do diffusion models offer for map fusion? We demonstrate that diffusion-based map construction provides a robust framework for map fusion. Our key insight is that discrepancies between the prior map and online perception naturally correspond to noise within the diffusion process; consistent regions reinforce the map construction, whereas outdated segments are suppressed. On the nuScenes benchmark, NavMapFusion conditioned on coarse road lines from OpenStreetMap data reaches a 21.4% relative improvement on 100 m, and even stronger improvements on larger perception ranges, while maintaining real-time capabilities. By fusing low-fidelity priors with high-fidelity sensor data, the proposed method generates accurate and up-to-date environment representations, guiding towards safer and more reliable autonomous driving. The code is available at https://github.com/tmonnin/navmapfusion

Authors:Alex Bocchieri, John Mamish, David Appleyard, Andreas Velten
Title: Kaleidoscopic Scintillation Event Imaging
Abstract:
Scintillators are transparent materials that interact with high-energy particles and emit visible light as a result. They are used in state of the art methods of measuring high-energy particles and radiation sources. Most existing methods use fast single-pixel detectors to detect and time scintillation events. Cameras provide spatial resolution but can only capture an average over many events, making it difficult to image the events associated with an individual particle. Emerging single-photon avalanche diode cameras combine speed and spatial resolution to enable capturing images of individual events. This allows us to use machine vision techniques to analyze events, enabling new types of detectors. The main challenge is the very low brightness of the events. Techniques have to work with a very limited number of photons. We propose a kaleidoscopic scintillator to increase light collection in a single-photon camera while preserving the event's spatial information. The kaleidoscopic geometry creates mirror reflections of the event in known locations for a given event location that are captured by the camera. We introduce theory for imaging an event in a kaleidoscopic scintillator and an algorithm to estimate the event's 3D position. We find that the kaleidoscopic scintillator design provides sufficient light collection to perform high-resolution event measurements for advanced radiation imaging techniques using a commercial CMOS single-photon camera. Code and data are available at https://github.com/bocchs/kaleidoscopic_scintillator.

Authors:Xiaoshui Huang, Tianlin Zhu, Yifan Zuo, Xue Xia, Zonghan Wu, Jiebin Yan, Dingli Hua, Zongyi Xu, Yuming Fang, Jian Zhang
Title: PanFoMa: A Lightweight Foundation Model and Benchmark for Pan-Cancer
Abstract:
Single-cell RNA sequencing (scRNA-seq) is essential for decoding tumor heterogeneity. However, pan-cancer research still faces two key challenges: learning discriminative and efficient single-cell representations, and establishing a comprehensive evaluation benchmark. In this paper, we introduce PanFoMa, a lightweight hybrid neural network that combines the strengths of Transformers and state-space models to achieve a balance between performance and efficiency. PanFoMa consists of a front-end local-context encoder with shared self-attention layers to capture complex, order-independent gene interactions; and a back-end global sequential feature decoder that efficiently integrates global context using a linear-time state-space model. This modular design preserves the expressive power of Transformers while leveraging the scalability of Mamba to enable transcriptome modeling, effectively capturing both local and global regulatory signals. To enable robust evaluation, we also construct a large-scale pan-cancer single-cell benchmark, PanFoMaBench, containing over 3.5 million high-quality cells across 33 cancer subtypes, curated through a rigorous preprocessing pipeline. Experimental results show that PanFoMa outperforms state-of-the-art models on our pan-cancer benchmark (+4.0\%) and across multiple public tasks, including cell type annotation (+7.4\%), batch integration (+4.0\%) and multi-omics integration (+3.1\%). The code is available at https://github.com/Xiaoshui-Huang/PanFoMa.

Authors:Minkyung Kwon, Jinhyeok Choi, Jiho Park, Seonghu Jeon, Jinhyuk Jang, Junyoung Seo, Minseop Kwak, Jin-Hwa Kim, Seungryong Kim
Title: CAMEO: Correspondence-Attention Alignment for Multi-View Diffusion Models
Abstract:
Multi-view diffusion models have recently emerged as a powerful paradigm for novel view synthesis, yet the underlying mechanism that enables their view-consistency remains unclear. In this work, we first verify that the attention maps of these models acquire geometric correspondence throughout training, attending to the geometrically corresponding regions across reference and target views for view-consistent generation. However, this correspondence signal remains incomplete, with its accuracy degrading under large viewpoint changes. Building on these findings, we introduce CAMEO, a simple yet effective training technique that directly supervises attention maps using geometric correspondence to enhance both the training efficiency and generation quality of multi-view diffusion models. Notably, supervising a single attention layer is sufficient to guide the model toward learning precise correspondences, thereby preserving the geometry and structure of reference images, accelerating convergence, and improving novel view synthesis performance. CAMEO reduces the number of training iterations required for convergence by half while achieving superior performance at the same iteration counts. We further demonstrate that CAMEO is model-agnostic and can be applied to any multi-view diffusion model.

Authors:Kaituo Feng, Manyuan Zhang, Hongyu Li, Kaixuan Fan, Shuang Chen, Yilei Jiang, Dian Zheng, Peiwen Sun, Yiyuan Zhang, Haoze Sun, Yan Feng, Peng Pei, Xunliang Cai, Xiangyu Yue
Title: OneThinker: All-in-one Reasoning Model for Image and Video
Abstract:
Reinforcement learning (RL) has recently achieved remarkable success in eliciting visual reasoning within Multimodal Large Language Models (MLLMs). However, existing approaches typically train separate models for different tasks and treat image and video reasoning as disjoint domains. This results in limited scalability toward a multimodal reasoning generalist, which restricts practical versatility and hinders potential knowledge sharing across tasks and modalities. To this end, we propose OneThinker, an all-in-one reasoning model that unifies image and video understanding across diverse fundamental visual tasks, including question answering, captioning, spatial and temporal grounding, tracking, and segmentation. To achieve this, we construct the OneThinker-600k training corpus covering all these tasks and employ commercial models for CoT annotation, resulting in OneThinker-SFT-340k for SFT cold start. Furthermore, we propose EMA-GRPO to handle reward heterogeneity in multi-task RL by tracking task-wise moving averages of reward standard deviations for balanced optimization. Extensive experiments on diverse visual benchmarks show that OneThinker delivers strong performance on 31 benchmarks, across 10 fundamental visual understanding tasks. Moreover, it exhibits effective knowledge transfer between certain tasks and preliminary zero-shot generalization ability, marking a step toward a unified multimodal reasoning generalist. All code, model, and data are released.

Authors:Michael Ofengenden, Yunze Man, Ziqi Pang, Yu-Xiong Wang
Title: PPTArena: A Benchmark for Agentic PowerPoint Editing
Abstract:
We introduce PPTArena, a benchmark for PowerPoint editing that measures reliable modifications to real slides under natural-language instructions. In contrast to image-PDF renderings or text-to-slide generation, PPTArena focuses on in-place editing across 100 decks, 2125 slides, and over 800 targeted edits covering text, charts, tables, animations, and master-level styles. Each case includes a ground-truth deck, a fully specified target outcome, and a dual VLM-as-judge pipeline that separately scores instruction following and visual quality using both structural diffs and slide images. Building on this setting, we propose PPTPilot, a structure-aware slide-editing agent that plans semantic edit sequences, routes between high-level programmatic tools and deterministic XML operations for precise control, and verifies outputs through an iterative plan-edit-check loop against task-specific constraints. In our experiments, PPTPilot outperforms strong proprietary agents and frontier VLM systems by over 10 percentage points on compound, layout-sensitive, and cross-slide edits, with particularly large gains in visual fidelity and deck-wide consistency. Despite these improvements, existing agents still underperform on long-horizon, document-scale tasks in PPTArena, highlighting the remaining challenges in reliable PPT editing.

Authors:Qinghe Wang, Xiaoyu Shi, Baolu Li, Weikang Bian, Quande Liu, Huchuan Lu, Xintao Wang, Pengfei Wan, Kun Gai, Xu Jia
Title: MultiShotMaster: A Controllable Multi-Shot Video Generation Framework
Abstract:
Current video generation techniques excel at single-shot clips but struggle to produce narrative multi-shot videos, which require flexible shot arrangement, coherent narrative, and controllability beyond text prompts. To tackle these challenges, we propose MultiShotMaster, a framework for highly controllable multi-shot video generation. We extend a pretrained single-shot model by integrating two novel variants of RoPE. First, we introduce Multi-Shot Narrative RoPE, which applies explicit phase shift at shot transitions, enabling flexible shot arrangement while preserving the temporal narrative order. Second, we design Spatiotemporal Position-Aware RoPE to incorporate reference tokens and grounding signals, enabling spatiotemporal-grounded reference injection. In addition, to overcome data scarcity, we establish an automated data annotation pipeline to extract multi-shot videos, captions, cross-shot grounding signals and reference images. Our framework leverages the intrinsic architectural properties to support multi-shot video generation, featuring text-driven inter-shot consistency, customized subject with motion control, and background-driven customized scene. Both shot count and duration are flexibly configurable. Extensive experiments demonstrate the superior performance and outstanding controllability of our framework.

Authors:Zeqi Xiao, Yiwei Zhao, Lingxiao Li, Yushi Lan, Yu Ning, Rahul Garg, Roshni Cooper, Mohammad H. Taghavi, Xingang Pan
Title: Video4Spatial: Towards Visuospatial Intelligence with Context-Guided Video Generation
Abstract:
We investigate whether video generative models can exhibit visuospatial intelligence, a capability central to human cognition, using only visual data. To this end, we present Video4Spatial, a framework showing that video diffusion models conditioned solely on video-based scene context can perform complex spatial tasks. We validate on two tasks: scene navigation - following camera-pose instructions while remaining consistent with 3D geometry of the scene, and object grounding - which requires semantic localization, instruction following, and planning. Both tasks use video-only inputs, without auxiliary modalities such as depth or poses. With simple yet effective design choices in the framework and data curation, Video4Spatial demonstrates strong spatial understanding from video context: it plans navigation and grounds target objects end-to-end, follows camera-pose instructions while maintaining spatial consistency, and generalizes to long contexts and out-of-domain environments. Taken together, these results advance video generative models toward general visuospatial reasoning.

Authors:Mengchen Zhang, Qi Chen, Tong Wu, Zihan Liu, Dahua Lin
Title: ViSAudio: End-to-End Video-Driven Binaural Spatial Audio Generation
Abstract:
Despite progress in video-to-audio generation, the field focuses predominantly on mono output, lacking spatial immersion. Existing binaural approaches remain constrained by a two-stage pipeline that first generates mono audio and then performs spatialization, often resulting in error accumulation and spatio-temporal inconsistencies. To address this limitation, we introduce the task of end-to-end binaural spatial audio generation directly from silent video. To support this task, we present the BiAudio dataset, comprising approximately 97K video-binaural audio pairs spanning diverse real-world scenes and camera rotation trajectories, constructed through a semi-automated pipeline. Furthermore, we propose ViSAudio, an end-to-end framework that employs conditional flow matching with a dual-branch audio generation architecture, where two dedicated branches model the audio latent flows. Integrated with a conditional spacetime module, it balances consistency between channels while preserving distinctive spatial characteristics, ensuring precise spatio-temporal alignment between audio and the input video. Comprehensive experiments demonstrate that ViSAudio outperforms existing state-of-the-art methods across both objective metrics and subjective evaluations, generating high-quality binaural audio with spatial immersion that adapts effectively to viewpoint changes, sound-source motion, and diverse acoustic environments. Project website: https://kszpxxzmc.github.io/ViSAudio-project.

Authors:Youxin Pang, Jiajun Liu, Lingfeng Tan, Yong Zhang, Feng Gao, Xiang Deng, Zhuoliang Kang, Xiaoming Wei, Yebin Liu
Title: MAViD: A Multimodal Framework for Audio-Visual Dialogue Understanding and Generation
Abstract:
We propose MAViD, a novel Multimodal framework for Audio-Visual Dialogue understanding and generation. Existing approaches primarily focus on non-interactive systems and are limited to producing constrained and unnatural human speech.The primary challenge of this task lies in effectively integrating understanding and generation capabilities, as well as achieving seamless multimodal audio-video fusion. To solve these problems, we propose a Conductor-Creator architecture that divides the dialogue system into two primary components.The Conductor is tasked with understanding, reasoning, and generating instructions by breaking them down into motion and speech components, thereby enabling fine-grained control over interactions. The Creator then delivers interactive responses based on these instructions.Furthermore, to address the difficulty of generating long videos with consistent identity, timbre, and tone using dual DiT structures, the Creator adopts a structure that combines autoregressive (AR) and diffusion models. The AR model is responsible for audio generation, while the diffusion model ensures high-quality video generation.Additionally, we propose a novel fusion module to enhance connections between contextually consecutive clips and modalities, enabling synchronized long-duration audio-visual content generation.Extensive experiments demonstrate that our framework can generate vivid and contextually coherent long-duration dialogue interactions and accurately interpret users' multimodal queries.

Authors:Xiang Xu, Pradeep Kumar Jayaraman, Joseph G. Lambourne, Yilin Liu, Durvesh Malpure, Pete Meltzer
Title: AutoBrep: Autoregressive B-Rep Generation with Unified Topology and Geometry
Abstract:
The boundary representation (B-Rep) is the standard data structure used in Computer-Aided Design (CAD) for defining solid models. Despite recent progress, directly generating B-Reps end-to-end with precise geometry and watertight topology remains a challenge. This paper presents AutoBrep, a novel Transformer model that autoregressively generates B-Reps with high quality and validity. AutoBrep employs a unified tokenization scheme that encodes both geometric and topological characteristics of a B-Rep model as a sequence of discrete tokens. Geometric primitives (i.e., surfaces and curves) are encoded as latent geometry tokens, and their structural relationships are defined as special topological reference tokens. Sequence order in AutoBrep naturally follows a breadth first traversal of the B-Rep face adjacency graph. At inference time, neighboring faces and edges along with their topological structure are progressively generated. Extensive experiments demonstrate the advantages of our unified representation when coupled with next-token prediction for B-Rep generation. AutoBrep outperforms baselines with better quality and watertightness. It is also highly scalable to complex solids with good fidelity and inference speed. We further show that autocompleting B-Reps is natively supported through our unified tokenization, enabling user-controllable CAD generation with minimal changes. Code is available at https://github.com/AutodeskAILab/AutoBrep.

Authors:Sagi Polaczek, Or Patashnik, Ali Mahdavi-Amiri, Daniel Cohen-Or
Title: In-Context Sync-LoRA for Portrait Video Editing
Abstract:
Editing portrait videos is a challenging task that requires flexible yet precise control over a wide range of modifications, such as appearance changes, expression edits, or the addition of objects. The key difficulty lies in preserving the subject's original temporal behavior, demanding that every edited frame remains precisely synchronized with the corresponding source frame. We present Sync-LoRA, a method for editing portrait videos that achieves high-quality visual modifications while maintaining frame-accurate synchronization and identity consistency. Our approach uses an image-to-video diffusion model, where the edit is defined by modifying the first frame and then propagated to the entire sequence. To enable accurate synchronization, we train an in-context LoRA using paired videos that depict identical motion trajectories but differ in appearance. These pairs are automatically generated and curated through a synchronization-based filtering process that selects only the most temporally aligned examples for training. This training setup teaches the model to combine motion cues from the source video with the visual changes introduced in the edited first frame. Trained on a compact, highly curated set of synchronized human portraits, Sync-LoRA generalizes to unseen identities and diverse edits (e.g., modifying appearance, adding objects, or changing backgrounds), robustly handling variations in pose and expression. Our results demonstrate high visual fidelity and strong temporal coherence, achieving a robust balance between edit fidelity and precise motion preservation.

Authors:Svenja Strobel, Matthias Innmann, Bernhard Egger, Marc Stamminger, Linus Franke
Title: SurfFill: Completion of LiDAR Point Clouds via Gaussian Surfel Splatting
Abstract:
LiDAR-captured point clouds are often considered the gold standard in active 3D reconstruction. While their accuracy is exceptional in flat regions, the capturing is susceptible to miss small geometric structures and may fail with dark, absorbent materials. Alternatively, capturing multiple photos of the scene and applying 3D photogrammetry can infer these details as they often represent feature-rich regions. However, the accuracy of LiDAR for featureless regions is rarely reached. Therefore, we suggest combining the strengths of LiDAR and camera-based capture by introducing SurfFill: a Gaussian surfel-based LiDAR completion scheme. We analyze LiDAR capturings and attribute LiDAR beam divergence as a main factor for artifacts, manifesting mostly at thin structures and edges. We use this insight to introduce an ambiguity heuristic for completed scans by evaluating the change in density in the point cloud. This allows us to identify points close to missed areas, which we can then use to grow additional points from to complete the scan. For this point growing, we constrain Gaussian surfel reconstruction [Huang et al. 2024] to focus optimization and densification on these ambiguous areas. Finally, Gaussian primitives of the reconstruction in ambiguous areas are extracted and sampled for points to complete the point cloud. To address the challenges of large-scale reconstruction, we extend this pipeline with a divide-and-conquer scheme for building-sized point cloud completion. We evaluate on the task of LiDAR point cloud completion of synthetic and real-world scenes and find that our method outperforms previous reconstruction methods.

Authors:Guowen Zhang, Chenhang He, Liyi Chen, Lei Zhang
Title: BEVDilation: LiDAR-Centric Multi-Modal Fusion for 3D Object Detection
Abstract:
Integrating LiDAR and camera information in the bird's eye view (BEV) representation has demonstrated its effectiveness in 3D object detection. However, because of the fundamental disparity in geometric accuracy between these sensors, indiscriminate fusion in previous methods often leads to degraded performance. In this paper, we propose BEVDilation, a novel LiDAR-centric framework that prioritizes LiDAR information in the fusion. By formulating image BEV features as implicit guidance rather than naive concatenation, our strategy effectively alleviates the spatial misalignment caused by image depth estimation errors. Furthermore, the image guidance can effectively help the LiDAR-centric paradigm to address the sparsity and semantic limitations of point clouds. Specifically, we propose a Sparse Voxel Dilation Block that mitigates the inherent point sparsity by densifying foreground voxels through image priors. Moreover, we introduce a Semantic-Guided BEV Dilation Block to enhance the LiDAR feature diffusion processing with image semantic guidance and long-range context capture. On the challenging nuScenes benchmark, BEVDilation achieves better performance than state-of-the-art methods while maintaining competitive computational efficiency. Importantly, our LiDAR-centric strategy demonstrates greater robustness to depth noise compared to naive fusion. The source code is available at https://github.com/gwenzhang/BEVDilation.

Authors:Yuhan Chen, Yicui Shi, Guofa Li, Guangrui Bai, Jinyuan Shao, Xiangfei Huang, Wenbo Chu, Keqiang Li
Title: A Lightweight Real-Time Low-Light Enhancement Network for Embedded Automotive Vision Systems
Abstract:
In low-light environments like nighttime driving, image degradation severely challenges in-vehicle camera safety. Since existing enhancement algorithms are often too computationally intensive for vehicular applications, we propose UltraFast-LieNET, a lightweight multi-scale shifted convolutional network for real-time low-light image enhancement. We introduce a Dynamic Shifted Convolution (DSConv) kernel with only 12 learnable parameters for efficient feature extraction. By integrating DSConv with varying shift distances, a Multi-scale Shifted Residual Block (MSRB) is constructed to significantly expand the receptive field. To mitigate lightweight network instability, a residual structure and a novel multi-level gradient-aware loss function are incorporated. UltraFast-LieNET allows flexible parameter configuration, with a minimum size of only 36 parameters. Results on the LOLI-Street dataset show a PSNR of 26.51 dB, outperforming state-of-the-art methods by 4.6 dB while utilizing only 180 parameters. Experiments across four benchmark datasets validate its superior balance of real-time performance and enhancement quality under limited resources. Code is available at https://githubhttps://github.com/YuhanChen2024/UltraFast-LiNET

Authors:Lanxiang Hu, Abhilash Shankarampeta, Yixin Huang, Zilin Dai, Haoyang Yu, Yujie Zhao, Haoqiang Kang, Daniel Zhao, Tajana Rosing, Hao Zhang
Title: Benchmarking Scientific Understanding and Reasoning for Video Generation using VideoScience-Bench
Abstract:
The next frontier for video generation lies in developing models capable of zero-shot reasoning, where understanding real-world scientific laws is crucial for accurate physical outcome modeling under diverse conditions. However, existing video benchmarks are physical commonsense-based, offering limited insight into video models' scientific reasoning capability. We introduce VideoScience-Bench, a benchmark designed to evaluate undergraduate-level scientific understanding in video models. Each prompt encodes a composite scientific scenario that requires understanding and reasoning across multiple scientific concepts to generate the correct phenomenon. The benchmark comprises 200 carefully curated prompts spanning 14 topics and 103 concepts in physics and chemistry. We conduct expert-annotated evaluations across seven state-of-the-art video models in T2V and I2V settings along five dimensions: Prompt Consistency, Phenomenon Congruency, Correct Dynamism, Immutability, and Spatio-Temporal Continuity. Using a VLM-as-a-Judge to assess video generations, we observe strong correlation with human assessments. To the best of our knowledge, VideoScience-Bench is the first benchmark to evaluate video models not only as generators but also as reasoners, requiring their generations to demonstrate scientific understanding consistent with expected physical and chemical phenomena. Our data and evaluation code are available at: \href{https://github.com/hao-ai-lab/VideoScience}{github.com/hao-ai-lab/VideoScience}.

Authors:Zhihan Xiao, Lin Liu, Yixin Gao, Xiaopeng Zhang, Haoxuan Che, Songping Mai, Qi Tian
Title: LoVoRA: Text-guided and Mask-free Video Object Removal and Addition with Learnable Object-aware Localization
Abstract:
Text-guided video editing, particularly for object removal and addition, remains a challenging task due to the need for precise spatial and temporal consistency. Existing methods often rely on auxiliary masks or reference images for editing guidance, which limits their scalability and generalization. To address these issues, we propose LoVoRA, a novel framework for mask-free video object removal and addition using object-aware localization mechanism. Our approach utilizes a unique dataset construction pipeline that integrates image-to-video translation, optical flow-based mask propagation, and video inpainting, enabling temporally consistent edits. The core innovation of LoVoRA is its learnable object-aware localization mechanism, which provides dense spatio-temporal supervision for both object insertion and removal tasks. By leveraging a Diffusion Mask Predictor, LoVoRA achieves end-to-end video editing without requiring external control signals during inference. Extensive experiments and human evaluation demonstrate the effectiveness and high-quality performance of LoVoRA. https://cz-5f.github.io/LoVoRA.github.io

Authors:Yaqi Wang, Zhi Li, Chengyu Wu, Jun Liu, Yifan Zhang, Jialuo Chen, Jiaxue Ni, Qian Luo, Jin Liu, Can Han, Changkai Ji, Zhi Qin Tan, Ajo Babu George, Liangyu Chen, Qianni Zhang, Dahong Qian, Shuai Wang, Huiyu Zhou
Title: MICCAI STSR 2025 Challenge: Semi-Supervised Teeth and Pulp Segmentation and CBCT-IOS Registration
Abstract:
Cone-Beam Computed Tomography (CBCT) and Intraoral Scanning (IOS) are essential for digital dentistry, but annotated data scarcity limits automated solutions for pulp canal segmentation and cross-modal registration. To benchmark semi-supervised learning (SSL) in this domain, we organized the STSR 2025 Challenge at MICCAI 2025, featuring two tasks: (1) semi-supervised segmentation of teeth and pulp canals in CBCT, and (2) semi-supervised rigid registration of CBCT and IOS. We provided 60 labeled and 640 unlabeled IOS samples, plus 30 labeled and 250 unlabeled CBCT scans with varying resolutions and fields of view. The challenge attracted strong community participation, with top teams submitting open-source deep learning-based SSL solutions. For segmentation, leading methods used nnU-Net and Mamba-like State Space Models with pseudo-labeling and consistency regularization, achieving a Dice score of 0.967 and Instance Affinity of 0.738 on the hidden test set. For registration, effective approaches combined PointNetLK with differentiable SVD and geometric augmentation to handle modality gaps; hybrid neural-classical refinement enabled accurate alignment despite limited labels. All data and code are publicly available at https://github.com/ricoleehduu/STS-Challenge-2025 to ensure reproducibility.

Authors:Yifan Li, Yingda Yin, Lingting Zhu, Weikai Chen, Shengju Qian, Xin Wang, Yanwei Fu
Title: ReVSeg: Incentivizing the Reasoning Chain for Video Segmentation with Reinforcement Learning
Abstract:
Reasoning-centric video object segmentation is an inherently complex task: the query often refers to dynamics, causality, and temporal interactions, rather than static appearances. Yet existing solutions generally collapse these factors into simplified reasoning with latent embeddings, rendering the reasoning chain opaque and essentially intractable. We therefore adopt an explicit decomposition perspective and introduce ReVSeg, which executes reasoning as sequential decisions in the native interface of pretrained vision language models (VLMs). Rather than folding all reasoning into a single-step prediction, ReVSeg executes three explicit operations -- semantics interpretation, temporal evidence selection, and spatial grounding -- aligning pretrained capabilities. We further employ reinforcement learning to optimize the multi-step reasoning chain, enabling the model to self-refine its decision quality from outcome-driven signals. Experimental results demonstrate that ReVSeg attains state-of-the-art performances on standard video object segmentation benchmarks and yields interpretable reasoning trajectories. Project page is available at https://clementine24.github.io/ReVSeg/ .

Authors:Fan Wu, Cheng Chen, Zhoujie Fu, Jiacheng Wei, Yi Xu, Deheng Ye, Guosheng Lin
Title: PhyCustom: Towards Realistic Physical Customization in Text-to-Image Generation
Abstract:
Recent diffusion-based text-to-image customization methods have achieved significant success in understanding concrete concepts to control generation processes, such as styles and shapes. However, few efforts dive into the realistic yet challenging customization of physical concepts. The core limitation of current methods arises from the absence of explicitly introducing physical knowledge during training. Even when physics-related words appear in the input text prompts, our experiments consistently demonstrate that these methods fail to accurately reflect the corresponding physical properties in the generated results. In this paper, we propose PhyCustom, a fine-tuning framework comprising two novel regularization losses to activate diffusion model to perform physical customization. Specifically, the proposed isometric loss aims at activating diffusion models to learn physical concepts while decouple loss helps to eliminate the mixture learning of independent concepts. Experiments are conducted on a diverse dataset and our benchmark results demonstrate that PhyCustom outperforms previous state-of-the-art and popular methods in terms of physical customization quantitatively and qualitatively.

Authors:Fan Wu, Jiacheng Wei, Ruibo Li, Yi Xu, Junyou Li, Deheng Ye, Guosheng Lin
Title: IC-World: In-Context Generation for Shared World Modeling
Abstract:
Video-based world models have recently garnered increasing attention for their ability to synthesize diverse and dynamic visual environments. In this paper, we focus on shared world modeling, where a model generates multiple videos from a set of input images, each representing the same underlying world in different camera poses. We propose IC-World, a novel generation framework, enabling parallel generation for all input images via activating the inherent in-context generation capability of large video models. We further finetune IC-World via reinforcement learning, Group Relative Policy Optimization, together with two proposed novel reward models to enforce scene-level geometry consistency and object-level motion consistency among the set of generated videos. Extensive experiments demonstrate that IC-World substantially outperforms state-of-the-art methods in both geometry and motion consistency. To the best of our knowledge, this is the first work to systematically explore the shared world modeling problem with video-based world models.

Authors:Zhiwei Chen, Yupeng Hu, Zixu Li, Zhiheng Fu, Haokun Wen, Weili Guan
Title: HUD: Hierarchical Uncertainty-Aware Disambiguation Network for Composed Video Retrieval
Abstract:
Composed Video Retrieval (CVR) is a challenging video retrieval task that utilizes multi-modal queries, consisting of a reference video and modification text, to retrieve the desired target video. The core of this task lies in understanding the multi-modal composed query and achieving accurate composed feature learning. Within multi-modal queries, the video modality typically carries richer semantic content compared to the textual modality. However, previous works have largely overlooked the disparity in information density between these two modalities. This limitation can lead to two critical issues: 1) modification subject referring ambiguity and 2) limited detailed semantic focus, both of which degrade the performance of CVR models. To address the aforementioned issues, we propose a novel CVR framework, namely the Hierarchical Uncertainty-aware Disambiguation network (HUD). HUD is the first framework that leverages the disparity in information density between video and text to enhance multi-modal query understanding. It comprises three key components: (a) Holistic Pronoun Disambiguation, (b) Atomistic Uncertainty Modeling, and (c) Holistic-to-Atomistic Alignment. By exploiting overlapping semantics through holistic cross-modal interaction and fine-grained semantic alignment via atomistic-level cross-modal interaction, HUD enables effective object disambiguation and enhances the focus on detailed semantics, thereby achieving precise composed feature learning. Moreover, our proposed HUD is also applicable to the Composed Image Retrieval (CIR) task and achieves state-of-the-art performance across three benchmark datasets for both CVR and CIR tasks. The codes are available on https://zivchen-ty.github.io/HUD.github.io/.

Authors:Xianchao Zeng, Xinyu Zhou, Youcheng Li, Jiayou Shi, Tianle Li, Liangming Chen, Lei Ren, Yong-Lu Li
Title: Diagnose, Correct, and Learn from Manipulation Failures via Visual Symbols
Abstract:
Vision-Language-Action (VLA) models have recently achieved remarkable progress in robotic manipulation, yet they remain limited in failure diagnosis and learning from failures. Additionally, existing failure datasets are mostly generated programmatically in simulation, which limits their generalization to the real world. In light of these, we introduce ViFailback, a framework designed to diagnose robotic manipulation failures and provide both textual and visual correction guidance. Our framework utilizes explicit visual symbols to enhance annotation efficiency. We further release the ViFailback dataset, a large-scale collection of 58,126 Visual Question Answering (VQA) pairs along with their corresponding 5,202 real-world manipulation trajectories. Based on the dataset, we establish ViFailback-Bench, a benchmark of 11 fine-grained VQA tasks designed to assess the failure diagnosis and correction abilities of Vision-Language Models (VLMs), featuring ViFailback-Bench Lite for closed-ended and ViFailback-Bench Hard for open-ended evaluation. To demonstrate the effectiveness of our framework, we built the ViFailback-8B VLM, which not only achieves significant overall performance improvement on ViFailback-Bench but also generates visual symbols for corrective action guidance. Finally, by integrating ViFailback-8B with a VLA model, we conduct real-world robotic experiments demonstrating its ability to assist the VLA model in recovering from failures. Project Website: https://x1nyuzhou.github.io/vifailback.github.io/

Authors:Xu Han, Biao Zhang, Xiangjun Tang, Xianzhi Li, Peter Wonka
Title: LumiX: Structured and Coherent Text-to-Intrinsic Generation
Abstract:
We present LumiX, a structured diffusion framework for coherent text-to-intrinsic generation. Conditioned on text prompts, LumiX jointly generates a comprehensive set of intrinsic maps (e.g., albedo, irradiance, normal, depth, and final color), providing a structured and physically consistent description of an underlying scene. This is enabled by two key contributions: 1) Query-Broadcast Attention, a mechanism that ensures structural consistency by sharing queries across all maps in each self-attention block. 2) Tensor LoRA, a tensor-based adaptation that parameter-efficiently models cross-map relations for efficient joint training. Together, these designs enable stable joint diffusion training and unified generation of multiple intrinsic properties. Experiments show that LumiX produces coherent and physically meaningful results, achieving 23% higher alignment and a better preference score (0.19 vs. -0.41) compared to the state of the art, and it can also perform image-conditioned intrinsic decomposition within the same framework.

Authors:Yifan Zhou, Takehiko Ohkawa, Guwenxiao Zhou, Kanoko Goto, Takumi Hirose, Yusuke Sekikawa, Nakamasa Inoue
Title: DF-Mamba: Deformable State Space Modeling for 3D Hand Pose Estimation in Interactions
Abstract:
Modeling daily hand interactions often struggles with severe occlusions, such as when two hands overlap, which highlights the need for robust feature learning in 3D hand pose estimation (HPE). To handle such occluded hand images, it is vital to effectively learn the relationship between local image features (e.g., for occluded joints) and global context (e.g., cues from inter-joints, inter-hands, or the scene). However, most current 3D HPE methods still rely on ResNet for feature extraction, and such CNN's inductive bias may not be optimal for 3D HPE due to its limited capability to model the global context. To address this limitation, we propose an effective and efficient framework for visual feature extraction in 3D HPE using recent state space modeling (i.e., Mamba), dubbed Deformable Mamba (DF-Mamba). DF-Mamba is designed to capture global context cues beyond standard convolution through Mamba's selective state modeling and the proposed deformable state scanning. Specifically, for local features after convolution, our deformable scanning aggregates these features within an image while selectively preserving useful cues that represent the global context. This approach significantly improves the accuracy of structured 3D HPE, with comparable inference speed to ResNet-50. Our experiments involve extensive evaluations on five divergent datasets including single-hand and two-hand scenarios, hand-only and hand-object interactions, as well as RGB and depth-based estimation. DF-Mamba outperforms the latest image backbones, including VMamba and Spatial-Mamba, on all datasets and achieves state-of-the-art performance.

Authors:Zixuan Song, Jing Zhang, Di Wang, Zidie Zhou, Wenbin Liu, Haonan Guo, En Wang, Bo Du
Title: GeoBridge: A Semantic-Anchored Multi-View Foundation Model Bridging Images and Text for Geo-Localization
Abstract:
Cross-view geo-localization infers a location by retrieving geo-tagged reference images that visually correspond to a query image. However, the traditional satellite-centric paradigm limits robustness when high-resolution or up-to-date satellite imagery is unavailable. It further underexploits complementary cues across views (e.g., drone, satellite, and street) and modalities (e.g., language and image). To address these challenges, we propose GeoBridge, a foundation model that performs bidirectional matching across views and supports language-to-image retrieval. Going beyond traditional satellite-centric formulations, GeoBridge builds on a novel semantic-anchor mechanism that bridges multi-view features through textual descriptions for robust, flexible localization. In support of this task, we construct GeoLoc, the first large-scale, cross-modal, and multi-view aligned dataset comprising over 50,000 pairs of drone, street-view panorama, and satellite images as well as their textual descriptions, collected from 36 countries, ensuring both geographic and semantic alignment. We performed broad evaluations across multiple tasks. Experiments confirm that GeoLoc pre-training markedly improves geo-location accuracy for GeoBridge while promoting cross-domain generalization and cross-modal knowledge transfer. The dataset, source code, and pretrained models were released at https://github.com/MiliLab/GeoBridge.

Authors:Zhongbao Yang, Jiangxin Dong, Yazhou Yao, Jinhui Tang, Jinshan Pan
Title: PGP-DiffSR: Phase-Guided Progressive Pruning for Efficient Diffusion-based Image Super-Resolution
Abstract:
Although diffusion-based models have achieved impressive results in image super-resolution, they often rely on large-scale backbones such as Stable Diffusion XL (SDXL) and Diffusion Transformers (DiT), which lead to excessive computational and memory costs during training and inference. To address this issue, we develop a lightweight diffusion method, PGP-DiffSR, by removing redundant information from diffusion models under the guidance of the phase information of inputs for efficient image super-resolution. We first identify the intra-block redundancy within the diffusion backbone and propose a progressive pruning approach that removes redundant blocks while reserving restoration capability. We note that the phase information of the restored images produced by the pruned diffusion model is not well estimated. To solve this problem, we propose a phase-exchange adapter module that explores the phase information of the inputs to guide the pruned diffusion model for better restoration performance. We formulate the progressive pruning approach and the phase-exchange adapter module into a unified model. Extensive experiments demonstrate that our method achieves competitive restoration quality while significantly reducing computational load and memory consumption. The code is available at https://github.com/yzb1997/PGP-DiffSR.

Authors:Agathoklis Georgiou
Title: Spatially-Grounded Document Retrieval via Patch-to-Region Relevance Propagation
Abstract:
Vision-language models (VLMs) like ColPali achieve state-of-the-art document retrieval by embedding pages as images and computing fine-grained similarity between query tokens and visual patches. However, they return entire pages rather than specific regions, limiting utility for retrieval-augmented generation (RAG) where precise context is paramount. Conversely, OCR-based systems extract structured text with bounding box coordinates but lack semantic grounding for relevance assessment. We propose a hybrid architecture that unifies these paradigms: using ColPali's patch-level similarity scores as spatial relevance filters over OCR-extracted regions. We formalize the coordinate mapping between vision transformer patch grids and OCR bounding boxes, introduce intersection metrics for relevance propagation, and establish theoretical bounds on retrieval precision. Our approach operates at inference time without additional training. We release Snappy, an open-source implementation demonstrating practical applicability, with empirical evaluation ongoing.

Authors:Junwon Lee, Juhan Nam, Jiyoung Lee
Title: Hear What Matters! Text-conditioned Selective Video-to-Audio Generation
Abstract:
This work introduces a new task, text-conditioned selective video-to-audio (V2A) generation, which produces only the user-intended sound from a multi-object video. This capability is especially crucial in multimedia production, where audio tracks are handled individually for each sound source for precise editing, mixing, and creative control. However, current approaches generate single source-mixed sounds at once, largely because visual features are entangled, and region cues or prompts often fail to specify the source. We propose SelVA, a novel text-conditioned V2A model that treats the text prompt as an explicit selector of target source and modulates video encoder to distinctly extract prompt-relevant video features. The proposed supplementary tokens promote cross-attention by suppressing text-irrelevant activations with efficient parameter tuning, yielding robust semantic and temporal grounding. SelVA further employs a self-augmentation scheme to overcome the lack of mono audio track supervision. We evaluate SelVA on VGG-MONOAUDIO, a curated benchmark of clean single-source videos for such a task. Extensive experiments and ablations consistently verify its effectiveness across audio quality, semantic alignment, and temporal synchronization. Code and demo are available at https://jnwnlee.github.io/selva-demo/.

Authors:Dong Li, Jiahao Xiong, Yingda Huang, Le Chang
Title: PoreTrack3D: A Benchmark for Dynamic 3D Gaussian Splatting in Pore-Scale Facial Trajectory Tracking
Abstract:
We introduce PoreTrack3D, the first benchmark for dynamic 3D Gaussian splatting in pore-scale, non-rigid 3D facial trajectory tracking. It contains over 440,000 facial trajectories in total, among which more than 52,000 are longer than 10 frames, including 68 manually reviewed trajectories that span the entire 150 frames. To the best of our knowledge, PoreTrack3D is the first benchmark dataset to capture both traditional facial landmarks and pore-scale keypoints trajectory, advancing the study of fine-grained facial expressions through the analysis of subtle skin-surface motion. We systematically evaluate state-of-the-art dynamic 3D Gaussian splatting methods on PoreTrack3D, establishing the first performance baseline in this domain. Overall, the pipeline developed for this benchmark dataset's creation establishes a new framework for high-fidelity facial motion capture and dynamic 3D reconstruction. Our dataset are publicly available at: https://github.com/JHXion9/PoreTrack3D

Authors:Wenjing Yu, Shuo Jiang, Yifei Chen, Shuo Chang, Yuanhan Wang, Beining Wu, Jie Dong, Mingxuan Liu, Shenghao Zhu, Feiwei Qin, Changmiao Wang, Qiyuan Tian
Title: A Large Scale Benchmark for Test Time Adaptation Methods in Medical Image Segmentation
Abstract:
Test time Adaptation is a promising approach for mitigating domain shift in medical image segmentation; however, current evaluations remain limited in terms of modality coverage, task diversity, and methodological consistency. We present MedSeg-TTA, a comprehensive benchmark that examines twenty representative adaptation methods across seven imaging modalities, including MRI, CT, ultrasound, pathology, dermoscopy, OCT, and chest X-ray, under fully unified data preprocessing, backbone configuration, and test time protocols. The benchmark encompasses four significant adaptation paradigms: Input-level Transformation, Feature-level Alignment, Output-level Regularization, and Prior Estimation, enabling the first systematic cross-modality comparison of their reliability and applicability. The results show that no single paradigm performs best in all conditions. Input-level methods are more stable under mild appearance shifts. Feature-level and Output-level methods offer greater advantages in boundary-related metrics, whereas prior-based methods exhibit strong modality dependence. Several methods degrade significantly under large inter-center and inter-device shifts, which highlights the importance of principled method selection for clinical deployment. MedSeg-TTA provides standardized datasets, validated implementations, and a public leaderboard, establishing a rigorous foundation for future research on robust, clinically reliable test-time adaptation. All source codes and open-source datasets are available at https://github.com/wenjing-gg/MedSeg-TTA.

Authors:Jiahui Chen, Weida Wang, Runhua Shi, Huan Yang, Chaofan Ding, Zihao Chen
Title: YingVideo-MV: Music-Driven Multi-Stage Video Generation
Abstract:
While diffusion model for audio-driven avatar video generation have achieved notable process in synthesizing long sequences with natural audio-visual synchronization and identity consistency, the generation of music-performance videos with camera motions remains largely unexplored. We present YingVideo-MV, the first cascaded framework for music-driven long-video generation. Our approach integrates audio semantic analysis, an interpretable shot planning module (MV-Director), temporal-aware diffusion Transformer architectures, and long-sequence consistency modeling to enable automatic synthesis of high-quality music performance videos from audio signals. We construct a large-scale Music-in-the-Wild Dataset by collecting web data to support the achievement of diverse, high-quality results. Observing that existing long-video generation methods lack explicit camera motion control, we introduce a camera adapter module that embeds camera poses into latent noise. To enhance continulity between clips during long-sequence inference, we further propose a time-aware dynamic window range strategy that adaptively adjust denoising ranges based on audio embedding. Comprehensive benchmark tests demonstrate that YingVideo-MV achieves outstanding performance in generating coherent and expressive music videos, and enables precise music-motion-camera synchronization. More videos are available in our project page: https://giantailab.github.io/YingVideo-MV/ .

Authors:Qianhan Feng, Zhongzhen Huang, Yakun Zhu, Xiaofan Zhang, Qi Dou
Title: UCAgents: Unidirectional Convergence for Visual Evidence Anchored Multi-Agent Medical Decision-Making
Abstract:
Vision-Language Models (VLMs) show promise in medical diagnosis, yet suffer from reasoning detachment, where linguistically fluent explanations drift from verifiable image evidence, undermining clinical trust. Recent multi-agent frameworks simulate Multidisciplinary Team (MDT) debates to mitigate single-model bias, but open-ended discussions amplify textual noise and computational cost while failing to anchor reasoning to visual evidence, the cornerstone of medical decision-making. We propose UCAgents, a hierarchical multi-agent framework enforcing unidirectional convergence through structured evidence auditing. Inspired by clinical workflows, UCAgents forbids position changes and limits agent interactions to targeted evidence verification, suppressing rhetorical drift while amplifying visual signal extraction. In UCAgents, a one-round inquiry discussion is introduced to uncover potential risks of visual-textual misalignment. This design jointly constrains visual ambiguity and textual noise, a dual-noise bottleneck that we formalize via information theory. Extensive experiments on four medical VQA benchmarks show UCAgents achieves superior accuracy (71.3% on PathVQA, +6.0% over state-of-the-art) with 87.7% lower token cost, the evaluation results further confirm that UCAgents strikes a balance between uncovering more visual evidence and avoiding confusing textual interference. These results demonstrate that UCAgents exhibits both diagnostic reliability and computational efficiency critical for real-world clinical deployment. Code is available at https://github.com/fqhank/UCAgents.

Authors:Jianzong Wu, Hao Lian, Dachao Hao, Ye Tian, Qingyu Shi, Biaolong Chen, Hao Jiang, Yunhai Tong
Title: Does Hearing Help Seeing? Investigating Audio-Video Joint Denoising for Video Generation
Abstract:
Recent audio-video generative systems suggest that coupling modalities benefits not only audio-video synchrony but also the video modality itself. We pose a fundamental question: Does audio-video joint denoising training improve video generation, even when we only care about video quality? To study this, we introduce a parameter-efficient Audio-Video Full DiT (AVFullDiT) architecture that leverages pre-trained text-to-video (T2V) and text-to-audio (T2A) modules for joint denoising. We train (i) a T2AV model with AVFullDiT and (ii) a T2V-only counterpart under identical settings. Our results provide the first systematic evidence that audio-video joint denoising can deliver more than synchrony. We observe consistent improvements on challenging subsets featuring large and object contact motions. We hypothesize that predicting audio acts as a privileged signal, encouraging the model to internalize causal relationships between visual events and their acoustic consequences (e.g., collision $\times$ impact sound), which in turn regularizes video dynamics. Our findings suggest that cross-modal co-training is a promising approach to developing stronger, more physically grounded world models. Code and dataset will be made publicly available.

Authors:Phuc Pham, Nhu Pham, Ngoc Quoc Ly
Title: Boosting Medical Vision-Language Pretraining via Momentum Self-Distillation under Limited Computing Resources
Abstract:
In medical healthcare, obtaining detailed annotations is challenging, highlighting the need for robust Vision-Language Models (VLMs). Pretrained VLMs enable fine-tuning on small datasets or zero-shot inference, achieving performance comparable to task-specific models. Contrastive learning (CL) is a key paradigm for training VLMs but inherently requires large batch sizes for effective learning, making it computationally demanding and often limited to well-resourced institutions. Moreover, with limited data in healthcare, it is important to prioritize knowledge extraction from both data and models during training to improve performance. Therefore, we focus on leveraging the momentum method combined with distillation to simultaneously address computational efficiency and knowledge exploitation. Our contributions can be summarized as follows: (1) leveraging momentum self-distillation to enhance multimodal learning, and (2) integrating momentum mechanisms with gradient accumulation to enlarge the effective batch size without increasing resource consumption. Our method attains competitive performance with state-of-the-art (SOTA) approaches in zero-shot classification, while providing a substantial boost in the few-shot adaption, achieving over 90% AUC-ROC and improving retrieval tasks by 2-3%. Importantly, our method achieves high training efficiency with a single GPU while maintaining reasonable training time. Our approach aims to advance efficient multimodal learning by reducing resource requirements while improving performance over SOTA methods. The implementation of our method is available at https://github.com/phphuc612/MSD .

Authors:Wentao Xiang, Haokang Zhang, Tianhang Yang, Zedong Chu, Ruihang Chu, Shichao Xie, Yujian Yuan, Jian Sun, Zhining Gu, Junjie Wang, Xiaolong Wu, Mu Xu, Yujiu Yang
Title: Nav-$R^2$ Dual-Relation Reasoning for Generalizable Open-Vocabulary Object-Goal Navigation
Abstract:
Object-goal navigation in open-vocabulary settings requires agents to locate novel objects in unseen environments, yet existing approaches suffer from opaque decision-making processes and low success rate on locating unseen objects. To address these challenges, we propose Nav-$R^2$, a framework that explicitly models two critical types of relationships, target-environment modeling and environment-action planning, through structured Chain-of-Thought (CoT) reasoning coupled with a Similarity-Aware Memory. We construct a Nav$R^2$-CoT dataset that teaches the model to perceive the environment, focus on target-related objects in the surrounding context and finally make future action plans. Our SA-Mem preserves the most target-relevant and current observation-relevant features from both temporal and semantic perspectives by compressing video frames and fusing historical observations, while introducing no additional parameters. Compared to previous methods, Nav-R^2 achieves state-of-the-art performance in localizing unseen objects through a streamlined and efficient pipeline, avoiding overfitting to seen object categories while maintaining real-time inference at 2Hz. Resources will be made publicly available at \href{https://github.com/AMAP-EAI/Nav-R2}{github link}.

Authors:Yuqing Shao, Yuchen Yang, Rui Yu, Weilong Li, Xu Guo, Huaicheng Yan, Wei Wang, Xiao Sun
Title: From Detection to Association: Learning Discriminative Object Embeddings for Multi-Object Tracking
Abstract:
End-to-end multi-object tracking (MOT) methods have recently achieved remarkable progress by unifying detection and association within a single framework. Despite their strong detection performance, these methods suffer from relatively low association accuracy. Through detailed analysis, we observe that object embeddings produced by the shared DETR architecture display excessively high inter-object similarity, as it emphasizes only category-level discrimination within single frames. In contrast, tracking requires instance-level distinction across frames with spatial and temporal continuity, for which current end-to-end approaches insufficiently optimize object embeddings. To address this, we introduce FDTA (From Detection to Association), an explicit feature refinement framework that enhances object discriminativeness across three complementary perspectives. Specifically, we introduce a Spatial Adapter (SA) to integrate depth-aware cues for spatial continuity, a Temporal Adapter (TA) to aggregate historical information for temporal dependencies, and an Identity Adapter (IA) to leverage quality-aware contrastive learning for instance-level separability. Extensive experiments demonstrate that FDTA achieves state-of-the-art performance on multiple challenging MOT benchmarks, including DanceTrack, SportsMOT, and BFT, highlighting the effectiveness of our proposed discriminative embedding enhancement strategy. The code is available at https://github.com/Spongebobbbbbbbb/FDTA.

Authors:Liyuan Lou, Wanyun Li, Wentian Gan, Yifei Yu, Tengfei Wang, Xin Wang, Zongqian Zhan
Title: On-the-fly Feedback SfM: Online Explore-and-Exploit UAV Photogrammetry with Incremental Mesh Quality-Aware Indicator and Predictive Path Planning
Abstract:
Compared with conventional offline UAV photogrammetry, real-time UAV photogrammetry is essential for time-critical geospatial applications such as disaster response and active digital-twin maintenance. However, most existing methods focus on processing captured images or sequential frames in real time, without explicitly evaluating the quality of the on-the-go 3D reconstruction or providing guided feedback to enhance image acquisition in the target area. This work presents On-the-fly Feedback SfM, an explore-and-exploit framework for real-time UAV photogrammetry, enabling iterative exploration of unseen regions and exploitation of already observed and reconstructed areas in near real time. Built upon SfM on-the-fly , the proposed method integrates three modules: (1) online incremental coarse-mesh generation for dynamically expanding sparse 3D point cloud; (2) online mesh quality assessment with actionable indicators; and (3) predictive path planning for on-the-fly trajectory refinement. Comprehensive experiments demonstrate that our method achieves in-situ reconstruction and evaluation in near real time while providing actionable feedback that markedly reduces coverage gaps and re-flight costs. Via the integration of data collection, processing, 3D reconstruction and assessment, and online feedback, our on the-fly feedback SfM could be an alternative for the transition from traditional passive working mode to a more intelligent and adaptive exploration workflow. Code is now available at https://github.com/IRIS-LAB-whu/OntheflySfMFeedback.

Authors:Bin Li, Daijie Chen, Qi Zhang
Title: WSCF-MVCC: Weakly-supervised Calibration-free Multi-view Crowd Counting
Abstract:
Multi-view crowd counting can effectively mitigate occlusion issues that commonly arise in single-image crowd counting. Existing deep-learning multi-view crowd counting methods project different camera view images onto a common space to obtain ground-plane density maps, requiring abundant and costly crowd annotations and camera calibrations. Hence, calibration-free methods are proposed that do not require camera calibrations and scene-level crowd annotations. However, existing calibration-free methods still require expensive image-level crowd annotations for training the single-view counting module. Thus, in this paper, we propose a weakly-supervised calibration-free multi-view crowd counting method (WSCF-MVCC), directly using crowd count as supervision for the single-view counting module rather than density maps constructed from crowd annotations. Instead, a self-supervised ranking loss that leverages multi-scale priors is utilized to enhance the model's perceptual ability without additional annotation costs. What's more, the proposed model leverages semantic information to achieve a more accurate view matching and, consequently, a more precise scene-level crowd count estimation. The proposed method outperforms the state-of-the-art methods on three widely used multi-view counting datasets under weakly supervised settings, indicating that it is more suitable for practical deployment compared with calibrated methods. Code is released in https://github.com/zqyq/Weakly-MVCC.

Authors:Shwai He, Chaorui Deng, Ang Li, Shen Yan
Title: Understanding and Harnessing Sparsity in Unified Multimodal Models
Abstract:
Large multimodal models have achieved remarkable progress in both understanding and generation. Recent efforts pursue unified multimodal models that integrate heterogeneous components to support both capabilities within a single framework. However, such unification introduces inference inefficiencies, e.g., specific tasks or samples may not require the full knowledge or capacity of the unified model. Yet, a systematic understanding of how these inefficiencies manifest across different components remains limited. In this work, we first conduct a systematic analysis of unified multimodal model components using training-free pruning as a probing methodology, considering both depth pruning and width reduction. Our study reveals that the understanding component exhibits notable compressibility in both understanding and generation tasks, which is more pronounced in the latter. In contrast, the generation components are highly sensitive to compression, with performance deteriorating sharply even under moderate compression ratios. To address this limitation, we propose the Mixture-of-Experts (MoE) Adaptation, inspired by the dynamic activation patterns observed across different samples. This approach partitions the generation module into multiple experts and enables sparse activation to restore generation quality. We validate the effectiveness of sparse activation through expert-frozen tuning and further demonstrate that a fully trainable adaptation delivers additional gains. As a result, the adapted BAGEL model achieves performance comparable to the full model while activating only about half of its parameters. The code is released at \href{https://github.com/Shwai-He/SparseUnifiedModel}{this link}.

Authors:Fengyi Zhang, Tianjun Zhang, Kasra Khosoussi, Zheng Zhang, Zi Huang, Yadan Luo
Title: TALO: Pushing 3D Vision Foundation Models Towards Globally Consistent Online Reconstruction
Abstract:
3D vision foundation models have shown strong generalization in reconstructing key 3D attributes from uncalibrated images through a single feed-forward pass. However, when deployed in online settings such as driving scenarios, predictions are made over temporal windows, making it non-trivial to maintain consistency across time. Recent strategies align consecutive predictions by solving global transformation, yet our analysis reveals their fundamental limitations in assumption validity, local alignment scope, and robustness under noisy geometry. In this work, we propose a higher-DOF and long-term alignment framework based on Thin Plate Spline, leveraging globally propagated control points to correct spatially varying inconsistencies. In addition, we adopt a point-agnostic submap registration design that is inherently robust to noisy geometry predictions. The proposed framework is fully plug-and-play, compatible with diverse 3D foundation models and camera configurations (e.g., monocular or surround-view). Extensive experiments demonstrate that our method consistently yields more coherent geometry and lower trajectory errors across multiple datasets, backbone models, and camera setups, highlighting its robustness and generality. Codes are publicly available at \href{https://github.com/Xian-Bei/TALO}{https://github.com/Xian-Bei/TALO}.

Authors:Qiyao Xue, Weichen Liu, Shiqi Wang, Haoming Wang, Yuyang Wu, Wei Gao
Title: Reasoning Path and Latent State Analysis for Multi-view Visual Spatial Reasoning: A Cognitive Science Perspective
Abstract:
Spatial reasoning is a core aspect of human intelligence that allows perception, inference and planning in 3D environments. However, current vision-language models (VLMs) struggle to maintain geometric coherence and cross-view consistency for spatial reasoning in multi-view settings. We attribute this gap to the lack of fine-grained benchmarks that isolate multi-view reasoning from single-view perception and temporal factors. To address this, we present ReMindView-Bench, a cognitively grounded benchmark for evaluating how VLMs construct, align and maintain spatial mental models across complementary viewpoints. ReMindView-Bench systematically varies viewpoint spatial pattern and query type to probe key factors of spatial cognition. Evaluations of 15 current VLMs reveals consistent failures in cross-view alignment and perspective-taking in multi-view spatial reasoning, motivating deeper analysis on the reasoning process. Explicit phase-wise analysis using LLM-as-a-judge and self-consistency prompting shows that VLMs perform well on in-frame perception but degrade sharply when integrating information across views. Implicit analysis, including linear probing and entropy dynamics, further show progressive loss of task-relevant information and uncertainty separation between correct and incorrect trajectories. These results provide a cognitively grounded diagnosis of VLM spatial reasoning and reveal how multi-view spatial mental models are formed, degraded and destabilized across reasoning phases. The ReMindView-Bench benchmark is available at https://huggingface.co/datasets/Xue0823/ReMindView-Bench, and the source codes of benchmark construction and VLM reasoning analysis are available at https://github.com/pittisl/ReMindView-Bench.

Authors:Jeremy Andrew Irvin, Jiaqi Han, Zikui Wang, Abdulaziz Alharbi, Yufei Zhao, Nomin-Erdene Bayarsaikhan, Daniele Visioni, Andrew Y. Ng, Duncan Watson-Parris
Title: Spatiotemporal Pyramid Flow Matching for Climate Emulation
Abstract:
Generative models have the potential to transform the way we emulate Earth's changing climate. Previous generative approaches rely on weather-scale autoregression for climate emulation, but this is inherently slow for long climate horizons and has yet to demonstrate stable rollouts under nonstationary forcings. Here, we introduce Spatiotemporal Pyramid Flows (SPF), a new class of flow matching approaches that model data hierarchically across spatial and temporal scales. Inspired by cascaded video models, SPF partitions the generative trajectory into a spatiotemporal pyramid, progressively increasing spatial resolution to reduce computation and coupling each stage with an associated timescale to enable direct sampling at any temporal level in the pyramid. This design, together with conditioning each stage on prescribed physical forcings (e.g., greenhouse gases or aerosols), enables efficient, parallel climate emulation at multiple timescales. On ClimateBench, SPF outperforms strong flow matching baselines and pre-trained models at yearly and monthly timescales while offering fast sampling, especially at coarser temporal levels. To scale SPF, we curate ClimateSuite, the largest collection of Earth system simulations to date, comprising over 33,000 simulation-years across ten climate models and the first dataset to include simulations of climate interventions. We find that the scaled SPF model demonstrates good generalization to held-out scenarios across climate models. Together, SPF and ClimateSuite provide a foundation for accurate, efficient, probabilistic climate emulation across temporal scales and realistic future scenarios. Data and code is publicly available at https://github.com/stanfordmlgroup/spf .

Authors:Haojin Deng, Yimin Yang
Title: Context-Enriched Contrastive Loss: Enhancing Presentation of Inherent Sample Connections in Contrastive Learning Framework
Abstract:
Contrastive learning has gained popularity and pushes state-of-the-art performance across numerous large-scale benchmarks. In contrastive learning, the contrastive loss function plays a pivotal role in discerning similarities between samples through techniques such as rotation or cropping. However, this learning mechanism can also introduce information distortion from the augmented samples. This is because the trained model may develop a significant overreliance on information from samples with identical labels, while concurrently neglecting positive pairs that originate from the same initial image, especially in expansive datasets. This paper proposes a context-enriched contrastive loss function that concurrently improves learning effectiveness and addresses the information distortion by encompassing two convergence targets. The first component, which is notably sensitive to label contrast, differentiates between features of identical and distinct classes which boosts the contrastive training efficiency. Meanwhile, the second component draws closer the augmented samples from the same source image and distances all other samples. We evaluate the proposed approach on image classification tasks, which are among the most widely accepted 8 recognition large-scale benchmark datasets: CIFAR10, CIFAR100, Caltech-101, Caltech-256, ImageNet, BiasedMNIST, UTKFace, and CelebA datasets. The experimental results demonstrate that the proposed method achieves improvements over 16 state-of-the-art contrastive learning methods in terms of both generalization performance and learning convergence speed. Interestingly, our technique stands out in addressing systematic distortion tasks. It demonstrates a 22.9% improvement compared to original contrastive loss functions in the downstream BiasedMNIST dataset, highlighting its promise for more efficient and equitable downstream training.

Authors:Issa Oe, Keiichiro Yamamura, Hiroki Ishikura, Ryo Hamahira, Katsuki Fujisawa
Title: Superpixel Attack: Enhancing Black-box Adversarial Attack with Image-driven Division Areas
Abstract:
Deep learning models are used in safety-critical tasks such as automated driving and face recognition. However, small perturbations in the model input can significantly change the predictions. Adversarial attacks are used to identify small perturbations that can lead to misclassifications. More powerful black-box adversarial attacks are required to develop more effective defenses. A promising approach to black-box adversarial attacks is to repeat the process of extracting a specific image area and changing the perturbations added to it. Existing attacks adopt simple rectangles as the areas where perturbations are changed in a single iteration. We propose applying superpixels instead, which achieve a good balance between color variance and compactness. We also propose a new search method, versatile search, and a novel attack method, Superpixel Attack, which applies superpixels and performs versatile search. Superpixel Attack improves attack success rates by an average of 2.10% compared with existing attacks. Most models used in this study are robust against adversarial attacks, and this improvement is significant for black-box adversarial attacks. The code is avilable at https://github.com/oe1307/SuperpixelAttack.git.

Authors:Shaowei Liu, David Yifan Yao, Saurabh Gupta, Shenlong Wang
Title: Visual Sync: Multi-Camera Synchronization via Cross-View Object Motion
Abstract:
Today, people can easily record memorable moments, ranging from concerts, sports events, lectures, family gatherings, and birthday parties with multiple consumer cameras. However, synchronizing these cross-camera streams remains challenging. Existing methods assume controlled settings, specific targets, manual correction, or costly hardware. We present VisualSync, an optimization framework based on multi-view dynamics that aligns unposed, unsynchronized videos at millisecond accuracy. Our key insight is that any moving 3D point, when co-visible in two cameras, obeys epipolar constraints once properly synchronized. To exploit this, VisualSync leverages off-the-shelf 3D reconstruction, feature matching, and dense tracking to extract tracklets, relative poses, and cross-view correspondences. It then jointly minimizes the epipolar error to estimate each camera's time offset. Experiments on four diverse, challenging datasets show that VisualSync outperforms baseline methods, achieving an median synchronization error below 50 ms.

Authors:Xian Ge, Yuling Pan, Yuhang Zhang, Xiang Li, Weijun Zhang, Dizhe Zhang, Zhaoliang Wan, Xin Lin, Xiangkai Zhang, Juntao Liang, Jason Li, Wenjie Jiang, Bo Du, Ming-Hsuan Yang, Lu Qi
Title: AirSim360: A Panoramic Simulation Platform within Drone View
Abstract:
The field of 360-degree omnidirectional understanding has been receiving increasing attention for advancing spatial intelligence. However, the lack of large-scale and diverse data remains a major limitation. In this work, we propose AirSim360, a simulation platform for omnidirectional data from aerial viewpoints, enabling wide-ranging scene sampling with drones. Specifically, AirSim360 focuses on three key aspects: a render-aligned data and labeling paradigm for pixel-level geometric, semantic, and entity-level understanding; an interactive pedestrian-aware system for modeling human behavior; and an automated trajectory generation paradigm to support navigation tasks. Furthermore, we collect more than 60K panoramic samples and conduct extensive experiments across various tasks to demonstrate the effectiveness of our simulator. Unlike existing simulators, our work is the first to systematically model the 4D real world under an omnidirectional setting. The entire platform, including the toolkit, plugins, and collected datasets, will be made publicly available at https://insta360-research-team.github.io/AirSim360-website.

Authors:Jahyeok Koo, Inès Hyeonsu Kim, Mungyeom Kim, Junghyun Park, Seohyun Park, Jaeyeong Kim, Jung Yi, Seokju Cho, Seungryong Kim
Title: MV-TAP: Tracking Any Point in Multi-View Videos
Abstract:
Multi-view camera systems enable rich observations of complex real-world scenes, and understanding dynamic objects in multi-view settings has become central to various applications. In this work, we present MV-TAP, a novel point tracker that tracks points across multi-view videos of dynamic scenes by leveraging cross-view information. MV-TAP utilizes camera geometry and a cross-view attention mechanism to aggregate spatio-temporal information across views, enabling more complete and reliable trajectory estimation in multi-view videos. To support this task, we construct a large-scale synthetic training dataset and real-world evaluation sets tailored for multi-view tracking. Extensive experiments demonstrate that MV-TAP outperforms existing point-tracking methods on challenging benchmarks, establishing an effective baseline for advancing research in multi-view point tracking.

Authors:Lidong Lu, Guo Chen, Zhu Wei, Yicheng Liu, Tong Lu
Title: Learning Visual Affordance from Audio
Abstract:
We introduce Audio-Visual Affordance Grounding (AV-AG), a new task that segments object interaction regions from action sounds. Unlike existing approaches that rely on textual instructions or demonstration videos, which often limited by ambiguity or occlusion, audio provides real-time, semantically rich, and visually independent cues for affordance grounding, enabling more intuitive understanding of interaction regions. To support this task, we construct the first AV-AG dataset, comprising a large collection of action sounds, object images, and pixel-level affordance annotations. The dataset also includes an unseen subset to evaluate zero-shot generalization. Furthermore, we propose AVAGFormer, a model equipped with a semantic-conditioned cross-modal mixer and a dual-head decoder that effectively fuses audio and visual signals for mask prediction. Experiments show that AVAGFormer achieves state-of-the-art performance on AV-AG, surpassing baselines from related tasks. Comprehensive analyses highlight the distinctions between AV-AG and AVS, the benefits of end-to-end modeling, and the contribution of each component. Code and dataset have been released on https://jscslld.github.io/AVAGFormer/.

Authors:Zhongyu Yang, Dannong Xu, Wei Pang, Yingfang Yuan
Title: Script: Graph-Structured and Query-Conditioned Semantic Token Pruning for Multimodal Large Language Models
Abstract:
The rapid growth of visual tokens in multimodal large language models (MLLMs) leads to excessive memory consumption and inference latency, especially when handling high-resolution images and videos. Token pruning is a technique used to mitigate this issue by removing redundancy, but existing methods often ignore relevance to the user query or suffer from the limitations of attention mechanisms, reducing their adaptability and effectiveness. To address these challenges, we propose Script, a plug-and-play pruning method that requires no retraining and generalizes across diverse MLLMs. Script comprises two modules: a graph-structured pruning module that removes visually redundant tokens, and a query-conditioned semantic pruning module that preserves query-relevant visual information. Together, they enhance performance on multimodal tasks. Experiments on fourteen benchmarks across image and video understanding tasks show that Script consistently achieves higher model efficiency and predictive accuracy compared to existing pruning methods. On LLaVA-NeXT-7B, it achieves up to 6.8x prefill speedup and 10x FLOP reduction, while retaining 96.88% of the original performance.

Authors:Bailiang Jian, Jiazhen Pan, Rohit Jena, Morteza Ghahremani, Hongwei Bran Li, Daniel Rueckert, Christian Wachinger, Benedikt Wiestler
Title: Disentangling Progress in Medical Image Registration: Beyond Trend-Driven Architectures towards Domain-Specific Strategies
Abstract:
Medical image registration drives quantitative analysis across organs, modalities, and patient populations. Recent deep learning methods often combine low-level "trend-driven" computational blocks from computer vision, such as large-kernel CNNs, Transformers, and state-space models, with high-level registration-specific designs like motion pyramids, correlation layers, and iterative refinement. Yet, their relative contributions remain unclear and entangled. This raises a central question: should future advances in registration focus on importing generic architectural trends or on refining domain-specific design principles? Through a modular framework spanning brain, lung, cardiac, and abdominal registration, we systematically disentangle the influence of these two paradigms. Our evaluation reveals that low-level "trend-driven" computational blocks offer only marginal or inconsistent gains, while high-level registration-specific designs consistently deliver more accurate, smoother, and more robust deformations. These domain priors significantly elevate the performance of a standard U-Net baseline, far more than variants incorporating "trend-driven" blocks, achieving an average relative improvement of $\sim3\%$. All models and experiments are released within a transparent, modular benchmark that enables plug-and-play comparison for new architectures and registration tasks (https://github.com/BailiangJ/rethink-reg). This dynamic and extensible platform establishes a common ground for reproducible and fair evaluation, inviting the community to isolate genuine methodological contributions from domain priors. Our findings advocate a shift in research emphasis: from following architectural trends to embracing domain-specific design principles as the true drivers of progress in learning-based medical image registration.

Authors:Florian Bürger, Martim Dias Gomes, Nica Gutu, Adrián E. Granada, Noémie Moreau, Katarzyna Bozek
Title: TransientTrack: Advanced Multi-Object Tracking and Classification of Cancer Cells with Transient Fluorescent Signals
Abstract:
Tracking cells in time-lapse videos is an essential technique for monitoring cell population dynamics at a single-cell level. Current methods for cell tracking are developed on videos with mostly single, constant signals and do not detect pivotal events such as cell death. Here, we present TransientTrack, a deep learning-based framework for cell tracking in multi-channel microscopy video data with transient fluorescent signals that fluctuate over time following processes such as the circadian rhythm of cells. By identifying key cellular events - mitosis (cell division) and apoptosis (cell death) our method allows us to build complete trajectories, including cell lineage information. TransientTrack is lightweight and performs matching on cell detection embeddings directly, without the need for quantification of tracking-specific cell features. Furthermore, our approach integrates Transformer Networks, multi-stage matching using all detection boxes, and the interpolation of missing tracklets with the Kalman Filter. This unified framework achieves strong performance across diverse conditions, effectively tracking cells and capturing cell division and death. We demonstrate the use of TransientTrack in an analysis of the efficacy of a chemotherapeutic drug at a single-cell level. The proposed framework could further advance quantitative studies of cancer cell dynamics, enabling detailed characterization of treatment response and resistance mechanisms. The code is available at https://github.com/bozeklab/TransientTrack.

Authors:Tsz-To Wong, Ching-Chun Huang, Hong-Han Shuai
Title: COACH: Collaborative Agents for Contextual Highlighting -- A Multi-Agent Framework for Sports Video Analysis
Abstract:
Intelligent sports video analysis demands a comprehensive understanding of temporal context, from micro-level actions to macro-level game strategies. Existing end-to-end models often struggle with this temporal hierarchy, offering solutions that lack generalization, incur high development costs for new tasks, and suffer from poor interpretability. To overcome these limitations, we propose a reconfigurable Multi-Agent System (MAS) as a foundational framework for sports video understanding. In our system, each agent functions as a distinct "cognitive tool" specializing in a specific aspect of analysis. The system's architecture is not confined to a single temporal dimension or task. By leveraging iterative invocation and flexible composition of these agents, our framework can construct adaptive pipelines for both short-term analytic reasoning (e.g., Rally QA) and long-term generative summarization (e.g., match summaries). We demonstrate the adaptability of this framework using two representative tasks in badminton analysis, showcasing its ability to bridge fine-grained event detection and global semantic organization. This work presents a paradigm shift towards a flexible, scalable, and interpretable system for robust, cross-task sports video intelligence. The project homepage is available at https://aiden1020.github.io/COACH-project-page

Authors:Yue Pan, Tao Sun, Liyuan Zhu, Lucas Nunes, Iro Armeni, Jens Behley, Cyrill Stachniss
Title: Register Any Point: Scaling 3D Point Cloud Registration by Flow Matching
Abstract:
Point cloud registration aligns multiple unposed point clouds into a common frame, and is a core step for 3D reconstruction and robot localization. In this work, we cast registration as conditional generation: a learned continuous, point-wise velocity field transports noisy points to a registered scene, from which the pose of each view is recovered. Unlike previous methods that conduct correspondence matching to estimate the transformation between a pair of point clouds and then optimize the pairwise transformations to realize multi-view registration, our model directly generates the registered point cloud. With a lightweight local feature extractor and test-time rigidity enforcement, our approach achieves state-of-the-art results on pairwise and multi-view registration benchmarks, particularly with low overlap, and generalizes across scales and sensor modalities. It further supports downstream tasks including relocalization, multi-robot SLAM, and multi-session map merging. Source code available at: https://github.com/PRBonn/RAP.

Authors:Zeqing Wang, Keze Wang, Lei Zhang
Title: PhyDetEx: Detecting and Explaining the Physical Plausibility of T2V Models
Abstract:
Driven by the growing capacity and training scale, Text-to-Video (T2V) generation models have recently achieved substantial progress in video quality, length, and instruction-following capability. However, whether these models can understand physics and generate physically plausible videos remains a question. While Vision-Language Models (VLMs) have been widely used as general-purpose evaluators in various applications, they struggle to identify the physically impossible content from generated videos. To investigate this issue, we construct a \textbf{PID} (\textbf{P}hysical \textbf{I}mplausibility \textbf{D}etection) dataset, which consists of a \textit{test split} of 500 manually annotated videos and a \textit{train split} of 2,588 paired videos, where each implausible video is generated by carefully rewriting the caption of its corresponding real-world video to induce T2V models producing physically implausible content. With the constructed dataset, we introduce a lightweight fine-tuning approach, enabling VLMs to not only detect physically implausible events but also generate textual explanations on the violated physical principles. Taking the fine-tuned VLM as a physical plausibility detector and explainer, namely \textbf{PhyDetEx}, we benchmark a series of state-of-the-art T2V models to assess their adherence to physical laws. Our findings show that although recent T2V models have made notable progress toward generating physically plausible content, understanding and adhering to physical laws remains a challenging issue, especially for open-source models. Our dataset, training code, and checkpoints are available at \href{https://github.com/Zeqing-Wang/PhyDetEx}{https://github.com/Zeqing-Wang/PhyDetEx}.

Authors:Yize Zhang, Meiqi Chen, Sirui Chen, Bo Peng, Yanxi Zhang, Tianyu Li, Chaochao Lu
Title: CauSight: Learning to Supersense for Visual Causal Discovery
Abstract:
Causal thinking enables humans to understand not just what is seen, but why it happens. To replicate this capability in modern AI systems, we introduce the task of visual causal discovery. It requires models to infer cause-and-effect relations among visual entities across diverse scenarios instead of merely perceiving their presence. To this end, we first construct the Visual Causal Graph dataset (VCG-32K), a large-scale collection of over 32,000 images annotated with entity-level causal graphs, and further develop CauSight, a novel vision-language model to perform visual causal discovery through causally aware reasoning. Our training recipe integrates three components: (1) training data curation from VCG-32K, (2) Tree-of-Causal-Thought (ToCT) for synthesizing reasoning trajectories, and (3) reinforcement learning with a designed causal reward to refine the reasoning policy. Experiments show that CauSight outperforms GPT-4.1 on visual causal discovery, achieving over a threefold performance boost (21% absolute gain). Our code, model, and dataset are fully open-sourced at project page: https://github.com/OpenCausaLab/CauSight.

Authors:Xinyu Xiong, Zihuang Wu, Lei Lu, Yufa Xia
Title: SAM3-UNet: Simplified Adaptation of Segment Anything Model 3
Abstract:
In this paper, we introduce SAM3-UNet, a simplified variant of Segment Anything Model 3 (SAM3), designed to adapt SAM3 for downstream tasks at a low cost. Our SAM3-UNet consists of three components: a SAM3 image encoder, a simple adapter for parameter-efficient fine-tuning, and a lightweight U-Net-style decoder. Preliminary experiments on multiple tasks, such as mirror detection and salient object detection, demonstrate that the proposed SAM3-UNet outperforms the prior SAM2-UNet and other state-of-the-art methods, while requiring less than 6 GB of GPU memory during training with a batch size of 12. The code is publicly available at https://github.com/WZH0120/SAM3-UNet.

Authors:Patrick Kwon, Chen Chen
Title: DreamingComics: A Story Visualization Pipeline via Subject and Layout Customized Generation using Video Models
Abstract:
Current story visualization methods tend to position subjects solely by text and face challenges in maintaining artistic consistency. To address these limitations, we introduce DreamingComics, a layout-aware story visualization framework. We build upon a pretrained video diffusion-transformer (DiT) model, leveraging its spatiotemporal priors to enhance identity and style consistency. For layout-based position control, we propose RegionalRoPE, a region-aware positional encoding scheme that re-indexes embeddings based on the target layout. Additionally, we introduce a masked condition loss to further constrain each subject's visual features to their designated region. To infer layouts from natural language scripts, we integrate an LLM-based layout generator trained to produce comic-style layouts, enabling flexible and controllable layout conditioning. We present a comprehensive evaluation of our approach, showing a 29.2% increase in character consistency and a 36.2% increase in style similarity compared to previous methods, while displaying high spatial accuracy. Our project page is available at https://yj7082126.github.io/dreamingcomics/

Authors:Haodong Yan, Hang Yu, Zhide Zhong, Weilin Yuan, Xin Gong, Zehang Luo, Chengxi Heyu, Junfeng Li, Wenxuan Song, Shunbo Zhou, Haoang Li
Title: Open-world Hand-Object Interaction Video Generation Based on Structure and Contact-aware Representation
Abstract:
Generating realistic hand-object interactions (HOI) videos is a significant challenge due to the difficulty of modeling physical constraints (e.g., contact and occlusion between hands and manipulated objects). Current methods utilize HOI representation as an auxiliary generative objective to guide video synthesis. However, there is a dilemma between 2D and 3D representations that cannot simultaneously guarantee scalability and interaction fidelity. To address this limitation, we propose a structure and contact-aware representation that captures hand-object contact, hand-object occlusion, and holistic structure context without 3D annotations. This interaction-oriented and scalable supervision signal enables the model to learn fine-grained interaction physics and generalize to open-world scenarios. To fully exploit the proposed representation, we introduce a joint-generation paradigm with a share-and-specialization strategy that generates interaction-oriented representations and videos. Extensive experiments demonstrate that our method outperforms state-of-the-art methods on two real-world datasets in generating physics-realistic and temporally coherent HOI videos. Furthermore, our approach exhibits strong generalization to challenging open-world scenarios, highlighting the benefit of our scalable design. Our project page is https://hgzn258.github.io/SCAR/.

Authors:Dongchen Han, Yining Li, Tianyu Li, Zixuan Cao, Ziming Wang, Jun Song, Yu Cheng, Bo Zheng, Gao Huang
Title: ViT$^3$: Unlocking Test-Time Training in Vision
Abstract:
Test-Time Training (TTT) has recently emerged as a promising direction for efficient sequence modeling. TTT reformulates attention operation as an online learning problem, constructing a compact inner model from key-value pairs at test time. This reformulation opens a rich and flexible design space while achieving linear computational complexity. However, crafting a powerful visual TTT design remains challenging: fundamental choices for the inner module and inner training lack comprehensive understanding and practical guidelines. To bridge this critical gap, in this paper, we present a systematic empirical study of TTT designs for visual sequence modeling. From a series of experiments and analyses, we distill six practical insights that establish design principles for effective visual TTT and illuminate paths for future improvement. These findings culminate in the Vision Test-Time Training (ViT$^3$) model, a pure TTT architecture that achieves linear complexity and parallelizable computation. We evaluate ViT$^3$ across diverse visual tasks, including image classification, image generation, object detection, and semantic segmentation. Results show that ViT$^3$ consistently matches or outperforms advanced linear-complexity models (e.g., Mamba and linear attention variants) and effectively narrows the gap to highly optimized vision Transformers. We hope this study and the ViT$^3$ baseline can facilitate future work on visual TTT models. Code is available at https://github.com/LeapLabTHU/ViTTT.

Authors:Thao Thi Phuong Dao, Tan-Cong Nguyen, Trong-Le Do, Truong Hoang Viet, Nguyen Chi Thanh, Huynh Nguyen Thuan, Do Vo Cong Nguyen, Minh-Khoi Pham, Mai-Khiem Tran, Viet-Tham Huynh, Trong-Thuan Nguyen, Trung-Nghia Le, Vo Thanh Toan, Tam V. Nguyen, Minh-Triet Tran, Thanh Dinh Le
Title: Toward Content-based Indexing and Retrieval of Head and Neck CT with Abscess Segmentation
Abstract:
Abscesses in the head and neck represent an acute infectious process that can potentially lead to sepsis or mortality if not diagnosed and managed promptly. Accurate detection and delineation of these lesions on imaging are essential for diagnosis, treatment planning, and surgical intervention. In this study, we introduce AbscessHeNe, a curated and comprehensively annotated dataset comprising 4,926 contrast-enhanced CT slices with clinically confirmed head and neck abscesses. The dataset is designed to facilitate the development of robust semantic segmentation models that can accurately delineate abscess boundaries and evaluate deep neck space involvement, thereby supporting informed clinical decision-making. To establish performance baselines, we evaluate several state-of-the-art segmentation architectures, including CNN, Transformer, and Mamba-based models. The highest-performing model achieved a Dice Similarity Coefficient of 0.39, Intersection-over-Union of 0.27, and Normalized Surface Distance of 0.67, indicating the challenges of this task and the need for further research. Beyond segmentation, AbscessHeNe is structured for future applications in content-based multimedia indexing and case-based retrieval. Each CT scan is linked with pixel-level annotations and clinical metadata, providing a foundation for building intelligent retrieval systems and supporting knowledge-driven clinical workflows. The dataset will be made publicly available at https://github.com/drthaodao3101/AbscessHeNe.git.

Authors:Thao Thi Phuong Dao, Tan-Cong Nguyen, Nguyen Chi Thanh, Truong Hoang Viet, Trong-Le Do, Mai-Khiem Tran, Minh-Khoi Pham, Trung-Nghia Le, Minh-Triet Tran, Thanh Dinh Le
Title: MasHeNe: A Benchmark for Head and Neck CT Mass Segmentation using Window-Enhanced Mamba with Frequency-Domain Integration
Abstract:
Head and neck masses are space-occupying lesions that can compress the airway and esophagus and may affect nerves and blood vessels. Available public datasets primarily focus on malignant lesions and often overlook other space-occupying conditions in this region. To address this gap, we introduce MasHeNe, an initial dataset of 3,779 contrast-enhanced CT slices that includes both tumors and cysts with pixel-level annotations. We also establish a benchmark using standard segmentation baselines and report common metrics to enable fair comparison. In addition, we propose the Windowing-Enhanced Mamba with Frequency integration (WEMF) model. WEMF applies tri-window enhancement to enrich the input appearance before feature extraction. It further uses multi-frequency attention to fuse information across skip connections within a U-shaped Mamba backbone. On MasHeNe, WEMF attains the best performance among evaluated methods, with a Dice of 70.45%, IoU of 66.89%, NSD of 72.33%, and HD95 of 5.12 mm. This model indicates stable and strong results on this challenging task. MasHeNe provides a benchmark for head-and-neck mass segmentation beyond malignancy-only datasets. The observed error patterns also suggest that this task remains challenging and requires further research. Our dataset and code are available at https://github.com/drthaodao3101/MasHeNe.git.

Authors:Zipeng Wang, Dan Xu
Title: FlashVGGT: Efficient and Scalable Visual Geometry Transformers with Compressed Descriptor Attention
Abstract:
3D reconstruction from multi-view images is a core challenge in computer vision. Recently, feed-forward methods have emerged as efficient and robust alternatives to traditional per-scene optimization techniques. Among them, state-of-the-art models like the Visual Geometry Grounding Transformer (VGGT) leverage full self-attention over all image tokens to capture global relationships. However, this approach suffers from poor scalability due to the quadratic complexity of self-attention and the large number of tokens generated in long image sequences. In this work, we introduce FlashVGGT, an efficient alternative that addresses this bottleneck through a descriptor-based attention mechanism. Instead of applying dense global attention across all tokens, FlashVGGT compresses spatial information from each frame into a compact set of descriptor tokens. Global attention is then computed as cross-attention between the full set of image tokens and this smaller descriptor set, significantly reducing computational overhead. Moreover, the compactness of the descriptors enables online inference over long sequences via a chunk-recursive mechanism that reuses cached descriptors from previous chunks. Experimental results show that FlashVGGT achieves reconstruction accuracy competitive with VGGT while reducing inference time to just 9.3% of VGGT for 1,000 images, and scaling efficiently to sequences exceeding 3,000 images. Our project page is available at https://wzpscott.github.io/flashvggt_page/.

Authors:Can Polat, Erchin Serpedin, Mustafa Kurban, Hasan Kurban
Title: QuantumCanvas: A Multimodal Benchmark for Visual Learning of Atomic Interactions
Abstract:
Despite rapid advances in molecular and materials machine learning, most models still lack physical transferability: they fit correlations across whole molecules or crystals rather than learning the quantum interactions between atomic pairs. Yet bonding, charge redistribution, orbital hybridization, and electronic coupling all emerge from these two-body interactions that define local quantum fields in many-body systems. We introduce QuantumCanvas, a large-scale multimodal benchmark that treats two-body quantum systems as foundational units of matter. The dataset spans 2,850 element-element pairs, each annotated with 18 electronic, thermodynamic, and geometric properties and paired with ten-channel image representations derived from l- and m-resolved orbital densities, angular field transforms, co-occupancy maps, and charge-density projections. These physically grounded images encode spatial, angular, and electrostatic symmetries without explicit coordinates, providing an interpretable visual modality for quantum learning. Benchmarking eight architectures across 18 targets, we report mean absolute errors of 0.201 eV on energy gap using GATv2, 0.265 eV on HOMO and 0.274 eV on LUMO using EGNN. For energy-related quantities, DimeNet attains 2.27 eV total-energy MAE and 0.132 eV repulsive-energy MAE, while a multimodal fusion model achieves a 2.15 eV Mermin free-energy MAE. Pretraining on QuantumCanvas further improves convergence stability and generalization when fine-tuned on larger datasets such as QM9, MD17, and CrysMTM. By unifying orbital physics with vision-based representation learning, QuantumCanvas provides a principled and interpretable basis for learning transferable quantum interactions through coupled visual and numerical modalities. Dataset and model implementations are available at https://github.com/KurbanIntelligenceLab/QuantumCanvas.

Authors:Kuangpu Guo, Yuhe Ding, Jian Liang, Zilei Wang, Ran He
Title: Stay Unique, Stay Efficient: Preserving Model Personality in Multi-Task Merging
Abstract:
Model merging has emerged as a promising paradigm for enabling multi-task capabilities without additional training. However, existing methods often experience substantial performance degradation compared with individually fine-tuned models, even on similar tasks, underscoring the need to preserve task-specific information. This paper proposes Decomposition, Thresholding, and Scaling (DTS), an approximation-based personalized merging framework that preserves task-specific information with minimal storage overhead. DTS first applies singular value decomposition to the task-specific information and retains only a small subset of singular values and vectors. It then introduces a novel thresholding strategy that partitions singular vector elements into groups and assigns a scaling factor to each group. To enable generalization to unseen tasks, we further extend DTS with a variant that fuses task-specific information in a data-free manner based on the semantic similarity of task characteristics. Extensive experiments demonstrate that DTS consistently outperforms state-of-the-art baselines while requiring only 1\% additional storage per task. Furthermore, experiments on unseen tasks show that the DTS variant achieves significantly better generalization performance. Our code is available at https://github.com/krumpguo/DTS.

Authors:Yongkun Du, Miaomiao Zhao, Songlin Fan, Zhineng Chen, Caiyan Jia, Yu-Gang Jiang
Title: MDiff4STR: Mask Diffusion Model for Scene Text Recognition
Abstract:
Mask Diffusion Models (MDMs) have recently emerged as a promising alternative to auto-regressive models (ARMs) for vision-language tasks, owing to their flexible balance of efficiency and accuracy. In this paper, for the first time, we introduce MDMs into the Scene Text Recognition (STR) task. We show that vanilla MDM lags behind ARMs in terms of accuracy, although it improves recognition efficiency. To bridge this gap, we propose MDiff4STR, a Mask Diffusion model enhanced with two key improvement strategies tailored for STR. Specifically, we identify two key challenges in applying MDMs to STR: noising gap between training and inference, and overconfident predictions during inference. Both significantly hinder the performance of MDMs. To mitigate the first issue, we develop six noising strategies that better align training with inference behavior. For the second, we propose a token-replacement noise mechanism that provides a non-mask noise type, encouraging the model to reconsider and revise overly confident but incorrect predictions. We conduct extensive evaluations of MDiff4STR on both standard and challenging STR benchmarks, covering diverse scenarios including irregular, artistic, occluded, and Chinese text, as well as whether the use of pretraining. Across these settings, MDiff4STR consistently outperforms popular STR models, surpassing state-of-the-art ARMs in accuracy, while maintaining fast inference with only three denoising steps. Code: https://github.com/Topdu/OpenOCR.

Authors:Seungho Choi, Jeahun Sung, Jihyong Oh
Title: FRAMER: Frequency-Aligned Self-Distillation with Adaptive Modulation Leveraging Diffusion Priors for Real-World Image Super-Resolution
Abstract:
Real-image super-resolution (Real-ISR) seeks to recover HR images from LR inputs with mixed, unknown degradations. While diffusion models surpass GANs in perceptual quality, they under-reconstruct high-frequency (HF) details due to a low-frequency (LF) bias and a depth-wise "low-first, high-later" hierarchy. We introduce FRAMER, a plug-and-play training scheme that exploits diffusion priors without changing the backbone or inference. At each denoising step, the final-layer feature map teaches all intermediate layers. Teacher and student feature maps are decomposed into LF/HF bands via FFT masks to align supervision with the model's internal frequency hierarchy. For LF, an Intra Contrastive Loss (IntraCL) stabilizes globally shared structure. For HF, an Inter Contrastive Loss (InterCL) sharpens instance-specific details using random-layer and in-batch negatives. Two adaptive modulators, Frequency-based Adaptive Weight (FAW) and Frequency-based Alignment Modulation (FAM), reweight per-layer LF/HF signals and gate distillation by current similarity. Across U-Net and DiT backbones (e.g., Stable Diffusion 2, 3), FRAMER consistently improves PSNR/SSIM and perceptual metrics (LPIPS, NIQE, MANIQA, MUSIQ). Ablations validate the final-layer teacher and random-layer negatives.

Authors:Hanzhi Guo, Dongdong Weng, Mo Su, Yixiao Chen, Xiaonuo Dongye, Chenyu Xu
Title: TagSplat: Topology-Aware Gaussian Splatting for Dynamic Mesh Modeling and Tracking
Abstract:
Topology-consistent dynamic model sequences are essential for applications such as animation and model editing. However, existing 4D reconstruction methods face challenges in generating high-quality topology-consistent meshes. To address this, we propose a topology-aware dynamic reconstruction framework based on Gaussian Splatting. We introduce a Gaussian topological structure that explicitly encodes spatial connectivity. This structure enables topology-aware densification and pruning, preserving the manifold consistency of the Gaussian representation. Temporal regularization terms further ensure topological coherence over time, while differentiable mesh rasterization improves mesh quality. Experimental results demonstrate that our method reconstructs topology-consistent mesh sequences with significantly higher accuracy than existing approaches. Moreover, the resulting meshes enable precise 3D keypoint tracking. Project page: https://haza628.github.io/tagSplat/

Authors:Feiyang Xiao, Yichi Zhang, Xigui Li, Yuanye Zhou, Chen Jiang, Xin Guo, Limei Han, Yuxin Li, Fengping Zhu, Yuan Cheng
Title: Rethinking Intracranial Aneurysm Vessel Segmentation: A Perspective from Computational Fluid Dynamics Applications
Abstract:
The precise segmentation of intracranial aneurysms and their parent vessels (IA-Vessel) is a critical step for hemodynamic analyses, which mainly depends on computational fluid dynamics (CFD). However, current segmentation methods predominantly focus on image-based evaluation metrics, often neglecting their practical effectiveness in subsequent CFD applications. To address this deficiency, we present the Intracranial Aneurysm Vessel Segmentation (IAVS) dataset, the first comprehensive, multi-center collection comprising 641 3D MRA images with 587 annotations of aneurysms and IA-Vessels. In addition to image-mask pairs, IAVS dataset includes detailed hemodynamic analysis outcomes, addressing the limitations of existing datasets that neglect topological integrity and CFD applicability. To facilitate the development and evaluation of clinically relevant techniques, we construct two evaluation benchmarks including global localization of aneurysms (Stage I) and fine-grained segmentation of IA-Vessel (Stage II) and develop a simple and effective two-stage framework, which can be used as a out-of-the-box method and strong baseline. For comprehensive evaluation of applicability of segmentation results, we establish a standardized CFD applicability evaluation system that enables the automated and consistent conversion of segmentation masks into CFD models, offering an applicability-focused assessment of segmentation outcomes. The dataset, code, and model will be public available at https://github.com/AbsoluteResonance/IAVS.

Authors:Thisara Rathnayaka, Uthayasanker Thayasivam
Title: TBT-Former: Learning Temporal Boundary Distributions for Action Localization
Abstract:
Temporal Action Localization (TAL) remains a fundamental challenge in video understanding, aiming to identify the start time, end time, and category of all action instances within untrimmed videos. While recent single-stage, anchor-free models like ActionFormer have set a high standard by leveraging Transformers for temporal reasoning, they often struggle with two persistent issues: the precise localization of actions with ambiguous or "fuzzy" temporal boundaries and the effective fusion of multi-scale contextual information. In this paper, we introduce the Temporal Boundary Transformer (TBT-Former), a new architecture that directly addresses these limitations. TBT-Former enhances the strong ActionFormer baseline with three core contributions: (1) a higher-capacity scaled Transformer backbone with an increased number of attention heads and an expanded Multi-Layer Perceptron (MLP) dimension for more powerful temporal feature extraction; (2) a cross-scale feature pyramid network (FPN) that integrates a top-down pathway with lateral connections, enabling richer fusion of high-level semantics and low-level temporal details; and (3) a novel boundary distribution regression head. Inspired by the principles of Generalized Focal Loss (GFL), this new head recasts the challenging task of boundary regression as a more flexible probability distribution learning problem, allowing the model to explicitly represent and reason about boundary uncertainty. Within the paradigm of Transformer-based architectures, TBT-Former advances the formidable benchmark set by its predecessors, establishing a new level of performance on the highly competitive THUMOS14 and EPIC-Kitchens 100 datasets, while remaining competitive on the large-scale ActivityNet-1.3. Our code is available at https://github.com/aaivu/In21-S7-CS4681-AML-Research-Projects/tree/main/projects/210536K-Multi-Modal-Learning_Video-Understanding

Authors:Xiaokun Pan, Zhenzhe Li, Zhichao Ye, Hongjia Zhai, Guofeng Zhang
Title: EGG-Fusion: Efficient 3D Reconstruction with Geometry-aware Gaussian Surfel on the Fly
Abstract:
Real-time 3D reconstruction is a fundamental task in computer graphics. Recently, differentiable-rendering-based SLAM system has demonstrated significant potential, enabling photorealistic scene rendering through learnable scene representations such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS). Current differentiable rendering methods face dual challenges in real-time computation and sensor noise sensitivity, leading to degraded geometric fidelity in scene reconstruction and limited practicality. To address these challenges, we propose a novel real-time system EGG-Fusion, featuring robust sparse-to-dense camera tracking and a geometry-aware Gaussian surfel mapping module, introducing an information filter-based fusion method that explicitly accounts for sensor noise to achieve high-precision surface reconstruction. The proposed differentiable Gaussian surfel mapping effectively models multi-view consistent surfaces while enabling efficient parameter optimization. Extensive experimental results demonstrate that the proposed system achieves a surface reconstruction error of 0.6\textit{cm} on standardized benchmark datasets including Replica and ScanNet++, representing over 20\% improvement in accuracy compared to state-of-the-art (SOTA) GS-based methods. Notably, the system maintains real-time processing capabilities at 24 FPS, establishing it as one of the most accurate differentiable-rendering-based real-time reconstruction systems. Project Page: https://zju3dv.github.io/eggfusion/

Authors:Yahui Liu, Yang Yue, Jingyuan Zhang, Chenxi Sun, Yang Zhou, Wencong Zeng, Ruiming Tang, Guorui Zhou
Title: Efficient Training of Diffusion Mixture-of-Experts Models: A Practical Recipe
Abstract:
Recent efforts on Diffusion Mixture-of-Experts (MoE) models have primarily focused on developing more sophisticated routing mechanisms. However, we observe that the underlying architectural configuration space remains markedly under-explored. Inspired by the MoE design paradigms established in large language models (LLMs), we identify a set of crucial architectural factors for building effective Diffusion MoE models--including DeepSeek-style expert modules, alternative intermediate widths, varying expert counts, and enhanced attention positional encodings. Our systematic study reveals that carefully tuning these configurations is essential for unlocking the full potential of Diffusion MoE models, often yielding gains that exceed those achieved by routing innovations alone. Through extensive experiments, we present novel architectures that can be efficiently applied to both latent and pixel-space diffusion frameworks, which provide a practical and efficient training recipe that enables Diffusion MoE models to surpass strong baselines while using equal or fewer activated parameters. All code and models are publicly available at: https://github.com/yhlleo/EfficientMoE.

Authors:Junyuan Zhang, Bin Wang, Qintong Zhang, Fan Wu, Zichen Wen, Jialin Lu, Junjie Shan, Ziqi Zhao, Shuya Yang, Ziling Wang, Ziyang Miao, Huaping Zhong, Yuhang Zang, Xiaoyi Dong, Ka-Ho Chow, Conghui He
Title: TRivia: Self-supervised Fine-tuning of Vision-Language Models for Table Recognition
Abstract:
Table recognition (TR) aims to transform table images into semi-structured representations such as HTML or Markdown. As a core component of document parsing, TR has long relied on supervised learning, with recent efforts dominated by fine-tuning vision-language models (VLMs) using labeled data. While VLMs have brought TR to the next level, pushing performance further demands large-scale labeled data that is costly to obtain. Consequently, although proprietary models have continuously pushed the performance boundary, open-source models, often trained with limited resources and, in practice, the only viable option for many due to privacy regulations, still lag far behind. To bridge this gap, we introduce TRivia, a self-supervised fine-tuning method that enables pretrained VLMs to learn TR directly from unlabeled table images in the wild. Built upon Group Relative Policy Optimization, TRivia automatically identifies unlabeled samples that most effectively facilitate learning and eliminates the need for human annotations through a question-answering-based reward mechanism. An attention-guided module generates diverse questions for each table image, and the ability to interpret the recognition results and answer them correctly provides feedback to optimize the TR model. This closed-loop process allows the TR model to autonomously learn to recognize, structure, and reason over tables without labeled data. Leveraging this pipeline, we present TRivia-3B, an open-sourced, compact, and state-of-the-art TR model that surpasses existing systems (e.g., Gemini 2.5 Pro, MinerU2.5) on three popular benchmarks. Model and code are released at: https://github.com/opendatalab/TRivia

Authors:Shulei Wang, Longhui Wei, Xin He, Jianbo Ouyang, Hui Lu, Zhou Zhao, Qi Tian
Title: PSR: Scaling Multi-Subject Personalized Image Generation with Pairwise Subject-Consistency Rewards
Abstract:
Personalized generation models for a single subject have demonstrated remarkable effectiveness, highlighting their significant potential. However, when extended to multiple subjects, existing models often exhibit degraded performance, particularly in maintaining subject consistency and adhering to textual prompts. We attribute these limitations to the absence of high-quality multi-subject datasets and refined post-training strategies. To address these challenges, we propose a scalable multi-subject data generation pipeline that leverages powerful single-subject generation models to construct diverse and high-quality multi-subject training data. Through this dataset, we first enable single-subject personalization models to acquire knowledge of synthesizing multi-image and multi-subject scenarios. Furthermore, to enhance both subject consistency and text controllability, we design a set of Pairwise Subject-Consistency Rewards and general-purpose rewards, which are incorporated into a refined reinforcement learning stage. To comprehensively evaluate multi-subject personalization, we introduce a new benchmark that assesses model performance using seven subsets across three dimensions. Extensive experiments demonstrate the effectiveness of our approach in advancing multi-subject personalized image generation. Github Link: https://github.com/wang-shulei/PSR

Authors:Ziqian Wang, Yonghao He, Licheng Yang, Wei Zou, Hongxuan Ma, Liu Liu, Wei Sui, Yuxin Guo, Hu Su
Title: TabletopGen: Instance-Level Interactive 3D Tabletop Scene Generation from Text or Single Image
Abstract:
Generating high-fidelity, physically interactive 3D simulated tabletop scenes is essential for embodied AI -- especially for robotic manipulation policy learning and data synthesis. However, current text- or image-driven 3D scene generation methods mainly focus on large-scale scenes, struggling to capture the high-density layouts and complex spatial relations that characterize tabletop scenes. To address these challenges, we propose TabletopGen, a training-free, fully automatic framework that generates diverse, instance-level interactive 3D tabletop scenes. TabletopGen accepts a reference image as input, which can be synthesized by a text-to-image model to enhance scene diversity. We then perform instance segmentation and completion on the reference to obtain per-instance images. Each instance is reconstructed into a 3D model followed by canonical coordinate alignment. The aligned 3D models then undergo pose and scale estimation before being assembled into a collision-free, simulation-ready tabletop scene. A key component of our framework is a novel pose and scale alignment approach that decouples the complex spatial reasoning into two stages: a Differentiable Rotation Optimizer for precise rotation recovery and a Top-view Spatial Alignment mechanism for robust translation and scale estimation, enabling accurate 3D reconstruction from 2D reference. Extensive experiments and user studies show that TabletopGen achieves state-of-the-art performance, markedly surpassing existing methods in visual fidelity, layout accuracy, and physical plausibility, capable of generating realistic tabletop scenes with rich stylistic and spatial diversity. Our code will be publicly available.

Authors:Zihua Liu, Hiroki Sakuma, Masatoshi Okutomi
Title: VSRD++: Autolabeling for 3D Object Detection via Instance-Aware Volumetric Silhouette Rendering
Abstract:
Monocular 3D object detection is a fundamental yet challenging task in 3D scene understanding. Existing approaches heavily depend on supervised learning with extensive 3D annotations, which are often acquired from LiDAR point clouds through labor-intensive labeling processes. To tackle this problem, we propose VSRD++, a novel weakly supervised framework for monocular 3D object detection that eliminates the reliance on 3D annotations and leverages neural-field-based volumetric rendering with weak 2D supervision. VSRD++ consists of a two-stage pipeline: multi-view 3D autolabeling and subsequent monocular 3D detector training. In the multi-view autolabeling stage, object surfaces are represented as signed distance fields (SDFs) and rendered as instance masks via the proposed instance-aware volumetric silhouette rendering. To optimize 3D bounding boxes, we decompose each instance's SDF into a cuboid SDF and a residual distance field (RDF) that captures deviations from the cuboid. To address the geometry inconsistency commonly observed in volume rendering methods applied to dynamic objects, we model the dynamic objects by including velocity into bounding box attributes as well as assigning confidence to each pseudo-label. Moreover, we also employ a 3D attribute initialization module to initialize the dynamic bounding box parameters. In the monocular 3D object detection phase, the optimized 3D bounding boxes serve as pseudo labels for training monocular 3D object detectors. Extensive experiments on the KITTI-360 dataset demonstrate that VSRD++ significantly outperforms existing weakly supervised approaches for monocular 3D object detection on both static and dynamic scenes. Code is available at https://github.com/Magicboomliu/VSRD_plus_plus

Authors:Haotian Liu, Haoyu Chen, Chenhui Pan, You Hu, Guoying Zhao, Xiaobai Li
Title: OmniFD: A Unified Model for Versatile Face Forgery Detection
Abstract:
Face forgery detection encompasses multiple critical tasks, including identifying forged images and videos and localizing manipulated regions and temporal segments. Current approaches typically employ task-specific models with independent architectures, leading to computational redundancy and ignoring potential correlations across related tasks. We introduce OmniFD, a unified framework that jointly addresses four core face forgery detection tasks within a single model, i.e., image and video classification, spatial localization, and temporal localization. Our architecture consists of three principal components: (1) a shared Swin Transformer encoder that extracts unified 4D spatiotemporal representations from both images and video inputs, (2) a cross-task interaction module with learnable queries that dynamically captures inter-task dependencies through attention-based reasoning, and (3) lightweight decoding heads that transform refined representations into corresponding predictions for all FFD tasks. Extensive experiments demonstrate OmniFD's advantage over task-specific models. Its unified design leverages multi-task learning to capture generalized representations across tasks, especially enabling fine-grained knowledge transfer that facilitates other tasks. For example, video classification accuracy improves by 4.63% when image data are incorporated. Furthermore, by unifying images, videos and the four tasks within one framework, OmniFD achieves superior performance across diverse benchmarks with high efficiency and scalability, e.g., reducing 63% model parameters and 50% training time. It establishes a practical and generalizable solution for comprehensive face forgery detection in real-world applications. The source code is made available at https://github.com/haotianll/OmniFD.

Authors:Anantha Padmanaban Krishna Kumar
Title: Parameter Reduction Improves Vision Transformers: A Comparative Study of Sharing and Width Reduction
Abstract:
Although scaling laws and many empirical results suggest that increasing the size of Vision Transformers often improves performance, model accuracy and training behavior are not always monotonically increasing with scale. Focusing on ViT-B/16 trained on ImageNet-1K, we study two simple parameter-reduction strategies applied to the MLP blocks, each removing 32.7\% of the baseline parameters. Our \emph{GroupedMLP} variant shares MLP weights between adjacent transformer blocks and achieves 81.47\% top-1 accuracy while maintaining the baseline computational cost. Our \emph{ShallowMLP} variant halves the MLP hidden dimension and reaches 81.25\% top-1 accuracy with a 38\% increase in inference throughput. Both models outperform the 86.6M-parameter baseline (81.05\%) and exhibit substantially improved training stability, reducing peak-to-final accuracy degradation from 0.47\% to the range 0.03\% to 0.06\%. These results suggest that, for ViT-B/16 on ImageNet-1K with a standard training recipe, the model operates in an overparameterized regime in which MLP capacity can be reduced without harming performance and can even slightly improve it. More broadly, our findings suggest that architectural constraints such as parameter sharing and reduced width may act as useful inductive biases, and highlight the importance of how parameters are allocated when designing Vision Transformers. All code is available at: https://github.com/AnanthaPadmanaban-KrishnaKumar/parameter-efficient-vit-mlps.

Authors:Maya Varma, Jean-Benoit Delbrouck, Sophie Ostmeier, Akshay Chaudhari, Curtis Langlotz
Title: TRoVe: Discovering Error-Inducing Static Feature Biases in Temporal Vision-Language Models
Abstract:
Vision-language models (VLMs) have made great strides in addressing temporal understanding tasks, which involve characterizing visual changes across a sequence of images. However, recent works have suggested that when making predictions, VLMs may rely on static feature biases, such as background or object features, rather than dynamic visual changes. Static feature biases are a type of shortcut and can contribute to systematic prediction errors on downstream tasks; as a result, identifying and characterizing error-inducing static feature biases is critical prior to real-world model deployment. In this work, we introduce TRoVe, an automated approach for discovering error-inducing static feature biases learned by temporal VLMs. Given a trained VLM and an annotated validation dataset associated with a downstream classification task, TRoVe extracts candidate static features from the dataset and scores each feature by (i) the effect of the feature on classification errors as well as (ii) the extent to which the VLM relies on the feature when making predictions. In order to quantitatively evaluate TRoVe, we introduce an evaluation framework consisting of 101 trained temporal VLMs paired with ground-truth annotations for learned static feature biases. We use this framework to demonstrate that TRoVe can accurately identify error-inducing static feature biases in VLMs, achieving a 28.6% improvement over the closest baseline. Finally, we apply TRoVe to 7 off-the-shelf VLMs and 2 temporal understanding tasks, surfacing previously-unknown static feature biases and demonstrating that knowledge of learned biases can aid in improving model performance at test time. Our code is available at https://github.com/Stanford-AIMI/TRoVe.

Authors:Zhongbin Guo, Jiahe Liu, Wenyu Gao, Yushan Li, Chengzhi Li, Ping Jian
Title: LISA-3D: Lifting Language-Image Segmentation to 3D via Multi-View Consistency
Abstract:
Text-driven 3D reconstruction demands a mask generator that simultaneously understands open-vocabulary instructions and remains consistent across viewpoints. We present LISA-3D, a two-stage framework that lifts language-image segmentation into 3D by retrofitting the instruction-following model LISA with geometry-aware Low-Rank Adaptation (LoRA) layers and reusing a frozen SAM-3D reconstructor. During training we exploit off-the-shelf RGB-D sequences and their camera poses to build a differentiable reprojection loss that enforces cross-view agreement without requiring any additional 3D-text supervision. The resulting masks are concatenated with RGB images to form RGBA prompts for SAM-3D, which outputs Gaussian splats or textured meshes without retraining. Across ScanRefer and Nr3D, LISA-3D improves language-to-3D accuracy by up to +15.6 points over single-view baselines while adapting only 11.6M parameters. The system is modular, data-efficient, and supports zero-shot deployment on unseen categories, providing a practical recipe for language-guided 3D content creation. Our code will be available at https://github.com/binisalegend/LISA-3D.

Authors:Zhiyuan You, Ke Wang, He Zhang, Xin Cai, Jinjin Gu, Tianfan Xue, Chao Dong, Zhoutong Zhang
Title: PhotoFramer: Multi-modal Image Composition Instruction
Abstract:
Composition matters during the photo-taking process, yet many casual users struggle to frame well-composed images. To provide composition guidance, we introduce PhotoFramer, a multi-modal composition instruction framework. Given a poorly composed image, PhotoFramer first describes how to improve the composition in natural language and then generates a well-composed example image. To train such a model, we curate a large-scale dataset. Inspired by how humans take photos, we organize composition guidance into a hierarchy of sub-tasks: shift, zoom-in, and view-change tasks. Shift and zoom-in data are sampled from existing cropping datasets, while view-change data are obtained via a two-stage pipeline. First, we sample pairs with varying viewpoints from multi-view datasets, and train a degradation model to transform well-composed photos into poorly composed ones. Second, we apply this degradation model to expert-taken photos to synthesize poor images to form training pairs. Using this dataset, we finetune a model that jointly processes and generates both text and images, enabling actionable textual guidance with illustrative examples. Extensive experiments demonstrate that textual instructions effectively steer image composition, and coupling them with exemplars yields consistent improvements over exemplar-only baselines. PhotoFramer offers a practical step toward composition assistants that make expert photographic priors accessible to everyday users. Codes, model weights, and datasets have been released in https://zhiyuanyou.github.io/photoframer.

Authors:Haotian Liang, Xinyi Chen, Bin Wang, Mingkang Chen, Yitian Liu, Yuhao Zhang, Zanxin Chen, Tianshuo Yang, Yilun Chen, Jiangmiao Pang, Dong Liu, Xiaokang Yang, Yao Mu, Wenqi Shao, Ping Luo
Title: MM-ACT: Learn from Multimodal Parallel Generation to Act
Abstract:
A generalist robotic policy needs both semantic understanding for task planning and the ability to interact with the environment through predictive capabilities. To tackle this, we present MM-ACT, a unified Vision-Language-Action (VLA) model that integrates text, image, and action in shared token space and performs generation across all three modalities. MM-ACT adopts a re-mask parallel decoding strategy for text and image generation, and employs a one-step parallel decoding strategy for action generation to improve efficiency. We introduce Context-Shared Multimodal Learning, a unified training paradigm that supervises generation in all three modalities from a shared context, enhancing action generation through cross-modal learning. Experiments were conducted on the LIBERO simulation and Franka real-robot setups as well as RoboTwin2.0 to assess in-domain and out-of-domain performances respectively. Our approach achieves a success rate of 96.3% on LIBERO, 72.0% across three tasks of real Franka, and 52.38% across eight bimanual tasks of RoboTwin2.0 with an additional gain of 9.25% from cross-modal learning. We release our codes, models and data at https://github.com/HHYHRHY/MM-ACT.

Authors:Boran Wen, Ye Lu, Keyan Wan, Sirui Wang, Jiahong Zhou, Junxuan Liang, Xinpeng Liu, Bang Xiao, Dingbang Huang, Ruiyang Liu, Yong-Lu Li
Title: Efficient and Scalable Monocular Human-Object Interaction Motion Reconstruction
Abstract:
Generalized robots must learn from diverse, large-scale human-object interactions (HOI) to operate robustly in the real world. Monocular internet videos offer a nearly limitless and readily available source of data, capturing an unparalleled diversity of human activities, objects, and environments. However, accurately and scalably extracting 4D interaction data from these in-the-wild videos remains a significant and unsolved challenge. Thus, in this work, we introduce 4DHOISolver, a novel and efficient optimization framework that constrains the ill-posed 4D HOI reconstruction problem by leveraging sparse, human-in-the-loop contact point annotations, while maintaining high spatio-temporal coherence and physical plausibility. Leveraging this framework, we introduce Open4DHOI, a new large-scale 4D HOI dataset featuring a diverse catalog of 144 object types and 103 actions. Furthermore, we demonstrate the effectiveness of our reconstructions by enabling an RL-based agent to imitate the recovered motions. However, a comprehensive benchmark of existing 3D foundation models indicates that automatically predicting precise human-object contact correspondences remains an unsolved problem, underscoring the immediate necessity of our human-in-the-loop strategy while posing an open challenge to the community. Data and code will be publicly available at https://wenboran2002.github.io/open4dhoi/

Authors:Haojian Huang, Kaijing Ma, Jin Chen, Haodong Chen, Zhou Wu, Xianghao Zang, Han Fang, Chao Ban, Hao Sun, Mulin Chen, Zhongjiang He
Title: Adaptive Evidential Learning for Temporal-Semantic Robustness in Moment Retrieval
Abstract:
In the domain of moment retrieval, accurately identifying temporal segments within videos based on natural language queries remains challenging. Traditional methods often employ pre-trained models that struggle with fine-grained information and deterministic reasoning, leading to difficulties in aligning with complex or ambiguous moments. To overcome these limitations, we explore Deep Evidential Regression (DER) to construct a vanilla Evidential baseline. However, this approach encounters two major issues: the inability to effectively handle modality imbalance and the structural differences in DER's heuristic uncertainty regularizer, which adversely affect uncertainty estimation. This misalignment results in high uncertainty being incorrectly associated with accurate samples rather than challenging ones. Our observations indicate that existing methods lack the adaptability required for complex video scenarios. In response, we propose Debiased Evidential Learning for Moment Retrieval (DEMR), a novel framework that incorporates a Reflective Flipped Fusion (RFF) block for cross-modal alignment and a query reconstruction task to enhance text sensitivity, thereby reducing bias in uncertainty estimation. Additionally, we introduce a Geom-regularizer to refine uncertainty predictions, enabling adaptive alignment with difficult moments and improving retrieval accuracy. Extensive testing on standard datasets and debiased datasets ActivityNet-CD and Charades-CD demonstrates significant enhancements in effectiveness, robustness, and interpretability, positioning our approach as a promising solution for temporal-semantic robustness in moment retrieval. The code is publicly available at https://github.com/KaijingOfficial/DEMR.

Authors:Keita Otani, Tatsuya Harada
Title: SceneProp: Combining Neural Network and Markov Random Field for Scene-Graph Grounding
Abstract:
Grounding complex, compositional visual queries with multiple objects and relationships is a fundamental challenge for vision-language models. While standard phrase grounding methods excel at localizing single objects, they lack the structural inductive bias to parse intricate relational descriptions, often failing as queries become more descriptive. To address this structural deficit, we focus on scene-graph grounding, a powerful but less-explored formulation where the query is an explicit graph of objects and their relationships. However, existing methods for this task also struggle, paradoxically showing decreased performance as the query graph grows -- failing to leverage the very information that should make grounding easier. We introduce SceneProp, a novel method that resolves this issue by reformulating scene-graph grounding as a Maximum a Posteriori (MAP) inference problem in a Markov Random Field (MRF). By performing global inference over the entire query graph, SceneProp finds the optimal assignment of image regions to nodes that jointly satisfies all constraints. This is achieved within an end-to-end framework via a differentiable implementation of the Belief Propagation algorithm. Experiments on four benchmarks show that our dedicated focus on the scene-graph grounding formulation allows SceneProp to significantly outperform prior work. Critically, its accuracy consistently improves with the size and complexity of the query graph, demonstrating for the first time that more relational context can, and should, lead to better grounding. Codes are available at https://github.com/keitaotani/SceneProp.

Authors:Yuhao Shan, Qianyi Yuan, Jingguo Liu, Shigang Li, Jianfeng Li, Tong Chen
Title: Dual-Projection Fusion for Accurate Upright Panorama Generation in Robotic Vision
Abstract:
Panoramic cameras, capable of capturing a 360-degree field of view, are crucial in robotic vision, particularly in environments with sparse features. However, non-upright panoramas due to unstable robot postures hinder downstream tasks. Traditional IMU-based correction methods suffer from drift and external disturbances, while vision-based approaches offer a promising alternative. This study presents a dual-stream angle-aware generation network that jointly estimates camera inclination angles and reconstructs upright panoramic images. The network comprises a CNN branch that extracts local geometric structures from equirectangular projections and a ViT branch that captures global contextual cues from cubemap projections. These are integrated through a dual-projection adaptive fusion module that aligns spatial features across both domains. To further enhance performance, we introduce a high-frequency enhancement block, circular padding, and channel attention mechanisms to preserve 360° continuity and improve geometric sensitivity. Experiments on the SUN360 and M3D datasets demonstrate that our method outperforms existing approaches in both inclination estimation and upright panorama generation. Ablation studies further validate the contribution of each module and highlight the synergy between the two tasks. The code and related datasets can be found at: https://github.com/YuhaoShine/DualProjectionFusion.

Authors:Alireza Javanmardi, Pragati Jaiswal, Tewodros Amberbir Habtegebrial, Christen Millerdurai, Shaoxiang Wang, Alain Pagani, Didier Stricker
Title: TalkingPose: Efficient Face and Gesture Animation with Feedback-guided Diffusion Model
Abstract:
Recent advancements in diffusion models have significantly improved the realism and generalizability of character-driven animation, enabling the synthesis of high-quality motion from just a single RGB image and a set of driving poses. Nevertheless, generating temporally coherent long-form content remains challenging. Existing approaches are constrained by computational and memory limitations, as they are typically trained on short video segments, thus performing effectively only over limited frame lengths and hindering their potential for extended coherent generation. To address these constraints, we propose TalkingPose, a novel diffusion-based framework specifically designed for producing long-form, temporally consistent human upper-body animations. TalkingPose leverages driving frames to precisely capture expressive facial and hand movements, transferring these seamlessly to a target actor through a stable diffusion backbone. To ensure continuous motion and enhance temporal coherence, we introduce a feedback-driven mechanism built upon image-based diffusion models. Notably, this mechanism does not incur additional computational costs or require secondary training stages, enabling the generation of animations with unlimited duration. Additionally, we introduce a comprehensive, large-scale dataset to serve as a new benchmark for human upper-body animation.

Authors:Yiyu Wang, Xuyang Liu, Xiyan Gui, Xinying Lin, Boxue Yang, Chenfei Liao, Tailai Chen, Linfeng Zhang
Title: Accelerating Streaming Video Large Language Models via Hierarchical Token Compression
Abstract:
Streaming Video Large Language Models (VideoLLMs) have demonstrated impressive performance across various video understanding tasks, but they face significant challenges in real-time deployment due to the high computational cost of processing dense visual tokens from continuous video streams. In streaming video scenarios, the primary bottleneck lies in the Vision Transformer (ViT) encoding stage, where redundant processing of temporally similar frames leads to inefficiency. Additionally, inflated token sequences during LLM pre-filling further exacerbate latency and memory overhead. To address these challenges, we propose \textbf{S}treaming \textbf{T}oken \textbf{C}ompression (\textbf{STC}), a plug-and-play hierarchical framework that seamlessly integrates into existing streaming VideoLLMs, optimizing both ViT encoding and LLM pre-filling stages to accelerate processing. STC introduces two token-level accelerators: \textbf{STC-Cacher}, which reduces ViT encoding overhead by caching and reusing features from temporally similar frames, and \textbf{STC-Pruner}, which compresses the visual token sequence before it enters the LLM, preserving only the most salient tokens based on both spatial and temporal relevance. Extensive experiments on four baseline streaming VideoLLMs across five benchmarks demonstrate that STC outperforms other compression methods. Notably, STC retains up to \textbf{99\%} of accuracy on the ReKV framework while reducing ViT encoding latency and LLM pre-filling latency by \textbf{24.5\%} and \textbf{45.3\%}.

Authors:Masatoshi Tateno, Gido Kato, Hirokatsu Kataoka, Yoichi Sato, Takuma Yagi
Title: HanDyVQA: A Video QA Benchmark for Fine-Grained Hand-Object Interaction Dynamics
Abstract:
Hand-object interaction (HOI) inherently involves dynamics where human manipulations produce distinct spatio-temporal effects on objects. However, existing semantic HOI benchmarks focused either on manipulation or on the resulting effects at a coarse level, lacking fine-grained spatio-temporal reasoning to capture the underlying dynamics in HOI. We introduce HanDyVQA, a fine-grained video question-answering benchmark that comprehensively covers both the manipulation and effect aspects of HOI. HanDyVQA comprises six complementary question types (Action, Process, Objects, Location, State Change, and Object Parts), totalling 11.1K multiple-choice QA pairs. Collected QA pairs recognizing manipulation styles, hand/object motions, and part-level state changes. HanDyVQA also includes 10.3K segmentation masks for Objects and Object Parts questions, enabling the evaluation of object/part-level reasoning in video object segmentation. We evaluated recent video foundation models on our benchmark and found that even the best-performing model, Gemini-2.5-Pro, reached only 73% average accuracy, which is far from human performance (97%). Further analysis shows the remaining challenges in spatial relationship, motion, and part-level geometric understanding. We also found that integrating explicit HOI-related cues into visual features improves performance, offering insights for developing future models with a deeper understanding of HOI dynamics.

Authors:Cheng Zhang, Hanwen Liang, Donny Y. Chen, Qianyi Wu, Konstantinos N. Plataniotis, Camilo Cruz Gambardella, Jianfei Cai
Title: PanFlow: Decoupled Motion Control for Panoramic Video Generation
Abstract:
Panoramic video generation has attracted growing attention due to its applications in virtual reality and immersive media. However, existing methods lack explicit motion control and struggle to generate scenes with large and complex motions. We propose PanFlow, a novel approach that exploits the spherical nature of panoramas to decouple the highly dynamic camera rotation from the input optical flow condition, enabling more precise control over large and dynamic motions. We further introduce a spherical noise warping strategy to promote loop consistency in motion across panorama boundaries. To support effective training, we curate a large-scale, motion-rich panoramic video dataset with frame-level pose and flow annotations. We also showcase the effectiveness of our method in various applications, including motion transfer and video editing. Extensive experiments demonstrate that PanFlow significantly outperforms prior methods in motion fidelity, visual quality, and temporal coherence. Our code, dataset, and models are available at https://github.com/chengzhag/PanFlow.

Authors:Haoxuan Xu. Yi Liu, Boyuan Jiang, Jinlong Peng, Donghao Luo, Xiaobin Hu, Shuicheng Yan, Haoang Li
Title: IRPO: Boosting Image Restoration via Post-training GRPO
Abstract:
Recent advances in post-training paradigms have achieved remarkable success in high-level generation tasks, yet their potential for low-level vision remains rarely explored. Existing image restoration (IR) methods rely on pixel-level hard-fitting to ground-truth images, struggling with over-smoothing and poor generalization. To address these limitations, we propose IRPO, a low-level GRPO-based post-training paradigm that systematically explores both data formulation and reward modeling. We first explore a data formulation principle for low-level post-training paradigm, in which selecting underperforming samples from the pre-training stage yields optimal performance and improved efficiency. Furthermore, we model a reward-level criteria system that balances objective accuracy and human perceptual preference through three complementary components: a General Reward for structural fidelity, an Expert Reward leveraging Qwen-VL for perceptual alignment, and a Restoration Reward for task-specific low-level quality. Comprehensive experiments on six in-domain and five out-of-domain (OOD) low-level benchmarks demonstrate that IRPO achieves state-of-the-art results across diverse degradation types, surpassing the AdaIR baseline by 0.83 dB on in-domain tasks and 3.43 dB on OOD settings. Our code can be shown in https://github.com/HaoxuanXU1024/IRPO.

Authors:Zhiyuan Gao, Jiageng Mao, Hong-Xing Yu, Haozhe Lou, Emily Yue-Ting Jia, Jernej Barbic, Jiajun Wu, Yue Wang
Title: Seeing the Wind from a Falling Leaf
Abstract:
A longstanding goal in computer vision is to model motions from videos, while the representations behind motions, i.e. the invisible physical interactions that cause objects to deform and move, remain largely unexplored. In this paper, we study how to recover the invisible forces from visual observations, e.g., estimating the wind field by observing a leaf falling to the ground. Our key innovation is an end-to-end differentiable inverse graphics framework, which jointly models object geometry, physical properties, and interactions directly from videos. Through backpropagation, our approach enables the recovery of force representations from object motions. We validate our method on both synthetic and real-world scenarios, and the results demonstrate its ability to infer plausible force fields from videos. Furthermore, we show the potential applications of our approach, including physics-based video generation and editing. We hope our approach sheds light on understanding and modeling the physical process behind pixels, bridging the gap between vision and physics. Please check more video results in our \href{https://chaoren2357.github.io/seeingthewind/}{project page}.

Authors:Shawn Li, Ryan Rossi, Sungchul Kim, Sunav Choudhary, Franck Dernoncourt, Puneet Mathur, Zhengzhong Tu, Yue Zhao
Title: Charts Are Not Images: On the Challenges of Scientific Chart Editing
Abstract:
Generative models, such as diffusion and autoregressive approaches, have demonstrated impressive capabilities in editing natural images. However, applying these tools to scientific charts rests on a flawed assumption: a chart is not merely an arrangement of pixels but a visual representation of structured data governed by a graphical grammar. Consequently, chart editing is not a pixel-manipulation task but a structured transformation problem. To address this fundamental mismatch, we introduce \textit{FigEdit}, a large-scale benchmark for scientific figure editing comprising over 30,000 samples. Grounded in real-world data, our benchmark is distinguished by its diversity, covering 10 distinct chart types and a rich vocabulary of complex editing instructions. The benchmark is organized into five distinct and progressively challenging tasks: single edits, multi edits, conversational edits, visual-guidance-based edits, and style transfer. Our evaluation of a range of state-of-the-art models on this benchmark reveals their poor performance on scientific figures, as they consistently fail to handle the underlying structured transformations required for valid edits. Furthermore, our analysis indicates that traditional evaluation metrics (e.g., SSIM, PSNR) have limitations in capturing the semantic correctness of chart edits. Our benchmark demonstrates the profound limitations of pixel-level manipulation and provides a robust foundation for developing and evaluating future structure-aware models. By releasing \textit{FigEdit} (https://github.com/adobe-research/figure-editing), we aim to enable systematic progress in structure-aware figure editing, provide a common ground for fair comparison, and encourage future research on models that understand both the visual and semantic layers of scientific charts.

Authors:Ke Liu, Shangde Gao, Yichao Fu, Shangqi Gao, Chunhua Shen
Title: Probabilistic Modeling of Multi-rater Medical Image Segmentation for Diversity and Personalization
Abstract:
Medical image segmentation is inherently influenced by data uncertainty, arising from ambiguous boundaries in medical scans and inter-observer variability in diagnosis. To address this challenge, previous works formulated the multi-rater medical image segmentation task, where multiple experts provide separate annotations for each image. However, existing models are typically constrained to either generate diverse segmentation that lacks expert specificity or to produce personalized outputs that merely replicate individual annotators. We propose Probabilistic modeling of multi-rater medical image Segmentation (ProSeg) that simultaneously enables both diversification and personalization. Specifically, we introduce two latent variables to model expert annotation preferences and image boundary ambiguity. Their conditional probabilistic distributions are then obtained through variational inference, allowing segmentation outputs to be generated by sampling from these distributions. Extensive experiments on both the nasopharyngeal carcinoma dataset (NPC) and the lung nodule dataset (LIDC-IDRI) demonstrate that our ProSeg achieves a new state-of-the-art performance, providing segmentation results that are both diverse and expert-personalized. Code can be found in https://github.com/AI4MOL/ProSeg.

Authors:Qiang Lyu, Zicong Chen, Chongxiao Wang, Haolin Shi, Shibo Gao, Ran Piao, Youwei Zeng, Jianlou Si, Fei Ding, Jing Li, Chun Pong Lau, Weiqiang Wang
Title: Multi-GRPO: Multi-Group Advantage Estimation for Text-to-Image Generation with Tree-Based Trajectories and Multiple Rewards
Abstract:
Recently, Group Relative Policy Optimization (GRPO) has shown promising potential for aligning text-to-image (T2I) models, yet existing GRPO-based methods suffer from two critical limitations. (1) \textit{Shared credit assignment}: trajectory-level advantages derived from group-normalized sparse terminal rewards are uniformly applied across timesteps, failing to accurately estimate the potential of early denoising steps with vast exploration spaces. (2) \textit{Reward-mixing}: predefined weights for combining multi-objective rewards (e.g., text accuracy, visual quality, text color)--which have mismatched scales and variances--lead to unstable gradients and conflicting updates. To address these issues, we propose \textbf{Multi-GRPO}, a multi-group advantage estimation framework with two orthogonal grouping mechanisms. For better credit assignment, we introduce tree-based trajectories inspired by Monte Carlo Tree Search: branching trajectories at selected early denoising steps naturally forms \emph{temporal groups}, enabling accurate advantage estimation for early steps via descendant leaves while amortizing computation through shared prefixes. For multi-objective optimization, we introduce \emph{reward-based grouping} to compute advantages for each reward function \textit{independently} before aggregation, disentangling conflicting signals. To facilitate evaluation of multiple objective alignment, we curate \textit{OCR-Color-10}, a visual text rendering dataset with explicit color constraints. Across the single-reward \textit{PickScore-25k} and multi-objective \textit{OCR-Color-10} benchmarks, Multi-GRPO achieves superior stability and alignment performance, effectively balancing conflicting objectives. Code will be publicly available at \href{https://github.com/fikry102/Multi-GRPO}{https://github.com/fikry102/Multi-GRPO}.

Authors:Ka Chung Lai, Ahmet Cetinkaya
Title: CAR-Net: A Cascade Refinement Network for Rotational Motion Deblurring under Angle Information Uncertainty
Abstract:
We propose a new neural network architecture called CAR-net (CAscade Refinement Network) to deblur images that are subject to rotational motion blur. Our architecture is specifically designed for the semi-blind scenarios where only noisy information of the rotational motion blur angle is available. The core of our approach is progressive refinement process that starts with an initial deblurred estimate obtained from frequency-domain inversion; A series of refinement stages take the current deblurred image to predict and apply residual correction to the current estimate, progressively suppressing artifacts and restoring fine details. To handle parameter uncertainty, our architecture accommodates an optional angle detection module which can be trained end-to-end with refinement modules. We provide a detailed description of our architecture and illustrate its efficiency through experiments using both synthetic and real-life images. Our code and model as well as the links to the datasets are available at https://github.com/tony123105/CAR-Net

Authors:Dingqiang Ye, Chao Fan, Kartik Narayan, Bingzhe Wu, Chengwen Luo, Jianqiang Li, Vishal M. Patel
Title: Silhouette-based Gait Foundation Model
Abstract:
Gait patterns play a critical role in human identification and healthcare analytics, yet current progress remains constrained by small, narrowly designed models that fail to scale or generalize. Building a unified gait foundation model requires addressing two longstanding barriers: (a) Scalability. Why have gait models historically failed to follow scaling laws? (b) Generalization. Can one model serve the diverse gait tasks that have traditionally been studied in isolation? We introduce FoundationGait, the first scalable, self-supervised pretraining framework for gait understanding. Its largest version has nearly 0.13 billion parameters and is pretrained on 12 public gait datasets comprising over 2 million walking sequences. Extensive experiments demonstrate that FoundationGait, with or without fine-tuning, performs robustly across a wide spectrum of gait datasets, conditions, tasks (e.g., human identification, scoliosis screening, depression prediction, and attribute estimation), and even input modality. Notably, it achieves 48.0% zero-shot rank-1 accuracy on the challenging in-the-wild Gait3D dataset (1,000 test subjects) and 64.5% on the largest in-the-lab OU-MVLP dataset (5,000+ test subjects), setting a new milestone in robust gait recognition. Coming code and model: https://github.com/ShiqiYu/OpenGait.

Authors:Dong In Lee, Hyungjun Doh, Seunggeun Chi, Runlin Duan, Sangpil Kim, Karthik Ramani
Title: Dynamic-eDiTor: Training-Free Text-Driven 4D Scene Editing with Multimodal Diffusion Transformer
Abstract:
Recent progress in 4D representations, such as Dynamic NeRF and 4D Gaussian Splatting (4DGS), has enabled dynamic 4D scene reconstruction. However, text-driven 4D scene editing remains under-explored due to the challenge of ensuring both multi-view and temporal consistency across space and time during editing. Existing studies rely on 2D diffusion models that edit frames independently, often causing motion distortion, geometric drift, and incomplete editing. We introduce Dynamic-eDiTor, a training-free text-driven 4D editing framework leveraging Multimodal Diffusion Transformer (MM-DiT) and 4DGS. This mechanism consists of Spatio-Temporal Sub-Grid Attention (STGA) for locally consistent cross-view and temporal fusion, and Context Token Propagation (CTP) for global propagation via token inheritance and optical-flow-guided token replacement. Together, these components allow Dynamic-eDiTor to perform seamless, globally consistent multi-view video without additional training and directly optimize pre-trained source 4DGS. Extensive experiments on multi-view video dataset DyNeRF demonstrate that our method achieves superior editing fidelity and both multi-view and temporal consistency prior approaches. Project page for results and code: https://di-lee.github.io/dynamic-eDiTor/

Authors:Ye Pang
Title: Image Generation as a Visual Planner for Robotic Manipulation
Abstract:
Generating realistic robotic manipulation videos is an important step toward unifying perception, planning, and action in embodied agents. While existing video diffusion models require large domain-specific datasets and struggle to generalize, recent image generation models trained on language-image corpora exhibit strong compositionality, including the ability to synthesize temporally coherent grid images. This suggests a latent capacity for video-like generation even without explicit temporal modeling. We explore whether such models can serve as visual planners for robots when lightly adapted using LoRA finetuning. We propose a two-part framework that includes: (1) text-conditioned generation, which uses a language instruction and the first frame, and (2) trajectory-conditioned generation, which uses a 2D trajectory overlay and the same initial frame. Experiments on the Jaco Play dataset, Bridge V2, and the RT1 dataset show that both modes produce smooth, coherent robot videos aligned with their respective conditions. Our findings indicate that pretrained image generators encode transferable temporal priors and can function as video-like robotic planners under minimal supervision. Code is released at \href{https://github.com/pangye202264690373/Image-Generation-as-a-Visual-Planner-for-Robotic-Manipulation}{https://github.com/pangye202264690373/Image-Generation-as-a-Visual-Planner-for-Robotic-Manipulation}.

Authors:Junyan Ye, Leiqi Zhu, Yuncheng Guo, Dongzhi Jiang, Zilong Huang, Yifan Zhang, Zhiyuan Yan, Haohuan Fu, Conghui He, Weijia Li
Title: RealGen: Photorealistic Text-to-Image Generation via Detector-Guided Rewards
Abstract:
With the continuous advancement of image generation technology, advanced models such as GPT-Image-1 and Qwen-Image have achieved remarkable text-to-image consistency and world knowledge However, these models still fall short in photorealistic image generation. Even on simple T2I tasks, they tend to produce " fake" images with distinct AI artifacts, often characterized by "overly smooth skin" and "oily facial sheens". To recapture the original goal of "indistinguishable-from-reality" generation, we propose RealGen, a photorealistic text-to-image framework. RealGen integrates an LLM component for prompt optimization and a diffusion model for realistic image generation. Inspired by adversarial generation, RealGen introduces a "Detector Reward" mechanism, which quantifies artifacts and assesses realism using both semantic-level and feature-level synthetic image detectors. We leverage this reward signal with the GRPO algorithm to optimize the entire generation pipeline, significantly enhancing image realism and detail. Furthermore, we propose RealBench, an automated evaluation benchmark employing Detector-Scoring and Arena-Scoring. It enables human-free photorealism assessment, yielding results that are more accurate and aligned with real user experience. Experiments demonstrate that RealGen significantly outperforms general models like GPT-Image-1 and Qwen-Image, as well as specialized photorealistic models like FLUX-Krea, in terms of realism, detail, and aesthetics. The code is available at https://github.com/yejy53/RealGen.

Authors:Hang Xu, Linjiang Huang, Feng Zhao
Title: FR-TTS: Test-Time Scaling for NTP-based Image Generation with Effective Filling-based Reward Signal
Abstract:
Test-time scaling (TTS) has become a prevalent technique in image generation, significantly boosting output quality by expanding the number of parallel samples and filtering them using pre-trained reward models. However, applying this powerful methodology to the next-token prediction (NTP) paradigm remains challenging. The primary obstacle is the low correlation between the reward of an image decoded from an intermediate token sequence and the reward of the fully generated image. Consequently, these incomplete intermediate representations prove to be poor indicators for guiding the pruning direction, a limitation that stems from their inherent incompleteness in scale or semantic content. To effectively address this critical issue, we introduce the Filling-Based Reward (FR). This novel design estimates the approximate future trajectory of an intermediate sample by finding and applying a reasonable filling scheme to complete the sequence. Both the correlation coefficient between rewards of intermediate samples and final samples, as well as multiple intrinsic signals like token confidence, indicate that the FR provides an excellent and reliable metric for accurately evaluating the quality of intermediate samples. Building upon this foundation, we propose FR-TTS, a sophisticated scaling strategy. FR-TTS efficiently searches for good filling schemes and incorporates a diversity reward with a dynamic weighting schedule to achieve a balanced and comprehensive evaluation of intermediate samples. We experimentally validate the superiority of FR-TTS over multiple established benchmarks and various reward models. Code is available at \href{https://github.com/xuhang07/FR-TTS}{https://github.com/xuhang07/FR-TTS}.

Authors:Minh-Quan Le, Yuanzhi Zhu, Vicky Kalogeiton, Dimitris Samaras
Title: What about gravity in video generation? Post-Training Newton's Laws with Verifiable Rewards
Abstract:
Recent video diffusion models can synthesize visually compelling clips, yet often violate basic physical laws-objects float, accelerations drift, and collisions behave inconsistently-revealing a persistent gap between visual realism and physical realism. We propose $\texttt{NewtonRewards}$, the first physics-grounded post-training framework for video generation based on $\textit{verifiable rewards}$. Instead of relying on human or VLM feedback, $\texttt{NewtonRewards}$ extracts $\textit{measurable proxies}$ from generated videos using frozen utility models: optical flow serves as a proxy for velocity, while high-level appearance features serve as a proxy for mass. These proxies enable explicit enforcement of Newtonian structure through two complementary rewards: a Newtonian kinematic constraint enforcing constant-acceleration dynamics, and a mass conservation reward preventing trivial, degenerate solutions. We evaluate $\texttt{NewtonRewards}$ on five Newtonian Motion Primitives (free fall, horizontal/parabolic throw, and ramp sliding down/up) using our newly constructed large-scale benchmark, $\texttt{NewtonBench-60K}$. Across all primitives in visual and physics metrics, $\texttt{NewtonRewards}$ consistently improves physical plausibility, motion smoothness, and temporal coherence over prior post-training methods. It further maintains strong performance under out-of-distribution shifts in height, speed, and friction. Our results show that physics-grounded verifiable rewards offer a scalable path toward physics-aware video generation.

Authors:Kaihang Pan, Weile Chen, Haiyi Qiu, Qifan Yu, Wendong Bu, Zehan Wang, Yun Zhu, Juncheng Li, Siliang Tang
Title: WiseEdit: Benchmarking Cognition- and Creativity-Informed Image Editing
Abstract:
Recent image editing models boast next-level intelligent capabilities, facilitating cognition- and creativity-informed image editing. Yet, existing benchmarks provide too narrow a scope for evaluation, failing to holistically assess these advanced abilities. To address this, we introduce WiseEdit, a knowledge-intensive benchmark for comprehensive evaluation of cognition- and creativity-informed image editing, featuring deep task depth and broad knowledge breadth. Drawing an analogy to human cognitive creation, WiseEdit decomposes image editing into three cascaded steps, i.e., Awareness, Interpretation, and Imagination, each corresponding to a task that poses a challenge for models to complete at the specific step. It also encompasses complex tasks, where none of the three steps can be finished easily. Furthermore, WiseEdit incorporates three fundamental types of knowledge: Declarative, Procedural, and Metacognitive knowledge. Ultimately, WiseEdit comprises 1,220 test cases, objectively revealing the limitations of SoTA image editing models in knowledge-based cognitive reasoning and creative composition capabilities. The benchmark, evaluation code, and the generated images of each model will be made publicly available soon. Project Page: https://qnancy.github.io/wiseedit_project_page/.

Authors:Zhongqi Wang, Jie Zhang, Shiguang Shan, Xilin Chen
Title: Assimilation Matters: Model-level Backdoor Detection in Vision-Language Pretrained Models
Abstract:
Vision-language pretrained models (VLPs) such as CLIP have achieved remarkable success, but are also highly vulnerable to backdoor attacks. Given a model fine-tuned by an untrusted third party, determining whether the model has been injected with a backdoor is a critical and challenging problem. Existing detection methods usually rely on prior knowledge of training dataset, backdoor triggers and targets, or downstream classifiers, which may be impractical for real-world applications. To address this, To address this challenge, we introduce Assimilation Matters in DETection (AMDET), a novel model-level detection framework that operates without any such prior knowledge. Specifically, we first reveal the feature assimilation property in backdoored text encoders: the representations of all tokens within a backdoor sample exhibit a high similarity. Further analysis attributes this effect to the concentration of attention weights on the trigger token. Leveraging this insight, AMDET scans a model by performing gradient-based inversion on token embeddings to recover implicit features that capable of activating backdoor behaviors. Furthermore, we identify the natural backdoor feature in the OpenAI's official CLIP model, which are not intentionally injected but still exhibit backdoor-like behaviors. We then filter them out from real injected backdoor by analyzing their loss landscapes. Extensive experiments on 3,600 backdoored and benign-finetuned models with two attack paradigms and three VLP model structures show that AMDET detects backdoors with an F1 score of 89.90%. Besides, it achieves one complete detection in approximately 5 minutes on a RTX 4090 GPU and exhibits strong robustness against adaptive attacks. Code is available at: https://github.com/Robin-WZQ/AMDET

Authors:Mengxue Hu, Yunfeng Diao, Changtao Miao, Jianshu Li, Zhe Li, Joey Tianyi Zhou
Title: MVAD : A Comprehensive Multimodal Video-Audio Dataset for AIGC Detection
Abstract:
The rapid advancement of AI-generated multimodal video-audio content has raised significant concerns regarding information security and content authenticity. Existing synthetic video datasets predominantly focus on the visual modality alone, while the few incorporating audio are largely confined to facial deepfakes--a limitation that fails to address the expanding landscape of general multimodal AI-generated content and substantially impedes the development of trustworthy detection systems. To bridge this critical gap, we introduce the Multimodal Video-Audio Dataset (MVAD), the first comprehensive dataset specifically designed for detecting AI-generated multimodal video-audio content. Our dataset exhibits three key characteristics: (1) genuine multimodality with samples generated according to three realistic video-audio forgery patterns; (2) high perceptual quality achieved through diverse state-of-the-art generative models; and (3) comprehensive diversity spanning realistic and anime visual styles, four content categories (humans, animals, objects, and scenes), and four video-audio multimodal data types. Our dataset will be available at https://github.com/HuMengXue0104/MVAD.

Authors:Qinyi Cao, Jianan Fan, Weidong Cai
Title: ART-ASyn: Anatomy-aware Realistic Texture-based Anomaly Synthesis Framework for Chest X-Rays
Abstract:
Unsupervised anomaly detection aims to identify anomalies without pixel-level annotations. Synthetic anomaly-based methods exhibit a unique capacity to introduce controllable irregularities with known masks, enabling explicit supervision during training. However, existing methods often produce synthetic anomalies that are visually distinct from real pathological patterns and ignore anatomical structure. This paper presents a novel Anatomy-aware Realistic Texture-based Anomaly Synthesis framework (ART-ASyn) for chest X-rays that generates realistic and anatomically consistent lung opacity related anomalies using texture-based augmentation guided by our proposed Progressive Binary Thresholding Segmentation method (PBTSeg) for lung segmentation. The generated paired samples of synthetic anomalies and their corresponding precise pixel-level anomaly mask for each normal sample enable explicit segmentation supervision. In contrast to prior work limited to one-class classification, ART-ASyn is further evaluated for zero-shot anomaly segmentation, demonstrating generalizability on an unseen dataset without target-domain annotations. Code availability is available at https://github.com/angelacao-hub/ART-ASyn.

Authors:Jun Wang, Peirong Liu
Title: USB: Unified Synthetic Brain Framework for Bidirectional Pathology-Healthy Generation and Editing
Abstract:
Understanding the relationship between pathological and healthy brain structures is fundamental to neuroimaging, connecting disease diagnosis and detection with modeling, prediction, and treatment planning. However, paired pathological-healthy data are extremely difficult to obtain, as they rely on pre- and post-treatment imaging, constrained by clinical outcomes and longitudinal data availability. Consequently, most existing brain image generation and editing methods focus on visual quality yet remain domain-specific, treating pathological and healthy image modeling independently. We introduce USB (Unified Synthetic Brain), the first end-to-end framework that unifies bidirectional generation and editing of pathological and healthy brain images. USB models the joint distribution of lesions and brain anatomy through a paired diffusion mechanism and achieves both pathological and healthy image generation. A consistency guidance algorithm further preserves anatomical consistency and lesion correspondence during bidirectional pathology-healthy editing. Extensive experiments on six public brain MRI datasets including healthy controls, stroke, and Alzheimer's patients, demonstrate USB's ability to produce diverse and realistic results. By establishing the first unified benchmark for brain image generation and editing, USB opens opportunities for scalable dataset creation and robust neuroimaging analysis. Code is available at https://github.com/jhuldr/USB.

Authors:Zhengda Ma, Abhirup Banerjee
Title: HeartFormer: Semantic-Aware Dual-Structure Transformers for 3D Four-Chamber Cardiac Point Cloud Reconstruction
Abstract:
We present the first geometric deep learning framework based on point cloud representation for 3D four-chamber cardiac reconstruction from cine MRI data. This work addresses a long-standing limitation in conventional cine MRI, which typically provides only 2D slice images of the heart, thereby restricting a comprehensive understanding of cardiac morphology and physiological mechanisms in both healthy and pathological conditions. To overcome this, we propose \textbf{HeartFormer}, a novel point cloud completion network that extends traditional single-class point cloud completion to the multi-class. HeartFormer consists of two key components: a Semantic-Aware Dual-Structure Transformer Network (SA-DSTNet) and a Semantic-Aware Geometry Feature Refinement Transformer Network (SA-GFRTNet). SA-DSTNet generates an initial coarse point cloud with both global geometry features and substructure geometry features. Guided by these semantic-geometry representations, SA-GFRTNet progressively refines the coarse output, effectively leveraging both global and substructure geometric priors to produce high-fidelity and geometrically consistent reconstructions. We further construct \textbf{HeartCompv1}, the first publicly available large-scale dataset with 17,000 high-resolution 3D multi-class cardiac meshes and point-clouds, to establish a general benchmark for this emerging research direction. Extensive cross-domain experiments on HeartCompv1 and UK Biobank demonstrate that HeartFormer achieves robust, accurate, and generalizable performance, consistently surpassing state-of-the-art (SOTA) methods. Code and dataset will be released upon acceptance at: https://github.com/10Darren/HeartFormer.

Authors:Fadi Dornaika, Danyang Sun
Title: Local and Global Context-and-Object-part-Aware Superpixel-based Data Augmentation for Deep Visual Recognition
Abstract:
Cutmix-based data augmentation, which uses a cut-and-paste strategy, has shown remarkable generalization capabilities in deep learning. However, existing methods primarily consider global semantics with image-level constraints, which excessively reduces attention to the discriminative local context of the class and leads to a performance improvement bottleneck. Moreover, existing methods for generating augmented samples usually involve cutting and pasting rectangular or square regions, resulting in a loss of object part information. To mitigate the problem of inconsistency between the augmented image and the generated mixed label, existing methods usually require double forward propagation or rely on an external pre-trained network for object centering, which is inefficient. To overcome the above limitations, we propose LGCOAMix, an efficient context-aware and object-part-aware superpixel-based grid blending method for data augmentation. To the best of our knowledge, this is the first time that a label mixing strategy using a superpixel attention approach has been proposed for cutmix-based data augmentation. It is the first instance of learning local features from discriminative superpixel-wise regions and cross-image superpixel contrasts. Extensive experiments on various benchmark datasets show that LGCOAMix outperforms state-of-the-art cutmix-based data augmentation methods on classification tasks, {and weakly supervised object location on CUB200-2011.} We have demonstrated the effectiveness of LGCOAMix not only for CNN networks, but also for Transformer networks. Source codes are available at https://github.com/DanielaPlusPlus/LGCOAMix.

Authors:Davide Nadalini, Manuele Rusci, Elia Cereda, Luca Benini, Francesco Conti, Daniele Palossi
Title: Multi-modal On-Device Learning for Monocular Depth Estimation on Ultra-low-power MCUs
Abstract:
Monocular depth estimation (MDE) plays a crucial role in enabling spatially-aware applications in Ultra-low-power (ULP) Internet-of-Things (IoT) platforms. However, the limited number of parameters of Deep Neural Networks for the MDE task, designed for IoT nodes, results in severe accuracy drops when the sensor data observed in the field shifts significantly from the training dataset. To address this domain shift problem, we present a multi-modal On-Device Learning (ODL) technique, deployed on an IoT device integrating a Greenwaves GAP9 MicroController Unit (MCU), a 80 mW monocular camera and a 8 x 8 pixel depth sensor, consuming $\approx$300mW. In its normal operation, this setup feeds a tiny 107 k-parameter $μ$PyD-Net model with monocular images for inference. The depth sensor, usually deactivated to minimize energy consumption, is only activated alongside the camera to collect pseudo-labels when the system is placed in a new environment. Then, the fine-tuning task is performed entirely on the MCU, using the new data. To optimize our backpropagation-based on-device training, we introduce a novel memory-driven sparse update scheme, which minimizes the fine-tuning memory to 1.2 MB, 2.2x less than a full update, while preserving accuracy (i.e., only 2% and 1.5% drops on the KITTI and NYUv2 datasets). Our in-field tests demonstrate, for the first time, that ODL for MDE can be performed in 17.8 minutes on the IoT node, reducing the root mean squared error from 4.9 to 0.6m with only 3 k self-labeled samples, collected in a real-life deployment scenario.

Authors:Qiwei Liang, Boyang Cai, Minghao Lai, Sitong Zhuang, Tao Lin, Yan Qin, Yixuan Ye, Jiaming Liang, Renjing Xu
Title: Bootstrap Dynamic-Aware 3D Visual Representation for Scalable Robot Learning
Abstract:
Despite strong results on recognition and segmentation, current 3D visual pre-training methods often underperform on robotic manipulation. We attribute this gap to two factors: the lack of state-action-state dynamics modeling and the unnecessary redundancy of explicit geometric reconstruction. We introduce AFRO, a self-supervised framework that learns dynamics-aware 3D representations without action or reconstruction supervision. AFRO casts state prediction as a generative diffusion process and jointly models forward and inverse dynamics in a shared latent space to capture causal transition structure. To prevent feature leakage in action learning, we employ feature differencing and inverse-consistency supervision, improving the quality and stability of visual features. When combined with Diffusion Policy, AFRO substantially increases manipulation success rates across 16 simulated and 4 real-world tasks, outperforming existing pre-training approaches. The framework also scales favorably with data volume and task complexity. Qualitative visualizations indicate that AFRO learns semantically rich, discriminative features, offering an effective pre-training solution for 3D representation learning in robotics. Project page: https://kolakivy.github.io/AFRO/

Authors:Kemal Oksuz, Alexandru Buburuzan, Anthony Knittel, Yuhan Yao, Puneet K. Dokania
Title: Foundation Models for Trajectory Planning in Autonomous Driving: A Review of Progress and Open Challenges
Abstract:
The emergence of multi-modal foundation models has markedly transformed the technology for autonomous driving, shifting away from conventional and mostly hand-crafted design choices towards unified, foundation-model-based approaches, capable of directly inferring motion trajectories from raw sensory inputs. This new class of methods can also incorporate natural language as an additional modality, with Vision-Language-Action (VLA) models serving as a representative example. In this review, we provide a comprehensive examination of such methods through a unifying taxonomy to critically evaluate their architectural design choices, methodological strengths, and their inherent capabilities and limitations. Our survey covers 37 recently proposed approaches that span the landscape of trajectory planning with foundation models. Furthermore, we assess these approaches with respect to the openness of their source code and datasets, offering valuable information to practitioners and researchers. We provide an accompanying webpage that catalogs the methods based on our taxonomy, available at: https://github.com/fiveai/FMs-for-driving-trajectories

Authors:Muhammad Maaz, Hanoona Rasheed, Fahad Shahbaz Khan, Salman Khan
Title: Video-R2: Reinforcing Consistent and Grounded Reasoning in Multimodal Language Models
Abstract:
Reasoning over dynamic visual content remains a central challenge for multimodal large language models. Recent thinking models generate explicit reasoning traces for interpretability; however, their reasoning often appears convincing while being logically inconsistent or weakly grounded in visual evidence. We identify and formalize these issues through two diagnostic metrics: Think Answer Consistency (TAC), which measures the alignment between reasoning and answers, and Video Attention Score (VAS), which captures the extent to which reasoning depends on visual versus textual cues. Analysis across 11 video reasoning benchmarks shows that current models rely heavily on linguistic priors rather than visual content. To address this, we propose a reinforcement learning approach that enhances both temporal precision and reasoning consistency. Our approach combines timestamp aware supervised fine tuning with Group Relative Policy Optimization (GRPO) guided by a novel Temporal Alignment Reward (TAR). This dual step post training stage encourages temporally aligned and causally coherent video reasoning. The resulting model, Video R2, achieves consistently higher TAC, VAS, and accuracy across multiple benchmarks, demonstrating that improvements in temporal alignment and reasoning coherence lead to more accurate and trustworthy video understanding. Code: https://github.com/mbzuai-oryx/Video-R2

Authors:Hanoona Rasheed, Mohammed Zumri, Muhammad Maaz, Ming-Hsuan Yang, Fahad Shahbaz Khan, Salman Khan
Title: Video-CoM: Interactive Video Reasoning via Chain of Manipulations
Abstract:
Recent multimodal large language models (MLLMs) have advanced video understanding, yet most still "think about videos" ie once a video is encoded, reasoning unfolds entirely in text, treating visual input as a static context. This passive paradigm creates a semantic bottleneck: models cannot rewatch, refocus, or verify evidence, leading to shallow visual reasoning on tasks requiring fine grained spatio temporal understanding. In this work, we introduce Interactive Video Reasoning, a new paradigm that transforms video into an active cognitive workspace, enabling models to "think with videos". Our model, Video CoM, reasons through a Chain of Manipulations (CoM), performing iterative visual actions to gather and refine evidence. To support this behavior, we construct Video CoM Instruct, an 18K instruction tuning dataset curated for multi step manipulation reasoning. Beyond supervised learning, we further optimize the manipulation policy via reinforcement learning with reasoning aware Group Relative Policy Optimization (GRPO). Unlike prior work that relies solely on sparse answer rewards, our method introduces step level reasoning rewards, guiding the model toward grounded and consistent reasoning. Video CoM achieves strong results across nine video reasoning benchmarks, improving average performance by 3.6 percent over recent state of the art models, while training on only 25K SFT and 3K GRPO video samples, significantly fewer than comparable large scale models. Ablation studies demonstrate that reasoning aware rewards improve both accuracy and interpretability. Code: https://github.com/mbzuai-oryx/Video-CoM

Authors:Zhizhou Zhong, Yicheng Ji, Zhe Kong, Yiying Liu, Jiarui Wang, Jiasun Feng, Lupeng Liu, Xiangyi Wang, Yanjia Li, Yuqing She, Ying Qin, Huan Li, Shuiyang Mao, Wei Liu, Wenhan Luo
Title: AnyTalker: Scaling Multi-Person Talking Video Generation with Interactivity Refinement
Abstract:
Recently, multi-person video generation has started to gain prominence. While a few preliminary works have explored audio-driven multi-person talking video generation, they often face challenges due to the high costs of diverse multi-person data collection and the difficulty of driving multiple identities with coherent interactivity. To address these challenges, we propose AnyTalker, a multi-person generation framework that features an extensible multi-stream processing architecture. Specifically, we extend Diffusion Transformer's attention block with a novel identity-aware attention mechanism that iteratively processes identity-audio pairs, allowing arbitrary scaling of drivable identities. Besides, training multi-person generative models demands massive multi-person data. Our proposed training pipeline depends solely on single-person videos to learn multi-person speaking patterns and refines interactivity with only a few real multi-person clips. Furthermore, we contribute a targeted metric and dataset designed to evaluate the naturalness and interactivity of the generated multi-person videos. Extensive experiments demonstrate that AnyTalker achieves remarkable lip synchronization, visual quality, and natural interactivity, striking a favorable balance between data costs and identity scalability.

Authors:Jiahao Guo, Sinan Du, Jingfeng Yao, Wenyu Liu, Bo Li, Haoxiang Cao, Kun Gai, Chun Yuan, Kai Wu, Xinggang Wang
Title: Visual Generation Tuning
Abstract:
Large Vision Language Models (VLMs) effectively bridge the modality gap through extensive pretraining, acquiring sophisticated visual representations aligned with language. However, it remains underexplored whether these representations, optimized for multimodal understanding tasks, harbor an inherent potential for visual generation. In this paper, we propose VGT, Visual Generation Tuning, a novel paradigm designed to stimulate the underlying capabilities of visual generation within any vision language models. By performing efficient visual generation tuning on well-pretrained VLMs, we significantly mitigate the alignment costs and accelerate the convergence of autoregressive modeling in the continuous space (20x speedup). Specifically, we dismiss the entangled pixel-level VAEs designed for diffusion transformers and formulate VGT-AE through aligning the semantic encoders from pretrained VLMs with the latent representations of pixel decoders. In image reconstruction tasks, we achieve 26.67 PSNR and 0.50 rFID at a 28x compression ratio, outperforming specialized VAEs; in visual generation tasks, we achieve state-of-the-art outcomes among autoregressive models, 0.77 on GenEval and 78.73 on DPG-Bench. Furthermore, our proposed VGT showcases significant scaling promise and is versatile for endowing any VLMs trained for multimodal understanding with the capabilities of visual generation, which paves the new avenue to explore next-generation unified multimodal foundation models. Models and codes are available at https://github.com/hustvl/VGT.

Authors:Thomas Ressler-Antal, Frank Fundel, Malek Ben Alaya, Stefan Andreas Baumann, Felix Krause, Ming Gui, Björn Ommer
Title: DisMo: Disentangled Motion Representations for Open-World Motion Transfer
Abstract:
Recent advances in text-to-video (T2V) and image-to-video (I2V) models, have enabled the creation of visually compelling and dynamic videos from simple textual descriptions or initial frames. However, these models often fail to provide an explicit representation of motion separate from content, limiting their applicability for content creators. To address this gap, we propose DisMo, a novel paradigm for learning abstract motion representations directly from raw video data via an image-space reconstruction objective. Our representation is generic and independent of static information such as appearance, object identity, or pose. This enables open-world motion transfer, allowing motion to be transferred across semantically unrelated entities without requiring object correspondences, even between vastly different categories. Unlike prior methods, which trade off motion fidelity and prompt adherence, are overfitting to source structure or drifting from the described action, our approach disentangles motion semantics from appearance, enabling accurate transfer and faithful conditioning. Furthermore, our motion representation can be combined with any existing video generator via lightweight adapters, allowing us to effortlessly benefit from future advancements in video models. We demonstrate the effectiveness of our method through a diverse set of motion transfer tasks. Finally, we show that the learned representations are well-suited for downstream motion understanding tasks, consistently outperforming state-of-the-art video representation models such as V-JEPA in zero-shot action classification on benchmarks including Something-Something v2 and Jester. Project page: https://compvis.github.io/DisMo

Authors:Rui Zhang, Hongxia Wang, Hangqing Liu, Yang Zhou, Qiang Zeng
Title: DEAL-300K: Diffusion-based Editing Area Localization with a 300K-Scale Dataset and Frequency-Prompted Baseline
Abstract:
Diffusion-based image editing has made semantic level image manipulation easy for general users, but it also enables realistic local forgeries that are hard to localize. Existing benchmarks mainly focus on the binary detection of generated images or the localization of manually edited regions and do not reflect the properties of diffusion-based edits, which often blend smoothly into the original content. We present Diffusion-Based Image Editing Area Localization Dataset (DEAL-300K), a large scale dataset for diffusion-based image manipulation localization (DIML) with more than 300,000 annotated images. We build DEAL-300K by using a multi-modal large language model to generate editing instructions, a mask-free diffusion editor to produce manipulated images, and an active-learning change detection pipeline to obtain pixel-level annotations. On top of this dataset, we propose a localization framework that uses a frozen Visual Foundation Model (VFM) together with Multi Frequency Prompt Tuning (MFPT) to capture both semantic and frequency-domain cues of edited regions. Trained on DEAL-300K, our method reaches a pixel-level F1 score of 82.56% on our test split and 80.97% on the external CoCoGlide benchmark, providing strong baselines and a practical foundation for future DIML research.The dataset can be accessed via https://github.com/ymhzyj/DEAL-300K.

Authors:Xinxi Zhang, Shiwei Tan, Quang Nguyen, Quan Dao, Ligong Han, Xiaoxiao He, Tunyu Zhang, Alen Mrdovic, Dimitris Metaxas
Title: Flow Straighter and Faster: Efficient One-Step Generative Modeling via MeanFlow on Rectified Trajectories
Abstract:
Flow-based generative models have recently demonstrated strong performance, yet sampling typically relies on expensive numerical integration of ordinary differential equations (ODEs). Rectified Flow enables one-step sampling by learning nearly straight probability paths, but achieving such straightness requires multiple computationally intensive reflow iterations. MeanFlow achieves one-step generation by directly modeling the average velocity over time; however, when trained on highly curved flows, it suffers from slow convergence and noisy supervision. To address these limitations, we propose Rectified MeanFlow, a framework that models the mean velocity field along the rectified trajectory using only a single reflow step. This eliminates the need for perfectly straightened trajectories while enabling efficient training. Furthermore, we introduce a simple yet effective truncation heuristic that aims to reduce residual curvature and further improve performance. Extensive experiments on ImageNet at 64, 256, and 512 resolutions show that Re-MeanFlow consistently outperforms prior one-step flow distillation and Rectified Flow methods in both sample quality and training efficiency. Code is available at https://github.com/Xinxi-Zhang/Re-MeanFlow.

Authors:Shuo Ni, Di Wang, He Chen, Haonan Guo, Ning Zhang, Jing Zhang
Title: UniGeoSeg: Towards Unified Open-World Segmentation for Geospatial Scenes
Abstract:
Instruction-driven segmentation in remote sensing generates masks from guidance, offering great potential for accessible and generalizable applications. However, existing methods suffer from fragmented task formulations and limited instruction data, hindering effective understanding and generalization. To address these issues, we introduce GeoSeg-1M, the first million-scale dataset for remote sensing instruction-driven segmentation, constructed via an automatic mask filtering and instruction generation pipeline that synthesizes referring, interactive, and reasoning segmentation instructions from multiple public datasets. GeoSeg-1M contains 590K images, 117 categories, and 1.1M image-mask-instruction triplets. Building upon this foundation, we further curate GeoSeg-Bench, a challenging benchmark designed to evaluate contextual understanding and reasoning capabilities across diverse instruction-driven tasks and complex geospatial scenes. Furthermore, we present UniGeoSeg, a unified framework that serves as a strong baseline, incorporating task-aware text enhancement, latent knowledge memory, and a progressive training strategy to facilitate multi-task learning. Extensive experiments demonstrate the state-of-the-art performance of UniGeoSeg across GeoSeg-Bench and diverse public benchmarks, while exhibiting strong zero-shot generalization. Datasets and source code were released at https://github.com/MiliLab/UniGeoSeg.

Authors:Yuhao Wan, Lijuan Liu, Jingzhi Zhou, Zihan Zhou, Xuying Zhang, Dongbo Zhang, Shaohui Jiao, Qibin Hou, Ming-Ming Cheng
Title: GeoWorld: Unlocking the Potential of Geometry Models to Facilitate High-Fidelity 3D Scene Generation
Abstract:
Previous works leveraging video models for image-to-3D scene generation tend to suffer from geometric distortions and blurry content. In this paper, we renovate the pipeline of image-to-3D scene generation by unlocking the potential of geometry models and present our GeoWorld. Instead of exploiting geometric information obtained from a single-frame input, we propose to first generate consecutive video frames and then take advantage of the geometry model to provide full-frame geometry features, which contain richer information than single-frame depth maps or camera embeddings used in previous methods, and use these geometry features as geometrical conditions to aid the video generation model. To enhance the consistency of geometric structures, we further propose a geometry alignment loss to provide the model with real-world geometric constraints and a geometry adaptation module to ensure the effective utilization of geometry features. Extensive experiments show that our GeoWorld can generate high-fidelity 3D scenes from a single image and a given camera trajectory, outperforming prior methods both qualitatively and quantitatively. Project Page: https://peaes.github.io/GeoWorld/.

Authors:Runyu Jiao, Matteo Bortolon, Francesco Giuliari, Alice Fasoli, Sergio Povoli, Guofeng Mei, Yiming Wang, Fabio Poiesi
Title: Obstruction reasoning for robotic grasping
Abstract:
Successful robotic grasping in cluttered environments not only requires a model to visually ground a target object but also to reason about obstructions that must be cleared beforehand. While current vision-language embodied reasoning models show emergent spatial understanding, they remain limited in terms of obstruction reasoning and accessibility planning. To bridge this gap, we present UNOGrasp, a learning-based vision-language model capable of performing visually-grounded obstruction reasoning to infer the sequence of actions needed to unobstruct the path and grasp the target object. We devise a novel multi-step reasoning process based on obstruction paths originated by the target object. We anchor each reasoning step with obstruction-aware visual cues to incentivize reasoning capability. UNOGrasp combines supervised and reinforcement finetuning through verifiable reasoning rewards. Moreover, we construct UNOBench, a large-scale dataset for both training and benchmarking, based on MetaGraspNetV2, with over 100k obstruction paths annotated by humans with obstruction ratios, contact points, and natural-language instructions. Extensive experiments and real-robot evaluations show that UNOGrasp significantly improves obstruction reasoning and grasp success across both synthetic and real-world environments, outperforming generalist and proprietary alternatives. Project website: https://tev-fbk.github.io/UnoGrasp/.

Authors:Jin-Seop Lee, SungJoon Lee, SeongJun Jung, Boyang Li, Jee-Hyong Lee
Title: Learning to Refuse: Refusal-Aware Reinforcement Fine-Tuning for Hard-Irrelevant Queries in Video Temporal Grounding
Abstract:
Video Temporal Grounding (VTG) aims to localize a temporal segment in a video corresponding to a natural language query. However, existing VTG models assume that a relevant segment always exists, causing them to always predict a target segment even when the query is irrelevant to the video. While recent approaches attempt to handle irrelevant queries, they can only reject those that are entirely unrelated to the video and still fail to handle hard-irrelevant queries that are semantically similar but not actually relevant. To address this, we propose Refusal-Aware Reinforcement Fine-Tuning (RA-RFT) to effectively refuse hard-irrelevant queries in VTG. Our method is based on the Group Relative Policy Optimization (GRPO) framework and integrates four reward objectives-format, refuse-IoU, explain, and query correction-to improve both relevance discrimination and fine-grained semantic reasoning. In addition, to effectively support RA-RFT, we construct a Hard-Irrelevant VTG (HI-VTG) dataset, which includes hard-irrelevant queries and their refusal answers. We demonstrate the effectiveness of our method across various relevance-aware VTG scenarios, including hard-irrelevant VTG, simply-shuffled RA-VTG, and human-annotated RA-VTG settings. We also show that the proposed method is scalable by applying it to various LVLM-based VTG models. Our code is available at https://github.com/JINSUBY/RA-RFT.

Authors:Chaoyun Wang, Quanxin Huang, I-Chao Shen, Takeo Igarashi, Nanning Zheng, Caigui Jiang
Title: Cascaded Robust Rectification for Arbitrary Document Images
Abstract:
Document rectification in real-world scenarios poses significant challenges due to extreme variations in camera perspectives and physical distortions. Driven by the insight that complex transformations can be decomposed and resolved progressively, we introduce a novel multi-stage framework that progressively reverses distinct distortion types in a coarse-to-fine manner. Specifically, our framework first performs a global affine transformation to correct perspective distortions arising from the camera's viewpoint, then rectifies geometric deformations resulting from physical paper curling and folding, and finally employs a content-aware iterative process to eliminate fine-grained content distortions. To address limitations in existing evaluation protocols, we also propose two enhanced metrics: layout-aligned OCR metrics (AED/ACER) for a stable assessment that decouples geometric rectification quality from the layout analysis errors of OCR engines, and masked AD/AAD (AD-M/AAD-M) tailored for accurately evaluating geometric distortions in documents with incomplete boundaries. Extensive experiments show that our method establishes new state-of-the-art performance on multiple challenging benchmarks, yielding a substantial reduction of 14.1\%--34.7\% in the AAD metric and demonstrating superior efficacy in real-world applications. The code will be publicly available at https://github.com/chaoyunwang/ArbDR.

Authors:Hongfei Zhang, Kanghao Chen, Zixin Zhang, Harold Haodong Chen, Yuanhuiyi Lyu, Yuqi Zhang, Shuai Yang, Kun Zhou, Yingcong Chen
Title: DualCamCtrl: Dual-Branch Diffusion Model for Geometry-Aware Camera-Controlled Video Generation
Abstract:
This paper presents DualCamCtrl, a novel end-to-end diffusion model for camera-controlled video generation. Recent works have advanced this field by representing camera poses as ray-based conditions, yet they often lack sufficient scene understanding and geometric awareness. DualCamCtrl specifically targets this limitation by introducing a dual-branch framework that mutually generates camera-consistent RGB and depth sequences. To harmonize these two modalities, we further propose the Semantic Guided Mutual Alignment (SIGMA) mechanism, which performs RGB-depth fusion in a semantics-guided and mutually reinforced manner. These designs collectively enable DualCamCtrl to better disentangle appearance and geometry modeling, generating videos that more faithfully adhere to the specified camera trajectories. Additionally, we analyze and reveal the distinct influence of depth and camera poses across denoising stages and further demonstrate that early and late stages play complementary roles in forming global structure and refining local details. Extensive experiments demonstrate that DualCamCtrl achieves more consistent camera-controlled video generation, with over 40\% reduction in camera motion errors compared with prior methods. Our project page: https://soyouthinkyoucantell.github.io/dualcamctrl-page/

Authors:Siqi Chen, Ke Hong, Tianchen Zhao, Ruiqi Xie, Zhenhua Zhu, Xudong Zhang, Yu Wang
Title: db-SP: Accelerating Sparse Attention for Visual Generative Models with Dual-Balanced Sequence Parallelism
Abstract:
Scaling Diffusion Transformer (DiT) inference via sequence parallelism is critical for reducing latency in visual generation, but is severely hampered by workload imbalance when applied to models employing block-wise sparse attention. The imbalance stems from the inherent variation in sparsity across attention heads and the irregular distribution of dense blocks within the sparse mask, when sequence parallelism is applied along the head dimension (as in Ulysses) or the block dimension (as in Ring Attention). In this paper, we formalize a sparse imbalance ratio to quantify the imbalance, and propose db-SP, a sparsity-aware sequence parallelism technique that tackles the challenge. db-SP contains a dual-level partitioning approach that achieves near-perfect workload balance at both the head and block levels with negligible overhead. Furthermore, to handle the evolving sparsity patterns across denoising steps and layers, db-SP dynamically determines the parallel degrees for the head and block dimensions at runtime. Experimental results demonstrate that db-SP delivers an end-to-end speedup of 1.25x and an attention-specific speedup of 1.40x over state-of-the-art sequence parallel methods on average. Code is available at https://github.com/thu-nics/db-SP.

Authors:Yuandong Wang, Yao Cui, Yuxin Zhao, Zhen Yang, Yangfu Zhu, Zhenzhou Shao
Title: MathSight: A Benchmark Exploring Have Vision-Language Models Really Seen in University-Level Mathematical Reasoning?
Abstract:
Recent advances in Vision-Language Models (VLMs) have achieved impressive progress in multimodal mathematical reasoning. Yet, how much visual information truly contributes to reasoning remains unclear. Existing benchmarks report strong overall performance but seldom isolate the role of the image modality, leaving open whether VLMs genuinely leverage visual understanding or merely depend on linguistic priors. To address this, we present MathSight, a university-level multimodal mathematical reasoning benchmark designed to disentangle and quantify the effect of visual input. Each problem includes multiple visual variants -- original, hand-drawn, photo-captured -- and a text-only condition for controlled comparison. Experiments on state-of-the-art VLMs reveal a consistent trend: the contribution of visual information diminishes with increasing problem difficulty. Remarkably, Qwen3-VL without any image input surpasses both its multimodal variants and GPT-5, underscoring the need for benchmarks like MathSight to advance genuine vision-grounded reasoning in future models.

Authors:Hyunjin Kim, Kunho Kim, Adam Lee, Wonkwang Lee
Title: GOATex: Geometry & Occlusion-Aware Texturing
Abstract:
We present GOATex, a diffusion-based method for 3D mesh texturing that generates high-quality textures for both exterior and interior surfaces. While existing methods perform well on visible regions, they inherently lack mechanisms to handle occluded interiors, resulting in incomplete textures and visible seams. To address this, we introduce an occlusion-aware texturing framework based on the concept of hit levels, which quantify the relative depth of mesh faces via multi-view ray casting. This allows us to partition mesh faces into ordered visibility layers, from outermost to innermost. We then apply a two-stage visibility control strategy that progressively reveals interior regions with structural coherence, followed by texturing each layer using a pretrained diffusion model. To seamlessly merge textures obtained across layers, we propose a soft UV-space blending technique that weighs each texture's contribution based on view-dependent visibility confidence. Empirical results demonstrate that GOATex consistently outperforms existing methods, producing seamless, high-fidelity textures across both visible and occluded surfaces. Unlike prior works, GOATex operates entirely without costly fine-tuning of a pretrained diffusion model and allows separate prompting for exterior and interior mesh regions, enabling fine-grained control over layered appearances. For more qualitative results, please visit our project page: https://goatex3d.github.io/.

Authors:Yuta Oshima, Daiki Miyake, Kohsei Matsutani, Yusuke Iwasawa, Masahiro Suzuki, Yutaka Matsuo, Hiroki Furuta
Title: MultiBanana: A Challenging Benchmark for Multi-Reference Text-to-Image Generation
Abstract:
Recent text-to-image generation models have acquired the ability of multi-reference generation and editing; the ability to inherit the appearance of subjects from multiple reference images and re-render them under new contexts. However, the existing benchmark datasets often focus on the generation with single or a few reference images, which prevents us from measuring the progress on how model performance advances or pointing out their weaknesses, under different multi-reference conditions. In addition, their task definitions are still vague, typically limited to axes such as "what to edit" or "how many references are given", and therefore fail to capture the intrinsic difficulty of multi-reference settings. To address this gap, we introduce $\textbf{MultiBanana}$, which is carefully designed to assesses the edge of model capabilities by widely covering multi-reference-specific problems at scale: (1) varying the number of references, (2) domain mismatch among references (e.g., photo vs. anime), (3) scale mismatch between reference and target scenes, (4) references containing rare concepts (e.g., a red banana), and (5) multilingual textual references for rendering. Our analysis among a variety of text-to-image models reveals their superior performances, typical failure modes, and areas for improvement. MultiBanana will be released as an open benchmark to push the boundaries and establish a standardized basis for fair comparison in multi-reference image generation. Our data and code are available at https://github.com/matsuolab/multibanana .

Authors:Guo-Hua Wang, Liangfu Cao, Tianyu Cui, Minghao Fu, Xiaohao Chen, Pengxin Zhan, Jianshan Zhao, Lan Li, Bowen Fu, Jiaqi Liu, Qing-Guo Chen
Title: Ovis-Image Technical Report
Abstract:
We introduce $\textbf{Ovis-Image}$, a 7B text-to-image model specifically optimized for high-quality text rendering, designed to operate efficiently under stringent computational constraints. Built upon our previous Ovis-U1 framework, Ovis-Image integrates a diffusion-based visual decoder with the stronger Ovis 2.5 multimodal backbone, leveraging a text-centric training pipeline that combines large-scale pre-training with carefully tailored post-training refinements. Despite its compact architecture, Ovis-Image achieves text rendering performance on par with significantly larger open models such as Qwen-Image and approaches closed-source systems like Seedream and GPT4o. Crucially, the model remains deployable on a single high-end GPU with moderate memory, narrowing the gap between frontier-level text rendering and practical deployment. Our results indicate that combining a strong multimodal backbone with a carefully designed, text-focused training recipe is sufficient to achieve reliable bilingual text rendering without resorting to oversized or proprietary models.

Authors:Zeyu Zhang, Shuning Chang, Yuanyu He, Yizeng Han, Jiasheng Tang, Fan Wang, Bohan Zhuang
Title: BlockVid: Block Diffusion for High-Quality and Consistent Minute-Long Video Generation
Abstract:
Generating minute-long videos is a critical step toward developing world models, providing a foundation for realistic extended scenes and advanced AI simulators. The emerging semi-autoregressive (block diffusion) paradigm integrates the strengths of diffusion and autoregressive models, enabling arbitrary-length video generation and improving inference efficiency through KV caching and parallel sampling. However, it yet faces two enduring challenges: (i) KV-cache-induced long-horizon error accumulation, and (ii) the lack of fine-grained long-video benchmarks and coherence-aware metrics. To overcome these limitations, we propose BlockVid, a novel block diffusion framework equipped with semantic-aware sparse KV cache, an effective training strategy called Block Forcing, and dedicated chunk-wise noise scheduling and shuffling to reduce error propagation and enhance temporal consistency. We further introduce LV-Bench, a fine-grained benchmark for minute-long videos, complete with new metrics evaluating long-range coherence. Extensive experiments on VBench and LV-Bench demonstrate that BlockVid consistently outperforms existing methods in generating high-quality, coherent minute-long videos. In particular, it achieves a 22.2% improvement on VDE Subject and a 19.4% improvement on VDE Clarity in LV-Bench over the state of the art approaches. Project website: https://ziplab.co/BlockVid. Inferix (Code): https://github.com/alibaba-damo-academy/Inferix.

Authors:Haiyang Mei, Qiming Huang, Hai Ci, Mike Zheng Shou
Title: RobotSeg: A Model and Dataset for Segmenting Robots in Image and Video
Abstract:
Accurate robot segmentation is a fundamental capability for robotic perception. It enables precise visual servoing for VLA systems, scalable robot-centric data augmentation, accurate real-to-sim transfer, and reliable safety monitoring in dynamic human-robot environments. Despite the strong capabilities of modern segmentation models, surprisingly it remains challenging to segment robots. This is due to robot embodiment diversity, appearance ambiguity, structural complexity, and rapid shape changes. Embracing these challenges, we introduce RobotSeg, a foundation model for robot segmentation in image and video. RobotSeg is built upon the versatile SAM 2 foundation model but addresses its three limitations for robot segmentation, namely the lack of adaptation to articulated robots, reliance on manual prompts, and the need for per-frame training mask annotations, by introducing a structure-enhanced memory associator, a robot prompt generator, and a label-efficient training strategy. These innovations collectively enable a structure-aware, automatic, and label-efficient solution. We further construct the video robot segmentation (VRS) dataset comprising over 2.8k videos (138k frames) with diverse robot embodiments and environments. Extensive experiments demonstrate that RobotSeg achieves state-of-the-art performance on both images and videos, establishing a strong foundation for future advances in robot perception.

Authors:Taeyeong Kim, SeungJoon Lee, Jung Uk Kim, MyeongAh Cho
Title: Do We Need Perfect Data? Leveraging Noise for Domain Generalized Segmentation
Abstract:
Domain generalization in semantic segmentation faces challenges from domain shifts, particularly under adverse conditions. While diffusion-based data generation methods show promise, they introduce inherent misalignment between generated images and semantic masks. This paper presents FLEX-Seg (FLexible Edge eXploitation for Segmentation), a framework that transforms this limitation into an opportunity for robust learning. FLEX-Seg comprises three key components: (1) Granular Adaptive Prototypes that captures boundary characteristics across multiple scales, (2) Uncertainty Boundary Emphasis that dynamically adjusts learning emphasis based on prediction entropy, and (3) Hardness-Aware Sampling that progressively focuses on challenging examples. By leveraging inherent misalignment rather than enforcing strict alignment, FLEX-Seg learns robust representations while capturing rich stylistic variations. Experiments across five real-world datasets demonstrate consistent improvements over state-of-the-art methods, achieving 2.44% and 2.63% mIoU gains on ACDC and Dark Zurich. Our findings validate that adaptive strategies for handling imperfect synthetic data lead to superior domain generalization. Code is available at https://github.com/VisualScienceLab-KHU/FLEX-Seg.

Authors:Shijun Shi, Jing Xu, Zhihang Li, Chunli Peng, Xiaoda Yang, Lijing Lu, Kai Hu, Jiangning Zhang
Title: One-to-All Animation: Alignment-Free Character Animation and Image Pose Transfer
Abstract:
Recent advances in diffusion models have greatly improved pose-driven character animation. However, existing methods are limited to spatially aligned reference-pose pairs with matched skeletal structures. Handling reference-pose misalignment remains unsolved. To address this, we present One-to-All Animation, a unified framework for high-fidelity character animation and image pose transfer for references with arbitrary layouts. First, to handle spatially misaligned reference, we reformulate training as a self-supervised outpainting task that transforms diverse-layout reference into a unified occluded-input format. Second, to process partially visible reference, we design a reference extractor for comprehensive identity feature extraction. Further, we integrate hybrid reference fusion attention to handle varying resolutions and dynamic sequence lengths. Finally, from the perspective of generation quality, we introduce identity-robust pose control that decouples appearance from skeletal structure to mitigate pose overfitting, and a token replace strategy for coherent long-video generation. Extensive experiments show that our method outperforms existing approaches. The code and model are available at https://github.com/ssj9596/One-to-All-Animation.

Authors:Yongsen Cheng, Yuanhao Cai, Yulun Zhang
Title: DenoiseGS: Gaussian Reconstruction Model for Burst Denoising
Abstract:
Burst denoising methods are crucial for enhancing images captured on handheld devices, but they often struggle with large motion or suffer from prohibitive computational costs. In this paper, we propose DenoiseGS, the first framework to leverage the efficiency of 3D Gaussian Splatting for burst denoising. Our approach addresses two key challenges when applying feedforward Gaussian reconsturction model to noisy inputs: the degradation of Gaussian point clouds and the loss of fine details. To this end, we propose a Gaussian self-consistency (GSC) loss, which regularizes the geometry predicted from noisy inputs with high-quality Gaussian point clouds. These point clouds are generated from clean inputs by the same model that we are training, thereby alleviating potential bias or domain gaps. Additionally, we introduce a log-weighted frequency (LWF) loss to strengthen supervision within the spectral domain, effectively preserving fine-grained details. The LWF loss adaptively weights frequency discrepancies in a logarithmic manner, emphasizing challenging high-frequency details. Extensive experiments demonstrate that DenoiseGS significantly exceeds the state-of-the-art NeRF-based methods on both burst denoising and novel view synthesis under noisy conditions, while achieving 250$\times$ faster inference speed. Code and models are released at https://github.com/yscheng04/DenoiseGS.

Authors:Yaqi Wang, Zhi Li, Chengyu Wu, Jun Liu, Yifan Zhang, Jiaxue Ni, Qian Luo, Jialuo Chen, Hongyuan Zhang, Jin Liu, Can Han, Kaiwen Fu, Changkai Ji, Xinxu Cai, Jing Hao, Zhihao Zheng, Shi Xu, Junqiang Chen, Qianni Zhang, Dahong Qian, Shuai Wang, Huiyu Zhou
Title: MICCAI STS 2024 Challenge: Semi-Supervised Instance-Level Tooth Segmentation in Panoramic X-ray and CBCT Images
Abstract:
Orthopantomogram (OPGs) and Cone-Beam Computed Tomography (CBCT) are vital for dentistry, but creating large datasets for automated tooth segmentation is hindered by the labor-intensive process of manual instance-level annotation. This research aimed to benchmark and advance semi-supervised learning (SSL) as a solution for this data scarcity problem. We organized the 2nd Semi-supervised Teeth Segmentation (STS 2024) Challenge at MICCAI 2024. We provided a large-scale dataset comprising over 90,000 2D images and 3D axial slices, which includes 2,380 OPG images and 330 CBCT scans, all featuring detailed instance-level FDI annotations on part of the data. The challenge attracted 114 (OPG) and 106 (CBCT) registered teams. To ensure algorithmic excellence and full transparency, we rigorously evaluated the valid, open-source submissions from the top 10 (OPG) and top 5 (CBCT) teams, respectively. All successful submissions were deep learning-based SSL methods. The winning semi-supervised models demonstrated impressive performance gains over a fully-supervised nnU-Net baseline trained only on the labeled data. For the 2D OPG track, the top method improved the Instance Affinity (IA) score by over 44 percentage points. For the 3D CBCT track, the winning approach boosted the Instance Dice score by 61 percentage points. This challenge confirms the substantial benefit of SSL for complex, instance-level medical image segmentation tasks where labeled data is scarce. The most effective approaches consistently leveraged hybrid semi-supervised frameworks that combined knowledge from foundational models like SAM with multi-stage, coarse-to-fine refinement pipelines. Both the challenge dataset and the participants' submitted code have been made publicly available on GitHub (https://github.com/ricoleehduu/STS-Challenge-2024), ensuring transparency and reproducibility.

Authors:Congjia Chen, Shen Yan, Yufu Qu
Title: ViGG: Robust RGB-D Point Cloud Registration using Visual-Geometric Mutual Guidance
Abstract:
Point cloud registration is a fundamental task in 3D vision. Most existing methods only use geometric information for registration. Recently proposed RGB-D registration methods primarily focus on feature fusion or improving feature learning, which limits their ability to exploit image information and hinders their practical applicability. In this paper, we propose ViGG, a robust RGB-D registration method using mutual guidance. First, we solve clique alignment in a visual-geometric combination form, employing a geometric guidance design to suppress ambiguous cliques. Second, to mitigate accuracy degradation caused by noise in visual matches, we propose a visual-guided geometric matching method that utilizes visual priors to determine the search space, enabling the extraction of high-quality, noise-insensitive correspondences. This mutual guidance strategy brings our method superior robustness, making it applicable for various RGB-D registration tasks. The experiments on 3DMatch, ScanNet and KITTI datasets show that our method outperforms recent state-of-the-art methods in both learning-free and learning-based settings. Code is available at https://github.com/ccjccjccj/ViGG.

Authors:YuEun Lee, Jung Uk Kim
Title: See, Rank, and Filter: Important Word-Aware Clip Filtering via Scene Understanding for Moment Retrieval and Highlight Detection
Abstract:
Video moment retrieval (MR) and highlight detection (HD) with natural language queries aim to localize relevant moments and key highlights in a video clips. However, existing methods overlook the importance of individual words, treating the entire text query and video clips as a black-box, which hinders contextual understanding. In this paper, we propose a novel approach that enables fine-grained clip filtering by identifying and prioritizing important words in the query. Our method integrates image-text scene understanding through Multimodal Large Language Models (MLLMs) and enhances the semantic understanding of video clips. We introduce a feature enhancement module (FEM) to capture important words from the query and a ranking-based filtering module (RFM) to iteratively refine video clips based on their relevance to these important words. Extensive experiments demonstrate that our approach significantly outperforms existing state-of-the-art methods, achieving superior performance in both MR and HD tasks. Our code is available at: https://github.com/VisualAIKHU/SRF.

Authors:Weiran Li, Yeqiang Liu, Yijie Wei, Mina Han, Xin Liu, Zhenbo Li
Title: From Points to Clouds: Learning Robust Semantic Distributions for Multi-modal Prompts
Abstract:
Multimodal Prompt Learning (MPL) has emerged as a pivotal technique for adapting large-scale Visual Language Models (VLMs). However, current MPL methods are fundamentally limited by their optimization of a single, static point representation. This paradigm is inherently brittle, leads to overfitting on base classes, and generalizes poorly to novel or ambiguous categories. We challenge this point paradigm, proposing that robust generalization requires learning a semantic cloud (i.e., a distribution over the embedding space). To achieve this, we introduce Points-to-Clouds (P2C), a novel framework inspired by diffusion models that reframes prompt learning as a dynamic denoising task. At the core of P2C is a dual denoising mechanism: a Dynamic Prompt Denoising (DPD) mechanism perturbs text prompts with sophisticated, annealed noise to learn a smoother semantic landscape, while an auxiliary V-L Mapper denoising loss re-tasks the mapper as a denoising autoencoder. This forces the mapper to reconstruct clean visual prompts from noisy text inputs, ensuring robust cross-modal alignment. Extensive experiments across 11 datasets demonstrate that P2C consistently outperforms strong baselines. On the base-to-novel generalization benchmark, our method achieves a Harmonic Mean of 79.7%, representing a relative improvement of 1.4% over the baseline. The code and models are available at https://vranlee.github.io/P2C/.

Authors:Weiran Li, Yeqiang Liu, Yijie Wei, Mina Han, Qiannan Guo, Zhenbo Li
Title: DM$^3$T: Harmonizing Modalities via Diffusion for Multi-Object Tracking
Abstract:
Multi-object tracking (MOT) is a fundamental task in computer vision with critical applications in autonomous driving and robotics. Multimodal MOT that integrates visible light and thermal infrared information is particularly essential for robust autonomous driving systems. However, effectively fusing these heterogeneous modalities is challenging. Simple strategies like concatenation or addition often fail to bridge the significant non-linear distribution gap between their feature representations, which can lead to modality conflicts and degrade tracking accuracy. Drawing inspiration from the connection between multimodal MOT and the iterative refinement in diffusion models, this paper proposes DM$^3$T, a novel framework that reformulates multimodal fusion as an iterative feature alignment process to generate accurate and temporally coherent object trajectories. Our approach performs iterative cross-modal harmonization through a proposed Cross-Modal Diffusion Fusion (C-MDF) module. In this process, features from both modalities provide mutual guidance, iteratively projecting them onto a shared, consistent feature manifold. This enables the learning of complementary information and achieves deeper fusion compared to conventional methods. Additionally, we introduce a plug-and-play Diffusion Refiner (DR) to enhance and refine the unified feature representation. To further improve tracking robustness, we design a Hierarchical Tracker that adaptively handles confidence estimation. DM$^3$T unifies object detection, state estimation, and data association into a comprehensive online tracking framework without complex post-processing. Extensive experiments on the VT-MOT benchmark demonstrate that our method achieves 41.7 HOTA, representing a 1.54% relative improvement over existing state-of-the-art methods. The code and models are available at https://vranlee.github.io/DM-3-T/.

Authors:Jiacheng Li, Songhe Feng
Title: Bridging Modalities via Progressive Re-alignment for Multimodal Test-Time Adaptation
Abstract:
Test-time adaptation (TTA) enables online model adaptation using only unlabeled test data, aiming to bridge the gap between source and target distributions. However, in multimodal scenarios, varying degrees of distribution shift across different modalities give rise to a complex coupling effect of unimodal shallow feature shift and cross-modal high-level semantic misalignment, posing a major obstacle to extending existing TTA methods to the multimodal field. To address this challenge, we propose a novel multimodal test-time adaptation (MMTTA) framework, termed as Bridging Modalities via Progressive Re-alignment (BriMPR). BriMPR, consisting of two progressively enhanced modules, tackles the coupling effect with a divide-and-conquer strategy. Specifically, we first decompose MMTTA into multiple unimodal feature alignment sub-problems. By leveraging the strong function approximation ability of prompt tuning, we calibrate the unimodal global feature distributions to their respective source distributions, so as to achieve the initial semantic re-alignment across modalities. Subsequently, we assign the credible pseudo-labels to combinations of masked and complete modalities, and introduce inter-modal instance-wise contrastive learning to further enhance the information interaction among modalities and refine the alignment. Extensive experiments on MMTTA tasks, including both corruption-based and real-world domain shift benchmarks, demonstrate the superiority of our method. Our source code is available at [this URL](https://github.com/Luchicken/BriMPR).

Authors:Kai Wang, Siyi Chen, Weicong Pang, Chenchen Zhang, Renjun Gao, Ziru Chen, Cheng Li, Dasa Gu, Rui Huang, Alexis Kai Hon Lau
Title: LC4-DViT: Land-cover Creation for Land-cover Classification with Deformable Vision Transformer
Abstract:
Land-cover underpins ecosystem services, hydrologic regulation, disaster-risk reduction, and evidence-based land planning; timely, accurate land-cover maps are therefore critical for environmental stewardship. Remote sensing-based land-cover classification offers a scalable route to such maps but is hindered by scarce and imbalanced annotations and by geometric distortions in high-resolution scenes. We propose LC4-DViT (Land-cover Creation for Land-cover Classification with Deformable Vision Transformer), a framework that combines generative data creation with a deformation-aware Vision Transformer. A text-guided diffusion pipeline uses GPT-4o-generated scene descriptions and super-resolved exemplars to synthesize class-balanced, high-fidelity training images, while DViT couples a DCNv4 deformable convolutional backbone with a Vision Transformer encoder to jointly capture fine-scale geometry and global context. On eight classes from the Aerial Image Dataset (AID)-Beach, Bridge, Desert, Forest, Mountain, Pond, Port, and River-DViT achieves 0.9572 overall accuracy, 0.9576 macro F1-score, and 0.9510 Cohen' s Kappa, improving over a vanilla ViT baseline (0.9274 OA, 0.9300 macro F1, 0.9169 Kappa) and outperforming ResNet50, MobileNetV2, and FlashInternImage. Cross-dataset experiments on a three-class SIRI-WHU subset (Harbor, Pond, River) yield 0.9333 overall accuracy, 0.9316 macro F1, and 0.8989 Kappa, indicating good transferability. An LLM-based judge using GPT-4o to score Grad-CAM heatmaps further shows that DViT' s attention aligns best with hydrologically meaningful structures. These results suggest that description-driven generative augmentation combined with deformation-aware transformers is a promising approach for high-resolution land-cover mapping.

Authors:Yiming Chen, Junlin Han, Tianyi Bai, Shengbang Tong, Filippos Kokkinos, Philip Torr
Title: From Pixels to Feelings: Aligning MLLMs with Human Cognitive Perception of Images
Abstract:
While Multimodal Large Language Models (MLLMs) are adept at answering what is in an image-identifying objects and describing scenes-they often lack the ability to understand how an image feels to a human observer. This gap is most evident when considering subjective cognitive properties, such as what makes an image memorable, funny, aesthetically pleasing, or emotionally evocative. To systematically address this challenge, we introduce CogIP-Bench, a comprehensive benchmark for evaluating MLLMs on such image cognitive properties. Our evaluation reveals a significant gap: current models are poorly aligned with human perception of these nuanced properties. We then demonstrate that a post-training phase can effectively bridge this gap, significantly enhancing the model's alignment with human judgments. Furthermore, we show that this learned cognitive alignment is not merely predictive but also transferable to downstream creative tasks. By integrating our cognitively-aligned MLLM into an image generation pipeline, we can guide the synthesis process to produce images that better embody desired traits, such as being more memorable or visually appealing. Our work provides a benchmark to measure this human-like perception, a post-training pipeline to enhance it, and a demonstration that this alignment unlocks more human-centric AI.

Authors:Alberto Compagnoni, Marco Morini, Sara Sarto, Federico Cocchi, Davide Caffagni, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara
Title: ReAG: Reasoning-Augmented Generation for Knowledge-based Visual Question Answering
Abstract:
Multimodal Large Language Models (MLLMs) have shown impressive capabilities in jointly understanding text, images, and videos, often evaluated via Visual Question Answering (VQA). However, even state-of-the-art MLLMs struggle with domain-specific or knowledge-intensive queries, where relevant information is underrepresented in pre-training data. Knowledge-based VQA (KB-VQA) addresses this by retrieving external documents to condition answer generation, but current retrieval-augmented approaches suffer from low precision, noisy passages, and limited reasoning. To address this, we propose ReAG, a novel Reasoning-Augmented Multimodal RAG approach that combines coarse- and fine-grained retrieval with a critic model that filters irrelevant passages, ensuring high-quality additional context. The model follows a multi-stage training strategy leveraging reinforcement learning to enhance reasoning over retrieved content, while supervised fine-tuning serves only as a cold start. Extensive experiments on Encyclopedic-VQA and InfoSeek demonstrate that ReAG significantly outperforms prior methods, improving answer accuracy and providing interpretable reasoning grounded in retrieved evidence. Our source code is publicly available at: https://github.com/aimagelab/ReAG.

Authors:Boyao Zhou, Shunyuan Zheng, Zhanfeng Liao, Zihan Ma, Hanzhang Tu, Boning Liu, Yebin Liu
Title: Splat-SAP: Feed-Forward Gaussian Splatting for Human-Centered Scene with Scale-Aware Point Map Reconstruction
Abstract:
We present Splat-SAP, a feed-forward approach to render novel views of human-centered scenes from binocular cameras with large sparsity. Gaussian Splatting has shown its promising potential in rendering tasks, but it typically necessitates per-scene optimization with dense input views. Although some recent approaches achieve feed-forward Gaussian Splatting rendering through geometry priors obtained by multi-view stereo, such approaches still require largely overlapped input views to establish the geometry prior. To bridge this gap, we leverage pixel-wise point map reconstruction to represent geometry which is robust to large sparsity for its independent view modeling. In general, we propose a two-stage learning strategy. In stage 1, we transform the point map into real space via an iterative affinity learning process, which facilitates camera control in the following. In stage 2, we project point maps of two input views onto the target view plane and refine such geometry via stereo matching. Furthermore, we anchor Gaussian primitives on this refined plane in order to render high-quality images. As a metric representation, the scale-aware point map in stage 1 is trained in a self-supervised manner without 3D supervision and stage 2 is supervised with photo-metric loss. We collect multi-view human-centered data and demonstrate that our method improves both the stability of point map reconstruction and the visual quality of free-viewpoint rendering.

Authors:Dongyang Liu, Peng Gao, David Liu, Ruoyi Du, Zhen Li, Qilong Wu, Xin Jin, Sihan Cao, Shifeng Zhang, Hongsheng Li, Steven Hoi
Title: Decoupled DMD: CFG Augmentation as the Spear, Distribution Matching as the Shield
Abstract:
Diffusion model distillation has emerged as a powerful technique for creating efficient few-step and single-step generators. Among these, Distribution Matching Distillation (DMD) and its variants stand out for their impressive performance, which is widely attributed to their core mechanism of matching the student's output distribution to that of a pre-trained teacher model. In this work, we challenge this conventional understanding. Through a rigorous decomposition of the DMD training objective, we reveal that in complex tasks like text-to-image generation, where CFG is typically required for desirable few-step performance, the primary driver of few-step distillation is not distribution matching, but a previously overlooked component we identify as CFG Augmentation (CA). We demonstrate that this term acts as the core ``engine'' of distillation, while the Distribution Matching (DM) term functions as a ``regularizer'' that ensures training stability and mitigates artifacts. We further validate this decoupling by demonstrating that while the DM term is a highly effective regularizer, it is not unique; simpler non-parametric constraints or GAN-based objectives can serve the same stabilizing function, albeit with different trade-offs. This decoupling of labor motivates a more principled analysis of the properties of both terms, leading to a more systematic and in-depth understanding. This new understanding further enables us to propose principled modifications to the distillation process, such as decoupling the noise schedules for the engine and the regularizer, leading to further performance gains. Notably, our method has been adopted by the Z-Image ( https://github.com/Tongyi-MAI/Z-Image ) project to develop a top-tier 8-step image generation model, empirically validating the generalization and robustness of our findings.

Authors:Silin Cheng, Kai Han
Title: VaMP: Variational Multi-Modal Prompt Learning for Vision-Language Models
Abstract:
Vision-language models (VLMs), such as CLIP, have shown strong generalization under zero-shot settings, yet adapting them to downstream tasks with limited supervision remains a significant challenge. Existing multi-modal prompt learning methods typically rely on fixed, shared prompts and deterministic parameters, which limits their ability to capture instance-level variation or model uncertainty across diverse tasks and domains. To tackle this issue, we propose a novel Variational Multi-Modal Prompt Learning (VaMP) framework that enables sample-specific, uncertainty-aware prompt tuning in multi-modal representation learning. VaMP generates instance-conditioned prompts by sampling from a learned posterior distribution, allowing the model to personalize its behavior based on input content. To further enhance the integration of local and global semantics, we introduce a class-aware prior derived from the instance representation and class prototype. Building upon these, we formulate prompt tuning as variational inference over latent prompt representations and train the entire framework end-to-end through reparameterized sampling. Experiments on few-shot and domain generalization benchmarks show that VaMP achieves state-of-the-art performance, highlighting the benefits of modeling both uncertainty and task structure in our method. Project page: https://visual-ai.github.io/vamp

Authors:Dian Zheng, Manyuan Zhang, Hongyu Li, Kai Zou, Hongbo Liu, Ziyu Guo, Kaituo Feng, Yexin Liu, Ying Luo, Yan Feng, Peng Pei, Xunliang Cai, Hongsheng Li
Title: Architecture Decoupling Is Not All You Need For Unified Multimodal Model
Abstract:
Unified multimodal models for image generation and understanding represent a significant step toward AGI and have attracted widespread attention from researchers. The main challenge of this task lies in the difficulty in establishing an optimal training paradigm due to inherent conflicting targets in understanding and generation tasks. To alleviate these conflicts and pursue higher performance, many researchers adopt varying degrees of model decoupling (e.g., Double image encoders, MOE/MOT architecture, or frozen MLLM). However, excessive model decoupling can lead to the loss of interleave generation ability, undermining the original intent of unified models. In this work, we aim to explore how to mitigate task conflicts without resorting to model decoupling. Firstly, we analyze why decoupling alleviates conflicts by studying the cross-modal attention behavior of models. We observe that model decoupling essentially drives models toward task-specific multimodal interaction patterns, as seen in Qwen-VL and HunyuanImage, and that the more thorough the decoupling, the more consistent the behavior becomes. Motivated by this observation, we propose Attention Interaction Alignment (AIA) loss, which explicitly learns Task-Specific multimodal interaction patterns during training. To demonstrate the generalizability of our AIA loss, we apply it to Emu3 and Janus-Pro during SFT and post-training stage respectively. Without bells and whistles, AIA not only refines cross-modal attention patterns, but also boosts both generation and understanding performance.

Authors:Di Wang, Shunyu Liu, Wentao Jiang, Fengxiang Wang, Yi Liu, Xiaolei Qin, Zhiming Luo, Chaoyang Zhou, Haonan Guo, Jing Zhang, Bo Du, Dacheng Tao, Liangpei Zhang
Title: GeoZero: Incentivizing Reasoning from Scratch on Geospatial Scenes
Abstract:
Multimodal large language models (MLLMs) have undergone rapid development in advancing geospatial scene understanding. Recent studies have sought to enhance the reasoning capabilities of remote sensing MLLMs, typically through cold-start training with elaborately curated chain-of-thought (CoT) data. However, this approach not only incurs substantial annotation costs but also introduces human biases that may limit the diversity of model reasoning. To address these challenges, we propose GeoZero, a framework that enables MLLMs to perform geospatial reasoning without any predefined CoT supervision. Specifically, we construct two datasets, GeoZero-Instruct and GeoZero-Hard. GeoZero-Instruct allows the model to acquire preliminary geospatial knowledge through supervised fine-tuning, while GeoZero-Hard stimulates deep reasoning during the subsequent reinforcement learning stage. Furthermore, we introduce Answer-Anchored Group Relative Policy Optimization (A$^2$GRPO), where the reasoning process is regularized by the model's own answers, encouraging diverse yet accurate thinking. Extensive experiments on multiple remote sensing vision-language benchmarks demonstrate that GeoZero not only surpasses existing state-of-the-art methods but also fosters universal emergent reasoning capabilities across diverse geospatial tasks. Code,data,and models will be publicly available at https://github.com/MiliLab/GeoZero.

Authors:Fukun Yin, Shiyu Liu, Yucheng Han, Zhibo Wang, Peng Xing, Rui Wang, Wei Cheng, Yingming Wang, Aojie Li, Zixin Yin, Pengtao Chen, Xiangyu Zhang, Daxin Jiang, Xianfang Zeng, Gang Yu
Title: ReasonEdit: Towards Reasoning-Enhanced Image Editing Models
Abstract:
Recent advances in image editing models have shown remarkable progress. A common architectural design couples a multimodal large language model (MLLM) encoder with a diffusion decoder, as seen in systems such as Step1X-Edit and Qwen-Image-Edit, where the MLLM encodes both the reference image and the instruction but remains frozen during training. In this work, we demonstrate that unlocking the reasoning capabilities of MLLM can further push the boundaries of editing models. Specifically, we explore two reasoning mechanisms, thinking and reflection, which enhance instruction understanding and editing accuracy. Based on that, our proposed framework enables image editing in a thinking-editing-reflection loop: the thinking mechanism leverages the world knowledge of MLLM to interpret abstract instructions, while the reflection reviews editing results, automatically corrects unintended manipulations, and identifies the stopping round. Extensive experiments demonstrate that our reasoning approach achieves significant performance gains, with improvements of ImgEdit (+4.3%), GEdit (+4.7%), and Kris (+8.2%) when initializing our DiT from the Step1X-Edit (ReasonEdit-S), and also outperforms previous open-source methods on both GEdit and Kris when integrated with Qwen-Image-Edit (ReasonEdit-Q).

Authors:Dayou Huang, Feng Xue, Xurui Li, Yu Zhou
Title: AnoRefiner: Anomaly-Aware Group-Wise Refinement for Zero-Shot Industrial Anomaly Detection
Abstract:
Zero-shot industrial anomaly detection (ZSAD) methods typically yield coarse anomaly maps as vision transformers (ViTs) extract patch-level features only. To solve this, recent solutions attempt to predict finer anomalies using features from ZSAD, but they still struggle to recover fine-grained anomalies without missed detections, mainly due to the gap between randomly synthesized training anomalies and real ones. We observe that anomaly score maps exactly provide complementary spatial cues that are largely absent from ZSAD's image features, a fact overlooked before. Inspired by this, we propose an anomaly-aware refiner (AnoRefiner) that can be plugged into most ZSAD models and improve patch-level anomaly maps to the pixel level. First, we design an anomaly refinement decoder (ARD) that progressively enhances image features using anomaly score maps, reducing the reliance on synthetic anomaly data. Second, motivated by the mass production paradigm, we propose a progressive group-wise test-time training (PGT) strategy that trains ARD in each product group for the refinement process in the next group, while staying compatible with any ZSAD method. Experiments on the MVTec AD and VisA datasets show that AnoRefiner boosts various ZSAD models by up to a 5.2\% gain in pixel-AP metrics, which can also be directly observed in many visualizations. The code will be available at https://github.com/HUST-SLOW/AnoRefiner.

Authors:Haoxi Zeng, Haoxuan Li, Yi Bin, Pengpeng Zeng, Xing Xu, Yang Yang, Heng Tao Shen
Title: HarmoCLIP: Harmonizing Global and Regional Representations in Contrastive Vision-Language Models
Abstract:
Contrastive Language-Image Pre-training (CLIP) has demonstrated remarkable generalization ability and strong performance across a wide range of vision-language tasks. However, due to the lack of region-level supervision, CLIP exhibits limited fine-grained semantic understanding. Although several methods attempt to mitigate this issue, they unintentionally disrupt the global alignment, resulting in a persistent trade-off where improving local perception simultaneously degrades global coherence. In this paper, we propose HarmoCLIP, a novel framework designed to harmonize global and region representations within CLIP. We first identify that the absence of direct alignment between local textual and visual semantics is the fundamental cause of the trade-off. To address this, HarmoCLIP introduces an explicit fine-grained semantic supervision term that directly aligns textual segments with their corresponding visual regions, effectively bridging the image region space and the textual space. To further strengthen the representation capability at the local level, our method introduces a novel Region-Language Alignment supervision strategy that promotes fine-grained semantic learning without compromising global semantic consistency. Extensive experiments demonstrate that HarmoCLIP achieves state-of-the-art (improvement up to 69.78%) performance on the global task of retrieval and yields a substantial 3.2% improvement in Top-1 accuracy on the region task of bounding-box classification, consistently outperforming prior approaches while providing a balanced, efficient, and plug-and-play solution to the global-local trade-off in CLIP. Code is available at https://github.com/Erosist/HarmoCLIP.

Authors:Jiawei Zhang, Lei Chu, Jiahao Li, Zhenyu Zang, Chong Li, Xiao Li, Xun Cao, Hao Zhu, Yan Lu
Title: Bringing Your Portrait to 3D Presence
Abstract:
We present a unified framework for reconstructing animatable 3D human avatars from a single portrait across head, half-body, and full-body inputs. Our method tackles three bottlenecks: pose- and framing-sensitive feature representations, limited scalable data, and unreliable proxy-mesh estimation. We introduce a Dual-UV representation that maps image features to a canonical UV space via Core-UV and Shell-UV branches, eliminating pose- and framing-induced token shifts. We also build a factorized synthetic data manifold combining 2D generative diversity with geometry-consistent 3D renderings, supported by a training scheme that improves realism and identity consistency. A robust proxy-mesh tracker maintains stability under partial visibility. Together, these components enable strong in-the-wild generalization. Trained only on half-body synthetic data, our model achieves state-of-the-art head and upper-body reconstruction and competitive full-body results. Extensive experiments and analyses further validate the effectiveness of our approach.

Authors:Ruoyu Feng, Yunpeng Qi, Jinming Liu, Yixin Gao, Xin Li, Xin Jin, Zhibo Chen
Title: Diff-ICMH: Harmonizing Machine and Human Vision in Image Compression with Generative Prior
Abstract:
Image compression methods are usually optimized isolatedly for human perception or machine analysis tasks. We reveal fundamental commonalities between these objectives: preserving accurate semantic information is paramount, as it directly dictates the integrity of critical information for intelligent tasks and aids human understanding. Concurrently, enhanced perceptual quality not only improves visual appeal but also, by ensuring realistic image distributions, benefits semantic feature extraction for machine tasks. Based on this insight, we propose Diff-ICMH, a generative image compression framework aiming for harmonizing machine and human vision in image compression. It ensures perceptual realism by leveraging generative priors and simultaneously guarantees semantic fidelity through the incorporation of Semantic Consistency loss (SC loss) during training. Additionally, we introduce the Tag Guidance Module (TGM) that leverages highly semantic image-level tags to stimulate the pre-trained diffusion model's generative capabilities, requiring minimal additional bit rates. Consequently, Diff-ICMH supports multiple intelligent tasks through a single codec and bitstream without any task-specific adaptation, while preserving high-quality visual experience for human perception. Extensive experimental results demonstrate Diff-ICMH's superiority and generalizability across diverse tasks, while maintaining visual appeal for human perception. Code is available at: https://github.com/RuoyuFeng/Diff-ICMH.

Authors:Shun Inadumi, Shohei Tanaka, Tosho Hirasawa, Atsushi Hashimoto, Koichiro Yoshino, Yoshitaka Ushiku
Title: SciPostGen: Bridging the Gap between Scientific Papers and Poster Layouts
Abstract:
As the number of scientific papers continues to grow, there is a demand for approaches that can effectively convey research findings, with posters serving as a key medium for presenting paper contents. Poster layouts determine how effectively research is communicated and understood, highlighting their growing importance. In particular, a gap remains in understanding how papers correspond to the layouts that present them, which calls for datasets with paired annotations at scale. To bridge this gap, we introduce SciPostGen, a large-scale dataset for understanding and generating poster layouts from scientific papers. Our analyses based on SciPostGen show that paper structures are associated with the number of layout elements in posters. Based on this insight, we explore a framework, Retrieval-Augmented Poster Layout Generation, which retrieves layouts consistent with a given paper and uses them as guidance for layout generation. We conducted experiments under two conditions: with and without layout constraints typically specified by poster creators. The results show that the retriever estimates layouts aligned with paper structures, and our framework generates layouts that also satisfy given constraints.

Authors:Xiyan Liu, Han Wang, Yuhu Wang, Junjie Cai, Zhe Cao, Jianzhong Yang, Zhen Lu
Title: RoadSceneBench: A Lightweight Benchmark for Mid-Level Road Scene Understanding
Abstract:
Understanding mid-level road semantics, which capture the structural and contextual cues that link low-level perception to high-level planning, is essential for reliable autonomous driving and digital map construction. However, existing benchmarks primarily target perception tasks such as detection or segmentation, overlooking the reasoning capabilities required to infer road topology and dynamic scene structure. To address this gap, we present RoadSceneBench, a lightweight yet information-rich benchmark designed to evaluate and advance visual reasoning in complex road environments. Unlike large-scale perception datasets, RoadSceneBench emphasizes relational understanding and structural consistency, encouraging models to capture the underlying logic of real-world road scenes. Furthermore, to enhance reasoning reliability, we propose Hierarchical Relational Reward Propagation with Temporal Consistency (HRRP-T), a training framework for Vision-Language Models (VLMs) in which reward signals adaptively promote spatial coherence and semantic alignment throughout the reasoning process. This paradigm enables models to move beyond static recognition toward geometry-aware and temporally consistent reasoning. Extensive experiments demonstrate that our method achieves state-of-the-art performance across diverse road configurations. RoadSceneBench thus provides a compact yet powerful foundation for studying mid-level road semantics and fostering structure-aware autonomous perception. Our dataset is available at https://github.com/XiyanLiu/RoadSceneBench.

Authors:Zhenglin Zhou, Fan Ma, Xiaobo Xia, Hehe Fan, Yi Yang, Tat-Seng Chua
Title: ITS3D: Inference-Time Scaling for Text-Guided 3D Diffusion Models
Abstract:
We explore inference-time scaling in text-guided 3D diffusion models to enhance generative quality without additional training. To this end, we introduce ITS3D, a framework that formulates the task as an optimization problem to identify the most effective Gaussian noise input. The framework is driven by a verifier-guided search algorithm, where the search algorithm iteratively refines noise candidates based on verifier feedback. To address the inherent challenges of 3D generation, we introduce three techniques for improved stability, efficiency, and exploration capability. 1) Gaussian normalization is applied to stabilize the search process. It corrects distribution shifts when noise candidates deviate from a standard Gaussian distribution during iterative updates. 2) The high-dimensional nature of the 3D search space increases computational complexity. To mitigate this, a singular value decomposition-based compression technique is employed to reduce dimensionality while preserving effective search directions. 3) To further prevent convergence to suboptimal local minima, a singular space reset mechanism dynamically updates the search space based on diversity measures. Extensive experiments demonstrate that ITS3D enhances text-to-3D generation quality, which shows the potential of computationally efficient search methods in generative processes. The source code is available at https://github.com/ZhenglinZhou/ITS3D.

Authors:Hongda Liu, Yunfan Liu, Changlu Wang, Yunlong Wang, Zhenan Sun
Title: SkeletonAgent: An Agentic Interaction Framework for Skeleton-based Action Recognition
Abstract:
Recent advances in skeleton-based action recognition increasingly leverage semantic priors from Large Language Models (LLMs) to enrich skeletal representations. However, the LLM is typically queried in isolation from the recognition model and receives no performance feedback. As a result, it often fails to deliver the targeted discriminative cues critical to distinguish similar actions. To overcome these limitations, we propose SkeletonAgent, a novel framework that bridges the recognition model and the LLM through two cooperative agents, i.e., Questioner and Selector. Specifically, the Questioner identifies the most frequently confused classes and supplies them to the LLM as context for more targeted guidance. Conversely, the Selector parses the LLM's response to extract precise joint-level constraints and feeds them back to the recognizer, enabling finer-grained cross-modal alignment. Comprehensive evaluations on five benchmarks, including NTU RGB+D, NTU RGB+D 120, Kinetics-Skeleton, FineGYM, and UAV-Human, demonstrate that SkeletonAgent consistently outperforms state-of-the-art benchmark methods. The code is available at https://github.com/firework8/SkeletonAgent.

Authors:Weining Ren, Hongjun Wang, Xiao Tan, Kai Han
Title: Fin3R: Fine-tuning Feed-forward 3D Reconstruction Models via Monocular Knowledge Distillation
Abstract:
We present Fin3R, a simple, effective, and general fine-tuning method for feed-forward 3D reconstruction models. The family of feed-forward reconstruction model regresses pointmap of all input images to a reference frame coordinate system, along with other auxiliary outputs, in a single forward pass. However, we find that current models struggle with fine geometry and robustness due to (\textit{i}) the scarcity of high-fidelity depth and pose supervision and (\textit{ii}) the inherent geometric misalignment from multi-view pointmap regression. Fin3R jointly tackles two issues with an extra lightweight fine-tuning step. We freeze the decoder, which handles view matching, and fine-tune only the image encoder-the component dedicated to feature extraction. The encoder is enriched with fine geometric details distilled from a strong monocular teacher model on large, unlabeled datasets, using a custom, lightweight LoRA adapter. We validate our method on a wide range of models, including DUSt3R, MASt3R, CUT3R, and VGGT. The fine-tuned models consistently deliver sharper boundaries, recover complex structures, and achieve higher geometric accuracy in both single- and multi-view settings, while adding only the tiny LoRA weights, which leave test-time memory and latency virtually unchanged. Project page: \href{http://visual-ai.github.io/fin3r}{https://visual-ai.github.io/fin3r}

Authors:Run Shao, Ziyu Li, Zhaoyang Zhang, Linrui Xu, Xinran He, Hongyuan Yuan, Bolei He, Yongxing Dai, Yiming Yan, Yijun Chen, Wang Guo, Haifeng Li
Title: Asking like Socrates: Socrates helps VLMs understand remote sensing images
Abstract:
Recent multimodal reasoning models, inspired by DeepSeek-R1, have significantly advanced vision-language systems. However, in remote sensing (RS) tasks, we observe widespread pseudo reasoning: models narrate the process of reasoning rather than genuinely reason toward the correct answer based on visual evidence. We attribute this to the Glance Effect, where a single, coarse perception of large-scale RS imagery results in incomplete understanding and reasoning based on linguistic self-consistency instead of visual evidence. To address this, we propose RS-EoT (Remote Sensing Evidence-of-Thought), a language-driven, iterative visual evidence-seeking paradigm. To instill this paradigm, we propose SocraticAgent, a self-play multi-agent system that synthesizes reasoning traces via alternating cycles of reasoning and visual inspection. To enhance and generalize these patterns, we propose a two-stage progressive RL strategy: first, RL on fine-grained Grounding tasks to enhance RS-EoT capabilities, followed by RL on RS VQA to generalize to broader understanding scenarios. Experiments show RS-EoT achieves state-of-the-art performance on multiple RS VQA and grounding benchmarks. Analyses reveal clear iterative cycles of reasoning and evidence seeking, confirming RS-EoT mitigates the Glance Effect and enables genuine evidence-grounded reasoning. Our code, data, and models are available at https://geox-lab.github.io/Asking_like_Socrates

Authors:Zhenglin Zhou, Fan Ma, Chengzhuo Gui, Xiaobo Xia, Hehe Fan, Yi Yang, Tat-Seng Chua
Title: AnchorFlow: Training-Free 3D Editing via Latent Anchor-Aligned Flows
Abstract:
Training-free 3D editing aims to modify 3D shapes based on human instructions without model finetuning. It plays a crucial role in 3D content creation. However, existing approaches often struggle to produce strong or geometrically stable edits, largely due to inconsistent latent anchors introduced by timestep-dependent noise during diffusion sampling. To address these limitations, we introduce AnchorFlow, which is built upon the principle of latent anchor consistency. Specifically, AnchorFlow establishes a global latent anchor shared between the source and target trajectories, and enforces coherence using a relaxed anchor-alignment loss together with an anchor-aligned update rule. This design ensures that transformations remain stable and semantically faithful throughout the editing process. By stabilizing the latent reference space, AnchorFlow enables more pronounced semantic modifications. Moreover, AnchorFlow is mask-free. Without mask supervision, it effectively preserves geometric fidelity. Experiments on the Eval3DEdit benchmark show that AnchorFlow consistently delivers semantically aligned and structurally robust edits across diverse editing types. Code is at https://github.com/ZhenglinZhou/AnchorFlow.

Authors:Yang Chen, Xiaowei Xu, Shuai Wang, Chenhui Zhu, Ruxue Wen, Xubin Li, Tiezheng Ge, Limin Wang
Title: Flowing Backwards: Improving Normalizing Flows via Reverse Representation Alignment
Abstract:
Normalizing Flows (NFs) are a class of generative models distinguished by a mathematically invertible architecture, where the forward pass transforms data into a latent space for density estimation, and the reverse pass generates new samples from this space. This characteristic creates an intrinsic synergy between representation learning and data generation. However, the generative quality of standard NFs is limited by poor semantic representations from log-likelihood optimization. To remedy this, we propose a novel alignment strategy that creatively leverages the invertibility of NFs: instead of regularizing the forward pass, we align the intermediate features of the generative (reverse) pass with representations from a powerful vision foundation model, demonstrating superior effectiveness over naive alignment. We also introduce a novel training-free, test-time optimization algorithm for classification, which provides a more intrinsic evaluation of the NF's embedded semantic knowledge. Comprehensive experiments demonstrate that our approach accelerates the training of NFs by over 3.3$\times$, while simultaneously delivering significant improvements in both generative quality and classification accuracy. New state-of-the-art results for NFs are established on ImageNet 64$\times$64 and 256$\times$256. Our code is available at https://github.com/MCG-NJU/FlowBack.

Authors:Wei Guo, Shunqi Mao, Zhuonan Liang, Heng Wang, Weidong Cai
Title: The Collapse of Patches
Abstract:
Observing certain patches in an image reduces the uncertainty of others. Their realization lowers the distribution entropy of each remaining patch feature, analogous to collapsing a particle's wave function in quantum mechanics. This phenomenon can intuitively be called patch collapse. To identify which patches are most relied on during a target region's collapse, we learn an autoencoder that softly selects a subset of patches to reconstruct each target patch. Graphing these learned dependencies for each patch's PageRank score reveals the optimal patch order to realize an image. We show that respecting this order benefits various masked image modeling methods. First, autoregressive image generation can be boosted by retraining the state-of-the-art model MAR. Next, we introduce a new setup for image classification by exposing Vision Transformers only to high-rank patches in the collapse order. Seeing 22\% of such patches is sufficient to achieve high accuracy. With these experiments, we propose patch collapse as a novel image modeling perspective that promotes vision efficiency. Our project is available at https://github.com/wguo-ai/CoP .

Authors:Qingtao Yu, Changlin Song, Minghao Sun, Zhengyang Yu, Vinay Kumar Verma, Soumya Roy, Sumit Negi, Hongdong Li, Dylan Campbell
Title: TTSnap: Test-Time Scaling of Diffusion Models via Noise-Aware Pruning
Abstract:
A prominent approach to test-time scaling for text-to-image diffusion models formulates the problem as a search over multiple noise seeds, selecting the one that maximizes a certain image-reward function. The effectiveness of this strategy heavily depends on the number and diversity of noise seeds explored. However, verifying each candidate is computationally expensive, because each must be fully denoised before a reward can be computed. This severely limits the number of samples that can be explored under a fixed budget. We propose test-time scaling with noise-aware pruning (TTSnap), a framework that prunes low-quality candidates without fully denoising them. The key challenge is that reward models are learned in the clean image domain, and the ranking of rewards predicted for intermediate estimates are often inconsistent with those predicted for clean images. To overcome this, we train noise-aware reward models via self-distillation to align the reward for intermediate estimates with that of the final clean images. To stabilize learning across different noise levels, we adopt a curriculum training strategy that progressively shifts the data domain from clean images to noise images. In addition, we introduce a new metric that measures reward alignment and computational budget utilization. Experiments demonstrate that our approach improves performance by over 16\% compared with existing methods, enabling more efficient and effective test-time scaling. It also provides orthogonal gains when combined with post-training techniques and local test-time optimization. Code: https://github.com/TerrysLearning/TTSnap/.

Authors:Jaeseok Lee, Jaekoo Lee
Title: Controllable 3D Object Generation with Single Image Prompt
Abstract:
Recently, the impressive generative capabilities of diffusion models have been demonstrated, producing images with remarkable fidelity. Particularly, existing methods for the 3D object generation tasks, which is one of the fastest-growing segments in computer vision, pre-dominantly use text-to-image diffusion models with textual inversion which train a pseudo text prompt to describe the given image. In practice, various text-to-image generative models employ textual inversion to learn concepts or styles of target object in the pseudo text prompt embedding space, thereby generating sophisticated outputs. However, textual inversion requires additional training time and lacks control ability. To tackle this issues, we propose two innovative methods: (1) using an off-the-shelf image adapter that generates 3D objects without textual inversion, offering enhanced control over conditions such as depth, pose, and text. (2) a depth conditioned warmup strategy to enhance 3D consistency. In experimental results, ours show qualitatively and quantitatively comparable performance and improved 3D consistency to the existing text-inversion-based alternatives. Furthermore, we conduct a user study to assess (i) how well results match the input image and (ii) whether 3D consistency is maintained. User study results show that our model outperforms the alternatives, validating the effectiveness of our approaches. Our code is available at GitHub repository:https://github.com/Seooooooogi/Control3D_IP/

Authors:Aiyinsi Zuo, Zhaoliang Zheng
Title: SemOD: Semantic Enabled Object Detection Network under Various Weather Conditions
Abstract:
In the field of autonomous driving, camera-based perception models are mostly trained on clear weather data. Models that focus on addressing specific weather challenges are unable to adapt to various weather changes and primarily prioritize their weather removal characteristics. Our study introduces a semantic-enabled network for object detection in diverse weather conditions. In our analysis, semantics information can enable the model to generate plausible content for missing areas, understand object boundaries, and preserve visual coherency and realism across both filled-in and existing portions of the image, which are conducive to image transformation and object recognition. Specific in implementation, our architecture consists of a Preprocessing Unit (PPU) and a Detection Unit (DTU), where the PPU utilizes a U-shaped net enriched by semantics to refine degraded images, and the DTU integrates this semantic information for object detection using a modified YOLO network. Our method pioneers the use of semantic data for all-weather transformations, resulting in an increase between 1.47\% to 8.80\% in mAP compared to existing methods across benchmark datasets of different weather. This highlights the potency of semantics in image enhancement and object detection, offering a comprehensive approach to improving object detection performance. Code will be available at https://github.com/EnisZuo/SemOD.

Authors:Zhen Fang, Zhuoyang Liu, Jiaming Liu, Hao Chen, Yu Zeng, Shiting Huang, Zehui Chen, Lin Chen, Shanghang Zhang, Feng Zhao
Title: DualVLA: Building a Generalizable Embodied Agent via Partial Decoupling of Reasoning and Action
Abstract:
To build a generalizable Vision-Language-Action (VLA) model with strong reasoning ability, a common strategy is to first train a specialist VLA on robot demonstrations to acquire reliable manipulation skills, and then incorporate mixed annotated robot data together with multimodal data to restore broader reasoning capabilities. However, we observe that the resulting reasoning VLA often suffers from degraded action performance compared to the specialist model before fine-tuning, a phenomenon we refer to as action degeneration. To address this issue, we propose DualVLA, which enhances action performance through carefully designed post-training while still preserving reasoning capability. We first introduce a dual-layer data pruning method that removes redundant embodied reasoning, preventing it from adversely influencing action learning. To further strengthen action generation, we design a dual-teacher adaptive distillation strategy that assigns different supervision signals to different data domains while maintaining reasoning ability. To fill the evaluation gap for generalist VLAs, we also propose VLA Score, which decouples VLA capability into reasoning, intention, action, and alignment dimensions for a more fine-grained assessment. Experiments show that DualVLA achieves an average success rate of 61.0 in SimplerEnv and an average score of 65.4 across eight competitive multimodal benchmarks, demonstrating a stronger balance between precise action execution and multimodal understanding. Project Website: https://costaliya.github.io/DualVLA/.

Authors:Xiang Li, Zirui Wang, Zixuan Huang, James M. Rehg
Title: Cue3D: Quantifying the Role of Image Cues in Single-Image 3D Generation
Abstract:
Humans and traditional computer vision methods rely on a diverse set of monocular cues to infer 3D structure from a single image, such as shading, texture, silhouette, etc. While recent deep generative models have dramatically advanced single-image 3D generation, it remains unclear which image cues these methods actually exploit. We introduce Cue3D, the first comprehensive, model-agnostic framework for quantifying the influence of individual image cues in single-image 3D generation. Our unified benchmark evaluates seven state-of-the-art methods, spanning regression-based, multi-view, and native 3D generative paradigms. By systematically perturbing cues such as shading, texture, silhouette, perspective, edges, and local continuity, we measure their impact on 3D output quality. Our analysis reveals that shape meaningfulness, not texture, dictates generalization. Geometric cues, particularly shading, are crucial for 3D generation. We further identify over-reliance on provided silhouettes and diverse sensitivities to cues such as perspective and local continuity across model families. By dissecting these dependencies, Cue3D advances our understanding of how modern 3D networks leverage classical vision cues, and offers directions for developing more transparent, robust, and controllable single-image 3D generation models.

Authors:Li Xu, Xianchao Xiu
Title: GoPrune: Accelerated Structured Pruning with $\ell_{2,p}$-Norm Optimization
Abstract:
Convolutional neural networks (CNNs) suffer from rapidly increasing storage and computational costs as their depth grows, which severely hinders their deployment on resource-constrained edge devices. Pruning is a practical approach for network compression, among which structured pruning is the most effective for inference acceleration. Although existing work has applied the $\ell_p$-norm to pruning, it only considers unstructured pruning with $p\in (0, 1)$ and has low computational efficiency. To overcome these limitations, we propose an accelerated structured pruning method called GoPrune. Our method employs the $\ell_{2,p}$-norm for sparse network learning, where the value of $p$ is extended to $[0, 1)$. Moreover, we develop an efficient optimization algorithm based on the proximal alternating minimization (PAM), and the resulting subproblems enjoy closed-form solutions, thus improving compression efficiency. Experiments on the CIFAR datasets using ResNet and VGG models demonstrate the superior performance of the proposed method in network pruning. Our code is available at https://github.com/xianchaoxiu/GoPrune.

Authors:Mingzhe Li, Renhao Zhang, Zhiyang Wen, Siqi Pan, Bruno Castro da Silva, Juan Zhai, Shiqing Ma
Title: PROMPTMINER: Black-Box Prompt Stealing against Text-to-Image Generative Models via Reinforcement Learning and Fuzz Optimization
Abstract:
Text-to-image (T2I) generative models such as Stable Diffusion and FLUX can synthesize realistic, high-quality images directly from textual prompts. The resulting image quality depends critically on well-crafted prompts that specify both subjects and stylistic modifiers, which have become valuable digital assets. However, the rising value and ubiquity of high-quality prompts expose them to security and intellectual-property risks. One key threat is the prompt stealing attack, i.e., the task of recovering the textual prompt that generated a given image. Prompt stealing enables unauthorized extraction and reuse of carefully engineered prompts, yet it can also support beneficial applications such as data attribution, model provenance analysis, and watermarking validation. Existing approaches often assume white-box gradient access, require large-scale labeled datasets for supervised training, or rely solely on captioning without explicit optimization, limiting their practicality and adaptability. To address these challenges, we propose PROMPTMINER, a black-box prompt stealing framework that decouples the task into two phases: (1) a reinforcement learning-based optimization phase to reconstruct the primary subject, and (2) a fuzzing-driven search phase to recover stylistic modifiers. Experiments across multiple datasets and diffusion backbones demonstrate that PROMPTMINER achieves superior results, with CLIP similarity up to 0.958 and textual alignment with SBERT up to 0.751, surpassing all baselines. Even when applied to in-the-wild images with unknown generators, it outperforms the strongest baseline by 7.5 percent in CLIP similarity, demonstrating better generalization. Finally, PROMPTMINER maintains strong performance under defensive perturbations, highlighting remarkable robustness. Code: https://github.com/aaFrostnova/PromptMiner

Authors:Zhenxiang Lin, Maryam Haghighat, Will Browne, Dimity Miller
Title: Intra-Class Probabilistic Embeddings for Uncertainty Estimation in Vision-Language Models
Abstract:
Vision-language models (VLMs), such as CLIP, have gained popularity for their strong open vocabulary classification performance, but they are prone to assigning high confidence scores to misclassifications, limiting their reliability in safety-critical applications. We introduce a training-free, post-hoc uncertainty estimation method for contrastive VLMs that can be used to detect erroneous predictions. The key to our approach is to measure visual feature consistency within a class, using feature projection combined with multivariate Gaussians to create class-specific probabilistic embeddings. Our method is VLM-agnostic, requires no fine-tuning, demonstrates robustness to distribution shift, and works effectively with as few as 10 training images per class. Extensive experiments on ImageNet, Flowers102, Food101, EuroSAT and DTD show state-of-the-art error detection performance, significantly outperforming both deterministic and probabilistic VLM baselines. Code is available at https://github.com/zhenxianglin/ICPE.

Authors:Sen Fang, Hongbin Zhong, Yalin Feng, Dimitris N. Metaxas
Title: StreamFlow: Theory, Algorithm, and Implementation for High-Efficiency Rectified Flow Generation
Abstract:
New technologies such as Rectified Flow and Flow Matching have significantly improved the performance of generative models in the past two years, especially in terms of control accuracy, generation quality, and generation efficiency. However, due to some differences in its theory, design, and existing diffusion models, the existing acceleration methods cannot be directly applied to the Rectified Flow model. In this article, we have comprehensively implemented an overall acceleration pipeline from the aspects of theory, design, and reasoning strategies. This pipeline uses new methods such as batch processing with a new velocity field, vectorization of heterogeneous time-step batch processing, and dynamic TensorRT compilation for the new methods to comprehensively accelerate related models based on flow models. Currently, the existing public methods usually achieve an acceleration of 18%, while experiments have proved that our new method can accelerate the 512*512 image generation speed to up to 611%, which is far beyond the current non-generalized acceleration methods.

Authors:Apratim Bhattacharyya, Bicheng Xu, Sanjay Haresh, Reza Pourreza, Litian Liu, Sunny Panchal, Pulkit Madan, Leonid Sigal, Roland Memisevic
Title: Can Multi-Modal LLMs Provide Live Step-by-Step Task Guidance?
Abstract:
Multi-modal Large Language Models (LLM) have advanced conversational abilities but struggle with providing live, interactive step-by-step guidance, a key capability for future AI assistants. Effective guidance requires not only delivering instructions but also detecting their successful execution, as well as identifying and alerting users to mistakes, all of which has to happen in real-time. This requires models that are not turn-based, but that can react asynchronously to a video stream, as well as video data showing users performing tasks including mistakes and their corrections. To this end, we introduce Qualcomm Interactive Cooking, a new benchmark and dataset built upon CaptainCook4D, which contains user mistakes during task execution. Our dataset and benchmark features densely annotated, timed instructions and feedback messages, specifically including mistake alerts precisely timestamped to their visual occurrence in the video. We evaluate state-of-the-art multi-modal LLMs on the Qualcomm Interactive Cooking benchmark and introduce LiveMamba, a streaming multi-modal LLM designed for interactive instructional guidance. This work provides the first dedicated benchmark and a strong baseline for developing and evaluating on live, situated coaching.

Authors:Futian Wang, Chaoliu Weng, Xiao Wang, Zhen Chen, Zhicheng Zhao, Jin Tang
Title: DialBench: Towards Accurate Reading Recognition of Pointer Meter using Large Foundation Models
Abstract:
The precise reading recognition of pointer meters plays a key role in smart power systems, but existing approaches remain fragile due to challenges like reflections, occlusions, dynamic viewing angles, and overly between thin pointers and scale markings. Up to now, this area still lacks large-scale datasets to support the development of robust algorithms. To address these challenges, this paper first presents a new large-scale benchmark dataset for dial reading, termed RPM-10K, which contains 10730 meter images that fully reflect the aforementioned key challenges. Built upon the dataset, we propose a novel vision-language model for pointer meter reading recognition, termed MRLM, based on physical relation injection. Instead of exhaustively learning image-level correlations, MRLM explicitly encodes the geometric and causal relationships between the pointer and the scale, aligning perception with physical reasoning in the spirit of world-model perspectives. Through cross-attentional fusion and adaptive expert selection, the model learns to interpret dial configurations and generate precise numeric readings. Extensive experiments fully validated the effectiveness of our proposed framework on the newly proposed benchmark dataset. Both the dataset and source code will be released on https://github.com/Event-AHU/DialBench

Authors:Yupei Zhang, Yating Huang, Wanming Hu, Lequan Yu, Hujun Yin, Chao Li
Title: Interpretable Multimodal Cancer Prototyping with Whole Slide Images and Incompletely Paired Genomics
Abstract:
Multimodal approaches that integrate histology and genomics hold strong potential for precision oncology. However, phenotypic and genotypic heterogeneity limits the quality of intra-modal representations and hinders effective inter-modal integration. Furthermore, most existing methods overlook real-world clinical scenarios where genomics may be partially missing or entirely unavailable. We propose a flexible multimodal prototyping framework to integrate whole slide images and incomplete genomics for precision oncology. Our approach has four key components: 1) Biological Prototyping using text prompting and prototype-wise weighting; 2) Multiview Alignment through sample- and distribution-wise alignments; 3) Bipartite Fusion to capture both shared and modality-specific information for multimodal fusion; and 4) Semantic Genomics Imputation to handle missing data. Extensive experiments demonstrate the consistent superiority of the proposed method compared to other state-of-the-art approaches on multiple downstream tasks. The code is available at https://github.com/helenypzhang/Interpretable-Multimodal-Prototyping.

Authors:Yusuf Dalva, Guocheng Gordon Qian, Maya Goldenberg, Tsai-Shien Chen, Kfir Aberman, Sergey Tulyakov, Pinar Yanardag, Kuan-Chieh Jackson Wang
Title: Canvas-to-Image: Compositional Image Generation with Multimodal Controls
Abstract:
While modern diffusion models excel at generating high-quality and diverse images, they still struggle with high-fidelity compositional and multimodal control, particularly when users simultaneously specify text prompts, subject references, spatial arrangements, pose constraints, and layout annotations. We introduce Canvas-to-Image, a unified framework that consolidates these heterogeneous controls into a single canvas interface, enabling users to generate images that faithfully reflect their intent. Our key idea is to encode diverse control signals into a single composite canvas image that the model can directly interpret for integrated visual-spatial reasoning. We further curate a suite of multi-task datasets and propose a Multi-Task Canvas Training strategy that optimizes the diffusion model to jointly understand and integrate heterogeneous controls into text-to-image generation within a unified learning paradigm. This joint training enables Canvas-to-Image to reason across multiple control modalities rather than relying on task-specific heuristics, and it generalizes well to multi-control scenarios during inference. Extensive experiments show that Canvas-to-Image significantly outperforms state-of-the-art methods in identity preservation and control adherence across challenging benchmarks, including multi-person composition, pose-controlled composition, layout-constrained generation, and multi-control generation.

Authors:Wenbo Hu, Jingli Lin, Yilin Long, Yunlong Ran, Lihan Jiang, Yifan Wang, Chenming Zhu, Runsen Xu, Tai Wang, Jiangmiao Pang
Title: G$^2$VLM: Geometry Grounded Vision Language Model with Unified 3D Reconstruction and Spatial Reasoning
Abstract:
Vision-Language Models (VLMs) still lack robustness in spatial intelligence, demonstrating poor performance on spatial understanding and reasoning tasks. We attribute this gap to the absence of a visual geometry learning process capable of reconstructing 3D space from 2D images. We present G$^2$VLM, a geometry grounded vision-language model that bridges two fundamental aspects of spatial intelligence: spatial 3D reconstruction and spatial understanding. G$^2$VLM natively leverages learned 3D visual geometry features to directly predict 3D attributes and enhance spatial reasoning tasks via in-context learning and interleaved reasoning. Our unified design is highly scalable for spatial understanding: it trains on abundant multi-view image and video data, while simultaneously leveraging the benefits of 3D visual priors that are typically only derived from hard-to-collect annotations. Experimental results demonstrate G$^2$VLM is proficient in both tasks, achieving comparable results to state-of-the-art feed-forward 3D reconstruction models and achieving better or competitive results across spatial understanding and reasoning tasks. By unifying a semantically strong VLM with low-level 3D vision tasks, we hope G$^2$VLM can serve as a strong baseline for the community and unlock more future applications, such as 3D scene editing.

Authors:Lorenzo Shaikewitz, Charis Georgiou, Luca Carlone
Title: Uncertainty Quantification for Visual Object Pose Estimation
Abstract:
Quantifying the uncertainty of an object's pose estimate is essential for robust control and planning. Although pose estimation is a well-studied robotics problem, attaching statistically rigorous uncertainty is not well understood without strict distributional assumptions. We develop distribution-free pose uncertainty bounds about a given pose estimate in the monocular setting. Our pose uncertainty only requires high probability noise bounds on pixel detections of 2D semantic keypoints on a known object. This noise model induces an implicit, non-convex set of pose uncertainty constraints. Our key contribution is SLUE (S-Lemma Uncertainty Estimation), a convex program to reduce this set to a single ellipsoidal uncertainty bound that is guaranteed to contain the true object pose with high probability. SLUE solves a relaxation of the minimum volume bounding ellipsoid problem inspired by the celebrated S-lemma. It requires no initial guess of the bound's shape or size and is guaranteed to contain the true object pose with high probability. For tighter uncertainty bounds at the same confidence, we extend SLUE to a sum-of-squares relaxation hierarchy which is guaranteed to converge to the minimum volume ellipsoidal uncertainty bound for a given set of keypoint constraints. We show this pose uncertainty bound can easily be projected to independent translation and axis-angle orientation bounds. We evaluate SLUE on two pose estimation datasets and a real-world drone tracking scenario. Compared to prior work, SLUE generates substantially smaller translation bounds and competitive orientation bounds. We release code at https://github.com/MIT-SPARK/PoseUncertaintySets.

Authors:Ruisheng Han, Kanglei Zhou, Shuang Chen, Amir Atapour-Abarghouei, Hubert P. H. Shum
Title: CaFlow: Enhancing Long-Term Action Quality Assessment with Causal Counterfactual Flow
Abstract:
Action Quality Assessment (AQA) predicts fine-grained execution scores from action videos and is widely applied in sports, rehabilitation, and skill evaluation. Long-term AQA, as in figure skating or rhythmic gymnastics, is especially challenging since it requires modeling extended temporal dynamics while remaining robust to contextual confounders. Existing approaches either depend on costly annotations or rely on unidirectional temporal modeling, making them vulnerable to spurious correlations and unstable long-term representations. To this end, we propose CaFlow, a unified framework that integrates counterfactual de-confounding with bidirectional time-conditioned flow. The Causal Counterfactual Regularization (CCR) module disentangles causal and confounding features in a self-supervised manner and enforces causal robustness through counterfactual interventions, while the BiT-Flow module models forward and backward dynamics with a cycle-consistency constraint to produce smoother and more coherent representations. Extensive experiments on multiple long-term AQA benchmarks demonstrate that CaFlow achieves state-of-the-art performance. Code is available at https://github.com/Harrison21/CaFlow

Authors:Anantha Padmanaban Krishna Kumar
Title: Mechanisms of Non-Monotonic Scaling in Vision Transformers
Abstract:
Deeper Vision Transformers often perform worse than shallower ones, which challenges common scaling assumptions. Through a systematic empirical analysis of ViT-S, ViT-B, and ViT-L on ImageNet, we identify a consistent three-phase Cliff-Plateau-Climb pattern that governs how representations evolve with depth. We observe that better performance is associated with progressive marginalization of the [CLS] token, originally designed as a global aggregation hub, in favor of distributed consensus among patch tokens. We quantify patterns of information mixing with an Information Scrambling Index, and show that in ViT-L the information-task tradeoff emerges roughly 10 layers later than in ViT-B, and that these additional layers correlate with increased information diffusion rather than improved task performance. Taken together, these results suggest that transformer architectures in this regime may benefit more from carefully calibrated depth that executes clean phase transitions than from simply increasing parameter count. The Information Scrambling Index provides a useful diagnostic for existing models and suggests a potential design target for future architectures. All code is available at: https://github.com/AnanthaPadmanaban-KrishnaKumar/Cliff-Plateau-Climb.

Authors:Haotian Xue, Qi Chen, Zhonghao Wang, Xun Huang, Eli Shechtman, Jinrong Xie, Yongxin Chen
Title: MoGAN: Improving Motion Quality in Video Diffusion via Few-Step Motion Adversarial Post-Training
Abstract:
Video diffusion models achieve strong frame-level fidelity but still struggle with motion coherence, dynamics and realism, often producing jitter, ghosting, or implausible dynamics. A key limitation is that the standard denoising MSE objective provides no direct supervision on temporal consistency, allowing models to achieve low loss while still generating poor motion. We propose MoGAN, a motion-centric post-training framework that improves motion realism without reward models or human preference data. Built atop a 3-step distilled video diffusion model, we train a DiT-based optical-flow discriminator to differentiate real from generated motion, combined with a distribution-matching regularizer to preserve visual fidelity. With experiments on Wan2.1-T2V-1.3B, MoGAN substantially improves motion quality across benchmarks. On VBench, MoGAN boosts motion score by +7.3% over the 50-step teacher and +13.3% over the 3-step DMD model. On VideoJAM-Bench, MoGAN improves motion score by +7.4% over the teacher and +8.8% over DMD, while maintaining comparable or even better aesthetic and image-quality scores. A human study further confirms that MoGAN is preferred for motion quality (52% vs. 38% for the teacher; 56% vs. 29% for DMD). Overall, MoGAN delivers significantly more realistic motion without sacrificing visual fidelity or efficiency, offering a practical path toward fast, high-quality video generation. Project webpage is: https://xavihart.github.io/mogan.

Authors:Pierre Adorni, Minh-Tan Pham, Stéphane May, Sébastien Lefèvre
Title: EoS-FM: Can an Ensemble of Specialist Models act as a Generalist Feature Extractor?
Abstract:
Recent advances in foundation models have shown great promise in domains such as natural language processing and computer vision, and similar efforts are now emerging in the Earth Observation community. These models aim to generalize across tasks with limited supervision, reducing the need for training separate models for each task. However, current strategies, which largely focus on scaling model size and dataset volume, require prohibitive computational and data resources, limiting accessibility to only a few large institutions. Moreover, this paradigm of ever-larger models stands in stark contrast with the principles of sustainable and environmentally responsible AI, as it leads to immense carbon footprints and resource inefficiency. In this work, we present a novel and efficient alternative: an Ensemble-of-Specialists framework for building Remote Sensing Foundation Models (RSFMs). Our method decomposes the training process into lightweight, task-specific ConvNeXtV2 specialists that can be frozen and reused. This modular approach offers strong advantages in efficiency, interpretability, and extensibility. Moreover, it naturally supports federated training, pruning, and continuous specialist integration, making it particularly well-suited for collaborative and resource-constrained settings. Our framework sets a new direction for building scalable and efficient RSFMs. All codes and pretrained models are available at https://github.com/pierreadorni/EoS-FM.

Authors:Yiyang Jiang, Guangwu Qian, Jiaxin Wu, Qi Huang, Qing Li, Yongkang Wu, Xiao-Yong Wei
Title: Self-Paced Learning for Images of Antinuclear Antibodies
Abstract:
Antinuclear antibody (ANA) testing is a crucial method for diagnosing autoimmune disorders, including lupus, Sjögren's syndrome, and scleroderma. Despite its importance, manual ANA detection is slow, labor-intensive, and demands years of training. ANA detection is complicated by over 100 coexisting antibody types, resulting in vast fluorescent pattern combinations. Although machine learning and deep learning have enabled automation, ANA detection in real-world clinical settings presents unique challenges as it involves multi-instance, multi-label (MIML) learning. In this paper, a novel framework for ANA detection is proposed that handles the complexities of MIML tasks using unaltered microscope images without manual preprocessing. Inspired by human labeling logic, it identifies consistent ANA sub-regions and assigns aggregated labels accordingly. These steps are implemented using three task-specific components: an instance sampler, a probabilistic pseudo-label dispatcher, and self-paced weight learning rate coefficients. The instance sampler suppresses low-confidence instances by modeling pattern confidence, while the dispatcher adaptively assigns labels based on instance distinguishability. Self-paced learning adjusts training according to empirical label observations. Our framework overcomes limitations of traditional MIML methods and supports end-to-end optimization. Extensive experiments on one ANA dataset and three public medical MIML benchmarks demonstrate the superiority of our framework. On the ANA dataset, our model achieves up to +7.0% F1-Macro and +12.6% mAP gains over the best prior method, setting new state-of-the-art results. It also ranks top-2 across all key metrics on public datasets, reducing Hamming loss and one-error by up to 18.2% and 26.9%, respectively. The source code can be accessed at https://github.com/fletcherjiang/ANA-SelfPacedLearning.

Authors:Lorenzo Pellegrini, Serafino Pandolfini, Davide Maltoni, Matteo Ferrara, Marco Prati, Marco Ramilli
Title: Generalized Design Choices for Deepfake Detectors
Abstract:
The effectiveness of deepfake detection methods often depends less on their core design and more on implementation details such as data preprocessing, augmentation strategies, and optimization techniques. These factors make it difficult to fairly compare detectors and to understand which factors truly contribute to their performance. To address this, we systematically investigate how different design choices influence the accuracy and generalization capabilities of deepfake detection models, focusing on aspects related to training, inference, and incremental updates. By isolating the impact of individual factors, we aim to establish robust, architecture-agnostic best practices for the design and development of future deepfake detection systems. Our experiments identify a set of design choices that consistently improve deepfake detection and enable state-of-the-art performance on the AI-GenBench benchmark.

Authors:Shizhe Sun, Wataru Ohyama
Title: CanKD: Cross-Attention-based Non-local operation for Feature-based Knowledge Distillation
Abstract:
We propose Cross-Attention-based Non-local Knowledge Distillation (CanKD), a novel feature-based knowledge distillation framework that leverages cross-attention mechanisms to enhance the knowledge transfer process. Unlike traditional self-attention-based distillation methods that align teacher and student feature maps independently, CanKD enables each pixel in the student feature map to dynamically consider all pixels in the teacher feature map. This non-local knowledge transfer more thoroughly captures pixel-wise relationships, improving feature representation learning. Our method introduces only an additional loss function to achieve superior performance compared with existing attention-guided distillation methods. Extensive experiments on object detection and image segmentation tasks demonstrate that CanKD outperforms state-of-the-art feature and hybrid distillation methods. These experimental results highlight CanKD's potential as a new paradigm for attention-guided distillation in computer vision tasks. Code is available at https://github.com/tori-hotaru/CanKD

Authors:Shuai Zhang, Bao Tang, Siyuan Yu, Yueting Zhu, Jingfeng Yao, Ya Zou, Shanglin Yuan, Li Yu, Wenyu Liu, Xinggang Wang
Title: MobileI2V: Fast and High-Resolution Image-to-Video on Mobile Devices
Abstract:
Recently, video generation has witnessed rapid advancements, drawing increasing attention to image-to-video (I2V) synthesis on mobile devices. However, the substantial computational complexity and slow generation speed of diffusion models pose significant challenges for real-time, high-resolution video generation on resource-constrained mobile devices. In this work, we propose MobileI2V, a 270M lightweight diffusion model for real-time image-to-video generation on mobile devices. The core lies in: (1) We analyzed the performance of linear attention modules and softmax attention modules on mobile devices, and proposed a linear hybrid architecture denoiser that balances generation efficiency and quality. (2) We design a time-step distillation strategy that compresses the I2V sampling steps from more than 20 to only two without significant quality loss, resulting in a 10-fold increase in generation speed. (3) We apply mobile-specific attention optimizations that yield a 2-fold speed-up for attention operations during on-device inference. MobileI2V enables, for the first time, fast 720p image-to-video generation on mobile devices, with quality comparable to existing models. Under one-step conditions, the generation speed of each frame of 720p video is less than 100 ms. Our code is available at: https://github.com/hustvl/MobileI2V.

Authors:Futian Wang, Fan Zhang, Xiao Wang, Mengqi Wang, Dexing Huang, Jin Tang
Title: EvRainDrop: HyperGraph-guided Completion for Effective Frame and Event Stream Aggregation
Abstract:
Event cameras produce asynchronous event streams that are spatially sparse yet temporally dense. Mainstream event representation learning algorithms typically use event frames, voxels, or tensors as input. Although these approaches have achieved notable progress, they struggle to address the undersampling problem caused by spatial sparsity. In this paper, we propose a novel hypergraph-guided spatio-temporal event stream completion mechanism, which connects event tokens across different times and spatial locations via hypergraphs and leverages contextual information message passing to complete these sparse events. The proposed method can flexibly incorporate RGB tokens as nodes in the hypergraph within this completion framework, enabling multi-modal hypergraph-based information completion. Subsequently, we aggregate hypergraph node information across different time steps through self-attention, enabling effective learning and fusion of multi-modal features. Extensive experiments on both single- and multi-label event classification tasks fully validated the effectiveness of our proposed framework. The source code of this paper will be released on https://github.com/Event-AHU/EvRainDrop.

Authors:Futian Wang, Mengqi Wang, Xiao Wang, Haowen Wang, Jin Tang
Title: SAM Guided Semantic and Motion Changed Region Mining for Remote Sensing Change Captioning
Abstract:
Remote sensing change captioning is an emerging and popular research task that aims to describe, in natural language, the content of interest that has changed between two remote sensing images captured at different times. Existing methods typically employ CNNs/Transformers to extract visual representations from the given images or incorporate auxiliary tasks to enhance the final results, with weak region awareness and limited temporal alignment. To address these issues, this paper explores the use of the SAM (Segment Anything Model) foundation model to extract region-level representations and inject region-of-interest knowledge into the captioning framework. Specifically, we employ a CNN/Transformer model to extract global-level vision features, leverage the SAM foundation model to delineate semantic- and motion-level change regions, and utilize a specially constructed knowledge graph to provide information about objects of interest. These heterogeneous sources of information are then fused via cross-attention, and a Transformer decoder is used to generate the final natural language description of the observed changes. Extensive experimental results demonstrate that our method achieves state-of-the-art performance across multiple widely used benchmark datasets. The source code of this paper will be released on https://github.com/Event-AHU/SAM_ChangeCaptioning

Authors:Qixun Wang, Yang Shi, Yifei Wang, Yuanxing Zhang, Pengfei Wan, Kun Gai, Xianghua Ying, Yisen Wang
Title: Monet: Reasoning in Latent Visual Space Beyond Images and Language
Abstract:
"Thinking with images" has emerged as an effective paradigm for advancing visual reasoning, extending beyond text-only chains of thought by injecting visual evidence into intermediate reasoning steps. However, existing methods fall short of human-like abstract visual thinking, as their flexibility is fundamentally limited by external tools. In this work, we introduce Monet, a training framework that enables multimodal large language models (MLLMs) to reason directly within the latent visual space by generating continuous embeddings that function as intermediate visual thoughts. We identify two core challenges in training MLLMs for latent visual reasoning: high computational cost in latent-vision alignment and insufficient supervision over latent embeddings, and address them with a three-stage distillation-based supervised fine-tuning (SFT) pipeline. We further reveal a limitation of applying GRPO to latent reasoning: it primarily enhances text-based reasoning rather than latent reasoning. To overcome this, we propose VLPO (Visual-latent Policy Optimization), a reinforcement learning method that explicitly incorporates latent embeddings into policy gradient updates. To support SFT, we construct Monet-SFT-125K, a high-quality text-image interleaved CoT dataset containing 125K real-world, chart, OCR, and geometry CoTs. Our model, Monet-7B, shows consistent gains across real-world perception and reasoning benchmarks and exhibits strong out-of-distribution generalization on challenging abstract visual reasoning tasks. We also empirically analyze the role of each training component and discuss our early unsuccessful attempts, providing insights for future developments in visual latent reasoning. Our model, data, and code are available at https://github.com/NOVAglow646/Monet.

Authors:Hanyang Li, Yuheng Jia, Hui Liu, Junhui Hou
Title: You Can Trust Your Clustering Model: A Parameter-free Self-Boosting Plug-in for Deep Clustering
Abstract:
Recent deep clustering models have produced impressive clustering performance. However, a common issue with existing methods is the disparity between global and local feature structures. While local structures typically show strong consistency and compactness within class samples, global features often present intertwined boundaries and poorly separated clusters. Motivated by this observation, we propose DCBoost, a parameter-free plug-in designed to enhance the global feature structures of current deep clustering models. By harnessing reliable local structural cues, our method aims to elevate clustering performance effectively. Specifically, we first identify high-confidence samples through adaptive $k$-nearest neighbors-based consistency filtering, aiming to select a sufficient number of samples with high label reliability to serve as trustworthy anchors for self-supervision. Subsequently, these samples are utilized to compute a discriminative loss, which promotes both intra-class compactness and inter-class separability, to guide network optimization. Extensive experiments across various benchmark datasets showcase that our DCBoost significantly improves the clustering performance of diverse existing deep clustering models. Notably, our method improves the performance of current state-of-the-art baselines (e.g., ProPos) by more than 3% and amplifies the silhouette coefficient by over $7\times$. Code is available at .

Authors:Zheng Li, Yibing Song, Xin Zhang, Lei Luo, Xiang Li, Jian Yang
Title: AnchorOPT: Towards Optimizing Dynamic Anchors for Adaptive Prompt Learning
Abstract:
Existing prompt learning methods, which are built upon CLIP models, leverage textual tokens as anchors to guide the learnable soft tokens. This guidance improves CLIP generalizations. However, these anchors-static in both value and position-lack cross-task and stage-adaptive flexibility. To address this limitation, we propose AnchorOPT, a dynamic anchor-based prompt learning framework. Specifically, AnchorOPT introduces dynamism in two key dimensions: (i) anchor values eschew handcrafted explicit textual tokens (e.g., "shape", "color"), instead learning dynamically from task-specific data; and (ii) the positional relationship between anchor and soft tokens is no longer fixed but adaptively optimized via a learnable position matrix conditioned on the training stage and task context. Training occurs in two stages: we first learn the anchor tokens, then freeze and transfer them to the second stage for optimization of soft tokens and the position matrix. Extensive experiments demonstrate that using only a simple learnable anchor and position matrix achieves performance comparable to or exceeding some methods incorporating additional learnable modules or regularization techniques. As a plug-and-play module, AnchorOPT integrates seamlessly into existing frameworks, yielding consistent performance gains across diverse datasets. Code is publicly available at https://github.com/zhengli97/ATPrompt.

Authors:Changlin Li, Jiawei Zhang, Shuhao Liu, Sihao Lin, Zeyi Shi, Zhihui Li, Xiaojun Chang
Title: Efficient Training for Human Video Generation with Entropy-Guided Prioritized Progressive Learning
Abstract:
Human video generation has advanced rapidly with the development of diffusion models, but the high computational cost and substantial memory consumption associated with training these models on high-resolution, multi-frame data pose significant challenges. In this paper, we propose Entropy-Guided Prioritized Progressive Learning (Ent-Prog), an efficient training framework tailored for diffusion models on human video generation. First, we introduce Conditional Entropy Inflation (CEI) to assess the importance of different model components on the target conditional generation task, enabling prioritized training of the most critical components. Second, we introduce an adaptive progressive schedule that adaptively increases computational complexity during training by measuring the convergence efficiency. Ent-Prog reduces both training time and GPU memory consumption while maintaining model performance. Extensive experiments across three datasets, demonstrate the effectiveness of Ent-Prog, achieving up to 2.2$\times$ training speedup and 2.4$\times$ GPU memory reduction without compromising generative performance.

Authors:Ziyi Chen, Yingnan Guo, Zedong Chu, Minghua Luo, Yanfen Shen, Mingchao Sun, Junjun Hu, Shichao Xie, Kuan Yang, Pei Shi, Zhining Gu, Lu Liu, Honglin Han, Xiaolong Wu, Mu Xu, Yu Zhang
Title: SocialNav: Training Human-Inspired Foundation Model for Socially-Aware Embodied Navigation
Abstract:
Embodied navigation that adheres to social norms remains an open research challenge. Our \textbf{SocialNav} is a foundational model for socially-aware navigation with a hierarchical "brain-action" architecture, capable of understanding high-level social norms and generating low-level, socially compliant trajectories. To enable such dual capabilities, we construct the SocNav Dataset, a large-scale collection of 7 million samples, comprising (1) a Cognitive Activation Dataset providing social reasoning signals such as chain-of-thought explanations and social traversability prediction, and (2) an Expert Trajectories Pyramid aggregating diverse navigation demonstrations from internet videos, simulated environments, and real-world robots. A multi-stage training pipeline is proposed to gradually inject and refine navigation intelligence: we first inject general navigation skills and social norms understanding into the model via imitation learning, and then refine such skills through a deliberately designed Socially-Aware Flow Exploration GRPO (SAFE-GRPO), the first flow-based reinforcement learning framework for embodied navigation that explicitly rewards socially compliant behaviors. SocialNav achieves +38% success rate and +46% social compliance rate compared to the state-of-the-art method, demonstrating strong gains in both navigation performance and social compliance. Our project page: https://amap-eai.github.io/SocialNav/

Authors:Xintian Mao, Haofei Song, Yin-Nian Liu, Qingli Li, Yan Wang
Title: DeepRFTv2: Kernel-level Learning for Image Deblurring
Abstract:
It is well-known that if a network aims to learn how to deblur, it should understand the blur process. Blurring is naturally caused by the convolution of the sharp image with the blur kernel. Thus, allowing the network to learn the blur process in the kernel-level can significantly improve the image deblurring performance. But, current deep networks are still at the pixel-level learning stage, either performing end-to-end pixel-level restoration or stage-wise pseudo kernel-level restoration, failing to enable the deblur model to understand the essence of the blur. To this end, we propose Fourier Kernel Estimator (FKE), which considers the activation operation in Fourier space and converts the convolution problem in the spatial domain to a multiplication problem in Fourier space. Our FKE, jointly optimized with the deblur model, enables the network to learn the kernel-level blur process with low complexity and without any additional supervision. Furthermore, we change the convolution object of the kernel from ``image" to network extracted ``feature", whose rich semantic and structural information is more suitable to blur process learning. With the convolution of the feature and the estimated kernel, our model can learn the essence of blur in kernel-level. To further improve the efficiency of feature extraction, we design a decoupled multi-scale architecture with multiple hierarchical sub-unets with a reversible strategy, which allows better multi-scale encoding and decoding in low training memory. Extensive experiments indicate that our method achieves state-of-the-art motion deblurring results and show potential for handling other kernel-related problems. Analysis also shows our kernel estimator is able to learn physically meaningful kernels. The code will be available at https://github.com/DeepMed-Lab-ECNU/Single-Image-Deblur.

Authors:Dianbing Xi, Jiepeng Wang, Yuanzhi Liang, Xi Qiu, Jialun Liu, Hao Pan, Yuchi Huo, Rui Wang, Haibin Huang, Chi Zhang, Xuelong Li
Title: CtrlVDiff: Controllable Video Generation via Unified Multimodal Video Diffusion
Abstract:
We tackle the dual challenges of video understanding and controllable video generation within a unified diffusion framework. Our key insights are two-fold: geometry-only cues (e.g., depth, edges) are insufficient: they specify layout but under-constrain appearance, materials, and illumination, limiting physically meaningful edits such as relighting or material swaps and often causing temporal drift. Enriching the model with additional graphics-based modalities (intrinsics and semantics) provides complementary constraints that both disambiguate understanding and enable precise, predictable control during generation. However, building a single model that uses many heterogeneous cues introduces two core difficulties. Architecturally, the model must accept any subset of modalities, remain robust to missing inputs, and inject control signals without sacrificing temporal consistency. Data-wise, training demands large-scale, temporally aligned supervision that ties real videos to per-pixel multimodal annotations. We then propose CtrlVDiff, a unified diffusion model trained with a Hybrid Modality Control Strategy (HMCS) that routes and fuses features from depth, normals, segmentation, edges, and graphics-based intrinsics (albedo, roughness, metallic), and re-renders videos from any chosen subset with strong temporal coherence. To enable this, we build MMVideo, a hybrid real-and-synthetic dataset aligned across modalities and captions. Across understanding and generation benchmarks, CtrlVDiff delivers superior controllability and fidelity, enabling layer-wise edits (relighting, material adjustment, object insertion) and surpassing state-of-the-art baselines while remaining robust when some modalities are unavailable.

Authors:Changlin Li, Jiawei Zhang, Zeyi Shi, Zongxin Yang, Zhihui Li, Xiaojun Chang
Title: Which Layer Causes Distribution Deviation? Entropy-Guided Adaptive Pruning for Diffusion and Flow Models
Abstract:
Large-scale vision generative models, including diffusion and flow models, have demonstrated remarkable performance in visual generation tasks. However, transferring these pre-trained models to downstream tasks often results in significant parameter redundancy. In this paper, we propose EntPruner, an entropy-guided automatic progressive pruning framework for diffusion and flow models. First, we introduce entropy-guided pruning, a block-level importance assessment strategy specifically designed for generative models. Unlike discriminative models, generative models require preserving the diversity and condition-fidelity of the output distribution. As the importance of each module can vary significantly across downstream tasks, EntPruner prioritizes pruning of less important blocks using data-dependent Conditional Entropy Deviation (CED) as a guiding metric. CED quantifies how much the distribution diverges from the learned conditional data distribution after removing a block. Second, we propose a zero-shot adaptive pruning framework to automatically determine when and how much to prune during training. This dynamic strategy avoids the pitfalls of one-shot pruning, mitigating mode collapse, and preserving model performance. Extensive experiments on DiT and SiT models demonstrate the effectiveness of EntPruner, achieving up to 2.22$\times$ inference speedup while maintaining competitive generation quality on ImageNet and three downstream datasets.

Authors:YuAn Wang, Xiaofan Li, Chi Huang, Wenhao Zhang, Hao Li, Bosheng Wang, Xun Sun, Jun Wang
Title: FaithFusion: Harmonizing Reconstruction and Generation via Pixel-wise Information Gain
Abstract:
In controllable driving-scene reconstruction and 3D scene generation, maintaining geometric fidelity while synthesizing visually plausible appearance under large viewpoint shifts is crucial. However, effective fusion of geometry-based 3DGS and appearance-driven diffusion models faces inherent challenges, as the absence of pixel-wise, 3D-consistent editing criteria often leads to over-restoration and geometric drift. To address these issues, we introduce \textbf{FaithFusion}, a 3DGS-diffusion fusion framework driven by pixel-wise Expected Information Gain (EIG). EIG acts as a unified policy for coherent spatio-temporal synthesis: it guides diffusion as a spatial prior to refine high-uncertainty regions, while its pixel-level weighting distills the edits back into 3DGS. The resulting plug-and-play system is free from extra prior conditions and structural modifications.Extensive experiments on the Waymo dataset demonstrate that our approach attains SOTA performance across NTA-IoU, NTL-IoU, and FID, maintaining an FID of 107.47 even at 6 meters lane shift. Our code is available at https://github.com/wangyuanbiubiubiu/FaithFusion.

Authors:Geetanjali Sharma, Gaurav Jaswal, Aditya Nigam, Raghavendra Ramachandra
Title: CLRecogEye : Curriculum Learning towards exploiting convolution features for Dynamic Iris Recognition
Abstract:
Iris authentication algorithms have achieved impressive recognition performance, making them highly promising for real-world applications such as border control, citizen identification, and both criminal investigations and commercial systems. However, their robustness is still challenged by variations in rotation, scale, specular reflections, and defocus blur. In addition, most existing approaches rely on straightforward point-to-point comparisons, typically using cosine or L2 distance, without effectively leveraging the spatio-spatial-temporal structure of iris patterns. To address these limitations, we propose a novel and generalized matching pipeline that learns rich spatio-spatial-temporal representations of iris features. Our approach first splits each iris image along one dimension, generating a sequence of sub-images that serve as input to a 3D-CNN, enabling the network to capture both spatial and spatio-spatial-temporal cues. To further enhance the modeling of spatio-spatial-temporal feature dynamics, we train the model in curriculum manner. This design allows the network to embed temporal dependencies directly into the feature space, improving discriminability in the deep metric domain. The framework is trained end-to-end with triplet and ArcFace loss in a curriculum manner, enforcing highly discriminative embeddings despite challenges like rotation, scale, reflections, and blur. This design yields a robust and generalizable solution for iris authentication.Github code: https://github.com/GeetanjaliGTZ/CLRecogEye

Authors:Chicago Y. Park, Michael T. McCann, Cristina Garcia-Cardona, Brendt Wohlberg, Ulugbek S. Kamilov
Title: Deep Parameter Interpolation for Scalar Conditioning
Abstract:
We propose deep parameter interpolation (DPI), a general-purpose method for transforming an existing deep neural network architecture into one that accepts an additional scalar input. Recent deep generative models, including diffusion models and flow matching, employ a single neural network to learn a time- or noise level-dependent vector field. Designing a network architecture to accurately represent this vector field is challenging because the network must integrate information from two different sources: a high-dimensional vector (usually an image) and a scalar. Common approaches either encode the scalar as an additional image input or combine scalar and vector information in specific network components, which restricts architecture choices. Instead, we propose to maintain two learnable parameter sets within a single network and to introduce the scalar dependency by dynamically interpolating between the parameter sets based on the scalar value during training and sampling. DPI is a simple, architecture-agnostic method for adding scalar dependence to a neural network. We demonstrate that our method improves denoising performance and enhances sample quality for both diffusion and flow matching models, while achieving computational efficiency comparable to standard scalar conditioning techniques. Code is available at https://github.com/wustl-cig/parameter_interpolation.

Authors:Shijia Yang, Yunong Liu, Bohan Zhai, Ximeng Sun, Zicheng Liu, Emad Barsoum, Manling Li, Chenfeng Xu
Title: CaptionQA: Is Your Caption as Useful as the Image Itself?
Abstract:
Image captions serve as efficient surrogates for visual content in multimodal systems such as retrieval, recommendation, and multi-step agentic inference pipelines. Yet current evaluation practices miss a fundamental question: Can captions stand-in for images in real downstream tasks? We propose a utility-based benchmark, CaptionQA, to evaluate model-generated captions, where caption quality is measured by how well it supports downstream tasks. CaptionQA is an extensible domain-dependent benchmark covering 4 domains--Natural, Document, E-commerce, and Embodied AI--each with fine-grained taxonomies (25 top-level and 69 subcategories) that identify useful information for domain-specific tasks. CaptionQA builds 33,027 densely annotated multiple-choice questions (50.3 per image on average) that explicitly require visual information to answer, providing a comprehensive probe of caption utility. In our evaluation protocol, an LLM answers these questions using captions alone, directly measuring whether captions preserve image-level utility and are utilizable by a downstream LLM. Evaluating state-of-the-art MLLMs reveals substantial gaps between the image and its caption utility. Notably, models nearly identical on traditional image-QA benchmarks lower by up to 32% in caption utility. We release CaptionQA along with an open-source pipeline for extension to new domains. The code is available at https://github.com/bronyayang/CaptionQA.

Authors:Yu-Huan Wu, Zi-Xuan Zhu, Yan Wang, Liangli Zhen, Deng-Ping Fan
Title: RefOnce: Distilling References into a Prototype Memory for Referring Camouflaged Object Detection
Abstract:
Referring Camouflaged Object Detection (Ref-COD) segments specified camouflaged objects in a scene by leveraging a small set of referring images. Though effective, current systems adopt a dual-branch design that requires reference images at test time, which limits deployability and adds latency and data-collection burden. We introduce a Ref-COD framework that distills references into a class-prototype memory during training and synthesizes a reference vector at inference via a query-conditioned mixture of prototypes. Concretely, we maintain an EMA-updated prototype per category and predict mixture weights from the query to produce a guidance vector without any test-time references. To bridge the representation gap between reference statistics and camouflaged query features, we propose a bidirectional attention alignment module that adapts both the query features and the class representation. Thus, our approach yields a simple, efficient path to Ref-COD without mandatory references. We evaluate the proposed method on the large-scale R2C7K benchmark. Extensive experiments demonstrate competitive or superior performance of the proposed method compared with recent state-of-the-arts. Code is available at https://github.com/yuhuan-wu/RefOnce.

Authors:Rawa Mohammed, Mina Attin, Bryar Shareef
Title: BUSTR: Breast Ultrasound Text Reporting with a Descriptor-Aware Vision-Language Model
Abstract:
Automated radiology report generation (RRG) for breast ultrasound (BUS) is limited by the lack of paired image-report datasets and the risk of hallucinations from large language models. We propose BUSTR, a multitask vision-language framework that generates BUS reports without requiring paired image-report supervision. BUSTR constructs reports from structured descriptors (e.g., BI-RADS, pathology, histology) and radiomics features, learns descriptor-aware visual representations with a multi-head Swin encoder trained using a multitask loss over dataset-specific descriptor sets, and aligns visual and textual tokens via a dual-level objective that combines token-level cross-entropy with a cosine-similarity alignment loss between input and output representations. We evaluate BUSTR on two public BUS datasets, BrEaST and BUS-BRA, which differ in size and available descriptors. Across both datasets, BUSTR consistently improves standard natural language generation metrics and clinical efficacy metrics, particularly for key targets such as BI-RADS category and pathology. Our results show that this descriptor-aware vision model, trained with a combined token-level and alignment loss, improves both automatic report metrics and clinical efficacy without requiring paired image-report data. The source code can be found at https://github.com/AAR-UNLV/BUSTR

Authors:Qineng Wang, Wenlong Huang, Yu Zhou, Hang Yin, Tianwei Bao, Jianwen Lyu, Weiyu Liu, Ruohan Zhang, Jiajun Wu, Li Fei-Fei, Manling Li
Title: ENACT: Evaluating Embodied Cognition with World Modeling of Egocentric Interaction
Abstract:
Embodied cognition argues that intelligence arises from sensorimotor interaction rather than passive observation. It raises an intriguing question: do modern vision-language models (VLMs), trained largely in a disembodied manner, exhibit signs of embodied cognition? We introduce ENACT, a benchmark that casts evaluation of embodied cognition as world modeling from egocentric interaction in a visual question answering (VQA) format. Framed as a partially observable Markov decision process (POMDP) whose actions are scene graph changes, ENACT comprises two complementary sequence reordering tasks: forward world modeling (reorder shuffled observations given actions) and inverse world modeling (reorder shuffled actions given observations). While conceptually simple, solving these tasks implicitly demands capabilities central to embodied cognition-affordance recognition, action-effect reasoning, embodied awareness, and interactive, long-horizon memory from partially observable egocentric input, while avoiding low-level image synthesis that could confound the evaluation. We provide a scalable pipeline that synthesizes QA pairs from robotics simulation (BEHAVIOR) and evaluates models on 8,972 QA pairs spanning long-horizon home-scale activities. Experiments reveal a performance gap between frontier VLMs and humans that widens with interaction horizon. Models consistently perform better on the inverse task than the forward one and exhibit anthropocentric biases, including a preference for right-handed actions and degradation when camera intrinsics or viewpoints deviate from human vision. Website at https://enact-embodied-cognition.github.io/.

Authors:Gil Goldman, Raja Giryes, Mahadev Satyanarayanan
Title: Smooth regularization for efficient video recognition
Abstract:
We propose a smooth regularization technique that instills a strong temporal inductive bias in video recognition models, particularly benefiting lightweight architectures. Our method encourages smoothness in the intermediate-layer embeddings of consecutive frames by modeling their changes as a Gaussian Random Walk (GRW). This penalizes abrupt representational shifts, thereby promoting low-acceleration solutions that better align with the natural temporal coherence inherent in videos. By leveraging this enforced smoothness, lightweight models can more effectively capture complex temporal dynamics. Applied to such models, our technique yields a 3.8% to 6.4% accuracy improvement on Kinetics-600. Notably, the MoViNets model family trained with our smooth regularization improves the current state of the art by 3.8% to 6.1% within their respective FLOP constraints, while MobileNetV3 and the MoViNets-Stream family achieve gains of 4.9% to 6.4% over prior state-of-the-art models with comparable memory footprints. Our code and models are available at https://github.com/gilgoldm/grw-smoothing.

Authors:Weronika Jakubowska, Mikołaj Zieliński, Rafał Tobiasz, Krzysztof Byrski, Maciej Zięba, Dominik Belter, Przemysław Spurek
Title: GaINeR: Geometry-Aware Implicit Network Representation
Abstract:
Implicit Neural Representations (INRs) have become an essential tool for modeling continuous 2D images, enabling high-fidelity reconstruction, super-resolution, and compression. Popular architectures such as SIREN, WIRE, and FINER demonstrate the potential of INR for capturing fine-grained image details. However, traditional INRs often lack explicit geometric structure and have limited capabilities for local editing or integration with physical simulation, restricting their applicability in dynamic or interactive settings. To address these limitations, we propose GaINeR: Geometry-Aware Implicit Network Representation, a novel framework for 2D images that combines trainable Gaussian distributions with a neural network-based INR. For a given image coordinate, the model retrieves the K nearest Gaussians, aggregates distance-weighted embeddings, and predicts the RGB value via a neural network. This design enables continuous image representation, interpretable geometric structure, and flexible local editing, providing a foundation for physically aware and interactive image manipulation. The official implementation of our method is publicly available at https://github.com/WJakubowska/GaINeR.

Authors:Yining Ding, João F. C. Mota, Andrew M. Wallace, Sen Wang
Title: Estimating Fog Parameters from a Sequence of Stereo Images
Abstract:
We propose a method which, given a sequence of stereo foggy images, estimates the parameters of a fog model and updates them dynamically. In contrast with previous approaches, which estimate the parameters sequentially and thus are prone to error propagation, our algorithm estimates all the parameters simultaneously by solving a novel optimisation problem. By assuming that fog is only locally homogeneous, our method effectively handles real-world fog, which is often globally inhomogeneous. The proposed algorithm can be easily used as an add-on module in existing visual Simultaneous Localisation and Mapping (SLAM) or odometry systems in the presence of fog. In order to assess our method, we also created a new dataset, the Stereo Driving In Real Fog (SDIRF), consisting of high-quality, consecutive stereo frames of real, foggy road scenes under a variety of visibility conditions, totalling over 40 minutes and 34k frames. As a first-of-its-kind, SDIRF contains the camera's photometric parameters calibrated in a lab environment, which is a prerequisite for correctly applying the atmospheric scattering model to foggy images. The dataset also includes the counterpart clear data of the same routes recorded in overcast weather, which is useful for companion work in image defogging and depth reconstruction. We conducted extensive experiments using both synthetic foggy data and real foggy sequences from SDIRF to demonstrate the superiority of the proposed algorithm over prior methods. Our method not only produces the most accurate estimates on synthetic data, but also adapts better to real fog. We make our code and SDIRF publicly available\footnote{https://github.com/SenseRoboticsLab/estimating-fog-parameters} to the community with the aim of advancing the research on visual perception in fog.

Authors:Xiaojiao Xiao, Qinmin Vivian Hu, Tae Hyun Kim, Guanghui Wang
Title: Adversarial Multi-Task Learning for Liver Tumor Segmentation, Dynamic Enhancement Regression, and Classification
Abstract:
Liver tumor segmentation, dynamic enhancement regression, and classification are critical for clinical assessment and diagnosis. However, no prior work has attempted to achieve these tasks simultaneously in an end-to-end framework, primarily due to the lack of an effective framework that captures inter-task relevance for mutual improvement and the absence of a mechanism to extract dynamic MRI information effectively. To address these challenges, we propose the Multi-Task Interaction adversarial learning Network (MTI-Net), a novel integrated framework designed to tackle these tasks simultaneously. MTI-Net incorporates Multi-domain Information Entropy Fusion (MdIEF), which utilizes entropy-aware, high-frequency spectral information to effectively integrate features from both frequency and spectral domains, enhancing the extraction and utilization of dynamic MRI data. The network also introduces a task interaction module that establishes higher-order consistency between segmentation and regression, thus fostering inter-task synergy and improving overall performance. Additionally, we designed a novel task-driven discriminator (TDD) to capture internal high-order relationships between tasks. For dynamic MRI information extraction, we employ a shallow Transformer network to perform positional encoding, which captures the relationships within dynamic MRI sequences. In experiments on a dataset of 238 subjects, MTI-Net demonstrates high performance across multiple tasks, indicating its strong potential for assisting in the clinical assessment of liver tumors. The code is available at: https://github.com/xiaojiao929/MTI-Net.

Authors:Zuhao Yang, Sudong Wang, Kaichen Zhang, Keming Wu, Sicong Leng, Yifan Zhang, Bo Li, Chengwei Qin, Shijian Lu, Xingxuan Li, Lidong Bing
Title: LongVT: Incentivizing "Thinking with Long Videos" via Native Tool Calling
Abstract:
Large multimodal models (LMMs) have shown great potential for video reasoning with textual Chain-of-Thought. However, they remain vulnerable to hallucinations, especially when processing long-form videos where evidence is sparse and temporally dispersed. Inspired by how humans comprehend long videos - by first skimming globally and then examining relevant clips for details - we introduce LongVT, an end-to-end agentic framework that enables "Thinking with Long Videos" via interleaved Multimodal Chain-of-Tool-Thought. Specifically, we exploit LMMs' inherent temporal grounding ability as a native video cropping tool to zoom in on a specific video clip and resample finer-grained video frames. This global-to-local reasoning loop continues until answers are grounded in retrieved visual evidence. Given the scarcity of fine-grained question-answering (QA) data for the long video reasoning task, we curate and will release a data suite named VideoSIAH to facilitate both training and evaluation. Specifically, our training dataset consists of 247.9K samples for tool-integrated cold-start supervised fine-tuning, 1.6K samples for agentic reinforcement learning, and 15.4K samples for agentic reinforcement fine-tuning, respectively. Our evaluation benchmark consists of 1,280 QA pairs that are carefully curated through a semi-automatic data pipeline with human-in-the-loop validation. With a meticulously designed three-stage training strategy and extensive empirical validation, LongVT consistently outperforms existing strong baselines across four challenging long-video understanding and reasoning benchmarks. Our codes, data, and model checkpoints are publicly available at https://github.com/EvolvingLMMs-Lab/LongVT .

Authors:Tooba Tehreem Sheikh, Jean Lahoud, Rao Muhammad Anwer, Fahad Shahbaz Khan, Salman Khan, Hisham Cholakkal
Title: MedROV: Towards Real-Time Open-Vocabulary Detection Across Diverse Medical Imaging Modalities
Abstract:
Traditional object detection models in medical imaging operate within a closed-set paradigm, limiting their ability to detect objects of novel labels. Open-vocabulary object detection (OVOD) addresses this limitation but remains underexplored in medical imaging due to dataset scarcity and weak text-image alignment. To bridge this gap, we introduce MedROV, the first Real-time Open Vocabulary detection model for medical imaging. To enable open-vocabulary learning, we curate a large-scale dataset, Omnis, with 600K detection samples across nine imaging modalities and introduce a pseudo-labeling strategy to handle missing annotations from multi-source datasets. Additionally, we enhance generalization by incorporating knowledge from a large pre-trained foundation model. By leveraging contrastive learning and cross-modal representations, MedROV effectively detects both known and novel structures. Experimental results demonstrate that MedROV outperforms the previous state-of-the-art foundation model for medical image detection with an average absolute improvement of 40 mAP50, and surpasses closed-set detectors by more than 3 mAP50, while running at 70 FPS, setting a new benchmark in medical detection. Our source code, dataset, and trained model are available at https://github.com/toobatehreem/MedROV.

Authors:Yunze Man, Shihao Wang, Guowen Zhang, Johan Bjorck, Zhiqi Li, Liang-Yan Gui, Jim Fan, Jan Kautz, Yu-Xiong Wang, Zhiding Yu
Title: LocateAnything3D: Vision-Language 3D Detection with Chain-of-Sight
Abstract:
To act in the world, a model must name what it sees and know where it is in 3D. Today's vision-language models (VLMs) excel at open-ended 2D description and grounding, yet multi-object 3D detection remains largely missing from the VLM toolbox. We present LocateAnything3D, a VLM-native recipe that casts 3D detection as a next-token prediction problem. The key is a short, explicit Chain-of-Sight (CoS) sequence that mirrors how human reason from images: find an object in 2D, then infer its distance, size, and pose. The decoder first emits 2D detections as a visual chain-of-thought, then predicts 3D boxes under an easy-to-hard curriculum: across objects, a near-to-far order reduces early ambiguity and matches ego-centric utility; within each object, a center-from-camera, dimensions, and rotation factorization ranks information by stability and learnability. This VLM-native interface preserves open-vocabulary and visual-prompting capability without specialized heads. On the challenging Omni3D benchmark, our model achieves state-of-the-art results, with 49.89 AP_3D, surpassing the previous best by +15.51 absolute improvement even when the baseline is given ground-truth 2D boxes. It also generalizes zero-shot to held-out categories with strong robustness. By turning 3D detection into a disciplined next-token problem, LocateAnything3D offers a practical foundation for models to perceive in 3D.

Authors:Xiaoye Wang, Chen Tang, Xiangyu Yue, Wei-Hong Li
Title: 3D-Aware Multi-Task Learning with Cross-View Correlations for Dense Scene Understanding
Abstract:
This paper addresses the challenge of training a single network to jointly perform multiple dense prediction tasks, such as segmentation and depth estimation, i.e., multi-task learning (MTL). Current approaches mainly capture cross-task relations in the 2D image space, often leading to unstructured features lacking 3D-awareness. We argue that 3D-awareness is vital for modeling cross-task correlations essential for comprehensive scene understanding. We propose to address this problem by integrating correlations across views, i.e., cost volume, as geometric consistency in the MTL network. Specifically, we introduce a lightweight Cross-view Module (CvM), shared across tasks, to exchange information across views and capture cross-view correlations, integrated with a feature from MTL encoder for multi-task predictions. This module is architecture-agnostic and can be applied to both single and multi-view data. Extensive results on NYUv2 and PASCAL-Context demonstrate that our method effectively injects geometric consistency into existing MTL methods to improve performance.

Authors:Ryan Burgert, Charles Herrmann, Forrester Cole, Michael S Ryoo, Neal Wadhwa, Andrey Voynov, Nataniel Ruiz
Title: MotionV2V: Editing Motion in a Video
Abstract:
While generative video models have achieved remarkable fidelity and consistency, applying these capabilities to video editing remains a complex challenge. Recent research has explored motion controllability as a means to enhance text-to-video generation or image animation; however, we identify precise motion control as a promising yet under-explored paradigm for editing existing videos. In this work, we propose modifying video motion by directly editing sparse trajectories extracted from the input. We term the deviation between input and output trajectories a "motion edit" and demonstrate that this representation, when coupled with a generative backbone, enables powerful video editing capabilities. To achieve this, we introduce a pipeline for generating "motion counterfactuals", video pairs that share identical content but distinct motion, and we fine-tune a motion-conditioned video diffusion architecture on this dataset. Our approach allows for edits that start at any timestamp and propagate naturally. In a four-way head-to-head user study, our model achieves over 65 percent preference against prior work. Please see our project page: https://ryanndagreat.github.io/MotionV2V

Authors:Zhoujie Fu, Xianfang Zeng, Jinghong Lan, Xinyao Liao, Cheng Chen, Junyi Chen, Jiacheng Wei, Wei Cheng, Shiyu Liu, Yunuo Chen, Gang Yu, Guosheng Lin
Title: iMontage: Unified, Versatile, Highly Dynamic Many-to-many Image Generation
Abstract:
Pre-trained video models learn powerful priors for generating high-quality, temporally coherent content. While these models excel at temporal coherence, their dynamics are often constrained by the continuous nature of their training data. We hypothesize that by injecting the rich and unconstrained content diversity from image data into this coherent temporal framework, we can generate image sets that feature both natural transitions and a far more expansive dynamic range. To this end, we introduce iMontage, a unified framework designed to repurpose a powerful video model into an all-in-one image generator. The framework consumes and produces variable-length image sets, unifying a wide array of image generation and editing tasks. To achieve this, we propose an elegant and minimally invasive adaptation strategy, complemented by a tailored data curation process and training paradigm. This approach allows the model to acquire broad image manipulation capabilities without corrupting its invaluable original motion priors. iMontage excels across several mainstream many-in-many-out tasks, not only maintaining strong cross-image contextual consistency but also generating scenes with extraordinary dynamics that surpass conventional scopes. Find our homepage at: https://kr1sjfu.github.io/iMontage-web/.

Authors:Xinhao Liu, Jiaqi Li, Youming Deng, Ruxin Chen, Yingjia Zhang, Yifei Ma, Li Guo, Yiming Li, Jing Zhang, Chen Feng
Title: Wanderland: Geometrically Grounded Simulation for Open-World Embodied AI
Abstract:
Reproducible closed-loop evaluation remains a major bottleneck in Embodied AI such as visual navigation. A promising path forward is high-fidelity simulation that combines photorealistic sensor rendering with geometrically grounded interaction in complex, open-world urban environments. Although recent video-3DGS methods ease open-world scene capturing, they are still unsuitable for benchmarking due to large visual and geometric sim-to-real gaps. To address these challenges, we introduce Wanderland, a real-to-sim framework that features multi-sensor capture, reliable reconstruction, accurate geometry, and robust view synthesis. Using this pipeline, we curate a diverse dataset of indoor-outdoor urban scenes and systematically demonstrate how image-only pipelines scale poorly, how geometry quality impacts novel view synthesis, and how all of these adversely affect navigation policy learning and evaluation reliability. Beyond serving as a trusted testbed for embodied navigation, Wanderland's rich raw sensor data further allows benchmarking of 3D reconstruction and novel view synthesis models. Our work establishes a new foundation for reproducible research in open-world embodied AI. Project website is at https://ai4ce.github.io/wanderland/.

Authors:Ziheng Ouyang, Yiren Song, Yaoli Liu, Shihao Zhu, Qibin Hou, Ming-Ming Cheng, Mike Zheng Shou
Title: The Consistency Critic: Correcting Inconsistencies in Generated Images via Reference-Guided Attentive Alignment
Abstract:
Previous works have explored various customized generation tasks given a reference image, but they still face limitations in generating consistent fine-grained details. In this paper, our aim is to solve the inconsistency problem of generated images by applying a reference-guided post-editing approach and present our ImageCritic. We first construct a dataset of reference-degraded-target triplets obtained via VLM-based selection and explicit degradation, which effectively simulates the common inaccuracies or inconsistencies observed in existing generation models. Furthermore, building on a thorough examination of the model's attention mechanisms and intrinsic representations, we accordingly devise an attention alignment loss and a detail encoder to precisely rectify inconsistencies. ImageCritic can be integrated into an agent framework to automatically detect inconsistencies and correct them with multi-round and local editing in complex scenarios. Extensive experiments demonstrate that ImageCritic can effectively resolve detail-related issues in various customized generation scenarios, providing significant improvements over existing methods.

Authors:Mingkai Jia, Mingxiao Li, Liaoyuan Fan, Tianxing Shi, Jiaxin Guo, Zeming Li, Xiaoyang Guo, Xiao-Xiao Long, Qian Zhang, Ping Tan, Wei Yin
Title: DINO-Tok: Adapting DINO for Visual Tokenizers
Abstract:
Recent advances in visual generation have highlighted the rise of Latent Generative Models (LGMs), which rely on effective visual tokenizers to bridge pixels and semantics. However, existing tokenizers are typically trained from scratch and struggle to balance semantic representation and reconstruction fidelity, particularly in high-dimensional latent spaces. In this work, we introduce DINO-Tok, a DINO-based visual tokenizer that unifies hierarchical representations into an information-complete latent space. By integrating shallow features that retain fine-grained details with deep features encoding global semantics, DINO-Tok effectively bridges pretrained representations and visual generation. We further analyze the challenges of vector quantization (VQ) in this high-dimensional space, where key information is often lost and codebook collapse occurs. We thus propose a global PCA reweighting mechanism to stabilize VQ and preserve essential information across dimensions. On ImageNet 256$\times$256, DINO-Tok achieves state-of-the-art reconstruction performance, reaching 28.54 PSNR for autoencoding and 23.98 PSNR for VQ-based modeling, significantly outperforming prior tokenizers and comparable to billion-level data trained models (such as Hunyuan and Wan). These results demonstrate that adapting powerful pretrained vision models like DINO for tokenization enables semantically aligned and high-fidelity latent representations, enabling next-generation visual generative models. Code will be publicly available at https://github.com/MKJia/DINO-Tok.

Authors:Yuwei Niu, Weiyang Jin, Jiaqi Liao, Chaoran Feng, Peng Jin, Bin Lin, Zongjian Li, Bin Zhu, Weihao Yu, Li Yuan
Title: Does Understanding Inform Generation in Unified Multimodal Models? From Analysis to Path Forward
Abstract:
Recent years have witnessed significant progress in Unified Multimodal Models, yet a fundamental question remains: Does understanding truly inform generation? To investigate this, we introduce UniSandbox, a decoupled evaluation framework paired with controlled, synthetic datasets to avoid data leakage and enable detailed analysis. Our findings reveal a significant understanding-generation gap, which is mainly reflected in two key dimensions: reasoning generation and knowledge transfer. Specifically, for reasoning generation tasks, we observe that explicit Chain-of-Thought (CoT) in the understanding module effectively bridges the gap, and further demonstrate that a self-training approach can successfully internalize this ability, enabling implicit reasoning during generation. Additionally, for knowledge transfer tasks, we find that CoT assists the generative process by helping retrieve newly learned knowledge, and also discover that query-based architectures inherently exhibit latent CoT-like properties that affect this transfer. UniSandbox provides preliminary insights for designing future unified architectures and training strategies that truly bridge the gap between understanding and generation. Code and data are available at https://github.com/PKU-YuanGroup/UniSandBox

Authors:Kuniaki Saito, Risa Shinoda, Shohei Tanaka, Tosho Hirasawa, Fumio Okura, Yoshitaka Ushiku
Title: AlignBench: Benchmarking Fine-Grained Image-Text Alignment with Synthetic Image-Caption Pairs
Abstract:
Assessing image-text alignment models such as CLIP is crucial for bridging visual and linguistic representations. Yet existing benchmarks rely on rule-based perturbations or short captions, limiting their ability to measure fine-grained alignment. We introduce AlignBench, a benchmark that provides a new indicator of image-text alignment by evaluating detailed image-caption pairs generated by diverse image-to-text and text-to-image models. Each sentence is annotated for correctness, enabling direct assessment of VLMs as alignment evaluators. Benchmarking a wide range of decoder-based VLMs reveals three key findings: (i) CLIP-based models, even those tailored for compositional reasoning, remain nearly blind; (ii) detectors systematically over-score early sentences; and (iii) they show strong self-preference, favoring their own outputs and harming detection performance. Our project page will be available at https://dahlian00.github.io/AlignBench/.

Authors:Muhammad Irfan, Nasir Rahim, Khalid Mahmood Malik
Title: A Physics-Informed Loss Function for Boundary-Consistent and Robust Artery Segmentation in DSA Sequences
Abstract:
Accurate extraction and segmentation of the cerebral arteries from digital subtraction angiography (DSA) sequences is essential for developing reliable clinical management models of complex cerebrovascular diseases. Conventional loss functions often rely solely on pixel-wise overlap, overlooking the geometric and physical consistency of vascular boundaries, which can lead to fragmented or unstable vessel predictions. To overcome this limitation, we propose a novel \textit{Physics-Informed Loss} (PIL) that models the interaction between the predicted and ground-truth boundaries as an elastic process inspired by dislocation theory in materials physics. This formulation introduces a physics-based regularization term that enforces smooth contour evolution and structural consistency, allowing the network to better capture fine vascular geometry. The proposed loss is integrated into several segmentation architectures, including U-Net, U-Net++, SegFormer, and MedFormer, and evaluated on two public benchmarks: DIAS and DSCA. Experimental results demonstrate that PIL consistently outperforms conventional loss functions such as Cross-Entropy, Dice, Active Contour, and Surface losses, achieving superior sensitivity, F1 score, and boundary coherence. These findings confirm that the incorporation of physics-based boundary interactions into deep neural networks improves both the precision and robustness of vascular segmentation in dynamic angiographic imaging. The implementation of the proposed method is publicly available at https://github.com/irfantahir301/Physicsis_loss.

Authors:Jiatao Gu, Ying Shen, Tianrong Chen, Laurent Dinh, Yuyang Wang, Miguel Angel Bautista, David Berthelot, Josh Susskind, Shuangfei Zhai
Title: STARFlow-V: End-to-End Video Generative Modeling with Normalizing Flows
Abstract:
Normalizing flows (NFs) are end-to-end likelihood-based generative models for continuous data, and have recently regained attention with encouraging progress on image generation. Yet in the video generation domain, where spatiotemporal complexity and computational cost are substantially higher, state-of-the-art systems almost exclusively rely on diffusion-based models. In this work, we revisit this design space by presenting STARFlow-V, a normalizing flow-based video generator with substantial benefits such as end-to-end learning, robust causal prediction, and native likelihood estimation. Building upon the recently proposed STARFlow, STARFlow-V operates in the spatiotemporal latent space with a global-local architecture which restricts causal dependencies to a global latent space while preserving rich local within-frame interactions. This eases error accumulation over time, a common pitfall of standard autoregressive diffusion model generation. Additionally, we propose flow-score matching, which equips the model with a light-weight causal denoiser to improve the video generation consistency in an autoregressive fashion. To improve the sampling efficiency, STARFlow-V employs a video-aware Jacobi iteration scheme that recasts inner updates as parallelizable iterations without breaking causality. Thanks to the invertible structure, the same model can natively support text-to-video, image-to-video as well as video-to-video generation tasks. Empirically, STARFlow-V achieves strong visual fidelity and temporal consistency with practical sampling throughput relative to diffusion-based baselines. These results present the first evidence, to our knowledge, that NFs are capable of high-quality autoregressive video generation, establishing them as a promising research direction for building world models. Code and generated samples are available at https://github.com/apple/ml-starflow.

Authors:Jeonghyeon Na, Sangwon Baik, Inhee Lee, Junyoung Lee, Hanbyul Joo
Title: Learning to Generate Human-Human-Object Interactions from Textual Descriptions
Abstract:
The way humans interact with each other, including interpersonal distances, spatial configuration, and motion, varies significantly across different situations. To enable machines to understand such complex, context-dependent behaviors, it is essential to model multiple people in relation to the surrounding scene context. In this paper, we present a novel research problem to model the correlations between two people engaged in a shared interaction involving an object. We refer to this formulation as Human-Human-Object Interactions (HHOIs). To overcome the lack of dedicated datasets for HHOIs, we present a newly captured HHOIs dataset and a method to synthesize HHOI data by leveraging image generative models. As an intermediary, we obtain individual human-object interaction (HOIs) and human-human interaction (HHIs) from the HHOIs, and with these data, we train an text-to-HOI and text-to-HHI model using score-based diffusion model. Finally, we present a unified generative framework that integrates the two individual model, capable of synthesizing complete HHOIs in a single advanced sampling process. Our method extends HHOI generation to multi-human settings, enabling interactions involving more than two individuals. Experimental results show that our method generates realistic HHOIs conditioned on textual descriptions, outperforming previous approaches that focus only on single-human HOIs. Furthermore, we introduce multi-human motion generation involving objects as an application of our framework.

Authors:Guangyuan Li, Rongzhen Zhao, Jinhong Deng, Yanbo Wang, Joni Pajarinen
Title: Object-Centric Vision Token Pruning for Vision Language Models
Abstract:
In Vision Language Models (VLMs), vision tokens are quantity-heavy yet information-dispersed compared with language tokens, thus consume too much unnecessary computation. Pruning redundant vision tokens for high VLM inference efficiency has been continuously studied but all existing methods resort to indirect and non-guaranteed ways. We propose OC-VTP, a direct and guaranteed approach to select the most representative vision tokens for high-efficiency yet accuracy-preserving VLM inference. Our OC-VTP requires merely light-weight pre-training of a small object-centric vision token pruner, which can then be inserted into existing VLMs, without fine-tuning of any models on any datasets. It is gauranteed that the most representative vision tokens are kept by minimizing the error in reconstructing the original unpruned tokens from the selected ones. Across any vision pruning ratios, i.e., inference efficiency, our OC-VTP consistently helps mainstream VLMs to preserve the highest inference accuracy. Our pruning also demonstrates interesting interpretability. Our codes are available at https://github.com/GarryLarry010131/OC-VTP.

Authors:Hmrishav Bandyopadhyay, Nikhil Pinnaparaju, Rahim Entezari, Jim Scott, Yi-Zhe Song, Varun Jampani
Title: Block Cascading: Training Free Acceleration of Block-Causal Video Models
Abstract:
Block-causal video generation faces a stark speed-quality trade-off: small 1.3B models manage only 16 FPS while large 14B models crawl at 4.5 FPS, forcing users to choose between responsiveness and quality. Block Cascading significantly mitigates this trade-off through training-free parallelization. Our key insight: future video blocks do not need fully denoised current blocks to begin generation. By starting block generation with partially denoised context from predecessors, we transform sequential pipelines into parallel cascades where multiple blocks denoise simultaneously. With 5 GPUs exploiting temporal parallelism, we achieve ~2x acceleration across all model scales: 1.3B models accelerate from 16 to 30 FPS, 14B models from 4.5 to 12.5 FPS. Beyond inference speed, Block Cascading eliminates overhead from KV-recaching (of ~200ms) during context switches for interactive generation. Extensive evaluations validated against multiple block-causal pipelines demonstrate no significant loss in generation quality when switching from block-causal to Block Cascading pipelines for inference. Project Page: https://hmrishavbandy.github.io/block_cascading_page/

Authors:Zilong Huang, Jun He, Xiaobin Huang, Ziyi Xiong, Yang Luo, Junyan Ye, Weijia Li, Yiping Chen, Ting Han
Title: MajutsuCity: Language-driven Aesthetic-adaptive City Generation with Controllable 3D Assets and Layouts
Abstract:
Generating realistic 3D cities is fundamental to world models, virtual reality, and game development, where an ideal urban scene must satisfy both stylistic diversity, fine-grained, and controllability. However, existing methods struggle to balance the creative flexibility offered by text-based generation with the object-level editability enabled by explicit structural representations. We introduce MajutsuCity, a natural language-driven and aesthetically adaptive framework for synthesizing structurally consistent and stylistically diverse 3D urban scenes. MajutsuCity represents a city as a composition of controllable layouts, assets, and materials, and operates through a four-stage pipeline. To extend controllability beyond initial generation, we further integrate MajutsuAgent, an interactive language-grounded editing agent} that supports five object-level operations. To support photorealistic and customizable scene synthesis, we also construct MajutsuDataset, a high-quality multimodal dataset} containing 2D semantic layouts and height maps, diverse 3D building assets, and curated PBR materials and skyboxes, each accompanied by detailed annotations. Meanwhile, we develop a practical set of evaluation metrics, covering key dimensions such as structural consistency, scene complexity, material fidelity, and lighting atmosphere. Extensive experiments demonstrate MajutsuCity reduces layout FID by 83.7% compared with CityDreamer and by 20.1% over CityCraft. Our method ranks first across all AQS and RDR scores, outperforming existing methods by a clear margin. These results confirm MajutsuCity as a new state-of-the-art in geometric fidelity, stylistic adaptability, and semantic controllability for 3D city generation. We expect our framework can inspire new avenues of research in 3D city generation. Our project page: https://longhz140516.github.io/MajutsuCity/.

Authors:Bao Tang, Shuai Zhang, Yueting Zhu, Jijun Xiang, Xin Yang, Li Yu, Wenyu Liu, Xinggang Wang
Title: Image-Free Timestep Distillation via Continuous-Time Consistency with Trajectory-Sampled Pairs
Abstract:
Timestep distillation is an effective approach for improving the generation efficiency of diffusion models. The Consistency Model (CM), as a trajectory-based framework, demonstrates significant potential due to its strong theoretical foundation and high-quality few-step generation. Nevertheless, current continuous-time consistency distillation methods still rely heavily on training data and computational resources, hindering their deployment in resource-constrained scenarios and limiting their scalability to diverse domains. To address this issue, we propose Trajectory-Backward Consistency Model (TBCM), which eliminates the dependence on external training data by extracting latent representations directly from the teacher model's generation trajectory. Unlike conventional methods that require VAE encoding and large-scale datasets, our self-contained distillation paradigm significantly improves both efficiency and simplicity. Moreover, the trajectory-extracted samples naturally bridge the distribution gap between training and inference, thereby enabling more effective knowledge transfer. Empirically, TBCM achieves 6.52 FID and 28.08 CLIP scores on MJHQ-30k under one-step generation, while reducing training time by approximately 40% compared to Sana-Sprint and saving a substantial amount of GPU memory, demonstrating superior efficiency without sacrificing quality. We further reveal the diffusion-generation space discrepancy in continuous-time consistency distillation and analyze how sampling strategies affect distillation performance, offering insights for future distillation research. GitHub Link: https://github.com/hustvl/TBCM.

Authors:Xin Ming, Yuxuan Han, Tianyu Huang, Feng Xu
Title: VGGTFace: Topologically Consistent Facial Geometry Reconstruction in the Wild
Abstract:
Reconstructing topologically consistent facial geometry is crucial for the digital avatar creation pipelines. Existing methods either require tedious manual efforts, lack generalization to in-the-wild data, or are constrained by the limited expressiveness of 3D Morphable Models. To address these limitations, we propose VGGTFace, an automatic approach that innovatively applies the 3D foundation model, i.e. VGGT, for topologically consistent facial geometry reconstruction from in-the-wild multi-view images captured by everyday users. Our key insight is that, by leveraging VGGT, our method naturally inherits strong generalization ability and expressive power from its large-scale training and point map representation. However, it is unclear how to reconstruct a topologically consistent mesh from VGGT, as the topology information is missing in its prediction. To this end, we augment VGGT with Pixel3DMM for injecting topology information via pixel-aligned UV values. In this manner, we convert the pixel-aligned point map of VGGT to a point cloud with topology. Tailored to this point cloud with known topology, we propose a novel Topology-Aware Bundle Adjustment strategy to fuse them, where we construct a Laplacian energy for the Bundle Adjustment objective. Our method achieves high-quality reconstruction in 10 seconds for 16 views on a single NVIDIA RTX 4090. Experiments demonstrate state-of-the-art results on benchmarks and impressive generalization to in-the-wild data. Code is available at https://github.com/grignarder/vggtface.

Authors:Heyang Yu, Yinan Han, Xiangyu Zhang, Baiqiao Yin, Bowen Chang, Xiangyu Han, Xinhao Liu, Jing Zhang, Marco Pavone, Chen Feng, Saining Xie, Yiming Li
Title: Thinking in 360°: Humanoid Visual Search in the Wild
Abstract:
Humans rely on the synergistic control of head (cephalomotor) and eye (oculomotor) to efficiently search for visual information in 360°. However, prior approaches to visual search are limited to a static image, neglecting the physical embodiment and its interaction with the 3D world. How can we develop embodied visual search agents as efficient as humans while bypassing the constraints imposed by real-world hardware? To this end, we propose humanoid visual search where a humanoid agent actively rotates its head to search for objects or paths in an immersive world represented by a 360° panoramic image. To study visual search in visually-crowded real-world scenarios, we build H* Bench, a new benchmark that moves beyond household scenes to challenging in-the-wild scenes that necessitate advanced visual-spatial reasoning capabilities, such as transportation hubs, large-scale retail spaces, urban streets, and public institutions. Our experiments first reveal that even top-tier proprietary models falter, achieving only ~30% success in object and path search. We then use post-training techniques to enhance the open-source Qwen2.5-VL, increasing its success rate by over threefold for both object search (14.83% to 47.38%) and path search (6.44% to 24.94%). Notably, the lower ceiling of path search reveals its inherent difficulty, which we attribute to the demand for sophisticated spatial commonsense. Our results not only show a promising path forward but also quantify the immense challenge that remains in building MLLM agents that can be seamlessly integrated into everyday human life.

Authors:Hengyi Wang, Lourdes Agapito
Title: AMB3R: Accurate Feed-forward Metric-scale 3D Reconstruction with Backend
Abstract:
We present AMB3R, a multi-view feed-forward model for dense 3D reconstruction on a metric-scale that addresses diverse 3D vision tasks. The key idea is to leverage a sparse, yet compact, volumetric scene representation as our backend, enabling geometric reasoning with spatial compactness. Although trained solely for multi-view reconstruction, we demonstrate that AMB3R can be seamlessly extended to uncalibrated visual odometry (online) or large-scale structure from motion without the need for task-specific fine-tuning or test-time optimization. Compared to prior pointmap-based models, our approach achieves state-of-the-art performance in camera pose, depth, and metric-scale estimation, 3D reconstruction, and even surpasses optimization-based SLAM and SfM methods with dense reconstruction priors on common benchmarks.

Authors:Jiazhao Shi, Pan Pan, Haotian Shi
Title: 3D Motion Perception of Binocular Vision Target with PID-CNN
Abstract:
This article trained a network for perceiving three-dimensional motion information of binocular vision target, which can provide real-time three-dimensional coordinate, velocity, and acceleration, and has a basic spatiotemporal perception capability. Understood the ability of neural networks to fit nonlinear problems from the perspective of PID. Considered a single-layer neural network as using a second-order difference equation and a nonlinearity to describe a local problem. Multilayer networks gradually transform the raw representation to the desired representation through multiple such combinations. Analysed some reference principles for designing neural networks. Designed a relatively small PID convolutional neural network, with a total of 17 layers and 413 thousand parameters. Implemented a simple but practical feature reuse method by concatenation and pooling. The network was trained and tested using the simulated randomly moving ball datasets, and the experimental results showed that the prediction accuracy was close to the upper limit that the input image resolution can represent. Analysed the experimental results and errors, as well as the existing shortcomings and possible directions for improvement. Finally, discussed the advantages of high-dimensional convolution in improving computational efficiency and feature space utilization. As well as the potential advantages of using PID information to implement memory and attention mechanisms.

Authors:Baoshun Shi, Ke Jiang, Qiusheng Lian, Xinran Yu, Huazhu Fu
Title: Prompting Lipschitz-constrained network for multiple-in-one sparse-view CT reconstruction
Abstract:
Despite significant advancements in deep learning-based sparse-view computed tomography (SVCT) reconstruction algorithms, these methods still encounter two primary limitations: (i) It is challenging to explicitly prove that the prior networks of deep unfolding algorithms satisfy Lipschitz constraints due to their empirically designed nature. (ii) The substantial storage costs of training a separate model for each setting in the case of multiple views hinder practical clinical applications. To address these issues, we elaborate an explicitly provable Lipschitz-constrained network, dubbed LipNet, and integrate an explicit prompt module to provide discriminative knowledge of different sparse sampling settings, enabling the treatment of multiple sparse view configurations within a single model. Furthermore, we develop a storage-saving deep unfolding framework for multiple-in-one SVCT reconstruction, termed PromptCT, which embeds LipNet as its prior network to ensure the convergence of its corresponding iterative algorithm. In simulated and real data experiments, PromptCT outperforms benchmark reconstruction algorithms in multiple-in-one SVCT reconstruction, achieving higher-quality reconstructions with lower storage costs. On the theoretical side, we explicitly demonstrate that LipNet satisfies boundary property, further proving its Lipschitz continuity and subsequently analyzing the convergence of the proposed iterative algorithms. The data and code are publicly available at https://github.com/shibaoshun/PromptCT.

Authors:Advik Sinha, Saurabh Atreya, Aashutosh A, Sk Aziz Ali, Abhijit Das
Title: ScenarioCLIP: Pretrained Transferable Visual Language Models and Action-Genome Dataset for Natural Scene Analysis
Abstract:
Until recently, the general corpus of CLIP-type fundamental models has widely explored either the retrieval of short descriptions or the classification of objects in the scene as SINGLE-object image classification task. The same holds for retrieving the image embedding (image retrieval task) given a text prompt. However, real-world scene images exhibit rich compositional structure involving multiple objects and actions. The latest methods in the CLIP-based literature improve class-level discrimination by mining harder negative image-text pairs and by refining permanent text prompts, often using LLMs. However, these improvements remain confined to predefined class lists and do not explicitly model relational or compositional structure. PyramidCLIP partially addresses this gap by aligning global and local visual features, yet it still lacks explicit modeling of inter-object relations. Hence, to further leverage this aspect for scene analysis, the proposed ScenarioCLIP model accepts input texts, grounded relations, and input images, along with focused regions highlighting relations. The proposed model is pretrained on curated scenario data, and finetuned for specialized downstream tasks, such as cross-modal retrieval and fine-grained visual understanding tasks. To address the lack of domain-specific datasets, we generate a novel dataset by extending image-text pairs from existing diverse indoor and outdoor scenario datasets that are publicly available. We used a pipeline of existing language models to ground action, object, and relations, filled by manual and automatic curation. We established a comprehensive benchmark for several scenario-based tasks and compared it with many baseline methods. ScenarioCLIP demonstrates robust zero-shot and finetune performance on various domain-specific tasks. Our code and dataset are available at https://github.com/scenario-clip/ScenarioCLIP

Authors:Omer Belhasin, Shelly Golan, Ran El-Yaniv, Michael Elad
Title: Advancing Image Classification with Discrete Diffusion Classification Modeling
Abstract:
Image classification is a well-studied task in computer vision, and yet it remains challenging under high-uncertainty conditions, such as when input images are corrupted or training data are limited. Conventional classification approaches typically train models to directly predict class labels from input images, but this might lead to suboptimal performance in such scenarios. To address this issue, we propose Discrete Diffusion Classification Modeling (DiDiCM), a novel framework that leverages a diffusion-based procedure to model the posterior distribution of class labels conditioned on the input image. DiDiCM supports diffusion-based predictions either on class probabilities or on discrete class labels, providing flexibility in computation and memory trade-offs. We conduct a comprehensive empirical study demonstrating the superior performance of DiDiCM over standard classifiers, showing that a few diffusion iterations achieve higher classification accuracy on the ImageNet dataset compared to baselines, with accuracy gains increasing as the task becomes more challenging. We release our code at https://github.com/omerb01/didicm .

Authors:Andrey Lemeshko, Bulat Gabdullin, Nikita Drozdov, Anton Konushin, Danila Rukhovich, Maksim Kolodiazhnyi
Title: Zoo3D: Zero-Shot 3D Object Detection at Scene Level
Abstract:
3D object detection is fundamental for spatial understanding. Real-world environments demand models capable of recognizing diverse, previously unseen objects, which remains a major limitation of closed-set methods. Existing open-vocabulary 3D detectors relax annotation requirements but still depend on training scenes, either as point clouds or images. We take this a step further by introducing Zoo3D, the first training-free 3D object detection framework. Our method constructs 3D bounding boxes via graph clustering of 2D instance masks, then assigns semantic labels using a novel open-vocabulary module with best-view selection and view-consensus mask generation. Zoo3D operates in two modes: the zero-shot Zoo3D$_0$, which requires no training at all, and the self-supervised Zoo3D$_1$, which refines 3D box prediction by training a class-agnostic detector on Zoo3D$_0$-generated pseudo labels. Furthermore, we extend Zoo3D beyond point clouds to work directly with posed and even unposed images. Across ScanNet200 and ARKitScenes benchmarks, both Zoo3D$_0$ and Zoo3D$_1$ achieve state-of-the-art results in open-vocabulary 3D object detection. Remarkably, our zero-shot Zoo3D$_0$ outperforms all existing self-supervised methods, hence demonstrating the power and adaptability of training-free, off-the-shelf approaches for real-world 3D understanding. Code is available at https://github.com/col14m/zoo3d .

Authors:Sen Nie, Jie Zhang, Jianxin Yan, Shiguang Shan, Xilin Chen
Title: V-Attack: Targeting Disentangled Value Features for Controllable Adversarial Attacks on LVLMs
Abstract:
Adversarial attacks have evolved from simply disrupting predictions on conventional task-specific models to the more complex goal of manipulating image semantics on Large Vision-Language Models (LVLMs). However, existing methods struggle with controllability and fail to precisely manipulate the semantics of specific concepts in the image. We attribute this limitation to semantic entanglement in the patch-token representations on which adversarial attacks typically operate: global context aggregated by self-attention in the vision encoder dominates individual patch features, making them unreliable handles for precise local semantic manipulation. Our systematic investigation reveals a key insight: value features (V) computed within the transformer attention block serve as much more precise handles for manipulation. We show that V suppresses global-context channels, allowing it to retain high-entropy, disentangled local semantic information. Building on this discovery, we propose V-Attack, a novel method designed for precise local semantic attacks. V-Attack targets the value features and introduces two core components: (1) a Self-Value Enhancement module to refine V's intrinsic semantic richness, and (2) a Text-Guided Value Manipulation module that leverages text prompts to locate source concept and optimize it toward a target concept. By bypassing the entangled patch features, V-Attack achieves highly effective semantic control. Extensive experiments across diverse LVLMs, including LLaVA, InternVL, DeepseekVL and GPT-4o, show that V-Attack improves the attack success rate by an average of 36% over state-of-the-art methods, exposing critical vulnerabilities in modern visual-language understanding. Our code and data are available https://github.com/Summu77/V-Attack.

Authors:Hai Ling, Jia Guo, Zhulin Tao, Yunkang Cao, Donglin Di, Hongyan Xu, Xiu Su, Yang Song, Lei Fan
Title: ADNet: A Large-Scale and Extensible Multi-Domain Benchmark for Anomaly Detection Across 380 Real-World Categories
Abstract:
Anomaly detection (AD) aims to identify defects using normal-only training data. Existing anomaly detection benchmarks (e.g., MVTec-AD with 15 categories) cover only a narrow range of categories, limiting the evaluation of cross-context generalization and scalability. We introduce ADNet, a large-scale, multi-domain benchmark comprising 380 categories aggregated from 49 publicly available datasets across Electronics, Industry, Agrifood, Infrastructure, and Medical domains. The benchmark includes a total of 196,294 RGB images, consisting of 116,192 normal samples for training and 80,102 test images, of which 60,311 are anomalous. All images are standardized with MVTec-style pixel-level annotations and structured text descriptions spanning both spatial and visual attributes, enabling multimodal anomaly detection tasks. Extensive experiments reveal a clear scalability challenge: existing state-of-the-art methods achieve 90.6% I-AUROC in one-for-one settings but drop to 78.5% when scaling to all 380 categories in a multi-class setting. To address this, we propose Dinomaly-m, a context-guided Mixture-of-Experts extension of Dinomaly that expands decoder capacity without increasing inference cost. It achieves 83.2% I-AUROC and 93.1% P-AUROC, demonstrating superior performance over existing approaches. ADNet is designed as a standardized and extensible benchmark, supporting the community in expanding anomaly detection datasets across diverse domains and providing a scalable foundation for future anomaly detection foundation models. Dataset: https://grainnet.github.io/ADNet

Authors:Da Li, Jiping Jin, Xuanlong Yu, Wei Liu, Xiaodong Cun, Kai Chen, Rui Fan, Jiangang Kong, Xi Shen
Title: SKEL-CF: Coarse-to-Fine Biomechanical Skeleton and Surface Mesh Recovery
Abstract:
Parametric 3D human models such as SMPL have driven significant advances in human pose and shape estimation, yet their simplified kinematics limit biomechanical realism. The recently proposed SKEL model addresses this limitation by re-rigging SMPL with an anatomically accurate skeleton. However, estimating SKEL parameters directly remains challenging due to limited training data, perspective ambiguities, and the inherent complexity of human articulation. We introduce SKEL-CF, a coarse-to-fine framework for SKEL parameter estimation. SKEL-CF employs a transformer-based encoder-decoder architecture, where the encoder predicts coarse camera and SKEL parameters, and the decoder progressively refines them in successive layers. To ensure anatomically consistent supervision, we convert the existing SMPL-based dataset 4DHuman into a SKEL-aligned version, 4DHuman-SKEL, providing high-quality training data for SKEL estimation. In addition, to mitigate depth and scale ambiguities, we explicitly incorporate camera modeling into the SKEL-CF pipeline and demonstrate its importance across diverse viewpoints. Extensive experiments validate the effectiveness of the proposed design. On the challenging MOYO dataset, SKEL-CF achieves 85.0 MPJPE / 51.4 PA-MPJPE, significantly outperforming the previous SKEL-based state-of-the-art HSMR (104.5 / 79.6). These results establish SKEL-CF as a scalable and anatomically faithful framework for human motion analysis, bridging the gap between computer vision and biomechanics. Our implementation is available on the project page: https://pokerman8.github.io/SKEL-CF/.

Authors:Min Zhao, Hongzhou Zhu, Yingze Wang, Bokai Yan, Jintao Zhang, Guande He, Ling Yang, Chongxuan Li, Jun Zhu
Title: UltraViCo: Breaking Extrapolation Limits in Video Diffusion Transformers
Abstract:
Despite advances, video diffusion transformers still struggle to generalize beyond their training length, a challenge we term video length extrapolation. We identify two failure modes: model-specific periodic content repetition and a universal quality degradation. Prior works attempt to solve repetition via positional encodings, overlooking quality degradation and achieving only limited extrapolation. In this paper, we revisit this challenge from a more fundamental view: attention maps, which directly govern how context influences outputs. We identify that both failure modes arise from a unified cause: attention dispersion, where tokens beyond the training window dilute learned attention patterns. This leads to quality degradation and repetition emerges as a special case when this dispersion becomes structured into periodic attention patterns, induced by harmonic properties of positional encodings. Building on this insight, we propose UltraViCo, a training-free, plug-and-play method that suppresses attention for tokens beyond the training window via a constant decay factor. By jointly addressing both failure modes, we outperform a broad set of baselines largely across models and extrapolation ratios, pushing the extrapolation limit from 2x to 4x. Remarkably, it improves Dynamic Degree and Imaging Quality by 233% and 40.5% over the previous best method at 4x extrapolation. Furthermore, our method generalizes seamlessly to downstream tasks such as controllable video synthesis and editing.

Authors:Huijia Zhao, Jie Lu, Yunqing Jiang, Xiao-Ping Lu, Kaichang Di
Title: History-Augmented Contrastive Meta-Learning for Unsupervised Blind Super-Resolution of Planetary Remote Sensing Images
Abstract:
Planetary remote sensing images are affected by diverse and unknown degradations caused by imaging environments and hardware constraints. These factors limit image quality and hinder supervised blind super-resolution due to the lack of ground-truth images. This work presents History-Augmented Contrastive Blind Super-Resolution (HACBSR), an unsupervised framework for blind super-resolution that operates without ground-truth images and external kernel priors. HACBSR comprises two components: (1) a contrastive kernel sampling mechanism with kernel similarity control to mitigate distribution bias from Gaussian sampling, and (2) a history-augmented contrastive learning that uses historical models to generate negative samples to enable less greedy optimization and to induce strong convexity without ground-truth. A convergence analysis of the history-augmented contrastive learning is given in the Appendix. To support evaluation in planetary applications, we introduce Ceres-50, a dataset with diverse geological features simulated degradation patterns. Experiments show that HACBSR achieves competitive performance compared with state-of-the-art unsupervised methods across multiple upscaling factors. The code is available at https://github.com/2333repeat/HACBSR, and the dataset is available at https://github.com/2333repeat/Ceres-50.

Authors:Yuanzhe Li, Hang Zhong, Steffen Müller
Title: Multi-Context Fusion Transformer for Pedestrian Crossing Intention Prediction in Urban Environments
Abstract:
Pedestrian crossing intention prediction is essential for autonomous vehicles to improve pedestrian safety and reduce traffic accidents. However, accurate pedestrian intention prediction in urban environments remains challenging due to the multitude of factors affecting pedestrian behavior. In this paper, we propose a multi-context fusion Transformer (MFT) that leverages diverse numerical contextual attributes across four key dimensions, encompassing pedestrian behavior context, environmental context, pedestrian localization context and vehicle motion context, to enable accurate pedestrian intention prediction. MFT employs a progressive fusion strategy, where mutual intra-context attention enables reciprocal interactions within each context, thereby facilitating feature sequence fusion and yielding a context token as a context-specific representation. This is followed by mutual cross-context attention, which integrates features across contexts with a global CLS token serving as a compact multi-context representation. Finally, guided intra-context attention refines context tokens within each context through directed interactions, while guided cross-context attention strengthens the global CLS token to promote multi-context fusion via guided information propagation, yielding deeper and more efficient integration. Experimental results validate the superiority of MFT over state-of-the-art methods, achieving accuracy rates of 73%, 93%, and 90% on the JAADbeh, JAADall, and PIE datasets, respectively. Extensive ablation studies are further conducted to investigate the effectiveness of the network architecture and contribution of different input context. Our code is open-source: https://github.com/ZhongHang0307/Multi-Context-Fusion-Transformer.

Authors:Seungyeon Baek, Erqun Dong, Shadan Namazifard, Mark J. Matthews, Kwang Moo Yi
Title: SONIC: Spectral Optimization of Noise for Inpainting with Consistency
Abstract:
We propose a novel training-free method for inpainting with off-the-shelf text-to-image models. While guidance-based methods in theory allow generic models to be used for inverse problems such as inpainting, in practice, their effectiveness is limited, leading to the necessity of specialized inpainting-specific models. In this work, we argue that the missing ingredient for training-free inpainting is the optimization (guidance) of the initial seed noise. We propose to optimize the initial seed noise to approximately match the unmasked parts of the data - with as few as a few tens of optimization steps. We then apply conventional training-free inpainting methods on top of our optimized initial seed noise. Critically, we propose two core ideas to effectively implement this idea: (i) to avoid the costly unrolling required to relate the initial noise and the generated outcome, we perform linear approximation; and (ii) to stabilize the optimization, we optimize the initial seed noise in the spectral domain. We demonstrate the effectiveness of our method on various inpainting tasks, outperforming the state of the art. Project page: https://ubc-vision.github.io/sonic/

Authors:Yufan Chen, Omar Moured, Ruiping Liu, Junwei Zheng, Kunyu Peng, Jiaming Zhang, Rainer Stiefelhagen
Title: HybriDLA: Hybrid Generation for Document Layout Analysis
Abstract:
Conventional document layout analysis (DLA) traditionally depends on empirical priors or a fixed set of learnable queries executed in a single forward pass. While sufficient for early-generation documents with a small, predetermined number of regions, this paradigm struggles with contemporary documents, which exhibit diverse element counts and increasingly complex layouts. To address challenges posed by modern documents, we present HybriDLA, a novel generative framework that unifies diffusion and autoregressive decoding within a single layer. The diffusion component iteratively refines bounding-box hypotheses, whereas the autoregressive component injects semantic and contextual awareness, enabling precise region prediction even in highly varied layouts. To further enhance detection quality, we design a multi-scale feature-fusion encoder that captures both fine-grained and high-level visual cues. This architecture elevates performance to 83.5% mean Average Precision (mAP). Extensive experiments on the DocLayNet and M$^6$Doc benchmarks demonstrate that HybriDLA sets a state-of-the-art performance, outperforming previous approaches. All data and models will be made publicly available at https://yufanchen96.github.io/projects/HybriDLA.

Authors:Jiaqi Liu, Kaiwen Xiong, Peng Xia, Yiyang Zhou, Haonian Ji, Lu Feng, Siwei Han, Mingyu Ding, Huaxiu Yao
Title: Agent0-VL: Exploring Self-Evolving Agent for Tool-Integrated Vision-Language Reasoning
Abstract:
Vision-language agents have achieved remarkable progress in a variety of multimodal reasoning tasks; however, their learning remains constrained by the limitations of human-annotated supervision. Recent self-rewarding approaches attempt to overcome this constraint by allowing models to act as their own critics or reward providers. Yet, purely text-based self-evaluation struggles to verify complex visual reasoning steps and often suffers from evaluation hallucinations. To address these challenges, inspired by recent advances in tool-integrated reasoning, we propose Agent0-VL, a self-evolving vision-language agent that achieves continual improvement with tool-integrated reasoning. Agent0-VL incorporates tool usage not only into reasoning but also into self-evaluation and self-repair, enabling the model to introspect, verify, and refine its reasoning through evidence-grounded analysis. It unifies two synergistic roles within a single LVLM: a Solver that performs multi-turn tool-integrated reasoning, and a Verifier that generates structured feedback and fine-grained self-rewards through tool-grounded critique. These roles interact through a Self-Evolving Reasoning Cycle, where tool-based verification and reinforcement learning jointly align the reasoning and evaluation distributions for stable self-improvement. Through this zero-external-reward evolution, Agent0-VL aligns its reasoning and verification behaviors without any human annotation or external reward models, achieving continual self-improvement. Experiments on geometric problem solving and visual scientific analysis show that Agent0-VL achieves an 12.5% improvement over the base model. Our code is available at https://github.com/aiming-lab/Agent0.

Authors:Junhong Liu, Yuan Zhang, Tao Huang, Wenchao Xu, Renyu Yang
Title: Distilling Cross-Modal Knowledge via Feature Disentanglement
Abstract:
Knowledge distillation (KD) has proven highly effective for compressing large models and enhancing the performance of smaller ones. However, its effectiveness diminishes in cross-modal scenarios, such as vision-to-language distillation, where inconsistencies in representation across modalities lead to difficult knowledge transfer. To address this challenge, we propose frequency-decoupled cross-modal knowledge distillation, a method designed to decouple and balance knowledge transfer across modalities by leveraging frequency-domain features. We observed that low-frequency features exhibit high consistency across different modalities, whereas high-frequency features demonstrate extremely low cross-modal similarity. Accordingly, we apply distinct losses to these features: enforcing strong alignment in the low-frequency domain and introducing relaxed alignment for high-frequency features. We also propose a scale consistency loss to address distributional shifts between modalities, and employ a shared classifier to unify feature spaces. Extensive experiments across multiple benchmark datasets show our method substantially outperforms traditional KD and state-of-the-art cross-modal KD approaches. Code is available at https://github.com/Johumliu/FD-CMKD.

Authors:Yiting Lu, Wei Luo, Peiyan Tu, Haoran Li, Hanxin Zhu, Zihao Yu, Xingrui Wang, Xinyi Chen, Xinge Peng, Xin Li, Zhibo Chen
Title: 4DWorldBench: A Comprehensive Evaluation Framework for 3D/4D World Generation Models
Abstract:
World Generation Models are emerging as a cornerstone of next-generation multimodal intelligence systems. Unlike traditional 2D visual generation, World Models aim to construct realistic, dynamic, and physically consistent 3D/4D worlds from images, videos, or text. These models not only need to produce high-fidelity visual content but also maintain coherence across space, time, physics, and instruction control, enabling applications in virtual reality, autonomous driving, embodied intelligence, and content creation. However, prior benchmarks emphasize different evaluation dimensions and lack a unified assessment of world-realism capability. To systematically evaluate World Models, we introduce the 4DWorldBench, which measures models across four key dimensions: Perceptual Quality, Condition-4D Alignment, Physical Realism, and 4D Consistency. The benchmark covers tasks such as Image-to-3D/4D, Video-to-4D, Text-to-3D/4D. Beyond these, we innovatively introduce adaptive conditioning across multiple modalities, which not only integrates but also extends traditional evaluation paradigms. To accommodate different modality-conditioned inputs, we map all modality conditions into a unified textual space during evaluation, and further integrate LLM-as-judge, MLLM-as-judge, and traditional network-based methods. This unified and adaptive design enables more comprehensive and consistent evaluation of alignment, physical realism, and cross-modal coherence. Preliminary human studies further demonstrate that our adaptive tool selection achieves closer agreement with subjective human judgments. We hope this benchmark will serve as a foundation for objective comparisons and improvements, accelerating the transition from "visual generation" to "world generation." Our project can be found at https://yeppp27.github.io/4DWorldBench.github.io/.

Authors:Xuewen Liu, Zhikai Li, Jing Zhang, Mengjuan Chen, Qingyi Gu
Title: Rectified SpaAttn: Revisiting Attention Sparsity for Efficient Video Generation
Abstract:
Diffusion Transformers dominate video generation, but the quadratic complexity of attention computation introduces substantial latency. Attention sparsity reduces computational costs by focusing on critical tokens while ignoring non-critical tokens. However, existing methods suffer from severe performance degradation. In this paper, we revisit attention sparsity and reveal that existing methods induce systematic biases in attention allocation: (1) excessive focus on critical tokens amplifies their attention weights; (2) complete neglect of non-critical tokens causes the loss of relevant attention weights. To address these issues, we propose Rectified SpaAttn, which rectifies attention allocation with implicit full attention reference, thereby enhancing the alignment between sparse and full attention maps. Specifically: (1) for critical tokens, we show that their bias is proportional to the sparse attention weights, with the ratio governed by the amplified weights. Accordingly, we propose Isolated-Pooling Attention Reallocation, which calculates accurate rectification factors by reallocating multimodal pooled weights. (2) for non-critical tokens, recovering attention weights from the pooled query-key yields attention gains but also introduces pooling errors. Therefore, we propose Gain-Aware Pooling Rectification, which ensures that the rectified gain consistently surpasses the induced error. Moreover, we customize and integrate the Rectified SpaAttn kernel using Triton, achieving up to 3.33 and 2.08 times speedups on HunyuanVideo and Wan 2.1, respectively, while maintaining high generation quality. We release Rectified SpaAttn as open-source at https://github.com/BienLuky/Rectified-SpaAttn .

Authors:Byeongjun Park, Byung-Hoon Kim, Hyungjin Chung, Jong Chul Ye
Title: ReDirector: Creating Any-Length Video Retakes with Rotary Camera Encoding
Abstract:
We present ReDirector, a novel camera-controlled video retake generation method for dynamically captured variable-length videos. In particular, we rectify a common misuse of RoPE in previous works by aligning the spatiotemporal positions of the input video and the target retake. Moreover, we introduce Rotary Camera Encoding (RoCE), a camera-conditioned RoPE phase shift that captures and integrates multi-view relationships within and across the input and target videos. By integrating camera conditions into RoPE, our method generalizes to out-of-distribution camera trajectories and video lengths, yielding improved dynamic object localization and static background preservation. Extensive experiments further demonstrate significant improvements in camera controllability, geometric consistency, and video quality across various trajectories and lengths.

Authors:Linqi Zhou, Mathias Parger, Ayaan Haque, Jiaming Song
Title: Terminal Velocity Matching
Abstract:
We propose Terminal Velocity Matching (TVM), a generalization of flow matching that enables high-fidelity one- and few-step generative modeling. TVM models the transition between any two diffusion timesteps and regularizes its behavior at its terminal time rather than at the initial time. We prove that TVM provides an upper bound on the $2$-Wasserstein distance between data and model distributions when the model is Lipschitz continuous. However, since Diffusion Transformers lack this property, we introduce minimal architectural changes that achieve stable, single-stage training. To make TVM efficient in practice, we develop a fused attention kernel that supports backward passes on Jacobian-Vector Products, which scale well with transformer architectures. On ImageNet-256x256, TVM achieves 3.29 FID with a single function evaluation (NFE) and 1.99 FID with 4 NFEs. It similarly achieves 4.32 1-NFE FID and 2.94 4-NFE FID on ImageNet-512x512, representing state-of-the-art performance for one/few-step models from scratch.

Authors:Noah Frahm, Prakrut Patel, Yue Zhang, Shoubin Yu, Mohit Bansal, Roni Sengupta
Title: Prune-Then-Plan: Step-Level Calibration for Stable Frontier Exploration in Embodied Question Answering
Abstract:
Large vision-language models (VLMs) have improved embodied question answering (EQA) agents by providing strong semantic priors for open-vocabulary reasoning. However, when used directly for step-level exploration, VLMs often exhibit frontier oscillations, unstable back-and-forth movements caused by overconfidence and miscalibration, leading to inefficient navigation and degraded answer quality. We propose Prune-Then-Plan, a simple and effective framework that stabilizes exploration through step-level calibration. Instead of trusting raw VLM scores, our method prunes implausible frontier choices using a Holm-Bonferroni inspired pruning procedure and then delegates final decisions to a coverage-based planner. This separation converts overconfident predictions into conservative, interpretable actions by relying on human-level judgments to calibrate the step-level behavior of VLMs. Integrated into the 3D-Mem EQA framework, our approach achieves relative improvements of up to 49% and 33% in visually grounded SPL and LLM-Match metrics respectively over baselines. Overall, our method achieves better scene coverage under equal exploration budgets on both OpenEQA and EXPRESS-Bench datasets.

Authors:Abdurahman Ali Mohammed, Wallapak Tavanapong, Catherine Fonder, Donald S. Sakaguchi
Title: CountXplain: Interpretable Cell Counting with Prototype-Based Density Map Estimation
Abstract:
Cell counting in biomedical imaging is pivotal for various clinical applications, yet the interpretability of deep learning models in this domain remains a significant challenge. We propose a novel prototype-based method for interpretable cell counting via density map estimation. Our approach integrates a prototype layer into the density estimation network, enabling the model to learn representative visual patterns for both cells and background artifacts. The learned prototypes were evaluated through a survey of biologists, who confirmed the relevance of the visual patterns identified, further validating the interpretability of the model. By generating interpretations that highlight regions in the input image most similar to each prototype, our method offers a clear understanding of how the model identifies and counts cells. Extensive experiments on two public datasets demonstrate that our method achieves interpretability without compromising counting effectiveness. This work provides researchers and clinicians with a transparent and reliable tool for cell counting, potentially increasing trust and accelerating the adoption of deep learning in critical biomedical applications. Code is available at https://github.com/NRT-D4/CountXplain.

Authors:Parsa Madinei, Ryan Solgi, Ziqi Wen, Jonathan Skaza, Miguel Eckstein, Ramtin Pedarsani
Title: INTERLACE: Interleaved Layer Pruning and Efficient Adaptation in Large Vision-Language Models
Abstract:
We introduce INTERLACE, a novel framework that prunes redundant layers in VLMs while maintaining performance through sample-efficient finetuning. Existing layer pruning methods lead to significant performance drop when applied to VLMs. Instead, we analyze triplets of consecutive layers to identify local redundancy, removing the most redundant of the first two layers, finetune the remaining layer to compensate for the lost capacity, and freeze the third layer to serve as a stable anchor during finetuning. We found that this interleaved finetune-freeze design enables rapid convergence with minimal data after pruning. By finetuning only a subset of layers on just 1% of the FineVision dataset for one epoch, Interlace achieves 88.9% average performance retention after dropping 25% of the network, achieving SOTA performance. Our code is available at: https://github.com/pmadinei/Interlace.git

Authors:Jaeyeong Kim, Seungwoo Yoo, Minhyuk Sung
Title: Proxy-Free Gaussian Splats Deformation with Splat-Based Surface Estimation
Abstract:
We introduce SpLap, a proxy-free deformation method for Gaussian splats (GS) based on a Laplacian operator computed from our novel surface-aware splat graph. Existing approaches to GS deformation typically rely on deformation proxies such as cages or meshes, but they suffer from dependency on proxy quality and additional computational overhead. An alternative is to directly apply Laplacian-based deformation techniques by treating splats as point clouds. However, this often fail to properly capture surface information due to lack of explicit structure. To address this, we propose a novel method that constructs a surface-aware splat graph, enabling the Laplacian operator derived from it to support more plausible deformations that preserve details and topology. Our key idea is to leverage the spatial arrangement encoded in splats, defining neighboring splats not merely by the distance between their centers, but by their intersections. Furthermore, we introduce a Gaussian kernel adaptation technique that preserves surface structure under deformation, thereby improving rendering quality after deformation. In our experiments, we demonstrate the superior performance of our method compared to both proxy-based and proxy-free baselines, evaluated on 50 challenging objects from the ShapeNet, Objaverse, and Sketchfab datasets, as well as the NeRF-Synthetic dataset. Code is available at https://github.com/kjae0/SpLap.

Authors:Dong Jing, Gang Wang, Jiaqi Liu, Weiliang Tang, Zelong Sun, Yunchao Yao, Zhenyu Wei, Yunhui Liu, Zhiwu Lu, Mingyu Ding
Title: Mixture of Horizons in Action Chunking
Abstract:
Vision-language-action (VLA) models have shown remarkable capabilities in robotic manipulation, but their performance is sensitive to the $\textbf{action chunk length}$ used during training, termed $\textbf{horizon}$. Our empirical study reveals an inherent trade-off: longer horizons provide stronger global foresight but degrade fine-grained accuracy, while shorter ones sharpen local control yet struggle on long-term tasks, implying fixed choice of single horizons being suboptimal. To mitigate the trade-off, we propose a $\textbf{mixture of horizons (MoH)}$ strategy. MoH rearranges the action chunk into several segments with different horizons, processes them in parallel with a shared action transformer, and fuses outputs with a light linear gate. It has three appealing benefits. 1) MoH exploits long-term foresight and short-term precision jointly within a single model, improving both performance and generalizability to complex tasks. 2) MoH is plug-and-play for full-attention action modules with minimal training or inference overhead. 3) MoH enables dynamic inference with adaptive horizons, which selects stable actions through cross-horizon consensus, achieving 2.5$\times$ higher throughput than baselines while preserving superior performance. Extensive experiments over flow-based policies $π_0$, $π_{0.5}$, and one-step regression policy $π_{\text{reg}}$ demonstrate that MoH yields consistent and significant gains on both simulations and real-world tasks. Notably, under mixed-task setting, $π_{0.5}$ with MoH reaches a new state-of-the-art with 99$\%$ average success rate on LIBERO after only $30k$ training iterations. Project page: https://github.com/Timsty1/MixtureOfHorizons

Authors:Dingkang Liang, Cheng Zhang, Xiaopeng Xu, Jianzhong Ju, Zhenbo Luo, Xiang Bai
Title: Cook and Clean Together: Teaching Embodied Agents for Parallel Task Execution
Abstract:
Task scheduling is critical for embodied AI, enabling agents to follow natural language instructions and execute actions efficiently in 3D physical worlds. However, existing datasets often simplify task planning by ignoring operations research (OR) knowledge and 3D spatial grounding. In this work, we propose Operations Research knowledge-based 3D Grounded Task Scheduling (ORS3D), a new task that requires the synergy of language understanding, 3D grounding, and efficiency optimization. Unlike prior settings, ORS3D demands that agents minimize total completion time by leveraging parallelizable subtasks, e.g., cleaning the sink while the microwave operates. To facilitate research on ORS3D, we construct ORS3D-60K, a large-scale dataset comprising 60K composite tasks across 4K real-world scenes. Furthermore, we propose GRANT, an embodied multi-modal large language model equipped with a simple yet effective scheduling token mechanism to generate efficient task schedules and grounded actions. Extensive experiments on ORS3D-60K validate the effectiveness of GRANT across language understanding, 3D grounding, and scheduling efficiency. The code is available at https://github.com/H-EmbodVis/GRANT

Authors:Yun Zhou, Yaoting Wang, Guangquan Jie, Jinyu Liu, Henghui Ding
Title: Ref-SAM3D: Bridging SAM3D with Text for Reference 3D Reconstruction
Abstract:
SAM3D has garnered widespread attention for its strong 3D object reconstruction capabilities. However, a key limitation remains: SAM3D cannot reconstruct specific objects referred to by textual descriptions, a capability that is essential for practical applications such as 3D editing, game development, and virtual environments. To address this gap, we introduce Ref-SAM3D, a simple yet effective extension to SAM3D that incorporates textual descriptions as a high-level prior, enabling text-guided 3D reconstruction from a single RGB image. Through extensive qualitative experiments, we show that Ref-SAM3D, guided only by natural language and a single 2D view, delivers competitive and high-fidelity zero-shot reconstruction performance. Our results demonstrate that Ref-SAM3D effectively bridges the gap between 2D visual cues and 3D geometric understanding, offering a more flexible and accessible paradigm for reference-guided 3D reconstruction. Code is available at: https://github.com/FudanCVL/Ref-SAM3D.

Authors:Yiming Qin, Bomin Wei, Jiaxin Ge, Konstantinos Kallidromitis, Stephanie Fu, Trevor Darrell, XuDong Wang
Title: Chain-of-Visual-Thought: Teaching VLMs to See and Think Better with Continuous Visual Tokens
Abstract:
Vision-Language Models (VLMs) excel at reasoning in linguistic space but struggle with perceptual understanding that requires dense visual perception, e.g., spatial reasoning and geometric awareness. This limitation stems from the fact that current VLMs have limited mechanisms to capture dense visual information across spatial dimensions. We introduce Chain-of-Visual-Thought (COVT), a framework that enables VLMs to reason not only in words but also through continuous visual tokens-compact latent representations that encode rich perceptual cues. Within a small budget of roughly 20 tokens, COVT distills knowledge from lightweight vision experts, capturing complementary properties such as 2D appearance, 3D geometry, spatial layout, and edge structure. During training, the VLM with COVT autoregressively predicts these visual tokens to reconstruct dense supervision signals (e.g., depth, segmentation, edges, and DINO features). At inference, the model reasons directly in the continuous visual token space, preserving efficiency while optionally decoding dense predictions for interpretability. Evaluated across more than ten diverse perception benchmarks, including CV-Bench, MMVP, RealWorldQA, MMStar, WorldMedQA, and HRBench, integrating COVT into strong VLMs such as Qwen2.5-VL and LLaVA consistently improves performance by 3% to 16% and demonstrates that compact continuous visual thinking enables more precise, grounded, and interpretable multimodal intelligence.

Authors:Zhaolong Su, Wang Lu, Hao Chen, Sharon Li, Jindong Wang
Title: UniGame: Turning a Unified Multimodal Model Into Its Own Adversary
Abstract:
Unified Multimodal Models (UMMs) have shown impressive performance in both understanding and generation with a single architecture. However, UMMs still exhibit a fundamental inconsistency: understanding favors compact embeddings, whereas generation favors reconstruction-rich representations. This structural trade-off produces misaligned decision boundaries, degraded cross-modal coherence, and heightened vulnerability under distributional and adversarial shifts. In this paper, we present UniGame, a self-adversarial post-training framework that directly targets the inconsistencies. By applying a lightweight perturber at the shared token interface, UniGame enables the generation branch to actively seek and challenge fragile understanding, turning the model itself into its own adversary. Experiments demonstrate that UniGame significantly improves the consistency (+4.6%). Moreover, it also achieves substantial improvements in understanding (+3.6%), generation (+0.02), out-of-distribution and adversarial robustness (+4.8% and +6.2% on NaturalBench and AdVQA). The framework is architecture-agnostic, introduces less than 1% additional parameters, and is complementary to existing post-training methods. These results position adversarial self-play as a general and effective principle for enhancing the coherence, stability, and unified competence of future multimodal foundation models. The official code is available at: https://github.com/AIFrontierLab/UniGame

Authors:Zehong Ma, Longhui Wei, Shuai Wang, Shiliang Zhang, Qi Tian
Title: DeCo: Frequency-Decoupled Pixel Diffusion for End-to-End Image Generation
Abstract:
Pixel diffusion aims to generate images directly in pixel space in an end-to-end fashion. This approach avoids the limitations of VAE in the two-stage latent diffusion, offering higher model capacity. Existing pixel diffusion models suffer from slow training and inference, as they usually model both high-frequency signals and low-frequency semantics within a single diffusion transformer (DiT). To pursue a more efficient pixel diffusion paradigm, we propose the frequency-DeCoupled pixel diffusion framework. With the intuition to decouple the generation of high and low frequency components, we leverage a lightweight pixel decoder to generate high-frequency details conditioned on semantic guidance from the DiT. This thus frees the DiT to specialize in modeling low-frequency semantics. In addition, we introduce a frequency-aware flow-matching loss that emphasizes visually salient frequencies while suppressing insignificant ones. Extensive experiments show that DeCo achieves superior performance among pixel diffusion models, attaining FID of 1.62 (256x256) and 2.22 (512x512) on ImageNet, closing the gap with latent diffusion methods. Furthermore, our pretrained text-to-image model achieves a leading overall score of 0.86 on GenEval in system-level comparison. Codes are publicly available at https://github.com/Zehong-Ma/DeCo.

Authors:Qihan Huang, Haofei Zhang, Rong Wei, Yi Wang, Rui Tang, Mingli Song, Jie Song
Title: Syn-GRPO: Self-Evolving Data Synthesis for MLLM Perception Reasoning
Abstract:
RL (reinforcement learning) methods (e.g., GRPO) for MLLM (Multimodal LLM) perception ability has attracted wide research interest owing to its remarkable generalization ability. Nevertheless, existing reinforcement learning methods still face the problem of low data quality, where data samples cannot elicit diverse responses from MLLMs, thus restricting the exploration scope for MLLM reinforcement learning. Some methods attempt to mitigate this problem by imposing constraints on entropy, but none address it at its root. Therefore, to tackle this problem, this work proposes Syn-GRPO (Synthesis-GRPO), which employs an online data generator to synthesize high-quality training data with diverse responses in GRPO training. Specifically, Syn-GRPO consists of two components: (1) data server; (2) GRPO workflow. The data server synthesizes new samples from existing ones using an image generation model, featuring a decoupled and asynchronous scheme to achieve high generation efficiency. The GRPO workflow provides the data server with the new image descriptions, and it leverages a diversity reward to supervise the MLLM to predict image descriptions for synthesizing samples with diverse responses. Experiment results across three visual perception tasks demonstrate that Syn-GRPO improves the data quality by a large margin, achieving significant superior performance to existing MLLM perception methods, and Syn-GRPO presents promising potential for scaling long-term self-evolving RL. Our code is available at https://github.com/hqhQAQ/Syn-GRPO.

Authors:Lingwei Dang, Zonghan Li, Juntong Li, Hongwen Zhang, Liang An, Yebin Liu, Qingyao Wu
Title: SyncMV4D: Synchronized Multi-view Joint Diffusion of Appearance and Motion for Hand-Object Interaction Synthesis
Abstract:
Hand-Object Interaction (HOI) generation plays a critical role in advancing applications across animation and robotics. Current video-based methods are predominantly single-view, which impedes comprehensive 3D geometry perception and often results in geometric distortions or unrealistic motion patterns. While 3D HOI approaches can generate dynamically plausible motions, their dependence on high-quality 3D data captured in controlled laboratory settings severely limits their generalization to real-world scenarios. To overcome these limitations, we introduce SyncMV4D, the first model that jointly generates synchronized multi-view HOI videos and 4D motions by unifying visual prior, motion dynamics, and multi-view geometry. Our framework features two core innovations: (1) a Multi-view Joint Diffusion (MJD) model that co-generates HOI videos and intermediate motions, and (2) a Diffusion Points Aligner (DPA) that refines the coarse intermediate motion into globally aligned 4D metric point tracks. To tightly couple 2D appearance with 4D dynamics, we establish a closed-loop, mutually enhancing cycle. During the diffusion denoising process, the generated video conditions the refinement of the 4D motion, while the aligned 4D point tracks are reprojected to guide next-step joint generation. Experimentally, our method demonstrates superior performance to state-of-the-art alternatives in visual realism, motion plausibility, and multi-view consistency.

Authors:Dewei Zhou, Mingwei Li, Zongxin Yang, Yu Lu, Yunqiu Xu, Zhizhong Wang, Zeyi Huang, Yi Yang
Title: BideDPO: Conditional Image Generation with Simultaneous Text and Condition Alignment
Abstract:
Conditional image generation enhances text-to-image synthesis with structural, spatial, or stylistic priors, but current methods face challenges in handling conflicts between sources. These include 1) input-level conflicts, where the conditioning image contradicts the text prompt, and 2) model-bias conflicts, where generative biases disrupt alignment even when conditions match the text. Addressing these conflicts requires nuanced solutions, which standard supervised fine-tuning struggles to provide. Preference-based optimization techniques like Direct Preference Optimization (DPO) show promise but are limited by gradient entanglement between text and condition signals and lack disentangled training data for multi-constraint tasks. To overcome this, we propose a bidirectionally decoupled DPO framework (BideDPO). Our method creates two disentangled preference pairs-one for the condition and one for the text-to reduce gradient entanglement. The influence of pairs is managed using an Adaptive Loss Balancing strategy for balanced optimization. We introduce an automated data pipeline to sample model outputs and generate conflict-aware data. This process is embedded in an iterative optimization strategy that refines both the model and the data. We construct a DualAlign benchmark to evaluate conflict resolution between text and condition. Experiments show BideDPO significantly improves text success rates (e.g., +35%) and condition adherence. We also validate our approach using the COCO dataset. Project Pages: https://limuloo.github.io/BideDPO/.

Authors:Selena Song, Ziming Xu, Zijun Zhang, Kun Zhou, Jiaxian Guo, Lianhui Qin, Biwei Huang
Title: Learning Plug-and-play Memory for Guiding Video Diffusion Models
Abstract:
Diffusion Transformer(DiT) based video generation models have recently achieved impressive visual quality and temporal coherence, but they still frequently violate basic physical laws and commonsense dynamics, revealing a lack of explicit world knowledge. In this work, we explore how to equip them with a plug-and-play memory that injects useful world knowledge. Motivated by in-context memory in Transformer-based LLMs, we conduct empirical studies to show that DiT can be steered via interventions on its hidden states, and simple low-pass and high-pass filters in the embedding space naturally disentangle low-level appearance and high-level physical/semantic cues, enabling targeted guidance. Building on these observations, we propose a learnable memory encoder DiT-Mem, composed of stacked 3D CNNs, low-/high-pass filters, and self-attention layers. The encoder maps reference videos into a compact set of memory tokens, which are concatenated as the memory within the DiT self-attention layers. During training, we keep the diffusion backbone frozen, and only optimize the memory encoder. It yields a rather efficient training process on few training parameters (150M) and 10K data samples, and enables plug-and-play usage at inference time. Extensive experiments on state-of-the-art models demonstrate the effectiveness of our method in improving physical rule following and video fidelity. Our code and data are publicly released here: https://thrcle421.github.io/DiT-Mem-Web/.

Authors:Carsten T. Lüth, Jeremias Traub, Kim-Celine Kahl, Till J. Bungert, Lukas Klein, Lars Krämer, Paul F. Jaeger, Fabian Isensee, Klaus Maier-Hein
Title: nnActive: A Framework for Evaluation of Active Learning in 3D Biomedical Segmentation
Abstract:
Semantic segmentation is crucial for various biomedical applications, yet its reliance on large annotated datasets presents a bottleneck due to the high cost and specialized expertise required for manual labeling. Active Learning (AL) aims to mitigate this challenge by querying only the most informative samples, thereby reducing annotation effort. However, in the domain of 3D biomedical imaging, there is no consensus on whether AL consistently outperforms Random sampling. Four evaluation pitfalls hinder the current methodological assessment. These are (1) restriction to too few datasets and annotation budgets, (2) using 2D models on 3D images without partial annotations, (3) Random baseline not being adapted to the task, and (4) measuring annotation cost only in voxels. In this work, we introduce nnActive, an open-source AL framework that overcomes these pitfalls by (1) means of a large scale study spanning four biomedical imaging datasets and three label regimes, (2) extending nnU-Net by using partial annotations for training with 3D patch-based query selection, (3) proposing Foreground Aware Random sampling strategies tackling the foreground-background class imbalance of medical images and (4) propose the foreground efficiency metric, which captures the low annotation cost of background-regions. We reveal the following findings: (A) while all AL methods outperform standard Random sampling, none reliably surpasses an improved Foreground Aware Random sampling; (B) benefits of AL depend on task specific parameters; (C) Predictive Entropy is overall the best performing AL method, but likely requires the most annotation effort; (D) AL performance can be improved with more compute intensive design choices. As a holistic, open-source framework, nnActive can serve as a catalyst for research and application of AL in 3D biomedical imaging. Code is at: https://github.com/MIC-DKFZ/nnActive

Authors:Kehua Chen, Tianlu Mao, Zhuxin Ma, Hao Jiang, Zehao Li, Zihan Liu, Shuqi Gao, Honglong Zhao, Feng Dai, Yucheng Zhang, Zhaoqi Wang
Title: MetroGS: Efficient and Stable Reconstruction of Geometrically Accurate High-Fidelity Large-Scale Scenes
Abstract:
Recently, 3D Gaussian Splatting and its derivatives have achieved significant breakthroughs in large-scale scene reconstruction. However, how to efficiently and stably achieve high-quality geometric fidelity remains a core challenge. To address this issue, we introduce MetroGS, a novel Gaussian Splatting framework for efficient and robust reconstruction in complex urban environments. Our method is built upon a distributed 2D Gaussian Splatting representation as the core foundation, serving as a unified backbone for subsequent modules. To handle potential sparse regions in complex scenes, we propose a structured dense enhancement scheme that utilizes SfM priors and a pointmap model to achieve a denser initialization, while incorporating a sparsity compensation mechanism to improve reconstruction completeness. Furthermore, we design a progressive hybrid geometric optimization strategy that organically integrates monocular and multi-view optimization to achieve efficient and accurate geometric refinement. Finally, to address the appearance inconsistency commonly observed in large-scale scenes, we introduce a depth-guided appearance modeling approach that learns spatial features with 3D consistency, facilitating effective decoupling between geometry and appearance and further enhancing reconstruction stability. Experiments on large-scale urban datasets demonstrate that MetroGS achieves superior geometric accuracy, rendering quality, offering a unified solution for high-fidelity large-scale scene reconstruction.

Authors:Minchong Chen, Xiaoyun Yuan, Junzhe Wan, Jianing Zhang, Jun Zhang
Title: 3M-TI: High-Quality Mobile Thermal Imaging via Calibration-free Multi-Camera Cross-Modal Diffusion
Abstract:
The miniaturization of thermal sensors for mobile platforms inherently limits their spatial resolution and textural fidelity, leading to blurry and less informative images. Existing thermal super-resolution (SR) methods can be grouped into single-image and RGB-guided approaches: the former struggles to recover fine structures from limited information, while the latter relies on accurate and laborious cross-camera calibration, which hinders practical deployment and robustness. Here, we propose 3M-TI, a calibration-free Multi-camera cross-Modality diffusion framework for Mobile Thermal Imaging. At its core, 3M-TI integrates a cross-modal self-attention module (CSM) into the diffusion UNet, replacing the original self-attention layers to adaptively align thermal and RGB features throughout the denoising process, without requiring explicit camera calibration. This design enables the diffusion network to leverage its generative prior to enhance spatial resolution, structural fidelity, and texture detail in the super-resolved thermal images. Extensive evaluations on real-world mobile thermal cameras and public benchmarks validate our superior performance, achieving state-of-the-art results in both visual quality and quantitative metrics. More importantly, the thermal images enhanced by 3M-TI lead to substantial gains in critical downstream tasks like object detection and segmentation, underscoring its practical value for robust mobile thermal perception systems. More materials: https://github.com/work-submit/3MTI.

Authors:Jichao Chen, YangYang Qu, Ruibo Tang, Dirk Slock
Title: Graph-based 3D Human Pose Estimation using WiFi Signals
Abstract:
WiFi-based human pose estimation (HPE) has attracted increasing attention due to its resilience to occlusion and privacy-preserving compared to camera-based methods. However, existing WiFi-based HPE approaches often employ regression networks that directly map WiFi channel state information (CSI) to 3D joint coordinates, ignoring the inherent topological relationships among human joints. In this paper, we present GraphPose-Fi, a graph-based framework that explicitly models skeletal topology for WiFi-based 3D HPE. Our framework comprises a CNN encoder shared across antennas for subcarrier-time feature extraction, a lightweight attention module that adaptively reweights features over time and across antennas, and a graph-based regression head that combines GCN layers with self-attention to capture local topology and global dependencies. Our proposed method significantly outperforms existing methods on the MM-Fi dataset in various settings. The source code is available at: https://github.com/Cirrick/GraphPose-Fi.

Authors:Anglin Liu, Rundong Xue, Xu R. Cao, Yifan Shen, Yi Lu, Xiang Li, Qianqian Chen, Jintai Chen
Title: MedSAM3: Delving into Segment Anything with Medical Concepts
Abstract:
Medical image segmentation is fundamental for biomedical discovery. Existing methods lack generalizability and demand extensive, time-consuming manual annotation for new clinical application. Here, we propose MedSAM-3, a text promptable medical segmentation model for medical image and video segmentation. By fine-tuning the Segment Anything Model (SAM) 3 architecture on medical images paired with semantic conceptual labels, our MedSAM-3 enables medical Promptable Concept Segmentation (PCS), allowing precise targeting of anatomical structures via open-vocabulary text descriptions rather than solely geometric prompts. We further introduce the MedSAM-3 Agent, a framework that integrates Multimodal Large Language Models (MLLMs) to perform complex reasoning and iterative refinement in an agent-in-the-loop workflow. Comprehensive experiments across diverse medical imaging modalities, including X-ray, MRI, Ultrasound, CT, and video, demonstrate that our approach significantly outperforms existing specialist and foundation models. We will release our code and model at https://github.com/Joey-S-Liu/MedSAM3.

Authors:Long Tang, Guoquan Zhen, Jie Hao, Jianbo Zhang, Huiyu Duan, Liang Yuan, Guangtao Zhai
Title: Life-IQA: Boosting Blind Image Quality Assessment through GCN-enhanced Layer Interaction and MoE-based Feature Decoupling
Abstract:
Blind image quality assessment (BIQA) plays a crucial role in evaluating and optimizing visual experience. Most existing BIQA approaches fuse shallow and deep features extracted from backbone networks, while overlooking the unequal contributions to quality prediction. Moreover, while various vision encoder backbones are widely adopted in BIQA, the effective quality decoding architectures remain underexplored. To address these limitations, this paper investigates the contributions of shallow and deep features to BIQA, and proposes a effective quality feature decoding framework via GCN-enhanced \underline{l}ayer\underline{i}nteraction and MoE-based \underline{f}eature d\underline{e}coupling, termed \textbf{(Life-IQA)}. Specifically, the GCN-enhanced layer interaction module utilizes the GCN-enhanced deepest-layer features as query and the penultimate-layer features as key, value, then performs cross-attention to achieve feature interaction. Moreover, a MoE-based feature decoupling module is proposed to decouple fused representations though different experts specialized for specific distortion types or quality dimensions. Extensive experiments demonstrate that Life-IQA shows more favorable balance between accuracy and cost than a vanilla Transformer decoder and achieves state-of-the-art performance on multiple BIQA benchmarks.The code is available at: \href{https://github.com/TANGLONG2/Life-IQA/tree/main}{\texttt{Life-IQA}}.

Authors:Christos Koutlis, Symeon Papadopoulos
Title: AuViRe: Audio-visual Speech Representation Reconstruction for Deepfake Temporal Localization
Abstract:
With the rapid advancement of sophisticated synthetic audio-visual content, e.g., for subtle malicious manipulations, ensuring the integrity of digital media has become paramount. This work presents a novel approach to temporal localization of deepfakes by leveraging Audio-Visual Speech Representation Reconstruction (AuViRe). Specifically, our approach reconstructs speech representations from one modality (e.g., lip movements) based on the other (e.g., audio waveform). Cross-modal reconstruction is significantly more challenging in manipulated video segments, leading to amplified discrepancies, thereby providing robust discriminative cues for precise temporal forgery localization. AuViRe outperforms the state of the art by +8.9 AP@0.95 on LAV-DF, +9.6 AP@0.5 on AV-Deepfake1M, and +5.1 AUC on an in-the-wild experiment. Code available at https://github.com/mever-team/auvire.

Authors:Duolikun Danier, Ge Gao, Steven McDonagh, Changjian Li, Hakan Bilen, Oisin Mac Aodha
Title: View-Consistent Diffusion Representations for 3D-Consistent Video Generation
Abstract:
Video generation models have made significant progress in generating realistic content, enabling applications in simulation, gaming, and film making. However, current generated videos still contain visual artifacts arising from 3D inconsistencies, e.g., objects and structures deforming under changes in camera pose, which can undermine user experience and simulation fidelity. Motivated by recent findings on representation alignment for diffusion models, we hypothesize that improving the multi-view consistency of video diffusion representations will yield more 3D-consistent video generation. Through detailed analysis on multiple recent camera-controlled video diffusion models we reveal strong correlations between 3D-consistent representations and videos. We also propose ViCoDR, a new approach for improving the 3D consistency of video models by learning multi-view consistent diffusion representations. We evaluate ViCoDR on camera controlled image-to-video, text-to-video, and multi-view generation models, demonstrating significant improvements in the 3D consistency of the generated videos. Project page: https://danier97.github.io/ViCoDR.

Authors:Zong-Wei Hong, Jing-lun Li, Lin-Ze Li, Shen Zhang, Yao Tang
Title: VeCoR - Velocity Contrastive Regularization for Flow Matching
Abstract:
Flow Matching (FM) has recently emerged as a principled and efficient alternative to diffusion models. Standard FM encourages the learned velocity field to follow a target direction; however, it may accumulate errors along the trajectory and drive samples off the data manifold, leading to perceptual degradation, especially in lightweight or low-step configurations. To enhance stability and generalization, we extend FM into a balanced attract-repel scheme that provides explicit guidance on both "where to go" and "where not to go." To be formal, we propose \textbf{Velocity Contrastive Regularization (VeCoR)}, a complementary training scheme for flow-based generative modeling that augments the standard FM objective with contrastive, two-sided supervision. VeCoR not only aligns the predicted velocity with a stable reference direction (positive supervision) but also pushes it away from inconsistent, off-manifold directions (negative supervision). This contrastive formulation transforms FM from a purely attractive, one-sided objective into a two-sided training signal, regularizing trajectory evolution and improving perceptual fidelity across datasets and backbones. On ImageNet-1K 256$\times$256, VeCoR yields 22\% and 35\% relative FID reductions on SiT-XL/2 and REPA-SiT-XL/2 backbones, respectively, and achieves further FID gains (32\% relative) on MS-COCO text-to-image generation, demonstrating consistent improvements in stability, convergence, and image quality, particularly in low-step and lightweight settings. Project page: https://p458732.github.io/VeCoR_Project_Page/

Authors:Zhenxing Mi, Yuxin Wang, Dan Xu
Title: One4D: Unified 4D Generation and Reconstruction via Decoupled LoRA Control
Abstract:
We present One4D, a unified framework for 4D generation and reconstruction that produces dynamic 4D content as synchronized RGB frames and pointmaps. By consistently handling varying sparsities of conditioning frames through a Unified Masked Conditioning (UMC) mechanism, One4D can seamlessly transition between 4D generation from a single image, 4D reconstruction from a full video, and mixed generation and reconstruction from sparse frames. Our framework adapts a powerful video generation model for joint RGB and pointmap generation, with carefully designed network architectures. The commonly used diffusion finetuning strategies for depthmap or pointmap reconstruction often fail on joint RGB and pointmap generation, quickly degrading the base video model. To address this challenge, we introduce Decoupled LoRA Control (DLC), which employs two modality-specific LoRA adapters to form decoupled computation branches for RGB frames and pointmaps, connected by lightweight, zero-initialized control links that gradually learn mutual pixel-level consistency. Trained on a mixture of synthetic and real 4D datasets under modest computational budgets, One4D produces high-quality RGB frames and accurate pointmaps across both generation and reconstruction tasks. This work represents a step toward general, high-quality geometry-based 4D world modeling using video diffusion models. Project page: https://mizhenxing.github.io/One4D

Authors:Juncheng Li, Yige Li, Hanxun Huang, Yunhao Chen, Xin Wang, Yixu Wang, Xingjun Ma, Yu-Gang Jiang
Title: BackdoorVLM: A Benchmark for Backdoor Attacks on Vision-Language Models
Abstract:
Backdoor attacks undermine the reliability and trustworthiness of machine learning systems by injecting hidden behaviors that can be maliciously activated at inference time. While such threats have been extensively studied in unimodal settings, their impact on multimodal foundation models, particularly vision-language models (VLMs), remains largely underexplored. In this work, we introduce \textbf{BackdoorVLM}, the first comprehensive benchmark for systematically evaluating backdoor attacks on VLMs across a broad range of settings. It adopts a unified perspective that injects and analyzes backdoors across core vision-language tasks, including image captioning and visual question answering. BackdoorVLM organizes multimodal backdoor threats into 5 representative categories: targeted refusal, malicious injection, jailbreak, concept substitution, and perceptual hijack. Each category captures a distinct pathway through which an adversary can manipulate a model's behavior. We evaluate these threats using 12 representative attack methods spanning text, image, and bimodal triggers, tested on 2 open-source VLMs and 3 multimodal datasets. Our analysis reveals that VLMs exhibit strong sensitivity to textual instructions, and in bimodal backdoors the text trigger typically overwhelms the image trigger when forming the backdoor mapping. Notably, backdoors involving the textual modality remain highly potent, with poisoning rates as low as 1\% yielding over 90\% success across most tasks. These findings highlight significant, previously underexplored vulnerabilities in current VLMs. We hope that BackdoorVLM can serve as a useful benchmark for analyzing and mitigating multimodal backdoor threats. Code is available at: https://github.com/bin015/BackdoorVLM .

Authors:Yuzhi Chen, Yuanchang Xie, Lei Zhao, Pan Liu, Yajie Zou, Chen Wang
Title: GContextFormer: A global context-aware hybrid multi-head attention approach with scaled additive aggregation for multimodal trajectory prediction
Abstract:
Multimodal trajectory prediction generates multiple plausible future trajectories to address vehicle motion uncertainty from intention ambiguity and execution variability. However, HD map-dependent models suffer from costly data acquisition, delayed updates, and vulnerability to corrupted inputs, causing prediction failures. Map-free approaches lack global context, with pairwise attention over-amplifying straight patterns while suppressing transitional patterns, resulting in motion-intention misalignment. This paper proposes GContextFormer, a plug-and-play encoder-decoder architecture with global context-aware hybrid attention and scaled additive aggregation achieving intention-aligned multimodal prediction without map reliance. The Motion-Aware Encoder builds scene-level intention prior via bounded scaled additive aggregation over mode-embedded trajectory tokens and refines per-mode representations under shared global context, mitigating inter-mode suppression and promoting intention alignment. The Hierarchical Interaction Decoder decomposes social reasoning into dual-pathway cross-attention: a standard pathway ensures uniform geometric coverage over agent-mode pairs while a neighbor-context-enhanced pathway emphasizes salient interactions, with gating module mediating their contributions to maintain coverage-focus balance. Experiments on eight highway-ramp scenarios from TOD-VT dataset show GContextFormer outperforms state-of-the-art baselines. Compared to existing transformer models, GContextFormer achieves greater robustness and concentrated improvements in high-curvature and transition zones via spatial distributions. Interpretability is achieved through motion mode distinctions and neighbor context modulation exposing reasoning attribution. The modular architecture supports extensibility toward cross-domain multimodal reasoning tasks. Source: https://fenghy-chen.github.io/sources/.

Authors:Yiming Wang, Shaofei Wang, Marko Mihajlovic, Siyu Tang
Title: Neural Texture Splatting: Expressive 3D Gaussian Splatting for View Synthesis, Geometry, and Dynamic Reconstruction
Abstract:
3D Gaussian Splatting (3DGS) has emerged as a leading approach for high-quality novel view synthesis, with numerous variants extending its applicability to a broad spectrum of 3D and 4D scene reconstruction tasks. Despite its success, the representational capacity of 3DGS remains limited by the use of 3D Gaussian kernels to model local variations. Recent works have proposed to augment 3DGS with additional per-primitive capacity, such as per-splat textures, to enhance its expressiveness. However, these per-splat texture approaches primarily target dense novel view synthesis with a reduced number of Gaussian primitives, and their effectiveness tends to diminish when applied to more general reconstruction scenarios. In this paper, we aim to achieve concrete performance improvement over state-of-the-art 3DGS variants across a wide range of reconstruction tasks, including novel view synthesis, geometry and dynamic reconstruction, under both sparse and dense input settings. To this end, we introduce Neural Texture Splatting (NTS). At the core of our approach is a global neural field (represented as a hybrid of a tri-plane and a neural decoder) that predicts local appearance and geometric fields for each primitive. By leveraging this shared global representation that models local texture fields across primitives, we significantly reduce model size and facilitate efficient global information exchange, demonstrating strong generalization across tasks. Furthermore, our neural modeling of local texture fields introduces expressive view- and time-dependent effects, a critical aspect that existing methods fail to account for. Extensive experiments show that Neural Texture Splatting consistently improves models and achieves state-of-the-art results across multiple benchmarks.

Authors:Bing Wu, Chang Zou, Changlin Li, Duojun Huang, Fang Yang, Hao Tan, Jack Peng, Jianbing Wu, Jiangfeng Xiong, Jie Jiang, Linus, Patrol, Peizhen Zhang, Peng Chen, Penghao Zhao, Qi Tian, Songtao Liu, Weijie Kong, Weiyan Wang, Xiao He, Xin Li, Xinchi Deng, Xuefei Zhe, Yang Li, Yanxin Long, Yuanbo Peng, Yue Wu, Yuhong Liu, Zhenyu Wang, Zuozhuo Dai, Bo Peng, Coopers Li, Gu Gong, Guojian Xiao, Jiahe Tian, Jiaxin Lin, Jie Liu, Jihong Zhang, Jiesong Lian, Kaihang Pan, Lei Wang, Lin Niu, Mingtao Chen, Mingyang Chen, Mingzhe Zheng, Miles Yang, Qiangqiang Hu, Qi Yang, Qiuyong Xiao, Runzhou Wu, Ryan Xu, Rui Yuan, Shanshan Sang, Shisheng Huang, Siruis Gong, Shuo Huang, Weiting Guo, Xiang Yuan, Xiaojia Chen, Xiawei Hu, Wenzhi Sun, Xiele Wu, Xianshun Ren, Xiaoyan Yuan, Xiaoyue Mi, Yepeng Zhang, Yifu Sun, Yiting Lu, Yitong Li, You Huang, Yu Tang, Yixuan Li, Yuhang Deng, Yuan Zhou, Zhichao Hu, Zhiguang Liu, Zhihe Yang, Zilin Yang, Zhenzhi Lu, Zixiang Zhou, Zhao Zhong
Title: HunyuanVideo 1.5 Technical Report
Abstract:
We present HunyuanVideo 1.5, a lightweight yet powerful open-source video generation model that achieves state-of-the-art visual quality and motion coherence with only 8.3 billion parameters, enabling efficient inference on consumer-grade GPUs. This achievement is built upon several key components, including meticulous data curation, an advanced DiT architecture featuring selective and sliding tile attention (SSTA), enhanced bilingual understanding through glyph-aware text encoding, progressive pre-training and post-training, and an efficient video super-resolution network. Leveraging these designs, we developed a unified framework capable of high-quality text-to-video and image-to-video generation across multiple durations and resolutions. Extensive experiments demonstrate that this compact and proficient model establishes a new state-of-the-art among open-source video generation models. By releasing the code and model weights, we provide the community with a high-performance foundation that lowers the barrier to video creation and research, making advanced video generation accessible to a broader audience. All open-source assets are publicly available at https://github.com/Tencent-Hunyuan/HunyuanVideo-1.5.

Authors:Nimeshika Udayangani, Sarah Erfani, Christopher Leckie
Title: SupLID: Geometrical Guidance for Out-of-Distribution Detection in Semantic Segmentation
Abstract:
Out-of-Distribution (OOD) detection in semantic segmentation aims to localize anomalous regions at the pixel level, advancing beyond traditional image-level OOD techniques to better suit real-world applications such as autonomous driving. Recent literature has successfully explored the adaptation of commonly used image-level OOD methods--primarily based on classifier-derived confidence scores (e.g., energy or entropy)--for this pixel-precise task. However, these methods inherit a set of limitations, including vulnerability to overconfidence. In this work, we introduce SupLID, a novel framework that effectively guides classifier-derived OOD scores by exploiting the geometrical structure of the underlying semantic space, particularly using Linear Intrinsic Dimensionality (LID). While LID effectively characterizes the local structure of high-dimensional data by analyzing distance distributions, its direct application at the pixel level remains challenging. To overcome this, SupLID constructs a geometrical coreset that captures the intrinsic structure of the in-distribution (ID) subspace. It then computes OOD scores at the superpixel level, enabling both efficient real-time inference and improved spatial smoothness. We demonstrate that geometrical cues derived from SupLID serve as a complementary signal to traditional classifier confidence, enhancing the model's ability to detect diverse OOD scenarios. Designed as a post-hoc scoring method, SupLID can be seamlessly integrated with any semantic segmentation classifier at deployment time. Our results demonstrate that SupLID significantly enhances existing classifier-based OOD scores, achieving state-of-the-art performance across key evaluation metrics, including AUR, FPR, and AUP. Code is available at https://github.com/hdnugit/SupLID.

Authors:Qinglei Cao, Ziyao Tang, Xiaoqin Tang
Title: TPG-INR: Target Prior-Guided Implicit 3D CT Reconstruction for Enhanced Sparse-view Imaging
Abstract:
X-ray imaging, based on penetration, enables detailed visualization of internal structures. Building on this capability, existing implicit 3D reconstruction methods have adapted the NeRF model and its variants for internal CT reconstruction. However, these approaches often neglect the significance of objects' anatomical priors for implicit learning, limiting both reconstruction precision and learning efficiency, particularly in ultra-sparse view scenarios. To address these challenges, we propose a novel 3D CT reconstruction framework that employs a 'target prior' derived from the object's projection data to enhance implicit learning. Our approach integrates positional and structural encoding to facilitate voxel-wise implicit reconstruction, utilizing the target prior to guide voxel sampling and enrich structural encoding. This dual strategy significantly boosts both learning efficiency and reconstruction quality. Additionally, we introduce a CUDA-based algorithm for rapid estimation of high-quality 3D target priors from sparse-view projections. Experiments utilizing projection data from a complex abdominal dataset demonstrate that the proposed model substantially enhances learning efficiency, outperforming the current leading model, NAF, by a factor of ten. In terms of reconstruction quality, it also exceeds the most accurate model, NeRP, achieving PSNR improvements of 3.57 dB, 5.42 dB, and 5.70 dB with 10, 20, and 30 projections, respectively. The code is available at https://github.com/qlcao171/TPG-INR.

Authors:Zhongtao Wang, Jiaqi Dai, Qingtian Zhu, Yilong Li, Mai Su, Fei Zhu, Meng Gai, Shaorong Wang, Chengwei Pan, Yisong Chen, Guoping Wang
Title: ChronoGS: Disentangling Invariants and Changes in Multi-Period Scenes
Abstract:
Multi-period image collections are common in real-world applications. Cities are re-scanned for mapping, construction sites are revisited for progress tracking, and natural regions are monitored for environmental change. Such data form multi-period scenes, where geometry and appearance evolve. Reconstructing such scenes is an important yet underexplored problem. Existing pipelines rely on incompatible assumptions: static and in-the-wild methods enforce a single geometry, while dynamic ones assume smooth motion, both failing under long-term, discontinuous changes. To solve this problem, we introduce ChronoGS, a temporally modulated Gaussian representation that reconstructs all periods within a unified anchor scaffold. It's also designed to disentangle stable and evolving components, achieving temporally consistent reconstruction of multi-period scenes. To catalyze relevant research, we release ChronoScene dataset, a benchmark of real and synthetic multi-period scenes, capturing geometric and appearance variation. Experiments demonstrate that ChronoGS consistently outperforms baselines in reconstruction quality and temporal consistency. Our code and the ChronoScene dataset are publicly available at https://github.com/ZhongtaoWang/ChronoGS.

Authors:Shiyi Mu, Zichong Gu, Zhiqi Ai, Anqi Liu, Yilin Gao, Shugong Xu
Title: StereoDETR: Stereo-based Transformer for 3D Object Detection
Abstract:
Compared to monocular 3D object detection, stereo-based 3D methods offer significantly higher accuracy but still suffer from high computational overhead and latency. The state-of-the-art stereo 3D detection method achieves twice the accuracy of monocular approaches, yet its inference speed is only half as fast. In this paper, we propose StereoDETR, an efficient stereo 3D object detection framework based on DETR. StereoDETR consists of two branches: a monocular DETR branch and a stereo branch. The DETR branch is built upon 2D DETR with additional channels for predicting object scale, orientation, and sampling points. The stereo branch leverages low-cost multi-scale disparity features to predict object-level depth maps. These two branches are coupled solely through a differentiable depth sampling strategy. To handle occlusion, we introduce a constrained supervision strategy for sampling points without requiring extra annotations. StereoDETR achieves real-time inference and is the first stereo-based method to surpass monocular approaches in speed. It also achieves competitive accuracy on the public KITTI benchmark, setting new state-of-the-art results on pedestrian and cyclist subsets. The code is available at https://github.com/shiyi-mu/StereoDETR-OPEN.

Authors:Junyang Chen, Jiangxin Dong, Long Sun, Yixin Yang, Jinshan Pan
Title: STCDiT: Spatio-Temporally Consistent Diffusion Transformer for High-Quality Video Super-Resolution
Abstract:
We present STCDiT, a video super-resolution framework built upon a pre-trained video diffusion model, aiming to restore structurally faithful and temporally stable videos from degraded inputs, even under complex camera motions. The main challenges lie in maintaining temporal stability during reconstruction and preserving structural fidelity during generation. To address these challenges, we first develop a motion-aware VAE reconstruction method that performs segment-wise reconstruction, with each segment clip exhibiting uniform motion characteristic, thereby effectively handling videos with complex camera motions. Moreover, we observe that the first-frame latent extracted by the VAE encoder in each clip, termed the anchor-frame latent, remains unaffected by temporal compression and retains richer spatial structural information than subsequent frame latents. We further develop an anchor-frame guidance approach that leverages structural information from anchor frames to constrain the generation process and improve structural fidelity of video features. Coupling these two designs enables the video diffusion model to achieve high-quality video super-resolution. Extensive experiments show that STCDiT outperforms state-of-the-art methods in terms of structural fidelity and temporal consistency.

Authors:Ruize Ma, Minghong Cai, Yilei Jiang, Jiaming Han, Yi Feng, Yingshui Tan, Xiaoyong Zhu, Bo Zhang, Bo Zheng, Xiangyu Yue
Title: ConceptGuard: Proactive Safety in Text-and-Image-to-Video Generation through Multimodal Risk Detection
Abstract:
Recent progress in video generative models has enabled the creation of high-quality videos from multimodal prompts that combine text and images. While these systems offer enhanced controllability, they also introduce new safety risks, as harmful content can emerge from individual modalities or their interaction. Existing safety methods are often text-only, require prior knowledge of the risk category, or operate as post-generation auditors, struggling to proactively mitigate such compositional, multimodal risks. To address this challenge, we present ConceptGuard, a unified safeguard framework for proactively detecting and mitigating unsafe semantics in multimodal video generation. ConceptGuard operates in two stages: First, a contrastive detection module identifies latent safety risks by projecting fused image-text inputs into a structured concept space; Second, a semantic suppression mechanism steers the generative process away from unsafe concepts by intervening in the prompt's multimodal conditioning. To support the development and rigorous evaluation of this framework, we introduce two novel benchmarks: ConceptRisk, a large-scale dataset for training on multimodal risks, and T2VSafetyBench-TI2V, the first benchmark adapted from T2VSafetyBench for the Text-and-Image-to-Video (TI2V) safety setting. Comprehensive experiments on both benchmarks show that ConceptGuard consistently outperforms existing baselines, achieving state-of-the-art results in both risk detection and safe video generation. Our code is available at https://github.com/Ruize-Ma/ConceptGuard.

Authors:Xuanzhao Dong, Wenhui Zhu, Yujian Xiong, Xiwen Chen, Hao Wang, Xin Li, Jiajun Cheng, Zhipeng Wang, Shao Tang, Oana Dumitrascu, Yalin Wang
Title: VAOT: Vessel-Aware Optimal Transport for Retinal Fundus Enhancement
Abstract:
Color fundus photography (CFP) is central to diagnosing and monitoring retinal disease, yet its acquisition variability (e.g., illumination changes) often degrades image quality, which motivates robust enhancement methods. Unpaired enhancement pipelines are typically GAN-based, however, they can distort clinically critical vasculature, altering vessel topology and endpoint integrity. Motivated by these structural alterations, we propose Vessel-Aware Optimal Transport (\textbf{VAOT}), a framework that combines an optimal-transport objective with two structure-preserving regularizers: (i) a skeleton-based loss to maintain global vascular connectivity and (ii) an endpoint-aware loss to stabilize local termini. These constraints guide learning in the unpaired setting, reducing noise while preserving vessel structure. Experimental results on synthetic degradation benchmark and downstream evaluations in vessel and lesion segmentation demonstrate the superiority of the proposed methods against several state-of-the art baselines. The code is available at https://github.com/Retinal-Research/VAOT

Authors:Sang NguyenQuang, Xiem HoangVan, Wen-Hsiao Peng
Title: Neural B-Frame Coding: Tackling Domain Shift Issues with Lightweight Online Motion Resolution Adaptation
Abstract:
Learned B-frame codecs with hierarchical temporal prediction often encounter the domain-shift issue due to mismatches between the Group-of-Pictures (GOP) sizes for training and testing, leading to inaccurate motion estimates, particularly for large motion. A common solution is to turn large motion into small motion by downsampling video frames during motion estimation. However, determining the optimal downsampling factor typically requires costly rate-distortion optimization. This work introduces lightweight classifiers to predict downsampling factors. These classifiers leverage simple state signals from current and reference frames to balance rate-distortion performance with computational cost. Three variants are proposed: (1) a binary classifier (Bi-Class) trained with Focal Loss to choose between high and low resolutions, (2) a multi-class classifier (Mu-Class) trained with novel soft labels based on rate-distortion costs, and (3) a co-class approach (Co-Class) that combines the predictive capability of the multi-class classifier with the selective search of the binary classifier. All classifier methods can work seamlessly with existing B-frame codecs without requiring codec retraining. Experimental results show that they achieve coding performance comparable to exhaustive search methods while significantly reducing computational complexity. The code is available at: https://github.com/NYCU-MAPL/Fast-OMRA.git.

Authors:Hongbin Lin, Yiming Yang, Chaoda Zheng, Yifan Zhang, Shuaicheng Niu, Zilu Guo, Yafeng Li, Gui Gui, Shuguang Cui, Zhen Li
Title: DriveFlow: Rectified Flow Adaptation for Robust 3D Object Detection in Autonomous Driving
Abstract:
In autonomous driving, vision-centric 3D object detection recognizes and localizes 3D objects from RGB images. However, due to high annotation costs and diverse outdoor scenes, training data often fails to cover all possible test scenarios, known as the out-of-distribution (OOD) issue. Training-free image editing offers a promising solution for improving model robustness by training data enhancement without any modifications to pre-trained diffusion models. Nevertheless, inversion-based methods often suffer from limited effectiveness and inherent inaccuracies, while recent rectified-flow-based approaches struggle to preserve objects with accurate 3D geometry. In this paper, we propose DriveFlow, a Rectified Flow Adaptation method for training data enhancement in autonomous driving based on pre-trained Text-to-Image flow models. Based on frequency decomposition, DriveFlow introduces two strategies to adapt noise-free editing paths derived from text-conditioned velocities. 1) High-Frequency Foreground Preservation: DriveFlow incorporates a high-frequency alignment loss for foreground to maintain precise 3D object geometry. 2) Dual-Frequency Background Optimization: DriveFlow also conducts dual-frequency optimization for background, balancing editing flexibility and semantic consistency. Comprehensive experiments validate the effectiveness and efficiency of DriveFlow, demonstrating comprehensive performance improvements on all categories across OOD scenarios. Code is available at https://github.com/Hongbin98/DriveFlow.

Authors:Dayong Liu, Chao Xu, Weihong Chen, Suyu Zhang, Juncheng Wang, Jiankang Deng, Baigui Sun, Yang Liu
Title: Beyond Description: Cognitively Benchmarking Fine-Grained Action for Embodied Agents
Abstract:
Multimodal Large Language Models (MLLMs) show promising results as decision-making engines for embodied agents operating in complex, physical environments. However, existing benchmarks often prioritize high-level planning or spatial reasoning, leaving the fine-grained action intelligence required for embodied physical interaction underexplored. To address this gap, we introduce CFG-Bench, a new benchmark designed to systematically evaluate this crucial capability. CFG-Bench consists of 1,368 curated videos paired with 19,562 three-modalities question-answer pairs targeting four cognitive abilities: 1) Physical Interaction, 2) Temporal-Causal Relation, 3) Intentional Understanding, and 4) Evaluative Judgment. Together, these dimensions provide a systematic framework for assessing a model's ability to translate visual observations into actionable knowledge, moving beyond mere surface-level recognition. Our comprehensive evaluation on CFG-Bench reveals that leading MLLMs struggle to produce detailed instructions for physical interactions and exhibit profound limitations in the higher-order reasoning of intention and evaluation. Moreover, supervised fine-tuning (SFT) on our data demonstrates that teaching an MLLMs to articulate fine-grained actions directly translates to significant performance gains on established embodied benchmarks. Our analysis highlights these limitations and offers insights for developing more capable and grounded embodied agents. Project page: \href{https://cfg-bench.github.io/}{https://cfg-bench.github.io/}.

Authors:Litian Gong, Fatemeh Bahrani, Yutai Zhou, Amin Banayeeanzade, Jiachen Li, Erdem Bıyık
Title: AutoFocus-IL: VLM-based Saliency Maps for Data-Efficient Visual Imitation Learning without Extra Human Annotations
Abstract:
AutoFocus-IL is a simple yet effective method to improve data efficiency and generalization in visual imitation learning by guiding policies to attend to task-relevant features rather than distractors and spurious correlations. Although saliency regularization has emerged as a promising way to achieve this, existing approaches typically require costly supervision such as human gaze data or manual saliency annotations. In contrast, AutoFocus-IL leverages vision-language models (VLMs) to automatically identify and track key objects in demonstrations, generating temporal saliency maps that highlight causal visual signals while suppressing distractors. These maps are then used to regularize behavior cloning policies, yielding stronger alignment between visual attention and task-relevant cues. Experiments in both the CARLA simulator and real-robot manipulation tasks demonstrate that AutoFocus-IL not only outperforms standard behavior cloning but also surpasses state-of-the-art baselines that assume privileged access to human supervision, such as gaze data. Code, datasets, and trained policy videos are available at https://AutoFocus-IL.github.io/.

Authors:Wenchao Ma, Dario Kneubuehler, Maurice Chu, Ian Sachs, Haomiao Jiang, Sharon Xiaolei Huang
Title: RigAnyFace: Scaling Neural Facial Mesh Auto-Rigging with Unlabeled Data
Abstract:
In this paper, we present RigAnyFace (RAF), a scalable neural auto-rigging framework for facial meshes of diverse topologies, including those with multiple disconnected components. RAF deforms a static neutral facial mesh into industry-standard FACS poses to form an expressive blendshape rig. Deformations are predicted by a triangulation-agnostic surface learning network augmented with our tailored architecture design to condition on FACS parameters and efficiently process disconnected components. For training, we curated a dataset of facial meshes, with a subset meticulously rigged by professional artists to serve as accurate 3D ground truth for deformation supervision. Due to the high cost of manual rigging, this subset is limited in size, constraining the generalization ability of models trained exclusively on it. To address this, we design a 2D supervision strategy for unlabeled neutral meshes without rigs. This strategy increases data diversity and allows for scaled training, thereby enhancing the generalization ability of models trained on this augmented data. Extensive experiments demonstrate that RAF is able to rig meshes of diverse topologies on not only our artist-crafted assets but also in-the-wild samples, outperforming previous works in accuracy and generalizability. Moreover, our method advances beyond prior work by supporting multiple disconnected components, such as eyeballs, for more detailed expression animation. Project page: https://wenchao-m.github.io/RigAnyFace.github.io

Authors:Samarth Chopra, Jing Liang, Gershom Seneviratne, Dinesh Manocha
Title: PhysGS: Bayesian-Inferred Gaussian Splatting for Physical Property Estimation
Abstract:
Understanding physical properties such as friction, stiffness, hardness, and material composition is essential for enabling robots to interact safely and effectively with their surroundings. However, existing 3D reconstruction methods focus on geometry and appearance and cannot infer these underlying physical properties. We present PhysGS, a Bayesian-inferred extension of 3D Gaussian Splatting that estimates dense, per-point physical properties from visual cues and vision--language priors. We formulate property estimation as Bayesian inference over Gaussian splats, where material and property beliefs are iteratively refined as new observations arrive. PhysGS also models aleatoric and epistemic uncertainties, enabling uncertainty-aware object and scene interpretation. Across object-scale (ABO-500), indoor, and outdoor real-world datasets, PhysGS improves accuracy of the mass estimation by up to 22.8%, reduces Shore hardness error by up to 61.2%, and lowers kinetic friction error by up to 18.1% compared to deterministic baselines. Our results demonstrate that PhysGS unifies 3D reconstruction, uncertainty modeling, and physical reasoning in a single, spatially continuous framework for dense physical property estimation. Additional results are available at https://samchopra2003.github.io/physgs.

Authors:Bowei Pu, Chuanbin Liu, Yifan Ge, Peicheng Zhou, Yiwei Sun, Zhiying Lu, Jiankang Wang, Hongtao Xie
Title: Alternating Perception-Reasoning for Hallucination-Resistant Video Understanding
Abstract:
Sufficient visual perception is the foundation of video reasoning. Nevertheless, existing Video Reasoning LLMs suffer from perception shortcuts, relying on a flawed single-step perception paradigm. This paradigm describes the video and then conducts reasoning, which runs the risk of insufficient evidence and emergent hallucinations. To address these issues, we introduce a new framework that integrates a loop-based paradigm with an anti-hallucination reward. First, to address the insufficient evidence, we introduce the Perception Loop Reasoning (PLR) paradigm. Instead of describing the video at once, each loop requires the model to describe a video segment with precise timestamps, analyze this segment, and decide the next action. Second, for the risk of hallucinations, the Factual-Aware Evaluator (FAE) evaluates each perception result as a reliable anti-hallucination reward. This reward encourages the model to provide sufficient and precise video evidence. Our FAE, which performs comparably to GPT-4o, is tuned on our AnetHallu-117K, a large-scale hallucination judgment preference dataset. Extensive experiments show that our Video-PLR achieves the state-of-the-art in both 3B and 7B parameter scales and has the best data efficiency. Our code, models, and datasets are released on: https://github.com/BoweiPu/VideoPLR.

Authors:Loick Chambon, Paul Couairon, Eloi Zablocki, Alexandre Boulch, Nicolas Thome, Matthieu Cord
Title: NAF: Zero-Shot Feature Upsampling via Neighborhood Attention Filtering
Abstract:
Vision Foundation Models (VFMs) extract spatially downsampled representations, posing challenges for pixel-level tasks. Existing upsampling approaches face a fundamental trade-off: classical filters are fast and broadly applicable but rely on fixed forms, while modern upsamplers achieve superior accuracy through learnable, VFM-specific forms at the cost of retraining for each VFM. We introduce Neighborhood Attention Filtering (NAF), which bridges this gap by learning adaptive spatial-and-content weights through Cross-Scale Neighborhood Attention and Rotary Position Embeddings (RoPE), guided solely by the high-resolution input image. NAF operates zero-shot: it upsamples features from any VFM without retraining, making it the first VFM-agnostic architecture to outperform VFM-specific upsamplers and achieve state-of-the-art performance across multiple downstream tasks. It maintains high efficiency, scaling to 2K feature maps and reconstructing intermediate-resolution maps at 18 FPS. Beyond feature upsampling, NAF demonstrates strong performance on image restoration, highlighting its versatility. Code and checkpoints are available at https://github.com/valeoai/NAF.

Authors:Lorenzo Rutayisire, Nicola Capodieci, Fabio Pellacini
Title: ReCoGS: Real-time ReColoring for Gaussian Splatting scenes
Abstract:
Gaussian Splatting has emerged as a leading method for novel view synthesis, offering superior training efficiency and real-time inference compared to NeRF approaches, while still delivering high-quality reconstructions. Beyond view synthesis, this 3D representation has also been explored for editing tasks. Many existing methods leverage 2D diffusion models to generate multi-view datasets for training, but they often suffer from limitations such as view inconsistencies, lack of fine-grained control, and high computational demand. In this work, we focus specifically on the editing task of recoloring. We introduce a user-friendly pipeline that enables precise selection and recoloring of regions within a pre-trained Gaussian Splatting scene. To demonstrate the real-time performance of our method, we also present an interactive tool that allows users to experiment with the pipeline in practice. Code is available at https://github.com/loryruta/recogs.

Authors:Yongkun Du, Pinxuan Chen, Xuye Ying, Zhineng Chen
Title: DocPTBench: Benchmarking End-to-End Photographed Document Parsing and Translation
Abstract:
The advent of Multimodal Large Language Models (MLLMs) has unlocked the potential for end-to-end document parsing and translation. However, prevailing benchmarks such as OmniDocBench and DITrans are dominated by pristine scanned or digital-born documents, and thus fail to adequately represent the intricate challenges of real-world capture conditions, such as geometric distortions and photometric variations. To fill this gap, we introduce DocPTBench, a comprehensive benchmark specifically designed for Photographed Document Parsing and Translation. DocPTBench comprises over 1,300 high-resolution photographed documents from multiple domains, includes eight translation scenarios, and provides meticulously human-verified annotations for both parsing and translation. Our experiments demonstrate that transitioning from digital-born to photographed documents results in a substantial performance decline: popular MLLMs exhibit an average accuracy drop of 18% in end-to-end parsing and 12% in translation, while specialized document parsing models show significant average decrease of 25%. This substantial performance gap underscores the unique challenges posed by documents captured in real-world conditions and reveals the limited robustness of existing models. Dataset and code are available at https://github.com/Topdu/DocPTBench.

Authors:Zilong Chen, Huan-ang Gao, Delin Qu, Haohan Chi, Hao Tang, Kai Zhang, Hao Zhao
Title: Alias-free 4D Gaussian Splatting
Abstract:
Existing dynamic scene reconstruction methods based on Gaussian Splatting enable real-time rendering and generate realistic images. However, adjusting the camera's focal length or the distance between Gaussian primitives and the camera to modify rendering resolution often introduces strong artifacts, stemming from the frequency constraints of 4D Gaussians and Gaussian scale mismatch induced by the 2D dilated filter. To address this, we derive a maximum sampling frequency formulation for 4D Gaussian Splatting and introduce a 4D scale-adaptive filter and scale loss, which flexibly regulates the sampling frequency of 4D Gaussian Splatting. Our approach eliminates high-frequency artifacts under increased rendering frequencies while effectively reducing redundant Gaussians in multi-view video reconstruction. We validate the proposed method through monocular and multi-view video reconstruction experiments.Ours project page: https://4d-alias-free.github.io/4D-Alias-free/

Authors:Alexandros Stergiou
Title: TRANSPORTER: Transferring Visual Semantics from VLM Manifolds
Abstract:
How do video understanding models acquire their answers? Although current Vision Language Models (VLMs) reason over complex scenes with diverse objects, action performances, and scene dynamics, understanding and controlling their internal processes remains an open challenge. Motivated by recent advancements in text-to-video (T2V) generative models, this paper introduces a logits-to-video (L2V) task alongside a model-independent approach, TRANSPORTER, to generate videos that capture the underlying rules behind VLMs' predictions. Given the high-visual-fidelity produced by T2V models, TRANSPORTER learns an optimal transport coupling to VLM's high-semantic embedding spaces. In turn, logit scores define embedding directions for conditional video generation. TRANSPORTER generates videos that reflect caption changes over diverse object attributes, action adverbs, and scene context. Quantitative and qualitative evaluations across VLMs demonstrate that L2V can provide a fidelity-rich, novel direction for model interpretability that has not been previously explored.

Authors:Wenshuo Gao, Junyi Fan, Jiangyue Zeng, Shuai Yang
Title: FlowPortal: Residual-Corrected Flow for Training-Free Video Relighting and Background Replacement
Abstract:
Video relighting with background replacement is a challenging task critical for applications in film production and creative media. Existing methods struggle to balance temporal consistency, spatial fidelity, and illumination naturalness. To address these issues, we introduce FlowPortal, a novel training-free flow-based video relighting framework. Our core innovation is a Residual-Corrected Flow mechanism that transforms a standard flow-based model into an editing model, guaranteeing perfect reconstruction when input conditions are identical and enabling faithful relighting when they differ, resulting in high structural consistency. This is further enhanced by a Decoupled Condition Design for precise lighting control and a High-Frequency Transfer mechanism for detail preservation. Additionally, a masking strategy isolates foreground relighting from background pure generation process. Experiments demonstrate that FlowPortal achieves superior performance in temporal coherence, structural preservation, and lighting realism, while maintaining high efficiency. Project Page: https://gaowenshuo.github.io/FlowPortalProject/.

Authors:Tianyang Xu, Jinjie Gu, Xuefeng Zhu, XiaoJun Wu, Josef Kittler
Title: A Tri-Modal Dataset and a Baseline System for Tracking Unmanned Aerial Vehicles
Abstract:
With the proliferation of low altitude unmanned aerial vehicles (UAVs), visual multi-object tracking is becoming a critical security technology, demanding significant robustness even in complex environmental conditions. However, tracking UAVs using a single visual modality often fails in challenging scenarios, such as low illumination, cluttered backgrounds, and rapid motion. Although multi-modal multi-object UAV tracking is more resilient, the development of effective solutions has been hindered by the absence of dedicated public datasets. To bridge this gap, we release MM-UAV, the first large-scale benchmark for Multi-Modal UAV Tracking, integrating three key sensing modalities, e.g. RGB, infrared (IR), and event signals. The dataset spans over 30 challenging scenarios, with 1,321 synchronised multi-modal sequences, and more than 2.8 million annotated frames. Accompanying the dataset, we provide a novel multi-modal multi-UAV tracking framework, designed specifically for UAV tracking applications and serving as a baseline for future research. Our framework incorporates two key technical innovations, e.g. an offset-guided adaptive alignment module to resolve spatio mismatches across sensors, and an adaptive dynamic fusion module to balance complementary information conveyed by different modalities. Furthermore, to overcome the limitations of conventional appearance modelling in multi-object tracking, we introduce an event-enhanced association mechanism that leverages motion cues from the event modality for more reliable identity maintenance. Comprehensive experiments demonstrate that the proposed framework consistently outperforms state-of-the-art methods. To foster further research in multi-modal UAV tracking, both the dataset and source code will be made publicly available at https://xuefeng-zhu5.github.io/MM-UAV/.

Authors:Shohei Tanaka, Atsushi Hashimoto, Yoshitaka Ushiku
Title: SciPostLayoutTree: A Dataset for Structural Analysis of Scientific Posters
Abstract:
Scientific posters play a vital role in academic communication by presenting ideas through visual summaries. Analyzing reading order and parent-child relations of posters is essential for building structure-aware interfaces that facilitate clear and accurate understanding of research content. Despite their prevalence in academic communication, posters remain underexplored in structural analysis research, which has primarily focused on papers. To address this gap, we constructed SciPostLayoutTree, a dataset of approximately 8,000 posters annotated with reading order and parent-child relations. Compared to an existing structural analysis dataset, SciPostLayoutTree contains more instances of spatially challenging relations, including upward, horizontal, and long-distance relations. As a solution to these challenges, we develop Layout Tree Decoder, which incorporates visual features as well as bounding box features including position and category information. The model also uses beam search to predict relations while capturing sequence-level plausibility. Experimental results demonstrate that our model improves the prediction accuracy for spatially challenging relations and establishes a solid baseline for poster structure analysis. The dataset is publicly available at https://huggingface.co/datasets/omron-sinicx/scipostlayouttree. The code is also publicly available at https://github.com/omron-sinicx/scipostlayouttree.

Authors:Jungho Lee, Minhyeok Lee, Sunghun Yang, Minseok Kang, Sangyoun Lee
Title: SwiftVGGT: A Scalable Visual Geometry Grounded Transformer for Large-Scale Scenes
Abstract:
3D reconstruction in large-scale scenes is a fundamental task in 3D perception, but the inherent trade-off between accuracy and computational efficiency remains a significant challenge. Existing methods either prioritize speed and produce low-quality results, or achieve high-quality reconstruction at the cost of slow inference times. In this paper, we propose SwiftVGGT, a training-free method that significantly reduce inference time while preserving high-quality dense 3D reconstruction. To maintain global consistency in large-scale scenes, SwiftVGGT performs loop closure without relying on the external Visual Place Recognition (VPR) model. This removes redundant computation and enables accurate reconstruction over kilometer-scale environments. Furthermore, we propose a simple yet effective point sampling method to align neighboring chunks using a single Sim(3)-based Singular Value Decomposition (SVD) step. This eliminates the need for the Iteratively Reweighted Least Squares (IRLS) optimization commonly used in prior work, leading to substantial speed-ups. We evaluate SwiftVGGT on multiple datasets and show that it achieves state-of-the-art reconstruction quality while requiring only 33% of the inference time of recent VGGT-based large-scale reconstruction approaches.

Authors:Tianyang Han, Junhao Su, Junjie Hu, Peizhen Yang, Hengyu Shi, Junfeng Luo, Jialin Gao
Title: Beyond Words and Pixels: A Benchmark for Implicit World Knowledge Reasoning in Generative Models
Abstract:
Text-to-image (T2I) models today are capable of producing photorealistic, instruction-following images, yet they still frequently fail on prompts that require implicit world knowledge. Existing evaluation protocols either emphasize compositional alignment or rely on single-round VQA-based scoring, leaving critical dimensions such as knowledge grounding, multi-physics interactions, and auditable evidence-substantially undertested. To address these limitations, we introduce PicWorld, the first comprehensive benchmark that assesses the grasp of implicit world knowledge and physical causal reasoning of T2I models. This benchmark consists of 1,100 prompts across three core categories. To facilitate fine-grained evaluation, we propose PW-Agent, an evidence-grounded multi-agent evaluator to hierarchically assess images on their physical realism and logical consistency by decomposing prompts into verifiable visual evidence. We conduct a thorough analysis of 17 mainstream T2I models on PicWorld, illustrating that they universally exhibit a fundamental limitation in their capacity for implicit world knowledge and physical causal reasoning to varying degrees. The findings highlight the need for reasoning-aware, knowledge-integrative architectures in future T2I systems. The code is available at https://github.com/D4-Lab/PicWorld}{https://github.com/D4-Lab/PicWorld.

Authors:Siyi Li, Qingwen Zhang, Ishan Khatri, Kyle Vedder, Deva Ramanan, Neehar Peri
Title: UniFlow: Towards Zero-Shot LiDAR Scene Flow for Autonomous Vehicles via Cross-Domain Generalization
Abstract:
LiDAR scene flow is the task of estimating per-point 3D motion between consecutive point clouds. Recent methods achieve centimeter-level accuracy on popular autonomous vehicle (AV) datasets, but are typically only trained and evaluated on a single sensor. In this paper, we aim to learn general motion priors that transfer to diverse and unseen LiDAR sensors. However, prior work in LiDAR semantic segmentation and 3D object detection demonstrate that naively training on multiple datasets yields worse performance than single dataset models. Interestingly, we find that this conventional wisdom does not hold for motion estimation, and that state-of-the-art scene flow methods greatly benefit from cross-dataset training. We posit that low-level tasks such as motion estimation may be less sensitive to sensor configuration; indeed, our analysis shows that models trained on fast-moving objects (e.g., from highway datasets) perform well on fast-moving objects, even across different datasets. Informed by our analysis, we propose UniFlow, a family of feedforward models that unifies and trains on multiple large-scale LiDAR scene flow datasets with diverse sensor placements and point cloud densities. Our frustratingly simple solution establishes a new state-of-the-art on Waymo and nuScenes, improving over prior work by 5.1% and 35.2% respectively. Moreover, UniFlow achieves state-of-the-art accuracy on unseen datasets like TruckScenes, outperforming prior TruckScenes-specific models by 30.1%.

Authors:Pasquale De Marinis, Uzay Kaymak, Rogier Brussee, Gennaro Vessio, Giovanna Castellano
Title: Matching-Based Few-Shot Semantic Segmentation Models Are Interpretable by Design
Abstract:
Few-Shot Semantic Segmentation (FSS) models achieve strong performance in segmenting novel classes with minimal labeled examples, yet their decision-making processes remain largely opaque. While explainable AI has advanced significantly in standard computer vision tasks, interpretability in FSS remains virtually unexplored despite its critical importance for understanding model behavior and guiding support set selection in data-scarce scenarios. This paper introduces the first dedicated method for interpreting matching-based FSS models by leveraging their inherent structural properties. Our Affinity Explainer approach extracts attribution maps that highlight which pixels in support images contribute most to query segmentation predictions, using matching scores computed between support and query features at multiple feature levels. We extend standard interpretability evaluation metrics to the FSS domain and propose additional metrics to better capture the practical utility of explanations in few-shot scenarios. Comprehensive experiments on FSS benchmark datasets, using different models, demonstrate that our Affinity Explainer significantly outperforms adapted standard attribution methods. Qualitative analysis reveals that our explanations provide structured, coherent attention patterns that align with model architectures and and enable effective model diagnosis. This work establishes the foundation for interpretable FSS research, enabling better model understanding and diagnostic for more reliable few-shot segmentation systems. The source code is publicly available at https://github.com/pasqualedem/AffinityExplainer.

Authors:Ruicong Liu, Yifei Huang, Liangyang Ouyang, Caixin Kang, Yoichi Sato
Title: SFHand: A Streaming Framework for Language-guided 3D Hand Forecasting and Embodied Manipulation
Abstract:
Real-time 3D hand forecasting is a critical component for fluid human-computer interaction in applications like AR and assistive robotics. However, existing methods are ill-suited for these scenarios, as they typically require offline access to accumulated video sequences and cannot incorporate language guidance that conveys task intent. To overcome these limitations, we introduce SFHand, the first streaming framework for language-guided 3D hand forecasting. SFHand autoregressively predicts a comprehensive set of future 3D hand states, including hand type, 2D bounding box, 3D pose, and trajectory, from a continuous stream of video and language instructions. Our framework combines a streaming autoregressive architecture with an ROI-enhanced memory layer, capturing temporal context while focusing on salient hand-centric regions. To enable this research, we also introduce EgoHaFL, the first large-scale dataset featuring synchronized 3D hand poses and language instructions. We demonstrate that SFHand achieves new state-of-the-art results in 3D hand forecasting, outperforming prior work by a significant margin of up to 35.8%. Furthermore, we show the practical utility of our learned representations by transferring them to downstream embodied manipulation tasks, improving task success rates by up to 13.4% on multiple benchmarks. Dataset page: https://huggingface.co/datasets/ut-vision/EgoHaFL, project page: https://github.com/ut-vision/SFHand.

Authors:Hannuo Zhang, Zhixiang Chi, Yang Wang, Xinxin Zuo
Title: MVS-TTA: Test-Time Adaptation for Multi-View Stereo via Meta-Auxiliary Learning
Abstract:
Recent learning-based multi-view stereo (MVS) methods are data-driven and have achieved remarkable progress due to large-scale training data and advanced architectures. However, their generalization remains sub-optimal due to fixed model parameters trained on limited training data distributions. In contrast, optimization-based methods enable scene-specific adaptation but lack scalability and require costly per-scene optimization. In this paper, we propose MVS-TTA, an efficient test-time adaptation (TTA) framework that enhances the adaptability of learning-based MVS methods by bridging these two paradigms. Specifically, MVS-TTA employs a self-supervised, cross-view consistency loss as an auxiliary task to guide inference-time adaptation. We introduce a meta-auxiliary learning strategy to train the model to benefit from auxiliary-task-based updates explicitly. Our framework is model-agnostic and can be applied to a wide range of MVS methods with minimal architectural changes. Extensive experiments on standard datasets (DTU, BlendedMVS) and a challenging cross-dataset generalization setting demonstrate that MVS-TTA consistently improves performance, even when applied to state-of-the-art MVS models. To our knowledge, this is the first attempt to integrate optimization-based test-time adaptation into learning-based MVS using meta-learning. The code will be available at https://github.com/mart87987-svg/MVS-TTA.

Authors:Wenyu Li, Sidun Liu, Peng Qiao, Yong Dou, Tongrui Hu
Title: Muskie: Multi-view Masked Image Modeling for 3D Vision Pre-training
Abstract:
We present Muskie, a native multi-view vision backbone designed for 3D vision tasks. Unlike existing models, which are frame-wise and exhibit limited multi-view consistency, Muskie is designed to process multiple views simultaneously and introduce multi-view consistency in pre-training stage. Muskie is trained to reconstruct heavily masked content in one view by finding and utilizing geometric correspondences from other views. Through this pretext task and our proposed aggressive masking strategy, the model implicitly to learn view-invariant features and develop strong geometric understanding without any 3D supervision. Compared with state-of-the-art frame-wise backbones such as DINO, Muskie achieves higher multi-view correspondence accuracy. Furthermore, we demonstrate that using Muskie as a backbone consistently enhances performance on downstream 3D tasks, including camera pose estimation and pointmap reconstruction. Codes are publicly available at https://leo-frank.github.io/Muskie/

Authors:Xiaohong Liu, Xiufeng Song, Huayu Zheng, Lei Bai, Xiaoming Liu, Guangtao Zhai
Title: Consolidating Diffusion-Generated Video Detection with Unified Multimodal Forgery Learning
Abstract:
The proliferation of videos generated by diffusion models has raised increasing concerns about information security, highlighting the urgent need for reliable detection of synthetic media. Existing methods primarily focus on image-level forgery detection, leaving generic video-level forgery detection largely underexplored. To advance video forensics, we propose a consolidated multimodal detection algorithm, named MM-Det++, specifically designed for detecting diffusion-generated videos. Our approach consists of two innovative branches and a Unified Multimodal Learning (UML) module. Specifically, the Spatio-Temporal (ST) branch employs a novel Frame-Centric Vision Transformer (FC-ViT) to aggregate spatio-temporal information for detecting diffusion-generated videos, where the FC-tokens enable the capture of holistic forgery traces from each video frame. In parallel, the Multimodal (MM) branch adopts a learnable reasoning paradigm to acquire Multimodal Forgery Representation (MFR) by harnessing the powerful comprehension and reasoning capabilities of Multimodal Large Language Models (MLLMs), which discerns the forgery traces from a flexible semantic perspective. To integrate multimodal representations into a coherent space, a UML module is introduced to consolidate the generalization ability of MM-Det++. In addition, we also establish a large-scale and comprehensive Diffusion Video Forensics (DVF) dataset to advance research in video forgery detection. Extensive experiments demonstrate the superiority of MM-Det++ and highlight the effectiveness of unified multimodal forgery learning in detecting diffusion-generated videos.

Authors:Tian Ye, Song Fei, Lei Zhu
Title: UltraFlux: Data-Model Co-Design for High-quality Native 4K Text-to-Image Generation across Diverse Aspect Ratios
Abstract:
Diffusion transformers have recently delivered strong text-to-image generation around 1K resolution, but we show that extending them to native 4K across diverse aspect ratios exposes a tightly coupled failure mode spanning positional encoding, VAE compression, and optimization. Tackling any of these factors in isolation leaves substantial quality on the table. We therefore take a data-model co-design view and introduce UltraFlux, a Flux-based DiT trained natively at 4K on MultiAspect-4K-1M, a 1M-image 4K corpus with controlled multi-AR coverage, bilingual captions, and rich VLM/IQA metadata for resolution- and AR-aware sampling. On the model side, UltraFlux couples (i) Resonance 2D RoPE with YaRN for training-window-, frequency-, and AR-aware positional encoding at 4K; (ii) a simple, non-adversarial VAE post-training scheme that improves 4K reconstruction fidelity; (iii) an SNR-Aware Huber Wavelet objective that rebalances gradients across timesteps and frequency bands; and (iv) a Stage-wise Aesthetic Curriculum Learning strategy that concentrates high-aesthetic supervision on high-noise steps governed by the model prior. Together, these components yield a stable, detail-preserving 4K DiT that generalizes across wide, square, and tall ARs. On the Aesthetic-Eval at 4096 benchmark and multi-AR 4K settings, UltraFlux consistently outperforms strong open-source baselines across fidelity, aesthetic, and alignment metrics, and-with a LLM prompt refiner-matches or surpasses the proprietary Seedream 4.0.

Authors:Jun Zhang, Jie Feng, Long Chen, Junhui Wang, Zhicheng Liu, Depeng Jin, Yong Li
Title: RoadBench: Benchmarking MLLMs on Fine-Grained Spatial Understanding and Reasoning under Urban Road Scenarios
Abstract:
Multimodal large language models (MLLMs) have demonstrated powerful capabilities in general spatial understanding and reasoning. However, their fine-grained spatial understanding and reasoning capabilities in complex urban scenarios have not received significant attention in the fields of both research and industry. To fill this gap, we focus primarily on road markings as a typical example of fine-grained spatial elements under urban scenarios, given the essential role of the integrated road traffic network they form within cities. Around road markings and urban traffic systems, we propose RoadBench, a systematic benchmark that comprehensively evaluates MLLMs' fine-grained spatial understanding and reasoning capabilities using BEV and FPV image inputs. This benchmark comprises six tasks consisting of 9,121 strictly manually verified test cases. These tasks form a systematic evaluation framework that bridges understanding at local spatial scopes to global reasoning. They not only test MLLMs' capabilities in recognition, joint understanding, and reasoning but also assess their ability to integrate image information with domain knowledge. After evaluating 14 mainstream MLLMs, we confirm that RoadBench is a challenging benchmark for MLLMs while revealing significant shortcomings in existing MLLMs' fine-grained spatial understanding and reasoning capabilities within urban scenarios. In certain tasks, their performance even falls short of simple rule-based or random selection baselines. These findings, along with RoadBench itself, will contribute to the comprehensive advancement of spatial understanding capabilities for MLLMs. The benchmark code, example datasets, and raw evaluation results are available in the supplementary material.

Authors:Siteng Ma, Honghui Du, Prateek Mathur, Brendan S. Kelly, Ronan P. Killeen, Aonghus Lawlor, Ruihai Dong
Title: Is Complete Labeling Necessary? Understanding Active Learning in Longitudinal Medical Imaging
Abstract:
Detecting changes in longitudinal medical imaging using deep learning requires a substantial amount of accurately labeled data. However, labeling these images is notably more costly and time-consuming than labeling other image types, as it requires labeling across various time points, where new lesions can be minor, and subtle changes are easily missed. Deep Active Learning (DAL) has shown promise in minimizing labeling costs by selectively querying the most informative samples, but existing studies have primarily focused on static tasks like classification and segmentation. Consequently, the conventional DAL approach cannot be directly applied to change detection tasks, which involve identifying subtle differences across multiple images. In this study, we propose a novel DAL framework, named Longitudinal Medical Imaging Active Learning (LMI-AL), tailored specifically for longitudinal medical imaging. By pairing and differencing all 2D slices from baseline and follow-up 3D images, LMI-AL iteratively selects the most informative pairs for labeling using DAL, training a deep learning model with minimal manual annotation. Experimental results demonstrate that, with less than 8% of the data labeled, LMI-AL can achieve performance comparable to models trained on fully labeled datasets. We also provide a detailed analysis of the method's performance, as guidance for future research. The code is publicly available at https://github.com/HelenMa9998/Longitudinal_AL.

Authors:Shengyuan Wang, Zhiheng Zheng, Yu Shang, Lixuan He, Yangcheng Yu, Fan Hangyu, Jie Feng, Qingmin Liao, Yong Li
Title: RAISECity: A Multimodal Agent Framework for Reality-Aligned 3D World Generation at City-Scale
Abstract:
City-scale 3D generation is of great importance for the development of embodied intelligence and world models. Existing methods, however, face significant challenges regarding quality, fidelity, and scalability in 3D world generation. Thus, we propose RAISECity, a \textbf{R}eality-\textbf{A}ligned \textbf{I}ntelligent \textbf{S}ynthesis \textbf{E}ngine that creates detailed, \textbf{C}ity-scale 3D worlds. We introduce an agentic framework that leverages diverse multimodal foundation tools to acquire real-world knowledge, maintain robust intermediate representations, and construct complex 3D scenes. This agentic design, featuring dynamic data processing, iterative self-reflection and refinement, and the invocation of advanced multimodal tools, minimizes cumulative errors and enhances overall performance. Extensive quantitative experiments and qualitative analyses validate the superior performance of RAISECity in real-world alignment, shape precision, texture fidelity, and aesthetics level, achieving over a 90% win-rate against existing baselines for overall perceptual quality. This combination of 3D quality, reality alignment, scalability, and seamless compatibility with computer graphics pipelines makes RAISECity a promising foundation for applications in immersive media, embodied intelligence, and world models.

Authors:Lun Huang, You Xie, Hongyi Xu, Tianpei Gu, Chenxu Zhang, Guoxian Song, Zenan Li, Xiaochen Zhao, Linjie Luo, Guillermo Sapiro
Title: Plan-X: Instruct Video Generation via Semantic Planning
Abstract:
Diffusion Transformers have demonstrated remarkable capabilities in visual synthesis, yet they often struggle with high-level semantic reasoning and long-horizon planning. This limitation frequently leads to visual hallucinations and mis-alignments with user instructions, especially in scenarios involving complex scene understanding, human-object interactions, multi-stage actions, and in-context motion reasoning. To address these challenges, we propose Plan-X, a framework that explicitly enforces high-level semantic planning to instruct video generation process. At its core lies a Semantic Planner, a learnable multimodal language model that reasons over the user's intent from both text prompts and visual context, and autoregressively generates a sequence of text-grounded spatio-temporal semantic tokens. These semantic tokens, complementary to high-level text prompt guidance, serve as structured "semantic sketches" over time for the video diffusion model, which has its strength at synthesizing high-fidelity visual details. Plan-X effectively integrates the strength of language models in multimodal in-context reasoning and planning, together with the strength of diffusion models in photorealistic video synthesis. Extensive experiments demonstrate that our framework substantially reduces visual hallucinations and enables fine-grained, instruction-aligned video generation consistent with multimodal context.

Authors:Hao Li, Yuhao Wang, Xiantao Hu, Wenning Hao, Pingping Zhang, Dong Wang, Huchuan Lu
Title: CADTrack: Learning Contextual Aggregation with Deformable Alignment for Robust RGBT Tracking
Abstract:
RGB-Thermal (RGBT) tracking aims to exploit visible and thermal infrared modalities for robust all-weather object tracking. However, existing RGBT trackers struggle to resolve modality discrepancies, which poses great challenges for robust feature representation. This limitation hinders effective cross-modal information propagation and fusion, which significantly reduces the tracking accuracy. To address this limitation, we propose a novel Contextual Aggregation with Deformable Alignment framework called CADTrack for RGBT Tracking. To be specific, we first deploy the Mamba-based Feature Interaction (MFI) that establishes efficient feature interaction via state space models. This interaction module can operate with linear complexity, reducing computational cost and improving feature discrimination. Then, we propose the Contextual Aggregation Module (CAM) that dynamically activates backbone layers through sparse gating based on the Mixture-of-Experts (MoE). This module can encode complementary contextual information from cross-layer features. Finally, we propose the Deformable Alignment Module (DAM) to integrate deformable sampling and temporal propagation, mitigating spatial misalignment and localization drift. With the above components, our CADTrack achieves robust and accurate tracking in complex scenarios. Extensive experiments on five RGBT tracking benchmarks verify the effectiveness of our proposed method. The source code is released at https://github.com/IdolLab/CADTrack.

Authors:Yangyang Liu, Yuhao Wang, Pingping Zhang
Title: Signal: Selective Interaction and Global-local Alignment for Multi-Modal Object Re-Identification
Abstract:
Multi-modal object Re-IDentification (ReID) is devoted to retrieving specific objects through the exploitation of complementary multi-modal image information. Existing methods mainly concentrate on the fusion of multi-modal features, yet neglecting the background interference. Besides, current multi-modal fusion methods often focus on aligning modality pairs but suffer from multi-modal consistency alignment. To address these issues, we propose a novel selective interaction and global-local alignment framework called Signal for multi-modal object ReID. Specifically, we first propose a Selective Interaction Module (SIM) to select important patch tokens with intra-modal and inter-modal information. These important patch tokens engage in the interaction with class tokens, thereby yielding more discriminative features. Then, we propose a Global Alignment Module (GAM) to simultaneously align multi-modal features by minimizing the volume of 3D polyhedra in the gramian space. Meanwhile, we propose a Local Alignment Module (LAM) to align local features in a shift-aware manner. With these modules, our proposed framework could extract more discriminative features for object ReID. Extensive experiments on three multi-modal object ReID benchmarks (i.e., RGBNT201, RGBNT100, MSVR310) validate the effectiveness of our method. The source code is available at https://github.com/010129/Signal.

Authors:Chenyang Yu, Xuehu Liu, Pingping Zhang, Huchuan Lu
Title: X-ReID: Multi-granularity Information Interaction for Video-Based Visible-Infrared Person Re-Identification
Abstract:
Large-scale vision-language models (e.g., CLIP) have recently achieved remarkable performance in retrieval tasks, yet their potential for Video-based Visible-Infrared Person Re-Identification (VVI-ReID) remains largely unexplored. The primary challenges are narrowing the modality gap and leveraging spatiotemporal information in video sequences. To address the above issues, in this paper, we propose a novel cross-modality feature learning framework named X-ReID for VVI-ReID. Specifically, we first propose a Cross-modality Prototype Collaboration (CPC) to align and integrate features from different modalities, guiding the network to reduce the modality discrepancy. Then, a Multi-granularity Information Interaction (MII) is designed, incorporating short-term interactions from adjacent frames, long-term cross-frame information fusion, and cross-modality feature alignment to enhance temporal modeling and further reduce modality gaps. Finally, by integrating multi-granularity information, a robust sequence-level representation is achieved. Extensive experiments on two large-scale VVI-ReID benchmarks (i.e., HITSZ-VCM and BUPTCampus) demonstrate the superiority of our method over state-of-the-art methods. The source code is released at https://github.com/AsuradaYuci/X-ReID.

Authors:Yulong Shi, Jiapeng Li, Lin Qi
Title: HEAL: Learning-Free Source Free Unsupervised Domain Adaptation for Cross-Modality Medical Image Segmentation
Abstract:
Growing demands for clinical data privacy and storage constraints have spurred advances in Source Free Unsupervised Domain Adaptation (SFUDA). SFUDA addresses the domain shift by adapting models from the source domain to the unseen target domain without accessing source data, even when target-domain labels are unavailable. However, SFUDA faces significant challenges: the absence of source domain data and label supervision in the target domain due to source free and unsupervised settings. To address these issues, we propose HEAL, a novel SFUDA framework that integrates Hierarchical denoising, Edge-guided selection, size-Aware fusion, and Learning-free characteristic. Large-scale cross-modality experiments demonstrate that our method outperforms existing SFUDA approaches, achieving state-of-the-art (SOTA) performance. The source code is publicly available at: https://github.com/derekshiii/HEAL.

Authors:Liangyang Ouyang, Yifei Huang, Mingfang Zhang, Caixin Kang, Ryosuke Furuta, Yoichi Sato
Title: Multi-speaker Attention Alignment for Multimodal Social Interaction
Abstract:
Understanding social interaction in video requires reasoning over a dynamic interplay of verbal and non-verbal cues: who is speaking, to whom, and with what gaze or gestures. While Multimodal Large Language Models (MLLMs) are natural candidates, simply adding visual inputs yields surprisingly inconsistent gains on social tasks. Our quantitative analysis of cross-modal attention inside state-of-the-art MLLMs reveals a core failure mode: in multi-speaker scenes, visual and textual tokens lack speaker-consistent alignment, exhibiting substantially weaker cross-modal attention than in object-centric images. To address this, we propose a multimodal multi-speaker attention alignment method that can be integrated into existing MLLMs. First, we introduce dynamic cross-modal head selection to identify attention heads most responsible for grounding. Then, an adaptive social-aware attention bias, computed from existing attention patterns and speaker locations, is injected into the attention mechanism. This bias reinforces alignment between a speaker's visual representation and their utterances without introducing trainable parameters or architectural changes. We integrate our method into three distinct MLLMs (LLaVA-NeXT-Video, Qwen2.5-VL, and InternVL3) and evaluate on three benchmarks (TVQA+, MMSI, OnlineMMSI). Across four social tasks, results demonstrate that our approach improves the ability of MLLMs and achieves state-of-the-art results. Attention visualizations confirm our method successfully focuses the model on speaker-relevant regions, enabling more robust multi-party social reasoning. Our implementation and model will be available at https://github.com/ut-vision/SocialInteraction.

Authors:Kaibin Wang, Mingbao Lin
Title: Test-Time Temporal Sampling for Efficient MLLM Video Understanding
Abstract:
Processing long videos with multimodal large language models (MLLMs) poses a significant computational challenge, as the model's self-attention mechanism scales quadratically with the number of video tokens, resulting in high computational demand and slow inference speed. Current solutions, such as rule-based sub-sampling, learned frame selector, or memory-based summarization, often introduce their own trade-offs: they compromise accuracy, necessitate additional training, or decrease inference speed. In this paper, we propose Test-Time Temporal Sampling (T3S), a training-free, plug-and-play inference wrapper that enables MLLMs to process long videos both efficiently and effectively. T3S exploits spatiotemporal redundancy by generating multiple short and diverse subsequences of video tokens at inference time, packing them within a single forward pass, and aggregating their predictions. This multi-subsequence formulation broadens visual coverage while reducing the computational cost of self-attention from $O(L^2)$ to $O(\sum_{i=1}^m α_i^2L^2)$, where $\sum_{i=1}^m α_i^2 < 1$. Extensive experiments on long video understanding benchmarks demonstrate that T3S improves accuracy by up to 3.1% and reduces first token delay by $2.04\times$, all with minimal integration effort. Our approach operates entirely at inference time, requires no model modifications or fine-tuning, and is compatible with a wide range of pretrained MLLMs. T3S turns video redundancy into a computational advantage, offering a scalable solution for long-video understanding. The code is available at https://github.com/kaibinwang3/T3S.

Authors:Youngsik Yun, Dongjun Gu, Youngjung Uh
Title: Frequency-Adaptive Sharpness Regularization for Improving 3D Gaussian Splatting Generalization
Abstract:
Despite 3D Gaussian Splatting (3DGS) excelling in most configurations, it lacks generalization across novel viewpoints in a few-shot scenario because it overfits to the sparse observations. We revisit 3DGS optimization from a machine learning perspective, framing novel view synthesis as a generalization problem to unseen viewpoints-an underexplored direction. We propose Frequency-Adaptive Sharpness Regularization (FASR), which reformulates the 3DGS training objective, thereby guiding 3DGS to converge toward a better generalization solution. Although Sharpness-Aware Minimization (SAM) similarly reduces the sharpness of the loss landscape to improve generalization of classification models, directly employing it to 3DGS is suboptimal due to the discrepancy between the tasks. Specifically, it hinders reconstructing high-frequency details due to excessive regularization, while reducing its strength leads to under-penalizing sharpness. To address this, we reflect the local frequency of images to set the regularization weight and the neighborhood radius when estimating the local sharpness. It prevents floater artifacts in novel viewpoints and reconstructs fine details that SAM tends to oversmooth. Across datasets with various configurations, our method consistently improves a wide range of baselines. Code will be available at https://bbangsik13.github.io/FASR.

Authors:Chenyang Jiang, Hang Zhao, Xinyu Zhang, Zhengcen Li, Qiben Shan, Shaocong Wu, Jingyong Su
Title: Rectifying Soft-Label Entangled Bias in Long-Tailed Dataset Distillation
Abstract:
Dataset distillation compresses large-scale datasets into compact, highly informative synthetic data, significantly reducing storage and training costs. However, existing research primarily focuses on balanced datasets and struggles to perform under real-world long-tailed distributions. In this work, we emphasize the critical role of soft labels in long-tailed dataset distillation and uncover the underlying mechanisms contributing to performance degradation. Specifically, we derive an imbalance-aware generalization bound for model trained on distilled dataset. We then identify two primary sources of soft-label bias, which originate from the distillation model and the distilled images, through systematic perturbation of the data imbalance levels. To address this, we propose ADSA, an Adaptive Soft-label Alignment module that calibrates the entangled biases. This lightweight module integrates seamlessly into existing distillation pipelines and consistently improves performance. On ImageNet-1k-LT with EDC and IPC=50, ADSA improves tail-class accuracy by up to 11.8% and raises overall accuracy to 41.4%. Extensive experiments demonstrate that ADSA provides a robust and generalizable solution under limited label budgets and across a range of distillation techniques. Code is available at: https://github.com/j-cyoung/ADSA_DD.git.

Authors:Ting Huang, Dongjian Li, Rui Yang, Zeyu Zhang, Zida Yang, Hao Tang
Title: MobileVLA-R1: Reinforcing Vision-Language-Action for Mobile Robots
Abstract:
Grounding natural-language instructions into continuous control for quadruped robots remains a fundamental challenge in vision language action. Existing methods struggle to bridge high-level semantic reasoning and low-level actuation, leading to unstable grounding and weak generalization in the real world. To address these issues, we present MobileVLA-R1, a unified vision-language-action framework that enables explicit reasoning and continuous control for quadruped robots. We construct MobileVLA-CoT, a large-scale dataset of multi-granularity chain-of-thought (CoT) for embodied trajectories, providing structured reasoning supervision for alignment. Built upon this foundation, we introduce a two-stage training paradigm that combines supervised CoT alignment with GRPO reinforcement learning to enhance reasoning consistency, control stability, and long-horizon execution. Extensive evaluations on VLN and VLA tasks demonstrate superior performance over strong baselines, with approximately a 5% improvement. Real-world deployment on a quadruped robot validates robust performance in complex environments. Code: https://github.com/AIGeeksGroup/MobileVLA-R1. Website: https://aigeeksgroup.github.io/MobileVLA-R1.

Authors:Seulgi Jeong, Jaeil Kim
Title: MINDiff: Mask-Integrated Negative Attention for Controlling Overfitting in Text-to-Image Personalization
Abstract:
In the personalization process of large-scale text-to-image models, overfitting often occurs when learning specific subject from a limited number of images. Existing methods, such as DreamBooth, mitigate this issue through a class-specific prior-preservation loss, which requires increased computational cost during training and limits user control during inference time. To address these limitations, we propose Mask-Integrated Negative Attention Diffusion (MINDiff). MINDiff introduces a novel concept, negative attention, which suppresses the subject's influence in masked irrelevant regions. We achieve this by modifying the cross-attention mechanism during inference. This enables semantic control and improves text alignment by reducing subject dominance in irrelevant regions. Additionally, during the inference time, users can adjust a scale parameter lambda to balance subject fidelity and text alignment. Our qualitative and quantitative experiments on DreamBooth models demonstrate that MINDiff mitigates overfitting more effectively than class-specific prior-preservation loss. As our method operates entirely at inference time and does not alter the model architecture, it can be directly applied to existing DreamBooth models without re-training. Our code is available at https://github.com/seuleepy/MINDiff.

Authors:Jieru Lin, Zhiwei Yu, Börje F. Karlsson
Title: SWITCH: Benchmarking Modeling and Handling of Tangible Interfaces in Long-horizon Embodied Scenarios
Abstract:
Autonomous intelligence requires not only perception and reasoning, but critically, effective interaction with the existing world and its infrastructure. Everyday environments are rich in tangible control interfaces (TCIs), e.g., light switches, appliance panels, and embedded GUIs, that demand commonsense and physics reasoning, but also causal prediction and outcome verification in time and space (e.g., delayed heating, remote lights). Moreover, failures here have potential safety implications, yet current benchmarks rarely test grounding, partial observability (video), or post-hoc verification in situated settings. We introduce SWITCH (Semantic World Interface Tasks for Control and Handling), an embodied, task-driven benchmark created through iterative releases to probe these gaps. Its first iteration, SWITCH-Basic, evaluates five complementary abilities:task-aware VQA, semantic UI grounding, action generation, state-transition prediction, and result verification, under egocentric RGB video input and device diversity. Across 351 tasks spanning 98 real devices and appliances, commercial and open LMMMs exhibit inconsistent performance even on single-step interactions, often over-relying on textual cues and under-using visual or video evidence (and high aggregate scores can mask such failures). SWITCH provides data, code, and held-out splits to enable reproducible evaluation and community contributions toward more challenging future iterations of the benchmark and the creation of training datasets. Benchmark resources are available at: https://github.com/BAAI-Agents/SWITCH.

Authors:Danyang Sun, Fadi Dornaika, Nagore Barrena
Title: HSMix: Hard and Soft Mixing Data Augmentation for Medical Image Segmentation
Abstract:
Due to the high cost of annotation or the rarity of some diseases, medical image segmentation is often limited by data scarcity and the resulting overfitting problem. Self-supervised learning and semi-supervised learning can mitigate the data scarcity challenge to some extent. However, both of these paradigms are complex and require either hand-crafted pretexts or well-defined pseudo-labels. In contrast, data augmentation represents a relatively simple and straightforward approach to addressing data scarcity issues. It has led to significant improvements in image recognition tasks. However, the effectiveness of local image editing augmentation techniques in the context of segmentation has been less explored. We propose HSMix, a novel approach to local image editing data augmentation involving hard and soft mixing for medical semantic segmentation. In our approach, a hard-augmented image is created by combining homogeneous regions (superpixels) from two source images. A soft mixing method further adjusts the brightness of these composed regions with brightness mixing based on locally aggregated pixel-wise saliency coefficients. The ground-truth segmentation masks of the two source images undergo the same mixing operations to generate the associated masks for the augmented images. Our method fully exploits both the prior contour and saliency information, thus preserving local semantic information in the augmented images while enriching the augmentation space with more diversity. Our method is a plug-and-play solution that is model agnostic and applicable to a range of medical imaging modalities. Extensive experimental evidence has demonstrated its effectiveness in a variety of medical segmentation tasks. The source code is available in https://github.com/DanielaPlusPlus/HSMix.

Authors:Zhengsen Xu, Sibo Cheng, Hongjie He, Lanying Wang, Wentao Sun, Jonathan Li, Lincoln Linlin Xu
Title: BCWildfire: A Long-term Multi-factor Dataset and Deep Learning Benchmark for Boreal Wildfire Risk Prediction
Abstract:
Wildfire risk prediction remains a critical yet challenging task due to the complex interactions among fuel conditions, meteorology, topography, and human activity. Despite growing interest in data-driven approaches, publicly available benchmark datasets that support long-term temporal modeling, large-scale spatial coverage, and multimodal drivers remain scarce. To address this gap, we present a 25-year, daily-resolution wildfire dataset covering 240 million hectares across British Columbia and surrounding regions. The dataset includes 38 covariates, encompassing active fire detections, weather variables, fuel conditions, terrain features, and anthropogenic factors. Using this benchmark, we evaluate a diverse set of time-series forecasting models, including CNN-based, linear-based, Transformer-based, and Mamba-based architectures. We also investigate effectiveness of position embedding and the relative importance of different fire-driving factors. The dataset and the corresponding code can be found at https://github.com/SynUW/mmFire

Authors:Yolo Y. Tang, Daiki Shimada, Hang Hua, Chao Huang, Jing Bi, Rogerio Feris, Chenliang Xu
Title: Video-R4: Reinforcing Text-Rich Video Reasoning with Visual Rumination
Abstract:
Understanding text-rich videos requires reading small, transient textual cues that often demand repeated inspection. Yet most video QA models rely on single-pass perception over fixed frames, leading to hallucinations and failures on fine-grained evidence. Inspired by how humans pause, zoom, and re-read critical regions, we introduce Video-R4 (Reinforcing Text-Rich Video Reasoning with Visual Rumination), a video reasoning LMM that performs visual rumination: iteratively selecting frames, zooming into informative regions, re-encoding retrieved pixels, and updating its reasoning state. We construct two datasets with executable rumination trajectories: Video-R4-CoT-17k for supervised practice and Video-R4-RL-30k for reinforcement learning. We propose a multi-stage rumination learning framework that progressively finetunes a 7B LMM to learn atomic and mixing visual operations via SFT and GRPO-based RL. Video-R4-7B achieves state-of-the-art results on M4-ViteVQA and further generalizes to multi-page document QA, slides QA, and generic video QA, demonstrating that iterative rumination is an effective paradigm for pixel-grounded multimodal reasoning. Project Page: https://yunlong10.github.io/Video-R4/

Authors:Björn Michele, Alexandre Boulch, Gilles Puy, Tuan-Hung Vu, Renaud Marlet, Nicolas Courty
Title: Improving Multimodal Distillation for 3D Semantic Segmentation under Domain Shift
Abstract:
Semantic segmentation networks trained under full supervision for one type of lidar fail to generalize to unseen lidars without intervention. To reduce the performance gap under domain shifts, a recent trend is to leverage vision foundation models (VFMs) providing robust features across domains. In this work, we conduct an exhaustive study to identify recipes for exploiting VFMs in unsupervised domain adaptation for semantic segmentation of lidar point clouds. Building upon unsupervised image-to-lidar knowledge distillation, our study reveals that: (1) the architecture of the lidar backbone is key to maximize the generalization performance on a target domain; (2) it is possible to pretrain a single backbone once and for all, and use it to address many domain shifts; (3) best results are obtained by keeping the pretrained backbone frozen and training an MLP head for semantic segmentation. The resulting pipeline achieves state-of-the-art results in four widely-recognized and challenging settings. The code will be available at: https://github.com/valeoai/muddos.

Authors:Yuqi Li, Junhao Dong, Chuanguang Yang, Shiping Wen, Piotr Koniusz, Tingwen Huang, Yingli Tian, Yew-Soon Ong
Title: MMT-ARD: Multimodal Multi-Teacher Adversarial Distillation for Robust Vision-Language Models
Abstract:
Vision-Language Models (VLMs) are increasingly deployed in safety-critical applications, making their adversarial robustness a crucial concern. While adversarial knowledge distillation has shown promise in transferring robustness from teacher to student models, traditional single-teacher approaches suffer from limited knowledge diversity, slow convergence, and difficulty in balancing robustness and accuracy. To address these challenges, we propose MMT-ARD: a Multimodal Multi-Teacher Adversarial Robust Distillation framework. Our key innovation is a dual-teacher knowledge fusion architecture that collaboratively optimizes clean feature preservation and robust feature enhancement. To better handle challenging adversarial examples, we introduce a dynamic weight allocation strategy based on teacher confidence, enabling adaptive focus on harder samples. Moreover, to mitigate bias among teachers, we design an adaptive sigmoid-based weighting function that balances the strength of knowledge transfer across modalities. Extensive experiments on ImageNet and zero-shot benchmarks demonstrate that MMT-ARD improves robust accuracy by +4.32% and zero-shot accuracy by +3.5% on the ViT-B-32 model, while achieving a 2.3x increase in training efficiency over traditional single-teacher methods. These results highlight the effectiveness and scalability of MMT-ARD in enhancing the adversarial robustness of multimodal large models. Our codes are available at https://github.com/itsnotacie/MMT-ARD.

Authors:Binger Chen, Tacettin Emre Bök, Behnood Rasti, Volker Markl, Begüm Demir
Title: REMSA: An LLM Agent for Foundation Model Selection in Remote Sensing
Abstract:
Foundation Models (FMs) are increasingly used in remote sensing (RS) for tasks such as environmental monitoring, disaster assessment, and land-use mapping. These models include unimodal vision encoders trained on a single data modality and multimodal architectures trained on combinations of SAR, multispectral, hyperspectral, and image-text data. They support diverse RS tasks including semantic segmentation, image classification, change detection, and visual question answering. However, selecting an appropriate remote sensing foundation model (RSFM) remains difficult due to scattered documentation, heterogeneous formats, and varied deployment constraints. We introduce the RSFM Database (RS-FMD), a structured resource covering over 150 RSFMs spanning multiple data modalities, resolutions, and learning paradigms. Built on RS-FMD, we present REMSA, the first LLM-based agent for automated RSFM selection from natural language queries. REMSA interprets user requirements, resolves missing constraints, ranks candidate models using in-context learning, and provides transparent justifications. We also propose a benchmark of 75 expert-verified RS query scenarios, producing 900 configurations under an expert-centered evaluation protocol. REMSA outperforms several baselines, including naive agents, dense retrieval, and unstructured RAG-based LLMs. It operates entirely on publicly available metadata and does not access private or sensitive data.

Authors:Huangbiao Xu, Huanqi Wu, Xiao Ke, Junyi Wu, Rui Xu, Jinglin Xu
Title: MCMoE: Completing Missing Modalities with Mixture of Experts for Incomplete Multimodal Action Quality Assessment
Abstract:
Multimodal Action Quality Assessment (AQA) has recently emerged as a promising paradigm. By leveraging complementary information across shared contextual cues, it enhances the discriminative evaluation of subtle intra-class variations in highly similar action sequences. However, partial modalities are frequently unavailable at the inference stage in reality. The absence of any modality often renders existing multimodal models inoperable. Furthermore, it triggers catastrophic performance degradation due to interruptions in cross-modal interactions. To address this issue, we propose a novel Missing Completion Framework with Mixture of Experts (MCMoE) that unifies unimodal and joint representation learning in single-stage training. Specifically, we propose an adaptive gated modality generator that dynamically fuses available information to reconstruct missing modalities. We then design modality experts to learn unimodal knowledge and dynamically mix the knowledge of all experts to extract cross-modal joint representations. With a mixture of experts, missing modalities are further refined and complemented. Finally, in the training phase, we mine the complete multimodal features and unimodal expert knowledge to guide modality generation and generation-based joint representation extraction. Extensive experiments demonstrate that our MCMoE achieves state-of-the-art results in both complete and incomplete multimodal learning on three public AQA benchmarks. Code is available at https://github.com/XuHuangbiao/MCMoE.

Authors:Seamie Hayes, Reenu Mohandas, Tim Brophy, Alexandre Boulch, Ganesh Sistu, Ciaran Eising
Title: SuperQuadricOcc: Multi-Layer Gaussian Approximation of Superquadrics for Real-Time Self-Supervised Occupancy Estimation
Abstract:
Semantic occupancy estimation enables comprehensive scene understanding for automated driving, providing dense spatial and semantic information essential for perception and planning. While Gaussian representations have been widely adopted in self-supervised occupancy estimation, the deployment of a large number of Gaussian primitives drastically increases memory requirements and is not suitable for real-time inference. In contrast, superquadrics permit reduced primitive count and lower memory requirements due to their diverse shape set. However, implementation into a self-supervised occupancy model is nontrivial due to the absence of a superquadric rasterizer to enable model supervision. Our proposed method, SuperQuadricOcc, employs a superquadric-based scene representation. By leveraging a multi-layer icosphere-tessellated Gaussian approximation of superquadrics, we enable Gaussian rasterization for supervision during training. On the Occ3D dataset, SuperQuadricOcc achieves a 75% reduction in memory footprint, 124% faster inference, and a 5.9% improvement in mIoU compared to previous Gaussian-based methods, without the use of temporal labels. To our knowledge, this is the first occupancy model to enable real-time inference while maintaining competitive performance. The use of superquadrics reduces the number of primitives required for scene modeling by 84% relative to Gaussian-based approaches. Finally, evaluation against prior methods is facilitated by our fast superquadric voxelization module. The code will be made available at https://github.com/seamie6/SuperQuadricOcc.

Authors:Xiangteng He, Shunsuke Sakai, Kun Yuan, Nicolas Padoy, Tatsuhito Hasegawa, Leonid Sigal
Title: DSeq-JEPA: Discriminative Sequential Joint-Embedding Predictive Architecture
Abstract:
Image-based Joint-Embedding Predictive Architecture (I-JEPA) learns visual representations by predicting latent embeddings of masked regions from visible context. However, it treats all regions uniformly and independently, lacking an explicit notion of where or in what order predictions should be made. Inspired by human visual perception, which deploys attention selectively and sequentially from the most informative to secondary regions, we propose DSeq-JEPA, a Discriminative Sequential Joint-Embedding Predictive Architecture that bridges predictive and autoregressive self-supervised learning, integrating JEPA-style latent prediction with GPT-style sequential reasoning. Specifically, DSeq-JEPA (i) first identifies primary discriminative regions based on a transformer-derived saliency map, emphasizing the distribution of visual importance, and then (ii) predicts subsequent regions in this discriminative order, progressively forming a curriculum-like semantic progression from primary to secondary cues -- a form of GPT-style pre-training. Extensive experiments across diverse tasks, including image classification (ImageNet), fine-grained visual categorization (iNaturalist21, CUB-200-2011, Stanford-Cars), detection and segmentation (MS-COCO, ADE20K), and low-level reasoning tasks (Clevr/Count, Clevr/Dist), demonstrate that DSeq-JEPA consistently focuses on more discriminative and generalizable representations than I-JEPA variants. Project page: https://github.com/SkyShunsuke/DSeq-JEPA.

Authors:Xiaolong Qian, Qi Jiang, Lei Sun, Zongxi Yu, Kailun Yang, Peixuan Wu, Jiacheng Zhou, Yao Gao, Yaoguang Ma, Ming-Hsuan Yang, Kaiwei Wang
Title: Learning Latent Transmission and Glare Maps for Lens Veiling Glare Removal
Abstract:
Beyond the commonly recognized optical aberrations, the imaging performance of compact optical systems-including single-lens and metalens designs-is often further degraded by veiling glare caused by stray-light scattering from non-ideal optical surfaces and coatings, particularly in complex real-world environments. This compound degradation undermines traditional lens aberration correction yet remains underexplored. A major challenge is that conventional scattering models (e.g., for dehazing) fail to fit veiling glare due to its spatial-varying and depth-independent nature. Consequently, paired high-quality data are difficult to prepare via simulation, hindering application of data-driven veiling glare removal models. To this end, we propose VeilGen, a generative model that learns to simulate veiling glare by estimating its underlying optical transmission and glare maps in an unsupervised manner from target images, regularized by Stable Diffusion (SD)-based priors. VeilGen enables paired dataset generation with realistic compound degradation of optical aberrations and veiling glare, while also providing the estimated latent optical transmission and glare maps to guide the veiling glare removal process. We further introduce DeVeiler, a restoration network trained with a reversibility constraint, which utilizes the predicted latent maps to guide an inverse process of the learned scattering model. Extensive experiments on challenging compact optical systems demonstrate that our approach delivers superior restoration quality and physical fidelity compared with existing methods. These suggest that VeilGen reliably synthesizes realistic veiling glare, and its learned latent maps effectively guide the restoration process in DeVeiler. All code and datasets will be publicly released at https://github.com/XiaolongQian/DeVeiler.

Authors:Jiajie Guo, Qingpeng Zhu, Jin Zeng, Xiaolong Wu, Changyong He, Weida Wang
Title: SpatialGeo:Boosting Spatial Reasoning in Multimodal LLMs via Geometry-Semantics Fusion
Abstract:
Multimodal large language models (MLLMs) have achieved significant progress in image and language tasks due to the strong reasoning capability of large language models (LLMs). Nevertheless, most MLLMs suffer from limited spatial reasoning ability to interpret and infer spatial arrangements in three-dimensional space. In this work, we propose a novel vision encoder based on hierarchical fusion of geometry and semantics features, generating spatial-aware visual embedding and boosting the spatial grounding capability of MLLMs. Specifically, we first unveil that the spatial ambiguity shortcoming stems from the lossy embedding of the vision encoder utilized in most existing MLLMs (e.g., CLIP), restricted to instance-level semantic features. This motivates us to complement CLIP with the geometry features from vision-only self-supervised learning via a hierarchical adapter, enhancing the spatial awareness in the proposed SpatialGeo. The network is efficiently trained using pretrained LLaVA model and optimized with random feature dropping to avoid trivial solutions relying solely on the CLIP encoder. Experimental results show that SpatialGeo improves the accuracy in spatial reasoning tasks, enhancing state-of-the-art models by at least 8.0% in SpatialRGPT-Bench with approximately 50% less memory cost during inference. The source code is available via https://ricky-plus.github.io/SpatialGeoPages/.

Authors:Xiongjun Guan, Zhiyu Pan, Jianjiang Feng, Jie Zhou
Title: BiFingerPose: Bimodal Finger Pose Estimation for Touch Devices
Abstract:
Finger pose offers promising opportunities to expand human computer interaction capability of touchscreen devices. Existing finger pose estimation algorithms that can be implemented in portable devices predominantly rely on capacitive images, which are currently limited to estimating pitch and yaw angles and exhibit reduced accuracy when processing large-angle inputs (especially when it is greater than 45 degrees). In this paper, we propose BiFingerPose, a novel bimodal based finger pose estimation algorithm capable of simultaneously and accurately predicting comprehensive finger pose information. A bimodal input is explored, including a capacitive image and a fingerprint patch obtained from the touchscreen with an under-screen fingerprint sensor. Our approach leads to reliable estimation of roll angle, which is not achievable using only a single modality. In addition, the prediction performance of other pose parameters has also been greatly improved. The evaluation of a 12-person user study on continuous and discrete interaction tasks further validated the advantages of our approach. Specifically, BiFingerPose outperforms previous SOTA methods with over 21% improvement in prediction performance, 2.5 times higher task completion efficiency, and 23% better user operation accuracy, demonstrating its practical superiority. Finally, we delineate the application space of finger pose with respect to enhancing authentication security and improving interactive experiences, and develop corresponding prototypes to showcase the interaction potential. Our code will be available at https://github.com/XiongjunGuan/DualFingerPose.

Authors:Jiaye Qian, Ge Zheng, Yuchen Zhu, Sibei Yang
Title: Intervene-All-Paths: Unified Mitigation of LVLM Hallucinations across Alignment Formats
Abstract:
Despite their impressive performance across a wide range of tasks, Large Vision-Language Models (LVLMs) remain prone to hallucination. In this study, we propose a comprehensive intervention framework aligned with the transformer's causal architecture in LVLMs, integrating the effects of different intervention paths on hallucination. We find that hallucinations in LVLMs do not arise from a single causal path, but rather from the interplay among image-to-input-text, image-to-output-text, and text-to-text pathways. For the first time, we also find that LVLMs rely on different pathways depending on the question-answer alignment format. Building on these insights, we propose simple yet effective methods to identify and intervene on critical hallucination heads within each pathway, tailored to discriminative and generative formats. Experiments across multiple benchmarks demonstrate that our approach consistently reduces hallucinations across diverse alignment types.

Authors:Anshul Singh, Rohan Chaudhary, Gagneet Singh, Abhay Kumary
Title: Lost in Translation and Noise: A Deep Dive into the Failure Modes of VLMs on Real-World Tables
Abstract:
The impressive performance of VLMs is largely measured on benchmarks that fail to capture the complexities of real-world scenarios. Existing datasets for tabular QA, such as WikiTableQuestions and FinQA, are overwhelmingly monolingual (English) and present tables in a digitally perfect, clean format. This creates a significant gap between research and practice. To address this, we present \textbf{MirageTVQA}, a new benchmark designed to evaluate VLMs on these exact dimensions. Featuring nearly 60,000 QA pairs across 24 languages, MirageTVQA challenges models with tables that are not only multilingual but also visually imperfect, incorporating realistic noise to mimic scanned documents. Our evaluation of the leading VLMs reveals two primary failure points: a severe degradation in performance (over 35\% drop for the best models) when faced with visual noise and a consistent English-first bias where reasoning abilities fail to transfer to other languages. MirageTVQA provides a benchmark for measuring and driving progress towards more robust VLM models for table reasoning. The dataset and the code are available at: https://github.com/anshulsc/MirageTVQA.

Authors:Chaowei Fang, Bolin Fu, De Cheng, Lechao Cheng, Guanbin Li
Title: Dual-domain Adaptation Networks for Realistic Image Super-resolution
Abstract:
Realistic image super-resolution (SR) focuses on transforming real-world low-resolution (LR) images into high-resolution (HR) ones, handling more complex degradation patterns than synthetic SR tasks. This is critical for applications like surveillance, medical imaging, and consumer electronics. However, current methods struggle with limited real-world LR-HR data, impacting the learning of basic image features. Pre-trained SR models from large-scale synthetic datasets offer valuable prior knowledge, which can improve generalization, speed up training, and reduce the need for extensive real-world data in realistic SR tasks. In this paper, we introduce a novel approach, Dual-domain Adaptation Networks, which is able to efficiently adapt pre-trained image SR models from simulated to real-world datasets. To achieve this target, we first set up a spatial-domain adaptation strategy through selectively updating parameters of pre-trained models and employing the low-rank adaptation technique to adjust frozen parameters. Recognizing that image super-resolution involves recovering high-frequency components, we further integrate a frequency domain adaptation branch into the adapted model, which combines the spectral data of the input and the spatial-domain backbone's intermediate features to infer HR frequency maps, enhancing the SR result. Experimental evaluations on public realistic image SR benchmarks, including RealSR, D2CRealSR, and DRealSR, demonstrate the superiority of our proposed method over existing state-of-the-art models. Codes are available at: https://github.com/dummerchen/DAN.

Authors:Jiayi Wang, Wei Dai, Haoyu Wang, Sihan Yang, Haixia Bi, Jian Sun
Title: Continual Alignment for SAM: Rethinking Foundation Models for Medical Image Segmentation in Continual Learning
Abstract:
In medical image segmentation, heterogeneous privacy policies across institutions often make joint training on pooled datasets infeasible, motivating continual image segmentation-learning from data streams without catastrophic forgetting. While the Segment Anything Model (SAM) offers strong zero-shot priors and has been widely fine-tuned across downstream tasks, its large parameter count and computational overhead challenge practical deployment. This paper demonstrates that the SAM paradigm is highly promising once its computational efficiency and performance can be balanced. To this end, we introduce the Alignment Layer, a lightweight, plug-and-play module which aligns encoder-decoder feature distributions to efficiently adapt SAM to specific medical images, improving accuracy while reducing computation. Building on SAM and the Alignment Layer, we then propose Continual Alignment for SAM (CA-SAM), a continual learning strategy that automatically adapts the appropriate Alignment Layer to mitigate catastrophic forgetting, while leveraging SAM's zero-shot priors to preserve strong performance on unseen medical datasets. Experimented across nine medical segmentation datasets under continual-learning scenario, CA-SAM achieves state-of-the-art performance. Our code, models and datasets will be released on \mbox{https://github.com/azzzzyo/Continual-Alignment-for-SAM.}

Authors:Kaiyu Li, Jiayu Wang, Zhi Wang, Hui Qiao, Weizhan Zhang, Deyu Meng, Xiangyong Cao
Title: Designing Domain-Specific Agents via Hierarchical Task Abstraction Mechanism
Abstract:
LLM-driven agents, particularly those using general frameworks like ReAct or human-inspired role-playing, often struggle in specialized domains that necessitate rigorously structured workflows. Fields such as remote sensing, requiring specialized tools (e.g., correction, spectral indices calculation), and multi-step procedures (e.g., numerous intermediate products and optional steps), significantly challenge generalized approaches. To address this gap, we introduce a novel agent design framework centered on a Hierarchical Task Abstraction Mechanism (HTAM). Specifically, HTAM moves beyond emulating social roles, instead structuring multi-agent systems into a logical hierarchy that mirrors the intrinsic task-dependency graph of a given domain. This task-centric architecture thus enforces procedural correctness and decomposes complex problems into sequential layers, where each layer's sub-agents operate on the outputs of the preceding layers. We instantiate this framework as EarthAgent, a multi-agent system tailored for complex geospatial analysis. To evaluate such complex planning capabilities, we build GeoPlan-bench, a comprehensive benchmark of realistic, multi-step geospatial planning tasks. It is accompanied by a suite of carefully designed metrics to evaluate tool selection, path similarity, and logical completeness. Experiments show that EarthAgent substantially outperforms a range of established single- and multi-agent systems. Our work demonstrates that aligning agent architecture with a domain's intrinsic task structure is a critical step toward building robust and reliable specialized autonomous systems.

Authors:Yipeng Chen, Zhichao Ye, Zhenzhou Fang, Xinyu Chen, Xiaoyu Zhang, Jialing Liu, Nan Wang, Haomin Liu, Guofeng Zhang
Title: PostCam: Camera-Controllable Novel-View Video Generation with Query-Shared Cross-Attention
Abstract:
We propose PostCam, a framework for novel-view video generation that enables post-capture editing of camera trajectories in dynamic scenes. We find that existing video recapture methods suffer from suboptimal camera motion injection strategies; such suboptimal designs not only limit camera control precision but also result in generated videos that fail to preserve fine visual details from the source video. To achieve more accurate and flexible motion manipulation, PostCam introduces a query-shared cross-attention module. It integrates two distinct forms of control signals: the 6-DoF camera poses and the 2D rendered video frames. By fusing them into a unified representation within a shared feature space, our model can extract underlying motion cues, which enhances both control precision and generation quality. Furthermore, we adopt a two-stage training strategy: the model first learns coarse camera control from pose inputs, and then incorporates visual information to refine motion accuracy and enhance visual fidelity. Experiments on both real-world and synthetic datasets demonstrate that PostCam outperforms state-of-the-art methods by over 20% in camera control precision and view consistency, while achieving the highest video generation quality. Our project webpage is publicly available at: https://cccqaq.github.io/PostCam.github.io/

Authors:Nhat-Tuong Do-Tran, Ngoc-Hoang-Lam Le, Ching-Chun Huang
Title: UI-Styler: Ultrasound Image Style Transfer with Class-Aware Prompts for Cross-Device Diagnosis Using a Frozen Black-Box Inference Network
Abstract:
The appearance of ultrasound images varies across acquisition devices, causing domain shifts that degrade the performance of fixed black-box downstream inference models when reused. To mitigate this issue, it is practical to develop unpaired image translation (UIT) methods that effectively align the statistical distributions between source and target domains, particularly under the constraint of a reused inference-blackbox setting. However, existing UIT approaches often overlook class-specific semantic alignment during domain adaptation, resulting in misaligned content-class mappings that can impair diagnostic accuracy. To address this limitation, we propose UI-Styler, a novel ultrasound-specific, class-aware image style transfer framework. UI-Styler leverages a pattern-matching mechanism to transfer texture patterns embedded in the target images onto source images while preserving the source structural content. In addition, we introduce a class-aware prompting strategy guided by pseudo labels of the target domain, which enforces accurate semantic alignment with diagnostic categories. Extensive experiments on ultrasound cross-device tasks demonstrate that UI-Styler consistently outperforms existing UIT methods, achieving state-of-the-art performance in distribution distance and downstream tasks, such as classification and segmentation.

Authors:Yushun Fang, Yuxiang Chen, Shibo Yin, Qiang Hu, Jiangchao Yao, Ya Zhang, Xiaoyun Zhang, Yanfeng Wang
Title: One-Step Diffusion Transformer for Controllable Real-World Image Super-Resolution
Abstract:
Recent advances in diffusion-based real-world image super-resolution (Real-ISR) have demonstrated remarkable perceptual quality, yet the balance between fidelity and controllability remains a problem: multi-step diffusion-based methods suffer from generative diversity and randomness, resulting in low fidelity, while one-step methods lose control flexibility due to fidelity-specific finetuning. In this paper, we present ODTSR, a one-step diffusion transformer based on Qwen-Image that performs Real-ISR considering fidelity and controllability simultaneously: a newly introduced visual stream receives low-quality images (LQ) with adjustable noise (Control Noise), and the original visual stream receives LQs with consistent noise (Prior Noise), forming the Noise-hybrid Visual Stream (NVS) design. ODTSR further employs Fidelity-aware Adversarial Training (FAA) to enhance controllability and achieve one-step inference. Extensive experiments demonstrate that ODTSR not only achieves state-of-the-art (SOTA) performance on generic Real-ISR, but also enables prompt controllability on challenging scenarios such as real-world scene text image super-resolution (STISR) of Chinese characters without training on specific datasets. Codes are available at https://github.com/RedMediaTech/ODTSR.

Authors:Qi Jiang, Xiaolong Qian, Yao Gao, Lei Sun, Kailun Yang, Zhonghua Yi, Wenyong Li, Ming-Hsuan Yang, Luc Van Gool, Kaiwei Wang
Title: OmniLens++: Blind Lens Aberration Correction via Large LensLib Pre-Training and Latent PSF Representation
Abstract:
Emerging deep-learning-based lens library pre-training (LensLib-PT) pipeline offers a new avenue for blind lens aberration correction by training a universal neural network, demonstrating strong capability in handling diverse unknown optical degradations. This work proposes the OmniLens++ framework, which resolves two challenges that hinder the generalization ability of existing pipelines: the difficulty of scaling data and the absence of prior guidance characterizing optical degradation. To improve data scalability, we expand the design specifications to increase the degradation diversity of the lens source, and we sample a more uniform distribution by quantifying the spatial-variation patterns and severity of optical degradation. In terms of model design, to leverage the Point Spread Functions (PSFs), which intuitively describe optical degradation, as guidance in a blind paradigm, we propose the Latent PSF Representation (LPR). The VQVAE framework is introduced to learn latent features of LensLib's PSFs, which is assisted by modeling the optical degradation process to constrain the learning of degradation priors. Experiments on diverse aberrations of real-world lenses and synthetic LensLib show that OmniLens++ exhibits state-of-the-art generalization capacity in blind aberration correction. Beyond performance, the AODLibpro is verified as a scalable foundation for more effective training across diverse aberrations, and LPR can further tap the potential of large-scale LensLib. The source code and datasets will be made publicly available at https://github.com/zju-jiangqi/OmniLens2.

Authors:Daiqing Wu, Dongbao Yang, Yu Zhou, Can Ma
Title: Bridging Visual Affective Gap: Borrowing Textual Knowledge by Learning from Noisy Image-Text Pairs
Abstract:
Visual emotion recognition (VER) is a longstanding field that has garnered increasing attention with the advancement of deep neural networks. Although recent studies have achieved notable improvements by leveraging the knowledge embedded within pre-trained visual models, the lack of direct association between factual-level features and emotional categories, called the "affective gap", limits the applicability of pre-training knowledge for VER tasks. On the contrary, the explicit emotional expression and high information density in textual modality eliminate the "affective gap". Therefore, we propose borrowing the knowledge from the pre-trained textual model to enhance the emotional perception of pre-trained visual models. We focus on the factual and emotional connections between images and texts in noisy social media data, and propose Partitioned Adaptive Contrastive Learning (PACL) to leverage these connections. Specifically, we manage to separate different types of samples and devise distinct contrastive learning strategies for each type. By dynamically constructing negative and positive pairs, we fully exploit the potential of noisy samples. Through comprehensive experiments, we demonstrate that bridging the "affective gap" significantly improves the performance of various pre-trained visual models in downstream emotion-related tasks. Our code is released on https://github.com/wdqqdw/PACL.

Authors:Tong Wang, Guanyu Yang, Nian Liu, Kai Wang, Yaxing Wang, Abdelrahman M Shaker, Salman Khan, Fahad Shahbaz Khan, Senmao Li
Title: Diversity Has Always Been There in Your Visual Autoregressive Models
Abstract:
Visual Autoregressive (VAR) models have recently garnered significant attention for their innovative next-scale prediction paradigm, offering notable advantages in both inference efficiency and image quality compared to traditional multi-step autoregressive (AR) and diffusion models. However, despite their efficiency, VAR models often suffer from the diversity collapse i.e., a reduction in output variability, analogous to that observed in few-step distilled diffusion models. In this paper, we introduce DiverseVAR, a simple yet effective approach that restores the generative diversity of VAR models without requiring any additional training. Our analysis reveals the pivotal component of the feature map as a key factor governing diversity formation at early scales. By suppressing the pivotal component in the model input and amplifying it in the model output, DiverseVAR effectively unlocks the inherent generative potential of VAR models while preserving high-fidelity synthesis. Empirical results demonstrate that our approach substantially enhances generative diversity with only neglectable performance influences. Our code will be publicly released at https://github.com/wangtong627/DiverseVAR.

Authors:Linfeng Dong, Yuchen Yang, Hao Wu, Wei Wang, Yuenan Hou, Zhihang Zhong, Xiao Sun
Title: RacketVision: A Multiple Racket Sports Benchmark for Unified Ball and Racket Analysis
Abstract:
We introduce RacketVision, a novel dataset and benchmark for advancing computer vision in sports analytics, covering table tennis, tennis, and badminton. The dataset is the first to provide large-scale, fine-grained annotations for racket pose alongside traditional ball positions, enabling research into complex human-object interactions. It is designed to tackle three interconnected tasks: fine-grained ball tracking, articulated racket pose estimation, and predictive ball trajectory forecasting. Our evaluation of established baselines reveals a critical insight for multi-modal fusion: while naively concatenating racket pose features degrades performance, a CrossAttention mechanism is essential to unlock their value, leading to trajectory prediction results that surpass strong unimodal baselines. RacketVision provides a versatile resource and a strong starting point for future research in dynamic object tracking, conditional motion forecasting, and multimodal analysis in sports. Project page at https://github.com/OrcustD/RacketVision

Authors:Xiaobin Deng, Qiuli Yu, Changyu Diao, Min Li, Duanqing Xu
Title: Gradient-Driven Natural Selection for Compact 3D Gaussian Splatting
Abstract:
3DGS employs a large number of Gaussian primitives to fit scenes, resulting in substantial storage and computational overhead. Existing pruning methods rely on manually designed criteria or introduce additional learnable parameters, yielding suboptimal results. To address this, we propose an natural selection inspired pruning framework that models survival pressure as a regularization gradient field applied to opacity, allowing the optimization gradients--driven by the goal of maximizing rendering quality--to autonomously determine which Gaussians to retain or prune. This process is fully learnable and requires no human intervention. We further introduce an opacity decay technique with a finite opacity prior, which accelerates the selection process without compromising pruning effectiveness. Compared to 3DGS, our method achieves over 0.6 dB PSNR gain under 15\% budgets, establishing state-of-the-art performance for compact 3DGS. Project page https://xiaobin2001.github.io/GNS-web.

Authors:Lu Zhu, Tiantian Geng, Yangye Chen, Teng Wang, Ping Lu, Feng Zheng
Title: R-AVST: Empowering Video-LLMs with Fine-Grained Spatio-Temporal Reasoning in Complex Audio-Visual Scenarios
Abstract:
Recently, rapid advancements have been made in multimodal large language models (MLLMs), especially in video understanding tasks. However, current research focuses on simple video scenarios, failing to reflect the complex and diverse nature of real-world audio-visual events in videos. To bridge this gap, we firstly introduce R-AVST, a dataset for audio-visual reasoning featuring fine-grained spatio-temporal annotations. In constructing this, we design a pipeline consisting of LLM-based key object extraction, automatic spatial annotation and manual quality inspection, resulting in over 5K untrimmed videos with 27K objects across 100 types of audio-visual events. Building on this dataset, we define three core tasks for spatio-temporal reasoning in audio-visual scenes and generate more than 8K high-quality, evenly distributed question-answer pairs to effectively benchmark model performance. To further enhance reasoning, we propose AVST-Zero, a reinforcement learning-based model that avoids intermediate supervision, directly optimizing behavior via carefully designed multi-dimensional rewards. Extensive experiments validate the effectiveness of our R-AVST in advancing audio-visual spatio-temporal reasoning, upon which AVST-Zero demonstrates competitive performance compared to existing models. To the best of our knowledge, R-AVST is the first dataset designed for real-world audio-visual spatio-temporal reasoning, and AVST-Zero offers a novel perspective for tackling future challenges in this domain.

Authors:Mohammad Khateri, Serge Vasylechko, Morteza Ghahremani, Liam Timms, Deniz Kocanaogullari, Simon K. Warfield, Camilo Jaimes, Davood Karimi, Alejandra Sierra, Jussi Tohka, Sila Kurugol, Onur Afacan
Title: MRI Super-Resolution with Deep Learning: A Comprehensive Survey
Abstract:
High-resolution (HR) magnetic resonance imaging (MRI) is crucial for many clinical and research applications. However, achieving it remains costly and constrained by technical trade-offs and experimental limitations. Super-resolution (SR) presents a promising computational approach to overcome these challenges by generating HR images from more affordable low-resolution (LR) scans, potentially improving diagnostic accuracy and efficiency without requiring additional hardware. This survey reviews recent advances in MRI SR techniques, with a focus on deep learning (DL) approaches. It examines DL-based MRI SR methods from the perspectives of computer vision, computational imaging, inverse problems, and MR physics, covering theoretical foundations, architectural designs, learning strategies, benchmark datasets, and performance metrics. We propose a systematic taxonomy to categorize these methods and present an in-depth study of both established and emerging SR techniques applicable to MRI, considering unique challenges in clinical and research contexts. We also highlight open challenges and directions that the community needs to address. Additionally, we provide a collection of essential open-access resources, tools, and tutorials, available on our GitHub: https://github.com/mkhateri/Awesome-MRI-Super-Resolution. IEEE keywords: MRI, Super-Resolution, Deep Learning, Computational Imaging, Inverse Problem, Survey.

Authors:Xizhe Xue, Xiao Xiang Zhu
Title: Towards Unified Vision Language Models for Forest Ecological Analysis in Earth Observation
Abstract:
Recent progress in vision language models (VLMs) has enabled remarkable perception and reasoning capabilities, yet their potential for scientific regression in Earth Observation (EO) remains largely unexplored. Existing EO datasets mainly emphasize semantic understanding tasks such as captioning or classification, lacking benchmarks that align multimodal perception with measurable biophysical variables. To fill this gap, we present REO-Instruct, the first unified benchmark designed for both descriptive and regression tasks in EO. REO-Instruct establishes a cognitively interpretable logic chain in forest ecological scenario (human activity,land-cover classification, ecological patch counting, above-ground biomass (AGB) regression), bridging qualitative understanding and quantitative prediction. The dataset integrates co-registered Sentinel-2 and ALOS-2 imagery with structured textual annotations generated and validated through a hybrid human AI pipeline. Comprehensive evaluation protocols and baseline results across generic VLMs reveal that current models struggle with numeric reasoning, highlighting an essential challenge for scientific VLMs. REO-Instruct offers a standardized foundation for developing and assessing next-generation geospatial models capable of both description and scientific inference. The project page are publicly available at \href{https://github.com/zhu-xlab/REO-Instruct}{REO-Instruct}.

Authors:Ting Pan, Ye Wang, Peiguang Jing, Rui Ma, Zili Yi, Yu Liu
Title: PairHuman: A High-Fidelity Photographic Dataset for Customized Dual-Person Generation
Abstract:
Personalized dual-person portrait customization has considerable potential applications, such as preserving emotional memories and facilitating wedding photography planning. However, the absence of a benchmark dataset hinders the pursuit of high-quality customization in dual-person portrait generation. In this paper, we propose the PairHuman dataset, which is the first large-scale benchmark dataset specifically designed for generating dual-person portraits that meet high photographic standards. The PairHuman dataset contains more than 100K images that capture a variety of scenes, attire, and dual-person interactions, along with rich metadata, including detailed image descriptions, person localization, human keypoints, and attribute tags. We also introduce DHumanDiff, which is a baseline specifically crafted for dual-person portrait generation that features enhanced facial consistency and simultaneously balances in personalized person generation and semantic-driven scene creation. Finally, the experimental results demonstrate that our dataset and method produce highly customized portraits with superior visual quality that are tailored to human preferences. Our dataset is publicly available at https://github.com/annaoooo/PairHuman.

Authors:George Cazenavette, Antonio Torralba, Vincent Sitzmann
Title: Dataset Distillation for Pre-Trained Self-Supervised Vision Models
Abstract:
The task of dataset distillation aims to find a small set of synthetic images such that training a model on them reproduces the performance of the same model trained on a much larger dataset of real samples. Existing distillation methods focus on synthesizing datasets that enable training randomly initialized models. In contrast, state-of-the-art vision approaches are increasingly building on large, pre-trained self-supervised models rather than training from scratch. In this paper, we investigate the problem of distilling datasets that enable us to optimally train linear probes on top of such large, pre-trained vision models. We introduce a method of dataset distillation for this task called Linear Gradient Matching that optimizes the synthetic images such that, when passed through a pre-trained feature extractor, they induce gradients in the linear classifier similar to those produced by the real data. Our method yields synthetic data that outperform all real-image baselines and, remarkably, generalize across pre-trained vision models, enabling us, for instance, to train a linear CLIP probe that performs competitively using a dataset distilled via a DINO backbone. Further, we show that our distilled datasets are exceptionally effective for fine-grained classification and provide a valuable tool for model interpretability, predicting, among other things, how similar two models' embedding spaces are under the platonic representation hypothesis or whether a model is sensitive to spurious correlations in adversarial datasets.

Authors:Jing Wen, Alexander G. Schwing, Shenlong Wang
Title: NoPo-Avatar: Generalizable and Animatable Avatars from Sparse Inputs without Human Poses
Abstract:
We tackle the task of recovering an animatable 3D human avatar from a single or a sparse set of images. For this task, beyond a set of images, many prior state-of-the-art methods use accurate "ground-truth" camera poses and human poses as input to guide reconstruction at test-time. We show that pose-dependent reconstruction degrades results significantly if pose estimates are noisy. To overcome this, we introduce NoPo-Avatar, which reconstructs avatars solely from images, without any pose input. By removing the dependence of test-time reconstruction on human poses, NoPo-Avatar is not affected by noisy human pose estimates, making it more widely applicable. Experiments on challenging THuman2.0, XHuman, and HuGe100K data show that NoPo-Avatar outperforms existing baselines in practical settings (without ground-truth poses) and delivers comparable results in lab settings (with ground-truth poses).

Authors:Omkar Thawakar, Shravan Venkatraman, Ritesh Thawkar, Abdelrahman Shaker, Hisham Cholakkal, Rao Muhammad Anwer, Salman Khan, Fahad Khan
Title: EvoLMM: Self-Evolving Large Multimodal Models with Continuous Rewards
Abstract:
Recent advances in large multimodal models (LMMs) have enabled impressive reasoning and perception abilities, yet most existing training pipelines still depend on human-curated data or externally verified reward models, limiting their autonomy and scalability. In this work, we strive to improve LMM reasoning capabilities in a purely unsupervised fashion (without any annotated data or reward distillation). To this end, we propose a self-evolving framework, named EvoLMM, that instantiates two cooperative agents from a single backbone model: a Proposer, which generates diverse, image-grounded questions, and a Solver, which solves them through internal consistency, where learning proceeds through a continuous self-rewarding process. This dynamic feedback encourages both the generation of informative queries and the refinement of structured reasoning without relying on ground-truth or human judgments. When using the popular Qwen2.5-VL as the base model, our EvoLMM yields consistent gains upto $\sim$3\% on multimodal math-reasoning benchmarks, including ChartQA, MathVista, and MathVision, using only raw training images. We hope our simple yet effective approach will serve as a solid baseline easing future research in self-improving LMMs in a fully-unsupervised fashion. Our code and models are available at https://github.com/mbzuai-oryx/EvoLMM.

Authors:Ziyu Guo, Renrui Zhang, Hongyu Li, Manyuan Zhang, Xinyan Chen, Sifan Wang, Yan Feng, Peng Pei, Pheng-Ann Heng
Title: Thinking-while-Generating: Interleaving Textual Reasoning throughout Visual Generation
Abstract:
Recent advances in visual generation have increasingly explored the integration of reasoning capabilities. They incorporate textual reasoning, i.e., think, either before (as pre-planning) or after (as post-refinement) the generation process, yet they lack on-the-fly multimodal interaction during the generation itself. In this preliminary study, we introduce Thinking-while-Generating (TwiG), the first interleaved framework that enables co-evolving textual reasoning throughout the visual generation process. As visual content is progressively generating, textual reasoning is interleaved to both guide upcoming local regions and reflect on previously synthesized ones. This dynamic interplay produces more context-aware and semantically rich visual outputs. To unveil the potential of this framework, we investigate three candidate strategies, zero-shot prompting, supervised fine-tuning (SFT) on our curated TwiG-50K dataset, and reinforcement learning (RL) via a customized TwiG-GRPO strategy, each offering unique insights into the dynamics of interleaved reasoning. We hope this work inspires further research into interleaving textual reasoning for enhanced visual generation. Code will be released at: https://github.com/ZiyuGuo99/Thinking-while-Generating.

Authors:Junhao Cheng, Liang Hou, Xin Tao, Jing Liao
Title: Video-as-Answer: Predict and Generate Next Video Event with Joint-GRPO
Abstract:
While language models have become impactful in many real-world applications, video generation remains largely confined to entertainment. Motivated by video's inherent capacity to demonstrate physical-world information that is difficult to convey through language alone (e.g., imagine teaching someone to tie a tie using only text), we identify an underutilized opportunity to extend video as a new answer modality for Next-Event Prediction (NEP), formalized as Video-Next-Event Prediction (VNEP). While the established NEP task takes a video with a procedural or predictive question as input to predict the next event in text, VNEP requires dynamic video responses. This shift from telling to showing unlocks more intuitive and customized answers for procedural learning and creative exploration. However, this task remains challenging for existing models, as it demands an understanding of multimodal input, instruction-conditioned reasoning, and the generation of video with visual and semantic consistency. To address this, we introduce VANS, a model that leverages reinforcement learning to align a Vision-Language Model (VLM) with a Video Diffusion Model (VDM) for VNEP. The core of VANS is our proposed Joint-GRPO that orchestrates the VLM and VDM to function as a unit. Driven by a shared reward on their respective output, it optimizes the VLM to produce captions that are both accurate and friendly to visualize, while guiding the VDM to generate videos that are faithful to these captions and the input visual context. To enable this learning, we craft VANS-Data-100K, a dedicated dataset for the VNEP task. Experiments on procedural and predictive benchmarks demonstrate that VANS achieves state-of-the-art performance in both video event prediction and visualization. Codes are released in https://github.com/KlingTeam/VANS.

Authors:Yang Luo, Xuanlei Zhao, Baijiong Lin, Lingting Zhu, Liyao Tang, Yuqi Liu, Ying-Cong Chen, Shengju Qian, Xin Wang, Yang You
Title: V-ReasonBench: Toward Unified Reasoning Benchmark Suite for Video Generation Models
Abstract:
Recent progress in generative video models, such as Veo-3, has shown surprising zero-shot reasoning abilities, creating a growing need for systematic and reliable evaluation. We introduce V-ReasonBench, a benchmark designed to assess video reasoning across four key dimensions: structured problem-solving, spatial cognition, pattern-based inference, and physical dynamics. The benchmark is built from both synthetic and real-world image sequences and provides a diverse set of answer-verifiable tasks that are reproducible, scalable, and unambiguous. Evaluations of six state-of-the-art video models reveal clear dimension-wise differences, with strong variation in structured, spatial, pattern-based, and physical reasoning. We further compare video models with strong image models, analyze common hallucination behaviors, and study how video duration affects Chain-of-Frames reasoning. Overall, V-ReasonBench offers a unified and reproducible framework for measuring video reasoning and aims to support the development of models with more reliable, human-aligned reasoning skills.

Authors:Zhenyuan Qin, Xincheng Shuai, Henghui Ding
Title: SceneDesigner: Controllable Multi-Object Image Generation with 9-DoF Pose Manipulation
Abstract:
Controllable image generation has attracted increasing attention in recent years, enabling users to manipulate visual content such as identity and style. However, achieving simultaneous control over the 9D poses (location, size, and orientation) of multiple objects remains an open challenge. Despite recent progress, existing methods often suffer from limited controllability and degraded quality, falling short of comprehensive multi-object 9D pose control. To address these limitations, we propose SceneDesigner, a method for accurate and flexible multi-object 9-DoF pose manipulation. SceneDesigner incorporates a branched network to the pre-trained base model and leverages a new representation, CNOCS map, which encodes 9D pose information from the camera view. This representation exhibits strong geometric interpretation properties, leading to more efficient and stable training. To support training, we construct a new dataset, ObjectPose9D, which aggregates images from diverse sources along with 9D pose annotations. To further address data imbalance issues, particularly performance degradation on low-frequency poses, we introduce a two-stage training strategy with reinforcement learning, where the second stage fine-tunes the model using a reward-based objective on rebalanced data. At inference time, we propose Disentangled Object Sampling, a technique that mitigates insufficient object generation and concept confusion in complex multi-object scenes. Moreover, by integrating user-specific personalization weights, SceneDesigner enables customized pose control for reference subjects. Extensive qualitative and quantitative experiments demonstrate that SceneDesigner significantly outperforms existing approaches in both controllability and quality. Code is publicly available at https://github.com/FudanCVL/SceneDesigner.

Authors:Vishaal Udandarao, Shyamgopal Karthik, Surabhi S. Nath, Andreas Hochlehnert, Matthias Bethge, Ameya Prabhu
Title: Solving Spatial Supersensing Without Spatial Supersensing
Abstract:
Cambrian-S aims to take the first steps towards improving video world models with spatial supersensing by introducing (i) two benchmarks, VSI-Super-Recall (VSR) and VSI-Super-Counting (VSC), and (ii) bespoke predictive sensing inference strategies tailored to each benchmark. In this work, we conduct a critical analysis of Cambrian-S across both these fronts. First, we introduce a simple baseline, NoSense, which discards almost all temporal structure and uses only a bag-of-words SigLIP model, yet near-perfectly solves VSR, achieving 95% accuracy even on 4-hour videos. This shows benchmarks like VSR can be nearly solved without spatial cognition, world modeling or spatial supersensing. Second, we hypothesize that the tailored inference methods proposed by Cambrian-S likely exploit shortcut heuristics in the benchmark. We illustrate this with a simple sanity check on the VSC benchmark, called VSC-Repeat: We concatenate each video with itself 1-5 times, which does not change the number of unique objects. However, this simple perturbation entirely collapses the mean relative accuracy of Cambrian-S from 42% to 0%. A system that performs spatial supersensing and integrates information across experiences should recognize views of the same scene and keep object-count predictions unchanged; instead, Cambrian-S inference algorithm relies largely on a shortcut in the VSC benchmark that rooms are never revisited. Taken together, our findings suggest that (i) current VSI-Super benchmarks do not yet reliably measure spatial supersensing, and (ii) predictive-sensing inference recipes used by Cambrian-S improve performance by inadvertently exploiting shortcuts rather than from robust spatial supersensing. We include the response from the Cambrian-S authors (in Appendix A) to provide a balanced perspective alongside our claims. We release our code at: https://github.com/bethgelab/supersanity

Authors:Zeyuan Yin, Xiaoming Liu
Title: TRIM: Scalable 3D Gaussian Diffusion Inference with Temporal and Spatial Trimming
Abstract:
Recent advances in 3D Gaussian diffusion models suffer from time-intensive denoising and post-denoising processing due to the massive number of Gaussian primitives, resulting in slow generation and limited scalability along sampling trajectories. To improve the efficiency of 3D diffusion models, we propose $\textbf{TRIM}$ ($\textbf{T}$rajectory $\textbf{R}$eduction and $\textbf{I}$nstance $\textbf{M}$ask denoising), a post-training approach that incorporates both temporal and spatial trimming strategies, to accelerate inference without compromising output quality while supporting the inference-time scaling for Gaussian diffusion models. Instead of scaling denoising trajectories in a costly end-to-end manner, we develop a lightweight selector model to evaluate latent Gaussian primitives derived from multiple sampled noises, enabling early trajectory reduction by selecting candidates with high-quality potential. Furthermore, we introduce instance mask denoising to prune learnable Gaussian primitives by filtering out redundant background regions, reducing inference computation at each denoising step. Extensive experiments and analysis demonstrate that TRIM significantly improves both the efficiency and quality of 3D generation. Source code is available at $\href{https://github.com/zeyuanyin/TRIM}{link}$.

Authors:Haofeng Liu, Ziyue Wang, Sudhanshu Mishra, Mingqi Gao, Guanyi Qin, Chang Han Low, Alex Y. W. Kong, Yueming Jin
Title: SAM2S: Segment Anything in Surgical Videos via Semantic Long-term Tracking
Abstract:
Surgical video segmentation is crucial for computer-assisted surgery, enabling precise localization and tracking of instruments and tissues. Interactive Video Object Segmentation (iVOS) models such as Segment Anything Model 2 (SAM2) provide prompt-based flexibility beyond methods with predefined categories, but face challenges in surgical scenarios due to the domain gap and limited long-term tracking. To address these limitations, we construct SA-SV, the largest surgical iVOS benchmark with instance-level spatio-temporal annotations (masklets) spanning eight procedure types (61k frames, 1.6k masklets), enabling comprehensive development and evaluation for long-term tracking and zero-shot generalization. Building on SA-SV, we propose SAM2S, a foundation model enhancing \textbf{SAM2} for \textbf{S}urgical iVOS through: (1) DiveMem, a trainable diverse memory mechanism for robust long-term tracking; (2) temporal semantic learning for instrument understanding; and (3) ambiguity-resilient learning to mitigate annotation inconsistencies across multi-source datasets. Extensive experiments demonstrate that fine-tuning on SA-SV enables substantial performance gains, with SAM2 improving by 12.99 average $\mathcal{J}$\&$\mathcal{F}$ over vanilla SAM2. SAM2S further advances performance to 80.42 average $\mathcal{J}$\&$\mathcal{F}$, surpassing vanilla and fine-tuned SAM2 by 17.10 and 4.11 points respectively, while maintaining 68 FPS real-time inference and strong zero-shot generalization. Code and dataset will be released at https://jinlab-imvr.github.io/SAM2S.

Authors:Boshen Xu, Zihan Xiao, Jiaze Li, Jianzhong Ju, Zhenbo Luo, Jian Luan, Qin Jin
Title: TimeViper: A Hybrid Mamba-Transformer Vision-Language Model for Efficient Long Video Understanding
Abstract:
We introduce TimeViper, a hybrid vision-language model designed to tackle challenges of long video understanding. Processing long videos demands both an efficient model architecture and an effective mechanism for handling extended temporal contexts. To this end, TimeViper adopts a hybrid Mamba-Transformer backbone that combines the efficiency of state-space models with the expressivity of attention mechanisms. Through this hybrid design, we reveal the vision-to-text information aggregation phenomenon, where information progressively flows from vision tokens to text tokens across increasing LLM depth, resulting in severe vision token redundancy. Motivated by this observation, we propose TransV, a token information transfer module that transfers and compresses vision tokens into instruction tokens while maintaining multimodal understanding capabilities. This design enables TimeViper to process hour-long videos exceeding 10,000 frames. Extensive experiments across multiple benchmarks demonstrate that TimeViper competes with state-of-the-art models while extending frame numbers. We further analyze attention behaviors of both Mamba and Transformer layers, offering new insights into hybrid model interpretability. This work represents an initial step towards developing, interpreting, and compressing hybrid Mamba-Transformer architectures.

Authors:Ye Mao, Weixun Luo, Ranran Huang, Junpeng Jing, Krystian Mikolajczyk
Title: POMA-3D: The Point Map Way to 3D Scene Understanding
Abstract:
In this paper, we introduce POMA-3D, the first self-supervised 3D representation model learned from point maps. Point maps encode explicit 3D coordinates on a structured 2D grid, preserving global 3D geometry while remaining compatible with the input format of 2D foundation models. To transfer rich 2D priors into POMA-3D, a view-to-scene alignment strategy is designed. Moreover, as point maps are view-dependent with respect to a canonical space, we introduce POMA-JEPA, a joint embedding-predictive architecture that enforces geometrically consistent point map features across multiple views. Additionally, we introduce ScenePoint, a point map dataset constructed from 6.5K room-level RGB-D scenes and 1M 2D image scenes to facilitate large-scale POMA-3D pretraining. Experiments show that POMA-3D serves as a strong backbone for both specialist and generalist 3D understanding. It benefits diverse tasks, including 3D question answering, embodied navigation, scene retrieval, and embodied localization, all achieved using only geometric inputs (i.e., 3D coordinates). Overall, our POMA-3D explores a point map way to 3D scene understanding, addressing the scarcity of pretrained priors and limited data in 3D representation learning. Project Page: https://matchlab-imperial.github.io/poma3d/

Authors:Xiaoshuai Hao, Lei Zhou, Zhijian Huang, Zhiwen Hou, Yingbo Tang, Lingfeng Zhang, Guang Li, Zheng Lu, Shuhuai Ren, Xianhui Meng, Yuchen Zhang, Jing Wu, Jinghui Lu, Chenxu Dang, Jiayi Guan, Jianhua Wu, Zhiyi Hou, Hanbing Li, Shumeng Xia, Mingliang Zhou, Yinan Zheng, Zihao Yue, Shuhao Gu, Hao Tian, Yuannan Shen, Jianwei Cui, Wen Zhang, Shaoqing Xu, Bing Wang, Haiyang Sun, Zeyu Zhu, Yuncheng Jiang, Zibin Guo, Chuhong Gong, Chaofan Zhang, Wenbo Ding, Kun Ma, Guang Chen, Rui Cai, Diyun Xiang, Heng Qu, Fuli Luo, Hangjun Ye, Long Chen
Title: MiMo-Embodied: X-Embodied Foundation Model Technical Report
Abstract:
We open-source MiMo-Embodied, the first cross-embodied foundation model to successfully integrate and achieve state-of-the-art performance in both Autonomous Driving and Embodied AI. MiMo-Embodied sets new records across 17 embodied AI benchmarks in Task Planning, Affordance Prediction and Spatial Understanding, while also excelling in 12 autonomous driving benchmarks across Environmental Perception, Status Prediction, and Driving Planning. Across these tasks, MiMo-Embodied significantly outperforms existing open-source, closed-source, and specialized baselines. Our results indicate that through multi-stage learning, curated data construction, and CoT/RL fine-tuning, these two domains exhibit strong positive transfer and mutually reinforce one another. We provide a detailed analysis of our model design and training methodologies to facilitate further research. Code and models are available at https://github.com/XiaomiMiMo/MiMo-Embodied.

Authors:Hai Lan, Zongyan Li, Jianmin Hu, Jialing Yang, Houde Dai
Title: End-to-End Motion Capture from Rigid Body Markers with Geodesic Loss
Abstract:
Marker-based optical motion capture (MoCap), while long regarded as the gold standard for accuracy, faces practical challenges, such as time-consuming preparation and marker identification ambiguity, due to its reliance on dense marker configurations, which fundamentally limit its scalability. To address this, we introduce a novel fundamental unit for MoCap, the Rigid Body Marker (RBM), which provides unambiguous 6-DoF data and drastically simplifies setup. Leveraging this new data modality, we develop a deep-learning-based regression model that directly estimates SMPL parameters under a geodesic loss. This end-to-end approach matches the performance of optimization-based methods while requiring over an order of magnitude less computation. Trained on synthesized data from the AMASS dataset, our end-to-end model achieves state-of-the-art accuracy in body pose estimation. Real-world data captured using a Vicon optical tracking system further demonstrates the practical viability of our approach. Overall, the results show that combining sparse 6-DoF RBM with a manifold-aware geodesic loss yields a practical and high-fidelity solution for real-time MoCap in graphics, virtual reality, and biomechanics.

Authors:Pan Yang, Cheng Deng, Jing Yang, Han Zhao, Yun Liu, Yuling Chen, Xiaoli Ruan, Yanping Chen
Title: CAMS: Towards Compositional Zero-Shot Learning via Gated Cross-Attention and Multi-Space Disentanglement
Abstract:
Compositional zero-shot learning (CZSL) aims to learn the concepts of attributes and objects in seen compositions and to recognize their unseen compositions. Most Contrastive Language-Image Pre-training (CLIP)-based CZSL methods focus on disentangling attributes and objects by leveraging the global semantic representation obtained from the image encoder. However, this representation has limited representational capacity and do not allow for complete disentanglement of the two. To this end, we propose CAMS, which aims to extract semantic features from visual features and perform semantic disentanglement in multidimensional spaces, thereby improving generalization over unseen attribute-object compositions. Specifically, CAMS designs a Gated Cross-Attention that captures fine-grained semantic features from the high-level image encoding blocks of CLIP through a set of latent units, while adaptively suppressing background and other irrelevant information. Subsequently, it conducts Multi-Space Disentanglement to achieve disentanglement of attribute and object semantics. Experiments on three popular benchmarks (MIT-States, UT-Zappos, and C-GQA) demonstrate that CAMS achieves state-of-the-art performance in both closed-world and open-world settings. The code is available at https://github.com/ybyangjing/CAMS.

Authors:Ching-Heng Cheng, Chih-Chung Hsu
Title: ChangeDINO: DINOv3-Driven Building Change Detection in Optical Remote Sensing Imagery
Abstract:
Remote sensing change detection (RSCD) aims to identify surface changes from co-registered bi-temporal images. However, many deep learning-based RSCD methods rely solely on change-map annotations and underuse the semantic information in non-changing regions, which limits robustness under illumination variation, off-nadir views, and scarce labels. This article introduces ChangeDINO, an end-to-end multiscale Siamese framework for optical building change detection. The model fuses a lightweight backbone stream with features transferred from a frozen DINOv3, yielding semantic- and context-rich pyramids even on small datasets. A spatial-spectral differential transformer decoder then exploits multi-scale absolute differences as change priors to highlight true building changes and suppress irrelevant responses. Finally, a learnable morphology module refines the upsampled logits to recover clean boundaries. Experiments on four public benchmarks show that ChangeDINO consistently outperforms recent state-of-the-art methods in IoU and F1, and ablation studies confirm the effectiveness of each component. The source code is available at https://github.com/chingheng0808/ChangeDINO.

Authors:Ching-Heng Cheng, Jen-Wei Lee, Chia-Ming Lee, Chih-Chung Hsu
Title: WWE-UIE: A Wavelet & White Balance Efficient Network for Underwater Image Enhancement
Abstract:
Underwater Image Enhancement (UIE) aims to restore visibility and correct color distortions caused by wavelength-dependent absorption and scattering. Recent hybrid approaches, which couple domain priors with modern deep neural architectures, have achieved strong performance but incur high computational cost, limiting their practicality in real-time scenarios. In this work, we propose WWE-UIE, a compact and efficient enhancement network that integrates three interpretable priors. First, adaptive white balance alleviates the strong wavelength-dependent color attenuation, particularly the dominance of blue-green tones. Second, a wavelet-based enhancement block (WEB) performs multi-band decomposition, enabling the network to capture both global structures and fine textures, which are critical for underwater restoration. Third, a gradient-aware module (SGFB) leverages Sobel operators with learnable gating to explicitly preserve edge structures degraded by scattering. Extensive experiments on benchmark datasets demonstrate that WWE-UIE achieves competitive restoration quality with substantially fewer parameters and FLOPs, enabling real-time inference on resource-limited platforms. Ablation studies and visualizations further validate the contribution of each component. The source code is available at https://github.com/chingheng0808/WWE-UIE.

Authors:Samuel Stevens
Title: BioBench: A Blueprint to Move Beyond ImageNet for Scientific ML Benchmarks
Abstract:
ImageNet-1K linear-probe transfer accuracy remains the default proxy for visual representation quality, yet it no longer predicts performance on scientific imagery. Across 46 modern vision model checkpoints, ImageNet top-1 accuracy explains only 34% of variance on ecology tasks and mis-ranks 30% of models above 75% accuracy. We present BioBench, an open ecology vision benchmark that captures what ImageNet misses. BioBench unifies 9 publicly released, application-driven tasks, 4 taxonomic kingdoms, and 6 acquisition modalities (drone RGB, web video, micrographs, in-situ and specimen photos, camera-trap frames), totaling 3.1M images. A single Python API downloads data, fits lightweight classifiers to frozen backbones, and reports class-balanced macro-F1 (plus domain metrics for FishNet and FungiCLEF); ViT-L models evaluate in 6 hours on an A6000 GPU. BioBench provides new signal for computer vision in ecology and a template recipe for building reliable AI-for-science benchmarks in any domain. Code and predictions are available at https://github.com/samuelstevens/biobench and results at https://samuelstevens.me/biobench.

Authors:Minseok Seo, Mark Hamilton, Changick Kim
Title: Upsample Anything: A Simple and Hard to Beat Baseline for Feature Upsampling
Abstract:
We present \textbf{Upsample Anything}, a lightweight test-time optimization (TTO) framework that restores low-resolution features to high-resolution, pixel-wise outputs without any training. Although Vision Foundation Models demonstrate strong generalization across diverse downstream tasks, their representations are typically downsampled by 14x/16x (e.g., ViT), which limits their direct use in pixel-level applications. Existing feature upsampling approaches depend on dataset-specific retraining or heavy implicit optimization, restricting scalability and generalization. Upsample Anything addresses these issues through a simple per-image optimization that learns an anisotropic Gaussian kernel combining spatial and range cues, effectively bridging Gaussian Splatting and Joint Bilateral Upsampling. The learned kernel acts as a universal, edge-aware operator that transfers seamlessly across architectures and modalities, enabling precise high-resolution reconstruction of features, depth, or probability maps. It runs in only $\approx0.419 \text{s}$ per 224x224 image and achieves state-of-the-art performance on semantic segmentation, depth estimation, and both depth and probability map upsampling. \textbf{Project page:} \href{https://seominseok0429.github.io/Upsample-Anything/}{https://seominseok0429.github.io/Upsample-Anything/}

Authors:Boyue Xu, Ruichao Hou, Tongwei Ren, Dongming Zhou, Gangshan Wu, Jinde Cao
Title: SwiTrack: Tri-State Switch for Cross-Modal Object Tracking
Abstract:
Cross-modal object tracking (CMOT) is an emerging task that maintains target consistency while the video stream switches between different modalities, with only one modality available in each frame, mostly focusing on RGB-Near Infrared (RGB-NIR) tracking. Existing methods typically connect parallel RGB and NIR branches to a shared backbone, which limits the comprehensive extraction of distinctive modality-specific features and fails to address the issue of object drift, especially in the presence of unreliable inputs. In this paper, we propose SwiTrack, a novel state-switching framework that redefines CMOT through the deployment of three specialized streams. Specifically, RGB frames are processed by the visual encoder, while NIR frames undergo refinement via a NIR gated adapter coupled with the visual encoder to progressively calibrate shared latent space features, thereby yielding more robust cross-modal representations. For invalid modalities, a consistency trajectory prediction module leverages spatio-temporal cues to estimate target movement, ensuring robust tracking and mitigating drift. Additionally, we incorporate dynamic template reconstruction to iteratively update template features and employ a similarity alignment loss to reinforce feature consistency. Experimental results on the latest benchmarks demonstrate that our tracker achieves state-of-the-art performance, boosting precision rate and success rate gains by 7.2\% and 4.3\%, respectively, while maintaining real-time tracking at 65 frames per second. Code and models are available at https://github.com/xuboyue1999/SwiTrack.git.

Authors:Zeting Liu, Zida Yang, Zeyu Zhang, Hao Tang
Title: EvoVLA: Self-Evolving Vision-Language-Action Model
Abstract:
Long-horizon robotic manipulation remains challenging for Vision-Language-Action (VLA) models despite recent progress in zero-shot generalization and simulation-to-real-world transfer. Current VLA models suffer from stage hallucination, where agents exploit coarse evaluation signals to shortcut multi-step tasks, reporting high progress without truly completing them. We present EvoVLA, a self-supervised VLA framework that addresses this issue through three complementary components: Stage-Aligned Reward (SAR), which uses triplet contrastive learning with Gemini-generated hard negatives to prevent visual shortcuts; Pose-Based Object Exploration (POE), which grounds curiosity in relative object-gripper pose instead of raw pixels; and Long-Horizon Memory, which uses selective context retention and gated fusion to stabilize intrinsic shaping during extended rollouts. Extensive evaluations on Discoverse-L, a long-horizon manipulation benchmark with three multi-stage tasks, show that EvoVLA improves average task success by 10.2 percentage points over the strongest baseline (OpenVLA-OFT), reaching 69.2 percent. EvoVLA also achieves one-and-a-half times better sample efficiency and reduces stage hallucination from 38.5 percent to 14.8 percent. Real-world deployment on physical robots reaches an average success rate of 54.6 percent across four manipulation tasks, outperforming OpenVLA-OFT by 11 points, demonstrating effective sim-to-real transfer and strong generalization. Code: https://github.com/AIGeeksGroup/EvoVLA. Website: https://aigeeksgroup.github.io/EvoVLA.

Authors:Yibin Huang, Wang Xu, Wanyue Zhang, Helu Zhi, Jingjing Huang, Yangbin Xu, Yangang Sun, Conghui Zhu, Tiejun Zhao
Title: Video2Layout: Recall and Reconstruct Metric-Grounded Cognitive Map for Spatial Reasoning
Abstract:
Spatial intelligence is a critical frontier for Multimodal Large Language Models (MLLMs), empowering them to comprehend the physical world. Drawing inspiration from human perception mechanisms, existing studies attempt to construct a coherent spatial understanding via grid-based cognitive maps from multi-frame visual inputs. However, current grid-based map methods rely on discretized raster representations, which limit the model's ability in fine-grained spatial reasoning. To overcome this limitation, we propose Video2Layout, a framework for reconstructing metric-grounded spatial layouts from video. The framework employs continuous object boundary coordinates to quantify inter-object physical distances and object size. This empowers the model with quantitative spatial computation capabilities, effectively alleviating the inherent ambiguity when describing spatial relationships in natural language. Specifically, our method comprises two core stages. First, in supervised fine-tuning stage, we construct a high-quality dataset from the AI2THOR simulator, which enables the model to learn the mapping from visual inputs to precise boundary coordinates. Subsequently, a reinforcement fine-tuning stage further enhances the model's real-world generalization capabilities. To systematically evaluate the correlation between cognitive map accuracy and image quantity, as well as how the quantity of image inputs affects spatial reasoning accuracy, we introduce QVS-Bench, a diagnostic benchmark designed to analyze the relevant mechanisms. Evaluated on QVS-Bench and mainstream spatial reasoning benchmarks, our model, V2LO-7B achieves an average improvement of 4.92% over the model trained on grid maps, validating the superiority of our method. Our code is available at https://github.com/ybrrraway/Video2Layout.

Authors:Jian Ma, Qirong Peng, Xujie Zhu, Peixing Xie, Chen Chen, Haonan Lu
Title: Pluggable Pruning with Contiguous Layer Distillation for Diffusion Transformers
Abstract:
Diffusion Transformers (DiTs) have shown exceptional performance in image generation, yet their large parameter counts incur high computational costs, impeding deployment in resource-constrained settings. To address this, we propose Pluggable Pruning with Contiguous Layer Distillation (PPCL), a flexible structured pruning framework specifically designed for DiT architectures. First, we identify redundant layer intervals through a linear probing mechanism combined with the first-order differential trend analysis of similarity metrics. Subsequently, we propose a plug-and-play teacher-student alternating distillation scheme tailored to integrate depth-wise and width-wise pruning within a single training phase. This distillation framework enables flexible knowledge transfer across diverse pruning ratios, eliminating the need for per-configuration retraining. Extensive experiments on multiple Multi-Modal Diffusion Transformer architecture models demonstrate that PPCL achieves a 50\% reduction in parameter count compared to the full model, with less than 3\% degradation in key objective metrics. Notably, our method maintains high-quality image generation capabilities while achieving higher compression ratios, rendering it well-suited for resource-constrained environments. The open-source code, checkpoints for PPCL can be found at the following link: https://github.com/OPPO-Mente-Lab/Qwen-Image-Pruning.

Authors:Quanqing Ma, Jiaen Chen, Peng Wang, Yao Zheng, Qingzhan Zhao, Yuchen Zheng
Title: A Spatial Semantics and Continuity Perception Attention for Remote Sensing Water Body Change Detection
Abstract:
Remote sensing Water Body Change Detection (WBCD) aims to detect water body surface changes from bi-temporal images of the same geographic area. Recently, the scarcity of high spatial resolution datasets for WBCD restricts its application in urban and rural regions, which require more accurate positioning. Meanwhile, previous deep learning-based methods fail to comprehensively exploit the spatial semantic and structural information in deep features in the change detection networks. To resolve these concerns, we first propose a new dataset, HSRW-CD, with a spatial resolution higher than 3 meters for WBCD. Specifically, it contains a large number of image pairs, widely covering various water body types. Besides, a Spatial Semantics and Continuity Perception (SSCP) attention module is designed to fully leverage both the spatial semantics and structure of deep features in the WBCD networks, significantly improving the discrimination capability for water body. The proposed SSCP has three components: the Multi-Semantic spatial Attention (MSA), the Structural Relation-aware Global Attention (SRGA), and the Channel-wise Self-Attention (CSA). The MSA enhances the spatial semantics of water body features and provides precise spatial semantic priors for the CSA. Then, the SRGA further extracts spatial structure to learn the spatial continuity of the water body. Finally, the CSA utilizes the spatial semantic and structural priors from the MSA and SRGA to compute the similarity across channels. Specifically designed as a plug-and-play module for water body deep features, the proposed SSCP allows integration into existing WBCD models. Numerous experiments conducted on the proposed HSRW-CD and Water-CD datasets validate the effectiveness and generalization of the SSCP. The code of this work and the HSRW-CD dataset will be accessed at https://github.com/QingMa1/SSCP.

Authors:Chenyang Wu, Jiayi Fu, Chun-Le Guo, Shuhao Han, Chongyi Li
Title: VTinker: Guided Flow Upsampling and Texture Mapping for High-Resolution Video Frame Interpolation
Abstract:
Due to large pixel movement and high computational cost, estimating the motion of high-resolution frames is challenging. Thus, most flow-based Video Frame Interpolation (VFI) methods first predict bidirectional flows at low resolution and then use high-magnification upsampling (e.g., bilinear) to obtain the high-resolution ones. However, this kind of upsampling strategy may cause blur or mosaic at the flows' edges. Additionally, the motion of fine pixels at high resolution cannot be adequately captured in motion estimation at low resolution, which leads to the misalignment of task-oriented flows. With such inaccurate flows, input frames are warped and combined pixel-by-pixel, resulting in ghosting and discontinuities in the interpolated frame. In this study, we propose a novel VFI pipeline, VTinker, which consists of two core components: guided flow upsampling (GFU) and Texture Mapping. After motion estimation at low resolution, GFU introduces input frames as guidance to alleviate the blurring details in bilinear upsampling flows, which makes flows' edges clearer. Subsequently, to avoid pixel-level ghosting and discontinuities, Texture Mapping generates an initial interpolated frame, referred to as the intermediate proxy. The proxy serves as a cue for selecting clear texture blocks from the input frames, which are then mapped onto the proxy to facilitate producing the final interpolated frame via a reconstruction module. Extensive experiments demonstrate that VTinker achieves state-of-the-art performance in VFI. Codes are available at: https://github.com/Wucy0519/VTinker.

Authors:Taeho Kang, Jaeyeon Park, Kyungjin Lee, Youngki Lee
Title: Clustered Error Correction with Grouped 4D Gaussian Splatting
Abstract:
Existing 4D Gaussian Splatting (4DGS) methods struggle to accurately reconstruct dynamic scenes, often failing to resolve ambiguous pixel correspondences and inadequate densification in dynamic regions. We address these issues by introducing a novel method composed of two key components: (1) Elliptical Error Clustering and Error Correcting Splat Addition that pinpoints dynamic areas to improve and initialize fitting splats, and (2) Grouped 4D Gaussian Splatting that improves consistency of mapping between splats and represented dynamic objects. Specifically, we classify rendering errors into missing-color and occlusion types, then apply targeted corrections via backprojection or foreground splitting guided by cross-view color consistency. Evaluations on Neural 3D Video and Technicolor datasets demonstrate that our approach significantly improves temporal consistency and achieves state-of-the-art perceptual rendering quality, improving 0.39dB of PSNR on the Technicolor Light Field dataset. Our visualization shows improved alignment between splats and dynamic objects, and the error correction method's capability to identify errors and properly initialize new splats. Our implementation details and source code are available at https://github.com/tho-kn/cem-4dgs.

Authors:Meihua Zhou, Liping Yu, Jiawei Cai, Wai Kin Fung, Ruiguo Hu, Jiarui Zhao, Wenzhuo Liu, Nan Wan
Title: SpectralTrain: A Universal Framework for Hyperspectral Image Classification
Abstract:
Hyperspectral image (HSI) classification typically involves large-scale data and computationally intensive training, which limits the practical deployment of deep learning models in real-world remote sensing tasks. This study introduces SpectralTrain, a universal, architecture-agnostic training framework that enhances learning efficiency by integrating curriculum learning (CL) with principal component analysis (PCA)-based spectral downsampling. By gradually introducing spectral complexity while preserving essential information, SpectralTrain enables efficient learning of spectral -- spatial patterns at significantly reduced computational costs. The framework is independent of specific architectures, optimizers, or loss functions and is compatible with both classical and state-of-the-art (SOTA) models. Extensive experiments on three benchmark datasets -- Indian Pines, Salinas-A, and the newly introduced CloudPatch-7 -- demonstrate strong generalization across spatial scales, spectral characteristics, and application domains. The results indicate consistent reductions in training time by 2-7x speedups with small-to-moderate accuracy deltas depending on backbone. Its application to cloud classification further reveals potential in climate-related remote sensing, emphasizing training strategy optimization as an effective complement to architectural design in HSI models. Code is available at https://github.com/mh-zhou/SpectralTrain.

Authors:Zishan Xu, Yifu Guo, Yuquan Lu, Fengyu Yang, Junxin Li
Title: VideoSeg-R1:Reasoning Video Object Segmentation via Reinforcement Learning
Abstract:
Traditional video reasoning segmentation methods rely on supervised fine-tuning, which limits generalization to out-of-distribution scenarios and lacks explicit reasoning. To address this, we propose \textbf{VideoSeg-R1}, the first framework to introduce reinforcement learning into video reasoning segmentation. It adopts a decoupled architecture that formulates the task as joint referring image segmentation and video mask propagation. It comprises three stages: (1) A hierarchical text-guided frame sampler to emulate human attention; (2) A reasoning model that produces spatial cues along with explicit reasoning chains; and (3) A segmentation-propagation stage using SAM2 and XMem. A task difficulty-aware mechanism adaptively controls reasoning length for better efficiency and accuracy. Extensive evaluations on multiple benchmarks demonstrate that VideoSeg-R1 achieves state-of-the-art performance in complex video reasoning and segmentation tasks. The code will be publicly available at https://github.com/euyis1019/VideoSeg-R1.

Authors:Pei Liu, Songtao Wang, Lang Zhang, Xingyue Peng, Yuandong Lyu, Jiaxin Deng, Songxin Lu, Weiliang Ma, Xueyang Zhang, Yifei Zhan, XianPeng Lang, Jun Ma
Title: LiSTAR: Ray-Centric World Models for 4D LiDAR Sequences in Autonomous Driving
Abstract:
Synthesizing high-fidelity and controllable 4D LiDAR data is crucial for creating scalable simulation environments for autonomous driving. This task is inherently challenging due to the sensor's unique spherical geometry, the temporal sparsity of point clouds, and the complexity of dynamic scenes. To address these challenges, we present LiSTAR, a novel generative world model that operates directly on the sensor's native geometry. LiSTAR introduces a Hybrid-Cylindrical-Spherical (HCS) representation to preserve data fidelity by mitigating quantization artifacts common in Cartesian grids. To capture complex dynamics from sparse temporal data, it utilizes a Spatio-Temporal Attention with Ray-Centric Transformer (START) that explicitly models feature evolution along individual sensor rays for robust temporal coherence. Furthermore, for controllable synthesis, we propose a novel 4D point cloud-aligned voxel layout for conditioning and a corresponding discrete Masked Generative START (MaskSTART) framework, which learns a compact, tokenized representation of the scene, enabling efficient, high-resolution, and layout-guided compositional generation. Comprehensive experiments validate LiSTAR's state-of-the-art performance across 4D LiDAR reconstruction, prediction, and conditional generation, with substantial quantitative gains: reducing generation MMD by a massive 76%, improving reconstruction IoU by 32%, and lowering prediction L1 Med by 50%. This level of performance provides a powerful new foundation for creating realistic and controllable autonomous systems simulations. Project link: https://ocean-luna.github.io/LiSTAR.gitub.io.

Authors:Zijian Wu, Mingfeng Jiang, Zidian Lin, Ying Song, Hanjie Ma, Qun Wu, Dongping Zhang, Guiyang Pu
Title: CuriGS: Curriculum-Guided Gaussian Splatting for Sparse View Synthesis
Abstract:
3D Gaussian Splatting (3DGS) has recently emerged as an efficient, high-fidelity representation for real-time scene reconstruction and rendering. However, extending 3DGS to sparse-view settings remains challenging because of supervision scarcity and overfitting caused by limited viewpoint coverage. In this paper, we present CuriGS, a curriculum-guided framework for sparse-view 3D reconstruction using 3DGS. CuriGS addresses the core challenge of sparse-view synthesis by introducing student views: pseudo-views sampled around ground-truth poses (teacher). For each teacher, we generate multiple groups of student views with different perturbation levels. During training, we follow a curriculum schedule that gradually unlocks higher perturbation level, randomly sampling candidate students from the active level to assist training. Each sampled student is regularized via depth-correlation and co-regularization, and evaluated using a multi-signal metric that combines SSIM, LPIPS, and an image-quality measure. For every teacher and perturbation level, we periodically retain the best-performing students and promote those that satisfy a predefined quality threshold to the training set, resulting in a stable augmentation of sparse training views. Experimental results show that CuriGS outperforms state-of-the-art baselines in both rendering fidelity and geometric consistency across various synthetic and real sparse-view scenes. Project page: https://zijian1026.github.io/CuriGS/

Authors:Milos Vukadinovic, Hirotaka Ieki, Yuki Sahashi, David Ouyang, Bryan He
Title: Automated Interpretable 2D Video Extraction from 3D Echocardiography
Abstract:
Although the heart has complex three-dimensional (3D) anatomy, conventional medical imaging with cardiac ultrasound relies on a series of 2D videos showing individual cardiac structures. 3D echocardiography is a developing modality that now offers adequate image quality for clinical use, with potential to streamline acquisition and improve assessment of off-axis features. We propose an automated method to select standard 2D views from 3D cardiac ultrasound volumes, allowing physicians to interpret the data in their usual format while benefiting from the speed and usability of 3D scanning. Applying a deep learning view classifier and downstream heuristics based on anatomical landmarks together with heuristics provided by cardiologists, we reconstruct standard echocardiography views. This approach was validated by three cardiologists in blinded evaluation (96\% accuracy in 1,600 videos from 2 hospitals). The downstream 2D videos were also validated in their ability to detect cardiac abnormalities using AI echocardiography models (EchoPrime and PanEcho) as well as ability to generate clinical-grade measurements of cardiac anatomy (EchoNet-Measurement). We demonstrated that the extracted 2D videos preserve spatial calibration and diagnostic features, allowing clinicians to obtain accurate real-world interpretations from 3D volumes. We release the code and a dataset of 29 3D echocardiography videos https://github.com/echonet/3d-echo .

Authors:Zihan Li, Yiqing Wang, Sina Farsiu, Paul Kinahan
Title: Boosting Medical Visual Understanding From Multi-Granular Language Learning
Abstract:
Recent advances in image-text pretraining have significantly enhanced visual understanding by aligning visual and textual representations. Contrastive Language-Image Pretraining (CLIP) has played a pivotal role in multimodal learning. However, its focus on single-label, single-granularity alignment limits its effectiveness in complex domains such as medical imaging, where images often correspond to multiple high-level labels (e.g., disease categories) across different annotation granularities (e.g., diagnostic description, clinical explanation). To address this, we propose Multi-Granular Language Learning (MGLL), a contrastive learning framework designed to improve both multi-label and cross-granularity alignment. MGLL leverages structured multi-label supervision, integrates textual descriptions across granularities, and introduces soft-label supervision with point-wise constraints to enhance alignment. MGLL employs smooth Kullback-Leibler (KL) divergence to ensure cross-granularity consistency while maintaining computational efficiency as a plug-and-play module for vision-language models. Pretrained on our constructed large-scale multi-granular datasets and evaluated across multiple datasets, MGLL outperforms other state-of-the-art methods in downstream tasks. The code is available at \href{https://github.com/HUANGLIZI/MGLL}{https://github.com/HUANGLIZI/MGLL}.

Authors:Chengxi Zeng, Yuxuan Jiang, Aaron Zhang
Title: EfficientSAM3: Progressive Hierarchical Distillation for Video Concept Segmentation from SAM1, 2, and 3
Abstract:
The Segment Anything Model 3 (SAM3) advances visual understanding with Promptable Concept Segmentation (PCS) across images and videos, but its unified architecture (shared vision backbone, DETR-style detector, dense-memory tracker) remains prohibitive for on-device use. We present EfficientSAM3, a family of efficient models built on Progressive Hierarchical Distillation (PHD) that transfers capability from SAM3 to lightweight students in three stages: (1) Encoder Distillation aligns image features via prompt-in-the-loop training on SA-1B; (2) Temporal Memory Distillation replaces dense memory with a compact Perceiver-based module trained on SA-V to compress and retrieve spatiotemporal features efficiently; and (3) End-to-End Fine-Tuning refines the full pipeline on the official SAM3 PCS data to preserve concept-level performance. PHD yields a spectrum of student variants using RepViT, TinyViT, and EfficientViT backbones, enabling on-device concept segmentation and tracking while maintaining high fidelity to teacher behavior. We benchmark on popular VOS datasets, and compare with varies of releated work, achieing strong performance-efficiency trade-offs.

Authors:Wei Zhang, Yeying Jin, Xin Li, Yan Zhang, Xiaofeng Cong, Cong Wang, Fengcai Qiao, zhichao Lian
Title: UniFit: Towards Universal Virtual Try-on with MLLM-Guided Semantic Alignment
Abstract:
Image-based virtual try-on (VTON) aims to synthesize photorealistic images of a person wearing specified garments. Despite significant progress, building a universal VTON framework that can flexibly handle diverse and complex tasks remains a major challenge. Recent methods explore multi-task VTON frameworks guided by textual instructions, yet they still face two key limitations: (1) semantic gap between text instructions and reference images, and (2) data scarcity in complex scenarios. To address these challenges, we propose UniFit, a universal VTON framework driven by a Multimodal Large Language Model (MLLM). Specifically, we introduce an MLLM-Guided Semantic Alignment Module (MGSA), which integrates multimodal inputs using an MLLM and a set of learnable queries. By imposing a semantic alignment loss, MGSA captures cross-modal semantic relationships and provides coherent and explicit semantic guidance for the generative process, thereby reducing the semantic gap. Moreover, by devising a two-stage progressive training strategy with a self-synthesis pipeline, UniFit is able to learn complex tasks from limited data. Extensive experiments show that UniFit not only supports a wide range of VTON tasks, including multi-garment and model-to-model try-on, but also achieves state-of-the-art performance. The source code and pretrained models are available at https://github.com/zwplus/UniFit.

Authors:Yue Li, Qing Xu, Yixuan Zhang, Xiangjian He, Qian Zhang, Yuan Yao, Fiseha B. Tesem, Xin Chen, Ruili Wang, Zhen Chen, Chang Wen Chen
Title: UniUltra: Interactive Parameter-Efficient SAM2 for Universal Ultrasound Segmentation
Abstract:
The Segment Anything Model 2 (SAM2) demonstrates remarkable universal segmentation capabilities on natural images. However, its performance on ultrasound images is significantly degraded due to domain disparities. This limitation raises two critical challenges: how to efficiently adapt SAM2 to ultrasound imaging while maintaining parameter efficiency, and how to deploy the adapted model effectively in resource-constrained clinical environments. To address these issues, we propose UniUltra for universal ultrasound segmentation. Specifically, we first introduce a novel context-edge hybrid adapter (CH-Adapter) that enhances fine-grained perception across diverse ultrasound imaging modalities while achieving parameter-efficient fine-tuning. To further improve clinical applicability, we develop a deep-supervised knowledge distillation (DSKD) technique that transfers knowledge from the large image encoder of the fine-tuned SAM2 to a super lightweight encoder, substantially reducing computational requirements without compromising performance. Extensive experiments demonstrate that UniUltra outperforms state-of-the-arts with superior generalization capabilities. Notably, our framework achieves competitive performance using only 8.91% of SAM2's parameters during fine-tuning, and the final compressed model reduces the parameter count by 94.08% compared to the original SAM2, making it highly suitable for practical clinical deployment. The source code is available at https://github.com/xq141839/UniUltra.

Authors:Johan Edstedt, David Nordström, Yushan Zhang, Georg Bökman, Jonathan Astermark, Viktor Larsson, Anders Heyden, Fredrik Kahl, Mårten Wadenbäck, Michael Felsberg
Title: RoMa v2: Harder Better Faster Denser Feature Matching
Abstract:
Dense feature matching aims to estimate all correspondences between two images of a 3D scene and has recently been established as the gold-standard due to its high accuracy and robustness. However, existing dense matchers still fail or perform poorly for many hard real-world scenarios, and high-precision models are often slow, limiting their applicability. In this paper, we attack these weaknesses on a wide front through a series of systematic improvements that together yield a significantly better model. In particular, we construct a novel matching architecture and loss, which, combined with a curated diverse training distribution, enables our model to solve many complex matching tasks. We further make training faster through a decoupled two-stage matching-then-refinement pipeline, and at the same time, significantly reduce refinement memory usage through a custom CUDA kernel. Finally, we leverage the recent DINOv3 foundation model along with multiple other insights to make the model more robust and unbiased. In our extensive set of experiments we show that the resulting novel matcher sets a new state-of-the-art, being significantly more accurate than its predecessors. Code is available at https://github.com/Parskatt/romav2

Authors:Xiongyi Cai, Ri-Zhao Qiu, Geng Chen, Lai Wei, Isabella Liu, Tianshu Huang, Xuxin Cheng, Xiaolong Wang
Title: In-N-On: Scaling Egocentric Manipulation with in-the-wild and on-task Data
Abstract:
Egocentric videos are a valuable and scalable data source to learn manipulation policies. However, due to significant data heterogeneity, most existing approaches utilize human data for simple pre-training, which does not unlock its full potential. This paper first provides a scalable recipe for collecting and using egocentric data by categorizing human data into two categories: in-the-wild and on-task alongside with systematic analysis on how to use the data. We first curate a dataset, PHSD, which contains over 1,000 hours of diverse in-the-wild egocentric data and over 20 hours of on-task data directly aligned to the target manipulation tasks. This enables learning a large egocentric language-conditioned flow matching policy, Human0. With domain adaptation techniques, Human0 minimizes the gap between humans and humanoids. Empirically, we show Human0 achieves several novel properties from scaling human data, including language following of instructions from only human data, few-shot learning, and improved robustness using on-task data. Project website: https://xiongyicai.github.io/In-N-On/

Authors:Beichen Zhang, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, Jiaqi Wang
Title: Think Visually, Reason Textually: Vision-Language Synergy in ARC
Abstract:
Abstract reasoning from minimal examples remains a core unsolved problem for frontier foundation models such as GPT-5 and Grok 4. These models still fail to infer structured transformation rules from a handful of examples, which is a key hallmark of human intelligence. The Abstraction and Reasoning Corpus for Artificial General Intelligence (ARC-AGI) provides a rigorous testbed for this capability, demanding conceptual rule induction and transfer to novel tasks. Most existing methods treat ARC-AGI as a purely textual reasoning task, overlooking the fact that humans rely heavily on visual abstraction when solving such puzzles. However, our pilot experiments reveal a paradox: naively rendering ARC-AGI grids as images degrades performance due to imprecise rule execution. This leads to our central hypothesis that vision and language possess complementary strengths across distinct reasoning stages: vision supports global pattern abstraction and verification, whereas language specializes in symbolic rule formulation and precise execution. Building on this insight, we introduce two synergistic strategies: (1) Vision-Language Synergy Reasoning (VLSR), which decomposes ARC-AGI into modality-aligned subtasks; and (2) Modality-Switch Self-Correction (MSSC), which leverages vision to verify text-based reasoning for intrinsic error correction. Extensive experiments demonstrate that our approach yields up to a 4.33\% improvement over text-only baselines across diverse flagship models and multiple ARC-AGI tasks. Our findings suggest that unifying visual abstraction with linguistic reasoning is a crucial step toward achieving generalizable, human-like intelligence in future foundation models. Source code is released at https://github.com/InternLM/ARC-VL.

Authors:Mohammed Q. Alkhatib
Title: Hyperspectral Image Classification using Spectral-Spatial Mixer Network
Abstract:
This paper introduces SS-MixNet, a lightweight and effective deep learning model for hyperspectral image (HSI) classification. The architecture integrates 3D convolutional layers for local spectral-spatial feature extraction with two parallel MLP-style mixer blocks that capture long-range dependencies in spectral and spatial dimensions. A depthwise convolution-based attention mechanism is employed to enhance discriminative capability with minimal computational overhead. The model is evaluated on the QUH-Tangdaowan and QUH-Qingyun datasets using only 1% of labeled data for training and validation. SS-MixNet achieves the highest performance among compared methods, including 2D-CNN, 3D-CNN, IP-SWIN, SimPoolFormer, and HybridKAN, reaching 95.68% and 93.86% overall accuracy on the Tangdaowan and Qingyun datasets, respectively. The results, supported by quantitative metrics and classification maps, confirm the model's effectiveness in delivering accurate and robust predictions with limited supervision. The code will be made publicly available at: https://github.com/mqalkhatib/SS-MixNet

Authors:Yicheng He, Chengsong Huang, Zongxia Li, Jiaxin Huang, Yonghui Yang
Title: VisPlay: Self-Evolving Vision-Language Models from Images
Abstract:
Reinforcement learning (RL) provides a principled framework for improving Vision-Language Models (VLMs) on complex reasoning tasks. However, existing RL approaches often rely on human-annotated labels or task-specific heuristics to define verifiable rewards, both of which are costly and difficult to scale. We introduce VisPlay, a self-evolving RL framework that enables VLMs to autonomously improve their reasoning abilities using large amounts of unlabeled image data. Starting from a single base VLM, VisPlay assigns the model into two interacting roles: an Image-Conditioned Questioner that formulates challenging yet answerable visual questions, and a Multimodal Reasoner that generates silver responses. These roles are jointly trained with Group Relative Policy Optimization (GRPO), which incorporates diversity and difficulty rewards to balance the complexity of generated questions with the quality of the silver answers. VisPlay scales efficiently across two model families. When trained on Qwen2.5-VL and MiMo-VL, VisPlay achieves consistent improvements in visual reasoning, compositional generalization, and hallucination reduction across eight benchmarks, including MM-Vet and MMMU, demonstrating a scalable path toward self-evolving multimodal intelligence. The project page is available at https://bruno686.github.io/VisPlay/

Authors:Miruna-Alexandra Gafencu, Yordanka Velikova, Nassir Navab, Mohammad Farid Azampour
Title: US-X Complete: A Multi-Modal Approach to Anatomical 3D Shape Recovery
Abstract:
Ultrasound offers a radiation-free, cost-effective solution for real-time visualization of spinal landmarks, paraspinal soft tissues and neurovascular structures, making it valuable for intraoperative guidance during spinal procedures. However, ultrasound suffers from inherent limitations in visualizing complete vertebral anatomy, in particular vertebral bodies, due to acoustic shadowing effects caused by bone. In this work, we present a novel multi-modal deep learning method for completing occluded anatomical structures in 3D ultrasound by leveraging complementary information from a single X-ray image. To enable training, we generate paired training data consisting of: (1) 2D lateral vertebral views that simulate X-ray scans, and (2) 3D partial vertebrae representations that mimic the limited visibility and occlusions encountered during ultrasound spine imaging. Our method integrates morphological information from both imaging modalities and demonstrates significant improvements in vertebral reconstruction (p < 0.001) compared to state of art in 3D ultrasound vertebral completion. We perform phantom studies as an initial step to future clinical translation, and achieve a more accurate, complete volumetric lumbar spine visualization overlayed on the ultrasound scan without the need for registration with preoperative modalities such as computed tomography. This demonstrates that integrating a single X-ray projection mitigates ultrasound's key limitation while preserving its strengths as the primary imaging modality. Code and data can be found at https://github.com/miruna20/US-X-Complete

Authors:Xufei Wang, Junqiao Zhao, Siyue Tao, Qiwen Gu, Wonbong Kim, Tiantian Feng
Title: Learning from Mistakes: Loss-Aware Memory Enhanced Continual Learning for LiDAR Place Recognition
Abstract:
LiDAR place recognition plays a crucial role in SLAM, robot navigation, and autonomous driving. However, existing LiDAR place recognition methods often struggle to adapt to new environments without forgetting previously learned knowledge, a challenge widely known as catastrophic forgetting. To address this issue, we propose KDF+, a novel continual learning framework for LiDAR place recognition that extends the KDF paradigm with a loss-aware sampling strategy and a rehearsal enhancement mechanism. The proposed sampling strategy estimates the learning difficulty of each sample via its loss value and selects samples for replay according to their estimated difficulty. Harder samples, which tend to encode more discriminative information, are sampled with higher probability while maintaining distributional coverage across the dataset. In addition, the rehearsal enhancement mechanism encourages memory samples to be further refined during new-task training by slightly reducing their loss relative to previous tasks, thereby reinforcing long-term knowledge retention. Extensive experiments across multiple benchmarks demonstrate that KDF+ consistently outperforms existing continual learning methods and can be seamlessly integrated into state-of-the-art continual learning for LiDAR place recognition frameworks to yield significant and stable performance gains. The code will be available at https://github.com/repo/KDF-plus.

Authors:Kevin Qinghong Lin, Siyuan Hu, Linjie Li, Zhengyuan Yang, Lijuan Wang, Philip Torr, Mike Zheng Shou
Title: Computer-Use Agents as Judges for Generative User Interface
Abstract:
Computer-Use Agents (CUA) are becoming increasingly capable of autonomously operating digital environments through Graphical User Interfaces (GUI). Yet, most GUI remain designed primarily for humans--prioritizing aesthetics and usability--forcing agents to adopt human-oriented behaviors that are unnecessary for efficient task execution. At the same time, rapid advances in coding-oriented language models (Coder) have transformed automatic GUI design. This raises a fundamental question: Can CUA as judges to assist Coder for automatic GUI design? To investigate, we introduce AUI-Gym, a benchmark for Automatic GUI development spanning 52 applications across diverse domains. Using language models, we synthesize 1560 tasks that simulate real-world scenarios. To ensure task reliability, we further develop a verifier that programmatically checks whether each task is executable within its environment. Building on this, we propose a Coder-CUA in Collaboration framework: the Coder acts as Designer, generating and revising websites, while the CUA serves as Judge, evaluating functionality and refining designs. Success is measured not by visual appearance, but by task solvability and CUA navigation success rate. To turn CUA feedback into usable guidance, we design a CUA Dashboard that compresses multi-step navigation histories into concise visual summaries, offering interpretable guidance for iterative redesign. By positioning agents as both designers and judges, our framework shifts interface design toward agent-native efficiency and reliability. Our work takes a step toward shifting agents from passive use toward active participation in digital environments. Our code and dataset are available at https://github.com/showlab/AUI.

Authors:YiKang Shao, Tao Shi
Title: Representation Space Constrained Learning with Modality Decoupling for Multimodal Object Detection
Abstract:
Multimodal object detection has attracted significant attention in both academia and industry for its enhanced robustness. Although numerous studies have focused on improving modality fusion strategies, most neglect fusion degradation, and none provide a theoretical analysis of its underlying causes. To fill this gap, this paper presents a systematic theoretical investigation of fusion degradation in multimodal detection and identifies two key optimization deficiencies: (1) the gradients of unimodal branch backbones are severely suppressed under multimodal architectures, resulting in under-optimization of the unimodal branches; (2) disparities in modality quality cause weaker modalities to experience stronger gradient suppression, which in turn results in imbalanced modality learning. To address these issues, this paper proposes a Representation Space Constrained Learning with Modality Decoupling (RSC-MD) method, which consists of two modules. The RSC module and the MD module are designed to respectively amplify the suppressed gradients and eliminate inter-modality coupling interference as well as modality imbalance, thereby enabling the comprehensive optimization of each modality-specific backbone. Extensive experiments conducted on the FLIR, LLVIP, M3FD, and MFAD datasets demonstrate that the proposed method effectively alleviates fusion degradation and achieves state-of-the-art performance across multiple benchmarks. The code and training procedures will be released at https://github.com/yikangshao/RSC-MD.

Authors:Luca Mossina, Corentin Friedrich
Title: Controlling False Positives in Image Segmentation via Conformal Prediction
Abstract:
Reliable semantic segmentation is essential for clinical decision making, yet deep models rarely provide explicit statistical guarantees on their errors. We introduce a simple post-hoc framework that constructs confidence masks with distribution-free, image-level control of false-positive predictions. Given any pretrained segmentation model, we define a nested family of shrunken masks obtained either by increasing the score threshold or by applying morphological erosion. A labeled calibration set is used to select a single shrink parameter via conformal prediction, ensuring that, for new images that are exchangeable with the calibration data, the proportion of false positives retained in the confidence mask stays below a user-specified tolerance with high probability. The method is model-agnostic, requires no retraining, and provides finite-sample guarantees regardless of the underlying predictor. Experiments on a polyp-segmentation benchmark demonstrate target-level empirical validity. Our framework enables practical, risk-aware segmentation in settings where over-segmentation can have clinical consequences. Code at https://github.com/deel-ai-papers/conseco.

Authors:Gihwan Kim, Jemin Lee, Hyungshin Kim
Title: IPTQ-ViT: Post-Training Quantization of Non-linear Functions for Integer-only Vision Transformers
Abstract:
Previous Quantization-Aware Training (QAT) methods for vision transformers rely on expensive retraining to recover accuracy loss in non-linear layer quantization, limiting their use in resource-constrained environments. In contrast, existing Post-Training Quantization (PTQ) methods either partially quantize non-linear functions or adjust activation distributions to maintain accuracy but fail to achieve fully integer-only inference. In this paper, we introduce IPTQ-ViT, a novel PTQ framework for fully integer-only vision transformers without retraining. We present approximation functions: a polynomial-based GELU optimized for vision data and a bit-shifting-based Softmax designed to improve approximation accuracy in PTQ. In addition, we propose a unified metric integrating quantization sensitivity, perturbation, and computational cost to select the optimal approximation function per activation layer. IPTQ-ViT outperforms previous PTQ methods, achieving up to 6.44\%p (avg. 1.78\%p) top-1 accuracy improvement for image classification, 1.0 mAP for object detection. IPTQ-ViT outperforms partial floating-point PTQ methods under W8A8 and W4A8, and achieves accuracy and latency comparable to integer-only QAT methods. We plan to release our code https://github.com/gihwan-kim/IPTQ-ViT.git.

Authors:Mehran Tamjidi, Hamidreza Dastmalchi, Mohammadreza Alimoradijazi, Ali Cheraghian, Aijun An, Morteza Saberi
Title: Adapt-As-You-Walk Through the Clouds: Training-Free Online Test-Time Adaptation of 3D Vision-Language Foundation Models
Abstract:
3D Vision-Language Foundation Models (VLFMs) have shown strong generalization and zero-shot recognition capabilities in open-world point cloud processing tasks. However, these models often underperform in practical scenarios where data are noisy, incomplete, or drawn from a different distribution than the training data. To address this, we propose Uni-Adapter, a novel training-free online test-time adaptation (TTA) strategy for 3D VLFMs based on dynamic prototype learning. We define a 3D cache to store class-specific cluster centers as prototypes, which are continuously updated to capture intra-class variability in heterogeneous data distributions. These dynamic prototypes serve as anchors for cache-based logit computation via similarity scoring. Simultaneously, a graph-based label smoothing module captures inter-prototype similarities to enforce label consistency among similar prototypes. Finally, we unify predictions from the original 3D VLFM and the refined 3D cache using entropy-weighted aggregation for reliable adaptation. Without retraining, Uni-Adapter effectively mitigates distribution shifts, achieving state-of-the-art performance on diverse 3D benchmarks over different 3D VLFMs, improving ModelNet-40C by 10.55%, ScanObjectNN-C by 8.26%, and ShapeNet-C by 4.49% over the source 3D VLFMs. Project page: https://mehran-tam.github.io/Uni-Adapter

Authors:Jialong Sun, Hongguang Zhu, Weizhe Liu, Yunda Sun, Renshuai Tao, Yunchao Wei
Title: Taming Generative Synthetic Data for X-ray Prohibited Item Detection
Abstract:
Training prohibited item detection models requires a large amount of X-ray security images, but collecting and annotating these images is time-consuming and laborious. To address data insufficiency, X-ray security image synthesis methods composite images to scale up datasets. However, previous methods primarily follow a two-stage pipeline, where they implement labor-intensive foreground extraction in the first stage and then composite images in the second stage. Such a pipeline introduces inevitable extra labor cost and is not efficient. In this paper, we propose a one-stage X-ray security image synthesis pipeline (Xsyn) based on text-to-image generation, which incorporates two effective strategies to improve the usability of synthetic images. The Cross-Attention Refinement (CAR) strategy leverages the cross-attention map from the diffusion model to refine the bounding box annotation. The Background Occlusion Modeling (BOM) strategy explicitly models background occlusion in the latent space to enhance imaging complexity. To the best of our knowledge, compared with previous methods, Xsyn is the first to achieve high-quality X-ray security image synthesis without extra labor cost. Experiments demonstrate that our method outperforms all previous methods with 1.2% mAP improvement, and the synthetic images generated by our method are beneficial to improve prohibited item detection performance across various X-ray security datasets and detectors. Code is available at https://github.com/pILLOW-1/Xsyn/.

Authors:Fanfan Liu, Haibo Qiu
Title: Context Cascade Compression: Exploring the Upper Limits of Text Compression
Abstract:
Million-level token inputs in long-context tasks pose significant computational and memory challenges for Large Language Models (LLMs). Recently, DeepSeek-OCR conducted research into the feasibility of Contexts Optical Compression and achieved preliminary results. Inspired by this, we introduce Context Cascade Compression C3 to explore the upper limits of text compression. Our method cascades two LLMs of different sizes to handle the compression and decoding tasks. Specifically, a small LLM, acting as the first stage, performs text compression by condensing a long context into a set of latent tokens (e.g., 32 or 64 in length), achieving a high ratio of text tokens to latent tokens. A large LLM, as the second stage, then executes the decoding task on this compressed context. Experiments show that at a 20x compression ratio (where the number of text tokens is 20 times the number of latent tokens), our model achieves 98% decoding accuracy, compared to approximately 60% for DeepSeek-OCR. When we further increase the compression ratio to 40x, the accuracy is maintained at around 93%. This indicates that in the domain of context compression, C3 Compression demonstrates superior performance and feasibility over optical character compression. C3 uses a simpler, pure-text pipeline that ignores factors like layout, color, and information loss from a visual encoder. This also suggests a potential upper bound for compression ratios in future work on optical character compression, OCR, and related fields. Codes and model weights are publicly accessible at https://github.com/liufanfanlff/C3-Context-Cascade-Compression

Authors:Kyotaro Tokoro, Hiromu Taketsugu, Norimichi Ukita
Title: MMCM: Multimodality-aware Metric using Clustering-based Modes for Probabilistic Human Motion Prediction
Abstract:
This paper proposes a novel metric for Human Motion Prediction (HMP). Since a single past sequence can lead to multiple possible futures, a probabilistic HMP method predicts such multiple motions. While a single motion predicted by a deterministic method is evaluated only with the difference from its ground truth motion, multiple predicted motions should also be evaluated based on their distribution. For this evaluation, this paper focuses on the following two criteria. \textbf{(a) Coverage}: motions should be distributed among multiple motion modes to cover diverse possibilities. \textbf{(b) Validity}: motions should be kinematically valid as future motions observable from a given past motion. However, existing metrics simply appreciate widely distributed motions even if these motions are observed in a single mode and kinematically invalid. To resolve these disadvantages, this paper proposes a Multimodality-aware Metric using Clustering-based Modes (MMCM). For (a) coverage, MMCM divides a motion space into several clusters, each of which is regarded as a mode. These modes are used to explicitly evaluate whether predicted motions are distributed among multiple modes. For (b) validity, MMCM identifies valid modes by collecting possible future motions from a motion dataset. Our experiments validate that our clustering yields sensible mode definitions and that MMCM accurately scores multimodal predictions. Code: https://github.com/placerkyo/MMCM

Authors:Chun-Jung Lin, Tat-Jun Chin, Sourav Garg, Feras Dayoub
Title: SceneEdited: A City-Scale Benchmark for 3D HD Map Updating via Image-Guided Change Detection
Abstract:
Accurate, up-to-date High-Definition (HD) maps are critical for urban planning, infrastructure monitoring, and autonomous navigation. However, these maps quickly become outdated as environments evolve, creating a need for robust methods that not only detect changes but also incorporate them into updated 3D representations. While change detection techniques have advanced significantly, there remains a clear gap between detecting changes and actually updating 3D maps, particularly when relying on 2D image-based change detection. To address this gap, we introduce SceneEdited, the first city-scale dataset explicitly designed to support research on HD map maintenance through 3D point cloud updating. SceneEdited contains over 800 up-to-date scenes covering 73 km of driving and approximate 3 $\text{km}^2$ of urban area, with more than 23,000 synthesized object changes created both manually and automatically across 2000+ out-of-date versions, simulating realistic urban modifications such as missing roadside infrastructure, buildings, overpasses, and utility poles. Each scene includes calibrated RGB images, LiDAR scans, and detailed change masks for training and evaluation. We also provide baseline methods using a foundational image-based structure-from-motion pipeline for updating outdated scenes, as well as a comprehensive toolkit supporting scalability, trackability, and portability for future dataset expansion and unification of out-of-date object annotations. Both the dataset and the toolkit are publicly available at https://github.com/ChadLin9596/ScenePoint-ETK, establising a standardized benchmark for 3D map updating research.

Authors:Keito Sasagawa, Shuhei Kurita, Daisuke Kawahara
Title: Evaluating Multimodal Large Language Models on Vertically Written Japanese Text
Abstract:
Multimodal Large Language Models (MLLMs) have seen rapid advances in recent years and are now being applied to visual document understanding tasks. They are expected to process a wide range of document images across languages, including Japanese. Understanding documents from images requires models to read what are written in them. Since some Japanese documents are written vertically, support for vertical writing is essential. However, research specifically focused on vertically written Japanese text remains limited. In this study, we evaluate the reading capability of existing MLLMs on vertically written Japanese text. First, we generate a synthetic Japanese OCR dataset by rendering Japanese texts into images, and use it for both model fine-tuning and evaluation. This dataset includes Japanese text in both horizontal and vertical writing. We also create an evaluation dataset sourced from the real-world document images containing vertically written Japanese text. Using these datasets, we demonstrate that the existing MLLMs perform worse on vertically written Japanese text than on horizontally written Japanese text. Furthermore, we show that training MLLMs on our synthesized Japanese OCR dataset results in improving the performance of models that previously could not handle vertical writing. The datasets and code are publicly available https://github.com/llm-jp/eval_vertical_ja.

Authors:Zhenyu Cui, Jiahuan Zhou, Yuxin Peng
Title: CKDA: Cross-modality Knowledge Disentanglement and Alignment for Visible-Infrared Lifelong Person Re-identification
Abstract:
Lifelong person Re-IDentification (LReID) aims to match the same person employing continuously collected individual data from different scenarios. To achieve continuous all-day person matching across day and night, Visible-Infrared Lifelong person Re-IDentification (VI-LReID) focuses on sequential training on data from visible and infrared modalities and pursues average performance over all data. To this end, existing methods typically exploit cross-modal knowledge distillation to alleviate the catastrophic forgetting of old knowledge. However, these methods ignore the mutual interference of modality-specific knowledge acquisition and modality-common knowledge anti-forgetting, where conflicting knowledge leads to collaborative forgetting. To address the above problems, this paper proposes a Cross-modality Knowledge Disentanglement and Alignment method, called CKDA, which explicitly separates and preserves modality-specific knowledge and modality-common knowledge in a balanced way. Specifically, a Modality-Common Prompting (MCP) module and a Modality-Specific Prompting (MSP) module are proposed to explicitly disentangle and purify discriminative information that coexists and is specific to different modalities, avoiding the mutual interference between both knowledge. In addition, a Cross-modal Knowledge Alignment (CKA) module is designed to further align the disentangled new knowledge with the old one in two mutually independent inter- and intra-modality feature spaces based on dual-modality prototypes in a balanced manner. Extensive experiments on four benchmark datasets verify the effectiveness and superiority of our CKDA against state-of-the-art methods. The source code of this paper is available at https://github.com/PKU-ICST-MIPL/CKDA-AAAI2026.

Authors:Nicholas Cooper, Lijun Chen, Sailesh Dwivedy, Danna Gurari
Title: Logit-Based Losses Limit the Effectiveness of Feature Knowledge Distillation
Abstract:
Knowledge distillation (KD) methods can transfer knowledge of a parameter-heavy teacher model to a light-weight student model. The status quo for feature KD methods is to utilize loss functions based on logits (i.e., pre-softmax class scores) and intermediate layer features (i.e., latent representations). Unlike previous approaches, we propose a feature KD framework for training the student's backbone using feature-based losses exclusively (i.e., without logit-based losses such as cross entropy). Leveraging recent discoveries about the geometry of latent representations, we introduce a knowledge quality metric for identifying which teacher layers provide the most effective knowledge for distillation. Experiments on three image classification datasets with four diverse student-teacher pairs, spanning convolutional neural networks and vision transformers, demonstrate our KD method achieves state-of-the-art performance, delivering top-1 accuracy boosts of up to 15% over standard approaches. We publically share our code to facilitate future work at https://github.com/Thegolfingocto/KD_wo_CE.

Authors:Xiangde Luo, Jinxi Xiang, Yuanfeng Ji, Ruijiang Li
Title: nnMIL: A generalizable multiple instance learning framework for computational pathology
Abstract:
Computational pathology holds substantial promise for improving diagnosis and guiding treatment decisions. Recent pathology foundation models enable the extraction of rich patch-level representations from large-scale whole-slide images (WSIs), but current approaches for aggregating these features into slide-level predictions remain constrained by design limitations that hinder generalizability and reliability. Here, we developed nnMIL, a simple yet broadly applicable multiple-instance learning framework that connects patch-level foundation models to robust slide-level clinical inference. nnMIL introduces random sampling at both the patch and feature levels, enabling large-batch optimization, task-aware sampling strategies, and efficient and scalable training across datasets and model architectures. A lightweight aggregator performs sliding-window inference to generate ensemble slide-level predictions and supports principled uncertainty estimation. Across 40,000 WSIs encompassing 35 clinical tasks and four pathology foundation models, nnMIL consistently outperformed existing MIL methods for disease diagnosis, histologic subtyping, molecular biomarker detection, and pan- cancer prognosis prediction. It further demonstrated strong cross-model generalization, reliable uncertainty quantification, and robust survival stratification in multiple external cohorts. In conclusion, nnMIL offers a practical and generalizable solution for translating pathology foundation models into clinically meaningful predictions, advancing the development and deployment of reliable AI systems in real-world settings.

Authors:Zhenshi Li, Weikang Yu, Dilxat Muhtar, Xueliang Zhang, Pengfeng Xiao, Pedram Ghamisi, Xiao Xiang Zhu
Title: FarSLIP: Discovering Effective CLIP Adaptation for Fine-Grained Remote Sensing Understanding
Abstract:
As CLIP's global alignment limits its ability to capture fine-grained details, recent efforts have focused on enhancing its region-text alignment. However, current remote sensing (RS)-specific CLIP variants still inherit this limited spatial awareness. We identify two key limitations behind this: (1) current RS image-text datasets generate global captions from object-level labels, leaving the original object-level supervision underutilized; (2) despite the success of region-text alignment methods in general domain, their direct application to RS data often leads to performance degradation. To address these, we construct the first multi-granularity RS image-text dataset, MGRS-200k, featuring rich object-level textual supervision for RS region-category alignment. We further investigate existing fine-grained CLIP tuning strategies and find that current explicit region-text alignment methods, whether in a direct or indirect way, underperform due to severe degradation of CLIP's semantic coherence. Building on these, we propose FarSLIP, a Fine-grained Aligned RS Language-Image Pretraining framework. Rather than the commonly used patch-to-CLS self-distillation, FarSLIP employs patch-to-patch distillation to align local and global visual cues, which improves feature discriminability while preserving semantic coherence. Additionally, to effectively utilize region-text supervision, it employs simple CLS token-based region-category alignment rather than explicit patch-level alignment, further enhancing spatial awareness. FarSLIP features improved fine-grained vision-language alignment in RS domain and sets a new state of the art not only on RS open-vocabulary semantic segmentation, but also on image-level tasks such as zero-shot classification and image-text retrieval. Our dataset, code, and models are available at https://github.com/NJU-LHRS/FarSLIP.

Authors:Fuyang Zhang, Pradeep Kumar Jayaraman, Xiang Xu, Yasutaka Furukawa
Title: B-Rep Distance Functions (BR-DF): How to Represent a B-Rep Model by Volumetric Distance Functions?
Abstract:
This paper presents a novel geometric representation for CAD Boundary Representation (B-Rep) based on volumetric distance functions, dubbed B-Rep Distance Functions (BR-DF). BR-DF encodes the surface mesh geometry of a CAD model as signed distance function (SDF). B-Rep vertices, edges, faces and their topology information are encoded as per-face unsigned distance functions (UDFs). An extension of the Marching Cubes algorithm converts BR-DF directly into watertight CAD B-Rep model (strictly speaking a faceted B-Rep model). A surprising characteristic of BR-DF is that this conversion process never fails. Leveraging the volumetric nature of BR-DF, we propose a multi-branch latent diffusion with 3D U-Net backbone for jointly generating the SDF and per-face UDFs of a BR-DF model. Our approach achieves comparable CAD generation performance against SOTA methods while reaching the unprecedented 100% success rate in producing (faceted) B-Rep models.

Authors:Aashish Ghimire, Jun Zeng, Roshan Paudel, Nikhil Kumar Tomar, Deepak Ranjan Nayak, Harshith Reddy Nalla, Vivek Jha, Glenda Reynolds, Debesh Jha
Title: When CNNs Outperform Transformers and Mambas: Revisiting Deep Architectures for Dental Caries Segmentation
Abstract:
Accurate identification and segmentation of dental caries in panoramic radiographs are critical for early diagnosis and effective treatment planning. Automated segmentation remains challenging due to low lesion contrast, morphological variability, and limited annotated data. In this study, we present the first comprehensive benchmarking of convolutional neural networks, vision transformers and state-space mamba architectures for automated dental caries segmentation on panoramic radiographs through a DC1000 dataset. Twelve state-of-the-art architectures, including VMUnet, MambaUNet, VMUNetv2, RMAMamba-S, TransNetR, PVTFormer, DoubleU-Net, and ResUNet++, were trained under identical configurations. Results reveal that, contrary to the growing trend toward complex attention based architectures, the CNN-based DoubleU-Net achieved the highest dice coefficient of 0.7345, mIoU of 0.5978, and precision of 0.8145, outperforming all transformer and Mamba variants. In the study, the top 3 results across all performance metrics were achieved by CNN-based architectures. Here, Mamba and transformer-based methods, despite their theoretical advantage in global context modeling, underperformed due to limited data and weaker spatial priors. These findings underscore the importance of architecture-task alignment in domain-specific medical image segmentation more than model complexity. Our code is available at: https://github.com/JunZengz/dental-caries-segmentation.

Authors:Keya Hu, Ali Cy, Linlu Qiu, Xiaoman Delores Ding, Runqian Wang, Yeyin Eva Zhu, Jacob Andreas, Kaiming He
Title: ARC Is a Vision Problem!
Abstract:
The Abstraction and Reasoning Corpus (ARC) is designed to promote research on abstract reasoning, a fundamental aspect of human intelligence. Common approaches to ARC treat it as a language-oriented problem, addressed by large language models (LLMs) or recurrent reasoning models. However, although the puzzle-like tasks in ARC are inherently visual, existing research has rarely approached the problem from a vision-centric perspective. In this work, we formulate ARC within a vision paradigm, framing it as an image-to-image translation problem. To incorporate visual priors, we represent the inputs on a "canvas" that can be processed like natural images. It is then natural for us to apply standard vision architectures, such as a vanilla Vision Transformer (ViT), to perform image-to-image mapping. Our model is trained from scratch solely on ARC data and generalizes to unseen tasks through test-time training. Our framework, termed Vision ARC (VARC), achieves 60.4% accuracy on the ARC-1 benchmark, substantially outperforming existing methods that are also trained from scratch. Our results are competitive with those of leading LLMs and close the gap to average human performance.

Authors:Yifan Wang, Liya Ji, Zhanghan Ke, Harry Yang, Ser-Nam Lim, Qifeng Chen
Title: Zero-shot Synthetic Video Realism Enhancement via Structure-aware Denoising
Abstract:
We propose an approach to enhancing synthetic video realism, which can re-render synthetic videos from a simulator in photorealistic fashion. Our realism enhancement approach is a zero-shot framework that focuses on preserving the multi-level structures from synthetic videos into the enhanced one in both spatial and temporal domains, built upon a diffusion video foundational model without further fine-tuning. Specifically, we incorporate an effective modification to have the generation/denoising process conditioned on estimated structure-aware information from the synthetic video, such as depth maps, semantic maps, and edge maps, by an auxiliary model, rather than extracting the information from a simulator. This guidance ensures that the enhanced videos are consistent with the original synthetic video at both the structural and semantic levels. Our approach is a simple yet general and powerful approach to enhancing synthetic video realism: we show that our approach outperforms existing baselines in structural consistency with the original video while maintaining state-of-the-art photorealism quality in our experiments.

Authors:Yunfeng Wu, Jiayi Song, Zhenxiong Tan, Zihao He, Songhua Liu
Title: FreeSwim: Revisiting Sliding-Window Attention Mechanisms for Training-Free Ultra-High-Resolution Video Generation
Abstract:
The quadratic time and memory complexity of the attention mechanism in modern Transformer based video generators makes end-to-end training for ultra high resolution videos prohibitively expensive. Motivated by this limitation, we introduce a training-free approach that leverages video Diffusion Transformers pretrained at their native scale to synthesize higher resolution videos without any additional training or adaptation. At the core of our method lies an inward sliding window attention mechanism, which originates from a key observation: maintaining each query token's training scale receptive field is crucial for preserving visual fidelity and detail. However, naive local window attention, unfortunately, often leads to repetitive content and exhibits a lack of global coherence in the generated results. To overcome this challenge, we devise a dual-path pipeline that backs up window attention with a novel cross-attention override strategy, enabling the semantic content produced by local attention to be guided by another branch with a full receptive field and, therefore, ensuring holistic consistency. Furthermore, to improve efficiency, we incorporate a cross-attention caching strategy for this branch to avoid the frequent computation of full 3D attention. Extensive experiments demonstrate that our method delivers ultra-high-resolution videos with fine-grained visual details and high efficiency in a training-free paradigm. Meanwhile, it achieves superior performance on VBench, even compared to training-based alternatives, with competitive or improved efficiency. Codes are available at: https://github.com/WillWu111/FreeSwim

Authors:Marco Acerbis, Swarnadip Chatterjee, Christophe Avenel, Joakim Lindblad
Title: SLAM-AGS: Slide-Label Aware Multi-Task Pretraining Using Adaptive Gradient Surgery in Computational Cytology
Abstract:
Computational cytology faces two major challenges: i) instance-level labels are unreliable and prohibitively costly to obtain, ii) witness rates are extremely low. We propose SLAM-AGS, a Slide-Label-Aware Multitask pretraining framework that jointly optimizes (i) a weakly supervised similarity objective on slide-negative patches and (ii) a self-supervised contrastive objective on slide-positive patches, yielding stronger performance on downstream tasks. To stabilize learning, we apply Adaptive Gradient Surgery to tackle conflicting task gradients and prevent model collapse. We integrate the pretrained encoder into an attention-based Multiple Instance Learning aggregator for bag-level prediction and attention-guided retrieval of the most abnormal instances in a bag. On a publicly available bone-marrow cytology dataset, with simulated witness rates from 10% down to 0.5%, SLAM-AGS improves bag-level F1-Score and Top 400 positive cell retrieval over other pretraining methods, with the largest gains at low witness rates, showing that resolving gradient interference enables stable pretraining and better performance on downstream tasks. To facilitate reproducibility, we share our complete implementation and evaluation framework as open source: https://github.com/Ace95/SLAM-AGS.

Authors:Meiying Gu, Jiawei Zhang, Jiahe Li, Xiaohan Yu, Haonan Luo, Jin Zheng, Xiao Bai
Title: SparseSurf: Sparse-View 3D Gaussian Splatting for Surface Reconstruction
Abstract:
Recent advances in optimizing Gaussian Splatting for scene geometry have enabled efficient reconstruction of detailed surfaces from images. However, when input views are sparse, such optimization is prone to overfitting, leading to suboptimal reconstruction quality. Existing approaches address this challenge by employing flattened Gaussian primitives to better fit surface geometry, combined with depth regularization to alleviate geometric ambiguities under limited viewpoints. Nevertheless, the increased anisotropy inherent in flattened Gaussians exacerbates overfitting in sparse-view scenarios, hindering accurate surface fitting and degrading novel view synthesis performance. In this paper, we propose \net{}, a method that reconstructs more accurate and detailed surfaces while preserving high-quality novel view rendering. Our key insight is to introduce Stereo Geometry-Texture Alignment, which bridges rendering quality and geometry estimation, thereby jointly enhancing both surface reconstruction and view synthesis. In addition, we present a Pseudo-Feature Enhanced Geometry Consistency that enforces multi-view geometric consistency by incorporating both training and unseen views, effectively mitigating overfitting caused by sparse supervision. Extensive experiments on the DTU, BlendedMVS, and Mip-NeRF360 datasets demonstrate that our method achieves the state-of-the-art performance.

Authors:Kahaan Gandhi, Boris Bolliet, Inigo Zubeldia
Title: Enhancing Agentic Autonomous Scientific Discovery with Vision-Language Model Capabilities
Abstract:
We show that multi-agent systems guided by vision-language models (VLMs) improve end-to-end autonomous scientific discovery. By treating plots as verifiable checkpoints, a VLM-as-a-judge evaluates figures against dynamically generated domain-specific rubrics, enabling agents to correct their own errors and steer exploratory data analysis in real-time. Case studies in cosmology and astrochemistry demonstrate recovery from faulty reasoning paths and adaptation to new datasets without human intervention. On a 10-task benchmark for data-driven discovery, VLM-augmented systems achieve pass at 1 scores of 0.7-0.8, compared to 0.2-0.3 for code-only and 0.4-0.5 for code-and-text baselines, while also providing auditable reasoning traces that improve interpretability. Code available here: https://github.com/CMBAgents/cmbagent

Authors:Keda Tao, Kele Shao, Bohan Yu, Weiqiang Wang, Jian liu, Huan Wang
Title: OmniZip: Audio-Guided Dynamic Token Compression for Fast Omnimodal Large Language Models
Abstract:
Omnimodal large language models (OmniLLMs) have attracted increasing research attention of late towards unified audio-video understanding, wherein processing audio-video token sequences creates a significant computational bottleneck, however. Existing token compression methods have yet to accommodate this emerging need of jointly compressing multimodal tokens. To bridge this gap, we present OmniZip, a training-free, audio-guided audio-visual token-compression framework that optimizes multimodal token representation and accelerates inference. Specifically, OmniZip first identifies salient audio tokens, then computes an audio retention score for each time group to capture information density, thereby dynamically guiding video token pruning and preserving cues from audio anchors enhanced by cross-modal similarity. For each time window, OmniZip compresses the video tokens using an interleaved spatio-temporal scheme. Extensive empirical results demonstrate the merits of OmniZip - it achieves 3.42X inference speedup and 1.4X memory reduction over other top-performing counterparts, while maintaining performance with no training.

Authors:Yufeng Tian, Yifan Chen, Zhe Sun, Libang Chen, Mingyu Dou, Jijun Lu, Ye Zheng, Xuelong Li
Title: A Generative Data Framework with Authentic Supervision for Underwater Image Restoration and Enhancement
Abstract:
Underwater image restoration and enhancement are crucial for correcting color distortion and restoring image details, thereby establishing a fundamental basis for subsequent underwater visual tasks. However, current deep learning methodologies in this area are frequently constrained by the scarcity of high-quality paired datasets. Since it is difficult to obtain pristine reference labels in underwater scenes, existing benchmarks often rely on manually selected results from enhancement algorithms, providing debatable reference images that lack globally consistent color and authentic supervision. This limits the model's capabilities in color restoration, image enhancement, and generalization. To overcome this limitation, we propose using in-air natural images as unambiguous reference targets and translating them into underwater-degraded versions, thereby constructing synthetic datasets that provide authentic supervision signals for model learning. Specifically, we establish a generative data framework based on unpaired image-to-image translation, producing a large-scale dataset that covers 6 representative underwater degradation types. The framework constructs synthetic datasets with precise ground-truth labels, which facilitate the learning of an accurate mapping from degraded underwater images to their pristine scene appearances. Extensive quantitative and qualitative experiments across 6 representative network architectures and 3 independent test sets show that models trained on our synthetic data achieve comparable or superior color restoration and generalization performance to those trained on existing benchmarks. This research provides a reliable and scalable data-driven solution for underwater image restoration and enhancement. The generated dataset is publicly available at: https://github.com/yftian2025/SynUIEDatasets.git.

Authors:Xinzhuo Yu, Yunzhi Zhuge, Sitong Gong, Lu Zhang, Pingping Zhang, Huchuan Lu
Title: Parameter Aware Mamba Model for Multi-task Dense Prediction
Abstract:
Understanding the inter-relations and interactions between tasks is crucial for multi-task dense prediction. Existing methods predominantly utilize convolutional layers and attention mechanisms to explore task-level interactions. In this work, we introduce a novel decoder-based framework, Parameter Aware Mamba Model (PAMM), specifically designed for dense prediction in multi-task learning setting. Distinct from approaches that employ Transformers to model holistic task relationships, PAMM leverages the rich, scalable parameters of state space models to enhance task interconnectivity. It features dual state space parameter experts that integrate and set task-specific parameter priors, capturing the intrinsic properties of each task. This approach not only facilitates precise multi-task interactions but also allows for the global integration of task priors through the structured state space sequence model (S4). Furthermore, we employ the Multi-Directional Hilbert Scanning method to construct multi-angle feature sequences, thereby enhancing the sequence model's perceptual capabilities for 2D data. Extensive experiments on the NYUD-v2 and PASCAL-Context benchmarks demonstrate the effectiveness of our proposed method. Our code is available at https://github.com/CQC-gogopro/PAMM.

Authors:Miao Shang, Xiaopeng Hong
Title: 2D Gaussians Spatial Transport for Point-supervised Density Regression
Abstract:
This paper introduces Gaussian Spatial Transport (GST), a novel framework that leverages Gaussian splatting to facilitate transport from the probability measure in the image coordinate space to the annotation map. We propose a Gaussian splatting-based method to estimate pixel-annotation correspondence, which is then used to compute a transport plan derived from Bayesian probability. To integrate the resulting transport plan into standard network optimization in typical computer vision tasks, we derive a loss function that measures discrepancy after transport. Extensive experiments on representative computer vision tasks, including crowd counting and landmark detection, validate the effectiveness of our approach. Compared to conventional optimal transport schemes, GST eliminates iterative transport plan computation during training, significantly improving efficiency. Code is available at https://github.com/infinite0522/GST.

Authors:Mingchen Zhong, Xin Lu, Dong Li, Senyan Xu, Ruixuan Jiang, Xueyang Fu, Baocai Yin
Title: CompEvent: Complex-valued Event-RGB Fusion for Low-light Video Enhancement and Deblurring
Abstract:
Low-light video deblurring poses significant challenges in applications like nighttime surveillance and autonomous driving due to dim lighting and long exposures. While event cameras offer potential solutions with superior low-light sensitivity and high temporal resolution, existing fusion methods typically employ staged strategies, limiting their effectiveness against combined low-light and motion blur degradations. To overcome this, we propose CompEvent, a complex neural network framework enabling holistic full-process fusion of event data and RGB frames for enhanced joint restoration. CompEvent features two core components: 1) Complex Temporal Alignment GRU, which utilizes complex-valued convolutions and processes video and event streams iteratively via GRU to achieve temporal alignment and continuous fusion; and 2) Complex Space-Frequency Learning module, which performs unified complex-valued signal processing in both spatial and frequency domains, facilitating deep fusion through spatial structures and system-level characteristics. By leveraging the holistic representation capability of complex-valued neural networks, CompEvent achieves full-process spatiotemporal fusion, maximizes complementary learning between modalities, and significantly strengthens low-light video deblurring capability. Extensive experiments demonstrate that CompEvent outperforms SOTA methods in addressing this challenging task. The code is available at https://github.com/YuXie1/CompEvent.

Authors:Shuyi Geng, Tao Zhou, Yi Zhou
Title: Language as an Anchor: Preserving Relative Visual Geometry for Domain Incremental Learning
Abstract:
A key challenge in Domain Incremental Learning (DIL) is to continually learn under shifting distributions while preserving knowledge from previous domains. Existing methods face a fundamental dilemma. On one hand, projecting all domains into a single unified visual space leads to inter-domain interference and semantic distortion, as large shifts may vary with not only visual appearance but also underlying semantics. On the other hand, isolating domain-specific parameters causes knowledge fragmentation, creating "knowledge islands" that hamper knowledge reuse and exacerbate forgetting. To address this issue, we propose LAVA (Language-Anchored Visual Alignment), a novel DIL framework that replaces direct feature alignment with relative alignment driven by a text-based reference anchor. LAVA guides the visual representations of each incoming domain to preserve a consistent relative geometry, which is defined by mirroring the pairwise semantic similarities between the class names. This anchored geometric structure acts as a bridge across domains, enabling the retrieval of class-aware prior knowledge and facilitating robust feature aggregation. Extensive experiments on standard DIL benchmarks demonstrate that LAVA achieves significant performance improvements over state-of-the-arts. Code is available at https://github.com/ShuyiGeng/LAVA.

Authors:Xiuxiu Qi, Yu Yang, Jiannong Cao, Luyao Bai, Chongshan Fan, Chengtai Cao, Hongpeng Wang
Title: Continuous Vision-Language-Action Co-Learning with Semantic-Physical Alignment for Behavioral Cloning
Abstract:
Language-conditioned manipulation facilitates human-robot interaction via behavioral cloning (BC), which learns control policies from human demonstrations and serves as a cornerstone of embodied AI. Overcoming compounding errors in sequential action decisions remains a central challenge to improving BC performance. Existing approaches mitigate compounding errors through data augmentation, expressive representation, or temporal abstraction. However, they suffer from physical discontinuities and semantic-physical misalignment, leading to inaccurate action cloning and intermittent execution. In this paper, we present Continuous vision-language-action Co-Learning with Semantic-Physical Alignment (CCoL), a novel BC framework that ensures temporally consistent execution and fine-grained semantic grounding. It generates robust and smooth action execution trajectories through continuous co-learning across vision, language, and proprioceptive inputs (e.g., robot internal states). Meanwhile, we anchor language semantics to visuomotor representations by a bidirectional cross-attention to learn contextual information for action generation, successfully overcoming the problem of semantic-physical misalignment. Extensive experiments show that CCoL achieves an average 8.0% relative improvement across three simulation suites, with up to 19.2% relative gain in human-demonstrated bimanual insertion tasks. Real-world tests on a 7-DoF robot further confirm CCoL's generalization under unseen and noisy object states.

Authors:Fabian Schmidt, Noushiq Mohammed Kayilan Abdul Nazar, Markus Enzweiler, Abhinav Valada
Title: Enhancing LLM-based Autonomous Driving with Modular Traffic Light and Sign Recognition
Abstract:
Large Language Models (LLMs) are increasingly used for decision-making and planning in autonomous driving, showing promising reasoning capabilities and potential to generalize across diverse traffic situations. However, current LLM-based driving agents lack explicit mechanisms to enforce traffic rules and often struggle to reliably detect small, safety-critical objects such as traffic lights and signs. To address this limitation, we introduce TLS-Assist, a modular redundancy layer that augments LLM-based autonomous driving agents with explicit traffic light and sign recognition. TLS-Assist converts detections into structured natural language messages that are injected into the LLM input, enforcing explicit attention to safety-critical cues. The framework is plug-and-play, model-agnostic, and supports both single-view and multi-view camera setups. We evaluate TLS-Assist in a closed-loop setup on the LangAuto benchmark in CARLA. The results demonstrate relative driving performance improvements of up to 14% over LMDrive and 7% over BEVDriver, while consistently reducing traffic light and sign infractions. We publicly release the code and models on https://github.com/iis-esslingen/TLS-Assist.

Authors:Junfu Pu, Teng Wang, Yixiao Ge, Yuying Ge, Chen Li, Ying Shan
Title: ARC-Chapter: Structuring Hour-Long Videos into Navigable Chapters and Hierarchical Summaries
Abstract:
The proliferation of hour-long videos (e.g., lectures, podcasts, documentaries) has intensified demand for efficient content structuring. However, existing approaches are constrained by small-scale training with annotations that are typical short and coarse, restricting generalization to nuanced transitions in long videos. We introduce ARC-Chapter, the first large-scale video chaptering model trained on over million-level long video chapters, featuring bilingual, temporally grounded, and hierarchical chapter annotations. To achieve this goal, we curated a bilingual English-Chinese chapter dataset via a structured pipeline that unifies ASR transcripts, scene texts, visual captions into multi-level annotations, from short title to long summaries. We demonstrate clear performance improvements with data scaling, both in data volume and label intensity. Moreover, we design a new evaluation metric termed GRACE, which incorporates many-to-one segment overlaps and semantic similarity, better reflecting real-world chaptering flexibility. Extensive experiments demonstrate that ARC-Chapter establishes a new state-of-the-art by a significant margin, outperforming the previous best by 14.0% in F1 score and 11.3% in SODA score. Moreover, ARC-Chapter shows excellent transferability, improving the state-of-the-art on downstream tasks like dense video captioning on YouCook2.

Authors:Yifan Yang, Zhi Cen, Sida Peng, Xiangwei Chen, Yifu Deng, Xinyu Zhu, Fan Jia, Xiaowei Zhou, Hujun Bao
Title: StreamingTalker: Audio-driven 3D Facial Animation with Autoregressive Diffusion Model
Abstract:
This paper focuses on the task of speech-driven 3D facial animation, which aims to generate realistic and synchronized facial motions driven by speech inputs. Recent methods have employed audio-conditioned diffusion models for 3D facial animation, achieving impressive results in generating expressive and natural animations. However, these methods process the whole audio sequences in a single pass, which poses two major challenges: they tend to perform poorly when handling audio sequences that exceed the training horizon and will suffer from significant latency when processing long audio inputs. To address these limitations, we propose a novel autoregressive diffusion model that processes input audio in a streaming manner. This design ensures flexibility with varying audio lengths and achieves low latency independent of audio duration. Specifically, we select a limited number of past frames as historical motion context and combine them with the audio input to create a dynamic condition. This condition guides the diffusion process to iteratively generate facial motion frames, enabling real-time synthesis with high-quality results. Additionally, we implemented a real-time interactive demo, highlighting the effectiveness and efficiency of our approach. We will release the code at https://zju3dv.github.io/StreamingTalker/.

Authors:Pengcheng Shi
Title: Hierarchical Semantic Learning for Multi-Class Aorta Segmentation
Abstract:
The aorta, the body's largest artery, is prone to pathologies such as dissection, aneurysm, and atherosclerosis, which often require timely intervention. Minimally invasive repairs involving branch vessels necessitate detailed 3D anatomical analysis. Existing methods often overlook hierarchical anatomical relationships while struggling with severe class imbalance inherent in vascular structures. We address these challenges with a curriculum learning strategy that leverages a novel fractal softmax for hierarchical semantic learning. Inspired by human cognition, our approach progressively learns anatomical constraints by decomposing complex structures from simple to complex components. The curriculum learning framework naturally addresses class imbalance by first establishing robust feature representations for dominant classes before tackling rare but anatomically critical structures, significantly accelerating model convergence in multi-class scenarios. Our two-stage inference strategy achieves up to fivefold acceleration, enhancing clinical practicality. On the validation set at epoch 50, our hierarchical semantic loss improves the Dice score of nnU-Net ResEnc M by 11.65%. The proposed model demonstrates a 5.6% higher Dice score than baselines on the test set. Experimental results show significant improvements in segmentation accuracy and efficiency, making the framework suitable for real-time clinical applications. The implementation code for this challenge entry is publicly available at: https://github.com/PengchengShi1220/AortaSeg24. The code for fractal softmax will be available at https://github.com/PengchengShi1220/fractal-softmax.

Authors:Zhaoyu Liu, Kan Jiang, Murong Ma, Zhe Hou, Yun Lin, Jin Song Dong
Title: Few-Shot Precise Event Spotting via Unified Multi-Entity Graph and Distillation
Abstract:
Precise event spotting (PES) aims to recognize fine-grained events at exact moments and has become a key component of sports analytics. This task is particularly challenging due to rapid succession, motion blur, and subtle visual differences. Consequently, most existing methods rely on domain-specific, end-to-end training with large labeled datasets and often struggle in few-shot conditions due to their dependence on pixel- or pose-based inputs alone. However, obtaining large labeled datasets is practically hard. We propose a Unified Multi-Entity Graph Network (UMEG-Net) for few-shot PES. UMEG-Net integrates human skeletons and sport-specific object keypoints into a unified graph and features an efficient spatio-temporal extraction module based on advanced GCN and multi-scale temporal shift. To further enhance performance, we employ multimodal distillation to transfer knowledge from keypoint-based graphs to visual representations. Our approach achieves robust performance with limited labeled data and significantly outperforms baseline models in few-shot settings, providing a scalable and effective solution for few-shot PES. Code is publicly available at https://github.com/LZYAndy/UMEG-Net.

Authors:Huiyi Chen, Jiawei Peng, Dehai Min, Changchang Sun, Kaijie Chen, Yan Yan, Xu Yang, Lu Cheng
Title: MVI-Bench: A Comprehensive Benchmark for Evaluating Robustness to Misleading Visual Inputs in LVLMs
Abstract:
Evaluating the robustness of Large Vision-Language Models (LVLMs) is essential for their continued development and responsible deployment in real-world applications. However, existing robustness benchmarks typically focus on hallucination or misleading textual inputs, while largely overlooking the equally critical challenge posed by misleading visual inputs in assessing visual understanding. To fill this important gap, we introduce MVI-Bench, the first comprehensive benchmark specially designed for evaluating how Misleading Visual Inputs undermine the robustness of LVLMs. Grounded in fundamental visual primitives, the design of MVI-Bench centers on three hierarchical levels of misleading visual inputs: Visual Concept, Visual Attribute, and Visual Relationship. Using this taxonomy, we curate six representative categories and compile 1,248 expertly annotated VQA instances. To facilitate fine-grained robustness evaluation, we further introduce MVI-Sensitivity, a novel metric that characterizes LVLM robustness at a granular level. Empirical results across 18 state-of-the-art LVLMs uncover pronounced vulnerabilities to misleading visual inputs, and our in-depth analyses on MVI-Bench provide actionable insights that can guide the development of more reliable and robust LVLMs. The benchmark and codebase can be accessed at https://github.com/chenyil6/MVI-Bench.

Authors:Hao Wang, Linqing Zhao, Xiuwei Xu, Jiwen Lu, Haibin Yan
Title: iGaussian: Real-Time Camera Pose Estimation via Feed-Forward 3D Gaussian Splatting Inversion
Abstract:
Recent trends in SLAM and visual navigation have embraced 3D Gaussians as the preferred scene representation, highlighting the importance of estimating camera poses from a single image using a pre-built Gaussian model. However, existing approaches typically rely on an iterative \textit{render-compare-refine} loop, where candidate views are first rendered using NeRF or Gaussian Splatting, then compared against the target image, and finally, discrepancies are used to update the pose. This multi-round process incurs significant computational overhead, hindering real-time performance in robotics. In this paper, we propose iGaussian, a two-stage feed-forward framework that achieves real-time camera pose estimation through direct 3D Gaussian inversion. Our method first regresses a coarse 6DoF pose using a Gaussian Scene Prior-based Pose Regression Network with spatial uniform sampling and guided attention mechanisms, then refines it through feature matching and multi-model fusion. The key contribution lies in our cross-correlation module that aligns image embeddings with 3D Gaussian attributes without differentiable rendering, coupled with a Weighted Multiview Predictor that fuses features from Multiple strategically sampled viewpoints. Experimental results on the NeRF Synthetic, Mip-NeRF 360, and T\&T+DB datasets demonstrate a significant performance improvement over previous methods, reducing median rotation errors to 0.2° while achieving 2.87 FPS tracking on mobile robots, which is an impressive 10 times speedup compared to optimization-based approaches. Code: https://github.com/pythongod-exe/iGaussian

Authors:Zeyu Cheng, Tongfei Liu, Tao Lei, Xiang Hua, Yi Zhang, Chengkai Tang
Title: RTS-Mono: A Real-Time Self-Supervised Monocular Depth Estimation Method for Real-World Deployment
Abstract:
Depth information is crucial for autonomous driving and intelligent robot navigation. The simplicity and flexibility of self-supervised monocular depth estimation are conducive to its role in these fields. However, most existing monocular depth estimation models consume many computing resources. Although some methods have reduced the model's size and improved computing efficiency, the performance deteriorates, seriously hindering the real-world deployment of self-supervised monocular depth estimation models in the real world. To address this problem, we proposed a real-time self-supervised monocular depth estimation method and implemented it in the real world. It is called RTS-Mono, which is a lightweight and efficient encoder-decoder architecture. The encoder is based on Lite-Encoder, and the decoder is designed with a multi-scale sparse fusion framework to minimize redundancy, ensure performance, and improve inference speed. RTS-Mono achieved state-of-the-art (SoTA) performance in high and low resolutions with extremely low parameter counts (3 M) in experiments based on the KITTI dataset. Compared with lightweight methods, RTS-Mono improved Abs Rel and Sq Rel by 5.6% and 9.8% at low resolution and improved Sq Rel and RMSE by 6.1% and 1.9% at high resolution. In real-world deployment experiments, RTS-Mono has extremely high accuracy and can perform real-time inference on Nvidia Jetson Orin at a speed of 49 FPS. Source code is available at https://github.com/ZYCheng777/RTS-Mono.

Authors:Weijia Fan, Qiufu Li, Jiajun Wen, Xiaoyang Peng
Title: BCE3S: Binary Cross-Entropy Based Tripartite Synergistic Learning for Long-tailed Recognition
Abstract:
For long-tailed recognition (LTR) tasks, high intra-class compactness and inter-class separability in both head and tail classes, as well as balanced separability among all the classifier vectors, are preferred. The existing LTR methods based on cross-entropy (CE) loss not only struggle to learn features with desirable properties but also couple imbalanced classifier vectors in the denominator of its Softmax, amplifying the imbalance effects in LTR. In this paper, for the LTR, we propose a binary cross-entropy (BCE)-based tripartite synergistic learning, termed BCE3S, which consists of three components: (1) BCE-based joint learning optimizes both the classifier and sample features, which achieves better compactness and separability among features than the CE-based joint learning, by decoupling the metrics between feature and the imbalanced classifier vectors in multiple Sigmoid; (2) BCE-based contrastive learning further improves the intra-class compactness of features; (3) BCE-based uniform learning balances the separability among classifier vectors and interactively enhances the feature properties by combining with the joint learning. The extensive experiments show that the LTR model trained by BCE3S not only achieves higher compactness and separability among sample features, but also balances the classifier's separability, achieving SOTA performance on various long-tailed datasets such as CIFAR10-LT, CIFAR100-LT, ImageNet-LT, and iNaturalist2018.

Authors:Yue Zhang, Zun Wang, Han Lin, Jialu Li, Jianing Yang, Yonatan Bitton, Idan Szpektor, Mohit Bansal
Title: Error-Driven Scene Editing for 3D Grounding in Large Language Models
Abstract:
Despite recent progress in 3D-LLMs, they remain limited in accurately grounding language to visual and spatial elements in 3D environments. This limitation stems in part from training data that focuses on language reasoning rather than spatial understanding due to scarce 3D resources, leaving inherent grounding biases unresolved. To address this, we propose 3D scene editing as a key mechanism to generate precise visual counterfactuals that mitigate these biases through fine-grained spatial manipulation, without requiring costly scene reconstruction or large-scale 3D data collection. Furthermore, to make these edits targeted and directly address the specific weaknesses of the model, we introduce DEER-3D, an error-driven framework following a structured "Decompose, Diagnostic Evaluation, Edit, and Re-train" workflow, rather than broadly or randomly augmenting data as in conventional approaches. Specifically, upon identifying a grounding failure of the 3D-LLM, our framework first diagnoses the exact predicate-level error (e.g., attribute or spatial relation). It then executes minimal, predicate-aligned 3D scene edits, such as recoloring or repositioning, to produce targeted counterfactual supervision for iterative model fine-tuning, significantly enhancing grounding accuracy. We evaluate our editing pipeline across multiple benchmarks for 3D grounding and scene understanding tasks, consistently demonstrating improvements across all evaluated datasets through iterative refinement. DEER-3D underscores the effectiveness of targeted, error-driven scene editing in bridging linguistic reasoning capabilities with spatial grounding in 3D LLMs.

Authors:Zhonghao Liu, Hanxue Gu, Qihang Li, Michael Fox, Jay M. Levin, Maciej A. Mazurowski, Brian C. Lau
Title: Automated glenoid bone loss measurement and segmentation in CT scans for pre-operative planning in shoulder instability
Abstract:
Reliable measurement of glenoid bone loss is essential for operative planning in shoulder instability, but current manual and semi-automated methods are time-consuming and often subject to interreader variability. We developed and validated a fully automated deep learning pipeline for measuring glenoid bone loss on three-dimensional computed tomography (CT) scans using a linear-based, en-face view, best-circle method. Shoulder CT images of 91 patients (average age, 40 years; range, 14-89 years; 65 men) were retrospectively collected along with manual labels including glenoid segmentation, landmarks, and bone loss measurements. The multi-stage algorithm has three main stages: (1) segmentation, where we developed a U-Net to automatically segment the glenoid and humerus; (2) anatomical landmark detection, where a second network predicts glenoid rim points; and (3) geometric fitting, where we applied principal component analysis (PCA), projection, and circle fitting to compute the percentage of bone loss. The automated measurements showed strong agreement with consensus readings and exceeded surgeon-to-surgeon consistency (intraclass correlation coefficient (ICC) 0.84 vs 0.78), including in low- and high-bone-loss subgroups (ICC 0.71 vs 0.63 and 0.83 vs 0.21, respectively; P < 0.001). For classifying patients into low, medium, and high bone-loss categories, the pipeline achieved a recall of 0.714 for low and 0.857 for high severity, with no low cases misclassified as high or vice versa. These results suggest that our method is a time-efficient and clinically reliable tool for preoperative planning in shoulder instability and for screening patients with substantial glenoid bone loss. Code and dataset are available at https://github.com/Edenliu1/Auto-Glenoid-Measurement-DL-Pipeline.

Authors:Sun Han Neo, Sachith Seneviratne, Herath Mudiyanselage Viraj Vidura Herath, Abhishek Saha, Sanka Rasnayaka, Lucy Amanda Marshall
Title: Flood-LDM: Generalizable Latent Diffusion Models for rapid and accurate zero-shot High-Resolution Flood Mapping
Abstract:
Flood prediction is critical for emergency planning and response to mitigate human and economic losses. Traditional physics-based hydrodynamic models generate high-resolution flood maps using numerical methods requiring fine-grid discretization; which are computationally intensive and impractical for real-time large-scale applications. While recent studies have applied convolutional neural networks for flood map super-resolution with good accuracy and speed, they suffer from limited generalizability to unseen areas. In this paper, we propose a novel approach that leverages latent diffusion models to perform super-resolution on coarse-grid flood maps, with the objective of achieving the accuracy of fine-grid flood maps while significantly reducing inference time. Experimental results demonstrate that latent diffusion models substantially decrease the computational time required to produce high-fidelity flood maps without compromising on accuracy, enabling their use in real-time flood risk management. Moreover, diffusion models exhibit superior generalizability across different physical locations, with transfer learning further accelerating adaptation to new geographic regions. Our approach also incorporates physics-informed inputs, addressing the common limitation of black-box behavior in machine learning, thereby enhancing interpretability. Code is available at https://github.com/neosunhan/flood-diff.

Authors:Quoc Viet Vo, Tashreque M. Haq, Paul Montague, Tamas Abraham, Ehsan Abbasnejad, Damith C. Ranasinghe
Title: Certified but Fooled! Breaking Certified Defences with Ghost Certificates
Abstract:
Certified defenses promise provable robustness guarantees. We study the malicious exploitation of probabilistic certification frameworks to better understand the limits of guarantee provisions. Now, the objective is to not only mislead a classifier, but also manipulate the certification process to generate a robustness guarantee for an adversarial input certificate spoofing. A recent study in ICLR demonstrated that crafting large perturbations can shift inputs far into regions capable of generating a certificate for an incorrect class. Our study investigates if perturbations needed to cause a misclassification and yet coax a certified model into issuing a deceptive, large robustness radius for a target class can still be made small and imperceptible. We explore the idea of region-focused adversarial examples to craft imperceptible perturbations, spoof certificates and achieve certification radii larger than the source class ghost certificates. Extensive evaluations with the ImageNet demonstrate the ability to effectively bypass state-of-the-art certified defenses such as Densepure. Our work underscores the need to better understand the limits of robustness certification methods.

Authors:Qingyang Yan, Guangyao Chen, Yixiong Zou
Title: Start Small, Think Big: Curriculum-based Relative Policy Optimization for Visual Grounding
Abstract:
Chain-of-Thought (CoT) prompting has recently shown significant promise across various NLP and computer vision tasks by explicitly generating intermediate reasoning steps. However, we find that reinforcement learning (RL)-based fine-tuned CoT reasoning can paradoxically degrade performance in Visual Grounding tasks, particularly as CoT outputs become lengthy or complex. Additionally, our analysis reveals that increased dataset size does not always enhance performance due to varying data complexities. Motivated by these findings, we propose Curriculum-based Relative Policy Optimization (CuRPO), a novel training strategy that leverages CoT length and generalized Intersection over Union (gIoU) rewards as complexity indicators to progressively structure training data from simpler to more challenging examples. Extensive experiments on RefCOCO, RefCOCO+, RefCOCOg, and LISA datasets demonstrate the effectiveness of our approach. CuRPO consistently outperforms existing methods, including Visual-RFT, with notable improvements of up to +12.52 mAP on RefCOCO. Moreover, CuRPO exhibits exceptional efficiency and robustness, delivering strong localization performance even in few-shot learning scenarios, particularly benefiting tasks characterized by ambiguous and intricate textual descriptions.The code is released on https://github.com/qyoung-yan/CuRPO.

Authors:Mert Onur Cakiroglu, Idil Bilge Altun, Zhihe Lu, Mehmet Dalkilic, Hasan Kurban
Title: Temporal Realism Evaluation of Generated Videos Using Compressed-Domain Motion Vectors
Abstract:
Temporal realism remains a central weakness of current generative video models, as most evaluation metrics prioritize spatial appearance and offer limited sensitivity to motion. We introduce a scalable, model-agnostic framework that assesses temporal behavior using motion vectors (MVs) extracted directly from compressed video streams. Codec-generated MVs from standards such as H.264 and HEVC provide lightweight, resolution-consistent descriptors of motion dynamics. We quantify realism by computing Kullback-Leibler, Jensen-Shannon, and Wasserstein divergences between MV statistics of real and generated videos. Experiments on the GenVidBench dataset containing videos from eight state-of-the-art generators reveal systematic discrepancies from real motion: entropy-based divergences rank Pika and SVD as closest to real videos, MV-sum statistics favor VC2 and Text2Video-Zero, and CogVideo shows the largest deviations across both measures. Visualizations of MV fields and class-conditional motion heatmaps further reveal center bias, sparse and piecewise constant flows, and grid-like artifacts that frame-level metrics do not capture. Beyond evaluation, we investigate MV-RGB fusion through channel concatenation, cross-attention, joint embedding, and a motion-aware fusion module. Incorporating MVs improves downstream classification across ResNet, I3D, and TSN backbones, with ResNet-18 and ResNet-34 reaching up to 97.4% accuracy and I3D achieving 99.0% accuracy on real-versus-generated discrimination. These findings demonstrate that compressed-domain MVs provide an effective temporal signal for diagnosing motion defects in generative videos and for strengthening temporal reasoning in discriminative models. The implementation is available at: https://github.com/KurbanIntelligenceLab/Motion-Vector-Learning

Authors:Xiaoyang Wei, Camille Kurtz, Florence Cloppet
Title: QwenCLIP: Boosting Medical Vision-Language Pretraining via LLM Embeddings and Prompt tuning
Abstract:
Contrastive Language-Image Pretraining (CLIP) has demonstrated strong generalization for vision-language tasks in computer vision and medical domains, yet its text encoder accepts only up to 77 tokens, which limits its ability to represent long and information-rich radiology reports. Recent adaptations using domain-specific encoders, such as PubMedBERT or ClinicalBERT, mitigate this issue by leveraging medical corpora, but remain constrained by their limited input length (typically 512 tokens) and relatively shallow semantic understanding. To address these limitations, we propose QwenCLIP, a vision-language framework that replaces CLIP's text encoder with a large language model (LLM)-based embedding module (e.g., Qwen3-Embedding) and introduces learnable prompts to enhance cross-modal alignment. By leveraging the extended context window and richer representations of LLMs, QwenCLIP captures comprehensive medical semantics from long-form clinical text, substantially improving medical image-text alignment and downstream performance on radiology benchmarks. Our code is publicly available at https://github.com/Wxy-24/QwenCLIP.

Authors:Xueyang Li, Zongren Wang, Yuliang Zhang, Zixuan Pan, Yu-Jen Chen, Nishchal Sapkota, Gelei Xu, Danny Z. Chen, Yiyu Shi
Title: H-CNN-ViT: A Hierarchical Gated Attention Multi-Branch Model for Bladder Cancer Recurrence Prediction
Abstract:
Bladder cancer is one of the most prevalent malignancies worldwide, with a recurrence rate of up to 78%, necessitating accurate post-operative monitoring for effective patient management. Multi-sequence contrast-enhanced MRI is commonly used for recurrence detection; however, interpreting these scans remains challenging, even for experienced radiologists, due to post-surgical alterations such as scarring, swelling, and tissue remodeling. AI-assisted diagnostic tools have shown promise in improving bladder cancer recurrence prediction, yet progress in this field is hindered by the lack of dedicated multi-sequence MRI datasets for recurrence assessment study. In this work, we first introduce a curated multi-sequence, multi-modal MRI dataset specifically designed for bladder cancer recurrence prediction, establishing a valuable benchmark for future research. We then propose H-CNN-ViT, a new Hierarchical Gated Attention Multi-Branch model that enables selective weighting of features from the global (ViT) and local (CNN) paths based on contextual demands, achieving a balanced and targeted feature fusion. Our multi-branch architecture processes each modality independently, ensuring that the unique properties of each imaging channel are optimally captured and integrated. Evaluated on our dataset, H-CNN-ViT achieves an AUC of 78.6%, surpassing state-of-the-art models. Our model is publicly available at https://github.com/XLIAaron/H-CNN-ViT.

Authors:Kranti Kumar Parida, Omar Emara, Hazel Doughty, Dima Damen
Title: Segmenting Collision Sound Sources in Egocentric Videos
Abstract:
Humans excel at multisensory perception and can often recognise object properties from the sound of their interactions. Inspired by this, we propose the novel task of Collision Sound Source Segmentation (CS3), where we aim to segment the objects responsible for a collision sound in visual input (i.e. video frames from the collision clip), conditioned on the audio. This task presents unique challenges. Unlike isolated sound events, a collision sound arises from interactions between two objects, and the acoustic signature of the collision depends on both. We focus on egocentric video, where sounds are often clear, but the visual scene is cluttered, objects are small, and interactions are brief. To address these challenges, we propose a weakly-supervised method for audio-conditioned segmentation, utilising foundation models (CLIP and SAM2). We also incorporate egocentric cues, i.e. objects in hands, to find acting objects that can potentially be collision sound sources. Our approach outperforms competitive baselines by $3\times$ and $4.7\times$ in mIoU on two benchmarks we introduce for the CS3 task: EPIC-CS3 and Ego4D-CS3.

Authors:Huayi Zhu, Xiu Shu, Youqiang Xiong, Qiao Liu, Rui Chen, Di Yuan, Xiaojun Chang, Zhenyu He
Title: FusionFM: All-in-One Multi-Modal Image Fusion with Flow Matching
Abstract:
Current multi-modal image fusion methods typically rely on task-specific models, leading to high training costs and limited scalability. While generative methods provide a unified modeling perspective, they often suffer from slow inference due to the complex sampling trajectories from noise to image. To address this, we formulate image fusion as a direct probabilistic transport from source modalities to the fused image distribution, leveraging the flow matching paradigm to improve sampling efficiency and structural consistency. To mitigate the lack of high-quality fused images for supervision, we collect fusion results from multiple state-of-the-art models as priors, and employ a task-aware selection function to select the most reliable pseudo-labels for each task. We further introduce a Fusion Refiner module that employs a divide-and-conquer strategy to systematically identify, decompose, and enhance degraded components in selected pseudo-labels. For multi-task scenarios, we integrate elastic weight consolidation and experience replay mechanisms to preserve cross-task performance and enhance continual learning ability from both parameter stability and memory retention perspectives. Our approach achieves competitive performance across diverse fusion tasks, while significantly improving sampling efficiency and maintaining a lightweight model design. The code will be available at: https://github.com/Ist-Zhy/FusionFM.

Authors:Yogesh Kumar, Anand Mishra
Title: Temporal Object-Aware Vision Transformer for Few-Shot Video Object Detection
Abstract:
Few-shot Video Object Detection (FSVOD) addresses the challenge of detecting novel objects in videos with limited labeled examples, overcoming the constraints of traditional detection methods that require extensive training data. This task presents key challenges, including maintaining temporal consistency across frames affected by occlusion and appearance variations, and achieving novel object generalization without relying on complex region proposals, which are often computationally expensive and require task-specific training. Our novel object-aware temporal modeling approach addresses these challenges by incorporating a filtering mechanism that selectively propagates high-confidence object features across frames. This enables efficient feature progression, reduces noise accumulation, and enhances detection accuracy in a few-shot setting. By utilizing few-shot trained detection and classification heads with focused feature propagation, we achieve robust temporal consistency without depending on explicit object tube proposals. Our approach achieves performance gains, with AP improvements of 3.7% (FSVOD-500), 5.3% (FSYTV-40), 4.3% (VidOR), and 4.5 (VidVRD) in the 5-shot setting. Further results demonstrate improvements in 1-shot, 3-shot, and 10-shot configurations. We make the code public at: https://github.com/yogesh-iitj/fs-video-vit

Authors:Lyra Hoeben-Kuil, Gijs van Dijck, Jaromir Savelka, Johanna Gunawan, Konrad Kollnig, Marta Kolacz, Mindy Duffourc, Shashank Chakravarthy, Hannes Westermann
Title: Can LLMs Create Legally Relevant Summaries and Analyses of Videos?
Abstract:
Understanding the legally relevant factual basis of an event and conveying it through text is a key skill of legal professionals. This skill is important for preparing forms (e.g., insurance claims) or other legal documents (e.g., court claims), but often presents a challenge for laypeople. Current AI approaches aim to bridge this gap, but mostly rely on the user to articulate what has happened in text, which may be challenging for many. Here, we investigate the capability of large language models (LLMs) to understand and summarize events occurring in videos. We ask an LLM to summarize and draft legal letters, based on 120 YouTube videos showing legal issues in various domains. Overall, 71.7\% of the summaries were rated as of high or medium quality, which is a promising result, opening the door to a number of applications in e.g. access to justice.

Authors:Tianhong Li, Kaiming He
Title: Back to Basics: Let Denoising Generative Models Denoise
Abstract:
Today's denoising diffusion models do not "denoise" in the classical sense, i.e., they do not directly predict clean images. Rather, the neural networks predict noise or a noised quantity. In this paper, we suggest that predicting clean data and predicting noised quantities are fundamentally different. According to the manifold assumption, natural data should lie on a low-dimensional manifold, whereas noised quantities do not. With this assumption, we advocate for models that directly predict clean data, which allows apparently under-capacity networks to operate effectively in very high-dimensional spaces. We show that simple, large-patch Transformers on pixels can be strong generative models: using no tokenizer, no pre-training, and no extra loss. Our approach is conceptually nothing more than "$\textbf{Just image Transformers}$", or $\textbf{JiT}$, as we call it. We report competitive results using JiT with large patch sizes of 16 and 32 on ImageNet at resolutions of 256 and 512, where predicting high-dimensional noised quantities can fail catastrophically. With our networks mapping back to the basics of the manifold, our research goes back to basics and pursues a self-contained paradigm for Transformer-based diffusion on raw natural data.

Authors:Zhongang Cai, Ruisi Wang, Chenyang Gu, Fanyi Pu, Junxiang Xu, Yubo Wang, Wanqi Yin, Zhitao Yang, Chen Wei, Qingping Sun, Tongxi Zhou, Jiaqi Li, Hui En Pang, Oscar Qian, Yukun Wei, Zhiqian Lin, Xuanke Shi, Kewang Deng, Xiaoyang Han, Zukai Chen, Xiangyu Fan, Hanming Deng, Lewei Lu, Liang Pan, Bo Li, Ziwei Liu, Quan Wang, Dahua Lin, Lei Yang
Title: Scaling Spatial Intelligence with Multimodal Foundation Models
Abstract:
Despite remarkable progress, multimodal foundation models still exhibit surprising deficiencies in spatial intelligence. In this work, we explore scaling up multimodal foundation models to cultivate spatial intelligence within the SenseNova-SI family, built upon established multimodal foundations including visual understanding models (i.e., Qwen3-VL and InternVL3) and unified understanding and generation models (i.e., Bagel). We take a principled approach to constructing high-performing and robust spatial intelligence by systematically curating SenseNova-SI-8M: eight million diverse data samples under a rigorous taxonomy of spatial capabilities. SenseNova-SI demonstrates unprecedented performance across a broad range of spatial intelligence benchmarks: 68.7% on VSI-Bench, 43.3% on MMSI, 85.6% on MindCube, 54.6% on ViewSpatial, and 50.1% on SITE, while maintaining strong general multimodal understanding (e.g., 84.9% on MMBench-En). More importantly, we analyze the impact of data scaling, discuss early signs of emergent generalization capabilities enabled by diverse data training, analyze the risk of overfitting and language shortcuts, present a preliminary study on spatial chain-of-thought reasoning, and validate the potential downstream application. SenseNova-SI is an ongoing project, and this report will be updated continuously. All newly trained multimodal foundation models are publicly released to facilitate further research in this direction.

Authors:Harold Haodong Chen, Disen Lan, Wen-Jie Shu, Qingyang Liu, Zihan Wang, Sirui Chen, Wenkai Cheng, Kanghao Chen, Hongfei Zhang, Zixin Zhang, Rongjin Guo, Yu Cheng, Ying-Cong Chen
Title: TiViBench: Benchmarking Think-in-Video Reasoning for Video Generative Models
Abstract:
The rapid evolution of video generative models has shifted their focus from producing visually plausible outputs to tackling tasks requiring physical plausibility and logical consistency. However, despite recent breakthroughs such as Veo 3's chain-of-frames reasoning, it remains unclear whether these models can exhibit reasoning capabilities similar to large language models (LLMs). Existing benchmarks predominantly evaluate visual fidelity and temporal coherence, failing to capture higher-order reasoning abilities. To bridge this gap, we propose TiViBench, a hierarchical benchmark specifically designed to evaluate the reasoning capabilities of image-to-video (I2V) generation models. TiViBench systematically assesses reasoning across four dimensions: i) Structural Reasoning & Search, ii) Spatial & Visual Pattern Reasoning, iii) Symbolic & Logical Reasoning, and iv) Action Planning & Task Execution, spanning 24 diverse task scenarios across 3 difficulty levels. Through extensive evaluations, we show that commercial models (e.g., Sora 2, Veo 3.1) demonstrate stronger reasoning potential, while open-source models reveal untapped potential that remains hindered by limited training scale and data diversity. To further unlock this potential, we introduce VideoTPO, a simple yet effective test-time strategy inspired by preference optimization. By performing LLM self-analysis on generated candidates to identify strengths and weaknesses, VideoTPO significantly enhances reasoning performance without requiring additional training, data, or reward models. Together, TiViBench and VideoTPO pave the way for evaluating and advancing reasoning in video generation models, setting a foundation for future research in this emerging field.

Authors:Henry Herzog, Favyen Bastani, Yawen Zhang, Gabriel Tseng, Joseph Redmon, Hadrien Sablon, Ryan Park, Jacob Morrison, Alexandra Buraczynski, Karen Farley, Joshua Hansen, Andrew Howe, Patrick Alan Johnson, Mark Otterlee, Ted Schmitt, Hunter Pitelka, Stephen Daspit, Rachel Ratner, Christopher Wilhelm, Sebastian Wood, Mike Jacobi, Hannah Kerner, Evan Shelhamer, Ali Farhadi, Ranjay Krishna, Patrick Beukema
Title: OlmoEarth: Stable Latent Image Modeling for Multimodal Earth Observation
Abstract:
Earth observation data presents a unique challenge: it is spatial like images, sequential like video or text, and highly multimodal. We present OlmoEarth: a multimodal, spatio-temporal foundation model that employs a novel self-supervised learning formulation, masking strategy, and loss all designed for the Earth observation domain. OlmoEarth achieves state-of-the-art performance compared to 12 other foundation models across a variety of research benchmarks and real-world tasks from external partners. When evaluating embeddings OlmoEarth achieves the best performance on 15 out of 24 tasks, and with full fine-tuning it is the best on 19 of 29 tasks. We deploy OlmoEarth as the backbone of an end-to-end platform for data collection, labeling, training, and inference of Earth observation models. The OlmoEarth Platform puts frontier foundation models and powerful data management tools into the hands of non-profits and NGOs working to solve the world's biggest problems. OlmoEarth source code, training data, and pre-trained weights are available at $\href{https://github.com/allenai/olmoearth_pretrain}{\text{https://github.com/allenai/olmoearth_pretrain}}$.

Authors:Dengyang Jiang, Dongyang Liu, Zanyi Wang, Qilong Wu, Liuzhuozheng Li, Hengzhuang Li, Xin Jin, David Liu, Zhen Li, Bo Zhang, Mengmeng Wang, Steven Hoi, Peng Gao, Harry Yang
Title: Distribution Matching Distillation Meets Reinforcement Learning
Abstract:
Distribution Matching Distillation (DMD) distills a pre-trained multi-step diffusion model to a few-step one to improve inference efficiency. However, the performance of the latter is often capped by the former. To circumvent this dilemma, we propose DMDR, a novel framework that combines Reinforcement Learning (RL) techniques into the distillation process. We show that for the RL of the few-step generator, the DMD loss itself is a more effective regularization compared to the traditional ones. In turn, RL can help to guide the mode coverage process in DMD more effectively. These allow us to unlock the capacity of the few-step generator by conducting distillation and RL simultaneously. Meanwhile, we design the dynamic distribution guidance and dynamic renoise sampling training strategies to improve the initial distillation process. The experiments demonstrate that DMDR can achieve leading visual quality, prompt coherence among few-step methods, and even exhibit performance that exceeds the multi-step teacher.

Authors:Sining Chen, Xiao Xiang Zhu
Title: TSE-Net: Semi-supervised Monocular Height Estimation from Single Remote Sensing Images
Abstract:
Monocular height estimation plays a critical role in 3D perception for remote sensing, offering a cost-effective alternative to multi-view or LiDAR-based methods. While deep learning has significantly advanced the capabilities of monocular height estimation, these methods remain fundamentally limited by the availability of labeled data, which are expensive and labor-intensive to obtain at scale. The scarcity of high-quality annotations hinders the generalization and performance of existing models. To overcome this limitation, we propose leveraging large volumes of unlabeled data through a semi-supervised learning framework, enabling the model to extract informative cues from unlabeled samples and improve its predictive performance. In this work, we introduce TSE-Net, a self-training pipeline for semi-supervised monocular height estimation. The pipeline integrates teacher, student, and exam networks. The student network is trained on unlabeled data using pseudo-labels generated by the teacher network, while the exam network functions as a temporal ensemble of the student network to stabilize performance. The teacher network is formulated as a joint regression and classification model: the regression branch predicts height values that serve as pseudo-labels, and the classification branch predicts height value classes along with class probabilities, which are used to filter pseudo-labels. Height value classes are defined using a hierarchical bi-cut strategy to address the inherent long-tailed distribution of heights, and the predicted class probabilities are calibrated with a Plackett-Luce model to reflect the expected accuracy of pseudo-labels. We evaluate the proposed pipeline on three datasets spanning different resolutions and imaging modalities. Codes are available at https://github.com/zhu-xlab/tse-net.

Authors:Lipeng Wang, Hongxing Fan, Haohua Chen, Zehuan Huang, Lu Sheng
Title: InterMoE: Individual-Specific 3D Human Interaction Generation via Dynamic Temporal-Selective MoE
Abstract:
Generating high-quality human interactions holds significant value for applications like virtual reality and robotics. However, existing methods often fail to preserve unique individual characteristics or fully adhere to textual descriptions. To address these challenges, we introduce InterMoE, a novel framework built on a Dynamic Temporal-Selective Mixture of Experts. The core of InterMoE is a routing mechanism that synergistically uses both high-level text semantics and low-level motion context to dispatch temporal motion features to specialized experts. This allows experts to dynamically determine the selection capacity and focus on critical temporal features, thereby preserving specific individual characteristic identities while ensuring high semantic fidelity. Extensive experiments show that InterMoE achieves state-of-the-art performance in individual-specific high-fidelity 3D human interaction generation, reducing FID scores by 9% on the InterHuman dataset and 22% on InterX.

Authors:Mykola Lavreniuk, Nataliia Kussul, Andrii Shelestov, Yevhenii Salii, Volodymyr Kuzin, Sergii Skakun, Zoltan Szantoi
Title: Delineate Anything Flow: Fast, Country-Level Field Boundary Detection from Any Source
Abstract:
Accurate delineation of agricultural field boundaries from satellite imagery is essential for land management and crop monitoring, yet existing methods often produce incomplete boundaries, merge adjacent fields, and struggle to scale. We present the Delineate Anything Flow (DelAnyFlow) methodology, a resolution-agnostic approach for large-scale field boundary mapping. DelAnyFlow combines the DelAny instance segmentation model, based on a YOLOv11 backbone and trained on the large-scale Field Boundary Instance Segmentation-22M (FBIS 22M) dataset, with a structured post-processing, merging, and vectorization sequence to generate topologically consistent vector boundaries. FBIS 22M, the largest dataset of its kind, contains 672,909 multi-resolution image patches (0.25-10m) and 22.9million validated field instances. The DelAny model delivers state-of-the-art accuracy with over 100% higher mAP and 400x faster inference than SAM2. DelAny demonstrates strong zero-shot generalization and supports national-scale applications: using Sentinel 2 data for 2024, DelAnyFlow generated a complete field boundary layer for Ukraine (603,000km2) in under six hours on a single workstation. DelAnyFlow outputs significantly improve boundary completeness relative to operational products from Sinergise Solutions and NASA Harvest, particularly in smallholder and fragmented systems (0.25-1ha). For Ukraine, DelAnyFlow delineated 3.75M fields at 5m and 5.15M at 2.5m, compared to 2.66M detected by Sinergise Solutions and 1.69M by NASA Harvest. This work delivers a scalable, cost-effective methodology for field delineation in regions lacking digital cadastral data. A project landing page with links to model weights, code, national-scale vector outputs, and dataset is available at https://lavreniuk.github.io/Delineate-Anything/.

Authors:Yuchen Bao, Yiting Wang, Wenjian Huang, Haowei Wang, Shen Chen, Taiping Yao, Shouhong Ding, Jianguo Zhang
Title: TripleFDS: Triple Feature Disentanglement and Synthesis for Scene Text Editing
Abstract:
Scene Text Editing (STE) aims to naturally modify text in images while preserving visual consistency, the decisive factors of which can be divided into three parts, i.e., text style, text content, and background. Previous methods have struggled with incomplete disentanglement of editable attributes, typically addressing only one aspect - such as editing text content - thus limiting controllability and visual consistency. To overcome these limitations, we propose TripleFDS, a novel framework for STE with disentangled modular attributes, and an accompanying dataset called SCB Synthesis. SCB Synthesis provides robust training data for triple feature disentanglement by utilizing the "SCB Group", a novel construct that combines three attributes per image to generate diverse, disentangled training groups. Leveraging this construct as a basic training unit, TripleFDS first disentangles triple features, ensuring semantic accuracy through inter-group contrastive regularization and reducing redundancy through intra-sample multi-feature orthogonality. In the synthesis phase, TripleFDS performs feature remapping to prevent "shortcut" phenomena during reconstruction and mitigate potential feature leakage. Trained on 125,000 SCB Groups, TripleFDS achieves state-of-the-art image fidelity (SSIM of 44.54) and text accuracy (ACC of 93.58%) on the mainstream STE benchmarks. Besides superior performance, the more flexible editing of TripleFDS supports new operations such as style replacement and background transfer. Code: https://github.com/yusenbao01/TripleFDS

Authors:Zihan Li, Tengfei Wang, Wentian Gan, Hao Zhan, Xin Wang, Zongqian Zhan
Title: SF-Recon: Simplification-Free Lightweight Building Reconstruction via 3D Gaussian Splatting
Abstract:
Lightweight building surface models are crucial for digital city, navigation, and fast geospatial analytics, yet conventional multi-view geometry pipelines remain cumbersome and quality-sensitive due to their reliance on dense reconstruction, meshing, and subsequent simplification. This work presents SF-Recon, a method that directly reconstructs lightweight building surfaces from multi-view images without post-hoc mesh simplification. We first train an initial 3D Gaussian Splatting (3DGS) field to obtain a view-consistent representation. Building structure is then distilled by a normal-gradient-guided Gaussian optimization that selects primitives aligned with roof and wall boundaries, followed by multi-view edge-consistency pruning to enhance structural sharpness and suppress non-structural artifacts without external supervision. Finally, a multi-view depth-constrained Delaunay triangulation converts the structured Gaussian field into a lightweight, structurally faithful building mesh. Based on a proposed SF dataset, the experimental results demonstrate that our SF-Recon can directly reconstruct lightweight building models from multi-view imagery, achieving substantially fewer faces and vertices while maintaining computational efficiency. Website:https://lzh282140127-cell.github.io/SF-Recon-project/

Authors:Lingfeng Zhang, Yuchen Zhang, Hongsheng Li, Haoxiang Fu, Yingbo Tang, Hangjun Ye, Long Chen, Xiaojun Liang, Xiaoshuai Hao, Wenbo Ding
Title: Is your VLM Sky-Ready? A Comprehensive Spatial Intelligence Benchmark for UAV Navigation
Abstract:
Vision-Language Models (VLMs), leveraging their powerful visual perception and reasoning capabilities, have been widely applied in Unmanned Aerial Vehicle (UAV) tasks. However, the spatial intelligence capabilities of existing VLMs in UAV scenarios remain largely unexplored, raising concerns about their effectiveness in navigating and interpreting dynamic environments. To bridge this gap, we introduce SpatialSky-Bench, a comprehensive benchmark specifically designed to evaluate the spatial intelligence capabilities of VLMs in UAV navigation. Our benchmark comprises two categories-Environmental Perception and Scene Understanding-divided into 13 subcategories, including bounding boxes, color, distance, height, and landing safety analysis, among others. Extensive evaluations of various mainstream open-source and closed-source VLMs reveal unsatisfactory performance in complex UAV navigation scenarios, highlighting significant gaps in their spatial capabilities. To address this challenge, we developed the SpatialSky-Dataset, a comprehensive dataset containing 1M samples with diverse annotations across various scenarios. Leveraging this dataset, we introduce Sky-VLM, a specialized VLM designed for UAV spatial reasoning across multiple granularities and contexts. Extensive experimental results demonstrate that Sky-VLM achieves state-of-the-art performance across all benchmark tasks, paving the way for the development of VLMs suitable for UAV scenarios. The source code is available at https://github.com/linglingxiansen/SpatialSKy.

Authors:Junlong Li, Huaiyuan Xu, Sijie Cheng, Kejun Wu, Kim-Hui Yap, Lap-Pui Chau, Yi Wang
Title: Building Egocentric Procedural AI Assistant: Methods, Benchmarks, and Challenges
Abstract:
Driven by recent advances in vision language models (VLMs) and egocentric perception research, we introduce the concept of an egocentric procedural AI assistant (EgoProceAssist) tailored to step-by-step support daily procedural tasks in a first-person view. In this work, we start by identifying three core tasks: egocentric procedural error detection, egocentric procedural learning, and egocentric procedural question answering. These tasks define the essential functions of EgoProceAssist within a new taxonomy. Specifically, our work encompasses a comprehensive review of current techniques, relevant datasets, and evaluation metrics across these three core areas. To clarify the gap between the proposed EgoProceAssist and existing VLM-based AI assistants, we introduce novel experiments and provide a comprehensive evaluation of representative VLM-based methods. Based on these findings and our technical analysis, we discuss the challenges ahead and suggest future research directions. Furthermore, an exhaustive list of this study is publicly available in an active repository that continuously collects the latest work: https://github.com/z1oong/Building-Egocentric-Procedural-AI-Assistant

Authors:Yushuo Zheng, Jiangyong Ying, Huiyu Duan, Chunyi Li, Zicheng Zhang, Jing Liu, Xiaohong Liu, Guangtao Zhai
Title: GeoX-Bench: Benchmarking Cross-View Geo-Localization and Pose Estimation Capabilities of Large Multimodal Models
Abstract:
Large multimodal models (LMMs) have demonstrated remarkable capabilities across a wide range of tasks, however their knowledge and abilities in the cross-view geo-localization and pose estimation domains remain unexplored, despite potential benefits for navigation, autonomous driving, outdoor robotics, \textit{etc}. To bridge this gap, we introduce \textbf{GeoX-Bench}, a comprehensive \underline{Bench}mark designed to explore and evaluate the capabilities of LMMs in \underline{cross}-view \underline{Geo}-localization and pose estimation. Specifically, GeoX-Bench contains 10,859 panoramic-satellite image pairs spanning 128 cities in 49 countries, along with corresponding 755,976 question-answering (QA) pairs. Among these, 42,900 QA pairs are designated for benchmarking, while the remaining are intended to enhance the capabilities of LMMs. Based on GeoX-Bench, we evaluate the capabilities of 25 state-of-the-art LMMs on cross-view geo-localization and pose estimation tasks, and further explore the empowered capabilities of instruction-tuning. Our benchmark demonstrate that while current LMMs achieve impressive performance in geo-localization tasks, their effectiveness declines significantly on the more complex pose estimation tasks, highlighting a critical area for future improvement, and instruction-tuning LMMs on the training data of GeoX-Bench can significantly improve the cross-view geo-sense abilities. The GeoX-Bench is available at \textcolor{magenta}{https://github.com/IntMeGroup/GeoX-Bench}.

Authors:Qida Tan, Hongyu Yang, Wenchao Du
Title: Hybrid-Domain Adaptative Representation Learning for Gaze Estimation
Abstract:
Appearance-based gaze estimation, aiming to predict accurate 3D gaze direction from a single facial image, has made promising progress in recent years. However, most methods suffer significant performance degradation in cross-domain evaluation due to interference from gaze-irrelevant factors, such as expressions, wearables, and image quality. To alleviate this problem, we present a novel Hybrid-domain Adaptative Representation Learning (shorted by HARL) framework that exploits multi-source hybrid datasets to learn robust gaze representation. More specifically, we propose to disentangle gaze-relevant representation from low-quality facial images by aligning features extracted from high-quality near-eye images in an unsupervised domain-adaptation manner, which hardly requires any computational or inference costs. Additionally, we analyze the effect of head-pose and design a simple yet efficient sparse graph fusion module to explore the geometric constraint between gaze direction and head-pose, leading to a dense and robust gaze representation. Extensive experiments on EyeDiap, MPIIFaceGaze, and Gaze360 datasets demonstrate that our approach achieves state-of-the-art accuracy of $\textbf{5.02}^{\circ}$ and $\textbf{3.36}^{\circ}$, and $\textbf{9.26}^{\circ}$ respectively, and present competitive performances through cross-dataset evaluation. The code is available at https://github.com/da60266/HARL.

Authors:Yonghui Yu, Jiahang Cai, Xun Wang, Wenwu Yang
Title: End-to-End Multi-Person Pose Estimation with Pose-Aware Video Transformer
Abstract:
Existing multi-person video pose estimation methods typically adopt a two-stage pipeline: detecting individuals in each frame, followed by temporal modeling for single-person pose estimation. This design relies on heuristic operations such as detection, RoI cropping, and non-maximum suppression (NMS), limiting both accuracy and efficiency. In this paper, we present a fully end-to-end framework for multi-person 2D pose estimation in videos, effectively eliminating heuristic operations. A key challenge is to associate individuals across frames under complex and overlapping temporal trajectories. To address this, we introduce a novel Pose-Aware Video transformEr Network (PAVE-Net), which features a spatial encoder to model intra-frame relations and a spatiotemporal pose decoder to capture global dependencies across frames. To achieve accurate temporal association, we propose a pose-aware attention mechanism that enables each pose query to selectively aggregate features corresponding to the same individual across consecutive frames.Additionally, we explicitly model spatiotemporal dependencies among pose keypoints to improve accuracy. Notably, our approach is the first end-to-end method for multi-frame 2D human pose estimation.Extensive experiments show that PAVE-Net substantially outperforms prior image-based end-to-end methods, achieving a \textbf{6.0} mAP improvement on PoseTrack2017, and delivers accuracy competitive with state-of-the-art two-stage video-based approaches, while offering significant gains in efficiency.Project page: https://github.com/zgspose/PAVENet

Authors:Ying Jiang, Jiayin Lu, Yunuo Chen, Yumeng He, Kui Wu, Yin Yang, Chenfanfu Jiang
Title: Birth of a Painting: Differentiable Brushstroke Reconstruction
Abstract:
Painting embodies a unique form of visual storytelling, where the creation process is as significant as the final artwork. Although recent advances in generative models have enabled visually compelling painting synthesis, most existing methods focus solely on final image generation or patch-based process simulation, lacking explicit stroke structure and failing to produce smooth, realistic shading. In this work, we present a differentiable stroke reconstruction framework that unifies painting, stylized texturing, and smudging to faithfully reproduce the human painting-smudging loop. Given an input image, our framework first optimizes single- and dual-color Bezier strokes through a parallel differentiable paint renderer, followed by a style generation module that synthesizes geometry-conditioned textures across diverse painting styles. We further introduce a differentiable smudge operator to enable natural color blending and shading. Coupled with a coarse-to-fine optimization strategy, our method jointly optimizes stroke geometry, color, and texture under geometric and semantic guidance. Extensive experiments on oil, watercolor, ink, and digital paintings demonstrate that our approach produces realistic and expressive stroke reconstructions, smooth tonal transitions, and richly stylized appearances, offering a unified model for expressive digital painting creation. See our project page for more demos: https://yingjiang96.github.io/DiffPaintWebsite/.

Authors:Diego Ortego, Marlon Rodríguez, Mario Almagro, Kunal Dahiya, David Jiménez, Juan C. SanMiguel
Title: Large Language Models Meet Extreme Multi-label Classification: Scaling and Multi-modal Framework
Abstract:
Foundation models have revolutionized artificial intelligence across numerous domains, yet their transformative potential remains largely untapped in Extreme Multi-label Classification (XMC). Queries in XMC are associated with relevant labels from extremely large label spaces, where it is critical to strike a balance between efficiency and performance. Therefore, many recent approaches efficiently pose XMC as a maximum inner product search between embeddings learned from small encoder-only transformer architectures. In this paper, we address two important aspects in XMC: how to effectively harness larger decoder-only models, and how to exploit visual information while maintaining computational efficiency. We demonstrate that both play a critical role in XMC separately and can be combined for improved performance. We show that a few billion-size decoder can deliver substantial improvements while keeping computational overhead manageable. Furthermore, our Vision-enhanced eXtreme Multi-label Learning framework (ViXML) efficiently integrates foundation vision models by pooling a single embedding per image. This limits computational growth while unlocking multi-modal capabilities. Remarkably, ViXML with small encoders outperforms text-only decoder in most cases, showing that an image is worth billions of parameters. Finally, we present an extension of existing text-only datasets to exploit visual metadata and make them available for future benchmarking. Comprehensive experiments across four public text-only datasets and their corresponding image enhanced versions validate our proposals' effectiveness, surpassing previous state-of-the-art by up to +8.21\% in P@1 on the largest dataset. ViXML's code is available at https://github.com/DiegoOrtego/vixml.

Authors:Yuqi Zhang, Guanying Chen, Jiaxing Chen, Chuanyu Fu, Chuan Huang, Shuguang Cui
Title: CloseUpShot: Close-up Novel View Synthesis from Sparse-views via Point-conditioned Diffusion Model
Abstract:
Reconstructing 3D scenes and synthesizing novel views from sparse input views is a highly challenging task. Recent advances in video diffusion models have demonstrated strong temporal reasoning capabilities, making them a promising tool for enhancing reconstruction quality under sparse-view settings. However, existing approaches are primarily designed for modest viewpoint variations, which struggle in capturing fine-grained details in close-up scenarios since input information is severely limited. In this paper, we present a diffusion-based framework, called CloseUpShot, for close-up novel view synthesis from sparse inputs via point-conditioned video diffusion. Specifically, we observe that pixel-warping conditioning suffers from severe sparsity and background leakage in close-up settings. To address this, we propose hierarchical warping and occlusion-aware noise suppression, enhancing the quality and completeness of the conditioning images for the video diffusion model. Furthermore, we introduce global structure guidance, which leverages a dense fused point cloud to provide consistent geometric context to the diffusion process, to compensate for the lack of globally consistent 3D constraints in sparse conditioning inputs. Extensive experiments on multiple datasets demonstrate that our method outperforms existing approaches, especially in close-up novel view synthesis, clearly validating the effectiveness of our design.

Authors:Shuaibin Fan, Senming Zhong, Wenchao Yan, Minglong Xue
Title: Learning Implicit Neural Degradation Representation for Unpaired Image Dehazing
Abstract:
Image dehazing is an important task in the field of computer vision, aiming at restoring clear and detail-rich visual content from haze-affected images. However, when dealing with complex scenes, existing methods often struggle to strike a balance between fine-grained feature representation of inhomogeneous haze distribution and global consistency modeling. Furthermore, to better learn the common degenerate representation of haze in spatial variations, we propose an unsupervised dehaze method for implicit neural degradation representation. Firstly, inspired by the Kolmogorov-Arnold representation theorem, we propose a mechanism combining the channel-independent and channel-dependent mechanisms, which efficiently enhances the ability to learn from nonlinear dependencies. which in turn achieves good visual perception in complex scenes. Moreover, we design an implicit neural representation to model haze degradation as a continuous function to eliminate redundant information and the dependence on explicit feature extraction and physical models. To further learn the implicit representation of the haze features, we also designed a dense residual enhancement module from it to eliminate redundant information. This achieves high-quality image restoration. Experimental results show that our method achieves competitive dehaze performance on various public and real-world datasets. This project code will be available at https://github.com/Fan-pixel/NeDR-Dehaze.

Authors:Seungjae Kim, SeungJoon Lee, MyeongAh Cho
Title: PlugTrack: Multi-Perceptive Motion Analysis for Adaptive Fusion in Multi-Object Tracking
Abstract:
Multi-object tracking (MOT) predominantly follows the tracking-by-detection paradigm, where Kalman filters serve as the standard motion predictor due to computational efficiency but inherently fail on non-linear motion patterns. Conversely, recent data-driven motion predictors capture complex non-linear dynamics but suffer from limited domain generalization and computational overhead. Through extensive analysis, we reveal that even in datasets dominated by non-linear motion, Kalman filter outperforms data-driven predictors in up to 34\% of cases, demonstrating that real-world tracking scenarios inherently involve both linear and non-linear patterns. To leverage this complementarity, we propose PlugTrack, a novel framework that adaptively fuses Kalman filter and data-driven motion predictors through multi-perceptive motion understanding. Our approach employs multi-perceptive motion analysis to generate adaptive blending factors. PlugTrack achieves significant performance gains on MOT17/MOT20 and state-of-the-art on DanceTrack without modifying existing motion predictors. To the best of our knowledge, PlugTrack is the first framework to bridge classical and modern motion prediction paradigms through adaptive fusion in MOT.

Authors:Doanh C. Bui, Ba Hung Ngo, Hoai Luan Pham, Khang Nguyen, Maï K. Nguyen, Yasuhiko Nakashima
Title: MergeSlide: Continual Model Merging and Task-to-Class Prompt-Aligned Inference for Lifelong Learning on Whole Slide Images
Abstract:
Lifelong learning on Whole Slide Images (WSIs) aims to train or fine-tune a unified model sequentially on cancer-related tasks, reducing the resources and effort required for data transfer and processing, especially given the gigabyte-scale size of WSIs. In this paper, we introduce MergeSlide, a simple yet effective framework that treats lifelong learning as a model merging problem by leveraging a vision-language pathology foundation model. When a new task arrives, it is: 1) defined with class-aware prompts, 2) fine-tuned for a few epochs using an MLP-free backbone, and 3) merged into a unified model using an orthogonal continual merging strategy that preserves performance and mitigates catastrophic forgetting. For inference under the class-incremental learning (CLASS-IL) setting, where task identity is unknown, we introduce Task-to-Class Prompt-aligned (TCP) inference. Specifically, TCP first identifies the most relevant task using task-level prompts and then applies the corresponding class-aware prompts to generate predictions. To evaluate MergeSlide, we conduct experiments on a stream of six TCGA datasets. The results show that MergeSlide outperforms both rehearsal-based continual learning and vision-language zero-shot baselines. Code and data are available at https://github.com/caodoanh2001/MergeSlide.

Authors:SeokJoo Kwak, Jihoon Kim, Boyoun Kim, Jung Jae Yoon, Wooseok Jang, Jeonghoon Hong, Jaeho Yang, Yeong-Dae Kwon
Title: MEGA-GUI: Multi-stage Enhanced Grounding Agents for GUI Elements
Abstract:
Graphical User Interface (GUI) grounding - the task of mapping natural language instructions to screen coordinates - is essential for autonomous agents and accessibility technologies. Existing systems rely on monolithic models or one-shot pipelines that lack modularity and fail under visual clutter and ambiguous instructions. We introduce MEGA-GUI, a multi-stage framework that separates grounding into coarse Region-of-Interest (ROI) selection and fine-grained element grounding, orchestrated by specialized vision-language agents. MEGA-GUI features a bidirectional ROI zoom algorithm that mitigates spatial dilution and a context-aware rewriting agent that reduces semantic ambiguity. Our analysis reveals complementary strengths and weaknesses across vision-language models at different visual scales, and we show that leveraging this modular structure achieves consistently higher accuracy than monolithic approaches. On the visually dense ScreenSpot-Pro benchmark, MEGA-GUI attains 73.18% accuracy, and on the semantically complex OSWorld-G benchmark it reaches 68.63%, surpassing previously reported results. Code and the Grounding Benchmark Toolkit (GBT) are available at https://github.com/samsungsds-research-papers/mega-gui.

Authors:Ruixin Liu, Zejian Yuan
Title: Monocular 3D Lane Detection via Structure Uncertainty-Aware Network with Curve-Point Queries
Abstract:
Monocular 3D lane detection is challenged by aleatoric uncertainty arising from inherent observation noise. Existing methods rely on simplified geometric assumptions, such as independent point predictions or global planar modeling, failing to capture structural variations and aleatoric uncertainty in real-world scenarios. In this paper, we propose MonoUnc, a bird's-eye view (BEV)-free 3D lane detector that explicitly models aleatoric uncertainty informed by local lane structures. Specifically, 3D lanes are projected onto the front-view (FV) space and approximated by parametric curves. Guided by curve predictions, curve-point query embeddings are dynamically generated for lane point predictions in 3D space. Each segment formed by two adjacent points is modeled as a 3D Gaussian, parameterized by the local structure and uncertainty estimations. Accordingly, a novel 3D Gaussian matching loss is designed to constrain these parameters jointly. Experiments on the ONCE-3DLanes and OpenLane datasets demonstrate that MonoUnc outperforms previous state-of-the-art (SoTA) methods across all benchmarks under stricter evaluation criteria. Additionally, we propose two comprehensive evaluation metrics for ONCE-3DLanes, calculating the average and maximum bidirectional Chamfer distances to quantify global and local errors. Codes are released at https://github.com/lrx02/MonoUnc.

Authors:Yan Gong, Jianli Lu, Yongsheng Gao, Jie Zhao, Xiaojuan Zhang, Susanto Rahardja
Title: DiffPixelFormer: Differential Pixel-Aware Transformer for RGB-D Indoor Scene Segmentation
Abstract:
Indoor semantic segmentation is fundamental to computer vision and robotics, supporting applications such as autonomous navigation, augmented reality, and smart environments. Although RGB-D fusion leverages complementary appearance and geometric cues, existing methods often depend on computationally intensive cross-attention mechanisms and insufficiently model intra- and inter-modal feature relationships, resulting in imprecise feature alignment and limited discriminative representation. To address these challenges, we propose DiffPixelFormer, a differential pixel-aware Transformer for RGB-D indoor scene segmentation that simultaneously enhances intra-modal representations and models inter-modal interactions. At its core, the Intra-Inter Modal Interaction Block (IIMIB) captures intra-modal long-range dependencies via self-attention and models inter-modal interactions with the Differential-Shared Inter-Modal (DSIM) module to disentangle modality-specific and shared cues, enabling fine-grained, pixel-level cross-modal alignment. Furthermore, a dynamic fusion strategy balances modality contributions and fully exploits RGB-D information according to scene characteristics. Extensive experiments on the SUN RGB-D and NYUDv2 benchmarks demonstrate that DiffPixelFormer-L achieves mIoU scores of 54.28% and 59.95%, outperforming DFormer-L by 1.78% and 2.75%, respectively. Code is available at https://github.com/gongyan1/DiffPixelFormer.

Authors:Dahyun Chung, Donghyun Shin, Yujin Sung, Seunggi Moon, Jinwoo Jeon, Byung-Jun Lee
Title: uCLIP: Parameter-Efficient Multilingual Extension of Vision-Language Models with Unpaired Data
Abstract:
Contrastive Language-Image Pre-training (CLIP) has demonstrated strong generalization across a wide range of visual tasks by leveraging large-scale English-image pairs. However, its extension to low-resource languages remains limited due to the scarcity of high-quality multilingual image-text data. Existing multilingual vision-language models exhibit consistently low retrieval performance in underrepresented languages including Czech, Finnish, Croatian, Hungarian, and Romanian on the Crossmodal-3600 (XM3600) benchmark. To address this, we propose a lightweight and data-efficient framework for multilingual vision-language alignment. Our approach requires no image-text pairs or text-text pairs and freezes both the pretrained image encoder and multilingual text encoder during training. Only a compact 1.7M-parameter projection module is trained, using a contrastive loss over English representations as semantic anchors. This minimal training setup enables robust multilingual alignment even for languages with limited supervision. Extensive evaluation across multiple multilingual retrieval benchmarks confirms the effectiveness of our method, showing significant gains in five underrepresented languages where existing models typically underperform. These findings highlight the effectiveness of our pivot-based, parameter-efficient alignment strategy for inclusive multimodal learning.

Authors:Zheyuan Hu, Chieh-Hsin Lai, Ge Wu, Yuki Mitsufuji, Stefano Ermon
Title: MeanFlow Transformers with Representation Autoencoders
Abstract:
MeanFlow (MF) is a diffusion-motivated generative model that enables efficient few-step generation by learning long jumps directly from noise to data. In practice, it is often used as a latent MF by leveraging the pre-trained Stable Diffusion variational autoencoder (SD-VAE) for high-dimensional data modeling. However, MF training remains computationally demanding and is often unstable. During inference, the SD-VAE decoder dominates the generation cost, and MF depends on complex guidance hyperparameters for class-conditional generation. In this work, we develop an efficient training and sampling scheme for MF in the latent space of a Representation Autoencoder (RAE), where a pre-trained vision encoder (e.g., DINO) provides semantically rich latents paired with a lightweight decoder. We observe that naive MF training in the RAE latent space suffers from severe gradient explosion. To stabilize and accelerate training, we adopt Consistency Mid-Training for trajectory-aware initialization and use a two-stage scheme: distillation from a pre-trained flow matching teacher to speed convergence and reduce variance, followed by an optional bootstrapping stage with a one-point velocity estimator to further reduce deviation from the oracle mean flow. This design removes the need for guidance, simplifies training configurations, and reduces computation in both training and sampling. Empirically, our method achieves a 1-step FID of 2.03, outperforming vanilla MF's 3.43, while reducing sampling GFLOPS by 38% and total training cost by 83% on ImageNet 256. We further scale our approach to ImageNet 512, achieving a competitive 1-step FID of 3.23 with the lowest GFLOPS among all baselines. Code is available at https://github.com/sony/mf-rae.

Authors:Pengcheng Shi, Jiawei Chen, Jiaqi Liu, Xinglin Zhang, Tao Chen, Lei Li
Title: Medal S: Spatio-Textual Prompt Model for Medical Segmentation
Abstract:
We introduce Medal S, a medical segmentation foundation model that supports native-resolution spatial and textual prompts within an end-to-end trainable framework. Unlike text-only methods lacking spatial awareness, Medal S achieves channel-wise alignment between volumetric prompts and text embeddings, mitigating inaccuracies from resolution mismatches. By preserving full 3D context, it efficiently processes multiple native-resolution masks in parallel, enhancing multi-class segmentation performance. A lightweight 3D convolutional module enables precise voxel-space refinement guided by both prompt types, supporting up to 243 classes across CT, MRI, PET, ultrasound, and microscopy modalities in the BiomedSegFM dataset. Medal S offers two prompting modes: a text-only mode, where model predictions serve as spatial prompts for self-refinement without human input, and a hybrid mode, incorporating manual annotations for enhanced flexibility. For 24-class segmentation, parallel spatial prompting reduces inference time by more than 90% compared to sequential prompting. We propose dynamic resampling to address target-patch ratio imbalance, extending SAT and nnU-Net for data augmentation. Furthermore, we develop optimized text preprocessing, a two-stage inference strategy, and post-processing techniques to improve memory efficiency, precision, and inference speed. On the five-modality average on the validation set, Medal S outperforms SAT with a DSC of 75.44 (vs. 69.83), NSD of 77.34 (vs. 71.06), F1 of 38.24 (vs. 24.88), and DSC TP of 65.46 (vs. 46.97). Medal S achieves excellent performance by harmonizing spatial precision with semantic textual guidance, demonstrating superior efficiency and accuracy in multi-class medical segmentation tasks compared to sequential prompt-based approaches. Medal S will be publicly available at https://github.com/yinghemedical/Medal-S.

Authors:Zewei Chang, Zheng-Peng Duan, Jianxing Zhang, Chun-Le Guo, Siyu Liu, Hyungju Chun, Hyunhee Park, Zikun Liu, Chongyi Li
Title: PerTouch: VLM-Driven Agent for Personalized and Semantic Image Retouching
Abstract:
Image retouching aims to enhance visual quality while aligning with users' personalized aesthetic preferences. To address the challenge of balancing controllability and subjectivity, we propose a unified diffusion-based image retouching framework called PerTouch. Our method supports semantic-level image retouching while maintaining global aesthetics. Using parameter maps containing attribute values in specific semantic regions as input, PerTouch constructs an explicit parameter-to-image mapping for fine-grained image retouching. To improve semantic boundary perception, we introduce semantic replacement and parameter perturbation mechanisms in the training process. To connect natural language instructions with visual control, we develop a VLM-driven agent that can handle both strong and weak user instructions. Equipped with mechanisms of feedback-driven rethinking and scene-aware memory, PerTouch better aligns with user intent and captures long-term preferences. Extensive experiments demonstrate each component's effectiveness and the superior performance of PerTouch in personalized image retouching. Code is available at: https://github.com/Auroral703/PerTouch.

Authors:Yaohua Zha, Xue Yuerong, Chunlin Fan, Yuansong Wang, Tao Dai, Ke Chen, Shu-Tao Xia
Title: CASL: Curvature-Augmented Self-supervised Learning for 3D Anomaly Detection
Abstract:
Deep learning-based 3D anomaly detection methods have demonstrated significant potential in industrial manufacturing. However, many approaches are specifically designed for anomaly detection tasks, which limits their generalizability to other 3D understanding tasks. In contrast, self-supervised point cloud models aim for general-purpose representation learning, yet our investigation reveals that these classical models are suboptimal at anomaly detection under the unified fine-tuning paradigm. This motivates us to develop a more generalizable 3D model that can effectively detect anomalies without relying on task-specific designs. Interestingly, we find that using only the curvature of each point as its anomaly score already outperforms several classical self-supervised and dedicated anomaly detection models, highlighting the critical role of curvature in 3D anomaly detection. In this paper, we propose a Curvature-Augmented Self-supervised Learning (CASL) framework based on a reconstruction paradigm. Built upon the classical U-Net architecture, our approach introduces multi-scale curvature prompts to guide the decoder in predicting the spatial coordinates of each point. Without relying on any dedicated anomaly detection mechanisms, it achieves leading detection performance through straightforward anomaly classification fine-tuning. Moreover, the learned representations generalize well to standard 3D understanding tasks such as point cloud classification. The code is available at https://github.com/zyh16143998882/CASL.

Authors:Hao Li, Zhenfeng Zhuang, Jingyu Lin, Yu Liu, Yifei Chen, Qiong Peng, Lequan Yu, Liansheng Wang
Title: FDP: A Frequency-Decomposition Preprocessing Pipeline for Unsupervised Anomaly Detection in Brain MRI
Abstract:
Due to the diversity of brain anatomy and the scarcity of annotated data, supervised anomaly detection for brain MRI remains challenging, driving the development of unsupervised anomaly detection (UAD) approaches. Current UAD methods typically utilize artificially generated noise perturbations on healthy MRIs to train generative models for normal anatomy reconstruction, enabling anomaly detection via residual mapping. However, such simulated anomalies lack the biophysical fidelity and morphological complexity characteristic of true clinical lesions. To advance UAD in brain MRI, we conduct the first systematic frequency-domain analysis of pathological signatures, revealing two key properties: (1) anomalies exhibit unique frequency patterns distinguishable from normal anatomy, and (2) low-frequency signals maintain consistent representations across healthy scans. These insights motivate our Frequency-Decomposition Preprocessing (FDP) framework, the first UAD method to leverage frequency-domain reconstruction for simultaneous pathology suppression and anatomical preservation. FDP can integrate seamlessly with existing anomaly simulation techniques, consistently enhancing detection performance across diverse architectures while maintaining diagnostic fidelity. Experimental results demonstrate that FDP consistently improves anomaly detection performance when integrated with existing methods. Notably, FDP achieves a 17.63% increase in DICE score with LDM while maintaining robust improvements across multiple baselines. The code is available at https://github.com/ls1rius/MRI_FDP.

Authors:Zihao Lin, Zhenshan Shi, Sasa Zhao, Hanwei Zhu, Lingyu Zhu, Baoliang Chen, Lei Mo
Title: Simple Lines, Big Ideas: Towards Interpretable Assessment of Human Creativity from Drawings
Abstract:
Assessing human creativity through visual outputs, such as drawings, plays a critical role in fields including psychology, education, and cognitive science. However, current assessment practices still rely heavily on expert-based subjective scoring, which is both labor-intensive and inherently subjective. In this paper, we propose a data-driven framework for automatic and interpretable creativity assessment from drawings. Motivated by the cognitive understanding that creativity can emerge from both what is drawn (content) and how it is drawn (style), we reinterpret the creativity score as a function of these two complementary dimensions.Specifically, we first augment an existing creativity labeled dataset with additional annotations targeting content categories. Based on the enriched dataset, we further propose a multi-modal, multi-task learning framework that simultaneously predicts creativity scores, categorizes content types, and extracts stylistic features. In particular, we introduce a conditional learning mechanism that enables the model to adapt its visual feature extraction by dynamically tuning it to creativity-relevant signals conditioned on the drawing's stylistic and semantic cues.Experimental results demonstrate that our model achieves state-of-the-art performance compared to existing regression-based approaches and offers interpretable visualizations that align well with human judgments. The code and annotations will be made publicly available at https://github.com/WonderOfU9/CSCA_PRCV_2025

Authors:Junyi Ma, Wentao Bao, Jingyi Xu, Guanzhong Sun, Yu Zheng, Erhang Zhang, Xieyuanli Chen, Hesheng Wang
Title: Uni-Hand: Universal Hand Motion Forecasting in Egocentric Views
Abstract:
Analyzing hand-object interaction in egocentric vision facilitates VR/AR applications and human-robot policy transfer. Existing research has mostly focused on modeling the behavior paradigm of interactive actions (i.e., "how to interact"). However, the more challenging and fine-grained problem of capturing the critical moments of contact and separation between the hand and the target object (i.e., "when to interact") is still underexplored, which is crucial for immersive interactive experiences in mixed reality and robotic motion planning. Therefore, we formulate this problem as temporal interaction localization (TIL). Some recent works extract semantic masks as TIL references, but suffer from inaccurate object grounding and cluttered scenarios. Although current temporal action localization (TAL) methods perform well in detecting verb-noun action segments, they rely on category annotations during training and exhibit limited precision in localizing hand-object contact/separation moments. To address these issues, we propose a novel zero-shot approach dubbed EgoLoc to localize hand-object contact and separation timestamps in egocentric videos. EgoLoc introduces hand-dynamics-guided sampling to generate high-quality visual prompts. It exploits the vision-language model to identify contact/separation attributes, localize specific timestamps, and provide closed-loop feedback for further refinement. EgoLoc eliminates the need for object masks and verb-noun taxonomies, leading to generalizable zero-shot implementation. Comprehensive experiments on the public dataset and our novel benchmarks demonstrate that EgoLoc achieves plausible TIL for egocentric videos. It is also validated to effectively facilitate multiple downstream applications in egocentric vision and robotic manipulation tasks. Code and relevant data will be released at https://github.com/IRMVLab/EgoLoc.

Authors:Leena Alghamdi, Muhammad Usman, Hafeez Anwar, Abdul Bais, Saeed Anwar
Title: MSRNet: A Multi-Scale Recursive Network for Camouflaged Object Detection
Abstract:
Camouflaged object detection is an emerging and challenging computer vision task that requires identifying and segmenting objects that blend seamlessly into their environments due to high similarity in color, texture, and size. This task is further complicated by low-light conditions, partial occlusion, small object size, intricate background patterns, and multiple objects. While many sophisticated methods have been proposed for this task, current methods still struggle to precisely detect camouflaged objects in complex scenarios, especially with small and multiple objects, indicating room for improvement. We propose a Multi-Scale Recursive Network that extracts multi-scale features via a Pyramid Vision Transformer backbone and combines them via specialized Attention-Based Scale Integration Units, enabling selective feature merging. For more precise object detection, our decoder recursively refines features by incorporating Multi-Granularity Fusion Units. A novel recursive-feedback decoding strategy is developed to enhance global context understanding, helping the model overcome the challenges in this task. By jointly leveraging multi-scale learning and recursive feature optimization, our proposed method achieves performance gains, successfully detecting small and multiple camouflaged objects. Our model achieves state-of-the-art results on two benchmark datasets for camouflaged object detection and ranks second on the remaining two. Our codes, model weights, and results are available at \href{https://github.com/linaagh98/MSRNet}{https://github.com/linaagh98/MSRNet}.

Authors:Sushant Gautam, Michael A. Riegler, Pål Halvorsen
Title: HEDGE: Hallucination Estimation via Dense Geometric Entropy for VQA with Vision-Language Models
Abstract:
Vision-language models (VLMs) enable open-ended visual question answering but remain prone to hallucinations. We present HEDGE, a unified framework for hallucination detection that combines controlled visual perturbations, semantic clustering, and robust uncertainty metrics. HEDGE integrates sampling, distortion synthesis, clustering (entailment- and embedding-based), and metric computation into a reproducible pipeline applicable across multimodal architectures. Evaluations on VQA-RAD and KvasirVQA-x1 with three representative VLMs (LLaVA-Med, Med-Gemma, Qwen2.5-VL) reveal clear architecture- and prompt-dependent trends. Hallucination detectability is highest for unified-fusion models with dense visual tokenization (Qwen2.5-VL) and lowest for architectures with restricted tokenization (Med-Gemma). Embedding-based clustering often yields stronger separation when applied directly to the generated answers, whereas NLI-based clustering remains advantageous for LLaVA-Med and for longer, sentence-level responses. Across configurations, the VASE metric consistently provides the most robust hallucination signal, especially when paired with embedding clustering and a moderate sampling budget (n ~ 10-15). Prompt design also matters: concise, label-style outputs offer clearer semantic structure than syntactically constrained one-sentence responses. By framing hallucination detection as a geometric robustness problem shaped jointly by sampling scale, prompt structure, model architecture, and clustering strategy, HEDGE provides a principled, compute-aware foundation for evaluating multimodal reliability. The hedge-bench PyPI library enables reproducible and extensible benchmarking, with full code and experimental resources available at https://github.com/Simula/HEDGE .

Authors:Shuaike Shen, Ke Liu, Jiaqing Xie, Shangde Gao, Chunhua Shen, Ge Liu, Mireia Crispin-Ortuzar, Shangqi Gao
Title: R$^{2}$Seg: Training-Free OOD Medical Tumor Segmentation via Anatomical Reasoning and Statistical Rejection
Abstract:
Foundation models for medical image segmentation struggle under out-of-distribution (OOD) shifts, often producing fragmented false positives on OOD tumors. We introduce R$^{2}$Seg, a training-free framework for robust OOD tumor segmentation that operates via a two-stage Reason-and-Reject process. First, the Reason step employs an LLM-guided anatomical reasoning planner to localize organ anchors and generate multi-scale ROIs. Second, the Reject step applies two-sample statistical testing to candidates generated by a frozen foundation model (BiomedParse) within these ROIs. This statistical rejection filter retains only candidates significantly different from normal tissue, effectively suppressing false positives. Our framework requires no parameter updates, making it compatible with zero-update test-time augmentation and avoiding catastrophic forgetting. On multi-center and multi-modal tumor segmentation benchmarks, R$^{2}$Seg substantially improves Dice, specificity, and sensitivity over strong baselines and the original foundation models. Code are available at https://github.com/Eurekashen/R2Seg.

Authors:Saar Stern, Ido Sobol, Or Litany
Title: Appreciate the View: A Task-Aware Evaluation Framework for Novel View Synthesis
Abstract:
The goal of Novel View Synthesis (NVS) is to generate realistic images of a given content from unseen viewpoints. But how can we trust that a generated image truly reflects the intended transformation? Evaluating its reliability remains a major challenge. While recent generative models, particularly diffusion-based approaches, have significantly improved NVS quality, existing evaluation metrics struggle to assess whether a generated image is both realistic and faithful to the source view and intended viewpoint transformation. Standard metrics, such as pixel-wise similarity and distribution-based measures, often mis-rank incorrect results as they fail to capture the nuanced relationship between the source image, viewpoint change, and generated output. We propose a task-aware evaluation framework that leverages features from a strong NVS foundation model, Zero123, combined with a lightweight tuning step to enhance discrimination. Using these features, we introduce two complementary evaluation metrics: a reference-based score, $D_{\text{PRISM}}$, and a reference-free score, $\text{MMD}_{\text{PRISM}}$. Both reliably identify incorrect generations and rank models in agreement with human preference studies, addressing a fundamental gap in NVS evaluation. Our framework provides a principled and practical approach to assessing synthesis quality, paving the way for more reliable progress in novel view synthesis. To further support this goal, we apply our reference-free metric to six NVS methods across three benchmarks: Toys4K, Google Scanned Objects (GSO), and OmniObject3D, where $\text{MMD}_{\text{PRISM}}$ produces a clear and stable ranking, with lower scores consistently indicating stronger models.

Authors:Tushar Anand, Advik Sinha, Abhijit Das
Title: DensePercept-NCSSD: Vision Mamba towards Real-time Dense Visual Perception with Non-Causal State Space Duality
Abstract:
In this work, we propose an accurate and real-time optical flow and disparity estimation model by fusing pairwise input images in the proposed non-causal selective state space for dense perception tasks. We propose a non-causal Mamba block-based model that is fast and efficient and aptly manages the constraints present in a real-time applications. Our proposed model reduces inference times while maintaining high accuracy and low GPU usage for optical flow and disparity map generation. The results and analysis, and validation in real-life scenario justify that our proposed model can be used for unified real-time and accurate 3D dense perception estimation tasks. The code, along with the models, can be found at https://github.com/vimstereo/DensePerceptNCSSD

Authors:Zeqin Yu, Haotao Xie, Jian Zhang, Jiangqun Ni, Wenkan Su, Jiwu Huang
Title: Toward Real-world Text Image Forgery Localization: Structured and Interpretable Data Synthesis
Abstract:
Existing Text Image Forgery Localization (T-IFL) methods often suffer from poor generalization due to the limited scale of real-world datasets and the distribution gap caused by synthetic data that fails to capture the complexity of real-world tampering. To tackle this issue, we propose Fourier Series-based Tampering Synthesis (FSTS), a structured and interpretable framework for synthesizing tampered text images. FSTS first collects 16,750 real-world tampering instances from five representative tampering types, using a structured pipeline that records human-performed editing traces via multi-format logs (e.g., video, PSD, and editing logs). By analyzing these collected parameters and identifying recurring behavioral patterns at both individual and population levels, we formulate a hierarchical modeling framework. Specifically, each individual tampering parameter is represented as a compact combination of basis operation-parameter configurations, while the population-level distribution is constructed by aggregating these behaviors. Since this formulation draws inspiration from the Fourier series, it enables an interpretable approximation using basis functions and their learned weights. By sampling from this modeled distribution, FSTS synthesizes diverse and realistic training data that better reflect real-world forgery traces. Extensive experiments across four evaluation protocols demonstrate that models trained with FSTS data achieve significantly improved generalization on real-world datasets. Dataset is available at \href{https://github.com/ZeqinYu/FSTS}{Project Page}.

Authors:Ye Du, Nanxi Yu, Shujun Wang
Title: Medical Knowledge Intervention Prompt Tuning for Medical Image Classification
Abstract:
Vision-language foundation models (VLMs) have shown great potential in feature transfer and generalization across a wide spectrum of medical-related downstream tasks. However, fine-tuning these models is resource-intensive due to their large number of parameters. Prompt tuning has emerged as a viable solution to mitigate memory usage and reduce training time while maintaining competitive performance. Nevertheless, the challenge is that existing prompt tuning methods cannot precisely distinguish different kinds of medical concepts, which miss essentially specific disease-related features across various medical imaging modalities in medical image classification tasks. We find that Large Language Models (LLMs), trained on extensive text corpora, are particularly adept at providing this specialized medical knowledge. Motivated by this, we propose incorporating LLMs into the prompt tuning process. Specifically, we introduce the CILMP, Conditional Intervention of Large Language Models for Prompt Tuning, a method that bridges LLMs and VLMs to facilitate the transfer of medical knowledge into VLM prompts. CILMP extracts disease-specific representations from LLMs, intervenes within a low-rank linear subspace, and utilizes them to create disease-specific prompts. Additionally, a conditional mechanism is incorporated to condition the intervention process on each individual medical image, generating instance-adaptive prompts and thus enhancing adaptability. Extensive experiments across diverse medical image datasets demonstrate that CILMP consistently outperforms state-of-the-art prompt tuning methods, demonstrating its effectiveness. Code is available at https://github.com/usr922/cilmp.

Authors:Baber Jan, Aiman H. El-Maleh, Abdul Jabbar Siddiqui, Abdul Bais, Saeed Anwar
Title: C3Net: Context-Contrast Network for Camouflaged Object Detection
Abstract:
Camouflaged object detection identifies objects that blend seamlessly with their surroundings through similar colors, textures, and patterns. This task challenges both traditional segmentation methods and modern foundation models, which fail dramatically on camouflaged objects. We identify six fundamental challenges in COD: Intrinsic Similarity, Edge Disruption, Extreme Scale Variation, Environmental Complexities, Contextual Dependencies, and Salient-Camouflaged Object Disambiguation. These challenges frequently co-occur and compound the difficulty of detection, requiring comprehensive architectural solutions. We propose C3Net, which addresses all challenges through a specialized dual-pathway decoder architecture. The Edge Refinement Pathway employs gradient-initialized Edge Enhancement Modules to recover precise boundaries from early features. The Contextual Localization Pathway utilizes our novel Image-based Context Guidance mechanism to achieve intrinsic saliency suppression without external models. An Attentive Fusion Module synergistically combines the two pathways via spatial gating. C3Net achieves state-of-the-art performance with S-measures of 0.898 on COD10K, 0.904 on CAMO, and 0.913 on NC4K, while maintaining efficient processing. C3Net demonstrates that complex, multifaceted detection challenges require architectural innovation, with specialized components working synergistically to achieve comprehensive coverage beyond isolated improvements. Code, model weights, and results are available at https://github.com/Baber-Jan/C3Net.

Authors:Yunxin Li, Xinyu Chen, Shenyuan Jiang, Haoyuan Shi, Zhenyu Liu, Xuanyu Zhang, Nanhao Deng, Zhenran Xu, Yicheng Ma, Meishan Zhang, Baotian Hu, Min Zhang
Title: Uni-MoE-2.0-Omni: Scaling Language-Centric Omnimodal Large Model with Advanced MoE, Training and Data
Abstract:
We present Uni-MoE 2.0 from the Lychee family. As a fully open-source omnimodal large model (OLM), it substantially advances Lychee's Uni-MoE series in language-centric multimodal understanding, reasoning, and generating. Based on the Qwen2.5-7B dense architecture, we build Uni-MoE-2.0-Omni from scratch through three core contributions: dynamic-capacity Mixture-of-Experts (MoE) design, a progressive training strategy enhanced with an iterative reinforcement strategy, and a carefully curated multimodal data matching technique. It is capable of omnimodal understanding, as well as generating images, text, and speech. Architecturally, our new MoE framework balances computational efficiency and capability for 10 cross-modal inputs using shared, routed, and null experts, while our Omni-Modality 3D RoPE ensures spatio-temporal cross-modality alignment in the self-attention layer. For training, following cross-modal pretraining, we use a progressive supervised fine-tuning strategy that activates modality-specific experts and is enhanced by balanced data composition and an iterative GSPO-DPO method to stabilise RL training and improve reasoning. Data-wise, the base model, trained on approximately 75B tokens of open-source multimodal data, is equipped with special speech and image generation tokens, allowing it to learn these generative tasks by conditioning its outputs on linguistic cues. Extensive evaluation across 85 benchmarks demonstrates that our model achieves SOTA or highly competitive performance against leading OLMs, surpassing Qwen2.5-Omni (trained with 1.2T tokens) on over 50 of 76 benchmarks. Key strengths include video understanding (+7% avg. of 8), omnimodallity understanding (+7% avg. of 4), and audiovisual reasoning (+4%). It also advances long-form speech processing (reducing WER by 4.2%) and leads in low-level image processing and controllable generation across 5 metrics.

Authors:Rongkun Zheng, Lu Qi, Xi Chen, Yi Wang, Kun Wang, Hengshuang Zhao
Title: Seg-VAR: Image Segmentation with Visual Autoregressive Modeling
Abstract:
While visual autoregressive modeling (VAR) strategies have shed light on image generation with the autoregressive models, their potential for segmentation, a task that requires precise low-level spatial perception, remains unexplored. Inspired by the multi-scale modeling of classic Mask2Former-based models, we propose Seg-VAR, a novel framework that rethinks segmentation as a conditional autoregressive mask generation problem. This is achieved by replacing the discriminative learning with the latent learning process. Specifically, our method incorporates three core components: (1) an image encoder generating latent priors from input images, (2) a spatial-aware seglat (a latent expression of segmentation mask) encoder that maps segmentation masks into discrete latent tokens using a location-sensitive color mapping to distinguish instances, and (3) a decoder reconstructing masks from these latents. A multi-stage training strategy is introduced: first learning seglat representations via image-seglat joint training, then refining latent transformations, and finally aligning image-encoder-derived latents with seglat distributions. Experiments show Seg-VAR outperforms previous discriminative and generative methods on various segmentation tasks and validation benchmarks. By framing segmentation as a sequential hierarchical prediction task, Seg-VAR opens new avenues for integrating autoregressive reasoning into spatial-aware vision systems. Code will be available at https://github.com/rkzheng99/Seg-VAR.

Authors:Yuan Zhou, Litao Hua, Shilong Jin, Wentao Huang, Haoran Duan
Title: ReaSon: Reinforced Causal Search with Information Bottleneck for Video Understanding
Abstract:
Keyframe selection has become essential for video understanding with vision-language models (VLMs) due to limited input tokens and the temporal sparsity of relevant information across video frames. Video understanding often relies on effective keyframes that are not only informative but also causally decisive. To this end, we propose Reinforced Causal Search with Information Bottleneck (ReaSon), a framework that formulates keyframe selection as an optimization problem with the help of a novel Causal Information Bottleneck (CIB), which explicitly defines keyframes as those satisfying both predictive sufficiency and causal necessity. Specifically, ReaSon employs a learnable policy network to select keyframes from a visually relevant pool of candidate frames to capture predictive sufficiency, and then assesses causal necessity via counterfactual interventions. Finally, a composite reward aligned with the CIB principle is designed to guide the selection policy through reinforcement learning. Extensive experiments on NExT-QA, EgoSchema, and Video-MME demonstrate that ReaSon consistently outperforms existing state-of-the-art methods under limited-frame settings, validating its effectiveness and generalization ability.

Authors:Zheyuan Zhang, Jiwei Zhang, Boyu Zhou, Linzhimeng Duan, Hong Chen
Title: D$^{2}$-VPR: A Parameter-efficient Visual-foundation-model-based Visual Place Recognition Method via Knowledge Distillation and Deformable Aggregation
Abstract:
Visual Place Recognition (VPR) aims to determine the geographic location of a query image by retrieving its most visually similar counterpart from a geo-tagged reference database. Recently, the emergence of the powerful visual foundation model, DINOv2, trained in a self-supervised manner on massive datasets, has significantly improved VPR performance. This improvement stems from DINOv2's exceptional feature generalization capabilities but is often accompanied by increased model complexity and computational overhead that impede deployment on resource-constrained devices. To address this challenge, we propose $D^{2}$-VPR, a $D$istillation- and $D$eformable-based framework that retains the strong feature extraction capabilities of visual foundation models while significantly reducing model parameters and achieving a more favorable performance-efficiency trade-off. Specifically, first, we employ a two-stage training strategy that integrates knowledge distillation and fine-tuning. Additionally, we introduce a Distillation Recovery Module (DRM) to better align the feature spaces between the teacher and student models, thereby minimizing knowledge transfer losses to the greatest extent possible. Second, we design a Top-Down-attention-based Deformable Aggregator (TDDA) that leverages global semantic features to dynamically and adaptively adjust the Regions of Interest (ROI) used for aggregation, thereby improving adaptability to irregular structures. Extensive experiments demonstrate that our method achieves competitive performance compared to state-of-the-art approaches. Meanwhile, it reduces the parameter count by approximately 64.2% and FLOPs by about 62.6% (compared to CricaVPR).Code is available at https://github.com/tony19980810/D2VPR.

Authors:Jialiang Shen, Jiyang Zheng, Yunqi Xue, Huajie Chen, Yu Yao, Hui Kang, Ruiqi Liu, Helin Gong, Yang Yang, Dadong Wang, Tongliang Liu
Title: DINO-Detect: A Simple yet Effective Framework for Blur-Robust AI-Generated Image Detection
Abstract:
With growing concerns over image authenticity and digital safety, the field of AI-generated image (AIGI) detection has progressed rapidly. Yet, most AIGI detectors still struggle under real-world degradations, particularly motion blur, which frequently occurs in handheld photography, fast motion, and compressed video. Such blur distorts fine textures and suppresses high-frequency artifacts, causing severe performance drops in real-world settings. We address this limitation with a blur-robust AIGI detection framework based on teacher-student knowledge distillation. A high-capacity teacher (DINOv3), trained on clean (i.e., sharp) images, provides stable and semantically rich representations that serve as a reference for learning. By freezing the teacher to maintain its generalization ability, we distill its feature and logit responses from sharp images to a student trained on blurred counterparts, enabling the student to produce consistent representations under motion degradation. Extensive experiments benchmarks show that our method achieves state-of-the-art performance under both motion-blurred and clean conditions, demonstrating improved generalization and real-world applicability. Source codes will be released at: https://github.com/JiaLiangShen/Dino-Detect-for-blur-robust-AIGC-Detection.

Authors:Yu Liang, Yu Yang, Wenjie Wei, Ammar Belatreche, Shuai Wang, Malu Zhang, Yang Yang
Title: BSO: Binary Spiking Online Optimization Algorithm
Abstract:
Binary Spiking Neural Networks (BSNNs) offer promising efficiency advantages for resource-constrained computing. However, their training algorithms often require substantial memory overhead due to latent weights storage and temporal processing requirements. To address this issue, we propose Binary Spiking Online (BSO) optimization algorithm, a novel online training algorithm that significantly reduces training memory. BSO directly updates weights through flip signals under the online training framework. These signals are triggered when the product of gradient momentum and weights exceeds a threshold, eliminating the need for latent weights during training. To enhance performance, we propose T-BSO, a temporal-aware variant that leverages the inherent temporal dynamics of BSNNs by capturing gradient information across time steps for adaptive threshold adjustment. Theoretical analysis establishes convergence guarantees for both BSO and T-BSO, with formal regret bounds characterizing their convergence rates. Extensive experiments demonstrate that both BSO and T-BSO achieve superior optimization performance compared to existing training methods for BSNNs. The codes are available at https://github.com/hamings1/BSO.

Authors:Xi Xiao, Zhuxuanzi Wang, Mingqiao Mo, Chen Liu, Chenrui Ma, Yanshu Li, Smita Krishnaswamy, Xiao Wang, Tianyang Wang
Title: Self-Supervised Visual Prompting for Cross-Domain Road Damage Detection
Abstract:
The deployment of automated pavement defect detection is often hindered by poor cross-domain generalization. Supervised detectors achieve strong in-domain accuracy but require costly re-annotation for new environments, while standard self-supervised methods capture generic features and remain vulnerable to domain shift. We propose \ours, a self-supervised framework that \emph{visually probes} target domains without labels. \ours introduces a Self-supervised Prompt Enhancement Module (SPEM), which derives defect-aware prompts from unlabeled target data to guide a frozen ViT backbone, and a Domain-Aware Prompt Alignment (DAPA) objective, which aligns prompt-conditioned source and target representations. Experiments on four challenging benchmarks show that \ours consistently outperforms strong supervised, self-supervised, and adaptation baselines, achieving robust zero-shot transfer, improved resilience to domain variations, and high data efficiency in few-shot adaptation. These results highlight self-supervised prompting as a practical direction for building scalable and adaptive visual inspection systems. Source code is publicly available: https://github.com/xixiaouab/PROBE/tree/main

Authors:Jiacheng Wang, Hao Li, Xing Yao, Ahmad Toubasi, Taegan Vinarsky, Caroline Gheen, Joy Derwenskus, Chaoyang Jin, Richard Dortch, Junzhong Xu, Francesca Bagnato, Ipek Oguz
Title: DEMIST: \underline{DE}coupled \underline{M}ulti-stream latent d\underline{I}ffusion for Quantitative Myelin Map \underline{S}yn\underline{T}hesis
Abstract:
Quantitative magnetization transfer (qMT) imaging provides myelin-sensitive biomarkers, such as the pool size ratio (PSR), which is valuable for multiple sclerosis (MS) assessment. However, qMT requires specialized 20-30 minute scans. We propose DEMIST to synthesize PSR maps from standard T1w and FLAIR images using a 3D latent diffusion model with three complementary conditioning mechanisms. Our approach has two stages: first, we train separate autoencoders for PSR and anatomical images to learn aligned latent representations. Second, we train a conditional diffusion model in this latent space on top of a frozen diffusion foundation backbone. Conditioning is decoupled into: (i) \textbf{semantic} tokens via cross-attention, (ii) \textbf{spatial} per-scale residual hints via a 3D ControlNet branch, and (iii) \textbf{adaptive} LoRA-modulated attention. We include edge-aware loss terms to preserve lesion boundaries and alignment losses to maintain quantitative consistency, while keeping the number of trainable parameters low and retaining the inductive bias of the pretrained model. We evaluate on 163 scans from 99 subjects using 5-fold cross-validation. Our method outperforms VAE, GAN and diffusion baselines on multiple metrics, producing sharper boundaries and better quantitative agreement with ground truth. Our code is publicly available at https://github.com/MedICL-VU/MS-Synthesis-3DcLDM.

Authors:Fan Li, Arun Iyengar, Lanyu Xu
Title: MTMed3D: A Multi-Task Transformer-Based Model for 3D Medical Imaging
Abstract:
In the field of medical imaging, AI-assisted techniques such as object detection, segmentation, and classification are widely employed to alleviate the workload of physicians and doctors. However, single-task models are predominantly used, overlooking the shared information across tasks. This oversight leads to inefficiencies in real-life applications. In this work, we propose MTMed3D, a novel end-to-end Multi-task Transformer-based model to address the limitations of single-task models by jointly performing 3D detection, segmentation, and classification in medical imaging. Our model uses a Transformer as the shared encoder to generate multi-scale features, followed by CNN-based task-specific decoders. The proposed framework was evaluated on the BraTS 2018 and 2019 datasets, achieving promising results across all three tasks, especially in detection, where our method achieves better results than prior works. Additionally, we compare our multi-task model with equivalent single-task variants trained separately. Our multi-task model significantly reduces computational costs and achieves faster inference speed while maintaining comparable performance to the single-task models, highlighting its efficiency advantage. To the best of our knowledge, this is the first work to leverage Transformers for multi-task learning that simultaneously covers detection, segmentation, and classification tasks in 3D medical imaging, presenting its potential to enhance diagnostic processes. The code is available at https://github.com/fanlimua/MTMed3D.git.

Authors:Michael Yang, Shijian Deng, William T. Doan, Kai Wang, Tianyu Yang, Harsh Singh, Yapeng Tian
Title: Explainable AI-Generated Image Detection RewardBench
Abstract:
Conventional, classification-based AI-generated image detection methods cannot explain why an image is considered real or AI-generated in a way a human expert would, which reduces the trustworthiness and persuasiveness of these detection tools for real-world applications. Leveraging Multimodal Large Language Models (MLLMs) has recently become a trending solution to this issue. Further, to evaluate the quality of generated explanations, a common approach is to adopt an "MLLM as a judge" methodology to evaluate explanations generated by other MLLMs. However, how well those MLLMs perform when judging explanations for AI-generated image detection generated by themselves or other MLLMs has not been well studied. We therefore propose \textbf{XAIGID-RewardBench}, the first benchmark designed to evaluate the ability of current MLLMs to judge the quality of explanations about whether an image is real or AI-generated. The benchmark consists of approximately 3,000 annotated triplets sourced from various image generation models and MLLMs as policy models (detectors) to assess the capabilities of current MLLMs as reward models (judges). Our results show that the current best reward model scored 88.76\% on this benchmark (while human inter-annotator agreement reaches 98.30\%), demonstrating that a visible gap remains between the reasoning abilities of today's MLLMs and human-level performance. In addition, we provide an analysis of common pitfalls that these models frequently encounter. Code and benchmark are available at https://github.com/RewardBench/XAIGID-RewardBench.

Authors:Shuochen Chang, Xiaofeng Zhang, Qingyang Liu, Li Niu
Title: D$^{3}$ToM: Decider-Guided Dynamic Token Merging for Accelerating Diffusion MLLMs
Abstract:
Diffusion-based multimodal large language models (Diffusion MLLMs) have recently demonstrated impressive non-autoregressive generative capabilities across vision-and-language tasks. However, Diffusion MLLMs exhibit substantially slower inference than autoregressive models: Each denoising step employs full bidirectional self-attention over the entire sequence, resulting in cubic decoding complexity that becomes computationally impractical with thousands of visual tokens. To address this challenge, we propose D$^{3}$ToM, a Decider-guided dynamic token merging method that dynamically merges redundant visual tokens at different denoising steps to accelerate inference in Diffusion MLLMs. At each denoising step, D$^{3}$ToM uses decider tokens-the tokens generated in the previous denoising step-to build an importance map over all visual tokens. Then it maintains a proportion of the most salient tokens and merges the remainder through similarity-based aggregation. This plug-and-play module integrates into a single transformer layer, physically shortening the visual token sequence for all subsequent layers without altering model parameters. Moreover, D$^{3}$ToM employs a merge ratio that dynamically varies with each denoising step, aligns with the native decoding process of Diffusion MLLMs, achieving superior performance under equivalent computational budgets. Extensive experiments show that D$^{3}$ToM accelerates inference while preserving competitive performance. The code is released at https://github.com/bcmi/D3ToM-Diffusion-MLLM.

Authors:Yaxuan Jiao, Qing Xu, Yuxiang Luo, Xiangjian He, Zhen Chen, Wenting Duan
Title: TM-UNet: Token-Memory Enhanced Sequential Modeling for Efficient Medical Image Segmentation
Abstract:
Medical image segmentation is essential for clinical diagnosis and treatment planning. Although transformer-based methods have achieved remarkable results, their high computational cost hinders clinical deployment. To address this issue, we propose TM-UNet, a novel lightweight framework that integrates token sequence modeling with an efficient memory mechanism for efficient medical segmentation. Specifically, we introduce a multi-scale token-memory (MSTM) block that transforms 2D spatial features into token sequences through strategic spatial scanning, leveraging matrix memory cells to selectively retain and propagate discriminative contextual information across tokens. This novel token-memory mechanism acts as a dynamic knowledge store that captures long-range dependencies with linear complexity, enabling efficient global reasoning without redundant computation. Our MSTM block further incorporates exponential gating to identify token effectiveness and multi-scale contextual extraction via parallel pooling operations, enabling hierarchical representation learning without computational overhead. Extensive experiments demonstrate that TM-UNet outperforms state-of-the-art methods across diverse medical segmentation tasks with substantially reduced computation cost. The code is available at https://github.com/xq141839/TM-UNet.

Authors:Jiaqi Wu, Yaosen Chen, Shuyuan Zhu
Title: GeoMVD: Geometry-Enhanced Multi-View Generation Model Based on Geometric Information Extraction
Abstract:
Multi-view image generation holds significant application value in computer vision, particularly in domains like 3D reconstruction, virtual reality, and augmented reality. Most existing methods, which rely on extending single images, face notable computational challenges in maintaining cross-view consistency and generating high-resolution outputs. To address these issues, we propose the Geometry-guided Multi-View Diffusion Model, which incorporates mechanisms for extracting multi-view geometric information and adjusting the intensity of geometric features to generate images that are both consistent across views and rich in detail. Specifically, we design a multi-view geometry information extraction module that leverages depth maps, normal maps, and foreground segmentation masks to construct a shared geometric structure, ensuring shape and structural consistency across different views. To enhance consistency and detail restoration during generation, we develop a decoupled geometry-enhanced attention mechanism that strengthens feature focus on key geometric details, thereby improving overall image quality and detail preservation. Furthermore, we apply an adaptive learning strategy that fine-tunes the model to better capture spatial relationships and visual coherence between the generated views, ensuring realistic results. Our model also incorporates an iterative refinement process that progressively improves the output quality through multiple stages of image generation. Finally, a dynamic geometry information intensity adjustment mechanism is proposed to adaptively regulate the influence of geometric data, optimizing overall quality while ensuring the naturalness of generated images. More details can be found on the project page: https://github.com/SobeyMIL/GeoMVD.com.

Authors:Kaixiang Yang, Boyang Shen, Xin Li, Yuchen Dai, Yuxuan Luo, Yueran Ma, Wei Fang, Qiang Li, Zhiwei Wang
Title: FIA-Edit: Frequency-Interactive Attention for Efficient and High-Fidelity Inversion-Free Text-Guided Image Editing
Abstract:
Text-guided image editing has advanced rapidly with the rise of diffusion models. While flow-based inversion-free methods offer high efficiency by avoiding latent inversion, they often fail to effectively integrate source information, leading to poor background preservation, spatial inconsistencies, and over-editing due to the lack of effective integration of source information. In this paper, we present FIA-Edit, a novel inversion-free framework that achieves high-fidelity and semantically precise edits through a Frequency-Interactive Attention. Specifically, we design two key components: (1) a Frequency Representation Interaction (FRI) module that enhances cross-domain alignment by exchanging frequency components between source and target features within self-attention, and (2) a Feature Injection (FIJ) module that explicitly incorporates source-side queries, keys, values, and text embeddings into the target branch's cross-attention to preserve structure and semantics. Comprehensive and extensive experiments demonstrate that FIA-Edit supports high-fidelity editing at low computational cost (~6s per 512 * 512 image on an RTX 4090) and consistently outperforms existing methods across diverse tasks in visual quality, background fidelity, and controllability. Furthermore, we are the first to extend text-guided image editing to clinical applications. By synthesizing anatomically coherent hemorrhage variations in surgical images, FIA-Edit opens new opportunities for medical data augmentation and delivers significant gains in downstream bleeding classification. Our project is available at: https://github.com/kk42yy/FIA-Edit.

Authors:Seokwon Song, Minsu Park, Gunhee Kim
Title: MAVIS: A Benchmark for Multimodal Source Attribution in Long-form Visual Question Answering
Abstract:
Source attribution aims to enhance the reliability of AI-generated answers by including references for each statement, helping users validate the provided answers. However, existing work has primarily focused on text-only scenario and largely overlooked the role of multimodality. We introduce MAVIS, the first benchmark designed to evaluate multimodal source attribution systems that understand user intent behind visual questions, retrieve multimodal evidence, and generate long-form answers with citations. Our dataset comprises 157K visual QA instances, where each answer is annotated with fact-level citations referring to multimodal documents. We develop fine-grained automatic metrics along three dimensions of informativeness, groundedness, and fluency, and demonstrate their strong correlation with human judgments. Our key findings are threefold: (1) LVLMs with multimodal RAG generate more informative and fluent answers than unimodal RAG, but they exhibit weaker groundedness for image documents than for text documents, a gap amplified in multimodal settings. (2) Given the same multimodal documents, there is a trade-off between informativeness and groundedness across different prompting methods. (3) Our proposed method highlights mitigating contextual bias in interpreting image documents as a crucial direction for future research. The dataset and experimental code are available at https://github.com/seokwon99/MAVIS

Authors:Pinxue Guo, Chongruo Wu, Xinyu Zhou, Lingyi Hong, Zhaoyu Chen, Jinglun Li, Kaixun Jiang, Sen-ching Samson Cheung, Wei Zhang, Wenqiang Zhang
Title: Seeing is Believing: Rich-Context Hallucination Detection for MLLMs via Backward Visual Grounding
Abstract:
Multimodal Large Language Models (MLLMs) have unlocked powerful cross-modal capabilities, but still significantly suffer from hallucinations. As such, accurate detection of hallucinations in MLLMs is imperative for ensuring their reliability in practical applications. To this end, guided by the principle of "Seeing is Believing", we introduce VBackChecker, a novel reference-free hallucination detection framework that verifies the consistency of MLLMgenerated responses with visual inputs, by leveraging a pixellevel Grounding LLM equipped with reasoning and referring segmentation capabilities. This reference-free framework not only effectively handles rich-context scenarios, but also offers interpretability. To facilitate this, an innovative pipeline is accordingly designed for generating instruction-tuning data (R-Instruct), featuring rich-context descriptions, grounding masks, and hard negative samples. We further establish R^2 -HalBench, a new hallucination benchmark for MLLMs, which, unlike previous benchmarks, encompasses real-world, rich-context descriptions from 18 MLLMs with high-quality annotations, spanning diverse object-, attribute, and relationship-level details. VBackChecker outperforms prior complex frameworks and achieves state-of-the-art performance on R^2 -HalBench, even rivaling GPT-4o's capabilities in hallucination detection. It also surpasses prior methods in the pixel-level grounding task, achieving over a 10% improvement. All codes, data, and models are available at https://github.com/PinxueGuo/VBackChecker.

Authors:Karol C. Jurzec, Tomasz Szydlo, Maciej Wielgosz
Title: Compression and Inference of Spiking Neural Networks on Resource-Constrained Hardware
Abstract:
Spiking neural networks (SNNs) communicate via discrete spikes in time rather than continuous activations. Their event-driven nature offers advantages for temporal processing and energy efficiency on resource-constrained hardware, but training and deployment remain challenging. We present a lightweight C-based runtime for SNN inference on edge devices and optimizations that reduce latency and memory without sacrificing accuracy. Trained models exported from SNNTorch are translated to a compact C representation; static, cache-friendly data layouts and preallocation avoid interpreter and allocation overheads. We further exploit sparse spiking activity to prune inactive neurons and synapses, shrinking computation in upstream convolutional layers. Experiments on N-MNIST and ST-MNIST show functional parity with the Python baseline while achieving ~10 speedups on desktop CPU and additional gains with pruning, together with large memory reductions that enable microcontroller deployment (Arduino Portenta H7). Results indicate that SNNs can be executed efficiently on conventional embedded platforms when paired with an optimized runtime and spike-driven model compression. Code: https://github.com/karol-jurzec/snn-generator/

Authors:Xianhao Zhou, Jianghao Wu, Ku Zhao, Jinlong He, Huangxuan Zhao, Lei Chen, Shaoting Zhang, Guotai Wang
Title: DINOv3-Guided Cross Fusion Framework for Semantic-aware CT generation from MRI and CBCT
Abstract:
Generating synthetic CT images from CBCT or MRI has a potential for efficient radiation dose planning and adaptive radiotherapy. However, existing CNN-based models lack global semantic understanding, while Transformers often overfit small medical datasets due to high model capacity and weak inductive bias. To address these limitations, we propose a DINOv3-Guided Cross Fusion (DGCF) framework that integrates a frozen self-supervised DINOv3 Transformer with a trainable CNN encoder-decoder. It hierarchically fuses global representation of Transformer and local features of CNN via a learnable cross fusion module, achieving balanced local appearance and contextual representation. Furthermore, we introduce a Multi-Level DINOv3 Perceptual (MLDP) loss that encourages semantic similarity between synthetic CT and the ground truth in DINOv3's feature space. Experiments on the SynthRAD2023 pelvic dataset demonstrate that DGCF achieved state-of-the-art performance in terms of MS-SSIM, PSNR and segmentation-based metrics on both MRI$\rightarrow$CT and CBCT$\rightarrow$CT translation tasks. To the best of our knowledge, this is the first work to employ DINOv3 representations for medical image translation, highlighting the potential of self-supervised Transformer guidance for semantic-aware CT synthesis. The code is available at https://github.com/HiLab-git/DGCF.

Authors:Cuiqun Chen, Qi Chen, Bin Yang, Xingyi Zhang
Title: UniABG: Unified Adversarial View Bridging and Graph Correspondence for Unsupervised Cross-View Geo-Localization
Abstract:
Cross-view geo-localization (CVGL) matches query images ($\textit{e.g.}$, drone) to geographically corresponding opposite-view imagery ($\textit{e.g.}$, satellite). While supervised methods achieve strong performance, their reliance on extensive pairwise annotations limits scalability. Unsupervised alternatives avoid annotation costs but suffer from noisy pseudo-labels due to intrinsic cross-view domain gaps. To address these limitations, we propose $\textit{UniABG}$, a novel dual-stage unsupervised cross-view geo-localization framework integrating adversarial view bridging with graph-based correspondence calibration. Our approach first employs View-Aware Adversarial Bridging (VAAB) to model view-invariant features and enhance pseudo-label robustness. Subsequently, Heterogeneous Graph Filtering Calibration (HGFC) refines cross-view associations by constructing dual inter-view structure graphs, achieving reliable view correspondence. Extensive experiments demonstrate state-of-the-art unsupervised performance, showing that UniABG improves Satellite $\rightarrow$ Drone AP by +10.63\% on University-1652 and +16.73\% on SUES-200, even surpassing supervised baselines. The source code is available at https://github.com/chenqi142/UniABG

Authors:Xinyuan Hu, Changyue Shi, Chuxiao Yang, Minghao Chen, Jiajun Ding, Tao Wei, Chen Wei, Zhou Yu, Min Tan
Title: SRSplat: Feed-Forward Super-Resolution Gaussian Splatting from Sparse Multi-View Images
Abstract:
Feed-forward 3D reconstruction from sparse, low-resolution (LR) images is a crucial capability for real-world applications, such as autonomous driving and embodied AI. However, existing methods often fail to recover fine texture details. This limitation stems from the inherent lack of high-frequency information in LR inputs. To address this, we propose \textbf{SRSplat}, a feed-forward framework that reconstructs high-resolution 3D scenes from only a few LR views. Our main insight is to compensate for the deficiency of texture information by jointly leveraging external high-quality reference images and internal texture cues. We first construct a scene-specific reference gallery, generated for each scene using Multimodal Large Language Models (MLLMs) and diffusion models. To integrate this external information, we introduce the \textit{Reference-Guided Feature Enhancement (RGFE)} module, which aligns and fuses features from the LR input images and their reference twin image. Subsequently, we train a decoder to predict the Gaussian primitives using the multi-view fused feature obtained from \textit{RGFE}. To further refine predicted Gaussian primitives, we introduce \textit{Texture-Aware Density Control (TADC)}, which adaptively adjusts Gaussian density based on the internal texture richness of the LR inputs. Extensive experiments demonstrate that our SRSplat outperforms existing methods on various datasets, including RealEstate10K, ACID, and DTU, and exhibits strong cross-dataset and cross-resolution generalization capabilities.

Authors:Afifa Khaled, Ebrahim Hamid Sumiea
Title: PI-NAIM: Path-Integrated Neural Adaptive Imputation Model
Abstract:
Medical imaging and multi-modal clinical settings often face the challange of missing modality in their diagnostic pipelines. Existing imputation methods either lack representational capacity or are computationally expensive. We propose PI-NAIM, a novel dual-path architecture that dynamically routes samples to optimized imputation approaches based on missingness complexity. Our framework integrates: (1) intelligent path routing that directs low missingness samples to efficient statistical imputation (MICE) and complex patterns to powerful neural networks (GAIN with temporal analysis); (2) cross-path attention fusion that leverages missingness-aware embeddings to intelligently combine both branches; and (3) end-to-end joint optimization of imputation accuracy and downstream task performance. Extensive experiments on MIMIC-III and multimodal benchmarks demonstrate state-of-the-art performance, achieving RMSE of 0.108 (vs. baselines' 0.119-0.152) and substantial gains in downstream tasks with an AUROC of 0.812 for mortality prediction. PI-NAIM's modular design enables seamless integration into vision pipelines handling incomplete sensor measurements, missing modalities, or corrupted inputs, providing a unified solution for real-world scenario. The code is publicly available at https://github.com/AfifaKhaled/PI-NAIM-Path-Integrated-Neural-Adaptive-Imputation-Model

Authors:Arnav Singhvi, Vasiliki Bikia, Asad Aali, Akshay Chaudhari, Roxana Daneshjou
Title: Prompt Triage: Structured Optimization Enhances Vision-Language Model Performance on Medical Imaging Benchmarks
Abstract:
Vision-language foundation models (VLMs) show promise for diverse imaging tasks but often underperform on medical benchmarks. Prior efforts to improve performance include model finetuning, which requires large domain-specific datasets and significant compute, or manual prompt engineering, which is hard to generalize and often inaccessible to medical institutions seeking to deploy these tools. These challenges motivate interest in approaches that draw on a model's embedded knowledge while abstracting away dependence on human-designed prompts to enable scalable, weight-agnostic performance improvements. To explore this, we adapt the Declarative Self-improving Python (DSPy) framework for structured automated prompt optimization in medical vision-language systems through a comprehensive, formal evaluation. We implement prompting pipelines for five medical imaging tasks across radiology, gastroenterology, and dermatology, evaluating 10 open-source VLMs with four prompt optimization techniques. Optimized pipelines achieved a median relative improvement of 53% over zero-shot prompting baselines, with the largest gains ranging from 300% to 3,400% on tasks where zero-shot performance is low. These results highlight the substantial potential of applying automated prompt optimization to medical AI systems, demonstrating significant gains for vision-based applications requiring accurate clinical image interpretation. By reducing dependence on prompt design to elicit intended outputs, these techniques allow clinicians to focus on patient care and clinical decision-making. Furthermore, our experiments offer scalability and preserve data privacy, demonstrating performance improvement on open-source VLMs. We publicly release our evaluation pipelines to support reproducible research on specialized medical tasks, available at https://github.com/DaneshjouLab/prompt-triage-lab.

Authors:Wenhao Zhou, Hao Zheng, Rong Zhao
Title: TopoPerception: A Shortcut-Free Evaluation of Global Visual Perception in Large Vision-Language Models
Abstract:
Large Vision-Language Models (LVLMs) typically align visual features from an encoder with a pre-trained Large Language Model (LLM). However, this makes the visual perception module a bottleneck, which constrains the overall capabilities of LVLMs. Conventional evaluation benchmarks, while rich in visual semantics, often contain unavoidable local shortcuts that can lead to an overestimation of models' perceptual abilities. Here, we introduce TopoPerception, a benchmark that leverages topological properties to rigorously evaluate the global visual perception capabilities of LVLMs across various granularities. Since topology depends on the global structure of an image and is invariant to local features, TopoPerception enables a shortcut-free assessment of global perception, fundamentally distinguishing it from semantically rich tasks. We evaluate state-of-the-art models on TopoPerception and find that even at the coarsest perceptual granularity, all models perform no better than random chance, indicating a profound inability to perceive global visual features. Notably, a consistent trend emerge within model families: more powerful models with stronger reasoning capabilities exhibit lower accuracy. This suggests that merely scaling up models is insufficient to address this deficit and may even exacerbate it. Progress may require new training paradigms or architectures. TopoPerception not only exposes a critical bottleneck in current LVLMs but also offers a lens and direction for improving their global visual perception. The data and code are publicly available at: https://github.com/Wenhao-Zhou/TopoPerception.

Authors:Sultan Hassan, Sambatra Andrianomena, Benjamin D. Wandelt
Title: Towards Mitigating Systematics in Large-Scale Surveys via Few-Shot Optimal Transport-Based Feature Alignment
Abstract:
Systematics contaminate observables, leading to distribution shifts relative to theoretically simulated signals-posing a major challenge for using pre-trained models to label such observables. Since systematics are often poorly understood and difficult to model, removing them directly and entirely may not be feasible. To address this challenge, we propose a novel method that aligns learned features between in-distribution (ID) and out-of-distribution (OOD) samples by optimizing a feature-alignment loss on the representations extracted from a pre-trained ID model. We first experimentally validate the method on the MNIST dataset using possible alignment losses, including mean squared error and optimal transport, and subsequently apply it to large-scale maps of neutral hydrogen. Our results show that optimal transport is particularly effective at aligning OOD features when parity between ID and OOD samples is unknown, even with limited data-mimicking real-world conditions in extracting information from large-scale surveys. Our code is available at https://github.com/sultan-hassan/feature-alignment-for-OOD-generalization.

Authors:Penghui Niu, Jiashuai She, Taotao Cai, Yajuan Zhang, Ping Zhang, Junhua Gu, Jianxin Li
Title: MPCM-Net: Multi-scale network integrates partial attention convolution with Mamba for ground-based cloud image segmentation
Abstract:
Ground-based cloud image segmentation is a critical research domain for photovoltaic power forecasting. Current deep learning approaches primarily focus on encoder-decoder architectural refinements. However, existing methodologies exhibit several limitations:(1)they rely on dilated convolutions for multi-scale context extraction, lacking the partial feature effectiveness and interoperability of inter-channel;(2)attention-based feature enhancement implementations neglect accuracy-throughput balance; and (3)the decoder modifications fail to establish global interdependencies among hierarchical local features, limiting inference efficiency. To address these challenges, we propose MPCM-Net, a Multi-scale network that integrates Partial attention Convolutions with Mamba architectures to enhance segmentation accuracy and computational efficiency. Specifically, the encoder incorporates MPAC, which comprises:(1)a MPC block with ParCM and ParSM that enables global spatial interaction across multi-scale cloud formations, and (2)a MPA block combining ParAM and ParSM to extract discriminative features with reduced computational complexity. On the decoder side, a M2B is employed to mitigate contextual loss through a SSHD that maintains linear complexity while enabling deep feature aggregation across spatial and scale dimensions. As a key contribution to the community, we also introduce and release a dataset CSRC, which is a clear-label, fine-grained segmentation benchmark designed to overcome the critical limitations of existing public datasets. Extensive experiments on CSRC demonstrate the superior performance of MPCM-Net over state-of-the-art methods, achieving an optimal balance between segmentation accuracy and inference speed. The dataset and source code will be available at https://github.com/she1110/CSRC.

Authors:Aswath Muthuselvam, Jeevak Raj S, Mohanaprasad K
Title: Real-time pothole detection with onboard sensors and camera on vehicles
Abstract:
Road conditions play an important role in our everyday commute. With the proliferating number of vehicles on the road each year, it has become necessary to access the road conditions very frequently, this would ensure that the traffic also flows smoothly. Even the smallest crack in the road could be easily be chipped into a large pothole due to changing surface temperatures of the road and from the force of vehicles riding over it. In this paper, we have addressed how we could better identify these potholes in realtime with the help of onboard sensors in vehicles so that the data could be useful for analysis and better management of potholes on a large scale. For the implementation, we used an SVM classifier to detect potholes, we achieved 98.1% accuracy based on data collected from a local road for about 2 km which had 26 potholes distributed along the road. Code is available at: https://github.com/aswathselvam/Potholes

Authors:Sylvia Yuan, Ruoxi Shi, Xinyue Wei, Xiaoshuai Zhang, Hao Su, Minghua Liu
Title: LARM: A Large Articulated-Object Reconstruction Model
Abstract:
Modeling 3D articulated objects with realistic geometry, textures, and kinematics is essential for a wide range of applications. However, existing optimization-based reconstruction methods often require dense multi-view inputs and expensive per-instance optimization, limiting their scalability. Recent feedforward approaches offer faster alternatives but frequently produce coarse geometry, lack texture reconstruction, and rely on brittle, complex multi-stage pipelines. We introduce LARM, a unified feedforward framework that reconstructs 3D articulated objects from sparse-view images by jointly recovering detailed geometry, realistic textures, and accurate joint structures. LARM extends LVSM a recent novel view synthesis (NVS) approach for static 3D objects into the articulated setting by jointly reasoning over camera pose and articulation variation using a transformer-based architecture, enabling scalable and accurate novel view synthesis. In addition, LARM generates auxiliary outputs such as depth maps and part masks to facilitate explicit 3D mesh extraction and joint estimation. Our pipeline eliminates the need for dense supervision and supports high-fidelity reconstruction across diverse object categories. Extensive experiments demonstrate that LARM outperforms state-of-the-art methods in both novel view and state synthesis as well as 3D articulated object reconstruction, generating high-quality meshes that closely adhere to the input images. project page: https://sylviayuan-sy.github.io/larm-site/

Authors:Benjamin Fein-Ashley, Jacob Fein-Ashley
Title: Bridging Hidden States in Vision-Language Models
Abstract:
Vision-Language Models (VLMs) are a new family of models that align image content with natural language. Existing approaches typically fuse either (a) early: by mixing tokens/features inside the encoders, or (b) late: by comparing pooled embeddings. Many methods also tie fusion to an autoregressive decoder. However, the hidden states of both modalities already carry rich, modality-specific structure (spatial layout in vision; syntax and semantics in text), so directly aligning these states is a natural way to match what the two modalities "think". We propose a lightweight fusion module: a few cross-only, bidirectional attention layers placed near the top of both encoders. Each layer projects the vision and text encoder hidden-state sequences into a shared space, attends across modalities, and sends gated residual updates back, with simple stabilizers to improve alignment. The encoders remain non-causal and strong for understanding, while generation stays cleanly decoupled via an optional decoder. Across standard retrieval, VQA, and visual reasoning benchmarks, BRIDGE outperforms comparable VLMs while preserving the bi-encoder efficiency of contrastive models. We make our code publicly available at https://github.com/jfeinashley/BRIDGE.

Authors:Xiaoyu Zheng, Xu Chen, Awais Rauf, Qifan Fu, Benedetta Monosi, Felice Rivellese, Myles J. Lewis, Shaogang Gong, Gregory Slabaugh
Title: OpenUS: A Fully Open-Source Foundation Model for Ultrasound Image Analysis via Self-Adaptive Masked Contrastive Learning
Abstract:
Ultrasound (US) is one of the most widely used medical imaging modalities, thanks to its low cost, portability, real-time feedback, and absence of ionizing radiation. However, US image interpretation remains highly operator-dependent and varies significantly across anatomical regions, acquisition protocols, and device types. These variations, along with unique challenges such as speckle, low contrast, and limited standardized annotations, hinder the development of generalizable, label-efficient ultrasound AI models. In this paper, we propose OpenUS, the first reproducible, open-source ultrasound foundation model built on a large collection of public data. OpenUS employs a vision Mamba backbone, capturing both local and global long-range dependencies across the image. To extract rich features during pre-training, we introduce a novel self-adaptive masking framework that combines contrastive learning with masked image modeling. This strategy integrates the teacher's attention map with student reconstruction loss, adaptively refining clinically-relevant masking to enhance pre-training effectiveness. OpenUS also applies a dynamic learning schedule to progressively adjust the difficulty of the pre-training process. To develop the foundation model, we compile the largest to-date public ultrasound dataset comprising over 308K images from 42 publicly available datasets, covering diverse anatomical regions, institutions, imaging devices, and disease types. Our pre-trained OpenUS model can be easily adapted to specific downstream tasks by serving as a backbone for label-efficient fine-tuning. Code is available at https://github.com/XZheng0427/OpenUS.

Authors:Francisco Nogueira, Alexandre Bernardino, Bruno Martins
Title: Comprehension of Multilingual Expressions Referring to Target Objects in Visual Inputs
Abstract:
Referring Expression Comprehension (REC) requires models to localize objects in images based on natural language descriptions. Research on the area remains predominantly English-centric, despite increasing global deployment demands. This work addresses multilingual REC through two main contributions. First, we construct a unified multilingual dataset spanning 10 languages, by systematically expanding 12 existing English REC benchmarks through machine translation and context-based translation enhancement. The resulting dataset comprises approximately 8 million multilingual referring expressions across 177,620 images, with 336,882 annotated objects. Second, we introduce an attention-anchored neural architecture that uses multilingual SigLIP2 encoders. Our attention-based approach generates coarse spatial anchors from attention distributions, which are subsequently refined through learned residuals. Experimental evaluation demonstrates competitive performance on standard benchmarks, e.g. achieving 86.9% accuracy at IoU@50 on RefCOCO aggregate multilingual evaluation, compared to an English-only result of 91.3%. Multilingual evaluation shows consistent capabilities across languages, establishing the practical feasibility of multilingual visual grounding systems. The dataset and model are available at $\href{https://multilingual.franreno.com}{multilingual.franreno.com}$.

Authors:Jiaxi Huang, Dongxu Wu, Hanwei Zhu, Lingyu Zhu, Jun Xing, Xu Wang, Baoliang Chen
Title: Q-Doc: Benchmarking Document Image Quality Assessment Capabilities in Multi-modal Large Language Models
Abstract:
The rapid advancement of Multi-modal Large Language Models (MLLMs) has expanded their capabilities beyond high-level vision tasks. Nevertheless, their potential for Document Image Quality Assessment (DIQA) remains underexplored. To bridge this gap, we propose Q-Doc, a three-tiered evaluation framework for systematically probing DIQA capabilities of MLLMs at coarse, middle, and fine granularity levels. a) At the coarse level, we instruct MLLMs to assign quality scores to document images and analyze their correlation with Quality Annotations. b) At the middle level, we design distortion-type identification tasks, including single-choice and multi-choice tests for multi-distortion scenarios. c) At the fine level, we introduce distortion-severity assessment where MLLMs classify distortion intensity against human-annotated references. Our evaluation demonstrates that while MLLMs possess nascent DIQA abilities, they exhibit critical limitations: inconsistent scoring, distortion misidentification, and severity misjudgment. Significantly, we show that Chain-of-Thought (CoT) prompting substantially enhances performance across all levels. Our work provides a benchmark for DIQA capabilities in MLLMs, revealing pronounced deficiencies in their quality perception and promising pathways for enhancement. The benchmark and code are publicly available at: https://github.com/cydxf/Q-Doc.

Authors:Haokun Chen, Jianing Li, Yao Zhang, Jinhe Bi, Yan Xia, Jindong Gu, Volker Tresp
Title: AUVIC: Adversarial Unlearning of Visual Concepts for Multi-modal Large Language Models
Abstract:
Multimodal Large Language Models (MLLMs) achieve impressive performance once optimized on massive datasets. Such datasets often contain sensitive or copyrighted content, raising significant data privacy concerns. Regulatory frameworks mandating the 'right to be forgotten' drive the need for machine unlearning. This technique allows for the removal of target data without resource-consuming retraining. However, while well-studied for text, visual concept unlearning in MLLMs remains underexplored. A primary challenge is precisely removing a target visual concept without disrupting model performance on related entities. To address this, we introduce AUVIC, a novel visual concept unlearning framework for MLLMs. AUVIC applies adversarial perturbations to enable precise forgetting. This approach effectively isolates the target concept while avoiding unintended effects on similar entities. To evaluate our method, we construct VCUBench. It is the first benchmark designed to assess visual concept unlearning in group contexts. Experimental results demonstrate that AUVIC achieves state-of-the-art target forgetting rates while incurs minimal performance degradation on non-target concepts.

Authors:Haoyi Wang
Title: Coordinative Learning with Ordinal and Relational Priors for Volumetric Medical Image Segmentation
Abstract:
Volumetric medical image segmentation presents unique challenges due to the inherent anatomical structure and limited availability of annotations. While recent methods have shown promise by contrasting spatial relationships between slices, they rely on hard binary thresholds to define positive and negative samples, thereby discarding valuable continuous information about anatomical similarity. Moreover, these methods overlook the global directional consistency of anatomical progression, resulting in distorted feature spaces that fail to capture the canonical anatomical manifold shared across patients. To address these limitations, we propose Coordinative Ordinal-Relational Anatomical Learning (CORAL) to capture both local and global structure in volumetric images. First, CORAL employs a contrastive ranking objective to leverage continuous anatomical similarity, ensuring relational feature distances between slices are proportional to their anatomical position differences. In addition, CORAL incorporates an ordinal objective to enforce global directional consistency, aligning the learned feature distribution with the canonical anatomical progression across patients. Learning these inter-slice relationships produces anatomically informed representations that benefit the downstream segmentation task. Through this coordinative learning framework, CORAL achieves state-of-the-art performance on benchmark datasets under limited-annotation settings while learning representations with meaningful anatomical structure. Code is available at https://github.com/haoyiwang25/CORAL.

Authors:Fabian Schmidt, Markus Enzweiler, Abhinav Valada
Title: GraphPilot: Grounded Scene Graph Conditioning for Language-Based Autonomous Driving
Abstract:
Vision-language models have recently emerged as promising planners for autonomous driving, where success hinges on topology-aware reasoning over spatial structure and dynamic interactions from multimodal input. However, existing models are typically trained without supervision that explicitly encodes these relational dependencies, limiting their ability to infer how agents and other traffic entities influence one another from raw sensor data. In this work, we bridge this gap with a novel model-agnostic method that conditions language-based driving models on structured relational context in the form of traffic scene graphs. We serialize scene graphs at various abstraction levels and formats, and incorporate them into the models via structured prompt templates, enabling a systematic analysis of when and how relational supervision is most beneficial. Extensive evaluations on the public LangAuto benchmark show that scene graph conditioning of state-of-the-art approaches yields large and persistent improvement in driving performance. Notably, we observe up to a 15.6\% increase in driving score for LMDrive and 17.5\% for BEVDriver, indicating that models can better internalize and ground relational priors through scene graph-conditioned training, even without requiring scene graph input at test-time. Code, fine-tuned models, and our scene graph dataset are publicly available at https://github.com/iis-esslingen/GraphPilot.

Authors:Mohammad Areeb Qazi, Munachiso S Nwadike, Ibrahim Almakky, Mohammad Yaqub, Numan Saeed
Title: MAFM^3: Modular Adaptation of Foundation Models for Multi-Modal Medical AI
Abstract:
Foundational models are trained on extensive datasets to capture the general trends of a domain. However, in medical imaging, the scarcity of data makes pre-training for every domain, modality, or task challenging. Instead of building separate models, we propose MAFM^3 (Modular Adaptation of Foundation Models for Multi-Modal Medical AI), a framework that enables a single foundation model to expand into diverse domains, tasks, and modalities through lightweight modular components. These components serve as specialized skill sets that allow the system to flexibly activate the appropriate capability at the inference time, depending on the input type or clinical objective. Unlike conventional adaptation methods that treat each new task or modality in isolation, MAFM^3 provides a unified and expandable framework for efficient multitask and multimodality adaptation. Empirically, we validate our approach by adapting a chest CT foundation model initially trained for classification into prognosis and segmentation modules. Our results show improved performance on both tasks. Furthermore, by incorporating PET scans, MAFM^3 achieved an improvement in the Dice score 5% compared to the respective baselines. These findings establish that foundation models, when equipped with modular components, are not inherently constrained to their initial training scope but can evolve into multitask, multimodality systems for medical imaging. The code implementation of this work can be found at https://github.com/Areeb2735/CTscan_prognosis_VLM

Authors:Yi Shi, Wenlong Meng, Zhenyuan Guo, Chengkun Wei, Wenzhi Chen
Title: Enhancing Meme Emotion Understanding with Multi-Level Modality Enhancement and Dual-Stage Modal Fusion
Abstract:
With the rapid rise of social media and Internet culture, memes have become a popular medium for expressing emotional tendencies. This has sparked growing interest in Meme Emotion Understanding (MEU), which aims to classify the emotional intent behind memes by leveraging their multimodal contents. While existing efforts have achieved promising results, two major challenges remain: (1) a lack of fine-grained multimodal fusion strategies, and (2) insufficient mining of memes' implicit meanings and background knowledge. To address these challenges, we propose MemoDetector, a novel framework for advancing MEU. First, we introduce a four-step textual enhancement module that utilizes the rich knowledge and reasoning capabilities of Multimodal Large Language Models (MLLMs) to progressively infer and extract implicit and contextual insights from memes. These enhanced texts significantly enrich the original meme contents and provide valuable guidance for downstream classification. Next, we design a dual-stage modal fusion strategy: the first stage performs shallow fusion on raw meme image and text, while the second stage deeply integrates the enhanced visual and textual features. This hierarchical fusion enables the model to better capture nuanced cross-modal emotional cues. Experiments on two datasets, MET-MEME and MOOD, demonstrate that our method consistently outperforms state-of-the-art baselines. Specifically, MemoDetector improves F1 scores by 4.3\% on MET-MEME and 3.4\% on MOOD. Further ablation studies and in-depth analyses validate the effectiveness and robustness of our approach, highlighting its strong potential for advancing MEU. Our code is available at https://github.com/singing-cat/MemoDetector.

Authors:Levi Harris, Tianlong Chen
Title: A Space-Time Transformer for Precipitation Forecasting
Abstract:
Meteorological agencies around the world rely on real-time flood guidance to issue live-saving advisories and warnings. For decades traditional numerical weather prediction (NWP) models have been state-of-the-art for precipitation forecasting. However, physically-parameterized models suffer from a few core limitations: first, solving PDEs to resolve atmospheric dynamics is computationally demanding, and second, these methods degrade in performance at nowcasting timescales (i.e., 0-4 hour lead-times). Motivated by these shortcomings, recent work proposes AI-weather prediction (AI-WP) alternatives that learn to emulate analysis data with neural networks. While these data-driven approaches have enjoyed enormous success across diverse spatial and temporal resolutions, applications of video-understanding architectures for weather forecasting remain underexplored. To address these gaps, we propose SaTformer: a video transformer built on full space-time attention that skillfully forecasts extreme precipitation from satellite radiances. Along with our novel architecture, we introduce techniques to tame long-tailed precipitation datasets. Namely, we reformulate precipitation regression into a classification problem, and employ a class-weighted loss to address label imbalances. Our model scored first place on the NeurIPS Weather4Cast 2025 Cumulative Rainfall challenge. Code and model weights are available: https://github.com/leharris3/satformer

Authors:Ke Ma, Yizhou Fang, Jean-Baptiste Weibel, Shuai Tan, Xinggang Wang, Yang Xiao, Yi Fang, Tian Xia
Title: Phys-Liquid: A Physics-Informed Dataset for Estimating 3D Geometry and Volume of Transparent Deformable Liquids
Abstract:
Estimating the geometric and volumetric properties of transparent deformable liquids is challenging due to optical complexities and dynamic surface deformations induced by container movements. Autonomous robots performing precise liquid manipulation tasks, such as dispensing, aspiration, and mixing, must handle containers in ways that inevitably induce these deformations, complicating accurate liquid state assessment. Current datasets lack comprehensive physics-informed simulation data representing realistic liquid behaviors under diverse dynamic scenarios. To bridge this gap, we introduce Phys-Liquid, a physics-informed dataset comprising 97,200 simulation images and corresponding 3D meshes, capturing liquid dynamics across multiple laboratory scenes, lighting conditions, liquid colors, and container rotations. To validate the realism and effectiveness of Phys-Liquid, we propose a four-stage reconstruction and estimation pipeline involving liquid segmentation, multi-view mask generation, 3D mesh reconstruction, and real-world scaling. Experimental results demonstrate improved accuracy and consistency in reconstructing liquid geometry and volume, outperforming existing benchmarks. The dataset and associated validation methods facilitate future advancements in transparent liquid perception tasks. The dataset and code are available at https://dualtransparency.github.io/Phys-Liquid/.

Authors:Sun Jo, Seok Young Hong, JinHyun Kim, Seungmin Kang, Ahjin Choi, Don-Gwan An, Simon Song, Je Hyeong Hong
Title: PINGS-X: Physics-Informed Normalized Gaussian Splatting with Axes Alignment for Efficient Super-Resolution of 4D Flow MRI
Abstract:
4D flow magnetic resonance imaging (MRI) is a reliable, non-invasive approach for estimating blood flow velocities, vital for cardiovascular diagnostics. Unlike conventional MRI focused on anatomical structures, 4D flow MRI requires high spatiotemporal resolution for early detection of critical conditions such as stenosis or aneurysms. However, achieving such resolution typically results in prolonged scan times, creating a trade-off between acquisition speed and prediction accuracy. Recent studies have leveraged physics-informed neural networks (PINNs) for super-resolution of MRI data, but their practical applicability is limited as the prohibitively slow training process must be performed for each patient. To overcome this limitation, we propose PINGS-X, a novel framework modeling high-resolution flow velocities using axes-aligned spatiotemporal Gaussian representations. Inspired by the effectiveness of 3D Gaussian splatting (3DGS) in novel view synthesis, PINGS-X extends this concept through several non-trivial novel innovations: (i) normalized Gaussian splatting with a formal convergence guarantee, (ii) axes-aligned Gaussians that simplify training for high-dimensional data while preserving accuracy and the convergence guarantee, and (iii) a Gaussian merging procedure to prevent degenerate solutions and boost computational efficiency. Experimental results on computational fluid dynamics (CFD) and real 4D flow MRI datasets demonstrate that PINGS-X substantially reduces training time while achieving superior super-resolution accuracy. Our code and datasets are available at https://github.com/SpatialAILab/PINGS-X.

Authors:Wenrui Li, Yidan Lu, Yeyu Chai, Rui Zhao, Hengyu Man, Xiaopeng Fan
Title: Hyperbolic Hierarchical Alignment Reasoning Network for Text-3D Retrieval
Abstract:
With the daily influx of 3D data on the internet, text-3D retrieval has gained increasing attention. However, current methods face two major challenges: Hierarchy Representation Collapse (HRC) and Redundancy-Induced Saliency Dilution (RISD). HRC compresses abstract-to-specific and whole-to-part hierarchies in Euclidean embeddings, while RISD averages noisy fragments, obscuring critical semantic cues and diminishing the model's ability to distinguish hard negatives. To address these challenges, we introduce the Hyperbolic Hierarchical Alignment Reasoning Network (H$^{2}$ARN) for text-3D retrieval. H$^{2}$ARN embeds both text and 3D data in a Lorentz-model hyperbolic space, where exponential volume growth inherently preserves hierarchical distances. A hierarchical ordering loss constructs a shrinking entailment cone around each text vector, ensuring that the matched 3D instance falls within the cone, while an instance-level contrastive loss jointly enforces separation from non-matching samples. To tackle RISD, we propose a contribution-aware hyperbolic aggregation module that leverages Lorentzian distance to assess the relevance of each local feature and applies contribution-weighted aggregation guided by hyperbolic geometry, enhancing discriminative regions while suppressing redundancy without additional supervision. We also release the expanded T3DR-HIT v2 benchmark, which contains 8,935 text-to-3D pairs, 2.6 times the original size, covering both fine-grained cultural artefacts and complex indoor scenes. Our codes are available at https://github.com/liwrui/H2ARN.

Authors:Xinlei Yu, Chengming Xu, Guibin Zhang, Zhangquan Chen, Yudong Zhang, Yongbo He, Peng-Tao Jiang, Jiangning Zhang, Xiaobin Hu, Shuicheng Yan
Title: VisMem: Latent Vision Memory Unlocks Potential of Vision-Language Models
Abstract:
Despite the remarkable success of Vision-Language Models (VLMs), their performance on a range of complex visual tasks is often hindered by a "visual processing bottleneck": a propensity to lose grounding in visual evidence and exhibit a deficit in contextualized visual experience during prolonged generation. Drawing inspiration from human cognitive memory theory, which distinguishes short-term visually-dominant memory and long-term semantically-dominant memory, we propose VisMem, a cognitively-aligned framework that equips VLMs with dynamic latent vision memories, a short-term module for fine-grained perceptual retention and a long-term module for abstract semantic consolidation. These memories are seamlessly invoked during inference, allowing VLMs to maintain both perceptual fidelity and semantic consistency across thinking and generation. Extensive experiments across diverse visual benchmarks for understanding, reasoning, and generation reveal that VisMem delivers a significant average performance boost of 11.8% relative to the vanilla model and outperforms all counterparts, establishing a new paradigm for latent-space memory enhancement. The code will be available: https://github.com/YU-deep/VisMem.git.

Authors:Zongyang Qiu, Bingyuan Wang, Xingbei Chen, Yingqing He, Zeyu Wang
Title: EmoVid: A Multimodal Emotion Video Dataset for Emotion-Centric Video Understanding and Generation
Abstract:
Emotion plays a pivotal role in video-based expression, but existing video generation systems predominantly focus on low-level visual metrics while neglecting affective dimensions. Although emotion analysis has made progress in the visual domain, the video community lacks dedicated resources to bridge emotion understanding with generative tasks, particularly for stylized and non-realistic contexts. To address this gap, we introduce EmoVid, the first multimodal, emotion-annotated video dataset specifically designed for creative media, which includes cartoon animations, movie clips, and animated stickers. Each video is annotated with emotion labels, visual attributes (brightness, colorfulness, hue), and text captions. Through systematic analysis, we uncover spatial and temporal patterns linking visual features to emotional perceptions across diverse video forms. Building on these insights, we develop an emotion-conditioned video generation technique by fine-tuning the Wan2.1 model. The results show a significant improvement in both quantitative metrics and the visual quality of generated videos for text-to-video and image-to-video tasks. EmoVid establishes a new benchmark for affective video computing. Our work not only offers valuable insights into visual emotion analysis in artistically styled videos, but also provides practical methods for enhancing emotional expression in video generation.

Authors:Wenrui Li, Wei Han, Hengyu Man, Wangmeng Zuo, Xiaopeng Fan, Yonghong Tian
Title: Language-Guided Graph Representation Learning for Video Summarization
Abstract:
With the rapid growth of video content on social media, video summarization has become a crucial task in multimedia processing. However, existing methods face challenges in capturing global dependencies in video content and accommodating multimodal user customization. Moreover, temporal proximity between video frames does not always correspond to semantic proximity. To tackle these challenges, we propose a novel Language-guided Graph Representation Learning Network (LGRLN) for video summarization. Specifically, we introduce a video graph generator that converts video frames into a structured graph to preserve temporal order and contextual dependencies. By constructing forward, backward and undirected graphs, the video graph generator effectively preserves the sequentiality and contextual relationships of video content. We designed an intra-graph relational reasoning module with a dual-threshold graph convolution mechanism, which distinguishes semantically relevant frames from irrelevant ones between nodes. Additionally, our proposed language-guided cross-modal embedding module generates video summaries with specific textual descriptions. We model the summary generation output as a mixture of Bernoulli distribution and solve it with the EM algorithm. Experimental results show that our method outperforms existing approaches across multiple benchmarks. Moreover, we proposed LGRLN reduces inference time and model parameters by 87.8% and 91.7%, respectively. Our codes and pre-trained models are available at https://github.com/liwrui/LGRLN.

Authors:Manish Dhakal, Venkat R. Dasari, Raj Sunderraman, Yi Ding
Title: GFT: Graph Feature Tuning for Efficient Point Cloud Analysis
Abstract:
Parameter-efficient fine-tuning (PEFT) significantly reduces computational and memory costs by updating only a small subset of the model's parameters, enabling faster adaptation to new tasks with minimal loss in performance. Previous studies have introduced PEFTs tailored for point cloud data, as general approaches are suboptimal. To further reduce the number of trainable parameters, we propose a point-cloud-specific PEFT, termed Graph Features Tuning (GFT), which learns a dynamic graph from initial tokenized inputs of the transformer using a lightweight graph convolution network and passes these graph features to deeper layers via skip connections and efficient cross-attention modules. Extensive experiments on object classification and segmentation tasks show that GFT operates in the same domain, rivalling existing methods, while reducing the trainable parameters. Code is at https://github.com/manishdhakal/GFT.

Authors:Sheng-Yu Wang, Aaron Hertzmann, Alexei A Efros, Richard Zhang, Jun-Yan Zhu
Title: Fast Data Attribution for Text-to-Image Models
Abstract:
Data attribution for text-to-image models aims to identify the training images that most significantly influenced a generated output. Existing attribution methods involve considerable computational resources for each query, making them impractical for real-world applications. We propose a novel approach for scalable and efficient data attribution. Our key idea is to distill a slow, unlearning-based attribution method to a feature embedding space for efficient retrieval of highly influential training images. During deployment, combined with efficient indexing and search methods, our method successfully finds highly influential images without running expensive attribution algorithms. We show extensive results on both medium-scale models trained on MSCOCO and large-scale Stable Diffusion models trained on LAION, demonstrating that our method can achieve better or competitive performance in a few seconds, faster than existing methods by 2,500x - 400,000x. Our work represents a meaningful step towards the large-scale application of data attribution methods on real-world models such as Stable Diffusion.

Authors:Yuankai He, Weisong Shi
Title: Semantic VLM Dataset for Safe Autonomous Driving
Abstract:
CAR-Scenes is a frame-level dataset for autonomous driving that enables training and evaluation of vision-language models (VLMs) for interpretable, scene-level understanding. We annotate 5,192 images drawn from Argoverse 1, Cityscapes, KITTI, and nuScenes using a 28-key category/sub-category knowledge base covering environment, road geometry, background-vehicle behavior, ego-vehicle behavior, vulnerable road users, sensor states, and a discrete severity scale (1-10), totaling 350+ leaf attributes. Labels are produced by a GPT-4o-assisted vision-language pipeline with human-in-the-loop verification; we release the exact prompts, post-processing rules, and per-field baseline model performance. CAR-Scenes also provides attribute co-occurrence graphs and JSONL records that support semantic retrieval, dataset triage, and risk-aware scenario mining across sources. To calibrate task difficulty, we include reproducible, non-benchmark baselines, notably a LoRA-tuned Qwen2-VL-2B with deterministic decoding, evaluated via scalar accuracy, micro-averaged F1 for list attributes, and severity MAE/RMSE on a fixed validation split. We publicly release the annotation and analysis scripts, including graph construction and evaluation scripts, to enable explainable, data-centric workflows for future intelligent vehicles. Dataset: https://github.com/Croquembouche/CAR-Scenes

Authors:Haosong Peng, Hao Li, Yalun Dai, Yushi Lan, Yihang Luo, Tianyu Qi, Zhengshen Zhang, Yufeng Zhan, Junfei Zhang, Wenchao Xu, Ziwei Liu
Title: OmniVGGT: Omni-Modality Driven Visual Geometry Grounded Transformer
Abstract:
General 3D foundation models have started to lead the trend of unifying diverse vision tasks, yet most assume RGB-only inputs and ignore readily available geometric cues (e.g., camera intrinsics, poses, and depth maps). To address this issue, we introduce OmniVGGT, a novel framework that can effectively benefit from an arbitrary number of auxiliary geometric modalities during both training and inference. In our framework, a GeoAdapter is proposed to encode depth and camera intrinsics/extrinsics into a spatial foundation model. It employs zero-initialized convolutions to progressively inject geometric information without disrupting the foundation model's representation space. This design ensures stable optimization with negligible overhead, maintaining inference speed comparable to VGGT even with multiple additional inputs. Additionally, a stochastic multimodal fusion regimen is proposed, which randomly samples modality subsets per instance during training. This enables an arbitrary number of modality inputs during testing and promotes learning robust spatial representations instead of overfitting to auxiliary cues. Comprehensive experiments on monocular/multi-view depth estimation, multi-view stereo, and camera pose estimation demonstrate that OmniVGGT outperforms prior methods with auxiliary inputs and achieves state-of-the-art results even with RGB-only input. To further highlight its practical utility, we integrated OmniVGGT into vision-language-action (VLA) models. The enhanced VLA model by OmniVGGT not only outperforms the vanilla point-cloud-based baseline on mainstream benchmarks, but also effectively leverages accessible auxiliary inputs to achieve consistent gains on robotic tasks.

Authors:Huijie Liu, Shuhao Cui, Haoxiang Cao, Shuai Ma, Kai Wu, Guoliang Kang
Title: A Style is Worth One Code: Unlocking Code-to-Style Image Generation with Discrete Style Space
Abstract:
Innovative visual stylization is a cornerstone of artistic creation, yet generating novel and consistent visual styles remains a significant challenge. Existing generative approaches typically rely on lengthy textual prompts, reference images, or parameter-efficient fine-tuning to guide style-aware image generation, but often struggle with style consistency, limited creativity, and complex style representations. In this paper, we affirm that a style is worth one numerical code by introducing the novel task, code-to-style image generation, which produces images with novel, consistent visual styles conditioned solely on a numerical style code. To date, this field has only been primarily explored by the industry (e.g., Midjourney), with no open-source research from the academic community. To fill this gap, we propose CoTyle, the first open-source method for this task. Specifically, we first train a discrete style codebook from a collection of images to extract style embeddings. These embeddings serve as conditions for a text-to-image diffusion model (T2I-DM) to generate stylistic images. Subsequently, we train an autoregressive style generator on the discrete style embeddings to model their distribution, allowing the synthesis of novel style embeddings. During inference, a numerical style code is mapped to a unique style embedding by the style generator, and this embedding guides the T2I-DM to generate images in the corresponding style. Unlike existing methods, our method offers unparalleled simplicity and diversity, unlocking a vast space of reproducible styles from minimal input. Extensive experiments validate that CoTyle effectively turns a numerical code into a style controller, demonstrating a style is worth one code.

Authors:Wei Li, Renshan Zhang, Rui Shao, Zhijian Fang, Kaiwen Zhou, Zhuotao Tian, Liqiang Nie
Title: SemanticVLA: Semantic-Aligned Sparsification and Enhancement for Efficient Robotic Manipulation
Abstract:
Vision-Language-Action (VLA) models have advanced in robotic manipulation, yet practical deployment remains hindered by two key limitations: 1) perceptual redundancy, where irrelevant visual inputs are processed inefficiently, and 2) superficial instruction-vision alignment, which hampers semantic grounding of actions. In this paper, we propose SemanticVLA, a novel VLA framework that performs Semantic-Aligned Sparsification and Enhancement for Efficient Robotic Manipulation. Specifically: 1) To sparsify redundant perception while preserving semantic alignment, Semantic-guided Dual Visual Pruner (SD-Pruner) performs: Instruction-driven Pruner (ID-Pruner) extracts global action cues and local semantic anchors in SigLIP; Spatial-aggregation Pruner (SA-Pruner) compacts geometry-rich features into task-adaptive tokens in DINOv2. 2) To exploit sparsified features and integrate semantics with spatial geometry, Semantic-complementary Hierarchical Fuser (SH-Fuser) fuses dense patches and sparse tokens across SigLIP and DINOv2 for coherent representation. 3) To enhance the transformation from perception to action, Semantic-conditioned Action Coupler (SA-Coupler) replaces the conventional observation-to-DoF approach, yielding more efficient and interpretable behavior modeling for manipulation tasks. Extensive experiments on simulation and real-world tasks show that SemanticVLA sets a new SOTA in both performance and efficiency. SemanticVLA surpasses OpenVLA on LIBERO benchmark by 21.1% in success rate, while reducing training cost and inference latency by 3.0-fold and 2.7-fold.SemanticVLA is open-sourced and publicly available at https://github.com/JiuTian-VL/SemanticVLA

Authors:Yusuf Talha Basak, Mehmet Ozan Unal, Metin Ertas, Isa Yildirim
Title: Learnable Total Variation with Lambda Mapping for Low-Dose CT Denoising
Abstract:
Although Total Variation (TV) performs well in noise reduction and edge preservation on images, its dependence on the lambda parameter limits its efficiency and makes it difficult to use effectively. In this study, we present a Learnable Total Variation (LTV) framework that couples an unrolled TV solver with a data-driven Lambda Mapping Network (LambdaNet) predicting a per-pixel regularization map. The pipeline is trained end-to-end so that reconstruction and regularization are optimized jointly, yielding spatially adaptive smoothing: strong in homogeneous regions, relaxed near anatomical boundaries. Experiments on the DeepLesion dataset, using a realistic noise model adapted from the LoDoPaB-CT methodology, show consistent gains over classical TV and FBP+U-Net: +2.9 dB PSNR and +6% SSIM on average. LTV provides an interpretable alternative to black-box CNNs and a basis for 3D and data-consistency-driven reconstruction. Our codes are available at: https://github.com/itu-biai/deep_tv_for_ldct

Authors:Oded Schlesinger, Amirhossein Farzam, J. Matias Di Martino, Guillermo Sapiro
Title: SPOT: Sparsification with Attention Dynamics via Token Relevance in Vision Transformers
Abstract:
While Vision Transformers (ViT) have demonstrated remarkable performance across diverse tasks, their computational demands are substantial, scaling quadratically with the number of processed tokens. Compact attention representations, reflecting token interaction distributions, can guide early detection and reduction of less salient tokens prior to attention computation. Motivated by this, we present SParsification with attentiOn dynamics via Token relevance (SPOT), a framework for early detection of redundant tokens within ViTs that leverages token embeddings, interactions, and attention dynamics across layers to infer token importance, resulting in a more context-aware and interpretable relevance detection process. SPOT informs token sparsification and facilitates the elimination of such tokens, improving computational efficiency without sacrificing performance. SPOT employs computationally lightweight predictors that can be plugged into various ViT architectures and learn to derive effective input-specific token prioritization across layers. Its versatile design supports a range of performance levels adaptable to varying resource constraints. Empirical evaluations demonstrate significant efficiency gains of up to 40% compared to standard ViTs, while maintaining or even improving accuracy. Code and models are available at https://github.com/odedsc/SPOT .

Authors:Çağrı Eser, Zeynep Sonat Baltacı, Emre Akbaş, Sinan Kalkan
Title: Intrinsic Dimensionality as a Model-Free Measure of Class Imbalance
Abstract:
Imbalance in classification tasks is commonly quantified by the cardinalities of examples across classes. This, however, disregards the presence of redundant examples and inherent differences in the learning difficulties of classes. Alternatively, one can use complex measures such as training loss and uncertainty, which, however, depend on training a machine learning model. Our paper proposes using data Intrinsic Dimensionality (ID) as an easy-to-compute, model-free measure of imbalance that can be seamlessly incorporated into various imbalance mitigation methods. Our results across five different datasets with a diverse range of imbalance ratios show that ID consistently outperforms cardinality-based re-weighting and re-sampling techniques used in the literature. Moreover, we show that combining ID with cardinality can further improve performance. Code: https://github.com/cagries/IDIM.

Authors:Oussema Dhaouadi, Johannes Meier, Jacques Kaiser, Daniel Cremers
Title: GrounDiff: Diffusion-Based Ground Surface Generation from Digital Surface Models
Abstract:
Digital Terrain Models (DTMs) represent the bare-earth elevation and are important in numerous geospatial applications. Such data models cannot be directly measured by sensors and are typically generated from Digital Surface Models (DSMs) derived from LiDAR or photogrammetry. Traditional filtering approaches rely on manually tuned parameters, while learning-based methods require well-designed architectures, often combined with post-processing. To address these challenges, we introduce Ground Diffusion (GrounDiff), the first diffusion-based framework that iteratively removes non-ground structures by formulating the problem as a denoising task. We incorporate a gated design with confidence-guided generation that enables selective filtering. To increase scalability, we further propose Prior-Guided Stitching (PrioStitch), which employs a downsampled global prior automatically generated using GrounDiff to guide local high-resolution predictions. We evaluate our method on the DSM-to-DTM translation task across diverse datasets, showing that GrounDiff consistently outperforms deep learning-based state-of-the-art methods, reducing RMSE by up to 93% on ALS2DTM and up to 47% on USGS benchmarks. In the task of road reconstruction, which requires both high precision and smoothness, our method achieves up to 81% lower distance error compared to specialized techniques on the GeRoD benchmark, while maintaining competitive surface smoothness using only DSM inputs, without task-specific optimization. Our variant for road reconstruction, GrounDiff+, is specifically designed to produce even smoother surfaces, further surpassing state-of-the-art methods. The project page is available at https://deepscenario.github.io/GrounDiff/.

Authors:Jiarui Zhang, Yuliang Liu, Zijun Wu, Guosheng Pang, Zhili Ye, Yupei Zhong, Junteng Ma, Tao Wei, Haiyang Xu, Weikai Chen, Zeen Wang, Qiangjun Ji, Fanxi Zhou, Qi Zhang, Yuanrui Hu, Jiahao Liu, Zhang Li, Ziyang Zhang, Qiang Liu, Xiang Bai
Title: MonkeyOCR v1.5 Technical Report: Unlocking Robust Document Parsing for Complex Patterns
Abstract:
Document parsing is a core task in document intelligence, supporting applications such as information extraction, retrieval-augmented generation, and automated document analysis. However, real-world documents often feature complex layouts with multi-level tables, embedded images or formulas, and cross-page structures, which remain challenging for existing OCR systems. We introduce MonkeyOCR v1.5, a unified vision-language framework that enhances both layout understanding and content recognition through a two-stage pipeline. The first stage employs a large multimodal model to jointly predict layout and reading order, leveraging visual information to ensure sequential consistency. The second stage performs localized recognition of text, formulas, and tables within detected regions, maintaining high visual fidelity while reducing error propagation. To address complex table structures, we propose a visual consistency-based reinforcement learning scheme that evaluates recognition quality via render-and-compare alignment, improving structural accuracy without manual annotations. Additionally, two specialized modules, Image-Decoupled Table Parsing and Type-Guided Table Merging, are introduced to enable reliable parsing of tables containing embedded images and reconstruction of tables crossing pages or columns. Comprehensive experiments on OmniDocBench v1.5 demonstrate that MonkeyOCR v1.5 achieves state-of-the-art performance, outperforming PPOCR-VL and MinerU 2.5 while showing exceptional robustness in visually complex document scenarios. A trial link can be found at https://github.com/Yuliang-Liu/MonkeyOCR .

Authors:Wenti Yin, Huaxin Zhang, Xiang Wang, Yuqing Lu, Yicheng Zhang, Bingquan Gong, Jialong Zuo, Li Yu, Changxin Gao, Nong Sang
Title: Learning to Tell Apart: Weakly Supervised Video Anomaly Detection via Disentangled Semantic Alignment
Abstract:
Recent advancements in weakly-supervised video anomaly detection have achieved remarkable performance by applying the multiple instance learning paradigm based on multimodal foundation models such as CLIP to highlight anomalous instances and classify categories. However, their objectives may tend to detect the most salient response segments, while neglecting to mine diverse normal patterns separated from anomalies, and are prone to category confusion due to similar appearance, leading to unsatisfactory fine-grained classification results. Therefore, we propose a novel Disentangled Semantic Alignment Network (DSANet) to explicitly separate abnormal and normal features from coarse-grained and fine-grained aspects, enhancing the distinguishability. Specifically, at the coarse-grained level, we introduce a self-guided normality modeling branch that reconstructs input video features under the guidance of learned normal prototypes, encouraging the model to exploit normality cues inherent in the video, thereby improving the temporal separation of normal patterns and anomalous events. At the fine-grained level, we present a decoupled contrastive semantic alignment mechanism, which first temporally decomposes each video into event-centric and background-centric components using frame-level anomaly scores and then applies visual-language contrastive learning to enhance class-discriminative representations. Comprehensive experiments on two standard benchmarks, namely XD-Violence and UCF-Crime, demonstrate that DSANet outperforms existing state-of-the-art methods.

Authors:Yanbei Jiang, Chao Lei, Yihao Ding, Krista Ehinger, Jey Han Lau
Title: PROPA: Toward Process-level Optimization in Visual Reasoning via Reinforcement Learning
Abstract:
Despite significant progress, Vision-Language Models (VLMs) still struggle with complex visual reasoning, where multi-step dependencies cause early errors to cascade through the reasoning chain. Existing post-training paradigms are limited: Supervised Fine-Tuning (SFT) relies on costly step-level annotations, while Reinforcement Learning with Verifiable Rewards (RLVR) methods like GRPO provide only sparse, outcome-level feedback, hindering stable optimization. We introduce PROPA (Process-level Reasoning Optimization with interleaved Policy Alignment), a novel framework that integrates Monte Carlo Tree Search (MCTS) with GRPO to generate dense, process-level rewards and optimize reasoning at each intermediate step without human annotations. To overcome the cold-start problem, PROPA interleaves GRPO updates with SFT, enabling the model to learn from both successful and failed reasoning trajectories. A Process Reward Model (PRM) is further trained to guide inference-time search, aligning the test-time search with the training signal. Across seven benchmarks and four VLM backbones, PROPA consistently outperforms both SFT- and RLVR-based baselines. It achieves up to 17.0% gains on in-domain tasks and 21.0% gains on out-of-domain tasks compared to existing state-of-the-art, establishing a strong reasoning and generalization capability for visual reasoning tasks. The code isavailable at: https://github.com/YanbeiJiang/PROPA.

Authors:Hao Zou, Runqing Zhang, Xue Zhou, Jianxiao Zou
Title: GEA: Generation-Enhanced Alignment for Text-to-Image Person Retrieval
Abstract:
Text-to-Image Person Retrieval (TIPR) aims to retrieve person images based on natural language descriptions. Although many TIPR methods have achieved promising results, sometimes textual queries cannot accurately and comprehensively reflect the content of the image, leading to poor cross-modal alignment and overfitting to limited datasets. Moreover, the inherent modality gap between text and image further amplifies these issues, making accurate cross-modal retrieval even more challenging. To address these limitations, we propose the Generation-Enhanced Alignment (GEA) from a generative perspective. GEA contains two parallel modules: (1) Text-Guided Token Enhancement (TGTE), which introduces diffusion-generated images as intermediate semantic representations to bridge the gap between text and visual patterns. These generated images enrich the semantic representation of text and facilitate cross-modal alignment. (2) Generative Intermediate Fusion (GIF), which combines cross-attention between generated images, original images, and text features to generate a unified representation optimized by triplet alignment loss. We conduct extensive experiments on three public TIPR datasets, CUHK-PEDES, RSTPReid, and ICFG-PEDES, to evaluate the performance of GEA. The results justify the effectiveness of our method. More implementation details and extended results are available at https://github.com/sugelamyd123/Sup-for-GEA.

Authors:Zihan Wang, Guansong Pang, Wenjun Miao, Jin Zheng, Xiao Bai
Title: MTAttack: Multi-Target Backdoor Attacks against Large Vision-Language Models
Abstract:
Recent advances in Large Visual Language Models (LVLMs) have demonstrated impressive performance across various vision-language tasks by leveraging large-scale image-text pretraining and instruction tuning. However, the security vulnerabilities of LVLMs have become increasingly concerning, particularly their susceptibility to backdoor attacks. Existing backdoor attacks focus on single-target attacks, i.e., targeting a single malicious output associated with a specific trigger. In this work, we uncover multi-target backdoor attacks, where multiple independent triggers corresponding to different attack targets are added in a single pass of training, posing a greater threat to LVLMs in real-world applications. Executing such attacks in LVLMs is challenging since there can be many incorrect trigger-target mappings due to severe feature interference among different triggers. To address this challenge, we propose MTAttack, the first multi-target backdoor attack framework for enforcing accurate multiple trigger-target mappings in LVLMs. The core of MTAttack is a novel optimization method with two constraints, namely Proxy Space Partitioning constraint and Trigger Prototype Anchoring constraint. It jointly optimizes multiple triggers in the latent space, with each trigger independently mapping clean images to a unique proxy class while at the same time guaranteeing their separability. Experiments on popular benchmarks demonstrate a high success rate of MTAttack for multi-target attacks, substantially outperforming existing attack methods. Furthermore, our attack exhibits strong generalizability across datasets and robustness against backdoor defense strategies. These findings highlight the vulnerability of LVLMs to multi-target backdoor attacks and underscore the urgent need for mitigating such threats. Code is available at https://github.com/mala-lab/MTAttack.

Authors:Qilang Ye, Wei Zeng, Meng Liu, Jie Zhang, Yupeng Hu, Zitong Yu, Yu Zhou
Title: When Eyes and Ears Disagree: Can MLLMs Discern Audio-Visual Confusion?
Abstract:
Can Multimodal Large Language Models (MLLMs) discern confused objects that are visually present but audio-absent? To study this, we introduce a new benchmark, AV-ConfuseBench, which simulates an ``Audio-Visual Confusion'' scene by modifying the corresponding sound of an object in the video, e.g., mute the sounding object and ask MLLMs Is there a/an muted-object sound''. Experimental results reveal that MLLMs, such as Qwen2.5-Omni and Gemini 2.5, struggle to discriminate non-existent audio due to visually dominated reasoning. Motivated by this observation, we introduce RL-CoMM, a Reinforcement Learning-based Collaborative Multi-MLLM that is built upon the Qwen2.5-Omni foundation. RL-CoMM includes two stages: 1) To alleviate visually dominated ambiguities, we introduce an external model, a Large Audio Language Model (LALM), as the reference model to generate audio-only reasoning. Then, we design a Step-wise Reasoning Reward function that enables MLLMs to self-improve audio-visual reasoning with the audio-only reference. 2) To ensure an accurate answer prediction, we introduce Answer-centered Confidence Optimization to reduce the uncertainty of potential heterogeneous reasoning differences. Extensive experiments on audio-visual question answering and audio-visual hallucination show that RL-CoMM improves the accuracy by 10~30\% over the baseline model with limited training data. Follow: https://github.com/rikeilong/AVConfusion.

Authors:Xurui Li, Feng Xue, Yu Zhou
Title: MuSc-V2: Zero-Shot Multimodal Industrial Anomaly Classification and Segmentation with Mutual Scoring of Unlabeled Samples
Abstract:
Zero-shot anomaly classification (AC) and segmentation (AS) methods aim to identify and outline defects without using any labeled samples. In this paper, we reveal a key property that is overlooked by existing methods: normal image patches across industrial products typically find many other similar patches, not only in 2D appearance but also in 3D shapes, while anomalies remain diverse and isolated. To explicitly leverage this discriminative property, we propose a Mutual Scoring framework (MuSc-V2) for zero-shot AC/AS, which flexibly supports single 2D/3D or multimodality. Specifically, our method begins by improving 3D representation through Iterative Point Grouping (IPG), which reduces false positives from discontinuous surfaces. Then we use Similarity Neighborhood Aggregation with Multi-Degrees (SNAMD) to fuse 2D/3D neighborhood cues into more discriminative multi-scale patch features for mutual scoring. The core comprises a Mutual Scoring Mechanism (MSM) that lets samples within each modality to assign score to each other, and Cross-modal Anomaly Enhancement (CAE) that fuses 2D and 3D scores to recover modality-specific missing anomalies. Finally, Re-scoring with Constrained Neighborhood (RsCon) suppresses false classification based on similarity to more representative samples. Our framework flexibly works on both the full dataset and smaller subsets with consistently robust performance, ensuring seamless adaptability across diverse product lines. In aid of the novel framework, MuSc-V2 achieves significant performance improvements: a $\textbf{+23.7\%}$ AP gain on the MVTec 3D-AD dataset and a $\textbf{+19.3\%}$ boost on the Eyecandies dataset, surpassing previous zero-shot benchmarks and even outperforming most few-shot methods. The code will be available at The code will be available at \href{https://github.com/HUST-SLOW/MuSc-V2}{https://github.com/HUST-SLOW/MuSc-V2}.

Authors:Wencong Wu, Xiuwei Zhang, Hanlin Yin, Shun Dai, Hongxi Zhang, Yanning Zhang
Title: FreDFT: Frequency Domain Fusion Transformer for Visible-Infrared Object Detection
Abstract:
Visible-infrared object detection has gained sufficient attention due to its detection performance in low light, fog, and rain conditions. However, visible and infrared modalities captured by different sensors exist the information imbalance problem in complex scenarios, which can cause inadequate cross-modal fusion, resulting in degraded detection performance. \textcolor{red}{Furthermore, most existing methods use transformers in the spatial domain to capture complementary features, ignoring the advantages of developing frequency domain transformers to mine complementary information.} To solve these weaknesses, we propose a frequency domain fusion transformer, called FreDFT, for visible-infrared object detection. The proposed approach employs a novel multimodal frequency domain attention (MFDA) to mine complementary information between modalities and a frequency domain feed-forward layer (FDFFL) via a mixed-scale frequency feature fusion strategy is designed to better enhance multimodal features. To eliminate the imbalance of multimodal information, a cross-modal global modeling module (CGMM) is constructed to perform pixel-wise inter-modal feature interaction in a spatial and channel manner. Moreover, a local feature enhancement module (LFEM) is developed to strengthen multimodal local feature representation and promote multimodal feature fusion by using various convolution layers and applying a channel shuffle. Extensive experimental results have verified that our proposed FreDFT achieves excellent performance on multiple public datasets compared with other state-of-the-art methods. The code of our FreDFT is linked at https://github.com/WenCongWu/FreDFT.

Authors:Xuexun Liu, Xiaoxu Xu, Qiudan Zhang, Lin Ma, Xu Wang
Title: DBGroup: Dual-Branch Point Grouping for Weakly Supervised 3D Instance Segmentation
Abstract:
Weakly supervised 3D instance segmentation is essential for 3D scene understanding, especially as the growing scale of data and high annotation costs associated with fully supervised approaches. Existing methods primarily rely on two forms of weak supervision: one-thing-one-click annotations and bounding box annotations, both of which aim to reduce labeling efforts. However, these approaches still encounter limitations, including labor-intensive annotation processes, high complexity, and reliance on expert annotators. To address these challenges, we propose \textbf{DBGroup}, a two-stage weakly supervised 3D instance segmentation framework that leverages scene-level annotations as a more efficient and scalable alternative. In the first stage, we introduce a Dual-Branch Point Grouping module to generate pseudo labels guided by semantic and mask cues extracted from multi-view images. To further improve label quality, we develop two refinement strategies: Granularity-Aware Instance Merging and Semantic Selection and Propagation. The second stage involves multi-round self-training on an end-to-end instance segmentation network using the refined pseudo-labels. Additionally, we introduce an Instance Mask Filter strategy to address inconsistencies within the pseudo labels. Extensive experiments demonstrate that DBGroup achieves competitive performance compared to sparse-point-level supervised 3D instance segmentation methods, while surpassing state-of-the-art scene-level supervised 3D semantic segmentation approaches. Code is available at https://github.com/liuxuexun/DBGroup.

Authors:Chenxu Wu, Qingpeng Kong, Peiang Zhao, Wendi Yang, Wenxin Ma, Fenghe Tang, Zihang Jiang, S. Kevin Zhou
Title: Equivariant Sampling for Improving Diffusion Model-based Image Restoration
Abstract:
Recent advances in generative models, especially diffusion models, have significantly improved image restoration (IR) performance. However, existing problem-agnostic diffusion model-based image restoration (DMIR) methods face challenges in fully leveraging diffusion priors, resulting in suboptimal performance. In this paper, we address the limitations of current problem-agnostic DMIR methods by analyzing their sampling process and providing effective solutions. We introduce EquS, a DMIR method that imposes equivariant information through dual sampling trajectories. To further boost EquS, we propose the Timestep-Aware Schedule (TAS) and introduce EquS$^+$. TAS prioritizes deterministic steps to enhance certainty and sampling efficiency. Extensive experiments on benchmarks demonstrate that our method is compatible with previous problem-agnostic DMIR methods and significantly boosts their performance without increasing computational costs. Our code is available at https://github.com/FouierL/EquS.

Authors:Xuan Rao, Simian Xu, Zheng Li, Bo Zhao, Derong Liu, Mingming Ha, Cesare Alippi
Title: Compensating Distribution Drifts in Class-incremental Learning of Pre-trained Vision Transformers
Abstract:
Recent advances have shown that sequential fine-tuning (SeqFT) of pre-trained vision transformers (ViTs), followed by classifier refinement using approximate distributions of class features, can be an effective strategy for class-incremental learning (CIL). However, this approach is susceptible to distribution drift, caused by the sequential optimization of shared backbone parameters. This results in a mismatch between the distributions of the previously learned classes and that of the updater model, ultimately degrading the effectiveness of classifier performance over time. To address this issue, we introduce a latent space transition operator and propose Sequential Learning with Drift Compensation (SLDC). SLDC aims to align feature distributions across tasks to mitigate the impact of drift. First, we present a linear variant of SLDC, which learns a linear operator by solving a regularized least-squares problem that maps features before and after fine-tuning. Next, we extend this with a weakly nonlinear SLDC variant, which assumes that the ideal transition operator lies between purely linear and fully nonlinear transformations. This is implemented using learnable, weakly nonlinear mappings that balance flexibility and generalization. To further reduce representation drift, we apply knowledge distillation (KD) in both algorithmic variants. Extensive experiments on standard CIL benchmarks demonstrate that SLDC significantly improves the performance of SeqFT. Notably, by combining KD to address representation drift with SLDC to compensate distribution drift, SeqFT achieves performance comparable to joint training across all evaluated datasets. Code: https://github.com/raoxuan98-hash/sldc.git.

Authors:Zihao Zhang, Yang Li, Aming Wu, Yahong Han
Title: Simulating Distribution Dynamics: Liquid Temporal Feature Evolution for Single-Domain Generalized Object Detection
Abstract:
In this paper, we focus on Single-Domain Generalized Object Detection (Single-DGOD), aiming to transfer a detector trained on one source domain to multiple unknown domains. Existing methods for Single-DGOD typically rely on discrete data augmentation or static perturbation methods to expand data diversity, thereby mitigating the lack of access to target domain data. However, in real-world scenarios such as changes in weather or lighting conditions, domain shifts often occur continuously and gradually. Discrete augmentations and static perturbations fail to effectively capture the dynamic variation of feature distributions, thereby limiting the model's ability to perceive fine-grained cross-domain differences. To this end, we propose a new method, Liquid Temporal Feature Evolution, which simulates the progressive evolution of features from the source domain to simulated latent distributions by incorporating temporal modeling and liquid neural network-driven parameter adjustment. Specifically, we introduce controllable Gaussian noise injection and multi-scale Gaussian blurring to simulate initial feature perturbations, followed by temporal modeling and a liquid parameter adjustment mechanism to generate adaptive modulation parameters, enabling a smooth and continuous adaptation across domains. By capturing progressive cross-domain feature evolution and dynamically regulating adaptation paths, our method bridges the source-unknown domain distribution gap, significantly boosting generalization and robustness to unseen shifts. Significant performance improvements on the Diverse Weather dataset and Real-to-Art benchmark demonstrate the superiority of our method. Our code is available at https://github.com/2490o/LTFE.

Authors:Peng Gao, Yujian Lee, Xiaofeng Zhang, Zailong Chen, Hui Zhang
Title: Remember Me: Bridging the Long-Range Gap in LVLMs with Three-Step Inference-Only Decay Resilience Strategies
Abstract:
Large Vision-Language Models (LVLMs) have achieved impressive performance across a wide range of multimodal tasks. However, they still face critical challenges in modeling long-range dependencies under the usage of Rotary Positional Encoding (ROPE). Although it can facilitate precise modeling of token positions, it induces progressive attention decay as token distance increases, especially with progressive attention decay over distant token pairs, which severely impairs the model's ability to remember global context. To alleviate this issue, we propose inference-only Three-step Decay Resilience Strategies (T-DRS), comprising (1) Semantic-Driven DRS (SD-DRS), amplifying semantically meaningful but distant signals via content-aware residuals, (2) Distance-aware Control DRS (DC-DRS), which can purify attention by smoothly modulating weights based on positional distances, suppressing noise while preserving locality, and (3) re-Reinforce Distant DRS (reRD-DRS), consolidating the remaining informative remote dependencies to maintain global coherence. Together, the T-DRS recover suppressed long-range token pairs without harming local inductive biases. Extensive experiments on Vision Question Answering (VQA) benchmarks demonstrate that T-DRS can consistently improve performance in a training-free manner. The code can be accessed in https://github.com/labixiaoq-qq/Remember-me

Authors:Jeongho Min, Dongyoung Kim, Jaehyup Lee
Title: From Street to Orbit: Training-Free Cross-View Retrieval via Location Semantics and LLM Guidance
Abstract:
Cross-view image retrieval, particularly street-to-satellite matching, is a critical task for applications such as autonomous navigation, urban planning, and localization in GPS-denied environments. However, existing approaches often require supervised training on curated datasets and rely on panoramic or UAV-based images, which limits real-world deployment. In this paper, we present a simple yet effective cross-view image retrieval framework that leverages a pretrained vision encoder and a large language model (LLM), requiring no additional training. Given a monocular street-view image, our method extracts geographic cues through web-based image search and LLM-based location inference, generates a satellite query via geocoding API, and retrieves matching tiles using a pretrained vision encoder (e.g., DINOv2) with PCA-based whitening feature refinement. Despite using no ground-truth supervision or finetuning, our proposed method outperforms prior learning-based approaches on the benchmark dataset under zero-shot settings. Moreover, our pipeline enables automatic construction of semantically aligned street-to-satellite datasets, which is offering a scalable and cost-efficient alternative to manual annotation. All source codes will be made publicly available at https://jeonghomin.github.io/street2orbit.github.io/.

Authors:Konstantinos M. Dafnis, Dimitris N. Metaxas
Title: Test-Time Spectrum-Aware Latent Steering for Zero-Shot Generalization in Vision-Language Models
Abstract:
Vision-Language Models (VLMs) excel at zero-shot inference but often degrade under test-time domain shifts. For this reason, episodic test-time adaptation strategies have recently emerged as powerful techniques for adapting VLMs to a single unlabeled image. However, existing adaptation strategies, such as test-time prompt tuning, typically require backpropagating through large encoder weights or altering core model components. In this work, we introduce Spectrum-Aware Test-Time Steering (STS), a lightweight adaptation framework that extracts a spectral subspace from the textual embeddings to define principal semantic directions and learns to steer latent representations in a spectrum-aware manner by adapting a small number of per-sample shift parameters to minimize entropy across augmented views. STS operates entirely at inference in the latent space, without backpropagation through or modification of the frozen encoders. Building on standard evaluation protocols, our comprehensive experiments demonstrate that STS largely surpasses or compares favorably against state-of-the-art test-time adaptation methods, while introducing only a handful of additional parameters and achieving inference speeds up to 8x faster with a 12x smaller memory footprint than conventional test-time prompt tuning. The code is available at https://github.com/kdafnis/STS.

Authors:Filip Beránek, Václav Diviš, Ivan Gruber
Title: Soiling detection for Advanced Driver Assistance Systems
Abstract:
Soiling detection for automotive cameras is a crucial part of advanced driver assistance systems to make them more robust to external conditions like weather, dust, etc. In this paper, we regard the soiling detection as a semantic segmentation problem. We provide a comprehensive comparison of popular segmentation methods and show their superiority in performance while comparing them to tile-level classification approaches. Moreover, we present an extensive analysis of the Woodscape dataset showing that the original dataset contains a data-leakage and imprecise annotations. To address these problems, we create a new data subset, which, despite being much smaller, provides enough information for the segmentation method to reach comparable results in a much shorter time. All our codes and dataset splits are available at https://github.com/filipberanek/woodscape_revision.

Authors:Yunqian Cheng, Benjamin Princen, Roberto Manduchi
Title: PALMS+: Modular Image-Based Floor Plan Localization Leveraging Depth Foundation Model
Abstract:
Indoor localization in GPS-denied environments is crucial for applications like emergency response and assistive navigation. Vision-based methods such as PALMS enable infrastructure-free localization using only a floor plan and a stationary scan, but are limited by the short range of smartphone LiDAR and ambiguity in indoor layouts. We propose PALMS$+$, a modular, image-based system that addresses these challenges by reconstructing scale-aligned 3D point clouds from posed RGB images using a foundation monocular depth estimation model (Depth Pro), followed by geometric layout matching via convolution with the floor plan. PALMS$+$ outputs a posterior over the location and orientation, usable for direct or sequential localization. Evaluated on the Structured3D and a custom campus dataset consisting of 80 observations across four large campus buildings, PALMS$+$ outperforms PALMS and F3Loc in stationary localization accuracy -- without requiring any training. Furthermore, when integrated with a particle filter for sequential localization on 33 real-world trajectories, PALMS$+$ achieved lower localization errors compared to other methods, demonstrating robustness for camera-free tracking and its potential for infrastructure-free applications. Code and data are available at https://github.com/Head-inthe-Cloud/PALMS-Plane-based-Accessible-Indoor-Localization-Using-Mobile-Smartphones

Authors:Ye Tian, Ling Yang, Jiongfan Yang, Anran Wang, Yu Tian, Jiani Zheng, Haochen Wang, Zhiyang Teng, Zhuochen Wang, Yinjie Wang, Yunhai Tong, Mengdi Wang, Xiangtai Li
Title: MMaDA-Parallel: Multimodal Large Diffusion Language Models for Thinking-Aware Editing and Generation
Abstract:
While thinking-aware generation aims to improve performance on complex tasks, we identify a critical failure mode where existing sequential, autoregressive approaches can paradoxically degrade performance due to error propagation. To systematically analyze this issue, we propose ParaBench, a new benchmark designed to evaluate both text and image output modalities. Our analysis using ParaBench reveals that this performance degradation is strongly correlated with poor alignment between the generated reasoning and the final image. To resolve this, we propose a parallel multimodal diffusion framework, MMaDA-Parallel, that enables continuous, bidirectional interaction between text and images throughout the entire denoising trajectory. MMaDA-Parallel is trained with supervised finetuning and then further optimized by Parallel Reinforcement Learning (ParaRL), a novel strategy that applies semantic rewards along the trajectory to enforce cross-modal consistency. Experiments validate that our model significantly improves cross-modal alignment and semantic consistency, achieving a 6.9\% improvement in Output Alignment on ParaBench compared to the state-of-the-art model, Bagel, establishing a more robust paradigm for thinking-aware image synthesis. Our code is open-sourced at https://github.com/tyfeld/MMaDA-Parallel

Authors:Hao Shi, Bin Xie, Yingfei Liu, Yang Yue, Tiancai Wang, Haoqiang Fan, Xiangyu Zhang, Gao Huang
Title: SpatialActor: Exploring Disentangled Spatial Representations for Robust Robotic Manipulation
Abstract:
Robotic manipulation requires precise spatial understanding to interact with objects in the real world. Point-based methods suffer from sparse sampling, leading to the loss of fine-grained semantics. Image-based methods typically feed RGB and depth into 2D backbones pre-trained on 3D auxiliary tasks, but their entangled semantics and geometry are sensitive to inherent depth noise in real-world that disrupts semantic understanding. Moreover, these methods focus on high-level geometry while overlooking low-level spatial cues essential for precise interaction. We propose SpatialActor, a disentangled framework for robust robotic manipulation that explicitly decouples semantics and geometry. The Semantic-guided Geometric Module adaptively fuses two complementary geometry from noisy depth and semantic-guided expert priors. Also, a Spatial Transformer leverages low-level spatial cues for accurate 2D-3D mapping and enables interaction among spatial features. We evaluate SpatialActor on multiple simulation and real-world scenarios across 50+ tasks. It achieves state-of-the-art performance with 87.4% on RLBench and improves by 13.9% to 19.4% under varying noisy conditions, showing strong robustness. Moreover, it significantly enhances few-shot generalization to new tasks and maintains robustness under various spatial perturbations. Project Page: https://shihao1895.github.io/SpatialActor

Authors:Isaac Robinson, Peter Robicheaux, Matvei Popov, Deva Ramanan, Neehar Peri
Title: RF-DETR: Neural Architecture Search for Real-Time Detection Transformers
Abstract:
Open-vocabulary detectors achieve impressive performance on COCO, but often fail to generalize to real-world datasets with out-of-distribution classes not typically found in their pre-training. Rather than simply fine-tuning a heavy-weight vision-language model (VLM) for new domains, we introduce RF-DETR, a light-weight specialist detection transformer that discovers accuracy-latency Pareto curves for any target dataset with weight-sharing neural architecture search (NAS). Our approach fine-tunes a pre-trained base network on a target dataset and evaluates thousands of network configurations with different accuracy-latency tradeoffs without re-training. Further, we revisit the "tunable knobs" for NAS to improve the transferability of DETRs to diverse target domains. Notably, RF-DETR significantly improves on prior state-of-the-art real-time methods on COCO and Roboflow100-VL. RF-DETR (nano) achieves 48.0 AP on COCO, beating D-FINE (nano) by 5.3 AP at similar latency, and RF-DETR (2x-large) outperforms GroundingDINO (tiny) by 1.2 AP on Roboflow100-VL while running 20x as fast. To the best of our knowledge, RF-DETR (2x-large) is the first real-time detector to surpass 60 AP on COCO. Our code is at https://github.com/roboflow/rf-detr

Authors:Minye Shao, Sihan Guo, Xinrun Li, Xingyu Miao, Haoran Duan, Yang Long
Title: vMFCoOp: Towards Equilibrium on a Unified Hyperspherical Manifold for Prompting Biomedical VLMs
Abstract:
Recent advances in context optimization (CoOp) guided by large language model (LLM)-distilled medical semantic priors offer a scalable alternative to manual prompt engineering and full fine-tuning for adapting biomedical CLIP-based vision-language models (VLMs). However, prompt learning in this context is challenged by semantic misalignment between LLMs and CLIP variants due to divergent training corpora and model architectures; it further lacks scalability across continuously evolving families of foundation models. More critically, pairwise multimodal alignment via conventional Euclidean-space optimization lacks the capacity to model unified representations or apply localized geometric constraints, which tends to amplify modality gaps in complex biomedical imaging and destabilize few-shot adaptation. In this work, we propose vMFCoOp, a framework that inversely estimates von Mises-Fisher (vMF) distributions on a shared Hyperspherical Manifold, aligning semantic biases between arbitrary LLMs and CLIP backbones via Unified Semantic Anchors to achieve robust biomedical prompting and superior few-shot classification. Grounded in three complementary constraints, vMFCoOp demonstrates consistent improvements across 14 medical datasets, 12 medical imaging modalities, and 13 anatomical regions, outperforming state-of-the-art methods in accuracy, generalization, and clinical applicability. This work aims to continuously expand to encompass more downstream applications, and the corresponding resources are intended to be shared through https://github.com/VinyehShaw/UniEqui.

Authors:Chaoyi Pan, Changhao Wang, Haozhi Qi, Zixi Liu, Homanga Bharadhwaj, Akash Sharma, Tingfan Wu, Guanya Shi, Jitendra Malik, Francois Hogan
Title: SPIDER: Scalable Physics-Informed Dexterous Retargeting
Abstract:
Learning dexterous and agile policy for humanoid and dexterous hand control requires large-scale demonstrations, but collecting robot-specific data is prohibitively expensive. In contrast, abundant human motion data is readily available from motion capture, videos, and virtual reality, which could help address the data scarcity problem. However, due to the embodiment gap and missing dynamic information like force and torque, these demonstrations cannot be directly executed on robots. To bridge this gap, we propose Scalable Physics-Informed DExterous Retargeting (SPIDER), a physics-based retargeting framework to transform and augment kinematic-only human demonstrations to dynamically feasible robot trajectories at scale. Our key insight is that human demonstrations should provide global task structure and objective, while large-scale physics-based sampling with curriculum-style virtual contact guidance should refine trajectories to ensure dynamical feasibility and correct contact sequences. SPIDER scales across diverse 9 humanoid/dexterous hand embodiments and 6 datasets, improving success rates by 18% compared to standard sampling, while being 10X faster than reinforcement learning (RL) baselines, and enabling the generation of a 2.4M frames dynamic-feasible robot dataset for policy learning. As a universal physics-based retargeting method, SPIDER can work with diverse quality data and generate diverse and high-quality data to enable efficient policy learning with methods like RL.

Authors:Yang Chen, Miaoge Li, Zhijie Rao, Deze Zeng, Song Guo, Jingcai Guo
Title: Learning by Neighbor-Aware Semantics, Deciding by Open-form Flows: Towards Robust Zero-Shot Skeleton Action Recognition
Abstract:
Recognizing unseen skeleton action categories remains highly challenging due to the absence of corresponding skeletal priors. Existing approaches generally follow an "align-then-classify" paradigm but face two fundamental issues, i.e., (i) fragile point-to-point alignment arising from imperfect semantics, and (ii) rigid classifiers restricted by static decision boundaries and coarse-grained anchors. To address these issues, we propose a novel method for zero-shot skeleton action recognition, termed $\texttt{$\textbf{Flora}$}$, which builds upon $\textbf{F}$lexib$\textbf{L}$e neighb$\textbf{O}$r-aware semantic attunement and open-form dist$\textbf{R}$ibution-aware flow cl$\textbf{A}$ssifier. Specifically, we flexibly attune textual semantics by incorporating neighboring inter-class contextual cues to form direction-aware regional semantics, coupled with a cross-modal geometric consistency objective that ensures stable and robust point-to-region alignment. Furthermore, we employ noise-free flow matching to bridge the modality distribution gap between semantic and skeleton latent embeddings, while a condition-free contrastive regularization enhances discriminability, leading to a distribution-aware classifier with fine-grained decision boundaries achieved through token-level velocity predictions. Extensive experiments on three benchmark datasets validate the effectiveness of our method, showing particularly impressive performance even when trained with only 10\% of the seen data. Code is available at https://github.com/cseeyangchen/Flora.

Authors:Felix F Zimmermann
Title: Augment to Augment: Diverse Augmentations Enable Competitive Ultra-Low-Field MRI Enhancement
Abstract:
Ultra-low-field (ULF) MRI promises broader accessibility but suffers from low signal-to-noise ratio (SNR), reduced spatial resolution, and contrasts that deviate from high-field standards. Image-to-image translation can map ULF images to a high-field appearance, yet efficacy is limited by scarce paired training data. Working within the ULF-EnC challenge constraints (50 paired 3D volumes; no external data), we study how task-adapted data augmentations impact a standard deep model for ULF image enhancement. We show that strong, diverse augmentations, including auxiliary tasks on high-field data, substantially improve fidelity. Our submission ranked third by brain-masked SSIM on the public validation leaderboard and fourth by the official score on the final test leaderboard. Code is available at https://github.com/fzimmermann89/low-field-enhancement.

Authors:Sarvenaz Babakhani, David Remy, Alina Roitberg
Title: Deep Learning for Metabolic Rate Estimation from Biosignals: A Comparative Study of Architectures and Signal Selection
Abstract:
Energy expenditure estimation aims to infer human metabolic rate from physiological signals such as heart rate, respiration, or accelerometer data, and has been studied primarily with classical regression methods. The few existing deep learning approaches rarely disentangle the role of neural architecture from that of signal choice. In this work, we systematically evaluate both aspects. We compare classical baselines with newer neural architectures across single signals, signal pairs, and grouped sensor inputs for diverse physical activities. Our results show that minute ventilation is the most predictive individual signal, with a transformer model achieving the lowest root mean square error (RMSE) of 0.87 W/kg across all activities. Paired and grouped signals, such as those from the Hexoskin smart shirt (five signals), offer good alternatives for faster models like CNN and ResNet with attention. Per-activity evaluation revealed mixed outcomes: notably better results in low-intensity activities (RMSE down to 0.29 W/kg; NRMSE = 0.04), while higher-intensity tasks showed larger RMSE but more comparable normalized errors. Finally, subject-level analysis highlights strong inter-individual variability, motivating the need for adaptive modeling strategies. Our code and models will be publicly available at https://github.com/Sarvibabakhani/deeplearning-biosignals-ee .

Authors:Jiayue Yuan, Fangting Xie, Guangwen Ouyang, Changhai Ma, Ziyu Wu, Heyu Ding, Quan Wan, Yi Ke, Yuchen Wu, Xiaohui Cai
Title: PressTrack-HMR: Pressure-Based Top-Down Multi-Person Global Human Mesh Recovery
Abstract:
Multi-person global human mesh recovery (HMR) is crucial for understanding crowd dynamics and interactions. Traditional vision-based HMR methods sometimes face limitations in real-world scenarios due to mutual occlusions, insufficient lighting, and privacy concerns. Human-floor tactile interactions offer an occlusion-free and privacy-friendly alternative for capturing human motion. Existing research indicates that pressure signals acquired from tactile mats can effectively estimate human pose in single-person scenarios. However, when multiple individuals walk randomly on the mat simultaneously, how to distinguish intermingled pressure signals generated by different persons and subsequently acquire individual temporal pressure data remains a pending challenge for extending pressure-based HMR to the multi-person situation. In this paper, we present \textbf{PressTrack-HMR}, a top-down pipeline that recovers multi-person global human meshes solely from pressure signals. This pipeline leverages a tracking-by-detection strategy to first identify and segment each individual's pressure signal from the raw pressure data, and subsequently performs HMR for each extracted individual signal. Furthermore, we build a multi-person interaction pressure dataset \textbf{MIP}, which facilitates further research into pressure-based human motion analysis in multi-person scenarios. Experimental results demonstrate that our method excels in multi-person HMR using pressure data, with 89.2 $mm$ MPJPE and 112.6 $mm$ WA-MPJPE$_{100}$, and these showcase the potential of tactile mats for ubiquitous, privacy-preserving multi-person action recognition. Our dataset & code are available at https://github.com/Jiayue-Yuan/PressTrack-HMR.

Authors:Rui-Yang Ju, Kohei Yamashita, Hirotaka Kameko, Shinsuke Mori
Title: DKDS: A Benchmark Dataset of Degraded Kuzushiji Documents with Seals for Detection and Binarization
Abstract:
Kuzushiji, a pre-modern Japanese cursive script, can currently be read and understood by only a few thousand trained experts in Japan. With the rapid development of deep learning, researchers have begun applying Optical Character Recognition (OCR) techniques to transcribe Kuzushiji into modern Japanese. Although existing OCR methods perform well on clean pre-modern Japanese documents written in Kuzushiji, they often fail to consider various types of noise, such as document degradation and seals, which significantly affect recognition accuracy. To the best of our knowledge, no existing dataset specifically addresses these challenges. To address this gap, we introduce the Degraded Kuzushiji Documents with Seals (DKDS) dataset as a new benchmark for related tasks. We describe the dataset construction process, which required the assistance of a trained Kuzushiji expert, and define two benchmark tracks: (1) text and seal detection and (2) document binarization. For the text and seal detection track, we provide baseline results using multiple versions of the You Only Look Once (YOLO) models for detecting Kuzushiji characters and seals. For the document binarization track, we present baseline results from traditional binarization algorithms, traditional algorithms combined with K-means clustering, and Generative Adversarial Network (GAN)-based methods. The DKDS dataset and the implementation code for baseline methods are available at https://ruiyangju.github.io/DKDS.

Authors:Chengze Jiang, Minjing Dong, Xinli Shi, Jie Gui
Title: Diversifying Counterattacks: Orthogonal Exploration for Robust CLIP Inference
Abstract:
Vision-language pre-training models (VLPs) demonstrate strong multimodal understanding and zero-shot generalization, yet remain vulnerable to adversarial examples, raising concerns about their reliability. Recent work, Test-Time Counterattack (TTC), improves robustness by generating perturbations that maximize the embedding deviation of adversarial inputs using PGD, pushing them away from their adversarial representations. However, due to the fundamental difference in optimization objectives between adversarial attacks and counterattacks, generating counterattacks solely based on gradients with respect to the adversarial input confines the search to a narrow space. As a result, the counterattacks could overfit limited adversarial patterns and lack the diversity to fully neutralize a broad range of perturbations. In this work, we argue that enhancing the diversity and coverage of counterattacks is crucial to improving adversarial robustness in test-time defense. Accordingly, we propose Directional Orthogonal Counterattack (DOC), which augments counterattack optimization by incorporating orthogonal gradient directions and momentum-based updates. This design expands the exploration of the counterattack space and increases the diversity of perturbations, which facilitates the discovery of more generalizable counterattacks and ultimately improves the ability to neutralize adversarial perturbations. Meanwhile, we present a directional sensitivity score based on averaged cosine similarity to boost DOC by improving example discrimination and adaptively modulating the counterattack strength. Extensive experiments on 16 datasets demonstrate that DOC improves adversarial robustness under various attacks while maintaining competitive clean accuracy. Code is available at https://github.com/bookman233/DOC.

Authors:Penghui Niu, Taotao Cai, Jiashuai She, Yajuan Zhang, Junhua Gua, Ping Zhanga, Jungong Hane, Jianxin Li
Title: USF-Net: A Unified Spatiotemporal Fusion Network for Ground-Based Remote Sensing Cloud Image Sequence Extrapolation
Abstract:
Ground-based remote sensing cloud image sequence extrapolation is a key research area in the development of photovoltaic power systems. However, existing approaches exhibit several limitations:(1)they primarily rely on static kernels to augment feature information, lacking adaptive mechanisms to extract features at varying resolutions dynamically;(2)temporal guidance is insufficient, leading to suboptimal modeling of long-range spatiotemporal dependencies; and(3)the quadratic computational cost of attention mechanisms is often overlooked, limiting efficiency in practical deployment. To address these challenges, we propose USF-Net, a Unified Spatiotemporal Fusion Network that integrates adaptive large-kernel convolutions and a low-complexity attention mechanism, combining temporal flow information within an encoder-decoder framework. Specifically, the encoder employs three basic layers to extract features. Followed by the USTM, which comprises:(1)a SiB equipped with a SSM that dynamically captures multi-scale contextual information, and(2)a TiB featuring a TAM that effectively models long-range temporal dependencies while maintaining computational efficiency. In addition, a DSM with a TGM is introduced to enable unified modeling of temporally guided spatiotemporal dependencies. On the decoder side, a DUM is employed to address the common "ghosting effect." It utilizes the initial temporal state as an attention operator to preserve critical motion signatures. As a key contribution, we also introduce and release the ASI-CIS dataset. Extensive experiments on ASI-CIS demonstrate that USF-Net significantly outperforms state-of-the-art methods, establishing a superior balance between prediction accuracy and computational efficiency for ground-based cloud extrapolation. The dataset and source code will be available at https://github.com/she1110/ASI-CIS.

Authors:Weicheng Gao
Title: RadHARSimulator V2: Video to Doppler Generator
Abstract:
Radar-based human activity recognition (HAR) still lacks a comprehensive simulation method. Existing software is developed based on models or motion-captured data, resulting in limited flexibility. To address this issue, a simulator that directly generates Doppler spectra from recorded video footage (RadHARSimulator V2) is presented in this paper. Both computer vision and radar modules are included in the simulator. In computer vision module, the real-time model for object detection with global nearest neighbor is first used to detect and track human targets in the video. Then, the high-resolution network is used to estimate two-dimensional poses of the detected human targets. Next, the three-dimensional poses of the detected human targets are obtained by nearest matching method. Finally, smooth temporal three-dimensional pose estimation is achieved through Kalman filtering. In radar module, pose interpolation and smoothing are first achieved through the Savitzky-Golay method. Second, the delay model and the mirror method are used to simulate echoes in both free-space and through-the-wall scenarios. Then, range-time map is generated using pulse compression, moving target indication, and DnCNN. Next, Doppler-time map (DTM) is generated using short-time Fourier transform and DnCNN again. Finally, the ridge features on the DTM are extracted using the maximum local energy method. In addition, a hybrid parallel-serial neural network architecture is proposed for radar-based HAR. Numerical experiments are conducted and analyzed to demonstrate the effectiveness of the designed simulator and the proposed network model. The open-source code of this work can be found in: https://github.com/JoeyBGOfficial/RadHARSimulatorV2-Video-to-Doppler-Generator.

Authors:Liu Yu, Zhonghao Chen, Ping Kuang, Zhikun Feng, Fan Zhou, Lan Wang, Gillian Dobbie
Title: Causally-Grounded Dual-Path Attention Intervention for Object Hallucination Mitigation in LVLMs
Abstract:
Object hallucination remains a critical challenge in Large Vision-Language Models (LVLMs), where models generate content inconsistent with visual inputs. Existing language-decoder based mitigation approaches often regulate visual or textual attention independently, overlooking their interaction as two key causal factors. To address this, we propose Owl (Bi-mOdal attention reWeighting for Layer-wise hallucination mitigation), a causally-grounded framework that models hallucination process via a structural causal graph, treating decomposed visual and textual attentions as mediators. We introduce VTACR (Visual-to-Textual Attention Contribution Ratio), a novel metric that quantifies the modality contribution imbalance during decoding. Our analysis reveals that hallucinations frequently occur in low-VTACR scenarios, where textual priors dominate and visual grounding is weakened. To mitigate this, we design a fine-grained attention intervention mechanism that dynamically adjusts token- and layer-wise attention guided by VTACR signals. Finally, we propose a dual-path contrastive decoding strategy: one path emphasizes visually grounded predictions, while the other amplifies hallucinated ones -- letting visual truth shine and hallucination collapse. Experimental results on the POPE and CHAIR benchmarks show that Owl achieves significant hallucination reduction, setting a new SOTA in faithfulness while preserving vision-language understanding capability. Our code is available at https://github.com/CikZ2023/OWL

Authors:Yuxi Liu, Dengchao Jin, Shuai Huo, Jiawen Gu, Chao Zhou, Huihui Bai, Ming Lu, Zhan Ma
Title: Neural B-frame Video Compression with Bi-directional Reference Harmonization
Abstract:
Neural video compression (NVC) has made significant progress in recent years, while neural B-frame video compression (NBVC) remains underexplored compared to P-frame compression. NBVC can adopt bi-directional reference frames for better compression performance. However, NBVC's hierarchical coding may complicate continuous temporal prediction, especially at some hierarchical levels with a large frame span, which could cause the contribution of the two reference frames to be unbalanced. To optimize reference information utilization, we propose a novel NBVC method, termed Bi-directional Reference Harmonization Video Compression (BRHVC), with the proposed Bi-directional Motion Converge (BMC) and Bi-directional Contextual Fusion (BCF). BMC converges multiple optical flows in motion compression, leading to more accurate motion compensation on a larger scale. Then BCF explicitly models the weights of reference contexts under the guidance of motion compensation accuracy. With more efficient motions and contexts, BRHVC can effectively harmonize bi-directional references. Experimental results indicate that our BRHVC outperforms previous state-of-the-art NVC methods, even surpassing the traditional coding, VTM-RA (under random access configuration), on the HEVC datasets. The source code is released at https://github.com/kwai/NVC.

Authors:Tianyu Guo, Shanwei Zhao, Shiai Zhu, Chenguang Ma
Title: SPEED-Q: Staged Processing with Enhanced Distillation towards Efficient Low-bit On-device VLM Quantization
Abstract:
Deploying Vision-Language Models (VLMs) on edge devices (e.g., smartphones and robots) is crucial for enabling low-latency and privacy-preserving intelligent applications. Given the resource constraints of these devices, quantization offers a promising solution by improving memory efficiency and reducing bandwidth requirements, thereby facilitating the deployment of VLMs. However, existing research has rarely explored aggressive quantization on VLMs, particularly for the models ranging from 1B to 2B parameters, which are more suitable for resource-constrained edge devices. In this paper, we propose SPEED-Q, a novel Staged Processing with Enhanced Distillation framework for VLM low-bit weight-only quantization that systematically addresses the following two critical obstacles: (1) significant discrepancies in quantization sensitivity between vision (ViT) and language (LLM) components in VLMs; (2) training instability arising from the reduced numerical precision inherent in low-bit quantization. In SPEED-Q, a staged sensitivity adaptive mechanism is introduced to effectively harmonize performance across different modalities. We further propose a distillation-enhanced quantization strategy to stabilize the training process and reduce data dependence. Together, SPEED-Q enables accurate, stable, and data-efficient quantization of complex VLMs. SPEED-Q is the first framework tailored for quantizing entire small-scale billion-parameter VLMs to low bits. Extensive experiments across multiple benchmarks demonstrate that SPEED-Q achieves up to 6x higher accuracy than existing quantization methods under 2-bit settings and consistently outperforms prior on-device VLMs under both 2-bit and 4-bit settings. Our code and models are available at https://github.com/antgroup/SPEED-Q.

Authors:Zimao Lu, Hui Xu, Bing Liu, Ke Wang
Title: Negative Entity Suppression for Zero-Shot Captioning with Synthetic Images
Abstract:
Text-only training provides an attractive approach to address data scarcity challenges in zero-shot image captioning (ZIC), avoiding the expense of collecting paired image-text annotations. However, although these approaches perform well within training domains, they suffer from poor cross-domain generalization, often producing hallucinated content when encountering novel visual environments. Retrieval-based methods attempt to mitigate this limitation by leveraging external knowledge, but they can paradoxically exacerbate hallucination when retrieved captions contain entities irrelevant to the inputs. We introduce the concept of negative entities--objects that appear in generated caption but are absent from the input--and propose Negative Entity Suppression (NES) to tackle this challenge. NES seamlessly integrates three stages: (1) it employs synthetic images to ensure consistent image-to-text retrieval across both training and inference; (2) it filters negative entities from retrieved content to enhance accuracy; and (3) it applies attention-level suppression using identified negative entities to further minimize the impact of hallucination-prone features. Evaluation across multiple benchmarks demonstrates that NES maintains competitive in-domain performance while improving cross-domain transfer and reducing hallucination rates, achieving new state-of-the-art results in ZIC. Our code is available at https://github.com/nidongpinyinme/NESCap.

Authors:Sanyukta Adap, Ujjwal Baid, Spyridon Bakas
Title: Classifying Histopathologic Glioblastoma Sub-regions with EfficientNet
Abstract:
Glioblastoma (GBM) is the most common aggressive, fast-growing brain tumor, with a grim prognosis. Despite clinical diagnostic advancements, there have not been any substantial improvements to patient prognosis. Histopathological assessment of excised tumors is the first line of clinical diagnostic routine. We hypothesize that automated, robust, and accurate identification of distinct histological sub-regions within GBM could contribute to morphologically understanding this disease at scale. In this study, we designed a four-step deep learning approach to classify six (6) histopathological regions and quantitatively evaluated it on the BraTS-Path 2024 challenge dataset, which includes digitized Hematoxylin \& Eosin (H\&E) stained GBM tissue sections annotated for six distinct regions. We used the challenge's publicly available training dataset to develop and evaluate the effectiveness of several variants of EfficientNet architectures (i.e., B0, B1, B2, B3, B4). EfficientNet-B1 and EfficientNet-B4 achieved the best performance, achieving an F1 score of 0.98 in a 5-fold cross-validation configuration using the BraTS-Path training set. The quantitative performance evaluation of our proposed approach with EfficientNet-B1 on the BraTS-Path hold-out validation data and the final hidden testing data yielded F1 scores of 0.546 and 0.517, respectively, for the associated 6-class classification task. The difference in the performance on training, validation, and testing data highlights the challenge of developing models that generalize well to new data, which is crucial for clinical applications. The source code of the proposed approach can be found at the GitHub repository of Indiana University Division of Computational Pathology: https://github.com/IUCompPath/brats-path-2024-enet.

Authors:Hu Cui, Wenqiang Hua, Renjing Huang, Shurui Jia, Tessai Hayama
Title: SasMamba: A Lightweight Structure-Aware Stride State Space Model for 3D Human Pose Estimation
Abstract:
Recently, the Mamba architecture based on State Space Models (SSMs) has gained attention in 3D human pose estimation due to its linear complexity and strong global modeling capability. However, existing SSM-based methods typically apply manually designed scan operations to flatten detected 2D pose sequences into purely temporal sequences, either locally or globally. This approach disrupts the inherent spatial structure of human poses and entangles spatial and temporal features, making it difficult to capture complex pose dependencies. To address these limitations, we propose the Skeleton Structure-Aware Stride SSM (SAS-SSM), which first employs a structure-aware spatiotemporal convolution to dynamically capture essential local interactions between joints, and then applies a stride-based scan strategy to construct multi-scale global structural representations. This enables flexible modeling of both local and global pose information while maintaining linear computational complexity. Built upon SAS-SSM, our model SasMamba achieves competitive 3D pose estimation performance with significantly fewer parameters compared to existing hybrid models. The source code is available at https://hucui2022.github.io/sasmamba_proj/.

Authors:Hyunho Kook, Byeongho Yu, Jeong Min Oh, Eunhyeok Park
Title: Stabilizing Direct Training of Spiking Neural Networks: Membrane Potential Initialization and Threshold-robust Surrogate Gradient
Abstract:
Recent advancements in the direct training of Spiking Neural Networks (SNNs) have demonstrated high-quality outputs even at early timesteps, paving the way for novel energy-efficient AI paradigms. However, the inherent non-linearity and temporal dependencies in SNNs introduce persistent challenges, such as temporal covariate shift (TCS) and unstable gradient flow with learnable neuron thresholds. In this paper, we present two key innovations: MP-Init (Membrane Potential Initialization) and TrSG (Threshold-robust Surrogate Gradient). MP-Init addresses TCS by aligning the initial membrane potential with its stationary distribution, while TrSG stabilizes gradient flow with respect to threshold voltage during training. Extensive experiments validate our approach, achieving state-of-the-art accuracy on both static and dynamic image datasets. The code is available at: https://github.com/kookhh0827/SNN-MP-Init-TRSG

Authors:Assaf Singer, Noam Rotstein, Amir Mann, Ron Kimmel, Or Litany
Title: Time-to-Move: Training-Free Motion Controlled Video Generation via Dual-Clock Denoising
Abstract:
Diffusion-based video generation can create realistic videos, yet existing image- and text-based conditioning fails to offer precise motion control. Prior methods for motion-conditioned synthesis typically require model-specific fine-tuning, which is computationally expensive and restrictive. We introduce Time-to-Move (TTM), a training-free, plug-and-play framework for motion- and appearance-controlled video generation with image-to-video (I2V) diffusion models. Our key insight is to use crude reference animations obtained through user-friendly manipulations such as cut-and-drag or depth-based reprojection. Motivated by SDEdit's use of coarse layout cues for image editing, we treat the crude animations as coarse motion cues and adapt the mechanism to the video domain. We preserve appearance with image conditioning and introduce dual-clock denoising, a region-dependent strategy that enforces strong alignment in motion-specified regions while allowing flexibility elsewhere, balancing fidelity to user intent with natural dynamics. This lightweight modification of the sampling process incurs no additional training or runtime cost and is compatible with any backbone. Extensive experiments on object and camera motion benchmarks show that TTM matches or exceeds existing training-based baselines in realism and motion control. Beyond this, TTM introduces a unique capability: precise appearance control through pixel-level conditioning, exceeding the limits of text-only prompting. Visit our project page for video examples and code: https://time-to-move.github.io/.

Authors:Shuhang Chen, Hangjie Yuan, Pengwei Liu, Hanxue Gu, Tao Feng, Dong Ni
Title: SAMora: Enhancing SAM through Hierarchical Self-Supervised Pre-Training for Medical Images
Abstract:
The Segment Anything Model (SAM) has demonstrated significant potential in medical image segmentation. Yet, its performance is limited when only a small amount of labeled data is available, while there is abundant valuable yet often overlooked hierarchical information in medical data. To address this limitation, we draw inspiration from self-supervised learning and propose SAMora, an innovative framework that captures hierarchical medical knowledge by applying complementary self-supervised learning objectives at the image, patch, and pixel levels. To fully exploit the complementarity of hierarchical knowledge within LoRAs, we introduce HL-Attn, a hierarchical fusion module that integrates multi-scale features while maintaining their distinct characteristics. SAMora is compatible with various SAM variants, including SAM2, SAMed, and H-SAM. Experimental results on the Synapse, LA, and PROMISE12 datasets demonstrate that SAMora outperforms existing SAM variants. It achieves state-of-the-art performance in both few-shot and fully supervised settings while reducing fine-tuning epochs by 90%. The code is available at https://github.com/ShChen233/SAMora.

Authors:Kosta Dakic, Kanchana Thilakarathna, Rodrigo N. Calheiros, Teng Joon Lim
Title: A Multi-Drone Multi-View Dataset and Deep Learning Framework for Pedestrian Detection and Tracking
Abstract:
Multi-drone surveillance systems offer enhanced coverage and robustness for pedestrian tracking, yet existing approaches struggle with dynamic camera positions and complex occlusions. This paper introduces MATRIX (Multi-Aerial TRacking In compleX environments), a comprehensive dataset featuring synchronized footage from eight drones with continuously changing positions, and a novel deep learning framework for multi-view detection and tracking. Unlike existing datasets that rely on static cameras or limited drone coverage, MATRIX provides a challenging scenario with 40 pedestrians and a significant architectural obstruction in an urban environment. Our framework addresses the unique challenges of dynamic drone-based surveillance through real-time camera calibration, feature-based image registration, and multi-view feature fusion in bird's-eye-view (BEV) representation. Experimental results demonstrate that while static camera methods maintain over 90\% detection and tracking precision and accuracy metrics in a simplified MATRIX environment without an obstruction, 10 pedestrians and a much smaller observational area, their performance significantly degrades in the complex environment. Our proposed approach maintains robust performance with $\sim$90\% detection and tracking accuracy, as well as successfully tracks $\sim$80\% of trajectories under challenging conditions. Transfer learning experiments reveal strong generalization capabilities, with the pretrained model achieving much higher detection and tracking accuracy performance compared to training the model from scratch. Additionally, systematic camera dropout experiments reveal graceful performance degradation, demonstrating practical robustness for real-world deployments where camera failures may occur. The MATRIX dataset and framework provide essential benchmarks for advancing dynamic multi-view surveillance systems.

Authors:Jingtong Yue, Ziqi Huang, Zhaoxi Chen, Xintao Wang, Pengfei Wan, Ziwei Liu
Title: Simulating the Visual World with Artificial Intelligence: A Roadmap
Abstract:
The landscape of video generation is shifting, from a focus on generating visually appealing clips to building virtual environments that support interaction and maintain physical plausibility. These developments point toward the emergence of video foundation models that function not only as visual generators but also as implicit world models, models that simulate the physical dynamics, agent-environment interactions, and task planning that govern real or imagined worlds. This survey provides a systematic overview of this evolution, conceptualizing modern video foundation models as the combination of two core components: an implicit world model and a video renderer. The world model encodes structured knowledge about the world, including physical laws, interaction dynamics, and agent behavior. It serves as a latent simulation engine that enables coherent visual reasoning, long-term temporal consistency, and goal-driven planning. The video renderer transforms this latent simulation into realistic visual observations, effectively producing videos as a "window" into the simulated world. We trace the progression of video generation through four generations, in which the core capabilities advance step by step, ultimately culminating in a world model, built upon a video generation model, that embodies intrinsic physical plausibility, real-time multimodal interaction, and planning capabilities spanning multiple spatiotemporal scales. For each generation, we define its core characteristics, highlight representative works, and examine their application domains such as robotics, autonomous driving, and interactive gaming. Finally, we discuss open challenges and design principles for next-generation world models, including the role of agent intelligence in shaping and evaluating these systems. An up-to-date list of related works is maintained at this link.

Authors:Randall Balestriero, Yann LeCun
Title: LeJEPA: Provable and Scalable Self-Supervised Learning Without the Heuristics
Abstract:
Learning manipulable representations of the world and its dynamics is central to AI. Joint-Embedding Predictive Architectures (JEPAs) offer a promising blueprint, but lack of practical guidance and theory has led to ad-hoc R&D. We present a comprehensive theory of JEPAs and instantiate it in {\bf LeJEPA}, a lean, scalable, and theoretically grounded training objective. First, we identify the isotropic Gaussian as the optimal distribution that JEPAs' embeddings should follow to minimize downstream prediction risk. Second, we introduce a novel objective--{\bf Sketched Isotropic Gaussian Regularization} (SIGReg)--to constrain embeddings to reach that ideal distribution. Combining the JEPA predictive loss with SIGReg yields LeJEPA with numerous theoretical and practical benefits: (i) single trade-off hyperparameter, (ii) linear time and memory complexity, (iii) stability across hyper-parameters, architectures (ResNets, ViTs, ConvNets) and domains, (iv) heuristics-free, e.g., no stop-gradient, no teacher-student, no hyper-parameter schedulers, and (v) distributed training-friendly implementation requiring only $\approx$50 lines of code. Our empirical validation covers 10+ datasets, 60+ architectures, all with varying scales and domains. As an example, using imagenet-1k for pretraining and linear evaluation with frozen backbone, LeJEPA reaches 79\% with a ViT-H/14. We hope that the simplicity and theory-friendly ecosystem offered by LeJEPA will reestablish self-supervised pre-training as a core pillar of AI research (\href{https://github.com/rbalestr-lab/lejepa}{GitHub repo}).

Authors:Yunhong He, Zhengqing Yuan, Zhengzhong Tu, Yanfang Ye, Lichao Sun
Title: 3D4D: An Interactive, Editable, 4D World Model via 3D Video Generation
Abstract:
We introduce 3D4D, an interactive 4D visualization framework that integrates WebGL with Supersplat rendering. It transforms static images and text into coherent 4D scenes through four core modules and employs a foveated rendering strategy for efficient, real-time multi-modal interaction. This framework enables adaptive, user-driven exploration of complex 4D environments. The project page and code are available at https://yunhonghe1021.github.io/NOVA/.

Authors:Sorachi Kato, Ryoma Yataka, Pu Perry Wang, Pedro Miraldo, Takuya Fujihashi, Petros Boufounos
Title: RAPTR: Radar-based 3D Pose Estimation using Transformer
Abstract:
Radar-based indoor 3D human pose estimation typically relied on fine-grained 3D keypoint labels, which are costly to obtain especially in complex indoor settings involving clutter, occlusions, or multiple people. In this paper, we propose \textbf{RAPTR} (RAdar Pose esTimation using tRansformer) under weak supervision, using only 3D BBox and 2D keypoint labels which are considerably easier and more scalable to collect. Our RAPTR is characterized by a two-stage pose decoder architecture with a pseudo-3D deformable attention to enhance (pose/joint) queries with multi-view radar features: a pose decoder estimates initial 3D poses with a 3D template loss designed to utilize the 3D BBox labels and mitigate depth ambiguities; and a joint decoder refines the initial poses with 2D keypoint labels and a 3D gravity loss. Evaluated on two indoor radar datasets, RAPTR outperforms existing methods, reducing joint position error by $34.3\%$ on HIBER and $76.9\%$ on MMVR. Our implementation is available at https://github.com/merlresearch/radar-pose-transformer.

Authors:Xinyu Zhou, Yu Wu, Jiayao Ma, Wenhao Wang, Min Cao, Mang Ye
Title: Text-based Aerial-Ground Person Retrieval
Abstract:
This work introduces Text-based Aerial-Ground Person Retrieval (TAG-PR), which aims to retrieve person images from heterogeneous aerial and ground views with textual descriptions. Unlike traditional Text-based Person Retrieval (T-PR), which focuses solely on ground-view images, TAG-PR introduces greater practical significance and presents unique challenges due to the large viewpoint discrepancy across images. To support this task, we contribute: (1) TAG-PEDES dataset, constructed from public benchmarks with automatically generated textual descriptions, enhanced by a diversified text generation paradigm to ensure robustness under view heterogeneity; and (2) TAG-CLIP, a novel retrieval framework that addresses view heterogeneity through a hierarchically-routed mixture of experts module to learn view-specific and view-agnostic features and a viewpoint decoupling strategy to decouple view-specific features for better cross-modal alignment. We evaluate the effectiveness of TAG-CLIP on both the proposed TAG-PEDES dataset and existing T-PR benchmarks. The dataset and code are available at https://github.com/Flame-Chasers/TAG-PR.

Authors:Zhiyang Chen, Chen Zhang, Hao Fang, Runmin Cong
Title: Empowering DINO Representations for Underwater Instance Segmentation via Aligner and Prompter
Abstract:
Underwater instance segmentation (UIS), integrating pixel-level understanding and instance-level discrimination, is a pivotal technology in marine resource exploration and ecological protection. In recent years, large-scale pretrained visual foundation models, exemplified by DINO, have advanced rapidly and demonstrated remarkable performance on complex downstream tasks. In this paper, we demonstrate that DINO can serve as an effective feature learner for UIS, and we introduce DiveSeg, a novel framework built upon two insightful components: (1) The AquaStyle Aligner, designed to embed underwater color style features into the DINO fine-tuning process, facilitating better adaptation to the underwater domain. (2) The ObjectPrior Prompter, which incorporates binary segmentation-based prompts to deliver object-level priors, provides essential guidance for instance segmentation task that requires both object- and instance-level reasoning. We conduct thorough experiments on the popular UIIS and USIS10K datasets, and the results show that DiveSeg achieves the state-of-the-art performance. Code: https://github.com/ettof/Diveseg.

Authors:Solveig Thrun, Stine Hansen, Zijun Sun, Nele Blum, Suaiba A. Salahuddin, Xin Wang, Kristoffer Wickstrøm, Elisabeth Wetzer, Robert Jenssen, Maik Stille, Michael Kampffmeyer
Title: The Impact of Longitudinal Mammogram Alignment on Breast Cancer Risk Assessment
Abstract:
Regular mammography screening is crucial for early breast cancer detection. By leveraging deep learning-based risk models, screening intervals can be personalized, especially for high-risk individuals. While recent methods increasingly incorporate longitudinal information from prior mammograms, accurate spatial alignment across time points remains a key challenge. Misalignment can obscure meaningful tissue changes and degrade model performance. In this study, we provide insights into various alignment strategies, image-based registration, feature-level (representation space) alignment with and without regularization, and implicit alignment methods, for their effectiveness in longitudinal deep learning-based risk modeling. Using two large-scale mammography datasets, we assess each method across key metrics, including predictive accuracy, precision, recall, and deformation field quality. Our results show that image-based registration consistently outperforms the more recently favored feature-based and implicit approaches across all metrics, enabling more accurate, temporally consistent predictions and generating smooth, anatomically plausible deformation fields. Although regularizing the deformation field improves deformation quality, it reduces the risk prediction performance of feature-level alignment. Applying image-based deformation fields within the feature space yields the best risk prediction performance. These findings underscore the importance of image-based deformation fields for spatial alignment in longitudinal risk modeling, offering improved prediction accuracy and robustness. This approach has strong potential to enhance personalized screening and enable earlier interventions for high-risk individuals. The code is available at https://github.com/sot176/Mammogram_Alignment_Study_Risk_Prediction.git, allowing full reproducibility of the results.

Authors:Nan Bao, Yifan Zhao, Lin Zhu, Jia Li
Title: Re-coding for Uncertainties: Edge-awareness Semantic Concordance for Resilient Event-RGB Segmentation
Abstract:
Semantic segmentation has achieved great success in ideal conditions. However, when facing extreme conditions (e.g., insufficient light, fierce camera motion), most existing methods suffer from significant information loss of RGB, severely damaging segmentation results. Several researches exploit the high-speed and high-dynamic event modality as a complement, but event and RGB are naturally heterogeneous, which leads to feature-level mismatch and inferior optimization of existing multi-modality methods. Different from these researches, we delve into the edge secret of both modalities for resilient fusion and propose a novel Edge-awareness Semantic Concordance framework to unify the multi-modality heterogeneous features with latent edge cues. In this framework, we first propose Edge-awareness Latent Re-coding, which obtains uncertainty indicators while realigning event-RGB features into unified semantic space guided by re-coded distribution, and transfers event-RGB distributions into re-coded features by utilizing a pre-established edge dictionary as clues. We then propose Re-coded Consolidation and Uncertainty Optimization, which utilize re-coded edge features and uncertainty indicators to solve the heterogeneous event-RGB fusion issues under extreme conditions. We establish two synthetic and one real-world event-RGB semantic segmentation datasets for extreme scenario comparisons. Experimental results show that our method outperforms the state-of-the-art by a 2.55% mIoU on our proposed DERS-XS, and possesses superior resilience under spatial occlusion. Our code and datasets are publicly available at https://github.com/iCVTEAM/ESC.

Authors:Fengyi Fu, Mengqi Huang, Lei Zhang, Zhendong Mao
Title: LayerEdit: Disentangled Multi-Object Editing via Conflict-Aware Multi-Layer Learning
Abstract:
Text-driven multi-object image editing which aims to precisely modify multiple objects within an image based on text descriptions, has recently attracted considerable interest. Existing works primarily follow the localize-editing paradigm, focusing on independent object localization and editing while neglecting critical inter-object interactions. However, this work points out that the neglected attention entanglements in inter-object conflict regions, inherently hinder disentangled multi-object editing, leading to either inter-object editing leakage or intra-object editing constraints. We thereby propose a novel multi-layer disentangled editing framework LayerEdit, a training-free method which, for the first time, through precise object-layered decomposition and coherent fusion, enables conflict-free object-layered editing. Specifically, LayerEdit introduces a novel "decompose-editingfusion" framework, consisting of: (1) Conflict-aware Layer Decomposition module, which utilizes an attention-aware IoU scheme and time-dependent region removing, to enhance conflict awareness and suppression for layer decomposition. (2) Object-layered Editing module, to establish coordinated intra-layer text guidance and cross-layer geometric mapping, achieving disentangled semantic and structural modifications. (3) Transparency-guided Layer Fusion module, to facilitate structure-coherent inter-object layer fusion through precise transparency guidance learning. Extensive experiments verify the superiority of LayerEdit over existing methods, showing unprecedented intra-object controllability and inter-object coherence in complex multi-object scenarios. Codes are available at: https://github.com/fufy1024/LayerEdit.

Authors:Chenyu Hu, Xiaotong Li, Hao Zhu, Biao Hou
Title: Hierarchical Direction Perception via Atomic Dot-Product Operators for Rotation-Invariant Point Clouds Learning
Abstract:
Point cloud processing has become a cornerstone technology in many 3D vision tasks. However, arbitrary rotations introduce variations in point cloud orientations, posing a long-standing challenge for effective representation learning. The core of this issue is the disruption of the point cloud's intrinsic directional characteristics caused by rotational perturbations. Recent methods attempt to implicitly model rotational equivariance and invariance, preserving directional information and propagating it into deep semantic spaces. Yet, they often fall short of fully exploiting the multiscale directional nature of point clouds to enhance feature representations. To address this, we propose the Direction-Perceptive Vector Network (DiPVNet). At its core is an atomic dot-product operator that simultaneously encodes directional selectivity and rotation invariance--endowing the network with both rotational symmetry modeling and adaptive directional perception. At the local level, we introduce a Learnable Local Dot-Product (L2DP) Operator, which enables interactions between a center point and its neighbors to adaptively capture the non-uniform local structures of point clouds. At the global level, we leverage generalized harmonic analysis to prove that the dot-product between point clouds and spherical sampling vectors is equivalent to a direction-aware spherical Fourier transform (DASFT). This leads to the construction of a global directional response spectrum for modeling holistic directional structures. We rigorously prove the rotation invariance of both operators. Extensive experiments on challenging scenarios involving noise and large-angle rotations demonstrate that DiPVNet achieves state-of-the-art performance on point cloud classification and segmentation tasks. Our code is available at https://github.com/wxszreal0/DiPVNet.

Authors:Arnav Aditya, Nitin Kumar, Saurabh Shigwan
Title: UCDSC: Open Set UnCertainty aware Deep Simplex Classifier for Medical Image Datasets
Abstract:
Driven by advancements in deep learning, computer-aided diagnoses have made remarkable progress. However, outside controlled laboratory settings, algorithms may encounter several challenges. In the medical domain, these difficulties often stem from limited data availability due to ethical and legal restrictions, as well as the high cost and time required for expert annotations-especially in the face of emerging or rare diseases. In this context, open-set recognition plays a vital role by identifying whether a sample belongs to one of the known classes seen during training or should be rejected as an unknown. Recent studies have shown that features learned in the later stages of deep neural networks are observed to cluster around their class means, which themselves are arranged as individual vertices of a regular simplex [32]. The proposed method introduces a loss function designed to reject samples of unknown classes effectively by penalizing open space regions using auxiliary datasets. This approach achieves significant performance gain across four MedMNIST datasets-BloodMNIST, OCTMNIST, DermaMNIST, TissueMNIST and a publicly available skin dataset [29] outperforming state-of-the-art techniques.

Authors:Zhen Yang, Wenyi Hong, Mingde Xu, Xinyue Fan, Weihan Wang, Jiele Cheng, Xiaotao Gu, Jie Tang
Title: UI2Code^N: A Visual Language Model for Test-Time Scalable Interactive UI-to-Code Generation
Abstract:
User interface (UI) programming is a core yet highly complex part of modern software development. Recent advances in visual language models (VLMs) highlight the potential of automatic UI coding, but current approaches face two key limitations: multimodal coding capabilities remain underdeveloped, and single-turn paradigms make little use of iterative visual feedback. We address these challenges with an interactive UI-to-code paradigm that better reflects real-world workflows and raises the upper bound of achievable performance. Under this paradigm, we present UI2Code$^\text{N}$, a visual language model trained through staged pretraining, fine-tuning, and reinforcement learning to achieve foundational improvements in multimodal coding. The model unifies three key capabilities: UI-to-code generation, UI editing, and UI polishing. We further explore test-time scaling for interactive generation, enabling systematic use of multi-turn feedback. Experiments on UI-to-code and UI polishing benchmarks show that UI2Code$^\text{N}$ establishes a new state of the art among open-source models and achieves performance comparable to leading closed-source models such as Claude-4-Sonnet and GPT-5. Our code and models are available at https://github.com/zai-org/UI2Code_N.

Authors:Samet Hicsonmez, Abd El Rahman Shabayek, Djamila Aouada
Title: VLMDiff: Leveraging Vision-Language Models for Multi-Class Anomaly Detection with Diffusion
Abstract:
Detecting visual anomalies in diverse, multi-class real-world images is a significant challenge. We introduce \ours, a novel unsupervised multi-class visual anomaly detection framework. It integrates a Latent Diffusion Model (LDM) with a Vision-Language Model (VLM) for enhanced anomaly localization and detection. Specifically, a pre-trained VLM with a simple prompt extracts detailed image descriptions, serving as additional conditioning for LDM training. Current diffusion-based methods rely on synthetic noise generation, limiting their generalization and requiring per-class model training, which hinders scalability. \ours, however, leverages VLMs to obtain normal captions without manual annotations or additional training. These descriptions condition the diffusion model, learning a robust normal image feature representation for multi-class anomaly detection. Our method achieves competitive performance, improving the pixel-level Per-Region-Overlap (PRO) metric by up to 25 points on the Real-IAD dataset and 8 points on the COCO-AD dataset, outperforming state-of-the-art diffusion-based approaches. Code is available at https://github.com/giddyyupp/VLMDiff.

Authors:Ning Wang, Long Yu, Cong Hua, Guangming Zhu, Lin Mei, Syed Afaq Ali Shah, Mohammed Bennamoun, Liang Zhang
Title: Multi-Granularity Mutual Refinement Network for Zero-Shot Learning
Abstract:
Zero-shot learning (ZSL) aims to recognize unseen classes with zero samples by transferring semantic knowledge from seen classes. Current approaches typically correlate global visual features with semantic information (i.e., attributes) or align local visual region features with corresponding attributes to enhance visual-semantic interactions. Although effective, these methods often overlook the intrinsic interactions between local region features, which can further improve the acquisition of transferable and explicit visual features. In this paper, we propose a network named Multi-Granularity Mutual Refinement Network (Mg-MRN), which refine discriminative and transferable visual features by learning decoupled multi-granularity features and cross-granularity feature interactions. Specifically, we design a multi-granularity feature extraction module to learn region-level discriminative features through decoupled region feature mining. Then, a cross-granularity feature fusion module strengthens the inherent interactions between region features of varying granularities. This module enhances the discriminability of representations at each granularity level by integrating region representations from adjacent hierarchies, further improving ZSL recognition performance. Extensive experiments on three popular ZSL benchmark datasets demonstrate the superiority and competitiveness of our proposed Mg-MRN method. Our code is available at https://github.com/NingWang2049/Mg-MRN.

Authors:Abhijay Ghildyal, Rajesh Sureddi, Nabajeet Barman, Saman Zadtootaghaj, Alan Bovik
Title: Non-Aligned Reference Image Quality Assessment for Novel View Synthesis
Abstract:
Evaluating the perceptual quality of Novel View Synthesis (NVS) images remains a key challenge, particularly in the absence of pixel-aligned ground truth references. Full-Reference Image Quality Assessment (FR-IQA) methods fail under misalignment, while No-Reference (NR-IQA) methods struggle with generalization. In this work, we introduce a Non-Aligned Reference (NAR-IQA) framework tailored for NVS, where it is assumed that the reference view shares partial scene content but lacks pixel-level alignment. We constructed a large-scale image dataset containing synthetic distortions targeting Temporal Regions of Interest (TROI) to train our NAR-IQA model. Our model is built on a contrastive learning framework that incorporates LoRA-enhanced DINOv2 embeddings and is guided by supervision from existing IQA methods. We train exclusively on synthetically generated distortions, deliberately avoiding overfitting to specific real NVS samples and thereby enhancing the model's generalization capability. Our model outperforms state-of-the-art FR-IQA, NR-IQA, and NAR-IQA methods, achieving robust performance on both aligned and non-aligned references. We also conducted a novel user study to gather data on human preferences when viewing non-aligned references in NVS. We find strong correlation between our proposed quality prediction model and the collected subjective ratings. For dataset and code, please visit our project page: https://stootaghaj.github.io/nova-project/

Authors:Jun Sun, Xinxin Zhang, Simin Hong, Jian Zhu, Xiang Gao
Title: Boomda: Balanced Multi-objective Optimization for Multimodal Domain Adaptation
Abstract:
Multimodal learning, while contributing to numerous success stories across various fields, faces the challenge of prohibitively expensive manual annotation. To address the scarcity of annotated data, a popular solution is unsupervised domain adaptation, which has been extensively studied in unimodal settings yet remains less explored in multimodal settings. In this paper, we investigate heterogeneous multimodal domain adaptation, where the primary challenge is the varying domain shifts of different modalities from the source to the target domain. We first introduce the information bottleneck method to learn representations for each modality independently, and then match the source and target domains in the representation space with correlation alignment. To balance the domain alignment of all modalities, we formulate the problem as a multi-objective task, aiming for a Pareto optimal solution. By exploiting the properties specific to our model, the problem can be simplified to a quadratic programming problem. Further approximation yields a closed-form solution, leading to an efficient modality-balanced multimodal domain adaptation algorithm. The proposed method features \textbf{B}alanced multi-\textbf{o}bjective \textbf{o}ptimization for \textbf{m}ultimodal \textbf{d}omain \textbf{a}daptation, termed \textbf{Boomda}. Extensive empirical results showcase the effectiveness of the proposed approach and demonstrate that Boomda outperforms the competing schemes. The code is is available at: https://github.com/sunjunaimer/Boomda.git.

Authors:Mehmet Batuhan Duman, Alejandro Carnero, Cristian Martín, Daniel Garrido, Manuel Díaz
Title: Foam Segmentation in Wastewater Treatment Plants: A Federated Learning Approach with Segment Anything Model 2
Abstract:
Foam formation in Wastewater Treatment Plants (WTPs) is a major challenge that can reduce treatment efficiency and increase costs. The ability to automatically examine changes in real-time with respect to the percentage of foam can be of great benefit to the plant. However, large amounts of labeled data are required to train standard Machine Learning (ML) models. The development of these systems is slow due to the scarcity and heterogeneity of labeled data. Additionally, the development is often hindered by the fact that different WTPs do not share their data due to privacy concerns. This paper proposes a new framework to address these challenges by combining Federated Learning (FL) with the state-of-the-art base model for image segmentation, Segment Anything Model 2 (SAM2). The FL paradigm enables collaborative model training across multiple WTPs without centralizing sensitive operational data, thereby ensuring privacy. The framework accelerates training convergence and improves segmentation performance even with limited local datasets by leveraging SAM2's strong pre-trained weights for initialization. The methodology involves fine-tuning SAM2 on distributed clients (edge nodes) using the Flower framework, where a central Fog server orchestrates the process by aggregating model weights without accessing private data. The model was trained and validated using various data collections, including real-world images captured at a WTPs in Granada, Spain, a synthetically generated foam dataset, and images from publicly available datasets to improve generalization. This research offers a practical, scalable, and privacy-aware solution for automatic foam tracking in WTPs. The findings highlight the significant potential of integrating large-scale foundational models into FL systems to solve real-world industrial challenges characterized by distributed and sensitive data.

Authors:Ying Wang, Zhaodong Sun, Xu Cheng, Zuxian He, Xiaobai Li
Title: Radar-APLANC: Unsupervised Radar-based Heartbeat Sensing via Augmented Pseudo-Label and Noise Contrast
Abstract:
Frequency Modulated Continuous Wave (FMCW) radars can measure subtle chest wall oscillations to enable non-contact heartbeat sensing. However, traditional radar-based heartbeat sensing methods face performance degradation due to noise. Learning-based radar methods achieve better noise robustness but require costly labeled signals for supervised training. To overcome these limitations, we propose the first unsupervised framework for radar-based heartbeat sensing via Augmented Pseudo-Label and Noise Contrast (Radar-APLANC). We propose to use both the heartbeat range and noise range within the radar range matrix to construct the positive and negative samples, respectively, for improved noise robustness. Our Noise-Contrastive Triplet (NCT) loss only utilizes positive samples, negative samples, and pseudo-label signals generated by the traditional radar method, thereby avoiding dependence on expensive ground-truth physiological signals. We further design a pseudo-label augmentation approach featuring adaptive noise-aware label selection to improve pseudo-label signal quality. Extensive experiments on the Equipleth dataset and our collected radar dataset demonstrate that our unsupervised method achieves performance comparable to state-of-the-art supervised methods. Our code, dataset, and supplementary materials can be accessed from https://github.com/RadarHRSensing/Radar-APLANC.

Authors:Yunqi Shi, Xi Lin, Zhiang Wang, Siyuan Xu, Shixiong Kai, Yao Lai, Chengrui Gao, Ke Xue, Mingxuan Yuan, Chao Qian, Zhi-Hua Zhou
Title: Re$^{\text{2}}$MaP: Macro Placement by Recursively Prototyping and Packing Tree-based Relocating
Abstract:
This work introduces the Re$^{\text{2}}$MaP method, which generates expert-quality macro placements through recursively prototyping and packing tree-based relocating. We first perform multi-level macro grouping and PPA-aware cell clustering to produce a unified connection matrix that captures both wirelength and dataflow among macros and clusters. Next, we use DREAMPlace to build a mixed-size placement prototype and obtain reference positions for each macro and cluster. Based on this prototype, we introduce ABPlace, an angle-based analytical method that optimizes macro positions on an ellipse to distribute macros uniformly near chip periphery, while optimizing wirelength and dataflow. A packing tree-based relocating procedure is then designed to jointly adjust the locations of macro groups and the macros within each group, by optimizing an expertise-inspired cost function that captures various design constraints through evolutionary search. Re$^{\text{2}}$MaP repeats the above process: Only a subset of macro groups are positioned in each iteration, and the remaining macros are deferred to the next iteration to improve the prototype's accuracy. Using a well-established backend flow with sufficient timing optimizations, Re$^{\text{2}}$MaP achieves up to 22.22% (average 10.26%) improvement in worst negative slack (WNS) and up to 97.91% (average 33.97%) improvement in total negative slack (TNS) compared to the state-of-the-art academic placer Hier-RTLMP. It also ranks higher on WNS, TNS, power, design rule check (DRC) violations, and runtime than the conference version ReMaP, across seven tested cases. Our code is available at https://github.com/lamda-bbo/Re2MaP.

Authors:Jer Pelhan, Alan Lukezic, Matej Kristan
Title: Generalized-Scale Object Counting with Gradual Query Aggregation
Abstract:
Few-shot detection-based counters estimate the number of instances in the image specified only by a few test-time exemplars. A common approach to localize objects across multiple sizes is to merge backbone features of different resolutions. Furthermore, to enable small object detection in densely populated regions, the input image is commonly upsampled and tiling is applied to cope with the increased computational and memory requirements. Because of these ad-hoc solutions, existing counters struggle with images containing diverse-sized objects and densely populated regions of small objects. We propose GECO2, an end-to-end few-shot counting and detection method that explicitly addresses the object scale issues. A new dense query representation gradually aggregates exemplar-specific feature information across scales that leads to high-resolution dense queries that enable detection of large as well as small objects. GECO2 surpasses state-of-the-art few-shot counters in counting as well as detection accuracy by 10% while running 3x times faster at smaller GPU memory footprint.

Authors:Zhaolin Wan, Yining Diao, Jingqi Xu, Hao Wang, Zhiyang Li, Xiaopeng Fan, Wangmeng Zuo, Debin Zhao
Title: Perceptual Quality Assessment of 3D Gaussian Splatting: A Subjective Dataset and Prediction Metric
Abstract:
With the rapid advancement of 3D visualization, 3D Gaussian Splatting (3DGS) has emerged as a leading technique for real-time, high-fidelity rendering. While prior research has emphasized algorithmic performance and visual fidelity, the perceptual quality of 3DGS-rendered content, especially under varying reconstruction conditions, remains largely underexplored. In practice, factors such as viewpoint sparsity, limited training iterations, point downsampling, noise, and color distortions can significantly degrade visual quality, yet their perceptual impact has not been systematically studied. To bridge this gap, we present 3DGS-QA, the first subjective quality assessment dataset for 3DGS. It comprises 225 degraded reconstructions across 15 object types, enabling a controlled investigation of common distortion factors. Based on this dataset, we introduce a no-reference quality prediction model that directly operates on native 3D Gaussian primitives, without requiring rendered images or ground-truth references. Our model extracts spatial and photometric cues from the Gaussian representation to estimate perceived quality in a structure-aware manner. We further benchmark existing quality assessment methods, spanning both traditional and learning-based approaches. Experimental results show that our method consistently achieves superior performance, highlighting its robustness and effectiveness for 3DGS content evaluation. The dataset and code are made publicly available at https://github.com/diaoyn/3DGSQA to facilitate future research in 3DGS quality assessment.

Authors:Chende Zheng, Ruiqi Suo, Zhoulin Ji, Jingyi Deng, Fangbin Yi, Chenhao Lin, Chao Shen
Title: Multi-modal Deepfake Detection and Localization with FPN-Transformer
Abstract:
The rapid advancement of generative adversarial networks (GANs) and diffusion models has enabled the creation of highly realistic deepfake content, posing significant threats to digital trust across audio-visual domains. While unimodal detection methods have shown progress in identifying synthetic media, their inability to leverage cross-modal correlations and precisely localize forged segments limits their practicality against sophisticated, fine-grained manipulations. To address this, we introduce a multi-modal deepfake detection and localization framework based on a Feature Pyramid-Transformer (FPN-Transformer), addressing critical gaps in cross-modal generalization and temporal boundary regression. The proposed approach utilizes pre-trained self-supervised models (WavLM for audio, CLIP for video) to extract hierarchical temporal features. A multi-scale feature pyramid is constructed through R-TLM blocks with localized attention mechanisms, enabling joint analysis of cross-context temporal dependencies. The dual-branch prediction head simultaneously predicts forgery probabilities and refines temporal offsets of manipulated segments, achieving frame-level localization precision. We evaluate our approach on the test set of the IJCAI'25 DDL-AV benchmark, showing a good performance with a final score of 0.7535 for cross-modal deepfake detection and localization in challenging environments. Experimental results confirm the effectiveness of our approach and provide a novel way for generalized deepfake detection. Our code is available at https://github.com/Zig-HS/MM-DDL

Authors:Chae-Yeon Heo, Yeong-Jun Cho
Title: CSF-Net: Context-Semantic Fusion Network for Large Mask Inpainting
Abstract:
In this paper, we propose a semantic-guided framework to address the challenging problem of large-mask image inpainting, where essential visual content is missing and contextual cues are limited. To compensate for the limited context, we leverage a pretrained Amodal Completion (AC) model to generate structure-aware candidates that serve as semantic priors for the missing regions. We introduce Context-Semantic Fusion Network (CSF-Net), a transformer-based fusion framework that fuses these candidates with contextual features to produce a semantic guidance image for image inpainting. This guidance improves inpainting quality by promoting structural accuracy and semantic consistency. CSF-Net can be seamlessly integrated into existing inpainting models without architectural changes and consistently enhances performance across diverse masking conditions. Extensive experiments on the Places365 and COCOA datasets demonstrate that CSF-Net effectively reduces object hallucination while enhancing visual realism and semantic alignment. The code for CSF-Net is available at https://github.com/chaeyeonheo/CSF-Net.

Authors:Shenao Zhao, Pengpeng Liang, Zhoufan Yang
Title: Multi-Modal Assistance for Unsupervised Domain Adaptation on Point Cloud 3D Object Detection
Abstract:
Unsupervised domain adaptation for LiDAR-based 3D object detection (3D UDA) based on the teacher-student architecture with pseudo labels has achieved notable improvements in recent years. Although it is quite popular to collect point clouds and images simultaneously, little attention has been paid to the usefulness of image data in 3D UDA when training the models. In this paper, we propose an approach named MMAssist that improves the performance of 3D UDA with multi-modal assistance. A method is designed to align 3D features between the source domain and the target domain by using image and text features as bridges. More specifically, we project the ground truth labels or pseudo labels to the images to get a set of 2D bounding boxes. For each 2D box, we extract its image feature from a pre-trained vision backbone. A large vision-language model (LVLM) is adopted to extract the box's text description, and a pre-trained text encoder is used to obtain its text feature. During the training of the model in the source domain and the student model in the target domain, we align the 3D features of the predicted boxes with their corresponding image and text features, and the 3D features and the aligned features are fused with learned weights for the final prediction. The features between the student branch and the teacher branch in the target domain are aligned as well. To enhance the pseudo labels, we use an off-the-shelf 2D object detector to generate 2D bounding boxes from images and estimate their corresponding 3D boxes with the aid of point cloud, and these 3D boxes are combined with the pseudo labels generated by the teacher model. Experimental results show that our approach achieves promising performance compared with state-of-the-art methods in three domain adaptation tasks on three popular 3D object detection datasets. The code is available at https://github.com/liangp/MMAssist.

Authors:Hongyang Gu, Qisong Yang, Lei Pu, Siming Han, Yao Ding
Title: ReIDMamba: Learning Discriminative Features with Visual State Space Model for Person Re-Identification
Abstract:
Extracting robust discriminative features is a critical challenge in person re-identification (ReID). While Transformer-based methods have successfully addressed some limitations of convolutional neural networks (CNNs), such as their local processing nature and information loss resulting from convolution and downsampling operations, they still face the scalability issue due to the quadratic increase in memory and computational requirements with the length of the input sequence. To overcome this, we propose a pure Mamba-based person ReID framework named ReIDMamba. Specifically, we have designed a Mamba-based strong baseline that effectively leverages fine-grained, discriminative global features by introducing multiple class tokens. To further enhance robust features learning within Mamba, we have carefully designed two novel techniques. First, the multi-granularity feature extractor (MGFE) module, designed with a multi-branch architecture and class token fusion, effectively forms multi-granularity features, enhancing both discrimination ability and fine-grained coverage. Second, the ranking-aware triplet regularization (RATR) is introduced to reduce redundancy in features from multiple branches, enhancing the diversity of multi-granularity features by incorporating both intra-class and inter-class diversity constraints, thus ensuring the robustness of person features. To our knowledge, this is the pioneering work that integrates a purely Mamba-driven approach into ReID research. Our proposed ReIDMamba model boasts only one-third the parameters of TransReID, along with lower GPU memory usage and faster inference throughput. Experimental results demonstrate ReIDMamba's superior and promising performance, achieving state-of-the-art performance on five person ReID benchmarks. Code is available at https://github.com/GuHY777/ReIDMamba.

Authors:Yihang Wu, Ahmad Chaddad
Title: Federated CLIP for Resource-Efficient Heterogeneous Medical Image Classification
Abstract:
Despite the remarkable performance of deep models in medical imaging, they still require source data for training, which limits their potential in light of privacy concerns. Federated learning (FL), as a decentralized learning framework that trains a shared model with multiple hospitals (a.k.a., FL clients), provides a feasible solution. However, data heterogeneity and resource costs hinder the deployment of FL models, especially when using vision language models (VLM). To address these challenges, we propose a novel contrastive language-image pre-training (CLIP) based FL approach for medical image classification (FedMedCLIP). Specifically, we introduce a masked feature adaptation module (FAM) as a communication module to reduce the communication load while freezing the CLIP encoders to reduce the computational overhead. Furthermore, we propose a masked multi-layer perceptron (MLP) as a private local classifier to adapt to the client tasks. Moreover, we design an adaptive Kullback-Leibler (KL) divergence-based distillation regularization method to enable mutual learning between FAM and MLP. Finally, we incorporate model compression to transmit the FAM parameters while using ensemble predictions for classification. Extensive experiments on four publicly available medical datasets demonstrate that our model provides feasible performance (e.g., 8\% higher compared to second best baseline on ISIC2019) with reasonable resource cost (e.g., 120$\times$ faster than FedAVG).

Authors:Zhengyi Luo, Ye Yuan, Tingwu Wang, Chenran Li, Sirui Chen, Fernando Castañeda, Zi-Ang Cao, Jiefeng Li, David Minor, Qingwei Ben, Xingye Da, Runyu Ding, Cyrus Hogg, Lina Song, Edy Lim, Eugene Jeong, Tairan He, Haoru Xue, Wenli Xiao, Zi Wang, Simon Yuen, Jan Kautz, Yan Chang, Umar Iqbal, Linxi "Jim" Fan, Yuke Zhu
Title: SONIC: Supersizing Motion Tracking for Natural Humanoid Whole-Body Control
Abstract:
Despite the rise of billion-parameter foundation models trained across thousands of GPUs, similar scaling gains have not been shown for humanoid control. Current neural controllers for humanoids remain modest in size, target a limited behavior set, and are trained on a handful of GPUs over several days. We show that scaling up model capacity, data, and compute yields a generalist humanoid controller capable of creating natural and robust whole-body movements. Specifically, we posit motion tracking as a natural and scalable task for humanoid control, leverageing dense supervision from diverse motion-capture data to acquire human motion priors without manual reward engineering. We build a foundation model for motion tracking by scaling along three axes: network size (from 1.2M to 42M parameters), dataset volume (over 100M frames, 700 hours of high-quality motion data), and compute (9k GPU hours). Beyond demonstrating the benefits of scale, we show the practical utility of our model through two mechanisms: (1) a real-time universal kinematic planner that bridges motion tracking to downstream task execution, enabling natural and interactive control, and (2) a unified token space that supports various motion input interfaces, such as VR teleoperation devices, human videos, and vision-language-action (VLA) models, all using the same policy. Scaling motion tracking exhibits favorable properties: performance improves steadily with increased compute and data diversity, and learned representations generalize to unseen motions, establishing motion tracking at scale as a practical foundation for humanoid control.

Authors:Gong Jingyu, Tong Kunkun, Chen Zhuoran, Yuan Chuanhan, Chen Mingang, Zhang Zhizhong, Tan Xin, Xie Yuan
Title: Human Motion Synthesis in 3D Scenes via Unified Scene Semantic Occupancy
Abstract:
Human motion synthesis in 3D scenes relies heavily on scene comprehension, while current methods focus mainly on scene structure but ignore the semantic understanding. In this paper, we propose a human motion synthesis framework that take an unified Scene Semantic Occupancy (SSO) for scene representation, termed SSOMotion. We design a bi-directional tri-plane decomposition to derive a compact version of the SSO, and scene semantics are mapped to an unified feature space via CLIP encoding and shared linear dimensionality reduction. Such strategy can derive the fine-grained scene semantic structures while significantly reduce redundant computations. We further take these scene hints and movement direction derived from instructions for motion control via frame-wise scene query. Extensive experiments and ablation studies conducted on cluttered scenes using ShapeNet furniture, as well as scanned scenes from PROX and Replica datasets, demonstrate its cutting-edge performance while validating its effectiveness and generalization ability. Code will be publicly available at https://github.com/jingyugong/SSOMotion.

Authors:Zhongle Ren, Hui Ding, Kai Wang, Biao Hou, Xingyu Luo, Weibin Li, Licheng Jiao
Title: DI3CL: Contrastive Learning With Dynamic Instances and Contour Consistency for SAR Land-Cover Classification Foundation Model
Abstract:
Although significant advances have been achieved in SAR land-cover classification, recent methods remain predominantly focused on supervised learning, which relies heavily on extensive labeled datasets. This dependency not only limits scalability and generalization but also restricts adaptability to diverse application scenarios. In this paper, a general-purpose foundation model for SAR land-cover classification is developed, serving as a robust cornerstone to accelerate the development and deployment of various downstream models. Specifically, a Dynamic Instance and Contour Consistency Contrastive Learning (DI3CL) pre-training framework is presented, which incorporates a Dynamic Instance (DI) module and a Contour Consistency (CC) module. DI module enhances global contextual awareness by enforcing local consistency across different views of the same region. CC module leverages shallow feature maps to guide the model to focus on the geometric contours of SAR land-cover objects, thereby improving structural discrimination. Additionally, to enhance robustness and generalization during pre-training, a large-scale and diverse dataset named SARSense, comprising 460,532 SAR images, is constructed to enable the model to capture comprehensive and representative features. To evaluate the generalization capability of our foundation model, we conducted extensive experiments across a variety of SAR land-cover classification tasks, including SAR land-cover mapping, water body detection, and road extraction. The results consistently demonstrate that the proposed DI3CL outperforms existing methods. Our code and pre-trained weights are publicly available at: https://github.com/SARpre-train/DI3CL.

Authors:Yuezhe Yang, Yiyue Guo, Wenjie Cai, Qingqing Ruan, Siying Wang, Xingbo Dong, Zhe Jin, Yong Dai
Title: Auto-US: An Ultrasound Video Diagnosis Agent Using Video Classification Framework and LLMs
Abstract:
AI-assisted ultrasound video diagnosis presents new opportunities to enhance the efficiency and accuracy of medical imaging analysis. However, existing research remains limited in terms of dataset diversity, diagnostic performance, and clinical applicability. In this study, we propose \textbf{Auto-US}, an intelligent diagnosis agent that integrates ultrasound video data with clinical diagnostic text. To support this, we constructed \textbf{CUV Dataset} of 495 ultrasound videos spanning five categories and three organs, aggregated from multiple open-access sources. We developed \textbf{CTU-Net}, which achieves state-of-the-art performance in ultrasound video classification, reaching an accuracy of 86.73\% Furthermore, by incorporating large language models, Auto-US is capable of generating clinically meaningful diagnostic suggestions. The final diagnostic scores for each case exceeded 3 out of 5 and were validated by professional clinicians. These results demonstrate the effectiveness and clinical potential of Auto-US in real-world ultrasound applications. Code and data are available at: https://github.com/Bean-Young/Auto-US.

Authors:Daniel Cher, Brian Wei, Srikumar Sastry, Nathan Jacobs
Title: VectorSynth: Fine-Grained Satellite Image Synthesis with Structured Semantics
Abstract:
We introduce VectorSynth, a diffusion-based framework for pixel-accurate satellite image synthesis conditioned on polygonal geographic annotations with semantic attributes. Unlike prior text- or layout-conditioned models, VectorSynth learns dense cross-modal correspondences that align imagery and semantic vector geometry, enabling fine-grained, spatially grounded edits. A vision language alignment module produces pixel-level embeddings from polygon semantics; these embeddings guide a conditional image generation framework to respect both spatial extents and semantic cues. VectorSynth supports interactive workflows that mix language prompts with geometry-aware conditioning, allowing rapid what-if simulations, spatial edits, and map-informed content generation. For training and evaluation, we assemble a collection of satellite scenes paired with pixel-registered polygon annotations spanning diverse urban scenes with both built and natural features. We observe strong improvements over prior methods in semantic fidelity and structural realism, and show that our trained vision language model demonstrates fine-grained spatial grounding. The code and data are available at https://github.com/mvrl/VectorSynth.

Authors:Yuezhe Yang, Wenjie Cai, Dexin Yang, Yufang Dong, Xingbo Dong, Zhe Jin
Title: UltraGS: Gaussian Splatting for Ultrasound Novel View Synthesis
Abstract:
Ultrasound imaging is a cornerstone of non-invasive clinical diagnostics, yet its limited field of view complicates novel view synthesis. We propose \textbf{UltraGS}, a Gaussian Splatting framework optimized for ultrasound imaging. First, we introduce a depth-aware Gaussian splatting strategy, where each Gaussian is assigned a learnable field of view, enabling accurate depth prediction and precise structural representation. Second, we design SH-DARS, a lightweight rendering function combining low-order spherical harmonics with ultrasound-specific wave physics, including depth attenuation, reflection, and scattering, to model tissue intensity accurately. Third, we contribute the Clinical Ultrasound Examination Dataset, a benchmark capturing diverse anatomical scans under real-world clinical protocols. Extensive experiments on three datasets demonstrate UltraGS's superiority, achieving state-of-the-art results in PSNR (up to 29.55), SSIM (up to 0.89), and MSE (as low as 0.002) while enabling real-time synthesis at 64.69 fps. The code and dataset are open-sourced at: https://github.com/Bean-Young/UltraGS.

Authors:Brandon Dominique, Prudence Lam, Nicholas Kurtansky, Jochen Weber, Kivanc Kose, Veronica Rotemberg, Jennifer Dy
Title: On the Role of Calibration in Benchmarking Algorithmic Fairness for Skin Cancer Detection
Abstract:
Artificial Intelligence (AI) models have demonstrated expert-level performance in melanoma detection, yet their clinical adoption is hindered by performance disparities across demographic subgroups such as gender, race, and age. Previous efforts to benchmark the performance of AI models have primarily focused on assessing model performance using group fairness metrics that rely on the Area Under the Receiver Operating Characteristic curve (AUROC), which does not provide insights into a model's ability to provide accurate estimates. In line with clinical assessments, this paper addresses this gap by incorporating calibration as a complementary benchmarking metric to AUROC-based fairness metrics. Calibration evaluates the alignment between predicted probabilities and observed event rates, offering deeper insights into subgroup biases. We assess the performance of the leading skin cancer detection algorithm of the ISIC 2020 Challenge on the ISIC 2020 Challenge dataset and the PROVE-AI dataset, and compare it with the second and third place models, focusing on subgroups defined by sex, race (Fitzpatrick Skin Tone), and age. Our findings reveal that while existing models enhance discriminative accuracy, they often over-diagnose risk and exhibit calibration issues when applied to new datasets. This study underscores the necessity for comprehensive model auditing strategies and extensive metadata collection to achieve equitable AI-driven healthcare solutions. All code is publicly available at https://github.com/bdominique/testing_strong_calibration.

Authors:Nikita Araslanov, Anna Sonnweber, Daniel Cremers
Title: FlowFeat: Pixel-Dense Embedding of Motion Profiles
Abstract:
Dense and versatile image representations underpin the success of virtually all computer vision applications. However, state-of-the-art networks, such as transformers, produce low-resolution feature grids, which are suboptimal for dense prediction tasks. To address this limitation, we present FlowFeat, a high-resolution and multi-task feature representation. The key ingredient behind FlowFeat is a novel distillation technique that embeds a distribution of plausible apparent motions, or motion profiles. By leveraging optical flow networks and diverse video data, we develop an effective self-supervised training framework that statistically approximates the apparent motion. With its remarkable level of spatial detail, FlowFeat encodes a compelling degree of geometric and semantic cues while exhibiting high temporal consistency. Empirically, FlowFeat significantly enhances the representational power of five state-of-the-art encoders and alternative upsampling strategies across three dense tasks: video object segmentation, monocular depth estimation and semantic segmentation. Training FlowFeat is computationally inexpensive and robust to inaccurate flow estimation, remaining highly effective even when using unsupervised flow networks. Our work takes a step forward towards reliable and versatile dense image representations.

Authors:Zhao-Heng Yin, Pieter Abbeel
Title: Lightning Grasp: High Performance Procedural Grasp Synthesis with Contact Fields
Abstract:
Despite years of research, real-time diverse grasp synthesis for dexterous hands remains an unsolved core challenge in robotics and computer graphics. We present Lightning Grasp, a novel high-performance procedural grasp synthesis algorithm that achieves orders-of-magnitude speedups over state-of-the-art approaches, while enabling unsupervised grasp generation for irregular, tool-like objects. The method avoids many limitations of prior approaches, such as the need for carefully tuned energy functions and sensitive initialization. This breakthrough is driven by a key insight: decoupling complex geometric computation from the search process via a simple, efficient data structure - the Contact Field. This abstraction collapses the problem complexity, enabling a procedural search at unprecedented speeds. We open-source our system to propel further innovation in robotic manipulation.

Authors:Jiageng Mao, Sicheng He, Hao-Ning Wu, Yang You, Shuyang Sun, Zhicheng Wang, Yanan Bao, Huizhong Chen, Leonidas Guibas, Vitor Guizilini, Howard Zhou, Yue Wang
Title: Robot Learning from a Physical World Model
Abstract:
We introduce PhysWorld, a framework that enables robot learning from video generation through physical world modeling. Recent video generation models can synthesize photorealistic visual demonstrations from language commands and images, offering a powerful yet underexplored source of training signals for robotics. However, directly retargeting pixel motions from generated videos to robots neglects physics, often resulting in inaccurate manipulations. PhysWorld addresses this limitation by coupling video generation with physical world reconstruction. Given a single image and a task command, our method generates task-conditioned videos and reconstructs the underlying physical world from the videos, and the generated video motions are grounded into physically accurate actions through object-centric residual reinforcement learning with the physical world model. This synergy transforms implicit visual guidance into physically executable robotic trajectories, eliminating the need for real robot data collection and enabling zero-shot generalizable robotic manipulation. Experiments on diverse real-world tasks demonstrate that PhysWorld substantially improves manipulation accuracy compared to previous approaches. Visit \href{https://pointscoder.github.io/PhysWorld_Web/}{the project webpage} for details.

Authors:Linzhan Mou, Jiahui Lei, Chen Wang, Lingjie Liu, Kostas Daniilidis
Title: DIMO: Diverse 3D Motion Generation for Arbitrary Objects
Abstract:
We present DIMO, a generative approach capable of generating diverse 3D motions for arbitrary objects from a single image. The core idea of our work is to leverage the rich priors in well-trained video models to extract the common motion patterns and then embed them into a shared low-dimensional latent space. Specifically, we first generate multiple videos of the same object with diverse motions. We then embed each motion into a latent vector and train a shared motion decoder to learn the distribution of motions represented by a structured and compact motion representation, i.e., neural key point trajectories. The canonical 3D Gaussians are then driven by these key points and fused to model the geometry and appearance. During inference time with learned latent space, we can instantly sample diverse 3D motions in a single-forward pass and support several interesting applications including 3D motion interpolation and language-guided motion generation. Our project page is available at https://linzhanm.github.io/dimo.

Authors:Botao Ye, Boqi Chen, Haofei Xu, Daniel Barath, Marc Pollefeys
Title: YoNoSplat: You Only Need One Model for Feedforward 3D Gaussian Splatting
Abstract:
Fast and flexible 3D scene reconstruction from unstructured image collections remains a significant challenge. We present YoNoSplat, a feedforward model that reconstructs high-quality 3D Gaussian Splatting representations from an arbitrary number of images. Our model is highly versatile, operating effectively with both posed and unposed, calibrated and uncalibrated inputs. YoNoSplat predicts local Gaussians and camera poses for each view, which are aggregated into a global representation using either predicted or provided poses. To overcome the inherent difficulty of jointly learning 3D Gaussians and camera parameters, we introduce a novel mixing training strategy. This approach mitigates the entanglement between the two tasks by initially using ground-truth poses to aggregate local Gaussians and gradually transitioning to a mix of predicted and ground-truth poses, which prevents both training instability and exposure bias. We further resolve the scale ambiguity problem by a novel pairwise camera-distance normalization scheme and by embedding camera intrinsics into the network. Moreover, YoNoSplat also predicts intrinsic parameters, making it feasible for uncalibrated inputs. YoNoSplat demonstrates exceptional efficiency, reconstructing a scene from 100 views (at 280x518 resolution) in just 2.69 seconds on an NVIDIA GH200 GPU. It achieves state-of-the-art performance on standard benchmarks in both pose-free and pose-dependent settings. Our project page is at https://botaoye.github.io/yonosplat/.

Authors:Kagan Celik, Mehmet Ozan Unal, Metin Ertas, Isa Yildirim
Title: LMM-IQA: Image Quality Assessment for Low-Dose CT Imaging
Abstract:
Low-dose computed tomography (CT) represents a significant improvement in patient safety through lower radiation doses, but increased noise, blur, and contrast loss can diminish diagnostic quality. Therefore, consistency and robustness in image quality assessment become essential for clinical applications. In this study, we propose an LLM-based quality assessment system that generates both numerical scores and textual descriptions of degradations such as noise, blur, and contrast loss. Furthermore, various inference strategies - from the zero-shot approach to metadata integration and error feedback - are systematically examined, demonstrating the progressive contribution of each method to overall performance. The resultant assessments yield not only highly correlated scores but also interpretable output, thereby adding value to clinical workflows. The source codes of our study are available at https://github.com/itu-biai/lmms_ldct_iqa.

Authors:Simon Gerstenecker, Andreas Geiger, Katrin Renz
Title: PlanT 2.0: Exposing Biases and Structural Flaws in Closed-Loop Driving
Abstract:
Most recent work in autonomous driving has prioritized benchmark performance and methodological innovation over in-depth analysis of model failures, biases, and shortcut learning. This has led to incremental improvements without a deep understanding of the current failures. While it is straightforward to look at situations where the model fails, it is hard to understand the underlying reason. This motivates us to conduct a systematic study, where inputs to the model are perturbed and the predictions observed. We introduce PlanT 2.0, a lightweight, object-centric planning transformer designed for autonomous driving research in CARLA. The object-level representation enables controlled analysis, as the input can be easily perturbed (e.g., by changing the location or adding or removing certain objects), in contrast to sensor-based models. To tackle the scenarios newly introduced by the challenging CARLA Leaderboard 2.0, we introduce multiple upgrades to PlanT, achieving state-of-the-art performance on Longest6 v2, Bench2Drive, and the CARLA validation routes. Our analysis exposes insightful failures, such as a lack of scene understanding caused by low obstacle diversity, rigid expert behaviors leading to exploitable shortcuts, and overfitting to a fixed set of expert trajectories. Based on these findings, we argue for a shift toward data-centric development, with a focus on richer, more robust, and less biased datasets. We open-source our code and model at https://github.com/autonomousvision/plant2.

Authors:Xinyi Wang, Angeliki Katsenou, Junxiao Shen, David Bull
Title: CAMP-VQA: Caption-Embedded Multimodal Perception for No-Reference Quality Assessment of Compressed Video
Abstract:
The prevalence of user-generated content (UGC) on platforms such as YouTube and TikTok has rendered no-reference (NR) perceptual video quality assessment (VQA) vital for optimizing video delivery. Nonetheless, the characteristics of non-professional acquisition and the subsequent transcoding of UGC video on sharing platforms present significant challenges for NR-VQA. Although NR-VQA models attempt to infer mean opinion scores (MOS), their modeling of subjective scores for compressed content remains limited due to the absence of fine-grained perceptual annotations of artifact types. To address these challenges, we propose CAMP-VQA, a novel NR-VQA framework that exploits the semantic understanding capabilities of large vision-language models. Our approach introduces a quality-aware prompting mechanism that integrates video metadata (e.g., resolution, frame rate, bitrate) with key fragments extracted from inter-frame variations to guide the BLIP-2 pretraining approach in generating fine-grained quality captions. A unified architecture has been designed to model perceptual quality across three dimensions: semantic alignment, temporal characteristics, and spatial characteristics. These multimodal features are extracted and fused, then regressed to video quality scores. Extensive experiments on a wide variety of UGC datasets demonstrate that our model consistently outperforms existing NR-VQA methods, achieving improved accuracy without the need for costly manual fine-grained annotations. Our method achieves the best performance in terms of average rank and linear correlation (SRCC: 0.928, PLCC: 0.938) compared to state-of-the-art methods. The source code and trained models, along with a user-friendly demo, are available at: https://github.com/xinyiW915/CAMP-VQA.

Authors:Yilong Chen, Xiang Bai, Zhibin Wang, Chengyu Bai, Yuhan Dai, Ming Lu, Shanghang Zhang
Title: StreamKV: Streaming Video Question-Answering with Segment-based KV Cache Retrieval and Compression
Abstract:
Video Large Language Models (Video-LLMs) have demonstrated significant potential in the areas of video captioning, search, and summarization. However, current Video-LLMs still face challenges with long real-world videos. Recent methods have introduced a retrieval mechanism that retrieves query-relevant KV caches for question answering, enhancing the efficiency and accuracy of long real-world videos. However, the compression and retrieval of KV caches are still not fully explored. In this paper, we propose \textbf{StreamKV}, a training-free framework that seamlessly equips Video-LLMs with advanced KV cache retrieval and compression. Compared to previous methods that used uniform partitioning, StreamKV dynamically partitions video streams into semantic segments, which better preserves semantic information. For KV cache retrieval, StreamKV calculates a summary vector for each segment to retain segment-level information essential for retrieval. For KV cache compression, StreamKV introduces a guidance prompt designed to capture the key semantic elements within each segment, ensuring only the most informative KV caches are retained for answering questions. Moreover, StreamKV unifies KV cache retrieval and compression within a single module, performing both in a layer-adaptive manner, thereby further improving the effectiveness of streaming video question answering. Extensive experiments on public StreamingVQA benchmarks demonstrate that StreamKV significantly outperforms existing Online Video-LLMs, achieving superior accuracy while substantially improving both memory efficiency and computational latency. The code has been released at https://github.com/sou1p0wer/StreamKV.

Authors:Umberto Cappellazzo, Xubo Liu, Pingchuan Ma, Stavros Petridis, Maja Pantic
Title: Omni-AVSR: Towards Unified Multimodal Speech Recognition with Large Language Models
Abstract:
Large language models (LLMs) have recently achieved impressive results in speech recognition across multiple modalities, including Auditory Speech Recognition (ASR), Visual Speech Recognition (VSR), and Audio-Visual Speech Recognition (AVSR). Despite this progress, current LLM-based approaches typically address each task independently, training separate models that raise computational and deployment resource use while missing potential cross-task synergies. They also rely on fixed-rate token compression, which restricts flexibility in balancing accuracy with efficiency. These limitations highlight the need for a unified framework that can support ASR, VSR, and AVSR while enabling elastic inference. To this end, we present Omni-AVSR, a unified audio-visual LLM that combines efficient multi-granularity training with parameter-efficient adaptation. Specifically, we adapt the matryoshka representation learning paradigm to efficiently train across multiple audio and visual granularities, reducing its inherent training resource use. Furthermore, we explore three LoRA-based strategies for adapting the backbone LLM, balancing shared and task-specific specialization. Experiments on LRS2 and LRS3 show that Omni-AVSR achieves comparable or superior accuracy to state-of-the-art baselines while training a single model at substantially lower training and deployment resource use. The model also remains robust under acoustic noise, and we analyze its scaling behavior as LLM size increases, providing insights into the trade-off between performance and efficiency.

Authors:Xinyi Zhang, Daoyi Gao, Naiqi Li, Angela Dai
Title: ProcGen3D: Learning Neural Procedural Graph Representations for Image-to-3D Reconstruction
Abstract:
We introduce ProcGen3D, a new approach for 3D content creation by generating procedural graph abstractions of 3D objects, which can then be decoded into rich, complex 3D assets. Inspired by the prevalent use of procedural generators in production 3D applications, we propose a sequentialized, graph-based procedural graph representation for 3D assets. We use this to learn to approximate the landscape of a procedural generator for image-based 3D reconstruction. We employ edge-based tokenization to encode the procedural graphs, and train a transformer prior to predict the next token conditioned on an input RGB image. Crucially, to enable better alignment of our generated outputs to an input image, we incorporate Monte Carlo Tree Search (MCTS) guided sampling into our generation process, steering output procedural graphs towards more image-faithful reconstructions. Our approach is applicable across a variety of objects that can be synthesized with procedural generators. Extensive experiments on cacti, trees, and bridges show that our neural procedural graph generation outperforms both state-of-the-art generative 3D methods and domain-specific modeling techniques. Furthermore, this enables improved generalization on real-world input images, despite training only on synthetic data.

Authors:Necati Sefercioglu, Mehmet Ozan Unal, Metin Ertas, Isa Yildirim
Title: Task-Adaptive Low-Dose CT Reconstruction
Abstract:
Deep learning-based low-dose computed tomography reconstruction methods already achieve high performance on standard image quality metrics like peak signal-to-noise ratio and structural similarity index measure. Yet, they frequently fail to preserve the critical anatomical details needed for diagnostic tasks. This fundamental limitation hinders their clinical applicability despite their high metric scores. We propose a novel task-adaptive reconstruction framework that addresses this gap by incorporating a frozen pre-trained task network as a regularization term in the reconstruction loss function. Unlike existing joint-training approaches that simultaneously optimize both reconstruction and task networks, and risk diverging from satisfactory reconstructions, our method leverages a pre-trained task model to guide reconstruction training while still maintaining diagnostic quality. We validate our framework on a liver and liver tumor segmentation task. Our task-adaptive models achieve Dice scores up to 0.707, approaching the performance of full-dose scans (0.874), and substantially outperforming joint-training approaches (0.331) and traditional reconstruction methods (0.626). Critically, our framework can be integrated into any existing deep learning-based reconstruction model through simple loss function modification, enabling widespread adoption for task-adaptive optimization in clinical practice. Our codes are available at: https://github.com/itu-biai/task_adaptive_ct

Authors:Luanyuan Dai, Xiaoyu Du, Jinhui Tang
Title: LeCoT: revisiting network architecture for two-view correspondence pruning
Abstract:
Two-view correspondence pruning aims to accurately remove incorrect correspondences (outliers) from initial ones and is widely applied to various computer vision tasks. Current popular strategies adopt multilayer perceptron (MLP) as the backbone, supplemented by additional modules to enhance the network ability to handle context information, which is a known limitation of MLPs. In contrast, we introduce a novel perspective for capturing correspondence context information without extra design modules. To this end, we design a two-view correspondence pruning network called LeCoT, which can naturally leverage global context information at different stages. Specifically, the core design of LeCoT is the Spatial-Channel Fusion Transformer block, a newly proposed component that efficiently utilizes both spatial and channel global context information among sparse correspondences. In addition, we integrate the proposed prediction block that utilizes correspondence features from intermediate stages to generate a probability set, which acts as guiding information for subsequent learning phases, allowing the network to more effectively capture robust global context information. Notably, this prediction block progressively refines the probability set, thereby mitigating the issue of information loss that is common in the traditional one. Extensive experiments prove that the proposed LeCoT outperforms state-of-the-art methods in correspondence pruning, relative pose estimation, homography estimation, visual localization, and $3$D~reconstruction tasks. The code is provided in https://github.com/Dailuanyuan2024/LeCoT-Revisiting-Network-Architecture-for-Two-View-Correspondence-Pruning.

Authors:Nikolas Adaloglou, Diana Petrusheva, Mohamed Asker, Felix Michels, Markus Kollmann
Title: ClusterMine: Robust Label-Free Visual Out-Of-Distribution Detection via Concept Mining from Text Corpora
Abstract:
Large-scale visual out-of-distribution (OOD) detection has witnessed remarkable progress by leveraging vision-language models such as CLIP. However, a significant limitation of current methods is their reliance on a pre-defined set of in-distribution (ID) ground-truth label names (positives). These fixed label names can be unavailable, unreliable at scale, or become less relevant due to in-distribution shifts after deployment. Towards truly unsupervised OOD detection, we utilize widely available text corpora for positive label mining, bypassing the need for positives. In this paper, we utilize widely available text corpora for positive label mining under a general concept mining paradigm. Within this framework, we propose ClusterMine, a novel positive label mining method. ClusterMine is the first method to achieve state-of-the-art OOD detection performance without access to positive labels. It extracts positive concepts from a large text corpus by combining visual-only sample consistency (via clustering) and zero-shot image-text consistency. Our experimental study reveals that ClusterMine is scalable across a plethora of CLIP models and achieves state-of-the-art robustness to covariate in-distribution shifts. The code is available at https://github.com/HHU-MMBS/clustermine_wacv_official.

Authors:Duc Nguyen, Yan-Ling Lai, Qilin Zhang, Prabin Gyawali, Benedikt Schwab, Olaf Wysocki, Thomas H. Kolbe
Title: TrueCity: Real and Simulated Urban Data for Cross-Domain 3D Scene Understanding
Abstract:
3D semantic scene understanding remains a long-standing challenge in the 3D computer vision community. One of the key issues pertains to limited real-world annotated data to facilitate generalizable models. The common practice to tackle this issue is to simulate new data. Although synthetic datasets offer scalability and perfect labels, their designer-crafted scenes fail to capture real-world complexity and sensor noise, resulting in a synthetic-to-real domain gap. Moreover, no benchmark provides synchronized real and simulated point clouds for segmentation-oriented domain shift analysis. We introduce TrueCity, the first urban semantic segmentation benchmark with cm-accurate annotated real-world point clouds, semantic 3D city models, and annotated simulated point clouds representing the same city. TrueCity proposes segmentation classes aligned with international 3D city modeling standards, enabling consistent evaluation of synthetic-to-real gap. Our extensive experiments on common baselines quantify domain shift and highlight strategies for exploiting synthetic data to enhance real-world 3D scene understanding. We are convinced that the TrueCity dataset will foster further development of sim-to-real gap quantification and enable generalizable data-driven models. The data, code, and 3D models are available online: https://tum-gis.github.io/TrueCity/

Authors:Zhicheng Li, Kunyang Sun, Rui Yao, Hancheng Zhu, Fuyuan Hu, Jiaqi Zhao, Zhiwen Shao, Yong Zhou
Title: DTTNet: Improving Video Shadow Detection via Dark-Aware Guidance and Tokenized Temporal Modeling
Abstract:
Video shadow detection confronts two entwined difficulties: distinguishing shadows from complex backgrounds and modeling dynamic shadow deformations under varying illumination. To address shadow-background ambiguity, we leverage linguistic priors through the proposed Vision-language Match Module (VMM) and a Dark-aware Semantic Block (DSB), extracting text-guided features to explicitly differentiate shadows from dark objects. Furthermore, we introduce adaptive mask reweighting to downweight penumbra regions during training and apply edge masks at the final decoder stage for better supervision. For temporal modeling of variable shadow shapes, we propose a Tokenized Temporal Block (TTB) that decouples spatiotemporal learning. TTB summarizes cross-frame shadow semantics into learnable temporal tokens, enabling efficient sequence encoding with minimal computation overhead. Comprehensive Experiments on multiple benchmark datasets demonstrate state-of-the-art accuracy and real-time inference efficiency. Codes are available at https://github.com/city-cheng/DTTNet.

Authors:Huiyuan Tian, Bonan Xu, Shijian Li
Title: Distillation Dynamics: Towards Understanding Feature-Based Distillation in Vision Transformers
Abstract:
While feature-based knowledge distillation has proven highly effective for compressing CNNs, these techniques unexpectedly fail when applied to Vision Transformers (ViTs), often performing worse than simple logit-based distillation. We provide the first comprehensive analysis of this phenomenon through a novel analytical framework termed as "distillation dynamics", combining frequency spectrum analysis, information entropy metrics, and activation magnitude tracking. Our investigation reveals that ViTs exhibit a distinctive U-shaped information processing pattern: initial compression followed by expansion. We identify the root cause of negative transfer in feature distillation: a fundamental representational paradigm mismatch between teacher and student models. Through frequency-domain analysis, we show that teacher models employ distributed, high-dimensional encoding strategies in later layers that smaller student models cannot replicate due to limited channel capacity. This mismatch causes late-layer feature alignment to actively harm student performance. Our findings reveal that successful knowledge transfer in ViTs requires moving beyond naive feature mimicry to methods that respect these fundamental representational constraints, providing essential theoretical guidance for designing effective ViTs compression strategies. All source code and experimental logs are provided at https://github.com/thy960112/Distillation-Dynamics.

Authors:Meijun Guo, Yongliang Shi, Caiyun Liu, Yixiao Feng, Ming Ma, Tinghai Yan, Weining Lu, Bin Liang
Title: Robust and High-Fidelity 3D Gaussian Splatting: Fusing Pose Priors and Geometry Constraints for Texture-Deficient Outdoor Scenes
Abstract:
3D Gaussian Splatting (3DGS) has emerged as a key rendering pipeline for digital asset creation due to its balance between efficiency and visual quality. To address the issues of unstable pose estimation and scene representation distortion caused by geometric texture inconsistency in large outdoor scenes with weak or repetitive textures, we approach the problem from two aspects: pose estimation and scene representation. For pose estimation, we leverage LiDAR-IMU Odometry to provide prior poses for cameras in large-scale environments. These prior pose constraints are incorporated into COLMAP's triangulation process, with pose optimization performed via bundle adjustment. Ensuring consistency between pixel data association and prior poses helps maintain both robustness and accuracy. For scene representation, we introduce normal vector constraints and effective rank regularization to enforce consistency in the direction and shape of Gaussian primitives. These constraints are jointly optimized with the existing photometric loss to enhance the map quality. We evaluate our approach using both public and self-collected datasets. In terms of pose optimization, our method requires only one-third of the time while maintaining accuracy and robustness across both datasets. In terms of scene representation, the results show that our method significantly outperforms conventional 3DGS pipelines. Notably, on self-collected datasets characterized by weak or repetitive textures, our approach demonstrates enhanced visualization capabilities and achieves superior overall performance. Codes and data will be publicly available at https://github.com/justinyeah/normal_shape.git.

Authors:Weining Lu, Deer Bin, Lian Ma, Ming Ma, Zhihao Ma, Xiangyang Chen, Longfei Wang, Yixiao Feng, Zhouxian Jiang, Yongliang Shi, Bin Liang
Title: Semi-distributed Cross-modal Air-Ground Relative Localization
Abstract:
Efficient, accurate, and flexible relative localization is crucial in air-ground collaborative tasks. However, current approaches for robot relative localization are primarily realized in the form of distributed multi-robot SLAM systems with the same sensor configuration, which are tightly coupled with the state estimation of all robots, limiting both flexibility and accuracy. To this end, we fully leverage the high capacity of Unmanned Ground Vehicle (UGV) to integrate multiple sensors, enabling a semi-distributed cross-modal air-ground relative localization framework. In this work, both the UGV and the Unmanned Aerial Vehicle (UAV) independently perform SLAM while extracting deep learning-based keypoints and global descriptors, which decouples the relative localization from the state estimation of all agents. The UGV employs a local Bundle Adjustment (BA) with LiDAR, camera, and an IMU to rapidly obtain accurate relative pose estimates. The BA process adopts sparse keypoint optimization and is divided into two stages: First, optimizing camera poses interpolated from LiDAR-Inertial Odometry (LIO), followed by estimating the relative camera poses between the UGV and UAV. Additionally, we implement an incremental loop closure detection algorithm using deep learning-based descriptors to maintain and retrieve keyframes efficiently. Experimental results demonstrate that our method achieves outstanding performance in both accuracy and efficiency. Unlike traditional multi-robot SLAM approaches that transmit images or point clouds, our method only transmits keypoint pixels and their descriptors, effectively constraining the communication bandwidth under 0.3 Mbps. Codes and data will be publicly available on https://github.com/Ascbpiac/cross-model-relative-localization.git.

Authors:Jianyu Qi, Ding Zou, Wenrui Yan, Rui Ma, Jiaxu Li, Zhijie Zheng, Zhiguo Yang, Rongchang Zhao
Title: Revisiting the Data Sampling in Multimodal Post-training from a Difficulty-Distinguish View
Abstract:
Recent advances in Multimodal Large Language Models (MLLMs) have spurred significant progress in Chain-of-Thought (CoT) reasoning. Building on the success of Deepseek-R1, researchers extended multimodal reasoning to post-training paradigms based on reinforcement learning (RL), focusing predominantly on mathematical datasets. However, existing post-training paradigms tend to neglect two critical aspects: (1) The lack of quantifiable difficulty metrics capable of strategically screening samples for post-training optimization. (2) Suboptimal post-training paradigms that fail to jointly optimize perception and reasoning capabilities. To address this gap, we propose two novel difficulty-aware sampling strategies: Progressive Image Semantic Masking (PISM) quantifies sample hardness through systematic image degradation, while Cross-Modality Attention Balance (CMAB) assesses cross-modal interaction complexity via attention distribution analysis. Leveraging these metrics, we design a hierarchical training framework that incorporates both GRPO-only and SFT+GRPO hybrid training paradigms, and evaluate them across six benchmark datasets. Experiments demonstrate consistent superiority of GRPO applied to difficulty-stratified samples compared to conventional SFT+GRPO pipelines, indicating that strategic data sampling can obviate the need for supervised fine-tuning while improving model accuracy. Our code will be released at https://github.com/qijianyu277/DifficultySampling.

Authors:Ruijia Wu, Ping Chen, Fei Shen, Shaoan Zhao, Qiang Hui, Huanlin Gao, Ting Lu, Zhaoxiang Liu, Fang Zhao, Kai Wang, Shiguo Lian
Title: HiMo-CLIP: Modeling Semantic Hierarchy and Monotonicity in Vision-Language Alignment
Abstract:
Contrastive vision-language models like CLIP have achieved impressive results in image-text retrieval by aligning image and text representations in a shared embedding space. However, these models often treat text as flat sequences, limiting their ability to handle complex, compositional, and long-form descriptions. In particular, they fail to capture two essential properties of language: semantic hierarchy, which reflects the multi-level compositional structure of text, and semantic monotonicity, where richer descriptions should result in stronger alignment with visual content.To address these limitations, we propose HiMo-CLIP, a representation-level framework that enhances CLIP-style models without modifying the encoder architecture. HiMo-CLIP introduces two key components: a hierarchical decomposition (HiDe) module that extracts latent semantic components from long-form text via in-batch PCA, enabling flexible, batch-aware alignment across different semantic granularities, and a monotonicity-aware contrastive loss (MoLo) that jointly aligns global and component-level representations, encouraging the model to internalize semantic ordering and alignment strength as a function of textual completeness.These components work in concert to produce structured, cognitively-aligned cross-modal representations. Experiments on multiple image-text retrieval benchmarks show that HiMo-CLIP consistently outperforms strong baselines, particularly under long or compositional descriptions. The code is available at https://github.com/UnicomAI/HiMo-CLIP.

Authors:Ximiao Zhang, Min Xu, Zheng Zhang, Junlin Hu, Xiuzhuang Zhou
Title: UniADC: A Unified Framework for Anomaly Detection and Classification
Abstract:
In this paper, we introduce the task of unified anomaly detection and classification, which aims to simultaneously detect anomalous regions in images and identify their specific categories. Existing methods typically treat anomaly detection and classification as separate tasks, thereby neglecting their inherent correlation, limiting information sharing, and resulting in suboptimal performance. To address this, we propose UniADC, a unified anomaly detection and classification model that can effectively perform both tasks with only a few or even no anomaly images. Specifically, UniADC consists of two key components: a training-free controllable inpainting network and a multi-task discriminator. The inpainting network can synthesize anomaly images of specific categories by repainting normal regions guided by anomaly priors, and can also repaint few-shot anomaly samples to augment the available anomaly data. The multi-task discriminator is then trained on these synthesized samples, enabling precise anomaly detection and classification by aligning fine-grained image features with anomaly-category embeddings. We conduct extensive experiments on three anomaly detection and classification datasets, including MVTec-FS, MTD, and WFDD, and the results demonstrate that UniADC consistently outperforms existing methods in anomaly detection, localization, and classification. The code is available at https://github.com/cnulab/UniADC.

Authors:Hui Sun, Long Lv, Pingping Zhang, Tongdan Tang, Feng Tian, Weibing Sun, Huchuan Lu
Title: Spatial-Frequency Enhanced Mamba for Multi-Modal Image Fusion
Abstract:
Multi-Modal Image Fusion (MMIF) aims to integrate complementary image information from different modalities to produce informative images. Previous deep learning-based MMIF methods generally adopt Convolutional Neural Networks (CNNs) or Transformers for feature extraction. However, these methods deliver unsatisfactory performances due to the limited receptive field of CNNs and the high computational cost of Transformers. Recently, Mamba has demonstrated a powerful potential for modeling long-range dependencies with linear complexity, providing a promising solution to MMIF. Unfortunately, Mamba lacks full spatial and frequency perceptions, which are very important for MMIF. Moreover, employing Image Reconstruction (IR) as an auxiliary task has been proven beneficial for MMIF. However, a primary challenge is how to leverage IR efficiently and effectively. To address the above issues, we propose a novel framework named Spatial-Frequency Enhanced Mamba Fusion (SFMFusion) for MMIF. More specifically, we first propose a three-branch structure to couple MMIF and IR, which can retain complete contents from source images. Then, we propose the Spatial-Frequency Enhanced Mamba Block (SFMB), which can enhance Mamba in both spatial and frequency domains for comprehensive feature extraction. Finally, we propose the Dynamic Fusion Mamba Block (DFMB), which can be deployed across different branches for dynamic feature fusion. Extensive experiments show that our method achieves better results than most state-of-the-art methods on six MMIF datasets. The source code is available at https://github.com/SunHui1216/SFMFusion.

Authors:Jacob Si, Mike Qu, Michelle Lee, Yingzhen Li
Title: TabRAG: Tabular Document Retrieval via Structured Language Representations
Abstract:
Ingesting data for Retrieval-Augmented Generation (RAG) involves either fine-tuning the embedding model directly on the target corpus or parsing documents for embedding model encoding. The former, while accurate, incurs high computational hardware requirements, while the latter suffers from suboptimal performance when extracting tabular data. In this work, we address the latter by presenting TabRAG, a parsing-based RAG pipeline designed to tackle table-heavy documents via structured language representations. TabRAG outperforms existing popular parsing-based methods for generation and retrieval. Code is available at https://github.com/jacobyhsi/TabRAG.

Authors:Kyuho Lee, Euntae Kim, Jinwoo Choi, Buru Chang
Title: NOAH: Benchmarking Narrative Prior driven Hallucination and Omission in Video Large Language Models
Abstract:
Video large language models (Video LLMs) have recently achieved strong performance on tasks such as captioning, summarization, and question answering. Many models and training methods explicitly encourage continuity across events to enhance narrative coherence. While this improves fluency, it also introduces an inductive bias that prioritizes storyline consistency over strict grounding in visual evidence. We identify this bias, which we call narrative prior, as a key driver of two errors: hallucinations, where non-existent events are introduced or existing ones are misinterpreted, and omissions, where factual events are suppressed because they are misaligned with surrounding context. To systematically evaluate narrative prior-induced errors, we introduce NOAH, a large-scale benchmark that constructs composite videos by inserting clips from other sources into target videos. By varying semantic similarity and insertion position, our benchmark enables controlled and scalable analysis of narrative priors. We design one captioning task with tailored metrics and three QA tasks - Existence, Temporal, and Narrative - yielding more than 60K evaluation samples. Extensive experiments yield three key findings: (i) most Video LLMs exhibit hallucinations and omissions driven by narrative priors, (ii) the patterns of these errors vary across architectures and depend on event similarity and insertion position, and (iii) reliance on narrative priors intensifies under sampling with fewer frames, amplifying errors when event continuity is weak. We establish NOAH as the first standardized evaluation of narrative prior-induced hallucination and omission in Video LLMs, providing a foundation for developing more reliable and trustworthy models. Our benchmark and code are available at https://anonymous550520.github.io/.

Authors:Shaoxiang Wang, Shihong Zhang, Christen Millerdurai, Rüdiger Westermann, Didier Stricker, Alain Pagani
Title: Inpaint360GS: Efficient Object-Aware 3D Inpainting via Gaussian Splatting for 360° Scenes
Abstract:
Despite recent advances in single-object front-facing inpainting using NeRF and 3D Gaussian Splatting (3DGS), inpainting in complex 360° scenes remains largely underexplored. This is primarily due to three key challenges: (i) identifying target objects in the 3D field of 360° environments, (ii) dealing with severe occlusions in multi-object scenes, which makes it hard to define regions to inpaint, and (iii) maintaining consistent and high-quality appearance across views effectively. To tackle these challenges, we propose Inpaint360GS, a flexible 360° editing framework based on 3DGS that supports multi-object removal and high-fidelity inpainting in 3D space. By distilling 2D segmentation into 3D and leveraging virtual camera views for contextual guidance, our method enables accurate object-level editing and consistent scene completion. We further introduce a new dataset tailored for 360° inpainting, addressing the lack of ground truth object-free scenes. Experiments demonstrate that Inpaint360GS outperforms existing baselines and achieves state-of-the-art performance. Project page: https://dfki-av.github.io/inpaint360gs/

Authors:Seulgi Kim, Kiran Kokilepersaud, Mohit Prabhushankar, Ghassan AlRegib
Title: Countering Multi-modal Representation Collapse through Rank-targeted Fusion
Abstract:
Multi-modal fusion methods often suffer from two types of representation collapse: feature collapse where individual dimensions lose their discriminative power (as measured by eigenspectra), and modality collapse where one dominant modality overwhelms the other. Applications like human action anticipation that require fusing multifarious sensor data are hindered by both feature and modality collapse. However, existing methods attempt to counter feature collapse and modality collapse separately. This is because there is no unifying framework that efficiently addresses feature and modality collapse in conjunction. In this paper, we posit the utility of effective rank as an informative measure that can be utilized to quantify and counter both the representation collapses. We propose \textit{Rank-enhancing Token Fuser}, a theoretically grounded fusion framework that selectively blends less informative features from one modality with complementary features from another modality. We show that our method increases the effective rank of the fused representation. To address modality collapse, we evaluate modality combinations that mutually increase each others' effective rank. We show that depth maintains representational balance when fused with RGB, avoiding modality collapse. We validate our method on action anticipation, where we present \texttt{R3D}, a depth-informed fusion framework. Extensive experiments on NTURGBD, UTKinect, and DARai demonstrate that our approach significantly outperforms prior state-of-the-art methods by up to 3.74\%. Our code is available at: \href{https://github.com/olivesgatech/R3D}{https://github.com/olivesgatech/R3D}.

Authors:Amit Vaisman, Guy Ohayon, Hila Manor, Michael Elad, Tomer Michaeli
Title: Turbo-DDCM: Fast and Flexible Zero-Shot Diffusion-Based Image Compression
Abstract:
While zero-shot diffusion-based compression methods have seen significant progress in recent years, they remain notoriously slow and computationally demanding. This paper presents an efficient zero-shot diffusion-based compression method that runs substantially faster than existing methods, while maintaining performance that is on par with the state-of-the-art techniques. Our method builds upon the recently proposed Denoising Diffusion Codebook Models (DDCMs) compression scheme. Specifically, DDCM compresses an image by sequentially choosing the diffusion noise vectors from reproducible random codebooks, guiding the denoiser's output to reconstruct the target image. We modify this framework with Turbo-DDCM, which efficiently combines a large number of noise vectors at each denoising step, thereby significantly reducing the number of required denoising operations. This modification is also coupled with an improved encoding protocol. Furthermore, we introduce two flexible variants of Turbo-DDCM, a priority-aware variant that prioritizes user-specified regions and a distortion-controlled variant that compresses an image based on a target PSNR rather than a target BPP. Comprehensive experiments position Turbo-DDCM as a compelling, practical, and flexible image compression scheme.

Authors:Tao Liu, Kan Ren, Qian Chen
Title: DiffusionUavLoc: Visually Prompted Diffusion for Cross-View UAV Localization
Abstract:
With the rapid growth of the low-altitude economy, unmanned aerial vehicles (UAVs) have become key platforms for measurement and tracking in intelligent patrol systems. However, in GNSS-denied environments, localization schemes that rely solely on satellite signals are prone to failure. Cross-view image retrieval-based localization is a promising alternative, yet substantial geometric and appearance domain gaps exist between oblique UAV views and nadir satellite orthophotos. Moreover, conventional approaches often depend on complex network architectures, text prompts, or large amounts of annotation, which hinders generalization. To address these issues, we propose DiffusionUavLoc, a cross-view localization framework that is image-prompted, text-free, diffusion-centric, and employs a VAE for unified representation. We first use training-free geometric rendering to synthesize pseudo-satellite images from UAV imagery as structural prompts. We then design a text-free conditional diffusion model that fuses multimodal structural cues to learn features robust to viewpoint changes. At inference, descriptors are computed at a fixed time step t and compared using cosine similarity. On University-1652 and SUES-200, the method performs competitively for cross-view localization, especially for satellite-to-drone in University-1652.Our data and code will be published at the following URL: https://github.com/liutao23/DiffusionUavLoc.git.

Authors:Shuo Yang, Yinghui Xing, Shizhou Zhang, Zhilong Niu
Title: On Modality Incomplete Infrared-Visible Object Detection: An Architecture Compatibility Perspective
Abstract:
Infrared and visible object detection (IVOD) is essential for numerous around-the-clock applications. Despite notable advancements, current IVOD models exhibit notable performance declines when confronted with incomplete modality data, particularly if the dominant modality is missing. In this paper, we take a thorough investigation on modality incomplete IVOD problem from an architecture compatibility perspective. Specifically, we propose a plug-and-play Scarf Neck module for DETR variants, which introduces a modality-agnostic deformable attention mechanism to enable the IVOD detector to flexibly adapt to any single or double modalities during training and inference. When training Scarf-DETR, we design a pseudo modality dropout strategy to fully utilize the multi-modality information, making the detector compatible and robust to both working modes of single and double modalities. Moreover, we introduce a comprehensive benchmark for the modality-incomplete IVOD task aimed at thoroughly assessing situations where the absent modality is either dominant or secondary. Our proposed Scarf-DETR not only performs excellently in missing modality scenarios but also achieves superior performances on the standard IVOD modality complete benchmarks. Our code will be available at https://github.com/YinghuiXing/Scarf-DETR.

Authors:Seunghyeok Shin, Dabin Kim, Hongki Lim
Title: Adaptive 3D Reconstruction via Diffusion Priors and Forward Curvature-Matching Likelihood Updates
Abstract:
Reconstructing high-quality point clouds from images remains challenging in computer vision. Existing generative-model-based approaches, particularly diffusion-model approaches that directly learn the posterior, may suffer from inflexibility -- they require conditioning signals during training, support only a fixed number of input views, and need complete retraining for different measurements. Recent diffusion-based methods have attempted to address this by combining prior models with likelihood updates, but they rely on heuristic fixed step sizes for the likelihood update that lead to slow convergence and suboptimal reconstruction quality. We advance this line of approach by integrating our novel Forward Curvature-Matching (FCM) update method with diffusion sampling. Our method dynamically determines optimal step sizes using only forward automatic differentiation and finite-difference curvature estimates, enabling precise optimization of the likelihood update. This formulation enables high-fidelity reconstruction from both single-view and multi-view inputs, and supports various input modalities through simple operator substitution -- all without retraining. Experiments on ShapeNet and CO3D datasets demonstrate that our method achieves superior reconstruction quality at matched or lower NFEs, yielding higher F-score and lower CD and EMD, validating its efficiency and adaptability for practical applications. Code is available at https://github.com/Seunghyeok0715/FCM

Authors:Xin Zuo, Chenyu Qu, Haibo Zhan, Jifeng Shen, Wankou Yang
Title: SFFR: Spatial-Frequency Feature Reconstruction for Multispectral Aerial Object Detection
Abstract:
Recent multispectral object detection methods have primarily focused on spatial-domain feature fusion based on CNNs or Transformers, while the potential of frequency-domain feature remains underexplored. In this work, we propose a novel Spatial and Frequency Feature Reconstruction method (SFFR) method, which leverages the spatial-frequency feature representation mechanisms of the Kolmogorov-Arnold Network (KAN) to reconstruct complementary representations in both spatial and frequency domains prior to feature fusion. The core components of SFFR are the proposed Frequency Component Exchange KAN (FCEKAN) module and Multi-Scale Gaussian KAN (MSGKAN) module. The FCEKAN introduces an innovative selective frequency component exchange strategy that effectively enhances the complementarity and consistency of cross-modal features based on the frequency feature of RGB and IR images. The MSGKAN module demonstrates excellent nonlinear feature modeling capability in the spatial domain. By leveraging multi-scale Gaussian basis functions, it effectively captures the feature variations caused by scale changes at different UAV flight altitudes, significantly enhancing the model's adaptability and robustness to scale variations. It is experimentally validated that our proposed FCEKAN and MSGKAN modules are complementary and can effectively capture the frequency and spatial semantic features respectively for better feature fusion. Extensive experiments on the SeaDroneSee, DroneVehicle and DVTOD datasets demonstrate the superior performance and significant advantages of the proposed method in UAV multispectral object perception task. Code will be available at https://github.com/qchenyu1027/SFFR.

Authors:Bing Wang, Ximing Li, Yanjun Wang, Changchun Li, Lin Yuanbo Wu, Buyu Wang, Shengsheng Wang
Title: Enhancing Multimodal Misinformation Detection by Replaying the Whole Story from Image Modality Perspective
Abstract:
Multimodal Misinformation Detection (MMD) refers to the task of detecting social media posts involving misinformation, where the post often contains text and image modalities. However, by observing the MMD posts, we hold that the text modality may be much more informative than the image modality because the text generally describes the whole event/story of the current post but the image often presents partial scenes only. Our preliminary empirical results indicate that the image modality exactly contributes less to MMD. Upon this idea, we propose a new MMD method named RETSIMD. Specifically, we suppose that each text can be divided into several segments, and each text segment describes a partial scene that can be presented by an image. Accordingly, we split the text into a sequence of segments, and feed these segments into a pre-trained text-to-image generator to augment a sequence of images. We further incorporate two auxiliary objectives concerning text-image and image-label mutual information, and further post-train the generator over an auxiliary text-to-image generation benchmark dataset. Additionally, we propose a graph structure by defining three heuristic relationships between images, and use a graph neural network to generate the fused features. Extensive empirical results validate the effectiveness of RETSIMD.

Authors:Zefeng He, Xiaoye Qu, Yafu Li, Siyuan Huang, Daizong Liu, Yu Cheng
Title: VideoSSR: Video Self-Supervised Reinforcement Learning
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has substantially advanced the video understanding capabilities of Multimodal Large Language Models (MLLMs). However, the rapid progress of MLLMs is outpacing the complexity of existing video datasets, while the manual annotation of new, high-quality data remains prohibitively expensive. This work investigates a pivotal question: Can the rich, intrinsic information within videos be harnessed to self-generate high-quality, verifiable training data? To investigate this, we introduce three self-supervised pretext tasks: Anomaly Grounding, Object Counting, and Temporal Jigsaw. We construct the Video Intrinsic Understanding Benchmark (VIUBench) to validate their difficulty, revealing that current state-of-the-art MLLMs struggle significantly on these tasks. Building upon these pretext tasks, we develop the VideoSSR-30K dataset and propose VideoSSR, a novel video self-supervised reinforcement learning framework for RLVR. Extensive experiments across 17 benchmarks, spanning four major video domains (General Video QA, Long Video QA, Temporal Grounding, and Complex Reasoning), demonstrate that VideoSSR consistently enhances model performance, yielding an average improvement of over 5\%. These results establish VideoSSR as a potent foundational framework for developing more advanced video understanding in MLLMs. The code is available at https://github.com/lcqysl/VideoSSR.

Authors:Weikang Bian, Xiaoyu Shi, Zhaoyang Huang, Jianhong Bai, Qinghe Wang, Xintao Wang, Pengfei Wan, Kun Gai, Hongsheng Li
Title: RelightMaster: Precise Video Relighting with Multi-plane Light Images
Abstract:
Recent advances in diffusion models enable high-quality video generation and editing, but precise relighting with consistent video contents, which is critical for shaping scene atmosphere and viewer attention, remains unexplored. Mainstream text-to-video (T2V) models lack fine-grained lighting control due to text's inherent limitation in describing lighting details and insufficient pre-training on lighting-related prompts. Additionally, constructing high-quality relighting training data is challenging, as real-world controllable lighting data is scarce. To address these issues, we propose RelightMaster, a novel framework for accurate and controllable video relighting. First, we build RelightVideo, the first dataset with identical dynamic content under varying precise lighting conditions based on the Unreal Engine. Then, we introduce Multi-plane Light Image (MPLI), a novel visual prompt inspired by Multi-Plane Image (MPI). MPLI models lighting via K depth-aligned planes, representing 3D light source positions, intensities, and colors while supporting multi-source scenarios and generalizing to unseen light setups. Third, we design a Light Image Adapter that seamlessly injects MPLI into pre-trained Video Diffusion Transformers (DiT): it compresses MPLI via a pre-trained Video VAE and injects latent light features into DiT blocks, leveraging the base model's generative prior without catastrophic forgetting. Experiments show that RelightMaster generates physically plausible lighting and shadows and preserves original scene content. Demos are available at https://wkbian.github.io/Projects/RelightMaster/.

Authors:Ruifei Zhang, Wei Zhang, Xiao Tan, Sibei Yang, Xiang Wan, Xiaonan Luo, Guanbin Li
Title: VLDrive: Vision-Augmented Lightweight MLLMs for Efficient Language-grounded Autonomous Driving
Abstract:
Recent advancements in language-grounded autonomous driving have been significantly promoted by the sophisticated cognition and reasoning capabilities of large language models (LLMs). However, current LLM-based approaches encounter critical challenges: (1) Failure analysis reveals that frequent collisions and obstructions, stemming from limitations in visual representations, remain primary obstacles to robust driving performance. (2) The substantial parameters of LLMs pose considerable deployment hurdles. To address these limitations, we introduce VLDrive, a novel approach featuring a lightweight MLLM architecture with enhanced vision components. VLDrive achieves compact visual tokens through innovative strategies, including cycle-consistent dynamic visual pruning and memory-enhanced feature aggregation. Furthermore, we propose a distance-decoupled instruction attention mechanism to improve joint visual-linguistic feature learning, particularly for long-range visual tokens. Extensive experiments conducted in the CARLA simulator demonstrate VLDrive`s effectiveness. Notably, VLDrive achieves state-of-the-art driving performance while reducing parameters by 81% (from 7B to 1.3B), yielding substantial driving score improvements of 15.4%, 16.8%, and 7.6% at tiny, short, and long distances, respectively, in closed-loop evaluations. Code is available at https://github.com/ReaFly/VLDrive.

Authors:Ruifei Zhang, Junlin Xie, Wei Zhang, Weikai Chen, Xiao Tan, Xiang Wan, Guanbin Li
Title: AdaDrive: Self-Adaptive Slow-Fast System for Language-Grounded Autonomous Driving
Abstract:
Effectively integrating Large Language Models (LLMs) into autonomous driving requires a balance between leveraging high-level reasoning and maintaining real-time efficiency. Existing approaches either activate LLMs too frequently, causing excessive computational overhead, or use fixed schedules, failing to adapt to dynamic driving conditions. To address these challenges, we propose AdaDrive, an adaptively collaborative slow-fast framework that optimally determines when and how LLMs contribute to decision-making. (1) When to activate the LLM: AdaDrive employs a novel adaptive activation loss that dynamically determines LLM invocation based on a comparative learning mechanism, ensuring activation only in complex or critical scenarios. (2) How to integrate LLM assistance: Instead of rigid binary activation, AdaDrive introduces an adaptive fusion strategy that modulates a continuous, scaled LLM influence based on scene complexity and prediction confidence, ensuring seamless collaboration with conventional planners. Through these strategies, AdaDrive provides a flexible, context-aware framework that maximizes decision accuracy without compromising real-time performance. Extensive experiments on language-grounded autonomous driving benchmarks demonstrate that AdaDrive state-of-the-art performance in terms of both driving accuracy and computational efficiency. Code is available at https://github.com/ReaFly/AdaDrive.

Authors:Ruihao Xia, Junhong Cai, Luziwei Leng, Liuyi Wang, Chengju Liu, Ran Cheng, Yang Tang, Pan Zhou
Title: Temporal-Guided Visual Foundation Models for Event-Based Vision
Abstract:
Event cameras offer unique advantages for vision tasks in challenging environments, yet processing asynchronous event streams remains an open challenge. While existing methods rely on specialized architectures or resource-intensive training, the potential of leveraging modern Visual Foundation Models (VFMs) pretrained on image data remains under-explored for event-based vision. To address this, we propose Temporal-Guided VFM (TGVFM), a novel framework that integrates VFMs with our temporal context fusion block seamlessly to bridge this gap. Our temporal block introduces three key components: (1) Long-Range Temporal Attention to model global temporal dependencies, (2) Dual Spatiotemporal Attention for multi-scale frame correlation, and (3) Deep Feature Guidance Mechanism to fuse semantic-temporal features. By retraining event-to-video models on real-world data and leveraging transformer-based VFMs, TGVFM preserves spatiotemporal dynamics while harnessing pretrained representations. Experiments demonstrate SoTA performance across semantic segmentation, depth estimation, and object detection, with improvements of 16%, 21%, and 16% over existing methods, respectively. Overall, this work unlocks the cross-modality potential of image-based VFMs for event-based vision with temporal reasoning. Code is available at https://github.com/XiaRho/TGVFM.

Authors:Hossein Askari, Yadan Luo, Hongfu Sun, Fred Roosta
Title: Latent Refinement via Flow Matching for Training-free Linear Inverse Problem Solving
Abstract:
Recent advances in inverse problem solving have increasingly adopted flow priors over diffusion models due to their ability to construct straight probability paths from noise to data, thereby enhancing efficiency in both training and inference. However, current flow-based inverse solvers face two primary limitations: (i) they operate directly in pixel space, which demands heavy computational resources for training and restricts scalability to high-resolution images, and (ii) they employ guidance strategies with prior-agnostic posterior covariances, which can weaken alignment with the generative trajectory and degrade posterior coverage. In this paper, we propose LFlow (Latent Refinement via Flows), a training-free framework for solving linear inverse problems via pretrained latent flow priors. LFlow leverages the efficiency of flow matching to perform ODE sampling in latent space along an optimal path. This latent formulation further allows us to introduce a theoretically grounded posterior covariance, derived from the optimal vector field, enabling effective flow guidance. Experimental results demonstrate that our proposed method outperforms state-of-the-art latent diffusion solvers in reconstruction quality across most tasks. The code will be publicly available at https://github.com/hosseinaskari-cs/LFlow .

Authors:Ao Li, Chen Chen, Zhenyu Wang, Tao Huang, Fangfang Wu, Weisheng Dong
Title: LoopExpose: An Unsupervised Framework for Arbitrary-Length Exposure Correction
Abstract:
Exposure correction is essential for enhancing image quality under challenging lighting conditions. While supervised learning has achieved significant progress in this area, it relies heavily on large-scale labeled datasets, which are difficult to obtain in practical scenarios. To address this limitation, we propose a pseudo label-based unsupervised method called LoopExpose for arbitrary-length exposure correction. A nested loop optimization strategy is proposed to address the exposure correction problem, where the correction model and pseudo-supervised information are jointly optimized in a two-level framework. Specifically, the upper-level trains a correction model using pseudo-labels generated through multi-exposure fusion at the lower level. A feedback mechanism is introduced where corrected images are fed back into the fusion process to refine the pseudo-labels, creating a self-reinforcing learning loop. Considering the dominant role of luminance calibration in exposure correction, a Luminance Ranking Loss is introduced to leverage the relative luminance ordering across the input sequence as a self-supervised constraint. Extensive experiments on different benchmark datasets demonstrate that LoopExpose achieves superior exposure correction and fusion performance, outperforming existing state-of-the-art unsupervised methods. Code is available at https://github.com/FALALAS/LoopExpose.

Authors:Animesh Karnewar, Denis Korzhenkov, Ioannis Lelekas, Adil Karjauv, Noor Fathima, Hanwen Xiong, Vancheeswaran Vaidyanathan, Will Zeng, Rafael Esteves, Tushar Singhal, Fatih Porikli, Mohsen Ghafoorian, Amirhossein Habibian
Title: Neodragon: Mobile Video Generation using Diffusion Transformer
Abstract:
We introduce Neodragon, a text-to-video system capable of generating 2s (49 frames @24 fps) videos at the 640x1024 resolution directly on a Qualcomm Hexagon NPU in a record 6.7s (7 FPS). Differing from existing transformer-based offline text-to-video generation models, Neodragon is the first to have been specifically optimised for mobile hardware to achieve efficient and high-fidelity video synthesis. We achieve this through four key technical contributions: (1) Replacing the original large 4.762B T5xxl Text-Encoder with a much smaller 0.2B DT5 (DistilT5) with minimal quality loss, enabled through a novel Text-Encoder Distillation procedure. (2) Proposing an Asymmetric Decoder Distillation approach allowing us to replace the native codec-latent-VAE decoder with a more efficient one, without disturbing the generative latent-space of the generation pipeline. (3) Pruning of MMDiT blocks within the denoiser backbone based on their relative importance, with recovery of original performance through a two-stage distillation process. (4) Reducing the NFE (Neural Functional Evaluation) requirement of the denoiser by performing step distillation using DMD adapted for pyramidal flow-matching, thereby substantially accelerating video generation. When paired with an optimised SSD1B first-frame image generator and QuickSRNet for 2x super-resolution, our end-to-end Neodragon system becomes a highly parameter (4.945B full model), memory (3.5GB peak RAM usage), and runtime (6.7s E2E latency) efficient mobile-friendly model, while achieving a VBench total score of 81.61. By enabling low-cost, private, and on-device text-to-video synthesis, Neodragon democratizes AI-based video content creation, empowering creators to generate high-quality videos without reliance on cloud services. Code and model will be made publicly available at our website: https://qualcomm-ai-research.github.io/neodragon

Authors:Zhihui Ke, Yuyang Liu, Xiaobo Zhou, Tie Qiu
Title: StreamSTGS: Streaming Spatial and Temporal Gaussian Grids for Real-Time Free-Viewpoint Video
Abstract:
Streaming free-viewpoint video~(FVV) in real-time still faces significant challenges, particularly in training, rendering, and transmission efficiency. Harnessing superior performance of 3D Gaussian Splatting~(3DGS), recent 3DGS-based FVV methods have achieved notable breakthroughs in both training and rendering. However, the storage requirements of these methods can reach up to $10$MB per frame, making stream FVV in real-time impossible. To address this problem, we propose a novel FVV representation, dubbed StreamSTGS, designed for real-time streaming. StreamSTGS represents a dynamic scene using canonical 3D Gaussians, temporal features, and a deformation field. For high compression efficiency, we encode canonical Gaussian attributes as 2D images and temporal features as a video. This design not only enables real-time streaming, but also inherently supports adaptive bitrate control based on network condition without any extra training. Moreover, we propose a sliding window scheme to aggregate adjacent temporal features to learn local motions, and then introduce a transformer-guided auxiliary training module to learn global motions. On diverse FVV benchmarks, StreamSTGS demonstrates competitive performance on all metrics compared to state-of-the-art methods. Notably, StreamSTGS increases the PSNR by an average of $1$dB while reducing the average frame size to just $170$KB. The code is publicly available on https://github.com/kkkzh/StreamSTGS.

Authors:Feng Lu, Tong Jin, Canming Ye, Yunpeng Liu, Xiangyuan Lan, Chun Yuan
Title: Towards Implicit Aggregation: Robust Image Representation for Place Recognition in the Transformer Era
Abstract:
Visual place recognition (VPR) is typically regarded as a specific image retrieval task, whose core lies in representing images as global descriptors. Over the past decade, dominant VPR methods (e.g., NetVLAD) have followed a paradigm that first extracts the patch features/tokens of the input image using a backbone, and then aggregates these patch features into a global descriptor via an aggregator. This backbone-plus-aggregator paradigm has achieved overwhelming dominance in the CNN era and remains widely used in transformer-based models. In this paper, however, we argue that a dedicated aggregator is not necessary in the transformer era, that is, we can obtain robust global descriptors only with the backbone. Specifically, we introduce some learnable aggregation tokens, which are prepended to the patch tokens before a particular transformer block. All these tokens will be jointly processed and interact globally via the intrinsic self-attention mechanism, implicitly aggregating useful information within the patch tokens to the aggregation tokens. Finally, we only take these aggregation tokens from the last output tokens and concatenate them as the global representation. Although implicit aggregation can provide robust global descriptors in an extremely simple manner, where and how to insert additional tokens, as well as the initialization of tokens, remains an open issue worthy of further exploration. To this end, we also propose the optimal token insertion strategy and token initialization method derived from empirical studies. Experimental results show that our method outperforms state-of-the-art methods on several VPR datasets with higher efficiency and ranks 1st on the MSLS challenge leaderboard. The code is available at https://github.com/lu-feng/image.

Authors:Sulaimon Oyeniyi Adebayo, Ayaz H. Khan
Title: Distributed Deep Learning for Medical Image Denoising with Data Obfuscation
Abstract:
Medical image denoising is essential for improving image quality while minimizing the exposure of sensitive information, particularly when working with large-scale clinical datasets. This study explores distributed deep learning for denoising chest X-ray images from the NIH Chest X-ray14 dataset, using additive Gaussian noise as a lightweight obfuscation technique. We implement and evaluate U-Net and U-Net++ architectures under single-GPU, standard multi-GPU (DataParallel), and optimized multi-GPU training configurations using PyTorch's DistributedDataParallel (DDP) and Automatic Mixed Precision (AMP). Our results show that U-Net++ consistently delivers superior denoising performance, achieving competitive Peak Signal to Noise Ratio (PSNR) and Structured Similarity Index Method (SSIM) scores, though with less performance in Learned Perceptual Image Patch Similarity (LPIPS) compared to U-Net under low and moderate noise levels. This indicates U-Net++'s enhanced structural fidelity and low perceptual similarity. Meanwhile, our optimized training pipeline reduces training time by over 60% for both models compared to single-GPU training, and outperforms standard DataParallel by over 40%, with only a minor accuracy drop for both models (trading some accuracy for speed). These findings highlight the effectiveness of software-level optimization in distributed learning for medical imaging. This work demonstrates the practical viability of combining architectural design, lightweight obfuscation, and advanced distributed training strategies to accelerate and enhance medical image processing pipelines in real-world clinical and research environments. The full implementation is publicly available at: https://github.com/Suadey/medical-image-denoising-ddp.

Authors:Shivank Saxena, Dhruv Srivastava, Makarand Tapaswi
Title: MALeR: Improving Compositional Fidelity in Layout-Guided Generation
Abstract:
Recent advances in text-to-image models have enabled a new era of creative and controllable image generation. However, generating compositional scenes with multiple subjects and attributes remains a significant challenge. To enhance user control over subject placement, several layout-guided methods have been proposed. However, these methods face numerous challenges, particularly in compositional scenes. Unintended subjects often appear outside the layouts, generated images can be out-of-distribution and contain unnatural artifacts, or attributes bleed across subjects, leading to incorrect visual outputs. In this work, we propose MALeR, a method that addresses each of these challenges. Given a text prompt and corresponding layouts, our method prevents subjects from appearing outside the given layouts while being in-distribution. Additionally, we propose a masked, attribute-aware binding mechanism that prevents attribute leakage, enabling accurate rendering of subjects with multiple attributes, even in complex compositional scenes. Qualitative and quantitative evaluation demonstrates that our method achieves superior performance in compositional accuracy, generation consistency, and attribute binding compared to previous work. MALeR is particularly adept at generating images of scenes with multiple subjects and multiple attributes per subject.

Authors:Xianhui Meng, Yukang Huo, Li Zhang, Liu Liu, Haonan Jiang, Yan Zhong, Pingrui Zhang, Cewu Lu, Jun Liu
Title: Exploring Category-level Articulated Object Pose Tracking on SE(3) Manifolds
Abstract:
Articulated objects are prevalent in daily life and robotic manipulation tasks. However, compared to rigid objects, pose tracking for articulated objects remains an underexplored problem due to their inherent kinematic constraints. To address these challenges, this work proposes a novel point-pair-based pose tracking framework, termed \textbf{PPF-Tracker}. The proposed framework first performs quasi-canonicalization of point clouds in the SE(3) Lie group space, and then models articulated objects using Point Pair Features (PPF) to predict pose voting parameters by leveraging the invariance properties of SE(3). Finally, semantic information of joint axes is incorporated to impose unified kinematic constraints across all parts of the articulated object. PPF-Tracker is systematically evaluated on both synthetic datasets and real-world scenarios, demonstrating strong generalization across diverse and challenging environments. Experimental results highlight the effectiveness and robustness of PPF-Tracker in multi-frame pose tracking of articulated objects. We believe this work can foster advances in robotics, embodied intelligence, and augmented reality. Codes are available at https://github.com/mengxh20/PPFTracker.

Authors:Yuxuan Lin, Hanjing Yan, Xuan Tong, Yang Chang, Huanzhen Wang, Ziheng Zhou, Shuyong Gao, Yan Wang, Wenqiang Zhang
Title: Commonality in Few: Few-Shot Multimodal Anomaly Detection via Hypergraph-Enhanced Memory
Abstract:
Few-shot multimodal industrial anomaly detection is a critical yet underexplored task, offering the ability to quickly adapt to complex industrial scenarios. In few-shot settings, insufficient training samples often fail to cover the diverse patterns present in test samples. This challenge can be mitigated by extracting structural commonality from a small number of training samples. In this paper, we propose a novel few-shot unsupervised multimodal industrial anomaly detection method based on structural commonality, CIF (Commonality In Few). To extract intra-class structural information, we employ hypergraphs, which are capable of modeling higher-order correlations, to capture the structural commonality within training samples, and use a memory bank to store this intra-class structural prior. Firstly, we design a semantic-aware hypergraph construction module tailored for single-semantic industrial images, from which we extract common structures to guide the construction of the memory bank. Secondly, we use a training-free hypergraph message passing module to update the visual features of test samples, reducing the distribution gap between test features and features in the memory bank. We further propose a hyperedge-guided memory search module, which utilizes structural information to assist the memory search process and reduce the false positive rate. Experimental results on the MVTec 3D-AD dataset and the Eyecandies dataset show that our method outperforms the state-of-the-art (SOTA) methods in few-shot settings. Code is available at https://github.com/Sunny5250/CIF.

Authors:Ba-Thinh Nguyen, Thach-Ha Ngoc Pham, Hoang-Long Duc Nguyen, Thi-Duyen Ngo, Thanh-Ha Le
Title: Reperio-rPPG: Relational Temporal Graph Neural Networks for Periodicity Learning in Remote Physiological Measurement
Abstract:
Remote photoplethysmography (rPPG) is an emerging contactless physiological sensing technique that leverages subtle color variations in facial videos to estimate vital signs such as heart rate and respiratory rate. This non-invasive method has gained traction across diverse domains, including telemedicine, affective computing, driver fatigue detection, and health monitoring, owing to its scalability and convenience. Despite significant progress in remote physiological signal measurement, a crucial characteristic - the intrinsic periodicity - has often been underexplored or insufficiently modeled in previous approaches, limiting their ability to capture fine-grained temporal dynamics under real-world conditions. To bridge this gap, we propose Reperio-rPPG, a novel framework that strategically integrates Relational Convolutional Networks with a Graph Transformer to effectively capture the periodic structure inherent in physiological signals. Additionally, recognizing the limited diversity of existing rPPG datasets, we further introduce a tailored CutMix augmentation to enhance the model's generalizability. Extensive experiments conducted on three widely used benchmark datasets - PURE, UBFC-rPPG, and MMPD - demonstrate that Reperio-rPPG not only achieves state-of-the-art performance but also exhibits remarkable robustness under various motion (e.g., stationary, rotation, talking, walking) and illumination conditions (e.g., nature, low LED, high LED). The code is publicly available at https://github.com/deconasser/Reperio-rPPG.

Authors:Jian Zhu, Xin Zou, Jun Sun, Cheng Luo, Lei Liu, Lingfang Zeng, Ning Zhang, Bian Wu, Chang Tang, Lirong Dai
Title: MoEGCL: Mixture of Ego-Graphs Contrastive Representation Learning for Multi-View Clustering
Abstract:
In recent years, the advancement of Graph Neural Networks (GNNs) has significantly propelled progress in Multi-View Clustering (MVC). However, existing methods face the problem of coarse-grained graph fusion. Specifically, current approaches typically generate a separate graph structure for each view and then perform weighted fusion of graph structures at the view level, which is a relatively rough strategy. To address this limitation, we present a novel Mixture of Ego-Graphs Contrastive Representation Learning (MoEGCL). It mainly consists of two modules. In particular, we propose an innovative Mixture of Ego-Graphs Fusion (MoEGF), which constructs ego graphs and utilizes a Mixture-of-Experts network to implement fine-grained fusion of ego graphs at the sample level, rather than the conventional view-level fusion. Additionally, we present the Ego Graph Contrastive Learning (EGCL) module to align the fused representation with the view-specific representation. The EGCL module enhances the representation similarity of samples from the same cluster, not merely from the same sample, further boosting fine-grained graph representation. Extensive experiments demonstrate that MoEGCL achieves state-of-the-art results in deep multi-view clustering tasks. The source code is publicly available at https://github.com/HackerHyper/MoEGCL.

Authors:Suresh Nehra, Aupendu Kar, Jayanta Mukhopadhyay, Prabir Kumar Biswas
Title: Light-Field Dataset for Disparity Based Depth Estimation
Abstract:
A Light Field (LF) camera consists of an additional two-dimensional array of micro-lenses placed between the main lens and sensor, compared to a conventional camera. The sensor pixels under each micro-lens receive light from a sub-aperture of the main lens. This enables the image sensor to capture both spatial information and the angular resolution of a scene point. This additional angular information is used to estimate the depth of a 3-D scene. The continuum of virtual viewpoints in light field data enables efficient depth estimation using Epipolar Line Images (EPIs) with robust occlusion handling. However, the trade-off between angular information and spatial information is very critical and depends on the focal position of the camera. To design, develop, implement, and test novel disparity-based light field depth estimation algorithms, the availability of suitable light field image datasets is essential. In this paper, a publicly available light field image dataset is introduced and thoroughly described. We have also demonstrated the effect of focal position on the disparity of a 3-D point as well as the shortcomings of the currently available light field dataset. The proposed dataset contains 285 light field images captured using a Lytro Illum LF camera and 13 synthetic LF images. The proposed dataset also comprises a synthetic dataset with similar disparity characteristics to those of a real light field camera. A real and synthetic stereo light field dataset is also created by using a mechanical gantry system and Blender. The dataset is available at https://github.com/aupendu/light-field-dataset.

Authors:Seyed Alireza Javid, Amirhossein Bagheri, Nuria González-Prelcic
Title: Enhancing Diffusion Model Guidance through Calibration and Regularization
Abstract:
Classifier-guided diffusion models have emerged as a powerful approach for conditional image generation, but they suffer from overconfident predictions during early denoising steps, causing the guidance gradient to vanish. This paper introduces two complementary contributions to address this issue. First, we propose a differentiable calibration objective based on the Smooth Expected Calibration Error (Smooth ECE), which improves classifier calibration with minimal fine-tuning and yields measurable improvements in Frechet Inception Distance (FID). Second, we develop enhanced sampling guidance methods that operate on off-the-shelf classifiers without requiring retraining. These include tilted sampling with batch-level reweighting, adaptive entropy-regularized sampling to preserve diversity, and a novel f-divergence-based sampling strategy that strengthens class-consistent guidance while maintaining mode coverage. Experiments on ImageNet 128x128 demonstrate that our divergence-regularized guidance achieves an FID of 2.13 using a ResNet-101 classifier, improving upon existing classifier-guided diffusion methods while requiring no diffusion model retraining. The results show that principled calibration and divergence-aware sampling provide practical and effective improvements for classifier-guided diffusion.

Authors:Taixi Chen, Yiu-ming Cheung
Title: TYrPPG: Uncomplicated and Enhanced Learning Capability rPPG for Remote Heart Rate Estimation
Abstract:
Remote photoplethysmography (rPPG) can remotely extract physiological signals from RGB video, which has many advantages in detecting heart rate, such as low cost and no invasion to patients. The existing rPPG model is usually based on the transformer module, which has low computation efficiency. Recently, the Mamba model has garnered increasing attention due to its efficient performance in natural language processing tasks, demonstrating potential as a substitute for transformer-based algorithms. However, the Mambaout model and its variants prove that the SSM module, which is the core component of the Mamba model, is unnecessary for the vision task. Therefore, we hope to prove the feasibility of using the Mambaout-based module to remotely learn the heart rate. Specifically, we propose a novel rPPG algorithm called uncomplicated and enhanced learning capability rPPG (TYrPPG). This paper introduces an innovative gated video understanding block (GVB) designed for efficient analysis of RGB videos. Based on the Mambaout structure, this block integrates 2D-CNN and 3D-CNN to enhance video understanding for analysis. In addition, we propose a comprehensive supervised loss function (CSL) to improve the model's learning capability, along with its weakly supervised variants. The experiments show that our TYrPPG can achieve state-of-the-art performance in commonly used datasets, indicating its prospects and superiority in remote heart rate estimation. The source code is available at https://github.com/Taixi-CHEN/TYrPPG.

Authors:Yunge Li, Lanyu Xu
Title: Hilbert-Guided Block-Sparse Local Attention
Abstract:
The quadratic compute and memory costs of global self-attention severely limit its use in high-resolution images. Local attention reduces complexity by restricting attention to neighborhoods. Block-sparse kernels can further improve the efficiency of local attention, but conventional local attention patterns often fail to deliver significant speedups because tokens within a window are not contiguous in the 1D sequence. This work proposes a novel method for constructing windows and neighborhoods based on the Hilbert curve. Image tokens are first reordered along a Hilbert curve, and windows and neighborhoods are then formed on the reordered 1D sequence. From a block-sparse perspective, this strategy significantly increases block sparsity and can be combined with existing block-sparse kernels to improve the efficiency of 2D local attention. Experiments show that the proposed Hilbert Window Attention and Hilbert Slide Attention can accelerate window attention and slide attention by about $4\times$ and $18\times$, respectively. To assess practicality, the strategy is instantiated as the Hilbert Window Transformer and the Hilbert Neighborhood Transformer, both of which achieve end-to-end speedups with minimal accuracy loss. Overall, combining Hilbert-guided local attention with block-sparse kernels offers a general and practical approach to enhancing the efficiency of 2D local attention for images. The code is available at https://github.com/Yunge6666/Hilbert-Local-Attention.

Authors:Yuchen Su, Zhineng Chen, Yongkun Du, Zuxuan Wu, Hongtao Xie, Yu-Gang Jiang
Title: LRANet++: Low-Rank Approximation Network for Accurate and Efficient Text Spotting
Abstract:
End-to-end text spotting aims to jointly optimize text detection and recognition within a unified framework. Despite significant progress, designing an accurate and efficient end-to-end text spotter for arbitrary-shaped text remains largely unsolved. We identify the primary bottleneck as the lack of a reliable and efficient text detection method. To address this, we propose a novel parameterized text shape method based on low-rank approximation for precise detection and a triple assignment detection head to enable fast inference. Specifically, unlike other shape representation methods that employ data-irrelevant parameterization, our data-driven approach derives a low-rank subspace directly from labeled text boundaries. To ensure this process is robust against the inherent annotation noise in this data, we utilize a specialized recovery method based on an $\ell_1$-norm formulation, which accurately reconstructs the text shape with only a few key orthogonal vectors. By exploiting the inherent shape correlation among different text contours, our method achieves consistency and compactness in shape representation. Next, the triple assignment scheme introduces a novel architecture where a deep sparse branch (for stabilized training) is used to guide the learning of an ultra-lightweight sparse branch (for accelerated inference), while a dense branch provides rich parallel supervision. Building upon these advancements, we integrate the enhanced detection module with a lightweight recognition branch to form an end-to-end text spotting framework, termed LRANet++, capable of accurately and efficiently spotting arbitrary-shaped text. Extensive experiments on several challenging benchmarks demonstrate the superiority of LRANet++ compared to state-of-the-art methods. Code will be available at: https://github.com/ychensu/LRANet-PP.git

Authors:Lalit Maurya, Honghai Liu, Reyer Zwiggelaar
Title: MACMD: Multi-dilated Contextual Attention and Channel Mixer Decoding for Medical Image Segmentation
Abstract:
Medical image segmentation faces challenges due to variations in anatomical structures. While convolutional neural networks (CNNs) effectively capture local features, they struggle with modeling long-range dependencies. Transformers mitigate this issue with self-attention mechanisms but lack the ability to preserve local contextual information. State-of-the-art models primarily follow an encoder-decoder architecture, achieving notable success. However, two key limitations remain: (1) Shallow layers, which are closer to the input, capture fine-grained details but suffer from information loss as data propagates through deeper layers. (2) Inefficient integration of local details and global context between the encoder and decoder stages. To address these challenges, we propose the MACMD-based decoder, which enhances attention mechanisms and facilitates channel mixing between encoder and decoder stages via skip connections. This design leverages hierarchical dilated convolutions, attention-driven modulation, and a cross channel-mixing module to capture long-range dependencies while preserving local contextual details, essential for precise medical image segmentation. We evaluated our approach using multiple transformer encoders on both binary and multi-organ segmentation tasks. The results demonstrate that our method outperforms state-of-the-art approaches in terms of Dice score and computational efficiency, highlighting its effectiveness in achieving accurate and robust segmentation performance. The code available at https://github.com/lalitmaurya47/MACMD

Authors:David Acuna, Chao-Han Huck Yang, Yuntian Deng, Jaehun Jung, Ximing Lu, Prithviraj Ammanabrolu, Hyunwoo Kim, Yuan-Hong Liao, Yejin Choi
Title: Long Grounded Thoughts: Distilling Compositional Visual Reasoning Chains at Scale
Abstract:
Recent progress in multimodal reasoning has been driven largely by undisclosed datasets and proprietary data synthesis recipes, leaving open questions about how to systematically build large-scale, vision-centric reasoning datasets, particularly for tasks that go beyond visual math. In this work, we introduce a new reasoning data generation framework spanning diverse skills and levels of complexity with over 1M high-quality synthetic vision-centric questions. The dataset also includes preference data and instruction prompts supporting both offline and online RL. Our synthesis framework proceeds in two stages: (1) scale; and (2) complexity. Reasoning traces are then synthesized through a two-stage process that leverages VLMs and reasoning LLMs, producing CoT traces for VLMs that capture the richness and diverse cognitive behaviors found in frontier reasoning models. Remarkably, we show that finetuning Qwen2.5-VL-7B on our data outperforms all open-data baselines across all evaluated vision-centric benchmarks, and even surpasses strong closed-data models such as MiMo-VL-7B-RL on V* Bench, CV-Bench and MMStar-V. Perhaps most surprising, despite being entirely vision-centric, our data transfers positively to text-only reasoning (MMLU-Pro) and audio reasoning (MMAU), demonstrating its effectiveness. Similarly, despite not containing videos or embodied visual data, we observe notable gains when evaluating on a single-evidence embodied QA benchmark (NiEH). Finally, we use our data to analyze the entire VLM post-training pipeline. Our empirical analysis highlights that (i) SFT on high-quality data with non-linear reasoning traces is essential for effective online RL, (ii) staged offline RL matches online RL's performance while reducing compute demands, and (iii) careful SFT on high quality data can substantially improve out-of-domain, cross-modality transfer.

Authors:Yujin Potter, Zhun Wang, Nicholas Crispino, Kyle Montgomery, Alexander Xiong, Ethan Y. Chang, Francesco Pinto, Yuqi Chen, Rahul Gupta, Morteza Ziyadi, Christos Christodoulopoulos, Bo Li, Chenguang Wang, Dawn Song
Title: VMDT: Decoding the Trustworthiness of Video Foundation Models
Abstract:
As foundation models become more sophisticated, ensuring their trustworthiness becomes increasingly critical; yet, unlike text and image, the video modality still lacks comprehensive trustworthiness benchmarks. We introduce VMDT (Video-Modal DecodingTrust), the first unified platform for evaluating text-to-video (T2V) and video-to-text (V2T) models across five key trustworthiness dimensions: safety, hallucination, fairness, privacy, and adversarial robustness. Through our extensive evaluation of 7 T2V models and 19 V2T models using VMDT, we uncover several significant insights. For instance, all open-source T2V models evaluated fail to recognize harmful queries and often generate harmful videos, while exhibiting higher levels of unfairness compared to image modality models. In V2T models, unfairness and privacy risks rise with scale, whereas hallucination and adversarial robustness improve -- though overall performance remains low. Uniquely, safety shows no correlation with model size, implying that factors other than scale govern current safety levels. Our findings highlight the urgent need for developing more robust and trustworthy video foundation models, and VMDT provides a systematic framework for measuring and tracking progress toward this goal. The code is available at https://sunblaze-ucb.github.io/VMDT-page/.

Authors:Nicholas Babey, Tiffany Gu, Yiheng Li, Cristian Meo, Kevin Zhu
Title: Grounding Foundational Vision Models with 3D Human Poses for Robust Action Recognition
Abstract:
For embodied agents to effectively understand and interact within the world around them, they require a nuanced comprehension of human actions grounded in physical space. Current action recognition models, often relying on RGB video, learn superficial correlations between patterns and action labels, so they struggle to capture underlying physical interaction dynamics and human poses in complex scenes. We propose a model architecture that grounds action recognition in physical space by fusing two powerful, complementary representations: V-JEPA 2's contextual, predictive world dynamics and CoMotion's explicit, occlusion-tolerant human pose data. Our model is validated on both the InHARD and UCF-19-Y-OCC benchmarks for general action recognition and high-occlusion action recognition, respectively. Our model outperforms three other baselines, especially within complex, occlusive scenes. Our findings emphasize a need for action recognition to be supported by spatial understanding instead of statistical pattern recognition.

Authors:Ziying Li, Xuequan Lu, Xinkui Zhao, Guanjie Cheng, Shuiguang Deng, Jianwei Yin
Title: Walking the Schrödinger Bridge: A Direct Trajectory for Text-to-3D Generation
Abstract:
Recent advancements in optimization-based text-to-3D generation heavily rely on distilling knowledge from pre-trained text-to-image diffusion models using techniques like Score Distillation Sampling (SDS), which often introduce artifacts such as over-saturation and over-smoothing into the generated 3D assets. In this paper, we address this essential problem by formulating the generation process as learning an optimal, direct transport trajectory between the distribution of the current rendering and the desired target distribution, thereby enabling high-quality generation with smaller Classifier-free Guidance (CFG) values. At first, we theoretically establish SDS as a simplified instance of the Schrödinger Bridge framework. We prove that SDS employs the reverse process of an Schrödinger Bridge, which, under specific conditions (e.g., a Gaussian noise as one end), collapses to SDS's score function of the pre-trained diffusion model. Based upon this, we introduce Trajectory-Centric Distillation (TraCe), a novel text-to-3D generation framework, which reformulates the mathematically trackable framework of Schrödinger Bridge to explicitly construct a diffusion bridge from the current rendering to its text-conditioned, denoised target, and trains a LoRA-adapted model on this trajectory's score dynamics for robust 3D optimization. Comprehensive experiments demonstrate that TraCe consistently achieves superior quality and fidelity to state-of-the-art techniques.

Authors:Yoojin Oh, Junhyug Noh
Title: Beyond Softmax: Dual-Branch Sigmoid Architecture for Accurate Class Activation Maps
Abstract:
Class Activation Mapping (CAM) and its extensions have become indispensable tools for visualizing the evidence behind deep network predictions. However, by relying on a final softmax classifier, these methods suffer from two fundamental distortions: additive logit shifts that arbitrarily bias importance scores, and sign collapse that conflates excitatory and inhibitory features. We propose a simple, architecture-agnostic dual-branch sigmoid head that decouples localization from classification. Given any pretrained model, we clone its classification head into a parallel branch ending in per-class sigmoid outputs, freeze the original softmax head, and fine-tune only the sigmoid branch with class-balanced binary supervision. At inference, softmax retains recognition accuracy, while class evidence maps are generated from the sigmoid branch -- preserving both magnitude and sign of feature contributions. Our method integrates seamlessly with most CAM variants and incurs negligible overhead. Extensive evaluations on fine-grained tasks (CUB-200-2011, Stanford Cars) and WSOL benchmarks (ImageNet-1K, OpenImages30K) show improved explanation fidelity and consistent Top-1 Localization gains -- without any drop in classification accuracy. Code is available at https://github.com/finallyupper/beyond-softmax.

Authors:Weston Bondurant, Arkaprava Sinha, Hieu Le, Srijan Das, Stephanie Schuckers
Title: DiffSwap++: 3D Latent-Controlled Diffusion for Identity-Preserving Face Swapping
Abstract:
Diffusion-based approaches have recently achieved strong results in face swapping, offering improved visual quality over traditional GAN-based methods. However, even state-of-the-art models often suffer from fine-grained artifacts and poor identity preservation, particularly under challenging poses and expressions. A key limitation of existing approaches is their failure to meaningfully leverage 3D facial structure, which is crucial for disentangling identity from pose and expression. In this work, we propose DiffSwap++, a novel diffusion-based face-swapping pipeline that incorporates 3D facial latent features during training. By guiding the generation process with 3D-aware representations, our method enhances geometric consistency and improves the disentanglement of facial identity from appearance attributes. We further design a diffusion architecture that conditions the denoising process on both identity embeddings and facial landmarks, enabling high-fidelity and identity-preserving face swaps. Extensive experiments on CelebA, FFHQ, and CelebV-Text demonstrate that DiffSwap++ outperforms prior methods in preserving source identity while maintaining target pose and expression. Additionally, we introduce a biometric-style evaluation and conduct a user study to further validate the realism and effectiveness of our approach. Code will be made publicly available at https://github.com/WestonBond/DiffSwapPP

Authors:Xiaofei Wang, Stephen Price, Chao Li
Title: C3-Diff: Super-resolving Spatial Transcriptomics via Cross-modal Cross-content Contrastive Diffusion Modelling
Abstract:
The rapid advancement of spatial transcriptomics (ST), i.e., spatial gene expressions, has made it possible to measure gene expression within original tissue, enabling us to discover molecular mechanisms. However, current ST platforms frequently suffer from low resolution, limiting the in-depth understanding of spatial gene expression. Super-resolution approaches promise to enhance ST maps by integrating histology images with gene expressions of profiled tissue spots. However, it remains a challenge to model the interactions between histology images and gene expressions for effective ST enhancement. This study presents a cross-modal cross-content contrastive diffusion framework, called C3-Diff, for ST enhancement with histology images as guidance. In C3-Diff, we firstly analyze the deficiency of traditional contrastive learning paradigm, which is then refined to extract both modal-invariant and content-invariant features of ST maps and histology images. Further, to overcome the problem of low sequencing sensitivity in ST maps, we perform nosing-based information augmentation on the surface of feature unit hypersphere. Finally, we propose a dynamic cross-modal imputation-based training strategy to mitigate ST data scarcity. We tested C3-Diff by benchmarking its performance on four public datasets, where it achieves significant improvements over competing methods. Moreover, we evaluate C3-Diff on downstream tasks of cell type localization, gene expression correlation and single-cell-level gene expression prediction, promoting AI-enhanced biotechnology for biomedical research and clinical applications. Codes are available at https://github.com/XiaofeiWang2018/C3-Diff.

Authors:Chenping Pei, Fadi Dornaika, Jingjun Bi
Title: MCFCN: Multi-View Clustering via a Fusion-Consensus Graph Convolutional Network
Abstract:
Existing Multi-view Clustering (MVC) methods based on subspace learning focus on consensus representation learning while neglecting the inherent topological structure of data. Despite the integration of Graph Neural Networks (GNNs) into MVC, their input graph structures remain susceptible to noise interference. Methods based on Multi-view Graph Refinement (MGRC) also have limitations such as insufficient consideration of cross-view consistency, difficulty in handling hard-to-distinguish samples in the feature space, and disjointed optimization processes caused by graph construction algorithms. To address these issues, a Multi-View Clustering method via a Fusion-Consensus Graph Convolutional Network (MCFCN) is proposed. The network learns the consensus graph of multi-view data in an end-to-end manner and learns effective consensus representations through a view feature fusion model and a Unified Graph Structure Adapter (UGA). It designs Similarity Matrix Alignment Loss (SMAL) and Feature Representation Alignment Loss (FRAL). With the guidance of consensus, it optimizes view-specific graphs, preserves cross-view topological consistency, promotes the construction of intra-class edges, and realizes effective consensus representation learning with the help of GCN to improve clustering performance. MCFCN demonstrates state-of-the-art performance on eight multi-view benchmark datasets, and its effectiveness is verified by extensive qualitative and quantitative implementations. The code will be provided at https://github.com/texttao/MCFCN.

Authors:Jeff Brown, Andrew Kirjner, Annika Vivekananthan, Ed Boyden
Title: ConnectomeBench: Can LLMs Proofread the Connectome?
Abstract:
Connectomics - the mapping of neural connections in an organism's brain - currently requires extraordinary human effort to proofread the data collected from imaging and machine-learning assisted segmentation. With the growing excitement around using AI agents to automate important scientific tasks, we explore whether current AI systems can perform multiple tasks necessary for data proofreading. We introduce ConnectomeBench, a multimodal benchmark evaluating large language model (LLM) capabilities in three critical proofreading tasks: segment type identification, split error correction, and merge error detection. Using expert annotated data from two large open-source datasets - a cubic millimeter of mouse visual cortex and the complete Drosophila brain - we evaluate proprietary multimodal LLMs including Claude 3.7/4 Sonnet, o4-mini, GPT-4.1, GPT-4o, as well as open source models like InternVL-3 and NVLM. Our results demonstrate that current models achieve surprisingly high performance in segment identification (52-82% balanced accuracy vs. 20-25% chance) and binary/multiple choice split error correction (75-85% accuracy vs. 50% chance) while generally struggling on merge error identification tasks. Overall, while the best models still lag behind expert performance, they demonstrate promising capabilities that could eventually enable them to augment and potentially replace human proofreading in connectomics. Project page: https://github.com/jffbrwn2/ConnectomeBench and Dataset https://huggingface.co/datasets/jeffbbrown2/ConnectomeBench/tree/main

Authors:Junwen Pan, Qizhe Zhang, Rui Zhang, Ming Lu, Xin Wan, Yuan Zhang, Chang Liu, Qi She
Title: TimeSearch-R: Adaptive Temporal Search for Long-Form Video Understanding via Self-Verification Reinforcement Learning
Abstract:
Temporal search aims to identify a minimal set of relevant frames from tens of thousands based on a given query, serving as a foundation for accurate long-form video understanding. Existing works attempt to progressively narrow the search space. However, these approaches typically rely on a hand-crafted search process, lacking end-to-end optimization for learning optimal search strategies. In this paper, we propose TimeSearch-R, which reformulates temporal search as interleaved text-video thinking, seamlessly integrating searching video clips into the reasoning process through reinforcement learning (RL). However, applying RL training methods, such as Group Relative Policy Optimization (GRPO), to video reasoning can result in unsupervised intermediate search decisions. This leads to insufficient exploration of the video content and inconsistent logical reasoning. To address these issues, we introduce GRPO with Completeness Self-Verification (GRPO-CSV), which gathers searched video frames from the interleaved reasoning process and utilizes the same policy model to verify the adequacy of searched frames, thereby improving the completeness of video reasoning. Additionally, we construct datasets specifically designed for the SFT cold-start and RL training of GRPO-CSV, filtering out samples with weak temporal dependencies to enhance task difficulty and improve temporal search capabilities. Extensive experiments demonstrate that TimeSearch-R achieves significant improvements on temporal search benchmarks such as Haystack-LVBench and Haystack-Ego4D, as well as long-form video understanding benchmarks like VideoMME and MLVU. Notably, TimeSearch-R establishes a new state-of-the-art on LongVideoBench with 4.1% improvement over the base model Qwen2.5-VL and 2.0% over the advanced video reasoning model Video-R1. Our code is available at https://github.com/Time-Search/TimeSearch-R.

Authors:Aupendu Kar, Krishnendu Ghosh, Prabir Kumar Biswas
Title: Sharing the Learned Knowledge-base to Estimate Convolutional Filter Parameters for Continual Image Restoration
Abstract:
Continual learning is an emerging topic in the field of deep learning, where a model is expected to learn continuously for new upcoming tasks without forgetting previous experiences. This field has witnessed numerous advancements, but few works have been attempted in the direction of image restoration. Handling large image sizes and the divergent nature of various degradation poses a unique challenge in the restoration domain. However, existing works require heavily engineered architectural modifications for new task adaptation, resulting in significant computational overhead. Regularization-based methods are unsuitable for restoration, as different restoration challenges require different kinds of feature processing. In this direction, we propose a simple modification of the convolution layer to adapt the knowledge from previous restoration tasks without touching the main backbone architecture. Therefore, it can be seamlessly applied to any deep architecture without any structural modifications. Unlike other approaches, we demonstrate that our model can increase the number of trainable parameters without significantly increasing computational overhead or inference time. Experimental validation demonstrates that new restoration tasks can be introduced without compromising the performance of existing tasks. We also show that performance on new restoration tasks improves by adapting the knowledge from the knowledge base created by previous restoration tasks. The code is available at https://github.com/aupendu/continual-restore.

Authors:Matteo Bastico, David Ryckelynck, Laurent Corté, Yannick Tillier, Etienne Decencière
Title: Rethinking Metrics and Diffusion Architecture for 3D Point Cloud Generation
Abstract:
As 3D point clouds become a cornerstone of modern technology, the need for sophisticated generative models and reliable evaluation metrics has grown exponentially. In this work, we first expose that some commonly used metrics for evaluating generated point clouds, particularly those based on Chamfer Distance (CD), lack robustness against defects and fail to capture geometric fidelity and local shape consistency when used as quality indicators. We further show that introducing samples alignment prior to distance calculation and replacing CD with Density-Aware Chamfer Distance (DCD) are simple yet essential steps to ensure the consistency and robustness of point cloud generative model evaluation metrics. While existing metrics primarily focus on directly comparing 3D Euclidean coordinates, we present a novel metric, named Surface Normal Concordance (SNC), which approximates surface similarity by comparing estimated point normals. This new metric, when combined with traditional ones, provides a more comprehensive evaluation of the quality of generated samples. Finally, leveraging recent advancements in transformer-based models for point cloud analysis, such as serialized patch attention , we propose a new architecture for generating high-fidelity 3D structures, the Diffusion Point Transformer. We perform extensive experiments and comparisons on the ShapeNet dataset, showing that our model outperforms previous solutions, particularly in terms of quality of generated point clouds, achieving new state-of-the-art. Code available at https://github.com/matteo-bastico/DiffusionPointTransformer.

Authors:Zhenyu Yang, Kairui Zhang, Yuhang Hu, Bing Wang, Shengsheng Qian, Bin Wen, Fan Yang, Tingting Gao, Weiming Dong, Changsheng Xu
Title: LiveStar: Live Streaming Assistant for Real-World Online Video Understanding
Abstract:
Despite significant progress in Video Large Language Models (Video-LLMs) for offline video understanding, existing online Video-LLMs typically struggle to simultaneously process continuous frame-by-frame inputs and determine optimal response timing, often compromising real-time responsiveness and narrative coherence. To address these limitations, we introduce LiveStar, a pioneering live streaming assistant that achieves always-on proactive responses through adaptive streaming decoding. Specifically, LiveStar incorporates: (1) a training strategy enabling incremental video-language alignment for variable-length video streams, preserving temporal consistency across dynamically evolving frame sequences; (2) a response-silence decoding framework that determines optimal proactive response timing via a single forward pass verification; (3) memory-aware acceleration via peak-end memory compression for online inference on 10+ minute videos, combined with streaming key-value cache to achieve 1.53x faster inference. We also construct an OmniStar dataset, a comprehensive dataset for training and benchmarking that encompasses 15 diverse real-world scenarios and 5 evaluation tasks for online video understanding. Extensive experiments across three benchmarks demonstrate LiveStar's state-of-the-art performance, achieving an average 19.5% improvement in semantic correctness with 18.1% reduced timing difference compared to existing online Video-LLMs, while improving FPS by 12.0% across all five OmniStar tasks. Our model and dataset can be accessed at https://github.com/yzy-bupt/LiveStar.

Authors:Jiaxi Yin, Pengcheng Wang, Han Ding, Fei Wang
Title: What's on Your Plate? Inferring Chinese Cuisine Intake from Wearable IMUs
Abstract:
Accurate food intake detection is vital for dietary monitoring and chronic disease prevention. Traditional self-report methods are prone to recall bias, while camera-based approaches raise concerns about privacy. Furthermore, existing wearable-based methods primarily focus on a limited number of food types, such as hamburgers and pizza, failing to address the vast diversity of Chinese cuisine. To bridge this gap, we propose CuisineSense, a system that classifies Chinese food types by integrating hand motion cues from a smartwatch with head dynamics from smart glasses. To filter out irrelevant daily activities, we design a two-stage detection pipeline. The first stage identifies eating states by distinguishing characteristic temporal patterns from non-eating behaviors. The second stage then conducts fine-grained food type recognition based on the motions captured during food intake. To evaluate CuisineSense, we construct a dataset comprising 27.5 hours of IMU recordings across 11 food categories and 10 participants. Experiments demonstrate that CuisineSense achieves high accuracy in both eating state detection and food classification, offering a practical solution for unobtrusive, wearable-based dietary monitoring.The system code is publicly available at https://github.com/joeeeeyin/CuisineSense.git.

Authors:Xincheng Yao, Yan Luo, Zefeng Qian, Chongyang Zhang
Title: ADPretrain: Advancing Industrial Anomaly Detection via Anomaly Representation Pretraining
Abstract:
The current mainstream and state-of-the-art anomaly detection (AD) methods are substantially established on pretrained feature networks yielded by ImageNet pretraining. However, regardless of supervised or self-supervised pretraining, the pretraining process on ImageNet does not match the goal of anomaly detection (i.e., pretraining in natural images doesn't aim to distinguish between normal and abnormal). Moreover, natural images and industrial image data in AD scenarios typically have the distribution shift. The two issues can cause ImageNet-pretrained features to be suboptimal for AD tasks. To further promote the development of the AD field, pretrained representations specially for AD tasks are eager and very valuable. To this end, we propose a novel AD representation learning framework specially designed for learning robust and discriminative pretrained representations for industrial anomaly detection. Specifically, closely surrounding the goal of anomaly detection (i.e., focus on discrepancies between normals and anomalies), we propose angle- and norm-oriented contrastive losses to maximize the angle size and norm difference between normal and abnormal features simultaneously. To avoid the distribution shift from natural images to AD images, our pretraining is performed on a large-scale AD dataset, RealIAD. To further alleviate the potential shift between pretraining data and downstream AD datasets, we learn the pretrained AD representations based on the class-generalizable representation, residual features. For evaluation, based on five embedding-based AD methods, we simply replace their original features with our pretrained representations. Extensive experiments on five AD datasets and five backbones consistently show the superiority of our pretrained features. The code is available at https://github.com/xcyao00/ADPretrain.

Authors:Alexander Lappe, Martin A. Giese
Title: Another BRIXEL in the Wall: Towards Cheaper Dense Features
Abstract:
Vision foundation models achieve strong performance on both global and locally dense downstream tasks. Pretrained on large images, the recent DINOv3 model family is able to produce very fine-grained dense feature maps, enabling state-of-the-art performance. However, computing these feature maps requires the input image to be available at very high resolution, as well as large amounts of compute due to the squared complexity of the transformer architecture. To address these issues, we propose BRIXEL, a simple knowledge distillation approach that has the student learn to reproduce its own feature maps at higher resolution. Despite its simplicity, BRIXEL outperforms the baseline DINOv3 models by large margins on downstream tasks when the resolution is kept fixed. Moreover, it is able to produce feature maps that are very similar to those of the teacher at a fraction of the computational cost. Code and model weights are available at https://github.com/alexanderlappe/BRIXEL.

Authors:Jörg Gamerdinger, Benedict Wetzel, Patrick Schulz, Sven Teufel, Oliver Bringmann
Title: SnowyLane: Robust Lane Detection on Snow-covered Rural Roads Using Infrastructural Elements
Abstract:
Lane detection for autonomous driving in snow-covered environments remains a major challenge due to the frequent absence or occlusion of lane markings. In this paper, we present a novel, robust and realtime capable approach that bypasses the reliance on traditional lane markings by detecting roadside features,specifically vertical roadside posts called delineators, as indirect lane indicators. Our method first perceives these posts, then fits a smooth lane trajectory using a parameterized Bezier curve model, leveraging spatial consistency and road geometry. To support training and evaluation in these challenging scenarios, we introduce SnowyLane, a new synthetic dataset containing 80,000 annotated frames capture winter driving conditions, with varying snow coverage, and lighting conditions. Compared to state-of-the-art lane detection systems, our approach demonstrates significantly improved robustness in adverse weather, particularly in cases with heavy snow occlusion. This work establishes a strong foundation for reliable lane detection in winter scenarios and contributes a valuable resource for future research in all-weather autonomous driving. The dataset is available at https://ekut-es.github.io/snowy-lane

Authors:Fuyang Liu, Jiaqi Xu, Xiaowei Hu
Title: Real-World Adverse Weather Image Restoration via Dual-Level Reinforcement Learning with High-Quality Cold Start
Abstract:
Adverse weather severely impairs real-world visual perception, while existing vision models trained on synthetic data with fixed parameters struggle to generalize to complex degradations. To address this, we first construct HFLS-Weather, a physics-driven, high-fidelity dataset that simulates diverse weather phenomena, and then design a dual-level reinforcement learning framework initialized with HFLS-Weather for cold-start training. Within this framework, at the local level, weather-specific restoration models are refined through perturbation-driven image quality optimization, enabling reward-based learning without paired supervision; at the global level, a meta-controller dynamically orchestrates model selection and execution order according to scene degradation. This framework enables continuous adaptation to real-world conditions and achieves state-of-the-art performance across a wide range of adverse weather scenarios. Code is available at https://github.com/xxclfy/AgentRL-Real-Weather

Authors:Mingyu Sheng, Jianan Fan, Dongnan Liu, Guoyan Zheng, Ron Kikinis, Weidong Cai
Title: SurgiATM: A Physics-Guided Plug-and-Play Model for Deep Learning-Based Smoke Removal in Laparoscopic Surgery
Abstract:
During laparoscopic surgery, smoke generated by tissue cauterization can significantly degrade the visual quality of endoscopic frames, increasing the risk of surgical errors and hindering both clinical decision-making and computer-assisted visual analysis. Consequently, removing surgical smoke is critical to ensuring patient safety and maintaining operative efficiency. In this study, we propose the Surgical Atmospheric Model (SurgiATM) for surgical smoke removal. SurgiATM statistically bridges a physics-based atmospheric model and data-driven deep learning models, combining the superior generalizability of the former with the high accuracy of the latter. Furthermore, SurgiATM is designed as a lightweight, plug-and-play module that can be seamlessly integrated into diverse surgical desmoking architectures to enhance their accuracy and stability, better meeting clinical requirements. It introduces only two hyperparameters and no additional trainable weights, preserving the original network architecture with minimal computational and modification overhead. We conduct extensive experiments on three public surgical datasets with ten desmoking methods, involving multiple network architectures and covering diverse procedures, including cholecystectomy, partial nephrectomy, and diaphragm dissection. The results demonstrate that incorporating SurgiATM commonly reduces the restoration errors of existing models and relatively enhances their generalizability, without adding any trainable layers or weights. This highlights the convenience, low cost, effectiveness, and generalizability of the proposed method. The code for SurgiATM is released at https://github.com/MingyuShengSMY/SurgiATM.

Authors:Yuanxiang Huangfu, Chaochao Wang, Weilei Wang
Title: Role-SynthCLIP: A Role Play Driven Diverse Synthetic Data Approach
Abstract:
The effectiveness of Contrastive Language-Image Pre-training (CLIP) models critically depends on the semantic diversity and quality of their training data. However, while existing synthetic data generation methods primarily focus on increasing data volume, such emphasis often leads to limited semantic diversity and redundant or shallow captions. To address this limitation, we propose Role-SynthCLIP, a novel data synthesis framework that leverages multi-perspective role-playing prompts (e.g., a compositional analyst, an interpreter of image context) to guide Multimodal Large Language Models (MLLMs) in generating semantically diverse captions from distinct viewpoints. This mechanism enhances the semantic diversity and fine-grained image-text alignment of synthetic pairs, thereby improving caption expressiveness and accuracy while keeping the total number of image-text pairs unchanged. Experimental results demonstrate the effectiveness and efficiency of our method. A CLIP-B/16 model trained on only 1 million Role-SynthCLIP pairs achieves a Recall@1 of 64.1% on the MS COCO validation set, surpassing the best existing synthetic data baseline (trained on 5M pairs) by 2.8 percentage points. The code and trained models are released at https://github.com/huangfu170/Role-SynthCLIP.

Authors:S. Zhao, W. Lu, B. Wang, T. Wang, K. Zhang, H. Zhao
Title: UHDRes: Ultra-High-Definition Image Restoration via Dual-Domain Decoupled Spectral Modulation
Abstract:
Ultra-high-definition (UHD) images often suffer from severe degradations such as blur, haze, rain, or low-light conditions, which pose significant challenges for image restoration due to their high resolution and computational demands. In this paper, we propose UHDRes, a novel lightweight dual-domain decoupled spectral modulation framework for UHD image restoration. It explicitly models the amplitude spectrum via lightweight spectrum-domain modulation, while restoring phase implicitly through spatial-domain refinement. We introduce the spatio-spectral fusion mechanism, which first employs a multi-scale context aggregator to extract local and global spatial features, and then performs spectral modulation in a decoupled manner. It explicitly enhances amplitude features in the frequency domain while implicitly restoring phase information through spatial refinement. Additionally, a shared gated feed-forward network is designed to efficiently promote feature interaction through shared-parameter convolutions and adaptive gating mechanisms. Extensive experimental comparisons on five public UHD benchmarks demonstrate that our UHDRes achieves the state-of-the-art restoration performance with only 400K parameters, while significantly reducing inference latency and memory usage. The codes and models are available at https://github.com/Zhao0100/UHDRes.

Authors:Xiongri Shen, Jiaqi Wang, Yi Zhong, Zhenxi Song, Leilei Zhao, Yichen Wei, Lingyan Liang, Shuqiang Wang, Baiying Lei, Demao Deng, Zhiguo Zhang
Title: Pattern-Aware Diffusion Synthesis of fMRI/dMRI with Tissue and Microstructural Refinement
Abstract:
Magnetic resonance imaging (MRI), especially functional MRI (fMRI) and diffusion MRI (dMRI), is essential for studying neurodegenerative diseases. However, missing modalities pose a major barrier to their clinical use. Although GAN- and diffusion model-based approaches have shown some promise in modality completion, they remain limited in fMRI-dMRI synthesis due to (1) significant BOLD vs. diffusion-weighted signal differences between fMRI and dMRI in time/gradient axis, and (2) inadequate integration of disease-related neuroanatomical patterns during generation. To address these challenges, we propose PDS, introducing two key innovations: (1) a pattern-aware dual-modal 3D diffusion framework for cross-modality learning, and (2) a tissue refinement network integrated with a efficient microstructure refinement to maintain structural fidelity and fine details. Evaluated on OASIS-3, ADNI, and in-house datasets, our method achieves state-of-the-art results, with PSNR/SSIM scores of 29.83 dB/90.84\% for fMRI synthesis (+1.54 dB/+4.12\% over baselines) and 30.00 dB/77.55\% for dMRI synthesis (+1.02 dB/+2.2\%). In clinical validation, the synthesized data show strong diagnostic performance, achieving 67.92\%/66.02\%/64.15\% accuracy (NC vs. MCI vs. AD) in hybrid real-synthetic experiments. Code is available in \href{https://github.com/SXR3015/PDS}{PDS GitHub Repository}

Authors:Shuo Zhao, Yu Zhou, Jianxu Chen
Title: An Active Learning Pipeline for Biomedical Image Instance Segmentation with Minimal Human Intervention
Abstract:
Biomedical image segmentation is critical for precise structure delineation and downstream analysis. Traditional methods often struggle with noisy data, while deep learning models such as U-Net have set new benchmarks in segmentation performance. nnU-Net further automates model configuration, making it adaptable across datasets without extensive tuning. However, it requires a substantial amount of annotated data for cross-validation, posing a challenge when only raw images but no labels are available. Large foundation models offer zero-shot generalizability, but may underperform on specific datasets with unique characteristics, limiting their direct use for analysis. This work addresses these bottlenecks by proposing a data-centric AI workflow that leverages active learning and pseudo-labeling to combine the strengths of traditional neural networks and large foundation models while minimizing human intervention. The pipeline starts by generating pseudo-labels from a foundation model, which are then used for nnU-Net's self-configuration. Subsequently, a representative core-set is selected for minimal manual annotation, enabling effective fine-tuning of the nnU-Net model. This approach significantly reduces the need for manual annotations while maintaining competitive performance, providing an accessible solution for biomedical researchers to apply state-of-the-art AI techniques in their segmentation tasks. The code is available at https://github.com/MMV-Lab/AL_BioMed_img_seg.

Authors:Shuo Zhao, Jianxu Chen
Title: Data Efficiency and Transfer Robustness in Biomedical Image Segmentation: A Study of Redundancy and Forgetting with Cellpose
Abstract:
Generalist biomedical image segmentation models such as Cellpose are increasingly applied across diverse imaging modalities and cell types. However, two critical challenges remain underexplored: (1) the extent of training data redundancy and (2) the impact of cross domain transfer on model retention. In this study, we conduct a systematic empirical analysis of these challenges using Cellpose as a case study. First, to assess data redundancy, we propose a simple dataset quantization (DQ) strategy for constructing compact yet diverse training subsets. Experiments on the Cyto dataset show that image segmentation performance saturates with only 10% of the data, revealing substantial redundancy and potential for training with minimal annotations. Latent space analysis using MAE embeddings and t-SNE confirms that DQ selected patches capture greater feature diversity than random sampling. Second, to examine catastrophic forgetting, we perform cross domain finetuning experiments and observe significant degradation in source domain performance, particularly when adapting from generalist to specialist domains. We demonstrate that selective DQ based replay reintroducing just 5-10% of the source data effectively restores source performance, while full replay can hinder target adaptation. Additionally, we find that training domain sequencing improves generalization and reduces forgetting in multi stage transfer. Our findings highlight the importance of data centric design in biomedical image segmentation and suggest that efficient training requires not only compact subsets but also retention aware learning strategies and informed domain ordering. The code is available at https://github.com/MMV-Lab/biomedseg-efficiency.

Authors:Yue Xun, Jiaxing Xu, Wenbo Gao, Chen Yang, Shujun Wang
Title: Ada-FCN: Adaptive Frequency-Coupled Network for fMRI-Based Brain Disorder Classification
Abstract:
Resting-state fMRI has become a valuable tool for classifying brain disorders and constructing brain functional connectivity networks by tracking BOLD signals across brain regions. However, existing mod els largely neglect the multi-frequency nature of neuronal oscillations, treating BOLD signals as monolithic time series. This overlooks the cru cial fact that neurological disorders often manifest as disruptions within specific frequency bands, limiting diagnostic sensitivity and specificity. While some methods have attempted to incorporate frequency informa tion, they often rely on predefined frequency bands, which may not be optimal for capturing individual variability or disease-specific alterations. To address this, we propose a novel framework featuring Adaptive Cas cade Decomposition to learn task-relevant frequency sub-bands for each brain region and Frequency-Coupled Connectivity Learning to capture both intra- and nuanced cross-band interactions in a unified functional network. This unified network informs a novel message-passing mecha nism within our Unified-GCN, generating refined node representations for diagnostic prediction. Experimental results on the ADNI and ABIDE datasets demonstrate superior performance over existing methods. The code is available at https://github.com/XXYY20221234/Ada-FCN.

Authors:Rafe Loya, Andrew Hamara, Benjamin Estell, Benjamin Kilpatrick, Andrew C. Freeman
Title: Carousel: A High-Resolution Dataset for Multi-Target Automatic Image Cropping
Abstract:
Automatic image cropping is a method for maximizing the human-perceived quality of cropped regions in photographs. Although several works have proposed techniques for producing singular crops, little work has addressed the problem of producing multiple, distinct crops with aesthetic appeal. In this paper, we motivate the problem with a discussion on modern social media applications, introduce a dataset of 277 relevant images and human labels, and evaluate the efficacy of several single-crop models with an image partitioning algorithm as a pre-processing step. The dataset is available at https://github.com/RafeLoya/carousel.

Authors:Maximus A. Pace, Prithwish Dan, Chuanruo Ning, Atiksh Bhardwaj, Audrey Du, Edward W. Duan, Wei-Chiu Ma, Kushal Kedia
Title: X-Diffusion: Training Diffusion Policies on Cross-Embodiment Human Demonstrations
Abstract:
Human videos can be recorded quickly and at scale, making them an appealing source of training data for robot learning. However, humans and robots differ fundamentally in embodiment, resulting in mismatched action execution. Direct kinematic retargeting of human hand motion can therefore produce actions that are physically infeasible for robots. Despite these low-level differences, human demonstrations provide valuable motion cues about how to manipulate and interact with objects. Our key idea is to exploit the forward diffusion process: as noise is added to actions, low-level execution differences fade while high-level task guidance is preserved. We present X-Diffusion, a principled framework for training diffusion policies that maximally leverages human data without learning dynamically infeasible motions. X-Diffusion first trains a classifier to predict whether a noisy action is executed by a human or robot. Then, a human action is incorporated into policy training only after adding sufficient noise such that the classifier cannot discern its embodiment. Actions consistent with robot execution supervise fine-grained denoising at low noise levels, while mismatched human actions provide only coarse guidance at higher noise levels. Our experiments show that naive co-training under execution mismatches degrades policy performance, while X-Diffusion consistently improves it. Across five manipulation tasks, X-Diffusion achieves a 16% higher average success rate than the best baseline. The project website is available at https://portal-cornell.github.io/X-Diffusion/.

Authors:Ellis Brown, Arijit Ray, Ranjay Krishna, Ross Girshick, Rob Fergus, Saining Xie
Title: SIMS-V: Simulated Instruction-Tuning for Spatial Video Understanding
Abstract:
Despite impressive high-level video comprehension, multimodal language models struggle with spatial reasoning across time and space. While current spatial training approaches rely on real-world video data, obtaining diverse footage with precise spatial annotations remains a bottleneck. To alleviate this bottleneck, we present SIMS-V -- a systematic data-generation framework that leverages the privileged information of 3D simulators to create spatially-rich video training data for multimodal language models. Using this framework, we investigate which properties of simulated data drive effective real-world transfer through systematic ablations of question types, mixes, and scales. We identify a minimal set of three question categories (metric measurement, perspective-dependent reasoning, and temporal tracking) that prove most effective for developing transferable spatial intelligence, outperforming comprehensive coverage despite using fewer question types. These insights enable highly efficient training: our 7B-parameter video LLM fine-tuned on just 25K simulated examples outperforms the larger 72B baseline and achieves competitive performance with proprietary models on rigorous real-world spatial reasoning benchmarks. Our approach demonstrates robust generalization, maintaining performance on general video understanding while showing substantial improvements on embodied and real-world spatial tasks.

Authors:Atsuyuki Miyai, Mashiro Toyooka, Takashi Otonari, Zaiying Zhao, Kiyoharu Aizawa
Title: Jr. AI Scientist and Its Risk Report: Autonomous Scientific Exploration from a Baseline Paper
Abstract:
Understanding the current capabilities and risks of AI Scientist systems is essential for ensuring trustworthy and sustainable AI-driven scientific progress while preserving the integrity of the academic ecosystem. To this end, we develop Jr. AI Scientist, a state-of-the-art autonomous AI scientist system that mimics the core research workflow of a novice student researcher: Given the baseline paper from the human mentor, it analyzes its limitations, formulates novel hypotheses for improvement, and iteratively conducts experiments until improvements are realized, and writes a paper with the results. Unlike previous approaches that assume full automation or operate on small-scale code, Jr. AI Scientist follows a well-defined research workflow and leverages modern coding agents to handle complex, multi-file implementations, leading to scientifically valuable contributions. Through our experiments, the Jr. AI Scientist successfully generated new research papers that build upon real NeurIPS, IJCV, and ICLR works by proposing and implementing novel methods. For evaluation, we conducted automated assessments using AI Reviewers, author-led evaluations, and submissions to Agents4Science, a venue dedicated to AI-driven scientific contributions. The findings demonstrate that Jr. AI Scientist generates papers receiving higher review scores than existing fully automated systems. Nevertheless, we identify important limitations from both the author evaluation and the Agents4Science reviews, indicating the potential risks of directly applying current AI Scientist systems and key challenges for future research. Finally, we comprehensively report various risks identified during development. We believe this study clarifies the current role and limitations of AI Scientist systems, offering insights into the areas that still require human expertise and the risks that may emerge as these systems evolve.

Authors:Tao Lin, Yilei Zhong, Yuxin Du, Jingjing Zhang, Jiting Liu, Yinxinyu Chen, Encheng Gu, Ziyan Liu, Hongyi Cai, Yanwen Zou, Lixing Zou, Zhaoye Zhou, Gen Li, Bo Zhao
Title: Evo-1: Lightweight Vision-Language-Action Model with Preserved Semantic Alignment
Abstract:
Vision-Language-Action (VLA) models have emerged as a powerful framework that unifies perception, language, and control, enabling robots to perform diverse tasks through multimodal understanding. However, current VLA models typically contain massive parameters and rely heavily on large-scale robot data pretraining, leading to high computational costs during training, as well as limited deployability for real-time inference. Moreover, most training paradigms often degrade the perceptual representations of the vision-language backbone, resulting in overfitting and poor generalization to downstream tasks. In this work, we present Evo-1, a lightweight VLA model that reduces computation and improves deployment efficiency, while maintaining strong performance without pretraining on robot data. Evo-1 builds on a native multimodal Vision-Language model (VLM), incorporating a novel cross-modulated diffusion transformer along with an optimized integration module, together forming an effective architecture. We further introduce a two-stage training paradigm that progressively aligns action with perception, preserving the representations of the VLM. Notably, with only 0.77 billion parameters, Evo-1 achieves state-of-the-art results on the Meta-World and RoboTwin suite, surpassing the previous best models by 12.4% and 6.9%, respectively, and also attains a competitive result of 94.8% on LIBERO. In real-world evaluations, Evo-1 attains a 78% success rate with high inference frequency and low memory overhead, outperforming all baseline methods. We release code, data, and model weights to facilitate future research on lightweight and efficient VLA models.

Authors:Ke Du, Yimin Peng, Chao Gao, Fan Zhou, Siqiao Xue
Title: DORAEMON: A Unified Library for Visual Object Modeling and Representation Learning at Scale
Abstract:
DORAEMON is an open-source PyTorch library that unifies visual object modeling and representation learning across diverse scales. A single YAML-driven workflow covers classification, retrieval and metric learning; more than 1000 pretrained backbones are exposed through a timm-compatible interface, together with modular losses, augmentations and distributed-training utilities. Reproducible recipes match or exceed reference results on ImageNet-1K, MS-Celeb-1M and Stanford online products, while one-command export to ONNX or HuggingFace bridges research and deployment. By consolidating datasets, models, and training techniques into one platform, DORAEMON offers a scalable foundation for rapid experimentation in visual recognition and representation learning, enabling efficient transfer of research advances to real-world applications. The repository is available at https://github.com/wuji3/DORAEMON.

Authors:Chang Liu, Juan Li, Sheng Zhang, Chang Liu, Jie Li, Xu Zhang
Title: BoRe-Depth: Self-supervised Monocular Depth Estimation with Boundary Refinement for Embedded Systems
Abstract:
Depth estimation is one of the key technologies for realizing 3D perception in unmanned systems. Monocular depth estimation has been widely researched because of its low-cost advantage, but the existing methods face the challenges of poor depth estimation performance and blurred object boundaries on embedded systems. In this paper, we propose a novel monocular depth estimation model, BoRe-Depth, which contains only 8.7M parameters. It can accurately estimate depth maps on embedded systems and significantly improves boundary quality. Firstly, we design an Enhanced Feature Adaptive Fusion Module (EFAF) which adaptively fuses depth features to enhance boundary detail representation. Secondly, we integrate semantic knowledge into the encoder to improve the object recognition and boundary perception capabilities. Finally, BoRe-Depth is deployed on NVIDIA Jetson Orin, and runs efficiently at 50.7 FPS. We demonstrate that the proposed model significantly outperforms previous lightweight models on multiple challenging datasets, and we provide detailed ablation studies for the proposed methods. The code is available at https://github.com/liangxiansheng093/BoRe-Depth.

Authors:Marawan Elbatel, Anbang Wang, Keyuan Liu, Kaouther Mouheb, Enrique Almar-Munoz, Lizhuo Lin, Yanqi Yang, Karim Lekadir, Xiaomeng Li
Title: MedSapiens: Taking a Pose to Rethink Medical Imaging Landmark Detection
Abstract:
This paper does not introduce a novel architecture; instead, it revisits a fundamental yet overlooked baseline: adapting human-centric foundation models for anatomical landmark detection in medical imaging. While landmark detection has traditionally relied on domain-specific models, the emergence of large-scale pre-trained vision models presents new opportunities. In this study, we investigate the adaptation of Sapiens, a human-centric foundation model designed for pose estimation, to medical imaging through multi-dataset pretraining, establishing a new state of the art across multiple datasets. Our proposed model, MedSapiens, demonstrates that human-centric foundation models, inherently optimized for spatial pose localization, provide strong priors for anatomical landmark detection, yet this potential has remained largely untapped. We benchmark MedSapiens against existing state-of-the-art models, achieving up to 5.26% improvement over generalist models and up to 21.81% improvement over specialist models in the average success detection rate (SDR). To further assess MedSapiens adaptability to novel downstream tasks with few annotations, we evaluate its performance in limited-data settings, achieving 2.69% improvement over the few-shot state of the art in SDR. Code and model weights are available at https://github.com/xmed-lab/MedSapiens .

Authors:Hanmo Chen, Chenghao Xu, Jiexi Yan, Cheng Deng
Title: AStF: Motion Style Transfer via Adaptive Statistics Fusor
Abstract:
Human motion style transfer allows characters to appear less rigidity and more realism with specific style. Traditional arbitrary image style transfer typically process mean and variance which is proved effective. Meanwhile, similar methods have been adapted for motion style transfer. However, due to the fundamental differences between images and motion, relying on mean and variance is insufficient to fully capture the complex dynamic patterns and spatiotemporal coherence properties of motion data. Building upon this, our key insight is to bring two more coefficient, skewness and kurtosis, into the analysis of motion style. Specifically, we propose a novel Adaptive Statistics Fusor (AStF) which consists of Style Disentanglement Module (SDM) and High-Order Multi-Statistics Attention (HOS-Attn). We trained our AStF in conjunction with a Motion Consistency Regularization (MCR) discriminator. Experimental results show that, by providing a more comprehensive model of the spatiotemporal statistical patterns inherent in dynamic styles, our proposed AStF shows proficiency superiority in motion style transfers over state-of-the-arts. Our code and model are available at https://github.com/CHMimilanlan/AStF.

Authors:Yujian Liu, Ze Wang, Hao Chen, Ximeng Sun, Xiaodong Yu, Jialian Wu, Jiang Liu, Emad Barsoum, Zicheng Liu, Shiyu Chang
Title: Learning from Online Videos at Inference Time for Computer-Use Agents
Abstract:
Computer-use agents can operate computers and automate laborious tasks, but despite recent rapid progress, they still lag behind human users, especially when tasks require domain-specific procedural knowledge about particular applications, platforms, and multi-step workflows. Humans can bridge this gap by watching video tutorials: we search, skim, and selectively imitate short segments that match our current subgoal. In this paper, we study how to enable computer-use agents to learn from online videos at inference time effectively. We propose a framework that retrieves and filters tutorial videos, converts them into structured demonstration trajectories, and dynamically selects trajectories as in-context guidance during execution. Particularly, using a VLM, we infer UI actions, segment videos into short subsequences of actions, and assign each subsequence a textual objective. At inference time, a two-stage selection mechanism dynamically chooses a single trajectory to add in context at each step, focusing the agent on the most helpful local guidance for its next decision. Experiments on two widely used benchmarks show that our framework consistently outperforms strong base agents and variants that use only textual tutorials or transcripts. Analyses highlight the importance of trajectory segmentation and selection, action filtering, and visual information, suggesting that abundant online videos can be systematically distilled into actionable guidance that improves computer-use agents at inference time. Our code is available at https://github.com/UCSB-NLP-Chang/video_demo.

Authors:Shengyu Tang, Zeyuan Lu, Jiazhi Dong, Changdong Yu, Xiaoyu Wang, Yaohui Lyu, Weihao Xia
Title: DMSORT: An efficient parallel maritime multi-object tracking architecture for unmanned vessel platforms
Abstract:
Accurate perception of the marine environment through robust multi-object tracking (MOT) is essential for ensuring safe vessel navigation and effective maritime surveillance. However, the complicated maritime environment often causes camera motion and subsequent visual degradation, posing significant challenges to MOT. To address this challenge, we propose an efficient Dual-branch Maritime SORT (DMSORT) method for maritime MOT. The core of the framework is a parallel tracker with affine compensation, which incorporates an object detection and re-identification (ReID) branch, along with a dedicated branch for dynamic camera motion estimation. Specifically, a Reversible Columnar Detection Network (RCDN) is integrated into the detection module to leverage multi-level visual features for robust object detection. Furthermore, a lightweight Transformer-based appearance extractor (Li-TAE) is designed to capture global contextual information and generate robust appearance features. Another branch decouples platform-induced and target-intrinsic motion by constructing a projective transformation, applying platform-motion compensation within the Kalman filter, and thereby stabilizing true object trajectories. Finally, a clustering-optimized feature fusion module effectively combines motion and appearance cues to ensure identity consistency under noise, occlusion, and drift. Extensive evaluations on the Singapore Maritime Dataset demonstrate that DMSORT achieves state-of-the-art performance. Notably, DMSORT attains the fastest runtime among existing ReID-based MOT frameworks while maintaining high identity consistency and robustness to jitter and occlusion. Code is available at: https://github.com/BiscuitsLzy/DMSORT-An-efficient-parallel-maritime-multi-object-tracking-architecture-.

Authors:Tengjie Li, Shikui Tu, Lei Xu
Title: Text to Sketch Generation with Multi-Styles
Abstract:
Recent advances in vision-language models have facilitated progress in sketch generation. However, existing specialized methods primarily focus on generic synthesis and lack mechanisms for precise control over sketch styles. In this work, we propose a training-free framework based on diffusion models that enables explicit style guidance via textual prompts and referenced style sketches. Unlike previous style transfer methods that overwrite key and value matrices in self-attention, we incorporate the reference features as auxiliary information with linear smoothing and leverage a style-content guidance mechanism. This design effectively reduces content leakage from reference sketches and enhances synthesis quality, especially in cases with low structural similarity between reference and target sketches. Furthermore, we extend our framework to support controllable multi-style generation by integrating features from multiple reference sketches, coordinated via a joint AdaIN module. Extensive experiments demonstrate that our approach achieves high-quality sketch generation with accurate style alignment and improved flexibility in style control. The official implementation of M3S is available at https://github.com/CMACH508/M3S.

Authors:Yunghee Lee, Byeonghyun Pak, Junwha Hong, Hoseong Kim
Title: Tortoise and Hare Guidance: Accelerating Diffusion Model Inference with Multirate Integration
Abstract:
In this paper, we propose Tortoise and Hare Guidance (THG), a training-free strategy that accelerates diffusion sampling while maintaining high-fidelity generation. We demonstrate that the noise estimate and the additional guidance term exhibit markedly different sensitivity to numerical error by reformulating the classifier-free guidance (CFG) ODE as a multirate system of ODEs. Our error-bound analysis shows that the additional guidance branch is more robust to approximation, revealing substantial redundancy that conventional solvers fail to exploit. Building on this insight, THG significantly reduces the computation of the additional guidance: the noise estimate is integrated with the tortoise equation on the original, fine-grained timestep grid, while the additional guidance is integrated with the hare equation only on a coarse grid. We also introduce (i) an error-bound-aware timestep sampler that adaptively selects step sizes and (ii) a guidance-scale scheduler that stabilizes large extrapolation spans. THG reduces the number of function evaluations (NFE) by up to 30% with virtually no loss in generation fidelity ($Δ$ImageReward $\leq$ 0.032) and outperforms state-of-the-art CFG-based training-free accelerators under identical computation budgets. Our findings highlight the potential of multirate formulations for diffusion solvers, paving the way for real-time high-quality image synthesis without any model retraining. The source code is available at https://github.com/yhlee-add/THG.

Authors:Nishchal Sapkota, Haoyan Shi, Yejia Zhang, Xianshi Ma, Bofang Zheng, Danny Z. Chen
Title: When Swin Transformer Meets KANs: An Improved Transformer Architecture for Medical Image Segmentation
Abstract:
Medical image segmentation is critical for accurate diagnostics and treatment planning, but remains challenging due to complex anatomical structures and limited annotated training data. CNN-based segmentation methods excel at local feature extraction, but struggle with modeling long-range dependencies. Transformers, on the other hand, capture global context more effectively, but are inherently data-hungry and computationally expensive. In this work, we introduce UKAST, a U-Net like architecture that integrates rational-function based Kolmogorov-Arnold Networks (KANs) into Swin Transformer encoders. By leveraging rational base functions and Group Rational KANs (GR-KANs) from the Kolmogorov-Arnold Transformer (KAT), our architecture addresses the inefficiencies of vanilla spline-based KANs, yielding a more expressive and data-efficient framework with reduced FLOPs and only a very small increase in parameter count compared to SwinUNETR. UKAST achieves state-of-the-art performance on four diverse 2D and 3D medical image segmentation benchmarks, consistently surpassing both CNN- and Transformer-based baselines. Notably, it attains superior accuracy in data-scarce settings, alleviating the data-hungry limitations of standard Vision Transformers. These results show the potential of KAN-enhanced Transformers to advance data-efficient medical image segmentation. Code is available at: https://github.com/nsapkota417/UKAST

Authors:Abu Hanif Muhammad Syarubany
Title: Adversarial and Score-Based CT Denoising: CycleGAN vs Noise2Score
Abstract:
We study CT image denoising in the unpaired and self-supervised regimes by evaluating two strong, training-data-efficient paradigms: a CycleGAN-based residual translator and a Noise2Score (N2S) score-matching denoiser. Under a common evaluation protocol, a configuration sweep identifies a simple standard U-Net backbone within CycleGAN (lambda_cycle = 30, lambda_iden = 2, ngf = ndf = 64) as the most reliable setting; we then train it to convergence with a longer schedule. The selected CycleGAN improves the noisy input from 34.66 dB / 0.9234 SSIM to 38.913 dB / 0.971 SSIM and attains an estimated score of 1.9441 and an unseen-set (Kaggle leaderboard) score of 1.9343. Noise2Score, while slightly behind in absolute PSNR / SSIM, achieves large gains over very noisy inputs, highlighting its utility when clean pairs are unavailable. Overall, CycleGAN offers the strongest final image quality, whereas Noise2Score provides a robust pair-free alternative with competitive performance. Source code is available at https://github.com/hanifsyarubany/CT-Scan-Image-Denoising-using-CycleGAN-and-Noise2Score.

Authors:Duong Mai, Lawrence Hall
Title: Noise Injection: Improving Out-of-Distribution Generalization for Limited Size Datasets
Abstract:
Deep learned (DL) models for image recognition have been shown to fail to generalize to data from different devices, populations, etc. COVID-19 detection from Chest X-rays (CXRs), in particular, has been shown to fail to generalize to out-of-distribution (OOD) data from new clinical sources not covered in the training set. This occurs because models learn to exploit shortcuts - source-specific artifacts that do not translate to new distributions - rather than reasonable biomarkers to maximize performance on in-distribution (ID) data. Rendering the models more robust to distribution shifts, our study investigates the use of fundamental noise injection techniques (Gaussian, Speckle, Poisson, and Salt and Pepper) during training. Our empirical results demonstrate that this technique can significantly reduce the performance gap between ID and OOD evaluation from 0.10-0.20 to 0.01-0.06, based on results averaged over ten random seeds across key metrics such as AUC, F1, accuracy, recall and specificity. Our source code is publicly available at https://github.com/Duongmai127/Noisy-ood

Authors:Jongseo Lee, Wooil Lee, Gyeong-Moon Park, Seong Tae Kim, Jinwoo Choi
Title: Disentangled Concepts Speak Louder Than Words:Explainable Video Action Recognition
Abstract:
Effective explanations of video action recognition models should disentangle how movements unfold over time from the surrounding spatial context. However, existing methods based on saliency produce entangled explanations, making it unclear whether predictions rely on motion or spatial context. Language-based approaches offer structure but often fail to explain motions due to their tacit nature -- intuitively understood but difficult to verbalize. To address these challenges, we propose Disentangled Action aNd Context concept-based Explainable (DANCE) video action recognition, a framework that predicts actions through disentangled concept types: motion dynamics, objects, and scenes. We define motion dynamics concepts as human pose sequences. We employ a large language model to automatically extract object and scene concepts. Built on an ante-hoc concept bottleneck design, DANCE enforces prediction through these concepts. Experiments on four datasets -- KTH, Penn Action, HAA500, and UCF-101 -- demonstrate that DANCE significantly improves explanation clarity with competitive performance. We validate the superior interpretability of DANCE through a user study. Experimental results also show that DANCE is beneficial for model debugging, editing, and failure analysis.

Authors:Romain Brégier, Guénolé Fiche, Laura Bravo-Sánchez, Thomas Lucas, Matthieu Armando, Philippe Weinzaepfel, Grégory Rogez, Fabien Baradel
Title: Human Mesh Modeling for Anny Body
Abstract:
Parametric body models are central to many human-centric tasks, yet existing models often rely on costly 3D scans and learned shape spaces that are proprietary and demographically narrow. We introduce Anny, a simple, fully differentiable, and scan-free human body model grounded in anthropometric knowledge from the MakeHuman community. Anny defines a continuous, interpretable shape space, where phenotype parameters (e.g. gender, age, height, weight) control blendshapes spanning a wide range of human forms -- across ages (from infants to elders), body types, and proportions. Calibrated using WHO population statistics, it provides realistic and demographically grounded human shape variation within a single unified model. Thanks to its openness and semantic control, Anny serves as a versatile foundation for 3D human modeling -- supporting millimeter-accurate scan fitting, controlled synthetic data generation, and Human Mesh Recovery (HMR). We further introduce Anny-One, a collection of 800k photorealistic humans generated with Anny, showing that despite its simplicity, HMR models trained with Anny can match the performance of those trained with scan-based body models, while remaining interpretable and broadly representative. The Anny body model and its code are released under the Apache 2.0 license, making Anny an accessible foundation for human-centric 3D modeling.

Authors:Hao Shi, Ze Wang, Shangwei Guo, Mengfei Duan, Song Wang, Teng Chen, Kailun Yang, Lin Wang, Kaiwei Wang
Title: OneOcc: Semantic Occupancy Prediction for Legged Robots with a Single Panoramic Camera
Abstract:
Robust 3D semantic occupancy is crucial for legged/humanoid robots, yet most semantic scene completion (SSC) systems target wheeled platforms with forward-facing sensors. We present OneOcc, a vision-only panoramic SSC framework designed for gait-introduced body jitter and 360° continuity. OneOcc combines: (i) Dual-Projection fusion (DP-ER) to exploit the annular panorama and its equirectangular unfolding, preserving 360° continuity and grid alignment; (ii) Bi-Grid Voxelization (BGV) to reason in Cartesian and cylindrical-polar spaces, reducing discretization bias and sharpening free/occupied boundaries; (iii) a lightweight decoder with Hierarchical AMoE-3D for dynamic multi-scale fusion and better long-range/occlusion reasoning; and (iv) plug-and-play Gait Displacement Compensation (GDC) learning feature-level motion correction without extra sensors. We also release two panoramic occupancy benchmarks: QuadOcc (real quadruped, first-person 360°) and Human360Occ (H3O) (CARLA human-ego 360° with RGB, Depth, semantic occupancy; standardized within-/cross-city splits). OneOcc sets new state-of-the-art (SOTA): on QuadOcc it beats strong vision baselines and popular LiDAR ones; on H3O it gains +3.83 mIoU (within-city) and +8.08 (cross-city). Modules are lightweight, enabling deployable full-surround perception for legged/humanoid robots. Datasets and code will be publicly available at https://github.com/MasterHow/OneOcc.

Authors:Gahyeon Kim, Sohee Kim, Seokju Lee
Title: Decoupling Augmentation Bias in Prompt Learning for Vision-Language Models
Abstract:
Recent advances in large-scale vision and language models have led to significant progress in zero-shot learning tasks. Methods such as CoOp and CoCoOp have shown that replacing handcrafted prompts with learnable vectors, known as prompt learning, can result in improved performance. However, these models often struggle to generalize to entirely unseen categories. While traditional zero-shot learning techniques benefit from various data augmentation strategies, prompt learning has primarily focused on text-based modifications, leaving the potential of image-based augmentation largely unexplored. In this work, we explore how image-level augmentations, particularly those that introduce attribute-specific variations, can support and enhance prompt learning. Our analysis examines the interaction between these augmentations and soft prompt frameworks, revealing their potential to improve generalization. We also identify a limitation in existing methods, such as CoCoOp, which do not provide explicit guidance for learning prompts that focus on semantically meaningful visual features. To address this, we propose Adding Attributes to Prompt Learning, AAPL, a novel method that introduces adversarial token embeddings to decouple superficial visual variations introduced by augmentation from class-relevant semantic representations. This decoupling enables the learned prompts to concentrate on visually discriminative features that align with the target categories. We conduct comprehensive experiments on eleven benchmark datasets, and AAPL consistently outperforms existing methods across few-shot, zero-shot, cross-dataset, and domain generalization settings. Our source code is publicly available at: https://github.com/Gahyeonkim09/AAPL

Authors:Mauro Orazio Drago, Luca Carlini, Pelinsu Celebi Balyemez, Dennis Pierantozzi, Chiara Lena, Cesare Hassan, Danail Stoyanov, Elena De Momi, Sophia Bano, Mobarak I. Hoque
Title: SurgViVQA: Temporally-Grounded Video Question Answering for Surgical Scene Understanding
Abstract:
Video Question Answering (VideoQA) in the surgical domain aims to enhance intraoperative understanding by enabling AI models to reason over temporally coherent events rather than isolated frames. Current approaches are limited to static image features, and available datasets often lack temporal annotations, ignoring the dynamics critical for accurate procedural interpretation. We propose SurgViVQA, a surgical VideoQA model that extends visual reasoning from static images to dynamic surgical scenes. It uses a Masked Video--Text Encoder to fuse video and question features, capturing temporal cues such as motion and tool--tissue interactions, which a fine-tuned large language model (LLM) then decodes into coherent answers. To evaluate its performance, we curated REAL-Colon-VQA, a colonoscopic video dataset that includes motion-related questions and diagnostic attributes, as well as out-of-template questions with rephrased or semantically altered formulations to assess model robustness. Experimental validation on REAL-Colon-VQA and the public EndoVis18-VQA dataset shows that SurgViVQA outperforms existing image-based VQA benchmark models, particularly in keyword accuracy, improving over PitVQA by +11\% on REAL-Colon-VQA and +9\% on EndoVis18-VQA. A perturbation study on the questions further confirms improved generalizability and robustness to variations in question phrasing. SurgViVQA and the REAL-Colon-VQA dataset provide a framework for temporally-aware understanding in surgical VideoQA, enabling AI models to interpret dynamic procedural contexts more effectively. Code and dataset available at https://github.com/madratak/SurgViVQA.

Authors:Minghao Fu, Guo-Hua Wang, Tianyu Cui, Qing-Guo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang
Title: Diffusion-SDPO: Safeguarded Direct Preference Optimization for Diffusion Models
Abstract:
Text-to-image diffusion models deliver high-quality images, yet aligning them with human preferences remains challenging. We revisit diffusion-based Direct Preference Optimization (DPO) for these models and identify a critical pathology: enlarging the preference margin does not necessarily improve generation quality. In particular, the standard Diffusion-DPO objective can increase the reconstruction error of both winner and loser branches. Consequently, degradation of the less-preferred outputs can become sufficiently severe that the preferred branch is also adversely affected even as the margin grows. To address this, we introduce Diffusion-SDPO, a safeguarded update rule that preserves the winner by adaptively scaling the loser gradient according to its alignment with the winner gradient. A first-order analysis yields a closed-form scaling coefficient that guarantees the error of the preferred output is non-increasing at each optimization step. Our method is simple, model-agnostic, broadly compatible with existing DPO-style alignment frameworks and adds only marginal computational overhead. Across standard text-to-image benchmarks, Diffusion-SDPO delivers consistent gains over preference-learning baselines on automated preference, aesthetic, and prompt alignment metrics. Code is publicly available at https://github.com/AIDC-AI/Diffusion-SDPO.

Authors:Jing Ma, Hanlin Li, Xiang Xiang
Title: Decoupled Entropy Minimization
Abstract:
Entropy Minimization (EM) is beneficial to reducing class overlap, bridging domain gap, and restricting uncertainty for various tasks in machine learning, yet its potential is limited. To study the internal mechanism of EM, we reformulate and decouple the classical EM into two parts with opposite effects: cluster aggregation driving factor (CADF) rewards dominant classes and prompts a peaked output distribution, while gradient mitigation calibrator (GMC) penalizes high-confidence classes based on predicted probabilities. Furthermore, we reveal the limitations of classical EM caused by its coupled formulation: 1) reward collapse impedes the contribution of high-certainty samples in the learning process, and 2) easy-class bias induces misalignment between output distribution and label distribution. To address these issues, we propose Adaptive Decoupled Entropy Minimization (AdaDEM), which normalizes the reward brought from CADF and employs a marginal entropy calibrator (MEC) to replace GMC. AdaDEM outperforms DEM*, an upper-bound variant of classical EM, and achieves superior performance across various imperfectly supervised learning tasks in noisy and dynamic environments.

Authors:Minh Sao Khue Luu, Bair N. Tuchinov
Title: A Foundation Model for Brain MRI with Dynamic Modality Integration
Abstract:
We present a foundation model for brain MRI that can work with different combinations of imaging sequences. The model uses one encoder with learnable modality embeddings, conditional layer normalization, and a masked autoencoding objective that accounts for missing modalities. A variance-covariance regularizer is applied to stabilize feature learning and improve representation diversity. This design removes the need for separate models for each modality and allows the network to adapt when some sequences are missing or unseen. It is trained on about 60,000 multi-center MRIs using self-supervised reconstruction and modality imputation to learn flexible representations. A learnable modality embedding guides feature extraction so the encoder can adjust to different inputs. We describe our planned evaluation on brain tumor and multiple sclerosis segmentation, as well as lesion classification, under various modality settings. Preliminary results show that the method works feasibly, and further experiments are planned to study its performance in more detail. All code and pretrained models are available at https://github.com/BrainFM/brainfm

Authors:Srikumar Sastry, Subash Khanal, Aayush Dhakal, Jiayu Lin, Dan Cher, Phoenix Jarosz, Nathan Jacobs
Title: ProM3E: Probabilistic Masked MultiModal Embedding Model for Ecology
Abstract:
We introduce ProM3E, a probabilistic masked multimodal embedding model for any-to-any generation of multimodal representations for ecology. ProM3E is based on masked modality reconstruction in the embedding space, learning to infer missing modalities given a few context modalities. By design, our model supports modality inversion in the embedding space. The probabilistic nature of our model allows us to analyse the feasibility of fusing various modalities for given downstream tasks, essentially learning what to fuse. Using these features of our model, we propose a novel cross-modal retrieval approach that mixes inter-modal and intra-modal similarities to achieve superior performance across all retrieval tasks. We further leverage the hidden representation from our model to perform linear probing tasks and demonstrate the superior representation learning capability of our model. All our code, datasets and model will be released at https://vishu26.github.io/prom3e.

Authors:Dmitrii Pozdeev, Alexey Artemov, Ananta R. Bhattarai, Artem Sevastopolsky
Title: Densemarks: Learning Canonical Embeddings for Human Heads Images via Point Tracks
Abstract:
We propose DenseMarks - a new learned representation for human heads, enabling high-quality dense correspondences of human head images. For a 2D image of a human head, a Vision Transformer network predicts a 3D embedding for each pixel, which corresponds to a location in a 3D canonical unit cube. In order to train our network, we collect a dataset of pairwise point matches, estimated by a state-of-the-art point tracker over a collection of diverse in-the-wild talking heads videos, and guide the mapping via a contrastive loss, encouraging matched points to have close embeddings. We further employ multi-task learning with face landmarks and segmentation constraints, as well as imposing spatial continuity of embeddings through latent cube features, which results in an interpretable and queryable canonical space. The representation can be used for finding common semantic parts, face/head tracking, and stereo reconstruction. Due to the strong supervision, our method is robust to pose variations and covers the entire head, including hair. Additionally, the canonical space bottleneck makes sure the obtained representations are consistent across diverse poses and individuals. We demonstrate state-of-the-art results in geometry-aware point matching and monocular head tracking with 3D Morphable Models. The code and the model checkpoint will be made available to the public.

Authors:Kevin Qinghong Lin, Yuhao Zheng, Hangyu Ran, Dantong Zhu, Dongxing Mao, Linjie Li, Philip Torr, Alex Jinpeng Wang
Title: VCode: a Multimodal Coding Benchmark with SVG as Symbolic Visual Representation
Abstract:
Code has emerged as a precise and executable medium for reasoning and action in the agent era. Yet, progress has largely focused on language-centric tasks such as program synthesis and debugging, leaving visual-centric coding underexplored. Inspired by how humans reason over sketches, we advocate SVG code as a compact, interpretable, and executable visual representation. We introduce VCode, a benchmark that reframes multimodal understanding as code generation: given an image, a model must produce SVG that preserves symbolic meaning for downstream reasoning. VCode covers three domains - general commonsense (MM-Vet), professional disciplines (MMMU), and visual-centric perception (CV-Bench). To assess symbolic fidelity, we propose CodeVQA, a novel evaluation protocol in which a policy model answers questions over rendered SVGs; correct answers indicate faithful symbolic preservation. Empirically, frontier VLMs struggle to generate faithful SVGs, revealing a persistent gap between language-centric and visual-centric coding. To close this gap, we introduce VCoder, an agentic framework that augments VLMs along two axes: (i) Thinking with Revision, which iteratively analyzes discrepancies and refines SVG code; and (ii) Acting with Visual Tools, where detectors and parsers supply structured cues such as objects, shapes, and text beyond the model's intrinsic capacity. Across benchmarks, frontier VLMs with strong reasoning capabilities score well overall yet remain limited in professional knowledge and 3D reasoning. VCoder delivers a 12.3-point overall gain over the top-performing Claude-4-Opus. Human studies show that both humans and VLMs perform worse on rendered SVGs, their consistency reveals the promise of symbolic visual representation. The benchmark and code are available at https://github.com/CSU-JPG/VCode.

Authors:Antonio Oroz, Matthias Nießner, Tobias Kirschstein
Title: PercHead: Perceptual Head Model for Single-Image 3D Head Reconstruction & Editing
Abstract:
We present PercHead, a method for single-image 3D head reconstruction and semantic 3D editing - two tasks that are inherently challenging due to severe view occlusions, weak perceptual supervision, and the ambiguity of editing in 3D space. We develop a unified base model for reconstructing view-consistent 3D heads from a single input image. The model employs a dual-branch encoder followed by a ViT-based decoder that lifts 2D features into 3D space through iterative cross-attention. Rendering is performed using Gaussian Splatting. At the heart of our approach is a novel perceptual supervision strategy based on DINOv2 and SAM2.1, which provides rich, generalized signals for both geometric and appearance fidelity. Our model achieves state-of-the-art performance in novel-view synthesis and, furthermore, exhibits exceptional robustness to extreme viewing angles compared to established baselines. Furthermore, this base model can be seamlessly extended for semantic 3D editing by swapping the encoder and finetuning the network. In this variant, we disentangle geometry and style through two distinct input modalities: a segmentation map to control geometry and either a text prompt or a reference image to specify appearance. We highlight the intuitive and powerful 3D editing capabilities of our model through a lightweight, interactive GUI, where users can effortlessly sculpt geometry by drawing segmentation maps and stylize appearance via natural language or image prompts. Project Page: https://antoniooroz.github.io/PercHead Video: https://www.youtube.com/watch?v=4hFybgTk4kE

Authors:Xu Zhang, Danyang Li, Xiaohang Dong, Tianhao Wu, Hualong Yu, Jianye Wang, Qicheng Li, Xiang Li
Title: UniChange: Unifying Change Detection with Multimodal Large Language Model
Abstract:
Change detection (CD) is a fundamental task for monitoring and analyzing land cover dynamics. While recent high performance models and high quality datasets have significantly advanced the field, a critical limitation persists. Current models typically acquire limited knowledge from single-type annotated data and cannot concurrently leverage diverse binary change detection (BCD) and semantic change detection (SCD) datasets. This constraint leads to poor generalization and limited versatility. The recent advancements in Multimodal Large Language Models (MLLMs) introduce new possibilities for a unified CD framework. We leverage the language priors and unification capabilities of MLLMs to develop UniChange, the first MLLM-based unified change detection model. UniChange integrates generative language abilities with specialized CD functionalities. Our model successfully unifies both BCD and SCD tasks through the introduction of three special tokens: [T1], [T2], and [CHANGE]. Furthermore, UniChange utilizes text prompts to guide the identification of change categories, eliminating the reliance on predefined classification heads. This design allows UniChange to effectively acquire knowledge from multi-source datasets, even when their class definitions conflict. Experiments on four public benchmarks (WHU-CD, S2Looking, LEVIR-CD+, and SECOND) demonstrate SOTA performance, achieving IoU scores of 90.41, 53.04, 78.87, and 57.62, respectively, surpassing all previous methods. The code is available at https://github.com/Erxucomeon/UniChange.

Authors:Jan Frederik Meier, Timo Lüddecke
Title: Zero-Shot Multi-Animal Tracking in the Wild
Abstract:
Multi-animal tracking is crucial for understanding animal ecology and behavior. However, it remains a challenging task due to variations in habitat, motion patterns, and species appearance. Traditional approaches typically require extensive model fine-tuning and heuristic design for each application scenario. In this work, we explore the potential of recent vision foundation models for zero-shot multi-animal tracking. By combining a Grounding Dino object detector with the Segment Anything Model 2 (SAM 2) tracker and carefully designed heuristics, we develop a tracking framework that can be applied to new datasets without any retraining or hyperparameter adaptation. Evaluations on ChimpAct, Bird Flock Tracking, AnimalTrack, and a subset of GMOT-40 demonstrate strong and consistent performance across diverse species and environments. The code is available at https://github.com/ecker-lab/SAM2-Animal-Tracking.

Authors:Daichi Nagai, Ryugo Morita, Shunsuke Kitada, Hitoshi Iyatomi
Title: TAUE: Training-free Noise Transplant and Cultivation Diffusion Model
Abstract:
Despite the remarkable success of text-to-image diffusion models, their output of a single, flattened image remains a critical bottleneck for professional applications requiring layer-wise control. Existing solutions either rely on fine-tuning with large, inaccessible datasets or are training-free yet limited to generating isolated foreground elements, failing to produce a complete and coherent scene. To address this, we introduce the Training-free Noise Transplantation and Cultivation Diffusion Model (TAUE), a novel framework for zero-shot, layer-wise image generation. Our core technique, Noise Transplantation and Cultivation (NTC), extracts intermediate latent representations from both foreground and composite generation processes, transplanting them into the initial noise for subsequent layers. This ensures semantic and structural coherence across foreground, background, and composite layers, enabling consistent, multi-layered outputs without requiring fine-tuning or auxiliary datasets. Extensive experiments show that our training-free method achieves performance comparable to fine-tuned methods, enhancing layer-wise consistency while maintaining high image quality and fidelity. TAUE not only eliminates costly training and dataset requirements but also unlocks novel downstream applications, such as complex compositional editing, paving the way for more accessible and controllable generative workflows.

Authors:Md Rashidunnabi, Kailash A. Hambarde, Vasco Lopes, Joao C. Neves, Hugo Proenca
Title: Seeing Across Time and Views: Multi-Temporal Cross-View Learning for Robust Video Person Re-Identification
Abstract:
Video-based person re-identification (ReID) in cross-view domains (for example, aerial-ground surveillance) remains an open problem because of extreme viewpoint shifts, scale disparities, and temporal inconsistencies. To address these challenges, we propose MTF-CVReID, a parameter-efficient framework that introduces seven complementary modules over a ViT-B/16 backbone. Specifically, we include: (1) Cross-Stream Feature Normalization (CSFN) to correct camera and view biases; (2) Multi-Resolution Feature Harmonization (MRFH) for scale stabilization across altitudes; (3) Identity-Aware Memory Module (IAMM) to reinforce persistent identity traits; (4) Temporal Dynamics Modeling (TDM) for motion-aware short-term temporal encoding; (5) Inter-View Feature Alignment (IVFA) for perspective-invariant representation alignment; (6) Hierarchical Temporal Pattern Learning (HTPL) to capture multi-scale temporal regularities; and (7) Multi-View Identity Consistency Learning (MVICL) that enforces cross-view identity coherence using a contrastive learning paradigm. Despite adding only about 2 million parameters and 0.7 GFLOPs over the baseline, MTF-CVReID maintains real-time efficiency (189 FPS) and achieves state-of-the-art performance on the AG-VPReID benchmark across all altitude levels, with strong cross-dataset generalization to G2A-VReID and MARS datasets. These results show that carefully designed adapter-based modules can substantially enhance cross-view robustness and temporal consistency without compromising computational efficiency. The source code is available at https://github.com/MdRashidunnabi/MTF-CVReID

Authors:Dan Bohus, Sean Andrist, Ann Paradiso, Nick Saw, Tim Schoonbeek, Maia Stiber
Title: SigmaCollab: An Application-Driven Dataset for Physically Situated Collaboration
Abstract:
We introduce SigmaCollab, a dataset enabling research on physically situated human-AI collaboration. The dataset consists of a set of 85 sessions in which untrained participants were guided by a mixed-reality assistive AI agent in performing procedural tasks in the physical world. SigmaCollab includes a set of rich, multimodal data streams, such as the participant and system audio, egocentric camera views from the head-mounted device, depth maps, head, hand and gaze tracking information, as well as additional annotations performed post-hoc. While the dataset is relatively small in size (~ 14 hours), its application-driven and interactive nature brings to the fore novel research challenges for human-AI collaboration, and provides more realistic testing grounds for various AI models operating in this space. In future work, we plan to use the dataset to construct a set of benchmarks for physically situated collaboration in mixed-reality task assistive scenarios. SigmaCollab is available at https://github.com/microsoft/SigmaCollab.

Authors:Yaosen Chen, Wei Wang, Tianheng Zheng, Xuming Wen, Han Yang, Yanru Zhang
Title: ESA: Energy-Based Shot Assembly Optimization for Automatic Video Editing
Abstract:
Shot assembly is a crucial step in film production and video editing, involving the sequencing and arrangement of shots to construct a narrative, convey information, or evoke emotions. Traditionally, this process has been manually executed by experienced editors. While current intelligent video editing technologies can handle some automated video editing tasks, they often fail to capture the creator's unique artistic expression in shot assembly. To address this challenge, we propose an energy-based optimization method for video shot assembly. Specifically, we first perform visual-semantic matching between the script generated by a large language model and a video library to obtain subsets of candidate shots aligned with the script semantics. Next, we segment and label the shots from reference videos, extracting attributes such as shot size, camera motion, and semantics. We then employ energy-based models to learn from these attributes, scoring candidate shot sequences based on their alignment with reference styles. Finally, we achieve shot assembly optimization by combining multiple syntax rules, producing videos that align with the assembly style of the reference videos. Our method not only automates the arrangement and combination of independent shots according to specific logic, narrative requirements, or artistic styles but also learns the assembly style of reference videos, creating a coherent visual sequence or holistic visual expression. With our system, even users with no prior video editing experience can create visually compelling videos. Project page: https://sobeymil.github.io/esa.com

Authors:Tao Liu, Kan Ren, Qian Chen
Title: Object Detection as an Optional Basis: A Graph Matching Network for Cross-View UAV Localization
Abstract:
With the rapid growth of the low-altitude economy, UAVs have become crucial for measurement and tracking in patrol systems. However, in GNSS-denied areas, satellite-based localization methods are prone to failure. This paper presents a cross-view UAV localization framework that performs map matching via object detection, aimed at effectively addressing cross-temporal, cross-view, heterogeneous aerial image matching. In typical pipelines, UAV visual localization is formulated as an image-retrieval problem: features are extracted to build a localization map, and the pose of a query image is estimated by matching it to a reference database with known poses. Because publicly available UAV localization datasets are limited, many approaches recast localization as a classification task and rely on scene labels in these datasets to ensure accuracy. Other methods seek to reduce cross-domain differences using polar-coordinate reprojection, perspective transformations, or generative adversarial networks; however, they can suffer from misalignment, content loss, and limited realism. In contrast, we leverage modern object detection to accurately extract salient instances from UAV and satellite images, and integrate a graph neural network to reason about inter-image and intra-image node relationships. Using a fine-grained, graph-based node-similarity metric, our method achieves strong retrieval and localization performance. Extensive experiments on public and real-world datasets show that our approach handles heterogeneous appearance differences effectively and generalizes well, making it applicable to scenarios with larger modality gaps, such as infrared-visible image matching. Our dataset will be publicly available at the following URL: https://github.com/liutao23/ODGNNLoc.git.

Authors:Yalda Zafari, Hongyi Pan, Gorkem Durak, Ulas Bagci, Essam A. Rashed, Mohamed Mabrok
Title: MammoClean: Toward Reproducible and Bias-Aware AI in Mammography through Dataset Harmonization
Abstract:
The development of clinically reliable artificial intelligence (AI) systems for mammography is hindered by profound heterogeneity in data quality, metadata standards, and population distributions across public datasets. This heterogeneity introduces dataset-specific biases that severely compromise the generalizability of the model, a fundamental barrier to clinical deployment. We present MammoClean, a public framework for standardization and bias quantification in mammography datasets. MammoClean standardizes case selection, image processing (including laterality and intensity correction), and unifies metadata into a consistent multi-view structure. We provide a comprehensive review of breast anatomy, imaging characteristics, and public mammography datasets to systematically identify key sources of bias. Applying MammoClean to three heterogeneous datasets (CBIS-DDSM, TOMPEI-CMMD, VinDr-Mammo), we quantify substantial distributional shifts in breast density and abnormality prevalence. Critically, we demonstrate the direct impact of data corruption: AI models trained on corrupted datasets exhibit significant performance degradation compared to their curated counterparts. By using MammoClean to identify and mitigate bias sources, researchers can construct unified multi-dataset training corpora that enable development of robust models with superior cross-domain generalization. MammoClean provides an essential, reproducible pipeline for bias-aware AI development in mammography, facilitating fairer comparisons and advancing the creation of safe, effective systems that perform equitably across diverse patient populations and clinical settings. The open-source code is publicly available from: https://github.com/Minds-R-Lab/MammoClean.

Authors:Kuo-Liang Chung, Ting-Chung Tang
Title: A Novel Grouping-Based Hybrid Color Correction Algorithm for Color Point Clouds
Abstract:
Color consistency correction for color point clouds is a fundamental yet important task in 3D rendering and compression applications. In the past, most previous color correction methods aimed at correcting color for color images. The purpose of this paper is to propose a grouping-based hybrid color correction algorithm for color point clouds. Our algorithm begins by estimating the overlapping rate between the aligned source and target point clouds, and then adaptively partitions the target points into two groups, namely the close proximity group Gcl and the moderate proximity group Gmod, or three groups, namely Gcl, Gmod, and the distant proximity group Gdist, when the estimated overlapping rate is low or high, respectively. To correct color for target points in Gcl, a K-nearest neighbors based bilateral interpolation (KBI) method is proposed. To correct color for target points in Gmod, a joint KBI and the histogram equalization (JKHE) method is proposed. For target points in Gdist, a histogram equalization (HE) method is proposed for color correction. Finally, we discuss the grouping-effect free property and the ablation study in our algorithm. The desired color consistency correction benefit of our algorithm has been justified through 1086 testing color point cloud pairs against the state-of-the-art methods. The C++ source code of our algorithm can be accessed from the website: https://github.com/ivpml84079/Point-cloud-color-correction.

Authors:Jiankai Tang, Tao Zhang, Jia Li, Yiru Zhang, Mingyu Zhang, Kegang Wang, Yuming Hao, Bolin Wang, Haiyang Li, Xingyao Wang, Yuanchun Shi, Yuntao Wang, Sichong Qian
Title: M3PD Dataset: Dual-view Photoplethysmography (PPG) Using Front-and-rear Cameras of Smartphones in Lab and Clinical Settings
Abstract:
Portable physiological monitoring is essential for early detection and management of cardiovascular disease, but current methods often require specialized equipment that limits accessibility or impose impractical postures that patients cannot maintain. Video-based photoplethysmography on smartphones offers a convenient noninvasive alternative, yet it still faces reliability challenges caused by motion artifacts, lighting variations, and single-view constraints. Few studies have demonstrated reliable application to cardiovascular patients, and no widely used open datasets exist for cross-device accuracy. To address these limitations, we introduce the M3PD dataset, the first publicly available dual-view mobile photoplethysmography dataset, comprising synchronized facial and fingertip videos captured simultaneously via front and rear smartphone cameras from 60 participants (including 47 cardiovascular patients). Building on this dual-view setting, we further propose F3Mamba, which fuses the facial and fingertip views through Mamba-based temporal modeling. The model reduces heart-rate error by 21.9 to 30.2 percent over existing single-view baselines while improving robustness in challenging real-world scenarios. Data and code: https://github.com/Health-HCI-Group/F3Mamba.

Authors:Fangxun Shu, Yongjie Ye, Yue Liao, Zijian Kang, Weijie Yin, Jiacong Wang, Xiao Liang, Shuicheng Yan, Chao Feng
Title: SAIL-RL: Guiding MLLMs in When and How to Think via Dual-Reward RL Tuning
Abstract:
We introduce SAIL-RL, a reinforcement learning (RL) post-training framework that enhances the reasoning capabilities of multimodal large language models (MLLMs) by teaching them when and how to think. Existing approaches are limited by outcome-only supervision, which rewards correct answers without ensuring sound reasoning, and by uniform thinking strategies, which often lead to overthinking on simple tasks and underthinking on complex ones. SAIL-RL addresses these challenges with a dual reward system: the Thinking Reward, which evaluates reasoning quality through factual grounding, logical coherence, and answer consistency, and the Judging Reward, which adaptively determines whether deep reasoning or direct answering is appropriate. Experiments on the state-of-the-art SAIL-VL2 show that SAIL-RL improves reasoning and multimodal understanding benchmarks at both 4B and 8B scales, achieving competitive performance against commercial closed-source models such as GPT-4o, and substantially reduces hallucinations, establishing it as a principled framework for building more reliable and adaptive MLLMs. The code will be available at https://github.com/BytedanceDouyinContent/SAIL-RL.

Authors:Hao Li, Daiwei Lu, Jesse d'Almeida, Dilara Isik, Ehsan Khodapanah Aghdam, Nick DiSanto, Ayberk Acar, Susheela Sharma, Jie Ying Wu, Robert J. Webster, Ipek Oguz
Title: Monocular absolute depth estimation from endoscopy via domain-invariant feature learning and latent consistency
Abstract:
Monocular depth estimation (MDE) is a critical task to guide autonomous medical robots. However, obtaining absolute (metric) depth from an endoscopy camera in surgical scenes is difficult, which limits supervised learning of depth on real endoscopic images. Current image-level unsupervised domain adaptation methods translate synthetic images with known depth maps into the style of real endoscopic frames and train depth networks using these translated images with their corresponding depth maps. However a domain gap often remains between real and translated synthetic images. In this paper, we present a latent feature alignment method to improve absolute depth estimation by reducing this domain gap in the context of endoscopic videos of the central airway. Our methods are agnostic to the image translation process and focus on the depth estimation itself. Specifically, the depth network takes translated synthetic and real endoscopic frames as input and learns latent domain-invariant features via adversarial learning and directional feature consistency. The evaluation is conducted on endoscopic videos of central airway phantoms with manually aligned absolute depth maps. Compared to state-of-the-art MDE methods, our approach achieves superior performance on both absolute and relative depth metrics, and consistently improves results across various backbones and pretrained weights. Our code is available at https://github.com/MedICL-VU/MDE.

Authors:Jiawen Liu, Yuanbo Zeng, Jiaming Liang, Yizhen Yang, Yiheng Zhang, Enhui Cai, Xiaoqi Sheng, Hongmin Cai
Title: MM-UNet: Morph Mamba U-shaped Convolutional Networks for Retinal Vessel Segmentation
Abstract:
Accurate detection of retinal vessels plays a critical role in reflecting a wide range of health status indicators in the clinical diagnosis of ocular diseases. Recently, advances in deep learning have led to a surge in retinal vessel segmentation methods, which have significantly contributed to the quantitative analysis of vascular morphology. However, retinal vasculature differs significantly from conventional segmentation targets in that it consists of extremely thin and branching structures, whose global morphology varies greatly across images. These characteristics continue to pose challenges to segmentation precision and robustness. To address these issues, we propose MM-UNet, a novel architecture tailored for efficient retinal vessel segmentation. The model incorporates Morph Mamba Convolution layers, which replace pointwise convolutions to enhance branching topological perception through morph, state-aware feature sampling. Additionally, Reverse Selective State Guidance modules integrate reverse guidance theory with state-space modeling to improve geometric boundary awareness and decoding efficiency. Extensive experiments conducted on two public retinal vessel segmentation datasets demonstrate the superior performance of the proposed method in segmentation accuracy. Compared to the existing approaches, MM-UNet achieves F1-score gains of 1.64 % on DRIVE and 1.25 % on STARE, demonstrating its effectiveness and advancement. The project code is public via https://github.com/liujiawen-jpg/MM-UNet.

Authors:Zhe Liu, Jinghua Hou, Xiaoqing Ye, Jingdong Wang, Hengshuang Zhao, Xiang Bai
Title: UniLION: Towards Unified Autonomous Driving Model with Linear Group RNNs
Abstract:
Although transformers have demonstrated remarkable capabilities across various domains, their quadratic attention mechanisms introduce significant computational overhead when processing long-sequence data. In this paper, we present a unified autonomous driving model, UniLION, which efficiently handles large-scale LiDAR point clouds, high-resolution multi-view images, and even temporal sequences based on the linear group RNN operator (i.e., performs linear RNN for grouped features). Remarkably, UniLION serves as a single versatile architecture that can seamlessly support multiple specialized variants (i.e., LiDAR-only, temporal LiDAR, multi-modal, and multi-modal temporal fusion configurations) without requiring explicit temporal or multi-modal fusion modules. Moreover, UniLION consistently delivers competitive and even state-of-the-art performance across a wide range of core tasks, including 3D perception (e.g., 3D object detection, 3D object tracking, 3D occupancy prediction, BEV map segmentation), prediction (e.g., motion prediction), and planning (e.g., end-to-end planning). This unified paradigm naturally simplifies the design of multi-modal and multi-task autonomous driving systems while maintaining superior performance. Ultimately, we hope UniLION offers a fresh perspective on the development of 3D foundation models in autonomous driving. Code is available at https://github.com/happinesslz/UniLION

Authors:Yuxiao Yang, Xiao-Xiao Long, Zhiyang Dou, Cheng Lin, Yuan Liu, Qingsong Yan, Yuexin Ma, Haoqian Wang, Zhiqiang Wu, Wei Yin
Title: Wonder3D++: Cross-domain Diffusion for High-fidelity 3D Generation from a Single Image
Abstract:
In this work, we introduce \textbf{Wonder3D++}, a novel method for efficiently generating high-fidelity textured meshes from single-view images. Recent methods based on Score Distillation Sampling (SDS) have shown the potential to recover 3D geometry from 2D diffusion priors, but they typically suffer from time-consuming per-shape optimization and inconsistent geometry. In contrast, certain works directly produce 3D information via fast network inferences, but their results are often of low quality and lack geometric details. To holistically improve the quality, consistency, and efficiency of single-view reconstruction tasks, we propose a cross-domain diffusion model that generates multi-view normal maps and the corresponding color images. To ensure the consistency of generation, we employ a multi-view cross-domain attention mechanism that facilitates information exchange across views and modalities. Lastly, we introduce a cascaded 3D mesh extraction algorithm that drives high-quality surfaces from the multi-view 2D representations in only about $3$ minute in a coarse-to-fine manner. Our extensive evaluations demonstrate that our method achieves high-quality reconstruction results, robust generalization, and good efficiency compared to prior works. Code available at https://github.com/xxlong0/Wonder3D/tree/Wonder3D_Plus.

Authors:Yi Zhang, Zheng Wang, Chen Zhen, Wenjie Ruan, Qing Guo, Siddartha Khastgir, Carsten Maple, Xingyu Zhao
Title: Probabilistic Robustness for Free? Revisiting Training via a Benchmark
Abstract:
Deep learning models are notoriously vulnerable to imperceptible perturbations. Most existing research centers on adversarial robustness (AR), which evaluates models under worst-case scenarios by examining the existence of deterministic adversarial examples (AEs). In contrast, probabilistic robustness (PR) adopts a statistical perspective, measuring the probability that predictions remain correct under stochastic perturbations. While PR is widely regarded as a practical complement to AR, dedicated training methods for improving PR are still relatively underexplored, albeit with emerging progress. Among the few PR-targeted training methods, we identify three limitations: i non-comparable evaluation protocols; ii limited comparisons to strong AT baselines despite anecdotal PR gains from AT; and iii no unified framework to compare the generalization of these methods. Thus, we introduce PRBench, the first benchmark dedicated to evaluating improvements in PR achieved by different robustness training methods. PRBench empirically compares most common AT and PR-targeted training methods using a comprehensive set of metrics, including clean accuracy, PR and AR performance, training efficiency, and generalization error (GE). We also provide theoretical analysis on the GE of PR performance across different training methods. Main findings revealed by PRBench include: AT methods are more versatile than PR-targeted training methods in terms of improving both AR and PR performance across diverse hyperparameter settings, while PR-targeted training methods consistently yield lower GE and higher clean accuracy. A leaderboard comprising 222 trained models across 7 datasets and 10 model architectures is publicly available at https://tmpspace.github.io/PRBenchLeaderboard/.

Authors:Jiayi Chen, Wenxuan Song, Pengxiang Ding, Ziyang Zhou, Han Zhao, Feilong Tang, Donglin Wang, Haoang Li
Title: Unified Diffusion VLA: Vision-Language-Action Model via Joint Discrete Denoising Diffusion Process
Abstract:
Vision-language-action (VLA) models aim to understand natural language instructions and visual observations and to execute corresponding actions as an embodied agent. Recent work integrates future images into the understanding-acting loop, yielding unified VLAs that jointly understand, generate, and act -- reading text and images and producing future images and actions. However, these models either rely on external experts for modality unification or treat image generation and action prediction as separate processes, limiting the benefits of direct synergy between these tasks. Our core philosophy is to optimize generation and action jointly through a synchronous denoising process, where the iterative refinement enables actions to evolve from initialization, under constant and sufficient visual guidance. We ground this philosophy in our proposed Unified Diffusion VLA and Joint Discrete Denoising Diffusion Process (JD3P), which is a joint diffusion process that integrates multiple modalities into a single denoising trajectory to serve as the key mechanism enabling understanding, generation, and acting to be intrinsically synergistic. Our model and theory are built on a unified tokenized space of all modalities and a hybrid attention mechanism. We further propose a two-stage training pipeline and several inference-time techniques that optimize performance and efficiency. Our approach achieves state-of-the-art performance on benchmarks such as CALVIN, LIBERO, and SimplerEnv with 4$\times$ faster inference than autoregressive methods, and we demonstrate its effectiveness through in-depth analysis and real-world evaluations. Our project page is available at https://irpn-eai.github.io/UD-VLA.github.io/.

Authors:Xin Qiao, Matteo Poggi, Xing Wei, Pengchao Deng, Yanhui Zhou, Stefano Mattoccia
Title: Learnable Fractional Reaction-Diffusion Dynamics for Under-Display ToF Imaging and Beyond
Abstract:
Under-display ToF imaging aims to achieve accurate depth sensing through a ToF camera placed beneath a screen panel. However, transparent OLED (TOLED) layers introduce severe degradations-such as signal attenuation, multi-path interference (MPI), and temporal noise-that significantly compromise depth quality. To alleviate this drawback, we propose Learnable Fractional Reaction-Diffusion Dynamics (LFRD2), a hybrid framework that combines the expressive power of neural networks with the interpretability of physical modeling. Specifically, we implement a time-fractional reaction-diffusion module that enables iterative depth refinement with dynamically generated differential orders, capturing long-term dependencies. In addition, we introduce an efficient continuous convolution operator via coefficient prediction and repeated differentiation to further improve restoration quality. Experiments on four benchmark datasets demonstrate the effectiveness of our approach. The code is publicly available at https://github.com/wudiqx106/LFRD2.

Authors:Ropeway Liu, Hangjie Yuan, Bo Dong, Jiazheng Xing, Jinwang Wang, Rui Zhao, Yan Xing, Weihua Chen, Fan Wang
Title: UniLumos: Fast and Unified Image and Video Relighting with Physics-Plausible Feedback
Abstract:
Relighting is a crucial task with both practical demand and artistic value, and recent diffusion models have shown strong potential by enabling rich and controllable lighting effects. However, as they are typically optimized in semantic latent space, where proximity does not guarantee physical correctness in visual space, they often produce unrealistic results, such as overexposed highlights, misaligned shadows, and incorrect occlusions. We address this with UniLumos, a unified relighting framework for both images and videos that brings RGB-space geometry feedback into a flow matching backbone. By supervising the model with depth and normal maps extracted from its outputs, we explicitly align lighting effects with the scene structure, enhancing physical plausibility. Nevertheless, this feedback requires high-quality outputs for supervision in visual space, making standard multi-step denoising computationally expensive. To mitigate this, we employ path consistency learning, allowing supervision to remain effective even under few-step training regimes. To enable fine-grained relighting control and supervision, we design a structured six-dimensional annotation protocol capturing core illumination attributes. Building upon this, we propose LumosBench, a disentangled attribute-level benchmark that evaluates lighting controllability via large vision-language models, enabling automatic and interpretable assessment of relighting precision across individual dimensions. Extensive experiments demonstrate that UniLumos achieves state-of-the-art relighting quality with significantly improved physical consistency, while delivering a 20x speedup for both image and video relighting. Code is available at https://github.com/alibaba-damo-academy/Lumos-Custom.

Authors:Mohamed Eltahir, Ali Habibullah, Lama Ayash, Tanveer Hussain, Naeemullah Khan
Title: Vote-in-Context: Turning VLMs into Zero-Shot Rank Fusers
Abstract:
In the retrieval domain, candidates' fusion from heterogeneous retrievers is a long-standing challenge, particularly for complex, multi-modal data such as videos. While typical fusion techniques are training-free, they rely solely on rank or score signals, disregarding candidates' representations. This work introduces Vote-in-Context (ViC), a generalized, training-free framework that re-thinks list-wise reranking and fusion as a zero-shot reasoning task for a Vision-Language Model (VLM). The core insight is to serialize both content evidence and retriever metadata directly within the VLM's prompt, allowing the model to adaptively weigh retriever consensus against visual-linguistic content. We demonstrate the generality of this framework by applying it to the challenging domain of cross-modal video retrieval. To this end, we introduce the S-Grid, a compact serialization map that represents each video as an image grid, optionally paired with subtitles to enable list-wise reasoning over video candidates. ViC is evaluated both as a single-list reranker, where it dramatically improves the precision of individual retrievers, and as an ensemble fuser, where it consistently outperforms strong baselines like CombSUM. Across video retrieval benchmarks including ActivityNet and VATEX, the framework establishes new state-of-the-art zero-shot retrieval performance, demonstrating its effectiveness in handling complex visual and temporal signals alongside text. In zero-shot settings, ViC achieves Recall@1 scores of 87.1% (t2v) / 89.0% (v2t) on MSR-VTT and 99.6% (v2t) on VATEX, representing massive gains of up to +40 Recall@1 over previous state-of-the-art baselines. We present ViC as a simple, reproducible, and highly effective recipe for turning modern VLMs into powerful zero-shot rerankers and fusers. Code and resources are publicly available at: https://github.com/mohammad2012191/ViC

Authors:Tomáš Krsička, Tibor Kubík
Title: Benchmark-Ready 3D Anatomical Shape Classification
Abstract:
Progress in anatomical 3D shape classification is limited by the complexity of mesh data and the lack of standardized benchmarks, highlighting the need for robust learning methods and reproducible evaluation. We introduce two key steps toward clinically and benchmark-ready anatomical shape classification via self-supervised graph autoencoding. We propose Precomputed Structural Pooling (PSPooling), a non-learnable mesh pooling operator designed for efficient and structure-preserving graph coarsening in 3D anatomical shape analysis. PSPooling precomputes node correspondence sets based on geometric proximity, enabling parallelizable and reversible pooling and unpooling operations with guaranteed support structure. This design avoids the sparsity and reconstruction issues of selection-based methods and the sequential overhead of edge contraction approaches, making it particularly suitable for high-resolution medical meshes. To demonstrate its effectiveness, we integrate PSPooling into a self-supervised graph autoencoder that learns anatomy-aware representations from unlabeled surface meshes. We evaluate the downstream benefits on MedShapeNet19, a new curated benchmark dataset we derive from MedShapeNet, consisting of 19 anatomical classes with standardized training, validation, and test splits. Experiments show that PSPooling significantly improves reconstruction fidelity and classification accuracy in low-label regimes, establishing a strong baseline for medical 3D shape learning. We hope that MedShapeNet19 will serve as a widely adopted benchmark for anatomical shape classification and further research in medical 3D shape analysis. Access the complete codebase, model weights, and dataset information here: https://github.com/TomasKrsicka/MedShapeNet19-PSPooling.

Authors:Arthur Hubert, Gamal Elghazaly, Raphaël Frank
Title: Driving scenario generation and evaluation using a structured layer representation and foundational models
Abstract:
Rare and challenging driving scenarios are critical for autonomous vehicle development. Since they are difficult to encounter, simulating or generating them using generative models is a popular approach. Following previous efforts to structure driving scenario representations in a layer model, we propose a structured five-layer model to improve the evaluation and generation of rare scenarios. We use this model alongside large foundational models to generate new driving scenarios using a data augmentation strategy. Unlike previous representations, our structure introduces subclasses and characteristics for every agent of the scenario, allowing us to compare them using an embedding specific to our layer-model. We study and adapt two metrics to evaluate the relevance of a synthetic dataset in the context of a structured representation: the diversity score estimates how different the scenarios of a dataset are from one another, while the originality score calculates how similar a synthetic dataset is from a real reference set. This paper showcases both metrics in different generation setup, as well as a qualitative evaluation of synthetic videos generated from structured scenario descriptions. The code and extended results can be found at https://github.com/Valgiz/5LMSG.

Authors:Serkan Ozturk, Samet Hicsonmez, Pinar Duygulu
Title: NSYNC: Negative Synthetic Image Generation for Contrastive Training to Improve Stylized Text-To-Image Translation
Abstract:
Current text conditioned image generation methods output realistic looking images, but they fail to capture specific styles. Simply finetuning them on the target style datasets still struggles to grasp the style features. In this work, we present a novel contrastive learning framework to improve the stylization capability of large text-to-image diffusion models. Motivated by the astonishing advance in image generation models that makes synthetic data an intrinsic part of model training in various computer vision tasks, we exploit synthetic image generation in our approach. Usually, the generated synthetic data is dependent on the task, and most of the time it is used to enlarge the available real training dataset. With NSYNC, alternatively, we focus on generating negative synthetic sets to be used in a novel contrastive training scheme along with real positive images. In our proposed training setup, we forward negative data along with positive data and obtain negative and positive gradients, respectively. We then refine the positive gradient by subtracting its projection onto the negative gradient to get the orthogonal component, based on which the parameters are updated. This orthogonal component eliminates the trivial attributes that are present in both positive and negative data and directs the model towards capturing a more unique style. Experiments on various styles of painters and illustrators show that our approach improves the performance over the baseline methods both quantitatively and qualitatively. Our code is available at https://github.com/giddyyupp/NSYNC.

Authors:Zhiyang Jia, Hongyan Cui, Ge Gao, Bo Li, Minjie Zhang, Zishuo Gao, Huiwen Huang, Caisheng Zhuo
Title: EPAN: Robust Pedestrian Re-Identification via Enhanced Alignment Network for IoT Surveillance
Abstract:
Person re-identification (ReID) plays a pivotal role in computer vision, particularly in surveillance and security applications within IoT-enabled smart environments. This study introduces the Enhanced Pedestrian Alignment Network (EPAN), tailored for robust ReID across diverse IoT surveillance conditions. EPAN employs a dual-branch architecture to mitigate the impact of perspective and environmental changes, extracting alignment information under varying scales and viewpoints. Here, we demonstrate EPAN's strong feature extraction capabilities, achieving outstanding performance on the Inspection-Personnel dataset with a Rank-1 accuracy of 90.09% and a mean Average Precision (mAP) of 78.82%. This highlights EPAN's potential for real-world IoT applications, enabling effective and reliable person ReID across diverse cameras in surveillance and security systems. The code and data are available at: https://github.com/ggboy2580/EPAN

Authors:Dennis Pierantozzi, Luca Carlini, Mauro Orazio Drago, Chiara Lena, Cesare Hassan, Elena De Momi, Danail Stoyanov, Sophia Bano, Mobarak I. Hoque
Title: When to Trust the Answer: Question-Aligned Semantic Nearest Neighbor Entropy for Safer Surgical VQA
Abstract:
Safety and reliability are essential for deploying Visual Question Answering (VQA) in surgery, where incorrect or ambiguous responses can harm the patient. Most surgical VQA research focuses on accuracy or linguistic quality while overlooking safety behaviors such as ambiguity awareness, referral to human experts, or triggering a second opinion. Inspired by Automatic Failure Detection (AFD), we study uncertainty estimation as a key enabler of safer decision making. We introduce Question Aligned Semantic Nearest Neighbor Entropy (QA-SNNE), a black box uncertainty estimator that incorporates question semantics into prediction confidence. It measures semantic entropy by comparing generated answers with nearest neighbors in a medical text embedding space, conditioned on the question. We evaluate five models, including domain specific Parameter-Efficient Fine-Tuned (PEFT) models and zero-shot Large Vision-Language Models (LVLMs), on EndoVis18-VQA and PitVQA. PEFT models degrade under mild paraphrasing, while LVLMs are more resilient. Across three LVLMs and two PEFT baselines, QA-SNNE improves AUROC in most in-template settings and enhances hallucination detection. The Area Under the ROC Curve (AUROC) increases by 15-38% for zero-shot models, with gains maintained under out-of-template stress. QA-SNNE offers a practical and interpretable step toward AFD in surgical VQA by linking semantic uncertainty to question context. Combining LVLM backbones with question aligned uncertainty estimation can improve safety and clinician trust. The code and model are available at https://github.com/DennisPierantozzi/QASNNE

Authors:Xinyu Mao, Junsi Li, Haoji Zhang, Yu Liang, Ming Sun
Title: SEPS: Semantic-enhanced Patch Slimming Framework for fine-grained cross-modal alignment
Abstract:
Fine-grained cross-modal alignment aims to establish precise local correspondences between vision and language, forming a cornerstone for visual question answering and related multimodal applications. Current approaches face challenges in addressing patch redundancy and ambiguity, which arise from the inherent information density disparities across modalities. Recently, Multimodal Large Language Models (MLLMs) have emerged as promising solutions to bridge this gap through their robust semantic generation capabilities. However, the dense textual outputs from MLLMs may introduce conflicts with the original sparse captions. Furthermore, accurately quantifying semantic relevance between rich visual patches and concise textual descriptions remains a core challenge. To overcome these limitations, we introduce the Semantic-Enhanced Patch Slimming (SEPS) framework, which systematically addresses patch redundancy and ambiguity. Our approach employs a two-stage mechanism to integrate unified semantics from both dense and sparse texts, enabling the identification of salient visual patches. Additionally, it leverages relevance-aware selection with mean value computation to highlight crucial patch-word correspondences, thereby improving cross-modal similarity assessment. Comprehensive experiments on Flickr30K and MS-COCO datasets validate that SEPS achieves superior performance, surpassing existing approaches by 23\%-86\% in rSum across diverse model architectures, with notable enhancements in text-to-image retrieval scenarios. Our implementation is available at https://github.com/Sweet4tars/seps.git.

Authors:Qiangguo Jin, Xianyao Zheng, Hui Cui, Changming Sun, Yuqi Fang, Cong Cong, Ran Su, Leyi Wei, Ping Xuan, Junbo Wang
Title: CMI-MTL: Cross-Mamba interaction based multi-task learning for medical visual question answering
Abstract:
Medical visual question answering (Med-VQA) is a crucial multimodal task in clinical decision support and telemedicine. Recent self-attention based methods struggle to effectively handle cross-modal semantic alignments between vision and language. Moreover, classification-based methods rely on predefined answer sets. Treating this task as a simple classification problem may make it unable to adapt to the diversity of free-form answers and overlook the detailed semantic information of free-form answers. In order to tackle these challenges, we introduce a Cross-Mamba Interaction based Multi-Task Learning (CMI-MTL) framework that learns cross-modal feature representations from images and texts. CMI-MTL comprises three key modules: fine-grained visual-text feature alignment (FVTA), cross-modal interleaved feature representation (CIFR), and free-form answer-enhanced multi-task learning (FFAE). FVTA extracts the most relevant regions in image-text pairs through fine-grained visual-text feature alignment. CIFR captures cross-modal sequential interactions via cross-modal interleaved feature representation. FFAE leverages auxiliary knowledge from open-ended questions through free-form answer-enhanced multi-task learning, improving the model's capability for open-ended Med-VQA. Experimental results show that CMI-MTL outperforms the existing state-of-the-art methods on three Med-VQA datasets: VQA-RAD, SLAKE, and OVQA. Furthermore, we conduct more interpretability experiments to prove the effectiveness. The code is publicly available at https://github.com/BioMedIA-repo/CMI-MTL.

Authors:Jianfei Jiang, Qiankun Liu, Hongyuan Liu, Haochen Yu, Liyong Wang, Jiansheng Chen, Huimin Ma
Title: MVSMamba: Multi-View Stereo with State Space Model
Abstract:
Robust feature representations are essential for learning-based Multi-View Stereo (MVS), which relies on accurate feature matching. Recent MVS methods leverage Transformers to capture long-range dependencies based on local features extracted by conventional feature pyramid networks. However, the quadratic complexity of Transformer-based MVS methods poses challenges to balance performance and efficiency. Motivated by the global modeling capability and linear complexity of the Mamba architecture, we propose MVSMamba, the first Mamba-based MVS network. MVSMamba enables efficient global feature aggregation with minimal computational overhead. To fully exploit Mamba's potential in MVS, we propose a Dynamic Mamba module (DM-module) based on a novel reference-centered dynamic scanning strategy, which enables: (1) Efficient intra- and inter-view feature interaction from the reference to source views, (2) Omnidirectional multi-view feature representations, and (3) Multi-scale global feature aggregation. Extensive experimental results demonstrate MVSMamba outperforms state-of-the-art MVS methods on the DTU dataset and the Tanks-and-Temples benchmark with both superior performance and efficiency. The source code is available at https://github.com/JianfeiJ/MVSMamba.

Authors:Tae-Young Lee, Juwon Seo, Jong Hwan Ko, Gyeong-Moon Park
Title: Perturb a Model, Not an Image: Towards Robust Privacy Protection via Anti-Personalized Diffusion Models
Abstract:
Recent advances in diffusion models have enabled high-quality synthesis of specific subjects, such as identities or objects. This capability, while unlocking new possibilities in content creation, also introduces significant privacy risks, as personalization techniques can be misused by malicious users to generate unauthorized content. Although several studies have attempted to counter this by generating adversarially perturbed samples designed to disrupt personalization, they rely on unrealistic assumptions and become ineffective in the presence of even a few clean images or under simple image transformations. To address these challenges, we shift the protection target from the images to the diffusion model itself to hinder the personalization of specific subjects, through our novel framework called Anti-Personalized Diffusion Models (APDM). We first provide a theoretical analysis demonstrating that a naive approach of existing loss functions to diffusion models is inherently incapable of ensuring convergence for robust anti-personalization. Motivated by this finding, we introduce Direct Protective Optimization (DPO), a novel loss function that effectively disrupts subject personalization in the target model without compromising generative quality. Moreover, we propose a new dual-path optimization strategy, coined Learning to Protect (L2P). By alternating between personalization and protection paths, L2P simulates future personalization trajectories and adaptively reinforces protection at each step. Experimental results demonstrate that our framework outperforms existing methods, achieving state-of-the-art performance in preventing unauthorized personalization. The code is available at https://github.com/KU-VGI/APDM.

Authors:Chentao Li, Behzad Bozorgtabar, Yifang Ping, Pan Huang, Jing Qin
Title: Positive Semi-definite Latent Factor Grouping-Boosted Cluster-reasoning Instance Disentangled Learning for WSI Representation
Abstract:
Multiple instance learning (MIL) has been widely used for representing whole-slide pathology images. However, spatial, semantic, and decision entanglements among instances limit its representation and interpretability. To address these challenges, we propose a latent factor grouping-boosted cluster-reasoning instance disentangled learning framework for whole-slide image (WSI) interpretable representation in three phases. First, we introduce a novel positive semi-definite latent factor grouping that maps instances into a latent subspace, effectively mitigating spatial entanglement in MIL. To alleviate semantic entanglement, we employs instance probability counterfactual inference and optimization via cluster-reasoning instance disentangling. Finally, we employ a generalized linear weighted decision via instance effect re-weighting to address decision entanglement. Extensive experiments on multicentre datasets demonstrate that our model outperforms all state-of-the-art models. Moreover, it attains pathologist-aligned interpretability through disentangled representations and a transparent decision-making process.

Authors:Feng Han, Yibin Wang, Chenglin Li, Zheming Liang, Dianyi Wang, Yang Jiao, Zhipeng Wei, Chao Gong, Cheng Jin, Jingjing Chen, Jiaqi Wang
Title: UniREditBench: A Unified Reasoning-based Image Editing Benchmark
Abstract:
Recent advances in multi-modal generative models have driven substantial improvements in image editing. However, current generative models still struggle with handling diverse and complex image editing tasks that require implicit reasoning, underscoring the need for a comprehensive benchmark to systematically assess their performance across various reasoning scenarios. Existing benchmarks primarily focus on single-object attribute transformation in realistic scenarios, which, while effective, encounter two key challenges: (1) they largely overlook multi-object interactions as well as game-world scenarios that involve human-defined rules, which are common in real-life applications; (2) they only rely on textual references to evaluate the generated images, potentially leading to systematic misjudgments, especially in complex reasoning scenarios. To this end, this work proposes UniREditBench, a unified benchmark for reasoning-based image editing evaluation. It comprises 2,700 meticulously curated samples, covering both real- and game-world scenarios across 8 primary dimensions and 18 sub-dimensions. To improve evaluation reliability, we introduce multimodal dual-reference evaluation, providing both textual and ground-truth image references for each sample assessment. Furthermore, we design an automated multi-scenario data synthesis pipeline and construct UniREdit-Data-100K, a large-scale synthetic dataset with high-quality chain-of-thought (CoT) reasoning annotations. We fine-tune Bagel on this dataset and develop UniREdit-Bagel, demonstrating substantial improvements in both in-domain and out-of-distribution settings. Through thorough benchmarking of both open-source and closed-source image editing models, we reveal their strengths and weaknesses across various aspects.

Authors:Yonggang Zhang, Jun Nie, Xinmei Tian, Mingming Gong, Kun Zhang, Bo Han
Title: Detecting Generated Images by Fitting Natural Image Distributions
Abstract:
The increasing realism of generated images has raised significant concerns about their potential misuse, necessitating robust detection methods. Current approaches mainly rely on training binary classifiers, which depend heavily on the quantity and quality of available generated images. In this work, we propose a novel framework that exploits geometric differences between the data manifolds of natural and generated images. To exploit this difference, we employ a pair of functions engineered to yield consistent outputs for natural images but divergent outputs for generated ones, leveraging the property that their gradients reside in mutually orthogonal subspaces. This design enables a simple yet effective detection method: an image is identified as generated if a transformation along its data manifold induces a significant change in the loss value of a self-supervised model pre-trained on natural images. Further more, to address diminishing manifold disparities in advanced generative models, we leverage normalizing flows to amplify detectable differences by extruding generated images away from the natural image manifold. Extensive experiments demonstrate the efficacy of this method. Code is available at https://github.com/tmlr-group/ConV.

Authors:Mengyuan Liu, Sheng Yan, Yong Wang, Yingjie Li, Gui-Bin Bian, Hong Liu
Title: MoSa: Motion Generation with Scalable Autoregressive Modeling
Abstract:
We introduce MoSa, a novel hierarchical motion generation framework for text-driven 3D human motion generation that enhances the Vector Quantization-guided Generative Transformers (VQ-GT) paradigm through a coarse-to-fine scalable generation process. In MoSa, we propose a Multi-scale Token Preservation Strategy (MTPS) integrated into a hierarchical residual vector quantization variational autoencoder (RQ-VAE). MTPS employs interpolation at each hierarchical quantization to effectively retain coarse-to-fine multi-scale tokens. With this, the generative transformer supports Scalable Autoregressive (SAR) modeling, which predicts scale tokens, unlike traditional methods that predict only one token at each step. Consequently, MoSa requires only 10 inference steps, matching the number of RQ-VAE quantization layers. To address potential reconstruction degradation from frequent interpolation, we propose CAQ-VAE, a lightweight yet expressive convolution-attention hybrid VQ-VAE. CAQ-VAE enhances residual block design and incorporates attention mechanisms to better capture global dependencies. Extensive experiments show that MoSa achieves state-of-the-art generation quality and efficiency, outperforming prior methods in both fidelity and speed. On the Motion-X dataset, MoSa achieves an FID of 0.06 (versus MoMask's 0.20) while reducing inference time by 27 percent. Moreover, MoSa generalizes well to downstream tasks such as motion editing, requiring no additional fine-tuning. The code is available at https://mosa-web.github.io/MoSa-web

Authors:Brian Nlong Zhao, Jiajun Wu, Shangzhe Wu
Title: Web-Scale Collection of Video Data for 4D Animal Reconstruction
Abstract:
Computer vision for animals holds great promise for wildlife research but often depends on large-scale data, while existing collection methods rely on controlled capture setups. Recent data-driven approaches show the potential of single-view, non-invasive analysis, yet current animal video datasets are limited--offering as few as 2.4K 15-frame clips and lacking key processing for animal-centric 3D/4D tasks. We introduce an automated pipeline that mines YouTube videos and processes them into object-centric clips, along with auxiliary annotations valuable for downstream tasks like pose estimation, tracking, and 3D/4D reconstruction. Using this pipeline, we amass 30K videos (2M frames)--an order of magnitude more than prior works. To demonstrate its utility, we focus on the 4D quadruped animal reconstruction task. To support this task, we present Animal-in-Motion (AiM), a benchmark of 230 manually filtered sequences with 11K frames showcasing clean, diverse animal motions. We evaluate state-of-the-art model-based and model-free methods on Animal-in-Motion, finding that 2D metrics favor the former despite unrealistic 3D shapes, while the latter yields more natural reconstructions but scores lower--revealing a gap in current evaluation. To address this, we enhance a recent model-free approach with sequence-level optimization, establishing the first 4D animal reconstruction baseline. Together, our pipeline, benchmark, and baseline aim to advance large-scale, markerless 4D animal reconstruction and related tasks from in-the-wild videos. Code and datasets are available at https://github.com/briannlongzhao/Animal-in-Motion.

Authors:Ziyi Wang, Yuanmei Zhang, Dorna Esrafilzadeh, Ali R. Jalili, Suncheng Xiang
Title: MicroAUNet: Boundary-Enhanced Multi-scale Fusion with Knowledge Distillation for Colonoscopy Polyp Image Segmentation
Abstract:
Early and accurate segmentation of colorectal polyps is critical for reducing colorectal cancer mortality, which has been extensively explored by academia and industry. However, current deep learning-based polyp segmentation models either compromise clinical decision-making by providing ambiguous polyp margins in segmentation outputs or rely on heavy architectures with high computational complexity, resulting in insufficient inference speeds for real-time colorectal endoscopic applications. To address this problem, we propose MicroAUNet, a light-weighted attention-based segmentation network that combines depthwise-separable dilated convolutions with a single-path, parameter-shared channel-spatial attention block to strengthen multi-scale boundary features. On the basis of it, a progressive two-stage knowledge-distillation scheme is introduced to transfer semantic and boundary cues from a high-capacity teacher. Extensive experiments on benchmarks also demonstrate the state-of-the-art accuracy under extremely low model complexity, indicating that MicroAUNet is suitable for real-time clinical polyp segmentation. The code is publicly available at https://github.com/JeremyXSC/MicroAUNet.

Authors:Narges Ghasemi, Amir Ziashahabi, Salman Avestimehr, Cyrus Shahabi
Title: GeoToken: Hierarchical Geolocalization of Images via Next Token Prediction
Abstract:
Image geolocalization, the task of determining an image's geographic origin, poses significant challenges, largely due to visual similarities across disparate locations and the large search space. To address these issues, we propose a hierarchical sequence prediction approach inspired by how humans narrow down locations from broad regions to specific addresses. Analogously, our model predicts geographic tokens hierarchically, first identifying a general region and then sequentially refining predictions to increasingly precise locations. Rather than relying on explicit semantic partitions, our method uses S2 cells, a nested, multiresolution global grid, and sequentially predicts finer-level cells conditioned on visual inputs and previous predictions. This procedure mirrors autoregressive text generation in large language models. Much like in language modeling, final performance depends not only on training but also on inference-time strategy. We investigate multiple top-down traversal methods for autoregressive sampling, incorporating techniques from test-time compute scaling used in language models. Specifically, we integrate beam search and multi-sample inference while exploring various selection strategies to determine the final output. This enables the model to manage uncertainty by exploring multiple plausible paths through the hierarchy. We evaluate our method on the Im2GPS3k and YFCC4k datasets against two distinct sets of baselines: those that operate without a Multimodal Large Language Model (MLLM) and those that leverage one. In the MLLM-free setting, our model surpasses other comparable baselines on nearly all metrics, achieving state-of-the-art performance with accuracy gains of up to 13.9%. When augmented with an MLLM, our model outperforms all baselines, setting a new state-of-the-art across all metrics. The source code is available at https://github.com/NNargesNN/GeoToken.

Authors:Dongheng Lin, Mengxue Qu, Kunyang Han, Jianbo Jiao, Xiaojie Jin, Yunchao Wei
Title: A Unified Reasoning Framework for Holistic Zero-Shot Video Anomaly Analysis
Abstract:
Most video-anomaly research stops at frame-wise detection, offering little insight into why an event is abnormal, typically outputting only frame-wise anomaly scores without spatial or semantic context. Recent video anomaly localization and video anomaly understanding methods improve explainability but remain data-dependent and task-specific. We propose a unified reasoning framework that bridges the gap between temporal detection, spatial localization, and textual explanation. Our approach is built upon a chained test-time reasoning process that sequentially connects these tasks, enabling holistic zero-shot anomaly analysis without any additional training. Specifically, our approach leverages intra-task reasoning to refine temporal detections and inter-task chaining for spatial and semantic understanding, yielding improved interpretability and generalization in a fully zero-shot manner. Without any additional data or gradients, our method achieves state-of-the-art zero-shot performance across multiple video anomaly detection, localization, and explanation benchmarks. The results demonstrate that careful prompt design with task-wise chaining can unlock the reasoning power of foundation models, enabling practical, interpretable video anomaly analysis in a fully zero-shot manner. Project Page: https://rathgrith.github.io/Unified_Frame_VAA/.

Authors:Jaehyun Park, Konyul Park, Daehun Kim, Junseo Park, Jun Won Choi
Title: Layer-Wise Modality Decomposition for Interpretable Multimodal Sensor Fusion
Abstract:
In autonomous driving, transparency in the decision-making of perception models is critical, as even a single misperception can be catastrophic. Yet with multi-sensor inputs, it is difficult to determine how each modality contributes to a prediction because sensor information becomes entangled within the fusion network. We introduce Layer-Wise Modality Decomposition (LMD), a post-hoc, model-agnostic interpretability method that disentangles modality-specific information across all layers of a pretrained fusion model. To our knowledge, LMD is the first approach to attribute the predictions of a perception model to individual input modalities in a sensor-fusion system for autonomous driving. We evaluate LMD on pretrained fusion models under camera-radar, camera-LiDAR, and camera-radar-LiDAR settings for autonomous driving. Its effectiveness is validated using structured perturbation-based metrics and modality-wise visual decompositions, demonstrating practical applicability to interpreting high-capacity multimodal architectures. Code is available at https://github.com/detxter-jvb/Layer-Wise-Modality-Decomposition.

Authors:Yifan Pu, Jixuan Ying, Qixiu Li, Tianzhu Ye, Dongchen Han, Xiaochen Wang, Ziyi Wang, Xinyu Shao, Gao Huang, Xiu Li
Title: Linear Differential Vision Transformer: Learning Visual Contrasts via Pairwise Differentials
Abstract:
Vision Transformers (ViTs) have become a universal backbone for both image recognition and image generation. Yet their Multi-Head Self-Attention (MHSA) layer still performs a quadratic query-key interaction for every token pair, spending the bulk of computation on visually weak or redundant correlations. We introduce Visual-Contrast Attention (VCA), a drop-in replacement for MHSA that injects an explicit notion of discrimination while reducing the theoretical complexity from O(N N C) to O(N n C) with n << N. VCA first distils each head's dense query field into a handful of spatially pooled visual-contrast tokens, then splits them into a learnable positive and negative stream whose differential interaction highlights what truly separates one region from another. The module adds fewer than 0.3M parameters to a DeiT-Tiny backbone, requires no extra FLOPs, and is wholly architecture-agnostic. Empirically, VCA lifts DeiT-Tiny top-1 accuracy on ImageNet-1K from 72.2% to 75.6% (+3.4) and improves three strong hierarchical ViTs by up to 3.1%, while in class-conditional ImageNet generation it lowers FID-50K by 2.1 to 5.2 points across both diffusion (DiT) and flow (SiT) models. Extensive ablations confirm that (i) spatial pooling supplies low-variance global cues, (ii) dual positional embeddings are indispensable for contrastive reasoning, and (iii) combining the two in both stages yields the strongest synergy. VCA therefore offers a simple path towards faster and sharper Vision Transformers. The source code is available at https://github.com/LeapLabTHU/LinearDiff.

Authors:Shijie Zhou, Viet Dac Lai, Hao Tan, Jihyung Kil, Wanrong Zhu, Changyou Chen, Ruiyi Zhang
Title: GUI-AIMA: Aligning Intrinsic Multimodal Attention with a Context Anchor for GUI Grounding
Abstract:
Graphical user interface (GUI) grounding is a key function of computer-use agents, which maps natural-language instructions to actionable screen regions. Existing approaches based on Multimodal Large Language Models (MLLMs) typically formulate it as a text-based coordinate generation task, yet directly generating precise coordinates from visual inputs remains challenging and computationally intensive. An intuitive way to implement GUI grounding is to first select visual patches relevant to the instructions and then determine the precise click location within those patches. Based on the observations that general MLLMs have some native grounding capability, nested within their attentions, we propose GUI-AIMA, an attention-based and coordinate-free supervised fine-tuning framework for efficient GUI grounding. GUI-AIMA aligns the intrinsic multimodal attention of MLLMs with patch-wise grounding signals. These signals are calculated adaptively for diverse user instructions by multi-head aggregation on simplified query-visual attention matrices. Besides, its coordinate-free manner can easily integrate a plug-and-play zoom-in stage. GUI-AIMA-3B was trained with only 85k screenshots, demonstrating exceptional data efficiency and verifying that light training can trigger the native grounding capability of MLLMs. It achieves state-of-the-art performance among 3B models, attaining an average accuracy of 59.6% on ScreenSpot-Pro, 63.8% on OSWorld-G and 91.5% on ScreenSpot-v2. Project page: https://github.com/sjz5202/GUI-AIMA

Authors:Zhihui Chen, Mengling Feng
Title: Med-Banana-50K: A Cross-modality Large-Scale Dataset for Text-guided Medical Image Editing
Abstract:
Medical image editing has emerged as a pivotal technology with broad applications in data augmentation, model interpretability, medical education, and treatment simulation. However, the lack of large-scale, high-quality, and openly accessible datasets tailored for medical contexts with strict anatomical and clinical constraints has significantly hindered progress in this domain. To bridge this gap, we introduce Med-Banana-50K, a comprehensive dataset of over 50k medically curated image edits spanning chest X-ray, brain MRI, and fundus photography across 23 diseases. Each sample supports bidirectional lesion editing (addition and removal) and is constructed using Gemini-2.5-Flash-Image based on real clinical images. A key differentiator of our dataset is the medically grounded quality control protocol: we employ an LLM-as-Judge evaluation framework with criteria such as instruction compliance, structural plausibility, image realism, and fidelity preservation, alongside iterative refinement over up to five rounds. Additionally, Med-Banana-50K includes around 37,000 failed editing attempts with full evaluation logs to support preference learning and alignment research. By offering a large-scale, medically rigorous, and fully documented resource, Med-Banana-50K establishes a critical foundation for developing and evaluating reliable medical image editing systems. Our dataset and code are publicly available. [https://github.com/richardChenzhihui/med-banana-50k].

Authors:Alberto Di Biase
Title: Applying Medical Imaging Tractography Techniques to Painterly Rendering of Images
Abstract:
Doctors and researchers routinely use diffusion tensor imaging (DTI) and tractography to visualize the fibrous structure of tissues in the human body. This paper explores the connection of these techniques to the painterly rendering of images. Using a tractography algorithm the presented method can place brush strokes that mimic the painting process of human artists, analogously to how fibres are tracked in DTI. The analogue to the diffusion tensor for image orientation is the structural tensor, which can provide better local orientation information than the gradient alone. I demonstrate this technique in portraits and general images, and discuss the parallels between fibre tracking and brush stroke placement, and frame it in the language of tractography. This work presents an exploratory investigation into the cross-domain application of diffusion tensor imaging techniques to painterly rendering of images. All the code is available at https://github.com/tito21/st-python

Authors:Zixuan Sun, Shuaifeng Zhi, Ruize Li, Jingyuan Xia, Yongxiang Liu, Weidong Jiang
Title: GDROS: A Geometry-Guided Dense Registration Framework for Optical-SAR Images under Large Geometric Transformations
Abstract:
Registration of optical and synthetic aperture radar (SAR) remote sensing images serves as a critical foundation for image fusion and visual navigation tasks. This task is particularly challenging because of their modal discrepancy, primarily manifested as severe nonlinear radiometric differences (NRD), geometric distortions, and noise variations. Under large geometric transformations, existing classical template-based and sparse keypoint-based strategies struggle to achieve reliable registration results for optical-SAR image pairs. To address these limitations, we propose GDROS, a geometry-guided dense registration framework leveraging global cross-modal image interactions. First, we extract cross-modal deep features from optical and SAR images through a CNN-Transformer hybrid feature extraction module, upon which a multi-scale 4D correlation volume is constructed and iteratively refined to establish pixel-wise dense correspondences. Subsequently, we implement a least squares regression (LSR) module to geometrically constrain the predicted dense optical flow field. Such geometry guidance mitigates prediction divergence by directly imposing an estimated affine transformation on the final flow predictions. Extensive experiments have been conducted on three representative datasets WHU-Opt-SAR dataset, OS dataset, and UBCv2 dataset with different spatial resolutions, demonstrating robust performance of our proposed method across different imaging resolutions. Qualitative and quantitative results show that GDROS significantly outperforms current state-of-the-art methods in all metrics. Our source code will be released at: https://github.com/Zi-Xuan-Sun/GDROS.

Authors:Kailun Su, Ziqi He, Xi Wang, Yang Zhou
Title: MIFO: Learning and Synthesizing Multi-Instance from One Image
Abstract:
This paper proposes a method for precise learning and synthesizing multi-instance semantics from a single image. The difficulty of this problem lies in the limited training data, and it becomes even more challenging when the instances to be learned have similar semantics or appearance. To address this, we propose a penalty-based attention optimization to disentangle similar semantics during the learning stage. Then, in the synthesis, we introduce and optimize box control in attention layers to further mitigate semantic leakage while precisely controlling the output layout. Experimental results demonstrate that our method achieves disentangled and high-quality semantic learning and synthesis, strikingly balancing editability and instance consistency. Our method remains robust when dealing with semantically or visually similar instances or rare-seen objects. The code is publicly available at https://github.com/Kareneveve/MIFO

Authors:Kai Luo, Hao Shi, Kunyu Peng, Fei Teng, Sheng Wu, Kaiwei Wang, Kailun Yang
Title: OmniTrack++: Omnidirectional Multi-Object Tracking by Learning Large-FoV Trajectory Feedback
Abstract:
This paper investigates Multi-Object Tracking (MOT) in panoramic imagery, which introduces unique challenges including a 360° Field of View (FoV), resolution dilution, and severe view-dependent distortions. Conventional MOT methods designed for narrow-FoV pinhole cameras generalize unsatisfactorily under these conditions. To address panoramic distortion, large search space, and identity ambiguity under a 360° FoV, OmniTrack++ adopts a feedback-driven framework that progressively refines perception with trajectory cues. A DynamicSSM block first stabilizes panoramic features, implicitly alleviating geometric distortion. On top of normalized representations, FlexiTrack Instances use trajectory-informed feedback for flexible localization and reliable short-term association. To ensure long-term robustness, an ExpertTrack Memory consolidates appearance cues via a Mixture-of-Experts design, enabling recovery from fragmented tracks and reducing identity drift. Finally, a Tracklet Management module adaptively switches between end-to-end and tracking-by-detection modes according to scene dynamics, offering a balanced and scalable solution for panoramic MOT. To support rigorous evaluation, we establish the EmboTrack benchmark, a comprehensive dataset for panoramic MOT that includes QuadTrack, captured with a quadruped robot, and BipTrack, collected with a bipedal wheel-legged robot. Together, these datasets span wide-angle environments and diverse motion patterns, providing a challenging testbed for real-world panoramic perception. Extensive experiments on JRDB and EmboTrack demonstrate that OmniTrack++ achieves state-of-the-art performance, yielding substantial HOTA improvements of +25.5% on JRDB and +43.07% on QuadTrack over the original OmniTrack. Datasets and code will be made publicly available at https://github.com/xifen523/OmniTrack.

Authors:Renjun Gao, Xiangjie Kong, Dongting Cai, Boyi Fu, Junxiang Yang
Title: Three-dimensional narrow volume reconstruction method with unconditional stability based on a phase-field Lagrange multiplier approach
Abstract:
Reconstruction of an object from points cloud is essential in prosthetics, medical imaging, computer vision, etc. We present an effective algorithm for an Allen--Cahn-type model of reconstruction, employing the Lagrange multiplier approach. Utilizing scattered data points from an object, we reconstruct a narrow shell by solving the governing equation enhanced with an edge detection function derived from the unsigned distance function. The specifically designed edge detection function ensures the energy stability. By reformulating the governing equation through the Lagrange multiplier technique and implementing a Crank--Nicolson time discretization, we can update the solutions in a stable and decoupled manner. The spatial operations are approximated using the finite difference method, and we analytically demonstrate the unconditional stability of the fully discrete scheme. Comprehensive numerical experiments, including reconstructions of complex 3D volumes such as characters from \textit{Star Wars}, validate the algorithm's accuracy, stability, and effectiveness. Additionally, we analyze how specific parameter selections influence the level of detail and refinement in the reconstructed volumes. To facilitate the interested readers to understand our algorithm, we share the computational codes and data in https://github.com/cfdyang521/C-3PO/tree/main.

Authors:Weihao Bo, Yanpeng Sun, Yu Wang, Xinyu Zhang, Zechao Li
Title: FedMGP: Personalized Federated Learning with Multi-Group Text-Visual Prompts
Abstract:
In this paper, we introduce FedMGP, a new paradigm for personalized federated prompt learning in vision-language models. FedMGP equips each client with multiple groups of paired textual and visual prompts, enabling the model to capture diverse, fine-grained semantic and instance-level cues. A diversity loss is introduced to drive each prompt group to specialize in distinct and complementary semantic aspects, ensuring that the groups collectively cover a broader range of local characteristics. During communication, FedMGP employs a dynamic prompt aggregation strategy based on similarity-guided probabilistic sampling: each client computes the cosine similarity between its prompt groups and the global prompts from the previous round, then samples s groups via a softmax-weighted distribution. This soft selection mechanism preferentially aggregates semantically aligned knowledge while still enabling exploration of underrepresented patterns effectively balancing the preservation of common knowledge with client-specific features. Notably, FedMGP maintains parameter efficiency by redistributing a fixed prompt capacity across multiple groups, achieving state-of-the-art performance with the lowest communication parameters among all federated prompt learning methods. Theoretical analysis shows that our dynamic aggregation strategy promotes robust global representation learning by reinforcing shared semantics while suppressing client-specific noise. Extensive experiments demonstrate that FedMGP consistently outperforms prior approaches in both personalization and domain generalization across diverse federated vision-language benchmarks. The code will be released on https://github.com/weihao-bo/FedMGP.git.

Authors:Panwang Pan, Tingting Shen, Chenxin Li, Yunlong Lin, Kairun Wen, Jingjing Zhao, Yixuan Yuan
Title: HumanCrafter: Synergizing Generalizable Human Reconstruction and Semantic 3D Segmentation
Abstract:
Recent advances in generative models have achieved high-fidelity in 3D human reconstruction, yet their utility for specific tasks (e.g., human 3D segmentation) remains constrained. We propose HumanCrafter, a unified framework that enables the joint modeling of appearance and human-part semantics from a single image in a feed-forward manner. Specifically, we integrate human geometric priors in the reconstruction stage and self-supervised semantic priors in the segmentation stage. To address labeled 3D human datasets scarcity, we further develop an interactive annotation procedure for generating high-quality data-label pairs. Our pixel-aligned aggregation enables cross-task synergy, while the multi-task objective simultaneously optimizes texture modeling fidelity and semantic consistency. Extensive experiments demonstrate that HumanCrafter surpasses existing state-of-the-art methods in both 3D human-part segmentation and 3D human reconstruction from a single image.

Authors:Kiran Shahi, Anup Bagale
Title: Weakly Supervised Pneumonia Localization from Chest X-Rays Using Deep Neural Network and Grad-CAM Explanations
Abstract:
This study proposes a weakly supervised deep learning framework for pneumonia classification and localization from chest X-rays, utilizing Grad-CAM explanations. Instead of costly pixel-level annotations, our approach uses image-level labels to generate clinically meaningful heatmaps that highlight regions affected by pneumonia. We evaluate seven pre-trained architectures and the Vision Transformer under identical training conditions, using focal loss and patient-wise splits to prevent data leakage. Experimental results suggest that all models achieved high accuracy (96-98%), with ResNet-18 and EfficientNet-B0 showing the best overall performance and MobileNet-V2 providing an efficient lightweight alternative. Grad-CAM heatmap visualizations confirm that the proposed models focus on clinically relevant lung regions, supporting the use of interpretable AI for radiological diagnostics. This work highlights the potential of weakly supervised, explainable models that enhance the transparency of pneumonia screening and clinical trust in AI-assisted screening.

Authors:Xin Yao, Haiyang Zhao, Yimin Chen, Jiawei Guo, Kecheng Huang, Ming Zhao
Title: ToxicTextCLIP: Text-Based Poisoning and Backdoor Attacks on CLIP Pre-training
Abstract:
The Contrastive Language-Image Pretraining (CLIP) model has significantly advanced vision-language modeling by aligning image-text pairs from large-scale web data through self-supervised contrastive learning. Yet, its reliance on uncurated Internet-sourced data exposes it to data poisoning and backdoor risks. While existing studies primarily investigate image-based attacks, the text modality, which is equally central to CLIP's training, remains underexplored. In this work, we introduce ToxicTextCLIP, a framework for generating high-quality adversarial texts that target CLIP during the pre-training phase. The framework addresses two key challenges: semantic misalignment caused by background inconsistency with the target class, and the scarcity of background-consistent texts. To this end, ToxicTextCLIP iteratively applies: 1) a background-aware selector that prioritizes texts with background content aligned to the target class, and 2) a background-driven augmenter that generates semantically coherent and diverse poisoned samples. Extensive experiments on classification and retrieval tasks show that ToxicTextCLIP achieves up to 95.83% poisoning success and 98.68% backdoor Hit@1, while bypassing RoCLIP, CleanCLIP and SafeCLIP defenses. The source code can be accessed via https://github.com/xinyaocse/ToxicTextCLIP/.

Authors:Zenghao Niu, Weicheng Xie, Siyang Song, Zitong Yu, Feng Liu, Linlin Shen
Title: Enhancing Adversarial Transferability by Balancing Exploration and Exploitation with Gradient-Guided Sampling
Abstract:
Adversarial attacks present a critical challenge to deep neural networks' robustness, particularly in transfer scenarios across different model architectures. However, the transferability of adversarial attacks faces a fundamental dilemma between Exploitation (maximizing attack potency) and Exploration (enhancing cross-model generalization). Traditional momentum-based methods over-prioritize Exploitation, i.e., higher loss maxima for attack potency but weakened generalization (narrow loss surface). Conversely, recent methods with inner-iteration sampling over-prioritize Exploration, i.e., flatter loss surfaces for cross-model generalization but weakened attack potency (suboptimal local maxima). To resolve this dilemma, we propose a simple yet effective Gradient-Guided Sampling (GGS), which harmonizes both objectives through guiding sampling along the gradient ascent direction to improve both sampling efficiency and stability. Specifically, based on MI-FGSM, GGS introduces inner-iteration random sampling and guides the sampling direction using the gradient from the previous inner-iteration (the sampling's magnitude is determined by a random distribution). This mechanism encourages adversarial examples to reside in balanced regions with both flatness for cross-model generalization and higher local maxima for strong attack potency. Comprehensive experiments across multiple DNN architectures and multimodal large language models (MLLMs) demonstrate the superiority of our method over state-of-the-art transfer attacks. Code is made available at https://github.com/anuin-cat/GGS.

Authors:Xuanle Zhao, Deyang Jiang, Zhixiong Zeng, Lei Chen, Haibo Qiu, Jing Huang, Yufeng Zhong, Liming Zheng, Yilin Cao, Lin Ma
Title: VinciCoder: Unifying Multimodal Code Generation via Coarse-to-fine Visual Reinforcement Learning
Abstract:
Multimodal code generation has garnered significant interest within the research community. Despite the notable success of recent vision-language models (VLMs) on specialized tasks like Chart-to-code generation, their reliance on single-task training regimens fosters a narrow paradigm that hinders the development of generalized \textbf{VI}sio\textbf{N} \textbf{C}ode \textbf{I}ntelligence. In this work, we introduce \textbf{VinciCoder}, a unified multimodal code generation model that addresses this limitation via a two-stage training framework. We begin by constructing a large-scale Supervised Finetuning (SFT) corpus comprising 1.6M image-code pairs for tasks involving direct code generation and visual-based code refinement. Subsequently, we introduce a Visual Reinforcement Learning (ViRL) strategy, which employs a coarse-to-fine reward mechanism to improve visual fidelity by calculating visual similarity across local and global image patches. Extensive experiments on various multimodal code generation benchmarks demonstrate that VinciCoder achieves state-of-the-art performance, underscoring the effectiveness of our coarse-to-fine ViRL strategy. The code and model will be available at https://github.com/DocTron-hub/VinciCoder.

Authors:Amir Ziashahabi, Narges Ghasemi, Sajjad Shahabi, John Krumm, Salman Avestimehr, Cyrus Shahabi
Title: OSMGen: Highly Controllable Satellite Image Synthesis using OpenStreetMap Data
Abstract:
Accurate and up-to-date geospatial data are essential for urban planning, infrastructure monitoring, and environmental management. Yet, automating urban monitoring remains difficult because curated datasets of specific urban features and their changes are scarce. We introduce OSMGen, a generative framework that creates realistic satellite imagery directly from raw OpenStreetMap (OSM) data. Unlike prior work that relies on raster tiles, OSMGen uses the full richness of OSM JSON, including vector geometries, semantic tags, location, and time, giving fine-grained control over how scenes are generated. A central feature of the framework is the ability to produce consistent before-after image pairs: user edits to OSM inputs translate into targeted visual changes, while the rest of the scene is preserved. This makes it possible to generate training data that addresses scarcity and class imbalance, and to give planners a simple way to preview proposed interventions by editing map data. More broadly, OSMGen produces paired (JSON, image) data for both static and changed states, paving the way toward a closed-loop system where satellite imagery can automatically drive structured OSM updates. Source code is available at https://github.com/amir-zsh/OSMGen.

Authors:Jinsu Kim, Yunhun Nam, Minseon Kim, Sangpil Kim, Jongheon Jeong
Title: BlurGuard: A Simple Approach for Robustifying Image Protection Against AI-Powered Editing
Abstract:
Recent advances in text-to-image models have increased the exposure of powerful image editing techniques as a tool, raising concerns about their potential for malicious use. An emerging line of research to address such threats focuses on implanting "protective" adversarial noise into images before their public release, so future attempts to edit them using text-to-image models can be impeded. However, subsequent works have shown that these adversarial noises are often easily "reversed," e.g., with techniques as simple as JPEG compression, casting doubt on the practicality of the approach. In this paper, we argue that adversarial noise for image protection should not only be imperceptible, as has been a primary focus of prior work, but also irreversible, viz., it should be difficult to detect as noise provided that the original image is hidden. We propose a surprisingly simple method to enhance the robustness of image protection methods against noise reversal techniques. Specifically, it applies an adaptive per-region Gaussian blur on the noise to adjust the overall frequency spectrum. Through extensive experiments, we show that our method consistently improves the per-sample worst-case protection performance of existing methods against a wide range of reversal techniques on diverse image editing scenarios, while also reducing quality degradation due to noise in terms of perceptual metrics. Code is available at https://github.com/jsu-kim/BlurGuard.

Authors:Mengbo Wang, Shourya Verma, Aditya Malusare, Luopin Wang, Yiyang Lu, Vaneet Aggarwal, Mario Sola, Ananth Grama, Nadia Atallah Lanman
Title: GeneFlow: Translation of Single-cell Gene Expression to Histopathological Images via Rectified Flow
Abstract:
Spatial transcriptomics (ST) technologies can be used to align transcriptomes with histopathological morphology, presenting exciting new opportunities for biomolecular discovery. Using ST data, we construct a novel framework, GeneFlow, to map transcriptomics onto paired cellular images. By combining an attention-based RNA encoder with a conditional UNet guided by rectified flow, we generate high-resolution images with different staining methods (e.g. H&E, DAPI) to highlight various cellular/tissue structures. Rectified flow with high-order ODE solvers creates a continuous, bijective mapping between transcriptomics and image manifolds, addressing the many-to-one relationship inherent in this problem. Our method enables the generation of realistic cellular morphology features and spatially resolved intercellular interactions from observational gene expression profiles, provides potential to incorporate genetic/chemical perturbations, and enables disease diagnosis by revealing dysregulated patterns in imaging phenotypes. Our rectified flow-based method outperforms diffusion-based baseline method in all experiments. Code can be found at https://github.com/wangmengbo/GeneFlow.

Authors:Rotem Ezra, Hedi Zisling, Nimrod Berman, Ilan Naiman, Alexey Gorkor, Liran Nochumsohn, Eliya Nachmani, Omri Azencot
Title: FreeSliders: Training-Free, Modality-Agnostic Concept Sliders for Fine-Grained Diffusion Control in Images, Audio, and Video
Abstract:
Diffusion models have become state-of-the-art generative models for images, audio, and video, yet enabling fine-grained controllable generation, i.e., continuously steering specific concepts without disturbing unrelated content, remains challenging. Concept Sliders (CS) offer a promising direction by discovering semantic directions through textual contrasts, but they require per-concept training and architecture-specific fine-tuning (e.g., LoRA), limiting scalability to new modalities. In this work we introduce FreeSliders, a simple yet effective approach that is fully training-free and modality-agnostic, achieved by partially estimating the CS formula during inference. To support modality-agnostic evaluation, we extend the CS benchmark to include both video and audio, establishing the first suite for fine-grained concept generation control with multiple modalities. We further propose three evaluation properties along with new metrics to improve evaluation quality. Finally, we identify an open problem of scale selection and non-linear traversals and introduce a two-stage procedure that automatically detects saturation points and reparameterizes traversal for perceptually uniform, semantically meaningful edits. Extensive experiments demonstrate that our method enables plug-and-play, training-free concept control across modalities, improves over existing baselines, and establishes new tools for principled controllable generation. An interactive presentation of our benchmark and method is available at: https://azencot-group.github.io/FreeSliders/

Authors:Jiaming Liu, Dingwei Fan, Junyong Zhao, Chunlin Li, Haipeng Si, Liang Sun
Title: SpinalSAM-R1: A Vision-Language Multimodal Interactive System for Spine CT Segmentation
Abstract:
The anatomical structure segmentation of the spine and adjacent structures from computed tomography (CT) images is a key step for spinal disease diagnosis and treatment. However, the segmentation of CT images is impeded by low contrast and complex vertebral boundaries. Although advanced models such as the Segment Anything Model (SAM) have shown promise in various segmentation tasks, their performance in spinal CT imaging is limited by high annotation requirements and poor domain adaptability. To address these limitations, we propose SpinalSAM-R1, a multimodal vision-language interactive system that integrates a fine-tuned SAM with DeepSeek-R1, for spine CT image segmentation. Specifically, our SpinalSAM-R1 introduces an anatomy-guided attention mechanism to improve spine segmentation performance, and a semantics-driven interaction protocol powered by DeepSeek-R1, enabling natural language-guided refinement. The SpinalSAM-R1 is fine-tuned using Low-Rank Adaptation (LoRA) for efficient adaptation. We validate our SpinalSAM-R1 on the spine anatomical structure with CT images. Experimental results suggest that our method achieves superior segmentation performance. Meanwhile, we develop a PyQt5-based interactive software, which supports point, box, and text-based prompts. The system supports 11 clinical operations with 94.3\% parsing accuracy and sub-800 ms response times. The software is released on https://github.com/6jm233333/spinalsam-r1.

Authors:Huanlin Gao, Ping Chen, Fuyuan Shi, Chao Tan, Zhaoxiang Liu, Fang Zhao, Kai Wang, Shiguo Lian
Title: LeMiCa: Lexicographic Minimax Path Caching for Efficient Diffusion-Based Video Generation
Abstract:
We present LeMiCa, a training-free and efficient acceleration framework for diffusion-based video generation. While existing caching strategies primarily focus on reducing local heuristic errors, they often overlook the accumulation of global errors, leading to noticeable content degradation between accelerated and original videos. To address this issue, we formulate cache scheduling as a directed graph with error-weighted edges and introduce a Lexicographic Minimax Path Optimization strategy that explicitly bounds the worst-case path error. This approach substantially improves the consistency of global content and style across generated frames. Extensive experiments on multiple text-to-video benchmarks demonstrate that LeMiCa delivers dual improvements in both inference speed and generation quality. Notably, our method achieves a 2.9x speedup on the Latte model and reaches an LPIPS score of 0.05 on Open-Sora, outperforming prior caching techniques. Importantly, these gains come with minimal perceptual quality degradation, making LeMiCa a robust and generalizable paradigm for accelerating diffusion-based video generation. We believe this approach can serve as a strong foundation for future research on efficient and reliable video synthesis. Our code is available at :https://github.com/UnicomAI/LeMiCa

Authors:NVIDIA, :, Arslan Ali, Junjie Bai, Maciej Bala, Yogesh Balaji, Aaron Blakeman, Tiffany Cai, Jiaxin Cao, Tianshi Cao, Elizabeth Cha, Yu-Wei Chao, Prithvijit Chattopadhyay, Mike Chen, Yongxin Chen, Yu Chen, Shuai Cheng, Yin Cui, Jenna Diamond, Yifan Ding, Jiaojiao Fan, Linxi Fan, Liang Feng, Francesco Ferroni, Sanja Fidler, Xiao Fu, Ruiyuan Gao, Yunhao Ge, Jinwei Gu, Aryaman Gupta, Siddharth Gururani, Imad El Hanafi, Ali Hassani, Zekun Hao, Jacob Huffman, Joel Jang, Pooya Jannaty, Jan Kautz, Grace Lam, Xuan Li, Zhaoshuo Li, Maosheng Liao, Chen-Hsuan Lin, Tsung-Yi Lin, Yen-Chen Lin, Huan Ling, Ming-Yu Liu, Xian Liu, Yifan Lu, Alice Luo, Qianli Ma, Hanzi Mao, Kaichun Mo, Seungjun Nah, Yashraj Narang, Abhijeet Panaskar, Lindsey Pavao, Trung Pham, Morteza Ramezanali, Fitsum Reda, Scott Reed, Xuanchi Ren, Haonan Shao, Yue Shen, Stella Shi, Shuran Song, Bartosz Stefaniak, Shangkun Sun, Shitao Tang, Sameena Tasmeen, Lyne Tchapmi, Wei-Cheng Tseng, Jibin Varghese, Andrew Z. Wang, Hao Wang, Haoxiang Wang, Heng Wang, Ting-Chun Wang, Fangyin Wei, Jiashu Xu, Dinghao Yang, Xiaodong Yang, Haotian Ye, Seonghyeon Ye, Xiaohui Zeng, Jing Zhang, Qinsheng Zhang, Kaiwen Zheng, Andrew Zhu, Yuke Zhu
Title: World Simulation with Video Foundation Models for Physical AI
Abstract:
We introduce [Cosmos-Predict2.5], the latest generation of the Cosmos World Foundation Models for Physical AI. Built on a flow-based architecture, [Cosmos-Predict2.5] unifies Text2World, Image2World, and Video2World generation in a single model and leverages [Cosmos-Reason1], a Physical AI vision-language model, to provide richer text grounding and finer control of world simulation. Trained on 200M curated video clips and refined with reinforcement learning-based post-training, [Cosmos-Predict2.5] achieves substantial improvements over [Cosmos-Predict1] in video quality and instruction alignment, with models released at 2B and 14B scales. These capabilities enable more reliable synthetic data generation, policy evaluation, and closed-loop simulation for robotics and autonomous systems. We further extend the family with [Cosmos-Transfer2.5], a control-net style framework for Sim2Real and Real2Real world translation. Despite being 3.5$\times$ smaller than [Cosmos-Transfer1], it delivers higher fidelity and robust long-horizon video generation. Together, these advances establish [Cosmos-Predict2.5] and [Cosmos-Transfer2.5] as versatile tools for scaling embodied intelligence. To accelerate research and deployment in Physical AI, we release source code, pretrained checkpoints, and curated benchmarks under the NVIDIA Open Model License at https://github.com/nvidia-cosmos/cosmos-predict2.5 and https://github.com/nvidia-cosmos/cosmos-transfer2.5. We hope these open resources lower the barrier to adoption and foster innovation in building the next generation of embodied intelligence.

Authors:Ziqian Guan, Xieyi Fu, Pengjun Huang, Hengyuan Zhang, Hubin Du, Yongtao Liu, Yinglin Wang, Qang Ma
Title: Gaussian Combined Distance: A Generic Metric for Object Detection
Abstract:
In object detection, a well-defined similarity metric can significantly enhance model performance. Currently, the IoU-based similarity metric is the most commonly preferred choice for detectors. However, detectors using IoU as a similarity metric often perform poorly when detecting small objects because of their sensitivity to minor positional deviations. To address this issue, recent studies have proposed the Wasserstein Distance as an alternative to IoU for measuring the similarity of Gaussian-distributed bounding boxes. However, we have observed that the Wasserstein Distance lacks scale invariance, which negatively impacts the model's generalization capability. Additionally, when used as a loss function, its independent optimization of the center attributes leads to slow model convergence and unsatisfactory detection precision. To address these challenges, we introduce the Gaussian Combined Distance (GCD). Through analytical examination of GCD and its gradient, we demonstrate that GCD not only possesses scale invariance but also facilitates joint optimization, which enhances model localization performance. Extensive experiments on the AI-TOD-v2 dataset for tiny object detection show that GCD, as a bounding box regression loss function and label assignment metric, achieves state-of-the-art performance across various detectors. We further validated the generalizability of GCD on the MS-COCO-2017 and Visdrone-2019 datasets, where it outperforms the Wasserstein Distance across diverse scales of datasets. Code is available at https://github.com/MArKkwanGuan/mmdet-GCD.

Authors:Riccardo Brioschi, Aleksandr Alekseev, Emanuele Nevali, Berkay Döner, Omar El Malki, Blagoj Mitrevski, Leandro Kieliger, Mark Collier, Andrii Maksai, Jesse Berent, Claudiu Musat, Efi Kokiopoulou
Title: Sketch-to-Layout: Sketch-Guided Multimodal Layout Generation
Abstract:
Graphic layout generation is a growing research area focusing on generating aesthetically pleasing layouts ranging from poster designs to documents. While recent research has explored ways to incorporate user constraints to guide the layout generation, these constraints often require complex specifications which reduce usability. We introduce an innovative approach exploiting user-provided sketches as intuitive constraints and we demonstrate empirically the effectiveness of this new guidance method, establishing the sketch-to-layout problem as a promising research direction, which is currently under-explored. To tackle the sketch-to-layout problem, we propose a multimodal transformer-based solution using the sketch and the content assets as inputs to produce high quality layouts. Since collecting sketch training data from human annotators to train our model is very costly, we introduce a novel and efficient method to synthetically generate training sketches at scale. We train and evaluate our model on three publicly available datasets: PubLayNet, DocLayNet and SlidesVQA, demonstrating that it outperforms state-of-the-art constraint-based methods, while offering a more intuitive design experience. In order to facilitate future sketch-to-layout research, we release O(200k) synthetically-generated sketches for the public datasets above. The datasets are available at https://github.com/google-deepmind/sketch_to_layout.

Authors:Elena Mulero Ayllón, Linlin Shen, Pierangelo Veltri, Fabrizia Gelardi, Arturo Chiti, Paolo Soda, Matteo Tortora
Title: Context-Gated Cross-Modal Perception with Visual Mamba for PET-CT Lung Tumor Segmentation
Abstract:
Accurate lung tumor segmentation is vital for improving diagnosis and treatment planning, and effectively combining anatomical and functional information from PET and CT remains a major challenge. In this study, we propose vMambaX, a lightweight multimodal framework integrating PET and CT scan images through a Context-Gated Cross-Modal Perception Module (CGM). Built on the Visual Mamba architecture, vMambaX adaptively enhances inter-modality feature interaction, emphasizing informative regions while suppressing noise. Evaluated on the PCLT20K dataset, the model outperforms baseline models while maintaining lower computational complexity. These results highlight the effectiveness of adaptive cross-modal gating for multimodal tumor segmentation and demonstrate the potential of vMambaX as an efficient and scalable framework for advanced lung cancer analysis. The code is available at https://github.com/arco-group/vMambaX.

Authors:Wei Xu, Cheng Wang, Dingkang Liang, Zongchuang Zhao, Xingyu Jiang, Peng Zhang, Xiang Bai
Title: NAUTILUS: A Large Multimodal Model for Underwater Scene Understanding
Abstract:
Underwater exploration offers critical insights into our planet and attracts increasing attention for its broader applications in resource exploration, national security, etc. We study the underwater scene understanding methods, which aim to achieve automated underwater exploration. The underwater scene understanding task demands multi-task perceptions from multiple granularities. However, the absence of large-scale underwater multi-task instruction-tuning datasets hinders the progress of this research. To bridge this gap, we construct NautData, a dataset containing 1.45 M image-text pairs supporting eight underwater scene understanding tasks. It enables the development and thorough evaluation of the underwater scene understanding models. Underwater image degradation is a widely recognized challenge that interferes with underwater tasks. To improve the robustness of underwater scene understanding, we introduce physical priors derived from underwater imaging models and propose a plug-and-play vision feature enhancement (VFE) module, which explicitly restores clear underwater information. We integrate this module into renowned baselines LLaVA-1.5 and Qwen2.5-VL and build our underwater LMM, NAUTILUS. Experiments conducted on the NautData and public underwater datasets demonstrate the effectiveness of the VFE module, consistently improving the performance of both baselines on the majority of supported tasks, thus ensuring the superiority of NAUTILUS in the underwater scene understanding area. Data and models are available at https://github.com/H-EmbodVis/NAUTILUS.

Authors:Hyemin Boo, Eunsang Lee, Jiyoung Lee
Title: Referee: Reference-aware Audiovisual Deepfake Detection
Abstract:
Since deepfakes generated by advanced generative models have rapidly posed serious threats, existing audiovisual deepfake detection approaches struggle to generalize to unseen forgeries. We propose a novel reference-aware audiovisual deepfake detection method, called Referee. Speaker-specific cues from only one-shot examples are leveraged to detect manipulations beyond spatiotemporal artifacts. By matching and aligning identity-related queries from reference and target content into cross-modal features, Referee jointly reasons about audiovisual synchrony and identity consistency. Extensive experiments on FakeAVCeleb, FaceForensics++, and KoDF demonstrate that Referee achieves state-of-the-art performance on cross-dataset and cross-language evaluation protocols. Experimental results highlight the importance of cross-modal identity verification for future deepfake detection. The code is available at https://github.com/ewha-mmai/referee.

Authors:WonJun Moon, MinSeok Jung, Gilhan Park, Tae-Young Kim, Cheol-Ho Cho, Woojin Jun, Jae-Pil Heo
Title: Mitigating Semantic Collapse in Partially Relevant Video Retrieval
Abstract:
Partially Relevant Video Retrieval (PRVR) seeks videos where only part of the content matches a text query. Existing methods treat every annotated text-video pair as a positive and all others as negatives, ignoring the rich semantic variation both within a single video and across different videos. Consequently, embeddings of both queries and their corresponding video-clip segments for distinct events within the same video collapse together, while embeddings of semantically similar queries and segments from different videos are driven apart. This limits retrieval performance when videos contain multiple, diverse events. This paper addresses the aforementioned problems, termed as semantic collapse, in both the text and video embedding spaces. We first introduce Text Correlation Preservation Learning, which preserves the semantic relationships encoded by the foundation model across text queries. To address collapse in video embeddings, we propose Cross-Branch Video Alignment (CBVA), a contrastive alignment method that disentangles hierarchical video representations across temporal scales. Subsequently, we introduce order-preserving token merging and adaptive CBVA to enhance alignment by producing video segments that are internally coherent yet mutually distinctive. Extensive experiments on PRVR benchmarks demonstrate that our framework effectively prevents semantic collapse and substantially improves retrieval accuracy.

Authors:Yijia Wang, Yiqing Shen, Weiming Chen, Zhihai He
Title: Understanding the Implicit User Intention via Reasoning with Large Language Model for Image Editing
Abstract:
Existing image editing methods can handle simple editing instructions very well. To deal with complex editing instructions, they often need to jointly fine-tune the large language models (LLMs) and diffusion models (DMs), which involves very high computational complexity and training cost. To address this issue, we propose a new method, called \textbf{C}omplex \textbf{I}mage \textbf{E}diting via \textbf{L}LM \textbf{R}easoning (CIELR), which converts a complex user instruction into a set of simple and explicit editing actions, eliminating the need for jointly fine-tuning the large language models and diffusion models. Specifically, we first construct a structured semantic representation of the input image using foundation models. Then, we introduce an iterative update mechanism that can progressively refine this representation, obtaining a fine-grained visual representation of the image scene. This allows us to perform complex and flexible image editing tasks. Extensive experiments on the SmartEdit Reasoning Scenario Set show that our method surpasses the previous state-of-the-art by 9.955 dB in PSNR, indicating its superior preservation of regions that should remain consistent. Due to the limited number of samples of public datasets of complex image editing with reasoning, we construct a benchmark named CIEBench, containing 86 image samples, together with a metric specifically for reasoning-based image editing. CIELR also outperforms previous methods on this benchmark. The code and dataset are available at \href{https://github.com/Jia-shao/Reasoning-Editing}{https://github.com/Jia-shao/Reasoning-Editing}.

Authors:Benjamin Hamm, Yannick Kirchhoff, Maximilian Rokuss, Klaus Maier-Hein
Title: MeisenMeister: A Simple Two Stage Pipeline for Breast Cancer Classification on MRI
Abstract:
The ODELIA Breast MRI Challenge 2025 addresses a critical issue in breast cancer screening: improving early detection through more efficient and accurate interpretation of breast MRI scans. Even though methods for general-purpose whole-body lesion segmentation as well as multi-time-point analysis exist, breast cancer detection remains highly challenging, largely due to the limited availability of high-quality segmentation labels. Therefore, developing robust classification-based approaches is crucial for the future of early breast cancer detection, particularly in applications such as large-scale screening. In this write-up, we provide a comprehensive overview of our approach to the challenge. We begin by detailing the underlying concept and foundational assumptions that guided our work. We then describe the iterative development process, highlighting the key stages of experimentation, evaluation, and refinement that shaped the evolution of our solution. Finally, we present the reasoning and evidence that informed the design choices behind our final submission, with a focus on performance, robustness, and clinical relevance. We release our full implementation publicly at https://github.com/MIC-DKFZ/MeisenMeister

Authors:Qinghong Yin, Yu Tian, Heming Yang, Xiang Chen, Xianlin Zhang, Xueming Li, Yue Zhan
Title: Rethinking Robust Adversarial Concept Erasure in Diffusion Models
Abstract:
Concept erasure aims to selectively unlearning undesirable content in diffusion models (DMs) to reduce the risk of sensitive content generation. As a novel paradigm in concept erasure, most existing methods employ adversarial training to identify and suppress target concepts, thus reducing the likelihood of sensitive outputs. However, these methods often neglect the specificity of adversarial training in DMs, resulting in only partial mitigation. In this work, we investigate and quantify this specificity from the perspective of concept space, i.e., can adversarial samples truly fit the target concept space? We observe that existing methods neglect the role of conceptual semantics when generating adversarial samples, resulting in ineffective fitting of concept spaces. This oversight leads to the following issues: 1) when there are few adversarial samples, they fail to comprehensively cover the object concept; 2) conversely, they will disrupt other target concept spaces. Motivated by the analysis of these findings, we introduce S-GRACE (Semantics-Guided Robust Adversarial Concept Erasure), which grace leveraging semantic guidance within the concept space to generate adversarial samples and perform erasure training. Experiments conducted with seven state-of-the-art methods and three adversarial prompt generation strategies across various DM unlearning scenarios demonstrate that S-GRACE significantly improves erasure performance 26%, better preserves non-target concepts, and reduces training time by 90%. Our code is available at https://github.com/Qhong-522/S-GRACE.

Authors:Raza Imam, Hu Wang, Dwarikanath Mahapatra, Mohammad Yaqub
Title: T3: Test-Time Model Merging in VLMs for Zero-Shot Medical Imaging Analysis
Abstract:
In medical imaging, vision-language models face a critical duality: pretrained networks offer broad robustness but lack subtle, modality-specific characteristics, while fine-tuned expert models achieve high in-distribution accuracy yet falter under modality shift. Existing model-merging techniques, designed for natural-image benchmarks, are simple and efficient but fail to deliver consistent gains across diverse medical modalities; their static interpolation limits reliability in varied clinical tasks. To address this, we introduce Test-Time Task adaptive merging (T^3), a backpropagation-free framework that computes per-sample interpolation coefficients via the Jensen-Shannon divergence between the two models' output distributions. T^3 dynamically preserves local precision when models agree and defers to generalist robustness under drift. To overcome the inference costs of sample-wise merging, we further propose a batch-wise extension, T^3_B, that computes a merging coefficient across a batch of samples, dramatically reducing computational bottleneck. Recognizing the lack of a standardized medical-merging benchmark, we present a rigorous cross-evaluation protocol spanning in-domain, base-to-novel, and corruptions across four modalities. Empirically, T^3 sets new state-of-the-art in Top-1 accuracy and error reduction, outperforming strong baselines while maintaining efficiency, paving the way for adaptive MVLM deployment in clinical settings. Our code is available at https://github.com/Razaimam45/TCube.

Authors:Yinglu Li, Zhiying Lu, Zhihang Liu, Chuanbin Liu, Hongtao Xie
Title: RegionRAG: Region-level Retrieval-Augumented Generation for Visually-Rich Documents
Abstract:
Multi-modal Retrieval-Augmented Generation (RAG) has become a critical method for empowering LLMs by leveraging candidate visual documents. However, current methods consider the entire document as the basic retrieval unit, introducing substantial irrelevant visual content in two ways: 1) Relevant documents often contain large regions unrelated to the query, diluting the focus on salient information; 2) Retrieving multiple documents to increase recall further introduces redundant and irrelevant documents. These redundant contexts distract the model's attention and further degrade the performance. To address this challenge, we propose \modelname, a novel framework that shifts the retrieval paradigm from the document level to the region level. During training, we design a hybrid supervision strategy from both labeled data and unlabeled data to pinpoint relevant patches. During inference, we propose a dynamic pipeline that intelligently groups salient patches into complete semantic regions. By delegating the task of identifying relevant regions to the retriever, \modelname enables the generator to focus solely on concise visual content relevant to queries, improving both efficiency and accuracy. Experiments on six benchmarks demonstrate that RegionRAG achieves state-of-the-art performance. Improves retrieval accuracy by 10.02\% in R@1 on average and increases question answering accuracy by 3.56\% while using only 71.42\% visual tokens compared to prior methods. The code will be available at https://github.com/Aeryn666/RegionRAG.

Authors:Alik Pramanick, Mayank Bansal, Utkarsh Srivastava, Suklav Ghosh, Arijit Sur
Title: Trans-defense: Transformer-based Denoiser for Adversarial Defense with Spatial-Frequency Domain Representation
Abstract:
In recent times, deep neural networks (DNNs) have been successfully adopted for various applications. Despite their notable achievements, it has become evident that DNNs are vulnerable to sophisticated adversarial attacks, restricting their applications in security-critical systems. In this paper, we present two-phase training methods to tackle the attack: first, training the denoising network, and second, the deep classifier model. We propose a novel denoising strategy that integrates both spatial and frequency domain approaches to defend against adversarial attacks on images. Our analysis reveals that high-frequency components of attacked images are more severely corrupted compared to their lower-frequency counterparts. To address this, we leverage Discrete Wavelet Transform (DWT) for frequency analysis and develop a denoising network that combines spatial image features with wavelets through a transformer layer. Next, we retrain the classifier using the denoised images, which enhances the classifier's robustness against adversarial attacks. Experimental results across the MNIST, CIFAR-10, and Fashion-MNIST datasets reveal that the proposed method remarkably elevates classification accuracy, substantially exceeding the performance by utilizing a denoising network and adversarial training approaches. The code is available at https://github.com/Mayank94/Trans-Defense.

Authors:Tianli Liao, Ran Wang, Siqing Zhang, Lei Li, Guangen Liu, Chenyang Zhao, Heling Cao, Peng Li
Title: Object-IR: Leveraging Object Consistency and Mesh Deformation for Self-Supervised Image Retargeting
Abstract:
Eliminating geometric distortion in semantically important regions remains an intractable challenge in image retargeting. This paper presents Object-IR, a self-supervised architecture that reformulates image retargeting as a learning-based mesh warping optimization problem, where the mesh deformation is guided by object appearance consistency and geometric-preserving constraints. Given an input image and a target aspect ratio, we initialize a uniform rigid mesh at the output resolution and use a convolutional neural network to predict the motion of each mesh grid and obtain the deformed mesh. The retargeted result is generated by warping the input image according to the rigid mesh in the input image and the deformed mesh in the output resolution. To mitigate geometric distortion, we design a comprehensive objective function incorporating a) object-consistent loss to ensure that the important semantic objects retain their appearance, b) geometric-preserving loss to constrain simple scale transform of the important meshes, and c) boundary loss to enforce a clean rectangular output. Notably, our self-supervised paradigm eliminates the need for manually annotated retargeting datasets by deriving supervision directly from the input's geometric and semantic properties. Extensive evaluations on the RetargetMe benchmark demonstrate that our Object-IR achieves state-of-the-art performance, outperforming existing methods in quantitative metrics and subjective visual quality assessments. The framework efficiently processes arbitrary input resolutions (average inference time: 0.009s for 1024x683 resolution) while maintaining real-time performance on consumer-grade GPUs. The source code will soon be available at https://github.com/tlliao/Object-IR.

Authors:Jingnan Gao, Zhe Wang, Xianze Fang, Xingyu Ren, Zhuo Chen, Shengqi Liu, Yuhao Cheng, Jiangjing Lyu, Xiaokang Yang, Yichao Yan
Title: MoRE: 3D Visual Geometry Reconstruction Meets Mixture-of-Experts
Abstract:
Recent advances in language and vision have demonstrated that scaling up model capacity consistently improves performance across diverse tasks. In 3D visual geometry reconstruction, large-scale training has likewise proven effective for learning versatile representations. However, further scaling of 3D models is challenging due to the complexity of geometric supervision and the diversity of 3D data. To overcome these limitations, we propose MoRE, a dense 3D visual foundation model based on a Mixture-of-Experts (MoE) architecture that dynamically routes features to task-specific experts, allowing them to specialize in complementary data aspects and enhance both scalability and adaptability. Aiming to improve robustness under real-world conditions, MoRE incorporates a confidence-based depth refinement module that stabilizes and refines geometric estimation. In addition, it integrates dense semantic features with globally aligned 3D backbone representations for high-fidelity surface normal prediction. MoRE is further optimized with tailored loss functions to ensure robust learning across diverse inputs and multiple geometric tasks. Extensive experiments demonstrate that MoRE achieves state-of-the-art performance across multiple benchmarks and supports effective downstream applications without extra computation.

Authors:Jaebyeong Jeon, Hyeonseo Jang, Jy-yong Sohn, Kibok Lee
Title: Soft Task-Aware Routing of Experts for Equivariant Representation Learning
Abstract:
Equivariant representation learning aims to capture variations induced by input transformations in the representation space, whereas invariant representation learning encodes semantic information by disregarding such transformations. Recent studies have shown that jointly learning both types of representations is often beneficial for downstream tasks, typically by employing separate projection heads. However, this design overlooks information shared between invariant and equivariant learning, which leads to redundant feature learning and inefficient use of model capacity. To address this, we introduce Soft Task-Aware Routing (STAR), a routing strategy for projection heads that models them as experts. STAR induces the experts to specialize in capturing either shared or task-specific information, thereby reducing redundant feature learning. We validate this effect by observing lower canonical correlations between invariant and equivariant embeddings. Experimental results show consistent improvements across diverse transfer learning tasks. The code is available at https://github.com/YonseiML/star.

Authors:Tao Liu, Chongyu Wang, Rongjie Li, Yingchen Yu, Xuming He, Bai Song
Title: GUI-Rise: Structured Reasoning and History Summarization for GUI Navigation
Abstract:
While Multimodal Large Language Models (MLLMs) have advanced GUI navigation agents, current approaches face limitations in cross-domain generalization and effective history utilization. We present a reasoning-enhanced framework that systematically integrates structured reasoning, action prediction, and history summarization. The structured reasoning component generates coherent Chain-of-Thought analyses combining progress estimation and decision reasoning, which inform both immediate action predictions and compact history summaries for future steps. Based on this framework, we train a GUI agent, \textbf{GUI-Rise}, through supervised fine-tuning on pseudo-labeled trajectories and reinforcement learning with Group Relative Policy Optimization (GRPO). This framework employs specialized rewards, including a history-aware objective, directly linking summary quality to subsequent action performance. Comprehensive evaluations on standard benchmarks demonstrate state-of-the-art results under identical training data conditions, with particularly strong performance in out-of-domain scenarios. These findings validate our framework's ability to maintain robust reasoning and generalization across diverse GUI navigation tasks. Code is available at https://leon022.github.io/GUI-Rise.

Authors:Zixuan Hu, Yongxian Wei, Li Shen, Zhenyi Wang, Lei Li, Chun Yuan, Dacheng Tao
Title: Sparse Model Inversion: Efficient Inversion of Vision Transformers for Data-Free Applications
Abstract:
Model inversion, which aims to reconstruct the original training data from pre-trained discriminative models, is especially useful when the original training data is unavailable due to privacy, usage rights, or size constraints. However, existing dense inversion methods attempt to reconstruct the entire image area, making them extremely inefficient when inverting high-resolution images from large-scale Vision Transformers (ViTs). We further identify two underlying causes of this inefficiency: the redundant inversion of noisy backgrounds and the unintended inversion of spurious correlations--a phenomenon we term "hallucination" in model inversion. To address these limitations, we propose a novel sparse model inversion strategy, as a plug-and-play extension to speed up existing dense inversion methods with no need for modifying their original loss functions. Specifically, we selectively invert semantic foregrounds while stopping the inversion of noisy backgrounds and potential spurious correlations. Through both theoretical and empirical studies, we validate the efficacy of our approach in achieving significant inversion acceleration (up to 3.79 faster) while maintaining comparable or even enhanced downstream performance in data-free model quantization and data-free knowledge transfer. Code is available at https://github.com/Egg-Hu/SMI.

Authors:Mingyu Sung, Il-Min Kim, Sangseok Yun, Jae-Mo Kang
Title: H2-Cache: A Novel Hierarchical Dual-Stage Cache for High-Performance Acceleration of Generative Diffusion Models
Abstract:
Diffusion models have emerged as state-of-the-art in image generation, but their practical deployment is hindered by the significant computational cost of their iterative denoising process. While existing caching techniques can accelerate inference, they often create a challenging trade-off between speed and fidelity, suffering from quality degradation and high computational overhead. To address these limitations, we introduce H2-Cache, a novel hierarchical caching mechanism designed for modern generative diffusion model architectures. Our method is founded on the key insight that the denoising process can be functionally separated into a structure-defining stage and a detail-refining stage. H2-cache leverages this by employing a dual-threshold system, using independent thresholds to selectively cache each stage. To ensure the efficiency of our dual-check approach, we introduce pooled feature summarization (PFS), a lightweight technique for robust and fast similarity estimation. Extensive experiments on the Flux architecture demonstrate that H2-cache achieves significant acceleration (up to 5.08x) while maintaining image quality nearly identical to the baseline, quantitatively and qualitatively outperforming existing caching methods. Our work presents a robust and practical solution that effectively resolves the speed-quality dilemma, significantly lowering the barrier for the real-world application of high-fidelity diffusion models. Source code is available at https://github.com/Bluear7878/H2-cache-A-Hierarchical-Dual-Stage-Cache.

Authors:Yuanhao Tang, Xuechao Zou, Zhengpei Hu, Junliang Xing, Chengkun Zhang, Jianqiang Huang
Title: AFM-Net: Advanced Fusing Hierarchical CNN Visual Priors with Global Sequence Modeling for Remote Sensing Image Scene Classification
Abstract:
Remote sensing image scene classification remains a challenging task, primarily due to the complex spatial structures and multi-scale characteristics of ground objects. Existing approaches see CNNs excel at modeling local textures, while Transformers excel at capturing global context. However, efficiently integrating them remains a bottleneck due to the high computational cost of Transformers. To tackle this, we propose AFM-Net, a novel Advanced Hierarchical Fusing framework that achieves effective local and global co-representation through two pathways: a CNN branch for extracting hierarchical visual priors, and a Mamba branch for efficient global sequence modeling. The core innovation of AFM-Net lies in its Hierarchical Fusion Mechanism, which progressively aggregates multi-scale features from both pathways, enabling dynamic cross-level feature interaction and contextual reconstruction to produce highly discriminative representations. These fused features are then adaptively routed through a Mixture-of-Experts classifier module, which dispatches them to the most suitable experts for fine-grained scene recognition. Experiments on AID, NWPU-RESISC45, and UC Merced show that AFM-Net obtains 93.72, 95.54, and 96.92 percent accuracy, surpassing state-of-the-art methods with balanced performance and efficiency. Code is available at https://github.com/tangyuanhao-qhu/AFM-Net.

Authors:Tong Shen, Jingai Yu, Dong Zhou, Dong Li, Emad Barsoum
Title: E-MMDiT: Revisiting Multimodal Diffusion Transformer Design for Fast Image Synthesis under Limited Resources
Abstract:
Diffusion models have shown strong capabilities in generating high-quality images from text prompts. However, these models often require large-scale training data and significant computational resources to train, or suffer from heavy structure with high latency. To this end, we propose Efficient Multimodal Diffusion Transformer (E-MMDiT), an efficient and lightweight multimodal diffusion model with only 304M parameters for fast image synthesis requiring low training resources. We provide an easily reproducible baseline with competitive results. Our model for 512px generation, trained with only 25M public data in 1.5 days on a single node of 8 AMD MI300X GPUs, achieves 0.66 on GenEval and easily reaches to 0.72 with some post-training techniques such as GRPO. Our design philosophy centers on token reduction as the computational cost scales significantly with the token count. We adopt a highly compressive visual tokenizer to produce a more compact representation and propose a novel multi-path compression module for further compression of tokens. To enhance our design, we introduce Position Reinforcement, which strengthens positional information to maintain spatial coherence, and Alternating Subregion Attention (ASA), which performs attention within subregions to further reduce computational cost. In addition, we propose AdaLN-affine, an efficient lightweight module for computing modulation parameters in transformer blocks. Our code is available at https://github.com/AMD-AGI/Nitro-E and we hope E-MMDiT serves as a strong and practical baseline for future research and contributes to democratization of generative AI models.

Authors:Zhicong Sun, Jacqueline Lo, Jinxing Hu
Title: WildfireX-SLAM: A Large-scale Low-altitude RGB-D Dataset for Wildfire SLAM and Beyond
Abstract:
3D Gaussian splatting (3DGS) and its subsequent variants have led to remarkable progress in simultaneous localization and mapping (SLAM). While most recent 3DGS-based SLAM works focus on small-scale indoor scenes, developing 3DGS-based SLAM methods for large-scale forest scenes holds great potential for many real-world applications, especially for wildfire emergency response and forest management. However, this line of research is impeded by the absence of a comprehensive and high-quality dataset, and collecting such a dataset over real-world scenes is costly and technically infeasible. To this end, we have built a large-scale, comprehensive, and high-quality synthetic dataset for SLAM in wildfire and forest environments. Leveraging the Unreal Engine 5 Electric Dreams Environment Sample Project, we developed a pipeline to easily collect aerial and ground views, including ground-truth camera poses and a range of additional data modalities from unmanned aerial vehicle. Our pipeline also provides flexible controls on environmental factors such as light, weather, and types and conditions of wildfire, supporting the need for various tasks covering forest mapping, wildfire emergency response, and beyond. The resulting pilot dataset, WildfireX-SLAM, contains 5.5k low-altitude RGB-D aerial images from a large-scale forest map with a total size of 16 km2. On top of WildfireX-SLAM, a thorough benchmark is also conducted, which not only reveals the unique challenges of 3DGS-based SLAM in the forest but also highlights potential improvements for future works. The dataset and code will be publicly available. Project page: https://zhicongsun.github.io/wildfirexslam.

Authors:Haonan Wang, Jingyu Lu, Hongrui Li, Xiaomeng Li
Title: ZEBRA: Towards Zero-Shot Cross-Subject Generalization for Universal Brain Visual Decoding
Abstract:
Recent advances in neural decoding have enabled the reconstruction of visual experiences from brain activity, positioning fMRI-to-image reconstruction as a promising bridge between neuroscience and computer vision. However, current methods predominantly rely on subject-specific models or require subject-specific fine-tuning, limiting their scalability and real-world applicability. In this work, we introduce ZEBRA, the first zero-shot brain visual decoding framework that eliminates the need for subject-specific adaptation. ZEBRA is built on the key insight that fMRI representations can be decomposed into subject-related and semantic-related components. By leveraging adversarial training, our method explicitly disentangles these components to isolate subject-invariant, semantic-specific representations. This disentanglement allows ZEBRA to generalize to unseen subjects without any additional fMRI data or retraining. Extensive experiments show that ZEBRA significantly outperforms zero-shot baselines and achieves performance comparable to fully finetuned models on several metrics. Our work represents a scalable and practical step toward universal neural decoding. Code and model weights are available at: https://github.com/xmed-lab/ZEBRA.

Authors:Yana Wei, Zeen Chi, Chongyu Wang, Yu Wu, Shipeng Yan, Yongfei Liu, Xuming He
Title: Incremental Human-Object Interaction Detection with Invariant Relation Representation Learning
Abstract:
In open-world environments, human-object interactions (HOIs) evolve continuously, challenging conventional closed-world HOI detection models. Inspired by humans' ability to progressively acquire knowledge, we explore incremental HOI detection (IHOID) to develop agents capable of discerning human-object relations in such dynamic environments. This setup confronts not only the common issue of catastrophic forgetting in incremental learning but also distinct challenges posed by interaction drift and detecting zero-shot HOI combinations with sequentially arriving data. Therefore, we propose a novel exemplar-free incremental relation distillation (IRD) framework. IRD decouples the learning of objects and relations, and introduces two unique distillation losses for learning invariant relation features across different HOI combinations that share the same relation. Extensive experiments on HICO-DET and V-COCO datasets demonstrate the superiority of our method over state-of-the-art baselines in mitigating forgetting, strengthening robustness against interaction drift, and generalization on zero-shot HOIs. Code is available at \href{https://github.com/weiyana/ContinualHOI}{this HTTP URL}

Authors:Md. Mehedi Hassan, Shafqat Alam, Shahriar Ahmed Seam, Maruf Ahmed
Title: SYNAPSE-Net: A Unified Framework with Lesion-Aware Hierarchical Gating for Robust Segmentation of Heterogeneous Brain Lesions
Abstract:
Automated segmentation of heterogeneous brain lesions from multi-modal MRI remains a critical challenge in clinical neuroimaging. Current deep learning models are typically specialized `point solutions' that lack generalization and high performance variance, limiting their clinical reliability. To address these gaps, we propose the Unified Multi-Stream SYNAPSE-Net, an adaptive framework designed for both generalization and robustness. The framework is built on a novel hybrid architecture integrating multi-stream CNN encoders, a Swin Transformer bottleneck for global context, a dynamic cross-modal attention fusion (CMAF) mechanism, and a hierarchical gated decoder for high-fidelity mask reconstruction. The architecture is trained with a variance reduction strategy that combines pathology specific data augmentation and difficulty-aware sampling method. The model was evaluated on three different challenging public datasets: the MICCAI 2017 WMH Challenge, the ISLES 2022 Challenge, and the BraTS 2020 Challenge. Our framework attained a state-of-the-art DSC value of 0.831 with the HD95 value of 3.03 in the WMH dataset. For ISLES 2022, it achieved the best boundary accuracy with a statistically significant difference (HD95 value of 9.69). For BraTS 2020, it reached the highest DSC value for the tumor core region (0.8651). These experimental findings suggest that our unified adaptive framework achieves state-of-the-art performance across multiple brain pathologies, providing a robust and clinically feasible solution for automated segmentation. The source code and the pre-trained models are available at https://github.com/mubid-01/SYNAPSE-Net-pre.

Authors:Moonsoo Jeong, Dongbeen Kim, Minseong Kim, Sungkil Lee
Title: DC4GS: Directional Consistency-Driven Adaptive Density Control for 3D Gaussian Splatting
Abstract:
We present a Directional Consistency (DC)-driven Adaptive Density Control (ADC) for 3D Gaussian Splatting (DC4GS). Whereas the conventional ADC bases its primitive splitting on the magnitudes of positional gradients, we further incorporate the DC of the gradients into ADC, and realize it through the angular coherence of the gradients. Our DC better captures local structural complexities in ADC, avoiding redundant splitting. When splitting is required, we again utilize the DC to define optimal split positions so that sub-primitives best align with the local structures than the conventional random placement. As a consequence, our DC4GS greatly reduces the number of primitives (up to 30% in our experiments) than the existing ADC, and also enhances reconstruction fidelity greatly.

Authors:Fenfen Lin, Yesheng Liu, Haiyu Xu, Chen Yue, Zheqi He, Mingxuan Zhao, Miguel Hu Chen, Jiakang Liu, JG Yao, Xi Yang
Title: Do Vision-Language Models Measure Up? Benchmarking Visual Measurement Reading with MeasureBench
Abstract:
Reading measurement instruments is effortless for humans and requires relatively little domain expertise, yet it remains surprisingly challenging for current vision-language models (VLMs) as we find in preliminary evaluation. In this work, we introduce MeasureBench, a benchmark on visual measurement reading covering both real-world and synthesized images of various types of measurements, along with an extensible pipeline for data synthesis. Our pipeline procedurally generates a specified type of gauge with controllable visual appearance, enabling scalable variation in key details such as pointers, scales, fonts, lighting, and clutter. Evaluation on popular proprietary and open-weight VLMs shows that even the strongest frontier VLMs struggle measurement reading in general. A consistent failure mode is indicator localization: models can read digits or labels but misidentify the key positions of pointers or alignments, leading to big numeric errors despite plausible textual reasoning. We have also conducted preliminary experiments with reinforcement learning over synthetic data, and find encouraging results on in-domain synthetic subset but less promising for real-world images. Our analysis highlights a fundamental limitation of current VLMs in fine-grained spatial grounding. We hope this resource can help future advances on visually grounded numeracy and precise spatial perception of VLMs, bridging the gap between recognizing numbers and measuring the world.

Authors:Yukun Huang, Jiwen Yu, Yanning Zhou, Jianan Wang, Xintao Wang, Pengfei Wan, Xihui Liu
Title: OmniX: From Unified Panoramic Generation and Perception to Graphics-Ready 3D Scenes
Abstract:
There are two prevalent ways to constructing 3D scenes: procedural generation and 2D lifting. Among them, panorama-based 2D lifting has emerged as a promising technique, leveraging powerful 2D generative priors to produce immersive, realistic, and diverse 3D environments. In this work, we advance this technique to generate graphics-ready 3D scenes suitable for physically based rendering (PBR), relighting, and simulation. Our key insight is to repurpose 2D generative models for panoramic perception of geometry, textures, and PBR materials. Unlike existing 2D lifting approaches that emphasize appearance generation and ignore the perception of intrinsic properties, we present OmniX, a versatile and unified framework. Based on a lightweight and efficient cross-modal adapter structure, OmniX reuses 2D generative priors for a broad range of panoramic vision tasks, including panoramic perception, generation, and completion. Furthermore, we construct a large-scale synthetic panorama dataset containing high-quality multimodal panoramas from diverse indoor and outdoor scenes. Extensive experiments demonstrate the effectiveness of our model in panoramic visual perception and graphics-ready 3D scene generation, opening new possibilities for immersive and physically realistic virtual world generation.

Authors:Chao Feng, Zihao Wei, Andrew Owens
Title: Masked Diffusion Captioning for Visual Feature Learning
Abstract:
We learn visual features by captioning images with an image-conditioned masked diffusion language model, a formulation we call masked diffusion captioning (MDC). During training, text tokens in each image-caption pair are masked at a randomly chosen ratio, and a decoder conditioned on visual features is trained to reconstruct the original text. After training, the learned visual features can be applied to downstream vision tasks. Unlike autoregressive captioning, the strength of the visual learning signal in MDC does not depend on each token's position in the sequence, reducing the need for auxiliary objectives. Linear probing experiments across a variety of academic-scale models and datasets show that the learned visual features are competitive with those produced by autoregressive and contrastive approaches.

Authors:Cheng Zheng, William Koch, Baiang Li, Felix Heide
Title: HEIR: Learning Graph-Based Motion Hierarchies
Abstract:
Hierarchical structures of motion exist across research fields, including computer vision, graphics, and robotics, where complex dynamics typically arise from coordinated interactions among simpler motion components. Existing methods to model such dynamics typically rely on manually-defined or heuristic hierarchies with fixed motion primitives, limiting their generalizability across different tasks. In this work, we propose a general hierarchical motion modeling method that learns structured, interpretable motion relationships directly from data. Our method represents observed motions using graph-based hierarchies, explicitly decomposing global absolute motions into parent-inherited patterns and local motion residuals. We formulate hierarchy inference as a differentiable graph learning problem, where vertices represent elemental motions and directed edges capture learned parent-child dependencies through graph neural networks. We evaluate our hierarchical reconstruction approach on three examples: 1D translational motion, 2D rotational motion, and dynamic 3D scene deformation via Gaussian splatting. Experimental results show that our method reconstructs the intrinsic motion hierarchy in 1D and 2D cases, and produces more realistic and interpretable deformations compared to the baseline on dynamic 3D Gaussian splatting scenes. By providing an adaptable, data-driven hierarchical modeling paradigm, our method offers a formulation applicable to a broad range of motion-centric tasks. Project Page: https://light.princeton.edu/HEIR/

Authors:Alya Almsouti, Ainur Khamitova, Darya Taratynova, Mohammad Yaqub
Title: BRIQA: Balanced Reweighting in Image Quality Assessment of Pediatric Brain MRI
Abstract:
Assessing the severity of artifacts in pediatric brain Magnetic Resonance Imaging (MRI) is critical for diagnostic accuracy, especially in low-field systems where the signal-to-noise ratio is reduced. Manual quality assessment is time-consuming and subjective, motivating the need for robust automated solutions. In this work, we propose BRIQA (Balanced Reweighting in Image Quality Assessment), which addresses class imbalance in artifact severity levels. BRIQA uses gradient-based loss reweighting to dynamically adjust per-class contributions and employs a rotating batching scheme to ensure consistent exposure to underrepresented classes. Through experiments, no single architecture performs best across all artifact types, emphasizing the importance of architectural diversity. The rotating batching configuration improves performance across metrics by promoting balanced learning when combined with cross-entropy loss. BRIQA improves average macro F1 score from 0.659 to 0.706, with notable gains in Noise (0.430), Zipper (0.098), Positioning (0.097), Contrast (0.217), Motion (0.022), and Banding (0.012) artifact severity classification. The code is available at https://github.com/BioMedIA-MBZUAI/BRIQA.

Authors:Yufeng Cui, Honghao Chen, Haoge Deng, Xu Huang, Xinghang Li, Jirong Liu, Yang Liu, Zhuoyan Luo, Jinsheng Wang, Wenxuan Wang, Yueze Wang, Chengyuan Wang, Fan Zhang, Yingli Zhao, Ting Pan, Xianduo Li, Zecheng Hao, Wenxuan Ma, Zhuo Chen, Yulong Ao, Tiejun Huang, Zhongyuan Wang, Xinlong Wang
Title: Emu3.5: Native Multimodal Models are World Learners
Abstract:
We introduce Emu3.5, a large-scale multimodal world model that natively predicts the next state across vision and language. Emu3.5 is pre-trained end-to-end with a unified next-token prediction objective on a corpus of vision-language interleaved data containing over 10 trillion tokens, primarily derived from sequential frames and transcripts of internet videos. The model naturally accepts interleaved vision-language inputs and generates interleaved vision-language outputs. Emu3.5 is further post-trained with large-scale reinforcement learning to enhance multimodal reasoning and generation. To improve inference efficiency, we propose Discrete Diffusion Adaptation (DiDA), which converts token-by-token decoding into bidirectional parallel prediction, accelerating per-image inference by about 20x without sacrificing performance. Emu3.5 exhibits strong native multimodal capabilities, including long-horizon vision-language generation, any-to-image (X2I) generation, and complex text-rich image generation. It also exhibits generalizable world-modeling abilities, enabling spatiotemporally consistent world exploration and open-world embodied manipulation across diverse scenarios and tasks. For comparison, Emu3.5 achieves performance comparable to Gemini 2.5 Flash Image (Nano Banana) on image generation and editing tasks and demonstrates superior results on a suite of interleaved generation tasks. We open-source Emu3.5 at https://github.com/baaivision/Emu3.5 to support community research.

Authors:Hao Xie, Zixun Huang, Yushen Zuo, Yakun Ju, Frank H. F. Leung, N. F. Law, Kin-Man Lam, Yong-Ping Zheng, Sai Ho Ling
Title: SA$^{2}$Net: Scale-Adaptive Structure-Affinity Transformation for Spine Segmentation from Ultrasound Volume Projection Imaging
Abstract:
Spine segmentation, based on ultrasound volume projection imaging (VPI), plays a vital role for intelligent scoliosis diagnosis in clinical applications. However, this task faces several significant challenges. Firstly, the global contextual knowledge of spines may not be well-learned if we neglect the high spatial correlation of different bone features. Secondly, the spine bones contain rich structural knowledge regarding their shapes and positions, which deserves to be encoded into the segmentation process. To address these challenges, we propose a novel scale-adaptive structure-aware network (SA$^{2}$Net) for effective spine segmentation. First, we propose a scale-adaptive complementary strategy to learn the cross-dimensional long-distance correlation features for spinal images. Second, motivated by the consistency between multi-head self-attention in Transformers and semantic level affinity, we propose structure-affinity transformation to transform semantic features with class-specific affinity and combine it with a Transformer decoder for structure-aware reasoning. In addition, we adopt a feature mixing loss aggregation method to enhance model training. This method improves the robustness and accuracy of the segmentation process. The experimental results demonstrate that our SA$^{2}$Net achieves superior segmentation performance compared to other state-of-the-art methods. Moreover, the adaptability of SA$^{2}$Net to various backbones enhances its potential as a promising tool for advanced scoliosis diagnosis using intelligent spinal image analysis. The code and experimental demo are available at https://github.com/taetiseo09/SA2Net.

Authors:Rhodri Guerrier, Adam W. Harley, Dima Damen
Title: PointSt3R: Point Tracking through 3D Grounded Correspondence
Abstract:
Recent advances in foundational 3D reconstruction models, such as DUSt3R and MASt3R, have shown great potential in 2D and 3D correspondence in static scenes. In this paper, we propose to adapt them for the task of point tracking through 3D grounded correspondence. We first demonstrate that these models are competitive point trackers when focusing on static points, present in current point tracking benchmarks ($+33.5\%$ on EgoPoints vs. CoTracker2). We propose to combine the reconstruction loss with training for dynamic correspondence along with a visibility head, and fine-tuning MASt3R for point tracking using a relatively small amount of synthetic data. Importantly, we only train and evaluate on pairs of frames where one contains the query point, effectively removing any temporal context. Using a mix of dynamic and static point correspondences, we achieve competitive or superior point tracking results on four datasets (e.g. competitive on TAP-Vid-DAVIS 73.8 $δ_{avg}$ / 85.8\% occlusion acc. for PointSt3R compared to 75.7 / 88.3\% for CoTracker2; and significantly outperform CoTracker3 on EgoPoints 61.3 vs 54.2 and RGB-S 87.0 vs 82.8). We also present results on 3D point tracking along with several ablations on training datasets and percentage of dynamic correspondences.

Authors:Luting Wang, Yinghao Xiang, Hongliang Huang, Dongjun Li, Chen Gao, Si Liu
Title: Towards Realistic Earth-Observation Constellation Scheduling: Benchmark and Methodology
Abstract:
Agile Earth Observation Satellites (AEOSs) constellations offer unprecedented flexibility for monitoring the Earth's surface, but their scheduling remains challenging under large-scale scenarios, dynamic environments, and stringent constraints. Existing methods often simplify these complexities, limiting their real-world performance. We address this gap with a unified framework integrating a standardized benchmark suite and a novel scheduling model. Our benchmark suite, AEOS-Bench, contains $3,907$ finely tuned satellite assets and $16,410$ scenarios. Each scenario features $1$ to $50$ satellites and $50$ to $300$ imaging tasks. These scenarios are generated via a high-fidelity simulation platform, ensuring realistic satellite behavior such as orbital dynamics and resource constraints. Ground truth scheduling annotations are provided for each scenario. To our knowledge, AEOS-Bench is the first large-scale benchmark suite tailored for realistic constellation scheduling. Building upon this benchmark, we introduce AEOS-Former, a Transformer-based scheduling model that incorporates a constraint-aware attention mechanism. A dedicated internal constraint module explicitly models the physical and operational limits of each satellite. Through simulation-based iterative learning, AEOS-Former adapts to diverse scenarios, offering a robust solution for AEOS constellation scheduling. Experimental results demonstrate that AEOS-Former outperforms baseline models in task completion and energy efficiency, with ablation studies highlighting the contribution of each component. Code and data are provided in https://github.com/buaa-colalab/AEOSBench.

Authors:Wei Shang, Wanying Zhang, Shuhang Gu, Pengfei Zhu, Qinghua Hu, Dongwei Ren
Title: BasicAVSR: Arbitrary-Scale Video Super-Resolution via Image Priors and Enhanced Motion Compensation
Abstract:
Arbitrary-scale video super-resolution (AVSR) aims to enhance the resolution of video frames, potentially at various scaling factors, which presents several challenges regarding spatial detail reproduction, temporal consistency, and computational complexity. In this paper, we propose a strong baseline BasicAVSR for AVSR by integrating four key components: 1) adaptive multi-scale frequency priors generated from image Laplacian pyramids, 2) a flow-guided propagation unit to aggregate spatiotemporal information from adjacent frames, 3) a second-order motion compensation unit for more accurate spatial alignment of adjacent frames, and 4) a hyper-upsampling unit to generate scale-aware and content-independent upsampling kernels. To meet diverse application demands, we instantiate three propagation variants: (i) a unidirectional RNN unit for strictly online inference, (ii) a unidirectional RNN unit empowered with a limited lookahead that tolerates a small output delay, and (iii) a bidirectional RNN unit designed for offline tasks where computational resources are less constrained. Experimental results demonstrate the effectiveness and adaptability of our model across these different scenarios. Through extensive experiments, we show that BasicAVSR significantly outperforms existing methods in terms of super-resolution quality, generalization ability, and inference speed. Our work not only advances the state-of-the-art in AVSR but also extends its core components to multiple frameworks for diverse scenarios. The code is available at https://github.com/shangwei5/BasicAVSR.

Authors:Xin Hu, Pengfei Xu, Jin Zhou, Hongbo Fu, Hui Huang
Title: StructLayoutFormer:Conditional Structured Layout Generation via Structure Serialization and Disentanglement
Abstract:
Structured layouts are preferable in many 2D visual contents (\eg, GUIs, webpages) since the structural information allows convenient layout editing. Computational frameworks can help create structured layouts but require heavy labor input. Existing data-driven approaches are effective in automatically generating fixed layouts but fail to produce layout structures. We present StructLayoutFormer, a novel Transformer-based approach for conditional structured layout generation. We use a structure serialization scheme to represent structured layouts as sequences. To better control the structures of generated layouts, we disentangle the structural information from the element placements. Our approach is the first data-driven approach that achieves conditional structured layout generation and produces realistic layout structures explicitly. We compare our approach with existing data-driven layout generation approaches by including post-processing for structure extraction. Extensive experiments have shown that our approach exceeds these baselines in conditional structured layout generation. We also demonstrate that our approach is effective in extracting and transferring layout structures. The code is publicly available at %\href{https://github.com/Teagrus/StructLayoutFormer} {https://github.com/Teagrus/StructLayoutFormer}.

Authors:Minjoon Jung, Junbin Xiao, Junghyun Kim, Byoung-Tak Zhang, Angela Yao
Title: EgoExo-Con: Exploring View-Invariant Video Temporal Understanding
Abstract:
Can Video-LLMs achieve consistent temporal understanding when videos capture the same event from different viewpoints? To study this, we introduce EgoExo-Con (Consistency), a benchmark of comprehensively synchronized egocentric and exocentric video pairs with human-refined queries in natural language. EgoExo-Con emphasizes two temporal understanding tasks: Temporal Verification and Temporal Grounding. It evaluates not only correctness but consistency across viewpoints. Our analysis reveals two critical limitations of existing Video-LLMs: (1) models often fail to maintain consistency, with results far worse than their single-view performances. (2) When naively finetuned with synchronized videos of both viewpoints, the models show improved consistency but often underperform those trained on a single view. For improvements, we propose View-GRPO, a novel reinforcement learning framework that effectively strengthens view-specific temporal reasoning while encouraging consistent comprehension across viewpoints. Our method demonstrates its superiority over naive SFT and GRPO, especially for improving cross-view consistency. All resources will be made publicly available.

Authors:Ali Rasekh, Erfan Bagheri Soula, Omid Daliran, Simon Gottschalk, Mohsen Fayyaz
Title: Enhancing Temporal Understanding in Video-LLMs through Stacked Temporal Attention in Vision Encoders
Abstract:
Despite significant advances in Multimodal Large Language Models (MLLMs), understanding complex temporal dynamics in videos remains a major challenge. Our experiments show that current Video Large Language Model (Video-LLM) architectures have critical limitations in temporal understanding, struggling with tasks that require detailed comprehension of action sequences and temporal progression. In this work, we propose a Video-LLM architecture that introduces stacked temporal attention modules directly within the vision encoder. This design incorporates a temporal attention in vision encoder, enabling the model to better capture the progression of actions and the relationships between frames before passing visual tokens to the LLM. Our results show that this approach significantly improves temporal reasoning and outperforms existing models in video question answering tasks, specifically in action recognition. We improve on benchmarks including VITATECS, MVBench, and Video-MME by up to +5.5%. By enhancing the vision encoder with temporal structure, we address a critical gap in video understanding for Video-LLMs. Project page and code are available at: https://alirasekh.github.io/STAVEQ2/.

Authors:Sung-Hoon Yoon, Minghan Li, Gaspard Beaudouin, Congcong Wen, Muhammad Rafay Azhar, Mengyu Wang
Title: SplitFlow: Flow Decomposition for Inversion-Free Text-to-Image Editing
Abstract:
Rectified flow models have become a de facto standard in image generation due to their stable sampling trajectories and high-fidelity outputs. Despite their strong generative capabilities, they face critical limitations in image editing tasks: inaccurate inversion processes for mapping real images back into the latent space, and gradient entanglement issues during editing often result in outputs that do not faithfully reflect the target prompt. Recent efforts have attempted to directly map source and target distributions via ODE-based approaches without inversion; however,these methods still yield suboptimal editing quality. In this work, we propose a flow decomposition-and-aggregation framework built upon an inversion-free formulation to address these limitations. Specifically, we semantically decompose the target prompt into multiple sub-prompts, compute an independent flow for each, and aggregate them to form a unified editing trajectory. While we empirically observe that decomposing the original flow enhances diversity in the target space, generating semantically aligned outputs still requires consistent guidance toward the full target prompt. To this end, we design a projection and soft-aggregation mechanism for flow, inspired by gradient conflict resolution in multi-task learning. This approach adaptively weights the sub-target velocity fields, suppressing semantic redundancy while emphasizing distinct directions, thereby preserving both diversity and consistency in the final edited output. Experimental results demonstrate that our method outperforms existing zero-shot editing approaches in terms of semantic fidelity and attribute disentanglement. The code is available at https://github.com/Harvard-AI-and-Robotics-Lab/SplitFlow.

Authors:Nicolas Dufour, Lucas Degeorge, Arijit Ghosh, Vicky Kalogeiton, David Picard
Title: MIRO: MultI-Reward cOnditioned pretraining improves T2I quality and efficiency
Abstract:
Current text-to-image generative models are trained on large uncurated datasets to enable diverse generation capabilities. However, this does not align well with user preferences. Recently, reward models have been specifically designed to perform post-hoc selection of generated images and align them to a reward, typically user preference. This discarding of informative data together with the optimizing for a single reward tend to harm diversity, semantic fidelity and efficiency. Instead of this post-processing, we propose to condition the model on multiple reward models during training to let the model learn user preferences directly. We show that this not only dramatically improves the visual quality of the generated images but it also significantly speeds up the training. Our proposed method, called MIRO, achieves state-of-the-art performances on the GenEval compositional benchmark and user-preference scores (PickAScore, ImageReward, HPSv2).

Authors:Kun Chen, Peng Shi, Haibo Qiu, Zhixiong Zeng, Siqi Yang, Wenji Mao, Lin Ma
Title: Metis-SPECS: Decoupling Multimodal Learning via Self-distilled Preference-based Cold Start
Abstract:
Reinforcement learning (RL) with verifiable rewards has recently catalyzed a wave of "MLLM-r1" approaches that bring RL to vision language models. Most representative paradigms begin with a cold start, typically employing supervised fine-tuning (SFT), to initialize the policy before RL. However, SFT-based cold start adopts the reasoning paradigm intertwined with task solution and output format, which may induce instruction-style overfitting, weakens out-of-distribution generalization, and ultimately affects downstream RL. We revisit the cold start along two views, its training method and data construction, and introduce the Generalization Factor (GF) coefficient to quantify the generalization capability under different methods. Our empirical study finds that preference-based training methods (e.g. DPO) generalizes better than SFT-based methods in cold start. Motivated by this, we propose SPECS-a Self-distilled, Preference-based Cold Start framework that decouples multimodal learning: (1) generates introspective preference data pairs via self-distillation, avoiding reliance on larger teachers or manual annotation; (2) performs preference-based training to learn, focusing on shallow, transferable surface-form criteria (format, structure, style) rather than memorizing content; and (3) hands off to RL with verifiable rewards for deep reasoning results. Experimental results across multiple multimodal benchmarks show that our decoupling learning framework yields consistent performance gains over strong baselines, improving MEGA-Bench by 4.1% and MathVista by 12.2%. Additional experiments indicate that SPECS contributes to reducing in-distribution "stuckness," improving exploration, stabilizing training, and raising the performance ceiling.

Authors:Baolu Li, Yiming Zhang, Qinghe Wang, Liqian Ma, Xiaoyu Shi, Xintao Wang, Pengfei Wan, Zhenfei Yin, Yunzhi Zhuge, Huchuan Lu, Xu Jia
Title: VFXMaster: Unlocking Dynamic Visual Effect Generation via In-Context Learning
Abstract:
Visual effects (VFX) are crucial to the expressive power of digital media, yet their creation remains a major challenge for generative AI. Prevailing methods often rely on the one-LoRA-per-effect paradigm, which is resource-intensive and fundamentally incapable of generalizing to unseen effects, thus limiting scalability and creation. To address this challenge, we introduce VFXMaster, the first unified, reference-based framework for VFX video generation. It recasts effect generation as an in-context learning task, enabling it to reproduce diverse dynamic effects from a reference video onto target content. In addition, it demonstrates remarkable generalization to unseen effect categories. Specifically, we design an in-context conditioning strategy that prompts the model with a reference example. An in-context attention mask is designed to precisely decouple and inject the essential effect attributes, allowing a single unified model to master the effect imitation without information leakage. In addition, we propose an efficient one-shot effect adaptation mechanism to boost generalization capability on tough unseen effects from a single user-provided video rapidly. Extensive experiments demonstrate that our method effectively imitates various categories of effect information and exhibits outstanding generalization to out-of-domain effects. To foster future research, we will release our code, models, and a comprehensive dataset to the community.

Authors:Xu Zheng, Zihao Dongfang, Lutao Jiang, Boyuan Zheng, Yulong Guo, Zhenquan Zhang, Giuliano Albanese, Runyi Yang, Mengjiao Ma, Zixin Zhang, Chenfei Liao, Dingcheng Zhen, Yuanhuiyi Lyu, Yuqian Fu, Bin Ren, Linfeng Zhang, Danda Pani Paudel, Nicu Sebe, Luc Van Gool, Xuming Hu
Title: Multimodal Spatial Reasoning in the Large Model Era: A Survey and Benchmarks
Abstract:
Humans possess spatial reasoning abilities that enable them to understand spaces through multimodal observations, such as vision and sound. Large multimodal reasoning models extend these abilities by learning to perceive and reason, showing promising performance across diverse spatial tasks. However, systematic reviews and publicly available benchmarks for these models remain limited. In this survey, we provide a comprehensive review of multimodal spatial reasoning tasks with large models, categorizing recent progress in multimodal large language models (MLLMs) and introducing open benchmarks for evaluation. We begin by outlining general spatial reasoning, focusing on post-training techniques, explainability, and architecture. Beyond classical 2D tasks, we examine spatial relationship reasoning, scene and layout understanding, as well as visual question answering and grounding in 3D space. We also review advances in embodied AI, including vision-language navigation and action models. Additionally, we consider emerging modalities such as audio and egocentric video, which contribute to novel spatial understanding through new sensors. We believe this survey establishes a solid foundation and offers insights into the growing field of multimodal spatial reasoning. Updated information about this survey, codes and implementation of the open benchmarks can be found at https://github.com/zhengxuJosh/Awesome-Spatial-Reasoning.

Authors:Amin Parchami-Araghi, Sukrut Rao, Jonas Fischer, Bernt Schiele
Title: FaCT: Faithful Concept Traces for Explaining Neural Network Decisions
Abstract:
Deep networks have shown remarkable performance across a wide range of tasks, yet getting a global concept-level understanding of how they function remains a key challenge. Many post-hoc concept-based approaches have been introduced to understand their workings, yet they are not always faithful to the model. Further, they make restrictive assumptions on the concepts a model learns, such as class-specificity, small spatial extent, or alignment to human expectations. In this work, we put emphasis on the faithfulness of such concept-based explanations and propose a new model with model-inherent mechanistic concept-explanations. Our concepts are shared across classes and, from any layer, their contribution to the logit and their input-visualization can be faithfully traced. We also leverage foundation models to propose a new concept-consistency metric, C$^2$-Score, that can be used to evaluate concept-based methods. We show that, compared to prior work, our concepts are quantitatively more consistent and users find our concepts to be more interpretable, all while retaining competitive ImageNet performance.

Authors:Yuhang Hu, Zhenyu Yang, Shihan Wang, Shengsheng Qian, Bin Wen, Fan Yang, Tingting Gao, Changsheng Xu
Title: StreamingCoT: A Dataset for Temporal Dynamics and Multimodal Chain-of-Thought Reasoning in Streaming VideoQA
Abstract:
The rapid growth of streaming video applications demands multimodal models with enhanced capabilities for temporal dynamics understanding and complex reasoning. However, current Video Question Answering (VideoQA) datasets suffer from two critical limitations: 1) Static annotation mechanisms fail to capture the evolving nature of answers in temporal video streams, and 2) The absence of explicit reasoning process annotations restricts model interpretability and logical deduction capabilities. To address these challenges, We introduce StreamingCoT, the first dataset explicitly designed for temporally evolving reasoning in streaming VideoQA and multimodal Chain-of-Thought (CoT) tasks. Our framework first establishes a dynamic hierarchical annotation architecture that generates per-second dense descriptions and constructs temporally-dependent semantic segments through similarity fusion, paired with question-answer sets constrained by temporal evolution patterns. We further propose an explicit reasoning chain generation paradigm that extracts spatiotemporal objects via keyframe semantic alignment, derives object state transition-based reasoning paths using large language models, and ensures logical coherence through human-verified validation. This dataset establishes a foundation for advancing research in streaming video understanding, complex temporal reasoning, and multimodal inference. Our StreamingCoT and its construction toolkit can be accessed at https://github.com/Fleeting-hyh/StreamingCoT.

Authors:Zongxi Yu, Xiaolong Qian, Shaohua Gao, Qi Jiang, Yao Gao, Kailun Yang, Kaiwei Wang
Title: Seeing Clearly and Deeply: An RGBD Imaging Approach with a Bio-inspired Monocentric Design
Abstract:
Achieving high-fidelity, compact RGBD imaging presents a dual challenge: conventional compact optics struggle with RGB sharpness across the entire depth-of-field, while software-only Monocular Depth Estimation (MDE) is an ill-posed problem reliant on unreliable semantic priors. While deep optics with elements like DOEs can encode depth, they introduce trade-offs in fabrication complexity and chromatic aberrations, compromising simplicity. To address this, we first introduce a novel bio-inspired all-spherical monocentric lens, around which we build the Bionic Monocentric Imaging (BMI) framework, a holistic co-design. This optical design naturally encodes depth into its depth-varying Point Spread Functions (PSFs) without requiring complex diffractive or freeform elements. We establish a rigorous physically-based forward model to generate a synthetic dataset by precisely simulating the optical degradation process. This simulation pipeline is co-designed with a dual-head, multi-scale reconstruction network that employs a shared encoder to jointly recover a high-fidelity All-in-Focus (AiF) image and a precise depth map from a single coded capture. Extensive experiments validate the state-of-the-art performance of the proposed framework. In depth estimation, the method attains an Abs Rel of 0.026 and an RMSE of 0.130, markedly outperforming leading software-only approaches and other deep optics systems. For image restoration, the system achieves an SSIM of 0.960 and a perceptual LPIPS score of 0.082, thereby confirming a superior balance between image fidelity and depth accuracy. This study illustrates that the integration of bio-inspired, fully spherical optics with a joint reconstruction algorithm constitutes an effective strategy for addressing the intrinsic challenges in high-performance compact RGBD imaging. Source code will be publicly available at https://github.com/ZongxiYu-ZJU/BMI.

Authors:Moritz Lucas, Hamid Ebrahimy, Viacheslav Barkov, Ralf Pecenka, Kai-Uwe Kühnberger, Björn Waske
Title: Mapping and Classification of Trees Outside Forests using Deep Learning
Abstract:
Trees Outside Forests (TOF) play an important role in agricultural landscapes by supporting biodiversity, sequestering carbon, and regulating microclimates. Yet, most studies have treated TOF as a single class or relied on rigid rule-based thresholds, limiting ecological interpretation and adaptability across regions. To address this, we evaluate deep learning for TOF classification using a newly generated dataset and high-resolution aerial imagery from four agricultural landscapes in Germany. Specifically, we compare convolutional neural networks (CNNs), vision transformers, and hybrid CNN-transformer models across six semantic segmentation architectures (ABCNet, LSKNet, FT-UNetFormer, DC-Swin, BANet, and U-Net) to map four categories of woody vegetation: Forest, Patch, Linear, and Tree, derived from previous studies and governmental products. Overall, the models achieved good classification accuracy across the four landscapes, with the FT-UNetFormer performing best (mean Intersection-over-Union 0.74; mean F1 score 0.84), underscoring the importance of spatial context understanding in TOF mapping and classification. Our results show good results for Forest and Linear class and reveal challenges particularly in classifying complex structures with high edge density, notably the Patch and Tree class. Our generalization experiments highlight the need for regionally diverse training data to ensure reliable large-scale mapping. The dataset and code are openly available at https://github.com/Moerizzy/TOFMapper

Authors:Qianqian Qiao, DanDan Zheng, Yihang Bo, Bao Peng, Heng Huang, Longteng Jiang, Huaye Wang, Jingdong Chen, Jun Zhou, Xin Jin
Title: VADB: A Large-Scale Video Aesthetic Database with Professional and Multi-Dimensional Annotations
Abstract:
Video aesthetic assessment, a vital area in multimedia computing, integrates computer vision with human cognition. Its progress is limited by the lack of standardized datasets and robust models, as the temporal dynamics of video and multimodal fusion challenges hinder direct application of image-based methods. This study introduces VADB, the largest video aesthetic database with 10,490 diverse videos annotated by 37 professionals across multiple aesthetic dimensions, including overall and attribute-specific aesthetic scores, rich language comments and objective tags. We propose VADB-Net, a dual-modal pre-training framework with a two-stage training strategy, which outperforms existing video quality assessment models in scoring tasks and supports downstream video aesthetic assessment tasks. The dataset and source code are available at https://github.com/BestiVictory/VADB.

Authors:Junsheng Zhou, Xingyu Shi, Haichuan Song, Yi Fang, Yu-Shen Liu, Zhizhong Han
Title: U-CAN: Unsupervised Point Cloud Denoising with Consistency-Aware Noise2Noise Matching
Abstract:
Point clouds captured by scanning sensors are often perturbed by noise, which have a highly negative impact on downstream tasks (e.g. surface reconstruction and shape understanding). Previous works mostly focus on training neural networks with noisy-clean point cloud pairs for learning denoising priors, which requires extensively manual efforts. In this work, we introduce U-CAN, an Unsupervised framework for point cloud denoising with Consistency-Aware Noise2Noise matching. Specifically, we leverage a neural network to infer a multi-step denoising path for each point of a shape or scene with a noise to noise matching scheme. We achieve this by a novel loss which enables statistical reasoning on multiple noisy point cloud observations. We further introduce a novel constraint on the denoised geometry consistency for learning consistency-aware denoising patterns. We justify that the proposed constraint is a general term which is not limited to 3D domain and can also contribute to the area of 2D image denoising. Our evaluations under the widely used benchmarks in point cloud denoising, upsampling and image denoising show significant improvement over the state-of-the-art unsupervised methods, where U-CAN also produces comparable results with the supervised methods.

Authors:Yingjie Gao, Yanan Zhang, Zhi Cai, Di Huang
Title: Test-Time Adaptive Object Detection with Foundation Model
Abstract:
In recent years, test-time adaptive object detection has attracted increasing attention due to its unique advantages in online domain adaptation, which aligns more closely with real-world application scenarios. However, existing approaches heavily rely on source-derived statistical characteristics while making the strong assumption that the source and target domains share an identical category space. In this paper, we propose the first foundation model-powered test-time adaptive object detection method that eliminates the need for source data entirely and overcomes traditional closed-set limitations. Specifically, we design a Multi-modal Prompt-based Mean-Teacher framework for vision-language detector-driven test-time adaptation, which incorporates text and visual prompt tuning to adapt both language and vision representation spaces on the test data in a parameter-efficient manner. Correspondingly, we propose a Test-time Warm-start strategy tailored for the visual prompts to effectively preserve the representation capability of the vision branch. Furthermore, to guarantee high-quality pseudo-labels in every test batch, we maintain an Instance Dynamic Memory (IDM) module that stores high-quality pseudo-labels from previous test samples, and propose two novel strategies-Memory Enhancement and Memory Hallucination-to leverage IDM's high-quality instances for enhancing original predictions and hallucinating images without available pseudo-labels, respectively. Extensive experiments on cross-corruption and cross-dataset benchmarks demonstrate that our method consistently outperforms previous state-of-the-art methods, and can adapt to arbitrary cross-domain and cross-category target data. Code is available at https://github.com/gaoyingjay/ttaod_foundation.

Authors:Wenhao Zheng, Chenwei Sun, Wenbo Zhang, Jiancheng Lv, Xianggen Liu
Title: Target-Guided Bayesian Flow Networks for Quantitatively Constrained CAD Generation
Abstract:
Deep generative models, such as diffusion models, have shown promising progress in image generation and audio generation via simplified continuity assumptions. However, the development of generative modeling techniques for generating multi-modal data, such as parametric CAD sequences, still lags behind due to the challenges in addressing long-range constraints and parameter sensitivity. In this work, we propose a novel framework for quantitatively constrained CAD generation, termed Target-Guided Bayesian Flow Network (TGBFN). For the first time, TGBFN handles the multi-modality of CAD sequences (i.e., discrete commands and continuous parameters) in a unified continuous and differentiable parameter space rather than in the discrete data space. In addition, TGBFN penetrates the parameter update kernel and introduces a guided Bayesian flow to control the CAD properties. To evaluate TGBFN, we construct a new dataset for quantitatively constrained CAD generation. Extensive comparisons across single-condition and multi-condition constrained generation tasks demonstrate that TGBFN achieves state-of-the-art performance in generating high-fidelity, condition-aware CAD sequences. The code is available at https://github.com/scu-zwh/TGBFN.

Authors:Xiyu Zhang, Chong Bao, Yipeng Chen, Hongjia Zhai, Yitong Dong, Hujun Bao, Zhaopeng Cui, Guofeng Zhang
Title: AtlasGS: Atlanta-world Guided Surface Reconstruction with Implicit Structured Gaussians
Abstract:
3D reconstruction of indoor and urban environments is a prominent research topic with various downstream applications. However, existing geometric priors for addressing low-texture regions in indoor and urban settings often lack global consistency. Moreover, Gaussian Splatting and implicit SDF fields often suffer from discontinuities or exhibit computational inefficiencies, resulting in a loss of detail. To address these issues, we propose an Atlanta-world guided implicit-structured Gaussian Splatting that achieves smooth indoor and urban scene reconstruction while preserving high-frequency details and rendering efficiency. By leveraging the Atlanta-world model, we ensure the accurate surface reconstruction for low-texture regions, while the proposed novel implicit-structured GS representations provide smoothness without sacrificing efficiency and high-frequency details. Specifically, we propose a semantic GS representation to predict the probability of all semantic regions and deploy a structure plane regularization with learnable plane indicators for global accurate surface reconstruction. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches in both indoor and urban scenes, delivering superior surface reconstruction quality.

Authors:Chanhyeong Yang, Taehoon Song, Jihwan Park, Hyunwoo J. Kim
Title: Visual Diversity and Region-aware Prompt Learning for Zero-shot HOI Detection
Abstract:
Zero-shot Human-Object Interaction detection aims to localize humans and objects in an image and recognize their interaction, even when specific verb-object pairs are unseen during training. Recent works have shown promising results using prompt learning with pretrained vision-language models such as CLIP, which align natural language prompts with visual features in a shared embedding space. However, existing approaches still fail to handle the visual complexity of interaction, including (1) intra-class visual diversity, where instances of the same verb appear in diverse poses and contexts, and (2) inter-class visual entanglement, where distinct verbs yield visually similar patterns. To address these challenges, we propose VDRP, a framework for Visual Diversity and Region-aware Prompt learning. First, we introduce a visual diversity-aware prompt learning strategy that injects group-wise visual variance into the context embedding. We further apply Gaussian perturbation to encourage the prompts to capture diverse visual variations of a verb. Second, we retrieve region-specific concepts from the human, object, and union regions. These are used to augment the diversity-aware prompt embeddings, yielding region-aware prompts that enhance verb-level discrimination. Experiments on the HICO-DET benchmark demonstrate that our method achieves state-of-the-art performance under four zero-shot evaluation settings, effectively addressing both intra-class diversity and inter-class visual entanglement. Code is available at https://github.com/mlvlab/VDRP.

Authors:Xiang liu, Zhaoxiang Liu, Huan Hu, Zipeng Wang, Ping Chen, Zezhou Chen, Kai Wang, Shiguo Lian
Title: PSTF-AttControl: Per-Subject-Tuning-Free Personalized Image Generation with Controllable Face Attributes
Abstract:
Recent advancements in personalized image generation have significantly improved facial identity preservation, particularly in fields such as entertainment and social media. However, existing methods still struggle to achieve precise control over facial attributes in a per-subject-tuning-free (PSTF) way. Tuning-based techniques like PreciseControl have shown promise by providing fine-grained control over facial features, but they often require extensive technical expertise and additional training data, limiting their accessibility. In contrast, PSTF approaches simplify the process by enabling image generation from a single facial input, but they lack precise control over facial attributes. In this paper, we introduce a novel, PSTF method that enables both precise control over facial attributes and high-fidelity preservation of facial identity. Our approach utilizes a face recognition model to extract facial identity features, which are then mapped into the $W^+$ latent space of StyleGAN2 using the e4e encoder. We further enhance the model with a Triplet-Decoupled Cross-Attention module, which integrates facial identity, attribute features, and text embeddings into the UNet architecture, ensuring clean separation of identity and attribute information. Trained on the FFHQ dataset, our method allows for the generation of personalized images with fine-grained control over facial attributes, while without requiring additional fine-tuning or training data for individual identities. We demonstrate that our approach successfully balances personalization with precise facial attribute control, offering a more efficient and user-friendly solution for high-quality, adaptable facial image synthesis. The code is publicly available at https://github.com/UnicomAI/PSTF-AttControl.

Authors:Michal Stary, Julien Gaubil, Ayush Tewari, Vincent Sitzmann
Title: Understanding Multi-View Transformers
Abstract:
Multi-view transformers such as DUSt3R are revolutionizing 3D vision by solving 3D tasks in a feed-forward manner. However, contrary to previous optimization-based pipelines, the inner mechanisms of multi-view transformers are unclear. Their black-box nature makes further improvements beyond data scaling challenging and complicates usage in safety- and reliability-critical applications. Here, we present an approach for probing and visualizing 3D representations from the residual connections of the multi-view transformers' layers. In this manner, we investigate a variant of the DUSt3R model, shedding light on the development of its latent state across blocks, the role of the individual layers, and suggest how it differs from methods with stronger inductive biases of explicit global pose. Finally, we show that the investigated variant of DUSt3R estimates correspondences that are refined with reconstructed geometry. The code used for the analysis is available at https://github.com/JulienGaubil/und3rstand .

Authors:Qiucheng Wu, Handong Zhao, Zhixin Shu, Jing Shi, Yang Zhang, Shiyu Chang
Title: VividCam: Learning Unconventional Camera Motions from Virtual Synthetic Videos
Abstract:
Although recent text-to-video generative models are getting more capable of following external camera controls, imposed by either text descriptions or camera trajectories, they still struggle to generalize to unconventional camera motions, which is crucial in creating truly original and artistic videos. The challenge lies in the difficulty of finding sufficient training videos with the intended uncommon camera motions. To address this challenge, we propose VividCam, a training paradigm that enables diffusion models to learn complex camera motions from synthetic videos, releasing the reliance on collecting realistic training videos. VividCam incorporates multiple disentanglement strategies that isolates camera motion learning from synthetic appearance artifacts, ensuring more robust motion representation and mitigating domain shift. We demonstrate that our design synthesizes a wide range of precisely controlled and complex camera motions using surprisingly simple synthetic data. Notably, this synthetic data often consists of basic geometries within a low-poly 3D scene and can be efficiently rendered by engines like Unity. Our video results can be found in https://wuqiuche.github.io/VividCamDemoPage/ .

Authors:Alexander Martin, William Walden, Reno Kriz, Dengjia Zhang, Kate Sanders, Eugene Yang, Chihsheng Jin, Benjamin Van Durme
Title: Seeing Through the MiRAGE: Evaluating Multimodal Retrieval Augmented Generation
Abstract:
We introduce MiRAGE, an evaluation framework for retrieval-augmented generation (RAG) from multimodal sources. As audiovisual media becomes a prevalent source of information online, it is essential for RAG systems to integrate information from these sources into generation. However, existing evaluations for RAG are text-centric, limiting their applicability to multimodal, reasoning intensive settings because they don't verify information against sources. MiRAGE is a claim-centric approach to multimodal RAG evaluation, consisting of InfoF1, evaluating factuality and information coverage, and CiteF1, measuring citation support and completeness. We show that MiRAGE, when applied by humans, strongly aligns with extrinsic quality judgments. We additionally introduce automatic variants of MiRAGE and three prominent TextRAG metrics -- ACLE, ARGUE, and RAGAS -- demonstrating the limitations of text-centric work and laying the groundwork for automatic evaluation. We release open-source implementations and outline how to assess multimodal RAG.

Authors:Gousia Habib, Aniket Bhardwaj, Ritvik Sharma, Shoeib Amin Banday, Ishfaq Ahmad Malik
Title: CFL-SparseMed: Communication-Efficient Federated Learning for Medical Imaging with Top-k Sparse Updates
Abstract:
Secure and reliable medical image classification is crucial for effective patient treatment, but centralized models face challenges due to data and privacy concerns. Federated Learning (FL) enables privacy-preserving collaborations but struggles with heterogeneous, non-IID data and high communication costs, especially in large networks. We propose \textbf{CFL-SparseMed}, an FL approach that uses Top-k Sparsification to reduce communication overhead by transmitting only the top k gradients. This unified solution effectively addresses data heterogeneity while maintaining model accuracy. It enhances FL efficiency, preserves privacy, and improves diagnostic accuracy and patient care in non-IID medical imaging settings. The reproducibility source code is available on \href{https://github.com/Aniket2241/APK_contruct}{Github}.

Authors:Chonghyuk Song, Michal Stary, Boyuan Chen, George Kopanas, Vincent Sitzmann
Title: Generative View Stitching
Abstract:
Autoregressive video diffusion models are capable of long rollouts that are stable and consistent with history, but they are unable to guide the current generation with conditioning from the future. In camera-guided video generation with a predefined camera trajectory, this limitation leads to collisions with the generated scene, after which autoregression quickly collapses. To address this, we propose Generative View Stitching (GVS), which samples the entire sequence in parallel such that the generated scene is faithful to every part of the predefined camera trajectory. Our main contribution is a sampling algorithm that extends prior work on diffusion stitching for robot planning to video generation. While such stitching methods usually require a specially trained model, GVS is compatible with any off-the-shelf video model trained with Diffusion Forcing, a prevalent sequence diffusion framework that we show already provides the affordances necessary for stitching. We then introduce Omni Guidance, a technique that enhances the temporal consistency in stitching by conditioning on both the past and future, and that enables our proposed loop-closing mechanism for delivering long-range coherence. Overall, GVS achieves camera-guided video generation that is stable, collision-free, frame-to-frame consistent, and closes loops for a variety of predefined camera paths, including Oscar Reutersvärd's Impossible Staircase. Results are best viewed as videos at https://andrewsonga.github.io/gvs.

Authors:Haoge Deng, Ting Pan, Fan Zhang, Yang Liu, Zhuoyan Luo, Yufeng Cui, Wenxuan Wang, Chunhua Shen, Shiguang Shan, Zhaoxiang Zhang, Xinlong Wang
Title: Uniform Discrete Diffusion with Metric Path for Video Generation
Abstract:
Continuous-space video generation has advanced rapidly, while discrete approaches lag behind due to error accumulation and long-context inconsistency. In this work, we revisit discrete generative modeling and present Uniform discRete diffuSion with metric pAth (URSA), a simple yet powerful framework that bridges the gap with continuous approaches for the scalable video generation. At its core, URSA formulates the video generation task as an iterative global refinement of discrete spatiotemporal tokens. It integrates two key designs: a Linearized Metric Path and a Resolution-dependent Timestep Shifting mechanism. These designs enable URSA to scale efficiently to high-resolution image synthesis and long-duration video generation, while requiring significantly fewer inference steps. Additionally, we introduce an asynchronous temporal fine-tuning strategy that unifies versatile tasks within a single model, including interpolation and image-to-video generation. Extensive experiments on challenging video and image generation benchmarks demonstrate that URSA consistently outperforms existing discrete methods and achieves performance comparable to state-of-the-art continuous diffusion methods. Code and models are available at https://github.com/baaivision/URSA

Authors:Yun Zhang, Zhaoliang Zheng, Johnson Liu, Zhiyu Huang, Zewei Zhou, Zonglin Meng, Tianhui Cai, Jiaqi Ma
Title: MIC-BEV: Multi-Infrastructure Camera Bird's-Eye-View Transformer with Relation-Aware Fusion for 3D Object Detection
Abstract:
Infrastructure-based perception plays a crucial role in intelligent transportation systems, offering global situational awareness and enabling cooperative autonomy. However, existing camera-based detection models often underperform in such scenarios due to challenges such as multi-view infrastructure setup, diverse camera configurations, degraded visual inputs, and various road layouts. We introduce MIC-BEV, a Transformer-based bird's-eye-view (BEV) perception framework for infrastructure-based multi-camera 3D object detection. MIC-BEV flexibly supports a variable number of cameras with heterogeneous intrinsic and extrinsic parameters and demonstrates strong robustness under sensor degradation. The proposed graph-enhanced fusion module in MIC-BEV integrates multi-view image features into the BEV space by exploiting geometric relationships between cameras and BEV cells alongside latent visual cues. To support training and evaluation, we introduce M2I, a synthetic dataset for infrastructure-based object detection, featuring diverse camera configurations, road layouts, and environmental conditions. Extensive experiments on both M2I and the real-world dataset RoScenes demonstrate that MIC-BEV achieves state-of-the-art performance in 3D object detection. It also remains robust under challenging conditions, including extreme weather and sensor degradation. These results highlight the potential of MIC-BEV for real-world deployment. The dataset and source code are available at: https://github.com/HandsomeYun/MIC-BEV.

Authors:Mia Kan, Yilin Liu, Niloy Mitra
Title: SAGE: Structure-Aware Generative Video Transitions between Diverse Clips
Abstract:
Video transitions aim to synthesize intermediate frames between two clips, but naive approaches such as linear blending introduce artifacts that limit professional use or break temporal coherence. Traditional techniques (cross-fades, morphing, frame interpolation) and recent generative inbetweening methods can produce high-quality plausible intermediates, but they struggle with bridging diverse clips involving large temporal gaps or significant semantic differences, leaving a gap for content-aware and visually coherent transitions. We address this challenge by drawing on artistic workflows, distilling strategies such as aligning silhouettes and interpolating salient features to preserve structure and perceptual continuity. Building on this, we propose SAGE (Structure-Aware Generative vidEo transitions) as a zeroshot approach that combines structural guidance, provided via line maps and motion flow, with generative synthesis, enabling smooth, semantically consistent transitions without fine-tuning. Extensive experiments and comparison with current alternatives, namely [FILM, TVG, DiffMorpher, VACE, GI], demonstrate that SAGE outperforms both classical and generative baselines on quantitative metrics and user studies for producing transitions between diverse clips. Code to be released on acceptance.

Authors:Xuanpu Zhang, Xuesong Niu, Ruidong Chen, Dan Song, Jianhao Zeng, Penghui Du, Haoxiang Cao, Kai Wu, An-an Liu
Title: Group Relative Attention Guidance for Image Editing
Abstract:
Recently, image editing based on Diffusion-in-Transformer models has undergone rapid development. However, existing editing methods often lack effective control over the degree of editing, limiting their ability to achieve more customized results. To address this limitation, we investigate the MM-Attention mechanism within the DiT model and observe that the Query and Key tokens share a bias vector that is only layer-dependent. We interpret this bias as representing the model's inherent editing behavior, while the delta between each token and its corresponding bias encodes the content-specific editing signals. Based on this insight, we propose Group Relative Attention Guidance, a simple yet effective method that reweights the delta values of different tokens to modulate the focus of the model on the input image relative to the editing instruction, enabling continuous and fine-grained control over editing intensity without any tuning. Extensive experiments conducted on existing image editing frameworks demonstrate that GRAG can be integrated with as few as four lines of code, consistently enhancing editing quality. Moreover, compared to the commonly used Classifier-Free Guidance, GRAG achieves smoother and more precise control over the degree of editing. Our code will be released at https://github.com/little-misfit/GRAG-Image-Editing.

Authors:Nicolai Steinke, Daniel Goehring
Title: GroundLoc: Efficient Large-Scale Outdoor LiDAR-Only Localization
Abstract:
In this letter, we introduce GroundLoc, a LiDAR-only localization pipeline designed to localize a mobile robot in large-scale outdoor environments using prior maps. GroundLoc employs a Bird's-Eye View (BEV) image projection focusing on the perceived ground area and utilizes the place recognition network R2D2, or alternatively, the non-learning approach Scale-Invariant Feature Transform (SIFT), to identify and select keypoints for BEV image map registration. Our results demonstrate that GroundLoc outperforms state-of-the-art methods on the SemanticKITTI and HeLiPR datasets across various sensors. In the multi-session localization evaluation, GroundLoc reaches an Average Trajectory Error (ATE) well below 50 cm on all Ouster OS2 128 sequences while meeting online runtime requirements. The system supports various sensor models, as evidenced by evaluations conducted with Velodyne HDL-64E, Ouster OS2 128, Aeva Aeries II, and Livox Avia sensors. The prior maps are stored as 2D raster image maps, which can be created from a single drive and require only 4 MB of storage per square kilometer. The source code is available at https://github.com/dcmlr/groundloc.

Authors:Huanyu Zhang, Wenshan Wu, Chengzu Li, Ning Shang, Yan Xia, Yangyu Huang, Yifan Zhang, Li Dong, Zhang Zhang, Liang Wang, Tieniu Tan, Furu Wei
Title: Latent Sketchpad: Sketching Visual Thoughts to Elicit Multimodal Reasoning in MLLMs
Abstract:
While Multimodal Large Language Models (MLLMs) excel at visual understanding, they often struggle in complex scenarios that require visual planning and imagination. Inspired by how humans use sketching as a form of visual thinking to develop and communicate ideas, we introduce Latent Sketchpad, a framework that equips MLLMs with an internal visual scratchpad. The internal visual representations of MLLMs have traditionally been confined to perceptual understanding. We repurpose them to support generative visual thought without compromising reasoning ability. Building on frontier MLLMs, our approach integrates visual generation directly into their native autoregressive reasoning process. It allows the model to interleave textual reasoning with the generation of visual latents. These latents guide the internal thought process and can be translated into sketch images for interpretability. To realize this, we introduce two components: a Context-Aware Vision Head autoregressively produces visual representations, and a pretrained Sketch Decoder renders these into human-interpretable images. We evaluate the framework on our new dataset MazePlanning. Experiments across various MLLMs show that Latent Sketchpad delivers comparable or even superior reasoning performance to their backbone. It further generalizes across distinct frontier MLLMs, including Gemma3 and Qwen2.5-VL. By extending model's textual reasoning to visual thinking, our framework opens new opportunities for richer human-computer interaction and broader applications. More details and resources are available on our project page: https://latent-sketchpad.github.io/.

Authors:Charles Javerliat, Pierre Raimbaud, Guillaume Lavoué
Title: Kineo: Calibration-Free Metric Motion Capture From Sparse RGB Cameras
Abstract:
Markerless multiview motion capture is often constrained by the need for precise camera calibration, limiting accessibility for non-experts and in-the-wild captures. Existing calibration-free approaches mitigate this requirement but suffer from high computational cost and reduced reconstruction accuracy. We present Kineo, a fully automatic, calibration-free pipeline for markerless motion capture from videos captured by unsynchronized, uncalibrated, consumer-grade RGB cameras. Kineo leverages 2D keypoints from off-the-shelf detectors to simultaneously calibrate cameras, including Brown-Conrady distortion coefficients, and reconstruct 3D keypoints and dense scene point maps at metric scale. A confidence-driven spatio-temporal keypoint sampling strategy, combined with graph-based global optimization, ensures robust calibration at a fixed computational cost independent of sequence length. We further introduce a pairwise reprojection consensus score to quantify 3D reconstruction reliability for downstream tasks. Evaluations on EgoHumans and Human3.6M demonstrate substantial improvements over prior calibration-free methods. Compared to previous state-of-the-art approaches, Kineo reduces camera translation error by approximately 83-85%, camera angular error by 86-92%, and world mean-per-joint error (W-MPJPE) by 83-91%. Kineo is also efficient in real-world scenarios, processing multi-view sequences faster than their duration in specific configuration (e.g., 36min to process 1h20min of footage). The full pipeline and evaluation code are openly released to promote reproducibility and practical adoption at https://liris-xr.github.io/kineo/.

Authors:Toan Van Nguyen, Rasmus G. K. Christiansen, Dirk Kraft, Leon Bodenhagen
Title: A Hybrid Approach for Visual Multi-Object Tracking
Abstract:
This paper proposes a visual multi-object tracking method that jointly employs stochastic and deterministic mechanisms to ensure identifier consistency for unknown and time-varying target numbers under nonlinear dynamics. A stochastic particle filter addresses nonlinear dynamics and non-Gaussian noise, with support from particle swarm optimization (PSO) to guide particles toward state distribution modes and mitigate divergence through proposed fitness measures incorporating motion consistency, appearance similarity, and social-interaction cues with neighboring targets. Deterministic association further enforces identifier consistency via a proposed cost matrix incorporating spatial consistency between particles and current detections, detection confidences, and track penalties. Subsequently, a novel scheme is proposed for the smooth updating of target states while preserving their identities, particularly for weak tracks during interactions with other targets and prolonged occlusions. Moreover, velocity regression over past states provides trend-seed velocities, enhancing particle sampling and state updates. The proposed tracker is designed to operate flexibly for both pre-recorded videos and camera live streams, where future frames are unavailable. Experimental results confirm superior performance compared to state-of-the-art trackers. The source-code reference implementations of both the proposed method and compared-trackers are provided on GitHub: https://github.com/SDU-VelKoTek/GenTrack2

Authors:Toan Van Nguyen, Rasmus G. K. Christiansen, Dirk Kraft, Leon Bodenhagen
Title: GenTrack: A New Generation of Multi-Object Tracking
Abstract:
This paper introduces a novel multi-object tracking (MOT) method, dubbed GenTrack, whose main contributions include: a hybrid tracking approach employing both stochastic and deterministic manners to robustly handle unknown and time-varying numbers of targets, particularly in maintaining target identity (ID) consistency and managing nonlinear dynamics, leveraging particle swarm optimization (PSO) with some proposed fitness measures to guide stochastic particles toward their target distribution modes, enabling effective tracking even with weak and noisy object detectors, integration of social interactions among targets to enhance PSO-guided particles as well as improve continuous updates of both strong (matched) and weak (unmatched) tracks, thereby reducing ID switches and track loss, especially during occlusions, a GenTrack-based redefined visual MOT baseline incorporating a comprehensive state and observation model based on space consistency, appearance, detection confidence, track penalties, and social scores for systematic and efficient target updates, and the first-ever publicly available source-code reference implementation with minimal dependencies, featuring three variants, including GenTrack Basic, PSO, and PSO-Social, facilitating flexible reimplementation. Experimental results have shown that GenTrack provides superior performance on standard benchmarks and real-world scenarios compared to state-of-the-art trackers, with integrated implementations of baselines for fair comparison. Potential directions for future work are also discussed. The source-code reference implementations of both the proposed method and compared-trackers are provided on GitHub: https://github.com/SDU-VelKoTek/GenTrack

Authors:Zhuangfan Huang, Xiaosong Li, Gao Wang, Tao Ye, Haishu Tan, Huafeng Li
Title: A Luminance-Aware Multi-Scale Network for Polarization Image Fusion with a Multi-Scene Dataset
Abstract:
Polarization image fusion combines S0 and DOLP images to reveal surface roughness and material properties through complementary texture features, which has important applications in camouflage recognition, tissue pathology analysis, surface defect detection and other fields. To intergrate coL-Splementary information from different polarized images in complex luminance environment, we propose a luminance-aware multi-scale network (MLSN). In the encoder stage, we propose a multi-scale spatial weight matrix through a brightness-branch , which dynamically weighted inject the luminance into the feature maps, solving the problem of inherent contrast difference in polarized images. The global-local feature fusion mechanism is designed at the bottleneck layer to perform windowed self-attention computation, to balance the global context and local details through residual linking in the feature dimension restructuring stage. In the decoder stage, to further improve the adaptability to complex lighting, we propose a Brightness-Enhancement module, establishing the mapping relationship between luminance distribution and texture features, realizing the nonlinear luminance correction of the fusion result. We also present MSP, an 1000 pairs of polarized images that covers 17 types of indoor and outdoor complex lighting scenes. MSP provides four-direction polarization raw maps, solving the scarcity of high-quality datasets in polarization image fusion. Extensive experiment on MSP, PIF and GAND datasets verify that the proposed MLSN outperms the state-of-the-art methods in subjective and objective evaluations, and the MS-SSIM and SD metircs are higher than the average values of other methods by 8.57%, 60.64%, 10.26%, 63.53%, 22.21%, and 54.31%, respectively. The source code and dataset is avalable at https://github.com/1hzf/MLS-UNet.

Authors:Waseem Shariff, Timothy Hanley, Maciej Stec, Hossein Javidnia, Peter Corcoran
Title: Benchmarking Microsaccade Recognition with Event Cameras: A Novel Dataset and Evaluation
Abstract:
Microsaccades are small, involuntary eye movements vital for visual perception and neural processing. Traditional microsaccade studies typically use eye trackers or frame-based analysis, which, while precise, are costly and limited in scalability and temporal resolution. Event-based sensing offers a high-speed, low-latency alternative by capturing fine-grained spatiotemporal changes efficiently. This work introduces a pioneering event-based microsaccade dataset to support research on small eye movement dynamics in cognitive computing. Using Blender, we render high-fidelity eye movement scenarios and simulate microsaccades with angular displacements from 0.5 to 2.0 degrees, divided into seven distinct classes. These are converted to event streams using v2e, preserving the natural temporal dynamics of microsaccades, with durations ranging from 0.25 ms to 2.25 ms. We evaluate the dataset using Spiking-VGG11, Spiking-VGG13, and Spiking-VGG16, and propose Spiking-VGG16Flow, an optical-flow-enhanced variant implemented in SpikingJelly. The models achieve around 90 percent average accuracy, successfully classifying microsaccades by angular displacement, independent of event count or duration. These results demonstrate the potential of spiking neural networks for fine motion recognition and establish a benchmark for event-based vision research. The dataset, code, and trained models will be publicly available at https://waseemshariff126.github.io/microsaccades/ .

Authors:Jinhong Deng, Wen Li, Joey Tianyi Zhou, Yang He
Title: SCOPE: Saliency-Coverage Oriented Token Pruning for Efficient Multimodel LLMs
Abstract:
Multimodal Large Language Models (MLLMs) typically process a large number of visual tokens, leading to considerable computational overhead, even though many of these tokens are redundant. Existing visual token pruning methods primarily focus on selecting the most salient tokens based on attention scores, resulting in the semantic incompleteness of the selected tokens. In this paper, we propose a novel visual token pruning strategy, called \textbf{S}aliency-\textbf{C}overage \textbf{O}riented token \textbf{P}runing for \textbf{E}fficient MLLMs (SCOPE), to jointly model both the saliency and coverage of the selected visual tokens to better preserve semantic completeness. Specifically, we introduce a set-coverage for a given set of selected tokens, computed based on the token relationships. We then define a token-coverage gain for each unselected token, quantifying how much additional coverage would be obtained by including it. By integrating the saliency score into the token-coverage gain, we propose our SCOPE score and iteratively select the token with the highest SCOPE score. We conduct extensive experiments on multiple vision-language understanding benchmarks using the LLaVA-1.5 and LLaVA-Next models. Experimental results demonstrate that our method consistently outperforms prior approaches. Our code is available at \href{https://github.com/kinredon/SCOPE}{https://github.com/kinredon/SCOPE}.

Authors:Anshul Kaushal, Kunal Jangid, Vinod K. Kurmi
Title: CLFSeg: A Fuzzy-Logic based Solution for Boundary Clarity and Uncertainty Reduction in Medical Image Segmentation
Abstract:
Accurate polyp and cardiac segmentation for early detection and treatment is essential for the diagnosis and treatment planning of cancer-like diseases. Traditional convolutional neural network (CNN) based models have represented limited generalizability, robustness, and inability to handle uncertainty, which affects the segmentation performance. To solve these problems, this paper introduces CLFSeg, an encoder-decoder based framework that aggregates the Fuzzy-Convolutional (FC) module leveraging convolutional layers and fuzzy logic. This module enhances the segmentation performance by identifying local and global features while minimizing the uncertainty, noise, and ambiguity in boundary regions, ensuring computing efficiency. In order to handle class imbalance problem while focusing on the areas of interest with tiny and boundary regions, binary cross-entropy (BCE) with dice loss is incorporated. Our proposed model exhibits exceptional performance on four publicly available datasets, including CVC-ColonDB, CVC-ClinicDB, EtisLaribPolypDB, and ACDC. Extensive experiments and visual studies show CLFSeg surpasses the existing SOTA performance and focuses on relevant regions of interest in anatomical structures. The proposed CLFSeg improves performance while ensuring computing efficiency, which makes it a potential solution for real-world medical diagnostic scenarios. Project page is available at https://visdomlab.github.io/CLFSeg/

Authors:Aodi Wu, Xubo Luo
Title: Enhancing Vision-Language Models for Autonomous Driving through Task-Specific Prompting and Spatial Reasoning
Abstract:
This technical report presents our solution for the RoboSense Challenge at IROS 2025, which evaluates Vision-Language Models (VLMs) on autonomous driving scene understanding across perception, prediction, planning, and corruption detection tasks. We propose a systematic framework built on four core components. First, a Mixture-of-Prompts router classifies questions and dispatches them to task-specific expert prompts, eliminating interference across diverse question types. Second, task-specific prompts embed explicit coordinate systems, spatial reasoning rules, role-playing, Chain-of-Thought/Tree-of-Thought reasoning, and few-shot examples tailored to each task. Third, a visual assembly module composes multi-view images with object crops, magenta markers, and adaptive historical frames based on question requirements. Fourth, we configure model inference parameters (temperature, top-p, message roles) per task to optimize output quality. Implemented on Qwen2.5-VL-72B, our approach achieves 70.87% average accuracy on Phase-1 (clean data) and 72.85% on Phase-2 (corrupted data), demonstrating that structured prompting and spatial grounding substantially enhance VLM performance on safety-critical autonomous driving tasks. Code and prompt are available at https://github.com/wuaodi/UCAS-CSU-phase2.

Authors:Yang Du, Zhuoran Lin, Kaiqiang Song, Biao Wang, Zhicheng Zheng, Tiezheng Ge, Bo Zheng, Qin Jin
Title: VC4VG: Optimizing Video Captions for Text-to-Video Generation
Abstract:
Recent advances in text-to-video (T2V) generation highlight the critical role of high-quality video-text pairs in training models capable of producing coherent and instruction-aligned videos. However, strategies for optimizing video captions specifically for T2V training remain underexplored. In this paper, we introduce VC4VG (Video Captioning for Video Generation), a comprehensive caption optimization framework tailored to the needs of T2V models.We begin by analyzing caption content from a T2V perspective, decomposing the essential elements required for video reconstruction into multiple dimensions, and proposing a principled caption design methodology. To support evaluation, we construct VC4VG-Bench, a new benchmark featuring fine-grained, multi-dimensional, and necessity-graded metrics aligned with T2V-specific requirements.Extensive T2V fine-tuning experiments demonstrate a strong correlation between improved caption quality and video generation performance, validating the effectiveness of our approach. We release all benchmark tools and code at https://github.com/qyr0403/VC4VG to support further research.

Authors:Minsuk Ji, Sanghyeok Lee, Namhyuk Ahn
Title: Compositional Image Synthesis with Inference-Time Scaling
Abstract:
Despite their impressive realism, modern text-to-image models still struggle with compositionality, often failing to render accurate object counts, attributes, and spatial relations. To address this challenge, we present a training-free framework that combines an object-centric approach with self-refinement to improve layout faithfulness while preserving aesthetic quality. Specifically, we leverage large language models (LLMs) to synthesize explicit layouts from input prompts, and we inject these layouts into the image generation process, where a object-centric vision-language model (VLM) judge reranks multiple candidates to select the most prompt-aligned outcome iteratively. By unifying explicit layout-grounding with self-refine-based inference-time scaling, our framework achieves stronger scene alignment with prompts compared to recent text-to-image models. The code are available at https://github.com/gcl-inha/ReFocus.

Authors:Zhenxin Li, Wenhao Yao, Zi Wang, Xinglong Sun, Jingde Chen, Nadine Chang, Maying Shen, Jingyu Song, Zuxuan Wu, Shiyi Lan, Jose M. Alvarez
Title: ZTRS: Zero-Imitation End-to-end Autonomous Driving with Trajectory Scoring
Abstract:
End-to-end autonomous driving maps raw sensor inputs directly into ego-vehicle trajectories to avoid cascading errors from perception modules and to leverage rich semantic cues. Existing frameworks largely rely on Imitation Learning (IL), which can be limited by sub-optimal expert demonstrations and covariate shift during deployment. On the other hand, Reinforcement Learning (RL) has recently shown potential in scaling up with simulations, but is typically confined to low-dimensional symbolic inputs (e.g. 3D objects and maps), falling short of full end-to-end learning from raw sensor data. We introduce ZTRS (Zero-Imitation End-to-End Autonomous Driving with Trajectory Scoring), a framework that combines the strengths of both worlds: sensor inputs without losing information and RL training for robust planning. To the best of our knowledge, ZTRS is the first framework that eliminates IL entirely by only learning from rewards while operating directly on high-dimensional sensor data. ZTRS utilizes offline reinforcement learning with our proposed Exhaustive Policy Optimization (EPO), a variant of policy gradient tailored for enumerable actions and rewards. ZTRS demonstrates strong performance across three benchmarks: Navtest (generic real-world open-loop planning), Navhard (open-loop planning in challenging real-world and synthetic scenarios), and HUGSIM (simulated closed-loop driving). Specifically, ZTRS achieves the state-of-the-art result on Navhard and outperforms IL-based baselines on HUGSIM. Code will be available at https://github.com/woxihuanjiangguo/ZTRS.

Authors:Shufan Shen, Zhaobo Qi, Junshu Sun, Qingming Huang, Qi Tian, Shuhui Wang
Title: Enhancing Pre-trained Representation Classifiability can Boost its Interpretability
Abstract:
The visual representation of a pre-trained model prioritizes the classifiability on downstream tasks, while the widespread applications for pre-trained visual models have posed new requirements for representation interpretability. However, it remains unclear whether the pre-trained representations can achieve high interpretability and classifiability simultaneously. To answer this question, we quantify the representation interpretability by leveraging its correlation with the ratio of interpretable semantics within the representations. Given the pre-trained representations, only the interpretable semantics can be captured by interpretations, whereas the uninterpretable part leads to information loss. Based on this fact, we propose the Inherent Interpretability Score (IIS) that evaluates the information loss, measures the ratio of interpretable semantics, and quantifies the representation interpretability. In the evaluation of the representation interpretability with different classifiability, we surprisingly discover that the interpretability and classifiability are positively correlated, i.e., representations with higher classifiability provide more interpretable semantics that can be captured in the interpretations. This observation further supports two benefits to the pre-trained representations. First, the classifiability of representations can be further improved by fine-tuning with interpretability maximization. Second, with the classifiability improvement for the representations, we obtain predictions based on their interpretations with less accuracy degradation. The discovered positive correlation and corresponding applications show that practitioners can unify the improvements in interpretability and classifiability for pre-trained vision models. Codes are available at https://github.com/ssfgunner/IIS.

Authors:Shufan Shen, Junshu Sun, Shuhui Wang, Qingming Huang
Title: Kernelized Sparse Fine-Tuning with Bi-level Parameter Competition for Vision Models
Abstract:
Parameter-efficient fine-tuning (PEFT) aims to adapt pre-trained vision models to downstream tasks. Among PEFT paradigms, sparse tuning achieves remarkable performance by adjusting only the weights most relevant to downstream tasks, rather than densely tuning the entire weight matrix. Current methods follow a two-stage paradigm. First, it locates task-relevant weights by gradient information, which overlooks the parameter adjustments during fine-tuning and limits the performance. Second, it updates only the located weights by applying a sparse mask to the gradient of the weight matrix, which results in high memory usage due to the storage of all weight matrices in the optimizer. In this paper, we propose a one-stage method named SNELLA to overcome the above limitations. For memory usage, SNELLA selectively updates the weight matrix by adding it to another sparse matrix that is merged by two low-rank learnable matrices. We extend the low-rank decomposition by introducing nonlinear kernel functions, thereby increasing the rank of the resulting merged matrix to prevent the interdependency among weight updates, enabling better adaptation to downstream tasks. For locating task-relevant weights, we propose an adaptive bi-level sparsity allocation mechanism that encourages weights to compete across and inside layers based on their importance scores in an end-to-end manner. Extensive experiments are conducted on classification, segmentation, and generation tasks using different pre-trained vision models. The results show that SNELLA achieves SOTA performance with low memory usage. Notably, SNELLA obtains 1.8% (91.9% v.s. 90.1%) higher Top-1 accuracy on the FGVC benchmark compared to SPT-LoRA. Compared to previous methods, SNELLA achieves a memory reduction of 31.1%-39.9% across models with parameter scales from 86M to 632M. Our source codes are available at https://github.com/ssfgunner/SNELL.

Authors:Mirali Purohit, Bimal Gajera, Vatsal Malaviya, Irish Mehta, Kunal Kasodekar, Jacob Adler, Steven Lu, Umaa Rebbapragada, Hannah Kerner
Title: Mars-Bench: A Benchmark for Evaluating Foundation Models for Mars Science Tasks
Abstract:
Foundation models have enabled rapid progress across many specialized domains by leveraging large-scale pre-training on unlabeled data, demonstrating strong generalization to a variety of downstream tasks. While such models have gained significant attention in fields like Earth Observation, their application to Mars science remains limited. A key enabler of progress in other domains has been the availability of standardized benchmarks that support systematic evaluation. In contrast, Mars science lacks such benchmarks and standardized evaluation frameworks, which have limited progress toward developing foundation models for Martian tasks. To address this gap, we introduce Mars-Bench, the first benchmark designed to systematically evaluate models across a broad range of Mars-related tasks using both orbital and surface imagery. Mars-Bench comprises 20 datasets spanning classification, segmentation, and object detection, focused on key geologic features such as craters, cones, boulders, and frost. We provide standardized, ready-to-use datasets and baseline evaluations using models pre-trained on natural images, Earth satellite data, and state-of-the-art vision-language models. Results from all analyses suggest that Mars-specific foundation models may offer advantages over general-domain counterparts, motivating further exploration of domain-adapted pre-training. Mars-Bench aims to establish a standardized foundation for developing and comparing machine learning models for Mars science. Our data, models, and code are available at: https://mars-bench.github.io/.

Authors:Yujia Zhang, Xiaoyang Wu, Yixing Lao, Chengyao Wang, Zhuotao Tian, Naiyan Wang, Hengshuang Zhao
Title: Concerto: Joint 2D-3D Self-Supervised Learning Emerges Spatial Representations
Abstract:
Humans learn abstract concepts through multisensory synergy, and once formed, such representations can often be recalled from a single modality. Inspired by this principle, we introduce Concerto, a minimalist simulation of human concept learning for spatial cognition, combining 3D intra-modal self-distillation with 2D-3D cross-modal joint embedding. Despite its simplicity, Concerto learns more coherent and informative spatial features, as demonstrated by zero-shot visualizations. It outperforms both standalone SOTA 2D and 3D self-supervised models by 14.2% and 4.8%, respectively, as well as their feature concatenation, in linear probing for 3D scene perception. With full fine-tuning, Concerto sets new SOTA results across multiple scene understanding benchmarks (e.g., 80.7% mIoU on ScanNet). We further present a variant of Concerto tailored for video-lifted point cloud spatial understanding, and a translator that linearly projects Concerto representations into CLIP's language space, enabling open-world perception. These results highlight that Concerto emerges spatial representations with superior fine-grained geometric and semantic consistency.

Authors:Shuhong Zheng, Ashkan Mirzaei, Igor Gilitschenski
Title: Track, Inpaint, Resplat: Subject-driven 3D and 4D Generation with Progressive Texture Infilling
Abstract:
Current 3D/4D generation methods are usually optimized for photorealism, efficiency, and aesthetics. However, they often fail to preserve the semantic identity of the subject across different viewpoints. Adapting generation methods with one or few images of a specific subject (also known as Personalization or Subject-driven generation) allows generating visual content that align with the identity of the subject. However, personalized 3D/4D generation is still largely underexplored. In this work, we introduce TIRE (Track, Inpaint, REsplat), a novel method for subject-driven 3D/4D generation. It takes an initial 3D asset produced by an existing 3D generative model as input and uses video tracking to identify the regions that need to be modified. Then, we adopt a subject-driven 2D inpainting model for progressively infilling the identified regions. Finally, we resplat the modified 2D multi-view observations back to 3D while still maintaining consistency. Extensive experiments demonstrate that our approach significantly improves identity preservation in 3D/4D generation compared to state-of-the-art methods. Our project website is available at https://zsh2000.github.io/track-inpaint-resplat.github.io/.

Authors:Hongkai Lin, Dingkang Liang, Mingyang Du, Xin Zhou, Xiang Bai
Title: More Than Generation: Unifying Generation and Depth Estimation via Text-to-Image Diffusion Models
Abstract:
Generative depth estimation methods leverage the rich visual priors stored in pre-trained text-to-image diffusion models, demonstrating astonishing zero-shot capability. However, parameter updates during training lead to catastrophic degradation in the image generation capability of the pre-trained model. We introduce MERGE, a unified model for image generation and depth estimation, starting from a fixed pre-trained text-to-image model. MERGE demonstrates that the pre-trained text-to-image model can do more than image generation, but also expand to depth estimation effortlessly. Specifically, MERGE introduces a play-and-plug framework that enables seamless switching between image generation and depth estimation modes through simple and pluggable converters. Meanwhile, we propose a Group Reuse Mechanism to encourage parameter reuse and improve the utilization of the additional learnable parameters. MERGE unleashes the powerful depth estimation capability of the pre-trained text-to-image model while preserving its original image generation ability. Compared to other unified models for image generation and depth estimation, MERGE achieves state-of-the-art performance across multiple depth estimation benchmarks. The code will be made available at https://github.com/H-EmbodVis/MERGE

Authors:Baoqi Pei, Yifei Huang, Jilan Xu, Yuping He, Guo Chen, Fei Wu, Yu Qiao, Jiangmiao Pang
Title: EgoThinker: Unveiling Egocentric Reasoning with Spatio-Temporal CoT
Abstract:
Egocentric video reasoning centers on an unobservable agent behind the camera who dynamically shapes the environment, requiring inference of hidden intentions and recognition of fine-grained interactions. This core challenge limits current multimodal large language models MLLMs, which excel at visible event reasoning but lack embodied, first-person understanding. To bridge this gap, we introduce EgoThinker, a novel framework that endows MLLMs with robust egocentric reasoning capabilities through spatio-temporal chain-of-thought supervision and a two-stage learning curriculum. First, we introduce EgoRe-5M, a large-scale egocentric QA dataset constructed from 13M diverse egocentric video clips. This dataset features multi-minute segments annotated with detailed CoT rationales and dense hand-object grounding. Second, we employ SFT on EgoRe-5M to instill reasoning skills, followed by reinforcement fine-tuning RFT to further enhance spatio-temporal localization. Experimental results show that EgoThinker outperforms existing methods across multiple egocentric benchmarks, while achieving substantial improvements in fine-grained spatio-temporal localization tasks. Full code and data are released at https://github.com/InternRobotics/EgoThinker.

Authors:Qiushi Sun, Jingyang Gong, Yang Liu, Qiaosheng Chen, Lei Li, Kai Chen, Qipeng Guo, Ben Kao, Fei Yuan
Title: JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence
Abstract:
The scope of neural code intelligence is rapidly expanding beyond text-based source code to encompass the rich visual outputs that programs generate. This visual dimension is critical for advanced applications like flexible content generation and precise, program-driven editing of visualizations. However, progress has been impeded by the scarcity of high-quality multimodal code data, a bottleneck stemming from challenges in synthesis and quality assessment. To address these challenges, we make contributions from both a data and modeling perspective. We first introduce a complete synthesis toolkit that leverages reciprocal synergies between data modalities to efficiently produce a large-scale, high-quality corpus spanning from standard charts to complex interactive web UIs and code-driven animations. Leveraging this toolkit, we construct JanusCode-800K, the largest multimodal code corpus to date. This powers the training of our models, JanusCoder and JanusCoderV, which establish a visual-programmatic interface for generating code from textual instructions, visual inputs, or a combination of both. Our unified model is a departure from existing approaches that build specialized models for isolated tasks. Extensive experiments on both text-centric and vision-centric coding tasks demonstrate the superior performance of the JanusCoder series, with our 7B to 14B scale models approaching or even exceeding the performance of commercial models. Furthermore, extensive analysis provides key insights into harmonizing programmatic logic with its visual expression. Our code and checkpoints will are available at https://github.com/InternLM/JanusCoder.

Authors:Yaoli Liu, Yao-Xiang Ding, Kun Zhou
Title: FreeFuse: Multi-Subject LoRA Fusion via Auto Masking at Test Time
Abstract:
This paper proposes FreeFuse, a novel training-free approach for multi-subject text-to-image generation through automatic fusion of multiple subject LoRAs. In contrast to existing methods that either focus on pre-inference LoRA weight merging or rely on segmentation models and complex techniques like noise blending to isolate LoRA outputs, our key insight is that context-aware dynamic subject masks can be automatically derived from cross-attention layer weights. Mathematical analysis shows that directly applying these masks to LoRA outputs during inference well approximates the case where the subject LoRA is integrated into the diffusion model and used individually for the masked region. FreeFuse demonstrates superior practicality and efficiency as it requires no additional training, no modification to LoRAs, no auxiliary models, and no user-defined prompt templates or region specifications. Alternatively, it only requires users to provide the LoRA activation words for seamless integration into standard workflows. Extensive experiments validate that FreeFuse outperforms existing approaches in both generation quality and usability under the multi-subject generation tasks. The project page is at https://future-item.github.io/FreeFuse/

Authors:Zujing Liu, Junwen Pan, Qi She, Yuan Gao, Guisong Xia
Title: On the Faithfulness of Visual Thinking: Measurement and Enhancement
Abstract:
Recent large vision-language models (LVLMs) can generate vision-text multimodal chain-of-thought (MCoT) traces after reinforcement fine-tuning (RFT). However, we observe that the visual information incorporated in MCoT is often inaccurate, though still yield correct answers, indicating a lack of faithfulness in the MCoT reasoning process. We attribute this unfaithfulness to the RL reward in RFT, which solely incentivizes the format of interleaved vision-text cues, ie, it encourages the model to incorporate visual information into its text reasoning steps without considering the correctness of the visual information. In this paper, we first probe the faithfulness of MCoT by measuring how much the prediction changes when its visual and textual thoughts are intervened. Surprisingly, the model's predictions remain nearly unchanged under visual intervention but change significantly under textual intervention, indicating that the visual evidence is largely ignored. To further analyze visual information, we introduce an automated LVLM-based evaluation metric that quantifies the faithfulness of visual cues from two perspectives: reliability and sufficiency. Our evaluation reveals that the visual information in current MCoT traces is simultaneously unreliable and insufficient. To address this issue, we propose a novel MCoT learning strategy termed Sufficient-Component Cause Model (SCCM) learning. This approach encourages the MCoT to generate sufficient yet minimal visual components that are independently capable of leading to correct answers. We note that the proposed SCCM is annotation-free and compatible with various RFT for MCoT in a plug-and-play manner. Empirical results demonstrate that SCCM consistently improves the visual faithfulness across a suite of fine-grained perception and reasoning benchmarks. Code is available at https://github.com/EugeneLiu01/Faithful_Thinking_with_Image.

Authors:Xin Jin, Siyuan Li, Siyong Jian, Kai Yu, Huan Wang
Title: MergeMix: A Unified Augmentation Paradigm for Visual and Multi-Modal Understanding
Abstract:
Vision-language alignment in multi-modal large language models (MLLMs) typically relies on supervised fine-tuning (SFT) or reinforcement learning (RL). SFT is stable and efficient but requires large-scale human annotations and cannot capture subtle preferences, while RL brings in a reward signal for training, but suffers from overhead and instability. These limitations highlight a trade-off between scalability, robustness, and alignment quality. To address this, we propose MergeMix, a training-time augmentation paradigm that bridges SFT and RL. It first applies an attention-aware image mixing via token merge with more cluster representation and spatial context, and then presents a preference-driven training paradigm for MLLMs by building preference pairs with mixed images and raw images, and optimizing via SimPO loss. As a mixup augmentation, MergeMix enhances attention consistency and efficiency, surpassing other heuristic-based methods in classification. Extensive experiments demonstrate that MergeMix achieves competitive accuracy with improved efficiency, providing a scalable approach to preference alignment in classification and MLLMs.

Authors:Karthikeyan Chandra Sekaran, Markus Geisler, Dominik Rößle, Adithya Mohan, Daniel Cremers, Wolfgang Utschick, Michael Botsch, Werner Huber, Torsten Schön
Title: UrbanIng-V2X: A Large-Scale Multi-Vehicle, Multi-Infrastructure Dataset Across Multiple Intersections for Cooperative Perception
Abstract:
Recent cooperative perception datasets have played a crucial role in advancing smart mobility applications by enabling information exchange between intelligent agents, helping to overcome challenges such as occlusions and improving overall scene understanding. While some existing real-world datasets incorporate both vehicle-to-vehicle and vehicle-to-infrastructure interactions, they are typically limited to a single intersection or a single vehicle. A comprehensive perception dataset featuring multiple connected vehicles and infrastructure sensors across several intersections remains unavailable, limiting the benchmarking of algorithms in diverse traffic environments. Consequently, overfitting can occur, and models may demonstrate misleadingly high performance due to similar intersection layouts and traffic participant behavior. To address this gap, we introduce UrbanIng-V2X, the first large-scale, multi-modal dataset supporting cooperative perception involving vehicles and infrastructure sensors deployed across three urban intersections in Ingolstadt, Germany. UrbanIng-V2X consists of 34 temporally aligned and spatially calibrated sensor sequences, each lasting 20 seconds. All sequences contain recordings from one of three intersections, involving two vehicles and up to three infrastructure-mounted sensor poles operating in coordinated scenarios. In total, UrbanIng-V2X provides data from 12 vehicle-mounted RGB cameras, 2 vehicle LiDARs, 17 infrastructure thermal cameras, and 12 infrastructure LiDARs. All sequences are annotated at a frequency of 10 Hz with 3D bounding boxes spanning 13 object classes, resulting in approximately 712k annotated instances across the dataset. We provide comprehensive evaluations using state-of-the-art cooperative perception methods and publicly release the codebase, dataset, HD map, and a digital twin of the complete data collection environment.

Authors:Fangtong Sun, Congyu Li, Ke Yang, Yuchen Pan, Hanwen Yu, Xichuan Zhang, Yiying Li
Title: FRBNet: Revisiting Low-Light Vision through Frequency-Domain Radial Basis Network
Abstract:
Low-light vision remains a fundamental challenge in computer vision due to severe illumination degradation, which significantly affects the performance of downstream tasks such as detection and segmentation. While recent state-of-the-art methods have improved performance through invariant feature learning modules, they still fall short due to incomplete modeling of low-light conditions. Therefore, we revisit low-light image formation and extend the classical Lambertian model to better characterize low-light conditions. By shifting our analysis to the frequency domain, we theoretically prove that the frequency-domain channel ratio can be leveraged to extract illumination-invariant features via a structured filtering process. We then propose a novel and end-to-end trainable module named \textbf{F}requency-domain \textbf{R}adial \textbf{B}asis \textbf{Net}work (\textbf{FRBNet}), which integrates the frequency-domain channel ratio operation with a learnable frequency domain filter for the overall illumination-invariant feature enhancement. As a plug-and-play module, FRBNet can be integrated into existing networks for low-light downstream tasks without modifying loss functions. Extensive experiments across various downstream tasks demonstrate that FRBNet achieves superior performance, including +2.2 mAP for dark object detection and +2.9 mIoU for nighttime segmentation. Code is available at: https://github.com/Sing-Forevet/FRBNet.

Authors:Lu Dong, Haiyu Zhang, Han Lin, Ziang Yan, Xiangyu Zeng, Hongjie Zhang, Yifei Huang, Yi Wang, Zhen-Hua Ling, Limin Wang, Yali Wang
Title: VideoTG-R1: Boosting Video Temporal Grounding via Curriculum Reinforcement Learning on Reflected Boundary Annotations
Abstract:
Video temporal grounding (VTG) aims to locate precise segments in videos based on language queries, which is a fundamental challenge in video understanding. While recent Multimodal Large Language Models (MLLMs) have shown promise in tackling VTG through reinforcement learning (RL), they overlook the challenges arising from both the quality and difficulty of training samples. (1) Partially annotated samples. Many samples contain relevant segments beyond the annotated interval, introducing ambiguous supervision. (2) Hard-to-ground samples. Samples with poor zero-shot performance produce consistently low and indistinguishable rewards during RL training, exhibiting no clear preference among multiple outputs and thus hindering learning efficiency. To address these challenges, we propose VideoTG-R1, a novel curriculum RL framework with reflected boundary annotations, enabling data-efficient training. Specifically, we propose a Boundary Reflection Agent that utilizes MLLMs to predict query-relevant timestamps outside the annotated intervals, allowing us to identify and filter out partially annotated samples, thereby reducing ambiguity. Furthermore, we introduce a Difficulty Estimation Agent to assess the training difficulty of each sample and design a curriculum RL strategy that dynamically masks the videos of hard-to-ground samples according to the training steps, easing the training difficulty and providing clearer preference. Experiments on the VTG and grounded VideoQA tasks demonstrate the effectiveness of our method. Remarkably, with only 10% of the training samples and 21% of the computational budget, VideoTG-R1 outperforms full-data counterparts under both group relative policy optimization (GRPO) and supervised fine-tuning (SFT). The code is available at https://github.com/ldong1111/VideoTG-R1.

Authors:Yifan Jiao, Xinran Liu, Xiaoqiong Liu, Xiaohui Yuan, Heng Fan, Libo Zhang
Title: PlanarTrack: A high-quality and challenging benchmark for large-scale planar object tracking
Abstract:
Planar tracking has drawn increasing interest owing to its key roles in robotics and augmented reality. Despite recent great advancement, further development of planar tracking, particularly in the deep learning era, is largely limited compared to generic tracking due to the lack of large-scale platforms. To mitigate this, we propose PlanarTrack, a large-scale high-quality and challenging benchmark for planar tracking. Specifically, PlanarTrack consists of 1,150 sequences with over 733K frames, including 1,000 short-term and 150 new long-term videos, which enables comprehensive evaluation of short- and long-term tracking performance. All videos in PlanarTrack are recorded in unconstrained conditions from the wild, which makes PlanarTrack challenging but more realistic for real-world applications. To ensure high-quality annotations, each video frame is manually annotated by four corner points with multi-round meticulous inspection and refinement. To enhance target diversity of PlanarTrack, we only capture a unique target in one sequence, which is different from existing benchmarks. To our best knowledge, PlanarTrack is by far the largest and most diverse and challenging dataset dedicated to planar tracking. To understand performance of existing methods on PlanarTrack and to provide a comparison for future research, we evaluate 10 representative planar trackers with extensive comparison and in-depth analysis. Our evaluation reveals that, unsurprisingly, the top planar trackers heavily degrade on the challenging PlanarTrack, which indicates more efforts are required for improving planar tracking. Our data and results will be released at https://github.com/HengLan/PlanarTrack

Authors:Jiahao Chang, Chongjie Ye, Yushuang Wu, Yuantao Chen, Yidan Zhang, Zhongjin Luo, Chenghong Li, Yihao Zhi, Xiaoguang Han
Title: ReconViaGen: Towards Accurate Multi-view 3D Object Reconstruction via Generation
Abstract:
Existing multi-view 3D object reconstruction methods heavily rely on sufficient overlap between input views, where occlusions and sparse coverage in practice frequently yield severe reconstruction incompleteness. Recent advancements in diffusion-based 3D generative techniques offer the potential to address these limitations by leveraging learned generative priors to hallucinate invisible parts of objects, thereby generating plausible 3D structures. However, the stochastic nature of the inference process limits the accuracy and reliability of generation results, preventing existing reconstruction frameworks from integrating such 3D generative priors. In this work, we comprehensively analyze the reasons why diffusion-based 3D generative methods fail to achieve high consistency, including (a) the insufficiency in constructing and leveraging cross-view connections when extracting multi-view image features as conditions, and (b) the poor controllability of iterative denoising during local detail generation, which easily leads to plausible but inconsistent fine geometric and texture details with inputs. Accordingly, we propose ReconViaGen to innovatively integrate reconstruction priors into the generative framework and devise several strategies that effectively address these issues. Extensive experiments demonstrate that our ReconViaGen can reconstruct complete and accurate 3D models consistent with input views in both global structure and local details.Project page: https://jiahao620.github.io/reconviagen.

Authors:Yingying Feng, Jie Li, Jie Hu, Yukang Zhang, Lei Tan, Jiayi Ji
Title: MDReID: Modality-Decoupled Learning for Any-to-Any Multi-Modal Object Re-Identification
Abstract:
Real-world object re-identification (ReID) systems often face modality inconsistencies, where query and gallery images come from different sensors (e.g., RGB, NIR, TIR). However, most existing methods assume modality-matched conditions, which limits their robustness and scalability in practical applications. To address this challenge, we propose MDReID, a flexible any-to-any image-level ReID framework designed to operate under both modality-matched and modality-mismatched scenarios. MDReID builds on the insight that modality information can be decomposed into two components: modality-shared features that are predictable and transferable, and modality-specific features that capture unique, modality-dependent characteristics. To effectively leverage this, MDReID introduces two key components: the Modality Decoupling Learning (MDL) and Modality-aware Metric Learning (MML). Specifically, MDL explicitly decomposes modality features into modality-shared and modality-specific representations, enabling effective retrieval in both modality-aligned and mismatched scenarios. MML, a tailored metric learning strategy, further enforces orthogonality and complementarity between the two components to enhance discriminative power across modalities. Extensive experiments conducted on three challenging multi-modality ReID benchmarks (RGBNT201, RGBNT100, MSVR310) consistently demonstrate the superiority of MDReID. Notably, MDReID achieves significant mAP improvements of 9.8\%, 3.0\%, and 11.5\% in general modality-matched scenarios, and average gains of 3.4\%, 11.8\%, and 10.9\% in modality-mismatched scenarios, respectively. The code is available at: \textcolor{magenta}{https://github.com/stone96123/MDReID}.

Authors:Ruoyu Wang, Beier Zhu, Junzhi Li, Liangyu Yuan, Chi Zhang
Title: Adaptive Stochastic Coefficients for Accelerating Diffusion Sampling
Abstract:
Diffusion-based generative processes, formulated as differential equation solving, frequently balance computational speed with sample quality. Our theoretical investigation of ODE- and SDE-based solvers reveals complementary weaknesses: ODE solvers accumulate irreducible gradient error along deterministic trajectories, while SDE methods suffer from amplified discretization errors when the step budget is limited. Building upon this insight, we introduce AdaSDE, a novel single-step SDE solver that aims to unify the efficiency of ODEs with the error resilience of SDEs. Specifically, we introduce a single per-step learnable coefficient, estimated via lightweight distillation, which dynamically regulates the error correction strength to accelerate diffusion sampling. Notably, our framework can be integrated with existing solvers to enhance their capabilities. Extensive experiments demonstrate state-of-the-art performance: at 5 NFE, AdaSDE achieves FID scores of 4.18 on CIFAR-10, 8.05 on FFHQ and 6.96 on LSUN Bedroom. Codes are available in https://github.com/WLU-wry02/AdaSDE.

Authors:Veska Tsenkova, Peter Stanchev, Daniel Petrov, Deyan Lazarov
Title: hYOLO Model: Enhancing Object Classification with Hierarchical Context in YOLOv8
Abstract:
Current convolution neural network (CNN) classification methods are predominantly focused on flat classification which aims solely to identify a specified object within an image. However, real-world objects often possess a natural hierarchical organization that can significantly help classification tasks. Capturing the presence of relations between objects enables better contextual understanding as well as control over the severity of mistakes. Considering these aspects, this paper proposes an end-to-end hierarchical model for image detection and classification built upon the YOLO model family. A novel hierarchical architecture, a modified loss function, and a performance metric tailored to the hierarchical nature of the model are introduced. The proposed model is trained and evaluated on two different hierarchical categorizations of the same dataset: a systematic categorization that disregards visual similarities between objects and a categorization accounting for common visual characteristics across classes. The results illustrate how the suggested methodology addresses the inherent hierarchical structure present in real-world objects, which conventional flat classification algorithms often overlook.

Authors:Sam Pollard, Michael Wray
Title: A Video Is Not Worth a Thousand Words
Abstract:
As we become increasingly dependent on vision language models (VLMs) to answer questions about the world around us, there is a significant amount of research devoted to increasing both the difficulty of video question answering (VQA) datasets, and the context lengths of the models that they evaluate. The reliance on large language models as backbones has lead to concerns about potential text dominance, and the exploration of interactions between modalities is underdeveloped. How do we measure whether we're heading in the right direction, with the complexity that multi-modal models introduce? We propose a joint method of computing both feature attributions and modality scores based on Shapley values, where both the features and modalities are arbitrarily definable. Using these metrics, we compare $6$ VLM models of varying context lengths on $4$ representative datasets, focusing on multiple-choice VQA. In particular, we consider video frames and whole textual elements as equal features in the hierarchy, and the multiple-choice VQA task as an interaction between three modalities: video, question and answer. Our results demonstrate a dependence on text and show that the multiple-choice VQA task devolves into a model's ability to ignore distractors. Code available at https://github.com/sjpollard/a-video-is-not-worth-a-thousand-words.

Authors:Lukas Bierling, Davide Pasero, Fleur Dolmans, Helia Ghasemi, Angelo Broere
Title: DecoDINO: 3D Human-Scene Contact Prediction with Semantic Classification
Abstract:
Accurate vertex-level contact prediction between humans and surrounding objects is a prerequisite for high fidelity human object interaction models used in robotics, AR/VR, and behavioral simulation. DECO was the first in the wild estimator for this task but is limited to binary contact maps and struggles with soft surfaces, occlusions, children, and false-positive foot contacts. We address these issues and introduce DecoDINO, a three-branch network based on DECO's framework. It uses two DINOv2 ViT-g/14 encoders, class-balanced loss weighting to reduce bias, and patch-level cross-attention for improved local reasoning. Vertex features are finally passed through a lightweight MLP with a softmax to assign semantic contact labels. We also tested a vision-language model (VLM) to integrate text features, but the simpler architecture performed better and was used instead. On the DAMON benchmark, DecoDINO (i) raises the binary-contact F1 score by 7$\%$, (ii) halves the geodesic error, and (iii) augments predictions with object-level semantic labels. Ablation studies show that LoRA fine-tuning and the dual encoders are key to these improvements. DecoDINO outperformed the challenge baseline in both tasks of the DAMON Challenge. Our code is available at https://github.com/DavidePasero/deco/tree/main.

Authors:Pascal Benschop, Cristian Meo, Justin Dauwels, Jelte P. Mense
Title: Evaluation of Vision-LLMs in Surveillance Video
Abstract:
The widespread use of cameras in our society has created an overwhelming amount of video data, far exceeding the capacity for human monitoring. This presents a critical challenge for public safety and security, as the timely detection of anomalous or criminal events is crucial for effective response and prevention. The ability for an embodied agent to recognize unexpected events is fundamentally tied to its capacity for spatial reasoning. This paper investigates the spatial reasoning of vision-language models (VLMs) by framing anomalous action recognition as a zero-shot, language-grounded task, addressing the embodied perception challenge of interpreting dynamic 3D scenes from sparse 2D video. Specifically, we investigate whether small, pre-trained vision--LLMs can act as spatially-grounded, zero-shot anomaly detectors by converting video into text descriptions and scoring labels via textual entailment. We evaluate four open models on UCF-Crime and RWF-2000 under prompting and privacy-preserving conditions. Few-shot exemplars can improve accuracy for some models, but may increase false positives, and privacy filters -- especially full-body GAN transforms -- introduce inconsistencies that degrade accuracy. These results chart where current vision--LLMs succeed (simple, spatially salient events) and where they falter (noisy spatial cues, identity obfuscation). Looking forward, we outline concrete paths to strengthen spatial grounding without task-specific training: structure-aware prompts, lightweight spatial memory across clips, scene-graph or 3D-pose priors during description, and privacy methods that preserve action-relevant geometry. This positions zero-shot, language-grounded pipelines as adaptable building blocks for embodied, real-world video understanding. Our implementation for evaluating VLMs is publicly available at: https://github.com/pascalbenschopTU/VLLM_AnomalyRecognition

Authors:Omer Jauhar Khan, Sudais Khan, Hafeez Anwar
Title: Seeing Structural Failure Before it Happens: An Image-Based Physics-Informed Neural Network (PINN) for Spaghetti Bridge Load Prediction
Abstract:
Physics Informed Neural Networks (PINNs) are gaining attention for their ability to embed physical laws into deep learning models, which is particularly useful in structural engineering tasks with limited data. This paper aims to explore the use of PINNs to predict the weight of small scale spaghetti bridges, a task relevant to understanding load limits and potential failure modes in simplified structural models. Our proposed framework incorporates physics-based constraints to the prediction model for improved performance. In addition to standard PINNs, we introduce a novel architecture named Physics Informed Kolmogorov Arnold Network (PIKAN), which blends universal function approximation theory with physical insights. The structural parameters provided as input to the model are collected either manually or through computer vision methods. Our dataset includes 15 real bridges, augmented to 100 samples, and our best model achieves an $R^2$ score of 0.9603 and a mean absolute error (MAE) of 10.50 units. From applied perspective, we also provide a web based interface for parameter entry and prediction. These results show that PINNs can offer reliable estimates of structural weight, even with limited data, and may help inform early stage failure analysis in lightweight bridge designs. The complete data and code are available at https://github.com/OmerJauhar/PINNS-For-Spaghetti-Bridges.

Authors:Hebaixu Wang, Jing Zhang, Haoyang Chen, Haonan Guo, Di Wang, Jiayi Ma, Bo Du
Title: Residual Diffusion Bridge Model for Image Restoration
Abstract:
Diffusion bridge models establish probabilistic paths between arbitrary paired distributions and exhibit great potential for universal image restoration. Most existing methods merely treat them as simple variants of stochastic interpolants, lacking a unified analytical perspective. Besides, they indiscriminately reconstruct images through global noise injection and removal, inevitably distorting undegraded regions due to imperfect reconstruction. To address these challenges, we propose the Residual Diffusion Bridge Model (RDBM). Specifically, we theoretically reformulate the stochastic differential equations of generalized diffusion bridge and derive the analytical formulas of its forward and reverse processes. Crucially, we leverage the residuals from given distributions to modulate the noise injection and removal, enabling adaptive restoration of degraded regions while preserving intact others. Moreover, we unravel the fundamental mathematical essence of existing bridge models, all of which are special cases of RDBM and empirically demonstrate the optimality of our proposed models. Extensive experiments are conducted to demonstrate the state-of-the-art performance of our method both qualitatively and quantitatively across diverse image restoration tasks. Code is publicly available at https://github.com/MiliLab/RDBM.

Authors:Jie Huang, Xuejing Liu, Sibo Song, Ruibing Hou, Hong Chang, Junyang Lin, Shuai Bai
Title: Revisiting Multimodal Positional Encoding in Vision-Language Models
Abstract:
Multimodal position encoding is essential for vision-language models, yet there has been little systematic investigation into multimodal position encoding. We conduct a comprehensive analysis of multimodal Rotary Positional Embedding (RoPE) by examining its two core components: position design and frequency allocation. Through extensive experiments, we identify three key guidelines: positional coherence, full frequency utilization, and preservation of textual priors-ensuring unambiguous layout, rich representation, and faithful transfer from the pre-trained LLM. Based on these insights, we propose Multi-Head RoPE (MHRoPE) and MRoPE-Interleave (MRoPE-I), two simple and plug-and-play variants that require no architectural changes. Our methods consistently outperform existing approaches across diverse benchmarks, with significant improvements in both general and fine-grained multimodal understanding. Code will be avaliable at https://github.com/JJJYmmm/Multimodal-RoPEs.

Authors:Oskar Natan, Jun Miura
Title: Seq-DeepIPC: Sequential Sensing for End-to-End Control in Legged Robot Navigation
Abstract:
We present Seq-DeepIPC, a sequential end-to-end perception-to-control model for legged robot navigation in realworld environments. Seq-DeepIPC advances intelligent sensing for autonomous legged navigation by tightly integrating multi-modal perception (RGB-D + GNSS) with temporal fusion and control. The model jointly predicts semantic segmentation and depth estimation, giving richer spatial features for planning and control. For efficient deployment on edge devices, we use EfficientNet-B0 as the encoder, reducing computation while maintaining accuracy. Heading estimation is simplified by removing the noisy IMU and instead computing the bearing angle directly from consecutive GNSS positions. We collected a larger and more diverse dataset that includes both road and grass terrains, and validated Seq-DeepIPC on a robot dog. Comparative and ablation studies show that sequential inputs improve perception and control in our models, while other baselines do not benefit. Seq-DeepIPC achieves competitive or better results with reasonable model size; although GNSS-only heading is less reliable near tall buildings, it is robust in open areas. Overall, Seq-DeepIPC extends end-to-end navigation beyond wheeled robots to more versatile and temporally-aware systems. To support future research, we will release the codes to our GitHub repository at https://github.com/oskarnatan/Seq-DeepIPC.

Authors:Youcan Xu, Zhen Wang, Jiaxin Shi, Kexin Li, Feifei Shao, Jun Xiao, Yi Yang, Jun Yu, Long Chen
Title: CoMo: Compositional Motion Customization for Text-to-Video Generation
Abstract:
While recent text-to-video models excel at generating diverse scenes, they struggle with precise motion control, particularly for complex, multi-subject motions. Although methods for single-motion customization have been developed to address this gap, they fail in compositional scenarios due to two primary challenges: motion-appearance entanglement and ineffective multi-motion blending. This paper introduces CoMo, a novel framework for $\textbf{compositional motion customization}$ in text-to-video generation, enabling the synthesis of multiple, distinct motions within a single video. CoMo addresses these issues through a two-phase approach. First, in the single-motion learning phase, a static-dynamic decoupled tuning paradigm disentangles motion from appearance to learn a motion-specific module. Second, in the multi-motion composition phase, a plug-and-play divide-and-merge strategy composes these learned motions without additional training by spatially isolating their influence during the denoising process. To facilitate research in this new domain, we also introduce a new benchmark and a novel evaluation metric designed to assess multi-motion fidelity and blending. Extensive experiments demonstrate that CoMo achieves state-of-the-art performance, significantly advancing the capabilities of controllable video generation. Our project page is at https://como6.github.io/.

Authors:Md Mostafijur Rahman, Radu Marculescu
Title: LoMix: Learnable Weighted Multi-Scale Logits Mixing for Medical Image Segmentation
Abstract:
U-shaped networks output logits at multiple spatial scales, each capturing a different blend of coarse context and fine detail. Yet, training still treats these logits in isolation - either supervising only the final, highest-resolution logits or applying deep supervision with identical loss weights at every scale - without exploring mixed-scale combinations. Consequently, the decoder output misses the complementary cues that arise only when coarse and fine predictions are fused. To address this issue, we introduce LoMix (Logits Mixing), a NAS-inspired, differentiable plug-and-play module that generates new mixed-scale outputs and learns how exactly each of them should guide the training process. More precisely, LoMix mixes the multi-scale decoder logits with four lightweight fusion operators: addition, multiplication, concatenation, and attention-based weighted fusion, yielding a rich set of synthetic mutant maps. Every original or mutant map is given a softplus loss weight that is co-optimized with network parameters, mimicking a one-step architecture search that automatically discovers the most useful scales, mixtures, and operators. Plugging LoMix into recent U-shaped architectures (i.e., PVT-V2-B2 backbone with EMCAD decoder) on Synapse 8-organ dataset improves DICE by +4.2% over single-output supervision, +2.2% over deep supervision, and +1.5% over equally weighted additive fusion, all with zero inference overhead. When training data are scarce (e.g., one or two labeled scans), the advantage grows to +9.23%, underscoring LoMix's data efficiency. Across four benchmarks and diverse U-shaped networks, LoMiX improves DICE by up to +13.5% over single-output supervision, confirming that learnable weighted mixed-scale fusion generalizes broadly while remaining data efficient, fully interpretable, and overhead-free at inference. Our code is available at https://github.com/SLDGroup/LoMix.

Authors:Quanjian Song, Donghao Zhou, Jingyu Lin, Fei Shen, Jiaze Wang, Xiaowei Hu, Cunjian Chen, Pheng-Ann Heng
Title: SceneDecorator: Towards Scene-Oriented Story Generation with Scene Planning and Scene Consistency
Abstract:
Recent text-to-image models have revolutionized image generation, but they still struggle with maintaining concept consistency across generated images. While existing works focus on character consistency, they often overlook the crucial role of scenes in storytelling, which restricts their creativity in practice. This paper introduces scene-oriented story generation, addressing two key challenges: (i) scene planning, where current methods fail to ensure scene-level narrative coherence by relying solely on text descriptions, and (ii) scene consistency, which remains largely unexplored in terms of maintaining scene consistency across multiple stories. We propose SceneDecorator, a training-free framework that employs VLM-Guided Scene Planning to ensure narrative coherence across different scenes in a ``global-to-local'' manner, and Long-Term Scene-Sharing Attention to maintain long-term scene consistency and subject diversity across generated stories. Extensive experiments demonstrate the superior performance of SceneDecorator, highlighting its potential to unleash creativity in the fields of arts, films, and games.

Authors:Bohan Li, Xin Jin, Hu Zhu, Hongsi Liu, Ruikai Li, Jiazhe Guo, Kaiwen Cai, Chao Ma, Yueming Jin, Hao Zhao, Xiaokang Yang, Wenjun Zeng
Title: Scaling Up Occupancy-centric Driving Scene Generation: Dataset and Method
Abstract:
Driving scene generation is a critical domain for autonomous driving, enabling downstream applications, including perception and planning evaluation. Occupancy-centric methods have recently achieved state-of-the-art results by offering consistent conditioning across frames and modalities; however, their performance heavily depends on annotated occupancy data, which still remains scarce. To overcome this limitation, we curate Nuplan-Occ, the largest semantic occupancy dataset to date, constructed from the widely used Nuplan benchmark. Its scale and diversity facilitate not only large-scale generative modeling but also autonomous driving downstream applications. Based on this dataset, we develop a unified framework that jointly synthesizes high-quality semantic occupancy, multi-view videos, and LiDAR point clouds. Our approach incorporates a spatio-temporal disentangled architecture to support high-fidelity spatial expansion and temporal forecasting of 4D dynamic occupancy. To bridge modal gaps, we further propose two novel techniques: a Gaussian splatting-based sparse point map rendering strategy that enhances multi-view video generation, and a sensor-aware embedding strategy that explicitly models LiDAR sensor properties for realistic multi-LiDAR simulation. Extensive experiments demonstrate that our method achieves superior generation fidelity and scalability compared to existing approaches, and validates its practical value in downstream tasks. Repo: https://github.com/Arlo0o/UniScene-Unified-Occupancy-centric-Driving-Scene-Generation/tree/v2

Authors:Matthew So, Judah Goldfeder, Mark Lis, Hod Lipson
Title: Bi-Encoder Contrastive Learning for Fingerprint and Iris Biometrics
Abstract:
There has been a historic assumption that the biometrics of an individual are statistically uncorrelated. We test this assumption by training Bi-Encoder networks on three verification tasks, including fingerprint-to-fingerprint matching, iris-to-iris matching, and cross-modal fingerprint-to-iris matching using 274 subjects with $\sim$100k fingerprints and 7k iris images. We trained ResNet-50 and Vision Transformer backbones in Bi-Encoder architectures such that the contrastive loss between images sampled from the same individual is minimized. The iris ResNet architecture reaches 91 ROC AUC score for iris-to-iris matching, providing clear evidence that the left and right irises of an individual are correlated. Fingerprint models reproduce the positive intra-subject suggested by prior work in this space. This is the first work attempting to use Vision Transformers for this matching. Cross-modal matching rises only slightly above chance, which suggests that more data and a more sophisticated pipeline is needed to obtain compelling results. These findings continue challenge independence assumptions of biometrics and we plan to extend this work to other biometrics in the future. Code available: https://github.com/MatthewSo/bio_fingerprints_iris.

Authors:Lexiang Xiong, Chengyu Liu, Jingwen Ye, Yan Liu, Yuecong Xu
Title: Semantic Surgery: Zero-Shot Concept Erasure in Diffusion Models
Abstract:
Concept erasure in text-to-image diffusion models is crucial for mitigating harmful content, yet existing methods often compromise generative quality. We introduce Semantic Surgery, a novel training-free, zero-shot framework for concept erasure that operates directly on text embeddings before the diffusion process. It dynamically estimates the presence of target concepts in a prompt and performs a calibrated vector subtraction to neutralize their influence at the source, enhancing both erasure completeness and locality. The framework includes a Co-Occurrence Encoding module for robust multi-concept erasure and a visual feedback loop to address latent concept persistence. As a training-free method, Semantic Surgery adapts dynamically to each prompt, ensuring precise interventions. Extensive experiments on object, explicit content, artistic style, and multi-celebrity erasure tasks show our method significantly outperforms state-of-the-art approaches. We achieve superior completeness and robustness while preserving locality and image quality (e.g., 93.58 H-score in object erasure, reducing explicit content to just 1 instance, and 8.09 H_a in style erasure with no quality degradation). This robustness also allows our framework to function as a built-in threat detection system, offering a practical solution for safer text-to-image generation.

Authors:Omri Hirsch, Ron Shapira Weber, Shira Ifergane, Oren Freifeld
Title: FastJAM: a Fast Joint Alignment Model for Images
Abstract:
Joint Alignment (JA) of images aims to align a collection of images into a unified coordinate frame, such that semantically-similar features appear at corresponding spatial locations. Most existing approaches often require long training times, large-capacity models, and extensive hyperparameter tuning. We introduce FastJAM, a rapid, graph-based method that drastically reduces the computational complexity of joint alignment tasks. FastJAM leverages pairwise matches computed by an off-the-shelf image matcher, together with a rapid nonparametric clustering, to construct a graph representing intra- and inter-image keypoint relations. A graph neural network propagates and aggregates these correspondences, efficiently predicting per-image homography parameters via image-level pooling. Utilizing an inverse-compositional loss, that eliminates the need for a regularization term over the predicted transformations (and thus also obviates the hyperparameter tuning associated with such terms), FastJAM performs image JA quickly and effectively. Experimental results on several benchmarks demonstrate that FastJAM achieves results better than existing modern JA methods in terms of alignment quality, while reducing computation time from hours or minutes to mere seconds. Our code is available at our project webpage, https://bgu-cs-vil.github.io/FastJAM/

Authors:Aleksandar Pramov
Title: LLM-based Fusion of Multi-modal Features for Commercial Memorability Prediction
Abstract:
This paper addresses the prediction of commercial (brand) memorability as part of "Subtask 2: Commercial/Ad Memorability" within the "Memorability: Predicting movie and commercial memorability" task at the MediaEval 2025 workshop competition. We propose a multimodal fusion system with a Gemma-3 LLM backbone that integrates pre-computed visual (ViT) and textual (E5) features by multi-modal projections. The model is adapted using Low-Rank Adaptation (LoRA). A heavily-tuned ensemble of gradient boosted trees serves as a baseline. A key contribution is the use of LLM-generated rationale prompts, grounded in expert-derived aspects of memorability, to guide the fusion model. The results demonstrate that the LLM-based system exhibits greater robustness and generalization performance on the final test set, compared to the baseline. The paper's codebase can be found at https://github.com/dsgt-arc/mediaeval-2025-memorability

Authors:Yizhuo Wu, Francesco Fioranelli, Chang Gao
Title: Neural-HAR: A Dimension-Gated CNN Accelerator for Real-Time Radar Human Activity Recognition
Abstract:
Radar-based human activity recognition (HAR) is attractive for unobtrusive and privacy-preserving monitoring, yet many CNN/RNN solutions remain too heavy for edge deployment, and even lightweight ViT/SSM variants often exceed practical compute and memory budgets. We introduce Neural-HAR, a dimension-gated CNN accelerator tailored for real-time radar HAR on resource-constrained platforms. At its core is GateCNN, a parameter-efficient Doppler-temporal network that (i) embeds Doppler vectors to emphasize frequency evolution over time and (ii) applies dual-path gated convolutions that modulate Doppler-aware content features with temporal gates, complemented by a residual path for stable training. On the University of Glasgow UoG2020 continuous radar dataset, GateCNN attains 86.4% accuracy with only 2.7k parameters and 0.28M FLOPs per inference, comparable to CNN-BiGRU at a fraction of the complexity. Our FPGA prototype on Xilinx Zynq-7000 Z-7007S reaches 107.5 $μ$s latency and 15 mW dynamic power using LUT-based ROM and distributed RAM only (zero DSP/BRAM), demonstrating real-time, energy-efficient edge inference. Code and HLS conversion scripts are available at https://github.com/lab-emi/AIRHAR.

Authors:Ningli Xu, Rongjun Qin
Title: Cross-view Localization and Synthesis -- Datasets, Challenges and Opportunities
Abstract:
Cross-view localization and synthesis are two fundamental tasks in cross-view visual understanding, which deals with cross-view datasets: overhead (satellite or aerial) and ground-level imagery. These tasks have gained increasing attention due to their broad applications in autonomous navigation, urban planning, and augmented reality. Cross-view localization aims to estimate the geographic position of ground-level images based on information provided by overhead imagery while cross-view synthesis seeks to generate ground-level images based on information from the overhead imagery. Both tasks remain challenging due to significant differences in viewing perspective, resolution, and occlusion, which are widely embedded in cross-view datasets. Recent years have witnessed rapid progress driven by the availability of large-scale datasets and novel approaches. Typically, cross-view localization is formulated as an image retrieval problem where ground-level features are matched with tiled overhead images feature, extracted by convolutional neural networks (CNNs) or vision transformers (ViTs) for cross-view feature embedding. Cross-view synthesis, on the other hand, seeks to generate ground-level views based on information from overhead imagery, generally using generative adversarial networks (GANs) or diffusion models. This paper presents a comprehensive survey of advances in cross-view localization and synthesis, reviewing widely used datasets, highlighting key challenges, and providing an organized overview of state-of-the-art techniques. Furthermore, it discusses current limitations, offers comparative analyses, and outlines promising directions for future research. We also include the project page via https://github.com/GDAOSU/Awesome-Cross-View-Methods.

Authors:Hao Li, Zhengyu Zou, Fangfu Liu, Xuanyang Zhang, Fangzhou Hong, Yukang Cao, Yushi Lan, Manyuan Zhang, Gang Yu, Dingwen Zhang, Ziwei Liu
Title: IGGT: Instance-Grounded Geometry Transformer for Semantic 3D Reconstruction
Abstract:
Humans naturally perceive the geometric structure and semantic content of a 3D world as intertwined dimensions, enabling coherent and accurate understanding of complex scenes. However, most prior approaches prioritize training large geometry models for low-level 3D reconstruction and treat high-level spatial understanding in isolation, overlooking the crucial interplay between these two fundamental aspects of 3D-scene analysis, thereby limiting generalization and leading to poor performance in downstream 3D understanding tasks. Recent attempts have mitigated this issue by simply aligning 3D models with specific language models, thus restricting perception to the aligned model's capacity and limiting adaptability to downstream tasks. In this paper, we propose InstanceGrounded Geometry Transformer (IGGT), an end-to-end large unified transformer to unify the knowledge for both spatial reconstruction and instance-level contextual understanding. Specifically, we design a 3D-Consistent Contrastive Learning strategy that guides IGGT to encode a unified representation with geometric structures and instance-grounded clustering through only 2D visual inputs. This representation supports consistent lifting of 2D visual inputs into a coherent 3D scene with explicitly distinct object instances. To facilitate this task, we further construct InsScene-15K, a large-scale dataset with high-quality RGB images, poses, depth maps, and 3D-consistent instance-level mask annotations with a novel data curation pipeline.

Authors:Wenlong Li, Yifei Xu, Yuan Rao, Zhenhua Wang, Shuiguang Deng
Title: VADTree: Explainable Training-Free Video Anomaly Detection via Hierarchical Granularity-Aware Tree
Abstract:
Video anomaly detection (VAD) focuses on identifying anomalies in videos. Supervised methods demand substantial in-domain training data and fail to deliver clear explanations for anomalies. In contrast, training-free methods leverage the knowledge reserves and language interactivity of large pre-trained models to detect anomalies. However, the current fixed-length temporal window sampling approaches struggle to accurately capture anomalies with varying temporal spans. Therefore, we propose VADTree that utilizes a Hierarchical Granularityaware Tree (HGTree) structure for flexible sampling in VAD. VADTree leverages the knowledge embedded in a pre-trained Generic Event Boundary Detection (GEBD) model to characterize potential anomaly event boundaries. Specifically, VADTree decomposes the video into generic event nodes based on boundary confidence, and performs adaptive coarse-fine hierarchical structuring and redundancy removal to construct the HGTree. Then, the multi-dimensional priors are injected into the visual language models (VLMs) to enhance the node-wise anomaly perception, and anomaly reasoning for generic event nodes is achieved via large language models (LLMs). Finally, an inter-cluster node correlation method is used to integrate the multi-granularity anomaly scores. Extensive experiments on three challenging datasets demonstrate that VADTree achieves state-of-the-art performance in training-free settings while drastically reducing the number of sampled video segments. The code will be available at https://github.com/wenlongli10/VADTree.

Authors:Jinpeng Dong, Chen Li, Yutong Lin, Jingwen Fu, Sanping Zhou, Nanning Zheng
Title: DAMap: Distance-aware MapNet for High Quality HD Map Construction
Abstract:
Predicting High-definition (HD) map elements with high quality (high classification and localization scores) is crucial to the safety of autonomous driving vehicles. However, current methods perform poorly in high quality predictions due to inherent task misalignment. Two main factors are responsible for misalignment: 1) inappropriate task labels due to one-to-many matching queries sharing the same labels, and 2) sub-optimal task features due to task-shared sampling mechanism. In this paper, we reveal two inherent defects in current methods and develop a novel HD map construction method named DAMap to address these problems. Specifically, DAMap consists of three components: Distance-aware Focal Loss (DAFL), Hybrid Loss Scheme (HLS), and Task Modulated Deformable Attention (TMDA). The DAFL is introduced to assign appropriate classification labels for one-to-many matching samples. The TMDA is proposed to obtain discriminative task-specific features. Furthermore, the HLS is proposed to better utilize the advantages of the DAFL. We perform extensive experiments and consistently achieve performance improvement on the NuScenes and Argoverse2 benchmarks under different metrics, baselines, splits, backbones, and schedules. Code will be available at https://github.com/jpdong-xjtu/DAMap.

Authors:Hagay Michaeli, Daniel Soudry
Title: Alias-Free ViT: Fractional Shift Invariance via Linear Attention
Abstract:
Transformers have emerged as a competitive alternative to convnets in vision tasks, yet they lack the architectural inductive bias of convnets, which may hinder their potential performance. Specifically, Vision Transformers (ViTs) are not translation-invariant and are more sensitive to minor image translations than standard convnets. Previous studies have shown, however, that convnets are also not perfectly shift-invariant, due to aliasing in downsampling and nonlinear layers. Consequently, anti-aliasing approaches have been proposed to certify convnets' translation robustness. Building on this line of work, we propose an Alias-Free ViT, which combines two main components. First, it uses alias-free downsampling and nonlinearities. Second, it uses linear cross-covariance attention that is shift-equivariant to both integer and fractional translations, enabling a shift-invariant global representation. Our model maintains competitive performance in image classification and outperforms similar-sized models in terms of robustness to adversarial translations.

Authors:Anand, Umberto Cappellazzo, Stavros Petridis, Maja Pantic
Title: Mitigating Attention Sinks and Massive Activations in Audio-Visual Speech Recognition with LLMS
Abstract:
Large language models (LLMs) have recently advanced auditory speech recognition (ASR), visual speech recognition (VSR), and audio-visual speech recognition (AVSR). However, understanding of their internal dynamics under fine-tuning remains limited. In natural language processing, recent work has revealed attention sinks, tokens that attract disproportionately high attention, and associated massive activations in which some features of sink tokens exhibit huge activation in LLMs. In this work, we are the first to study these phenomena in multimodal speech recognition. Through a detailed analysis of audio-visual LLMs, we identify attention sinks and massive activations not only at the BOS token but also at intermediate low-semantic tokens across ASR, VSR, and AVSR. We show that massive activations originate in the MLP layers and correspond to fixed feature indices across all sink tokens. We further show that intermediate sink tokens exhibit high cosine similarity to the BOS token, thereby amplifying attention and activation. Building on these insights, we introduce a simple decorrelation loss that reduces cosine similarity between BOS and other tokens, effectively mitigating intermediate sinks and massive activations. Furthermore, our method improves word error rate (WER) under high audio-visual feature downsampling while remaining stable at lower downsampling rates.

Authors:Boyi Zheng, Yalin Zheng, Hrvoje Bogunović, Qing Liu
Title: PSScreen V2: Partially Supervised Multiple Retinal Disease Screening
Abstract:
In this work, we propose PSScreen V2, a partially supervised self-training framework for multiple retinal disease screening. Unlike previous methods that rely on fully labelled or single-domain datasets, PSScreen V2 is designed to learn from multiple partially labelled datasets with different distributions, addressing both label absence and domain shift challenges. To this end, PSScreen V2 adopts a three-branch architecture with one teacher and two student networks. The teacher branch generates pseudo labels from weakly augmented images to address missing labels, while the two student branches introduce novel feature augmentation strategies: Low-Frequency Dropout (LF-Dropout), which enhances domain robustness by randomly discarding domain-related low-frequency components, and Low-Frequency Uncertainty (LF-Uncert), which estimates uncertain domain variability via adversarially learned Gaussian perturbations of low-frequency statistics. Extensive experiments on multiple in-domain and out-of-domain fundus datasets demonstrate that PSScreen V2 achieves state-of-the-art performance and superior domain generalization ability. Furthermore, compatibility tests with diverse backbones, including the vision foundation model DINOv2, as well as evaluations on chest X-ray datasets, highlight the universality and adaptability of the proposed framework. The codes are available at https://github.com/boyiZheng99/PSScreen_V2.

Authors:Jian Sun, Kangdao Liu, Chi Zhang, Chuangquan Chen, Junge Shen, Chi-Man Vong
Title: Cross-View UAV Geo-Localization with Precision-Focused Efficient Design: A Hierarchical Distillation Approach with Multi-view Refinement
Abstract:
Cross-view geo-localization (CVGL) enables UAV localization by matching aerial images to geo-tagged satellite databases, which is critical for autonomous navigation in GNSS-denied environments. However, existing methods rely on resource-intensive fine-grained feature extraction and alignment, where multiple branches and modules significantly increase inference costs, limiting their deployment on edge devices. We propose Precision-Focused Efficient Design (PFED), a resource-efficient framework combining hierarchical knowledge transfer and multi-view representation refinement. This innovative method comprises two key components: 1) During training, Hierarchical Distillation paradigm for fast and accurate CVGL (HD-CVGL), coupled with Uncertainty-Aware Prediction Alignment (UAPA) to distill essential information and mitigate the data imbalance without incurring additional inference overhead. 2) During inference, an efficient Multi-view Refinement Module (MRM) leverages mutual information to filter redundant samples and effectively utilize the multi-view data. Extensive experiments show that PFED achieves state-of-the-art performance in both accuracy and efficiency, reaching 97.15\% Recall@1 on University-1652 while being over $5 \times$ more efficient in FLOPs and $3 \times$ faster than previous top methods. Furthermore, PFED runs at 251.5 FPS on the AGX Orin edge device, demonstrating its practical viability for real-time UAV applications. The project is available at https://github.com/SkyEyeLoc/PFED

Authors:Rui Jin, Chen Chen, Yin Liu, Hongfu Sun, Min Zeng, Min Li, Yang Gao
Title: GateFuseNet: An Adaptive 3D Multimodal Neuroimaging Fusion Network for Parkinson's Disease Diagnosis
Abstract:
Accurate diagnosis of Parkinson's disease (PD) from MRI remains challenging due to symptom variability and pathological heterogeneity. Most existing methods rely on conventional magnitude-based MRI modalities, such as T1-weighted images (T1w), which are less sensitive to PD pathology than Quantitative Susceptibility Mapping (QSM), a phase-based MRI technique that quantifies iron deposition in deep gray matter nuclei. In this study, we propose GateFuseNet, an adaptive 3D multimodal fusion network that integrates QSM and T1w images for PD diagnosis. The core innovation lies in a gated fusion module that learns modality-specific attention weights and channel-wise gating vectors for selective feature modulation. This hierarchical gating mechanism enhances ROI-aware features while suppressing irrelevant signals. Experimental results show that our method outperforms three existing state-of-the-art approaches, achieving 85.00% accuracy and 92.06% AUC. Ablation studies further validate the contributions of ROI guidance, multimodal integration, and fusion positioning. Grad-CAM visualizations confirm the model's focus on clinically relevant pathological regions. The source codes and pretrained models can be found at https://github.com/YangGaoUQ/GateFuseNet

Authors:Yupeng Xie, Zhiyang Zhang, Yifan Wu, Sirong Lu, Jiayi Zhang, Zhaoyang Yu, Jinlin Wang, Sirui Hong, Bang Liu, Chenglin Wu, Yuyu Luo
Title: VisJudge-Bench: Aesthetics and Quality Assessment of Visualizations
Abstract:
Visualization, a domain-specific yet widely used form of imagery, is an effective way to turn complex datasets into intuitive insights, and its value depends on whether data are faithfully represented, clearly communicated, and aesthetically designed. However, evaluating visualization quality is challenging: unlike natural images, it requires simultaneous judgment across data encoding accuracy, information expressiveness, and visual aesthetics. Although multimodal large language models (MLLMs) have shown promising performance in aesthetic assessment of natural images, no systematic benchmark exists for measuring their capabilities in evaluating visualizations. To address this, we propose VisJudge-Bench, the first comprehensive benchmark for evaluating MLLMs' performance in assessing visualization aesthetics and quality. It contains 3,090 expert-annotated samples from real-world scenarios, covering single visualizations, multiple visualizations, and dashboards across 32 chart types. Systematic testing on this benchmark reveals that even the most advanced MLLMs (such as GPT-5) still exhibit significant gaps compared to human experts in judgment, with a Mean Absolute Error (MAE) of 0.551 and a correlation with human ratings of only 0.429. To address this issue, we propose VisJudge, a model specifically designed for visualization aesthetics and quality assessment. Experimental results demonstrate that VisJudge significantly narrows the gap with human judgment, reducing the MAE to 0.442 (a 19.8% reduction) and increasing the consistency with human experts to 0.681 (a 58.7% improvement) compared to GPT-5. The benchmark is available at https://github.com/HKUSTDial/VisJudgeBench.

Authors:Seyed Ahmad Hosseini Miangoleh, Amin Jalal Aghdasian, Farzaneh Abdollahi
Title: BLIP-FusePPO: A Vision-Language Deep Reinforcement Learning Framework for Lane Keeping in Autonomous Vehicles
Abstract:
In this paper, we propose Bootstrapped Language-Image Pretraining-driven Fused State Representation in Proximal Policy Optimization (BLIP-FusePPO), a novel multimodal reinforcement learning (RL) framework for autonomous lane-keeping (LK), in which semantic embeddings generated by a vision-language model (VLM) are directly fused with geometric states, LiDAR observations, and Proportional-Integral-Derivative-based (PID) control feedback within the agent observation space. The proposed method lets the agent learn driving rules that are aware of their surroundings and easy to understand by combining high-level scene understanding from the VLM with low-level control and spatial signals. Our architecture brings together semantic, geometric, and control-aware representations to make policy learning more robust. A hybrid reward function that includes semantic alignment, LK accuracy, obstacle avoidance, and speed regulation helps learning to be more efficient and generalizable. Our method is different from the approaches that only use semantic models to shape rewards. Instead, it directly embeds semantic features into the state representation. This cuts down on expensive runtime inference and makes sure that semantic guidance is always available. The simulation results show that the proposed model is better at LK stability and adaptability than the best vision-based and multimodal RL baselines in a wide range of difficult driving situations. We make our code publicly available.

Authors:Jindong Yang, Han Fang, Weiming Zhang, Nenghai Yu, Kejiang Chen
Title: T2SMark: Balancing Robustness and Diversity in Noise-as-Watermark for Diffusion Models
Abstract:
Diffusion models have advanced rapidly in recent years, producing high-fidelity images while raising concerns about intellectual property protection and the misuse of generative AI. Image watermarking for diffusion models, particularly Noise-as-Watermark (NaW) methods, encode watermark as specific standard Gaussian noise vector for image generation, embedding the infomation seamlessly while maintaining image quality. For detection, the generation process is inverted to recover the initial noise vector containing the watermark before extraction. However, existing NaW methods struggle to balance watermark robustness with generation diversity. Some methods achieve strong robustness by heavily constraining initial noise sampling, which degrades user experience, while others preserve diversity but prove too fragile for real-world deployment. To address this issue, we propose T2SMark, a two-stage watermarking scheme based on Tail-Truncated Sampling (TTS). Unlike prior methods that simply map bits to positive or negative values, TTS enhances robustness by embedding bits exclusively in the reliable tail regions while randomly sampling the central zone to preserve the latent distribution. Our two-stage framework then ensures sampling diversity by integrating a randomly generated session key into both encryption pipelines. We evaluate T2SMark on diffusion models with both U-Net and DiT backbones. Extensive experiments show that it achieves an optimal balance between robustness and diversity. Our code is available at \href{https://github.com/0xD009/T2SMark}{https://github.com/0xD009/T2SMark}.

Authors:Changhao Zhang, Matthew J. Clarkson, Mobarak I. Hoque
Title: EndoSfM3D: Learning to 3D Reconstruct Any Endoscopic Surgery Scene using Self-supervised Foundation Model
Abstract:
3D reconstruction of endoscopic surgery scenes plays a vital role in enhancing scene perception, enabling AR visualization, and supporting context-aware decision-making in image-guided surgery. A critical yet challenging step in this process is the accurate estimation of the endoscope's intrinsic parameters. In real surgical settings, intrinsic calibration is hindered by sterility constraints and the use of specialized endoscopes with continuous zoom and telescope rotation. Most existing methods for endoscopic 3D reconstruction do not estimate intrinsic parameters, limiting their effectiveness for accurate and reliable reconstruction. In this paper, we integrate intrinsic parameter estimation into a self-supervised monocular depth estimation framework by adapting the Depth Anything V2 (DA2) model for joint depth, pose, and intrinsics prediction. We introduce an attention-based pose network and a Weight-Decomposed Low-Rank Adaptation (DoRA) strategy for efficient fine-tuning of DA2. Our method is validated on the SCARED and C3VD public datasets, demonstrating superior performance compared to recent state-of-the-art approaches in self-supervised monocular depth estimation and 3D reconstruction. Code and model weights can be found in project repository: https://github.com/MOYF-beta/EndoSfM3D.

Authors:Changti Wu, Shijie Lian, Zihao Liu, Lei Zhang, Laurence Tianruo Yang, Kai Chen
Title: DynaSolidGeo: A Dynamic Benchmark for Genuine Spatial Mathematical Reasoning of VLMs in Solid Geometry
Abstract:
Solid geometry problem solving demands spatial mathematical reasoning that integrates spatial intelligence and symbolic reasoning. However, most existing multimodal mathematical reasoning benchmarks focus primarily on 2D plane geometry, rely on static datasets prone to data contamination and memorization, and evaluate models solely by final answers, overlooking the reasoning process. To address these limitations, we introduce DynaSolidGeo, the first dynamic benchmark for evaluating genuine spatial reasoning in Vision-Language Models (VLMs). Constructed through a semi-automatic annotation pipeline, DynaSolidGeo contains 503 expert-curated seed questions that can, in principle, dynamically generate an unbounded number of diverse multimodal text-visual instances. Beyond answer accuracy, we incorporate process evaluation based on expert-annotated reasoning chains to measure logical validity and causal coherence. Experiments across representative open-source and closed-source VLMs reveal large performance gaps, severe degradation in dynamic settings, and poor performance on tasks requiring high-level spatial intelligence, such as mental rotation and visualization. The code and dataset are available at \href{https://zgca-ai4edu.github.io/DynaSolidGeo/}{DynaSolidGeo}.

Authors:Ali Javidani, Babak Nadjar Araabi, Mohammad Amin Sadeghi
Title: Beyond Augmentation: Leveraging Inter-Instance Relation in Self-Supervised Representation Learning
Abstract:
This paper introduces a novel approach that integrates graph theory into self-supervised representation learning. Traditional methods focus on intra-instance variations generated by applying augmentations. However, they often overlook important inter-instance relationships. While our method retains the intra-instance property, it further captures inter-instance relationships by constructing k-nearest neighbor (KNN) graphs for both teacher and student streams during pretraining. In these graphs, nodes represent samples along with their latent representations. Edges encode the similarity between instances. Following pretraining, a representation refinement phase is performed. In this phase, Graph Neural Networks (GNNs) propagate messages not only among immediate neighbors but also across multiple hops, thereby enabling broader contextual integration. Experimental results on CIFAR-10, ImageNet-100, and ImageNet-1K demonstrate accuracy improvements of 7.3%, 3.2%, and 1.0%, respectively, over state-of-the-art methods. These results highlight the effectiveness of the proposed graph based mechanism. The code is publicly available at https://github.com/alijavidani/SSL-GraphNNCLR.

Authors:Chenyu Zhang, Tairen Zhang, Lanjun Wang, Ruidong Chen, Wenhui Li, Anan Liu
Title: T2I-RiskyPrompt: A Benchmark for Safety Evaluation, Attack, and Defense on Text-to-Image Model
Abstract:
Using risky text prompts, such as pornography and violent prompts, to test the safety of text-to-image (T2I) models is a critical task. However, existing risky prompt datasets are limited in three key areas: 1) limited risky categories, 2) coarse-grained annotation, and 3) low effectiveness. To address these limitations, we introduce T2I-RiskyPrompt, a comprehensive benchmark designed for evaluating safety-related tasks in T2I models. Specifically, we first develop a hierarchical risk taxonomy, which consists of 6 primary categories and 14 fine-grained subcategories. Building upon this taxonomy, we construct a pipeline to collect and annotate risky prompts. Finally, we obtain 6,432 effective risky prompts, where each prompt is annotated with both hierarchical category labels and detailed risk reasons. Moreover, to facilitate the evaluation, we propose a reason-driven risky image detection method that explicitly aligns the MLLM with safety annotations. Based on T2I-RiskyPrompt, we conduct a comprehensive evaluation of eight T2I models, nine defense methods, five safety filters, and five attack strategies, offering nine key insights into the strengths and limitations of T2I model safety. Finally, we discuss potential applications of T2I-RiskyPrompt across various research fields. The dataset and code are provided in https://github.com/datar001/T2I-RiskyPrompt.

Authors:Issa Sugiura, Shuhei Kurita, Yusuke Oda, Daisuke Kawahara, Yasuo Okabe, Naoaki Okazaki
Title: WAON: Large-Scale and High-Quality Japanese Image-Text Pair Dataset for Vision-Language Models
Abstract:
Large-scale and high-quality image-text pair datasets play an important role in developing high-performing Vision-Language Models (VLMs). In this work, we introduce WAON, a large-scale and high-quality Japanese image-text pair dataset containing approximately 155 million examples, collected from Common Crawl. Our dataset construction pipeline employs various techniques, including filtering and deduplication, which have been shown to be effective in previous studies. To evaluate its effectiveness, we also construct WAON-Bench, a manually curated benchmark for Japanese cultural image classification, consisting of 374 classes. To assess the effectiveness of our dataset, we conduct experiments using both WAON and the Japanese subset of ReLAION, one of the most widely used vision-language datasets. We fine-tune SigLIP2, a strong multilingual model, on both datasets. The results demonstrate that WAON enhances model performance on WAON-Bench more efficiently than ReLAION and achieves higher accuracy across all evaluated benchmarks. Furthermore, the model fine-tuned on WAON achieves state-of-the-art performance on several Japanese cultural benchmarks. We release our dataset, model, and code at https://speed1313.github.io/WAON.

Authors:Qiao Li, Jie Li, Yukang Zhang, Lei Tan, Jing Chen, Jiayi Ji
Title: GSAlign: Geometric and Semantic Alignment Network for Aerial-Ground Person Re-Identification
Abstract:
Aerial-Ground person re-identification (AG-ReID) is an emerging yet challenging task that aims to match pedestrian images captured from drastically different viewpoints, typically from unmanned aerial vehicles (UAVs) and ground-based surveillance cameras. The task poses significant challenges due to extreme viewpoint discrepancies, occlusions, and domain gaps between aerial and ground imagery. While prior works have made progress by learning cross-view representations, they remain limited in handling severe pose variations and spatial misalignment. To address these issues, we propose a Geometric and Semantic Alignment Network (GSAlign) tailored for AG-ReID. GSAlign introduces two key components to jointly tackle geometric distortion and semantic misalignment in aerial-ground matching: a Learnable Thin Plate Spline (LTPS) Module and a Dynamic Alignment Module (DAM). The LTPS module adaptively warps pedestrian features based on a set of learned keypoints, effectively compensating for geometric variations caused by extreme viewpoint changes. In parallel, the DAM estimates visibility-aware representation masks that highlight visible body regions at the semantic level, thereby alleviating the negative impact of occlusions and partial observations in cross-view correspondence. A comprehensive evaluation on CARGO with four matching protocols demonstrates the effectiveness of GSAlign, achieving significant improvements of +18.8\% in mAP and +16.8\% in Rank-1 accuracy over previous state-of-the-art methods on the aerial-ground setting. The code is available at: \textcolor{magenta}{https://github.com/stone96123/GSAlign}.

Authors:Amir Mohammad Khadem Hosseini, Sattar Mirzakuchaki
Title: Real-Time Semantic Segmentation on FPGA for Autonomous Vehicles Using LMIINet with the CGRA4ML Framework
Abstract:
Semantic segmentation has emerged as a fundamental problem in computer vision, gaining particular importance in real-time applications such as autonomous driving. The main challenge is achieving high accuracy while operating under computational and hardware constraints. In this research, we present an FPGA-based implementation of real-time semantic segmentation leveraging the lightweight LMIINet architecture and the Coarse-Grained Reconfigurable Array for Machine Learning (CGRA4ML) hardware framework. The model was trained using Quantization-Aware Training (QAT) with 8-bit precision on the Cityscapes dataset, reducing memory footprint by a factor of four while enabling efficient fixed-point computations. Necessary modifications were applied to adapt the model to CGRA4ML constraints, including simplifying skip connections, employing hardware-friendly operations such as depthwise-separable and 1A-1 convolutions, and redesigning parts of the Flatten Transformer. Our implementation achieves approximately 90% pixel accuracy and 45% mean Intersection-over-Union (mIoU), operating in real-time at 20 frames per second (FPS) with 50.1 ms latency on the ZCU104 FPGA board. The results demonstrate the potential of CGRA4ML, with its flexibility in mapping modern layers and off-chip memory utilization for skip connections, provides a path for implementing advanced semantic segmentation networks on FPGA for real-time applications to outperform traditional GPU solutions in terms of power efficiency while maintaining competitive accuracy. The code for this project is publicly available at https://github.com/STAmirr/ cgra4ml_semantic_segmentation

Authors:Kunyang Zhou, Yeqin Shao
Title: DiffusionLane: Diffusion Model for Lane Detection
Abstract:
In this paper, we present a novel diffusion-based model for lane detection, called DiffusionLane, which treats the lane detection task as a denoising diffusion process in the parameter space of the lane. Firstly, we add the Gaussian noise to the parameters (the starting point and the angle) of ground truth lanes to obtain noisy lane anchors, and the model learns to refine the noisy lane anchors in a progressive way to obtain the target lanes. Secondly, we propose a hybrid decoding strategy to address the poor feature representation of the encoder, resulting from the noisy lane anchors. Specifically, we design a hybrid diffusion decoder to combine global-level and local-level decoders for high-quality lane anchors. Then, to improve the feature representation of the encoder, we employ an auxiliary head in the training stage to adopt the learnable lane anchors for enriching the supervision on the encoder. Experimental results on four benchmarks, Carlane, Tusimple, CULane, and LLAMAS, show that DiffusionLane possesses a strong generalization ability and promising detection performance compared to the previous state-of-the-art methods. For example, DiffusionLane with ResNet18 surpasses the existing methods by at least 1\% accuracy on the domain adaptation dataset Carlane. Besides, DiffusionLane with MobileNetV4 gets 81.32\% F1 score on CULane, 96.89\% accuracy on Tusimple with ResNet34, and 97.59\% F1 score on LLAMAS with ResNet101. Code will be available at https://github.com/zkyntu/UnLanedet.

Authors:Jeongin Kim, Wonho Bae, YouLee Han, Giyeong Oh, Youngjae Yu, Danica J. Sutherland, Junhyug Noh
Title: Diffusion-Driven Two-Stage Active Learning for Low-Budget Semantic Segmentation
Abstract:
Semantic segmentation demands dense pixel-level annotations, which can be prohibitively expensive - especially under extremely constrained labeling budgets. In this paper, we address the problem of low-budget active learning for semantic segmentation by proposing a novel two-stage selection pipeline. Our approach leverages a pre-trained diffusion model to extract rich multi-scale features that capture both global structure and fine details. In the first stage, we perform a hierarchical, representation-based candidate selection by first choosing a small subset of representative pixels per image using MaxHerding, and then refining these into a diverse global pool. In the second stage, we compute an entropy-augmented disagreement score (eDALD) over noisy multi-scale diffusion features to capture both epistemic uncertainty and prediction confidence, selecting the most informative pixels for annotation. This decoupling of diversity and uncertainty lets us achieve high segmentation accuracy with only a tiny fraction of labeled pixels. Extensive experiments on four benchmarks (CamVid, ADE-Bed, Cityscapes, and Pascal-Context) demonstrate that our method significantly outperforms existing baselines under extreme pixel-budget regimes. Our code is available at https://github.com/jn-kim/two-stage-edald.

Authors:Yongchuan Cui, Peng Liu, Hui Zhang
Title: Enpowering Your Pansharpening Models with Generalizability: Unified Distribution is All You Need
Abstract:
Existing deep learning-based models for remote sensing pansharpening exhibit exceptional performance on training datasets. However, due to sensor-specific characteristics and varying imaging conditions, these models suffer from substantial performance degradation when applied to unseen satellite data, lacking generalizability and thus limiting their applicability. We argue that the performance drops stem primarily from distributional discrepancies from different sources and the key to addressing this challenge lies in bridging the gap between training and testing distributions. To validate the idea and further achieve a "train once, deploy forever" capability, this paper introduces a novel and intuitive approach to enpower any pansharpening models with generalizability by employing a unified distribution strategy (UniPAN). Specifically, we construct a distribution transformation function that normalizes the pixels sampled from different sources to conform to an identical distribution. The deep models are trained on the transformed domain, and during testing on new datasets, the new data are also transformed to match the training distribution. UniPAN aims to train and test the model on a unified and consistent distribution, thereby enhancing its generalizability. Extensive experiments validate the efficacy of UniPAN, demonstrating its potential to significantly enhance the performance of deep pansharpening models across diverse satellite sensors. Codes: https://github.com/yc-cui/UniPAN.

Authors:Juyeon Kim, Geon Lee, Dongwon Choi, Taeuk Kim, Kijung Shin
Title: Hybrid-Vector Retrieval for Visually Rich Documents: Combining Single-Vector Efficiency and Multi-Vector Accuracy
Abstract:
Retrieval over visually rich documents is essential for tasks such as legal discovery, scientific search, and enterprise knowledge management. Existing approaches fall into two paradigms: single-vector retrieval, which is efficient but coarse, and multi-vector retrieval, which is accurate but computationally expensive. To address this trade-off, we propose HEAVEN, a two-stage hybrid-vector framework. In the first stage, HEAVEN efficiently retrieves candidate pages using a single-vector method over Visually-Summarized Pages (VS-Pages), which assemble representative visual layouts from multiple pages. In the second stage, it reranks candidates with a multi-vector method while filtering query tokens by linguistic importance to reduce redundant computations. To evaluate retrieval systems under realistic conditions, we also introduce ViMDOC, the first benchmark for visually rich, multi-document, and long-document retrieval. Across four benchmarks, HEAVEN attains 99.87% of the Recall@1 performance of multi-vector models on average while reducing per-query computation by 99.82%, achieving efficiency and accuracy. Our code and datasets are available at: https://github.com/juyeonnn/HEAVEN

Authors:Yaokun Li, Lihe Ding, Xiao Chen, Guang Tan, Tianfan Xue
Title: DynamicTree: Interactive Real Tree Animation via Sparse Voxel Spectrum
Abstract:
Generating dynamic and interactive 3D objects, such as trees, has wide applications in virtual reality, games, and world simulation. Nevertheless, existing methods still face various challenges in generating realistic 4D motion for complex real trees. In this paper, we propose DynamicTree, the first framework that can generate long-term, interactive animation of 3D Gaussian Splatting trees. Unlike prior optimization-based methods, our approach generates dynamics in a fast feed-forward manner. The key success of our approach is the use of a compact sparse voxel spectrum to represent the tree movement. Given a 3D tree from Gaussian Splatting reconstruction, our pipeline first generates mesh motion using the sparse voxel spectrum and then binds Gaussians to deform the mesh. Additionally, the proposed sparse voxel spectrum can also serve as a basis for fast modal analysis under external forces, allowing real-time interactive responses. To train our model, we also introduce 4DTree, the first large-scale synthetic 4D tree dataset containing 8,786 animated tree meshes with semantic labels and 100-frame motion sequences. Extensive experiments demonstrate that our method achieves realistic and responsive tree animations, significantly outperforming existing approaches in both visual quality and computational efficiency.

Authors:Guangan Jiang, Tianzi Zhang, Dong Li, Zhenjun Zhao, Haoang Li, Mingrui Li, Hongyu Wang
Title: STG-Avatar: Animatable Human Avatars via Spacetime Gaussian
Abstract:
Realistic animatable human avatars from monocular videos are crucial for advancing human-robot interaction and enhancing immersive virtual experiences. While recent research on 3DGS-based human avatars has made progress, it still struggles with accurately representing detailed features of non-rigid objects (e.g., clothing deformations) and dynamic regions (e.g., rapidly moving limbs). To address these challenges, we present STG-Avatar, a 3DGS-based framework for high-fidelity animatable human avatar reconstruction. Specifically, our framework introduces a rigid-nonrigid coupled deformation framework that synergistically integrates Spacetime Gaussians (STG) with linear blend skinning (LBS). In this hybrid design, LBS enables real-time skeletal control by driving global pose transformations, while STG complements it through spacetime adaptive optimization of 3D Gaussians. Furthermore, we employ optical flow to identify high-dynamic regions and guide the adaptive densification of 3D Gaussians in these regions. Experimental results demonstrate that our method consistently outperforms state-of-the-art baselines in both reconstruction quality and operational efficiency, achieving superior quantitative metrics while retaining real-time rendering capabilities. Our code is available at https://github.com/jiangguangan/STG-Avatar

Authors:Wenxuan Bao, Ruxi Deng, Jingrui He
Title: Mint: A Simple Test-Time Adaptation of Vision-Language Models against Common Corruptions
Abstract:
Pretrained vision-language models such as CLIP achieve strong zero-shot generalization but remain vulnerable to distribution shifts caused by input corruptions. In this work, we investigate how corruptions affect CLIP's image embeddings and uncover a consistent phenomenon we term as embedding variance collapse, where both intra-class and inter-class variances shrink as corruption severity increases. We find that this collapse is closely tied to performance degradation, with inter-class variance strongly correlated with classification accuracy. To explain this phenomenon, we analyze how corruptions alter the structure of the embedding space. Our theoretical results suggest that the visual encoder tends to encode corruption-related signals, which dilute class-discriminative features and compress the representation geometry. We further show that maximizing inter-class variance, even when estimated from pseudo-labels, can provably enhance embedding quality. Based on this insight, we propose Mint, a simple test-time adaptation method that maximizes pseudo-label-based inter-class variance on the fly using a mean accumulator and a gradient accumulator. Mint operates effectively with small batch sizes and consistently improves performance across multiple corruption benchmarks and CLIP architectures. Our code is available at https://github.com/baowenxuan/Mint .

Authors:Karim Elmaaroufi, Liheng Lai, Justin Svegliato, Yutong Bai, Sanjit A. Seshia, Matei Zaharia
Title: GRAID: Enhancing Spatial Reasoning of VLMs Through High-Fidelity Data Generation
Abstract:
Vision Language Models (VLMs) achieve strong performance on many vision-language tasks but often struggle with spatial reasoning$\unicode{x2014}$a prerequisite for many applications. Empirically, we find that a dataset produced by a current training data generation pipeline has a 57.6% human validation rate. These rates stem from current limitations: single-image 3D reconstruction introduces cascading modeling errors and requires wide answer tolerances, while caption-based methods require hyper-detailed annotations and suffer from generative hallucinations. We present GRAID, built on the key insight that qualitative spatial relationships can be reliably determined from 2D geometric primitives alone. By operating exclusively on 2D bounding boxes from standard object detectors, GRAID avoids both 3D reconstruction errors and generative hallucinations, resulting in datasets that are of higher quality than existing tools that produce similar datasets as validated by human evaluations. We apply our framework to the BDD100k, NuImages, and Waymo datasets, generating over 8.5 million high-quality VQA pairs creating questions spanning spatial relations, counting, ranking, and size comparisons. We evaluate one of the datasets and find it achieves 91.16% human-validated accuracy$\unicode{x2014}$compared to 57.6% on a dataset generated by recent work. Critically, we demonstrate that when trained on GRAID data, models learn spatial reasoning concepts that generalize: models fine-tuned on 6 question types improve on over 10 held-out types, with accuracy gains of 47.5% on BDD and 37.9% on NuImages for Llama 3.2B 11B, and when trained on all questions types, achieve improvements on several existing benchmarks such as BLINK. The GRAID framework, datasets, and additional information can be found $\href{this https URL}{here}$.

Authors:Patrick Koller, Amil V. Dravid, Guido M. Schuster, Aggelos K. Katsaggelos
Title: Caption-Driven Explainability: Probing CNNs for Bias via CLIP
Abstract:
Robustness has become one of the most critical problems in machine learning (ML). The science of interpreting ML models to understand their behavior and improve their robustness is referred to as explainable artificial intelligence (XAI). One of the state-of-the-art XAI methods for computer vision problems is to generate saliency maps. A saliency map highlights the pixel space of an image that excites the ML model the most. However, this property could be misleading if spurious and salient features are present in overlapping pixel spaces. In this paper, we propose a caption-based XAI method, which integrates a standalone model to be explained into the contrastive language-image pre-training (CLIP) model using a novel network surgery approach. The resulting caption-based XAI model identifies the dominant concept that contributes the most to the models prediction. This explanation minimizes the risk of the standalone model falling for a covariate shift and contributes significantly towards developing robust ML models. Our code is available at https://github.com/patch0816/caption-driven-xai

Authors:Or Ronai, Vladimir Kulikov, Tomer Michaeli
Title: FlowOpt: Fast Optimization Through Whole Flow Processes for Training-Free Editing
Abstract:
The remarkable success of diffusion and flow-matching models has ignited a surge of works on adapting them at test time for controlled generation tasks. Examples range from image editing to restoration, compression and personalization. However, due to the iterative nature of the sampling process in those models, it is computationally impractical to use gradient-based optimization to directly control the image generated at the end of the process. As a result, existing methods typically resort to manipulating each timestep separately. Here we introduce FlowOpt - a zero-order (gradient-free) optimization framework that treats the entire flow process as a black box, enabling optimization through the whole sampling path without backpropagation through the model. Our method is both highly efficient and allows users to monitor the intermediate optimization results and perform early stopping if desired. We prove a sufficient condition on FlowOpt's step-size, under which convergence to the global optimum is guaranteed. We further show how to empirically estimate this upper bound so as to choose an appropriate step-size. We demonstrate how FlowOpt can be used for image editing, showcasing two options: (i) inversion (determining the initial noise that generates a given image), and (ii) directly steering the edited image to be similar to the source image while conforming to a target text prompt. In both cases, FlowOpt achieves state-of-the-art results while using roughly the same number of neural function evaluations (NFEs) as existing methods. Code and examples are available on the project's webpage.

Authors:Xin Lu, Chuanqing Zhuang, Chenxi Jin, Zhengda Lu, Yiqun Wang, Wu Liu, Jun Xiao
Title: LSF-Animation: Label-Free Speech-Driven Facial Animation via Implicit Feature Representation
Abstract:
Speech-driven 3D facial animation has attracted increasing interest since its potential to generate expressive and temporally synchronized digital humans. While recent works have begun to explore emotion-aware animation, they still depend on explicit one-hot encodings to represent identity and emotion with given emotion and identity labels, which limits their ability to generalize to unseen speakers. Moreover, the emotional cues inherently present in speech are often neglected, limiting the naturalness and adaptability of generated animations. In this work, we propose LSF-Animation, a novel framework that eliminates the reliance on explicit emotion and identity feature representations. Specifically, LSF-Animation implicitly extracts emotion information from speech and captures the identity features from a neutral facial mesh, enabling improved generalization to unseen speakers and emotional states without requiring manual labels. Furthermore, we introduce a Hierarchical Interaction Fusion Block (HIFB), which employs a fusion token to integrate dual transformer features and more effectively integrate emotional, motion-related and identity-related cues. Extensive experiments conducted on the 3DMEAD dataset demonstrate that our method surpasses recent state-of-the-art approaches in terms of emotional expressiveness, identity generalization, and animation realism. The source code will be released at: https://github.com/Dogter521/LSF-Animation.

Authors:Nayan Kumar Singh
Title: A Multimodal, Multitask System for Generating E Commerce Text Listings from Images
Abstract:
Manually generating catchy descriptions and names is labor intensive and a slow process for retailers. Although generative AI provides an automation solution in form of Vision to Language Models (VLM), the current VLMs are prone to factual "hallucinations". Siloed, single task models are not only inefficient but also fail to capture interdependent relationships between features. To address these challenges, we propose an end to end, multi task system that generates factually grounded textual listings from a single image. The contributions of this study are two proposals for the model architecture. First, application of multi task learning approach for fine tuning a vision encoder where a single vision backbone is jointly trained on attribute prediction such as color, hemline and neck style and price regression. Second, introduction of a hierarchical generation process where the model's own predicted attributes are embedded in a prompt and fed to the text decoder to improve factual consistency. The experiments demonstrate the superiority of this architecture. The multi tasking approach outperforms both the independent price regression, with a 3.6% better R2 Value and attribute classification, with a 6.6% improvement F1 score. Critically, the hierarchical generation process proves highly effective, slashing the factual hallucination rate from 12.7% to 7.1%, a 44.5% relative reduction, compared to a non hierarchical ablation. The hierarchical approach also reduces the latency of the autoregressive text generation process by a factor of 3.5 when compared to direct vision to language model of similar size. One minor caveat is that the model does perform 3.5% worse than direct vision-to-language model on ROUGE-L score.

Authors:Yichi Zhang, Zhuo Chen, Lingbing Guo, Lei Liang, Wen Zhang, Huajun Chen
Title: Structured and Abstractive Reasoning on Multi-modal Relational Knowledge Images
Abstract:
Understanding and reasoning with abstractive information from the visual modality presents significant challenges for current multi-modal large language models (MLLMs). Among the various forms of abstractive information, Multi-Modal Relational Knowledge (MMRK), which represents abstract relational structures between multi-modal entities using node-edge formats, remains largely under-explored. In particular, STructured and Abstractive Reasoning (STAR) on such data has received little attention from the research community. To bridge the dual gaps in large-scale high-quality data and capability enhancement methodologies, this paper makes the following key contributions: (i). An automatic STAR data engine capable of synthesizing images with MMRK to build multi-modal instruction data with reliable chain-of-thought thinking for various STAR tasks and (ii). A comprehsive two-stage capability enhancement training framework, accompanied by a suite of evaluation protocols tailored to different STAR tasks. Based upon these contributions, we introduce STAR-64K, a dataset comprising 64K high-quality multi-modal instruction samples, and conduct experiments across 5 open-source MLLMs. Experimental results show that our two-stage enhancement framework enables smaller 3B/7B models to significantly outperform GPT-4o in STAR. Additionally, we provide in-depth analysis regarding the effectiveness of various designs, data transferability, and scalability.

Authors:Usman Ali, Ali Zia, Abdul Rehman, Umer Ramzan, Zohaib Hassan, Talha Sattar, Jing Wang, Wei Xiang
Title: 2D_3D Feature Fusion via Cross-Modal Latent Synthesis and Attention Guided Restoration for Industrial Anomaly Detection
Abstract:
Industrial anomaly detection (IAD) increasingly benefits from integrating 2D and 3D data, but robust cross-modal fusion remains challenging. We propose a novel unsupervised framework, Multi-Modal Attention-Driven Fusion Restoration (MAFR), which synthesises a unified latent space from RGB images and point clouds using a shared fusion encoder, followed by attention-guided, modality-specific decoders. Anomalies are localised by measuring reconstruction errors between input features and their restored counterparts. Evaluations on the MVTec 3D-AD and Eyecandies benchmarks demonstrate that MAFR achieves state-of-the-art results, with a mean I-AUROC of 0.972 and 0.901, respectively. The framework also exhibits strong performance in few-shot learning settings, and ablation studies confirm the critical roles of the fusion architecture and composite loss. MAFR offers a principled approach for fusing visual and geometric information, advancing the robustness and accuracy of industrial anomaly detection. Code is available at https://github.com/adabrh/MAFR

Authors:Le Yang
Title: Mismatch reconstruction theory for unknown measurement matrix in imaging through multimode fiber bending
Abstract:
Multimode fiber imaging requires strict matching between measurement value and measurement matrix to achieve image reconstruction. However, in practical applications, the measurement matrix often cannot be obtained due to unknown system configuration or difficulty in real-time alignment after arbitrary fiber bending, resulting in the failure of traditional reconstruction algorithms. This paper presents a novel mismatch reconstruction theory for solving the problem of image reconstruction when measurement matrix is unknown. We first propose mismatch equation and design matched and calibration solution algorithms to construct a new measurement matrix. In addition, we also provide a detailed proof of these equations and algorithms in the appendix. The experimental results show that under low noise levels, constructed matrix can be used for matched pair in traditional reconstruction algorithms, and reconstruct the original image successfully. Then, we analyze the impact of noise, computational precision and orthogonality on reconstruction performance. The results show that proposed algorithms have a certain degree of robustness. Finally, we discuss the limitations and potential applications of this theory. The code is available: https://github.com/yanglebupt/mismatch-solution.

Authors:Emmanuel U. Ugwu, Zhang Xinming
Title: Promptable Fire Segmentation: Unleashing SAM2's Potential for Real-Time Mobile Deployment with Strategic Bounding Box Guidance
Abstract:
Fire segmentation remains a critical challenge in computer vision due to flames' irregular boundaries, translucent edges, and highly variable intensities. While the Segment Anything Models (SAM and SAM2) have demonstrated impressive cross-domain generalization capabilities, their effectiveness in fire segmentation -- particularly under mobile deployment constraints -- remains largely unexplored. This paper presents the first comprehensive evaluation of SAM2 variants for fire segmentation, focusing on bounding box prompting strategies to enhance deployment feasibility. We systematically evaluate four SAM2.1 variants (tiny, small, base_plus, large) alongside mobile-oriented variants (TinySAM, MobileSAM) across three fire datasets using multiple prompting strategies: automatic, single positive point (SP), single positive point + single negative point (SP+SN), multiple positive points (MP), bounding box (Box), and hybrid variants (Box+SP and Box+MP). Our experimental results demonstrate that bounding box prompts consistently outperform automatic and single point-based approaches, with Box+MP achieving the highest mean IoU (0.64) and Dice coefficient (0.75) on the Khan dataset. Lightweight variants such as TinySAM and MobileSAM further reduce memory and computational costs, making them more suitable for latency-tolerant edge scenarios. Overall, this work provides critical insights for deploying promptable segmentation models in fire monitoring systems and establishes benchmarks for future research in domain-specific SAM applications. Code is available at: https://github.com/UEmmanuel5/ProFSAM

Authors:Jesse Atuhurra, Hidetaka Kamigaito, Taro Watanabe, Koichiro Yoshino
Title: J-ORA: A Framework and Multimodal Dataset for Japanese Object Identification, Reference, Action Prediction in Robot Perception
Abstract:
We introduce J-ORA, a novel multimodal dataset that bridges the gap in robot perception by providing detailed object attribute annotations within Japanese human-robot dialogue scenarios. J-ORA is designed to support three critical perception tasks, object identification, reference resolution, and next-action prediction, by leveraging a comprehensive template of attributes (e.g., category, color, shape, size, material, and spatial relations). Extensive evaluations with both proprietary and open-source Vision Language Models (VLMs) reveal that incorporating detailed object attributes substantially improves multimodal perception performance compared to without object attributes. Despite the improvement, we find that there still exists a gap between proprietary and open-source VLMs. In addition, our analysis of object affordances demonstrates varying abilities in understanding object functionality and contextual relationships across different VLMs. These findings underscore the importance of rich, context-sensitive attribute annotations in advancing robot perception in dynamic environments. See project page at https://jatuhurrra.github.io/J-ORA/.

Authors:Nir Goren, Shai Yehezkel, Omer Dahary, Andrey Voynov, Or Patashnik, Daniel Cohen-Or
Title: Visual Diffusion Models are Geometric Solvers
Abstract:
In this paper we show that visual diffusion models can serve as effective geometric solvers: they can directly reason about geometric problems by working in pixel space. We first demonstrate this on the Inscribed Square Problem, a long-standing problem in geometry that asks whether every Jordan curve contains four points forming a square. We then extend the approach to two other well-known hard geometric problems: the Steiner Tree Problem and the Simple Polygon Problem. Our method treats each problem instance as an image and trains a standard visual diffusion model that transforms Gaussian noise into an image representing a valid approximate solution that closely matches the exact one. The model learns to transform noisy geometric structures into correct configurations, effectively recasting geometric reasoning as image generation. Unlike prior work that necessitates specialized architectures and domain-specific adaptations when applying diffusion to parametric geometric representations, we employ a standard visual diffusion model that operates on the visual representation of the problem. This simplicity highlights a surprising bridge between generative modeling and geometric problem solving. Beyond the specific problems studied here, our results point toward a broader paradigm: operating in image space provides a general and practical framework for approximating notoriously hard problems, and opens the door to tackling a far wider class of challenging geometric tasks.

Authors:Han Yan, Xibin Song, Yifu Wang, Hongdong Li, Pan Ji, Chao Ma
Title: BachVid: Training-Free Video Generation with Consistent Background and Character
Abstract:
Diffusion Transformers (DiTs) have recently driven significant progress in text-to-video (T2V) generation. However, generating multiple videos with consistent characters and backgrounds remains a significant challenge. Existing methods typically rely on reference images or extensive training, and often only address character consistency, leaving background consistency to image-to-video models. We introduce BachVid, the first training-free method that achieves consistent video generation without needing any reference images. Our approach is based on a systematic analysis of DiT's attention mechanism and intermediate features, revealing its ability to extract foreground masks and identify matching points during the denoising process. Our method leverages this finding by first generating an identity video and caching the intermediate variables, and then inject these cached variables into corresponding positions in newly generated videos, ensuring both foreground and background consistency across multiple videos. Experimental results demonstrate that BachVid achieves robust consistency in generated videos without requiring additional training, offering a novel and efficient solution for consistent video generation without relying on reference images or additional training.

Authors:Sikuang Li, Chen Yang, Jiemin Fang, Taoran Yi, Jia Lu, Jiazhong Cen, Lingxi Xie, Wei Shen, Qi Tian
Title: WorldGrow: Generating Infinite 3D World
Abstract:
We tackle the challenge of generating the infinitely extendable 3D world -- large, continuous environments with coherent geometry and realistic appearance. Existing methods face key challenges: 2D-lifting approaches suffer from geometric and appearance inconsistencies across views, 3D implicit representations are hard to scale up, and current 3D foundation models are mostly object-centric, limiting their applicability to scene-level generation. Our key insight is leveraging strong generation priors from pre-trained 3D models for structured scene block generation. To this end, we propose WorldGrow, a hierarchical framework for unbounded 3D scene synthesis. Our method features three core components: (1) a data curation pipeline that extracts high-quality scene blocks for training, making the 3D structured latent representations suitable for scene generation; (2) a 3D block inpainting mechanism that enables context-aware scene extension; and (3) a coarse-to-fine generation strategy that ensures both global layout plausibility and local geometric/textural fidelity. Evaluated on the large-scale 3D-FRONT dataset, WorldGrow achieves SOTA performance in geometry reconstruction, while uniquely supporting infinite scene generation with photorealistic and structurally consistent outputs. These results highlight its capability for constructing large-scale virtual environments and potential for building future world models.

Authors:Ying Xue, Jiaxi Jiang, Rayan Armani, Dominik Hollidt, Yi-Chi Liao, Christian Holz
Title: Group Inertial Poser: Multi-Person Pose and Global Translation from Sparse Inertial Sensors and Ultra-Wideband Ranging
Abstract:
Tracking human full-body motion using sparse wearable inertial measurement units (IMUs) overcomes the limitations of occlusion and instrumentation of the environment inherent in vision-based approaches. However, purely IMU-based tracking compromises translation estimates and accurate relative positioning between individuals, as inertial cues are inherently self-referential and provide no direct spatial reference for others. In this paper, we present a novel approach for robustly estimating body poses and global translation for multiple individuals by leveraging the distances between sparse wearable sensors - both on each individual and across multiple individuals. Our method Group Inertial Poser estimates these absolute distances between pairs of sensors from ultra-wideband ranging (UWB) and fuses them with inertial observations as input into structured state-space models to integrate temporal motion patterns for precise 3D pose estimation. Our novel two-step optimization further leverages the estimated distances for accurately tracking people's global trajectories through the world. We also introduce GIP-DB, the first IMU+UWB dataset for two-person tracking, which comprises 200 minutes of motion recordings from 14 participants. In our evaluation, Group Inertial Poser outperforms previous state-of-the-art methods in accuracy and robustness across synthetic and real-world data, showing the promise of IMU+UWB-based multi-human motion capture in the wild. Code, models, dataset: https://github.com/eth-siplab/GroupInertialPoser

Authors:Ciara Rowles, Varun Jampani, Simon Donné, Shimon Vainer, Julian Parker, Zach Evans
Title: Foley Control: Aligning a Frozen Latent Text-to-Audio Model to Video
Abstract:
Foley Control is a lightweight approach to video-guided Foley that keeps pretrained single-modality models frozen and learns only a small cross-attention bridge between them. We connect V-JEPA2 video embeddings to a frozen Stable Audio Open DiT text-to-audio (T2A) model by inserting compact video cross-attention after the model's existing text cross-attention, so prompts set global semantics while video refines timing and local dynamics. The frozen backbones retain strong marginals (video; audio given text) and the bridge learns the audio-video dependency needed for synchronization -- without retraining the audio prior. To cut memory and stabilize training, we pool video tokens before conditioning. On curated video-audio benchmarks, Foley Control delivers competitive temporal and semantic alignment with far fewer trainable parameters than recent multi-modal systems, while preserving prompt-driven controllability and production-friendly modularity (swap/upgrade encoders or the T2A backbone without end-to-end retraining). Although we focus on Video-to-Foley, the same bridge design can potentially extend to other audio modalities (e.g., speech).

Authors:Qixiu Li, Yu Deng, Yaobo Liang, Lin Luo, Lei Zhou, Chengtang Yao, Lingqi Zeng, Zhiyuan Feng, Huizhi Liang, Sicheng Xu, Yizhong Zhang, Xi Chen, Hao Chen, Lily Sun, Dong Chen, Jiaolong Yang, Baining Guo
Title: Scalable Vision-Language-Action Model Pretraining for Robotic Manipulation with Real-Life Human Activity Videos
Abstract:
This paper presents a novel approach for pretraining robotic manipulation Vision-Language-Action (VLA) models using a large corpus of unscripted real-life video recordings of human hand activities. Treating human hand as dexterous robot end-effector, we show that "in-the-wild" egocentric human videos without any annotations can be transformed into data formats fully aligned with existing robotic V-L-A training data in terms of task granularity and labels. This is achieved by the development of a fully-automated holistic human activity analysis approach for arbitrary human hand videos. This approach can generate atomic-level hand activity segments and their language descriptions, each accompanied with framewise 3D hand motion and camera motion. We process a large volume of egocentric videos and create a hand-VLA training dataset containing 1M episodes and 26M frames. This training data covers a wide range of objects and concepts, dexterous manipulation tasks, and environment variations in real life, vastly exceeding the coverage of existing robot data. We design a dexterous hand VLA model architecture and pretrain the model on this dataset. The model exhibits strong zero-shot capabilities on completely unseen real-world observations. Additionally, fine-tuning it on a small amount of real robot action data significantly improves task success rates and generalization to novel objects in real robotic experiments. We also demonstrate the appealing scaling behavior of the model's task performance with respect to pretraining data scale. We believe this work lays a solid foundation for scalable VLA pretraining, advancing robots toward truly generalizable embodied intelligence.

Authors:Shengtian Yang, Yue Feng, Yingshi Liu, Jingrou Zhang, Jie Qin
Title: MoniTor: Exploiting Large Language Models with Instruction for Online Video Anomaly Detection
Abstract:
Video Anomaly Detection (VAD) aims to locate unusual activities or behaviors within videos. Recently, offline VAD has garnered substantial research attention, which has been invigorated by the progress in large language models (LLMs) and vision-language models (VLMs), offering the potential for a more nuanced understanding of anomalies. However, online VAD has seldom received attention due to real-time constraints and computational intensity. In this paper, we introduce a novel Memory-based online scoring queue scheme for Training-free VAD (MoniTor), to address the inherent complexities in online VAD. Specifically, MoniTor applies a streaming input to VLMs, leveraging the capabilities of pre-trained large-scale models. To capture temporal dependencies more effectively, we incorporate a novel prediction mechanism inspired by Long Short-Term Memory (LSTM) networks. This ensures the model can effectively model past states and leverage previous predictions to identify anomalous behaviors. Thereby, it better understands the current frame. Moreover, we design a scoring queue and an anomaly prior to dynamically store recent scores and cover all anomalies in the monitoring scenario, providing guidance for LLMs to distinguish between normal and abnormal behaviors over time. We evaluate MoniTor on two large datasets (i.e., UCF-Crime and XD-Violence) containing various surveillance and real-world scenarios. The results demonstrate that MoniTor outperforms state-of-the-art methods and is competitive with weakly supervised methods without training. Code is available at https://github.com/YsTvT/MoniTor.

Authors:Honghua Chen, Yushi Lan, Yongwei Chen, Xingang Pan
Title: ArtiLatent: Realistic Articulated 3D Object Generation via Structured Latents
Abstract:
We propose ArtiLatent, a generative framework that synthesizes human-made 3D objects with fine-grained geometry, accurate articulation, and realistic appearance. Our approach jointly models part geometry and articulation dynamics by embedding sparse voxel representations and associated articulation properties, including joint type, axis, origin, range, and part category, into a unified latent space via a variational autoencoder. A latent diffusion model is then trained over this space to enable diverse yet physically plausible sampling. To reconstruct photorealistic 3D shapes, we introduce an articulation-aware Gaussian decoder that accounts for articulation-dependent visibility changes (e.g., revealing the interior of a drawer when opened). By conditioning appearance decoding on articulation state, our method assigns plausible texture features to regions that are typically occluded in static poses, significantly improving visual realism across articulation configurations. Extensive experiments on furniture-like objects from PartNet-Mobility and ACD datasets demonstrate that ArtiLatent outperforms existing approaches in geometric consistency and appearance fidelity. Our framework provides a scalable solution for articulated 3D object synthesis and manipulation.

Authors:Whie Jung, Semin Kim, Junee Kim, Seunghoon Hong
Title: Bridging the gap to real-world language-grounded visual concept learning
Abstract:
Human intelligence effortlessly interprets visual scenes along a rich spectrum of semantic dimensions. However, existing approaches to language-grounded visual concept learning are limited to a few predefined primitive axes, such as color and shape, and are typically explored in synthetic datasets. In this work, we propose a scalable framework that adaptively identifies image-related concept axes and grounds visual concepts along these axes in real-world scenes. Leveraging a pretrained vision-language model and our universal prompting strategy, our framework identifies a diverse image-related axes without any prior knowledge. Our universal concept encoder adaptively binds visual features to the discovered axes without introducing additional model parameters for each concept. To ground visual concepts along the discovered axes, we optimize a compositional anchoring objective, which ensures that each axis can be independently manipulated without affecting others. We demonstrate the effectiveness of our framework on subsets of ImageNet, CelebA-HQ, and AFHQ, showcasing superior editing capabilities across diverse real-world concepts that are too varied to be manually predefined. Our method also exhibits strong compositional generalization, outperforming existing visual concept learning and text-based editing methods. The code is available at https://github.com/whieya/Language-grounded-VCL.

Authors:Yue Feng, Jinwei Hu, Qijia Lu, Jiawei Niu, Li Tan, Shuo Yuan, Ziyi Yan, Yizhen Jia, Qingzhi He, Shiping Ge, Ethan Q. Chen, Wentong Li, Limin Wang, Jie Qin
Title: MUVR: A Multi-Modal Untrimmed Video Retrieval Benchmark with Multi-Level Visual Correspondence
Abstract:
We propose the Multi-modal Untrimmed Video Retrieval task, along with a new benchmark (MUVR) to advance video retrieval for long-video platforms. MUVR aims to retrieve untrimmed videos containing relevant segments using multi-modal queries. It has the following features: 1) Practical retrieval paradigm: MUVR supports video-centric multi-modal queries, expressing fine-grained retrieval needs through long text descriptions, video tag prompts, and mask prompts. It adopts a one-to-many retrieval paradigm and focuses on untrimmed videos, tailored for long-video platform applications. 2) Multi-level visual correspondence: To cover common video categories (e.g., news, travel, dance) and precisely define retrieval matching criteria, we construct multi-level visual correspondence based on core video content (e.g., news events, travel locations, dance moves) which users are interested in and want to retrieve. It covers six levels: copy, event, scene, instance, action, and others. 3) Comprehensive evaluation criteria: We develop 3 versions of MUVR (i.e., Base, Filter, QA). MUVR-Base/Filter evaluates retrieval models, while MUVR-QA assesses MLLMs in a question-answering format. We also propose a Reranking Score to evaluate the reranking ability of MLLMs. MUVR consists of 53K untrimmed videos from the video platform Bilibili, with 1,050 multi-modal queries and 84K matches. Extensive evaluations of 3 state-of-the-art video retrieval models, 6 image-based VLMs, and 10 MLLMs are conducted. MUVR reveals the limitations of retrieval methods in processing untrimmed videos and multi-modal queries, as well as MLLMs in multi-video understanding and reranking. Our code and benchmark is available at https://github.com/debby-0527/MUVR.

Authors:Whie Jung, Dong Hoon Lee, Seunghoon Hong
Title: Disentangled Representation Learning via Modular Compositional Bias
Abstract:
Recent disentangled representation learning (DRL) methods heavily rely on factor specific strategies-either learning objectives for attributes or model architectures for objects-to embed inductive biases. Such divergent approaches result in significant overhead when novel factors of variation do not align with prior assumptions, such as statistical independence or spatial exclusivity, or when multiple factors coexist, as practitioners must redesign architectures or objectives. To address this, we propose a compositional bias, a modular inductive bias decoupled from both objectives and architectures. Our key insight is that different factors obey distinct recombination rules in the data distribution: global attributes are mutually exclusive, e.g., a face has one nose, while objects share a common support (any subset of objects can co-exist). We therefore randomly remix latents according to factor-specific rules, i.e., a mixing strategy, and force the encoder to discover whichever factor structure the mixing strategy reflects through two complementary objectives: (i) a prior loss that ensures every remix decodes into a realistic image, and (ii) the compositional consistency loss introduced by Wiedemer et al. (arXiv:2310.05327), which aligns each composite image with its corresponding composite latent. Under this general framework, simply adjusting the mixing strategy enables disentanglement of attributes, objects, and even both, without modifying the objectives or architectures. Extensive experiments demonstrate that our method shows competitive performance in both attribute and object disentanglement, and uniquely achieves joint disentanglement of global style and objects. Code is available at https://github.com/whieya/Compositional-DRL.

Authors:Zhiying Jiang, Ruhao Yan, Zengxi Zhang, Bowei Zhang, Jinyuan Liu
Title: Depth-Supervised Fusion Network for Seamless-Free Image Stitching
Abstract:
Image stitching synthesizes images captured from multiple perspectives into a single image with a broader field of view. The significant variations in object depth often lead to large parallax, resulting in ghosting and misalignment in the stitched results. To address this, we propose a depth-consistency-constrained seamless-free image stitching method. First, to tackle the multi-view alignment difficulties caused by parallax, a multi-stage mechanism combined with global depth regularization constraints is developed to enhance the alignment accuracy of the same apparent target across different depth ranges. Second, during the multi-view image fusion process, an optimal stitching seam is determined through graph-based low-cost computation, and a soft-seam region is diffused to precisely locate transition areas, thereby effectively mitigating alignment errors induced by parallax and achieving natural and seamless stitching results. Furthermore, considering the computational overhead in the shift regression process, a reparameterization strategy is incorporated to optimize the structural design, significantly improving algorithm efficiency while maintaining optimal performance. Extensive experiments demonstrate the superior performance of the proposed method against the existing methods. Code is available at https://github.com/DLUT-YRH/DSFN.

Authors:Xi Zhang, Hanwei Zhu, Yan Zhong, Jiamang Wang, Weisi Lin
Title: BADiff: Bandwidth Adaptive Diffusion Model
Abstract:
In this work, we propose a novel framework to enable diffusion models to adapt their generation quality based on real-time network bandwidth constraints. Traditional diffusion models produce high-fidelity images by performing a fixed number of denoising steps, regardless of downstream transmission limitations. However, in practical cloud-to-device scenarios, limited bandwidth often necessitates heavy compression, leading to loss of fine textures and wasted computation. To address this, we introduce a joint end-to-end training strategy where the diffusion model is conditioned on a target quality level derived from the available bandwidth. During training, the model learns to adaptively modulate the denoising process, enabling early-stop sampling that maintains perceptual quality appropriate to the target transmission condition. Our method requires minimal architectural changes and leverages a lightweight quality embedding to guide the denoising trajectory. Experimental results demonstrate that our approach significantly improves the visual fidelity of bandwidth-adapted generations compared to naive early-stopping, offering a promising solution for efficient image delivery in bandwidth-constrained environments. Code is available at: https://github.com/xzhang9308/BADiff.

Authors:Zihao Fu, Ryan Brown, Shun Shao, Kai Rawal, Eoin Delaney, Chris Russell
Title: FairImagen: Post-Processing for Bias Mitigation in Text-to-Image Models
Abstract:
Text-to-image diffusion models, such as Stable Diffusion, have demonstrated remarkable capabilities in generating high-quality and diverse images from natural language prompts. However, recent studies reveal that these models often replicate and amplify societal biases, particularly along demographic attributes like gender and race. In this paper, we introduce FairImagen (https://github.com/fuzihaofzh/FairImagen), a post-hoc debiasing framework that operates on prompt embeddings to mitigate such biases without retraining or modifying the underlying diffusion model. Our method integrates Fair Principal Component Analysis to project CLIP-based input embeddings into a subspace that minimizes group-specific information while preserving semantic content. We further enhance debiasing effectiveness through empirical noise injection and propose a unified cross-demographic projection method that enables simultaneous debiasing across multiple demographic attributes. Extensive experiments across gender, race, and intersectional settings demonstrate that FairImagen significantly improves fairness with a moderate trade-off in image quality and prompt fidelity. Our framework outperforms existing post-hoc methods and offers a simple, scalable, and model-agnostic solution for equitable text-to-image generation.

Authors:Anupam Pani, Yanchao Yang
Title: Gaze-VLM:Bridging Gaze and VLMs through Attention Regularization for Egocentric Understanding
Abstract:
Eye gaze offers valuable cues about attention, short-term intent, and future actions, making it a powerful signal for modeling egocentric behavior. In this work, we propose a gaze-regularized framework that enhances VLMs for two key egocentric understanding tasks: fine-grained future event prediction and current activity understanding. Unlike prior approaches that rely solely on visual inputs or use gaze as an auxiliary input signal , our method uses gaze only during training. We introduce a gaze-regularized attention mechanism that aligns model focus with human visual gaze. This design is flexible and modular, allowing it to generalize across multiple VLM architectures that utilize attention. Experimental results show that our approach improves semantic prediction scores by up to 11 for future event prediction and around 7 for current activity understanding, compared to the corresponding baseline models trained without gaze regularization. These results highlight the value of gaze-guided training in improving the accuracy and robustness of egocentric VLMs. Overall, this work establishes a foundation for using human gaze to enhance the predictive capabilities of VLMs in real-world scenarios like assistive robots and human-machine collaboration. Code and additional information is available at: https://github.com/anupampani/Gaze-VLM

Authors:Xinyu Zhou, Tongxin Pan, Lingyi Hong, Pinxue Guo, Haijing Guo, Zhaoyu Chen, Kaixun Jiang, Wenqiang Zhang
Title: Dynamic Semantic-Aware Correlation Modeling for UAV Tracking
Abstract:
UAV tracking can be widely applied in scenarios such as disaster rescue, environmental monitoring, and logistics transportation. However, existing UAV tracking methods predominantly emphasize speed and lack exploration in semantic awareness, which hinders the search region from extracting accurate localization information from the template. The limitation results in suboptimal performance under typical UAV tracking challenges such as camera motion, fast motion, and low resolution, etc. To address this issue, we propose a dynamic semantic aware correlation modeling tracking framework. The core of our framework is a Dynamic Semantic Relevance Generator, which, in combination with the correlation map from the Transformer, explore semantic relevance. The approach enhances the search region's ability to extract important information from the template, improving accuracy and robustness under the aforementioned challenges. Additionally, to enhance the tracking speed, we design a pruning method for the proposed framework. Therefore, we present multiple model variants that achieve trade-offs between speed and accuracy, enabling flexible deployment according to the available computational resources. Experimental results validate the effectiveness of our method, achieving competitive performance on multiple UAV tracking datasets. The code is available at https://github.com/zxyyxzz/DSATrack.

Authors:Shufan Shen, Junshu Sun, Qingming Huang, Shuhui Wang
Title: VL-SAE: Interpreting and Enhancing Vision-Language Alignment with a Unified Concept Set
Abstract:
The alignment of vision-language representations endows current Vision-Language Models (VLMs) with strong multi-modal reasoning capabilities. However, the interpretability of the alignment component remains uninvestigated due to the difficulty in mapping the semantics of multi-modal representations into a unified concept set. To address this problem, we propose VL-SAE, a sparse autoencoder that encodes vision-language representations into its hidden activations. Each neuron in its hidden layer correlates to a concept represented by semantically similar images and texts, thereby interpreting these representations with a unified concept set. To establish the neuron-concept correlation, we encourage semantically similar representations to exhibit consistent neuron activations during self-supervised training. First, to measure the semantic similarity of multi-modal representations, we perform their alignment in an explicit form based on cosine similarity. Second, we construct the VL-SAE with a distance-based encoder and two modality-specific decoders to ensure the activation consistency of semantically similar representations. Experiments across multiple VLMs (e.g., CLIP, LLaVA) demonstrate the superior capability of VL-SAE in interpreting and enhancing the vision-language alignment. For interpretation, the alignment between vision and language representations can be understood by comparing their semantics with concepts. For enhancement, the alignment can be strengthened by aligning vision-language representations at the concept level, contributing to performance improvements in downstream tasks, including zero-shot image classification and hallucination elimination. Codes are available at https://github.com/ssfgunner/VL-SAE.

Authors:Hyeongyu Kim, Geonhui Han, Dosik Hwang
Title: Buffer layers for Test-Time Adaptation
Abstract:
In recent advancements in Test Time Adaptation (TTA), most existing methodologies focus on updating normalization layers to adapt to the test domain. However, the reliance on normalization-based adaptation presents key challenges. First, normalization layers such as Batch Normalization (BN) are highly sensitive to small batch sizes, leading to unstable and inaccurate statistics. Moreover, normalization-based adaptation is inherently constrained by the structure of the pre-trained model, as it relies on training-time statistics that may not generalize well to unseen domains. These issues limit the effectiveness of normalization-based TTA approaches, especially under significant domain shift. In this paper, we introduce a novel paradigm based on the concept of a Buffer layer, which addresses the fundamental limitations of normalization layer updates. Unlike existing methods that modify the core parameters of the model, our approach preserves the integrity of the pre-trained backbone, inherently mitigating the risk of catastrophic forgetting during online adaptation. Through comprehensive experimentation, we demonstrate that our approach not only outperforms traditional methods in mitigating domain shift and enhancing model robustness, but also exhibits strong resilience to forgetting. Furthermore, our Buffer layer is modular and can be seamlessly integrated into nearly all existing TTA frameworks, resulting in consistent performance improvements across various architectures. These findings validate the effectiveness and versatility of the proposed solution in real-world domain adaptation scenarios. The code is available at https://github.com/hyeongyu-kim/Buffer_TTA.

Authors:Xinghao Wang, Pengyu Wang, Dong Zhang, Chenkun Tan, Shaojun Zhou, Zhaoxiang Liu, Shiguo Lian, Fangxu Liu, Kai Song, Xipeng Qiu
Title: Sparser Block-Sparse Attention via Token Permutation
Abstract:
Scaling the context length of large language models (LLMs) offers significant benefits but is computationally expensive. This expense stems primarily from the self-attention mechanism, whose $O(N^2)$ complexity with respect to sequence length presents a major bottleneck for both memory and latency. Fortunately, the attention matrix is often sparse, particularly for long sequences, suggesting an opportunity for optimization. Block-sparse attention has emerged as a promising solution that partitions sequences into blocks and skips computation for a subset of these blocks. However, the effectiveness of this method is highly dependent on the underlying attention patterns, which can lead to sub-optimal block-level sparsity. For instance, important key tokens for queries within a single block may be scattered across numerous other blocks, leading to computational redundancy. In this work, we propose Permuted Block-Sparse Attention (\textbf{PBS-Attn}), a plug-and-play method that leverages the permutation properties of attention to increase block-level sparsity and enhance the computational efficiency of LLM prefilling. We conduct comprehensive experiments on challenging real-world long-context datasets, demonstrating that PBS-Attn consistently outperforms existing block-sparse attention methods in model accuracy and closely matches the full attention baseline. Powered by our custom permuted-FlashAttention kernels, PBS-Attn achieves an end-to-end speedup of up to $2.75\times$ in long-context prefilling, confirming its practical viability. Code available at https://github.com/xinghaow99/pbs-attn

Authors:Kaiyu Song, Hanjiang Lai, Yaqing Zhang, Chuangjian Cai, Yan Pan Kun Yue, Jian Yin
Title: Topology Sculptor, Shape Refiner: Discrete Diffusion Model for High-Fidelity 3D Meshes Generation
Abstract:
In this paper, we introduce Topology Sculptor, Shape Refiner (TSSR), a novel method for generating high-quality, artist-style 3D meshes based on Discrete Diffusion Models (DDMs). Our primary motivation for TSSR is to achieve highly accurate token prediction while enabling parallel generation, a significant advantage over sequential autoregressive methods. By allowing TSSR to "see" all mesh tokens concurrently, we unlock a new level of efficiency and control. We leverage this parallel generation capability through three key innovations: 1) Decoupled Training and Hybrid Inference, which distinctly separates the DDM-based generation into a topology sculpting stage and a subsequent shape refinement stage. This strategic decoupling enables TSSR to effectively capture both intricate local topology and overarching global shape. 2) An Improved Hourglass Architecture, featuring bidirectional attention enriched by face-vertex-sequence level Rotational Positional Embeddings (RoPE), thereby capturing richer contextual information across the mesh structure. 3) A novel Connection Loss, which acts as a topological constraint to further enhance the realism and fidelity of the generated meshes. Extensive experiments on complex datasets demonstrate that TSSR generates high-quality 3D artist-style meshes, capable of achieving up to 10,000 faces at a remarkable spatial resolution of $1024^3$. The code will be released at: https://github.com/psky1111/Tencent-TSSR.

Authors:Dogyun Park, Taehoon Lee, Minseok Joo, Hyunwoo J. Kim
Title: Blockwise Flow Matching: Improving Flow Matching Models For Efficient High-Quality Generation
Abstract:
Recently, Flow Matching models have pushed the boundaries of high-fidelity data generation across a wide range of domains. It typically employs a single large network to learn the entire generative trajectory from noise to data. Despite their effectiveness, this design struggles to capture distinct signal characteristics across timesteps simultaneously and incurs substantial inference costs due to the iterative evaluation of the entire model. To address these limitations, we propose Blockwise Flow Matching (BFM), a novel framework that partitions the generative trajectory into multiple temporal segments, each modeled by smaller but specialized velocity blocks. This blockwise design enables each block to specialize effectively in its designated interval, improving inference efficiency and sample quality. To further enhance generation fidelity, we introduce a Semantic Feature Guidance module that explicitly conditions velocity blocks on semantically rich features aligned with pretrained representations. Additionally, we propose a lightweight Feature Residual Approximation strategy that preserves semantic quality while significantly reducing inference cost. Extensive experiments on ImageNet 256x256 demonstrate that BFM establishes a substantially improved Pareto frontier over existing Flow Matching methods, achieving 2.1x to 4.9x accelerations in inference complexity at comparable generation performance. Code is available at https://github.com/mlvlab/BFM.

Authors:Longtian Qiu, Shan Ning, Jiaxuan Sun, Xuming He
Title: NoisyGRPO: Incentivizing Multimodal CoT Reasoning via Noise Injection and Bayesian Estimation
Abstract:
Reinforcement learning (RL) has shown promise in enhancing the general Chain-of-Thought (CoT) reasoning capabilities of multimodal large language models (MLLMs). However, when applied to improve general CoT reasoning, existing RL frameworks often struggle to generalize beyond the training distribution. To address this, we propose NoisyGRPO, a systematic multimodal RL framework that introduces controllable noise into visual inputs for enhanced exploration and explicitly models the advantage estimation process via a Bayesian framework. Specifically, NoisyGRPO improves RL training by: (1) Noise-Injected Exploration Policy: Perturbing visual inputs with Gaussian noise to encourage exploration across a wider range of visual scenarios; and (2) Bayesian Advantage Estimation: Formulating advantage estimation as a principled Bayesian inference problem, where the injected noise level serves as a prior and the observed trajectory reward as the likelihood. This Bayesian modeling fuses both sources of information to compute a robust posterior estimate of trajectory advantage, effectively guiding MLLMs to prefer visually grounded trajectories over noisy ones. Experiments on standard CoT quality, general capability, and hallucination benchmarks demonstrate that NoisyGRPO substantially improves generalization and robustness, especially in RL settings with small-scale MLLMs such as Qwen2.5-VL 3B. The project page is available at https://artanic30.github.io/project_pages/NoisyGRPO/.

Authors:Yanguang Sun, Jiawei Lian, Jian Yang, Lei Luo
Title: Controllable-LPMoE: Adapting to Challenging Object Segmentation via Dynamic Local Priors from Mixture-of-Experts
Abstract:
Large-scale foundation models provide powerful feature representations for downstream object segmentation tasks. However, when adapted to specific tasks through the full-parameter fine-tuning, the enormous parameters being updated often results in significant computational overhead, creating a bottleneck in training efficiency. Although existing methods attempt to fine-tune frozen models by directly embedding trainable prompts, these prompts lack inherent semantic priors, limiting the adaptability of large-scale models. In this paper, we propose a novel dynamic priors-based fine-tuning paradigm with fewer trainable parameters, dubbed Controllable-LPMoE, which adaptively modulates frozen foundation models by dynamically controlling local priors to enhance fine-grained perception for specific segmentation tasks. More specifically, we construct a lightweight dynamic mixed local priors extractor that captures diverse local priors from input images through heterogeneous convolutions while employing a gating network to dynamically output expert priors required for the subsequent fine-tuning. Furthermore, we design a bi-directional interaction adapter that employs cosine-aligned deformable attention and channel-oriented adaptive scale enhancement to interact and restructure between frozen and trainable features, achieving efficient fine-tuning. Extensive experiments validate the superiority of our \href{https://github.com/CSYSI/Controllable-LPMoE} {Controllable-LPMoE} approach, demonstrating excellent segmentation performance compared to 31 state-of-the-art (SOTA) methods and adaptability to multiple binary object segmentation tasks.

Authors:Jesimon Barreto, Carlos Caetano, André Araujo, William Robson Schwartz
Title: VESSA: Video-based objEct-centric Self-Supervised Adaptation for Visual Foundation Models
Abstract:
Foundation models have advanced computer vision by enabling strong performance across diverse tasks through large-scale pretraining and supervised fine-tuning. However, they may underperform in domains with distribution shifts and scarce labels, where supervised fine-tuning may be infeasible. While continued self-supervised learning for model adaptation is common for generative language models, this strategy has not proven effective for vision-centric encoder models. To address this challenge, we introduce a novel formulation of self-supervised fine-tuning for vision foundation models, where the model is adapted to a new domain without requiring annotations, leveraging only short multi-view object-centric videos. Our method is referred to as VESSA: Video-based objEct-centric Self-Supervised Adaptation for visual foundation models. VESSA's training technique is based on a self-distillation paradigm, where it is critical to carefully tune prediction heads and deploy parameter-efficient adaptation techniques - otherwise, the model may quickly forget its pretrained knowledge and reach a degraded state. VESSA benefits significantly from multi-view object observations sourced from different frames in an object-centric video, efficiently learning robustness to varied capture conditions, without the need of annotations. Through comprehensive experiments with 3 vision foundation models on 2 datasets, VESSA demonstrates consistent improvements in downstream classification tasks, compared to the base models and previous adaptation methods. Code is publicly available at https://github.com/jesimonbarreto/VESSA.

Authors:Yuxuan Bian, Xin Chen, Zenan Li, Tiancheng Zhi, Shen Sang, Linjie Luo, Qiang Xu
Title: Video-As-Prompt: Unified Semantic Control for Video Generation
Abstract:
Unified, generalizable semantic control in video generation remains a critical open challenge. Existing methods either introduce artifacts by enforcing inappropriate pixel-wise priors from structure-based controls, or rely on non-generalizable, condition-specific finetuning or task-specific architectures. We introduce Video-As-Prompt (VAP), a new paradigm that reframes this problem as in-context generation. VAP leverages a reference video as a direct semantic prompt, guiding a frozen Video Diffusion Transformer (DiT) via a plug-and-play Mixture-of-Transformers (MoT) expert. This architecture prevents catastrophic forgetting and is guided by a temporally biased position embedding that eliminates spurious mapping priors for robust context retrieval. To power this approach and catalyze future research, we built VAP-Data, the largest dataset for semantic-controlled video generation with over 100K paired videos across 100 semantic conditions. As a single unified model, VAP sets a new state-of-the-art for open-source methods, achieving a 38.7% user preference rate that rivals leading condition-specific commercial models. VAP's strong zero-shot generalization and support for various downstream applications mark a significant advance toward general-purpose, controllable video generation.

Authors:Anujraaj Argo Goyal, Guocheng Gordon Qian, Huseyin Coskun, Aarush Gupta, Himmy Tam, Daniil Ostashev, Ju Hu, Dhritiman Sagar, Sergey Tulyakov, Kfir Aberman, Kuan-Chieh Jackson Wang
Title: Preventing Shortcuts in Adapter Training via Providing the Shortcuts
Abstract:
Adapter-based training has emerged as a key mechanism for extending the capabilities of powerful foundation image generators, enabling personalized and stylized text-to-image synthesis. These adapters are typically trained to capture a specific target attribute, such as subject identity, using single-image reconstruction objectives. However, because the input image inevitably contains a mixture of visual factors, adapters are prone to entangle the target attribute with incidental ones, such as pose, expression, and lighting. This spurious correlation problem limits generalization and obstructs the model's ability to adhere to the input text prompt. In this work, we uncover a simple yet effective solution: provide the very shortcuts we wish to eliminate during adapter training. In Shortcut-Rerouted Adapter Training, confounding factors are routed through auxiliary modules, such as ControlNet or LoRA, eliminating the incentive for the adapter to internalize them. The auxiliary modules are then removed during inference. When applied to tasks like facial and full-body identity injection, our approach improves generation quality, diversity, and prompt adherence. These results point to a general design principle in the era of large models: when seeking disentangled representations, the most effective path may be to establish shortcuts for what should NOT be learned.

Authors:Yihao Meng, Hao Ouyang, Yue Yu, Qiuyu Wang, Wen Wang, Ka Leong Cheng, Hanlin Wang, Yixuan Li, Cheng Chen, Yanhong Zeng, Yujun Shen, Huamin Qu
Title: HoloCine: Holistic Generation of Cinematic Multi-Shot Long Video Narratives
Abstract:
State-of-the-art text-to-video models excel at generating isolated clips but fall short of creating the coherent, multi-shot narratives, which are the essence of storytelling. We bridge this "narrative gap" with HoloCine, a model that generates entire scenes holistically to ensure global consistency from the first shot to the last. Our architecture achieves precise directorial control through a Window Cross-Attention mechanism that localizes text prompts to specific shots, while a Sparse Inter-Shot Self-Attention pattern (dense within shots but sparse between them) ensures the efficiency required for minute-scale generation. Beyond setting a new state-of-the-art in narrative coherence, HoloCine develops remarkable emergent abilities: a persistent memory for characters and scenes, and an intuitive grasp of cinematic techniques. Our work marks a pivotal shift from clip synthesis towards automated filmmaking, making end-to-end cinematic creation a tangible future. Our code is available at: https://holo-cine.github.io/.

Authors:Guocheng Gordon Qian, Ruihang Zhang, Tsai-Shien Chen, Yusuf Dalva, Anujraaj Argo Goyal, Willi Menapace, Ivan Skorokhodov, Meng Dong, Arpit Sahni, Daniil Ostashev, Ju Hu, Sergey Tulyakov, Kuan-Chieh Jackson Wang
Title: LayerComposer: Interactive Personalized T2I via Spatially-Aware Layered Canvas
Abstract:
Despite their impressive visual fidelity, existing personalized generative models lack interactive control over spatial composition and scale poorly to multiple subjects. To address these limitations, we present LayerComposer, an interactive framework for personalized, multi-subject text-to-image generation. Our approach introduces two main contributions: (1) a layered canvas, a novel representation in which each subject is placed on a distinct layer, enabling occlusion-free composition; and (2) a locking mechanism that preserves selected layers with high fidelity while allowing the remaining layers to adapt flexibly to the surrounding context. Similar to professional image-editing software, the proposed layered canvas allows users to place, resize, or lock input subjects through intuitive layer manipulation. Our versatile locking mechanism requires no architectural changes, relying instead on inherent positional embeddings combined with a new complementary data sampling strategy. Extensive experiments demonstrate that LayerComposer achieves superior spatial control and identity preservation compared to the state-of-the-art methods in multi-subject personalized image generation.

Authors:Guangqi Jiang, Haoran Chang, Ri-Zhao Qiu, Yutong Liang, Mazeyu Ji, Jiyue Zhu, Zhao Dong, Xueyan Zou, Xiaolong Wang
Title: GSWorld: Closed-Loop Photo-Realistic Simulation Suite for Robotic Manipulation
Abstract:
This paper presents GSWorld, a robust, photo-realistic simulator for robotics manipulation that combines 3D Gaussian Splatting with physics engines. Our framework advocates "closing the loop" of developing manipulation policies with reproducible evaluation of policies learned from real-robot data and sim2real policy training without using real robots. To enable photo-realistic rendering of diverse scenes, we propose a new asset format, which we term GSDF (Gaussian Scene Description File), that infuses Gaussian-on-Mesh representation with robot URDF and other objects. With a streamlined reconstruction pipeline, we curate a database of GSDF that contains 3 robot embodiments for single-arm and bimanual manipulation, as well as more than 40 objects. Combining GSDF with physics engines, we demonstrate several immediate interesting applications: (1) learning zero-shot sim2real pixel-to-action manipulation policy with photo-realistic rendering, (2) automated high-quality DAgger data collection for adapting policies to deployment environments, (3) reproducible benchmarking of real-robot manipulation policies in simulation, (4) simulation data collection by virtual teleoperation, and (5) zero-shot sim2real visual reinforcement learning. Website: https://3dgsworld.github.io/.

Authors:Yuhan Liu, Lianhui Qin, Shengjie Wang
Title: Small Drafts, Big Verdict: Information-Intensive Visual Reasoning via Speculation
Abstract:
Large Vision-Language Models (VLMs) have achieved remarkable progress in multimodal understanding, yet they struggle when reasoning over information-intensive images that densely interleave textual annotations with fine-grained graphical elements. The main challenges lie in precisely localizing critical cues in dense layouts and multi-hop reasoning to integrate dispersed evidence. We propose Speculative Verdict (SV), a training-free framework inspired by speculative decoding that combines multiple lightweight draft experts with a large verdict model. In the draft stage, small VLMs act as draft experts to generate reasoning paths that provide diverse localization candidates; in the verdict stage, a strong VLM synthesizes these paths to produce the final answer, minimizing computational cost while recovering correct answers. To further improve efficiency and accuracy, SV introduces a consensus expert selection mechanism that forwards only high-agreement reasoning paths to the verdict. Empirically, SV achieves consistent gains on challenging information-intensive and high-resolution visual question answering benchmarks, including InfographicVQA, ChartMuseum, ChartQAPro, and HR-Bench 4K. By synthesizing correct insights from multiple partially accurate reasoning paths, SV achieves both error correction and cost-efficiency compared to large proprietary models or training pipelines. Code is available at https://github.com/Tinaliu0123/speculative-verdict

Authors:Lei Cheng, Siyang Cao
Title: Radar-Camera Fused Multi-Object Tracking: Online Calibration and Common Feature
Abstract:
This paper presents a Multi-Object Tracking (MOT) framework that fuses radar and camera data to enhance tracking efficiency while minimizing manual interventions. Contrary to many studies that underutilize radar and assign it a supplementary role--despite its capability to provide accurate range/depth information of targets in a world 3D coordinate system--our approach positions radar in a crucial role. Meanwhile, this paper utilizes common features to enable online calibration to autonomously associate detections from radar and camera. The main contributions of this work include: (1) the development of a radar-camera fusion MOT framework that exploits online radar-camera calibration to simplify the integration of detection results from these two sensors, (2) the utilization of common features between radar and camera data to accurately derive real-world positions of detected objects, and (3) the adoption of feature matching and category-consistency checking to surpass the limitations of mere position matching in enhancing sensor association accuracy. To the best of our knowledge, we are the first to investigate the integration of radar-camera common features and their use in online calibration for achieving MOT. The efficacy of our framework is demonstrated by its ability to streamline the radar-camera mapping process and improve tracking precision, as evidenced by real-world experiments conducted in both controlled environments and actual traffic scenarios. Code is available at https://github.com/radar-lab/Radar_Camera_MOT

Authors:Noam Issachar, Guy Yariv, Sagie Benaim, Yossi Adi, Dani Lischinski, Raanan Fattal
Title: DyPE: Dynamic Position Extrapolation for Ultra High Resolution Diffusion
Abstract:
Diffusion Transformer models can generate images with remarkable fidelity and detail, yet training them at ultra-high resolutions remains extremely costly due to the self-attention mechanism's quadratic scaling with the number of image tokens. In this paper, we introduce Dynamic Position Extrapolation (DyPE), a novel, training-free method that enables pre-trained diffusion transformers to synthesize images at resolutions far beyond their training data, with no additional sampling cost. DyPE takes advantage of the spectral progression inherent to the diffusion process, where low-frequency structures converge early, while high-frequencies take more steps to resolve. Specifically, DyPE dynamically adjusts the model's positional encoding at each diffusion step, matching their frequency spectrum with the current stage of the generative process. This approach allows us to generate images at resolutions that exceed the training resolution dramatically, e.g., 16 million pixels using FLUX. On multiple benchmarks, DyPE consistently improves performance and achieves state-of-the-art fidelity in ultra-high-resolution image generation, with gains becoming even more pronounced at higher resolutions. Project page is available at https://noamissachar.github.io/DyPE/.

Authors:Nima Torbati, Anastasia Meshcheryakova, Ramona Woitek, Diana Mechtcheriakova, Amirreza Mahbod
Title: ACS-SegNet: An Attention-Based CNN-SegFormer Segmentation Network for Tissue Segmentation in Histopathology
Abstract:
Automated histopathological image analysis plays a vital role in computer-aided diagnosis of various diseases. Among developed algorithms, deep learning-based approaches have demonstrated excellent performance in multiple tasks, including semantic tissue segmentation in histological images. In this study, we propose a novel approach based on attention-driven feature fusion of convolutional neural networks (CNNs) and vision transformers (ViTs) within a unified dual-encoder model to improve semantic segmentation performance. Evaluation on two publicly available datasets showed that our model achieved μIoU/μDice scores of 76.79%/86.87% on the GCPS dataset and 64.93%/76.60% on the PUMA dataset, outperforming state-of-the-art and baseline benchmarks. The implementation of our method is publicly available in a GitHub repository: https://github.com/NimaTorbati/ACS-SegNet

Authors:Xuyang Liu, Xiyan Gui, Yuchao Zhang, Linfeng Zhang
Title: Mixing Importance with Diversity: Joint Optimization for KV Cache Compression in Large Vision-Language Models
Abstract:
Recent large vision-language models (LVLMs) demonstrate remarkable capabilities in processing extended multi-modal sequences, yet the resulting key-value (KV) cache expansion creates a critical memory bottleneck that fundamentally limits deployment scalability. While existing KV cache compression methods focus on retaining high-importance KV pairs to minimize storage, they often overlook the modality-specific semantic redundancy patterns that emerge distinctively in multi-modal KV caches. In this work, we first analyze how, beyond simple importance, the KV cache in LVLMs exhibits varying levels of redundancy across attention heads. We show that relying solely on importance can only cover a subset of the full KV cache information distribution, leading to potential loss of semantic coverage. To address this, we propose \texttt{MixKV}, a novel method that mixes importance with diversity for optimized KV cache compression in LVLMs. \texttt{MixKV} adapts to head-wise semantic redundancy, selectively balancing diversity and importance when compressing KV pairs. Extensive experiments demonstrate that \texttt{MixKV} consistently enhances existing methods across multiple LVLMs. Under extreme compression (budget=64), \texttt{MixKV} improves baseline methods by an average of \textbf{5.1\%} across five multi-modal understanding benchmarks and achieves remarkable gains of \textbf{8.0\%} and \textbf{9.0\%} for SnapKV and AdaKV on GUI grounding tasks, all while maintaining comparable inference efficiency. Furthermore, \texttt{MixKV} extends seamlessly to LLMs with comparable performance gains. Our code is available at \href{https://github.com/xuyang-liu16/MixKV}{\textcolor{citeblue}{https://github.com/xuyang-liu16/MixKV}}.

Authors:Jinhee Kim, Jae Jun An, Kang Eun Jeon, Jong Hwan Ko
Title: Efficient Multi-bit Quantization Network Training via Weight Bias Correction and Bit-wise Coreset Sampling
Abstract:
Multi-bit quantization networks enable flexible deployment of deep neural networks by supporting multiple precision levels within a single model. However, existing approaches suffer from significant training overhead as full-dataset updates are repeated for each supported bit-width, resulting in a cost that scales linearly with the number of precisions. Additionally, extra fine-tuning stages are often required to support additional or intermediate precision options, further compounding the overall training burden. To address this issue, we propose two techniques that greatly reduce the training overhead without compromising model utility: (i) Weight bias correction enables shared batch normalization and eliminates the need for fine-tuning by neutralizing quantization-induced bias across bit-widths and aligning activation distributions; and (ii) Bit-wise coreset sampling strategy allows each child model to train on a compact, informative subset selected via gradient-based importance scores by exploiting the implicit knowledge transfer phenomenon. Experiments on CIFAR-10/100, TinyImageNet, and ImageNet-1K with both ResNet and ViT architectures demonstrate that our method achieves competitive or superior accuracy while reducing training time up to 7.88x. Our code is released at https://github.com/a2jinhee/EMQNet_jk.

Authors:Chen Zhao, En Ci, Yunzhe Xu, Tiehan Fan, Shanyan Guan, Yanhao Ge, Jian Yang, Ying Tai
Title: UltraHR-100K: Enhancing UHR Image Synthesis with A Large-Scale High-Quality Dataset
Abstract:
Ultra-high-resolution (UHR) text-to-image (T2I) generation has seen notable progress. However, two key challenges remain : 1) the absence of a large-scale high-quality UHR T2I dataset, and (2) the neglect of tailored training strategies for fine-grained detail synthesis in UHR scenarios. To tackle the first challenge, we introduce \textbf{UltraHR-100K}, a high-quality dataset of 100K UHR images with rich captions, offering diverse content and strong visual fidelity. Each image exceeds 3K resolution and is rigorously curated based on detail richness, content complexity, and aesthetic quality. To tackle the second challenge, we propose a frequency-aware post-training method that enhances fine-detail generation in T2I diffusion models. Specifically, we design (i) \textit{Detail-Oriented Timestep Sampling (DOTS)} to focus learning on detail-critical denoising steps, and (ii) \textit{Soft-Weighting Frequency Regularization (SWFR)}, which leverages Discrete Fourier Transform (DFT) to softly constrain frequency components, encouraging high-frequency detail preservation. Extensive experiments on our proposed UltraHR-eval4K benchmarks demonstrate that our approach significantly improves the fine-grained detail quality and overall fidelity of UHR image generation. The code is available at \href{https://github.com/NJU-PCALab/UltraHR-100k}{here}.

Authors:Ibrahim Ethem Hamamci, Sezgin Er, Suprosanna Shit, Hadrien Reynaud, Dong Yang, Pengfei Guo, Marc Edgar, Daguang Xu, Bernhard Kainz, Bjoern Menze
Title: Better Tokens for Better 3D: Advancing Vision-Language Modeling in 3D Medical Imaging
Abstract:
Recent progress in vision-language modeling for 3D medical imaging has been fueled by large-scale computed tomography (CT) corpora with paired free-text reports, stronger architectures, and powerful pretrained models. This has enabled applications such as automated report generation and text-conditioned 3D image synthesis. Yet, current approaches struggle with high-resolution, long-sequence volumes: contrastive pretraining often yields vision encoders that are misaligned with clinical language, and slice-wise tokenization blurs fine anatomy, reducing diagnostic performance on downstream tasks. We introduce BTB3D (Better Tokens for Better 3D), a causal convolutional encoder-decoder that unifies 2D and 3D training and inference while producing compact, frequency-aware volumetric tokens. A three-stage training curriculum enables (i) local reconstruction, (ii) overlapping-window tiling, and (iii) long-context decoder refinement, during which the model learns from short slice excerpts yet generalizes to scans exceeding 300 slices without additional memory overhead. BTB3D sets a new state-of-the-art on two key tasks: it improves BLEU scores and increases clinical F1 by 40% over CT2Rep, CT-CHAT, and Merlin for report generation; and it reduces FID by 75% and halves FVD compared to GenerateCT and MedSyn for text-to-CT synthesis, producing anatomically consistent 512*512*241 volumes. These results confirm that precise three-dimensional tokenization, rather than larger language backbones alone, is essential for scalable vision-language modeling in 3D medical imaging. The codebase is available at: https://github.com/ibrahimethemhamamci/BTB3D

Authors:Ding Zou, Feifan Wang, Mengyu Ge, Siyuan Fan, Zongbing Zhang, Wei Chen, Lingfeng Wang, Zhongyou Hu, Wenrui Yan, Zhengwei Gao, Hao Wang, Weizhao Jin, Yu Zhang, Hainan Zhao, Mingliang Zhang, Xianxian Xi, Yaru Zhang, Wenyuan Li, Zhengguang Gao, Yurui Zhu
Title: EmbodiedBrain: Expanding Performance Boundaries of Task Planning for Embodied Intelligence
Abstract:
The realization of Artificial General Intelligence (AGI) necessitates Embodied AI agents capable of robust spatial perception, effective task planning, and adaptive execution in physical environments. However, current large language models (LLMs) and multimodal LLMs (MLLMs) for embodied tasks suffer from key limitations, including a significant gap between model design and agent requirements, an unavoidable trade-off between real-time latency and performance, and the use of unauthentic, offline evaluation metrics. To address these challenges, we propose EmbodiedBrain, a novel vision-language foundation model available in both 7B and 32B parameter sizes. Our framework features an agent-aligned data structure and employs a powerful training methodology that integrates large-scale Supervised Fine-Tuning (SFT) with Step-Augumented Group Relative Policy Optimization (Step-GRPO), which boosts long-horizon task success by integrating preceding steps as Guided Precursors. Furthermore, we incorporate a comprehensive reward system, including a Generative Reward Model (GRM) accelerated at the infrastructure level, to improve training efficiency. For enable thorough validation, we establish a three-part evaluation system encompassing General, Planning, and End-to-End Simulation Benchmarks, highlighted by the proposal and open-sourcing of a novel, challenging simulation environment. Experimental results demonstrate that EmbodiedBrain achieves superior performance across all metrics, establishing a new state-of-the-art for embodied foundation models. Towards paving the way for the next generation of generalist embodied agents, we open-source all of our data, model weight, and evaluating methods, which are available at https://zterobot.github.io/EmbodiedBrain.github.io.

Authors:Guillermo Carbajal, Andrés Almansa, Pablo Musé
Title: Blur2seq: Blind Deblurring and Camera Trajectory Estimation from a Single Camera Motion-blurred Image
Abstract:
Motion blur caused by camera shake, particularly under large or rotational movements, remains a major challenge in image restoration. We propose a deep learning framework that jointly estimates the latent sharp image and the underlying camera motion trajectory from a single blurry image. Our method leverages the Projective Motion Blur Model (PMBM), implemented efficiently using a differentiable blur creation module compatible with modern networks. A neural network predicts a full 3D rotation trajectory, which guides a model-based restoration network trained end-to-end. This modular architecture provides interpretability by revealing the camera motion that produced the blur. Moreover, this trajectory enables the reconstruction of the sequence of sharp images that generated the observed blurry image. To further refine results, we optimize the trajectory post-inference via a reblur loss, improving consistency between the blurry input and the restored output. Extensive experiments show that our method achieves state-of-the-art performance on both synthetic and real datasets, particularly in cases with severe or spatially variant blur, where end-to-end deblurring networks struggle. Code and trained models are available at https://github.com/GuillermoCarbajal/Blur2Seq/

Authors:Lixiong Qin, Yang Zhang, Mei Wang, Jiani Hu, Weihong Deng, Weiran Xu
Title: Fake-in-Facext: Towards Fine-Grained Explainable DeepFake Analysis
Abstract:
The advancement of Multimodal Large Language Models (MLLMs) has bridged the gap between vision and language tasks, enabling the implementation of Explainable DeepFake Analysis (XDFA). However, current methods suffer from a lack of fine-grained awareness: the description of artifacts in data annotation is unreliable and coarse-grained, and the models fail to support the output of connections between textual forgery explanations and the visual evidence of artifacts, as well as the input of queries for arbitrary facial regions. As a result, their responses are not sufficiently grounded in Face Visual Context (Facext). To address this limitation, we propose the Fake-in-Facext (FiFa) framework, with contributions focusing on data annotation and model construction. We first define a Facial Image Concept Tree (FICT) to divide facial images into fine-grained regional concepts, thereby obtaining a more reliable data annotation pipeline, FiFa-Annotator, for forgery explanation. Based on this dedicated data annotation, we introduce a novel Artifact-Grounding Explanation (AGE) task, which generates textual forgery explanations interleaved with segmentation masks of manipulated artifacts. We propose a unified multi-task learning architecture, FiFa-MLLM, to simultaneously support abundant multimodal inputs and outputs for fine-grained Explainable DeepFake Analysis. With multiple auxiliary supervision tasks, FiFa-MLLM can outperform strong baselines on the AGE task and achieve SOTA performance on existing XDFA datasets. The code and data will be made open-source at https://github.com/lxq1000/Fake-in-Facext.

Authors:Yixiong Yang, Tao Wu, Senmao Li, Shiqi Yang, Yaxing Wang, Joost van de Weijer, Kai Wang
Title: EchoDistill: Bidirectional Concept Distillation for One-Step Diffusion Personalization
Abstract:
Recent advances in accelerating text-to-image (T2I) diffusion models have enabled the synthesis of high-fidelity images even in a single step. However, personalizing these models to incorporate novel concepts remains a challenge due to the limited capacity of one-step models to capture new concept distributions effectively. We propose a bidirectional concept distillation framework, EchoDistill, to enable one-step diffusion personalization (1-SDP). Our approach involves an end-to-end training process where a multi-step diffusion model (teacher) and a one-step diffusion model (student) are trained simultaneously. The concept is first distilled from the teacher model to the student, and then echoed back from the student to the teacher. During the EchoDistill, we share the text encoder between the two models to ensure consistent semantic understanding. Following this, the student model is optimized with adversarial losses to align with the real image distribution and with alignment losses to maintain consistency with the teacher's output. Furthermore, we introduce the bidirectional echoing refinement strategy, wherein the student model leverages its faster generation capability to feedback to the teacher model. This bidirectional concept distillation mechanism not only enhances the student ability to personalize novel concepts but also improves the generative quality of the teacher model. Our experiments demonstrate that this collaborative framework significantly outperforms existing personalization methods over the 1-SDP setup, establishing a novel paradigm for rapid and effective personalization in T2I diffusion models.

Authors:Zixuan Wu, Hengyuan Zhang, Ting-Hsuan Chen, Yuliang Guo, David Paz, Xinyu Huang, Liu Ren
Title: Dino-Diffusion Modular Designs Bridge the Cross-Domain Gap in Autonomous Parking
Abstract:
Parking is a critical pillar of driving safety. While recent end-to-end (E2E) approaches have achieved promising in-domain results, robustness under domain shifts (e.g., weather and lighting changes) remains a key challenge. Rather than relying on additional data, in this paper, we propose Dino-Diffusion Parking (DDP), a domain-agnostic autonomous parking pipeline that integrates visual foundation models with diffusion-based planning to enable generalized perception and robust motion planning under distribution shifts. We train our pipeline in CARLA at regular setting and transfer it to more adversarial settings in a zero-shot fashion. Our model consistently achieves a parking success rate above 90% across all tested out-of-distribution (OOD) scenarios, with ablation studies confirming that both the network architecture and algorithmic design significantly enhance cross-domain performance over existing baselines. Furthermore, testing in a 3D Gaussian splatting (3DGS) environment reconstructed from a real-world parking lot demonstrates promising sim-to-real transfer.

Authors:Liangyu Chen, Hanzhang Zhou, Chenglin Cai, Jianan Zhang, Panrong Tong, Quyu Kong, Xu Zhang, Chen Liu, Yuqi Liu, Wenxuan Wang, Yue Wang, Qin Jin, Steven Hoi
Title: UI-Ins: Enhancing GUI Grounding with Multi-Perspective Instruction-as-Reasoning
Abstract:
GUI grounding, which maps natural-language instructions to actionable UI elements, is a core capability of GUI agents. Prior works largely treats instructions as a static proxy for user intent, overlooking the impact of instruction diversity and quality on grounding performance. Through a careful investigation of existing grounding datasets, we find a 23.3% flaw rate in their instructions and show that inference-time exploitation of instruction diversity yields up to a substantial 76% relative performance improvement. In this paper, we introduce the Instruction-as-Reasoning paradigm, treating instructions as dynamic analytical pathways that offer distinct perspectives and enabling the model to select the most effective pathway during reasoning. To achieve this, we propose a two-stage training framework: supervised fine-tuning (SFT) on synthesized, diverse instructions to instill multi-perspective reasoning, followed by reinforcement learning (RL) to optimize pathway selection and composition. Our resulting models, UI-Ins-7B and UI-Ins-32B, achieve state-of-the-art results on five challenging grounding benchmarks and exhibit emergent reasoning, selectively composing and synthesizing novel instruction pathways at inference. In particular, UI-Ins-32B attains the best grounding accuracy, scoring 87.3% on UI-I2E-Bench, 57.0% on ScreenSpot-Pro, and 84.9% on MMBench-GUI L2. Furthermore, our model demonstrates strong agentic potential, achieving a 74.1% success rate on AndroidWorld using UI-Ins-7B as the executor. Our in-depth analysis reveals additional insights such as how reasoning can be formulated to enhance rather than hinder grounding performance, and how our method mitigates policy collapse in the SFT+RL framework. All code and model checkpoints will be publicly released in https://github.com/alibaba/UI-Ins.

Authors:Guowei Zhong, Junjie Li, Huaiyu Zhu, Ruohong Huan, Yun Pan
Title: Calibrating Multimodal Consensus for Emotion Recognition
Abstract:
In recent years, Multimodal Emotion Recognition (MER) has made substantial progress. Nevertheless, most existing approaches neglect the semantic inconsistencies that may arise across modalities, such as conflicting emotional cues between text and visual inputs. Besides, current methods are often dominated by the text modality due to its strong representational capacity, which can compromise recognition accuracy. To address these challenges, we propose a model termed Calibrated Multimodal Consensus (CMC). CMC introduces a Pseudo Label Generation Module (PLGM) to produce pseudo unimodal labels, enabling unimodal pretraining in a self-supervised fashion. It then employs a Parameter-free Fusion Module (PFM) and a Multimodal Consensus Router (MCR) for multimodal finetuning, thereby mitigating text dominance and guiding the fusion process toward a more reliable consensus. Experimental results demonstrate that CMC achieves performance on par with or superior to state-of-the-art methods across four datasets, CH-SIMS, CH-SIMS v2, CMU-MOSI, and CMU-MOSEI, and exhibits notable advantages in scenarios with semantic inconsistencies on CH-SIMS and CH-SIMS v2. The implementation of this work is publicly accessible at https://github.com/gw-zhong/CMC.

Authors:Runsong Zhu, Ka-Hei Hui, Zhengzhe Liu, Qianyi Wu, Weiliang Tang, Shi Qiu, Pheng-Ann Heng, Chi-Wing Fu
Title: COS3D: Collaborative Open-Vocabulary 3D Segmentation
Abstract:
Open-vocabulary 3D segmentation is a fundamental yet challenging task, requiring a mutual understanding of both segmentation and language. However, existing Gaussian-splatting-based methods rely either on a single 3D language field, leading to inferior segmentation, or on pre-computed class-agnostic segmentations, suffering from error accumulation. To address these limitations, we present COS3D, a new collaborative prompt-segmentation framework that contributes to effectively integrating complementary language and segmentation cues throughout its entire pipeline. We first introduce the new concept of collaborative field, comprising an instance field and a language field, as the cornerstone for collaboration. During training, to effectively construct the collaborative field, our key idea is to capture the intrinsic relationship between the instance field and language field, through a novel instance-to-language feature mapping and designing an efficient two-stage training strategy. During inference, to bridge distinct characteristics of the two fields, we further design an adaptive language-to-instance prompt refinement, promoting high-quality prompt-segmentation inference. Extensive experiments not only demonstrate COS3D's leading performance over existing methods on two widely-used benchmarks but also show its high potential to various applications,~\ie, novel image-based 3D segmentation, hierarchical segmentation, and robotics. The code is publicly available at \href{https://github.com/Runsong123/COS3D}{https://github.com/Runsong123/COS3D}.

Authors:Jiahuan Wang, Yuxin Chen, Jun Yu, Guangming Lu, Wenjie Pei
Title: EditInfinity: Image Editing with Binary-Quantized Generative Models
Abstract:
Adapting pretrained diffusion-based generative models for text-driven image editing with negligible tuning overhead has demonstrated remarkable potential. A classical adaptation paradigm, as followed by these methods, first infers the generative trajectory inversely for a given source image by image inversion, then performs image editing along the inferred trajectory guided by the target text prompts. However, the performance of image editing is heavily limited by the approximation errors introduced during image inversion by diffusion models, which arise from the absence of exact supervision in the intermediate generative steps. To circumvent this issue, we investigate the parameter-efficient adaptation of VQ-based generative models for image editing, and leverage their inherent characteristic that the exact intermediate quantized representations of a source image are attainable, enabling more effective supervision for precise image inversion. Specifically, we propose \emph{EditInfinity}, which adapts \emph{Infinity}, a binary-quantized generative model, for image editing. We propose an efficient yet effective image inversion mechanism that integrates text prompting rectification and image style preservation, enabling precise image inversion. Furthermore, we devise a holistic smoothing strategy which allows our \emph{EditInfinity} to perform image editing with high fidelity to source images and precise semantic alignment to the text prompts. Extensive experiments on the PIE-Bench benchmark across "add", "change", and "delete" editing operations, demonstrate the superior performance of our model compared to state-of-the-art diffusion-based baselines. Code available at: https://github.com/yx-chen-ust/EditInfinity.

Authors:Bingjie Gao, Qianli Ma, Xiaoxue Wu, Shuai Yang, Guanzhou Lan, Haonan Zhao, Jiaxuan Chen, Qingyang Liu, Yu Qiao, Xinyuan Chen, Yaohui Wang, Li Niu
Title: RAPO++: Cross-Stage Prompt Optimization for Text-to-Video Generation via Data Alignment and Test-Time Scaling
Abstract:
Prompt design plays a crucial role in text-to-video (T2V) generation, yet user-provided prompts are often short, unstructured, and misaligned with training data, limiting the generative potential of diffusion-based T2V models. We present \textbf{RAPO++}, a cross-stage prompt optimization framework that unifies training-data--aligned refinement, test-time iterative scaling, and large language model (LLM) fine-tuning to substantially improve T2V generation without modifying the underlying generative backbone. In \textbf{Stage 1}, Retrieval-Augmented Prompt Optimization (RAPO) enriches user prompts with semantically relevant modifiers retrieved from a relation graph and refactors them to match training distributions, enhancing compositionality and multi-object fidelity. \textbf{Stage 2} introduces Sample-Specific Prompt Optimization (SSPO), a closed-loop mechanism that iteratively refines prompts using multi-source feedback -- including semantic alignment, spatial fidelity, temporal coherence, and task-specific signals such as optical flow -- yielding progressively improved video generation quality. \textbf{Stage 3} leverages optimized prompt pairs from SSPO to fine-tune the rewriter LLM, internalizing task-specific optimization patterns and enabling efficient, high-quality prompt generation even before inference. Extensive experiments across five state-of-the-art T2V models and five benchmarks demonstrate that RAPO++ achieves significant gains in semantic alignment, compositional reasoning, temporal stability, and physical plausibility, outperforming existing methods by large margins. Our results highlight RAPO++ as a model-agnostic, cost-efficient, and scalable solution that sets a new standard for prompt optimization in T2V generation. The code is available at https://github.com/Vchitect/RAPO.

Authors:Yun Wang, Junjie Hu, Qiaole Dong, Yongjian Zhang, Yanwei Fu, Tin Lun Lam, Dapeng Wu
Title: PPMStereo: Pick-and-Play Memory Construction for Consistent Dynamic Stereo Matching
Abstract:
Temporally consistent depth estimation from stereo video is critical for real-world applications such as augmented reality, where inconsistent depth estimation disrupts the immersion of users. Despite its importance, this task remains challenging due to the difficulty in modeling long-term temporal consistency in a computationally efficient manner. Previous methods attempt to address this by aggregating spatio-temporal information but face a fundamental trade-off: limited temporal modeling provides only modest gains, whereas capturing long-range dependencies significantly increases computational cost. To address this limitation, we introduce a memory buffer for modeling long-range spatio-temporal consistency while achieving efficient dynamic stereo matching. Inspired by the two-stage decision-making process in humans, we propose a \textbf{P}ick-and-\textbf{P}lay \textbf{M}emory (PPM) construction module for dynamic \textbf{Stereo} matching, dubbed as \textbf{PPMStereo}. PPM consists of a `pick' process that identifies the most relevant frames and a `play' process that weights the selected frames adaptively for spatio-temporal aggregation. This two-stage collaborative process maintains a compact yet highly informative memory buffer while achieving temporally consistent information aggregation. Extensive experiments validate the effectiveness of PPMStereo, demonstrating state-of-the-art performance in both accuracy and temporal consistency. % Notably, PPMStereo achieves 0.62/1.11 TEPE on the Sintel clean/final (17.3\% \& 9.02\% improvements over BiDAStereo) with fewer computational costs. Codes are available at \textcolor{blue}{https://github.com/cocowy1/PPMStereo}.

Authors:Xudong Yan, Songhe Feng
Title: TOMCAT: Test-time Comprehensive Knowledge Accumulation for Compositional Zero-Shot Learning
Abstract:
Compositional Zero-Shot Learning (CZSL) aims to recognize novel attribute-object compositions based on the knowledge learned from seen ones. Existing methods suffer from performance degradation caused by the distribution shift of label space at test time, which stems from the inclusion of unseen compositions recombined from attributes and objects. To overcome the challenge, we propose a novel approach that accumulates comprehensive knowledge in both textual and visual modalities from unsupervised data to update multimodal prototypes at test time. Building on this, we further design an adaptive update weight to control the degree of prototype adjustment, enabling the model to flexibly adapt to distribution shift during testing. Moreover, a dynamic priority queue is introduced that stores high-confidence images to acquire visual knowledge from historical images for inference. Considering the semantic consistency of multimodal knowledge, we align textual and visual prototypes by multimodal collaborative representation learning. Extensive experiments indicate that our approach achieves state-of-the-art performance on four benchmark datasets under both closed-world and open-world settings. Code will be available at https://github.com/xud-yan/TOMCAT .

Authors:Penghao Wang, Yiyang He, Xin Lv, Yukai Zhou, Lan Xu, Jingyi Yu, Jiayuan Gu
Title: PartNeXt: A Next-Generation Dataset for Fine-Grained and Hierarchical 3D Part Understanding
Abstract:
Understanding objects at the level of their constituent parts is fundamental to advancing computer vision, graphics, and robotics. While datasets like PartNet have driven progress in 3D part understanding, their reliance on untextured geometries and expert-dependent annotation limits scalability and usability. We introduce PartNeXt, a next-generation dataset addressing these gaps with over 23,000 high-quality, textured 3D models annotated with fine-grained, hierarchical part labels across 50 categories. We benchmark PartNeXt on two tasks: (1) class-agnostic part segmentation, where state-of-the-art methods (e.g., PartField, SAMPart3D) struggle with fine-grained and leaf-level parts, and (2) 3D part-centric question answering, a new benchmark for 3D-LLMs that reveals significant gaps in open-vocabulary part grounding. Additionally, training Point-SAM on PartNeXt yields substantial gains over PartNet, underscoring the dataset's superior quality and diversity. By combining scalable annotation, texture-aware labels, and multi-task evaluation, PartNeXt opens new avenues for research in structured 3D understanding.

Authors:Jiachen Liang, Ruibing Hou, Minyang Hu, Hong Chang, Shiguang Shan, Xilin Chen
Title: Revisiting Logit Distributions for Reliable Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection is critical for ensuring the reliability of deep learning models in open-world applications. While post-hoc methods are favored for their efficiency and ease of deployment, existing approaches often underexploit the rich information embedded in the model's logits space. In this paper, we propose LogitGap, a novel post-hoc OOD detection method that explicitly exploits the relationship between the maximum logit and the remaining logits to enhance the separability between in-distribution (ID) and OOD samples. To further improve its effectiveness, we refine LogitGap by focusing on a more compact and informative subset of the logit space. Specifically, we introduce a training-free strategy that automatically identifies the most informative logits for scoring. We provide both theoretical analysis and empirical evidence to validate the effectiveness of our approach. Extensive experiments on both vision-language and vision-only models demonstrate that LogitGap consistently achieves state-of-the-art performance across diverse OOD detection scenarios and benchmarks. Code is available at https://github.com/GIT-LJc/LogitGap.

Authors:Ziheng Zhang, Xinyue Ma, Arpita Chowdhury, Elizabeth G. Campolongo, Matthew J. Thompson, Net Zhang, Samuel Stevens, Hilmar Lapp, Tanya Berger-Wolf, Yu Su, Wei-Lun Chao, Jianyang Gu
Title: BioCAP: Exploiting Synthetic Captions Beyond Labels in Biological Foundation Models
Abstract:
This work investigates descriptive captions as an additional source of supervision for biological multimodal foundation models. Images and captions can be viewed as complementary samples from the latent morphospace of a species, each capturing certain biological traits. Incorporating captions during training encourages alignment with this shared latent structure, emphasizing potentially diagnostic characters while suppressing spurious correlations. The main challenge, however, lies in obtaining faithful, instance-specific captions at scale. This requirement has limited the utilization of natural language supervision in organismal biology compared with many other scientific domains. We complement this gap by generating synthetic captions with multimodal large language models (MLLMs), guided by Wikipedia-derived visual information and taxon-tailored format examples. These domain-specific contexts help reduce hallucination and yield accurate, instance-based descriptive captions. Using these captions, we train BioCAP (i.e., BioCLIP with Captions), a biological foundation model that captures rich semantics and achieves strong performance in species classification and text-image retrieval. These results demonstrate the value of descriptive captions beyond labels in bridging biological images with multimodal foundation models.

Authors:Lorenzo Arboit, Dennis N. Schneider, Britty Baby, Vinkle Srivastav, Pietro Mascagni, Nicolas Padoy
Title: Endoshare: A Source Available Solution to De-Identify and Manage Surgical Videos
Abstract:
Video-based assessment and surgical data science can advance surgical training, research, and quality improvement. However, widespread use remains limited by heterogeneous recording formats and privacy concerns associated with video sharing. We present Endoshare, a source-available, cross-platform application for merging, standardizing, and de-identifying endoscopic videos in minimally invasive surgery. Development followed the software development life cycle with iterative, user-centered feedback. During the analysis phase, an internal survey of clinicians and computer scientists based on ten usability heuristics identified key requirements that guided a privacy-by-design architecture. In the testing phase, an external clinician survey combined the same heuristics with Technology Acceptance Model constructs to assess usability and adoption, complemented by benchmarking across different hardware configurations. Four clinicians and four computer scientists initially tested the prototype, reporting high usability (4.68 +/- 0.40/5 and 4.03 +/- 0.51/5), with the lowest score (4.00 +/- 0.93/5) relating to label clarity. After refinement, the testing phase surveyed ten surgeons who reported high perceived usefulness (5.07 +/- 1.75/7), ease of use (5.15 +/- 1.71/7), heuristic usability (4.38 +/- 0.48/5), and strong recommendation (9.20 +/- 0.79/10). Processing time varied with processing mode, video duration (both p <= 0.001), and machine computational power (p = 0.041). Endoshare provides a transparent, user-friendly pipeline for standardized, privacy-preserving surgical video management. Compliance certification and broader interoperability validation are needed to establish it as a deployable alternative to proprietary systems. The software is available at https://camma-public.github.io/Endoshare/

Authors:Hui Chen, Xinjie Wang, Xianchao Xiu, Wanquan Liu
Title: Data-Adaptive Transformed Bilateral Tensor Low-Rank Representation for Clustering
Abstract:
Tensor low-rank representation (TLRR) has demonstrated significant success in image clustering. However, most existing methods rely on fixed transformations and suffer from poor robustness to noise. In this paper, we propose a novel transformed bilateral tensor low-rank representation model called TBTLRR, which introduces a data-adaptive tensor nuclear norm by learning arbitrary unitary transforms, allowing for more effective capture of global correlations. In addition, by leveraging the bilateral structure of latent tensor data, TBTLRR is able to exploit local correlations between image samples and features. Furthermore, TBTLRR integrates the $\ell_{1/2}$-norm and Frobenius norm regularization terms for better dealing with complex noise in real-world scenarios. To solve the proposed nonconvex model, we develop an efficient optimization algorithm inspired by the alternating direction method of multipliers (ADMM) and provide theoretical convergence. Extensive experiments validate its superiority over the state-of-the-art methods in clustering. The code will be available at https://github.com/xianchaoxiu/TBTLRR.

Authors:Bernd Pfrommer
Title: Filter-Based Reconstruction of Images from Events
Abstract:
Reconstructing an intensity image from the events of a moving event camera is a challenging task that is typically approached with neural networks deployed on graphics processing units. This paper presents a much simpler, FIlter Based Asynchronous Reconstruction method (FIBAR). First, intensity changes signaled by events are integrated with a temporal digital IIR filter. To reduce reconstruction noise, stale pixels are detected by a novel algorithm that regulates a window of recently updated pixels. Arguing that for a moving camera, the absence of events at a pixel location likely implies a low image gradient, stale pixels are then blurred with a Gaussian filter. In contrast to most existing methods, FIBAR is asynchronous and permits image read-out at an arbitrary time. It runs on a modern laptop CPU at about 42(140) million events/s with (without) spatial filtering enabled. A few simple qualitative experiments are presented that show the difference in image reconstruction between FIBAR and a neural network-based approach (FireNet). FIBAR's reconstruction is noisier than neural network-based methods and suffers from ghost images. However, it is sufficient for certain tasks such as the detection of fiducial markers. Code is available at https://github.com/ros-event-camera/event_image_reconstruction_fibar

Authors:Damian Bowness, Charalambos Poullis
Title: Extreme Views: 3DGS Filter for Novel View Synthesis from Out-of-Distribution Camera Poses
Abstract:
When viewing a 3D Gaussian Splatting (3DGS) model from camera positions significantly outside the training data distribution, substantial visual noise commonly occurs. These artifacts result from the lack of training data in these extrapolated regions, leading to uncertain density, color, and geometry predictions from the model. To address this issue, we propose a novel real-time render-aware filtering method. Our approach leverages sensitivity scores derived from intermediate gradients, explicitly targeting instabilities caused by anisotropic orientations rather than isotropic variance. This filtering method directly addresses the core issue of generative uncertainty, allowing 3D reconstruction systems to maintain high visual fidelity even when users freely navigate outside the original training viewpoints. Experimental evaluation demonstrates that our method substantially improves visual quality, realism, and consistency compared to existing Neural Radiance Field (NeRF)-based approaches such as BayesRays. Critically, our filter seamlessly integrates into existing 3DGS rendering pipelines in real-time, unlike methods that require extensive post-hoc retraining or fine-tuning. Code and results at https://damian-bowness.github.io/EV3DGS

Authors:Trajan Murphy, Akshunna S. Dogra, Hanfeng Gu, Caleb Meredith, Mark Kon, Julio Enrique Castrillion-Candas
Title: FINDER: Feature Inference on Noisy Datasets using Eigenspace Residuals
Abstract:
''Noisy'' datasets (regimes with low signal to noise ratios, small sample sizes, faulty data collection, etc) remain a key research frontier for classification methods with both theoretical and practical implications. We introduce FINDER, a rigorous framework for analyzing generic classification problems, with tailored algorithms for noisy datasets. FINDER incorporates fundamental stochastic analysis ideas into the feature learning and inference stages to optimally account for the randomness inherent to all empirical datasets. We construct ''stochastic features'' by first viewing empirical datasets as realizations from an underlying random field (without assumptions on its exact distribution) and then mapping them to appropriate Hilbert spaces. The Kosambi-Karhunen-Loéve expansion (KLE) breaks these stochastic features into computable irreducible components, which allow classification over noisy datasets via an eigen-decomposition: data from different classes resides in distinct regions, identified by analyzing the spectrum of the associated operators. We validate FINDER on several challenging, data-deficient scientific domains, producing state of the art breakthroughs in: (i) Alzheimer's Disease stage classification, (ii) Remote sensing detection of deforestation. We end with a discussion on when FINDER is expected to outperform existing methods, its failure modes, and other limitations.

Authors:Ilona Demler, Saumya Chauhan, Georgia Gkioxari
Title: Is This Tracker On? A Benchmark Protocol for Dynamic Tracking
Abstract:
We introduce ITTO, a challenging new benchmark suite for evaluating and diagnosing the capabilities and limitations of point tracking methods. Our videos are sourced from existing datasets and egocentric real-world recordings, with high-quality human annotations collected through a multi-stage pipeline. ITTO captures the motion complexity, occlusion patterns, and object diversity characteristic of real-world scenes -- factors that are largely absent in current benchmarks. We conduct a rigorous analysis of state-of-the-art tracking methods on ITTO, breaking down performance along key axes of motion complexity. Our findings reveal that existing trackers struggle with these challenges, particularly in re-identifying points after occlusion, highlighting critical failure modes. These results point to the need for new modeling approaches tailored to real-world dynamics. We envision ITTO as a foundation testbed for advancing point tracking and guiding the development of more robust tracking algorithms.

Authors:Siyang Wu, Jack Nugent, Willow Yang, Jia Deng
Title: How to Evaluate Monocular Depth Estimation?
Abstract:
Monocular depth estimation is an important task with rapid progress, but how to evaluate it remains an open question, as evidenced by a lack of standardization in existing literature and a large selection of evaluation metrics whose trade-offs and behaviors are not well understood. This paper contributes a novel, quantitative analysis of existing metrics in terms of their sensitivity to various types of perturbations of ground truth, emphasizing comparison to human judgment. Our analysis reveals that existing metrics are severely under-sensitive to curvature perturbation such as making flat surfaces wavy. To remedy this, we introduce a new metric based on relative surface normals, along with new depth visualization tools and a principled method to create composite metrics with better human alignment. Code and data are available at: https://github.com/princeton-vl/evalmde.

Authors:Zhida Zhao, Talas Fu, Yifan Wang, Lijun Wang, Huchuan Lu
Title: From Forecasting to Planning: Policy World Model for Collaborative State-Action Prediction
Abstract:
Despite remarkable progress in driving world models, their potential for autonomous systems remains largely untapped: the world models are mostly learned for world simulation and decoupled from trajectory planning. While recent efforts aim to unify world modeling and planning in a single framework, the synergistic facilitation mechanism of world modeling for planning still requires further exploration. In this work, we introduce a new driving paradigm named Policy World Model (PWM), which not only integrates world modeling and trajectory planning within a unified architecture, but is also able to benefit planning using the learned world knowledge through the proposed action-free future state forecasting scheme. Through collaborative state-action prediction, PWM can mimic the human-like anticipatory perception, yielding more reliable planning performance. To facilitate the efficiency of video forecasting, we further introduce a dynamically enhanced parallel token generation mechanism, equipped with a context-guided tokenizer and an adaptive dynamic focal loss. Despite utilizing only front camera input, our method matches or exceeds state-of-the-art approaches that rely on multi-view and multi-modal inputs. Code and model weights will be released at https://github.com/6550Zhao/Policy-World-Model.

Authors:Yifan Li, Fenghe Tang, Yingtai Li, Shaohua Kevin Zhou
Title: MedReason-R1: Learning to Reason for CT Diagnosis with Reinforcement Learning and Local Zoom
Abstract:
General-purpose large Vision-Language Models (VLMs) demonstrate strong capabilities in generating detailed descriptions for natural images. However, their performance in the medical domain remains suboptimal, even for relatively straightforward tasks, primarily due to the lack of large-scale, high-quality, specialized medical imaging datasets and the neglect of the diagnostic process that progresses from coarse to fine-grained. To address the first issue, we construct the CT-RATE-VQA dataset, which has 84K QA pairs. For the second issue, we propose MedReason-R1, a medical VLM with explicit reasoning process for disease diagnosis. MedReason-R1 incorporates a novel strategy that embeds zoom-in disease region-of-interest areas into the image, highlighting the crucial role of both global localization and disease-specific details in enhancing the model's diagnostic performance. Furthermore, we introduce the GRPO reinforcement learning framework to MedReason-R1, which enables effective reasoning without relying on costly manual annotations. Compared to recent general-purpose and medical VLMs, MedReason-R1 achieves state-of-the-art performance in CT disease diagnosis while retaining generalization. The code, checkpoints, and dataset are available at: https://github.com/Leevan001/MedReason-R1

Authors:Junfei Zhou, Penglin Dai, Quanmin Wei, Bingyi Liu, Xiao Wu, Jianping Wang
Title: Pragmatic Heterogeneous Collaborative Perception via Generative Communication Mechanism
Abstract:
Multi-agent collaboration enhances the perception capabilities of individual agents through information sharing. However, in real-world applications, differences in sensors and models across heterogeneous agents inevitably lead to domain gaps during collaboration. Existing approaches based on adaptation and reconstruction fail to support pragmatic heterogeneous collaboration due to two key limitations: (1) Intrusive retraining of the encoder or core modules disrupts the established semantic consistency among agents; and (2) accommodating new agents incurs high computational costs, limiting scalability. To address these challenges, we present a novel Generative Communication mechanism (GenComm) that facilitates seamless perception across heterogeneous multi-agent systems through feature generation, without altering the original network, and employs lightweight numerical alignment of spatial information to efficiently integrate new agents at minimal cost. Specifically, a tailored Deformable Message Extractor is designed to extract spatial message for each collaborator, which is then transmitted in place of intermediate features. The Spatial-Aware Feature Generator, utilizing a conditional diffusion model, generates features aligned with the ego agent's semantic space while preserving the spatial information of the collaborators. These generated features are further refined by a Channel Enhancer before fusion. Experiments conducted on the OPV2V-H, DAIR-V2X and V2X-Real datasets demonstrate that GenComm outperforms existing state-of-the-art methods, achieving an 81\% reduction in both computational cost and parameter count when incorporating new agents. Our code is available at https://github.com/jeffreychou777/GenComm.

Authors:Haozhe Luo, Shelley Zixin Shu, Ziyu Zhou, Sebastian Otalora, Mauricio Reyes
Title: XBench: A Comprehensive Benchmark for Visual-Language Explanations in Chest Radiography
Abstract:
Vision-language models (VLMs) have recently shown remarkable zero-shot performance in medical image understanding, yet their grounding ability, the extent to which textual concepts align with visual evidence, remains underexplored. In the medical domain, however, reliable grounding is essential for interpretability and clinical adoption. In this work, we present the first systematic benchmark for evaluating cross-modal interpretability in chest X-rays across seven CLIP-style VLM variants. We generate visual explanations using cross-attention and similarity-based localization maps, and quantitatively assess their alignment with radiologist-annotated regions across multiple pathologies. Our analysis reveals that: (1) while all VLM variants demonstrate reasonable localization for large and well-defined pathologies, their performance substantially degrades for small or diffuse lesions; (2) models that are pretrained on chest X-ray-specific datasets exhibit improved alignment compared to those trained on general-domain data. (3) The overall recognition ability and grounding ability of the model are strongly correlated. These findings underscore that current VLMs, despite their strong recognition ability, still fall short in clinically reliable grounding, highlighting the need for targeted interpretability benchmarks before deployment in medical practice. XBench code is available at https://github.com/Roypic/Benchmarkingattention

Authors:Su Ho Han, Jeongseok Hyun, Pilhyeon Lee, Minho Shim, Dongyoon Wee, Seon Joo Kim
Title: Decomposed Attention Fusion in MLLMs for Training-Free Video Reasoning Segmentation
Abstract:
Multimodal large language models (MLLMs) demonstrate strong video understanding by attending to visual tokens relevant to textual queries. To directly adapt this for localization in a training-free manner, we cast video reasoning segmentation as a video QA task and extract attention maps via rollout mechanism. However, raw attention maps are noisy and poorly aligned with object regions. We propose Decomposed Attention Fusion (DecAF), which refines these maps through two mechanisms: (1) contrastive object-background fusion and (2) complementary video-frame fusion. This method suppresses irrelevant activations and enhances object-focused cues, enabling direct conversion of attention maps into coarse segmentation masks. In addition, we introduce attention-guided SAM2 prompting for obtaining fine-grained masks. Unlike existing methods that jointly train MLLMs with SAM, our method operates entirely without retraining. DecAF outperforms training-free methods and achieves performance comparable to training-based methods on both referring and reasoning VOS benchmarks. The code will be available at https://github.com/HYUNJS/DecAF.

Authors:Nidham Tekaya, Manuela Waldner, Matthias Zeppelzauer
Title: A Matter of Time: Revealing the Structure of Time in Vision-Language Models
Abstract:
Large-scale vision-language models (VLMs) such as CLIP have gained popularity for their generalizable and expressive multimodal representations. By leveraging large-scale training data with diverse textual metadata, VLMs acquire open-vocabulary capabilities, solving tasks beyond their training scope. This paper investigates the temporal awareness of VLMs, assessing their ability to position visual content in time. We introduce TIME10k, a benchmark dataset of over 10,000 images with temporal ground truth, and evaluate the time-awareness of 37 VLMs by a novel methodology. Our investigation reveals that temporal information is structured along a low-dimensional, non-linear manifold in the VLM embedding space. Based on this insight, we propose methods to derive an explicit ``timeline'' representation from the embedding space. These representations model time and its chronological progression and thereby facilitate temporal reasoning tasks. Our timeline approaches achieve competitive to superior accuracy compared to a prompt-based baseline while being computationally efficient. All code and data are available at https://tekayanidham.github.io/timeline-page/.

Authors:Zhiyuan Feng, Zhaolu Kang, Qijie Wang, Zhiying Du, Jiongrui Yan, Shubin Shi, Chengbo Yuan, Huizhi Liang, Yu Deng, Qixiu Li, Rushuai Yang, Arctanx An, Leqi Zheng, Weijie Wang, Shawn Chen, Sicheng Xu, Yaobo Liang, Jiaolong Yang, Baining Guo
Title: Seeing Across Views: Benchmarking Spatial Reasoning of Vision-Language Models in Robotic Scenes
Abstract:
Vision-language models (VLMs) are essential to Embodied AI, enabling robots to perceive, reason, and act in complex environments. They also serve as the foundation for the recent Vision-Language-Action (VLA) models. Yet most evaluations of VLMs focus on single-view settings, leaving their ability to integrate multi-view information underexplored. At the same time, multi-camera setups are increasingly standard in robotic platforms, as they provide complementary perspectives to mitigate occlusion and depth ambiguity. Whether VLMs can effectively leverage such multi-view inputs for robotic reasoning therefore remains an open question. To bridge this gap, we introduce MV-RoboBench, a benchmark specifically designed to evaluate the multi-view spatial reasoning capabilities of VLMs in robotic manipulation. MV-RoboBench consists of 1.7k manually curated QA items across eight subtasks, divided into two primary categories: spatial understanding and robotic execution. We evaluate a diverse set of existing VLMs, including both open-source and closed-source models, along with enhanced versions incorporating CoT-inspired techniques. The results show that state-of-the-art models remain far below human performance, underscoring the substantial challenges VLMs face in multi-view robotic perception. Additionally, our analysis uncovers two key findings: (i) spatial intelligence and robotic task execution are positively correlated in multi-view robotic scenarios; and (ii) strong performance on existing general-purpose single-view spatial understanding benchmarks does not reliably translate to success in the robotic spatial tasks assessed by our benchmark. We release MV-RoboBench as an open resource to foster progress in spatially grounded VLMs and VLAs, providing not only data but also a standardized evaluation protocol for multi-view embodied reasoning.

Authors:Woo Jae Kim, Kyu Beom Han, Yoonki Cho, Youngju Na, Junsik Jung, Sooel Son, Sung-eui Yoon
Title: AegisRF: Adversarial Perturbations Guided with Sensitivity for Protecting Intellectual Property of Neural Radiance Fields
Abstract:
As Neural Radiance Fields (NeRFs) have emerged as a powerful tool for 3D scene representation and novel view synthesis, protecting their intellectual property (IP) from unauthorized use is becoming increasingly crucial. In this work, we aim to protect the IP of NeRFs by injecting adversarial perturbations that disrupt their unauthorized applications. However, perturbing the 3D geometry of NeRFs can easily deform the underlying scene structure and thus substantially degrade the rendering quality, which has led existing attempts to avoid geometric perturbations or restrict them to explicit spaces like meshes. To overcome this limitation, we introduce a learnable sensitivity to quantify the spatially varying impact of geometric perturbations on rendering quality. Building upon this, we propose AegisRF, a novel framework that consists of a Perturbation Field, which injects adversarial perturbations into the pre-rendering outputs (color and volume density) of NeRF models to fool an unauthorized downstream target model, and a Sensitivity Field, which learns the sensitivity to adaptively constrain geometric perturbations, preserving rendering quality while disrupting unauthorized use. Our experimental evaluations demonstrate the generalized applicability of AegisRF across diverse downstream tasks and modalities, including multi-view image classification and voxel-based 3D localization, while maintaining high visual fidelity. Codes are available at https://github.com/wkim97/AegisRF.

Authors:Nilesh Ramgolam, Gustavo Carneiro, Hsiang-Ting Chen
Title: Learning To Defer To A Population With Limited Demonstrations
Abstract:
This paper addresses the critical data scarcity that hinders the practical deployment of learning to defer (L2D) systems to the population. We introduce a context-aware, semi-supervised framework that uses meta-learning to generate expert-specific embeddings from only a few demonstrations. We demonstrate the efficacy of a dual-purpose mechanism, where these embeddings are used first to generate a large corpus of pseudo-labels for training, and subsequently to enable on-the-fly adaptation to new experts at test-time. The experiment results on three different datasets confirm that a model trained on these synthetic labels rapidly approaches oracle-level performance, validating the data efficiency of our approach. By resolving a key training bottleneck, this work makes adaptive L2D systems more practical and scalable, paving the way for human-AI collaboration in real-world environments. To facilitate reproducibility and address implementation details not covered in the main text, we provide our source code and training configurations at https://github.com/nil123532/learning-to-defer-to-a-population-with-limited-demonstrations.

Authors:Kai Shi, Jun Yang, Ni Yang, Binqiang Pan, Qingsong Xie, Chao Zhang, Zhenyu Yang, Tianhuang Su, Haonan Lu
Title: DaMo: Data Mixing Optimizer in Fine-tuning Multimodal LLMs for Mobile Phone Agents
Abstract:
Mobile Phone Agents (MPAs) have emerged as a promising research direction due to their broad applicability across diverse scenarios. While Multimodal Large Language Models (MLLMs) serve as the foundation for MPAs, their effectiveness in handling multiple mobile phone tasks simultaneously remains limited. Although multitask supervised fine-tuning (SFT) is widely adopted for multitask learning, existing approaches struggle to determine optimal training data compositions for peak performance. To address this challenge, we propose DaMo (Data Mixture Optimizer) - a novel solution employing a trainable network that predicts optimal data mixtures by forecasting downstream task performance for any given dataset ratio. To support comprehensive evaluation, we introduce PhoneAgentBench, the first specialized benchmark to evaluate MLLMs on multimodal mobile phone tasks, comprising 1235 QA pairs spanning diverse real-world industrial mobile application scenarios. Demonstrating strong predictive capability (R^2=0.81) in small-scale pilot experiments, DaMo efficiently extrapolates optimal data mixing configurations. Our results show DaMo achieves a 3.38% performance improvement on PhoneAgentBench compared to alternative methods. Furthermore, extensive experiments across established benchmarks including BFCL-v3, MME-Reasoning, MME-Perception, and OCRBench reveal DaMo's superior generalization, outperforming other approaches by 2.57% in terms of average score. When used solely for MLLM optimization on the BFCL-v3 task, DaMo improves the metrics by 12.47% than other methods. Notably, DaMo maintains robust scalability, preserving its effectiveness when applied to other model architectures. The code and dataset are available at https://github.com/OPPO-Mente-Lab/DaMo.git

Authors:Panagiotis Agrafiotis, Begüm Demir
Title: Seabed-Net: A multi-task network for joint bathymetry estimation and seabed classification from remote sensing imagery in shallow waters
Abstract:
Accurate, detailed, and regularly updated bathymetry, coupled with complex semantic content, is essential for under-mapped shallow-water environments facing increasing climatological and anthropogenic pressures. However, existing approaches that derive either depth or seabed classes from remote sensing imagery treat these tasks in isolation, forfeiting the mutual benefits of their interaction and hindering the broader adoption of deep learning methods. To address these limitations, we introduce Seabed-Net, a unified multi-task framework that simultaneously predicts bathymetry and pixel-based seabed classification from remote sensing imagery of various resolutions. Seabed-Net employs dual-branch encoders for bathymetry estimation and pixel-based seabed classification, integrates cross-task features via an Attention Feature Fusion module and a windowed Swin-Transformer fusion block, and balances objectives through dynamic task uncertainty weighting. In extensive evaluations at two heterogeneous coastal sites, it consistently outperforms traditional empirical models and traditional machine learning regression methods, achieving up to 75\% lower RMSE. It also reduces bathymetric RMSE by 10-30\% compared to state-of-the-art single-task and multi-task baselines and improves seabed classification accuracy up to 8\%. Qualitative analyses further demonstrate enhanced spatial consistency, sharper habitat boundaries, and corrected depth biases in low-contrast regions. These results confirm that jointly modeling depth with both substrate and seabed habitats yields synergistic gains, offering a robust, open solution for integrated shallow-water mapping. Code and pretrained weights are available at https://github.com/pagraf/Seabed-Net.

Authors:Byung-Kwan Lee, Ryo Hachiuma, Yong Man Ro, Yu-Chiang Frank Wang, Yueh-Hua Wu
Title: Unified Reinforcement and Imitation Learning for Vision-Language Models
Abstract:
Vision-Language Models (VLMs) have achieved remarkable progress, yet their large scale often renders them impractical for resource-constrained environments. This paper introduces Unified Reinforcement and Imitation Learning (RIL), a novel and efficient training algorithm designed to create powerful, lightweight VLMs. RIL distinctively combines the strengths of reinforcement learning with adversarial imitation learning. This enables smaller student VLMs not only to mimic the sophisticated text generation of large teacher models but also to systematically improve their generative capabilities through reinforcement signals. Key to our imitation framework is an LLM-based discriminator that adeptly distinguishes between student and teacher outputs, complemented by guidance from multiple large teacher VLMs to ensure diverse learning. This unified learning strategy, leveraging both reinforcement and imitation, empowers student models to achieve significant performance gains, making them competitive with leading closed-source VLMs. Extensive experiments on diverse vision-language benchmarks demonstrate that RIL significantly narrows the performance gap with state-of-the-art open- and closed-source VLMs and, in several instances, surpasses them.

Authors:Yun Kai Zhuang
Title: SCEESR: Semantic-Control Edge Enhancement for Diffusion-Based Super-Resolution
Abstract:
Real-world image super-resolution (Real-ISR) must handle complex degradations and inherent reconstruction ambiguities. While generative models have improved perceptual quality, a key trade-off remains with computational cost. One-step diffusion models offer speed but often produce structural inaccuracies due to distillation artifacts. To address this, we propose a novel SR framework that enhances a one-step diffusion model using a ControlNet mechanism for semantic edge guidance. This integrates edge information to provide dynamic structural control during single-pass inference. We also introduce a hybrid loss combining L2, LPIPS, and an edge-aware AME loss to optimize for pixel accuracy, perceptual quality, and geometric precision. Experiments show our method effectively improves structural integrity and realism while maintaining the efficiency of one-step generation, achieving a superior balance between output quality and inference speed. The results of test datasets will be published at https://drive.google.com/drive/folders/1amddXQ5orIyjbxHgGpzqFHZ6KTolinJF?usp=drive_link and the related code will be published at https://github.com/ARBEZ-ZEBRA/SCEESR.

Authors:Mingrui Zhao, Sauradip Nag, Kai Wang, Aditya Vora, Guangda Ji, Peter Chun, Ali Mahdavi-Amiri, Hao Zhang
Title: Advances in 4D Representation: Geometry, Motion, and Interaction
Abstract:
We present a survey on 4D generation and reconstruction, a fast-evolving subfield of computer graphics whose developments have been propelled by recent advances in neural fields, geometric and motion deep learning, as well 3D generative artificial intelligence (GenAI). While our survey is not the first of its kind, we build our coverage of the domain from a unique and distinctive perspective of 4D representations\/}, to model 3D geometry evolving over time while exhibiting motion and interaction. Specifically, instead of offering an exhaustive enumeration of many works, we take a more selective approach by focusing on representative works to highlight both the desirable properties and ensuing challenges of each representation under different computation, application, and data scenarios. The main take-away message we aim to convey to the readers is on how to select and then customize the appropriate 4D representations for their tasks. Organizationally, we separate the 4D representations based on three key pillars: geometry, motion, and interaction. Our discourse will not only encompass the most popular representations of today, such as neural radiance fields (NeRFs) and 3D Gaussian Splatting (3DGS), but also bring attention to relatively under-explored representations in the 4D context, such as structured models and long-range motions. Throughout our survey, we will reprise the role of large language models (LLMs) and video foundational models (VFMs) in a variety of 4D applications, while steering our discussion towards their current limitations and how they can be addressed. We also provide a dedicated coverage on what 4D datasets are currently available, as well as what is lacking, in driving the subfield forward. Project page:https://mingrui-zhao.github.io/4DRep-GMI/

Authors:Matteo Bortolon, Nuno Ferreira Duarte, Plinio Moreno, Fabio Poiesi, José Santos-Victor, Alessio Del Bue
Title: GRASPLAT: Enabling dexterous grasping through novel view synthesis
Abstract:
Achieving dexterous robotic grasping with multi-fingered hands remains a significant challenge. While existing methods rely on complete 3D scans to predict grasp poses, these approaches face limitations due to the difficulty of acquiring high-quality 3D data in real-world scenarios. In this paper, we introduce GRASPLAT, a novel grasping framework that leverages consistent 3D information while being trained solely on RGB images. Our key insight is that by synthesizing physically plausible images of a hand grasping an object, we can regress the corresponding hand joints for a successful grasp. To achieve this, we utilize 3D Gaussian Splatting to generate high-fidelity novel views of real hand-object interactions, enabling end-to-end training with RGB data. Unlike prior methods, our approach incorporates a photometric loss that refines grasp predictions by minimizing discrepancies between rendered and real images. We conduct extensive experiments on both synthetic and real-world grasping datasets, demonstrating that GRASPLAT improves grasp success rates up to 36.9% over existing image-based methods. Project page: https://mbortolon97.github.io/grasplat/

Authors:Kai Zeng, Zhanqian Wu, Kaixin Xiong, Xiaobao Wei, Xiangyu Guo, Zhenxin Zhu, Kalok Ho, Lijun Zhou, Bohan Zeng, Ming Lu, Haiyang Sun, Bing Wang, Guang Chen, Hangjun Ye, Wentao Zhang
Title: Rethinking Driving World Model as Synthetic Data Generator for Perception Tasks
Abstract:
Recent advancements in driving world models enable controllable generation of high-quality RGB videos or multimodal videos. Existing methods primarily focus on metrics related to generation quality and controllability. However, they often overlook the evaluation of downstream perception tasks, which are $\mathbf{really\ crucial}$ for the performance of autonomous driving. Existing methods usually leverage a training strategy that first pretrains on synthetic data and finetunes on real data, resulting in twice the epochs compared to the baseline (real data only). When we double the epochs in the baseline, the benefit of synthetic data becomes negligible. To thoroughly demonstrate the benefit of synthetic data, we introduce Dream4Drive, a novel synthetic data generation framework designed for enhancing the downstream perception tasks. Dream4Drive first decomposes the input video into several 3D-aware guidance maps and subsequently renders the 3D assets onto these guidance maps. Finally, the driving world model is fine-tuned to produce the edited, multi-view photorealistic videos, which can be used to train the downstream perception models. Dream4Drive enables unprecedented flexibility in generating multi-view corner cases at scale, significantly boosting corner case perception in autonomous driving. To facilitate future research, we also contribute a large-scale 3D asset dataset named DriveObj3D, covering the typical categories in driving scenarios and enabling diverse 3D-aware video editing. We conduct comprehensive experiments to show that Dream4Drive can effectively boost the performance of downstream perception models under various training epochs. Page: https://wm-research.github.io/Dream4Drive/ GitHub Link: https://github.com/wm-research/Dream4Drive

Authors:Keaton Kraiger, Jingjing Li, Skanda Bharadwaj, Jesse Scott, Robert T. Collins, Yanxi Liu
Title: FootFormer: Estimating Stability from Visual Input
Abstract:
We propose FootFormer, a cross-modality approach for jointly predicting human motion dynamics directly from visual input. On multiple datasets, FootFormer achieves statistically significantly better or equivalent estimates of foot pressure distributions, foot contact maps, and center of mass (CoM), as compared with existing methods that generate one or two of those measures. Furthermore, FootFormer achieves SOTA performance in estimating stability-predictive components (CoP, CoM, BoS) used in classic kinesiology metrics. Code and data are available at https://github.com/keatonkraiger/Vision-to-Stability.git.

Authors:Yunzhe Wang, Soham Hans, Volkan Ustun
Title: X-Ego: Acquiring Team-Level Tactical Situational Awareness via Cross-Egocentric Contrastive Video Representation Learning
Abstract:
Human team tactics emerge from each player's individual perspective and their ability to anticipate, interpret, and adapt to teammates' intentions. While advances in video understanding have improved the modeling of team interactions in sports, most existing work relies on third-person broadcast views and overlooks the synchronous, egocentric nature of multi-agent learning. We introduce X-Ego-CS, a benchmark dataset consisting of 124 hours of gameplay footage from 45 professional-level matches of the popular e-sports game Counter-Strike 2, designed to facilitate research on multi-agent decision-making in complex 3D environments. X-Ego-CS provides cross-egocentric video streams that synchronously capture all players' first-person perspectives along with state-action trajectories. Building on this resource, we propose Cross-Ego Contrastive Learning (CECL), which aligns teammates' egocentric visual streams to foster team-level tactical situational awareness from an individual's perspective. We evaluate CECL on a teammate-opponent location prediction task, demonstrating its effectiveness in enhancing an agent's ability to infer both teammate and opponent positions from a single first-person view using state-of-the-art video encoders. Together, X-Ego-CS and CECL establish a foundation for cross-egocentric multi-agent benchmarking in esports. More broadly, our work positions gameplay understanding as a testbed for multi-agent modeling and tactical learning, with implications for spatiotemporal reasoning and human-AI teaming in both virtual and real-world domains. Code and dataset are available at https://github.com/HATS-ICT/x-ego.

Authors:Amith Ananthram, Elias Stengel-Eskin, Lorena A. Bradford, Julia Demarest, Adam Purvis, Keith Krut, Robert Stein, Rina Elster Pantalony, Mohit Bansal, Kathleen McKeown
Title: PoSh: Using Scene Graphs To Guide LLMs-as-a-Judge For Detailed Image Descriptions
Abstract:
While vision-language models (VLMs) have advanced into detailed image description, evaluation remains a challenge. Standard metrics (e.g. CIDEr, SPICE) were designed for short texts and tuned to recognize errors that are now uncommon, such as object misidentification. In contrast, long texts require sensitivity to attribute and relation attachments and scores that localize errors to particular text spans. In this work, we introduce PoSh, a metric for detailed image description that uses scene graphs as structured rubrics to guide LLMs-as-a-Judge, producing aggregate scores grounded in fine-grained errors (e.g. mistakes in compositional understanding). PoSh is replicable, interpretable and a better proxy for human raters than existing metrics (including GPT4o-as-a-Judge). To validate PoSh, we introduce a challenging new dataset, DOCENT. This novel benchmark contains artwork, paired with expert-written references, and model-generated descriptions, augmented with granular and coarse judgments of their quality from art history students. Thus, DOCENT enables evaluating both detailed image description metrics and detailed image description itself in a challenging new domain. We show that PoSh achieves stronger correlations (+0.05 Spearman $ρ$) with the human judgments in DOCENT than the best open-weight alternatives, is robust to image type (using CapArena, an existing dataset of web imagery) and is a capable reward function, outperforming standard supervised fine-tuning. Then, using PoSh, we characterize the performance of open and closed models in describing the paintings, sketches and statues in DOCENT and find that foundation models struggle to achieve full, error-free coverage of images with rich scene dynamics, establishing a demanding new task to gauge VLM progress. Through both PoSh and DOCENT, we hope to enable advances in important areas such as assistive text generation.

Authors:Jizhan Fang, Xinle Deng, Haoming Xu, Ziyan Jiang, Yuqi Tang, Ziwen Xu, Shumin Deng, Yunzhi Yao, Mengru Wang, Shuofei Qiao, Huajun Chen, Ningyu Zhang
Title: LightMem: Lightweight and Efficient Memory-Augmented Generation
Abstract:
Despite their remarkable capabilities, Large Language Models (LLMs) struggle to effectively leverage historical interaction information in dynamic and complex environments. Memory systems enable LLMs to move beyond stateless interactions by introducing persistent information storage, retrieval, and utilization mechanisms. However, existing memory systems often introduce substantial time and computational overhead. To this end, we introduce a new memory system called LightMem, which strikes a balance between the performance and efficiency of memory systems. Inspired by the Atkinson-Shiffrin model of human memory, LightMem organizes memory into three complementary stages. First, cognition-inspired sensory memory rapidly filters irrelevant information through lightweight compression and groups information according to their topics. Next, topic-aware short-term memory consolidates these topic-based groups, organizing and summarizing content for more structured access. Finally, long-term memory with sleep-time update employs an offline procedure that decouples consolidation from online inference. Experiments on LongMemEval with GPT and Qwen backbones show that LightMem outperforms strong baselines in accuracy (up to 10.9% gains) while reducing token usage by up to 117x, API calls by up to 159x, and runtime by over 12x. The code is available at https://github.com/zjunlp/LightMem.

Authors:Xiaoxing Hu, Kaicheng Yang, Ziyang Gong, Qi Ming, Zonghao Guo, Xiang An, Ziyong Feng, Junchi Yan, Xue Yang
Title: ProCLIP: Progressive Vision-Language Alignment via LLM-based Embedder
Abstract:
The original CLIP text encoder is limited by a maximum input length of 77 tokens, which hampers its ability to effectively process long texts and perform fine-grained semantic understanding. In addition, the CLIP text encoder lacks support for multilingual inputs. All these limitations significantly restrict its applicability across a broader range of tasks. Recent studies have attempted to replace the CLIP text encoder with an LLM-based embedder to enhance its ability in processing long texts, multilingual understanding, and fine-grained semantic comprehension. However, because the representation spaces of LLMs and the vision-language space of CLIP are pretrained independently without alignment priors, direct alignment using contrastive learning can disrupt the intrinsic vision-language alignment in the CLIP image encoder, leading to an underutilization of the knowledge acquired during pre-training. To address this challenge, we propose ProCLIP, a curriculum learning-based progressive vision-language alignment framework to effectively align the CLIP image encoder with an LLM-based embedder. Specifically, ProCLIP first distills knowledge from CLIP's text encoder into the LLM-based embedder to leverage CLIP's rich pretrained knowledge while establishing initial alignment between the LLM embedder and CLIP image encoder. Subsequently, ProCLIP further aligns the CLIP image encoder with the LLM-based embedder through image-text contrastive tuning, employing self-distillation regularization to avoid overfitting. To achieve a more effective alignment, instance semantic alignment loss and embedding structure alignment loss are employed during representation inheritance and contrastive tuning. The Code is available at https://github.com/VisionXLab/ProCLIP.

Authors:Wenping Jin, Yuyang Tang, Li Zhu, Fei Guo
Title: Rebellious Student: A Complementary Learning Framework for Background Feature Enhancement in Hyperspectral Anomaly Detection
Abstract:
A recent class of hyperspectral anomaly detection methods that can be trained once on background datasets and then universally deployed -- without per-scene retraining or parameter tuning -- has demonstrated remarkable efficiency and robustness. Building upon this paradigm, we focus on the integration of spectral and spatial cues and introduce a novel "Rebellious Student" framework for complementary feature learning. Unlike conventional teacher-student paradigms driven by imitation, our method intentionally trains the spatial branch to diverge from the spectral teacher, thereby learning complementary spatial patterns that the teacher fails to capture. A two-stage learning strategy is adopted: (1) a spectral enhancement network is first trained via reverse distillation to obtain robust background spectral representations; and (2) a spatial network -- the rebellious student -- is subsequently optimized using decorrelation losses that enforce feature orthogonality while maintaining reconstruction fidelity to avoid irrelevant noise. Once trained, the framework enhances both spectral and spatial background features, enabling parameter-free and training-free anomaly detection when paired with conventional detectors. Experiments on the HAD100 benchmark show substantial improvements over several established baselines with modest computational overhead, confirming the effectiveness of the proposed complementary learning paradigm. Our code is publicly available at https://github.com/xjpp2016/FERS.

Authors:Zhenqi He, Yuanpei Liu, Kai Han
Title: SEAL: Semantic-Aware Hierarchical Learning for Generalized Category Discovery
Abstract:
This paper investigates the problem of Generalized Category Discovery (GCD). Given a partially labelled dataset, GCD aims to categorize all unlabelled images, regardless of whether they belong to known or unknown classes. Existing approaches typically depend on either single-level semantics or manually designed abstract hierarchies, which limit their generalizability and scalability. To address these limitations, we introduce a SEmantic-aware hierArchical Learning framework (SEAL), guided by naturally occurring and easily accessible hierarchical structures. Within SEAL, we propose a Hierarchical Semantic-Guided Soft Contrastive Learning approach that exploits hierarchical similarity to generate informative soft negatives, addressing the limitations of conventional contrastive losses that treat all negatives equally. Furthermore, a Cross-Granularity Consistency (CGC) module is designed to align the predictions from different levels of granularity. SEAL consistently achieves state-of-the-art performance on fine-grained benchmarks, including the SSB benchmark, Oxford-Pet, and the Herbarium19 dataset, and further demonstrates generalization on coarse-grained datasets. Project page: https://visual-ai.github.io/seal/

Authors:Shihao Li, Yuanxing Zhang, Jiangtao Wu, Zhide Lei, Yiwen He, Runzhe Wen, Chenxi Liao, Chengkang Jiang, An Ping, Shuo Gao, Suhan Wang, Zhaozhou Bian, Zijun Zhou, Jingyi Xie, Jiayi Zhou, Jing Wang, Yifan Yao, Weihao Xie, Yingshui Tan, Yanghai Wang, Qianqian Xie, Zhaoxiang Zhang, Jiaheng Liu
Title: IF-VidCap: Can Video Caption Models Follow Instructions?
Abstract:
Although Multimodal Large Language Models (MLLMs) have demonstrated proficiency in video captioning, practical applications require captions that follow specific user instructions rather than generating exhaustive, unconstrained descriptions. Current benchmarks, however, primarily assess descriptive comprehensiveness while largely overlooking instruction-following capabilities. To address this gap, we introduce IF-VidCap, a new benchmark for evaluating controllable video captioning, which contains 1,400 high-quality samples. Distinct from existing video captioning or general instruction-following benchmarks, IF-VidCap incorporates a systematic framework that assesses captions on two dimensions: format correctness and content correctness. Our comprehensive evaluation of over 20 prominent models reveals a nuanced landscape: despite the continued dominance of proprietary models, the performance gap is closing, with top-tier open-source solutions now achieving near-parity. Furthermore, we find that models specialized for dense captioning underperform general-purpose MLLMs on complex instructions, indicating that future work should simultaneously advance both descriptive richness and instruction-following fidelity.

Authors:Changkun Liu, Bin Tan, Zeran Ke, Shangzhan Zhang, Jiachen Liu, Ming Qian, Nan Xue, Yujun Shen, Tristan Braud
Title: PLANA3R: Zero-shot Metric Planar 3D Reconstruction via Feed-Forward Planar Splatting
Abstract:
This paper addresses metric 3D reconstruction of indoor scenes by exploiting their inherent geometric regularities with compact representations. Using planar 3D primitives - a well-suited representation for man-made environments - we introduce PLANA3R, a pose-free framework for metric Planar 3D Reconstruction from unposed two-view images. Our approach employs Vision Transformers to extract a set of sparse planar primitives, estimate relative camera poses, and supervise geometry learning via planar splatting, where gradients are propagated through high-resolution rendered depth and normal maps of primitives. Unlike prior feedforward methods that require 3D plane annotations during training, PLANA3R learns planar 3D structures without explicit plane supervision, enabling scalable training on large-scale stereo datasets using only depth and normal annotations. We validate PLANA3R on multiple indoor-scene datasets with metric supervision and demonstrate strong generalization to out-of-domain indoor environments across diverse tasks under metric evaluation protocols, including 3D surface reconstruction, depth estimation, and relative pose estimation. Furthermore, by formulating with planar 3D representation, our method emerges with the ability for accurate plane segmentation. The project page is available at https://lck666666.github.io/plana3r

Authors:Peiqin Zhuang, Lei Bai, Yichao Wu, Ding Liang, Luping Zhou, Yali Wang, Wanli Ouyang
Title: A Renaissance of Explicit Motion Information Mining from Transformers for Action Recognition
Abstract:
Recently, action recognition has been dominated by transformer-based methods, thanks to their spatiotemporal contextual aggregation capacities. However, despite the significant progress achieved on scene-related datasets, they do not perform well on motion-sensitive datasets due to the lack of elaborate motion modeling designs. Meanwhile, we observe that the widely-used cost volume in traditional action recognition is highly similar to the affinity matrix defined in self-attention, but equipped with powerful motion modeling capacities. In light of this, we propose to integrate those effective motion modeling properties into the existing transformer in a unified and neat way, with the proposal of the Explicit Motion Information Mining module (EMIM). In EMIM, we propose to construct the desirable affinity matrix in a cost volume style, where the set of key candidate tokens is sampled from the query-based neighboring area in the next frame in a sliding-window manner. Then, the constructed affinity matrix is used to aggregate contextual information for appearance modeling and is converted into motion features for motion modeling as well. We validate the motion modeling capacities of our method on four widely-used datasets, and our method performs better than existing state-of-the-art approaches, especially on motion-sensitive datasets, i.e., Something-Something V1 & V2. Our project is available at https://github.com/PeiqinZhuang/EMIM .

Authors:Yiqi Lin, Alex Jinpeng Wang, Linjie Li, Zhengyuan Yang, Mike Zheng Shou
Title: Exploring a Unified Vision-Centric Contrastive Alternatives on Multi-Modal Web Documents
Abstract:
Contrastive vision-language models such as CLIP have demonstrated strong performance across a wide range of multimodal tasks by learning from aligned image-text pairs. However, their ability to handle complex, real-world web documents remains limited, particularly in scenarios where text and images are interleaved, loosely aligned, or embedded in visual form. To address these challenges, we propose Vision-Centric Contrastive Learning (VC2L), a unified framework that models text, images, and their combinations using a single vision transformer. VC2L operates entirely in pixel space by rendering all inputs, whether textual, visual, or combined, as images, thus eliminating the need for OCR, text tokenization, or modality fusion strategy. To capture complex cross-modal relationships in multimodal web documents, VC2L employs a snippet-level contrastive learning objective that aligns consecutive multimodal segments, leveraging the inherent coherence of documents without requiring explicitly paired image-text data. To assess the effectiveness of this approach, we introduce three retrieval benchmarks, AnyCIR, SeqCIR, and CSR, designed to evaluate cross-modal retrieval, fine-grained sequential understanding, and generalization to unseen data, respectively. Empirical results show that VC2L achieves competitive or superior performance compared to CLIP-style models on both the proposed benchmarks and established datasets such as M-BEIR and MTEB. These findings underscore the potential of multimodal web data as a valuable training resource for contrastive learning and illustrate the scalability of a unified, vision-centric approach for multimodal representation learning. Code and models are available at: https://github.com/showlab/VC2L.

Authors:Zhangquan Chen, Manyuan Zhang, Xinlei Yu, Xufang Luo, Mingze Sun, Zihao Pan, Yan Feng, Peng Pei, Xunliang Cai, Ruqi Huang
Title: Think with 3D: Geometric Imagination Grounded Spatial Reasoning from Limited Views
Abstract:
Though recent advances in vision-language models (VLMs) have achieved remarkable progress across a wide range of multimodal tasks, understanding 3D spatial relationships from limited views remains a significant challenge. Previous reasoning methods typically rely on pure text (e.g., topological cognitive maps) or on 2D visual cues. However, their limited representational capacity hinders performance in specific tasks that require 3D spatial imagination. To address this limitation, we propose 3DThinker, a framework that can effectively exploits the rich geometric information embedded within images while reasoning, like humans do. Our framework is the first to enable 3D mentaling during reasoning without any 3D prior input, and it does not rely on explicitly labeled 3D data for training. Specifically, our training consists of two stages. First, we perform supervised training to align the 3D latent generated by VLM while reasoning with that of a 3D foundation model (e.g., VGGT). Then, we optimize the entire reasoning trajectory solely based on outcome signals, thereby refining the underlying 3D mentaling. Extensive experiments across multiple benchmarks show that 3DThinker consistently outperforms strong baselines and offers a new perspective toward unifying 3D representations into multimodal reasoning. Our code will be available at https://github.com/zhangquanchen/3DThinker.

Authors:Jinfeng Liu, Lingtong Kong, Mi Zhou, Jinwen Chen, Dan Xu
Title: Mono4DGS-HDR: High Dynamic Range 4D Gaussian Splatting from Alternating-exposure Monocular Videos
Abstract:
We introduce Mono4DGS-HDR, the first system for reconstructing renderable 4D high dynamic range (HDR) scenes from unposed monocular low dynamic range (LDR) videos captured with alternating exposures. To tackle such a challenging problem, we present a unified framework with two-stage optimization approach based on Gaussian Splatting. The first stage learns a video HDR Gaussian representation in orthographic camera coordinate space, eliminating the need for camera poses and enabling robust initial HDR video reconstruction. The second stage transforms video Gaussians into world space and jointly refines the world Gaussians with camera poses. Furthermore, we propose a temporal luminance regularization strategy to enhance the temporal consistency of the HDR appearance. Since our task has not been studied before, we construct a new evaluation benchmark using publicly available datasets for HDR video reconstruction. Extensive experiments demonstrate that Mono4DGS-HDR significantly outperforms alternative solutions adapted from state-of-the-art methods in both rendering quality and speed.

Authors:Tianci Bi, Xiaoyi Zhang, Yan Lu, Nanning Zheng
Title: Vision Foundation Models Can Be Good Tokenizers for Latent Diffusion Models
Abstract:
The performance of Latent Diffusion Models (LDMs) is critically dependent on the quality of their visual tokenizer. While recent works have explored incorporating Vision Foundation Models (VFMs) via distillation, we identify a fundamental flaw in this approach: it inevitably weakens the robustness of alignment with the original VFM, causing the aligned latents to deviate semantically under distribution shifts. In this paper, we bypass distillation by proposing a more direct approach: Vision Foundation Model Variational Autoencoder (VFM-VAE). To resolve the inherent tension between the VFM's semantic focus and the need for pixel-level fidelity, we redesign the VFM-VAE decoder with Multi-Scale Latent Fusion and Progressive Resolution Reconstruction blocks, enabling high-quality reconstruction from spatially coarse VFM features. Furthermore, we provide a comprehensive analysis of representation dynamics during diffusion training, introducing the proposed SE-CKNNA metric as a more precise tool for this diagnosis. This analysis allows us to develop a joint tokenizer-diffusion alignment strategy that dramatically accelerates convergence. Our innovations in tokenizer design and training strategy lead to superior performance and efficiency: our system reaches a gFID (w/o CFG) of 2.20 in merely 80 epochs (a 10x speedup over prior tokenizers). With continued training to 640 epochs, it further attains a gFID (w/o CFG) of 1.62, establishing direct VFM integration as a superior paradigm for LDMs.

Authors:Ji Du, Xin Wang, Fangwei Hao, Mingyang Yu, Chunyuan Chen, Jiesheng Wu, Bin Wang, Jing Xu, Ping Li
Title: Beyond Single Images: Retrieval Self-Augmented Unsupervised Camouflaged Object Detection
Abstract:
At the core of Camouflaged Object Detection (COD) lies segmenting objects from their highly similar surroundings. Previous efforts navigate this challenge primarily through image-level modeling or annotation-based optimization. Despite advancing considerably, this commonplace practice hardly taps valuable dataset-level contextual information or relies on laborious annotations. In this paper, we propose RISE, a RetrIeval SElf-augmented paradigm that exploits the entire training dataset to generate pseudo-labels for single images, which could be used to train COD models. RISE begins by constructing prototype libraries for environments and camouflaged objects using training images (without ground truth), followed by K-Nearest Neighbor (KNN) retrieval to generate pseudo-masks for each image based on these libraries. It is important to recognize that using only training images without annotations exerts a pronounced challenge in crafting high-quality prototype libraries. In this light, we introduce a Clustering-then-Retrieval (CR) strategy, where coarse masks are first generated through clustering, facilitating subsequent histogram-based image filtering and cross-category retrieval to produce high-confidence prototypes. In the KNN retrieval stage, to alleviate the effect of artifacts in feature maps, we propose Multi-View KNN Retrieval (MVKR), which integrates retrieval results from diverse views to produce more robust and precise pseudo-masks. Extensive experiments demonstrate that RISE outperforms state-of-the-art unsupervised and prompt-based methods. Code is available at https://github.com/xiaohainku/RISE.

Authors:Yuqing Luo, Yixiao Li, Jiang Liu, Jun Fu, Hadi Amirpour, Guanghui Yue, Baoquan Zhao, Padraig Corcoran, Hantao Liu, Wei Zhou
Title: Cross-Modal Scene Semantic Alignment for Image Complexity Assessment
Abstract:
Image complexity assessment (ICA) is a challenging task in perceptual evaluation due to the subjective nature of human perception and the inherent semantic diversity in real-world images. Existing ICA methods predominantly rely on hand-crafted or shallow convolutional neural network-based features of a single visual modality, which are insufficient to fully capture the perceived representations closely related to image complexity. Recently, cross-modal scene semantic information has been shown to play a crucial role in various computer vision tasks, particularly those involving perceptual understanding. However, the exploration of cross-modal scene semantic information in the context of ICA remains unaddressed. Therefore, in this paper, we propose a novel ICA method called Cross-Modal Scene Semantic Alignment (CM-SSA), which leverages scene semantic alignment from a cross-modal perspective to enhance ICA performance, enabling complexity predictions to be more consistent with subjective human perception. Specifically, the proposed CM-SSA consists of a complexity regression branch and a scene semantic alignment branch. The complexity regression branch estimates image complexity levels under the guidance of the scene semantic alignment branch, while the scene semantic alignment branch is used to align images with corresponding text prompts that convey rich scene semantic information by pair-wise learning. Extensive experiments on several ICA datasets demonstrate that the proposed CM-SSA significantly outperforms state-of-the-art approaches. Codes are available at https://github.com/XQ2K/First-Cross-Model-ICA.

Authors:Yi-Lun Wu, Bo-Kai Ruan, Chiang Tseng, Hong-Han Shuai
Title: Ranking-based Preference Optimization for Diffusion Models from Implicit User Feedback
Abstract:
Direct preference optimization (DPO) methods have shown strong potential in aligning text-to-image diffusion models with human preferences by training on paired comparisons. These methods improve training stability by avoiding the REINFORCE algorithm but still struggle with challenges such as accurately estimating image probabilities due to the non-linear nature of the sigmoid function and the limited diversity of offline datasets. In this paper, we introduce Diffusion Denoising Ranking Optimization (Diffusion-DRO), a new preference learning framework grounded in inverse reinforcement learning. Diffusion-DRO removes the dependency on a reward model by casting preference learning as a ranking problem, thereby simplifying the training objective into a denoising formulation and overcoming the non-linear estimation issues found in prior methods. Moreover, Diffusion-DRO uniquely integrates offline expert demonstrations with online policy-generated negative samples, enabling it to effectively capture human preferences while addressing the limitations of offline data. Comprehensive experiments show that Diffusion-DRO delivers improved generation quality across a range of challenging and unseen prompts, outperforming state-of-the-art baselines in both both quantitative metrics and user studies. Our source code and pre-trained models are available at https://github.com/basiclab/DiffusionDRO.

Authors:Jinlin Li, Yuran Wang, Yifei Yuan, Xiao Zhou, Yingying Zhang, Xixian Yong, Yefeng Zheng, Xian Wu
Title: Beyond Single Models: Mitigating Multimodal Hallucinations via Adaptive Token Ensemble Decoding
Abstract:
Large Vision-Language Models (LVLMs) have recently achieved impressive results in multimodal tasks such as image captioning and visual question answering. However, they remain prone to object hallucination -- generating descriptions of nonexistent or misidentified objects. Prior work has partially mitigated this via auxiliary training objectives or external modules, but challenges remain in terms of scalability, adaptability, and model independence. To address these limitations, we propose Adaptive Token Ensemble Decoding (ATED), a training-free, token-level ensemble framework that mitigates hallucination by aggregating predictions from multiple LVLMs during inference. ATED dynamically computes uncertainty-based weights for each model, reflecting their reliability at each decoding step. It also integrates diverse decoding paths to improve contextual grounding and semantic consistency. Experiments on standard hallucination detection benchmarks demonstrate that ATED significantly outperforms state-of-the-art methods, reducing hallucination without compromising fluency or relevance. Our findings highlight the benefits of adaptive ensembling and point to a promising direction for improving LVLM robustness in high-stakes applications. The code is available at https://github.com/jinlin2021/ATED.

Authors:Bohan Li, Zhuang Ma, Dalong Du, Baorui Peng, Zhujin Liang, Zhenqiang Liu, Chao Ma, Yueming Jin, Hao Zhao, Wenjun Zeng, Xin Jin
Title: OmniNWM: Omniscient Driving Navigation World Models
Abstract:
Autonomous driving world models are expected to work effectively across three core dimensions: state, action, and reward. Existing models, however, are typically restricted to limited state modalities, short video sequences, imprecise action control, and a lack of reward awareness. In this paper, we introduce OmniNWM, an omniscient panoramic navigation world model that addresses all three dimensions within a unified framework. For state, OmniNWM jointly generates panoramic videos of RGB, semantics, metric depth, and 3D occupancy. A flexible forcing strategy enables high-quality long-horizon auto-regressive generation. For action, we introduce a normalized panoramic Plucker ray-map representation that encodes input trajectories into pixel-level signals, enabling highly precise and generalizable control over panoramic video generation. Regarding reward, we move beyond learning reward functions with external image-based models: instead, we leverage the generated 3D occupancy to directly define rule-based dense rewards for driving compliance and safety. Extensive experiments demonstrate that OmniNWM achieves state-of-the-art performance in video generation, control accuracy, and long-horizon stability, while providing a reliable closed-loop evaluation framework through occupancy-grounded rewards. Project page is available at https://arlo0o.github.io/OmniNWM/.

Authors:Lehan Wang, Yi Qin, Honglong Yang, Xiaomeng Li
Title: Proactive Reasoning-with-Retrieval Framework for Medical Multimodal Large Language Models
Abstract:
Incentivizing the reasoning ability of Multimodal Large Language Models (MLLMs) is essential for medical applications to transparently analyze medical scans and provide reliable diagnosis. However, existing medical MLLMs rely solely on internal knowledge during reasoning, leading to hallucinated reasoning and factual inaccuracies when encountering cases beyond their training scope. Although recent Agentic Retrieval-Augmented Generation (RAG) methods elicit the medical model's proactive retrieval ability during reasoning, they are confined to unimodal LLMs, neglecting the crucial visual information during reasoning and retrieval. Consequently, we propose the first Multimodal Medical Reasoning-with-Retrieval framework, Med-RwR, which actively retrieves external knowledge by querying observed symptoms or domain-specific medical concepts during reasoning. Specifically, we design a two-stage reinforcement learning strategy with tailored rewards that stimulate the model to leverage both visual diagnostic findings and textual clinical information for effective retrieval. Building on this foundation, we further propose a Confidence-Driven Image Re-retrieval (CDIR) method for test-time scaling when low prediction confidence is detected. Evaluation on various public medical benchmarks demonstrates Med-RwR's significant improvements over baseline models, proving the effectiveness of enhancing reasoning capabilities with external knowledge integration. Furthermore, Med-RwR demonstrates remarkable generalizability to unfamiliar domains, evidenced by 8.8% performance gain on our proposed EchoCardiography Benchmark (ECBench), despite the scarcity of echocardiography data in the training corpus. Our data, model, and codes will be made publicly available at https://github.com/xmed-lab/Med-RwR.

Authors:Vishal Vinod
Title: Efficient Few-shot Identity Preserving Attribute Editing for 3D-aware Deep Generative Models
Abstract:
Identity preserving editing of faces is a generative task that enables modifying the illumination, adding/removing eyeglasses, face aging, editing hairstyles, modifying expression etc., while preserving the identity of the face. Recent progress in 2D generative models have enabled photorealistic editing of faces using simple techniques leveraging the compositionality in GANs. However, identity preserving editing for 3D faces with a given set of attributes is a challenging task as the generative model must reason about view consistency from multiple poses and render a realistic 3D face. Further, 3D portrait editing requires large-scale attribute labelled datasets and presents a trade-off between editability in low-resolution and inflexibility to editing in high resolution. In this work, we aim to alleviate some of the constraints in editing 3D faces by identifying latent space directions that correspond to photorealistic edits. To address this, we present a method that builds on recent advancements in 3D-aware deep generative models and 2D portrait editing techniques to perform efficient few-shot identity preserving attribute editing for 3D-aware generative models. We aim to show from experimental results that using just ten or fewer labelled images of an attribute is sufficient to estimate edit directions in the latent space that correspond to 3D-aware attribute editing. In this work, we leverage an existing face dataset with masks to obtain the synthetic images for few attribute examples required for estimating the edit directions. Further, to demonstrate the linearity of edits, we investigate one-shot stylization by performing sequential editing and use the (2D) Attribute Style Manipulation (ASM) technique to investigate a continuous style manifold for 3D consistent identity preserving face aging. Code and results are available at: https://vishal-vinod.github.io/gmpi-edit/

Authors:Ajinkya Khoche, Gergő László Nagy, Maciej Wozniak, Thomas Gustafsson, Patric Jensfelt
Title: BlendCLIP: Bridging Synthetic and Real Domains for Zero-Shot 3D Object Classification with Multimodal Pretraining
Abstract:
Zero-shot 3D object classification is crucial for real-world applications like autonomous driving, however it is often hindered by a significant domain gap between the synthetic data used for training and the sparse, noisy LiDAR scans encountered in the real-world. Current methods trained solely on synthetic data fail to generalize to outdoor scenes, while those trained only on real data lack the semantic diversity to recognize rare or unseen objects. We introduce BlendCLIP, a multimodal pretraining framework that bridges this synthetic-to-real gap by strategically combining the strengths of both domains. We first propose a pipeline to generate a large-scale dataset of object-level triplets -- consisting of a point cloud, image, and text description -- mined directly from real-world driving data and human annotated 3D boxes. Our core contribution is a curriculum-based data mixing strategy that first grounds the model in the semantically rich synthetic CAD data before progressively adapting it to the specific characteristics of real-world scans. Our experiments show that our approach is highly label-efficient: introducing as few as 1.5\% real-world samples per batch into training boosts zero-shot accuracy on the nuScenes benchmark by 27\%. Consequently, our final model achieves state-of-the-art performance on challenging outdoor datasets like nuScenes and TruckScenes, improving over the best prior method by 19.3\% on nuScenes, while maintaining strong generalization on diverse synthetic benchmarks. Our findings demonstrate that effective domain adaptation, not full-scale real-world annotation, is the key to unlocking robust open-vocabulary 3D perception. Our code and dataset will be released upon acceptance on https://github.com/kesu1/BlendCLIP.

Authors:Haoran Wei, Yaofeng Sun, Yukun Li
Title: DeepSeek-OCR: Contexts Optical Compression
Abstract:
We present DeepSeek-OCR as an initial investigation into the feasibility of compressing long contexts via optical 2D mapping. DeepSeek-OCR consists of two components: DeepEncoder and DeepSeek3B-MoE-A570M as the decoder. Specifically, DeepEncoder serves as the core engine, designed to maintain low activations under high-resolution input while achieving high compression ratios to ensure an optimal and manageable number of vision tokens. Experiments show that when the number of text tokens is within 10 times that of vision tokens (i.e., a compression ratio < 10x), the model can achieve decoding (OCR) precision of 97%. Even at a compression ratio of 20x, the OCR accuracy still remains at about 60%. This shows considerable promise for research areas such as historical long-context compression and memory forgetting mechanisms in LLMs. Beyond this, DeepSeek-OCR also demonstrates high practical value. On OmniDocBench, it surpasses GOT-OCR2.0 (256 tokens/page) using only 100 vision tokens, and outperforms MinerU2.0 (6000+ tokens per page on average) while utilizing fewer than 800 vision tokens. In production, DeepSeek-OCR can generate training data for LLMs/VLMs at a scale of 200k+ pages per day (a single A100-40G). Codes and model weights are publicly accessible at http://github.com/deepseek-ai/DeepSeek-OCR.

Authors:Maryam Dialameh, Hossein Rajabzadeh, Jung Suk Sim, Hyock Ju Kwon
Title: EMA-SAM: Exponential Moving-average for SAM-based PTMC Segmentation
Abstract:
Papillary thyroid microcarcinoma (PTMC) is increasingly managed with radio-frequency ablation (RFA), yet accurate lesion segmentation in ultrasound videos remains difficult due to low contrast, probe-induced motion, and heat-related artifacts. The recent Segment Anything Model 2 (SAM-2) generalizes well to static images, but its frame-independent design yields unstable predictions and temporal drift in interventional ultrasound. We introduce \textbf{EMA-SAM}, a lightweight extension of SAM-2 that incorporates a confidence-weighted exponential moving average pointer into the memory bank, providing a stable latent prototype of the tumour across frames. This design preserves temporal coherence through probe pressure and bubble occlusion while rapidly adapting once clear evidence reappears. On our curated PTMC-RFA dataset (124 minutes, 13 patients), EMA-SAM improves \emph{maxDice} from 0.82 (SAM-2) to 0.86 and \emph{maxIoU} from 0.72 to 0.76, while reducing false positives by 29\%. On external benchmarks, including VTUS and colonoscopy video polyp datasets, EMA-SAM achieves consistent gains of 2--5 Dice points over SAM-2. Importantly, the EMA pointer adds \textless0.1\% FLOPs, preserving real-time throughput of $\sim$30\,FPS on a single A100 GPU. These results establish EMA-SAM as a robust and efficient framework for stable tumour tracking, bridging the gap between foundation models and the stringent demands of interventional ultrasound. Codes are available here \hyperref[code {https://github.com/mdialameh/EMA-SAM}.

Authors:Clementine Grethen, Simone Gasparini, Geraldine Morin, Jeremy Lebreton, Lucas Marti, Manuel Sanchez-Gestido
Title: Adapting Stereo Vision From Objects To 3D Lunar Surface Reconstruction with the StereoLunar Dataset
Abstract:
Accurate 3D reconstruction of lunar surfaces is essential for space exploration. However, existing stereo vision reconstruction methods struggle in this context due to the Moon's lack of texture, difficult lighting variations, and atypical orbital trajectories. State-of-the-art deep learning models, trained on human-scale datasets, have rarely been tested on planetary imagery and cannot be transferred directly to lunar conditions. To address this issue, we introduce LunarStereo, the first open dataset of photorealistic stereo image pairs of the Moon, simulated using ray tracing based on high-resolution topography and reflectance models. It covers diverse altitudes, lighting conditions, and viewing angles around the lunar South Pole, offering physically grounded supervision for 3D reconstruction tasks. Based on this dataset, we adapt the MASt3R model to the lunar domain through fine-tuning on LunarStereo. We validate our approach through extensive qualitative and quantitative experiments on both synthetic and real lunar data, evaluating 3D surface reconstruction and relative pose estimation. Extensive experiments on synthetic and real lunar data validate the approach, demonstrating significant improvements over zero-shot baselines and paving the way for robust cross-scale generalization in extraterrestrial environments.

Authors:Jiahan Zhang, Muqing Jiang, Nanru Dai, Taiming Lu, Arda Uzunoglu, Shunchi Zhang, Yana Wei, Jiahao Wang, Vishal M. Patel, Paul Pu Liang, Daniel Khashabi, Cheng Peng, Rama Chellappa, Tianmin Shu, Alan Yuille, Yilun Du, Jieneng Chen
Title: World-in-World: World Models in a Closed-Loop World
Abstract:
Generative world models (WMs) can now simulate worlds with striking visual realism, which naturally raises the question of whether they can endow embodied agents with predictive perception for decision making. Progress on this question has been limited by fragmented evaluation: most existing benchmarks adopt open-loop protocols that emphasize visual quality in isolation, leaving the core issue of embodied utility unresolved, i.e., do WMs actually help agents succeed at embodied tasks? To address this gap, we introduce World-in-World, the first open platform that benchmarks WMs in a closed-loop world that mirrors real agent-environment interactions. World-in-World provides a unified online planning strategy and a standardized action API, enabling heterogeneous WMs for decision making. We curate four closed-loop environments that rigorously evaluate diverse WMs, prioritize task success as the primary metric, and move beyond the common focus on visual quality; we also present the first data scaling law for world models in embodied settings. Our study uncovers three surprises: (1) visual quality alone does not guarantee task success, controllability matters more; (2) scaling post-training with action-observation data is more effective than upgrading the pretrained video generators; and (3) allocating more inference-time compute allows WMs to substantially improve closed-loop performance.

Authors:Xiangbo Gao, Tzu-Hsiang Lin, Ruojing Song, Yuheng Wu, Kuan-Ru Huang, Zicheng Jin, Fangzhou Lin, Shinan Liu, Zhengzhong Tu
Title: SafeCoop: Unravelling Full Stack Safety in Agentic Collaborative Driving
Abstract:
Collaborative driving systems leverage vehicle-to-everything (V2X) communication across multiple agents to enhance driving safety and efficiency. Traditional V2X systems take raw sensor data, neural features, or perception results as communication media, which face persistent challenges, including high bandwidth demands, semantic loss, and interoperability issues. Recent advances investigate natural language as a promising medium, which can provide semantic richness, decision-level reasoning, and human-machine interoperability at significantly lower bandwidth. Despite great promise, this paradigm shift also introduces new vulnerabilities within language communication, including message loss, hallucinations, semantic manipulation, and adversarial attacks. In this work, we present the first systematic study of full-stack safety and security issues in natural-language-based collaborative driving. Specifically, we develop a comprehensive taxonomy of attack strategies, including connection disruption, relay/replay interference, content spoofing, and multi-connection forgery. To mitigate these risks, we introduce an agentic defense pipeline, which we call SafeCoop, that integrates a semantic firewall, language-perception consistency checks, and multi-source consensus, enabled by an agentic transformation function for cross-frame spatial alignment. We systematically evaluate SafeCoop in closed-loop CARLA simulation across 32 critical scenarios, achieving 69.15% driving score improvement under malicious attacks and up to 67.32% F1 score for malicious detection. This study provides guidance for advancing research on safe, secure, and trustworthy language-driven collaboration in transportation systems. Our project page is https://xiangbogaobarry.github.io/SafeCoop.

Authors:Rohan Choudhury, JungEun Kim, Jinhyung Park, Eunho Yang, László A. Jeni, Kris M. Kitani
Title: Accelerating Vision Transformers with Adaptive Patch Sizes
Abstract:
Vision Transformers (ViTs) partition input images into uniformly sized patches regardless of their content, resulting in long input sequence lengths for high-resolution images. We present Adaptive Patch Transformers (APT), which addresses this by using multiple different patch sizes within the same image. APT reduces the total number of input tokens by allocating larger patch sizes in more homogeneous areas and smaller patches in more complex ones. APT achieves a drastic speedup in ViT inference and training, increasing throughput by 40% on ViT-L and 50% on ViT-H while maintaining downstream performance, and can be applied to a previously fine-tuned ViT, converging in as little as 1 epoch. It also significantly reduces training and inference time without loss of performance in high-resolution dense visual tasks, achieving up to 30\% faster training and inference in visual QA, object detection, and semantic segmentation.

Authors:Prateek Gothwal, Deeptimaan Banerjee, Ashis Kumer Biswas
Title: ViBED-Net: Video Based Engagement Detection Network Using Face-Aware and Scene-Aware Spatiotemporal Cues
Abstract:
Engagement detection in online learning environments is vital for improving student outcomes and personalizing instruction. We present ViBED-Net (Video-Based Engagement Detection Network), a novel deep learning framework designed to assess student engagement from video data using a dual-stream architecture. ViBED-Net captures both facial expressions and full-scene context by processing facial crops and entire video frames through EfficientNetV2 for spatial feature extraction. These features are then analyzed over time using two temporal modeling strategies: Long Short-Term Memory (LSTM) networks and Transformer encoders. Our model is evaluated on the DAiSEE dataset, a large-scale benchmark for affective state recognition in e-learning. To enhance performance on underrepresented engagement classes, we apply targeted data augmentation techniques. Among the tested variants, ViBED-Net with LSTM achieves 73.43\% accuracy, outperforming existing state-of-the-art approaches. ViBED-Net demonstrates that combining face-aware and scene-aware spatiotemporal cues significantly improves engagement detection accuracy. Its modular design allows flexibility for application across education, user experience research, and content personalization. This work advances video-based affective computing by offering a scalable, high-performing solution for real-world engagement analysis. The source code for this project is available on https://github.com/prateek-gothwal/ViBED-Net .

Authors:Jiale Cheng, Yusen Liu, Xinyu Zhang, Yulin Fei, Wenyi Hong, Ruiliang Lyu, Weihan Wang, Zhe Su, Xiaotao Gu, Xiao Liu, Yushi Bai, Jie Tang, Hongning Wang, Minlie Huang
Title: Glyph: Scaling Context Windows via Visual-Text Compression
Abstract:
Large language models (LLMs) increasingly rely on long-context modeling for tasks such as document understanding, code analysis, and multi-step reasoning. However, scaling context windows to the million-token level brings prohibitive computational and memory costs, limiting the practicality of long-context LLMs. In this work, we take a different perspective-visual context scaling-to tackle this challenge. Instead of extending token-based sequences, we propose Glyph, a framework that renders long texts into images and processes them with vision-language models (VLMs). This approach substantially compresses textual input while preserving semantic information, and we further design an LLM-driven genetic search to identify optimal visual rendering configurations for balancing accuracy and compression. Through extensive experiments, we demonstrate that our method achieves 3-4x token compression while maintaining accuracy comparable to leading LLMs such as Qwen3-8B on various long-context benchmarks. This compression also leads to around 4x faster prefilling and decoding, and approximately 2x faster SFT training. Furthermore, under extreme compression, a 128K-context VLM could scale to handle 1M-token-level text tasks. In addition, the rendered text data benefits real-world multimodal tasks, such as document understanding. Our code and model are released at https://github.com/thu-coai/Glyph.

Authors:Simeon Adebola, Chung Min Kim, Justin Kerr, Shuangyu Xie, Prithvi Akella, Jose Luis Susa Rincon, Eugen Solowjow, Ken Goldberg
Title: Botany-Bot: Digital Twin Monitoring of Occluded and Underleaf Plant Structures with Gaussian Splats
Abstract:
Commercial plant phenotyping systems using fixed cameras cannot perceive many plant details due to leaf occlusion. In this paper, we present Botany-Bot, a system for building detailed "annotated digital twins" of living plants using two stereo cameras, a digital turntable inside a lightbox, an industrial robot arm, and 3D segmentated Gaussian Splat models. We also present robot algorithms for manipulating leaves to take high-resolution indexable images of occluded details such as stem buds and the underside/topside of leaves. Results from experiments suggest that Botany-Bot can segment leaves with 90.8% accuracy, detect leaves with 86.2% accuracy, lift/push leaves with 77.9% accuracy, and take detailed overside/underside images with 77.3% accuracy. Code, videos, and datasets are available at https://berkeleyautomation.github.io/Botany-Bot/.

Authors:Yaning Pan, Zekun Wang, Qianqian Xie, Yongqian Wen, Yuanxing Zhang, Guohui Zhang, Haoxuan Hu, Zhiyu Pan, Yibing Huang, Zhidong Gan, Yonghong Lin, An Ping, Tianhao Peng, Jiaheng Liu
Title: MT-Video-Bench: A Holistic Video Understanding Benchmark for Evaluating Multimodal LLMs in Multi-Turn Dialogues
Abstract:
The recent development of Multimodal Large Language Models (MLLMs) has significantly advanced AI's ability to understand visual modalities. However, existing evaluation benchmarks remain limited to single-turn question answering, overlooking the complexity of multi-turn dialogues in real-world scenarios. To bridge this gap, we introduce MT-Video-Bench, a holistic video understanding benchmark for evaluating MLLMs in multi-turn dialogues. Specifically, our MT-Video-Bench mainly assesses six core competencies that focus on perceptivity and interactivity, encompassing 987 meticulously curated multi-turn dialogues from diverse domains. These capabilities are rigorously aligned with real-world applications, such as interactive sports analysis and multi-turn video-based intelligent tutoring. With MT-Video-Bench, we extensively evaluate various state-of-the-art open-source and closed-source MLLMs, revealing their significant performance discrepancies and limitations in handling multi-turn video dialogues. The benchmark will be publicly available to foster future research.

Authors:Aleksandr Oganov, Ilya Bykov, Eva Neudachina, Mishan Aliev, Alexander Tolmachev, Alexander Sidorov, Aleksandr Zuev, Andrey Okhotin, Denis Rakitin, Aibek Alanov
Title: GAS: Improving Discretization of Diffusion ODEs via Generalized Adversarial Solver
Abstract:
While diffusion models achieve state-of-the-art generation quality, they still suffer from computationally expensive sampling. Recent works address this issue with gradient-based optimization methods that distill a few-step ODE diffusion solver from the full sampling process, reducing the number of function evaluations from dozens to just a few. However, these approaches often rely on intricate training techniques and do not explicitly focus on preserving fine-grained details. In this paper, we introduce the Generalized Solver: a simple parameterization of the ODE sampler that does not require additional training tricks and improves quality over existing approaches. We further combine the original distillation loss with adversarial training, which mitigates artifacts and enhances detail fidelity. We call the resulting method the Generalized Adversarial Solver and demonstrate its superior performance compared to existing solver training methods under similar resource constraints. Code is available at https://github.com/3145tttt/GAS.

Authors:Min Cao, Xinyu Zhou, Ding Jiang, Bo Du, Mang Ye, Min Zhang
Title: Multilingual Text-to-Image Person Retrieval via Bidirectional Relation Reasoning and Aligning
Abstract:
Text-to-image person retrieval (TIPR) aims to identify the target person using textual descriptions, facing challenge in modality heterogeneity. Prior works have attempted to address it by developing cross-modal global or local alignment strategies. However, global methods typically overlook fine-grained cross-modal differences, whereas local methods require prior information to explore explicit part alignments. Additionally, current methods are English-centric, restricting their application in multilingual contexts. To alleviate these issues, we pioneer a multilingual TIPR task by developing a multilingual TIPR benchmark, for which we leverage large language models for initial translations and refine them by integrating domain-specific knowledge. Correspondingly, we propose Bi-IRRA: a Bidirectional Implicit Relation Reasoning and Aligning framework to learn alignment across languages and modalities. Within Bi-IRRA, a bidirectional implicit relation reasoning module enables bidirectional prediction of masked image and text, implicitly enhancing the modeling of local relations across languages and modalities, a multi-dimensional global alignment module is integrated to bridge the modality heterogeneity. The proposed method achieves new state-of-the-art results on all multilingual TIPR datasets. Data and code are presented in https://github.com/Flame-Chasers/Bi-IRRA.

Authors:Athanasios Angelakis, Amne Mousa, Micah L. A. Heldeweg, Laurens A. Biesheuvel, Mark A. Haaksma, Jasper M. Smit, Pieter R. Tuinman, Paul W. G. Elbers
Title: ZACH-ViT: A Zero-Token Vision Transformer with ShuffleStrides Data Augmentation for Robust Lung Ultrasound Classification
Abstract:
Differentiating cardiogenic pulmonary oedema (CPE) from non-cardiogenic and structurally normal lungs in lung ultrasound (LUS) videos remains challenging due to the high visual variability of non-cardiogenic inflammatory patterns (NCIP/ARDS-like), interstitial lung disease, and healthy lungs. This heterogeneity complicates automated classification as overlapping B-lines and pleural artefacts are common. We introduce ZACH-ViT (Zero-token Adaptive Compact Hierarchical Vision Transformer), a 0.25 M-parameter Vision Transformer variant that removes both positional embeddings and the [CLS] token, making it fully permutation-invariant and suitable for unordered medical image data. To enhance generalization, we propose ShuffleStrides Data Augmentation (SSDA), which permutes probe-view sequences and frame orders while preserving anatomical validity. ZACH-ViT was evaluated on 380 LUS videos from 95 critically ill patients against nine state-of-the-art baselines. Despite the heterogeneity of the non-cardiogenic group, ZACH-ViT achieved the highest validation and test ROC-AUC (0.80 and 0.79) with balanced sensitivity (0.60) and specificity (0.91), while all competing models collapsed to trivial classification. It trains 1.35x faster than Minimal ViT (0.62M parameters) with 2.5x fewer parameters, supporting real-time clinical deployment. These results show that aligning architectural design with data structure can outperform scale in small-data medical imaging.

Authors:Hendric Voss, Stefan Kopp
Title: ImaGGen: Zero-Shot Generation of Co-Speech Semantic Gestures Grounded in Language and Image Input
Abstract:
Human communication combines speech with expressive nonverbal cues such as hand gestures that serve manifold communicative functions. Yet, current generative gesture generation approaches are restricted to simple, repetitive beat gestures that accompany the rhythm of speaking but do not contribute to communicating semantic meaning. This paper tackles a core challenge in co-speech gesture synthesis: generating iconic or deictic gestures that are semantically coherent with a verbal utterance. Such gestures cannot be derived from language input alone, which inherently lacks the visual meaning that is often carried autonomously by gestures. We therefore introduce a zero-shot system that generates gestures from a given language input and additionally is informed by imagistic input, without manual annotation or human intervention. Our method integrates an image analysis pipeline that extracts key object properties such as shape, symmetry, and alignment, together with a semantic matching module that links these visual details to spoken text. An inverse kinematics engine then synthesizes iconic and deictic gestures and combines them with co-generated natural beat gestures for coherent multimodal communication. A comprehensive user study demonstrates the effectiveness of our approach. In scenarios where speech alone was ambiguous, gestures generated by our system significantly improved participants' ability to identify object properties, confirming their interpretability and communicative value. While challenges remain in representing complex shapes, our results highlight the importance of context-aware semantic gestures for creating expressive and collaborative virtual agents or avatars, marking a substantial step forward towards efficient and robust, embodied human-agent interaction. More information and example videos are available here: https://review-anon-io.github.io/ImaGGen.github.io/

Authors:Yongshun Zhang, Zhongyi Fan, Yonghang Zhang, Zhangzikang Li, Weifeng Chen, Zhongwei Feng, Chaoyue Wang, Peng Hou, Anxiang Zeng
Title: MUG-V 10B: High-efficiency Training Pipeline for Large Video Generation Models
Abstract:
In recent years, large-scale generative models for visual content (\textit{e.g.,} images, videos, and 3D objects/scenes) have made remarkable progress. However, training large-scale video generation models remains particularly challenging and resource-intensive due to cross-modal text-video alignment, the long sequences involved, and the complex spatiotemporal dependencies. To address these challenges, we present a training framework that optimizes four pillars: (i) data processing, (ii) model architecture, (iii) training strategy, and (iv) infrastructure for large-scale video generation models. These optimizations delivered significant efficiency gains and performance improvements across all stages of data preprocessing, video compression, parameter scaling, curriculum-based pretraining, and alignment-focused post-training. Our resulting model, MUG-V 10B, matches recent state-of-the-art video generators overall and, on e-commerce-oriented video generation tasks, surpasses leading open-source baselines in human evaluations. More importantly, we open-source the complete stack, including model weights, Megatron-Core-based large-scale training code, and inference pipelines for video generation and enhancement. To our knowledge, this is the first public release of large-scale video generation training code that exploits Megatron-Core to achieve high training efficiency and near-linear multi-node scaling, details are available in \href{https://github.com/Shopee-MUG/MUG-V}{our webpage}.

Authors:Chenxu Dang, Haiyan Liu, Guangjun Bao, Pei An, Xinyue Tang, Jie Ma, Bingchuan Sun, Yan Wang
Title: SparseWorld: A Flexible, Adaptive, and Efficient 4D Occupancy World Model Powered by Sparse and Dynamic Queries
Abstract:
Semantic occupancy has emerged as a powerful representation in world models for its ability to capture rich spatial semantics. However, most existing occupancy world models rely on static and fixed embeddings or grids, which inherently limit the flexibility of perception. Moreover, their ``in-place classification" over grids exhibits a potential misalignment with the dynamic and continuous nature of real scenarios.In this paper, we propose SparseWorld, a novel 4D occupancy world model that is flexible, adaptive, and efficient, powered by sparse and dynamic queries. We propose a Range-Adaptive Perception module, in which learnable queries are modulated by the ego vehicle states and enriched with temporal-spatial associations to enable extended-range perception. To effectively capture the dynamics of the scene, we design a State-Conditioned Forecasting module, which replaces classification-based forecasting with regression-guided formulation, precisely aligning the dynamic queries with the continuity of the 4D environment. In addition, We specifically devise a Temporal-Aware Self-Scheduling training strategy to enable smooth and efficient training. Extensive experiments demonstrate that SparseWorld achieves state-of-the-art performance across perception, forecasting, and planning tasks. Comprehensive visualizations and ablation studies further validate the advantages of SparseWorld in terms of flexibility, adaptability, and efficiency. The code is available at https://github.com/MSunDYY/SparseWorld.

Authors:Feng Zhou, Wenkai Guo, Pu Cao, Zhicheng Zhang, Jianqin Yin
Title: Initialize to Generalize: A Stronger Initialization Pipeline for Sparse-View 3DGS
Abstract:
Sparse-view 3D Gaussian Splatting (3DGS) often overfits to the training views, leading to artifacts like blurring in novel view rendering. Prior work addresses it either by enhancing the initialization (\emph{i.e.}, the point cloud from Structure-from-Motion (SfM)) or by adding training-time constraints (regularization) to the 3DGS optimization. Yet our controlled ablations reveal that initialization is the decisive factor: it determines the attainable performance band in sparse-view 3DGS, while training-time constraints yield only modest within-band improvements at extra cost. Given initialization's primacy, we focus our design there. Although SfM performs poorly under sparse views due to its reliance on feature matching, it still provides reliable seed points. Thus, building on SfM, our effort aims to supplement the regions it fails to cover as comprehensively as possible. Specifically, we design: (i) frequency-aware SfM that improves low-texture coverage via low-frequency view augmentation and relaxed multi-view correspondences; (ii) 3DGS self-initialization that lifts photometric supervision into additional points, compensating SfM-sparse regions with learned Gaussian centers; and (iii) point-cloud regularization that enforces multi-view consistency and uniform spatial coverage through simple geometric/visibility priors, yielding a clean and reliable point cloud. Our experiments on LLFF and Mip-NeRF360 demonstrate consistent gains in sparse-view settings, establishing our approach as a stronger initialization strategy. Code is available at https://github.com/zss171999645/ItG-GS.

Authors:Qiyuan Guan, Xiang Chen, Guiyue Jin, Jiyu Jin, Shumin Fan, Tianyu Song, Jinshan Pan
Title: Rethinking Nighttime Image Deraining via Learnable Color Space Transformation
Abstract:
Compared to daytime image deraining, nighttime image deraining poses significant challenges due to inherent complexities of nighttime scenarios and the lack of high-quality datasets that accurately represent the coupling effect between rain and illumination. In this paper, we rethink the task of nighttime image deraining and contribute a new high-quality benchmark, HQ-NightRain, which offers higher harmony and realism compared to existing datasets. In addition, we develop an effective Color Space Transformation Network (CST-Net) for better removing complex rain from nighttime scenes. Specifically, we propose a learnable color space converter (CSC) to better facilitate rain removal in the Y channel, as nighttime rain is more pronounced in the Y channel compared to the RGB color space. To capture illumination information for guiding nighttime deraining, implicit illumination guidance is introduced enabling the learned features to improve the model's robustness in complex scenarios. Extensive experiments show the value of our dataset and the effectiveness of our method. The source code and datasets are available at https://github.com/guanqiyuan/CST-Net.

Authors:Jiahao Huo, Mufhumudzi Muthivhi, Terence L. van Zyl, Fredrik Gustafsson
Title: Nearest-Class Mean and Logits Agreement for Wildlife Open-Set Recognition
Abstract:
Current state-of-the-art Wildlife classification models are trained under the closed world setting. When exposed to unknown classes, they remain overconfident in their predictions. Open-set Recognition (OSR) aims to classify known classes while rejecting unknown samples. Several OSR methods have been proposed to model the closed-set distribution by observing the feature, logit, or softmax probability space. A significant drawback of many existing approaches is the requirement to retrain the pre-trained classification model with the OSR-specific strategy. This study contributes a post-processing OSR method that measures the agreement between the models' features and predicted logits. We propose a probability distribution based on an input's distance to its Nearest Class Mean (NCM). The NCM-based distribution is then compared with the softmax probabilities from the logit space to measure agreement between the NCM and the classification head. Our proposed strategy ranks within the top three on two evaluated datasets, showing consistent performance across the two datasets. In contrast, current state-of-the-art methods excel on a single dataset. We achieve an AUROC of 93.41 and 95.35 for African and Swedish animals. The code can be found https://github.com/Applied-Representation-Learning-Lab/OSR.

Authors:Wei Zhang, Zhanhao Hu, Xiao Li, Xiaopei Zhu, Xiaolin Hu
Title: A Single Set of Adversarial Clothes Breaks Multiple Defense Methods in the Physical World
Abstract:
In recent years, adversarial attacks against deep learning-based object detectors in the physical world have attracted much attention. To defend against these attacks, researchers have proposed various defense methods against adversarial patches, a typical form of physically-realizable attack. However, our experiments showed that simply enlarging the patch size could make these defense methods fail. Motivated by this, we evaluated various defense methods against adversarial clothes which have large coverage over the human body. Adversarial clothes provide a good test case for adversarial defense against patch-based attacks because they not only have large sizes but also look more natural than a large patch on humans. Experiments show that all the defense methods had poor performance against adversarial clothes in both the digital world and the physical world. In addition, we crafted a single set of clothes that broke multiple defense methods on Faster R-CNN. The set achieved an Attack Success Rate (ASR) of 96.06% against the undefended detector and over 64.84% ASRs against nine defended models in the physical world, unveiling the common vulnerability of existing adversarial defense methods against adversarial clothes. Code is available at: https://github.com/weiz0823/adv-clothes-break-multiple-defenses.

Authors:Siran Dai, Qianqian Xu, Peisong Wen, Yang Liu, Qingming Huang
Title: Exploring Structural Degradation in Dense Representations for Self-supervised Learning
Abstract:
In this work, we observe a counterintuitive phenomenon in self-supervised learning (SSL): longer training may impair the performance of dense prediction tasks (e.g., semantic segmentation). We refer to this phenomenon as Self-supervised Dense Degradation (SDD) and demonstrate its consistent presence across sixteen state-of-the-art SSL methods with various losses, architectures, and datasets. When the model performs suboptimally on dense tasks at the end of training, measuring the performance during training becomes essential. However, evaluating dense performance effectively without annotations remains an open challenge. To tackle this issue, we introduce a Dense representation Structure Estimator (DSE), composed of a class-relevance measure and an effective dimensionality measure. The proposed DSE is both theoretically grounded and empirically validated to be closely correlated with the downstream performance. Based on this metric, we introduce a straightforward yet effective model selection strategy and a DSE-based regularization method. Experiments on sixteen SSL methods across four benchmarks confirm that model selection improves mIoU by $3.0\%$ on average with negligible computational cost. Additionally, DSE regularization consistently mitigates the effects of dense degradation. Code is available at https://github.com/EldercatSAM/SSL-Degradation.

Authors:Zhuo Cao, Heming Du, Bingqing Zhang, Xin Yu, Xue Li, Sen Wang
Title: When One Moment Isn't Enough: Multi-Moment Retrieval with Cross-Moment Interactions
Abstract:
Existing Moment retrieval (MR) methods focus on Single-Moment Retrieval (SMR). However, one query can correspond to multiple relevant moments in real-world applications. This makes the existing datasets and methods insufficient for video temporal grounding. By revisiting the gap between current MR tasks and real-world applications, we introduce a high-quality datasets called QVHighlights Multi-Moment Dataset (QV-M$^2$), along with new evaluation metrics tailored for multi-moment retrieval (MMR). QV-M$^2$ consists of 2,212 annotations covering 6,384 video segments. Building on existing efforts in MMR, we propose a framework called FlashMMR. Specifically, we propose a Multi-moment Post-verification module to refine the moment boundaries. We introduce constrained temporal adjustment and subsequently leverage a verification module to re-evaluate the candidate segments. Through this sophisticated filtering pipeline, low-confidence proposals are pruned, and robust multi-moment alignment is achieved. We retrain and evaluate 6 existing MR methods on QV-M$^2$ and QVHighlights under both SMR and MMR settings. Results show that QV-M$^2$ serves as an effective benchmark for training and evaluating MMR models, while FlashMMR provides a strong baseline. Specifically, on QV-M$^2$, it achieves improvements over prior SOTA method by 3.00% on G-mAP, 2.70% on mAP@3+tgt, and 2.56% on mR@3. The proposed benchmark and method establish a foundation for advancing research in more realistic and challenging video temporal grounding scenarios. Code is released at https://github.com/Zhuo-Cao/QV-M2.

Authors:Yingqi Fan, Anhao Zhao, Jinlan Fu, Junlong Tong, Hui Su, Yijie Pan, Wei Zhang, Xiaoyu Shen
Title: $\mathcal{V}isi\mathcal{P}runer$: Decoding Discontinuous Cross-Modal Dynamics for Efficient Multimodal LLMs
Abstract:
Multimodal Large Language Models (MLLMs) have achieved strong performance across vision-language tasks, but suffer from significant computational overhead due to the quadratic growth of attention computations with the number of multimodal tokens. Though efforts have been made to prune tokens in MLLMs, \textit{they lack a fundamental understanding of how MLLMs process and fuse multimodal information.} Through systematic analysis, we uncover a \textbf{three-stage} cross-modal interaction process: (1) Shallow layers recognize task intent, with visual tokens acting as passive attention sinks; (2) Cross-modal fusion occurs abruptly in middle layers, driven by a few critical visual tokens; (3) Deep layers discard vision tokens, focusing solely on linguistic refinement. Based on these findings, we propose \emph{VisiPruner}, a training-free pruning framework that reduces up to 99\% of vision-related attention computations and 53.9\% of FLOPs on LLaVA-v1.5 7B. It significantly outperforms existing token pruning methods and generalizes across diverse MLLMs. Beyond pruning, our insights further provide actionable guidelines for training efficient MLLMs by aligning model architecture with its intrinsic layer-wise processing dynamics. Our code is available at: https://github.com/EIT-NLP/VisiPruner.

Authors:Yingzi Han, Jiakai He, Chuanlong Xie, Jianping Li
Title: Benchmarking Out-of-Distribution Detection for Plankton Recognition: A Systematic Evaluation of Advanced Methods in Marine Ecological Monitoring
Abstract:
Automated plankton recognition models face significant challenges during real-world deployment due to distribution shifts (Out-of-Distribution, OoD) between training and test data. This stems from plankton's complex morphologies, vast species diversity, and the continuous discovery of novel species, which leads to unpredictable errors during inference. Despite rapid advancements in OoD detection methods in recent years, the field of plankton recognition still lacks a systematic integration of the latest computer vision developments and a unified benchmark for large-scale evaluation. To address this, this paper meticulously designed a series of OoD benchmarks simulating various distribution shift scenarios based on the DYB-PlanktonNet dataset \cite{875n-f104-21}, and systematically evaluated twenty-two OoD detection methods. Extensive experimental results demonstrate that the ViM \cite{wang2022vim} method significantly outperforms other approaches in our constructed benchmarks, particularly excelling in Far-OoD scenarios with substantial improvements in key metrics. This comprehensive evaluation not only provides a reliable reference for algorithm selection in automated plankton recognition but also lays a solid foundation for future research in plankton OoD detection. To our knowledge, this study marks the first large-scale, systematic evaluation and analysis of Out-of-Distribution data detection methods in plankton recognition. Code is available at https://github.com/BlackJack0083/PlanktonOoD.

Authors:Feihong Yan, Peiru Wang, Yao Zhu, Kaiyu Pang, Qingyan Wei, Huiqi Li, Linfeng Zhang
Title: Generation then Reconstruction: Accelerating Masked Autoregressive Models via Two-Stage Sampling
Abstract:
Masked Autoregressive (MAR) models promise better efficiency in visual generation than autoregressive (AR) models for the ability of parallel generation, yet their acceleration potential remains constrained by the modeling complexity of spatially correlated visual tokens in a single step. To address this limitation, we introduce Generation then Reconstruction (GtR), a training-free hierarchical sampling strategy that decomposes generation into two stages: structure generation establishing global semantic scaffolding, followed by detail reconstruction efficiently completing remaining tokens. Assuming that it is more difficult to create an image from scratch than to complement images based on a basic image framework, GtR is designed to achieve acceleration by computing the reconstruction stage quickly while maintaining the generation quality by computing the generation stage slowly. Moreover, observing that tokens on the details of an image often carry more semantic information than tokens in the salient regions, we further propose Frequency-Weighted Token Selection (FTS) to offer more computation budget to tokens on image details, which are localized based on the energy of high frequency information. Extensive experiments on ImageNet class-conditional and text-to-image generation demonstrate 3.72x speedup on MAR-H while maintaining comparable quality (e.g., FID: 1.59, IS: 304.4 vs. original 1.59, 299.1), substantially outperforming existing acceleration methods across various model scales and generation tasks. Our codes will be released in https://github.com/feihongyan1/GtR.

Authors:Lu Yin, Ziying Shi, Yinghao Wu, Xinyu Yi, Feng Xu, Shihui Guo
Title: Shape-aware Inertial Poser: Motion Tracking for Humans with Diverse Shapes Using Sparse Inertial Sensors
Abstract:
Human motion capture with sparse inertial sensors has gained significant attention recently. However, existing methods almost exclusively rely on a template adult body shape to model the training data, which poses challenges when generalizing to individuals with largely different body shapes (such as a child). This is primarily due to the variation in IMU-measured acceleration caused by changes in body shape. To fill this gap, we propose Shape-aware Inertial Poser (SAIP), the first solution considering body shape differences in sparse inertial-based motion capture. Specifically, we decompose the sensor measurements related to shape and pose in order to effectively model their joint correlations. Firstly, we train a regression model to transfer the IMU-measured accelerations of a real body to match the template adult body model, compensating for the shape-related sensor measurements. Then, we can easily follow the state-of-the-art methods to estimate the full body motions of the template-shaped body. Finally, we utilize a second regression model to map the joint velocities back to the real body, combined with a shape-aware physical optimization strategy to calculate global motions on the subject. Furthermore, our method relies on body shape awareness, introducing the first inertial shape estimation scheme. This is accomplished by modeling the shape-conditioned IMU-pose correlation using an MLP-based network. To validate the effectiveness of SAIP, we also present the first IMU motion capture dataset containing individuals of different body sizes. This dataset features 10 children and 10 adults, with heights ranging from 110 cm to 190 cm, and a total of 400 minutes of paired IMU-Motion samples. Extensive experimental results demonstrate that SAIP can effectively handle motion capture tasks for diverse body shapes. The code and dataset are available at https://github.com/yinlu5942/SAIP.

Authors:Luca Zanella, Massimiliano Mancini, Yiming Wang, Alessio Tonioni, Elisa Ricci
Title: Training-free Online Video Step Grounding
Abstract:
Given a task and a set of steps composing it, Video Step Grounding (VSG) aims to detect which steps are performed in a video. Standard approaches for this task require a labeled training set (e.g., with step-level annotations or narrations), which may be costly to collect. Moreover, they process the full video offline, limiting their applications for scenarios requiring online decisions. Thus, in this work, we explore how to perform VSG online and without training. We achieve this by exploiting the zero-shot capabilities of recent Large Multimodal Models (LMMs). In particular, we use LMMs to predict the step associated with a restricted set of frames, without access to the whole video. We show that this online strategy without task-specific tuning outperforms offline and training-based models. Motivated by this finding, we develop Bayesian Grounding with Large Multimodal Models (BaGLM), further injecting knowledge of past frames into the LMM-based predictions. BaGLM exploits Bayesian filtering principles, modeling step transitions via (i) a dependency matrix extracted through large language models and (ii) an estimation of step progress. Experiments on three datasets show superior performance of BaGLM over state-of-the-art training-based offline methods.

Authors:Zongjian Li, Zheyuan Liu, Qihui Zhang, Bin Lin, Shenghai Yuan, Zhiyuan Yan, Yang Ye, Wangbo Yu, Yuwei Niu, Li Yuan
Title: Uniworld-V2: Reinforce Image Editing with Diffusion Negative-aware Finetuning and MLLM Implicit Feedback
Abstract:
Instruction-based image editing has achieved remarkable progress; however, models solely trained via supervised fine-tuning often overfit to annotated patterns, hindering their ability to explore and generalize beyond training distributions. To this end, we introduce Edit-R1, a novel post-training framework for instruction-based image editing based on policy optimization. Specifically, we utilize Diffusion Negative-aware Finetuning (DiffusionNFT), a likelihood-free policy optimization method consistent with the flow matching forward process, thereby enabling the use of higher-order samplers and more efficient training. Another key challenge here is the absence of a universal reward model, resulting from the diverse nature of editing instructions and tasks. To bridge this gap, we employ a Multimodal Large Language Model (MLLM) as a unified, training-free reward model, leveraging its output logits to provide fine-grained feedback. Furthermore, we carefully design a low-variance group filtering mechanism to reduce MLLM scoring noise and stabilize optimization. UniWorld-V2, trained with this framework, achieves \textbf{state-of-the-art} results on the ImgEdit and GEdit-Bench benchmarks, scoring 4.49 and 7.83, respectively. Crucially, our framework is model-agnostic, delivering substantial performance gains when applied to diverse base models like Qwen-Image-Edit and FLUX-Kontext, demonstrating its wide applicability. Code and models are publicly available at https://github.com/PKU-YuanGroup/UniWorld-V2.

Authors:Nusrat Munia, Abdullah Imran
Title: Class-N-Diff: Classification-Induced Diffusion Model Can Make Fair Skin Cancer Diagnosis
Abstract:
Generative models, especially Diffusion Models, have demonstrated remarkable capability in generating high-quality synthetic data, including medical images. However, traditional class-conditioned generative models often struggle to generate images that accurately represent specific medical categories, limiting their usefulness for applications such as skin cancer diagnosis. To address this problem, we propose a classification-induced diffusion model, namely, Class-N-Diff, to simultaneously generate and classify dermoscopic images. Our Class-N-Diff model integrates a classifier within a diffusion model to guide image generation based on its class conditions. Thus, the model has better control over class-conditioned image synthesis, resulting in more realistic and diverse images. Additionally, the classifier demonstrates improved performance, highlighting its effectiveness for downstream diagnostic tasks. This unique integration in our Class-N-Diff makes it a robust tool for enhancing the quality and utility of diffusion model-based synthetic dermoscopic image generation. Our code is available at https://github.com/Munia03/Class-N-Diff.

Authors:Heming Zou, Yunliang Zang, Wutong Xu, Xiangyang Ji
Title: Fly-CL: A Fly-Inspired Framework for Enhancing Efficient Decorrelation and Reduced Training Time in Pre-trained Model-based Continual Representation Learning
Abstract:
Using a nearly-frozen pretrained model, the continual representation learning paradigm reframes parameter updates as a similarity-matching problem to mitigate catastrophic forgetting. However, directly leveraging pretrained features for downstream tasks often suffers from multicollinearity in the similarity-matching stage, and more advanced methods can be computationally prohibitive for real-time, low-latency applications. Inspired by the fly olfactory circuit, we propose Fly-CL, a bio-inspired framework compatible with a wide range of pretrained backbones. Fly-CL substantially reduces training time while achieving performance comparable to or exceeding that of current state-of-the-art methods. We theoretically show how Fly-CL progressively resolves multicollinearity, enabling more effective similarity matching with low time complexity. Extensive simulation experiments across diverse network architectures and data regimes validate Fly-CL's effectiveness in addressing this challenge through a biologically inspired design. Code is available at https://github.com/gfyddha/Fly-CL.

Authors:Mingzheng Zhang, Jinfeng Gao, Dan Xu, Jiangrui Yu, Yuhan Qiao, Lan Chen, Jin Tang, Xiao Wang
Title: EMRRG: Efficient Fine-Tuning Pre-trained X-ray Mamba Networks for Radiology Report Generation
Abstract:
X-ray image-based medical report generation (MRG) is a pivotal area in artificial intelligence that can significantly reduce diagnostic burdens for clinicians and patient wait times. Existing MRG models predominantly rely on Large Language Models (LLMs) to improve report generation, with limited exploration of pre-trained vision foundation models or advanced fine-tuning techniques. Mainstream frameworks either avoid fine-tuning or utilize simplistic methods like LoRA, often neglecting the potential of enhancing cross-attention mechanisms. Additionally, while Transformer-based models dominate vision-language tasks, non-Transformer architectures, such as the Mamba network, remain underexplored for medical report generation, presenting a promising avenue for future research. In this paper, we propose EMRRG, a novel X-ray report generation framework that fine-tunes pre-trained Mamba networks using parameter-efficient methods. Specifically, X-ray images are divided into patches, tokenized, and processed by an SSM-based vision backbone for feature extraction, with Partial LoRA yielding optimal performance. An LLM with a hybrid decoder generates the medical report, enabling end-to-end training and achieving strong results on benchmark datasets. Extensive experiments on three widely used benchmark datasets fully validated the effectiveness of our proposed strategies for the X-ray MRG. The source code of this paper will be released on https://github.com/Event-AHU/Medical_Image_Analysis.

Authors:Thuy Phuong Vu, Dinh-Cuong Hoang, Minhhuy Le, Phan Xuan Tan
Title: Region in Context: Text-condition Image editing with Human-like semantic reasoning
Abstract:
Recent research has made significant progress in localizing and editing image regions based on text. However, most approaches treat these regions in isolation, relying solely on local cues without accounting for how each part contributes to the overall visual and semantic composition. This often results in inconsistent edits, unnatural transitions, or loss of coherence across the image. In this work, we propose Region in Context, a novel framework for text-conditioned image editing that performs multilevel semantic alignment between vision and language, inspired by the human ability to reason about edits in relation to the whole scene. Our method encourages each region to understand its role within the global image context, enabling precise and harmonized changes. At its core, the framework introduces a dual-level guidance mechanism: regions are represented with full-image context and aligned with detailed region-level descriptions, while the entire image is simultaneously matched to a comprehensive scene-level description generated by a large vision-language model. These descriptions serve as explicit verbal references of the intended content, guiding both local modifications and global structure. Experiments show that it produces more coherent and instruction-aligned results. Code is available at: https://github.com/thuyvuphuong/Region-in-Context.git

Authors:Xinqing Li, Xin He, Le Zhang, Yun Liu
Title: A Comprehensive Survey on World Models for Embodied AI
Abstract:
Embodied AI requires agents that perceive, act, and anticipate how actions reshape future world states. World models serve as internal simulators that capture environment dynamics, enabling forward and counterfactual rollouts to support perception, prediction, and decision making. This survey presents a unified framework for world models in embodied AI. Specifically, we formalize the problem setting and learning objectives, and propose a three-axis taxonomy encompassing: (1) Functionality, Decision-Coupled vs. General-Purpose; (2) Temporal Modeling, Sequential Simulation and Inference vs. Global Difference Prediction; (3) Spatial Representation, Global Latent Vector, Token Feature Sequence, Spatial Latent Grid, and Decomposed Rendering Representation. We systematize data resources and metrics across robotics, autonomous driving, and general video settings, covering pixel prediction quality, state-level understanding, and task performance. Furthermore, we offer a quantitative comparison of state-of-the-art models and distill key open challenges, including the scarcity of unified datasets and the need for evaluation metrics that assess physical consistency over pixel fidelity, the trade-off between model performance and the computational efficiency required for real-time control, and the core modeling difficulty of achieving long-horizon temporal consistency while mitigating error accumulation. Finally, we maintain a curated bibliography at https://github.com/Li-Zn-H/AwesomeWorldModels.

Authors:Tianxin Wei, Yifan Chen, Xinrui He, Wenxuan Bao, Jingrui He
Title: Connecting Domains and Contrasting Samples: A Ladder for Domain Generalization
Abstract:
Distribution shifts between training and testing samples frequently occur in practice and impede model generalization performance. This crucial challenge thereby motivates studies on domain generalization (DG), which aim to predict the label on unseen target domain data by solely using data from source domains. It is intuitive to conceive the class-separated representations learned in contrastive learning (CL) are able to improve DG, while the reality is quite the opposite: users observe directly applying CL deteriorates the performance. We analyze the phenomenon with the insights from CL theory and discover lack of intra-class connectivity in the DG setting causes the deficiency. We thus propose a new paradigm, domain-connecting contrastive learning (DCCL), to enhance the conceptual connectivity across domains and obtain generalizable representations for DG. On the data side, more aggressive data augmentation and cross-domain positive samples are introduced to improve intra-class connectivity. On the model side, to better embed the unseen test domains, we propose model anchoring to exploit the intra-class connectivity in pre-trained representations and complement the anchoring with generative transformation loss. Extensive experiments on five standard DG benchmarks are performed. The results verify that DCCL outperforms state-of-the-art baselines even without domain supervision. The detailed model implementation and the code are provided through https://github.com/weitianxin/DCCL

Authors:Yejie Guo, Yunzhong Hou, Wufei Ma, Meng Tang, Ming-Hsuan Yang
Title: Pursuing Minimal Sufficiency in Spatial Reasoning
Abstract:
Spatial reasoning, the ability to ground language in 3D understanding, remains a persistent challenge for Vision-Language Models (VLMs). We identify two fundamental bottlenecks: inadequate 3D understanding capabilities stemming from 2D-centric pre-training, and reasoning failures induced by redundant 3D information. To address these, we first construct a Minimal Sufficient Set (MSS) of information before answering a given question: a compact selection of 3D perception results from \textit{expert models}. We introduce MSSR (Minimal Sufficient Spatial Reasoner), a dual-agent framework that implements this principle. A Perception Agent programmatically queries 3D scenes using a versatile perception toolbox to extract sufficient information, including a novel SOG (Situated Orientation Grounding) module that robustly extracts language-grounded directions. A Reasoning Agent then iteratively refines this information to pursue minimality, pruning redundant details and requesting missing ones in a closed loop until the MSS is curated. Extensive experiments demonstrate that our method, by explicitly pursuing both sufficiency and minimality, significantly improves accuracy and achieves state-of-the-art performance across two challenging benchmarks. Furthermore, our framework produces interpretable reasoning paths, offering a promising source of high-quality training data for future models. Source code is available at https://github.com/gyj155/mssr.

Authors:Young-Jun Lee, Byung-Kwan Lee, Jianshu Zhang, Yechan Hwang, Byungsoo Ko, Han-Gyu Kim, Dongyu Yao, Xuankun Rong, Eojin Joo, Seung-Ho Han, Bowon Ko, Ho-Jin Choi
Title: MultiVerse: A Multi-Turn Conversation Benchmark for Evaluating Large Vision and Language Models
Abstract:
Vision-and-Language Models (VLMs) have shown impressive capabilities on single-turn benchmarks, yet real-world applications often demand more intricate multi-turn dialogues. Existing multi-turn datasets (e.g, MMDU, ConvBench) only partially capture the breadth and depth of conversational scenarios encountered by users. In this work, we introduce MultiVerse, a novel multi-turn conversation benchmark featuring 647 dialogues - each averaging four turns - derived from a diverse set of 12 popular VLM evaluation benchmarks. With 484 tasks and 484 interaction goals, MultiVerse covers a wide range of topics, from factual knowledge and perception to advanced reasoning tasks such as mathematics and coding. To facilitate robust assessment, we propose a checklist-based evaluation method that leverages GPT-4o as the automated evaluator, measuring performance across 37 key aspects, including perceptual accuracy, linguistic clarity, and factual correctness. We evaluate 18 VLMs on MultiVerse, revealing that even the strongest models (e.g., GPT-4o) achieve only a 50% success rate in complex multi-turn conversations, highlighting the dataset's challenging nature. Notably, we find that providing full dialogue context significantly enhances performance for smaller or weaker models, emphasizing the importance of in-context learning. We believe MultiVerse is a landscape of evaluating multi-turn interaction abilities for VLMs.

Authors:Jiaying Zhu, Yurui Zhu, Xin Lu, Wenrui Yan, Dong Li, Kunlin Liu, Xueyang Fu, Zheng-Jun Zha
Title: VisionSelector: End-to-End Learnable Visual Token Compression for Efficient Multimodal LLMs
Abstract:
Multimodal Large Language Models (MLLMs) encounter significant computational and memory bottlenecks from the massive number of visual tokens generated by high-resolution images or multi-image inputs. Previous token compression techniques are often constrained by heuristic rules that risk discarding critical information. They may suffer from biases, such as attention sinks, that lead to sharp performance drops under aggressive compression ratios. To address these limitations, we reformulate token compression as a lightweight plug-and-play framework that reformulates token compression into an end-to-end learnable decision process. To be specific, we propose VisionSelector, a scorer module decoupled from the MLLM backbone that incorporates a differentiable Top-K mechanism and a curriculum annealing strategy to bridge the training-inference gap, enabling efficient and adaptive token selection various arbitrary compression rates. Remarkably lightweight with only 12.85M trainable parameters, VisionSelector demonstrates generalization across various compression rates and adaptively identifying critical tokens. This leads to superior performance across all compression budgets, evidenced by preserving 100% accuracy on MME with 30% retention budget, outperforming prior methods by 12.14% at 10% retention budget, and doubling prefill speed. Our code is available at https://github.com/JulietChoo/VisionSelector .

Authors:Jaekyun Park, Hye Won Chung
Title: VIPAMIN: Visual Prompt Initialization via Embedding Selection and Subspace Expansion
Abstract:
In the era of large-scale foundation models, fully fine-tuning pretrained networks for each downstream task is often prohibitively resource-intensive. Prompt tuning offers a lightweight alternative by introducing tunable prompts while keeping the backbone frozen. However, existing visual prompt tuning methods often fail to specialize the prompts or enrich the representation space--especially when applied to self-supervised backbones. We show that these limitations become especially pronounced in challenging tasks and data-scarce settings, where effective adaptation is most critical. In this work, we introduce VIPAMIN, a visual prompt initialization strategy that enhances adaptation of self-supervised models by (1) aligning prompts with semantically informative regions in the embedding space, and (2) injecting novel representational directions beyond the pretrained subspace. Despite its simplicity--requiring only a single forward pass and lightweight operations--VIPAMIN consistently improves performance across diverse tasks and dataset sizes, setting a new state of the art in visual prompt tuning. Our code is available at https://github.com/iamjaekyun/vipamin.

Authors:Kunyu Peng, Di Wen, Jia Fu, Jiamin Wu, Kailun Yang, Junwei Zheng, Ruiping Liu, Yufan Chen, Yuqian Fu, Danda Pani Paudel, Luc Van Gool, Rainer Stiefelhagen
Title: RefAtomNet++: Advancing Referring Atomic Video Action Recognition using Semantic Retrieval based Multi-Trajectory Mamba
Abstract:
Referring Atomic Video Action Recognition (RAVAR) aims to recognize fine-grained, atomic-level actions of a specific person of interest conditioned on natural language descriptions. Distinct from conventional action recognition and detection tasks, RAVAR emphasizes precise language-guided action understanding, which is particularly critical for interactive human action analysis in complex multi-person scenarios. In this work, we extend our previously introduced RefAVA dataset to RefAVA++, which comprises >2.9 million frames and >75.1k annotated persons in total. We benchmark this dataset using baselines from multiple related domains, including atomic action localization, video question answering, and text-video retrieval, as well as our earlier model, RefAtomNet. Although RefAtomNet surpasses other baselines by incorporating agent attention to highlight salient features, its ability to align and retrieve cross-modal information remains limited, leading to suboptimal performance in localizing the target person and predicting fine-grained actions. To overcome the aforementioned limitations, we introduce RefAtomNet++, a novel framework that advances cross-modal token aggregation through a multi-hierarchical semantic-aligned cross-attention mechanism combined with multi-trajectory Mamba modeling at the partial-keyword, scene-attribute, and holistic-sentence levels. In particular, scanning trajectories are constructed by dynamically selecting the nearest visual spatial tokens at each timestep for both partial-keyword and scene-attribute levels. Moreover, we design a multi-hierarchical semantic-aligned cross-attention strategy, enabling more effective aggregation of spatial and temporal tokens across different semantic hierarchies. Experiments show that RefAtomNet++ establishes new state-of-the-art results. The dataset and code are released at https://github.com/KPeng9510/refAVA2.

Authors:Aidyn Ubingazhibov, Rémi Pautrat, Iago Suárez, Shaohui Liu, Marc Pollefeys, Viktor Larsson
Title: LightGlueStick: a Fast and Robust Glue for Joint Point-Line Matching
Abstract:
Lines and points are complementary local features, whose combination has proven effective for applications such as SLAM and Structure-from-Motion. The backbone of these pipelines are the local feature matchers, establishing correspondences across images. Traditionally, point and line matching have been treated as independent tasks. Recently, GlueStick proposed a GNN-based network that simultaneously operates on points and lines to establish matches. While running a single joint matching reduced the overall computational complexity, the heavy architecture prevented real-time applications or deployment to edge devices. Inspired by recent progress in point matching, we propose LightGlueStick, a lightweight matcher for points and line segments. The key novel component in our architecture is the Attentional Line Message Passing (ALMP), which explicitly exposes the connectivity of the lines to the network, allowing for efficient communication between nodes. In thorough experiments we show that LightGlueStick establishes a new state-of-the-art across different benchmarks. The code is available at https://github.com/aubingazhib/LightGlueStick.

Authors:Changyue Shi, Minghao Chen, Yiping Mao, Chuxiao Yang, Xinyuan Hu, Jiajun Ding, Zhou Yu
Title: REALM: An MLLM-Agent Framework for Open World 3D Reasoning Segmentation and Editing on Gaussian Splatting
Abstract:
Bridging the gap between complex human instructions and precise 3D object grounding remains a significant challenge in vision and robotics. Existing 3D segmentation methods often struggle to interpret ambiguous, reasoning-based instructions, while 2D vision-language models that excel at such reasoning lack intrinsic 3D spatial understanding. In this paper, we introduce REALM, an innovative MLLM-agent framework that enables open-world reasoning-based segmentation without requiring extensive 3D-specific post-training. We perform segmentation directly on 3D Gaussian Splatting representations, capitalizing on their ability to render photorealistic novel views that are highly suitable for MLLM comprehension. As directly feeding one or more rendered views to the MLLM can lead to high sensitivity to viewpoint selection, we propose a novel Global-to-Local Spatial Grounding strategy. Specifically, multiple global views are first fed into the MLLM agent in parallel for coarse-level localization, aggregating responses to robustly identify the target object. Then, several close-up novel views of the object are synthesized to perform fine-grained local segmentation, yielding accurate and consistent 3D masks. Extensive experiments show that REALM achieves remarkable performance in interpreting both explicit and implicit instructions across LERF, 3D-OVS, and our newly introduced REALM3D benchmarks. Furthermore, our agent framework seamlessly supports a range of 3D interaction tasks, including object removal, replacement, and style transfer, demonstrating its practical utility and versatility. Project page: https://ChangyueShi.github.io/REALM.

Authors:Tianhang Cheng, Albert J. Zhai, Evan Z. Chen, Rui Zhou, Yawen Deng, Zitong Li, Kejie Zhao, Janice Shiu, Qianyu Zhao, Yide Xu, Xinlei Wang, Yuan Shen, Sheng Wang, Lisa Ainsworth, Kaiyu Guan, Shenlong Wang
Title: Demeter: A Parametric Model of Crop Plant Morphology from the Real World
Abstract:
Learning 3D parametric shape models of objects has gained popularity in vision and graphics and has showed broad utility in 3D reconstruction, generation, understanding, and simulation. While powerful models exist for humans and animals, equally expressive approaches for modeling plants are lacking. In this work, we present Demeter, a data-driven parametric model that encodes key factors of a plant morphology, including topology, shape, articulation, and deformation into a compact learned representation. Unlike previous parametric models, Demeter handles varying shape topology across various species and models three sources of shape variation: articulation, subcomponent shape variation, and non-rigid deformation. To advance crop plant modeling, we collected a large-scale, ground-truthed dataset from a soybean farm as a testbed. Experiments show that Demeter effectively synthesizes shapes, reconstructs structures, and simulates biophysical processes. Code and data is available at https://tianhang-cheng.github.io/Demeter/.

Authors:Pulin Li, Guocheng Wu, Li Yin, Yuxin Zheng, Wei Zhang, Yanjie Zhou
Title: MIRAD - A comprehensive real-world robust anomaly detection dataset for Mass Individualization
Abstract:
Social manufacturing leverages community collaboration and scattered resources to realize mass individualization in modern industry. However, this paradigm shift also introduces substantial challenges in quality control, particularly in defect detection. The main difficulties stem from three aspects. First, products often have highly customized configurations. Second, production typically involves fragmented, small-batch orders. Third, imaging environments vary considerably across distributed sites. To overcome the scarcity of real-world datasets and tailored algorithms, we introduce the Mass Individualization Robust Anomaly Detection (MIRAD) dataset. As the first benchmark explicitly designed for anomaly detection in social manufacturing, MIRAD captures three critical dimensions of this domain: (1) diverse individualized products with large intra-class variation, (2) data collected from six geographically dispersed manufacturing nodes, and (3) substantial imaging heterogeneity, including variations in lighting, background, and motion conditions. We then conduct extensive evaluations of state-of-the-art (SOTA) anomaly detection methods on MIRAD, covering one-class, multi-class, and zero-shot approaches. Results show a significant performance drop across all models compared with conventional benchmarks, highlighting the unresolved complexities of defect detection in real-world individualized production. By bridging industrial requirements and academic research, MIRAD provides a realistic foundation for developing robust quality control solutions essential for Industry 5.0. The dataset is publicly available at https://github.com/wu33learn/MIRAD.

Authors:Junha Song, Sangdoo Yun, Dongyoon Han, Jaegul Choo, Byeongho Heo
Title: RL makes MLLMs see better than SFT
Abstract:
A dominant assumption in Multimodal Language Model (MLLM) research is that its performance is largely inherited from the LLM backbone, given its immense parameter scale and remarkable capabilities. This has created a void in the understanding of the vision encoder, which determines how MLLMs perceive images. The recent shift in MLLM training paradigms, from Supervised Finetuning (SFT) to Reinforcement Learning (RL), magnifies this oversight-namely, the significant lack of analysis on how such training reshapes the vision encoder as well as the MLLM. To address this, we first investigate the impact of training strategies on MLLMs, where RL shows a clear advantage over SFT in strongly vision-related VQA benchmarks. Motivated by this, we conduct a critical yet under-explored analysis of the vision encoder of MLLMs through diverse and in-depth experiments, ranging from ImageNet classification and segmentation to gradient visualization. Our results demonstrate that MLLM's post-training strategy (i.e., SFT or RL) not only leads to distinct outcomes on MLLM downstream tasks, but also fundamentally reshapes MLLM's underlying visual representations. Specifically, the key finding of our study is that RL produces stronger and precisely localized visual representations compared to SFT, boosting the ability of the vision encoder for MLLM. We then reframe our findings into a simple recipe for building strong vision encoders for MLLMs, Preference-Instructed Vision OpTimization (PIVOT). When integrated into MLLMs, a PIVOT-trained vision encoder outperforms even larger and more heavily-trained counterparts, despite requiring less than 1% of the computational cost of standard vision pretraining. This result opens an effective and efficient path for advancing the vision backbones of MLLMs. Project page available at https://june-page.github.io/pivot/

Authors:Haiyue Sun, Qingdong He, Jinlong Peng, Peng Tang, Jiangning Zhang, Junwei Zhu, Xiaobin Hu, Shuicheng Yan
Title: TokenAR: Multiple Subject Generation via Autoregressive Token-level enhancement
Abstract:
Autoregressive Model (AR) has shown remarkable success in conditional image generation. However, these approaches for multiple reference generation struggle with decoupling different reference identities. In this work, we propose the TokenAR framework, specifically focused on a simple but effective token-level enhancement mechanism to address reference identity confusion problem. Such token-level enhancement consists of three parts, 1). Token Index Embedding clusters the tokens index for better representing the same reference images; 2). Instruct Token Injection plays as a role of extra visual feature container to inject detailed and complementary priors for reference tokens; 3). The identity-token disentanglement strategy (ITD) explicitly guides the token representations toward independently representing the features of each identity.This token-enhancement framework significantly augments the capabilities of existing AR based methods in conditional image generation, enabling good identity consistency while preserving high quality background reconstruction. Driven by the goal of high-quality and high-diversity in multi-subject generation, we introduce the InstructAR Dataset, the first open-source, large-scale, multi-reference input, open domain image generation dataset that includes 28K training pairs, each example has two reference subjects, a relative prompt and a background with mask annotation, curated for multiple reference image generation training and evaluating. Comprehensive experiments validate that our approach surpasses current state-of-the-art models in multiple reference image generation task. The implementation code and datasets will be made publicly. Codes are available, see https://github.com/lyrig/TokenAR

Authors:Rui Yang, Huining Li, Yiyi Long, Xiaojun Wu, Shengfeng He
Title: Stroke2Sketch: Harnessing Stroke Attributes for Training-Free Sketch Generation
Abstract:
Generating sketches guided by reference styles requires precise transfer of stroke attributes, such as line thickness, deformation, and texture sparsity, while preserving semantic structure and content fidelity. To this end, we propose Stroke2Sketch, a novel training-free framework that introduces cross-image stroke attention, a mechanism embedded within self-attention layers to establish fine-grained semantic correspondences and enable accurate stroke attribute transfer. This allows our method to adaptively integrate reference stroke characteristics into content images while maintaining structural integrity. Additionally, we develop adaptive contrast enhancement and semantic-focused attention to reinforce content preservation and foreground emphasis. Stroke2Sketch effectively synthesizes stylistically faithful sketches that closely resemble handcrafted results, outperforming existing methods in expressive stroke control and semantic coherence. Codes are available at https://github.com/rane7/Stroke2Sketch.

Authors:Jierui Peng, Yanyan Zhang, Yicheng Duan, Tuo Liang, Vipin Chaudhary, Yu Yin
Title: NEBULA: Do We Evaluate Vision-Language-Action Agents Correctly?
Abstract:
The evaluation of Vision-Language-Action (VLA) agents is hindered by the coarse, end-task success metric that fails to provide precise skill diagnosis or measure robustness to real-world perturbations. This challenge is exacerbated by a fragmented data landscape that impedes reproducible research and the development of generalist models. To address these limitations, we introduce \textbf{NEBULA}, a unified ecosystem for single-arm manipulation that enables diagnostic and reproducible evaluation. NEBULA features a novel dual-axis evaluation protocol that combines fine-grained \textit{capability tests} for precise skill diagnosis with systematic \textit{stress tests} that measure robustness. A standardized API and a large-scale, aggregated dataset are provided to reduce fragmentation and support cross-dataset training and fair comparison. Using NEBULA, we demonstrate that top-performing VLAs struggle with key capabilities such as spatial reasoning and dynamic adaptation, which are consistently obscured by conventional end-task success metrics. By measuring both what an agent can do and when it does so reliably, NEBULA provides a practical foundation for robust, general-purpose embodied agents.

Authors:Ahmad Arrabi, Jay Hwasung Jung, Jax Luo, Nathan Franssen, Scott Raymond, Safwan Wshah
Title: Automated C-Arm Positioning via Conformal Landmark Localization
Abstract:
Accurate and reliable C-arm positioning is essential for fluoroscopy-guided interventions. However, clinical workflows rely on manual alignment that increases radiation exposure and procedural delays. In this work, we present a pipeline that autonomously navigates the C-arm to predefined anatomical landmarks utilizing X-ray images. Given an input X-ray image from an arbitrary starting location on the operating table, the model predicts a 3D displacement vector toward each target landmark along the body. To ensure reliable deployment, we capture both aleatoric and epistemic uncertainties in the model's predictions and further calibrate them using conformal prediction. The derived prediction regions are interpreted as 3D confidence regions around the predicted landmark locations. The training framework combines a probabilistic loss with skeletal pose regularization to encourage anatomically plausible outputs. We validate our approach on a synthetic X-ray dataset generated from DeepDRR. Results show not only strong localization accuracy across multiple architectures but also well-calibrated prediction bounds. These findings highlight the pipeline's potential as a component in safe and reliable autonomous C-arm systems. Code is available at https://github.com/AhmadArrabi/C_arm_guidance_APAH

Authors:Ahmad Arrabi, Jay hwasung Jung, J Le, A Nguyen, J Reed, E Stahl, Nathan Franssen, Scott Raymond, Safwan Wshah
Title: C-arm Guidance: A Self-supervised Approach To Automated Positioning During Stroke Thrombectomy
Abstract:
Thrombectomy is one of the most effective treatments for ischemic stroke, but it is resource and personnel-intensive. We propose employing deep learning to automate critical aspects of thrombectomy, thereby enhancing efficiency and safety. In this work, we introduce a self-supervised framework that classifies various skeletal landmarks using a regression-based pretext task. Our experiments demonstrate that our model outperforms existing methods in both regression and classification tasks. Notably, our results indicate that the positional pretext task significantly enhances downstream classification performance. Future work will focus on extending this framework toward fully autonomous C-arm control, aiming to optimize trajectories from the pelvis to the head during stroke thrombectomy procedures. All code used is available at https://github.com/AhmadArrabi/C_arm_guidance

Authors:Sayan Deb Sarkar, Sinisa Stekovic, Vincent Lepetit, Iro Armeni
Title: GuideFlow3D: Optimization-Guided Rectified Flow For Appearance Transfer
Abstract:
Transferring appearance to 3D assets using different representations of the appearance object - such as images or text - has garnered interest due to its wide range of applications in industries like gaming, augmented reality, and digital content creation. However, state-of-the-art methods still fail when the geometry between the input and appearance objects is significantly different. A straightforward approach is to directly apply a 3D generative model, but we show that this ultimately fails to produce appealing results. Instead, we propose a principled approach inspired by universal guidance. Given a pretrained rectified flow model conditioned on image or text, our training-free method interacts with the sampling process by periodically adding guidance. This guidance can be modeled as a differentiable loss function, and we experiment with two different types of guidance including part-aware losses for appearance and self-similarity. Our experiments show that our approach successfully transfers texture and geometric details to the input 3D asset, outperforming baselines both qualitatively and quantitatively. We also show that traditional metrics are not suitable for evaluating the task due to their inability of focusing on local details and comparing dissimilar inputs, in absence of ground truth data. We thus evaluate appearance transfer quality with a GPT-based system objectively ranking outputs, ensuring robust and human-like assessment, as further confirmed by our user study. Beyond showcased scenarios, our method is general and could be extended to different types of diffusion models and guidance functions.

Authors:Zewen Li, Zitong Yu, Qilang Ye, Weicheng Xie, Wei Zhuo, Linlin Shen
Title: IAD-GPT: Advancing Visual Knowledge in Multimodal Large Language Model for Industrial Anomaly Detection
Abstract:
The robust causal capability of Multimodal Large Language Models (MLLMs) hold the potential of detecting defective objects in Industrial Anomaly Detection (IAD). However, most traditional IAD methods lack the ability to provide multi-turn human-machine dialogues and detailed descriptions, such as the color of objects, the shape of an anomaly, or specific types of anomalies. At the same time, methods based on large pre-trained models have not fully stimulated the ability of large models in anomaly detection tasks. In this paper, we explore the combination of rich text semantics with both image-level and pixel-level information from images and propose IAD-GPT, a novel paradigm based on MLLMs for IAD. We employ Abnormal Prompt Generator (APG) to generate detailed anomaly prompts for specific objects. These specific prompts from the large language model (LLM) are used to activate the detection and segmentation functions of the pre-trained visual-language model (i.e., CLIP). To enhance the visual grounding ability of MLLMs, we propose Text-Guided Enhancer, wherein image features interact with normal and abnormal text prompts to dynamically select enhancement pathways, which enables language models to focus on specific aspects of visual data, enhancing their ability to accurately interpret and respond to anomalies within images. Moreover, we design a Multi-Mask Fusion module to incorporate mask as expert knowledge, which enhances the LLM's perception of pixel-level anomalies. Extensive experiments on MVTec-AD and VisA datasets demonstrate our state-of-the-art performance on self-supervised and few-shot anomaly detection and segmentation tasks, such as MVTec-AD and VisA datasets. The codes are available at \href{https://github.com/LiZeWen1225/IAD-GPT}{https://github.com/LiZeWen1225/IAD-GPT}.

Authors:Hanrong Ye, Chao-Han Huck Yang, Arushi Goel, Wei Huang, Ligeng Zhu, Yuanhang Su, Sean Lin, An-Chieh Cheng, Zhen Wan, Jinchuan Tian, Yuming Lou, Dong Yang, Zhijian Liu, Yukang Chen, Ambrish Dantrey, Ehsan Jahangiri, Sreyan Ghosh, Daguang Xu, Ehsan Hosseini-Asl, Danial Mohseni Taheri, Vidya Murali, Sifei Liu, Jason Lu, Oluwatobi Olabiyi, Frank Wang, Rafael Valle, Bryan Catanzaro, Andrew Tao, Song Han, Jan Kautz, Hongxu Yin, Pavlo Molchanov
Title: OmniVinci: Enhancing Architecture and Data for Omni-Modal Understanding LLM
Abstract:
Advancing machine intelligence requires developing the ability to perceive across multiple modalities, much as humans sense the world. We introduce OmniVinci, an initiative to build a strong, open-source, omni-modal LLM. We carefully study the design choices across model architecture and data curation. For model architecture, we present three key innovations: (i) OmniAlignNet for strengthening alignment between vision and audio embeddings in a shared omni-modal latent space; (ii) Temporal Embedding Grouping for capturing relative temporal alignment between vision and audio signals; and (iii) Constrained Rotary Time Embedding for encoding absolute temporal information in omni-modal embeddings. We introduce a curation and synthesis pipeline that generates 24M single-modal and omni-modal conversations. We find that modalities reinforce one another in both perception and reasoning. Our model, OmniVinci, outperforms Qwen2.5-Omni with +19.05 on DailyOmni (cross-modal understanding), +1.7 on MMAR (audio), and +3.9 on Video-MME (vision), while using just 0.2T training tokens - a 6 times reduction compared to Qwen2.5-Omni's 1.2T. We finally demonstrate omni-modal advantages in downstream applications spanning robotics, medical AI, and smart factory.

Authors:Shr-Ruei Tsai, Wei-Cheng Chang, Jie-Ying Lee, Chih-Hai Su, Yu-Lun Liu
Title: LightsOut: Diffusion-based Outpainting for Enhanced Lens Flare Removal
Abstract:
Lens flare significantly degrades image quality, impacting critical computer vision tasks like object detection and autonomous driving. Recent Single Image Flare Removal (SIFR) methods perform poorly when off-frame light sources are incomplete or absent. We propose LightsOut, a diffusion-based outpainting framework tailored to enhance SIFR by reconstructing off-frame light sources. Our method leverages a multitask regression module and LoRA fine-tuned diffusion model to ensure realistic and physically consistent outpainting results. Comprehensive experiments demonstrate LightsOut consistently boosts the performance of existing SIFR methods across challenging scenarios without additional retraining, serving as a universally applicable plug-and-play preprocessing solution. Project page: https://ray-1026.github.io/lightsout/

Authors:Joongwon Chae, Lihui Luo, Xi Yuan, Dongmei Yu, Zhenglin Chen, Lian Zhang, Peiwu Qin
Title: Memory-SAM: Human-Prompt-Free Tongue Segmentation via Retrieval-to-Prompt
Abstract:
Accurate tongue segmentation is crucial for reliable TCM analysis. Supervised models require large annotated datasets, while SAM-family models remain prompt-driven. We present Memory-SAM, a training-free, human-prompt-free pipeline that automatically generates effective prompts from a small memory of prior cases via dense DINOv3 features and FAISS retrieval. Given a query image, mask-constrained correspondences to the retrieved exemplar are distilled into foreground/background point prompts that guide SAM2 without manual clicks or model fine-tuning. We evaluate on 600 expert-annotated images (300 controlled, 300 in-the-wild). On the mixed test split, Memory-SAM achieves mIoU 0.9863, surpassing FCN (0.8188) and a detector-to-box SAM baseline (0.1839). On controlled data, ceiling effects above 0.98 make small differences less meaningful given annotation variability, while our method shows clear gains under real-world conditions. Results indicate that retrieval-to-prompt enables data-efficient, robust segmentation of irregular boundaries in tongue imaging. The code is publicly available at https://github.com/jw-chae/memory-sam.

Authors:Yuhang Chen, Tianpeng Lv, Siyi Zhang, Yixiang Yin, Yao Wan, Philip S. Yu, Dongping Chen
Title: Paper2Web: Let's Make Your Paper Alive!
Abstract:
Academic project websites can more effectively disseminate research when they clearly present core content and enable intuitive navigation and interaction. However, current approaches such as direct Large Language Model (LLM) generation, templates, or direct HTML conversion struggle to produce layout-aware, interactive sites, and a comprehensive evaluation suite for this task has been lacking. In this paper, we introduce Paper2Web, a benchmark dataset and multi-dimensional evaluation framework for assessing academic webpage generation. It incorporates rule-based metrics like Connectivity, Completeness and human-verified LLM-as-a-Judge (covering interactivity, aesthetics, and informativeness), and PaperQuiz, which measures paper-level knowledge retention. We further present PWAgent, an autonomous pipeline that converts scientific papers into interactive and multimedia-rich academic homepages. The agent iteratively refines both content and layout through MCP tools that enhance emphasis, balance, and presentation quality. Our experiments show that PWAgent consistently outperforms end-to-end baselines like template-based webpages and arXiv/alphaXiv versions by a large margin while maintaining low cost, achieving the Pareto-front in academic webpage generation.

Authors:Haowei Zhu, Tianxiang Pan, Rui Qin, Jun-Hai Yong, Bin Wang
Title: ReCon: Region-Controllable Data Augmentation with Rectification and Alignment for Object Detection
Abstract:
The scale and quality of datasets are crucial for training robust perception models. However, obtaining large-scale annotated data is both costly and time-consuming. Generative models have emerged as a powerful tool for data augmentation by synthesizing samples that adhere to desired distributions. However, current generative approaches often rely on complex post-processing or extensive fine-tuning on massive datasets to achieve satisfactory results, and they remain prone to content-position mismatches and semantic leakage. To overcome these limitations, we introduce ReCon, a novel augmentation framework that enhances the capacity of structure-controllable generative models for object detection. ReCon integrates region-guided rectification into the diffusion sampling process, using feedback from a pre-trained perception model to rectify misgenerated regions within diffusion sampling process. We further propose region-aligned cross-attention to enforce spatial-semantic alignment between image regions and their textual cues, thereby improving both semantic consistency and overall image fidelity. Extensive experiments demonstrate that ReCon substantially improve the quality and trainability of generated data, achieving consistent performance gains across various datasets, backbone architectures, and data scales. Our code is available at https://github.com/haoweiz23/ReCon .

Authors:Yitong Sun, Yao Huang, Ruochen Zhang, Huanran Chen, Shouwei Ruan, Ranjie Duan, Xingxing Wei
Title: NDM: A Noise-driven Detection and Mitigation Framework against Implicit Sexual Intentions in Text-to-Image Generation
Abstract:
Despite the impressive generative capabilities of text-to-image (T2I) diffusion models, they remain vulnerable to generating inappropriate content, especially when confronted with implicit sexual prompts. Unlike explicit harmful prompts, these subtle cues, often disguised as seemingly benign terms, can unexpectedly trigger sexual content due to underlying model biases, raising significant ethical concerns. However, existing detection methods are primarily designed to identify explicit sexual content and therefore struggle to detect these implicit cues. Fine-tuning approaches, while effective to some extent, risk degrading the model's generative quality, creating an undesirable trade-off. To address this, we propose NDM, the first noise-driven detection and mitigation framework, which could detect and mitigate implicit malicious intention in T2I generation while preserving the model's original generative capabilities. Specifically, we introduce two key innovations: first, we leverage the separability of early-stage predicted noise to develop a noise-based detection method that could identify malicious content with high accuracy and efficiency; second, we propose a noise-enhanced adaptive negative guidance mechanism that could optimize the initial noise by suppressing the prominent region's attention, thereby enhancing the effectiveness of adaptive negative guidance for sexual mitigation. Experimentally, we validate NDM on both natural and adversarial datasets, demonstrating its superior performance over existing SOTA methods, including SLD, UCE, and RECE, etc. Code and resources are available at https://github.com/lorraine021/NDM.

Authors:Haoran Wang, Bo Zhao, Jinghui Wang, Hanzhang Wang, Huan Yang, Wei Ji, Hao Liu, Xinyan Xiao
Title: SEGA: A Stepwise Evolution Paradigm for Content-Aware Layout Generation with Design Prior
Abstract:
In this paper, we study the content-aware layout generation problem, which aims to automatically generate layouts that are harmonious with a given background image. Existing methods usually deal with this task with a single-step reasoning framework. The lack of a feedback-based self-correction mechanism leads to their failure rates significantly increasing when faced with complex element layout planning. To address this challenge, we introduce SEGA, a novel Stepwise Evolution Paradigm for Content-Aware Layout Generation. Inspired by the systematic mode of human thinking, SEGA employs a hierarchical reasoning framework with a coarse-to-fine strategy: first, a coarse-level module roughly estimates the layout planning results; then, another refining module performs fine-level reasoning regarding the coarse planning results. Furthermore, we incorporate layout design principles as prior knowledge into the model to enhance its layout planning ability. Besides, we present GenPoster-100K that is a new large-scale poster dataset with rich meta-information annotation. The experiments demonstrate the effectiveness of our approach by achieving the state-of-the-art results on multiple benchmark datasets. Our project page is at: https://brucew91.github.io/SEGA.github.io/

Authors:Qingyan Bai, Qiuyu Wang, Hao Ouyang, Yue Yu, Hanlin Wang, Wen Wang, Ka Leong Cheng, Shuailei Ma, Yanhong Zeng, Zichen Liu, Yinghao Xu, Yujun Shen, Qifeng Chen
Title: Scaling Instruction-Based Video Editing with a High-Quality Synthetic Dataset
Abstract:
Instruction-based video editing promises to democratize content creation, yet its progress is severely hampered by the scarcity of large-scale, high-quality training data. We introduce Ditto, a holistic framework designed to tackle this fundamental challenge. At its heart, Ditto features a novel data generation pipeline that fuses the creative diversity of a leading image editor with an in-context video generator, overcoming the limited scope of existing models. To make this process viable, our framework resolves the prohibitive cost-quality trade-off by employing an efficient, distilled model architecture augmented by a temporal enhancer, which simultaneously reduces computational overhead and improves temporal coherence. Finally, to achieve full scalability, this entire pipeline is driven by an intelligent agent that crafts diverse instructions and rigorously filters the output, ensuring quality control at scale. Using this framework, we invested over 12,000 GPU-days to build Ditto-1M, a new dataset of one million high-fidelity video editing examples. We trained our model, Editto, on Ditto-1M with a curriculum learning strategy. The results demonstrate superior instruction-following ability and establish a new state-of-the-art in instruction-based video editing.

Authors:Tingyu Lin, Armin Dadras, Florian Kleber, Robert Sablatnig
Title: DGME-T: Directional Grid Motion Encoding for Transformer-Based Historical Camera Movement Classification
Abstract:
Camera movement classification (CMC) models trained on contemporary, high-quality footage often degrade when applied to archival film, where noise, missing frames, and low contrast obscure motion cues. We bridge this gap by assembling a unified benchmark that consolidates two modern corpora into four canonical classes and restructures the HISTORIAN collection into five balanced categories. Building on this benchmark, we introduce DGME-T, a lightweight extension to the Video Swin Transformer that injects directional grid motion encoding, derived from optical flow, via a learnable and normalised late-fusion layer. DGME-T raises the backbone's top-1 accuracy from 81.78% to 86.14% and its macro F1 from 82.08% to 87.81% on modern clips, while still improving the demanding World-War-II footage from 83.43% to 84.62% accuracy and from 81.72% to 82.63% macro F1. A cross-domain study further shows that an intermediate fine-tuning stage on modern data increases historical performance by more than five percentage points. These results demonstrate that structured motion priors and transformer representations are complementary and that even a small, carefully calibrated motion head can substantially enhance robustness in degraded film analysis. Related resources are available at https://github.com/linty5/DGME-T.

Authors:Junzhi Ning, Wei Li, Cheng Tang, Jiashi Lin, Chenglong Ma, Chaoyang Zhang, Jiyao Liu, Ying Chen, Shujian Gao, Lihao Liu, Yuandong Pu, Huihui Xu, Chenhui Gou, Ziyan Huang, Yi Xin, Qi Qin, Zhongying Deng, Diping Song, Bin Fu, Guang Yang, Yuanfeng Ji, Tianbin Li, Yanzhou Su, Jin Ye, Shixiang Tang, Ming Hu, Junjun He
Title: Unimedvl: Unifying Medical Multimodal Understanding And Generation Through Observation-Knowledge-Analysis
Abstract:
Medical diagnostic applications require models that can process multimodal medical inputs (images, patient histories, lab results) and generate diverse outputs including both textual reports and visual content (annotations, segmentation masks, and images). Despite this need, existing medical AI systems disrupt this unified process: medical image understanding models interpret images but cannot generate visual outputs, while medical image generation models synthesize images but cannot provide textual explanations. This leads to gaps in data representation, feature integration, and task-level multimodal capabilities. To this end, we propose a multi-level framework that draws inspiration from diagnostic workflows through the Observation-Knowledge-Analysis (OKA) paradigm. Specifically, at the observation level, we construct UniMed-5M, a dataset comprising over 5.6M samples that reformat diverse unimodal data into multimodal pairs for foundational observation. At the knowledge level, we propose Progressive Curriculum Learning that systematically introduces medical multimodal knowledge. At the analysis level, we introduce UniMedVL, the first medical unified multimodal model for the simultaneous analysis of image understanding and generation tasks within a single architecture. UniMedVL achieves superior performance on five medical image understanding benchmarks, while matching specialized models in generation quality across eight medical imaging modalities. Crucially, our unified architecture enables bidirectional knowledge sharing: generation tasks enhance visual understanding features, demonstrating that integrating traditionally separate capabilities within a single medical framework unlocks improvements across diverse medical vision-language tasks. Code is available at https://github.com/uni-medical/UniMedVL.

Authors:Xiaoming Zhu, Xu Huang, Qinghongbing Xie, Zhi Deng, Junsheng Yu, Yirui Guan, Zhongyuan Liu, Lin Zhu, Qijun Zhao, Ligang Liu, Long Zeng
Title: Imaginarium: Vision-guided High-Quality 3D Scene Layout Generation
Abstract:
Generating artistic and coherent 3D scene layouts is crucial in digital content creation. Traditional optimization-based methods are often constrained by cumbersome manual rules, while deep generative models face challenges in producing content with richness and diversity. Furthermore, approaches that utilize large language models frequently lack robustness and fail to accurately capture complex spatial relationships. To address these challenges, this paper presents a novel vision-guided 3D layout generation system. We first construct a high-quality asset library containing 2,037 scene assets and 147 3D scene layouts. Subsequently, we employ an image generation model to expand prompt representations into images, fine-tuning it to align with our asset library. We then develop a robust image parsing module to recover the 3D layout of scenes based on visual semantics and geometric information. Finally, we optimize the scene layout using scene graphs and overall visual semantics to ensure logical coherence and alignment with the images. Extensive user testing demonstrates that our algorithm significantly outperforms existing methods in terms of layout richness and quality. The code and dataset will be available at https://github.com/HiHiAllen/Imaginarium.

Authors:Tingyu Lin, Marco Peer, Florian Kleber, Robert Sablatnig
Title: ClapperText: A Benchmark for Text Recognition in Low-Resource Archival Documents
Abstract:
This paper presents ClapperText, a benchmark dataset for handwritten and printed text recognition in visually degraded and low-resource settings. The dataset is derived from 127 World War II-era archival video segments containing clapperboards that record structured production metadata such as date, location, and camera-operator identity. ClapperText includes 9,813 annotated frames and 94,573 word-level text instances, 67% of which are handwritten and 1,566 are partially occluded. Each instance includes transcription, semantic category, text type, and occlusion status, with annotations available as rotated bounding boxes represented as 4-point polygons to support spatially precise OCR applications. Recognizing clapperboard text poses significant challenges, including motion blur, handwriting variation, exposure fluctuations, and cluttered backgrounds, mirroring broader challenges in historical document analysis where structured content appears in degraded, non-standard forms. We provide both full-frame annotations and cropped word images to support downstream tasks. Using a consistent per-video evaluation protocol, we benchmark six representative recognition and seven detection models under zero-shot and fine-tuned conditions. Despite the small training set (18 videos), fine-tuning leads to substantial performance gains, highlighting ClapperText's suitability for few-shot learning scenarios. The dataset offers a realistic and culturally grounded resource for advancing robust OCR and document understanding in low-resource archival contexts. The dataset and evaluation code are available at https://github.com/linty5/ClapperText.

Authors:Yitong Li, Ralph Buchert, Benita Schmitz-Koep, Timo Grimmer, Björn Ommer, Dennis M. Hedderich, Igor Yakushev, Christian Wachinger
Title: Diffusion Bridge Networks Simulate Clinical-grade PET from MRI for Dementia Diagnostics
Abstract:
Positron emission tomography (PET) with 18F-Fluorodeoxyglucose (FDG) is an established tool in the diagnostic workup of patients with suspected dementing disorders. However, compared to the routinely available magnetic resonance imaging (MRI), FDG-PET remains significantly less accessible and substantially more expensive. Here, we present SiM2P, a 3D diffusion bridge-based framework that learns a probabilistic mapping from MRI and auxiliary patient information to simulate FDG-PET images of diagnostic quality. In a blinded clinical reader study, two neuroradiologists and two nuclear medicine physicians rated the original MRI and SiM2P-simulated PET images of patients with Alzheimer's disease, behavioral-variant frontotemporal dementia, and cognitively healthy controls. SiM2P significantly improved the overall diagnostic accuracy of differentiating between three groups from 75.0% to 84.7% (p<0.05). Notably, the simulated PET images received higher diagnostic certainty ratings and achieved superior interrater agreement compared to the MRI images. Finally, we developed a practical workflow for local deployment of the SiM2P framework. It requires as few as 20 site-specific cases and only basic demographic information. This approach makes the established diagnostic benefits of FDG-PET imaging more accessible to patients with suspected dementing disorders, potentially improving early detection and differential diagnosis in resource-limited settings. Our code is available at https://github.com/Yiiitong/SiM2P.

Authors:Saumya B
Title: An Empirical Study on MC Dropout--Based Uncertainty--Error Correlation in 2D Brain Tumor Segmentation
Abstract:
Accurate brain tumor segmentation from MRI is vital for diagnosis and treatment planning. Although Monte Carlo (MC) Dropout is widely used to estimate model uncertainty, its effectiveness in identifying segmentation errors -- especially near tumor boundaries -- remains unclear. This study empirically examines the relationship between MC Dropout--based uncertainty and segmentation error in 2D brain tumor MRI segmentation using a U-Net trained under four augmentation settings: none, horizontal flip, rotation, and scaling. Uncertainty was computed from 50 stochastic forward passes and correlated with pixel-wise errors using Pearson and Spearman coefficients. Results show weak global correlations ($r \approx 0.30$--$0.38$) and negligible boundary correlations ($|r| < 0.05$). Although differences across augmentations were statistically significant ($p < 0.001$), they lacked practical relevance. These findings suggest that MC Dropout uncertainty provides limited cues for boundary error localization, underscoring the need for alternative or hybrid uncertainty estimation methods in medical image segmentation.

Authors:Aditya Vir
Title: Balanced Multi-Task Attention for Satellite Image Classification: A Systematic Approach to Achieving 97.23% Accuracy on EuroSAT Without Pre-Training
Abstract:
This work presents a systematic investigation of custom convolutional neural network architectures for satellite land use classification, achieving 97.23% test accuracy on the EuroSAT dataset without reliance on pre-trained models. Through three progressive architectural iterations (baseline: 94.30%, CBAM-enhanced: 95.98%, and balanced multi-task attention: 97.23%) we identify and address specific failure modes in satellite imagery classification. Our principal contribution is a novel balanced multi-task attention mechanism that combines Coordinate Attention for spatial feature extraction with Squeeze-Excitation blocks for spectral feature extraction, unified through a learnable fusion parameter. Experimental results demonstrate that this learnable parameter autonomously converges to alpha approximately 0.57, indicating near-equal importance of spatial and spectral modalities for satellite imagery. We employ progressive DropBlock regularization (5-20% by network depth) and class-balanced loss weighting to address overfitting and confusion pattern imbalance. The final 12-layer architecture achieves Cohen's Kappa of 0.9692 with all classes exceeding 94.46% accuracy, demonstrating confidence calibration with a 24.25% gap between correct and incorrect predictions. Our approach achieves performance within 1.34% of fine-tuned ResNet-50 (98.57%) while requiring no external data, validating the efficacy of systematic architectural design for domain-specific applications. Complete code, trained models, and evaluation scripts are publicly available.

Authors:Xianmin Chen, Peiliang Huang, Longfei Han, Dingwen Zhang, Junwei Han
Title: Rethinking Efficient Hierarchical Mixing Architecture for Low-light RAW Image Enhancement
Abstract:
Low-light RAW image enhancement remains a challenging task. Although numerous deep learning based approaches have been proposed, they still suffer from inherent limitations. A key challenge is how to simultaneously achieve strong enhancement quality and high efficiency. In this paper, we rethink the architecture for efficient low-light image signal processing (ISP) and introduce a Hierarchical Mixing Architecture (HiMA). HiMA leverages the complementary strengths of Transformer and Mamba modules to handle features at large and small scales, respectively, thereby improving efficiency while avoiding the ambiguities observed in prior two-stage frameworks. To further address uneven illumination with strong local variations, we propose Local Distribution Adjustment (LoDA), which adaptively aligns feature distributions across different local regions. In addition, to fully exploit the denoised outputs from the first stage, we design a Multi-prior Fusion (MPF) module that integrates spatial and frequency-domain priors for detail enhancement. Extensive experiments on multiple public datasets demonstrate that our method outperforms state-of-the-art approaches, achieving superior performance with fewer parameters. Code will be released at https://github.com/Cynicarlos/HiMA.

Authors:Zhiqiang Zhu, Xinbo Gao, Wen Lu, Jie Li, Zhaoyang Wang, Mingqian Ge
Title: DPTrack:Directional Kernel-Guided Prompt Learning for Robust Nighttime Aerial Tracking
Abstract:
Existing nighttime aerial trackers based on prompt learning rely solely on spatial localization supervision, which fails to provide fine-grained cues that point to target features and inevitably produces vague prompts. This limitation impairs the tracker's ability to accurately focus on the object features and results in trackers still performing poorly. To address this issue, we propose DPTrack, a prompt-based aerial tracker designed for nighttime scenarios by encoding the given object's attribute features into the directional kernel enriched with fine-grained cues to generate precise prompts. Specifically, drawing inspiration from visual bionics, DPTrack first hierarchically captures the object's topological structure, leveraging topological attributes to enrich the feature representation. Subsequently, an encoder condenses these topology-aware features into the directional kernel, which serves as the core guidance signal that explicitly encapsulates the object's fine-grained attribute cues. Finally, a kernel-guided prompt module built on channel-category correspondence attributes propagates the kernel across the features of the search region to pinpoint the positions of target features and convert them into precise prompts, integrating spatial gating for robust nighttime tracking. Extensive evaluations on established benchmarks demonstrate DPTrack's superior performance. Our code will be available at https://github.com/zzq-vipsl/DPTrack.

Authors:Peng Ren, Hai Yang
Title: LILAC: Long-sequence Incremental Low-latency Arbitrary Motion Stylization via Streaming VAE-Diffusion with Causal Decoding
Abstract:
Generating long and stylized human motions in real time is critical for applications that demand continuous and responsive character control. Despite its importance, existing streaming approaches often operate directly in the raw motion space, leading to substantial computational overhead and making it difficult to maintain temporal stability. In contrast, latent-space VAE-Diffusion-based frameworks alleviate these issues and achieve high-quality stylization, but they are generally confined to offline processing. To bridge this gap, LILAC (Long-sequence Incremental Low-latency Arbitrary Motion Stylization via Streaming VAE-Diffusion with Causal Decoding) builds upon a recent high-performing offline framework for arbitrary motion stylization and extends it to an online setting through a latent-space streaming architecture with a sliding-window causal design and the injection of decoded motion features to ensure smooth motion transitions. This architecture enables long-sequence real-time arbitrary stylization without relying on future frames or modifying the diffusion model architecture, achieving a favorable balance between stylization quality and responsiveness as demonstrated by experiments on benchmark datasets. Supplementary video and examples are available at the project page: https://pren1.github.io/lilac/

Authors:Shengkai Hu, Haozhe Qi, Jun Wan, Jiaxing Huang, Lefei Zhang, Hang Sun, Dacheng Tao
Title: Proto-Former: Unified Facial Landmark Detection by Prototype Transformer
Abstract:
Recent advances in deep learning have significantly improved facial landmark detection. However, existing facial landmark detection datasets often define different numbers of landmarks, and most mainstream methods can only be trained on a single dataset. This limits the model generalization to different datasets and hinders the development of a unified model. To address this issue, we propose Proto-Former, a unified, adaptive, end-to-end facial landmark detection framework that explicitly enhances dataset-specific facial structural representations (i.e., prototype). Proto-Former overcomes the limitations of single-dataset training by enabling joint training across multiple datasets within a unified architecture. Specifically, Proto-Former comprises two key components: an Adaptive Prototype-Aware Encoder (APAE) that performs adaptive feature extraction and learns prototype representations, and a Progressive Prototype-Aware Decoder (PPAD) that refines these prototypes to generate prompts that guide the model's attention to key facial regions. Furthermore, we introduce a novel Prototype-Aware (PA) loss, which achieves optimal path finding by constraining the selection weights of prototype experts. This loss function effectively resolves the problem of prototype expert addressing instability during multi-dataset training, alleviates gradient conflicts, and enables the extraction of more accurate facial structure features. Extensive experiments on widely used benchmark datasets demonstrate that our Proto-Former achieves superior performance compared to existing state-of-the-art methods. The code is publicly available at: https://github.com/Husk021118/Proto-Former.

Authors:Fei Wang, Li Shen, Liang Ding, Chao Xue, Ye Liu, Changxing Ding
Title: Layer as Puzzle Pieces: Compressing Large Language Models through Layer Concatenation
Abstract:
Large Language Models excel at natural language processing tasks, but their massive size leads to high computational and storage demands. Recent works have sought to reduce their model size through layer-wise structured pruning. However, they tend to ignore retaining the capabilities in the pruned part. In this work, we re-examine structured pruning paradigms and uncover several key limitations: 1) notable performance degradation due to direct layer removal, 2) incompetent linear weight layer aggregation, and 3) the lack of effective post-training recovery mechanisms. To address these limitations, we propose CoMe, including a progressive layer pruning framework with a Concatenation-based Merging technology and a hierarchical distillation post-training process. Specifically, we introduce a channel sensitivity metric that utilizes activation intensity and weight norms for fine-grained channel selection. Subsequently, we employ a concatenation-based layer merging method to fuse the most critical channels across adjacent layers, enabling progressive model size reduction. Finally, we propose a hierarchical distillation protocol that leverages the correspondences between the original and pruned model layers established during pruning, thereby enabling efficient knowledge transfer. Experiments on seven benchmarks show that CoMe achieves state-of-the-art performance; when pruning 30% of LLaMA-2-7b's parameters, the pruned model retains 83% of its original average accuracy. Our code is available at https://github.com/MPI-Lab/CoMe.

Authors:Jingrui Yu, Jun Liu, Kefei Ren, Joydeep Biswas, Rurui Ye, Keqiang Wu, Chirag Majithia, Di Zeng
Title: CuSfM: CUDA-Accelerated Structure-from-Motion
Abstract:
Efficient and accurate camera pose estimation forms the foundational requirement for dense reconstruction in autonomous navigation, robotic perception, and virtual simulation systems. This paper addresses the challenge via cuSfM, a CUDA-accelerated offline Structure-from-Motion system that leverages GPU parallelization to efficiently employ computationally intensive yet highly accurate feature extractors, generating comprehensive and non-redundant data associations for precise camera pose estimation and globally consistent mapping. The system supports pose optimization, mapping, prior-map localization, and extrinsic refinement. It is designed for offline processing, where computational resources can be fully utilized to maximize accuracy. Experimental results demonstrate that cuSfM achieves significantly improved accuracy and processing speed compared to the widely used COLMAP method across various testing scenarios, while maintaining the high precision and global consistency essential for offline SfM applications. The system is released as an open-source Python wrapper implementation, PyCuSfM, available at https://github.com/nvidia-isaac/pyCuSFM, to facilitate research and applications in computer vision and robotics.

Authors:Aysan Aghazadeh, Adriana Kovashka
Title: The Face of Persuasion: Analyzing Bias and Generating Culture-Aware Ads
Abstract:
Text-to-image models are appealing for customizing visual advertisements and targeting specific populations. We investigate this potential by examining the demographic bias within ads for different ad topics, and the disparate level of persuasiveness (judged by models) of ads that are identical except for gender/race of the people portrayed. We also experiment with a technique to target ads for specific countries. The code is available at https://github.com/aysanaghazadeh/FaceOfPersuasion

Authors:Daniela Vega, Hannah V. Ceballos, Javier S. Vera, Santiago Rodriguez, Alejandra Perez, Angela Castillo, Maria Escobar, Dario Londoño, Luis A. Sarmiento, Camila I. Castro, Nadiezhda Rodriguez, Juan C. Briceño, Pablo Arbeláez
Title: CARDIUM: Congenital Anomaly Recognition with Diagnostic Images and Unified Medical records
Abstract:
Prenatal diagnosis of Congenital Heart Diseases (CHDs) holds great potential for Artificial Intelligence (AI)-driven solutions. However, collecting high-quality diagnostic data remains difficult due to the rarity of these conditions, resulting in imbalanced and low-quality datasets that hinder model performance. Moreover, no public efforts have been made to integrate multiple sources of information, such as imaging and clinical data, further limiting the ability of AI models to support and enhance clinical decision-making. To overcome these challenges, we introduce the Congenital Anomaly Recognition with Diagnostic Images and Unified Medical records (CARDIUM) dataset, the first publicly available multimodal dataset consolidating fetal ultrasound and echocardiographic images along with maternal clinical records for prenatal CHD detection. Furthermore, we propose a robust multimodal transformer architecture that incorporates a cross-attention mechanism to fuse feature representations from image and tabular data, improving CHD detection by 11% and 50% over image and tabular single-modality approaches, respectively, and achieving an F1 score of 79.8 $\pm$ 4.8% in the CARDIUM dataset. We will publicly release our dataset and code to encourage further research on this unexplored field. Our dataset and code are available at https://github.com/BCVUniandes/Cardium, and at the project website https://bcv-uniandes.github.io/CardiumPage/

Authors:Xingrui Wang, Jiang Liu, Chao Huang, Xiaodong Yu, Ze Wang, Ximeng Sun, Jialian Wu, Alan Yuille, Emad Barsoum, Zicheng Liu
Title: XModBench: Benchmarking Cross-Modal Capabilities and Consistency in Omni-Language Models
Abstract:
Omni-modal large language models (OLLMs) aim to unify audio, vision, and text understanding within a single framework. While existing benchmarks primarily evaluate general cross-modal question-answering ability, it remains unclear whether OLLMs achieve modality-invariant reasoning or exhibit modality-specific biases. We introduce XModBench, a large-scale tri-modal benchmark explicitly designed to measure cross-modal consistency. XModBench comprises 60,828 multiple-choice questions spanning five task families and systematically covers all six modality compositions in question-answer pairs, enabling fine-grained diagnosis of an OLLM's modality-invariant reasoning, modality disparity, and directional imbalance. Experiments show that even the strongest model, Gemini 2.5 Pro, (i) struggles with spatial and temporal reasoning, achieving less than 60% accuracy, (ii) reveals persistent modality disparities, with performance dropping substantially when the same semantic content is conveyed through audio rather than text, and (iii) shows systematic directional imbalance, exhibiting lower consistency when vision serves as context compared to text. These findings indicate that current OLLMs remain far from truly modality-invariant reasoning and position XModBench as a fundamental diagnostic tool for evaluating and improving cross-modal competence. All data and evaluation tools will be available at https://xingruiwang.github.io/projects/XModBench/.

Authors:Jiaxin Guo, Tongfan Guan, Wenzhen Dong, Wenzhao Zheng, Wenting Wang, Yue Wang, Yeung Yam, Yun-Hui Liu
Title: SaLon3R: Structure-aware Long-term Generalizable 3D Reconstruction from Unposed Images
Abstract:
Recent advances in 3D Gaussian Splatting (3DGS) have enabled generalizable, on-the-fly reconstruction of sequential input views. However, existing methods often predict per-pixel Gaussians and combine Gaussians from all views as the scene representation, leading to substantial redundancies and geometric inconsistencies in long-duration video sequences. To address this, we propose SaLon3R, a novel framework for Structure-aware, Long-term 3DGS Reconstruction. To our best knowledge, SaLon3R is the first online generalizable GS method capable of reconstructing over 50 views in over 10 FPS, with 50% to 90% redundancy removal. Our method introduces compact anchor primitives to eliminate redundancy through differentiable saliency-aware Gaussian quantization, coupled with a 3D Point Transformer that refines anchor attributes and saliency to resolve cross-frame geometric and photometric inconsistencies. Specifically, we first leverage a 3D reconstruction backbone to predict dense per-pixel Gaussians and a saliency map encoding regional geometric complexity. Redundant Gaussians are compressed into compact anchors by prioritizing high-complexity regions. The 3D Point Transformer then learns spatial structural priors in 3D space from training data to refine anchor attributes and saliency, enabling regionally adaptive Gaussian decoding for geometric fidelity. Without known camera parameters or test-time optimization, our approach effectively resolves artifacts and prunes the redundant 3DGS in a single feed-forward pass. Experiments on multiple datasets demonstrate our state-of-the-art performance on both novel view synthesis and depth estimation, demonstrating superior efficiency, robustness, and generalization ability for long-term generalizable 3D reconstruction. Project Page: https://wrld.github.io/SaLon3R/.

Authors:Chao Huang, Zeliang Zhang, Jiang Liu, Ximeng Sun, Jialian Wu, Xiaodong Yu, Ze Wang, Chenliang Xu, Emad Barsoum, Zicheng Liu
Title: Directional Reasoning Injection for Fine-Tuning MLLMs
Abstract:
Multimodal large language models (MLLMs) are rapidly advancing, yet their reasoning ability often lags behind that of strong text-only counterparts. Existing methods to bridge this gap rely on supervised fine-tuning over large-scale multimodal reasoning data or reinforcement learning, both of which are resource-intensive. A promising alternative is model merging, which interpolates parameters between reasoning-enhanced LLMs and multimodal variants. However, our analysis shows that naive merging is not always a "free lunch": its effectiveness varies drastically across model families, with some (e.g., LLaVA, Idefics) benefiting while others (e.g., Qwen) suffer performance degradation. To address this, we propose Directional Reasoning Injection for Fine-Tuning (DRIFT) MLLMs, a lightweight method that transfers reasoning knowledge in the gradient space, without destabilizing multimodal alignment. DRIFT precomputes a reasoning prior as the parameter-space difference between reasoning and multimodal variants, then uses it to bias gradients during multimodal fine-tuning. This approach preserves the simplicity of standard supervised fine-tuning pipelines while enabling efficient reasoning transfer. Extensive experiments on multimodal reasoning benchmarks, including MathVista and MathVerse, demonstrate that DRIFT consistently improves reasoning performance over naive merging and supervised fine-tuning, while matching or surpassing training-heavy methods at a fraction of the cost.

Authors:Junliang Ye, Shenghao Xie, Ruowen Zhao, Zhengyi Wang, Hongyu Yan, Wenqiang Zu, Lei Ma, Jun Zhu
Title: NANO3D: A Training-Free Approach for Efficient 3D Editing Without Masks
Abstract:
3D object editing is essential for interactive content creation in gaming, animation, and robotics, yet current approaches remain inefficient, inconsistent, and often fail to preserve unedited regions. Most methods rely on editing multi-view renderings followed by reconstruction, which introduces artifacts and limits practicality. To address these challenges, we propose Nano3D, a training-free framework for precise and coherent 3D object editing without masks. Nano3D integrates FlowEdit into TRELLIS to perform localized edits guided by front-view renderings, and further introduces region-aware merging strategies, Voxel/Slat-Merge, which adaptively preserve structural fidelity by ensuring consistency between edited and unedited areas. Experiments demonstrate that Nano3D achieves superior 3D consistency and visual quality compared with existing methods. Based on this framework, we construct the first large-scale 3D editing datasets Nano3D-Edit-100k, which contains over 100,000 high-quality 3D editing pairs. This work addresses long-standing challenges in both algorithm design and data availability, significantly improving the generality and reliability of 3D editing, and laying the groundwork for the development of feed-forward 3D editing models. Project Page:https://jamesyjl.github.io/Nano3D

Authors:Haiwen Diao, Mingxuan Li, Silei Wu, Linjun Dai, Xiaohua Wang, Hanming Deng, Lewei Lu, Dahua Lin, Ziwei Liu
Title: From Pixels to Words -- Towards Native Vision-Language Primitives at Scale
Abstract:
The edifice of native Vision-Language Models (VLMs) has emerged as a rising contender to typical modular VLMs, shaped by evolving model architectures and training paradigms. Yet, two lingering clouds cast shadows over its widespread exploration and promotion: (-) What fundamental constraints set native VLMs apart from modular ones, and to what extent can these barriers be overcome? (-) How to make research in native VLMs more accessible and democratized, thereby accelerating progress in the field. In this paper, we clarify these challenges and outline guiding principles for constructing native VLMs. Specifically, one native VLM primitive should: (i) effectively align pixel and word representations within a shared semantic space; (ii) seamlessly integrate the strengths of formerly separate vision and language modules; (iii) inherently embody various cross-modal properties that support unified vision-language encoding, aligning, and reasoning. Hence, we launch NEO, a novel family of native VLMs built from first principles, capable of rivaling top-tier modular counterparts across diverse real-world scenarios. With only 390M image-text examples, NEO efficiently develops visual perception from scratch while mitigating vision-language conflicts inside a dense and monolithic model crafted from our elaborate primitives. We position NEO as a cornerstone for scalable and powerful native VLMs, paired with a rich set of reusable components that foster a cost-effective and extensible ecosystem. Our code and models are publicly available at: https://github.com/EvolvingLMMs-Lab/NEO.

Authors:Nupur Kumari, Sheng-Yu Wang, Nanxuan Zhao, Yotam Nitzan, Yuheng Li, Krishna Kumar Singh, Richard Zhang, Eli Shechtman, Jun-Yan Zhu, Xun Huang
Title: Learning an Image Editing Model without Image Editing Pairs
Abstract:
Recent image editing models have achieved impressive results while following natural language editing instructions, but they rely on supervised fine-tuning with large datasets of input-target pairs. This is a critical bottleneck, as such naturally occurring pairs are hard to curate at scale. Current workarounds use synthetic training pairs that leverage the zero-shot capabilities of existing models. However, this can propagate and magnify the artifacts of the pretrained model into the final trained model. In this work, we present a new training paradigm that eliminates the need for paired data entirely. Our approach directly optimizes a few-step diffusion model by unrolling it during training and leveraging feedback from vision-language models (VLMs). For each input and editing instruction, the VLM evaluates if an edit follows the instruction and preserves unchanged content, providing direct gradients for end-to-end optimization. To ensure visual fidelity, we incorporate distribution matching loss (DMD), which constrains generated images to remain within the image manifold learned by pretrained models. We evaluate our method on standard benchmarks and include an extensive ablation study. Without any paired data, our method performs on par with various image editing diffusion models trained on extensive supervised paired data, under the few-step setting. Given the same VLM as the reward model, we also outperform RL-based techniques like Flow-GRPO.

Authors:Yuanhui Huang, Weiliang Chen, Wenzhao Zheng, Xin Tao, Pengfei Wan, Jie Zhou, Jiwen Lu
Title: Terra: Explorable Native 3D World Model with Point Latents
Abstract:
World models have garnered increasing attention for comprehensive modeling of the real world. However, most existing methods still rely on pixel-aligned representations as the basis for world evolution, neglecting the inherent 3D nature of the physical world. This could undermine the 3D consistency and diminish the modeling efficiency of world models. In this paper, we present Terra, a native 3D world model that represents and generates explorable environments in an intrinsic 3D latent space. Specifically, we propose a novel point-to-Gaussian variational autoencoder (P2G-VAE) that encodes 3D inputs into a latent point representation, which is subsequently decoded as 3D Gaussian primitives to jointly model geometry and appearance. We then introduce a sparse point flow matching network (SPFlow) for generating the latent point representation, which simultaneously denoises the positions and features of the point latents. Our Terra enables exact multi-view consistency with native 3D representation and architecture, and supports flexible rendering from any viewpoint with only a single generation process. Furthermore, Terra achieves explorable world modeling through progressive generation in the point latent space. We conduct extensive experiments on the challenging indoor scenes from ScanNet v2. Terra achieves state-of-the-art performance in both reconstruction and generation with high 3D consistency.

Authors:Shaowei Liu, Chuan Guo, Bing Zhou, Jian Wang
Title: Ponimator: Unfolding Interactive Pose for Versatile Human-human Interaction Animation
Abstract:
Close-proximity human-human interactive poses convey rich contextual information about interaction dynamics. Given such poses, humans can intuitively infer the context and anticipate possible past and future dynamics, drawing on strong priors of human behavior. Inspired by this observation, we propose Ponimator, a simple framework anchored on proximal interactive poses for versatile interaction animation. Our training data consists of close-contact two-person poses and their surrounding temporal context from motion-capture interaction datasets. Leveraging interactive pose priors, Ponimator employs two conditional diffusion models: (1) a pose animator that uses the temporal prior to generate dynamic motion sequences from interactive poses, and (2) a pose generator that applies the spatial prior to synthesize interactive poses from a single pose, text, or both when interactive poses are unavailable. Collectively, Ponimator supports diverse tasks, including image-based interaction animation, reaction animation, and text-to-interaction synthesis, facilitating the transfer of interaction knowledge from high-quality mocap data to open-world scenarios. Empirical experiments across diverse datasets and applications demonstrate the universality of the pose prior and the effectiveness and robustness of our framework.

Authors:Hengyuan Xu, Wei Cheng, Peng Xing, Yixiao Fang, Shuhan Wu, Rui Wang, Xianfang Zeng, Daxin Jiang, Gang Yu, Xingjun Ma, Yu-Gang Jiang
Title: WithAnyone: Towards Controllable and ID Consistent Image Generation
Abstract:
Identity-consistent generation has become an important focus in text-to-image research, with recent models achieving notable success in producing images aligned with a reference identity. Yet, the scarcity of large-scale paired datasets containing multiple images of the same individual forces most approaches to adopt reconstruction-based training. This reliance often leads to a failure mode we term copy-paste, where the model directly replicates the reference face rather than preserving identity across natural variations in pose, expression, or lighting. Such over-similarity undermines controllability and limits the expressive power of generation. To address these limitations, we (1) construct a large-scale paired dataset MultiID-2M, tailored for multi-person scenarios, providing diverse references for each identity; (2) introduce a benchmark that quantifies both copy-paste artifacts and the trade-off between identity fidelity and variation; and (3) propose a novel training paradigm with a contrastive identity loss that leverages paired data to balance fidelity with diversity. These contributions culminate in WithAnyone, a diffusion-based model that effectively mitigates copy-paste while preserving high identity similarity. Extensive qualitative and quantitative experiments demonstrate that WithAnyone significantly reduces copy-paste artifacts, improves controllability over pose and expression, and maintains strong perceptual quality. User studies further validate that our method achieves high identity fidelity while enabling expressive controllable generation.

Authors:Hansheng Chen, Kai Zhang, Hao Tan, Leonidas Guibas, Gordon Wetzstein, Sai Bi
Title: pi-Flow: Policy-Based Few-Step Generation via Imitation Distillation
Abstract:
Few-step diffusion or flow-based generative models typically distill a velocity-predicting teacher into a student that predicts a shortcut towards denoised data. This format mismatch has led to complex distillation procedures that often suffer from a quality-diversity trade-off. To address this, we propose policy-based flow models ($π$-Flow). $π$-Flow modifies the output layer of a student flow model to predict a network-free policy at one timestep. The policy then produces dynamic flow velocities at future substeps with negligible overhead, enabling fast and accurate ODE integration on these substeps without extra network evaluations. To match the policy's ODE trajectory to the teacher's, we introduce a novel imitation distillation approach, which matches the policy's velocity to the teacher's along the policy's trajectory using a standard $\ell_2$ flow matching loss. By simply mimicking the teacher's behavior, $π$-Flow enables stable and scalable training and avoids the quality-diversity trade-off. On ImageNet 256$^2$, it attains a 1-NFE FID of 2.85, outperforming MeanFlow of the same DiT architecture. On FLUX.1-12B and Qwen-Image-20B at 4 NFEs, $π$-Flow achieves substantially better diversity than state-of-the-art few-step methods, while maintaining teacher-level quality.

Authors:Miao Hu, Zhiwei Huang, Tai Wang, Jiangmiao Pang, Dahua Lin, Nanning Zheng, Runsen Xu
Title: ChangingGrounding: 3D Visual Grounding in Changing Scenes
Abstract:
Real-world robots localize objects from natural-language instructions while scenes around them keep changing. Yet most of the existing 3D visual grounding (3DVG) method still assumes a reconstructed and up-to-date point cloud, an assumption that forces costly re-scans and hinders deployment. We argue that 3DVG should be formulated as an active, memory-driven problem, and we introduce ChangingGrounding, the first benchmark that explicitly measures how well an agent can exploit past observations, explore only where needed, and still deliver precise 3D boxes in changing scenes. To set a strong reference point, we also propose Mem-ChangingGrounder, a zero-shot method for this task that marries cross-modal retrieval with lightweight multi-view fusion: it identifies the object type implied by the query, retrieves relevant memories to guide actions, then explores the target efficiently in the scene, falls back when previous operations are invalid, performs multi-view scanning of the target, and projects the fused evidence from multi-view scans to get accurate object bounding boxes. We evaluate different baselines on ChangingGrounding, and our Mem-ChangingGrounder achieves the highest localization accuracy while greatly reducing exploration cost. We hope this benchmark and method catalyze a shift toward practical, memory-centric 3DVG research for real-world applications. Project page: https://hm123450.github.io/CGB/ .

Authors:Shizun Wang, Zhenxiang Jiang, Xingyi Yang, Xinchao Wang
Title: C4D: 4D Made from 3D through Dual Correspondences
Abstract:
Recovering 4D from monocular video, which jointly estimates dynamic geometry and camera poses, is an inevitably challenging problem. While recent pointmap-based 3D reconstruction methods (e.g., DUSt3R) have made great progress in reconstructing static scenes, directly applying them to dynamic scenes leads to inaccurate results. This discrepancy arises because moving objects violate multi-view geometric constraints, disrupting the reconstruction. To address this, we introduce C4D, a framework that leverages temporal Correspondences to extend existing 3D reconstruction formulation to 4D. Specifically, apart from predicting pointmaps, C4D captures two types of correspondences: short-term optical flow and long-term point tracking. We train a dynamic-aware point tracker that provides additional mobility information, facilitating the estimation of motion masks to separate moving elements from the static background, thus offering more reliable guidance for dynamic scenes. Furthermore, we introduce a set of dynamic scene optimization objectives to recover per-frame 3D geometry and camera parameters. Simultaneously, the correspondences lift 2D trajectories into smooth 3D trajectories, enabling fully integrated 4D reconstruction. Experiments show that our framework achieves complete 4D recovery and demonstrates strong performance across multiple downstream tasks, including depth estimation, camera pose estimation, and point tracking. Project Page: https://littlepure2333.github.io/C4D

Authors:Guo Cheng, Danni Yang, Ziqi Huang, Jianlou Si, Chenyang Si, Ziwei Liu
Title: RealDPO: Real or Not Real, that is the Preference
Abstract:
Video generative models have recently achieved notable advancements in synthesis quality. However, generating complex motions remains a critical challenge, as existing models often struggle to produce natural, smooth, and contextually consistent movements. This gap between generated and real-world motions limits their practical applicability. To address this issue, we introduce RealDPO, a novel alignment paradigm that leverages real-world data as positive samples for preference learning, enabling more accurate motion synthesis. Unlike traditional supervised fine-tuning (SFT), which offers limited corrective feedback, RealDPO employs Direct Preference Optimization (DPO) with a tailored loss function to enhance motion realism. By contrasting real-world videos with erroneous model outputs, RealDPO enables iterative self-correction, progressively refining motion quality. To support post-training in complex motion synthesis, we propose RealAction-5K, a curated dataset of high-quality videos capturing human daily activities with rich and precise motion details. Extensive experiments demonstrate that RealDPO significantly improves video quality, text alignment, and motion realism compared to state-of-the-art models and existing preference optimization techniques.

Authors:JoungBin Lee, Jaewoo Jung, Jisang Han, Takuya Narihira, Kazumi Fukuda, Junyoung Seo, Sunghwan Hong, Yuki Mitsufuji, Seungryong Kim
Title: 3D Scene Prompting for Scene-Consistent Camera-Controllable Video Generation
Abstract:
We present 3DScenePrompt, a framework that generates the next video chunk from arbitrary-length input while enabling precise camera control and preserving scene consistency. Unlike methods conditioned on a single image or a short clip, we employ dual spatio-temporal conditioning that reformulates context-view referencing across the input video. Our approach conditions on both temporally adjacent frames for motion continuity and spatially adjacent content for scene consistency. However, when generating beyond temporal boundaries, directly using spatially adjacent frames would incorrectly preserve dynamic elements from the past. We address this by introducing a 3D scene memory that represents exclusively the static geometry extracted from the entire input video. To construct this memory, we leverage dynamic SLAM with our newly introduced dynamic masking strategy that explicitly separates static scene geometry from moving elements. The static scene representation can then be projected to any target viewpoint, providing geometrically consistent warped views that serve as strong 3D spatial prompts while allowing dynamic regions to evolve naturally from temporal context. This enables our model to maintain long-range spatial coherence and precise camera control without sacrificing computational efficiency or motion realism. Extensive experiments demonstrate that our framework significantly outperforms existing methods in scene consistency, camera controllability, and generation quality. Project page : https://cvlab-kaist.github.io/3DScenePrompt/

Authors:Guangyi Han, Wei Zhai, Yuhang Yang, Yang Cao, Zheng-Jun Zha
Title: TOUCH: Text-guided Controllable Generation of Free-Form Hand-Object Interactions
Abstract:
Hand-object interaction (HOI) is fundamental for humans to express intent. Existing HOI generation research is predominantly confined to fixed grasping patterns, where control is tied to physical priors such as force closure or generic intent instructions, even when expressed through elaborate language. Such an overly general conditioning imposes a strong inductive bias for stable grasps, thus failing to capture the diversity of daily HOI. To address these limitations, we introduce Free-Form HOI Generation, which aims to generate controllable, diverse, and physically plausible HOI conditioned on fine-grained intent, extending HOI from grasping to free-form interactions, like pushing, poking, and rotating. To support this task, we construct WildO2, an in-the-wild diverse 3D HOI dataset, which includes diverse HOI derived from internet videos. Specifically, it contains 4.4k unique interactions across 92 intents and 610 object categories, each with detailed semantic annotations. Building on this dataset, we propose TOUCH, a three-stage framework centered on a multi-level diffusion model that facilitates fine-grained semantic control to generate versatile hand poses beyond grasping priors. This process leverages explicit contact modeling for conditioning and is subsequently refined with contact consistency and physical constraints to ensure realism. Comprehensive experiments demonstrate our method's ability to generate controllable, diverse, and physically plausible hand interactions representative of daily activities. The project page is $\href{https://guangyid.github.io/hoi123touch}{here}$.

Authors:Pedro R. A. S. Bassi, Xinze Zhou, Wenxuan Li, Szymon Płotka, Jieneng Chen, Qi Chen, Zheren Zhu, Jakub Prządo, Ibrahim E. Hamacı, Sezgin Er, Yuhan Wang, Ashwin Kumar, Bjoern Menze, Jarosław B. Ćwikła, Yuyin Zhou, Akshay S. Chaudhari, Curtis P. Langlotz, Sergio Decherchi, Andrea Cavalli, Kang Wang, Yang Yang, Alan L. Yuille, Zongwei Zhou
Title: Scaling Artificial Intelligence for Multi-Tumor Early Detection with More Reports, Fewer Masks
Abstract:
Early tumor detection save lives. Each year, more than 300 million computed tomography (CT) scans are performed worldwide, offering a vast opportunity for effective cancer screening. However, detecting small or early-stage tumors on these CT scans remains challenging, even for experts. Artificial intelligence (AI) models can assist by highlighting suspicious regions, but training such models typically requires extensive tumor masks--detailed, voxel-wise outlines of tumors manually drawn by radiologists. Drawing these masks is costly, requiring years of effort and millions of dollars. In contrast, nearly every CT scan in clinical practice is already accompanied by medical reports describing the tumor's size, number, appearance, and sometimes, pathology results--information that is rich, abundant, and often underutilized for AI training. We introduce R-Super, which trains AI to segment tumors that match their descriptions in medical reports. This approach scales AI training with large collections of readily available medical reports, substantially reducing the need for manually drawn tumor masks. When trained on 101,654 reports, AI models achieved performance comparable to those trained on 723 masks. Combining reports and masks further improved sensitivity by +13% and specificity by +8%, surpassing radiologists in detecting five of the seven tumor types. Notably, R-Super enabled segmentation of tumors in the spleen, gallbladder, prostate, bladder, uterus, and esophagus, for which no public masks or AI models previously existed. This study challenges the long-held belief that large-scale, labor-intensive tumor mask creation is indispensable, establishing a scalable and accessible path toward early detection across diverse tumor types. We plan to release our trained models, code, and dataset at https://github.com/MrGiovanni/R-Super

Authors:Simone Carnemolla, Matteo Pennisi, Sarinda Samarasinghe, Giovanni Bellitto, Simone Palazzo, Daniela Giordano, Mubarak Shah, Concetto Spampinato
Title: DEXTER: Diffusion-Guided EXplanations with TExtual Reasoning for Vision Models
Abstract:
Understanding and explaining the behavior of machine learning models is essential for building transparent and trustworthy AI systems. We introduce DEXTER, a data-free framework that employs diffusion models and large language models to generate global, textual explanations of visual classifiers. DEXTER operates by optimizing text prompts to synthesize class-conditional images that strongly activate a target classifier. These synthetic samples are then used to elicit detailed natural language reports that describe class-specific decision patterns and biases. Unlike prior work, DEXTER enables natural language explanation about a classifier's decision process without access to training data or ground-truth labels. We demonstrate DEXTER's flexibility across three tasks-activation maximization, slice discovery and debiasing, and bias explanation-each illustrating its ability to uncover the internal mechanisms of visual classifiers. Quantitative and qualitative evaluations, including a user study, show that DEXTER produces accurate, interpretable outputs. Experiments on ImageNet, Waterbirds, CelebA, and FairFaces confirm that DEXTER outperforms existing approaches in global model explanation and class-level bias reporting. Code is available at https://github.com/perceivelab/dexter.

Authors:Caleb Robinson, Kimberly T. Goetz, Christin B. Khan, Meredith Sackett, Kathleen Leonard, Rahul Dodhia, Juan M. Lavista Ferres
Title: Where are the Whales: A Human-in-the-loop Detection Method for Identifying Whales in High-resolution Satellite Imagery
Abstract:
Effective monitoring of whale populations is critical for conservation, but traditional survey methods are expensive and difficult to scale. While prior work has shown that whales can be identified in very high-resolution (VHR) satellite imagery, large-scale automated detection remains challenging due to a lack of annotated imagery, variability in image quality and environmental conditions, and the cost of building robust machine learning pipelines over massive remote sensing archives. We present a semi-automated approach for surfacing possible whale detections in VHR imagery using a statistical anomaly detection method that flags spatial outliers, i.e. "interesting points". We pair this detector with a web-based labeling interface designed to enable experts to quickly annotate the interesting points. We evaluate our system on three benchmark scenes with known whale annotations and achieve recalls of 90.3% to 96.4%, while reducing the area requiring expert inspection by up to 99.8% -- from over 1,000 sq km to less than 2 sq km in some cases. Our method does not rely on labeled training data and offers a scalable first step toward future machine-assisted marine mammal monitoring from space. We have open sourced this pipeline at https://github.com/microsoft/whales.

Authors:Weikang Yu, Vincent Nwazelibe, Xianping Ma, Xiaokang Zhang, Richard Gloaguen, Xiao Xiang Zhu, Pedram Ghamisi
Title: EuroMineNet: A Multitemporal Sentinel-2 Benchmark for Spatiotemporal Mining Footprint Analysis in the European Union (2015-2024)
Abstract:
Mining activities are essential for industrial and economic development, but remain a leading source of environmental degradation, contributing to deforestation, soil erosion, and water contamination. Sustainable resource management and environmental governance require consistent, long-term monitoring of mining-induced land surface changes, yet existing datasets are often limited in temporal depth or geographic scope. To address this gap, we present EuroMineNet, the first comprehensive multitemporal benchmark for mining footprint mapping and monitoring based on Sentinel-2 multispectral imagery. Spanning 133 mining sites across the European Union, EuroMineNet provides annual observations and expert-verified annotations from 2015 to 2024, enabling GeoAI-based models to analyze environmental dynamics at a continental scale. It supports two sustainability-driven tasks: (1) multitemporal mining footprint mapping for consistent annual land-use delineation, evaluated with a novel Change-Aware Temporal IoU (CA-TIoU) metric, and (2) cross-temporal change detection to capture both gradual and abrupt surface transformations. Benchmarking 20 state-of-the-art deep learning models reveals that while GeoAI methods effectively identify long-term environmental changes, challenges remain in detecting short-term dynamics critical for timely mitigation. By advancing temporally consistent and explainable mining monitoring, EuroMineNet contributes to sustainable land-use management, environmental resilience, and the broader goal of applying GeoAI for social and environmental good. We release the codes and datasets by aligning with FAIR and the open science paradigm at https://github.com/EricYu97/EuroMineNet.

Authors:Ming Gui, Johannes Schusterbauer, Timy Phan, Felix Krause, Josh Susskind, Miguel Angel Bautista, Björn Ommer
Title: Adapting Self-Supervised Representations as a Latent Space for Efficient Generation
Abstract:
We introduce Representation Tokenizer (RepTok), a generative modeling framework that represents an image using a single continuous latent token obtained from self-supervised vision transformers. Building on a pre-trained SSL encoder, we fine-tune only the semantic token embedding and pair it with a generative decoder trained jointly using a standard flow matching objective. This adaptation enriches the token with low-level, reconstruction-relevant details, enabling faithful image reconstruction. To preserve the favorable geometry of the original SSL space, we add a cosine-similarity loss that regularizes the adapted token, ensuring the latent space remains smooth and suitable for generation. Our single-token formulation resolves spatial redundancies of 2D latent spaces and significantly reduces training costs. Despite its simplicity and efficiency, RepTok achieves competitive results on class-conditional ImageNet generation and naturally extends to text-to-image synthesis, reaching competitive zero-shot performance on MS-COCO under extremely limited training budgets. Our findings highlight the potential of fine-tuned SSL representations as compact and effective latent spaces for efficient generative modeling.

Authors:Yuyang Hong, Jiaqi Gu, Qi Yang, Lubin Fan, Yue Wu, Ying Wang, Kun Ding, Shiming Xiang, Jieping Ye
Title: Knowledge-based Visual Question Answer with Multimodal Processing, Retrieval and Filtering
Abstract:
Knowledge-based visual question answering (KB-VQA) requires visual language models (VLMs) to integrate visual understanding with external knowledge retrieval. Although retrieval-augmented generation (RAG) achieves significant advances in this task by combining knowledge-base querying, it still struggles with the quality of multimodal queries and the relevance of retrieved results. To overcome these challenges, we propose a novel three-stage method, termed Wiki-PRF, including Processing, Retrieval and Filtering stages. The processing stage dynamically invokes visual tools to extract precise multimodal information for retrieval. The retrieval stage integrates visual and text features to achieve multimodal knowledge retrieval. The filtering stage performs relevance filtering and concentration on retrieval results. To this end, we introduce a visual language model trained with answer accuracy and format consistency as reward signals via a reinforcement learning manner. This enhances the model's reasoning, tool invocation for accurate queries, and filtering of irrelevant content. Experiments on benchmark datasets (E-VQA and InfoSeek) show significant improvements~(36.0 and 42.8) in answer quality, achieving state-of-the-art performance. Code is available at https://github.com/cqu-student/Wiki-PRF

Authors:Zhifei Chen, Tianshuo Xu, Leyi Wu, Luozhou Wang, Dongyu Yan, Zihan You, Wenting Luo, Guo Zhang, Yingcong Chen
Title: STANCE: Motion Coherent Video Generation Via Sparse-to-Dense Anchored Encoding
Abstract:
Video generation has recently made striking visual progress, but maintaining coherent object motion and interactions remains difficult. We trace two practical bottlenecks: (i) human-provided motion hints (e.g., small 2D maps) often collapse to too few effective tokens after encoding, weakening guidance; and (ii) optimizing for appearance and motion in a single head can favor texture over temporal consistency. We present STANCE, an image-to-video framework that addresses both issues with two simple components. First, we introduce Instance Cues -- a pixel-aligned control signal that turns sparse, user-editable hints into a dense 2.5D (camera-relative) motion field by averaging per-instance flow and augmenting with monocular depth over the instance mask. This reduces depth ambiguity compared to 2D arrow inputs while remaining easy to use. Second, we preserve the salience of these cues in token space with Dense RoPE, which tags a small set of motion tokens (anchored on the first frame) with spatial-addressable rotary embeddings. Paired with joint RGB \(+\) auxiliary-map prediction (segmentation or depth), our model anchors structure while RGB handles appearance, stabilizing optimization and improving temporal coherence without requiring per-frame trajectory scripts.

Authors:Matan Rusanovsky, Shimon Malnick, Shai Avidan
Title: Talking Points: Describing and Localizing Pixels
Abstract:
Vision-language models have achieved remarkable success in cross-modal understanding. Yet, these models remain limited to object-level or region-level grounding, lacking the capability for pixel-precise keypoint comprehension through natural language. We introduce a novel framework for pixel level grounding. The framework consists of two complementary components: a Point Descriptor that generates rich, contextual descriptions of individual keypoints, and a Point Localizer that regresses precise pixel coordinates from these descriptions. Unlike prior work that relies on templated prompts or keypoint names, our approach produces free-form, coarse-to-fine descriptions that situate keypoints within their visual context. Since there is no available dataset to train such a system, we introduce LlamaPointInPart, a carefully curated dataset of 20K+ image-keypoint-description triplets synthesized from multiple vision-language models, capturing multi-scale information from scene-level context to visual features around the keypoint. For cross-category generalization, we optimize the Point Descriptor on AP-10K via GRPO, using the frozen Point Localizer as a reward model to produce descriptions that maximize localization accuracy. To evaluate our results we establish a new evaluation protocol. Instead of comparing the text description produced by our method to the ground truth, we use the localizer to determine how close is the predicted point generated to the ground truth point. Experiments demonstrate superior performance compared to baseline models on LlamaPointInPart.The bidirectional nature of our framework should enable future applications in both keypoint-guided image understanding and language-guided precise localization. Our code and dataset are publicly available at https://github.com/matanr/Talking_Points.

Authors:Yulin Zhang, Cheng Shi, Yang Wang, Sibei Yang
Title: Eyes Wide Open: Ego Proactive Video-LLM for Streaming Video
Abstract:
Envision an AI capable of functioning in human-like settings, moving beyond mere observation to actively understand, anticipate, and proactively respond to unfolding events. Towards this vision, we focus on the innovative task where, given ego-streaming video input, an assistant proactively answers diverse, evolving questions at the opportune moment, while maintaining synchronized perception and reasoning. This task embodies three key properties: (1) Proactive Coherence, (2) Just-in-Time Responsiveness, and (3) Synchronized Efficiency. To evaluate and address these properties, we first introduce ESTP-Bench (Ego Streaming Proactive Benchmark) alongside the ESTP-F1 metric-a novel framework designed for their rigorous assessment. Secondly, we propose a comprehensive technical pipeline to enable models to tackle this challenging task. This pipeline comprises: (1) a data engine, (2) a multi-stage training strategy, and (3) a proactive dynamic compression technique. Our proposed model effectively addresses these critical properties while outperforming multiple baselines across diverse online and offline benchmarks. Project Page:https://zhangyl4.github.io/publications/eyes-wide-open/

Authors:Aleksis Pirinen, Delia Fano Yela, Smita Chakraborty, Erik Källman
Title: Grazing Detection using Deep Learning and Sentinel-2 Time Series Data
Abstract:
Grazing shapes both agricultural production and biodiversity, yet scalable monitoring of where grazing occurs remains limited. We study seasonal grazing detection from Sentinel-2 L2A time series: for each polygon-defined field boundary, April-October imagery is used for binary prediction (grazed / not grazed). We train an ensemble of CNN-LSTM models on multi-temporal reflectance features, and achieve an average F1 score of 77 percent across five validation splits, with 90 percent recall on grazed pastures. Operationally, if inspectors can visit at most 4 percent of sites annually, prioritising fields predicted by our model as non-grazed yields 17.2 times more confirmed non-grazing sites than random inspection. These results indicate that coarse-resolution, freely available satellite data can reliably steer inspection resources for conservation-aligned land-use compliance. Code and models have been made publicly available.

Authors:Thomas Katraouras, Dimitrios Rafailidis
Title: Pruning Overparameterized Multi-Task Networks for Degraded Web Image Restoration
Abstract:
Image quality is a critical factor in delivering visually appealing content on web platforms. However, images often suffer from degradation due to lossy operations applied by online social networks (OSNs), negatively affecting user experience. Image restoration is the process of recovering a clean high-quality image from a given degraded input. Recently, multi-task (all-in-one) image restoration models have gained significant attention, due to their ability to simultaneously handle different types of image degradations. However, these models often come with an excessively high number of trainable parameters, making them computationally inefficient. In this paper, we propose a strategy for compressing multi-task image restoration models. We aim to discover highly sparse subnetworks within overparameterized deep models that can match or even surpass the performance of their dense counterparts. The proposed model, namely MIR-L, utilizes an iterative pruning strategy that removes low-magnitude weights across multiple rounds, while resetting the remaining weights to their original initialization. This iterative process is important for the multi-task image restoration model's optimization, effectively uncovering "winning tickets" that maintain or exceed state-of-the-art performance at high sparsity levels. Experimental evaluation on benchmark datasets for the deraining, dehazing, and denoising tasks shows that MIR-L retains only 10% of the trainable parameters while maintaining high image restoration performance. Our code, datasets and pre-trained models are made publicly available at https://github.com/Thomkat/MIR-L.

Authors:Sven Jacob, Weijia Shao, Gjergji Kasneci
Title: Structured Universal Adversarial Attacks on Object Detection for Video Sequences
Abstract:
Video-based object detection plays a vital role in safety-critical applications. While deep learning-based object detectors have achieved impressive performance, they remain vulnerable to adversarial attacks, particularly those involving universal perturbations. In this work, we propose a minimally distorted universal adversarial attack tailored for video object detection, which leverages nuclear norm regularization to promote structured perturbations concentrated in the background. To optimize this formulation efficiently, we employ an adaptive, optimistic exponentiated gradient method that enhances both scalability and convergence. Our results demonstrate that the proposed attack outperforms both low-rank projected gradient descent and Frank-Wolfe based attacks in effectiveness while maintaining high stealthiness. All code and data are publicly available at https://github.com/jsve96/AO-Exp-Attack.

Authors:Ho Yin Au, Jie Chen, Junkun Jiang, Jingyu Xiang
Title: Deep Compositional Phase Diffusion for Long Motion Sequence Generation
Abstract:
Recent research on motion generation has shown significant progress in generating semantically aligned motion with singular semantics. However, when employing these models to create composite sequences containing multiple semantically generated motion clips, they often struggle to preserve the continuity of motion dynamics at the transition boundaries between clips, resulting in awkward transitions and abrupt artifacts. To address these challenges, we present Compositional Phase Diffusion, which leverages the Semantic Phase Diffusion Module (SPDM) and Transitional Phase Diffusion Module (TPDM) to progressively incorporate semantic guidance and phase details from adjacent motion clips into the diffusion process. Specifically, SPDM and TPDM operate within the latent motion frequency domain established by the pre-trained Action-Centric Motion Phase Autoencoder (ACT-PAE). This allows them to learn semantically important and transition-aware phase information from variable-length motion clips during training. Experimental results demonstrate the competitive performance of our proposed framework in generating compositional motion sequences that align semantically with the input conditions, while preserving phase transitional continuity between preceding and succeeding motion clips. Additionally, motion inbetweening task is made possible by keeping the phase parameter of the input motion sequences fixed throughout the diffusion process, showcasing the potential for extending the proposed framework to accommodate various application scenarios. Codes are available at https://github.com/asdryau/TransPhase.

Authors:Chao Tu, Kun Huang, Jie Zhang, Qianjin Feng, Yu Zhang, Zhenyuan Ning
Title: DCMIL: A Progressive Representation Learning Model of Whole Slide Images for Cancer Prognosis Analysis
Abstract:
The burgeoning discipline of computational pathology shows promise in harnessing whole slide images (WSIs) to quantify morphological heterogeneity and develop objective prognostic modes for human cancers. However, progress is impeded by the computational bottleneck of gigapixel-size inputs and the scarcity of dense manual annotations. Current methods often overlook fine-grained information across multi-magnification WSIs and variations in tumor microenvironments. Here, we propose an easy-to-hard progressive representation learning model, termed dual-curriculum contrastive multi-instance learning (DCMIL), to efficiently process WSIs for cancer prognosis. The model does not rely on dense annotations and enables the direct transformation of gigapixel-size WSIs into outcome predictions. Extensive experiments on twelve cancer types (5,954 patients, 12.54 million tiles) demonstrate that DCMIL outperforms standard WSI-based prognostic models. Additionally, DCMIL identifies fine-grained prognosis-salient regions, provides robust instance uncertainty estimation, and captures morphological differences between normal and tumor tissues, with the potential to generate new biological insights. All codes have been made publicly accessible at https://github.com/tuuuc/DCMIL.

Authors:Han Qiu, Peng Gao, Lewei Lu, Xiaoqin Zhang, Ling Shao, Shijian Lu
Title: Spatial Preference Rewarding for MLLMs Spatial Understanding
Abstract:
Multimodal large language models~(MLLMs) have demonstrated promising spatial understanding capabilities, such as referencing and grounding object descriptions. Despite their successes, MLLMs still fall short in fine-grained spatial perception abilities, such as generating detailed region descriptions or accurately localizing objects. Additionally, they often fail to respond to the user's requirements for desired fine-grained spatial understanding. This issue might arise because existing approaches primarily focus on tuning MLLMs to model pre-annotated instruction data to inject spatial knowledge, without direct supervision of MLLMs' actual responses. We address this issue by SPR, a Spatial Preference Rewarding~(SPR) approach that enhances MLLMs' spatial capabilities by rewarding MLLMs' detailed responses with precise object localization over vague or inaccurate responses. With randomly selected image regions and region descriptions from MLLMs, SPR introduces semantic and localization scores to comprehensively evaluate the text quality and localization quality in MLLM-generated descriptions. We also refine the MLLM descriptions with better localization accuracy and pair the best-scored refinement with the initial descriptions of the lowest score for direct preference optimization, thereby enhancing fine-grained alignment with visual input. Extensive experiments over standard referring and grounding benchmarks show that SPR improves MLLM spatial understanding capabilities effectively with minimal overhead in training. Data and code will be released at https://github.com/hanqiu-hq/SPR

Authors:Kyungryul Back, Seongbeom Park, Milim Kim, Mincheol Kwon, SangHyeok Lee, Hyunyoung Lee, Junhee Cho, Seunghyun Park, Jinkyu Kim
Title: Watermarking for Factuality: Guiding Vision-Language Models Toward Truth via Tri-layer Contrastive Decoding
Abstract:
Large Vision-Language Models (LVLMs) have recently shown promising results on various multimodal tasks, even achieving human-comparable performance in certain cases. Nevertheless, LVLMs remain prone to hallucinations -- they often rely heavily on a single modality or memorize training data without properly grounding their outputs. To address this, we propose a training-free, tri-layer contrastive decoding with watermarking, which proceeds in three steps: (1) select a mature layer and an amateur layer among the decoding layers, (2) identify a pivot layer using a watermark-related question to assess whether the layer is visually well-grounded, and (3) apply tri-layer contrastive decoding to generate the final output. Experiments on public benchmarks such as POPE, MME and AMBER demonstrate that our method achieves state-of-the-art performance in reducing hallucinations in LVLMs and generates more visually grounded responses.

Authors:Tingman Yan, Tao Liu, Xilian Yang, Qunfei Zhao, Zeyang Xia
Title: MatchAttention: Matching the Relative Positions for High-Resolution Cross-View Matching
Abstract:
Cross-view matching is fundamentally achieved through cross-attention mechanisms. However, matching of high-resolution images remains challenging due to the quadratic complexity and lack of explicit matching constraints in the existing cross-attention. This paper proposes an attention mechanism, MatchAttention, that dynamically matches relative positions. The relative position determines the attention sampling center of the key-value pairs given a query. Continuous and differentiable sliding-window attention sampling is achieved by the proposed BilinearSoftmax. The relative positions are iteratively updated through residual connections across layers by embedding them into the feature channels. Since the relative position is exactly the learning target for cross-view matching, an efficient hierarchical cross-view decoder, MatchDecoder, is designed with MatchAttention as its core component. To handle cross-view occlusions, gated cross-MatchAttention and a consistency-constrained loss are proposed. These two components collectively mitigate the impact of occlusions in both forward and backward passes, allowing the model to focus more on learning matching relationships. When applied to stereo matching, MatchStereo-B ranked 1st in average error on the public Middlebury benchmark and requires only 29ms for KITTI-resolution inference. MatchStereo-T can process 4K UHD images in 0.1 seconds using only 3GB of GPU memory. The proposed models also achieve state-of-the-art performance on KITTI 2012, KITTI 2015, ETH3D, and Spring flow datasets. The combination of high accuracy and low computational complexity makes real-time, high-resolution, and high-accuracy cross-view matching possible. Code is available at https://github.com/TingmanYan/MatchAttention.

Authors:Liao Shen, Wentao Jiang, Yiran Zhu, Tiezheng Ge, Zhiguo Cao, Bo Zheng
Title: Identity-Preserving Image-to-Video Generation via Reward-Guided Optimization
Abstract:
Recent advances in image-to-video (I2V) generation have achieved remarkable progress in synthesizing high-quality, temporally coherent videos from static images. Among all the applications of I2V, human-centric video generation includes a large portion. However, existing I2V models encounter difficulties in maintaining identity consistency between the input human image and the generated video, especially when the person in the video exhibits significant expression changes and movements. This issue becomes critical when the human face occupies merely a small fraction of the image. Since humans are highly sensitive to identity variations, this poses a critical yet under-explored challenge in I2V generation. In this paper, we propose Identity-Preserving Reward-guided Optimization (IPRO), a novel video diffusion framework based on reinforcement learning to enhance identity preservation. Instead of introducing auxiliary modules or altering model architectures, our approach introduces a direct and effective tuning algorithm that optimizes diffusion models using a face identity scorer. To improve performance and accelerate convergence, our method backpropagates the reward signal through the last steps of the sampling chain, enabling richer gradient feedback. We also propose a novel facial scoring mechanism that treats faces in ground-truth videos as facial feature pools, providing multi-angle facial information to enhance generalization. A KL-divergence regularization is further incorporated to stabilize training and prevent overfitting to the reward signal. Extensive experiments on Wan 2.2 I2V model and our in-house I2V model demonstrate the effectiveness of our method. Our project and code are available at \href{https://ipro-alimama.github.io/}{https://ipro-alimama.github.io/}.

Authors:Arnaud Judge, Nicolas Duchateau, Thierry Judge, Roman A. Sandler, Joseph Z. Sokol, Christian Desrosiers, Olivier Bernard, Pierre-Marc Jodoin
Title: Reinforcement Learning for Unsupervised Domain Adaptation in Spatio-Temporal Echocardiography Segmentation
Abstract:
Domain adaptation methods aim to bridge the gap between datasets by enabling knowledge transfer across domains, reducing the need for additional expert annotations. However, many approaches struggle with reliability in the target domain, an issue particularly critical in medical image segmentation, where accuracy and anatomical validity are essential. This challenge is further exacerbated in spatio-temporal data, where the lack of temporal consistency can significantly degrade segmentation quality, and particularly in echocardiography, where the presence of artifacts and noise can further hinder segmentation performance. To address these issues, we present RL4Seg3D, an unsupervised domain adaptation framework for 2D + time echocardiography segmentation. RL4Seg3D integrates novel reward functions and a fusion scheme to enhance key landmark precision in its segmentations while processing full-sized input videos. By leveraging reinforcement learning for image segmentation, our approach improves accuracy, anatomical validity, and temporal consistency while also providing, as a beneficial side effect, a robust uncertainty estimator, which can be used at test time to further enhance segmentation performance. We demonstrate the effectiveness of our framework on over 30,000 echocardiographic videos, showing that it outperforms standard domain adaptation techniques without the need for any labels on the target domain. Code is available at https://github.com/arnaudjudge/RL4Seg3D.

Authors:Soumyya Kanti Datta, Tanvi Ranga, Chengzhe Sun, Siwei Lyu
Title: PIA: Deepfake Detection Using Phoneme-Temporal and Identity-Dynamic Analysis
Abstract:
The rise of manipulated media has made deepfakes a particularly insidious threat, involving various generative manipulations such as lip-sync modifications, face-swaps, and avatar-driven facial synthesis. Conventional detection methods, which predominantly depend on manually designed phoneme-viseme alignment thresholds, fundamental frame-level consistency checks, or a unimodal detection strategy, inadequately identify modern-day deepfakes generated by advanced generative models such as GANs, diffusion models, and neural rendering techniques. These advanced techniques generate nearly perfect individual frames yet inadvertently create minor temporal discrepancies frequently overlooked by traditional detectors. We present a novel multimodal audio-visual framework, Phoneme-Temporal and Identity-Dynamic Analysis(PIA), incorporating language, dynamic face motion, and facial identification cues to address these limitations. We utilize phoneme sequences, lip geometry data, and advanced facial identity embeddings. This integrated method significantly improves the detection of subtle deepfake alterations by identifying inconsistencies across multiple complementary modalities. Code is available at https://github.com/skrantidatta/PIA

Authors:Hongsong Wang, Renxi Cheng, Yang Zhang, Chaolei Han, Jie Gui
Title: LOTA: Bit-Planes Guided AI-Generated Image Detection
Abstract:
The rapid advancement of GAN and Diffusion models makes it more difficult to distinguish AI-generated images from real ones. Recent studies often use image-based reconstruction errors as an important feature for determining whether an image is AI-generated. However, these approaches typically incur high computational costs and also fail to capture intrinsic noisy features present in the raw images. To solve these problems, we innovatively refine error extraction by using bit-plane-based image processing, as lower bit planes indeed represent noise patterns in images. We introduce an effective bit-planes guided noisy image generation and exploit various image normalization strategies, including scaling and thresholding. Then, to amplify the noise signal for easier AI-generated image detection, we design a maximum gradient patch selection that applies multi-directional gradients to compute the noise score and selects the region with the highest score. Finally, we propose a lightweight and effective classification head and explore two different structures: noise-based classifier and noise-guided classifier. Extensive experiments on the GenImage benchmark demonstrate the outstanding performance of our method, which achieves an average accuracy of \textbf{98.9\%} (\textbf{11.9}\%~$\uparrow$) and shows excellent cross-generator generalization capability. Particularly, our method achieves an accuracy of over 98.2\% from GAN to Diffusion and over 99.2\% from Diffusion to GAN. Moreover, it performs error extraction at the millisecond level, nearly a hundred times faster than existing methods. The code is at https://github.com/hongsong-wang/LOTA.

Authors:Yuancheng Xu, Wenqi Xian, Li Ma, Julien Philip, Ahmet Levent Taşel, Yiwei Zhao, Ryan Burgert, Mingming He, Oliver Hermann, Oliver Pilarski, Rahul Garg, Paul Debevec, Ning Yu
Title: Virtually Being: Customizing Camera-Controllable Video Diffusion Models with Multi-View Performance Captures
Abstract:
We introduce a framework that enables both multi-view character consistency and 3D camera control in video diffusion models through a novel customization data pipeline. We train the character consistency component with recorded volumetric capture performances re-rendered with diverse camera trajectories via 4D Gaussian Splatting (4DGS), lighting variability obtained with a video relighting model. We fine-tune state-of-the-art open-source video diffusion models on this data to provide strong multi-view identity preservation, precise camera control, and lighting adaptability. Our framework also supports core capabilities for virtual production, including multi-subject generation using two approaches: joint training and noise blending, the latter enabling efficient composition of independently customized models at inference time; it also achieves scene and real-life video customization as well as control over motion and spatial layout during customization. Extensive experiments show improved video quality, higher personalization accuracy, and enhanced camera control and lighting adaptability, advancing the integration of video generation into virtual production. Our project page is available at: https://eyeline-labs.github.io/Virtually-Being.

Authors:Avihai Naaman, Ron Shapira Weber, Oren Freifeld
Title: Synchronization of Multiple Videos
Abstract:
Synchronizing videos captured simultaneously from multiple cameras in the same scene is often easy and typically requires only simple time shifts. However, synchronizing videos from different scenes or, more recently, generative AI videos, poses a far more complex challenge due to diverse subjects, backgrounds, and nonlinear temporal misalignment. We propose Temporal Prototype Learning (TPL), a prototype-based framework that constructs a shared, compact 1D representation from high-dimensional embeddings extracted by any of various pretrained models. TPL robustly aligns videos by learning a unified prototype sequence that anchors key action phases, thereby avoiding exhaustive pairwise matching. Our experiments show that TPL improves synchronization accuracy, efficiency, and robustness across diverse datasets, including fine-grained frame retrieval and phase classification tasks. Importantly, TPL is the first approach to mitigate synchronization issues in multiple generative AI videos depicting the same action. Our code and a new multiple video synchronization dataset are available at https://bgu-cs-vil.github.io/TPL/

Authors:Xiaoqian Shen, Wenxuan Zhang, Jun Chen, Mohamed Elhoseiny
Title: Vgent: Graph-based Retrieval-Reasoning-Augmented Generation For Long Video Understanding
Abstract:
Understanding and reasoning over long videos pose significant challenges for large video language models (LVLMs) due to the difficulty in processing intensive video tokens beyond context window and retaining long-term sequential information. Retrieval-Augmented Generation (RAG) has demonstrated effectiveness in processing long context for Large Language Models (LLMs); however, applying RAG to long video faces challenges such as disrupted temporal dependencies and inclusion of irrelevant information that can hinder accurate reasoning. To address these limitations, we propose Vgent, a novel graph-based retrieval-reasoning-augmented generation framework to enhance LVLMs for long video understanding. Our approach introduces two key innovations: (i) It represents videos by structured graphs with semantic relationships across video clips preserved to improve retrieval effectiveness. (ii) It introduces an intermediate reasoning step to mitigate the reasoning limitation of LVLMs, which leverages structured verification to reduce retrieval noise and facilitate the explicit aggregation of relevant information across clips, resulting in more accurate and context-aware responses. We comprehensively evaluate our framework with various open-source LVLMs on three long-video understanding benchmarks. Our approach yielded an overall performance improvement of $3.0\%\sim 5.4\%$ over base models on MLVU, and outperformed state-of-the-art video RAG methods by $8.6\%$. Our code is publicly available at https://xiaoqian-shen.github.io/Vgent.

Authors:Zixi Wang, Yushe Cao, Yubo Huang, Jinzhu Wei, Jingzehua Xu, Shuai Zhang, Xin Lai
Title: Self-Training with Dynamic Weighting for Robust Gradual Domain Adaptation
Abstract:
In this paper, we propose a new method called Self-Training with Dynamic Weighting (STDW), which aims to enhance robustness in Gradual Domain Adaptation (GDA) by addressing the challenge of smooth knowledge migration from the source to the target domain. Traditional GDA methods mitigate domain shift through intermediate domains and self-training but often suffer from inefficient knowledge migration or incomplete intermediate data. Our approach introduces a dynamic weighting mechanism that adaptively balances the loss contributions of the source and target domains during training. Specifically, we design an optimization framework governed by a time-varying hyperparameter $\varrho$ (progressing from 0 to 1), which controls the strength of domain-specific learning and ensures stable adaptation. The method leverages self-training to generate pseudo-labels and optimizes a weighted objective function for iterative model updates, maintaining robustness across intermediate domains. Experiments on rotated MNIST, color-shifted MNIST, portrait datasets, and the Cover Type dataset demonstrate that STDW outperforms existing baselines. Ablation studies further validate the critical role of $\varrho$'s dynamic scheduling in achieving progressive adaptation, confirming its effectiveness in reducing domain bias and improving generalization. This work provides both theoretical insights and a practical framework for robust gradual domain adaptation, with potential applications in dynamic real-world scenarios. The code is available at https://github.com/Dramwig/STDW.

Authors:Sihui Ji, Xi Chen, Xin Tao, Pengfei Wan, Hengshuang Zhao
Title: PhysMaster: Mastering Physical Representation for Video Generation via Reinforcement Learning
Abstract:
Video generation models nowadays are capable of generating visually realistic videos, but often fail to adhere to physical laws, limiting their ability to generate physically plausible videos and serve as ''world models''. To address this issue, we propose PhysMaster, which captures physical knowledge as a representation for guiding video generation models to enhance their physics-awareness. Specifically, PhysMaster is based on the image-to-video task where the model is expected to predict physically plausible dynamics from the input image. Since the input image provides physical priors like relative positions and potential interactions of objects in the scenario, we devise PhysEncoder to encode physical information from it as an extra condition to inject physical knowledge into the video generation process. The lack of proper supervision on the model's physical performance beyond mere appearance motivates PhysEncoder to apply reinforcement learning with human feedback to physical representation learning, which leverages feedback from generation models to optimize physical representations with Direct Preference Optimization (DPO) in an end-to-end manner. PhysMaster provides a feasible solution for improving physics-awareness of PhysEncoder and thus of video generation, proving its ability on a simple proxy task and generalizability to wide-ranging physical scenarios. This implies that our PhysMaster, which unifies solutions for various physical processes via representation learning in the reinforcement learning paradigm, can act as a generic and plug-in solution for physics-aware video generation and broader applications.

Authors:Xinhang Liu, Yuxi Xiao, Donny Y. Chen, Jiashi Feng, Yu-Wing Tai, Chi-Keung Tang, Bingyi Kang
Title: Trace Anything: Representing Any Video in 4D via Trajectory Fields
Abstract:
Effective spatio-temporal representation is fundamental to modeling, understanding, and predicting dynamics in videos. The atomic unit of a video, the pixel, traces a continuous 3D trajectory over time, serving as the primitive element of dynamics. Based on this principle, we propose representing any video as a Trajectory Field: a dense mapping that assigns a continuous 3D trajectory function of time to each pixel in every frame. With this representation, we introduce Trace Anything, a neural network that predicts the entire trajectory field in a single feed-forward pass. Specifically, for each pixel in each frame, our model predicts a set of control points that parameterizes a trajectory (i.e., a B-spline), yielding its 3D position at arbitrary query time instants. We trained the Trace Anything model on large-scale 4D data, including data from our new platform, and our experiments demonstrate that: (i) Trace Anything achieves state-of-the-art performance on our new benchmark for trajectory field estimation and performs competitively on established point-tracking benchmarks; (ii) it offers significant efficiency gains thanks to its one-pass paradigm, without requiring iterative optimization or auxiliary estimators; and (iii) it exhibits emergent abilities, including goal-conditioned manipulation, motion forecasting, and spatio-temporal fusion. Project page: https://trace-anything.github.io/.

Authors:Nir Goren, Oren Katzir, Abhinav Nakarmi, Eyal Ronen, Mahmood Sharif, Or Patashnik
Title: NoisePrints: Distortion-Free Watermarks for Authorship in Private Diffusion Models
Abstract:
With the rapid adoption of diffusion models for visual content generation, proving authorship and protecting copyright have become critical. This challenge is particularly important when model owners keep their models private and may be unwilling or unable to handle authorship issues, making third-party verification essential. A natural solution is to embed watermarks for later verification. However, existing methods require access to model weights and rely on computationally heavy procedures, rendering them impractical and non-scalable. To address these challenges, we propose , a lightweight watermarking scheme that utilizes the random seed used to initialize the diffusion process as a proof of authorship without modifying the generation process. Our key observation is that the initial noise derived from a seed is highly correlated with the generated visual content. By incorporating a hash function into the noise sampling process, we further ensure that recovering a valid seed from the content is infeasible. We also show that sampling an alternative seed that passes verification is infeasible, and demonstrate the robustness of our method under various manipulations. Finally, we show how to use cryptographic zero-knowledge proofs to prove ownership without revealing the seed. By keeping the seed secret, we increase the difficulty of watermark removal. In our experiments, we validate NoisePrints on multiple state-of-the-art diffusion models for images and videos, demonstrating efficient verification using only the seed and output, without requiring access to model weights.

Authors:Xinyi Chen, Yilun Chen, Yanwei Fu, Ning Gao, Jiaya Jia, Weiyang Jin, Hao Li, Yao Mu, Jiangmiao Pang, Yu Qiao, Yang Tian, Bin Wang, Bolun Wang, Fangjing Wang, Hanqing Wang, Tai Wang, Ziqin Wang, Xueyuan Wei, Chao Wu, Shuai Yang, Jinhui Ye, Junqiu Yu, Jia Zeng, Jingjing Zhang, Jinyu Zhang, Shi Zhang, Feng Zheng, Bowen Zhou, Yangkun Zhu
Title: InternVLA-M1: A Spatially Guided Vision-Language-Action Framework for Generalist Robot Policy
Abstract:
We introduce InternVLA-M1, a unified framework for spatial grounding and robot control that advances instruction-following robots toward scalable, general-purpose intelligence. Its core idea is spatially guided vision-language-action training, where spatial grounding serves as the critical link between instructions and robot actions. InternVLA-M1 employs a two-stage pipeline: (i) spatial grounding pre-training on over 2.3M spatial reasoning data to determine ``where to act'' by aligning instructions with visual, embodiment-agnostic positions, and (ii) spatially guided action post-training to decide ``how to act'' by generating embodiment-aware actions through plug-and-play spatial prompting. This spatially guided training recipe yields consistent gains: InternVLA-M1 outperforms its variant without spatial guidance by +14.6% on SimplerEnv Google Robot, +17% on WidowX, and +4.3% on LIBERO Franka, while demonstrating stronger spatial reasoning capability in box, point, and trace prediction. To further scale instruction following, we built a simulation engine to collect 244K generalizable pick-and-place episodes, enabling a 6.2% average improvement across 200 tasks and 3K+ objects. In real-world clustered pick-and-place, InternVLA-M1 improved by 7.3%, and with synthetic co-training, achieved +20.6% on unseen objects and novel configurations. Moreover, in long-horizon reasoning-intensive scenarios, it surpassed existing works by over 10%. These results highlight spatially guided training as a unifying principle for scalable and resilient generalist robots. Code and models are available at https://github.com/InternRobotics/InternVLA-M1.

Authors:Dominik J. Mühlematter, Lin Che, Ye Hong, Martin Raubal, Nina Wiedemann
Title: UrbanFusion: Stochastic Multimodal Fusion for Contrastive Learning of Robust Spatial Representations
Abstract:
Forecasting urban phenomena such as housing prices and public health indicators requires the effective integration of various geospatial data. Current methods primarily utilize task-specific models, while recent foundation models for spatial representations often support only limited modalities and lack multimodal fusion capabilities. To overcome these challenges, we present UrbanFusion, a Geo-Foundation Model (GeoFM) that features Stochastic Multimodal Fusion (SMF). The framework employs modality-specific encoders to process different types of inputs, including street view imagery, remote sensing data, cartographic maps, and points of interest (POIs) data. These multimodal inputs are integrated via a Transformer-based fusion module that learns unified representations. An extensive evaluation across 41 tasks in 56 cities worldwide demonstrates UrbanFusion's strong generalization and predictive performance compared to state-of-the-art GeoAI models. Specifically, it 1) outperforms prior foundation models on location-encoding, 2) allows multimodal input during inference, and 3) generalizes well to regions unseen during training. UrbanFusion can flexibly utilize any subset of available modalities for a given location during both pretraining and inference, enabling broad applicability across diverse data availability scenarios. All source code is available at https://github.com/DominikM198/UrbanFusion.

Authors:Connor Lane, Daniel Z. Kaplan, Tanishq Mathew Abraham, Paul S. Scotti
Title: Scaling Vision Transformers for Functional MRI with Flat Maps
Abstract:
A key question for adapting modern deep learning architectures to functional MRI (fMRI) is how to represent the data for model input. To bridge the modality gap between fMRI and natural images, we transform the 4D volumetric fMRI data into videos of 2D fMRI activity flat maps. We train Vision Transformers on 2.3K hours of fMRI flat map videos from the Human Connectome Project using the spatiotemporal masked autoencoder (MAE) framework. We observe that masked fMRI modeling performance improves with dataset size according to a strict power scaling law. Downstream classification benchmarks show that our model learns rich representations supporting both fine-grained state decoding across subjects, as well as subject-specific trait decoding across changes in brain state. This work is part of an ongoing open science project to build foundation models for fMRI data. Our code and datasets are available at https://github.com/MedARC-AI/fmri-fm.

Authors:Kai Zou, Ziqi Huang, Yuhao Dong, Shulin Tian, Dian Zheng, Hongbo Liu, Jingwen He, Bin Liu, Yu Qiao, Ziwei Liu
Title: Uni-MMMU: A Massive Multi-discipline Multimodal Unified Benchmark
Abstract:
Unified multimodal models aim to jointly enable visual understanding and generation, yet current benchmarks rarely examine their true integration. Existing evaluations either treat the two abilities in isolation or overlook tasks that inherently couple them. To address this gap, we present Uni-MMMU, a comprehensive and discipline-aware benchmark that systematically unfolds the bidirectional synergy between generation and understanding across eight reasoning-centric domains, including science, coding, mathematics, and puzzles. Each task is bidirectionally coupled, demanding models to (i) leverage conceptual understanding to guide precise visual synthesis, or (ii) utilize generation as a cognitive scaffold for analytical reasoning. Uni-MMMU incorporates verifiable intermediate reasoning steps, unique ground truths, and a reproducible scoring protocol for both textual and visual outputs. Through extensive evaluation of state-of-the-art unified, generation-only, and understanding-only models, we reveal substantial performance disparities and cross-modal dependencies, offering new insights into when and how these abilities reinforce one another, and establishing a reliable foundation for advancing unified models.

Authors:Tianshuo Xu, Kai Wang, Zhifei Chen, Leyi Wu, Tianshui Wen, Fei Chao, Ying-Cong Chen
Title: UniCalli: A Unified Diffusion Framework for Column-Level Generation and Recognition of Chinese Calligraphy
Abstract:
Computational replication of Chinese calligraphy remains challenging. Existing methods falter, either creating high-quality isolated characters while ignoring page-level aesthetics like ligatures and spacing, or attempting page synthesis at the expense of calligraphic correctness. We introduce \textbf{UniCalli}, a unified diffusion framework for column-level recognition and generation. Training both tasks jointly is deliberate: recognition constrains the generator to preserve character structure, while generation provides style and layout priors. This synergy fosters concept-level abstractions that improve both tasks, especially in limited-data regimes. We curated a dataset of over 8,000 digitized pieces, with ~4,000 densely annotated. UniCalli employs asymmetric noising and a rasterized box map for spatial priors, trained on a mix of synthetic, labeled, and unlabeled data. The model achieves state-of-the-art generative quality with superior ligature continuity and layout fidelity, alongside stronger recognition. The framework successfully extends to other ancient scripts, including Oracle bone inscriptions and Egyptian hieroglyphs. Code and data can be viewed in \href{https://github.com/EnVision-Research/UniCalli}{this URL}.

Authors:Mustafa Munir, Alex Zhang, Radu Marculescu
Title: Multi-Scale High-Resolution Logarithmic Grapher Module for Efficient Vision GNNs
Abstract:
Vision graph neural networks (ViG) have demonstrated promise in vision tasks as a competitive alternative to conventional convolutional neural nets (CNN) and transformers (ViTs); however, common graph construction methods, such as k-nearest neighbor (KNN), can be expensive on larger images. While methods such as Sparse Vision Graph Attention (SVGA) have shown promise, SVGA's fixed step scale can lead to over-squashing and missing multiple connections to gain the same information that could be gained from a long-range link. Through this observation, we propose a new graph construction method, Logarithmic Scalable Graph Construction (LSGC) to enhance performance by limiting the number of long-range links. To this end, we propose LogViG, a novel hybrid CNN-GNN model that utilizes LSGC. Furthermore, inspired by the successes of multi-scale and high-resolution architectures, we introduce and apply a high-resolution branch and fuse features between our high-resolution and low-resolution branches for a multi-scale high-resolution Vision GNN network. Extensive experiments show that LogViG beats existing ViG, CNN, and ViT architectures in terms of accuracy, GMACs, and parameters on image classification and semantic segmentation tasks. Our smallest model, Ti-LogViG, achieves an average top-1 accuracy on ImageNet-1K of 79.9% with a standard deviation of 0.2%, 1.7% higher average accuracy than Vision GNN with a 24.3% reduction in parameters and 35.3% reduction in GMACs. Our work shows that leveraging long-range links in graph construction for ViGs through our proposed LSGC can exceed the performance of current state-of-the-art ViGs. Code is available at https://github.com/mmunir127/LogViG-Official.

Authors:Minjung Shin, Hyunin Cho, Sooyeon Go, Jin-Hwa Kim, Youngjung Uh
Title: MVCustom: Multi-View Customized Diffusion via Geometric Latent Rendering and Completion
Abstract:
Multi-view generation with camera pose control and prompt-based customization are both essential elements for achieving controllable generative models. However, existing multi-view generation models do not support customization with geometric consistency, whereas customization models lack explicit viewpoint control, making them challenging to unify. Motivated by these gaps, we introduce a novel task, multi-view customization, which aims to jointly achieve multi-view camera pose control and customization. Due to the scarcity of training data in customization, existing multi-view generation models, which inherently rely on large-scale datasets, struggle to generalize to diverse prompts. To address this, we propose MVCustom, a novel diffusion-based framework explicitly designed to achieve both multi-view consistency and customization fidelity. In the training stage, MVCustom learns the subject's identity and geometry using a feature-field representation, incorporating the text-to-video diffusion backbone enhanced with dense spatio-temporal attention, which leverages temporal coherence for multi-view consistency. In the inference stage, we introduce two novel techniques: depth-aware feature rendering explicitly enforces geometric consistency, and consistent-aware latent completion ensures accurate perspective alignment of the customized subject and surrounding backgrounds. Extensive experiments demonstrate that MVCustom is the only framework that simultaneously achieves faithful multi-view generation and customization.

Authors:Xinyang Li, Tengfei Wang, Zixiao Gu, Shengchuan Zhang, Chunchao Guo, Liujuan Cao
Title: FlashWorld: High-quality 3D Scene Generation within Seconds
Abstract:
We propose FlashWorld, a generative model that produces 3D scenes from a single image or text prompt in seconds, 10~100$\times$ faster than previous works while possessing superior rendering quality. Our approach shifts from the conventional multi-view-oriented (MV-oriented) paradigm, which generates multi-view images for subsequent 3D reconstruction, to a 3D-oriented approach where the model directly produces 3D Gaussian representations during multi-view generation. While ensuring 3D consistency, 3D-oriented method typically suffers poor visual quality. FlashWorld includes a dual-mode pre-training phase followed by a cross-mode post-training phase, effectively integrating the strengths of both paradigms. Specifically, leveraging the prior from a video diffusion model, we first pre-train a dual-mode multi-view diffusion model, which jointly supports MV-oriented and 3D-oriented generation modes. To bridge the quality gap in 3D-oriented generation, we further propose a cross-mode post-training distillation by matching distribution from consistent 3D-oriented mode to high-quality MV-oriented mode. This not only enhances visual quality while maintaining 3D consistency, but also reduces the required denoising steps for inference. Also, we propose a strategy to leverage massive single-view images and text prompts during this process to enhance the model's generalization to out-of-distribution inputs. Extensive experiments demonstrate the superiority and efficiency of our method.

Authors:Hongyu Qu, Jianan Wei, Xiangbo Shu, Yazhou Yao, Wenguan Wang, Jinhui Tang
Title: OmniGaze: Reward-inspired Generalizable Gaze Estimation In The Wild
Abstract:
Current 3D gaze estimation methods struggle to generalize across diverse data domains, primarily due to i) the scarcity of annotated datasets, and ii) the insufficient diversity of labeled data. In this work, we present OmniGaze, a semi-supervised framework for 3D gaze estimation, which utilizes large-scale unlabeled data collected from diverse and unconstrained real-world environments to mitigate domain bias and generalize gaze estimation in the wild. First, we build a diverse collection of unlabeled facial images, varying in facial appearances, background environments, illumination conditions, head poses, and eye occlusions. In order to leverage unlabeled data spanning a broader distribution, OmniGaze adopts a standard pseudo-labeling strategy and devises a reward model to assess the reliability of pseudo labels. Beyond pseudo labels as 3D direction vectors, the reward model also incorporates visual embeddings extracted by an off-the-shelf visual encoder and semantic cues from gaze perspective generated by prompting a Multimodal Large Language Model to compute confidence scores. Then, these scores are utilized to select high-quality pseudo labels and weight them for loss computation. Extensive experiments demonstrate that OmniGaze achieves state-of-the-art performance on five datasets under both in-domain and cross-domain settings. Furthermore, we also evaluate the efficacy of OmniGaze as a scalable data engine for gaze estimation, which exhibits robust zero-shot generalization on four unseen datasets.

Authors:Huaizhi Qu, Ruichen Zhang, Shuqing Luo, Luchao Qi, Zhihao Zhang, Xiaoming Liu, Roni Sengupta, Tianlong Chen
Title: EditCast3D: Single-Frame-Guided 3D Editing with Video Propagation and View Selection
Abstract:
Recent advances in foundation models have driven remarkable progress in image editing, yet their extension to 3D editing remains underexplored. A natural approach is to replace the image editing modules in existing workflows with foundation models. However, their heavy computational demands and the restrictions and costs of closed-source APIs make plugging these models into existing iterative editing strategies impractical. To address this limitation, we propose EditCast3D, a pipeline that employs video generation foundation models to propagate edits from a single first frame across the entire dataset prior to reconstruction. While editing propagation enables dataset-level editing via video models, its consistency remains suboptimal for 3D reconstruction, where multi-view alignment is essential. To overcome this, EditCast3D introduces a view selection strategy that explicitly identifies consistent and reconstruction-friendly views and adopts feedforward reconstruction without requiring costly refinement. In combination, the pipeline both minimizes reliance on expensive image editing and mitigates prompt ambiguities that arise when applying foundation models independently across images. We evaluate EditCast3D on commonly used 3D editing datasets and compare it against state-of-the-art 3D editing baselines, demonstrating superior editing quality and high efficiency. These results establish EditCast3D as a scalable and general paradigm for integrating foundation models into 3D editing pipelines. The code is available at https://github.com/UNITES-Lab/EditCast3D

Authors:Deeptimaan Banerjee, Prateek Gothwal, Ashis Kumer Biswas
Title: ExpressNet-MoE: A Hybrid Deep Neural Network for Emotion Recognition
Abstract:
In many domains, including online education, healthcare, security, and human-computer interaction, facial emotion recognition (FER) is essential. Real-world FER is still difficult despite its significance because of some factors such as variable head positions, occlusions, illumination shifts, and demographic diversity. Engagement detection, which is essential for applications like virtual learning and customer services, is frequently challenging due to FER limitations by many current models. In this article, we propose ExpressNet-MoE, a novel hybrid deep learning model that blends both Convolution Neural Networks (CNNs) and Mixture of Experts (MoE) framework, to overcome the difficulties. Our model dynamically chooses the most pertinent expert networks, thus it aids in the generalization and providing flexibility to model across a wide variety of datasets. Our model improves on the accuracy of emotion recognition by utilizing multi-scale feature extraction to collect both global and local facial features. ExpressNet-MoE includes numerous CNN-based feature extractors, a MoE module for adaptive feature selection, and finally a residual network backbone for deep feature learning. To demonstrate efficacy of our proposed model we evaluated on several datasets, and compared with current state-of-the-art methods. Our model achieves accuracies of 74.77% on AffectNet (v7), 72.55% on AffectNet (v8), 84.29% on RAF-DB, and 64.66% on FER-2013. The results show how adaptive our model is and how it may be used to develop end-to-end emotion recognition systems in practical settings. Reproducible codes and results are made publicly accessible at https://github.com/DeeptimaanB/ExpressNet-MoE.

Authors:Hyojun Go, Dominik Narnhofer, Goutam Bhat, Prune Truong, Federico Tombari, Konrad Schindler
Title: VIST3A: Text-to-3D by Stitching a Multi-view Reconstruction Network to a Video Generator
Abstract:
The rapid progress of large, pretrained models for both visual content generation and 3D reconstruction opens up new possibilities for text-to-3D generation. Intuitively, one could obtain a formidable 3D scene generator if one were able to combine the power of a modern latent text-to-video model as "generator" with the geometric abilities of a recent (feedforward) 3D reconstruction system as "decoder". We introduce VIST3A, a general framework that does just that, addressing two main challenges. First, the two components must be joined in a way that preserves the rich knowledge encoded in their weights. We revisit model stitching, i.e., we identify the layer in the 3D decoder that best matches the latent representation produced by the text-to-video generator and stitch the two parts together. That operation requires only a small dataset and no labels. Second, the text-to-video generator must be aligned with the stitched 3D decoder, to ensure that the generated latents are decodable into consistent, perceptually convincing 3D scene geometry. To that end, we adapt direct reward finetuning, a popular technique for human preference alignment. We evaluate the proposed VIST3A approach with different video generators and 3D reconstruction models. All tested pairings markedly improve over prior text-to-3D models that output Gaussian splats. Moreover, by choosing a suitable 3D base model, VIST3A also enables high-quality text-to-pointmap generation.

Authors:Yifu Luo, Xinhao Hu, Keyu Fan, Haoyuan Sun, Zeyu Chen, Bo Xia, Tiantian Zhang, Yongzhe Chang, Xueqian Wang
Title: Reinforcement Learning Meets Masked Generative Models: Mask-GRPO for Text-to-Image Generation
Abstract:
Reinforcement learning (RL) has garnered increasing attention in text-to-image (T2I) generation. However, most existing RL approaches are tailored to either diffusion models or autoregressive models, overlooking an important alternative: masked generative models. In this work, we propose Mask-GRPO, the first method to incorporate Group Relative Policy Optimization (GRPO)-based RL into this overlooked paradigm. Our core insight is to redefine the transition probability, which is different from current approaches, and formulate the unmasking process as a multi-step decision-making problem. To further enhance our method, we explore several useful strategies, including removing the KL constraint, applying the reduction strategy, and filtering out low-quality samples. Using Mask-GRPO, we improve a base model, Show-o, with substantial improvements on standard T2I benchmarks and preference alignment, outperforming existing state-of-the-art approaches. The code is available on https://github.com/xingzhejun/Mask-GRPO

Authors:Jiankun Zhong, Zitong Zhan, Quankai Gao, Ziyu Chen, Haozhe Lou, Jiageng Mao, Ulrich Neumann, Yue Wang
Title: InstantSfM: Fully Sparse and Parallel Structure-from-Motion
Abstract:
Structure-from-Motion (SfM), a method that recovers camera poses and scene geometry from uncalibrated images, is a central component in robotic reconstruction and simulation. Despite the state-of-the-art performance of traditional SfM methods such as COLMAP and its follow-up work, GLOMAP, naive CPU-specialized implementations of bundle adjustment (BA) or global positioning (GP) introduce significant computational overhead when handling large-scale scenarios, leading to a trade-off between accuracy and speed in SfM. Moreover, the blessing of efficient C++-based implementations in COLMAP and GLOMAP comes with the curse of limited flexibility, as they lack support for various external optimization options. On the other hand, while deep learning based SfM pipelines like VGGSfM and VGGT enable feed-forward 3D reconstruction, they are unable to scale to thousands of input views at once as GPU memory consumption increases sharply as the number of input views grows. In this paper, we unleash the full potential of GPU parallel computation to accelerate each critical stage of the standard SfM pipeline. Building upon recent advances in sparse-aware bundle adjustment optimization, our design extends these techniques to accelerate both BA and GP within a unified global SfM framework. Through extensive experiments on datasets of varying scales (e.g. 5000 images where VGGSfM and VGGT run out of memory), our method demonstrates up to about 40 times speedup over COLMAP while achieving consistently comparable or even improved reconstruction accuracy. Our project page can be found at https://cre185.github.io/InstantSfM/.

Authors:JiaKui Hu, Zhengjian Yao, Lujia Jin, Yinghao Chen, Yanye Lu
Title: Universal Image Restoration Pre-training via Masked Degradation Classification
Abstract:
This study introduces a Masked Degradation Classification Pre-Training method (MaskDCPT), designed to facilitate the classification of degradation types in input images, leading to comprehensive image restoration pre-training. Unlike conventional pre-training methods, MaskDCPT uses the degradation type of the image as an extremely weak supervision, while simultaneously leveraging the image reconstruction to enhance performance and robustness. MaskDCPT includes an encoder and two decoders: the encoder extracts features from the masked low-quality input image. The classification decoder uses these features to identify the degradation type, whereas the reconstruction decoder aims to reconstruct a corresponding high-quality image. This design allows the pre-training to benefit from both masked image modeling and contrastive learning, resulting in a generalized representation suited for restoration tasks. Benefit from the straightforward yet potent MaskDCPT, the pre-trained encoder can be used to address universal image restoration and achieve outstanding performance. Implementing MaskDCPT significantly improves performance for both convolution neural networks (CNNs) and Transformers, with a minimum increase in PSNR of 3.77 dB in the 5D all-in-one restoration task and a 34.8% reduction in PIQE compared to baseline in real-world degradation scenarios. It also emergences strong generalization to previously unseen degradation types and levels. In addition, we curate and release the UIR-2.5M dataset, which includes 2.5 million paired restoration samples across 19 degradation types and over 200 degradation levels, incorporating both synthetic and real-world data. The dataset, source code, and models are available at https://github.com/MILab-PKU/MaskDCPT.

Authors:Li Liang, Bo Miao, Xinyu Wang, Naveed Akhtar, Jordan Vice, Ajmal Mian
Title: CymbaDiff: Structured Spatial Diffusion for Sketch-based 3D Semantic Urban Scene Generation
Abstract:
Outdoor 3D semantic scene generation produces realistic and semantically rich environments for applications such as urban simulation and autonomous driving. However, advances in this direction are constrained by the absence of publicly available, well-annotated datasets. We introduce SketchSem3D, the first large-scale benchmark for generating 3D outdoor semantic scenes from abstract freehand sketches and pseudo-labeled annotations of satellite images. SketchSem3D includes two subsets, Sketch-based SemanticKITTI and Sketch-based KITTI-360 (containing LiDAR voxels along with their corresponding sketches and annotated satellite images), to enable standardized, rigorous, and diverse evaluations. We also propose Cylinder Mamba Diffusion (CymbaDiff) that significantly enhances spatial coherence in outdoor 3D scene generation. CymbaDiff imposes structured spatial ordering, explicitly captures cylindrical continuity and vertical hierarchy, and preserves both physical neighborhood relationships and global context within the generated scenes. Extensive experiments on SketchSem3D demonstrate that CymbaDiff achieves superior semantic consistency, spatial realism, and cross-dataset generalization. The code and dataset will be available at https://github.com/Lillian-research-hub/CymbaDiff

Authors:Haochuan Xu, Yun Sing Koh, Shuhuai Huang, Zirun Zhou, Di Wang, Jun Sakuma, Jingfeng Zhang
Title: Model-agnostic Adversarial Attack and Defense for Vision-Language-Action Models
Abstract:
Vision-Language-Action (VLA) models have achieved revolutionary progress in robot learning, enabling robots to execute complex physical robot tasks from natural language instructions. Despite this progress, their adversarial robustness remains underexplored. In this work, we propose both adversarial patch attack and corresponding defense strategies for VLA models. We first introduce the Embedding Disruption Patch Attack (EDPA), a model-agnostic adversarial attack that generates patches directly placeable within the camera's view. In comparison to prior methods, EDPA can be readily applied to different VLA models without requiring prior knowledge of the model architecture, or the controlled robotic manipulator. EDPA constructs these patches by (i) disrupting the semantic alignment between visual and textual latent representations, and (ii) maximizing the discrepancy of latent representations between adversarial and corresponding clean visual inputs. Through the optimization of these objectives, EDPA distorts the VLA's interpretation of visual information, causing the model to repeatedly generate incorrect actions and ultimately result in failure to complete the given robotic task. To counter this, we propose an adversarial fine-tuning scheme for the visual encoder, in which the encoder is optimized to produce similar latent representations for both clean and adversarially perturbed visual inputs. Extensive evaluations on the widely recognized LIBERO robotic simulation benchmark demonstrate that EDPA substantially increases the task failure rate of cutting-edge VLA models, while our proposed defense effectively mitigates this degradation. The codebase is accessible via the homepage at https://edpa-attack.github.io/.

Authors:Yinglong Yan, Jun Yue, Shaobo Xia, Hanmeng Sun, Tianxu Ying, Chengcheng Wu, Sifan Lan, Min He, Pedram Ghamisi, Leyuan Fang
Title: UniVector: Unified Vector Extraction via Instance-Geometry Interaction
Abstract:
Vector extraction retrieves structured vector geometry from raster images, offering high-fidelity representation and broad applicability. Existing methods, however, are usually tailored to a single vector type (e.g., polygons, polylines, line segments), requiring separate models for different structures. This stems from treating instance attributes (category, structure) and geometric attributes (point coordinates, connections) independently, limiting the ability to capture complex structures. Inspired by the human brain's simultaneous use of semantic and spatial interactions in visual perception, we propose UniVector, a unified VE framework that leverages instance-geometry interaction to extract multiple vector types within a single model. UniVector encodes vectors as structured queries containing both instance- and geometry-level information, and iteratively updates them through an interaction module for cross-level context exchange. A dynamic shape constraint further refines global structures and key points. To benchmark multi-structure scenarios, we introduce the Multi-Vector dataset with diverse polygons, polylines, and line segments. Experiments show UniVector sets a new state of the art on both single- and multi-structure VE tasks. Code and dataset will be released at https://github.com/yyyyll0ss/UniVector.

Authors:Rongtao Xu, Jinzhou Lin, Jialei Zhou, Jiahua Dong, Changwei Wang, Ruisheng Wang, Li Guo, Shibiao Xu, Xiaodan Liang
Title: Complementary Information Guided Occupancy Prediction via Multi-Level Representation Fusion
Abstract:
Camera-based occupancy prediction is a mainstream approach for 3D perception in autonomous driving, aiming to infer complete 3D scene geometry and semantics from 2D images. Almost existing methods focus on improving performance through structural modifications, such as lightweight backbones and complex cascaded frameworks, with good yet limited performance. Few studies explore from the perspective of representation fusion, leaving the rich diversity of features in 2D images underutilized. Motivated by this, we propose \textbf{CIGOcc, a two-stage occupancy prediction framework based on multi-level representation fusion. \textbf{CIGOcc extracts segmentation, graphics, and depth features from an input image and introduces a deformable multi-level fusion mechanism to fuse these three multi-level features. Additionally, CIGOcc incorporates knowledge distilled from SAM to further enhance prediction accuracy. Without increasing training costs, CIGOcc achieves state-of-the-art performance on the SemanticKITTI benchmark. The code is provided in the supplementary material and will be released https://github.com/VitaLemonTea1/CIGOcc

Authors:Zhengxu Tang, Zizheng Wang, Luning Wang, Zitao Shuai, Chenhao Zhang, Siyu Qian, Yirui Wu, Bohao Wang, Haosong Rao, Zhenyu Yang, Chenwei Wu
Title: SeqBench: Benchmarking Sequential Narrative Generation in Text-to-Video Models
Abstract:
Text-to-video (T2V) generation models have made significant progress in creating visually appealing videos. However, they struggle with generating coherent sequential narratives that require logical progression through multiple events. Existing T2V benchmarks primarily focus on visual quality metrics but fail to evaluate narrative coherence over extended sequences. To bridge this gap, we present SeqBench, a comprehensive benchmark for evaluating sequential narrative coherence in T2V generation. SeqBench includes a carefully designed dataset of 320 prompts spanning various narrative complexities, with 2,560 human-annotated videos generated from 8 state-of-the-art T2V models. Additionally, we design a Dynamic Temporal Graphs (DTG)-based automatic evaluation metric, which can efficiently capture long-range dependencies and temporal ordering while maintaining computational efficiency. Our DTG-based metric demonstrates a strong correlation with human annotations. Through systematic evaluation using SeqBench, we reveal critical limitations in current T2V models: failure to maintain consistent object states across multi-action sequences, physically implausible results in multi-object scenarios, and difficulties in preserving realistic timing and ordering relationships between sequential actions. SeqBench provides the first systematic framework for evaluating narrative coherence in T2V generation and offers concrete insights for improving sequential reasoning capabilities in future models. Please refer to https://videobench.github.io/SeqBench.github.io/ for more details.

Authors:Xiao He, Huangxuan Zhao, Guojia Wan, Wei Zhou, Yanxing Liu, Juhua Liu, Yongchao Xu, Yong Luo, Dacheng Tao, Bo Du
Title: Epistemic-aware Vision-Language Foundation Model for Fetal Ultrasound Interpretation
Abstract:
Recent medical vision-language models have shown promise on tasks such as VQA, report generation, and anomaly detection. However, most are adapted to structured adult imaging and underperform in fetal ultrasound, which poses challenges of multi-view image reasoning, numerous diseases, and image diversity. To bridge this gap, we introduce FetalMind, a medical AI system tailored to fetal ultrasound for both report generation and diagnosis. Guided by clinical workflow, we propose Salient Epistemic Disentanglement (SED), which injects an expert-curated bipartite graph into the model to decouple view-disease associations and to steer preference selection along clinically faithful steps via reinforcement learning. This design mitigates variability across diseases and heterogeneity across views, reducing learning bottlenecks while aligning the model's inference with obstetric practice. To train FetalMind at scale, we curate FetalSigma-1M dataset, the first large-scale fetal ultrasound report corpus, comprising 20K reports from twelve medical centers, addressing the scarcity of domain data. Extensive experiments show that FetalMind outperforms open- and closed-source baselines across all gestational stages, achieving +14% average gains and +61.2% higher accuracy on critical conditions while remaining efficient, stable, and scalable. Project Page: https://hexiao0275.github.io/FetalMind.

Authors:Kevin Li, Manuel Brack, Sudeep Katakol, Hareesh Ravi, Ajinkya Kale
Title: UniFusion: Vision-Language Model as Unified Encoder in Image Generation
Abstract:
Although recent advances in visual generation have been remarkable, most existing architectures still depend on distinct encoders for images and text. This separation constrains diffusion models' ability to perform cross-modal reasoning and knowledge transfer. Prior attempts to bridge this gap often use the last layer information from VLM, employ multiple visual encoders, or train large unified models jointly for text and image generation, which demands substantial computational resources and large-scale data, limiting its accessibility.We present UniFusion, a diffusion-based generative model conditioned on a frozen large vision-language model (VLM) that serves as a unified multimodal encoder. At the core of UniFusion is the Layerwise Attention Pooling (LAP) mechanism that extracts both high level semantics and low level details from text and visual tokens of a frozen VLM to condition a diffusion generative model. We demonstrate that LAP outperforms other shallow fusion architectures on text-image alignment for generation and faithful transfer of visual information from VLM to the diffusion model which is key for editing. We propose VLM-Enabled Rewriting Injection with Flexibile Inference (VERIFI), which conditions a diffusion transformer (DiT) only on the text tokens generated by the VLM during in-model prompt rewriting. VERIFI combines the alignment of the conditioning distribution with the VLM's reasoning capabilities for increased capabilities and flexibility at inference. In addition, finetuning on editing task not only improves text-image alignment for generation, indicative of cross-modality knowledge transfer, but also exhibits tremendous generalization capabilities. Our model when trained on single image editing, zero-shot generalizes to multiple image references further motivating the unified encoder design of UniFusion.

Authors:Weiyang Jin, Yuwei Niu, Jiaqi Liao, Chengqi Duan, Aoxue Li, Shenghua Gao, Xihui Liu
Title: SRUM: Fine-Grained Self-Rewarding for Unified Multimodal Models
Abstract:
Recently, remarkable progress has been made in Unified Multimodal Models (UMMs), which integrate vision-language generation and understanding capabilities within a single framework. However, a significant gap exists where a model's strong visual understanding often fails to transfer to its visual generation. A model might correctly understand an image based on user instructions, yet be unable to generate a faithful image from text prompts. This phenomenon directly raises a compelling question: Can a model achieve self-improvement by using its understanding module to reward its generation module? To bridge this gap and achieve self-improvement, we introduce SRUM, a self-rewarding post-training framework that can be directly applied to existing UMMs of various designs. SRUM creates a feedback loop where the model's own understanding module acts as an internal ``evaluator'', providing corrective signals to improve its generation module, without requiring additional human-labeled data. To ensure this feedback is comprehensive, we designed a global-local dual reward system. To tackle the inherent structural complexity of images, this system offers multi-scale guidance: a \textbf{global reward} ensures the correctness of the overall visual semantics and layout, while a \textbf{local reward} refines fine-grained, object-level fidelity. SRUM leads to powerful capabilities and shows strong generalization, boosting performance on T2I-CompBench from 82.18 to \textbf{88.37} and on T2I-ReasonBench from 43.82 to \textbf{46.75}. Overall, our work establishes a powerful new paradigm for enabling a UMMs' understanding module to guide and enhance its own generation via self-rewarding.

Authors:Stefan Andreas Baumann, Nick Stracke, Timy Phan, Björn Ommer
Title: What If : Understanding Motion Through Sparse Interactions
Abstract:
Understanding the dynamics of a physical scene involves reasoning about the diverse ways it can potentially change, especially as a result of local interactions. We present the Flow Poke Transformer (FPT), a novel framework for directly predicting the distribution of local motion, conditioned on sparse interactions termed "pokes". Unlike traditional methods that typically only enable dense sampling of a single realization of scene dynamics, FPT provides an interpretable directly accessible representation of multi-modal scene motion, its dependency on physical interactions and the inherent uncertainties of scene dynamics. We also evaluate our model on several downstream tasks to enable comparisons with prior methods and highlight the flexibility of our approach. On dense face motion generation, our generic pre-trained model surpasses specialized baselines. FPT can be fine-tuned in strongly out-of-distribution tasks such as synthetic datasets to enable significant improvements over in-domain methods in articulated object motion estimation. Additionally, predicting explicit motion distributions directly enables our method to achieve competitive performance on tasks like moving part segmentation from pokes which further demonstrates the versatility of our FPT. Code and models are publicly available at https://compvis.github.io/flow-poke-transformer.

Authors:Fengzhi Guo, Chih-Chuan Hsu, Sihao Ding, Cheng Zhang
Title: Uncertainty Matters in Dynamic Gaussian Splatting for Monocular 4D Reconstruction
Abstract:
Reconstructing dynamic 3D scenes from monocular input is fundamentally under-constrained, with ambiguities arising from occlusion and extreme novel views. While dynamic Gaussian Splatting offers an efficient representation, vanilla models optimize all Gaussian primitives uniformly, ignoring whether they are well or poorly observed. This limitation leads to motion drifts under occlusion and degraded synthesis when extrapolating to unseen views. We argue that uncertainty matters: Gaussians with recurring observations across views and time act as reliable anchors to guide motion, whereas those with limited visibility are treated as less reliable. To this end, we introduce USplat4D, a novel Uncertainty-aware dynamic Gaussian Splatting framework that propagates reliable motion cues to enhance 4D reconstruction. Our key insight is to estimate time-varying per-Gaussian uncertainty and leverages it to construct a spatio-temporal graph for uncertainty-aware optimization. Experiments on diverse real and synthetic datasets show that explicitly modeling uncertainty consistently improves dynamic Gaussian Splatting models, yielding more stable geometry under occlusion and high-quality synthesis at extreme viewpoints.

Authors:Thomas Wimmer, Prune Truong, Marie-Julie Rakotosaona, Michael Oechsle, Federico Tombari, Bernt Schiele, Jan Eric Lenssen
Title: AnyUp: Universal Feature Upsampling
Abstract:
We introduce AnyUp, a method for feature upsampling that can be applied to any vision feature at any resolution, without encoder-specific training. Existing learning-based upsamplers for features like DINO or CLIP need to be re-trained for every feature extractor and thus do not generalize to different feature types at inference time. In this work, we propose an inference-time feature-agnostic upsampling architecture to alleviate this limitation and improve upsampling quality. In our experiments, AnyUp sets a new state of the art for upsampled features, generalizes to different feature types, and preserves feature semantics while being efficient and easy to apply to a wide range of downstream tasks.

Authors:Zhuotong Cai, Tianyi Zeng, Jiazhen Zhang, Eléonore V. Lieffrig, Kathryn Fontaine, Chenyu You, Enette Mae Revilla, James S. Duncan, Jingmin Xin, Yihuan Lu, John A. Onofrey
Title: PET Head Motion Estimation Using Supervised Deep Learning with Attention
Abstract:
Head movement poses a significant challenge in brain positron emission tomography (PET) imaging, resulting in image artifacts and tracer uptake quantification inaccuracies. Effective head motion estimation and correction are crucial for precise quantitative image analysis and accurate diagnosis of neurological disorders. Hardware-based motion tracking (HMT) has limited applicability in real-world clinical practice. To overcome this limitation, we propose a deep-learning head motion correction approach with cross-attention (DL-HMC++) to predict rigid head motion from one-second 3D PET raw data. DL-HMC++ is trained in a supervised manner by leveraging existing dynamic PET scans with gold-standard motion measurements from external HMT. We evaluate DL-HMC++ on two PET scanners (HRRT and mCT) and four radiotracers (18F-FDG, 18F-FPEB, 11C-UCB-J, and 11C-LSN3172176) to demonstrate the effectiveness and generalization of the approach in large cohort PET studies. Quantitative and qualitative results demonstrate that DL-HMC++ consistently outperforms state-of-the-art data-driven motion estimation methods, producing motion-free images with clear delineation of brain structures and reduced motion artifacts that are indistinguishable from gold-standard HMT. Brain region of interest standard uptake value analysis exhibits average difference ratios between DL-HMC++ and gold-standard HMT to be 1.2 plus-minus 0.5% for HRRT and 0.5 plus-minus 0.2% for mCT. DL-HMC++ demonstrates the potential for data-driven PET head motion correction to remove the burden of HMT, making motion correction accessible to clinical populations beyond research settings. The code is available at https://github.com/maxxxxxxcai/DL-HMC-TMI.

Authors:Junhao Zhuang, Shi Guo, Xin Cai, Xiaohui Li, Yihao Liu, Chun Yuan, Tianfan Xue
Title: FlashVSR: Towards Real-Time Diffusion-Based Streaming Video Super-Resolution
Abstract:
Diffusion models have recently advanced video restoration, but applying them to real-world video super-resolution (VSR) remains challenging due to high latency, prohibitive computation, and poor generalization to ultra-high resolutions. Our goal in this work is to make diffusion-based VSR practical by achieving efficiency, scalability, and real-time performance. To this end, we propose FlashVSR, the first diffusion-based one-step streaming framework towards real-time VSR. FlashVSR runs at approximately 17 FPS for 768x1408 videos on a single A100 GPU by combining three complementary innovations: (i) a train-friendly three-stage distillation pipeline that enables streaming super-resolution, (ii) locality-constrained sparse attention that cuts redundant computation while bridging the train-test resolution gap, and (iii) a tiny conditional decoder that accelerates reconstruction without sacrificing quality. To support large-scale training, we also construct VSR-120K, a new dataset with 120k videos and 180k images. Extensive experiments show that FlashVSR scales reliably to ultra-high resolutions and achieves state-of-the-art performance with up to 12x speedup over prior one-step diffusion VSR models. We will release the code, pretrained models, and dataset to foster future research in efficient diffusion-based VSR.

Authors:Ziyang Ma, Ruiyang Xu, Zhenghao Xing, Yunfei Chu, Yuxuan Wang, Jinzheng He, Jin Xu, Pheng-Ann Heng, Kai Yu, Junyang Lin, Eng Siong Chng, Xie Chen
Title: Omni-Captioner: Data Pipeline, Models, and Benchmark for Omni Detailed Perception
Abstract:
Fine-grained perception of multimodal information is critical for advancing human-AI interaction. With recent progress in audio-visual technologies, Omni Language Models (OLMs), capable of processing audio and video signals in parallel, have emerged as a promising paradigm for achieving richer understanding and reasoning. However, their capacity to capture and describe fine-grained details remains limited explored. In this work, we present a systematic and comprehensive investigation of omni detailed perception from the perspectives of the data pipeline, models, and benchmark. We first identify an inherent "co-growth" between detail and hallucination in current OLMs. To address this, we propose Omni-Detective, an agentic data generation pipeline integrating tool-calling, to autonomously produce highly detailed yet minimally hallucinatory multimodal data. Based on the data generated with Omni-Detective, we train two captioning models: Audio-Captioner for audio-only detailed perception, and Omni-Captioner for audio-visual detailed perception. Under the cascade evaluation protocol, Audio-Captioner achieves the best performance on MMAU and MMAR among all open-source models, surpassing Gemini 2.5 Flash and delivering performance comparable to Gemini 2.5 Pro. On existing detailed captioning benchmarks, Omni-Captioner sets a new state-of-the-art on VDC and achieves the best trade-off between detail and hallucination on the video-SALMONN 2 testset. Given the absence of a dedicated benchmark for omni detailed perception, we design Omni-Cloze, a novel cloze-style evaluation for detailed audio, visual, and audio-visual captioning that ensures stable, efficient, and reliable assessment. Experimental results and analysis demonstrate the effectiveness of Omni-Detective in generating high-quality detailed captions, as well as the superiority of Omni-Cloze in evaluating such detailed captions.

Authors:Kunyu Peng, Di Wen, Kailun Yang, Jia Fu, Yufan Chen, Ruiping Liu, Jiamin Wu, Junwei Zheng, M. Saquib Sarfraz, Luc Van Gool, Danda Pani Paudel, Rainer Stiefelhagen
Title: EReLiFM: Evidential Reliability-Aware Residual Flow Meta-Learning for Open-Set Domain Generalization under Noisy Labels
Abstract:
Open-Set Domain Generalization (OSDG) aims to enable deep learning models to recognize unseen categories in new domains, which is crucial for real-world applications. Label noise hinders open-set domain generalization by corrupting source-domain knowledge, making it harder to recognize known classes and reject unseen ones. While existing methods address OSDG under Noisy Labels (OSDG-NL) using hyperbolic prototype-guided meta-learning, they struggle to bridge domain gaps, especially with limited clean labeled data. In this paper, we propose Evidential Reliability-Aware Residual Flow Meta-Learning (EReLiFM). We first introduce an unsupervised two-stage evidential loss clustering method to promote label reliability awareness. Then, we propose a residual flow matching mechanism that models structured domain- and category-conditioned residuals, enabling diverse and uncertainty-aware transfer paths beyond interpolation-based augmentation. During this meta-learning process, the model is optimized such that the update direction on the clean set maximizes the loss decrease on the noisy set, using pseudo labels derived from the most confident predicted class for supervision. Experimental results show that EReLiFM outperforms existing methods on OSDG-NL, achieving state-of-the-art performance. The source code is available at https://github.com/KPeng9510/ERELIFM.

Authors:Chao Chen, Zhixin Ma, Yongqi Li, Yupeng Hu, Yinwei Wei, Wenjie Li, Liqiang Nie
Title: Reasoning in the Dark: Interleaved Vision-Text Reasoning in Latent Space
Abstract:
Multimodal reasoning aims to enhance the capabilities of MLLMs by incorporating intermediate reasoning steps before reaching the final answer. It has evolved from text-only reasoning to the integration of visual information, enabling the thought process to be conveyed through both images and text. Despite its effectiveness, current multimodal reasoning methods depend on explicit reasoning steps that require labor-intensive vision-text annotations and inherently introduce significant inference latency. To address these issues, we introduce multimodal latent reasoning with the advantages of multimodal representation, reduced annotation, and inference efficiency. To facilicate it, we propose Interleaved Vision-Text Latent Reasoning (IVT-LR), which injects both visual and textual information in the reasoning process within the latent space. Specifically, IVT-LR represents each reasoning step by combining two implicit parts: latent text (the hidden states from the previous step) and latent vision (a set of selected image embeddings). We further introduce a progressive multi-stage training strategy to enable MLLMs to perform the above multimodal latent reasoning steps. Experiments on M3CoT and ScienceQA demonstrate that our IVT-LR method achieves an average performance increase of 5.45% in accuracy, while simultaneously achieving a speed increase of over 5 times compared to existing approaches. Code available at https://github.com/FYYDCC/IVT-LR.

Authors:Yasaman Haghighi, Bastien van Delft, Mariam Hassan, Alexandre Alahi
Title: LayerSync: Self-aligning Intermediate Layers
Abstract:
We propose LayerSync, a domain-agnostic approach for improving the generation quality and the training efficiency of diffusion models. Prior studies have highlighted the connection between the quality of generation and the representations learned by diffusion models, showing that external guidance on model intermediate representations accelerates training. We reconceptualize this paradigm by regularizing diffusion models with their own intermediate representations. Building on the observation that representation quality varies across diffusion model layers, we show that the most semantically rich representations can act as an intrinsic guidance for weaker ones, reducing the need for external supervision. Our approach, LayerSync, is a self-sufficient, plug-and-play regularizer term with no overhead on diffusion model training and generalizes beyond the visual domain to other modalities. LayerSync requires no pretrained models nor additional data. We extensively evaluate the method on image generation and demonstrate its applicability to other domains such as audio, video, and motion generation. We show that it consistently improves the generation quality and the training efficiency. For example, we speed up the training of flow-based transformer by over 8.75x on ImageNet dataset and improved the generation quality by 23.6%. The code is available at https://github.com/vita-epfl/LayerSync.

Authors:Quang Nguyen, Tri Le, Baoru Huang, Minh Nhat Vu, Ngan Le, Thieu Vo, Anh Nguyen
Title: Learning Human Motion with Temporally Conditional Mamba
Abstract:
Learning human motion based on a time-dependent input signal presents a challenging yet impactful task with various applications. The goal of this task is to generate or estimate human movement that consistently reflects the temporal patterns of conditioning inputs. Existing methods typically rely on cross-attention mechanisms to fuse the condition with motion. However, this approach primarily captures global interactions and struggles to maintain step-by-step temporal alignment. To address this limitation, we introduce Temporally Conditional Mamba, a new mamba-based model for human motion generation. Our approach integrates conditional information into the recurrent dynamics of the Mamba block, enabling better temporally aligned motion. To validate the effectiveness of our method, we evaluate it on a variety of human motion tasks. Extensive experiments demonstrate that our model significantly improves temporal alignment, motion realism, and condition consistency over state-of-the-art approaches. Our project page is available at https://zquang2202.github.io/TCM.

Authors:Tianhao Li, Tingfa Xu, Ying Wang, Haolin Qin, Xu Lin, Jianan Li
Title: MMOT: The First Challenging Benchmark for Drone-based Multispectral Multi-Object Tracking
Abstract:
Drone-based multi-object tracking is essential yet highly challenging due to small targets, severe occlusions, and cluttered backgrounds. Existing RGB-based tracking algorithms heavily depend on spatial appearance cues such as color and texture, which often degrade in aerial views, compromising reliability. Multispectral imagery, capturing pixel-level spectral reflectance, provides crucial cues that enhance object discriminability under degraded spatial conditions. However, the lack of dedicated multispectral UAV datasets has hindered progress in this domain. To bridge this gap, we introduce MMOT, the first challenging benchmark for drone-based multispectral multi-object tracking. It features three key characteristics: (i) Large Scale - 125 video sequences with over 488.8K annotations across eight categories; (ii) Comprehensive Challenges - covering diverse conditions such as extreme small targets, high-density scenarios, severe occlusions, and complex motion; and (iii) Precise Oriented Annotations - enabling accurate localization and reduced ambiguity under aerial perspectives. To better extract spectral features and leverage oriented annotations, we further present a multispectral and orientation-aware MOT scheme adapting existing methods, featuring: (i) a lightweight Spectral 3D-Stem integrating spectral features while preserving compatibility with RGB pretraining; (ii) an orientation-aware Kalman filter for precise state estimation; and (iii) an end-to-end orientation-adaptive transformer. Extensive experiments across representative trackers consistently show that multispectral input markedly improves tracking performance over RGB baselines, particularly for small and densely packed objects. We believe our work will advance drone-based multispectral multi-object tracking research. Our MMOT, code, and benchmarks are publicly available at https://github.com/Annzstbl/MMOT.

Authors:Xiaoji Zheng, Ziyuan Yang, Yanhao Chen, Yuhang Peng, Yuanrong Tang, Gengyuan Liu, Bokui Chen, Jiangtao Gong
Title: CoIRL-AD: Collaborative-Competitive Imitation-Reinforcement Learning in Latent World Models for Autonomous Driving
Abstract:
End-to-end autonomous driving models trained solely with imitation learning (IL) often suffer from poor generalization. In contrast, reinforcement learning (RL) promotes exploration through reward maximization but faces challenges such as sample inefficiency and unstable convergence. A natural solution is to combine IL and RL. Moving beyond the conventional two-stage paradigm (IL pretraining followed by RL fine-tuning), we propose CoIRL-AD, a competitive dual-policy framework that enables IL and RL agents to interact during training. CoIRL-AD introduces a competition-based mechanism that facilitates knowledge exchange while preventing gradient conflicts. Experiments on the nuScenes dataset show an 18% reduction in collision rate compared to baselines, along with stronger generalization and improved performance on long-tail scenarios. Code is available at: https://github.com/SEU-zxj/CoIRL-AD.

Authors:Shurong Chai, Rahul Kumar JAIN, Rui Xu, Shaocong Mo, Ruibo Hou, Shiyu Teng, Jiaqing Liu, Lanfen Lin, Yen-Wei Chen
Title: A Text-Image Fusion Method with Data Augmentation Capabilities for Referring Medical Image Segmentation
Abstract:
Deep learning relies heavily on data augmentation to mitigate limited data, especially in medical imaging. Recent multimodal learning integrates text and images for segmentation, known as referring or text-guided image segmentation. However, common augmentations like rotation and flipping disrupt spatial alignment between image and text, weakening performance. To address this, we propose an early fusion framework that combines text and visual features before augmentation, preserving spatial consistency. We also design a lightweight generator that projects text embeddings into visual space, bridging semantic gaps. Visualization of generated pseudo-images shows accurate region localization. Our method is evaluated on three medical imaging tasks and four segmentation frameworks, achieving state-of-the-art results. Code is publicly available on GitHub: https://github.com/11yxk/MedSeg_EarlyFusion.

Authors:Wenjing Bian, Axel Barroso-Laguna, Tommaso Cavallari, Victor Adrian Prisacariu, Eric Brachmann
Title: Scene Coordinate Reconstruction Priors
Abstract:
Scene coordinate regression (SCR) models have proven to be powerful implicit scene representations for 3D vision, enabling visual relocalization and structure-from-motion. SCR models are trained specifically for one scene. If training images imply insufficient multi-view constraints SCR models degenerate. We present a probabilistic reinterpretation of training SCR models, which allows us to infuse high-level reconstruction priors. We investigate multiple such priors, ranging from simple priors over the distribution of reconstructed depth values to learned priors over plausible scene coordinate configurations. For the latter, we train a 3D point cloud diffusion model on a large corpus of indoor scans. Our priors push predicted 3D scene points towards plausible geometry at each training step to increase their likelihood. On three indoor datasets our priors help learning better scene representations, resulting in more coherent scene point clouds, higher registration rates and better camera poses, with a positive effect on down-stream tasks such as novel view synthesis and camera relocalization.

Authors:Tim J. Schoonbeek, Shao-Hsuan Hung, Dan Lehman, Hans Onvlee, Jacek Kustra, Peter H. N. de With, Fons van der Sommen
Title: Learning to Recognize Correctly Completed Procedure Steps in Egocentric Assembly Videos through Spatio-Temporal Modeling
Abstract:
Procedure step recognition (PSR) aims to identify all correctly completed steps and their sequential order in videos of procedural tasks. The existing state-of-the-art models rely solely on detecting assembly object states in individual video frames. By neglecting temporal features, model robustness and accuracy are limited, especially when objects are partially occluded. To overcome these limitations, we propose Spatio-Temporal Occlusion-Resilient Modeling for Procedure Step Recognition (STORM-PSR), a dual-stream framework for PSR that leverages both spatial and temporal features. The assembly state detection stream operates effectively with unobstructed views of the object, while the spatio-temporal stream captures both spatial and temporal features to recognize step completions even under partial occlusion. This stream includes a spatial encoder, pre-trained using a novel weakly supervised approach to capture meaningful spatial representations, and a transformer-based temporal encoder that learns how these spatial features relate over time. STORM-PSR is evaluated on the MECCANO and IndustReal datasets, reducing the average delay between actual and predicted assembly step completions by 11.2% and 26.1%, respectively, compared to prior methods. We demonstrate that this reduction in delay is driven by the spatio-temporal stream, which does not rely on unobstructed views of the object to infer completed steps. The code for STORM-PSR, along with the newly annotated MECCANO labels, is made publicly available at https://timschoonbeek.github.io/stormpsr .

Authors:Jianfeng Dong, Lei Huang, Daizong Liu, Xianke Chen, Xun Yang, Changting Lin, Xun Wang, Meng Wang
Title: Dual Learning with Dynamic Knowledge Distillation and Soft Alignment for Partially Relevant Video Retrieval
Abstract:
Almost all previous text-to-video retrieval works ideally assume that videos are pre-trimmed with short durations containing solely text-related content. However, in practice, videos are typically untrimmed in long durations with much more complicated background content. Therefore, in this paper, we focus on the more practical yet challenging task of Partially Relevant Video Retrieval (PRVR), which aims to retrieve partially relevant untrimmed videos with the given query. To tackle this task, we propose a novel framework that distills generalization knowledge from a powerful large-scale vision-language pre-trained model and transfers it to a lightweight, task-specific PRVR network. Specifically, we introduce a Dual Learning framework with Dynamic Knowledge Distillation (DL-DKD++), where a large teacher model provides supervision to a compact dual-branch student network. The student model comprises two branches: an inheritance branch that absorbs transferable knowledge from the teacher, and an exploration branch that learns task-specific information from the PRVR dataset to address domain gaps. To further enhance learning, we incorporate a dynamic soft-target construction mechanism. By replacing rigid hard-target supervision with adaptive soft targets that evolve during training, our method enables the model to better capture the fine-grained, partial relevance between videos and queries. Experiment results demonstrate that our proposed model achieves state-of-the-art performance on TVR, ActivityNet, and Charades-STA datasets for PRVR. The code is available at https://github.com/HuiGuanLab/DL-DKD.

Authors:Chenghanyu Zhang, Zekun Li, Peipei Li, Xing Cui, Shuhan Xia, Weixiang Yan, Yiqiao Zhang, Qianyu Zhuang
Title: SpineBench: Benchmarking Multimodal LLMs for Spinal Pathology Analysis
Abstract:
With the increasing integration of Multimodal Large Language Models (MLLMs) into the medical field, comprehensive evaluation of their performance in various medical domains becomes critical. However, existing benchmarks primarily assess general medical tasks, inadequately capturing performance in nuanced areas like the spine, which relies heavily on visual input. To address this, we introduce SpineBench, a comprehensive Visual Question Answering (VQA) benchmark designed for fine-grained analysis and evaluation of MLLMs in the spinal domain. SpineBench comprises 64,878 QA pairs from 40,263 spine images, covering 11 spinal diseases through two critical clinical tasks: spinal disease diagnosis and spinal lesion localization, both in multiple-choice format. SpineBench is built by integrating and standardizing image-label pairs from open-source spinal disease datasets, and samples challenging hard negative options for each VQA pair based on visual similarity (similar but not the same disease), simulating real-world challenging scenarios. We evaluate 12 leading MLLMs on SpineBench. The results reveal that these models exhibit poor performance in spinal tasks, highlighting limitations of current MLLM in the spine domain and guiding future improvements in spinal medicine applications. SpineBench is publicly available at https://zhangchenghanyu.github.io/SpineBench.github.io/.

Authors:Yuehui Li, Yahao Lu, Haoyuan Wu, Sen Zhang, Liang Lin, Yukai Shi
Title: Ivan-ISTD: Rethinking Cross-domain Heteroscedastic Noise Perturbations in Infrared Small Target Detection
Abstract:
In the multimedia domain, Infrared Small Target Detection (ISTD) plays a important role in drone-based multi-modality sensing. To address the dual challenges of cross-domain shift and heteroscedastic noise perturbations in ISTD, we propose a doubly wavelet-guided Invariance learning framework(Ivan-ISTD). In the first stage, we generate training samples aligned with the target domain using Wavelet-guided Cross-domain Synthesis. This wavelet-guided alignment machine accurately separates the target background through multi-frequency wavelet filtering. In the second stage, we introduce Real-domain Noise Invariance Learning, which extracts real noise characteristics from the target domain to build a dynamic noise library. The model learns noise invariance through self-supervised loss, thereby overcoming the limitations of distribution bias in traditional artificial noise modeling. Finally, we create the Dynamic-ISTD Benchmark, a cross-domain dynamic degradation dataset that simulates the distribution shifts encountered in real-world applications. Additionally, we validate the versatility of our method using other real-world datasets. Experimental results demonstrate that our approach outperforms existing state-of-the-art methods in terms of many quantitative metrics. In particular, Ivan-ISTD demonstrates excellent robustness in cross-domain scenarios. The code for this work can be found at: https://github.com/nanjin1/Ivan-ISTD.

Authors:Muammer Bay, Timo von Marcard, Dren Fazlija
Title: The Impact of Synthetic Data on Object Detection Model Performance: A Comparative Analysis with Real-World Data
Abstract:
Recent advances in generative AI, particularly in computer vision (CV), offer new opportunities to optimize workflows across industries, including logistics and manufacturing. However, many AI applications are limited by a lack of expertise and resources, which forces a reliance on general-purpose models. Success with these models often requires domain-specific data for fine-tuning, which can be costly and inefficient. Thus, using synthetic data for fine-tuning is a popular, cost-effective alternative to gathering real-world data. This work investigates the impact of synthetic data on the performance of object detection models, compared to models trained on real-world data only, specifically within the domain of warehouse logistics. To this end, we examined the impact of synthetic data generated using the NVIDIA Omniverse Replicator tool on the effectiveness of object detection models in real-world scenarios. It comprises experiments focused on pallet detection in a warehouse setting, utilizing both real and various synthetic dataset generation strategies. Our findings provide valuable insights into the practical applications of synthetic image data in computer vision, suggesting that a balanced integration of synthetic and real data can lead to robust and efficient object detection models.

Authors:Shingo Yokoi, Kento Sasaki, Yu Yamaguchi
Title: Hierarchical Reasoning with Vision-Language Models for Incident Reports from Dashcam Videos
Abstract:
Recent advances in end-to-end (E2E) autonomous driving have been enabled by training on diverse large-scale driving datasets, yet autonomous driving models still struggle in out-of-distribution (OOD) scenarios. The COOOL benchmark targets this gap by encouraging hazard understanding beyond closed taxonomies, and the 2COOOL challenge extends it to generating human-interpretable incident reports. We present a hierarchical reasoning framework for incident report generation from dashcam videos that integrates frame-level captioning, incident frame detection, and fine-grained reasoning within vision-language models (VLMs). We further improve factual accuracy and readability through model ensembling and a Blind A/B Scoring selection protocol. On the official 2COOOL open leaderboard, our method ranks 2nd among 29 teams and achieves the best CIDEr-D score, producing accurate and coherent incident narratives. These results indicate that hierarchical reasoning with VLMs is a promising direction for accident analysis and for broader understanding of safety-critical traffic events. The implementation and code are available at https://github.com/riron1206/kaggle-2COOOL-2nd-Place-Solution.

Authors:Ziyuan Luo, Yangyi Zhao, Ka Chun Cheung, Simon See, Renjie Wan
Title: ImageSentinel: Protecting Visual Datasets from Unauthorized Retrieval-Augmented Image Generation
Abstract:
The widespread adoption of Retrieval-Augmented Image Generation (RAIG) has raised significant concerns about the unauthorized use of private image datasets. While these systems have shown remarkable capabilities in enhancing generation quality through reference images, protecting visual datasets from unauthorized use in such systems remains a challenging problem. Traditional digital watermarking approaches face limitations in RAIG systems, as the complex feature extraction and recombination processes fail to preserve watermark signals during generation. To address these challenges, we propose ImageSentinel, a novel framework for protecting visual datasets in RAIG. Our framework synthesizes sentinel images that maintain visual consistency with the original dataset. These sentinels enable protection verification through randomly generated character sequences that serve as retrieval keys. To ensure seamless integration, we leverage vision-language models to generate the sentinel images. Experimental results demonstrate that ImageSentinel effectively detects unauthorized dataset usage while preserving generation quality for authorized applications. Code is available at https://github.com/luo-ziyuan/ImageSentinel.

Authors:Wenjie Li, Xiangyi Wang, Heng Guo, Guangwei Gao, Zhanyu Ma
Title: Self-Supervised Selective-Guided Diffusion Model for Old-Photo Face Restoration
Abstract:
Old-photo face restoration poses significant challenges due to compounded degradations such as breakage, fading, and severe blur. Existing pre-trained diffusion-guided methods either rely on explicit degradation priors or global statistical guidance, which struggle with localized artifacts or face color. We propose Self-Supervised Selective-Guided Diffusion (SSDiff), which leverages pseudo-reference faces generated by a pre-trained diffusion model under weak guidance. These pseudo-labels exhibit structurally aligned contours and natural colors, enabling region-specific restoration via staged supervision: structural guidance applied throughout the denoising process and color refinement in later steps, aligned with the coarse-to-fine nature of diffusion. By incorporating face parsing maps and scratch masks, our method selectively restores breakage regions while avoiding identity mismatch. We further construct VintageFace, a 300-image benchmark of real old face photos with varying degradation levels. SSDiff outperforms existing GAN-based and diffusion-based methods in perceptual quality, fidelity, and regional controllability. Code link: https://github.com/PRIS-CV/SSDiff.

Authors:Junfeng Ni, Yixin Chen, Zhifei Yang, Yu Liu, Ruijie Lu, Song-Chun Zhu, Siyuan Huang
Title: G4Splat: Geometry-Guided Gaussian Splatting with Generative Prior
Abstract:
Despite recent advances in leveraging generative prior from pre-trained diffusion models for 3D scene reconstruction, existing methods still face two critical limitations. First, due to the lack of reliable geometric supervision, they struggle to produce high-quality reconstructions even in observed regions, let alone in unobserved areas. Second, they lack effective mechanisms to mitigate multi-view inconsistencies in the generated images, leading to severe shape-appearance ambiguities and degraded scene geometry. In this paper, we identify accurate geometry as the fundamental prerequisite for effectively exploiting generative models to enhance 3D scene reconstruction. We first propose to leverage the prevalence of planar structures to derive accurate metric-scale depth maps, providing reliable supervision in both observed and unobserved regions. Furthermore, we incorporate this geometry guidance throughout the generative pipeline to improve visibility mask estimation, guide novel view selection, and enhance multi-view consistency when inpainting with video diffusion models, resulting in accurate and consistent scene completion. Extensive experiments on Replica, ScanNet++, and DeepBlending show that our method consistently outperforms existing baselines in both geometry and appearance reconstruction, particularly for unobserved regions. Moreover, our method naturally supports single-view inputs and unposed videos, with strong generalizability in both indoor and outdoor scenarios with practical real-world applicability. The project page is available at https://dali-jack.github.io/g4splat-web/.

Authors:Jianping Li, Dongyang Guo, Wenjie Li, Wei Zhao
Title: An Adaptive Edge-Guided Dual-Network Framework for Fast QR Code Motion Deblurring
Abstract:
Unlike general image deblurring that prioritizes perceptual quality, QR code deblurring focuses on ensuring successful decoding. QR codes are characterized by highly structured patterns with sharp edges, a robust prior for restoration. Yet existing deep learning methods rarely exploit these priors explicitly. To address this gap, we propose the Edge-Guided Attention Block (EGAB), which embeds explicit edge priors into a Transformer architecture. Based on EGAB, we develop Edge-Guided Restormer (EG-Restormer), an effective network that significantly boosts the decoding rate of severely blurred QR codes. For mildly blurred inputs, we design the Lightweight and Efficient Network (LENet) for fast deblurring. We further integrate these two networks into an Adaptive Dual-network (ADNet), which dynamically selects the suitable network based on input blur severity, making it ideal for resource-constrained mobile devices. Extensive experiments show that our EG-Restormer and ADNet achieve state-of-the-art performance with a competitive speed. Project page: https://github.com/leejianping/ADNet

Authors:Sandeep Mishra, Oindrila Saha, Alan C. Bovik
Title: VIDMP3: Video Editing by Representing Motion with Pose and Position Priors
Abstract:
Motion-preserved video editing is crucial for creators, particularly in scenarios that demand flexibility in both the structure and semantics of swapped objects. Despite its potential, this area remains underexplored. Existing diffusion-based editing methods excel in structure-preserving tasks, using dense guidance signals to ensure content integrity. While some recent methods attempt to address structure-variable editing, they often suffer from issues such as temporal inconsistency, subject identity drift, and the need for human intervention. To address these challenges, we introduce VidMP3, a novel approach that leverages pose and position priors to learn a generalized motion representation from source videos. Our method enables the generation of new videos that maintain the original motion while allowing for structural and semantic flexibility. Both qualitative and quantitative evaluations demonstrate the superiority of our approach over existing methods. The code will be made publicly available at https://github.com/sandeep-sm/VidMP3.

Authors:Hatem Ibrahem, Ahmed Salem, Qinmin Vivian Hu, Guanghui Wang
Title: PanoTPS-Net: Panoramic Room Layout Estimation via Thin Plate Spline Transformation
Abstract:
Accurately estimating the 3D layout of rooms is a crucial task in computer vision, with potential applications in robotics, augmented reality, and interior design. This paper proposes a novel model, PanoTPS-Net, to estimate room layout from a single panorama image. Leveraging a Convolutional Neural Network (CNN) and incorporating a Thin Plate Spline (TPS) spatial transformation, the architecture of PanoTPS-Net is divided into two stages: First, a convolutional neural network extracts the high-level features from the input images, allowing the network to learn the spatial parameters of the TPS transformation. Second, the TPS spatial transformation layer is generated to warp a reference layout to the required layout based on the predicted parameters. This unique combination empowers the model to properly predict room layouts while also generalizing effectively to both cuboid and non-cuboid layouts. Extensive experiments on publicly available datasets and comparisons with state-of-the-art methods demonstrate the effectiveness of the proposed method. The results underscore the model's accuracy in room layout estimation and emphasize the compatibility between the TPS transformation and panorama images. The robustness of the model in handling both cuboid and non-cuboid room layout estimation is evident with a 3DIoU value of 85.49, 86.16, 81.76, and 91.98 on PanoContext, Stanford-2D3D, Matterport3DLayout, and ZInD datasets, respectively. The source code is available at: https://github.com/HatemHosam/PanoTPS_Net.

Authors:Chengqi Duan, Kaiyue Sun, Rongyao Fang, Manyuan Zhang, Yan Feng, Ying Luo, Yufang Liu, Ke Wang, Peng Pei, Xunliang Cai, Hongsheng Li, Yi Ma, Xihui Liu
Title: CodePlot-CoT: Mathematical Visual Reasoning by Thinking with Code-Driven Images
Abstract:
Recent advances in Large Language Models (LLMs) and Vision Language Models (VLMs) have shown significant progress in mathematical reasoning, yet they still face a critical bottleneck with problems requiring visual assistance, such as drawing auxiliary lines or plotting functions to solve the problems. Most LLMs and VLMs are constrained to text-only reasoning chains, while multimodal unified models that can generate interleaved text and images lack the necessary precision and controllability for such tasks. To address this, we propose CodePlot-CoT, a code-driven Chain-of-Thought paradigm for "thinking with images" in mathematics. Our approach leverages the VLM to generate text reasoning as well as executable plotting code, which is then rendered into images as "visual thought", to solve mathematical problems. To achieve this, we first construct Math-VR, the first large-scale, bilingual dataset and benchmark for Mathematics problems with Visual Reasoning, comprising 178K samples. Second, to create high-quality training data, we develop a state-of-the-art image-to-code converter specialized for parsing complex mathematical figures into codes. Finally, using these training data, we train the CodePlot-CoT model for solving mathematical problems. Experimental results show that our model achieves up to 21% increase over base model on our new benchmark, fully validating the efficacy of our proposed code-driven reasoning paradigm. Our work opens a new direction for multimodal mathematical reasoning and provides the community with the first large-scale dataset, comprehensive benchmark, and strong approach for such problems. To facilitate future research, we make our datasets, code, and pretrained models publicly available at https://github.com/HKU-MMLab/Math-VR-CodePlot-CoT.

Authors:Haoran Feng, Dizhe Zhang, Xiangtai Li, Bo Du, Lu Qi
Title: DiT360: High-Fidelity Panoramic Image Generation via Hybrid Training
Abstract:
In this work, we propose DiT360, a DiT-based framework that performs hybrid training on perspective and panoramic data for panoramic image generation. For the issues of maintaining geometric fidelity and photorealism in generation quality, we attribute the main reason to the lack of large-scale, high-quality, real-world panoramic data, where such a data-centric view differs from prior methods that focus on model design. Basically, DiT360 has several key modules for inter-domain transformation and intra-domain augmentation, applied at both the pre-VAE image level and the post-VAE token level. At the image level, we incorporate cross-domain knowledge through perspective image guidance and panoramic refinement, which enhance perceptual quality while regularizing diversity and photorealism. At the token level, hybrid supervision is applied across multiple modules, which include circular padding for boundary continuity, yaw loss for rotational robustness, and cube loss for distortion awareness. Extensive experiments on text-to-panorama, inpainting, and outpainting tasks demonstrate that our method achieves better boundary consistency and image fidelity across eleven quantitative metrics. Our code is available at https://github.com/Insta360-Research-Team/DiT360.

Authors:Wei Huang, Yi Ge, Shuai Yang, Yicheng Xiao, Huizi Mao, Yujun Lin, Hanrong Ye, Sifei Liu, Ka Chun Cheung, Hongxu Yin, Yao Lu, Xiaojuan Qi, Song Han, Yukang Chen
Title: QeRL: Beyond Efficiency -- Quantization-enhanced Reinforcement Learning for LLMs
Abstract:
We propose QeRL, a Quantization-enhanced Reinforcement Learning framework for large language models (LLMs). While RL is essential for LLMs' reasoning capabilities, it is resource-intensive, requiring substantial GPU memory and long rollout durations. QeRL addresses these issues by combining NVFP4 quantization with Low-Rank Adaptation (LoRA), accelerating rollout phase of RL while reducing memory overhead. Beyond efficiency, our findings show that quantization noise increases policy entropy, enhancing exploration, and enabling the discovery of better strategies during RL. To further optimize exploration, QeRL introduces an Adaptive Quantization Noise (AQN) mechanism, which dynamically adjusts noise during training. Experiments demonstrate that QeRL delivers over 1.5 times speedup in the rollout phase. Moreover, this is the first framework to enable RL training of a 32B LLM on a single H100 80GB GPU, while delivering overall speedups for RL training. It also achieves faster reward growth and higher final accuracy than 16-bit LoRA and QLoRA, while matching the performance of full-parameter fine-tuning on mathematical benchmarks such as GSM8K (90.8%) and MATH 500 (77.4%) in the 7B model. These results establish QeRL as an efficient and effective framework for RL training in LLMs.

Authors:Chenghao Xiao, Hou Pong Chan, Hao Zhang, Weiwen Xu, Mahani Aljunied, Yu Rong
Title: Scaling Language-Centric Omnimodal Representation Learning
Abstract:
Recent multimodal embedding approaches leveraging multimodal large language models (MLLMs) fine-tuned with contrastive learning (CL) have shown promising results, yet the underlying reasons behind their superiority remain underexplored. This work argues that a crucial advantage of MLLM-based approaches stems from implicit cross-modal alignment achieved during generative pretraining, where the language decoder learns to exploit multimodal signals within a shared representation space for generating unimodal outputs. Through analysis of anisotropy and kernel similarity structure, we empirically confirm that latent alignment emerges within MLLM representations, allowing CL to serve as a lightweight refinement stage. Leveraging this insight, we propose a Language-Centric Omnimodal Embedding framework, termed LCO-Emb. Extensive experiments across diverse backbones and benchmarks demonstrate its effectiveness, achieving state-of-the-art performance across modalities. Furthermore, we identify a Generation-Representation Scaling Law (GRSL), showing that the representational capabilities gained through contrastive refinement scales positively with the MLLM's generative capabilities. This suggests that improving generative abilities evolves as an effective paradigm for enhancing representation quality. We provide a theoretical explanation of GRSL, which formally links the MLLM's generative quality to the upper bound on its representation performance, and validate it on a challenging, low-resource visual-document retrieval task, showing that continual generative pretraining before CL can further enhance the potential of a model's embedding capabilities. Codes, models, and resources are available at https://github.com/LCO-Embedding/LCO-Embedding.

Authors:Yinan Chen, Jiangning Zhang, Teng Hu, Yuxiang Zeng, Zhucun Xue, Qingdong He, Chengjie Wang, Yong Liu, Xiaobin Hu, Shuicheng Yan
Title: IVEBench: Modern Benchmark Suite for Instruction-Guided Video Editing Assessment
Abstract:
Instruction-guided video editing has emerged as a rapidly advancing research direction, offering new opportunities for intuitive content transformation while also posing significant challenges for systematic evaluation. Existing video editing benchmarks fail to support the evaluation of instruction-guided video editing adequately and further suffer from limited source diversity, narrow task coverage and incomplete evaluation metrics. To address the above limitations, we introduce IVEBench, a modern benchmark suite specifically designed for instruction-guided video editing assessment. IVEBench comprises a diverse database of 600 high-quality source videos, spanning seven semantic dimensions, and covering video lengths ranging from 32 to 1,024 frames. It further includes 8 categories of editing tasks with 35 subcategories, whose prompts are generated and refined through large language models and expert review. Crucially, IVEBench establishes a three-dimensional evaluation protocol encompassing video quality, instruction compliance and video fidelity, integrating both traditional metrics and multimodal large language model-based assessments. Extensive experiments demonstrate the effectiveness of IVEBench in benchmarking state-of-the-art instruction-guided video editing methods, showing its ability to provide comprehensive and human-aligned evaluation outcomes.

Authors:Feng Zhang, Haoyou Deng, Zhiqiang Li, Lida Li, Bin Xu, Qingbo Lu, Zisheng Cao, Minchen Wei, Changxin Gao, Nong Sang, Xiang Bai
Title: High-resolution Photo Enhancement in Real-time: A Laplacian Pyramid Network
Abstract:
Photo enhancement plays a crucial role in augmenting the visual aesthetics of a photograph. In recent years, photo enhancement methods have either focused on enhancement performance, producing powerful models that cannot be deployed on edge devices, or prioritized computational efficiency, resulting in inadequate performance for real-world applications. To this end, this paper introduces a pyramid network called LLF-LUT++, which integrates global and local operators through closed-form Laplacian pyramid decomposition and reconstruction. This approach enables fast processing of high-resolution images while also achieving excellent performance. Specifically, we utilize an image-adaptive 3D LUT that capitalizes on the global tonal characteristics of downsampled images, while incorporating two distinct weight fusion strategies to achieve coarse global image enhancement. To implement this strategy, we designed a spatial-frequency transformer weight predictor that effectively extracts the desired distinct weights by leveraging frequency features. Additionally, we apply local Laplacian filters to adaptively refine edge details in high-frequency components. After meticulously redesigning the network structure and transformer model, LLF-LUT++ not only achieves a 2.64 dB improvement in PSNR on the HDR+ dataset, but also further reduces runtime, with 4K resolution images processed in just 13 ms on a single GPU. Extensive experimental results on two benchmark datasets further show that the proposed approach performs favorably compared to state-of-the-art methods. The source code will be made publicly available at https://github.com/fengzhang427/LLF-LUT.

Authors:Yicheng Xu, Yue Wu, Jiashuo Yu, Ziang Yan, Tianxiang Jiang, Yinan He, Qingsong Zhao, Kai Chen, Yu Qiao, Limin Wang, Manabu Okumura, Yi Wang
Title: ExpVid: A Benchmark for Experiment Video Understanding & Reasoning
Abstract:
Multimodal Large Language Models (MLLMs) hold promise for accelerating scientific discovery by interpreting complex experimental procedures. However, their true capabilities are poorly understood, as existing benchmarks neglect the fine-grained and long-horizon nature of authentic laboratory work, especially in wet-lab settings. To bridge this gap, we introduce ExpVid, the first benchmark designed to systematically evaluate MLLMs on scientific experiment videos. Curated from peer-reviewed video publications, ExpVid features a new three-level task hierarchy that mirrors the scientific process: (1) Fine-grained Perception of tools, materials, and actions; (2) Procedural Understanding of step order and completeness; and (3) Scientific Reasoning that connects the full experiment to its published conclusions. Our vision-centric annotation pipeline, combining automated generation with multi-disciplinary expert validation, ensures that tasks require visual grounding. We evaluate 19 leading MLLMs on ExpVid and find that while they excel at coarse-grained recognition, they struggle with disambiguating fine details, tracking state changes over time, and linking experimental procedures to scientific outcomes. Our results reveal a notable performance gap between proprietary and open-source models, particularly in high-order reasoning. ExpVid not only provides a diagnostic tool but also charts a roadmap for developing MLLMs capable of becoming trustworthy partners in scientific experimentation.

Authors:Leonard Bruns, Axel Barroso-Laguna, Tommaso Cavallari, Áron Monszpart, Sowmya Munukutla, Victor Adrian Prisacariu, Eric Brachmann
Title: ACE-G: Improving Generalization of Scene Coordinate Regression Through Query Pre-Training
Abstract:
Scene coordinate regression (SCR) has established itself as a promising learning-based approach to visual relocalization. After mere minutes of scene-specific training, SCR models estimate camera poses of query images with high accuracy. Still, SCR methods fall short of the generalization capabilities of more classical feature-matching approaches. When imaging conditions of query images, such as lighting or viewpoint, are too different from the training views, SCR models fail. Failing to generalize is an inherent limitation of previous SCR frameworks, since their training objective is to encode the training views in the weights of the coordinate regressor itself. The regressor essentially overfits to the training views, by design. We propose to separate the coordinate regressor and the map representation into a generic transformer and a scene-specific map code. This separation allows us to pre-train the transformer on tens of thousands of scenes. More importantly, it allows us to train the transformer to generalize from mapping images to unseen query images during pre-training. We demonstrate on multiple challenging relocalization datasets that our method, ACE-G, leads to significantly increased robustness while keeping the computational footprint attractive.

Authors:Hongyu Zhu, Lin Chen, Mounim A. El-Yacoubi, Mingsheng Shang
Title: MS-Mix: Unveiling the Power of Mixup for Multimodal Sentiment Analysis
Abstract:
Multimodal Sentiment Analysis (MSA) aims to identify and interpret human emotions by integrating information from heterogeneous data sources such as text, video, and audio. While deep learning models have advanced in network architecture design, they remain heavily limited by scarce multimodal annotated data. Although Mixup-based augmentation improves generalization in unimodal tasks, its direct application to MSA introduces critical challenges: random mixing often amplifies label ambiguity and semantic inconsistency due to the lack of emotion-aware mixing mechanisms. To overcome these issues, we propose MS-Mix, an adaptive, emotion-sensitive augmentation framework that automatically optimizes sample mixing in multimodal settings. The key components of MS-Mix include: (1) a Sentiment-Aware Sample Selection (SASS) strategy that effectively prevents semantic confusion caused by mixing samples with contradictory emotions. (2) a Sentiment Intensity Guided (SIG) module using multi-head self-attention to compute modality-specific mixing ratios dynamically based on their respective emotional intensities. (3) a Sentiment Alignment Loss (SAL) that aligns the prediction distributions across modalities, and incorporates the Kullback-Leibler-based loss as an additional regularization term to train the emotion intensity predictor and the backbone network jointly. Extensive experiments on three benchmark datasets with six state-of-the-art backbones confirm that MS-Mix consistently outperforms existing methods, establishing a new standard for robust multimodal sentiment augmentation. The source code is available at: https://github.com/HongyuZhu-s/MS-Mix.

Authors:Kuanning Wang, Yongchong Gu, Yuqian Fu, Zeyu Shangguan, Sicheng He, Xiangyang Xue, Yanwei Fu, Daniel Seita
Title: SCOOP'D: Learning Mixed-Liquid-Solid Scooping via Sim2Real Generative Policy
Abstract:
Scooping items with tools such as spoons and ladles is common in daily life, ranging from assistive feeding to retrieving items from environmental disaster sites. However, developing a general and autonomous robotic scooping policy is challenging since it requires reasoning about complex tool-object interactions. Furthermore, scooping often involves manipulating deformable objects, such as granular media or liquids, which is challenging due to their infinite-dimensional configuration spaces and complex dynamics. We propose a method, SCOOP'D, which uses simulation from OmniGibson (built on NVIDIA Omniverse) to collect scooping demonstrations using algorithmic procedures that rely on privileged state information. Then, we use generative policies via diffusion to imitate demonstrations from observational input. We directly apply the learned policy in diverse real-world scenarios, testing its performance on various item quantities, item characteristics, and container types. In zero-shot deployment, our method demonstrates promising results across 465 trials in diverse scenarios, including objects of different difficulty levels that we categorize as "Level 1" and "Level 2." SCOOP'D outperforms all baselines and ablations, suggesting that this is a promising approach to acquiring robotic scooping skills. Project page is at https://scoopdiff.github.io/.

Authors:Aniket Gupta, Hanhui Wang, Charles Saunders, Aruni RoyChowdhury, Hanumant Singh, Huaizu Jiang
Title: SNAP: Towards Segmenting Anything in Any Point Cloud
Abstract:
Interactive 3D point cloud segmentation enables efficient annotation of complex 3D scenes through user-guided prompts. However, current approaches are typically restricted in scope to a single domain (indoor or outdoor), and to a single form of user interaction (either spatial clicks or textual prompts). Moreover, training on multiple datasets often leads to negative transfer, resulting in domain-specific tools that lack generalizability. To address these limitations, we present \textbf{SNAP} (\textbf{S}egment a\textbf{N}ything in \textbf{A}ny \textbf{P}oint cloud), a unified model for interactive 3D segmentation that supports both point-based and text-based prompts across diverse domains. Our approach achieves cross-domain generalizability by training on 7 datasets spanning indoor, outdoor, and aerial environments, while employing domain-adaptive normalization to prevent negative transfer. For text-prompted segmentation, we automatically generate mask proposals without human intervention and match them against CLIP embeddings of textual queries, enabling both panoptic and open-vocabulary segmentation. Extensive experiments demonstrate that SNAP consistently delivers high-quality segmentation results. We achieve state-of-the-art performance on 8 out of 9 zero-shot benchmarks for spatial-prompted segmentation and demonstrate competitive results on all 5 text-prompted benchmarks. These results show that a unified model can match or exceed specialized domain-specific approaches, providing a practical tool for scalable 3D annotation. Project page is at, https://neu-vi.github.io/SNAP/

Authors:Kedi Ying, Ruiping Liu, Chongyan Chen, Mingzhe Tao, Hao Shi, Kailun Yang, Jiaming Zhang, Rainer Stiefelhagen
Title: mmWalk: Towards Multi-modal Multi-view Walking Assistance
Abstract:
Walking assistance in extreme or complex environments remains a significant challenge for people with blindness or low vision (BLV), largely due to the lack of a holistic scene understanding. Motivated by the real-world needs of the BLV community, we build mmWalk, a simulated multi-modal dataset that integrates multi-view sensor and accessibility-oriented features for outdoor safe navigation. Our dataset comprises 120 manually controlled, scenario-categorized walking trajectories with 62k synchronized frames. It contains over 559k panoramic images across RGB, depth, and semantic modalities. Furthermore, to emphasize real-world relevance, each trajectory involves outdoor corner cases and accessibility-specific landmarks for BLV users. Additionally, we generate mmWalkVQA, a VQA benchmark with over 69k visual question-answer triplets across 9 categories tailored for safe and informed walking assistance. We evaluate state-of-the-art Vision-Language Models (VLMs) using zero- and few-shot settings and found they struggle with our risk assessment and navigational tasks. We validate our mmWalk-finetuned model on real-world datasets and show the effectiveness of our dataset for advancing multi-modal walking assistance.

Authors:Ruiping Liu, Junwei Zheng, Yufan Chen, Zirui Wang, Kunyu Peng, Kailun Yang, Jiaming Zhang, Marc Pollefeys, Rainer Stiefelhagen
Title: Situat3DChange: Situated 3D Change Understanding Dataset for Multimodal Large Language Model
Abstract:
Physical environments and circumstances are fundamentally dynamic, yet current 3D datasets and evaluation benchmarks tend to concentrate on either dynamic scenarios or dynamic situations in isolation, resulting in incomplete comprehension. To overcome these constraints, we introduce Situat3DChange, an extensive dataset supporting three situation-aware change understanding tasks following the perception-action model: 121K question-answer pairs, 36K change descriptions for perception tasks, and 17K rearrangement instructions for the action task. To construct this large-scale dataset, Situat3DChange leverages 11K human observations of environmental changes to establish shared mental models and shared situational awareness for human-AI collaboration. These observations, enriched with egocentric and allocentric perspectives as well as categorical and coordinate spatial relations, are integrated using an LLM to support understanding of situated changes. To address the challenge of comparing pairs of point clouds from the same scene with minor changes, we propose SCReasoner, an efficient 3D MLLM approach that enables effective point cloud comparison with minimal parameter overhead and no additional tokens required for the language decoder. Comprehensive evaluation on Situat3DChange tasks highlights both the progress and limitations of MLLMs in dynamic scene and situation understanding. Additional experiments on data scaling and cross-domain transfer demonstrate the task-agnostic effectiveness of using Situat3DChange as a training dataset for MLLMs.

Authors:Qing Li, Huifang Feng, Xun Gong, Yu-Shen Liu
Title: VA-GS: Enhancing the Geometric Representation of Gaussian Splatting via View Alignment
Abstract:
3D Gaussian Splatting has recently emerged as an efficient solution for high-quality and real-time novel view synthesis. However, its capability for accurate surface reconstruction remains underexplored. Due to the discrete and unstructured nature of Gaussians, supervision based solely on image rendering loss often leads to inaccurate geometry and inconsistent multi-view alignment. In this work, we propose a novel method that enhances the geometric representation of 3D Gaussians through view alignment (VA). Specifically, we incorporate edge-aware image cues into the rendering loss to improve surface boundary delineation. To enforce geometric consistency across views, we introduce a visibility-aware photometric alignment loss that models occlusions and encourages accurate spatial relationships among Gaussians. To further mitigate ambiguities caused by lighting variations, we incorporate normal-based constraints to refine the spatial orientation of Gaussians and improve local surface estimation. Additionally, we leverage deep image feature embeddings to enforce cross-view consistency, enhancing the robustness of the learned geometry under varying viewpoints and illumination. Extensive experiments on standard benchmarks demonstrate that our method achieves state-of-the-art performance in both surface reconstruction and novel view synthesis. The source code is available at https://github.com/LeoQLi/VA-GS.

Authors:Tianpei Zhang, Jufeng Zhao, Yiming Zhu, Guangmang Cui
Title: Coupled Degradation Modeling and Fusion: A VLM-Guided Degradation-Coupled Network for Degradation-Aware Infrared and Visible Image Fusion
Abstract:
Existing Infrared and Visible Image Fusion (IVIF) methods typically assume high-quality inputs. However, when handing degraded images, these methods heavily rely on manually switching between different pre-processing techniques. This decoupling of degradation handling and image fusion leads to significant performance degradation. In this paper, we propose a novel VLM-Guided Degradation-Coupled Fusion network (VGDCFusion), which tightly couples degradation modeling with the fusion process and leverages vision-language models (VLMs) for degradation-aware perception and guided suppression. Specifically, the proposed Specific-Prompt Degradation-Coupled Extractor (SPDCE) enables modality-specific degradation awareness and establishes a joint modeling of degradation suppression and intra-modal feature extraction. In parallel, the Joint-Prompt Degradation-Coupled Fusion (JPDCF) facilitates cross-modal degradation perception and couples residual degradation filtering with complementary cross-modal feature fusion. Extensive experiments demonstrate that our VGDCFusion significantly outperforms existing state-of-the-art fusion approaches under various degraded image scenarios. Our code is available at https://github.com/Lmmh058/VGDCFusion.

Authors:Yijun Hu, Bing Fan, Xin Gu, Haiqing Ren, Dongfang Liu, Heng Fan, Libo Zhang
Title: Robust Ego-Exo Correspondence with Long-Term Memory
Abstract:
Establishing object-level correspondence between egocentric and exocentric views is essential for intelligent assistants to deliver precise and intuitive visual guidance. However, this task faces numerous challenges, including extreme viewpoint variations, occlusions, and the presence of small objects. Existing approaches usually borrow solutions from video object segmentation models, but still suffer from the aforementioned challenges. Recently, the Segment Anything Model 2 (SAM 2) has shown strong generalization capabilities and excellent performance in video object segmentation. Yet, when simply applied to the ego-exo correspondence (EEC) task, SAM 2 encounters severe difficulties due to ineffective ego-exo feature fusion and limited long-term memory capacity, especially for long videos. Addressing these problems, we propose a novel EEC framework based on SAM 2 with long-term memories by presenting a dual-memory architecture and an adaptive feature routing module inspired by Mixture-of-Experts (MoE). Compared to SAM 2, our approach features (i) a Memory-View MoE module which consists of a dual-branch routing mechanism to adaptively assign contribution weights to each expert feature along both channel and spatial dimensions, and (ii) a dual-memory bank system with a simple yet effective compression strategy to retain critical long-term information while eliminating redundancy. In the extensive experiments on the challenging EgoExo4D benchmark, our method, dubbed LM-EEC, achieves new state-of-the-art results and significantly outperforms existing methods and the SAM 2 baseline, showcasing its strong generalization across diverse scenarios. Our code and model are available at https://github.com/juneyeeHu/LM-EEC.

Authors:Wenyuan Zhang, Jimin Tang, Weiqi Zhang, Yi Fang, Yu-Shen Liu, Zhizhong Han
Title: MaterialRefGS: Reflective Gaussian Splatting with Multi-view Consistent Material Inference
Abstract:
Modeling reflections from 2D images is essential for photorealistic rendering and novel view synthesis. Recent approaches enhance Gaussian primitives with reflection-related material attributes to enable physically based rendering (PBR) with Gaussian Splatting. However, the material inference often lacks sufficient constraints, especially under limited environment modeling, resulting in illumination aliasing and reduced generalization. In this work, we revisit the problem from a multi-view perspective and show that multi-view consistent material inference with more physically-based environment modeling is key to learning accurate reflections with Gaussian Splatting. To this end, we enforce 2D Gaussians to produce multi-view consistent material maps during deferred shading. We also track photometric variations across views to identify highly reflective regions, which serve as strong priors for reflection strength terms. To handle indirect illumination caused by inter-object occlusions, we further introduce an environment modeling strategy through ray tracing with 2DGS, enabling photorealistic rendering of indirect radiance. Experiments on widely used benchmarks show that our method faithfully recovers both illumination and geometry, achieving state-of-the-art rendering quality in novel views synthesis.

Authors:Zhao Huang, Boyang Sun, Alexandros Delitzas, Jiaqi Chen, Marc Pollefeys
Title: REACT3D: Recovering Articulations for Interactive Physical 3D Scenes
Abstract:
Interactive 3D scenes are increasingly vital for embodied intelligence, yet existing datasets remain limited due to the labor-intensive process of annotating part segmentation, kinematic types, and motion trajectories. We present REACT3D, a scalable zero-shot framework that converts static 3D scenes into simulation-ready interactive replicas with consistent geometry, enabling direct use in diverse downstream tasks. Our contributions include: (i) openable-object detection and segmentation to extract candidate movable parts from static scenes, (ii) articulation estimation that infers joint types and motion parameters, (iii) hidden-geometry completion followed by interactive object assembly, and (iv) interactive scene integration in widely supported formats to ensure compatibility with standard simulation platforms. We achieve state-of-the-art performance on detection/segmentation and articulation metrics across diverse indoor scenes, demonstrating the effectiveness of our framework and providing a practical foundation for scalable interactive scene generation, thereby lowering the barrier to large-scale research on articulated scene understanding. Our project page is \textit{\hypersetup{urlcolor=black}\href{https://react3d.github.io/}{react3d.github.io}}.

Authors:Weixuan Li, Quanjun Li, Guang Yu, Song Yang, Zimeng Li, Chi-Man Pun, Yupeng Liu, Xuhang Chen
Title: DTEA: Dynamic Topology Weaving and Instability-Driven Entropic Attenuation for Medical Image Segmentation
Abstract:
In medical image segmentation, skip connections are used to merge global context and reduce the semantic gap between encoder and decoder. Current methods often struggle with limited structural representation and insufficient contextual modeling, affecting generalization in complex clinical scenarios. We propose the DTEA model, featuring a new skip connection framework with the Semantic Topology Reconfiguration (STR) and Entropic Perturbation Gating (EPG) modules. STR reorganizes multi-scale semantic features into a dynamic hypergraph to better model cross-resolution anatomical dependencies, enhancing structural and semantic representation. EPG assesses channel stability after perturbation and filters high-entropy channels to emphasize clinically important regions and improve spatial attention. Extensive experiments on three benchmark datasets show our framework achieves superior segmentation accuracy and better generalization across various clinical settings. The code is available at \href{https://github.com/LWX-Research/DTEA}{https://github.com/LWX-Research/DTEA}.

Authors:Rohit Gupta, Anirban Roy, Claire Christensen, Sujeong Kim, Sarah Gerard, Madeline Cincebeaux, Ajay Divakaran, Todd Grindal, Mubarak Shah
Title: Class Prototypes based Contrastive Learning for Classifying Multi-Label and Fine-Grained Educational Videos
Abstract:
The recent growth in the consumption of online media by children during early childhood necessitates data-driven tools enabling educators to filter out appropriate educational content for young learners. This paper presents an approach for detecting educational content in online videos. We focus on two widely used educational content classes: literacy and math. For each class, we choose prominent codes (sub-classes) based on the Common Core Standards. For example, literacy codes include `letter names', `letter sounds', and math codes include `counting', `sorting'. We pose this as a fine-grained multilabel classification problem as videos can contain multiple types of educational content and the content classes can get visually similar (e.g., `letter names' vs `letter sounds'). We propose a novel class prototypes based supervised contrastive learning approach that can handle fine-grained samples associated with multiple labels. We learn a class prototype for each class and a loss function is employed to minimize the distances between a class prototype and the samples from the class. Similarly, distances between a class prototype and the samples from other classes are maximized. As the alignment between visual and audio cues are crucial for effective comprehension, we consider a multimodal transformer network to capture the interaction between visual and audio cues in videos while learning the embedding for videos. For evaluation, we present a dataset, APPROVE, employing educational videos from YouTube labeled with fine-grained education classes by education researchers. APPROVE consists of 193 hours of expert-annotated videos with 19 classes. The proposed approach outperforms strong baselines on APPROVE and other benchmarks such as Youtube-8M, and COIN. The dataset is available at https://github.com/rohit-gupta/MMContrast/tree/main/APPROVE

Authors:Shengming Yuan, Xinyu Lyu, Shuailong Wang, Beitao Chen, Jingkuan Song, Lianli Gao
Title: FlexAC: Towards Flexible Control of Associative Reasoning in Multimodal Large Language Models
Abstract:
Multimodal large language models (MLLMs) face an inherent trade-off between faithfulness and creativity, as different tasks require varying degrees of associative reasoning. However, existing methods lack the flexibility to modulate this reasoning strength, limiting MLLMs' adaptability across factual and creative scenarios. To bridge this gap, we propose equipping MLLMs with mechanisms that enable flexible control over associative reasoning. We begin by investigating the internal mechanisms underlying associative behavior in MLLMs and find that: (1) middle layers play a pivotal role in shaping model's associative tendencies, (2) modifying representations in these layers effectively regulates associative reasoning strength, and (3) hallucinations can be exploited to derive steering vectors that guide this modulation. Building on these findings, we introduce Flexible Association Control (FlexAC), a lightweight and training-free framework for modulating associative behavior in MLLMs. FlexAC first induces hallucination-guided intermediate representations to encode associative directions. Then, it selects high-association instances to construct effective associative steering vectors, whose strengths are adaptively calibrated to balance creative guidance with output stability. Finally, recognizing the multi-dimensional nature of associative reasoning, FlexAC incorporates task-specific associative vectors derived from a forward pass on a few target-domain samples, enabling models to follow diverse associative directions and better adapt to creative tasks. Notably, our method achieves up to a 5.8x improvement in creativity on Creation-MMBench and a 29% reduction in hallucination rate on CHAIR, surpassing existing baselines and demonstrating its effectiveness in enabling flexible control over associative reasoning in MLLMs. Our code is available at https://github.com/ylhz/FlexAC.

Authors:Zhenyu Lu, Liupeng Li, Jinpeng Wang, Yan Feng, Bin Chen, Ke Chen, Yaowei Wang
Title: CoPRS: Learning Positional Prior from Chain-of-Thought for Reasoning Segmentation
Abstract:
Existing works on reasoning segmentation either connect hidden features from a language model directly to a mask decoder or represent positions in text, which limits interpretability and semantic detail. To solve this, we present CoPRS, a Multi-modal Chain-of-Thought (MCoT)-based positional perception model that bridges language reasoning to segmentation through a differentiable and interpretable positional prior instantiated as a heatmap. By making the reasoning process clear via MCoT and expressing it as a dense, differentiable heatmap, this interface enhances interpretability and diagnostic analysis and yields more concentrated evidence on the target. A learnable concentration token aggregates features of the image and reasoning text to generate this positional prior, which is decoded to precise masks through a lightweight decoder, providing a direct connection between reasoning and segmentation. Across the RefCOCO series and ReasonSeg, CoPRS matches or surpasses the best reported metrics on each standard split under comparable protocols, with performance at or above prior state of the art across both validation and test partitions. Extensive experiments reveal that the quality of the heatmap strongly influences the resulting mask quality, supporting a consistent association between the reasoning output and downstream mask generation. Collectively, these findings support the utility of this paradigm in bridging reasoning and segmentation and show advantages in concentration driven by reasoning and predicting masks more precisely. Code, checkpoints and logs are released at https://github.com/ZhenyuLU-Heliodore/CoPRS.git.

Authors:Ans Munir, Faisal Z. Qureshi, Mohsen Ali, Muhammad Haris Khan
Title: Compositional Zero-Shot Learning: A Survey
Abstract:
Compositional Zero-Shot Learning (CZSL) is a critical task in computer vision that enables models to recognize unseen combinations of known attributes and objects during inference, addressing the combinatorial challenge of requiring training data for every possible composition. This is particularly challenging because the visual appearance of primitives is highly contextual; for example, ``small'' cats appear visually distinct from ``older'' ones, and ``wet'' cars differ significantly from ``wet'' cats. Effectively modeling this contextuality and the inherent compositionality is crucial for robust compositional zero-shot recognition. This paper presents, to our knowledge, the first comprehensive survey specifically focused on Compositional Zero-Shot Learning. We systematically review the state-of-the-art CZSL methods, introducing a taxonomy grounded in disentanglement, with four families of approaches: no explicit disentanglement, textual disentanglement, visual disentanglement, and cross-modal disentanglement. We provide a detailed comparative analysis of these methods, highlighting their core advantages and limitations in different problem settings, such as closed-world and open-world CZSL. Finally, we identify the most significant open challenges and outline promising future research directions. This survey aims to serve as a foundational resource to guide and inspire further advancements in this fascinating and important field. Papers studied in this survey with their official code are available on our github: https://github.com/ans92/Compositional-Zero-Shot-Learning

Authors:Hongxiang Li, Yaowei Li, Bin Lin, Yuwei Niu, Yuhang Yang, Xiaoshuang Huang, Jiayin Cai, Xiaolong Jiang, Yao Hu, Long Chen
Title: GIR-Bench: Versatile Benchmark for Generating Images with Reasoning
Abstract:
Unified multimodal models integrate the reasoning capacity of large language models with both image understanding and generation, showing great promise for advanced multimodal intelligence. However, the community still lacks a rigorous reasoning-centric benchmark to systematically evaluate the alignment between understanding and generation, and their generalization potential in complex visual tasks. To this end, we introduce \textbf{GIR-Bench}, a comprehensive benchmark that evaluates unified models across three complementary perspectives. Firstly, we investigate understanding-generation consistency (GIR-Bench-UGC), asking whether models can consistently leverage the same knowledge in both understanding and generation tasks. Secondly, we investigate whether models can perform reasoning-centric text-to-image generation that requires applying logical constraints and implicit knowledge to generate faithful visual content (GIR-Bench-T2I). Thirdly, we evaluate whether models can handle multi-step reasoning in editing (GIR-Bench-Edit). For each subset, we carefully design different task-specific evaluation pipelines tailored for each task. This enables fine-grained and interpretable evaluation while mitigating biases from the prevalent MLLM-as-a-Judge paradigm. Extensive ablations over various unified models and generation-only systems have shown that: Although unified models are more capable of reasoning-driven visual tasks, they still exhibit a persistent gap between understanding and generation. The data and code for GIR-Bench are available at \href{https://hkust-longgroup.github.io/GIR-Bench}{https://hkust-longgroup.github.io/GIR-Bench}.

Authors:Ruihang Xu, Dewei Zhou, Fan Ma, Yi Yang
Title: ContextGen: Contextual Layout Anchoring for Identity-Consistent Multi-Instance Generation
Abstract:
Multi-instance image generation (MIG) remains a significant challenge for modern diffusion models due to key limitations in achieving precise control over object layout and preserving the identity of multiple distinct subjects. To address these limitations, we introduce ContextGen, a novel Diffusion Transformer framework for multi-instance generation that is guided by both layout and reference images. Our approach integrates two key technical contributions: a Contextual Layout Anchoring (CLA) mechanism that incorporates the composite layout image into the generation context to robustly anchor the objects in their desired positions, and Identity Consistency Attention (ICA), an innovative attention mechanism that leverages contextual reference images to ensure the identity consistency of multiple instances. Recognizing the lack of large-scale, hierarchically-structured datasets for this task, we introduce IMIG-100K, the first dataset with detailed layout and identity annotations. Extensive experiments demonstrate that ContextGen sets a new state-of-the-art, outperforming existing methods in control precision, identity fidelity, and overall visual quality.

Authors:Huanjin Yao, Ruifei Zhang, Jiaxing Huang, Jingyi Zhang, Yibo Wang, Bo Fang, Ruolin Zhu, Yongcheng Jing, Shunyu Liu, Guanbin Li, Dacheng Tao
Title: A Survey on Agentic Multimodal Large Language Models
Abstract:
With the recent emergence of revolutionary autonomous agentic systems, research community is witnessing a significant shift from traditional static, passive, and domain-specific AI agents toward more dynamic, proactive, and generalizable agentic AI. Motivated by the growing interest in agentic AI and its potential trajectory toward AGI, we present a comprehensive survey on Agentic Multimodal Large Language Models (Agentic MLLMs). In this survey, we explore the emerging paradigm of agentic MLLMs, delineating their conceptual foundations and distinguishing characteristics from conventional MLLM-based agents. We establish a conceptual framework that organizes agentic MLLMs along three fundamental dimensions: (i) Agentic internal intelligence functions as the system's commander, enabling accurate long-horizon planning through reasoning, reflection, and memory; (ii) Agentic external tool invocation, whereby models proactively use various external tools to extend their problem-solving capabilities beyond their intrinsic knowledge; and (iii) Agentic environment interaction further situates models within virtual or physical environments, allowing them to take actions, adapt strategies, and sustain goal-directed behavior in dynamic real-world scenarios. To further accelerate research in this area for the community, we compile open-source training frameworks, training and evaluation datasets for developing agentic MLLMs. Finally, we review the downstream applications of agentic MLLMs and outline future research directions for this rapidly evolving field. To continuously track developments in this rapidly evolving field, we will also actively update a public repository at https://github.com/HJYao00/Awesome-Agentic-MLLMs.

Authors:Namhoon Kim, Sara Fridovich-Keil
Title: Towards Distribution-Shift Uncertainty Estimation for Inverse Problems with Generative Priors
Abstract:
Generative models have shown strong potential as data-driven priors for solving inverse problems such as reconstructing medical images from undersampled measurements. While these priors improve reconstruction quality with fewer measurements, they risk hallucinating features when test images lie outside the training distribution. Existing uncertainty quantification methods in this setting (i) require an in-distribution calibration dataset, which may not be available, (ii) provide heuristic rather than statistical estimates, or (iii) quantify uncertainty from model capacity or limited measurements rather than distribution shift. We propose an instance-level, calibration-free uncertainty indicator that is sensitive to distribution shift, requires no knowledge of the training distribution, and incurs no retraining cost. Our key hypothesis is that reconstructions of in-distribution images remain stable under random measurement variations, while reconstructions of out-of-distribution (OOD) images exhibit greater instability. We use this stability as a proxy for detecting distribution shift. Our proposed OOD indicator is efficiently computable for any computational imaging inverse problem; we demonstrate it on tomographic reconstruction of MNIST digits, where a learned proximal network trained only on digit "0" is evaluated on all ten digits. Reconstructions of OOD digits show higher variability and correspondingly higher reconstruction error, validating this indicator. These results suggest a deployment strategy that pairs generative priors with lightweight guardrails, enabling aggressive measurement reduction for in-distribution cases while automatically warning when priors are applied out of distribution.

Authors:Zhaofang Qian, Hardy Chen, Zeyu Wang, Li Zhang, Zijun Wang, Xiaoke Huang, Hui Liu, Xianfeng Tang, Zeyu Zheng, Haoqin Tu, Cihang Xie, Yuyin Zhou
Title: Where on Earth? A Vision-Language Benchmark for Probing Model Geolocation Skills Across Scales
Abstract:
Vision-language models (VLMs) have advanced rapidly, yet their capacity for image-grounded geolocation in open-world conditions, a task that is challenging and of demand in real life, has not been comprehensively evaluated. We present EarthWhere, a comprehensive benchmark for VLM image geolocation that evaluates visual recognition, step-by-step reasoning, and evidence use. EarthWhere comprises 810 globally distributed images across two complementary geolocation scales: WhereCountry (i.e., 500 multiple-choice question-answering, with country-level answer and panoramas) and WhereStreet (i.e., 310 fine-grained street-level identification tasks requiring multi-step reasoning with optional web search). For evaluation, we adopt the final-prediction metrics: location accuracies within k km (Acc@k) for coordinates and hierarchical path scores for textual localization. Beyond this, we propose to explicitly score intermediate reasoning chains using human-verified key visual clues and a Shapley-reweighted thinking score that attributes credit to each clue's marginal contribution. We benchmark 13 state-of-the-art VLMs with web searching tools on our EarthWhere and report different types of final answer accuracies as well as the calibrated model thinking scores. Overall, Gemini-2.5-Pro achieves the best average accuracy at 56.32%, while the strongest open-weight model, GLM-4.5V, reaches 34.71%. We reveal that web search and reasoning do not guarantee improved performance when visual clues are limited, and models exhibit regional biases, achieving up to 42.7% higher scores in certain areas than others. These findings highlight not only the promise but also the persistent challenges of models to mitigate bias and achieve robust, fine-grained localization. We open-source our benchmark at https://github.com/UCSC-VLAA/EarthWhere.

Authors:Soroush Mehraban, Andrea Iaboni, Babak Taati
Title: FastHMR: Accelerating Human Mesh Recovery via Token and Layer Merging with Diffusion Decoding
Abstract:
Recent transformer-based models for 3D Human Mesh Recovery (HMR) have achieved strong performance but often suffer from high computational cost and complexity due to deep transformer architectures and redundant tokens. In this paper, we introduce two HMR-specific merging strategies: Error-Constrained Layer Merging (ECLM) and Mask-guided Token Merging (Mask-ToMe). ECLM selectively merges transformer layers that have minimal impact on the Mean Per Joint Position Error (MPJPE), while Mask-ToMe focuses on merging background tokens that contribute little to the final prediction. To further address the potential performance drop caused by merging, we propose a diffusion-based decoder that incorporates temporal context and leverages pose priors learned from large-scale motion capture datasets. Experiments across multiple benchmarks demonstrate that our method achieves up to 2.3x speed-up while slightly improving performance over the baseline.

Authors:Yuan Xu, Zimu Zhang, Xiaoxuan Ma, Wentao Zhu, Yu Qiao, Yizhou Wang
Title: Seeing My Future: Predicting Situated Interaction Behavior in Virtual Reality
Abstract:
Virtual and augmented reality systems increasingly demand intelligent adaptation to user behaviors for enhanced interaction experiences. Achieving this requires accurately understanding human intentions and predicting future situated behaviors - such as gaze direction and object interactions - which is vital for creating responsive VR/AR environments and applications like personalized assistants. However, accurate behavioral prediction demands modeling the underlying cognitive processes that drive human-environment interactions. In this work, we introduce a hierarchical, intention-aware framework that models human intentions and predicts detailed situated behaviors by leveraging cognitive mechanisms. Given historical human dynamics and the observation of scene contexts, our framework first identifies potential interaction targets and forecasts fine-grained future behaviors. We propose a dynamic Graph Convolutional Network (GCN) to effectively capture human-environment relationships. Extensive experiments on challenging real-world benchmarks and live VR environment demonstrate the effectiveness of our approach, achieving superior performance across all metrics and enabling practical applications for proactive VR systems that anticipate user behaviors and adapt virtual environments accordingly.

Authors:Shelly Golan, Yotam Nitzan, Zongze Wu, Or Patashnik
Title: VLM-Guided Adaptive Negative Prompting for Creative Generation
Abstract:
Creative generation is the synthesis of new, surprising, and valuable samples that reflect user intent yet cannot be envisioned in advance. This task aims to extend human imagination, enabling the discovery of visual concepts that exist in the unexplored spaces between familiar domains. While text-to-image diffusion models excel at rendering photorealistic scenes that faithfully match user prompts, they still struggle to generate genuinely novel content. Existing approaches to enhance generative creativity either rely on interpolation of image features, which restricts exploration to predefined categories, or require time-intensive procedures such as embedding optimization or model fine-tuning. We propose VLM-Guided Adaptive Negative-Prompting, a training-free, inference-time method that promotes creative image generation while preserving the validity of the generated object. Our approach utilizes a vision-language model (VLM) that analyzes intermediate outputs of the generation process and adaptively steers it away from conventional visual concepts, encouraging the emergence of novel and surprising outputs. We evaluate creativity through both novelty and validity, using statistical metrics in the CLIP embedding space. Through extensive experiments, we show consistent gains in creative novelty with negligible computational overhead. Moreover, unlike existing methods that primarily generate single objects, our approach extends to complex scenarios, such as generating coherent sets of creative objects and preserving creativity within elaborate compositional prompts. Our method integrates seamlessly into existing diffusion pipelines, offering a practical route to producing creative outputs that venture beyond the constraints of textual descriptions.

Authors:Yuxiang Luo, Qing Xu, Hai Huang, Yuqi Ouyang, Zhen Chen, Wenting Duan
Title: MSM-Seg: A Modality-and-Slice Memory Framework with Category-Agnostic Prompting for Multi-Modal Brain Tumor Segmentation
Abstract:
Multi-modal brain tumor segmentation is critical for clinical diagnosis, and it requires accurate identification of distinct internal anatomical subregions. While the recent prompt-based segmentation paradigms enable interactive experiences for clinicians, existing methods ignore cross-modal correlations and rely on labor-intensive category-specific prompts, limiting their applicability in real-world scenarios. To address these issues, we propose a MSM-Seg framework for multi-modal brain tumor segmentation. The MSM-Seg introduces a novel dual-memory segmentation paradigm that synergistically integrates multi-modal and inter-slice information with the efficient category-agnostic prompt for brain tumor understanding. To this end, we first devise a modality-and-slice memory attention (MSMA) to exploit the cross-modal and inter-slice relationships among the input scans. Then, we propose a multi-scale category-agnostic prompt encoder (MCP-Encoder) to provide tumor region guidance for decoding. Moreover, we devise a modality-adaptive fusion decoder (MF-Decoder) that leverages the complementary decoding information across different modalities to improve segmentation accuracy. Extensive experiments on different MRI datasets demonstrate that our MSM-Seg framework outperforms state-of-the-art methods in multi-modal metastases and glioma tumor segmentation. The code is available at https://github.com/xq141839/MSM-Seg.

Authors:Gaojian Wang, Feng Lin, Tong Wu, Zhisheng Yan, Kui Ren
Title: Scalable Face Security Vision Foundation Model for Deepfake, Diffusion, and Spoofing Detection
Abstract:
With abundant, unlabeled real faces, how can we learn robust and transferable facial representations to boost generalization across various face security tasks? We make the first attempt and propose FS-VFM, a scalable self-supervised pre-training framework, to learn fundamental representations of real face images. We introduce three learning objectives, namely 3C, that synergize masked image modeling (MIM) and instance discrimination (ID), empowering FS-VFM to encode both local patterns and global semantics of real faces. Specifically, we formulate various facial masking strategies for MIM and devise a simple yet effective CRFR-P masking, which explicitly prompts the model to pursue meaningful intra-region Consistency and challenging inter-region Coherency. We present a reliable self-distillation mechanism that seamlessly couples MIM with ID to establish underlying local-to-global Correspondence. After pre-training, vanilla vision transformers (ViTs) serve as universal Vision Foundation Models for downstream Face Security tasks: cross-dataset deepfake detection, cross-domain face anti-spoofing, and unseen diffusion facial forensics. To efficiently transfer the pre-trained FS-VFM, we further propose FS-Adapter, a lightweight plug-and-play bottleneck atop the frozen backbone with a novel real-anchor contrastive objective. Extensive experiments on 11 public benchmarks demonstrate that our FS-VFM consistently generalizes better than diverse VFMs, spanning natural and facial domains, fully, weakly, and self-supervised paradigms, small, base, and large ViT scales, and even outperforms SOTA task-specific methods, while FS-Adapter offers an excellent efficiency-performance trade-off. The code and models are available on https://fsfm-3c.github.io/fsvfm.html.

Authors:Hao Shan, Ruikai Li, Han Jiang, Yizhe Fan, Ziyang Yan, Bohan Li, Xiaoshuai Hao, Hao Zhao, Zhiyong Cui, Yilong Ren, Haiyang Yu
Title: Stability Under Scrutiny: Benchmarking Representation Paradigms for Online HD Mapping
Abstract:
As one of the fundamental modules in autonomous driving, online high-definition (HD) maps have attracted significant attention due to their cost-effectiveness and real-time capabilities. Since vehicles always cruise in highly dynamic environments, spatial displacement of onboard sensors inevitably causes shifts in real-time HD mapping results, and such instability poses fundamental challenges for downstream tasks. However, existing online map construction models tend to prioritize improving each frame's mapping accuracy, while the mapping stability has not yet been systematically studied. To fill this gap, this paper presents the first comprehensive benchmark for evaluating the temporal stability of online HD mapping models. We propose a multi-dimensional stability evaluation framework with novel metrics for Presence, Localization, and Shape Stability, integrated into a unified mean Average Stability (mAS) score. Extensive experiments on 42 models and variants show that accuracy (mAP) and stability (mAS) represent largely independent performance dimensions. We further analyze the impact of key model design choices on both criteria, identifying architectural and training factors that contribute to high accuracy, high stability, or both. To encourage broader focus on stability, we will release a public benchmark. Our work highlights the importance of treating temporal stability as a core evaluation criterion alongside accuracy, advancing the development of more reliable autonomous driving systems. The benchmark toolkit, code, and models will be available at https://stablehdmap.github.io/.

Authors:Chenlong He, Zijing Dong, Min Li, Zhijian Hao, Leilei Huang, Xiaoyang Zeng, Yibo Fan
Title: JND-Guided Light-Weight Neural Pre-Filter for Perceptual Image Coding
Abstract:
Just Noticeable Distortion (JND)-guided pre-filter is a promising technique for improving the perceptual compression efficiency of image coding. However, existing methods are often computationally expensive, and the field lacks standardized benchmarks for fair comparison. To address these challenges, this paper introduces a twofold contribution. First, we develop and open-source FJNDF-Pytorch, a unified benchmark for frequency-domain JND-Guided pre-filters. Second, leveraging this platform, we propose a complete learning framework for a novel, lightweight Convolutional Neural Network (CNN). Experimental results demonstrate that our proposed method achieves state-of-the-art compression efficiency, consistently outperforming competitors across multiple datasets and encoders. In terms of computational cost, our model is exceptionally lightweight, requiring only 7.15 GFLOPs to process a 1080p image, which is merely 14.1% of the cost of recent lightweight network. Our work presents a robust, state-of-the-art solution that excels in both performance and efficiency, supported by a reproducible research platform. The open-source implementation is available at https://github.com/viplab-fudan/FJNDF-Pytorch.

Authors:Jingchao Wang, Wenlong Zhang, Dingjiang Huang, Hong Wang, Yefeng Zheng
Title: A Simple and Better Baseline for Visual Grounding
Abstract:
Visual grounding aims to predict the locations of target objects specified by textual descriptions. For this task with linguistic and visual modalities, there is a latest research line that focuses on only selecting the linguistic-relevant visual regions for object localization to reduce the computational overhead. Albeit achieving impressive performance, it is iteratively performed on different image scales, and at every iteration, linguistic features and visual features need to be stored in a cache, incurring extra overhead. To facilitate the implementation, in this paper, we propose a feature selection-based simple yet effective baseline for visual grounding, called FSVG. Specifically, we directly encapsulate the linguistic and visual modalities into an overall network architecture without complicated iterative procedures, and utilize the language in parallel as guidance to facilitate the interaction between linguistic modal and visual modal for extracting effective visual features. Furthermore, to reduce the computational cost, during the visual feature learning, we introduce a similarity-based feature selection mechanism to only exploit language-related visual features for faster prediction. Extensive experiments conducted on several benchmark datasets comprehensively substantiate that the proposed FSVG achieves a better balance between accuracy and efficiency beyond the current state-of-the-art methods. Code is available at https://github.com/jcwang0602/FSVG.

Authors:Binyu Zhao, Wei Zhang, Zhaonian Zou
Title: MCE: Towards a General Framework for Handling Missing Modalities under Imbalanced Missing Rates
Abstract:
Multi-modal learning has made significant advances across diverse pattern recognition applications. However, handling missing modalities, especially under imbalanced missing rates, remains a major challenge. This imbalance triggers a vicious cycle: modalities with higher missing rates receive fewer updates, leading to inconsistent learning progress and representational degradation that further diminishes their contribution. Existing methods typically focus on global dataset-level balancing, often overlooking critical sample-level variations in modality utility and the underlying issue of degraded feature quality. We propose Modality Capability Enhancement (MCE) to tackle these limitations. MCE includes two synergistic components: i) Learning Capability Enhancement (LCE), which introduces multi-level factors to dynamically balance modality-specific learning progress, and ii) Representation Capability Enhancement (RCE), which improves feature semantics and robustness through subset prediction and cross-modal completion tasks. Comprehensive evaluations on four multi-modal benchmarks show that MCE consistently outperforms state-of-the-art methods under various missing configurations. The journal preprint version is now available at https://doi.org/10.1016/j.patcog.2025.112591. Our code is available at https://github.com/byzhaoAI/MCE.

Authors:Yuteng Ye, Zheng Zhang, Qinchuan Zhang, Di Wang, Youjia Zhang, Wenxiao Zhang, Wei Yang, Yuan Liu
Title: Jigsaw3D: Disentangled 3D Style Transfer via Patch Shuffling and Masking
Abstract:
Controllable 3D style transfer seeks to restyle a 3D asset so that its textures match a reference image while preserving the integrity and multi-view consistency. The prevalent methods either rely on direct reference style token injection or score-distillation from 2D diffusion models, which incurs heavy per-scene optimization and often entangles style with semantic content. We introduce Jigsaw3D, a multi-view diffusion based pipeline that decouples style from content and enables fast, view-consistent stylization. Our key idea is to leverage the jigsaw operation - spatial shuffling and random masking of reference patches - to suppress object semantics and isolate stylistic statistics (color palettes, strokes, textures). We integrate these style cues into a multi-view diffusion model via reference-to-view cross-attention, producing view-consistent stylized renderings conditioned on the input mesh. The renders are then style-baked onto the surface to yield seamless textures. Across standard 3D stylization benchmarks, Jigsaw3D achieves high style fidelity and multi-view consistency with substantially lower latency, and generalizes to masked partial reference stylization, multi-object scene styling, and tileable texture generation. Project page is available at: https://babahui.github.io/jigsaw3D.github.io/

Authors:Yunlong Deng, Guangyi Chen, Tianpei Gu, Lingjing Kong, Yan Li, Zeyu Tang, Kun Zhang
Title: Towards Self-Refinement of Vision-Language Models with Triangular Consistency
Abstract:
Vision-Language Models (VLMs) integrate visual knowledge with the analytical capabilities of Large Language Models (LLMs) through supervised visual instruction tuning, using image-question-answer triplets. However, the potential of VLMs trained without supervised instruction remains largely unexplored. This study validates that VLMs possess inherent self-refinement capabilities, enabling them to generate high-quality supervised data without external inputs and thereby learn autonomously. Specifically, to stimulate the self-refinement ability of VLMs, we propose a self-refinement framework based on a Triangular Consistency principle: within the image-query-answer triangle, any masked elements should be consistently and accurately reconstructed. The framework involves three steps: (1) We enable the instruction generation ability of VLMs by adding multi-task instruction tuning like image$\rightarrow$question-answer or image-answer$\rightarrow$question. (2) We generate image-query-answer triplets from unlabeled images and use the Triangular Consistency principle for filtering. (3) The model is further updated using the filtered synthetic data. To investigate the underlying mechanisms behind this self-refinement capability, we conduct a theoretical analysis from a causal perspective. Using the widely recognized LLaVA-1.5 as our baseline, our experiments reveal that the model can autonomously achieve consistent, though deliberately modest, improvements across multiple benchmarks without any external supervision, such as human annotations or environmental feedback. We expect that the insights of this study on the self-refinement ability of VLMs can inspire future research on the learning mechanism of VLMs. Code is available at https://github.com/dengyl20/SRF-LLaVA-1.5.

Authors:Jinliang Zheng, Jianxiong Li, Zhihao Wang, Dongxiu Liu, Xirui Kang, Yuchun Feng, Yinan Zheng, Jiayin Zou, Yilun Chen, Jia Zeng, Ya-Qin Zhang, Jiangmiao Pang, Jingjing Liu, Tai Wang, Xianyuan Zhan
Title: X-VLA: Soft-Prompted Transformer as Scalable Cross-Embodiment Vision-Language-Action Model
Abstract:
Successful generalist Vision-Language-Action (VLA) models rely on effective training across diverse robotic platforms with large-scale, cross-embodiment, heterogeneous datasets. To facilitate and leverage the heterogeneity in rich, diverse robotic data sources, we propose a novel Soft Prompt approach with minimally added parameters, by infusing prompt learning concepts into cross-embodiment robot learning and introducing separate sets of learnable embeddings for each distinct data source. These embeddings serve as embodiment-specific prompts, which in unity empower VLA models with effective exploitation of varying cross-embodiment features. Our new X-VLA, a neat flow-matching-based VLA architecture, relies exclusively on soft-prompted standard Transformer encoders, enjoying both scalability and simplicity. Evaluated across 6 simulations as well as 3 real-world robots, our 0.9B instantiation-X-VLA-0.9B simultaneously achieves SOTA performance over a sweep of benchmarks, demonstrating superior results on a wide axes of capabilities, from flexible dexterity to quick adaptation across embodiments, environments, and tasks. Website: https://thu-air-dream.github.io/X-VLA/

Authors:Linfei Li, Fengyi Zhang, Zhong Wang, Lin Zhang, Ying Shen
Title: INR-Bench: A Unified Benchmark for Implicit Neural Representations in Multi-Domain Regression and Reconstruction
Abstract:
Implicit Neural Representations (INRs) have gained success in various signal processing tasks due to their advantages of continuity and infinite resolution. However, the factors influencing their effectiveness and limitations remain underexplored. To better understand these factors, we leverage insights from Neural Tangent Kernel (NTK) theory to analyze how model architectures (classic MLP and emerging KAN), positional encoding, and nonlinear primitives affect the response to signals of varying frequencies. Building on this analysis, we introduce INR-Bench, the first comprehensive benchmark specifically designed for multimodal INR tasks. It includes 56 variants of Coordinate-MLP models (featuring 4 types of positional encoding and 14 activation functions) and 22 Coordinate-KAN models with distinct basis functions, evaluated across 9 implicit multimodal tasks. These tasks cover both forward and inverse problems, offering a robust platform to highlight the strengths and limitations of different neural models, thereby establishing a solid foundation for future research. The code and dataset are available at https://github.com/lif314/INR-Bench.

Authors:Yulin Wang, Mengting Hu, Hongli Li, Chen Luo
Title: HccePose(BF): Predicting Front \& Back Surfaces to Construct Ultra-Dense 2D-3D Correspondences for Pose Estimation
Abstract:
In pose estimation for seen objects, a prevalent pipeline involves using neural networks to predict dense 3D coordinates of the object surface on 2D images, which are then used to establish dense 2D-3D correspondences. However, current methods primarily focus on more efficient encoding techniques to improve the precision of predicted 3D coordinates on the object's front surface, overlooking the potential benefits of incorporating the back surface and interior of the object. To better utilize the full surface and interior of the object, this study predicts 3D coordinates of both the object's front and back surfaces and densely samples 3D coordinates between them. This process creates ultra-dense 2D-3D correspondences, effectively enhancing pose estimation accuracy based on the Perspective-n-Point (PnP) algorithm. Additionally, we propose Hierarchical Continuous Coordinate Encoding (HCCE) to provide a more accurate and efficient representation of front and back surface coordinates. Experimental results show that, compared to existing state-of-the-art (SOTA) methods on the BOP website, the proposed approach outperforms across seven classic BOP core datasets. Code is available at https://github.com/WangYuLin-SEU/HCCEPose.

Authors:Cristiano Patrício, Luís F. Teixeira, João C. Neves
Title: ViConEx-Med: Visual Concept Explainability via Multi-Concept Token Transformer for Medical Image Analysis
Abstract:
Concept-based models aim to explain model decisions with human-understandable concepts. However, most existing approaches treat concepts as numerical attributes, without providing complementary visual explanations that could localize the predicted concepts. This limits their utility in real-world applications and particularly in high-stakes scenarios, such as medical use-cases. This paper proposes ViConEx-Med, a novel transformer-based framework for visual concept explainability, which introduces multi-concept learnable tokens to jointly predict and localize visual concepts. By leveraging specialized attention layers for processing visual and text-based concept tokens, our method produces concept-level localization maps while maintaining high predictive accuracy. Experiments on both synthetic and real-world medical datasets demonstrate that ViConEx-Med outperforms prior concept-based models and achieves competitive performance with black-box models in terms of both concept detection and localization precision. Our results suggest a promising direction for building inherently interpretable models grounded in visual concepts. Code is publicly available at https://github.com/CristianoPatricio/viconex-med.

Authors:Yecong Wan, Mingwen Shao, Renlong Wu, Wangmeng Zuo
Title: Color3D: Controllable and Consistent 3D Colorization with Personalized Colorizer
Abstract:
In this work, we present Color3D, a highly adaptable framework for colorizing both static and dynamic 3D scenes from monochromatic inputs, delivering visually diverse and chromatically vibrant reconstructions with flexible user-guided control. In contrast to existing methods that focus solely on static scenarios and enforce multi-view consistency by averaging color variations which inevitably sacrifice both chromatic richness and controllability, our approach is able to preserve color diversity and steerability while ensuring cross-view and cross-time consistency. In particular, the core insight of our method is to colorize only a single key view and then fine-tune a personalized colorizer to propagate its color to novel views and time steps. Through personalization, the colorizer learns a scene-specific deterministic color mapping underlying the reference view, enabling it to consistently project corresponding colors to the content in novel views and video frames via its inherent inductive bias. Once trained, the personalized colorizer can be applied to infer consistent chrominance for all other images, enabling direct reconstruction of colorful 3D scenes with a dedicated Lab color space Gaussian splatting representation. The proposed framework ingeniously recasts complicated 3D colorization as a more tractable single image paradigm, allowing seamless integration of arbitrary image colorization models with enhanced flexibility and controllability. Extensive experiments across diverse static and dynamic 3D colorization benchmarks substantiate that our method can deliver more consistent and chromatically rich renderings with precise user control. Project Page https://yecongwan.github.io/Color3D/.

Authors:Kuangpu Guo, Lijun Sheng, Yongcan Yu, Jian Liang, Zilei Wang, Ran He
Title: Cooperative Pseudo Labeling for Unsupervised Federated Classification
Abstract:
Unsupervised Federated Learning (UFL) aims to collaboratively train a global model across distributed clients without sharing data or accessing label information. Previous UFL works have predominantly focused on representation learning and clustering tasks. Recently, vision language models (e.g., CLIP) have gained significant attention for their powerful zero-shot prediction capabilities. Leveraging this advancement, classification problems that were previously infeasible under the UFL paradigm now present promising new opportunities, yet remain largely unexplored. In this paper, we extend UFL to the classification problem with CLIP for the first time and propose a novel method, \underline{\textbf{Fed}}erated \underline{\textbf{Co}}operative \underline{\textbf{P}}seudo \underline{\textbf{L}}abeling (\textbf{FedCoPL}). Specifically, clients estimate and upload their pseudo label distribution, and the server adjusts and redistributes them to avoid global imbalance among classes. Moreover, we introduce a partial prompt aggregation protocol for effective collaboration and personalization. In particular, visual prompts containing general image features are aggregated at the server, while text prompts encoding personalized knowledge are retained locally. Extensive experiments demonstrate the superior performance of our FedCoPL compared to baseline methods. Our code is available at \href{https://github.com/krumpguo/FedCoPL}{https://github.com/krumpguo/FedCoPL}.

Authors:Hehe Fan, Yi Yang, Mohan Kankanhalli, Fei Wu
Title: Translution: Unifying Self-attention and Convolution for Adaptive and Relative Modeling
Abstract:
When modeling a given type of data, we consider it to involve two key aspects: 1) identifying relevant elements (e.g., image pixels or textual words) to a central element, as in a convolutional receptive field, or to a query element, as in self-attention, and 2) encoding these tokens effectively. Self-attention can adaptively identify these elements but relies on absolute positional embedding for structural representation learning. In contrast, convolution encodes elements in a relative manner, yet their fixed kernel size limits their ability to adaptively select the relevant elements. In this paper, we introduce Translution, an operation that unifies the adaptive identification capability of self-attention and the relative encoding advantage of convolution. However, this integration leads to a substantial increase in the number of parameters, exceeding most currently available computational resources. Therefore, we propose a lightweight variant of Translution, named α-Translution. Experiments on computer vision and natural language processing tasks show that Translution (including α-Translution) achieves superior accuracy compared to self-attention. The code is available at https://github.com/hehefan/Translution.

Authors:Sitong Gong, Yunzhi Zhuge, Lu Zhang, Pingping Zhang, Huchuan Lu
Title: Complementary and Contrastive Learning for Audio-Visual Segmentation
Abstract:
Audio-Visual Segmentation (AVS) aims to generate pixel-wise segmentation maps that correlate with the auditory signals of objects. This field has seen significant progress with numerous CNN and Transformer-based methods enhancing the segmentation accuracy and robustness. Traditional CNN approaches manage audio-visual interactions through basic operations like padding and multiplications but are restricted by CNNs' limited local receptive field. More recently, Transformer-based methods treat auditory cues as queries, utilizing attention mechanisms to enhance audio-visual cooperation within frames. Nevertheless, they typically struggle to extract multimodal coefficients and temporal dynamics adequately. To overcome these limitations, we present the Complementary and Contrastive Transformer (CCFormer), a novel framework adept at processing both local and global information and capturing spatial-temporal context comprehensively. Our CCFormer initiates with the Early Integration Module (EIM) that employs a parallel bilateral architecture, merging multi-scale visual features with audio data to boost cross-modal complementarity. To extract the intra-frame spatial features and facilitate the perception of temporal coherence, we introduce the Multi-query Transformer Module (MTM), which dynamically endows audio queries with learning capabilities and models the frame and video-level relations simultaneously. Furthermore, we propose the Bi-modal Contrastive Learning (BCL) to promote the alignment across both modalities in the unified feature space. Through the effective combination of those designs, our method sets new state-of-the-art benchmarks across the S4, MS3 and AVSS datasets. Our source code and model weights will be made publicly available at https://github.com/SitongGong/CCFormer

Authors:Shreshth Saini, Alan C. Bovik, Neil Birkbeck, Yilin Wang, Balu Adsumilli
Title: CHUG: Crowdsourced User-Generated HDR Video Quality Dataset
Abstract:
High Dynamic Range (HDR) videos enhance visual experiences with superior brightness, contrast, and color depth. The surge of User-Generated Content (UGC) on platforms like YouTube and TikTok introduces unique challenges for HDR video quality assessment (VQA) due to diverse capture conditions, editing artifacts, and compression distortions. Existing HDR-VQA datasets primarily focus on professionally generated content (PGC), leaving a gap in understanding real-world UGC-HDR degradations. To address this, we introduce CHUG: Crowdsourced User-Generated HDR Video Quality Dataset, the first large-scale subjective study on UGC-HDR quality. CHUG comprises 856 UGC-HDR source videos, transcoded across multiple resolutions and bitrates to simulate real-world scenarios, totaling 5,992 videos. A large-scale study via Amazon Mechanical Turk collected 211,848 perceptual ratings. CHUG provides a benchmark for analyzing UGC-specific distortions in HDR videos. We anticipate CHUG will advance No-Reference (NR) HDR-VQA research by offering a large-scale, diverse, and real-world UGC dataset. The dataset is publicly available at: https://shreshthsaini.github.io/CHUG/.

Authors:Samanta Rodriguez, Yiming Dou, Miquel Oller, Andrew Owens, Nima Fazeli
Title: Cross-Sensor Touch Generation
Abstract:
Today's visuo-tactile sensors come in many shapes and sizes, making it challenging to develop general-purpose tactile representations. This is because most models are tied to a specific sensor design. To address this challenge, we propose two approaches to cross-sensor image generation. The first is an end-to-end method that leverages paired data (Touch2Touch). The second method builds an intermediate depth representation and does not require paired data (T2D2: Touch-to-Depth-to-Touch). Both methods enable the use of sensor-specific models across multiple sensors via the cross-sensor touch generation process. Together, these models offer flexible solutions for sensor translation, depending on data availability and application needs. We demonstrate their effectiveness on downstream tasks such as in-hand pose estimation and behavior cloning, successfully transferring models trained on one sensor to another. Project page: https://samantabelen.github.io/cross_sensor_touch_generation.

Authors:Atharv Goel, Sharat Agarwal, Saket Anand, Chetan Arora
Title: Reliable Active Learning from Unreliable Labels via Neural Collapse Geometry
Abstract:
Active Learning (AL) promises to reduce annotation cost by prioritizing informative samples, yet its reliability is undermined when labels are noisy or when the data distribution shifts. In practice, annotators make mistakes, rare categories are ambiguous, and conventional AL heuristics (uncertainty, diversity) often amplify such errors by repeatedly selecting mislabeled or redundant samples. We propose Reliable Active Learning via Neural Collapse Geometry (NCAL-R), a framework that leverages the emergent geometric regularities of deep networks to counteract unreliable supervision. Our method introduces two complementary signals: (i) a Class-Mean Alignment Perturbation score, which quantifies how candidate samples structurally stabilize or distort inter-class geometry, and (ii) a Feature Fluctuation score, which captures temporal instability of representations across training checkpoints. By combining these signals, NCAL-R prioritizes samples that both preserve class separation and highlight ambiguous regions, mitigating the effect of noisy or redundant labels. Experiments on ImageNet-100 and CIFAR100 show that NCAL-R consistently outperforms standard AL baselines, achieving higher accuracy with fewer labels, improved robustness under synthetic label noise, and stronger generalization to out-of-distribution data. These results suggest that incorporating geometric reliability criteria into acquisition decisions can make Active Learning less brittle to annotation errors and distribution shifts, a key step toward trustworthy deployment in real-world labeling pipelines. Our code is available at https://github.com/Vision-IIITD/NCAL.

Authors:Ruyi Xu, Guangxuan Xiao, Yukang Chen, Liuning He, Kelly Peng, Yao Lu, Song Han
Title: StreamingVLM: Real-Time Understanding for Infinite Video Streams
Abstract:
Vision-language models (VLMs) could power real-time assistants and autonomous agents, but they face a critical challenge: understanding near-infinite video streams without escalating latency and memory usage. Processing entire videos with full attention leads to quadratic computational costs and poor performance on long videos. Meanwhile, simple sliding window methods are also flawed, as they either break coherence or suffer from high latency due to redundant recomputation. In this paper, we introduce StreamingVLM, a model designed for real-time, stable understanding of infinite visual input. Our approach is a unified framework that aligns training with streaming inference. During inference, we maintain a compact KV cache by reusing states of attention sinks, a short window of recent vision tokens, and a long window of recent text tokens. This streaming ability is instilled via a simple supervised fine-tuning (SFT) strategy that applies full attention on short, overlapped video chunks, which effectively mimics the inference-time attention pattern without training on prohibitively long contexts. For evaluation, we build Inf-Streams-Eval, a new benchmark with videos averaging over two hours that requires dense, per-second alignment between frames and text. On Inf-Streams-Eval, StreamingVLM achieves a 66.18% win rate against GPT-4O mini and maintains stable, real-time performance at up to 8 FPS on a single NVIDIA H100. Notably, our SFT strategy also enhances general VQA abilities without any VQA-specific fine-tuning, improving performance on LongVideoBench by +4.30 and OVOBench Realtime by +5.96. Code is available at https://github.com/mit-han-lab/streaming-vlm.

Authors:Shaoqi Dong, Chaoyou Fu, Haihan Gao, Yi-Fan Zhang, Chi Yan, Chu Wu, Xiaoyu Liu, Yunhang Shen, Jing Huo, Deqiang Jiang, Haoyu Cao, Yang Gao, Xing Sun, Ran He, Caifeng Shan
Title: VITA-VLA: Efficiently Teaching Vision-Language Models to Act via Action Expert Distillation
Abstract:
Vision-Language Action (VLA) models significantly advance robotic manipulation by leveraging the strong perception capabilities of pretrained vision-language models (VLMs). By integrating action modules into these pretrained models, VLA methods exhibit improved generalization. However, training them from scratch is costly. In this work, we propose a simple yet effective distillation-based framework that equips VLMs with action-execution capability by transferring knowledge from pretrained small action models. Our architecture retains the original VLM structure, adding only an action token and a state encoder to incorporate physical inputs. To distill action knowledge, we adopt a two-stage training strategy. First, we perform lightweight alignment by mapping VLM hidden states into the action space of the small action model, enabling effective reuse of its pretrained action decoder and avoiding expensive pretraining. Second, we selectively fine-tune the language model, state encoder, and action modules, enabling the system to integrate multimodal inputs with precise action generation. Specifically, the action token provides the VLM with a direct handle for predicting future actions, while the state encoder allows the model to incorporate robot dynamics not captured by vision alone. This design yields substantial efficiency gains over training large VLA models from scratch. Compared with previous state-of-the-art methods, our method achieves 97.3% average success rate on LIBERO (11.8% improvement) and 93.5% on LIBERO-LONG (24.5% improvement). In real-world experiments across five manipulation tasks, our method consistently outperforms the teacher model, achieving 82.0% success rate (17% improvement), which demonstrate that action distillation effectively enables VLMs to generate precise actions while substantially reducing training costs.

Authors:Peiwen Sun, Shiqiang Lang, Dongming Wu, Yi Ding, Kaituo Feng, Huadai Liu, Zhen Ye, Rui Liu, Yun-Hui Liu, Jianan Wang, Xiangyu Yue
Title: SpaceVista: All-Scale Visual Spatial Reasoning from mm to km
Abstract:
With the current surge in spatial reasoning explorations, researchers have made significant progress in understanding indoor scenes, but still struggle with diverse applications such as robotics and autonomous driving. This paper aims to advance all-scale spatial reasoning across diverse scenarios by tackling two key challenges: 1) the heavy reliance on indoor 3D scans and labor-intensive manual annotations for dataset curation; 2) the absence of effective all-scale scene modeling, which often leads to overfitting to individual scenes. In this paper, we introduce a holistic solution that integrates a structured spatial reasoning knowledge system, scale-aware modeling, and a progressive training paradigm, as the first attempt to broaden the all-scale spatial intelligence of MLLMs to the best of our knowledge. Using a task-specific, specialist-driven automated pipeline, we curate over 38K video scenes across 5 spatial scales to create SpaceVista-1M, a dataset comprising approximately 1M spatial QA pairs spanning 19 diverse task types. While specialist models can inject useful domain knowledge, they are not reliable for evaluation. We then build an all-scale benchmark with precise annotations by manually recording, retrieving, and assembling video-based data. However, naive training with SpaceVista-1M often yields suboptimal results due to the potential knowledge conflict. Accordingly, we introduce SpaceVista-7B, a spatial reasoning model that accepts dense inputs beyond semantics and uses scale as an anchor for scale-aware experts and progressive rewards. Finally, extensive evaluations across 5 benchmarks, including our SpaceVista-Bench, demonstrate competitive performance, showcasing strong generalization across all scales and scenarios. Our dataset, model, and benchmark will be released on https://peiwensun2000.github.io/mm2km .

Authors:Arthur Bizzi, Matias Grynberg, Vitor Matias, Daniel Perazzo, João Paulo Lima, Luiz Velho, Nuno Gonçalves, João Pereira, Guilherme Schardong, Tiago Novello
Title: FLOWING: Implicit Neural Flows for Structure-Preserving Morphing
Abstract:
Morphing is a long-standing problem in vision and computer graphics, requiring a time-dependent warping for feature alignment and a blending for smooth interpolation. Recently, multilayer perceptrons (MLPs) have been explored as implicit neural representations (INRs) for modeling such deformations, due to their meshlessness and differentiability; however, extracting coherent and accurate morphings from standard MLPs typically relies on costly regularizations, which often lead to unstable training and prevent effective feature alignment. To overcome these limitations, we propose FLOWING (FLOW morphING), a framework that recasts warping as the construction of a differential vector flow, naturally ensuring continuity, invertibility, and temporal coherence by encoding structural flow properties directly into the network architectures. This flow-centric approach yields principled and stable transformations, enabling accurate and structure-preserving morphing of both 2D images and 3D shapes. Extensive experiments across a range of applications - including face and image morphing, as well as Gaussian Splatting morphing - show that FLOWING achieves state-of-the-art morphing quality with faster convergence. Code and pretrained models are available at http://schardong.github.io/flowing.

Authors:David-Alexandre Duclos, William Guimont-Martin, Gabriel Jeanson, Arthur Larochelle-Tremblay, Théo Defosse, Frédéric Moore, Philippe Nolet, François Pomerleau, Philippe Giguère
Title: SilvaScenes: Tree Segmentation and Species Classification from Under-Canopy Images in Natural Forests
Abstract:
Interest in robotics for forest management is growing, but perception in complex, natural environments remains a significant hurdle. Conditions such as heavy occlusion, variable lighting, and dense vegetation pose challenges to automated systems, which are essential for precision forestry, biodiversity monitoring, and the automation of forestry equipment. These tasks rely on advanced perceptual capabilities, such as detection and fine-grained species classification of individual trees. Yet, existing datasets are inadequate to develop such perception systems, as they often focus on urban settings or a limited number of species. To address this, we present SilvaScenes, a new dataset for instance segmentation of tree species from under-canopy images. Collected across five bioclimatic domains in Quebec, Canada, SilvaScenes features 1476 trees from 24 species with annotations from forestry experts. We demonstrate the relevance and challenging nature of our dataset by benchmarking modern deep learning approaches for instance segmentation. Our results show that, while tree segmentation is easy, with a top mean average precision (mAP) of 67.65%, species classification remains a significant challenge with an mAP of only 35.69%. Our dataset and source code will be available at https://github.com/norlab-ulaval/SilvaScenes.

Authors:Valentin Biller, Lucas Zimmer, Can Erdur, Sandeep Nagar, Daniel Rückert, Niklas Bubeck, Jonas Weidner
Title: A Biophysically-Conditioned Generative Framework for 3D Brain Tumor MRI Synthesis
Abstract:
Magnetic resonance imaging (MRI) inpainting supports numerous clinical and research applications. We introduce the first generative model that conditions on voxel-level, continuous tumor concentrations to synthesize high-fidelity brain tumor MRIs. For the BraTS 2025 Inpainting Challenge, we adapt this architecture to the complementary task of healthy tissue restoration by setting the tumor concentrations to zero. Our latent diffusion model conditioned on both tissue segmentations and the tumor concentrations generates 3D spatially coherent and anatomically consistent images for both tumor synthesis and healthy tissue inpainting. For healthy inpainting, we achieve a PSNR of 18.5, and for tumor inpainting, we achieve 17.4. Our code is available at: https://github.com/valentin-biller/ldm.git

Authors:Junyan Ye, Dongzhi Jiang, Jun He, Baichuan Zhou, Zilong Huang, Zhiyuan Yan, Hongsheng Li, Conghui He, Weijia Li
Title: BLINK-Twice: You see, but do you observe? A Reasoning Benchmark on Visual Perception
Abstract:
Recently, Multimodal Large Language Models (MLLMs) have made rapid progress, particularly in enhancing their reasoning capabilities. However, existing reasoning benchmarks still primarily assess language-based reasoning, often treating visual input as replaceable context. To address this gap, we introduce BLINK-Twice, a vision-centric reasoning benchmark grounded in challenging perceptual tasks. Instead of relying on external knowledge, our tasks require models to reason from visual content alone, shifting the focus from language-based to image-grounded reasoning. Compared to prior perception benchmarks, it moves beyond shallow perception ("see") and requires fine-grained observation and analytical reasoning ("observe"). BLINK-Twice integrates three core components: seven types of visual challenges for testing visual reasoning, natural adversarial image pairs that enforce reliance on visual content, and annotated reasoning chains for fine-grained evaluation of the reasoning process rather than final answers alone. We evaluate 20 leading MLLMs, including 12 foundation models and 8 reasoning-enhanced models. BLINK-Twice poses a significant challenge to current models. While existing reasoning strategies in the language space-such as chain-of-thought or self-criticism can improve performance, they often result in unstable and redundant reasoning. We observe that repeated image observation improves performance across models, and active visual interaction, as demonstrated by models like o3, highlights the need for a new paradigm for vision reasoning. The dataset is publicly available at https://github.com/PicoTrex/BLINK-Twice

Authors:Qihang Ma, Shengyu Li, Jie Tang, Dingkang Yang, Shaodong Chen, Yingyi Zhang, Chao Feng, Jiao Ran
Title: Boosting Multi-modal Keyphrase Prediction with Dynamic Chain-of-Thought in Vision-Language Models
Abstract:
Multi-modal keyphrase prediction (MMKP) aims to advance beyond text-only methods by incorporating multiple modalities of input information to produce a set of conclusive phrases. Traditional multi-modal approaches have been proven to have significant limitations in handling the challenging absence and unseen scenarios. Additionally, we identify shortcomings in existing benchmarks that overestimate model capability due to significant overlap in training tests. In this work, we propose leveraging vision-language models (VLMs) for the MMKP task. Firstly, we use two widely-used strategies, e.g., zero-shot and supervised fine-tuning (SFT) to assess the lower bound performance of VLMs. Next, to improve the complex reasoning capabilities of VLMs, we adopt Fine-tune-CoT, which leverages high-quality CoT reasoning data generated by a teacher model to finetune smaller models. Finally, to address the "overthinking" phenomenon, we propose a dynamic CoT strategy which adaptively injects CoT data during training, allowing the model to flexibly leverage its reasoning capabilities during the inference stage. We evaluate the proposed strategies on various datasets and the experimental results demonstrate the effectiveness of the proposed approaches. The code is available at https://github.com/bytedance/DynamicCoT.

Authors:Jinyuan Liu, Zihang Chen, Zhu Liu, Zhiying Jiang, Long Ma, Xin Fan, Risheng Liu
Title: Enhancing Infrared Vision: Progressive Prompt Fusion Network and Benchmark
Abstract:
We engage in the relatively underexplored task named thermal infrared image enhancement. Existing infrared image enhancement methods primarily focus on tackling individual degradations, such as noise, contrast, and blurring, making it difficult to handle coupled degradations. Meanwhile, all-in-one enhancement methods, commonly applied to RGB sensors, often demonstrate limited effectiveness due to the significant differences in imaging models. In sight of this, we first revisit the imaging mechanism and introduce a Progressive Prompt Fusion Network (PPFN). Specifically, the PPFN initially establishes prompt pairs based on the thermal imaging process. For each type of degradation, we fuse the corresponding prompt pairs to modulate the model's features, providing adaptive guidance that enables the model to better address specific degradations under single or multiple conditions. In addition, a Selective Progressive Training (SPT) mechanism is introduced to gradually refine the model's handling of composite cases to align the enhancement process, which not only allows the model to remove camera noise and retain key structural details, but also enhancing the overall contrast of the thermal image. Furthermore, we introduce the most high-quality, multi-scenarios infrared benchmark covering a wide range of scenarios. Extensive experiments substantiate that our approach not only delivers promising visual results under specific degradation but also significantly improves performance on complex degradation scenes, achieving a notable 8.76\% improvement. Code is available at https://github.com/Zihang-Chen/HM-TIR.

Authors:Wenyao Zhang, Hongsi Liu, Bohan Li, Jiawei He, Zekun Qi, Yunnan Wang, Shengyang Zhao, Xinqiang Yu, Wenjun Zeng, Xin Jin
Title: Hybrid-grained Feature Aggregation with Coarse-to-fine Language Guidance for Self-supervised Monocular Depth Estimation
Abstract:
Current self-supervised monocular depth estimation (MDE) approaches encounter performance limitations due to insufficient semantic-spatial knowledge extraction. To address this challenge, we propose Hybrid-depth, a novel framework that systematically integrates foundation models (e.g., CLIP and DINO) to extract visual priors and acquire sufficient contextual information for MDE. Our approach introduces a coarse-to-fine progressive learning framework: 1) Firstly, we aggregate multi-grained features from CLIP (global semantics) and DINO (local spatial details) under contrastive language guidance. A proxy task comparing close-distant image patches is designed to enforce depth-aware feature alignment using text prompts; 2) Next, building on the coarse features, we integrate camera pose information and pixel-wise language alignment to refine depth predictions. This module seamlessly integrates with existing self-supervised MDE pipelines (e.g., Monodepth2, ManyDepth) as a plug-and-play depth encoder, enhancing continuous depth estimation. By aggregating CLIP's semantic context and DINO's spatial details through language guidance, our method effectively addresses feature granularity mismatches. Extensive experiments on the KITTI benchmark demonstrate that our method significantly outperforms SOTA methods across all metrics, which also indeed benefits downstream tasks like BEV perception. Code is available at https://github.com/Zhangwenyao1/Hybrid-depth.

Authors:Haozhe Jia, Wenshuo Chen, Xiucheng Wang, Nan Cheng, Hongbo Zhang, Kuimou Yu, Songning Lai, Nanjian Jia, Bowen Tian, Hongru Xiao, Yutao Yue
Title: RadioFlow: Efficient Radio Map Construction Framework with Flow Matching
Abstract:
Accurate and real-time radio map (RM) generation is crucial for next-generation wireless systems, yet diffusion-based approaches often suffer from large model sizes, slow iterative denoising, and high inference latency, which hinder practical deployment. To overcome these limitations, we propose \textbf{RadioFlow}, a novel flow-matching-based generative framework that achieves high-fidelity RM generation through single-step efficient sampling. Unlike conventional diffusion models, RadioFlow learns continuous transport trajectories between noise and data, enabling both training and inference to be significantly accelerated while preserving reconstruction accuracy. Comprehensive experiments demonstrate that RadioFlow achieves state-of-the-art performance with \textbf{up to 8$\times$ fewer parameters} and \textbf{over 4$\times$ faster inference} compared to the leading diffusion-based baseline (RadioDiff). This advancement provides a promising pathway toward scalable, energy-efficient, and real-time electromagnetic digital twins for future 6G networks. We release the code at \href{https://github.com/Hxxxz0/RadioFlow}{GitHub}.

Authors:Siyuan Huang, Xiaoye Qu, Yafu Li, Yun Luo, Zefeng He, Daizong Liu, Yu Cheng
Title: Spotlight on Token Perception for Multimodal Reinforcement Learning
Abstract:
While Reinforcement Learning with Verifiable Rewards (RLVR) has advanced the reasoning capabilities of Large Vision-Language Models (LVLMs), most existing methods in multimodal reasoning neglect the critical role of visual perception within the RLVR optimization process. In this paper, we undertake a pioneering exploration of multimodal RLVR through the novel perspective of token perception, which measures the visual dependency of each generated token. With a granular analysis of Chain-of-Thought (CoT) processes, we uncover two key insights: first, token perception in a rollout trajectory is sparsely distributed, where only a small fraction of tokens have high visual dependency for visually-grounded reasoning; second, different trajectories exhibit significant divergence in their overall visual dependency. Based on these observations, we propose Visually-Perceptive Policy Optimization (VPPO), a novel policy gradient algorithm that explicitly leverages token perception to refine the learning signal. Specifically, VPPO achieves this through a dual mechanism: it reweights a trajectory's advantage by its overall visual dependency, and focuses policy updates exclusively on perceptually pivotal tokens. On a comprehensive suite of eight perception and reasoning benchmarks, VPPO demonstrates substantial gains over leading open-source RL-tuned models, with its effectiveness consistently validated across 7B and 32B model scales. Our findings not only establish a new token-level perceptual perspective for analyzing multimodal RLVR but also present a novel and effective optimization strategy to significantly enhance the multimodal reasoning capabilities of LVLMs.

Authors:Ming Dai, Sen Yang, Boqiang Duan, Wankou Yang, Jingdong Wang
Title: MomentSeg: Moment-Centric Sampling for Enhanced Video Pixel Understanding
Abstract:
Referring Video Object Segmentation (RefVOS) seeks to segment target objects in videos guided by natural language descriptions, demanding both temporal reasoning and fine-grained visual comprehension. Existing sampling strategies for LLM-based approaches typically rely on either handcrafted heuristics or external keyframe models. The former often overlooks essential temporal cues, while the latter increases system complexity. To address this, we propose a unified framework that jointly optimizes Temporal Sentence Grounding (TSG) and RefVOS, naturally incorporating key moment grounding capability. During training, we introduce a novel TSG paradigm that employs a dedicated \texttt{[FIND]} token for key moment identification through temporal token similarity matching, thereby avoiding the need for external timestamp encodings. For inference, we design a Moment-Centric Sampling (MCS) strategy that densely samples informative moments while sparsely sampling non-essential frames, preserving both motion details and global context. To further enhance tracking stability, we develop Bidirectional Anchor-updated Propagation (BAP), which leverages the most relevant moment as start point for high-quality mask initialization and dynamically updates at sampled points to mitigate accumulated errors. Code and model will be available at: https://github.com/Dmmm1997/MomentSeg

Authors:Zirun Zhou, Zhengyang Xiao, Haochuan Xu, Jing Sun, Di Wang, Jingfeng Zhang
Title: Goal-oriented Backdoor Attack against Vision-Language-Action Models via Physical Objects
Abstract:
Recent advances in vision-language-action (VLA) models have greatly improved embodied AI, enabling robots to follow natural language instructions and perform diverse tasks. However, their reliance on uncurated training datasets raises serious security concerns. Existing backdoor attacks on VLAs mostly assume white-box access and result in task failures instead of enforcing specific actions. In this work, we reveal a more practical threat: attackers can manipulate VLAs by simply injecting physical objects as triggers into the training dataset. We propose goal-oriented backdoor attacks (GoBA), where the VLA behaves normally in the absence of physical triggers but executes predefined and goal-oriented actions in the presence of physical triggers. Specifically, based on a popular VLA benchmark LIBERO, we introduce BadLIBERO that incorporates diverse physical triggers and goal-oriented backdoor actions. In addition, we propose a three-level evaluation that categorizes the victim VLA's actions under GoBA into three states: nothing to do, try to do, and success to do. Experiments show that GoBA enables the victim VLA to successfully achieve the backdoor goal in 97 percentage of inputs when the physical trigger is present, while causing zero performance degradation on clean inputs. Finally, by investigating factors related to GoBA, we find that the action trajectory and trigger color significantly influence attack performance, while trigger size has surprisingly little effect. The code and BadLIBERO dataset are accessible via the project page at https://goba-attack.github.io/.

Authors:Patrick Wienholt, Sophie Caselitz, Robert Siepmann, Philipp Bruners, Keno Bressem, Christiane Kuhl, Jakob Nikolas Kather, Sven Nebelung, Daniel Truhn
Title: Hallucination Filtering in Radiology Vision-Language Models Using Discrete Semantic Entropy
Abstract:
To determine whether using discrete semantic entropy (DSE) to reject questions likely to generate hallucinations can improve the accuracy of black-box vision-language models (VLMs) in radiologic image based visual question answering (VQA). This retrospective study evaluated DSE using two publicly available, de-identified datasets: (i) the VQA-Med 2019 benchmark (500 images with clinical questions and short-text answers) and (ii) a diagnostic radiology dataset (206 cases: 60 computed tomography scans, 60 magnetic resonance images, 60 radiographs, 26 angiograms) with corresponding ground-truth diagnoses. GPT-4o and GPT-4.1 answered each question 15 times using a temperature of 1.0. Baseline accuracy was determined using low-temperature answers (temperature 0.1). Meaning-equivalent responses were grouped using bidirectional entailment checks, and DSE was computed from the relative frequencies of the resulting semantic clusters. Accuracy was recalculated after excluding questions with DSE > 0.6 or > 0.3. p-values and 95% confidence intervals were obtained using bootstrap resampling and a Bonferroni-corrected threshold of p < .004 for statistical significance. Across 706 image-question pairs, baseline accuracy was 51.7% for GPT-4o and 54.8% for GPT-4.1. After filtering out high-entropy questions (DSE > 0.3), accuracy on the remaining questions was 76.3% (retained questions: 334/706) for GPT-4o and 63.8% (retained questions: 499/706) for GPT-4.1 (both p < .001). Accuracy gains were observed across both datasets and largely remained statistically significant after Bonferroni correction. DSE enables reliable hallucination detection in black-box VLMs by quantifying semantic inconsistency. This method significantly improves diagnostic answer accuracy and offers a filtering strategy for clinical VLM applications.

Authors:Vijay M. Galshetwar, Praful Hambarde, Prashant W. Patil, Akshay Dudhane, Sachin Chaudhary, Santosh Kumar Vipparathi, Subrahmanyam Murala
Title: Clear Roads, Clear Vision: Advancements in Multi-Weather Restoration for Smart Transportation
Abstract:
Adverse weather conditions such as haze, rain, and snow significantly degrade the quality of images and videos, posing serious challenges to intelligent transportation systems (ITS) that rely on visual input. These degradations affect critical applications including autonomous driving, traffic monitoring, and surveillance. This survey presents a comprehensive review of image and video restoration techniques developed to mitigate weather-induced visual impairments. We categorize existing approaches into traditional prior-based methods and modern data-driven models, including CNNs, transformers, diffusion models, and emerging vision-language models (VLMs). Restoration strategies are further classified based on their scope: single-task models, multi-task/multi-weather systems, and all-in-one frameworks capable of handling diverse degradations. In addition, we discuss day and night time restoration challenges, benchmark datasets, and evaluation protocols. The survey concludes with an in-depth discussion on limitations in current research and outlines future directions such as mixed/compound-degradation restoration, real-time deployment, and agentic AI frameworks. This work aims to serve as a valuable reference for advancing weather-resilient vision systems in smart transportation environments. Lastly, to stay current with rapid advancements in this field, we will maintain regular updates of the latest relevant papers and their open-source implementations at https://github.com/ChaudharyUPES/A-comprehensive-review-on-Multi-weather-restoration

Authors:Wuyang Li, Wentao Pan, Po-Chien Luan, Yang Gao, Alexandre Alahi
Title: Stable Video Infinity: Infinite-Length Video Generation with Error Recycling
Abstract:
We propose Stable Video Infinity (SVI) that is able to generate infinite-length videos with high temporal consistency, plausible scene transitions, and controllable streaming storylines. While existing long-video methods attempt to mitigate accumulated errors via handcrafted anti-drifting (e.g., modified noise scheduler, frame anchoring), they remain limited to single-prompt extrapolation, producing homogeneous scenes with repetitive motions. We identify that the fundamental challenge extends beyond error accumulation to a critical discrepancy between the training assumption (seeing clean data) and the test-time autoregressive reality (conditioning on self-generated, error-prone outputs). To bridge this hypothesis gap, SVI incorporates Error-Recycling Fine-Tuning, a new type of efficient training that recycles the Diffusion Transformer (DiT)'s self-generated errors into supervisory prompts, thereby encouraging DiT to actively identify and correct its own errors. This is achieved by injecting, collecting, and banking errors through closed-loop recycling, autoregressively learning from error-injected feedback. Specifically, we (i) inject historical errors made by DiT to intervene on clean inputs, simulating error-accumulated trajectories in flow matching; (ii) efficiently approximate predictions with one-step bidirectional integration and calculate errors with residuals; (iii) dynamically bank errors into replay memory across discretized timesteps, which are resampled for new input. SVI is able to scale videos from seconds to infinite durations with no additional inference cost, while remaining compatible with diverse conditions (e.g., audio, skeleton, and text streams). We evaluate SVI on three benchmarks, including consistent, creative, and conditional settings, thoroughly verifying its versatility and state-of-the-art role.

Authors:Yue Li, Shida Sun, Yu Hong, Feihu Xu, Zhiwei Xiong
Title: 3D Reconstruction from Transient Measurements with Time-Resolved Transformer
Abstract:
Transient measurements, captured by the timeresolved systems, are widely employed in photon-efficient reconstruction tasks, including line-of-sight (LOS) and non-line-of-sight (NLOS) imaging. However, challenges persist in their 3D reconstruction due to the low quantum efficiency of sensors and the high noise levels, particularly for long-range or complex scenes. To boost the 3D reconstruction performance in photon-efficient imaging, we propose a generic Time-Resolved Transformer (TRT) architecture. Different from existing transformers designed for high-dimensional data, TRT has two elaborate attention designs tailored for the spatio-temporal transient measurements. Specifically, the spatio-temporal self-attention encoders explore both local and global correlations within transient data by splitting or downsampling input features into different scales. Then, the spatio-temporal cross attention decoders integrate the local and global features in the token space, resulting in deep features with high representation capabilities. Building on TRT, we develop two task-specific embodiments: TRT-LOS for LOS imaging and TRT-NLOS for NLOS imaging. Extensive experiments demonstrate that both embodiments significantly outperform existing methods on synthetic data and real-world data captured by different imaging systems. In addition, we contribute a large-scale, high-resolution synthetic LOS dataset with various noise levels and capture a set of real-world NLOS measurements using a custom-built imaging system, enhancing the data diversity in this field. Code and datasets are available at https://github.com/Depth2World/TRT.

Authors:Mukilan Karuppasamy, Shankar Gangisetty, Shyam Nandan Rai, Carlo Masone, C V Jawahar
Title: Towards Safer and Understandable Driver Intention Prediction
Abstract:
Autonomous driving (AD) systems are becoming increasingly capable of handling complex tasks, mainly due to recent advances in deep learning and AI. As interactions between autonomous systems and humans increase, the interpretability of decision-making processes in driving systems becomes increasingly crucial for ensuring safe driving operations. Successful human-machine interaction requires understanding the underlying representations of the environment and the driving task, which remains a significant challenge in deep learning-based systems. To address this, we introduce the task of interpretability in maneuver prediction before they occur for driver safety, i.e., driver intent prediction (DIP), which plays a critical role in AD systems. To foster research in interpretable DIP, we curate the eXplainable Driving Action Anticipation Dataset (DAAD-X), a new multimodal, ego-centric video dataset to provide hierarchical, high-level textual explanations as causal reasoning for the driver's decisions. These explanations are derived from both the driver's eye-gaze and the ego-vehicle's perspective. Next, we propose Video Concept Bottleneck Model (VCBM), a framework that generates spatio-temporally coherent explanations inherently, without relying on post-hoc techniques. Finally, through extensive evaluations of the proposed VCBM on the DAAD-X dataset, we demonstrate that transformer-based models exhibit greater interpretability than conventional CNN-based models. Additionally, we introduce a multilabel t-SNE visualization technique to illustrate the disentanglement and causal correlation among multiple explanations. Our data, code and models are available at: https://mukil07.github.io/VCBM.github.io/

Authors:Weikai Huang, Jieyu Zhang, Taoyang Jia, Chenhao Zheng, Ziqi Gao, Jae Sung Park, Ranjay Krishna
Title: SOS: Synthetic Object Segments Improve Detection, Segmentation, and Grounding
Abstract:
Visual grouping -- operationalized via instance segmentation, visual grounding, and object detection -- underpins applications from robotic perception to photo editing. Large annotated datasets are costly, biased in coverage, and hard to scale. Synthetic data are promising but often lack flexibility, accuracy, and compositional diversity. We present SOS, a simple and scalable data synthesis pipeline based on an object-centric composition strategy. It pastes high-quality synthetic object segments into new images using structured layout priors and generative relighting, producing accurate and diverse masks, boxes, and referring expressions. Models trained on 100000 synthetic images from SOS outperform those trained on larger real-image datasets such as GRIT (20M) and V3Det (200K) on detection and grounding tasks, achieving +10.9 AP on LVIS detection and +8.4 $N_{\text{Acc}}$ on gRefCOCO grounding. SOS enables controllable dataset construction and improves generalization in both low-data and closed-vocabulary settings. Augmenting LVIS and COCO with synthetic object segments yields strong performance across real-data scales and even larger gains under extremely limited real data (for example, +3.83 $AP_{\text{rare}}$ on LVIS instance segmentation and +6.59 AP with a 1 percent COCO setup). This controllability also supports targeted data generation for challenging intra-class referring in visual grounding.

Authors:Akira Takahashi, Shusuke Takahashi, Yuki Mitsufuji
Title: MMAudioSep: Taming Video-to-Audio Generative Model Towards Video/Text-Queried Sound Separation
Abstract:
We introduce MMAudioSep, a generative model for video/text-queried sound separation that is founded on a pretrained video-to-audio model. By leveraging knowledge about the relationship between video/text and audio learned through a pretrained audio generative model, we can train the model more efficiently, i.e., the model does not need to be trained from scratch. We evaluate the performance of MMAudioSep by comparing it to existing separation models, including models based on both deterministic and generative approaches, and find it is superior to the baseline models. Furthermore, we demonstrate that even after acquiring functionality for sound separation via fine-tuning, the model retains the ability for original video-to-audio generation. This highlights the potential of foundational sound generation models to be adopted for sound-related downstream tasks. Our code is available at https://github.com/sony/mmaudiosep.

Authors:Xiaoxiao Ma, Feng Zhao, Pengyang Ling, Haibo Qiu, Zhixiang Wei, Hu Yu, Jie Huang, Zhixiong Zeng, Lin Ma
Title: Towards Better & Faster Autoregressive Image Generation: From the Perspective of Entropy
Abstract:
In this work, we first revisit the sampling issues in current autoregressive (AR) image generation models and identify that image tokens, unlike text tokens, exhibit lower information density and non-uniform spatial distribution. Accordingly, we present an entropy-informed decoding strategy that facilitates higher autoregressive generation quality with faster synthesis speed. Specifically, the proposed method introduces two main innovations: 1) dynamic temperature control guided by spatial entropy of token distributions, enhancing the balance between content diversity, alignment accuracy, and structural coherence in both mask-based and scale-wise models, without extra computational overhead, and 2) entropy-aware acceptance rules in speculative decoding, achieving near-lossless generation at about 85\% of the inference cost of conventional acceleration methods. Extensive experiments across multiple benchmarks using diverse AR image generation models demonstrate the effectiveness and generalizability of our approach in enhancing both generation quality and sampling speed.

Authors:Zhen Yang, Yansong Ma, Lei Chen
Title: Progressive Uncertainty-Guided Evidential U-KAN for Trustworthy Medical Image Segmentation
Abstract:
Trustworthy medical image segmentation aims at deliver accurate and reliable results for clinical decision-making. Most existing methods adopt the evidence deep learning (EDL) paradigm due to its computational efficiency and theoretical robustness. However, the EDL-based methods often neglect leveraging uncertainty maps rich in attention cues to refine ambiguous boundary segmentation. To address this, we propose a progressive evidence uncertainty guided attention (PEUA) mechanism to guide the model to focus on the feature representation learning of hard regions. Unlike conventional approaches, PEUA progressively refines attention using uncertainty maps while employing low-rank learning to denoise attention weights, enhancing feature learning for challenging regions. Concurrently, standard EDL methods suppress evidence of incorrect class indiscriminately via Kullback-Leibler (KL) regularization, impairing the uncertainty assessment in ambiguous areas and consequently distorts the corresponding attention guidance. We thus introduce a semantic-preserving evidence learning (SAEL) strategy, integrating a semantic-smooth evidence generator and a fidelity-enhancing regularization term to retain critical semantics. Finally, by embedding PEUA and SAEL with the state-of-the-art U-KAN, we proposes Evidential U-KAN, a novel solution for trustworthy medical image segmentation. Extensive experiments on 4 datasets demonstrate superior accuracy and reliability over the competing methods. The code is available at \href{https://anonymous.4open.science/r/Evidence-U-KAN-BBE8}{github}.

Authors:Yiyang Huang, Yizhou Wang, Yun Fu
Title: D-CoDe: Scaling Image-Pretrained VLMs to Video via Dynamic Compression and Question Decomposition
Abstract:
Video large language models (Vid-LLMs), which excel in diverse video-language tasks, can be effectively constructed by adapting image-pretrained vision-language models (VLMs). However, this adaptation remains challenging, as it requires processing dense and temporally extended visual inputs that exceed the capacity of image-based models. This paper identifies the perception bottleneck and token overload as key challenges in extending image-based VLMs to the video domain. To address these issues, we propose D-CoDe, a training-free adaptation framework that incorporates dynamic compression and question decomposition. Specifically, dynamic compression alleviates the perception bottleneck through adaptive selection of representative frames and content-aware aggregation of spatial tokens, thereby reducing redundancy while preserving informative content. In parallel, question decomposition mitigates token overload by reformulating the original query into sub-questions, guiding the model to focus on distinct aspects of the video and enabling more comprehensive understanding. Experiments demonstrate that D-CoDe effectively improves video understanding across various benchmarks. Furthermore, strong performance on the challenging long-video benchmark highlights the potential of D-CoDe in handling complex video-language tasks. Code is available at https://github.com/hukcc/D-CoDe.

Authors:Rohan Choudhury, Shanchuan Lin, Jianyi Wang, Hao Chen, Qi Zhao, Feng Cheng, Lu Jiang, Kris Kitani, Laszlo A. Jeni
Title: SkipSR: Faster Super Resolution with Token Skipping
Abstract:
Diffusion-based super-resolution (SR) is a key component in video generation and video restoration, but is slow and expensive, limiting scalability to higher resolutions and longer videos. Our key insight is that many regions in video are inherently low-detail and gain little from refinement, yet current methods process all pixels uniformly. To take advantage of this, we propose SkipSR, a simple framework for accelerating video SR by identifying low-detail regions directly from low-resolution input, then skipping computation on them entirely, only super-resolving the areas that require refinement. This simple yet effective strategy preserves perceptual quality in both standard and one-step diffusion SR models while significantly reducing computation. In standard SR benchmarks, our method achieves up to 60% faster end-to-end latency than prior models on 720p videos with no perceptible loss in quality. Video demos are available at https://rccchoudhury.github.io/skipsr/

Authors:Yifei Dong, Fengyi Wu, Guangyu Chen, Zhi-Qi Cheng, Qiyu Hu, Yuxuan Zhou, Jingdong Sun, Jun-Yan He, Qi Dai, Alexander G Hauptmann
Title: Unified World Models: Memory-Augmented Planning and Foresight for Visual Navigation
Abstract:
Enabling embodied agents to effectively imagine future states is critical for robust and generalizable visual navigation. Current state-of-the-art approaches, however, adopt modular architectures that separate navigation planning from visual world modeling, leading to state-action misalignment and limited adaptability in novel or dynamic scenarios. To overcome this fundamental limitation, we propose UniWM, a unified, memory-augmented world model integrating egocentric visual foresight and planning within a single multimodal autoregressive backbone. Unlike modular frameworks, UniWM explicitly grounds action decisions in visually imagined outcomes, ensuring tight alignment between prediction and control. A hierarchical memory mechanism further integrates detailed short-term perceptual cues with longer-term trajectory context, enabling stable, coherent reasoning over extended horizons. Extensive experiments across four challenging benchmarks (Go Stanford, ReCon, SCAND, HuRoN) demonstrate that UniWM substantially improves navigation success rates by up to 30%, significantly reduces trajectory errors compared to strong baselines, and exhibits impressive zero-shot generalization on the unseen TartanDrive dataset. These results highlight UniWM as a principled step toward unified, imagination-driven embodied navigation.

Authors:Kang Liao, Size Wu, Zhonghua Wu, Linyi Jin, Chao Wang, Yikai Wang, Fei Wang, Wei Li, Chen Change Loy
Title: Thinking with Camera: A Unified Multimodal Model for Camera-Centric Understanding and Generation
Abstract:
Camera-centric understanding and generation are two cornerstones of spatial intelligence, yet they are typically studied in isolation. We present Puffin, a unified camera-centric multimodal model that extends spatial awareness along the camera dimension. Puffin integrates language regression and diffusion-based generation to interpret and create scenes from arbitrary viewpoints. To bridge the modality gap between cameras and vision-language, we introduce a novel paradigm that treats camera as language, enabling thinking with camera. This guides the model to align spatially grounded visual cues with photographic terminology while reasoning across geometric context. Puffin is trained on Puffin-4M, a large-scale dataset of 4 million vision-language-camera triplets. We incorporate both global camera parameters and pixel-wise camera maps, yielding flexible and reliable spatial generation. Experiments demonstrate Puffin superior performance over specialized models for camera-centric generation and understanding. With instruction tuning, Puffin generalizes to diverse cross-view tasks such as spatial imagination, world exploration, and photography guidance. We will release the code, models, dataset pipeline, and benchmark to advance multimodal spatial intelligence research.

Authors:Songtao Jiang, Yuan Wang, Sibo Song, Tianxiang Hu, Chenyi Zhou, Bin Pu, Yan Zhang, Zhibo Yang, Yang Feng, Joey Tianyi Zhou, Jin Hao, Zijian Chen, Ruijia Wu, Tao Tang, Junhui Lv, Hongxia Xu, Hongwei Wang, Jun Xiao, Bin Feng, Fudong Zhu, Kenli Li, Weidi Xie, Jimeng Sun, Jian Wu, Zuozhu Liu
Title: Hulu-Med: A Transparent Generalist Model towards Holistic Medical Vision-Language Understanding
Abstract:
Real-world clinical decision-making grapples with integrating information from diverse data modalities, including medical text, 2D/3D images, and video, leading to inefficiencies and potential diagnostic oversights. While generalist vision-language models (VLMs) offer promise, their medical development faces challenges of opaque pipelines, data scarcity, and architectural inflexibility. Here we present Hulu-Med, a transparent medical VLM that unifies understanding across all these modalities. Built upon a unified patch-based vision encoder and an LLM decoder, Hulu-Med was progressively trained on 16.7 million (M) samples to scale from 2D to 3D and video comprehension. The medical-aware token reduction enables efficient training, requiring only 4,000 to 40,000 GPU hours for 7B to 32B parameter variants. Extensive evaluation across 30 benchmarks exhibits state-of-the-art performance, surpassing leading open-source models and competing with proprietary systems in tasks spanning visual question-answering, medical report generation, and complex reasoning in multilingual and rare disease scenarios. By open-sourcing our complete pipeline, we establish that high-performance medical VLM can be achieved transparently, providing a foundational tool for accessible and impactful clinical AI. Code is released on \href{https://github.com/ZJUI-AI4H/Hulu-Med}{https://github.com/ZJUI-AI4H/Hulu-Med}.

Authors:Zhe Dong, Yuzhe Sun, Haochen Jiang, Tianzhu Liu, Yanfeng Gu
Title: PhyDAE: Physics-Guided Degradation-Adaptive Experts for All-in-One Remote Sensing Image Restoration
Abstract:
Remote sensing images inevitably suffer from various degradation factors during acquisition, including atmospheric interference, sensor limitations, and imaging conditions. These complex and heterogeneous degradations pose severe challenges to image quality and downstream interpretation tasks. Addressing limitations of existing all-in-one restoration methods that overly rely on implicit feature representations and lack explicit modeling of degradation physics, this paper proposes Physics-Guided Degradation-Adaptive Experts (PhyDAE). The method employs a two-stage cascaded architecture transforming degradation information from implicit features into explicit decision signals, enabling precise identification and differentiated processing of multiple heterogeneous degradations including haze, noise, blur, and low-light conditions. The model incorporates progressive degradation mining and exploitation mechanisms, where the Residual Manifold Projector (RMP) and Frequency-Aware Degradation Decomposer (FADD) comprehensively analyze degradation characteristics from manifold geometry and frequency perspectives. Physics-aware expert modules and temperature-controlled sparse activation strategies are introduced to enhance computational efficiency while ensuring imaging physics consistency. Extensive experiments on three benchmark datasets (MD-RSID, MD-RRSHID, and MDRS-Landsat) demonstrate that PhyDAE achieves superior performance across all four restoration tasks, comprehensively outperforming state-of-the-art methods. Notably, PhyDAE substantially improves restoration quality while achieving significant reductions in parameter count and computational complexity, resulting in remarkable efficiency gains compared to mainstream approaches and achieving optimal balance between performance and efficiency. Code is available at https://github.com/HIT-SIRS/PhyDAE.

Authors:Saumya B
Title: Reproducible Evaluation of Data Augmentation and Loss Functions for Brain Tumor Segmentation
Abstract:
Brain tumor segmentation is crucial for diagnosis and treatment planning, yet challenges such as class imbalance and limited model generalization continue to hinder progress. This work presents a reproducible evaluation of U-Net segmentation performance on brain tumor MRI using focal loss and basic data augmentation strategies. Experiments were conducted on a publicly available MRI dataset, focusing on focal loss parameter tuning and assessing the impact of three data augmentation techniques: horizontal flip, rotation, and scaling. The U-Net with focal loss achieved a precision of 90%, comparable to state-of-the-art results. By making all code and results publicly available, this study establishes a transparent, reproducible baseline to guide future research on augmentation strategies and loss function design in brain tumor segmentation.

Authors:Haofei Xu, Daniel Barath, Andreas Geiger, Marc Pollefeys
Title: ReSplat: Learning Recurrent Gaussian Splats
Abstract:
While feed-forward Gaussian splatting models provide computational efficiency and effectively handle sparse input settings, their performance is fundamentally limited by the reliance on a single forward pass during inference. We propose ReSplat, a feed-forward recurrent Gaussian splatting model that iteratively refines 3D Gaussians without explicitly computing gradients. Our key insight is that the Gaussian splatting rendering error serves as a rich feedback signal, guiding the recurrent network to learn effective Gaussian updates. This feedback signal naturally adapts to unseen data distributions at test time, enabling robust generalization. To initialize the recurrent process, we introduce a compact reconstruction model that operates in a $16 \times$ subsampled space, producing $16 \times$ fewer Gaussians than previous per-pixel Gaussian models. This substantially reduces computational overhead and allows for efficient Gaussian updates. Extensive experiments across varying of input views (2, 8, 16), resolutions ($256 \times 256$ to $540 \times 960$), and datasets (DL3DV and RealEstate10K) demonstrate that our method achieves state-of-the-art performance while significantly reducing the number of Gaussians and improving the rendering speed. Our project page is at https://haofeixu.github.io/resplat/.

Authors:Tajamul Ashraf, Umair Nawaz, Abdelrahman M. Shaker, Rao Anwer, Philip Torr, Fahad Shahbaz Khan, Salman Khan
Title: MATRIX: Multimodal Agent Tuning for Robust Tool-Use Reasoning
Abstract:
Vision language models (VLMs) are increasingly deployed as controllers with access to external tools for complex reasoning and decision-making, yet their effectiveness remains limited by the scarcity of high-quality multimodal trajectories and the cost of manual annotation. We address this challenge with a vision-centric agent tuning framework that automatically synthesizes multimodal trajectories, generates step-wise preference pairs, and trains a VLM controller for robust tool-use reasoning. Our pipeline first constructs M-TRACE, a large-scale dataset of 28.5K multimodal tasks with 177K verified trajectories, enabling imitation-based trajectory tuning. Building on this, we develop MATRIX Agent, a controller finetuned on M-TRACE for step-wise tool reasoning. To achieve finer alignment, we further introduce Pref-X, a set of 11K automatically generated preference pairs, and optimize MATRIX on it via step-wise preference learning. Across three benchmarks, Agent-X, GTA, and GAIA, MATRIX consistently surpasses both open- and closed-source VLMs, demonstrating scalable and effective multimodal tool use. Our data and code is avaliable at https://github.com/mbzuai-oryx/MATRIX.

Authors:Meixi Song, Xin Lin, Dizhe Zhang, Haodong Li, Xiangtai Li, Bo Du, Lu Qi
Title: D$^2$GS: Depth-and-Density Guided Gaussian Splatting for Stable and Accurate Sparse-View Reconstruction
Abstract:
Recent advances in 3D Gaussian Splatting (3DGS) enable real-time, high-fidelity novel view synthesis (NVS) with explicit 3D representations. However, performance degradation and instability remain significant under sparse-view conditions. In this work, we identify two key failure modes under sparse-view conditions: overfitting in regions with excessive Gaussian density near the camera, and underfitting in distant areas with insufficient Gaussian coverage. To address these challenges, we propose a unified framework D$^2$GS, comprising two key components: a Depth-and-Density Guided Dropout strategy that suppresses overfitting by adaptively masking redundant Gaussians based on density and depth, and a Distance-Aware Fidelity Enhancement module that improves reconstruction quality in under-fitted far-field areas through targeted supervision. Moreover, we introduce a new evaluation metric to quantify the stability of learned Gaussian distributions, providing insights into the robustness of the sparse-view 3DGS. Extensive experiments on multiple datasets demonstrate that our method significantly improves both visual quality and robustness under sparse view conditions. The project page can be found at: https://insta360-research-team.github.io/DDGS-website/.

Authors:Changyao Tian, Hao Li, Gen Luo, Xizhou Zhu, Weijie Su, Hanming Deng, Jinguo Zhu, Jie Shao, Ziran Zhu, Yunpeng Liu, Lewei Lu, Wenhai Wang, Hongsheng Li, Jifeng Dai
Title: NaViL: Rethinking Scaling Properties of Native Multimodal Large Language Models under Data Constraints
Abstract:
Compositional training has been the de-facto paradigm in existing Multimodal Large Language Models (MLLMs), where pre-trained vision encoders are connected with pre-trained LLMs through continuous multimodal pre-training. However, the multimodal scaling property of this paradigm remains difficult to explore due to the separated training. In this paper, we focus on the native training of MLLMs in an end-to-end manner and systematically study its design space and scaling property under a practical setting, i.e., data constraint. Through careful study of various choices in MLLM, we obtain the optimal meta-architecture that best balances performance and training cost. After that, we further explore the scaling properties of the native MLLM and indicate the positively correlated scaling relationship between visual encoders and LLMs. Based on these findings, we propose a native MLLM called NaViL, combined with a simple and cost-effective recipe. Experimental results on 14 multimodal benchmarks confirm the competitive performance of NaViL against existing MLLMs. Besides that, our findings and results provide in-depth insights for the future study of native MLLMs.

Authors:Zhen Zhu, Yiming Gong, Yao Xiao, Yaoyao Liu, Derek Hoiem
Title: How to Teach Large Multimodal Models New Skills
Abstract:
How can we teach large multimodal models (LMMs) new skills without erasing prior abilities? We study sequential fine-tuning on five target skills while monitoring general ability on eight held-out benchmarks across three model families. We observe that apparent "forgetting" on held-out tasks after narrow fine-tuning can partly recover at later stages. We trace this behavior to a measurable shift in the output token distribution, manifested through a simple counting-bias probe that co-varies with forgetting. Guided by this picture, we identify two simple, robust tuning recipes that learn strongly while limiting drift: (i) updating only the self-attention projection layers, and (ii) updating only the MLP Gate&Up while freezing the Down projection. Across models and tasks, these choices deliver strong target gains while largely preserving held-out performance. Code is available at https://github.com/jessemelpolio/LMM_CL

Authors:Maham Tanveer, Yang Zhou, Simon Niklaus, Ali Mahdavi Amiri, Hao Zhang, Krishna Kumar Singh, Nanxuan Zhao
Title: MultiCOIN: Multi-Modal COntrollable Video INbetweening
Abstract:
Video inbetweening creates smooth and natural transitions between two image frames, making it an indispensable tool for video editing and long-form video synthesis. Existing works in this domain are unable to generate large, complex, or intricate motions. In particular, they cannot accommodate the versatility of user intents and generally lack fine control over the details of intermediate frames, leading to misalignment with the creative mind. To fill these gaps, we introduce \modelname{}, a video inbetweening framework that allows multi-modal controls, including depth transition and layering, motion trajectories, text prompts, and target regions for movement localization, while achieving a balance between flexibility, ease of use, and precision for fine-grained video interpolation. To achieve this, we adopt the Diffusion Transformer (DiT) architecture as our video generative model, due to its proven capability to generate high-quality long videos. To ensure compatibility between DiT and our multi-modal controls, we map all motion controls into a common sparse and user-friendly point-based representation as the video/noise input. Further, to respect the variety of controls which operate at varying levels of granularity and influence, we separate content controls and motion controls into two branches to encode the required features before guiding the denoising process, resulting in two generators, one for motion and the other for content. Finally, we propose a stage-wise training strategy to ensure that our model learns the multi-modal controls smoothly. Extensive qualitative and quantitative experiments demonstrate that multi-modal controls enable a more dynamic, customizable, and contextually accurate visual narrative.

Authors:Xueyi Liu, He Wang, Li Yi
Title: DexNDM: Closing the Reality Gap for Dexterous In-Hand Rotation via Joint-Wise Neural Dynamics Model
Abstract:
Achieving generalized in-hand object rotation remains a significant challenge in robotics, largely due to the difficulty of transferring policies from simulation to the real world. The complex, contact-rich dynamics of dexterous manipulation create a "reality gap" that has limited prior work to constrained scenarios involving simple geometries, limited object sizes and aspect ratios, constrained wrist poses, or customized hands. We address this sim-to-real challenge with a novel framework that enables a single policy, trained in simulation, to generalize to a wide variety of objects and conditions in the real world. The core of our method is a joint-wise dynamics model that learns to bridge the reality gap by effectively fitting limited amount of real-world collected data and then adapting the sim policy's actions accordingly. The model is highly data-efficient and generalizable across different whole-hand interaction distributions by factorizing dynamics across joints, compressing system-wide influences into low-dimensional variables, and learning each joint's evolution from its own dynamic profile, implicitly capturing these net effects. We pair this with a fully autonomous data collection strategy that gathers diverse, real-world interaction data with minimal human intervention. Our complete pipeline demonstrates unprecedented generality: a single policy successfully rotates challenging objects with complex shapes (e.g., animals), high aspect ratios (up to 5.33), and small sizes, all while handling diverse wrist orientations and rotation axes. Comprehensive real-world evaluations and a teleoperation application for complex tasks validate the effectiveness and robustness of our approach. Website: https://meowuu7.github.io/DexNDM/

Authors:Minghong Cai, Qiulin Wang, Zongli Ye, Wenze Liu, Quande Liu, Weicai Ye, Xintao Wang, Pengfei Wan, Kun Gai, Xiangyu Yue
Title: VideoCanvas: Unified Video Completion from Arbitrary Spatiotemporal Patches via In-Context Conditioning
Abstract:
We introduce the task of arbitrary spatio-temporal video completion, where a video is generated from arbitrary, user-specified patches placed at any spatial location and timestamp, akin to painting on a video canvas. This flexible formulation naturally unifies many existing controllable video generation tasks--including first-frame image-to-video, inpainting, extension, and interpolation--under a single, cohesive paradigm. Realizing this vision, however, faces a fundamental obstacle in modern latent video diffusion models: the temporal ambiguity introduced by causal VAEs, where multiple pixel frames are compressed into a single latent representation, making precise frame-level conditioning structurally difficult. We address this challenge with VideoCanvas, a novel framework that adapts the In-Context Conditioning (ICC) paradigm to this fine-grained control task with zero new parameters. We propose a hybrid conditioning strategy that decouples spatial and temporal control: spatial placement is handled via zero-padding, while temporal alignment is achieved through Temporal RoPE Interpolation, which assigns each condition a continuous fractional position within the latent sequence. This resolves the VAE's temporal ambiguity and enables pixel-frame-aware control on a frozen backbone. To evaluate this new capability, we develop VideoCanvasBench, the first benchmark for arbitrary spatio-temporal video completion, covering both intra-scene fidelity and inter-scene creativity. Experiments demonstrate that VideoCanvas significantly outperforms existing conditioning paradigms, establishing a new state of the art in flexible and unified video generation.

Authors:Yunzhe Xu, Yiyuan Pan, Zhe Liu
Title: Dream to Recall: Imagination-Guided Experience Retrieval for Memory-Persistent Vision-and-Language Navigation
Abstract:
Vision-and-Language Navigation (VLN) requires agents to follow natural language instructions through environments, with memory-persistent variants demanding progressive improvement through accumulated experience. Existing approaches for memory-persistent VLN face critical limitations: they lack effective memory access mechanisms, instead relying on entire memory incorporation or fixed-horizon lookup, and predominantly store only environmental observations while neglecting navigation behavioral patterns that encode valuable decision-making strategies. We present Memoir, which employs imagination as a retrieval mechanism grounded by explicit memory: a world model imagines future navigation states as queries to selectively retrieve relevant environmental observations and behavioral histories. The approach comprises: 1) a language-conditioned world model that imagines future states serving dual purposes: encoding experiences for storage and generating retrieval queries; 2) Hybrid Viewpoint-Level Memory that anchors both observations and behavioral patterns to viewpoints, enabling hybrid retrieval; and 3) an experience-augmented navigation model that integrates retrieved knowledge through specialized encoders. Extensive evaluation across diverse memory-persistent VLN benchmarks with 10 distinctive testing scenarios demonstrates Memoir's effectiveness: significant improvements across all scenarios, with 5.4% SPL gains on IR2R over the best memory-persistent baseline, accompanied by 8.3x training speedup and 74% inference memory reduction. The results validate that predictive retrieval of both environmental and behavioral memories enables more effective navigation, with analysis indicating substantial headroom (73.3% vs 93.4% upper bound) for this imagination-guided paradigm. Code at https://github.com/xyz9911/Memoir.

Authors:Guanghao Li, Kerui Ren, Linning Xu, Zhewen Zheng, Changjian Jiang, Xin Gao, Bo Dai, Jian Pu, Mulin Yu, Jiangmiao Pang
Title: ARTDECO: Towards Efficient and High-Fidelity On-the-Fly 3D Reconstruction with Structured Scene Representation
Abstract:
On-the-fly 3D reconstruction from monocular image sequences is a long-standing challenge in computer vision, critical for applications such as real-to-sim, AR/VR, and robotics. Existing methods face a major tradeoff: per-scene optimization yields high fidelity but is computationally expensive, whereas feed-forward foundation models enable real-time inference but struggle with accuracy and robustness. In this work, we propose ARTDECO, a unified framework that combines the efficiency of feed-forward models with the reliability of SLAM-based pipelines. ARTDECO uses 3D foundation models for pose estimation and point prediction, coupled with a Gaussian decoder that transforms multi-scale features into structured 3D Gaussians. To sustain both fidelity and efficiency at scale, we design a hierarchical Gaussian representation with a LoD-aware rendering strategy, which improves rendering fidelity while reducing redundancy. Experiments on eight diverse indoor and outdoor benchmarks show that ARTDECO delivers interactive performance comparable to SLAM, robustness similar to feed-forward systems, and reconstruction quality close to per-scene optimization, providing a practical path toward on-the-fly digitization of real-world environments with both accurate geometry and high visual fidelity. Explore more demos on our project page: https://city-super.github.io/artdeco/.

Authors:Rishubh Parihar, Or Patashnik, Daniil Ostashev, R. Venkatesh Babu, Daniel Cohen-Or, Kuan-Chieh Wang
Title: Kontinuous Kontext: Continuous Strength Control for Instruction-based Image Editing
Abstract:
Instruction-based image editing offers a powerful and intuitive way to manipulate images through natural language. Yet, relying solely on text instructions limits fine-grained control over the extent of edits. We introduce Kontinuous Kontext, an instruction-driven editing model that provides a new dimension of control over edit strength, enabling users to adjust edits gradually from no change to a fully realized result in a smooth and continuous manner. Kontinuous Kontext extends a state-of-the-art image editing model to accept an additional input, a scalar edit strength which is then paired with the edit instruction, enabling explicit control over the extent of the edit. To inject this scalar information, we train a lightweight projector network that maps the input scalar and the edit instruction to coefficients in the model's modulation space. For training our model, we synthesize a diverse dataset of image-edit-instruction-strength quadruplets using existing generative models, followed by a filtering stage to ensure quality and consistency. Kontinuous Kontext provides a unified approach for fine-grained control over edit strength for instruction driven editing from subtle to strong across diverse operations such as stylization, attribute, material, background, and shape changes, without requiring attribute-specific training.

Authors:Hongxing Li, Dingming Li, Zixuan Wang, Yuchen Yan, Hang Wu, Wenqi Zhang, Yongliang Shen, Weiming Lu, Jun Xiao, Yueting Zhuang
Title: SpatialLadder: Progressive Training for Spatial Reasoning in Vision-Language Models
Abstract:
Spatial reasoning remains a fundamental challenge for Vision-Language Models (VLMs), with current approaches struggling to achieve robust performance despite recent advances. We identify that this limitation stems from a critical gap: existing methods attempt to learn spatial reasoning directly without establishing the hierarchical foundations of perception and understanding. To address this challenge, we present a comprehensive methodology for building spatial intelligence progressively. We introduce SpatialLadder-26k, a multimodal dataset containing 26,610 samples spanning object localization, single image, multi-view, and video spatial reasoning tasks, constructed through a standardized pipeline that ensures systematic coverage across modalities. Building on this dataset, we design a three-stage progressive training framework that (1) establishes spatial perception through object localization, (2) develops spatial understanding through multi-dimensional spatial tasks, and (3) strengthens complex reasoning via reinforcement learning with verifiable rewards. This approach yields SpatialLadder, a 3B-parameter model that achieves state-of-the-art performance on spatial reasoning benchmarks, with 23.4% average improvement over the base model, surpassing GPT-4o by 20.8% and Gemini-2.0-Flash by 10.1%. Notably, SpatialLadder maintains strong generalization with 7.2% improvement on out-of-domain benchmarks, demonstrating that progressive training from perception to reasoning is essential for robust spatial intelligence.

Authors:Zhitong Huang, Mohan Zhang, Renhan Wang, Rui Tang, Hao Zhu, Jing Liao
Title: X2Video: Adapting Diffusion Models for Multimodal Controllable Neural Video Rendering
Abstract:
We present X2Video, the first diffusion model for rendering photorealistic videos guided by intrinsic channels including albedo, normal, roughness, metallicity, and irradiance, while supporting intuitive multi-modal controls with reference images and text prompts for both global and local regions. The intrinsic guidance allows accurate manipulation of color, material, geometry, and lighting, while reference images and text prompts provide intuitive adjustments in the absence of intrinsic information. To enable these functionalities, we extend the intrinsic-guided image generation model XRGB to video generation by employing a novel and efficient Hybrid Self-Attention, which ensures temporal consistency across video frames and also enhances fidelity to reference images. We further develop a Masked Cross-Attention to disentangle global and local text prompts, applying them effectively onto respective local and global regions. For generating long videos, our novel Recursive Sampling method incorporates progressive frame sampling, combining keyframe prediction and frame interpolation to maintain long-range temporal consistency while preventing error accumulation. To support the training of X2Video, we assembled a video dataset named InteriorVideo, featuring 1,154 rooms from 295 interior scenes, complete with reliable ground-truth intrinsic channel sequences and smooth camera trajectories. Both qualitative and quantitative evaluations demonstrate that X2Video can produce long, temporally consistent, and photorealistic videos guided by intrinsic conditions. Additionally, X2Video effectively accommodates multi-modal controls with reference images, global and local text prompts, and simultaneously supports editing on color, material, geometry, and lighting through parametric tuning. Project page: https://luckyhzt.github.io/x2video

Authors:Zhiyuan Zhang, Can Wang, Dongdong Chen, Jing Liao
Title: FlexTraj: Image-to-Video Generation with Flexible Point Trajectory Control
Abstract:
We present FlexTraj, a framework for image-to-video generation with flexible point trajectory control. FlexTraj introduces a unified point-based motion representation that encodes each point with a segmentation ID, a temporally consistent trajectory ID, and an optional color channel for appearance cues, enabling both dense and sparse trajectory control. Instead of injecting trajectory conditions into the video generator through token concatenation or ControlNet, FlexTraj employs an efficient sequence-concatenation scheme that achieves faster convergence, stronger controllability, and more efficient inference, while maintaining robustness under unaligned conditions. To train such a unified point trajectory-controlled video generator, FlexTraj adopts an annealing training strategy that gradually reduces reliance on complete supervision and aligned condition. Experimental results demonstrate that FlexTraj enables multi-granularity, alignment-agnostic trajectory control for video generation, supporting various applications such as motion cloning, drag-based image-to-video, motion interpolation, camera redirection, flexible action control and mesh animations.

Authors:Jiayun Luo, Wan-Cyuan Fan, Lyuyang Wang, Xiangteng He, Tanzila Rahman, Purang Abolmaesumi, Leonid Sigal
Title: To Sink or Not to Sink: Visual Information Pathways in Large Vision-Language Models
Abstract:
Large Vision Language Models (LVLMs) have recently emerged as powerful architectures capable of understanding and reasoning over both visual and textual information. These models typically rely on two key components: a Vision Transformer (ViT) and a Large Language Model (LLM). ViT encodes visual content into a sequence of image tokens and serves as the perceptual front-end -- the eyes of the model. In contrast, the LLM interprets these tokens to perform high-level reasoning, generates responses, and functions as the cognitive core -- the brain of the model. However, it remains unclear which visual tokens contribute most significantly to understanding and reasoning, and how effectively these signals are propagated from ViT to the LLM. While most existing works have focused on identifying attention sinks, low-semantic tokens receiving disproportionately high attention, within the LLM, we shift the focus to the vision encoder by identifying a class of high-norm visual tokens from ViT, referred to as ViT attention sinks -- a problem that has been rarely studied but is indeed very important for LVLMs. Our findings show that these ViT sinks encapsulate high-level semantic concepts from images, allowing the LLM to perform more effective understanding and reasoning. Despite their importance, these sink tokens are often overlooked in existing LVLM architectures. To explore their contribution, we present both qualitative and quantitative analyses of the information embedded in these sink tokens. We also propose both training-free and training-based approaches to better leverage how this information is interpreted by the LLM, and to what extent. By explicitly utilizing these tokens, we demonstrate substantial improvements across a range of LVLMs and visual reasoning tasks, highlighting the untapped potential of ViT attention sinks in enhancing visual reasoning.

Authors:Jhen Hsieh, Kuan-Hsun Tu, Kuo-Han Hung, Tsung-Wei Ke
Title: DexMan: Learning Bimanual Dexterous Manipulation from Human and Generated Videos
Abstract:
We present DexMan, an automated framework that converts human visual demonstrations into bimanual dexterous manipulation skills for humanoid robots in simulation. Operating directly on third-person videos of humans manipulating rigid objects, DexMan eliminates the need for camera calibration, depth sensors, scanned 3D object assets, or ground-truth hand and object motion annotations. Unlike prior approaches that consider only simplified floating hands, it directly controls a humanoid robot and leverages novel contact-based rewards to improve policy learning from noisy hand-object poses estimated from in-the-wild videos. DexMan achieves state-of-the-art performance in object pose estimation on the TACO benchmark, with absolute gains of 0.08 and 0.12 in ADD-S and VSD. Meanwhile, its reinforcement learning policy surpasses previous methods by 19% in success rate on OakInk-v2. Furthermore, DexMan can generate skills from both real and synthetic videos, without the need for manual data collection and costly motion capture, and enabling the creation of large-scale, diverse datasets for training generalist dexterous manipulation.

Authors:Andrew Lee, Ian Chuang, Dechen Gao, Kai Fukazawa, Iman Soltani
Title: Gaze on the Prize: Shaping Visual Attention with Return-Guided Contrastive Learning
Abstract:
Visual Reinforcement Learning (RL) agents must learn to act based on high-dimensional image data where only a small fraction of the pixels is task-relevant. This forces agents to waste exploration and computational resources on irrelevant features, leading to sample-inefficient and unstable learning. To address this, inspired by human visual foveation, we introduce Gaze on the Prize. This framework augments visual RL with a learnable foveal attention mechanism (Gaze), guided by a self-supervised signal derived from the agent's experience pursuing higher returns (the Prize). Our key insight is that return differences reveal what matters most: If two similar representations produce different outcomes, their distinguishing features are likely task-relevant, and the gaze should focus on them accordingly. This is realized through return-guided contrastive learning that trains the attention to distinguish between the features relevant to success and failure. We group similar visual representations into positives and negatives based on their return differences and use the resulting labels to construct contrastive triplets. These triplets provide the training signal that teaches the attention mechanism to produce distinguishable representations for states associated with different outcomes. Our method achieves up to 2.4x improvement in sample efficiency and can solve tasks that the baseline fails to learn, demonstrated across a suite of manipulation tasks from the ManiSkill3 benchmark, all without modifying the underlying algorithm or hyperparameters.

Authors:Yihong Luo, Tianyang Hu, Jing Tang
Title: Reinforcing Diffusion Models by Direct Group Preference Optimization
Abstract:
While reinforcement learning methods such as Group Relative Preference Optimization (GRPO) have significantly enhanced Large Language Models, adapting them to diffusion models remains challenging. In particular, GRPO demands a stochastic policy, yet the most cost-effective diffusion samplers are based on deterministic ODEs. Recent work addresses this issue by using inefficient SDE-based samplers to induce stochasticity, but this reliance on model-agnostic Gaussian noise leads to slow convergence. To resolve this conflict, we propose Direct Group Preference Optimization (DGPO), a new online RL algorithm that dispenses with the policy-gradient framework entirely. DGPO learns directly from group-level preferences, which utilize relative information of samples within groups. This design eliminates the need for inefficient stochastic policies, unlocking the use of efficient deterministic ODE samplers and faster training. Extensive results show that DGPO trains around 20 times faster than existing state-of-the-art methods and achieves superior performance on both in-domain and out-of-domain reward metrics. Code is available at https://github.com/Luo-Yihong/DGPO.

Authors:Cong Wei, Quande Liu, Zixuan Ye, Qiulin Wang, Xintao Wang, Pengfei Wan, Kun Gai, Wenhu Chen
Title: UniVideo: Unified Understanding, Generation, and Editing for Videos
Abstract:
Unified multimodal models have shown promising results in multimodal content generation and editing but remain largely limited to the image domain. In this work, we present UniVideo, a versatile framework that extends unified modeling to the video domain. UniVideo adopts a dual-stream design, combining a Multimodal Large Language Model (MLLM) for instruction understanding with a Multimodal DiT (MMDiT) for video generation. This design enables accurate interpretation of complex multimodal instructions while preserving visual consistency. Built on this architecture, UniVideo unifies diverse video generation and editing tasks under a single multimodal instruction paradigm and is jointly trained across them. Extensive experiments demonstrate that UniVideo matches or surpasses state-of-the-art task-specific baselines in text/image-to-video generation, in-context video generation and in-context video editing. Notably, the unified design of UniVideo enables two forms of generalization. First, UniVideo supports task composition, such as combining editing with style transfer, by integrating multiple capabilities within a single instruction. Second, even without explicit training on free-form video editing, UniVideo transfers its editing capability from large-scale image editing data to this setting, handling unseen instructions such as green-screening characters or changing materials within a video. Beyond these core capabilities, UniVideo also supports visual-prompt-based video generation, where the MLLM interprets visual prompts and guides the MMDiT during synthesis. To foster future research, we will release our model and code.

Authors:Haipeng Liu, Yang Wang, Meng Wang
Title: One Stone with Two Birds: A Null-Text-Null Frequency-Aware Diffusion Models for Text-Guided Image Inpainting
Abstract:
Text-guided image inpainting aims at reconstructing the masked regions as per text prompts, where the longstanding challenges lie in the preservation for unmasked regions, while achieving the semantics consistency between unmasked and inpainted masked regions. Previous arts failed to address both of them, always with either of them to be remedied. Such facts, as we observed, stem from the entanglement of the hybrid (e.g., mid-and-low) frequency bands that encode varied image properties, which exhibit different robustness to text prompts during the denoising process. In this paper, we propose a null-text-null frequency-aware diffusion models, dubbed \textbf{NTN-Diff}, for text-guided image inpainting, by decomposing the semantics consistency across masked and unmasked regions into the consistencies as per each frequency band, while preserving the unmasked regions, to circumvent two challenges in a row. Based on the diffusion process, we further divide the denoising process into early (high-level noise) and late (low-level noise) stages, where the mid-and-low frequency bands are disentangled during the denoising process. As observed, the stable mid-frequency band is progressively denoised to be semantically aligned during text-guided denoising process, which, meanwhile, serves as the guidance to the null-text denoising process to denoise low-frequency band for the masked regions, followed by a subsequent text-guided denoising process at late stage, to achieve the semantics consistency for mid-and-low frequency bands across masked and unmasked regions, while preserve the unmasked regions. Extensive experiments validate the superiority of NTN-Diff over the state-of-the-art diffusion models to text-guided diffusion models. Our code can be accessed from https://github.com/htyjers/NTN-Diff.

Authors:Kesen Zhao, Jiaxin Shi, Beier Zhu, Junbao Zhou, Xiaolong Shen, Yuan Zhou, Qianru Sun, Hanwang Zhang
Title: Real-Time Motion-Controllable Autoregressive Video Diffusion
Abstract:
Real-time motion-controllable video generation remains challenging due to the inherent latency of bidirectional diffusion models and the lack of effective autoregressive (AR) approaches. Existing AR video diffusion models are limited to simple control signals or text-to-video generation, and often suffer from quality degradation and motion artifacts in few-step generation. To address these challenges, we propose AR-Drag, the first RL-enhanced few-step AR video diffusion model for real-time image-to-video generation with diverse motion control. We first fine-tune a base I2V model to support basic motion control, then further improve it via reinforcement learning with a trajectory-based reward model. Our design preserves the Markov property through a Self-Rollout mechanism and accelerates training by selectively introducing stochasticity in denoising steps. Extensive experiments demonstrate that AR-Drag achieves high visual fidelity and precise motion alignment, significantly reducing latency compared with state-of-the-art motion-controllable VDMs, while using only 1.3B parameters. Additional visualizations can be found on our project page: https://kesenzhao.github.io/AR-Drag.github.io/.

Authors:Shuhai Zhang, ZiHao Lian, Jiahao Yang, Daiyuan Li, Guoxuan Pang, Feng Liu, Bo Han, Shutao Li, Mingkui Tan
Title: Physics-Driven Spatiotemporal Modeling for AI-Generated Video Detection
Abstract:
AI-generated videos have achieved near-perfect visual realism (e.g., Sora), urgently necessitating reliable detection mechanisms. However, detecting such videos faces significant challenges in modeling high-dimensional spatiotemporal dynamics and identifying subtle anomalies that violate physical laws. In this paper, we propose a physics-driven AI-generated video detection paradigm based on probability flow conservation principles. Specifically, we propose a statistic called Normalized Spatiotemporal Gradient (NSG), which quantifies the ratio of spatial probability gradients to temporal density changes, explicitly capturing deviations from natural video dynamics. Leveraging pre-trained diffusion models, we develop an NSG estimator through spatial gradients approximation and motion-aware temporal modeling without complex motion decomposition while preserving physical constraints. Building on this, we propose an NSG-based video detection method (NSG-VD) that computes the Maximum Mean Discrepancy (MMD) between NSG features of the test and real videos as a detection metric. Last, we derive an upper bound of NSG feature distances between real and generated videos, proving that generated videos exhibit amplified discrepancies due to distributional shifts. Extensive experiments confirm that NSG-VD outperforms state-of-the-art baselines by 16.00% in Recall and 10.75% in F1-Score, validating the superior performance of NSG-VD. The source code is available at https://github.com/ZSHsh98/NSG-VD.

Authors:Junyu Shi, Minghui Li, Junguo Zuo, Zhifei Yu, Yipeng Lin, Shengshan Hu, Ziqi Zhou, Yechao Zhang, Wei Wan, Yinzhe Xu, Leo Yu Zhang
Title: Towards Real-World Deepfake Detection: A Diverse In-the-wild Dataset of Forgery Faces
Abstract:
Deepfakes, leveraging advanced AIGC (Artificial Intelligence-Generated Content) techniques, create hyper-realistic synthetic images and videos of human faces, posing a significant threat to the authenticity of social media. While this real-world threat is increasingly prevalent, existing academic evaluations and benchmarks for detecting deepfake forgery often fall short to achieve effective application for their lack of specificity, limited deepfake diversity, restricted manipulation techniques.To address these limitations, we introduce RedFace (Real-world-oriented Deepfake Face), a specialized facial deepfake dataset, comprising over 60,000 forged images and 1,000 manipulated videos derived from authentic facial features, to bridge the gap between academic evaluations and real-world necessity. Unlike prior benchmarks, which typically rely on academic methods to generate deepfakes, RedFace utilizes 9 commercial online platforms to integrate the latest deepfake technologies found "in the wild", effectively simulating real-world black-box scenarios.Moreover, RedFace's deepfakes are synthesized using bespoke algorithms, allowing it to capture diverse and evolving methods used by real-world deepfake creators. Extensive experimental results on RedFace (including cross-domain, intra-domain, and real-world social network dissemination simulations) verify the limited practicality of existing deepfake detection schemes against real-world applications. We further perform a detailed analysis of the RedFace dataset, elucidating the reason of its impact on detection performance compared to conventional datasets. Our dataset is available at: https://github.com/kikyou-220/RedFace.

Authors:Bheeshm Sharma, Karthikeyan Jaganathan, Balamurugan Palaniappan
Title: RASALoRE: Region Aware Spatial Attention with Location-based Random Embeddings for Weakly Supervised Anomaly Detection in Brain MRI Scans
Abstract:
Weakly Supervised Anomaly detection (WSAD) in brain MRI scans is an important challenge useful to obtain quick and accurate detection of brain anomalies when precise pixel-level anomaly annotations are unavailable and only weak labels (e.g., slice-level) are available. In this work, we propose RASALoRE: Region Aware Spatial Attention with Location-based Random Embeddings, a novel two-stage WSAD framework. In the first stage, we introduce a Discriminative Dual Prompt Tuning (DDPT) mechanism that generates high-quality pseudo weak masks based on slice-level labels, serving as coarse localization cues. In the second stage, we propose a segmentation network with a region-aware spatial attention mechanism that relies on fixed location-based random embeddings. This design enables the model to effectively focus on anomalous regions. Our approach achieves state-of-the-art anomaly detection performance, significantly outperforming existing WSAD methods while utilizing less than 8 million parameters. Extensive evaluations on the BraTS20, BraTS21, BraTS23, and MSD datasets demonstrate a substantial performance improvement coupled with a significant reduction in computational complexity. Code is available at: https://github.com/BheeshmSharma/RASALoRE-BMVC-2025/.

Authors:Shaohong Wang, Bin Lu, Xinyu Xiao, Hanzhi Zhong, Bowen Pang, Tong Wang, Zhiyu Xiang, Hangguan Shan, Eryun Liu
Title: RayFusion: Ray Fusion Enhanced Collaborative Visual Perception
Abstract:
Collaborative visual perception methods have gained widespread attention in the autonomous driving community in recent years due to their ability to address sensor limitation problems. However, the absence of explicit depth information often makes it difficult for camera-based perception systems, e.g., 3D object detection, to generate accurate predictions. To alleviate the ambiguity in depth estimation, we propose RayFusion, a ray-based fusion method for collaborative visual perception. Using ray occupancy information from collaborators, RayFusion reduces redundancy and false positive predictions along camera rays, enhancing the detection performance of purely camera-based collaborative perception systems. Comprehensive experiments show that our method consistently outperforms existing state-of-the-art models, substantially advancing the performance of collaborative visual perception. The code is available at https://github.com/wangsh0111/RayFusion.

Authors:Gaurvi Goyal, Pham Cong Thuong, Arren Glover, Masayoshi Mizuno, Chiara Bartolozzi
Title: GraphEnet: Event-driven Human Pose Estimation with a Graph Neural Network
Abstract:
Human Pose Estimation is a crucial module in human-machine interaction applications and, especially since the rise in deep learning technology, robust methods are available to consumers using RGB cameras and commercial GPUs. On the other hand, event-based cameras have gained popularity in the vision research community for their low latency and low energy advantages that make them ideal for applications where those resources are constrained like portable electronics and mobile robots. In this work we propose a Graph Neural Network, GraphEnet, that leverages the sparse nature of event camera output, with an intermediate line based event representation, to estimate 2D Human Pose of a single person at a high frequency. The architecture incorporates a novel offset vector learning paradigm with confidence based pooling to estimate the human pose. This is the first work that applies Graph Neural Networks to event data for Human Pose Estimation. The code is open-source at https://github.com/event-driven-robotics/GraphEnet-NeVi-ICCV2025.

Authors:Yufei Tong, Guanjie Cheng, Peihan Wu, Yicheng Zhu, Kexu Lu, Feiyi Chen, Meng Xi, Junqin Huang, Shuiguang Deng
Title: SatFusion: A Unified Framework for Enhancing Satellite IoT Images via Multi-Temporal and Multi-Source Data Fusion
Abstract:
With the rapid advancement of the digital society, the proliferation of satellites in the Satellite Internet of Things (Sat-IoT) has led to the continuous accumulation of large-scale multi-temporal and multi-source images across diverse application scenarios. However, existing methods fail to fully exploit the complementary information embedded in both temporal and source dimensions. For example, Multi-Image Super-Resolution (MISR) enhances reconstruction quality by leveraging temporal complementarity across multiple observations, yet the limited fine-grained texture details in input images constrain its performance. Conversely, pansharpening integrates multi-source images by injecting high-frequency spatial information from panchromatic data, but typically relies on pre-interpolated low-resolution inputs and assumes noise-free alignment, making it highly sensitive to noise and misregistration. To address these issues, we propose SatFusion: A Unified Framework for Enhancing Satellite IoT Images via Multi-Temporal and Multi-Source Data Fusion. Specifically, SatFusion first employs a Multi-Temporal Image Fusion (MTIF) module to achieve deep feature alignment with the panchromatic image. Then, a Multi-Source Image Fusion (MSIF) module injects fine-grained texture information from the panchromatic data. Finally, a Fusion Composition module adaptively integrates the complementary advantages of both modalities while dynamically refining spectral consistency, supervised by a weighted combination of multiple loss functions. Extensive experiments on the WorldStrat, WV3, QB, and GF2 datasets demonstrate that SatFusion significantly improves fusion quality, robustness under challenging conditions, and generalizability to real-world Sat-IoT scenarios. The code is available at: https://github.com/dllgyufei/SatFusion.git.

Authors:Haochen Yu, Qiankun Liu, Hongyuan Liu, Jianfei Jiang, Juntao Lyu, Jiansheng Chen, Huimin Ma
Title: XYZCylinder: Feedforward Reconstruction for Driving Scenes Based on A Unified Cylinder Lifting Method
Abstract:
Recently, more attention has been paid to feedforward reconstruction paradigms, which mainly learn a fixed view transformation implicitly and reconstruct the scene with a single representation. However, their generalization capability and reconstruction accuracy are still limited while reconstructing driving scenes, which results from two aspects: (1) The fixed view transformation fails when the camera configuration changes, limiting the generalization capability across different driving scenes equipped with different camera configurations. (2) The small overlapping regions between sparse views of the $360^\circ$ panorama and the complexity of driving scenes increase the learning difficulty, reducing the reconstruction accuracy. To handle these difficulties, we propose \textbf{XYZCylinder}, a feedforward model based on a unified cylinder lifting method which involves camera modeling and feature lifting. Specifically, to improve the generalization capability, we design a Unified Cylinder Camera Modeling (UCCM) strategy, which avoids the learning of viewpoint-dependent spatial correspondence and unifies different camera configurations with adjustable parameters. To improve the reconstruction accuracy, we propose a hybrid representation with several dedicated modules based on newly designed Cylinder Plane Feature Group (CPFG) to lift 2D image features to 3D space. Experimental results show that XYZCylinder achieves state-of-the-art performance under different evaluation settings, and can be generalized to other driving scenes in a zero-shot manner. Project page: \href{https://yuyuyu223.github.io/XYZCYlinder-projectpage/}{here}.

Authors:Yijie Gao, Houqiang Zhong, Tianchi Zhu, Zhengxue Cheng, Qiang Hu, Li Song
Title: AlignGS: Aligning Geometry and Semantics for Robust Indoor Reconstruction from Sparse Views
Abstract:
The demand for semantically rich 3D models of indoor scenes is rapidly growing, driven by applications in augmented reality, virtual reality, and robotics. However, creating them from sparse views remains a challenge due to geometric ambiguity. Existing methods often treat semantics as a passive feature painted on an already-formed, and potentially flawed, geometry. We posit that for robust sparse-view reconstruction, semantic understanding instead be an active, guiding force. This paper introduces AlignGS, a novel framework that actualizes this vision by pioneering a synergistic, end-to-end optimization of geometry and semantics. Our method distills rich priors from 2D foundation models and uses them to directly regularize the 3D representation through a set of novel semantic-to-geometry guidance mechanisms, including depth consistency and multi-faceted normal regularization. Extensive evaluations on standard benchmarks demonstrate that our approach achieves state-of-the-art results in novel view synthesis and produces reconstructions with superior geometric accuracy. The results validate that leveraging semantic priors as a geometric regularizer leads to more coherent and complete 3D models from limited input views. Our code is avaliable at https://github.com/MediaX-SJTU/AlignGS .

Authors:Harsh Kavediya, Vighnesh Nayak, Bheeshm Sharma, Balamurugan Palaniappan
Title: IsoSignVid2Aud: Sign Language Video to Audio Conversion without Text Intermediaries
Abstract:
Sign language to spoken language audio translation is important to connect the hearing- and speech-challenged humans with others. We consider sign language videos with isolated sign sequences rather than continuous grammatical signing. Such videos are useful in educational applications and sign prompt interfaces. Towards this, we propose IsoSignVid2Aud, a novel end-to-end framework that translates sign language videos with a sequence of possibly non-grammatic continuous signs to speech without requiring intermediate text representation, providing immediate communication benefits while avoiding the latency and cascading errors inherent in multi-stage translation systems. Our approach combines an I3D-based feature extraction module with a specialized feature transformation network and an audio generation pipeline, utilizing a novel Non-Maximal Suppression (NMS) algorithm for the temporal detection of signs in non-grammatic continuous sequences. Experimental results demonstrate competitive performance on ASL-Citizen-1500 and WLASL-100 datasets with Top-1 accuracies of 72.01\% and 78.67\%, respectively, and audio quality metrics (PESQ: 2.67, STOI: 0.73) indicating intelligible speech output. Code is available at: https://github.com/BheeshmSharma/IsoSignVid2Aud_AIMLsystems-2025.

Authors:Kanglin Ning, Ruzhao Chen, Penghong Wang, Xingtao Wang, Ruiqin Xiong, Xiaopeng Fan
Title: An End-to-End Room Geometry Constrained Depth Estimation Framework for Indoor Panorama Images
Abstract:
Predicting spherical pixel depth from monocular $360^{\circ}$ indoor panoramas is critical for many vision applications. However, existing methods focus on pixel-level accuracy, causing oversmoothed room corners and noise sensitivity. In this paper, we propose a depth estimation framework based on room geometry constraints, which extracts room geometry information through layout prediction and integrates those information into the depth estimation process through background segmentation mechanism. At the model level, our framework comprises a shared feature encoder followed by task-specific decoders for layout estimation, depth estimation, and background segmentation. The shared encoder extracts multi-scale features, which are subsequently processed by individual decoders to generate initial predictions: a depth map, a room layout map, and a background segmentation map. Furthermore, our framework incorporates two strategies: a room geometry-based background depth resolving strategy and a background-segmentation-guided fusion mechanism. The proposed room-geometry-based background depth resolving strategy leverages the room layout and the depth decoder's output to generate the corresponding background depth map. Then, a background-segmentation-guided fusion strategy derives fusion weights for the background and coarse depth maps from the segmentation decoder's predictions. Extensive experimental results on the Stanford2D3D, Matterport3D and Structured3D datasets show that our proposed methods can achieve significantly superior performance than current open-source methods. Our code is available at https://github.com/emiyaning/RGCNet.

Authors:Qinghongbing Xie, Zhaoyuan Xia, Feng Zhu, Lijun Gong, Ziyue Li, Rui Zhao, Long Zeng
Title: GTR-Bench: Evaluating Geo-Temporal Reasoning in Vision-Language Models
Abstract:
Recently spatial-temporal intelligence of Visual-Language Models (VLMs) has attracted much attention due to its importance for Autonomous Driving, Embodied AI and General Artificial Intelligence. Existing spatial-temporal benchmarks mainly focus on egocentric perspective reasoning with images/video context, or geographic perspective reasoning with graphics context (eg. a map), thus fail to assess VLMs' geographic spatial-temporal intelligence with both images/video and graphics context, which is important for areas like traffic management and emergency response. To address the gaps, we introduce Geo-Temporal Reasoning benchmark (GTR-Bench), a novel challenge for geographic temporal reasoning of moving targets in a large-scale camera network. GTR-Bench is more challenging as it requires multiple perspective switches between maps and videos, joint reasoning across multiple videos with non-overlapping fields of view, and inference over spatial-temporal regions that are unobserved by any video context. Evaluations of more than 10 popular VLMs on GTR-Bench demonstrate that even the best proprietary model, Gemini-2.5-Pro (34.9%), significantly lags behind human performance (78.61%) on geo-temporal reasoning. Moreover, our comprehensive analysis on GTR-Bench reveals three primary deficiencies of current models for geo-temporal reasoning. (1) VLMs' reasoning is impaired by an imbalanced utilization of spatial-temporal context. (2) VLMs are weak in temporal forecasting, which leads to worse performance on temporal-emphasized tasks than on spatial-emphasized tasks. (3) VLMs lack the proficiency to comprehend or align the map data with multi-view video inputs. We believe GTR-Bench offers valuable insights and opens up new opportunities for research and applications in spatial-temporal intelligence. Benchmark and code will be released at https://github.com/X-Luffy/GTR-Bench.

Authors:Ming Jie Ong, Sze Yinn Ung, Sim Kuan Goh, Jimmy Y. Zhong
Title: Demystifying Deep Learning-based Brain Tumor Segmentation with 3D UNets and Explainable AI (XAI): A Comparative Analysis
Abstract:
The current study investigated the use of Explainable Artificial Intelligence (XAI) to improve the accuracy of brain tumor segmentation in MRI images, with the goal of assisting physicians in clinical decision-making. The study focused on applying UNet models for brain tumor segmentation and using the XAI techniques of Gradient-weighted Class Activation Mapping (Grad-CAM) and attention-based visualization to enhance the understanding of these models. Three deep learning models - UNet, Residual UNet (ResUNet), and Attention UNet (AttUNet) - were evaluated to identify the best-performing model. XAI was employed with the aims of clarifying model decisions and increasing physicians' trust in these models. We compared the performance of two UNet variants (ResUNet and AttUNet) with the conventional UNet in segmenting brain tumors from the BraTS2020 public dataset and analyzed model predictions with Grad-CAM and attention-based visualization. Using the latest computer hardware, we trained and validated each model using the Adam optimizer and assessed their performance with respect to: (i) training, validation, and inference times, (ii) segmentation similarity coefficients and loss functions, and (iii) classification performance. Notably, during the final testing phase, ResUNet outperformed the other models with respect to Dice and Jaccard similarity scores, as well as accuracy, recall, and F1 scores. Grad-CAM provided visuospatial insights into the tumor subregions each UNet model focused on while attention-based visualization provided valuable insights into the working mechanisms of AttUNet's attention modules. These results demonstrated ResUNet as the best-performing model and we conclude by recommending its use for automated brain tumor segmentation in future clinical assessments. Our source code and checkpoint are available at https://github.com/ethanong98/MultiModel-XAI-Brats2020

Authors:Yuang Meng, Xin Jin, Lina Lei, Chun-Le Guo, Chongyi Li
Title: UltraLED: Learning to See Everything in Ultra-High Dynamic Range Scenes
Abstract:
Ultra-high dynamic range (UHDR) scenes exhibit significant exposure disparities between bright and dark regions. Such conditions are commonly encountered in nighttime scenes with light sources. Even with standard exposure settings, a bimodal intensity distribution with boundary peaks often emerges, making it difficult to preserve both highlight and shadow details simultaneously. RGB-based bracketing methods can capture details at both ends using short-long exposure pairs, but are susceptible to misalignment and ghosting artifacts. We found that a short-exposure image already retains sufficient highlight detail. The main challenge of UHDR reconstruction lies in denoising and recovering information in dark regions. In comparison to the RGB images, RAW images, thanks to their higher bit depth and more predictable noise characteristics, offer greater potential for addressing this challenge. This raises a key question: can we learn to see everything in UHDR scenes using only a single short-exposure RAW image? In this study, we rely solely on a single short-exposure frame, which inherently avoids ghosting and motion blur, making it particularly robust in dynamic scenes. To achieve that, we introduce UltraLED, a two-stage framework that performs exposure correction via a ratio map to balance dynamic range, followed by a brightness-aware RAW denoiser to enhance detail recovery in dark regions. To support this setting, we design a 9-stop bracketing pipeline to synthesize realistic UHDR images and contribute a corresponding dataset based on diverse scenes, using only the shortest exposure as input for reconstruction. Extensive experiments show that UltraLED significantly outperforms existing single-frame approaches. Our code and dataset are made publicly available at https://srameo.github.io/projects/ultraled.

Authors:Jian Gao, Mengqi Yuan, Yifei Zeng, Chang Zeng, Zhihao Li, Zhenyu Chen, Weichao Qiu, Xiao-Xiao Long, Hao Zhu, Xun Cao, Yao Yao
Title: ComGS: Efficient 3D Object-Scene Composition via Surface Octahedral Probes
Abstract:
Gaussian Splatting (GS) enables immersive rendering, but realistic 3D object-scene composition remains challenging. Baked appearance and shadow information in GS radiance fields cause inconsistencies when combining objects and scenes. Addressing this requires relightable object reconstruction and scene lighting estimation. For relightable object reconstruction, existing Gaussian-based inverse rendering methods often rely on ray tracing, leading to low efficiency. We introduce Surface Octahedral Probes (SOPs), which store lighting and occlusion information and allow efficient 3D querying via interpolation, avoiding expensive ray tracing. SOPs provide at least a 2x speedup in reconstruction and enable real-time shadow computation in Gaussian scenes. For lighting estimation, existing Gaussian-based inverse rendering methods struggle to model intricate light transport and often fail in complex scenes, while learning-based methods predict lighting from a single image and are viewpoint-sensitive. We observe that 3D object-scene composition primarily concerns the object's appearance and nearby shadows. Thus, we simplify the challenging task of full scene lighting estimation by focusing on the environment lighting at the object's placement. Specifically, we capture a 360 degrees reconstructed radiance field of the scene at the location and fine-tune a diffusion model to complete the lighting. Building on these advances, we propose ComGS, a novel 3D object-scene composition framework. Our method achieves high-quality, real-time rendering at around 28 FPS, produces visually harmonious results with vivid shadows, and requires only 36 seconds for editing. Code and dataset are available at https://nju-3dv.github.io/projects/ComGS/.

Authors:Rafin Hassan, Zarin Tasnim Roshni, Rafiqul Bari, Alimul Islam, Nabeel Mohammed, Moshiur Farazi, Shafin Rahman
Title: Label Semantics for Robust Hyperspectral Image Classification
Abstract:
Hyperspectral imaging (HSI) classification is a critical tool with widespread applications across diverse fields such as agriculture, environmental monitoring, medicine, and materials science. Due to the limited availability of high-quality training samples and the high dimensionality of spectral data, HSI classification models are prone to overfitting and often face challenges in balancing accuracy and computational complexity. Furthermore, most of HSI classification models are monomodal, where it solely relies on spectral-spatial data to learn decision boundaries in the high dimensional embedding space. To address this, we propose a general-purpose Semantic Spectral-Spatial Fusion Network (S3FN) that uses contextual, class specific textual descriptions to complement the training of an HSI classification model. Specifically, S3FN leverages LLMs to generate comprehensive textual descriptions for each class label that captures their unique characteristics and spectral behaviors. These descriptions are then embedded into a vector space using a pre-trained text encoder such as BERT or RoBERTa to extract meaningful label semantics which in turn leads to a better feature-label alignment for improved classification performance. To demonstrate the effectiveness of our approach, we evaluate our model on three diverse HSI benchmark datasets - Hyperspectral Wood, HyperspectralBlueberries, and DeepHS-Fruit and report significant performance boost. Our results highlight the synergy between textual semantics and spectral-spatial data, paving the way for further advancements in semantically augmented HSI classification models. Codes are be available in: https://github.com/milab-nsu/S3FN

Authors:Pragati Shuddhodhan Meshram, Varun Chandrasekaran
Title: D2RA: Dual Domain Regeneration Attack
Abstract:
The growing use of generative models has intensified the need for watermarking methods that ensure content attribution and provenance. While recent semantic watermarking schemes improve robustness by embedding signals in latent or frequency representations, we show they remain vulnerable even under resource-constrained adversarial settings. We present D2RA, a training-free, single-image attack that removes or weakens watermarks without access to the underlying model. By projecting watermarked images onto natural priors across complementary representations, D2RA suppresses watermark signals while preserving visual fidelity. Experiments across diverse watermarking schemes demonstrate that our approach consistently reduces watermark detectability, revealing fundamental weaknesses in current designs. Our code is available at https://github.com/Pragati-Meshram/DAWN.

Authors:Guoliang Gong, Man Yu
Title: A Denoising Framework for Real-World Ultra-Low Dose Lung CT Images Based on an Image Purification Strategy
Abstract:
Ultra-low dose CT (uLDCT) significantly reduces radiation exposure but introduces severe noise and artifacts. It also leads to substantial spatial misalignment between uLDCT and normal dose CT (NDCT) image pairs. This poses challenges for directly applying existing denoising networks trained on synthetic noise or aligned data. To address this core challenge in uLDCT denoising, this paper proposes an innovative denoising framework based on an Image Purification (IP) strategy. First, we construct a real clinical uLDCT lung dataset. Then, we propose an Image Purification strategy that generates structurally aligned uLDCT-NDCT image pairs, providing a high-quality data foundation for network training. Building upon this, we propose a Frequency-domain Flow Matching (FFM) model, which works synergistically with the IP strategy to excellently preserve the anatomical structure integrity of denoised images. Experiments on the real clinical dataset demonstrate that our IP strategy significantly enhances the performance of multiple mainstream denoising models on the uLDCT task. Notably, our proposed FFM model combined with the IP strategy achieves state-of-the-art (SOTA) results in anatomical structure preservation. This study provides an effective solution to the data mismatch problem in real-world uLDCT denoising. Code and dataset are available at https://github.com/MonkeyDadLufy/flow-matching.

Authors:Nithin C. Babu, Aniruddha Mahapatra, Harsh Rangwani, Rajiv Soundararajan, Kuldeep Kulkarni
Title: DynamicEval: Rethinking Evaluation for Dynamic Text-to-Video Synthesis
Abstract:
Existing text-to-video (T2V) evaluation benchmarks, such as VBench and EvalCrafter, suffer from two limitations. (i) While the emphasis is on subject-centric prompts or static camera scenes, camera motion essential for producing cinematic shots and existing metrics under dynamic motion are largely unexplored. (ii) These benchmarks typically aggregate video-level scores into a single model-level score for ranking generative models. Such aggregation, however, overlook video-level evaluation, which is vital to selecting the better video among the candidate videos generated for a given prompt. To address these gaps, we introduce DynamicEval, a benchmark consisting of systematically curated prompts emphasizing dynamic camera motion, paired with 45k human annotations on video pairs from 3k videos generated by ten T2V models. DynamicEval evaluates two key dimensions of video quality: background scene consistency and foreground object consistency. For background scene consistency, we obtain the interpretable error maps based on the Vbench motion smoothness metric. We observe that while the Vbench motion smoothness metric shows promising alignment with human judgments, it fails in two cases: occlusions/disocclusions arising from camera and foreground object movements. Building on this, we propose a new background consistency metric that leverages object error maps to correct two failure cases in a principled manner. Our second innovation is the introduction of a foreground consistency metric that tracks points and their neighbors within each object instance to assess object fidelity. Extensive experiments demonstrate that our proposed metrics achieve stronger correlations with human preferences at both the video level and the model level (an improvement of more than 2% points), establishing DynamicEval as a more comprehensive benchmark for evaluating T2V models under dynamic camera motion.

Authors:Siyoon Jin, Seongchan Kim, Dahyun Chung, Jaeho Lee, Hyunwook Choi, Jisu Nam, Jiyoung Kim, Seungryong Kim
Title: MATRIX: Mask Track Alignment for Interaction-aware Video Generation
Abstract:
Video DiTs have advanced video generation, yet they still struggle to model multi-instance or subject-object interactions. This raises a key question: How do these models internally represent interactions? To answer this, we curate MATRIX-11K, a video dataset with interaction-aware captions and multi-instance mask tracks. Using this dataset, we conduct a systematic analysis that formalizes two perspectives of video DiTs: semantic grounding, via video-to-text attention, which evaluates whether noun and verb tokens capture instances and their relations; and semantic propagation, via video-to-video attention, which assesses whether instance bindings persist across frames. We find both effects concentrate in a small subset of interaction-dominant layers. Motivated by this, we introduce MATRIX, a simple and effective regularization that aligns attention in specific layers of video DiTs with multi-instance mask tracks from the MATRIX-11K dataset, enhancing both grounding and propagation. We further propose InterGenEval, an evaluation protocol for interaction-aware video generation. In experiments, MATRIX improves both interaction fidelity and semantic alignment while reducing drift and hallucination. Extensive ablations validate our design choices. Codes and weights will be released.

Authors:Inzamamul Alam, Md Tanvir Islam, Khan Muhammad, Simon S. Woo
Title: SpecGuard: Spectral Projection-based Advanced Invisible Watermarking
Abstract:
Watermarking embeds imperceptible patterns into images for authenticity verification. However, existing methods often lack robustness against various transformations primarily including distortions, image regeneration, and adversarial perturbation, creating real-world challenges. In this work, we introduce SpecGuard, a novel watermarking approach for robust and invisible image watermarking. Unlike prior approaches, we embed the message inside hidden convolution layers by converting from the spatial domain to the frequency domain using spectral projection of a higher frequency band that is decomposed by wavelet projection. Spectral projection employs Fast Fourier Transform approximation to transform spatial data into the frequency domain efficiently. In the encoding phase, a strength factor enhances resilience against diverse attacks, including adversarial, geometric, and regeneration-based distortions, ensuring the preservation of copyrighted information. Meanwhile, the decoder leverages Parseval's theorem to effectively learn and extract the watermark pattern, enabling accurate retrieval under challenging transformations. We evaluate the proposed SpecGuard based on the embedded watermark's invisibility, capacity, and robustness. Comprehensive experiments demonstrate the proposed SpecGuard outperforms the state-of-the-art models. To ensure reproducibility, the full code is released on \href{https://github.com/inzamamulDU/SpecGuard_ICCV_2025}{\textcolor{blue}{\textbf{GitHub}}}.

Authors:Wen Ye, Zhaocheng Liu, Yuwei Gui, Tingyu Yuan, Yunyue Su, Bowen Fang, Chaoyang Zhao, Qiang Liu, Liang Wang
Title: GenPilot: A Multi-Agent System for Test-Time Prompt Optimization in Image Generation
Abstract:
Text-to-image synthesis has made remarkable progress, yet accurately interpreting complex and lengthy prompts remains challenging, often resulting in semantic inconsistencies and missing details. Existing solutions, such as fine-tuning, are model-specific and require training, while prior automatic prompt optimization (APO) approaches typically lack systematic error analysis and refinement strategies, resulting in limited reliability and effectiveness. Meanwhile, test-time scaling methods operate on fixed prompts and on noise or sample numbers, limiting their interpretability and adaptability. To solve these, we introduce a flexible and efficient test-time prompt optimization strategy that operates directly on the input text. We propose a plug-and-play multi-agent system called GenPilot, integrating error analysis, clustering-based adaptive exploration, fine-grained verification, and a memory module for iterative optimization. Our approach is model-agnostic, interpretable, and well-suited for handling long and complex prompts. Simultaneously, we summarize the common patterns of errors and the refinement strategy, offering more experience and encouraging further exploration. Experiments on DPG-bench and Geneval with improvements of up to 16.9% and 5.7% demonstrate the strong capability of our methods in enhancing the text and image consistency and structural coherence of generated images, revealing the effectiveness of our test-time prompt optimization strategy. The code is available at https://github.com/27yw/GenPilot.

Authors:Chenfei Liao, Wensong Wang, Zichen Wen, Xu Zheng, Yiyu Wang, Haocong He, Yuanhuiyi Lyu, Lutao Jiang, Xin Zou, Yuqian Fu, Bin Ren, Linfeng Zhang, Xuming Hu
Title: Are We Using the Right Benchmark: An Evaluation Framework for Visual Token Compression Methods
Abstract:
Recent endeavors to accelerate inference in Multimodal Large Language Models (MLLMs) have primarily focused on visual token compression. The effectiveness of these methods is typically assessed by measuring the accuracy drop on established benchmarks, comparing model performance before and after compression. However, these benchmarks are originally designed to assess the perception and reasoning capabilities of MLLMs, rather than to evaluate compression techniques. As a result, directly applying them to visual token compression introduces a task mismatch. Strikingly, our investigation reveals that simple image downsampling consistently outperforms many advanced compression methods across multiple widely used benchmarks. Through extensive experiments, we make the following observations: (i) Current benchmarks are noisy for the visual token compression task. (ii) Down-sampling is able to serve as a data filter to evaluate the difficulty of samples in the visual token compression task. Motivated by these findings, we introduce VTC-Bench, an evaluation framework that incorporates a data filtering mechanism to denoise existing benchmarks, thereby enabling fairer and more accurate assessment of visual token compression methods. All data and code are available at https://github.com/Chenfei-Liao/VTC-Bench.

Authors:Karim El Khoury, Maxime Zanella, Christophe De Vleeschouwer, Benoit Macq
Title: Few-Shot Adaptation Benchmark for Remote Sensing Vision-Language Models
Abstract:
Remote Sensing Vision-Language Models (RSVLMs) have shown remarkable potential thanks to large-scale pretraining, achieving strong zero-shot performance on various tasks. However, their ability to generalize in low-data regimes, such as few-shot learning, remains insufficiently explored. In this work, we present the first structured benchmark for evaluating few-shot adaptation methods on RSVLMs. We conduct comprehensive experiments across ten remote sensing scene classification datasets, applying five widely used few-shot adaptation strategies to three state-of-the-art RSVLMs with varying backbones. Our findings reveal that models with similar zero-shot performance can exhibit markedly different behavior under few-shot adaptation, with some RSVLMs being inherently more amenable to such adaptation than others. The variability of performance and the absence of a clear winner among existing methods highlight the need for the development of more robust methods for few-shot adaptation tailored to RS. To facilitate future research, we provide a reproducible benchmarking framework and open-source code to systematically evaluate RSVLMs under few-shot conditions. The source code is publicly available on Github: https://github.com/elkhouryk/fewshot_RSVLMs

Authors:Jiahang Liu, Yunpeng Qi, Jiazhao Zhang, Minghan Li, Shaoan Wang, Kui Wu, Hanjing Ye, Hong Zhang, Zhibo Chen, Fangwei Zhong, Zhizheng Zhang, He Wang
Title: TrackVLA++: Unleashing Reasoning and Memory Capabilities in VLA Models for Embodied Visual Tracking
Abstract:
Embodied Visual Tracking (EVT) is a fundamental ability that underpins practical applications, such as companion robots, guidance robots and service assistants, where continuously following moving targets is essential. Recent advances have enabled language-guided tracking in complex and unstructured scenes. However, existing approaches lack explicit spatial reasoning and effective temporal memory, causing failures under severe occlusions or in the presence of similar-looking distractors. To address these challenges, we present TrackVLA++, a novel Vision-Language-Action (VLA) model that enhances embodied visual tracking with two key modules, a spatial reasoning mechanism and a Target Identification Memory (TIM). The reasoning module introduces a Chain-of-Thought paradigm, termed Polar-CoT, which infers the target's relative position and encodes it as a compact polar-coordinate token for action prediction. Guided by these spatial priors, the TIM employs a gated update strategy to preserve long-horizon target memory, ensuring spatiotemporal consistency and mitigating target loss during extended occlusions. Extensive experiments show that TrackVLA++ achieves state-of-the-art performance on public benchmarks across both egocentric and multi-camera settings. On the challenging EVT-Bench DT split, TrackVLA++ surpasses the previous leading approach by 5.1 and 12, respectively. Furthermore, TrackVLA++ exhibits strong zero-shot generalization, enabling robust real-world tracking in dynamic and occluded scenarios.

Authors:Jan Fiszer, Dominika Ciupek, Maciej Malawski
Title: Validation of Various Normalization Methods for Brain Tumor Segmentation: Can Federated Learning Overcome This Heterogeneity?
Abstract:
Deep learning (DL) has been increasingly applied in medical imaging, however, it requires large amounts of data, which raises many challenges related to data privacy, storage, and transfer. Federated learning (FL) is a training paradigm that overcomes these issues, though its effectiveness may be reduced when dealing with non-independent and identically distributed (non-IID) data. This study simulates non-IID conditions by applying different MRI intensity normalization techniques to separate data subsets, reflecting a common cause of heterogeneity. These subsets are then used for training and testing models for brain tumor segmentation. The findings provide insights into the influence of the MRI intensity normalization methods on segmentation models, both training and inference. Notably, the FL methods demonstrated resilience to inconsistently normalized data across clients, achieving the 3D Dice score of 92%, which is comparable to a centralized model (trained using all data). These results indicate that FL is a solution to effectively train high-performing models without violating data privacy, a crucial concern in medical applications. The code is available at: https://github.com/SanoScience/fl-varying-normalization.

Authors:Fenghe Tang, Chengqi Dong, Wenxin Ma, Zikang Xu, Heqin Zhu, Zihang Jiang, Rongsheng Wang, Yuhao Wang, Chenxu Wu, Shaohua Kevin Zhou
Title: U-Bench: A Comprehensive Understanding of U-Net through 100-Variant Benchmarking
Abstract:
Over the past decade, U-Net has been the dominant architecture in medical image segmentation, leading to the development of thousands of U-shaped variants. Despite its widespread adoption, there is still no comprehensive benchmark to systematically evaluate their performance and utility, largely because of insufficient statistical validation and limited consideration of efficiency and generalization across diverse datasets. To bridge this gap, we present U-Bench, the first large-scale, statistically rigorous benchmark that evaluates 100 U-Net variants across 28 datasets and 10 imaging modalities. Our contributions are threefold: (1) Comprehensive Evaluation: U-Bench evaluates models along three key dimensions: statistical robustness, zero-shot generalization, and computational efficiency. We introduce a novel metric, U-Score, which jointly captures the performance-efficiency trade-off, offering a deployment-oriented perspective on model progress. (2) Systematic Analysis and Model Selection Guidance: We summarize key findings from the large-scale evaluation and systematically analyze the impact of dataset characteristics and architectural paradigms on model performance. Based on these insights, we propose a model advisor agent to guide researchers in selecting the most suitable models for specific datasets and tasks. (3) Public Availability: We provide all code, models, protocols, and weights, enabling the community to reproduce our results and extend the benchmark with future methods. In summary, U-Bench not only exposes gaps in previous evaluations but also establishes a foundation for fair, reproducible, and practically relevant benchmarking in the next decade of U-Net-based segmentation models. The project can be accessed at: https://fenghetan9.github.io/ubench. Code is available at: https://github.com/FengheTan9/U-Bench.

Authors:Shaojie Zhang, Ke Chen
Title: Angular Constraint Embedding via SpherePair Loss for Constrained Clustering
Abstract:
Constrained clustering integrates domain knowledge through pairwise constraints. However, existing deep constrained clustering (DCC) methods are either limited by anchors inherent in end-to-end modeling or struggle with learning discriminative Euclidean embedding, restricting their scalability and real-world applicability. To avoid their respective pitfalls, we propose a novel angular constraint embedding approach for DCC, termed SpherePair. Using the SpherePair loss with a geometric formulation, our method faithfully encodes pairwise constraints and leads to embeddings that are clustering-friendly in angular space, effectively separating representation learning from clustering. SpherePair preserves pairwise relations without conflict, removes the need to specify the exact number of clusters, generalizes to unseen data, enables rapid inference of the number of clusters, and is supported by rigorous theoretical guarantees. Comparative evaluations with state-of-the-art DCC methods on diverse benchmarks, along with empirical validation of theoretical insights, confirm its superior performance, scalability, and overall real-world effectiveness. Code is available at \href{https://github.com/spherepaircc/SpherePairCC/tree/main}{our repository}.

Authors:Bouthaina Slika, Fadi Dornaika, Fares Bougourzi, Karim Hammoudi
Title: Lung Infection Severity Prediction Using Transformers with Conditional TransMix Augmentation and Cross-Attention
Abstract:
Lung infections, particularly pneumonia, pose serious health risks that can escalate rapidly, especially during pandemics. Accurate AI-based severity prediction from medical imaging is essential to support timely clinical decisions and optimize patient outcomes. In this work, we present a novel method applicable to both CT scans and chest X-rays for assessing lung infection severity. Our contributions are twofold: (i) QCross-Att-PVT, a Transformer-based architecture that integrates parallel encoders, a cross-gated attention mechanism, and a feature aggregator to capture rich multi-scale features; and (ii) Conditional Online TransMix, a custom data augmentation strategy designed to address dataset imbalance by generating mixed-label image patches during training. Evaluated on two benchmark datasets, RALO CXR and Per-COVID-19 CT, our method consistently outperforms several state-of-the-art deep learning models. The results emphasize the critical role of data augmentation and gated attention in improving both robustness and predictive accuracy. This approach offers a reliable, adaptable tool to support clinical diagnosis, disease monitoring, and personalized treatment planning. The source code of this work is available at https://github.com/bouthainas/QCross-Att-PVT.

Authors:Samir Abou Haidar, Alexandre Chariot, Mehdi Darouich, Cyril Joly, Jean-Emmanuel Deschaud
Title: HARP-NeXt: High-Speed and Accurate Range-Point Fusion Network for 3D LiDAR Semantic Segmentation
Abstract:
LiDAR semantic segmentation is crucial for autonomous vehicles and mobile robots, requiring high accuracy and real-time processing, especially on resource-constrained embedded systems. Previous state-of-the-art methods often face a trade-off between accuracy and speed. Point-based and sparse convolution-based methods are accurate but slow due to the complexity of neighbor searching and 3D convolutions. Projection-based methods are faster but lose critical geometric information during the 2D projection. Additionally, many recent methods rely on test-time augmentation (TTA) to improve performance, which further slows the inference. Moreover, the pre-processing phase across all methods increases execution time and is demanding on embedded platforms. Therefore, we introduce HARP-NeXt, a high-speed and accurate LiDAR semantic segmentation network. We first propose a novel pre-processing methodology that significantly reduces computational overhead. Then, we design the Conv-SE-NeXt feature extraction block to efficiently capture representations without deep layer stacking per network stage. We also employ a multi-scale range-point fusion backbone that leverages information at multiple abstraction levels to preserve essential geometric details, thereby enhancing accuracy. Experiments on the nuScenes and SemanticKITTI benchmarks show that HARP-NeXt achieves a superior speed-accuracy trade-off compared to all state-of-the-art methods, and, without relying on ensemble models or TTA, is comparable to the top-ranked PTv3, while running 24$\times$ faster. The code is available at https://github.com/SamirAbouHaidar/HARP-NeXt

Authors:Huahui Yi, Kun Wang, Qiankun Li, Miao Yu, Liang Lin, Gongli Xi, Hao Wu, Xuming Hu, Kang Li, Yang Liu
Title: SaFeR-VLM: Toward Safety-aware Fine-grained Reasoning in Multimodal Models
Abstract:
Multimodal Large Reasoning Models (MLRMs) demonstrate impressive cross-modal reasoning but often amplify safety risks under adversarial or unsafe prompts, a phenomenon we call the \textit{Reasoning Tax}. Existing defenses mainly act at the output level and do not constrain the reasoning process, leaving models exposed to implicit risks. In this paper, we propose SaFeR-VLM, a safety-aligned reinforcement learning framework that embeds safety directly into multimodal reasoning. The framework integrates four components: (I) QI-Safe-10K, a curated dataset emphasizing safety-critical and reasoning-sensitive cases; (II) safety-aware rollout, where unsafe generations undergo reflection and correction instead of being discarded; (III) structured reward modeling with multi-dimensional weighted criteria and explicit penalties for hallucinations and contradictions; and (IV) GRPO optimization, which reinforces both safe and corrected trajectories. This unified design shifts safety from a passive safeguard to an active driver of reasoning, enabling scalable and generalizable safety-aware reasoning. SaFeR-VLM further demonstrates robustness against both explicit and implicit risks, supporting dynamic and interpretable safety decisions beyond surface-level filtering. SaFeR-VLM-3B achieves average performance $70.13$ and $78.97$ on safety and helpfulness across six benchmarks, surpassing both same-scale and $>10\times$ larger models such as Skywork-R1V3-38B, Qwen2.5VL-72B, and GLM4.5V-106B. Remarkably, SaFeR-VLM-7B benefits from its increased scale to surpass GPT-5-mini and Gemini-2.5-Flash by \num{6.47} and \num{16.76} points respectively on safety metrics, achieving this improvement without any degradation in helpfulness performance. Our codes are available at https://github.com/HarveyYi/SaFeR-VLM.

Authors:Kanglei Zhou, Qingyi Pan, Xingxing Zhang, Hubert P. H. Shum, Frederick W. B. Li, Xiaohui Liang, Liyuan Wang
Title: Continual Action Quality Assessment via Adaptive Manifold-Aligned Graph Regularization
Abstract:
Action Quality Assessment (AQA) quantifies human actions in videos, supporting applications in sports scoring, rehabilitation, and skill evaluation. A major challenge lies in the non-stationary nature of quality distributions in real-world scenarios, which limits the generalization ability of conventional methods. We introduce Continual AQA (CAQA), which equips AQA with Continual Learning (CL) capabilities to handle evolving distributions while mitigating catastrophic forgetting. Although parameter-efficient fine-tuning of pretrained models has shown promise in CL for image classification, we find it insufficient for CAQA. Our empirical and theoretical analyses reveal two insights: (i) Full-Parameter Fine-Tuning (FPFT) is necessary for effective representation learning; yet (ii) uncontrolled FPFT induces overfitting and feature manifold shift, thereby aggravating forgetting. To address this, we propose Adaptive Manifold-Aligned Graph Regularization (MAGR++), which couples backbone fine-tuning that stabilizes shallow layers while adapting deeper ones with a two-step feature rectification pipeline: a manifold projector to translate deviated historical features into the current representation space, and a graph regularizer to align local and global distributions. We construct four CAQA benchmarks from three datasets with tailored evaluation protocols and strong baselines, enabling systematic cross-dataset comparison. Extensive experiments show that MAGR++ achieves state-of-the-art performance, with average correlation gains of 3.6% offline and 12.2% online over the strongest baseline, confirming its robustness and effectiveness. Our code is available at https://github.com/ZhouKanglei/MAGRPP.

Authors:Jaeseok Jeong, Junho Kim, Gayoung Lee, Yunjey Choi, Youngjung Uh
Title: StyleKeeper: Prevent Content Leakage using Negative Visual Query Guidance
Abstract:
In the domain of text-to-image generation, diffusion models have emerged as powerful tools. Recently, studies on visual prompting, where images are used as prompts, have enabled more precise control over style and content. However, existing methods often suffer from content leakage, where undesired elements of the visual style prompt are transferred along with the intended style. To address this issue, we 1) extend classifier-free guidance (CFG) to utilize swapping self-attention and propose 2) negative visual query guidance (NVQG) to reduce the transfer of unwanted contents. NVQG employs negative score by intentionally simulating content leakage scenarios that swap queries instead of key and values of self-attention layers from visual style prompts. This simple yet effective method significantly reduces content leakage. Furthermore, we provide careful solutions for using a real image as visual style prompts. Through extensive evaluation across various styles and text prompts, our method demonstrates superiority over existing approaches, reflecting the style of the references, and ensuring that resulting images match the text prompts. Our code is available \href{https://github.com/naver-ai/StyleKeeper}{here}.

Authors:Yuxi Liu, Yunfeng Ma, Yi Tang, Min Liu, Shuai Jiang, Yaonan Wang
Title: Automated Neural Architecture Design for Industrial Defect Detection
Abstract:
Industrial surface defect detection (SDD) is critical for ensuring product quality and manufacturing reliability. Due to the diverse shapes and sizes of surface defects, SDD faces two main challenges: intraclass difference and interclass similarity. Existing methods primarily utilize manually designed models, which require extensive trial and error and often struggle to address both challenges effectively. To overcome this, we propose AutoNAD, an automated neural architecture design framework for SDD that jointly searches over convolutions, transformers, and multi-layer perceptrons. This hybrid design enables the model to capture both fine-grained local variations and long-range semantic context, addressing the two key challenges while reducing the cost of manual network design. To support efficient training of such a diverse search space, AutoNAD introduces a cross weight sharing strategy, which accelerates supernet convergence and improves subnet performance. Additionally, a searchable multi-level feature aggregation module (MFAM) is integrated to enhance multi-scale feature learning. Beyond detection accuracy, runtime efficiency is essential for industrial deployment. To this end, AutoNAD incorporates a latency-aware prior to guide the selection of efficient architectures. The effectiveness of AutoNAD is validated on three industrial defect datasets and further applied within a defect imaging and detection platform. Code will be available at https://github.com/Yuxi104/AutoNAD.

Authors:Tao Feng, Tingfa Xu, Haolin Qin, Tianhao Li, Shuaihao Han, Xuyang Zou, Zhan Lv, Jianan Li
Title: MSITrack: A Challenging Benchmark for Multispectral Single Object Tracking
Abstract:
Visual object tracking in real-world scenarios presents numerous challenges including occlusion, interference from similar objects and complex backgrounds-all of which limit the effectiveness of RGB-based trackers. Multispectral imagery, which captures pixel-level spectral reflectance, enhances target discriminability. However, the availability of multispectral tracking datasets remains limited. To bridge this gap, we introduce MSITrack, the largest and most diverse multispectral single object tracking dataset to date. MSITrack offers the following key features: (i) More Challenging Attributes-including interference from similar objects and similarity in color and texture between targets and backgrounds in natural scenarios, along with a wide range of real-world tracking challenges; (ii) Richer and More Natural Scenes-spanning 55 object categories and 300 distinct natural scenes, MSITrack far exceeds the scope of existing benchmarks. Many of these scenes and categories are introduced to the multispectral tracking domain for the first time; (iii) Larger Scale-300 videos comprising over 129k frames of multispectral imagery. To ensure annotation precision, each frame has undergone meticulous processing, manual labeling and multi-stage verification. Extensive evaluations using representative trackers demonstrate that the multispectral data in MSITrack significantly improves performance over RGB-only baselines, highlighting its potential to drive future advancements in the field. The MSITrack dataset is publicly available at: https://github.com/Fengtao191/MSITrack.

Authors:Ayush Zenith, Arnold Zumbrun, Neel Raut, Jing Lin
Title: SDQM: Synthetic Data Quality Metric for Object Detection Dataset Evaluation
Abstract:
The performance of machine learning models depends heavily on training data. The scarcity of large-scale, well-annotated datasets poses significant challenges in creating robust models. To address this, synthetic data generated through simulations and generative models has emerged as a promising solution, enhancing dataset diversity and improving the performance, reliability, and resilience of models. However, evaluating the quality of this generated data requires an effective metric. This paper introduces the Synthetic Dataset Quality Metric (SDQM) to assess data quality for object detection tasks without requiring model training to converge. This metric enables more efficient generation and selection of synthetic datasets, addressing a key challenge in resource-constrained object detection tasks. In our experiments, SDQM demonstrated a strong correlation with the mean Average Precision (mAP) scores of YOLOv11, a leading object detection model, while previous metrics only exhibited moderate or weak correlations. Additionally, it provides actionable insights for improving dataset quality, minimizing the need for costly iterative training. This scalable and efficient metric sets a new standard for evaluating synthetic data. The code for SDQM is available at https://github.com/ayushzenith/SDQM

Authors:Tianyue Xu, Yanlin Wu, Abhai K. Tripathi, Matthew M. Ippolito, Benjamin D. Haeffele
Title: Adaptive Stain Normalization for Cross-Domain Medical Histology
Abstract:
Deep learning advances have revolutionized automated digital pathology analysis. However, differences in staining protocols and imaging conditions can introduce significant color variability. In deep learning, such color inconsistency often reduces performance when deploying models on data acquired under different conditions from the training data, a challenge known as domain shift. Many existing methods attempt to address this problem via color normalization but suffer from several notable drawbacks such as introducing artifacts or requiring careful choice of a template image for stain mapping. To address these limitations, we propose a trainable color normalization model that can be integrated with any backbone network for downstream tasks such as object detection and classification. Based on the physics of the imaging process per the Beer-Lambert law, our model architecture is derived via algorithmic unrolling of a nonnegative matrix factorization (NMF) model to extract stain-invariant structural information from the original pathology images, which serves as input for further processing. Experimentally, we evaluate the method on publicly available pathology datasets and an internally curated collection of malaria blood smears for cross-domain object detection and classification, where our method outperforms many state-of-the-art stain normalization methods. Our code is available at https://github.com/xutianyue/BeerLaNet.

Authors:Ziyuan Huang, DanDan Zheng, Cheng Zou, Rui Liu, Xiaolong Wang, Kaixiang Ji, Weilong Chai, Jianxin Sun, Libin Wang, Yongjie Lv, Taozhi Huang, Jiajia Liu, Qingpei Guo, Ming Yang, Jingdong Chen, Jun Zhou
Title: Ming-UniVision: Joint Image Understanding and Generation with a Unified Continuous Tokenizer
Abstract:
Visual tokenization remains a core challenge in unifying visual understanding and generation within the autoregressive paradigm. Existing methods typically employ tokenizers in discrete latent spaces to align with the tokens from large language models, where the quantization errors can limit semantic expressiveness and degrade the capability of vision-language understanding. To address this, we introduce MingTok, a new family of visual tokenizers with a continuous latent space, for unified autoregressive generation and understanding. While understanding tasks favor discriminative high-dimensional features, generation tasks prefer compact low-level codes. Thus, to reconcile these competing demands, MingTok adopts a three-stage sequential architecture involving low-level encoding, semantic expansion, and visual reconstruction. Built on top of it, Ming-UniVision eliminates the need for task-specific visual representations, and unifies diverse vision-language tasks under a single autoregrsssive prediction paradigm. By formulating both understanding and generation as next-token prediction in a shared continuous space, it seamlessly supports multi-round, in-context tasks such as iterative understanding, generation and editing. Empirically, we find that using a unified continuous visual representation reconciles the competing requirements on the tokenizers by the understanding and generation tasks, thereby leading to state-of-the-art level performance across both domains. We hope our findings will facilitate unified visual tokenization in the continuous domain. Inference code and model weights are released to benefit community.

Authors:Fei Zhang, Rob Chancia, Josie Clapp, Amirhossein Hassanzadeh, Dimah Dera, Richard MacKenzie, Jan van Aardt
Title: Through the Perspective of LiDAR: A Feature-Enriched and Uncertainty-Aware Annotation Pipeline for Terrestrial Point Cloud Segmentation
Abstract:
Accurate semantic segmentation of terrestrial laser scanning (TLS) point clouds is limited by costly manual annotation. We propose a semi-automated, uncertainty-aware pipeline that integrates spherical projection, feature enrichment, ensemble learning, and targeted annotation to reduce labeling effort, while sustaining high accuracy. Our approach projects 3D points to a 2D spherical grid, enriches pixels with multi-source features, and trains an ensemble of segmentation networks to produce pseudo-labels and uncertainty maps, the latter guiding annotation of ambiguous regions. The 2D outputs are back-projected to 3D, yielding densely annotated point clouds supported by a three-tier visualization suite (2D feature maps, 3D colorized point clouds, and compact virtual spheres) for rapid triage and reviewer guidance. Using this pipeline, we build Mangrove3D, a semantic segmentation TLS dataset for mangrove forests. We further evaluate data efficiency and feature importance to address two key questions: (1) how much annotated data are needed and (2) which features matter most. Results show that performance saturates after ~12 annotated scans, geometric features contribute the most, and compact nine-channel stacks capture nearly all discriminative power, with the mean Intersection over Union (mIoU) plateauing at around 0.76. Finally, we confirm the generalization of our feature-enrichment strategy through cross-dataset tests on ForestSemantic and Semantic3D. Our contributions include: (i) a robust, uncertainty-aware TLS annotation pipeline with visualization tools; (ii) the Mangrove3D dataset; and (iii) empirical guidance on data efficiency and feature importance, thus enabling scalable, high-quality segmentation of TLS point clouds for ecological monitoring and beyond. The dataset and processing scripts are publicly available at https://fz-rit.github.io/through-the-lidars-eye/.

Authors:Oindrila Saha, Vojtech Krs, Radomir Mech, Subhransu Maji, Kevin Blackburn-Matzen, Matheus Gadelha
Title: SIGMA-GEN: Structure and Identity Guided Multi-subject Assembly for Image Generation
Abstract:
We present SIGMA-GEN, a unified framework for multi-identity preserving image generation. Unlike prior approaches, SIGMA-GEN is the first to enable single-pass multi-subject identity-preserved generation guided by both structural and spatial constraints. A key strength of our method is its ability to support user guidance at various levels of precision -- from coarse 2D or 3D boxes to pixel-level segmentations and depth -- with a single model. To enable this, we introduce SIGMA-SET27K, a novel synthetic dataset that provides identity, structure, and spatial information for over 100k unique subjects across 27k images. Through extensive evaluation we demonstrate that SIGMA-GEN achieves state-of-the-art performance in identity preservation, image generation quality, and speed. Code and visualizations at https://oindrilasaha.github.io/SIGMA-Gen/

Authors:Yi Xin, Qi Qin, Siqi Luo, Kaiwen Zhu, Juncheng Yan, Yan Tai, Jiayi Lei, Yuewen Cao, Keqi Wang, Yibin Wang, Jinbin Bai, Qian Yu, Dengyang Jiang, Yuandong Pu, Haoxing Chen, Le Zhuo, Junjun He, Gen Luo, Tianbin Li, Ming Hu, Jin Ye, Shenglong Ye, Bo Zhang, Chang Xu, Wenhai Wang, Hongsheng Li, Guangtao Zhai, Tianfan Xue, Bin Fu, Xiaohong Liu, Yu Qiao, Yihao Liu
Title: Lumina-DiMOO: An Omni Diffusion Large Language Model for Multi-Modal Generation and Understanding
Abstract:
We introduce Lumina-DiMOO, an open-source foundational model for seamless multi-modal generation and understanding. Lumina-DiMOO sets itself apart from prior unified models by utilizing a fully discrete diffusion modeling to handle inputs and outputs across various modalities. This innovative approach allows Lumina-DiMOO to achieve higher sampling efficiency compared to previous autoregressive (AR) or hybrid AR-Diffusion paradigms and adeptly support a broad spectrum of multi-modal tasks, including text-to-image generation, image-to-image generation (e.g., image editing, subject-driven generation, and image inpainting, etc.), as well as image understanding. Lumina-DiMOO achieves state-of-the-art performance on multiple benchmarks, surpassing existing open-source unified multi-modal models. To foster further advancements in multi-modal and discrete diffusion model research, we release our code and checkpoints to the community. Project Page: https://synbol.github.io/Lumina-DiMOO.

Authors:Xiaochen Zhao, Chengting Yu, Kairong Yu, Lei Liu, Aili Wang
Title: Enhanced Self-Distillation Framework for Efficient Spiking Neural Network Training
Abstract:
Spiking Neural Networks (SNNs) exhibit exceptional energy efficiency on neuromorphic hardware due to their sparse activation patterns. However, conventional training methods based on surrogate gradients and Backpropagation Through Time (BPTT) not only lag behind Artificial Neural Networks (ANNs) in performance, but also incur significant computational and memory overheads that grow linearly with the temporal dimension. To enable high-performance SNN training under limited computational resources, we propose an enhanced self-distillation framework, jointly optimized with rate-based backpropagation. Specifically, the firing rates of intermediate SNN layers are projected onto lightweight ANN branches, and high-quality knowledge generated by the model itself is used to optimize substructures through the ANN pathways. Unlike traditional self-distillation paradigms, we observe that low-quality self-generated knowledge may hinder convergence. To address this, we decouple the teacher signal into reliable and unreliable components, ensuring that only reliable knowledge is used to guide the optimization of the model. Extensive experiments on CIFAR-10, CIFAR-100, CIFAR10-DVS, and ImageNet demonstrate that our method reduces training complexity while achieving high-performance SNN training. Our code is available at https://github.com/Intelli-Chip-Lab/enhanced-self-distillation-framework-for-snn.

Authors:Yue Chen, Xingyu Chen, Yuxuan Xue, Anpei Chen, Yuliang Xiu, Gerard Pons-Moll
Title: Human3R: Everyone Everywhere All at Once
Abstract:
We present Human3R, a unified, feed-forward framework for online 4D human-scene reconstruction, in the world frame, from casually captured monocular videos. Unlike previous approaches that rely on multi-stage pipelines, iterative contact-aware refinement between humans and scenes, and heavy dependencies, e.g., human detection, depth estimation, and SLAM pre-processing, Human3R jointly recovers global multi-person SMPL-X bodies ("everyone"), dense 3D scene ("everywhere"), and camera trajectories in a single forward pass ("all-at-once"). Our method builds upon the 4D online reconstruction model CUT3R, and uses parameter-efficient visual prompt tuning, to strive to preserve CUT3R's rich spatiotemporal priors, while enabling direct readout of multiple SMPL-X bodies. Human3R is a unified model that eliminates heavy dependencies and iterative refinement. After being trained on the relatively small-scale synthetic dataset BEDLAM for just one day on one GPU, it achieves superior performance with remarkable efficiency: it reconstructs multiple humans in a one-shot manner, along with 3D scenes, in one stage, at real-time speed (15 FPS) with a low memory footprint (8 GB). Extensive experiments demonstrate that Human3R delivers state-of-the-art or competitive performance across tasks, including global human motion estimation, local human mesh recovery, video depth estimation, and camera pose estimation, with a single unified model. We hope that Human3R will serve as a simple yet strong baseline, be easily extended for downstream applications.Code available in https://fanegg.github.io/Human3R

Authors:Aditya Prakash, David Forsyth, Saurabh Gupta
Title: Bimanual 3D Hand Motion and Articulation Forecasting in Everyday Images
Abstract:
We tackle the problem of forecasting bimanual 3D hand motion & articulation from a single image in everyday settings. To address the lack of 3D hand annotations in diverse settings, we design an annotation pipeline consisting of a diffusion model to lift 2D hand keypoint sequences to 4D hand motion. For the forecasting model, we adopt a diffusion loss to account for the multimodality in hand motion distribution. Extensive experiments across 6 datasets show the benefits of training on diverse data with imputed labels (14% improvement) and effectiveness of our lifting (42% better) & forecasting (16.4% gain) models, over the best baselines, especially in zero-shot generalization to everyday images.

Authors:Shuo Jiang, Zhuwen Chen, Liaoman Xu, Yanming Zhu, Changmiao Wang, Jiong Zhang, Feiwei Qin, Yifei Chen, Zhu Zhu
Title: Multimodal Feature Prototype Learning for Interpretable and Discriminative Cancer Survival Prediction
Abstract:
Survival analysis plays a vital role in making clinical decisions. However, the models currently in use are often difficult to interpret, which reduces their usefulness in clinical settings. Prototype learning presents a potential solution, yet traditional methods focus on local similarities and static matching, neglecting the broader tumor context and lacking strong semantic alignment with genomic data. To overcome these issues, we introduce an innovative prototype-based multimodal framework, FeatProto, aimed at enhancing cancer survival prediction by addressing significant limitations in current prototype learning methodologies within pathology. Our framework establishes a unified feature prototype space that integrates both global and local features of whole slide images (WSI) with genomic profiles. This integration facilitates traceable and interpretable decision-making processes. Our approach includes three main innovations: (1) A robust phenotype representation that merges critical patches with global context, harmonized with genomic data to minimize local bias. (2) An Exponential Prototype Update Strategy (EMA ProtoUp) that sustains stable cross-modal associations and employs a wandering mechanism to adapt prototypes flexibly to tumor heterogeneity. (3) A hierarchical prototype matching scheme designed to capture global centrality, local typicality, and cohort-level trends, thereby refining prototype inference. Comprehensive evaluations on four publicly available cancer datasets indicate that our method surpasses current leading unimodal and multimodal survival prediction techniques in both accuracy and interoperability, providing a new perspective on prototype learning for critical medical applications. Our source code is available at https://github.com/JSLiam94/FeatProto.

Authors:Yinjian Wang, Wei Li, Yuanyuan Gui, Gemine Vivone
Title: Compact Multi-level-prior Tensor Representation for Hyperspectral Image Super-resolution
Abstract:
Fusing a hyperspectral image with a multispectral image acquired over the same scene, \textit{i.e.}, hyperspectral image super-resolution, has become a popular computational way to access the latent high-spatial-spectral-resolution image. To date, a variety of fusion methods have been proposed, among which the tensor-based ones have testified that multiple priors, such as multidimensional low-rankness and spatial total variation at multiple levels, effectively drive the fusion process. However, existing tensor-based models can only effectively leverage one or two priors at one or two levels, since simultaneously incorporating multi-level priors inevitably increases model complexity. This introduces challenges in both balancing the weights of different priors and optimizing multi-block structures. Concerning this, we present a novel hyperspectral super-resolution model compactly characterizing these multi-level priors of hyperspectral images within the tensor framework. Firstly, the proposed model decouples the spectral low-rankness and spatial priors by casting the latent high-spatial-spectral-resolution image into spectral subspace and spatial maps via block term decomposition. Secondly, these spatial maps are stacked as the spatial tensor encoding the high-order spatial low-rankness and smoothness priors, which are co-modeled via the proposed non-convex mode-shuffled tensor correlated total variation. Finally, we draw inspiration from the linearized alternating direction method of multipliers to design an efficient algorithm to optimize the resulting model, theoretically proving its Karush-Kuhn-Tucker convergence under mild conditions. Experiments on multiple datasets demonstrate the effectiveness of the proposed algorithm. The code implementation will be available from https://github.com/WongYinJ.

Authors:Xinye Cao, Hongcan Guo, Jiawen Qian, Guoshun Nan, Chao Wang, Yuqi Pan, Tianhao Hou, Xiaojuan Wang, Yutong Gao
Title: VideoMiner: Iteratively Grounding Key Frames of Hour-Long Videos via Tree-based Group Relative Policy Optimization
Abstract:
Understanding hour-long videos with multi-modal large language models (MM-LLMs) enriches the landscape of human-centered AI applications. However, for end-to-end video understanding with LLMs, uniformly sampling video frames results in LLMs being overwhelmed by a vast amount of irrelevant information as video length increases. Existing hierarchical key frame extraction methods improve the accuracy of video understanding but still face two critical challenges. 1) How can the interference of extensive redundant information in long videos be mitigated? 2) How can a model dynamically adapt to complex hierarchical structures while accurately identifying key frames? To address these issues, we propose VideoMiner, which iteratively segments, captions, and clusters long videos, forming a hierarchical tree structure. The proposed VideoMiner progresses from long videos to events to frames while preserving temporal coherence, effectively addressing the first challenge. To precisely locate key frames, we introduce T-GRPO, a tree-based group relative policy optimization in reinforcement learning method that guides the exploration of the VideoMiner. The proposed T-GRPO is specifically designed for tree structures, integrating spatiotemporal information at the event level while being guided by the question, thus solving the second challenge. We achieve superior performance in all long-video understanding tasks and uncover several interesting insights. Our proposed T-GRPO surprisingly incentivizes the model to spontaneously generate a reasoning chain. Additionally, the designed tree growth auxin dynamically adjusts the expansion depth, obtaining accuracy and efficiency gains. The code is publicly available at https://github.com/caoxinye/VideoMiner.

Authors:Ron Keuth, Paul Kaftan, Mattias P. Heinrich
Title: Shaken or Stirred? An Analysis of MetaFormer's Token Mixing for Medical Imaging
Abstract:
The generalization of the Transformer architecture via MetaFormer has reshaped our understanding of its success in computer vision. By replacing self-attention with simpler token mixers, MetaFormer provides strong baselines for vision tasks. However, while extensively studied on natural image datasets, its use in medical imaging remains scarce, and existing works rarely compare different token mixers, potentially overlooking more suitable designs choices. In this work, we present the first comprehensive study of token mixers for medical imaging. We systematically analyze pooling-, convolution-, and attention-based token mixers within the MetaFormer architecture on image classification (global prediction task) and semantic segmentation (dense prediction task). Our evaluation spans eight datasets covering diverse modalities and common challenges in the medical domain. Given the prevalence of pretraining from natural images to mitigate medical data scarcity, we also examine transferring pretrained weights to new token mixers. Our results show that, for classification, low-complexity token mixers (e.g. grouped convolution or pooling) are sufficient, aligning with findings on natural images. Pretrained weights remain useful despite the domain gap introduced by the new token mixer. For segmentation, we find that the local inductive bias of convolutional token mixers is essential. Grouped convolutions emerge as the preferred choice, as they reduce runtime and parameter count compared to standard convolutions, while the MetaFormer's channel-MLPs already provide the necessary cross-channel interactions. Our code is available on GitHub.

Authors:Jiesi Hu, Yanwu Yang, Zhiyu Ye, Jinyan Zhou, Jianfeng Cao, Hanyang Peng, Ting Ma
Title: Efficient Universal Models for Medical Image Segmentation via Weakly Supervised In-Context Learning
Abstract:
Universal models for medical image segmentation, such as interactive and in-context learning (ICL) models, offer strong generalization but require extensive annotations. Interactive models need repeated user prompts for each image, while ICL relies on dense, pixel-level labels. To address this, we propose Weakly Supervised In-Context Learning (WS-ICL), a new ICL paradigm that leverages weak prompts (e.g., bounding boxes or points) instead of dense labels for context. This approach significantly reduces annotation effort by eliminating the need for fine-grained masks and repeated user prompting for all images. We evaluated the proposed WS-ICL model on three held-out benchmarks. Experimental results demonstrate that WS-ICL achieves performance comparable to regular ICL models at a significantly lower annotation cost. In addition, WS-ICL is highly competitive even under the interactive paradigm. These findings establish WS-ICL as a promising step toward more efficient and unified universal models for medical image segmentation. Our code and model are publicly available at https://github.com/jiesihu/Weak-ICL.

Authors:Yanran Zhang, Bingyao Yu, Yu Zheng, Wenzhao Zheng, Yueqi Duan, Lei Chen, Jie Zhou, Jiwen Lu
Title: $\bf{D^3}$QE: Learning Discrete Distribution Discrepancy-aware Quantization Error for Autoregressive-Generated Image Detection
Abstract:
The emergence of visual autoregressive (AR) models has revolutionized image generation while presenting new challenges for synthetic image detection. Unlike previous GAN or diffusion-based methods, AR models generate images through discrete token prediction, exhibiting both marked improvements in image synthesis quality and unique characteristics in their vector-quantized representations. In this paper, we propose to leverage Discrete Distribution Discrepancy-aware Quantization Error (D$^3$QE) for autoregressive-generated image detection that exploits the distinctive patterns and the frequency distribution bias of the codebook existing in real and fake images. We introduce a discrete distribution discrepancy-aware transformer that integrates dynamic codebook frequency statistics into its attention mechanism, fusing semantic features and quantization error latent. To evaluate our method, we construct a comprehensive dataset termed ARForensics covering 7 mainstream visual AR models. Experiments demonstrate superior detection accuracy and strong generalization of D$^3$QE across different AR models, with robustness to real-world perturbations. Code is available at \href{https://github.com/Zhangyr2022/D3QE}{https://github.com/Zhangyr2022/D3QE}.

Authors:Johannes Seiffarth, Keitaro Kasahara, Michelle Bund, Benita Lückel, Richard D. Paul, Matthias Pesch, Lennart Witting, Michael Bott, Dietrich Kohlheyer, Katharina Nöh
Title: acia-workflows: Automated Single-cell Imaging Analysis for Scalable and Deep Learning-based Live-cell Imaging Analysis Workflows
Abstract:
Live-cell imaging (LCI) technology enables the detailed spatio-temporal characterization of living cells at the single-cell level, which is critical for advancing research in the life sciences, from biomedical applications to bioprocessing. High-throughput setups with tens to hundreds of parallel cell cultivations offer the potential for robust and reproducible insights. However, these insights are obscured by the large amount of LCI data recorded per experiment. Recent advances in state-of-the-art deep learning methods for cell segmentation and tracking now enable the automated analysis of such large data volumes, offering unprecedented opportunities to systematically study single-cell dynamics. The next key challenge lies in integrating these powerful tools into accessible, flexible, and user-friendly workflows that support routine application in biological research. In this work, we present acia-workflows, a platform that combines three key components: (1) the Automated live-Cell Imaging Analysis (acia) Python library, which supports the modular design of image analysis pipelines offering eight deep learning segmentation and tracking approaches; (2) workflows that assemble the image analysis pipeline, its software dependencies, documentation, and visualizations into a single Jupyter Notebook, leading to accessible, reproducible and scalable analysis workflows; and (3) a collection of application workflows showcasing the analysis and customization capabilities in real-world applications. Specifically, we present three workflows to investigate various types of microfluidic LCI experiments ranging from growth rate comparisons to precise, minute-resolution quantitative analyses of individual dynamic cells responses to changing oxygen conditions. Our collection of more than ten application workflows is open source and publicly available at https://github.com/JuBiotech/acia-workflows.

Authors:Hengyang Zhou, Yiwei Wei, Jian Yang, Zhenyu Zhang
Title: Towards Robust and Realible Multimodal Fake News Detection with Incomplete Modality
Abstract:
Multimodal fake news detection (MFND) has become an urgent task with the emergence of huge multimodal fake content on social media platforms. Previous studies mainly focus on complex feature extraction and fusion to learn discriminative information from multimodal content. However, in real-world applications, multimedia news may naturally lose some information during dissemination, resulting in modality incompleteness, which is detrimental to the generalization and robustness of existing models. To this end, we propose a novel generic and robust multimodal fusion strategy, termed Multi-expert Modality-incomplete Learning Network (MMLNet), which is simple yet effective. It consists of three key steps: (1) Multi-Expert Collaborative Reasoning to compensate for missing modalities by dynamically leveraging complementary information through multiple experts. (2) Incomplete Modality Adapters compensates for the missing information by leveraging the new feature distribution. (3) Modality Missing Learning leveraging an label-aware adaptive weighting strategy to learn a robust representation with contrastive learning. We evaluate MMLNet on three real-world benchmarks across two languages, demonstrating superior performance compared to state-of-the-art methods while maintaining relative simplicity. By ensuring the accuracy of fake news detection in incomplete modality scenarios caused by information propagation, MMLNet effectively curbs the spread of malicious misinformation. Code is publicly available at https://github.com/zhyhome/MMLNet.

Authors:Sven Koehler, Sarah Kaye Mueller, Jonathan Kiekenap, Gerald Greil, Tarique Hussain, Samir Sarikouch, Florian André, Norbert Frey, Sandy Engelhardt
Title: Deformable Image Registration for Self-supervised Cardiac Phase Detection in Multi-View Multi-Disease Cardiac Magnetic Resonance Images
Abstract:
Cardiovascular magnetic resonance (CMR) is the gold standard for assessing cardiac function, but individual cardiac cycles complicate automatic temporal comparison or sub-phase analysis. Accurate cardiac keyframe detection can eliminate this problem. However, automatic methods solely derive end-systole (ES) and end-diastole (ED) frames from left ventricular volume curves, which do not provide a deeper insight into myocardial motion. We propose a self-supervised deep learning method detecting five keyframes in short-axis (SAX) and four-chamber long-axis (4CH) cine CMR. Initially, dense deformable registration fields are derived from the images and used to compute a 1D motion descriptor, which provides valuable insights into global cardiac contraction and relaxation patterns. From these characteristic curves, keyframes are determined using a simple set of rules. The method was independently evaluated for both views using three public, multicentre, multidisease datasets. M&Ms-2 (n=360) dataset was used for training and evaluation, and M&Ms (n=345) and ACDC (n=100) datasets for repeatability control. Furthermore, generalisability to patients with rare congenital heart defects was tested using the German Competence Network (GCN) dataset. Our self-supervised approach achieved improved detection accuracy by 30% - 51% for SAX and 11% - 47% for 4CH in ED and ES, as measured by cyclic frame difference (cFD), compared with the volume-based approach. We can detect ED and ES, as well as three additional keyframes throughout the cardiac cycle with a mean cFD below 1.31 frames for SAX and 1.73 for LAX. Our approach enables temporally aligned inter- and intra-patient analysis of cardiac dynamics, irrespective of cycle or phase lengths. GitHub repository: https://github.com/Cardio-AI/cmr-multi-view-phase-detection.git

Authors:Amirtaha Amanzadi, Zahra Dehghanian, Hamid Beigy, Hamid R. Rabiee
Title: Redefining Generalization in Visual Domains: A Two-Axis Framework for Fake Image Detection with FusionDetect
Abstract:
The rapid development of generative models has made it increasingly crucial to develop detectors that can reliably detect synthetic images. Although most of the work has now focused on cross-generator generalization, we argue that this viewpoint is too limited. Detecting synthetic images involves another equally important challenge: generalization across visual domains. To bridge this gap,we present the OmniGen Benchmark. This comprehensive evaluation dataset incorporates 12 state-of-the-art generators, providing a more realistic way of evaluating detector performance under realistic conditions. In addition, we introduce a new method, FusionDetect, aimed at addressing both vectors of generalization. FusionDetect draws on the benefits of two frozen foundation models: CLIP & Dinov2. By deriving features from both complementary models,we develop a cohesive feature space that naturally adapts to changes in both thecontent and design of the generator. Our extensive experiments demonstrate that FusionDetect delivers not only a new state-of-the-art, which is 3.87% more accurate than its closest competitor and 6.13% more precise on average on established benchmarks, but also achieves a 4.48% increase in accuracy on OmniGen,along with exceptional robustness to common image perturbations. We introduce not only a top-performing detector, but also a new benchmark and framework for furthering universal AI image detection. The code and dataset are available at http://github.com/amir-aman/FusionDetect

Authors:Suwhan Choi, Jaeyoon Jung, Haebin Seong, Minchan Kim, Minyeong Kim, Yongjun Cho, Yoonshik Kim, Yubeen Park, Youngjae Yu, Yunsung Lee
Title: D2E: Scaling Vision-Action Pretraining on Desktop Data for Transfer to Embodied AI
Abstract:
Large language models leverage internet-scale text data, yet embodied AI remains constrained by the prohibitive costs of physical trajectory collection. Desktop environments -- particularly gaming -- offer a compelling alternative: they provide rich sensorimotor interactions at scale while maintaining the structured observation-action coupling essential for embodied learning. We present D2E (Desktop to Embodied AI), a framework that demonstrates desktop interactions can serve as an effective pretraining substrate for robotics embodied AI tasks. Unlike prior work that remained domain-specific (e.g., VPT for Minecraft) or kept data proprietary (e.g., SIMA), D2E establishes a complete pipeline from scalable desktop data collection to verified transfer in embodied domains. Our framework comprises three components: (1) the OWA Toolkit that unifies diverse desktop interactions into a standardized format with 152x compression, (2) the Generalist-IDM that achieves strong zero-shot generalization across unseen games through timestamp-based event prediction, enabling internet-scale pseudo-labeling, and (3) VAPT that transfers desktop-pretrained representations to physical manipulation and navigation. Using 1.3K+ hours of data (259 hours of human demonstrations, and 1K+ hours of pseudo-labeled gameplay), we achieve a total of 96.6% success rate on LIBERO manipulation and 83.3% on CANVAS navigation benchmarks. This validates that sensorimotor primitives in digital interactions exhibit sufficient invariance to transfer meaningfully to physical embodied tasks, establishing desktop pretraining as a practical paradigm for robotics. We will make all our work public, including the OWA toolkit, datasets of human-collected and pseudo-labeled, and VAPT-trained models available at https://worv-ai.github.io/d2e/

Authors:Manolis Mylonas, Charalampia Zerva, Evlampios Apostolidis, Vasileios Mezaris
Title: SD-MVSum: Script-Driven Multimodal Video Summarization Method and Datasets
Abstract:
In this work, we extend a recent method for script-driven video summarization, originally considering just the visual content of the video, to take into account the relevance of the user-provided script also with the video's spoken content. In the proposed method, SD-MVSum, the dependence between each considered pair of data modalities, i.e., script-video and script-transcript, is modeled using a new weighted cross-modal attention mechanism. This explicitly exploits the semantic similarity between the paired modalities in order to promote the parts of the full-length video with the highest relevance to the user-provided script. Furthermore, we extend two large-scale datasets for video summarization (S-VideoXum, MrHiSum), to make them suitable for training and evaluation of script-driven multimodal video summarization methods. Experimental comparisons document the competitiveness of our SD-MVSum method against other SOTA approaches for script-driven and generic video summarization. Our new method and extended datasets are available at: https://github.com/IDT-ITI/SD-MVSum.

Authors:Ibrahim Salihu Yusuf, Iffanice Houndayi, Rym Oualha, Mohamed Aziz Cherif, Kobby Panford-Quainoo, Arnu Pretorius
Title: InstaGeo: Compute-Efficient Geospatial Machine Learning from Data to Deployment
Abstract:
Open-access multispectral imagery from missions like Landsat 8-9 and Sentinel-2 has fueled the development of geospatial foundation models (GFMs) for humanitarian and environmental applications. Yet, their deployment remains limited by (i) the absence of automated geospatial data pipelines and (ii) the large size of fine-tuned models. Existing GFMs lack workflows for processing raw satellite imagery, and downstream adaptations often retain the full complexity of the original encoder. We present InstaGeo, an open-source, end-to-end framework that addresses these challenges by integrating: (1) automated data curation to transform raw imagery into model-ready datasets; (2) task-specific model distillation to derive compact, compute-efficient models; and (3) seamless deployment as interactive web-map applications. Using InstaGeo, we reproduced datasets from three published studies and trained models with marginal mIoU differences of -0.73 pp for flood mapping, -0.20 pp for crop segmentation, and +1.79 pp for desert locust prediction. The distilled models are up to 8x smaller than standard fine-tuned counterparts, reducing FLOPs and CO2 emissions with minimal accuracy loss. Leveraging InstaGeo's streamlined data pipeline, we also curated a larger crop segmentation dataset, achieving a state-of-the-art mIoU of 60.65%, a 12 pp improvement over prior baselines. Moreover, InstaGeo enables users to progress from raw data to model deployment within a single working day. By unifying data preparation, model compression, and deployment, InstaGeo transforms research-grade GFMs into practical, low-carbon tools for real-time, large-scale Earth observation. This approach shifts geospatial AI toward data quality and application-driven innovation. Source code, datasets, and model checkpoints are available at: https://github.com/instadeepai/InstaGeo-E2E-Geospatial-ML.git

Authors:Guangrong Wan, Jun liu, Qiyang Zhou, Tang tang, Lianghao Shi, Wenjun Luo, TingTing Xu
Title: TFM Dataset: A Novel Multi-task Dataset and Integrated Pipeline for Automated Tear Film Break-Up Segmentation
Abstract:
Tear film break-up (TFBU) analysis is critical for diagnosing dry eye syndrome, but automated TFBU segmentation remains challenging due to the lack of annotated datasets and integrated solutions. This paper introduces the Tear Film Multi-task (TFM) Dataset, the first comprehensive dataset for multi-task tear film analysis, comprising 15 high-resolution videos (totaling 6,247 frames) annotated with three vision tasks: frame-level classification ('clear', 'closed', 'broken', 'blur'), Placido Ring detection, and pixel-wise TFBU area segmentation. Leveraging this dataset, we first propose TF-Net, a novel and efficient baseline segmentation model. TF-Net incorporates a MobileOne-mini backbone with re-parameterization techniques and an enhanced feature pyramid network to achieve a favorable balance between accuracy and computational efficiency for real-time clinical applications. We further establish benchmark performance on the TFM segmentation subset by comparing TF-Net against several state-of-the-art medical image segmentation models. Furthermore, we design TF-Collab, a novel integrated real-time pipeline that synergistically leverages models trained on all three tasks of the TFM dataset. By sequentially orchestrating frame classification for BUT determination, pupil region localization for input standardization, and TFBU segmentation, TF-Collab fully automates the analysis. Experimental results demonstrate the effectiveness of the proposed TF-Net and TF-Collab, providing a foundation for future research in ocular surface diagnostics. Our code and the TFM datasets are available at https://github.com/glory-wan/TF-Net

Authors:Junwen Chen, Peilin Xiong, Keiji Yanai
Title: HOI-R1: Exploring the Potential of Multimodal Large Language Models for Human-Object Interaction Detection
Abstract:
Recent Human-object interaction detection (HOID) methods highly require prior knowledge from VLMs to enhance the interaction recognition capabilities. The training strategies and model architectures for connecting the knowledge from VLMs to the HOI instance representations from the object detector are challenging, and the whole framework is complex for further development or application. On the other hand, the inherent reasoning abilities of MLLMs on human-object interaction detection are under-explored. Inspired by the recent success of training MLLMs with reinforcement learning (RL) methods, we propose HOI-R1 and first explore the potential of the language model on the HOID task without any additional detection modules. We introduce an HOI reasoning process and HOID reward functions to solve the HOID task by pure text. The results on the HICO-DET dataset show that HOI-R1 achieves 2x the accuracy of the baseline with great generalization ability. The source code is available at https://github.com/cjw2021/HOI-R1.

Authors:Bin Kang, Bin Chen, Junjie Wang, Yulin Li, Junzhi Zhao, Zhuotao Tian
Title: CalibCLIP: Contextual Calibration of Dominant Semantics for Text-Driven Image Retrieval
Abstract:
Existing Visual Language Models (VLMs) suffer structural limitations where a few low contribution tokens may excessively capture global semantics, dominating the information aggregation process and suppressing the discriminative features in text-driven image retrieval tasks. To address this, we introduce \textbf{CalibCLIP}, a training-free method designed to calibrate the suppressive effect of dominant tokens. Specifically, in the visual space, we propose the Contrastive Visual Enhancer (CVE), which decouples visual features into target and low information regions. Subsequently, it identifies dominant tokens and dynamically suppresses their representations.In the textual space, we introduce the Discriminative Concept Calibrator (DCC), which aims to differentiate between general and discriminative concepts within the text query. By mitigating the challenges posed by generic concepts and improving the representations of discriminative concepts, DCC strengthens the differentiation among similar samples. Finally, extensive experiments demonstrate consistent improvements across seven benchmarks spanning three image retrieval tasks, underscoring the effectiveness of CalibCLIP. Code is available at: https://github.com/kangbin98/CalibCLIP

Authors:Hongchi Xia, Chih-Hao Lin, Hao-Yu Hsu, Quentin Leboutet, Katelyn Gao, Michael Paulitsch, Benjamin Ummenhofer, Shenlong Wang
Title: HoloScene: Simulation-Ready Interactive 3D Worlds from a Single Video
Abstract:
Digitizing the physical world into accurate simulation-ready virtual environments offers significant opportunities in a variety of fields such as augmented and virtual reality, gaming, and robotics. However, current 3D reconstruction and scene-understanding methods commonly fall short in one or more critical aspects, such as geometry completeness, object interactivity, physical plausibility, photorealistic rendering, or realistic physical properties for reliable dynamic simulation. To address these limitations, we introduce HoloScene, a novel interactive 3D reconstruction framework that simultaneously achieves these requirements. HoloScene leverages a comprehensive interactive scene-graph representation, encoding object geometry, appearance, and physical properties alongside hierarchical and inter-object relationships. Reconstruction is formulated as an energy-based optimization problem, integrating observational data, physical constraints, and generative priors into a unified, coherent objective. Optimization is efficiently performed via a hybrid approach combining sampling-based exploration with gradient-based refinement. The resulting digital twins exhibit complete and precise geometry, physical stability, and realistic rendering from novel viewpoints. Evaluations conducted on multiple benchmark datasets demonstrate superior performance, while practical use-cases in interactive gaming and real-time digital-twin manipulation illustrate HoloScene's broad applicability and effectiveness. Project page: https://xiahongchi.github.io/HoloScene.

Authors:Yang Xiao, Gen Li, Kaiyuan Deng, Yushu Wu, Zheng Zhan, Yanzhi Wang, Xiaolong Ma, Bo Hui
Title: LightCache: Memory-Efficient, Training-Free Acceleration for Video Generation
Abstract:
Training-free acceleration has emerged as an advanced research area in video generation based on diffusion models. The redundancy of latents in diffusion model inference provides a natural entry point for acceleration. In this paper, we decompose the inference process into the encoding, denoising, and decoding stages, and observe that cache-based acceleration methods often lead to substantial memory surges in the latter two stages. To address this problem, we analyze the characteristics of inference across different stages and propose stage-specific strategies for reducing memory consumption: 1) Asynchronous Cache Swapping. 2) Feature chunk. 3) Slicing latents to decode. At the same time, we ensure that the time overhead introduced by these three strategies remains lower than the acceleration gains themselves. Compared with the baseline, our approach achieves faster inference speed and lower memory usage, while maintaining quality degradation within an acceptable range. The Code is available at https://github.com/NKUShaw/LightCache .

Authors:Robin Courant, Xi Wang, David Loiseaux, Marc Christie, Vicky Kalogeiton
Title: Pulp Motion: Framing-aware multimodal camera and human motion generation
Abstract:
Treating human motion and camera trajectory generation separately overlooks a core principle of cinematography: the tight interplay between actor performance and camera work in the screen space. In this paper, we are the first to cast this task as a text-conditioned joint generation, aiming to maintain consistent on-screen framing while producing two heterogeneous, yet intrinsically linked, modalities: human motion and camera trajectories. We propose a simple, model-agnostic framework that enforces multimodal coherence via an auxiliary modality: the on-screen framing induced by projecting human joints onto the camera. This on-screen framing provides a natural and effective bridge between modalities, promoting consistency and leading to more precise joint distribution. We first design a joint autoencoder that learns a shared latent space, together with a lightweight linear transform from the human and camera latents to a framing latent. We then introduce auxiliary sampling, which exploits this linear transform to steer generation toward a coherent framing modality. To support this task, we also introduce the PulpMotion dataset, a human-motion and camera-trajectory dataset with rich captions, and high-quality human motions. Extensive experiments across DiT- and MAR-based architectures show the generality and effectiveness of our method in generating on-frame coherent human-camera motions, while also achieving gains on textual alignment for both modalities. Our qualitative results yield more cinematographically meaningful framings setting the new state of the art for this task. Code, models and data are available in our \href{https://www.lix.polytechnique.fr/vista/projects/2025_pulpmotion_courant/}{project page}.

Authors:Zeyu Zhu, Kevin Qinghong Lin, Mike Zheng Shou
Title: Paper2Video: Automatic Video Generation from Scientific Papers
Abstract:
Academic presentation videos have become an essential medium for research communication, yet producing them remains highly labor-intensive, often requiring hours of slide design, recording, and editing for a short 2 to 10 minutes video. Unlike natural video, presentation video generation involves distinctive challenges: inputs from research papers, dense multi-modal information (text, figures, tables), and the need to coordinate multiple aligned channels such as slides, subtitles, speech, and human talker. To address these challenges, we introduce Paper2Video, the first benchmark of 101 research papers paired with author-created presentation videos, slides, and speaker metadata. We further design four tailored evaluation metrics--Meta Similarity, PresentArena, PresentQuiz, and IP Memory--to measure how videos convey the paper's information to the audience. Building on this foundation, we propose PaperTalker, the first multi-agent framework for academic presentation video generation. It integrates slide generation with effective layout refinement by a novel effective tree search visual choice, cursor grounding, subtitling, speech synthesis, and talking-head rendering, while parallelizing slide-wise generation for efficiency. Experiments on Paper2Video demonstrate that the presentation videos produced by our approach are more faithful and informative than existing baselines, establishing a practical step toward automated and ready-to-use academic video generation. Our dataset, agent, and code are available at https://github.com/showlab/Paper2Video.

Authors:Ziqi Huang, Ning Yu, Gordon Chen, Haonan Qiu, Paul Debevec, Ziwei Liu
Title: VChain: Chain-of-Visual-Thought for Reasoning in Video Generation
Abstract:
Recent video generation models can produce smooth and visually appealing clips, but they often struggle to synthesize complex dynamics with a coherent chain of consequences. Accurately modeling visual outcomes and state transitions over time remains a core challenge. In contrast, large language and multimodal models (e.g., GPT-4o) exhibit strong visual state reasoning and future prediction capabilities. To bridge these strengths, we introduce VChain, a novel inference-time chain-of-visual-thought framework that injects visual reasoning signals from multimodal models into video generation. Specifically, VChain contains a dedicated pipeline that leverages large multimodal models to generate a sparse set of critical keyframes as snapshots, which are then used to guide the sparse inference-time tuning of a pre-trained video generator only at these key moments. Our approach is tuning-efficient, introduces minimal overhead and avoids dense supervision. Extensive experiments on complex, multi-step scenarios show that VChain significantly enhances the quality of generated videos.

Authors:Tingting Liao, Chongjian Ge, Guangyi Liu, Hao Li, Yi Zhou
Title: Character Mixing for Video Generation
Abstract:
Imagine Mr. Bean stepping into Tom and Jerry--can we generate videos where characters interact naturally across different worlds? We study inter-character interaction in text-to-video generation, where the key challenge is to preserve each character's identity and behaviors while enabling coherent cross-context interaction. This is difficult because characters may never have coexisted and because mixing styles often causes style delusion, where realistic characters appear cartoonish or vice versa. We introduce a framework that tackles these issues with Cross-Character Embedding (CCE), which learns identity and behavioral logic across multimodal sources, and Cross-Character Augmentation (CCA), which enriches training with synthetic co-existence and mixed-style data. Together, these techniques allow natural interactions between previously uncoexistent characters without losing stylistic fidelity. Experiments on a curated benchmark of cartoons and live-action series with 10 characters show clear improvements in identity preservation, interaction quality, and robustness to style delusion, enabling new forms of generative storytelling.Additional results and videos are available on our project page: https://tingtingliao.github.io/mimix/.

Authors:Ronen Kamenetsky, Sara Dorfman, Daniel Garibi, Roni Paiss, Or Patashnik, Daniel Cohen-Or
Title: SAEdit: Token-level control for continuous image editing via Sparse AutoEncoder
Abstract:
Large-scale text-to-image diffusion models have become the backbone of modern image editing, yet text prompts alone do not offer adequate control over the editing process. Two properties are especially desirable: disentanglement, where changing one attribute does not unintentionally alter others, and continuous control, where the strength of an edit can be smoothly adjusted. We introduce a method for disentangled and continuous editing through token-level manipulation of text embeddings. The edits are applied by manipulating the embeddings along carefully chosen directions, which control the strength of the target attribute. To identify such directions, we employ a Sparse Autoencoder (SAE), whose sparse latent space exposes semantically isolated dimensions. Our method operates directly on text embeddings without modifying the diffusion process, making it model agnostic and broadly applicable to various image synthesis backbones. Experiments show that it enables intuitive and efficient manipulations with continuous control across diverse attributes and domains.

Authors:Yolo Yunlong Tang, Jing Bi, Pinxin Liu, Zhenyu Pan, Zhangyun Tan, Qianxiang Shen, Jiani Liu, Hang Hua, Junjia Guo, Yunzhong Xiao, Chao Huang, Zhiyuan Wang, Susan Liang, Xinyi Liu, Yizhi Song, Yuhe Nie, Jia-Xing Zhong, Bozheng Li, Daiqing Qi, Ziyun Zeng, Ali Vosoughi, Luchuan Song, Zeliang Zhang, Daiki Shimada, Han Liu, Jiebo Luo, Chenliang Xu
Title: Video-LMM Post-Training: A Deep Dive into Video Reasoning with Large Multimodal Models
Abstract:
Video understanding represents the most challenging frontier in computer vision, requiring models to reason about complex spatiotemporal relationships, long-term dependencies, and multimodal evidence. The recent emergence of Video-Large Multimodal Models (Video-LMMs), which integrate visual encoders with powerful decoder-based language models, has demonstrated remarkable capabilities in video understanding tasks. However, the critical phase that transforms these models from basic perception systems into sophisticated reasoning engines, post-training, remains fragmented across the literature. This survey provides the first comprehensive examination of post-training methodologies for Video-LMMs, encompassing three fundamental pillars: supervised fine-tuning (SFT) with chain-of-thought, reinforcement learning (RL) from verifiable objectives, and test-time scaling (TTS) through enhanced inference computation. We present a structured taxonomy that clarifies the roles, interconnections, and video-specific adaptations of these techniques, addressing unique challenges such as temporal localization, spatiotemporal grounding, long video efficiency, and multimodal evidence integration. Through systematic analysis of representative methods, we synthesize key design principles, insights, and evaluation protocols while identifying critical open challenges in reward design, scalability, and cost-performance optimization. We further curate essential benchmarks, datasets, and metrics to facilitate rigorous assessment of post-training effectiveness. This survey aims to provide researchers and practitioners with a unified framework for advancing Video-LMM capabilities. Additional resources and updates are maintained at: https://github.com/yunlong10/Awesome-Video-LMM-Post-Training

Authors:Chi Yan, Dan Xu
Title: Progressive Gaussian Transformer with Anisotropy-aware Sampling for Open Vocabulary Occupancy Prediction
Abstract:
The 3D occupancy prediction task has witnessed remarkable progress in recent years, playing a crucial role in vision-based autonomous driving systems. While traditional methods are limited to fixed semantic categories, recent approaches have moved towards predicting text-aligned features to enable open-vocabulary text queries in real-world scenes. However, there exists a trade-off in text-aligned scene modeling: sparse Gaussian representation struggles to capture small objects in the scene, while dense representation incurs significant computational overhead. To address these limitations, we present PG-Occ, an innovative Progressive Gaussian Transformer Framework that enables open-vocabulary 3D occupancy prediction. Our framework employs progressive online densification, a feed-forward strategy that gradually enhances the 3D Gaussian representation to capture fine-grained scene details. By iteratively enhancing the representation, the framework achieves increasingly precise and detailed scene understanding. Another key contribution is the introduction of an anisotropy-aware sampling strategy with spatio-temporal fusion, which adaptively assigns receptive fields to Gaussians at different scales and stages, enabling more effective feature aggregation and richer scene information capture. Through extensive evaluations, we demonstrate that PG-Occ achieves state-of-the-art performance with a relative 14.3% mIoU improvement over the previous best performing method. Code and pretrained models will be released upon publication on our project page: https://yanchi-3dv.github.io/PG-Occ

Authors:KunHo Heo, GiHyun Kim, SuYeon Kim, MyeongAh Cho
Title: Object-Centric Representation Learning for Enhanced 3D Scene Graph Prediction
Abstract:
3D Semantic Scene Graph Prediction aims to detect objects and their semantic relationships in 3D scenes, and has emerged as a crucial technology for robotics and AR/VR applications. While previous research has addressed dataset limitations and explored various approaches including Open-Vocabulary settings, they frequently fail to optimize the representational capacity of object and relationship features, showing excessive reliance on Graph Neural Networks despite insufficient discriminative capability. In this work, we demonstrate through extensive analysis that the quality of object features plays a critical role in determining overall scene graph accuracy. To address this challenge, we design a highly discriminative object feature encoder and employ a contrastive pretraining strategy that decouples object representation learning from the scene graph prediction. This design not only enhances object classification accuracy but also yields direct improvements in relationship prediction. Notably, when plugging in our pretrained encoder into existing frameworks, we observe substantial performance improvements across all evaluation metrics. Additionally, whereas existing approaches have not fully exploited the integration of relationship information, we effectively combine both geometric and semantic features to achieve superior relationship prediction. Comprehensive experiments on the 3DSSG dataset demonstrate that our approach significantly outperforms previous state-of-the-art methods. Our code is publicly available at https://github.com/VisualScienceLab-KHU/OCRL-3DSSG-Codes.

Authors:Foivos Paraperas Papantoniou, Stefanos Zafeiriou
Title: ID-Consistent, Precise Expression Generation with Blendshape-Guided Diffusion
Abstract:
Human-centric generative models designed for AI-driven storytelling must bring together two core capabilities: identity consistency and precise control over human performance. While recent diffusion-based approaches have made significant progress in maintaining facial identity, achieving fine-grained expression control without compromising identity remains challenging. In this work, we present a diffusion-based framework that faithfully reimagines any subject under any particular facial expression. Building on an ID-consistent face foundation model, we adopt a compositional design featuring an expression cross-attention module guided by FLAME blendshape parameters for explicit control. Trained on a diverse mixture of image and video data rich in expressive variation, our adapter generalizes beyond basic emotions to subtle micro-expressions and expressive transitions, overlooked by prior works. In addition, a pluggable Reference Adapter enables expression editing in real images by transferring the appearance from a reference frame during synthesis. Extensive quantitative and qualitative evaluations show that our model outperforms existing methods in tailored and identity-consistent expression generation. Code and models can be found at https://github.com/foivospar/Arc2Face.

Authors:Habin Lim, Yeongseob Won, Juwon Seo, Gyeong-Moon Park
Title: ConceptSplit: Decoupled Multi-Concept Personalization of Diffusion Models via Token-wise Adaptation and Attention Disentanglement
Abstract:
In recent years, multi-concept personalization for text-to-image (T2I) diffusion models to represent several subjects in an image has gained much more attention. The main challenge of this task is "concept mixing", where multiple learned concepts interfere or blend undesirably in the output image. To address this issue, in this paper, we present ConceptSplit, a novel framework to split the individual concepts through training and inference. Our framework comprises two key components. First, we introduce Token-wise Value Adaptation (ToVA), a merging-free training method that focuses exclusively on adapting the value projection in cross-attention. Based on our empirical analysis, we found that modifying the key projection, a common approach in existing methods, can disrupt the attention mechanism and lead to concept mixing. Second, we propose Latent Optimization for Disentangled Attention (LODA), which alleviates attention entanglement during inference by optimizing the input latent. Through extensive qualitative and quantitative experiments, we demonstrate that ConceptSplit achieves robust multi-concept personalization, mitigating unintended concept interference. Code is available at https://github.com/KU-VGI/ConceptSplit

Authors:Zeyi Zhang, Yanju Zhou, Heyuan Yao, Tenglong Ao, Xiaohang Zhan, Libin Liu
Title: Social Agent: Mastering Dyadic Nonverbal Behavior Generation via Conversational LLM Agents
Abstract:
We present Social Agent, a novel framework for synthesizing realistic and contextually appropriate co-speech nonverbal behaviors in dyadic conversations. In this framework, we develop an agentic system driven by a Large Language Model (LLM) to direct the conversation flow and determine appropriate interactive behaviors for both participants. Additionally, we propose a novel dual-person gesture generation model based on an auto-regressive diffusion model, which synthesizes coordinated motions from speech signals. The output of the agentic system is translated into high-level guidance for the gesture generator, resulting in realistic movement at both the behavioral and motion levels. Furthermore, the agentic system periodically examines the movements of interlocutors and infers their intentions, forming a continuous feedback loop that enables dynamic and responsive interactions between the two participants. User studies and quantitative evaluations show that our model significantly improves the quality of dyadic interactions, producing natural, synchronized nonverbal behaviors.

Authors:Hao Liu, Yunhao Gao, Wei Li, Mingyang Zhang, Maoguo Gong, Lorenzo Bruzzone
Title: A Spatial-Spectral-Frequency Interactive Network for Multimodal Remote Sensing Classification
Abstract:
Deep learning-based methods have achieved significant success in remote sensing Earth observation data analysis. Numerous feature fusion techniques address multimodal remote sensing image classification by integrating global and local features. However, these techniques often struggle to extract structural and detail features from heterogeneous and redundant multimodal images. With the goal of introducing frequency domain learning to model key and sparse detail features, this paper introduces the spatial-spectral-frequency interaction network (S$^2$Fin), which integrates pairwise fusion modules across the spatial, spectral, and frequency domains. Specifically, we propose a high-frequency sparse enhancement transformer that employs sparse spatial-spectral attention to optimize the parameters of the high-frequency filter. Subsequently, a two-level spatial-frequency fusion strategy is introduced, comprising an adaptive frequency channel module that fuses low-frequency structures with enhanced high-frequency details, and a high-frequency resonance mask that emphasizes sharp edges via phase similarity. In addition, a spatial-spectral attention fusion module further enhances feature extraction at intermediate layers of the network. Experiments on four benchmark multimodal datasets with limited labeled data demonstrate that S$^2$Fin performs superior classification, outperforming state-of-the-art methods. The code is available at https://github.com/HaoLiu-XDU/SSFin.

Authors:Honglin Liu, Chao Sun, Peng Hu, Yunfan Li, Xi Peng
Title: Conditional Representation Learning for Customized Tasks
Abstract:
Conventional representation learning methods learn a universal representation that primarily captures dominant semantics, which may not always align with customized downstream tasks. For instance, in animal habitat analysis, researchers prioritize scene-related features, whereas universal embeddings emphasize categorical semantics, leading to suboptimal results. As a solution, existing approaches resort to supervised fine-tuning, which however incurs high computational and annotation costs. In this paper, we propose Conditional Representation Learning (CRL), aiming to extract representations tailored to arbitrary user-specified criteria. Specifically, we reveal that the semantics of a space are determined by its basis, thereby enabling a set of descriptive words to approximate the basis for a customized feature space. Building upon this insight, given a user-specified criterion, CRL first employs a large language model (LLM) to generate descriptive texts to construct the semantic basis, then projects the image representation into this conditional feature space leveraging a vision-language model (VLM). The conditional representation better captures semantics for the specific criterion, which could be utilized for multiple customized tasks. Extensive experiments on classification and retrieval tasks demonstrate the superiority and generality of the proposed CRL. The code is available at https://github.com/XLearning-SCU/2025-NeurIPS-CRL.

Authors:Jorge Leonardo Ruiz Williams
Title: Fast Witness Persistence for MRI Volumes via Hybrid Landmarking
Abstract:
We introduce a scalable witness-based persistent homology pipeline for full-brain MRI volumes that couples density-aware landmark selection with a GPU-ready witness filtration. Candidates are scored by a hybrid metric that balances geometric coverage against inverse kernel density, yielding landmark sets that shrink mean pairwise distances by 30-60% over random or density-only baselines while preserving topological features. Benchmarks on BrainWeb, IXI, and synthetic manifolds execute in under ten seconds on a single NVIDIA RTX 4090 GPU, avoiding the combinatorial blow-up of Cech, Vietoris-Rips, and alpha filtrations. The package is distributed on PyPI as whale-tda (installable via pip); source and issues are hosted at https://github.com/jorgeLRW/whale. The release also exposes a fast preset (mri_deep_dive_fast) for exploratory sweeps, and ships with reproducibility-focused scripts and artifacts for drop-in use in medical imaging workflows.

Authors:Zijing Hu, Yunze Tong, Fengda Zhang, Junkun Yuan, Jun Xiao, Kun Kuang
Title: Asynchronous Denoising Diffusion Models for Aligning Text-to-Image Generation
Abstract:
Diffusion models have achieved impressive results in generating high-quality images. Yet, they often struggle to faithfully align the generated images with the input prompts. This limitation arises from synchronous denoising, where all pixels simultaneously evolve from random noise to clear images. As a result, during generation, the prompt-related regions can only reference the unrelated regions at the same noise level, failing to obtain clear context and ultimately impairing text-to-image alignment. To address this issue, we propose asynchronous diffusion models -- a novel framework that allocates distinct timesteps to different pixels and reformulates the pixel-wise denoising process. By dynamically modulating the timestep schedules of individual pixels, prompt-related regions are denoised more gradually than unrelated regions, thereby allowing them to leverage clearer inter-pixel context. Consequently, these prompt-related regions achieve better alignment in the final images. Extensive experiments demonstrate that our asynchronous diffusion models can significantly improve text-to-image alignment across diverse prompts. The code repository for this work is available at https://github.com/hu-zijing/AsynDM.

Authors:Baber Jan, Saeed Anwar, Aiman H. El-Maleh, Abdul Jabbar Siddiqui, Abdul Bais
Title: SPEGNet: Synergistic Perception-Guided Network for Camouflaged Object Detection
Abstract:
Camouflaged object detection segments objects with intrinsic similarity and edge disruption. Current detection methods rely on accumulated complex components. Each approach adds components such as boundary modules, attention mechanisms, and multi-scale processors independently. This accumulation creates a computational burden without proportional gains. To manage this complexity, they process at reduced resolutions, eliminating fine details essential for camouflage. We present SPEGNet, addressing fragmentation through a unified design. The architecture integrates multi-scale features via channel calibration and spatial enhancement. Boundaries emerge directly from context-rich representations, maintaining semantic-spatial alignment. Progressive refinement implements scale-adaptive edge modulation with peak influence at intermediate resolutions. This design strikes a balance between boundary precision and regional consistency. SPEGNet achieves 0.887 $S_α$ on CAMO, 0.890 on COD10K, and 0.895 on NC4K, with real-time inference speed. Our approach excels across scales, from tiny, intricate objects to large, pattern-similar ones, while handling occlusion and ambiguous boundaries. Code, model weights, and results are available on \href{https://github.com/Baber-Jan/SPEGNet}{https://github.com/Baber-Jan/SPEGNet}.

Authors:Xuehai He, Shijie Zhou, Thivyanth Venkateswaran, Kaizhi Zheng, Ziyu Wan, Achuta Kadambi, Xin Eric Wang
Title: MorphoSim: An Interactive, Controllable, and Editable Language-guided 4D World Simulator
Abstract:
World models that support controllable and editable spatiotemporal environments are valuable for robotics, enabling scalable training data, repro ducible evaluation, and flexible task design. While recent text-to-video models generate realistic dynam ics, they are constrained to 2D views and offer limited interaction. We introduce MorphoSim, a language guided framework that generates 4D scenes with multi-view consistency and object-level controls. From natural language instructions, MorphoSim produces dynamic environments where objects can be directed, recolored, or removed, and scenes can be observed from arbitrary viewpoints. The framework integrates trajectory-guided generation with feature field dis tillation, allowing edits to be applied interactively without full re-generation. Experiments show that Mor phoSim maintains high scene fidelity while enabling controllability and editability. The code is available at https://github.com/eric-ai-lab/Morph4D.

Authors:Wojciech Górny, Michał Łasica, Alexandros Matsoukas
Title: Adaptive double-phase Rudin--Osher--Fatemi denoising model
Abstract:
We propose a new image denoising model based on a variable-growth total variation regularization of double-phase type with adaptive weight. It is designed to reduce staircasing with respect to the classical Rudin--Osher--Fatemi model, while preserving the edges of the image in a similar fashion. We implement the model and test its performance on synthetic and natural images in 1D and 2D over a range of noise levels.

Authors:Lan Feng, Yang Gao, Eloi Zablocki, Quanyi Li, Wuyang Li, Sichao Liu, Matthieu Cord, Alexandre Alahi
Title: RAP: 3D Rasterization Augmented End-to-End Planning
Abstract:
Imitation learning for end-to-end driving trains policies only on expert demonstrations. Once deployed in a closed loop, such policies lack recovery data: small mistakes cannot be corrected and quickly compound into failures. A promising direction is to generate alternative viewpoints and trajectories beyond the logged path. Prior work explores photorealistic digital twins via neural rendering or game engines, but these methods are prohibitively slow and costly, and thus mainly used for evaluation. In this work, we argue that photorealism is unnecessary for training end-to-end planners. What matters is semantic fidelity and scalability: driving depends on geometry and dynamics, not textures or lighting. Motivated by this, we propose 3D Rasterization, which replaces costly rendering with lightweight rasterization of annotated primitives, enabling augmentations such as counterfactual recovery maneuvers and cross-agent view synthesis. To transfer these synthetic views effectively to real-world deployment, we introduce a Raster-to-Real feature-space alignment that bridges the sim-to-real gap. Together, these components form Rasterization Augmented Planning (RAP), a scalable data augmentation pipeline for planning. RAP achieves state-of-the-art closed-loop robustness and long-tail generalization, ranking first on four major benchmarks: NAVSIM v1/v2, Waymo Open Dataset Vision-based E2E Driving, and Bench2Drive. Our results show that lightweight rasterization with feature alignment suffices to scale E2E training, offering a practical alternative to photorealistic rendering. Project page: https://alan-lanfeng.github.io/RAP/.

Authors:Jiarui Ouyang, Yihui Wang, Yihang Gao, Yingxue Xu, Shu Yang, Hao Chen
Title: GenAR: Next-Scale Autoregressive Generation for Spatial Gene Expression Prediction
Abstract:
Spatial Transcriptomics (ST) offers spatially resolved gene expression but remains costly. Predicting expression directly from widely available Hematoxylin and Eosin (H&E) stained images presents a cost-effective alternative. However, most computational approaches (i) predict each gene independently, overlooking co-expression structure, and (ii) cast the task as continuous regression despite expression being discrete counts. This mismatch can yield biologically implausible outputs and complicate downstream analyses. We introduce GenAR, a multi-scale autoregressive framework that refines predictions from coarse to fine. GenAR clusters genes into hierarchical groups to expose cross-gene dependencies, models expression as codebook-free discrete token generation to directly predict raw counts, and conditions decoding on fused histological and spatial embeddings. From an information-theoretic perspective, the discrete formulation avoids log-induced biases and the coarse-to-fine factorization aligns with a principled conditional decomposition. Extensive experimental results on four Spatial Transcriptomics datasets across different tissue types demonstrate that GenAR achieves state-of-the-art performance, offering potential implications for precision medicine and cost-effective molecular profiling. Code is publicly available at https://github.com/oyjr/genar.

Authors:Moo Hyun Son, Jintaek Oh, Sun Bin Mun, Jaechul Roh, Sehyun Choi
Title: World-To-Image: Grounding Text-to-Image Generation with Agent-Driven World Knowledge
Abstract:
While text-to-image (T2I) models can synthesize high-quality images, their performance degrades significantly when prompted with novel or out-of-distribution (OOD) entities due to inherent knowledge cutoffs. We introduce World-To-Image, a novel framework that bridges this gap by empowering T2I generation with agent-driven world knowledge. We design an agent that dynamically searches the web to retrieve images for concepts unknown to the base model. This information is then used to perform multimodal prompt optimization, steering powerful generative backbones toward an accurate synthesis. Critically, our evaluation goes beyond traditional metrics, utilizing modern assessments like LLMGrader and ImageReward to measure true semantic fidelity. Our experiments show that World-To-Image substantially outperforms state-of-the-art methods in both semantic alignment and visual aesthetics, achieving +8.1% improvement in accuracy-to-prompt on our curated NICE benchmark. Our framework achieves these results with high efficiency in less than three iterations, paving the way for T2I systems that can better reflect the ever-changing real world. Our demo code is available here\footnote{https://github.com/mhson-kyle/World-To-Image}.

Authors:Xinglong Luo, Ao Luo, Kunming Luo, Zhengning Wang, Ping Tan, Bing Zeng, Shuaicheng Liu
Title: Learning Efficient Meshflow and Optical Flow from Event Cameras
Abstract:
In this paper, we explore the problem of event-based meshflow estimation, a novel task that involves predicting a spatially smooth sparse motion field from event cameras. To start, we review the state-of-the-art in event-based flow estimation, highlighting two key areas for further research: i) the lack of meshflow-specific event datasets and methods, and ii) the underexplored challenge of event data density. First, we generate a large-scale High-Resolution Event Meshflow (HREM) dataset, which showcases its superiority by encompassing the merits of high resolution at 1280x720, handling dynamic objects and complex motion patterns, and offering both optical flow and meshflow labels. These aspects have not been fully explored in previous works. Besides, we propose Efficient Event-based MeshFlow (EEMFlow) network, a lightweight model featuring a specially crafted encoder-decoder architecture to facilitate swift and accurate meshflow estimation. Furthermore, we upgrade EEMFlow network to support dense event optical flow, in which a Confidence-induced Detail Completion (CDC) module is proposed to preserve sharp motion boundaries. We conduct comprehensive experiments to show the exceptional performance and runtime efficiency (30x faster) of our EEMFlow model compared to the recent state-of-the-art flow method. As an extension, we expand HREM into HREM+, a multi-density event dataset contributing to a thorough study of the robustness of existing methods across data with varying densities, and propose an Adaptive Density Module (ADM) to adjust the density of input event data to a more optimal range, enhancing the model's generalization ability. We empirically demonstrate that ADM helps to significantly improve the performance of EEMFlow and EEMFlow+ by 8% and 10%, respectively. Code and dataset are released at https://github.com/boomluo02/EEMFlowPlus.

Authors:Zheng Chen, Kewei Zhang, Xiaoyang Liu, Weihang Zhang, Mengfan Wang, Yifan Fu, Yulun Zhang
Title: QuantDemoire: Quantization with Outlier Aware for Image Demoiréing
Abstract:
Demoiréing aims to remove moiré artifacts that often occur in images. While recent deep learning-based methods have achieved promising results, they typically require substantial computational resources, limiting their deployment on edge devices. Model quantization offers a compelling solution. However, directly applying existing quantization methods to demoiréing models introduces severe performance degradation. The main reasons are distribution outliers and weakened representations in smooth regions. To address these issues, we propose QuantDemoire, a post-training quantization framework tailored to demoiréing. It contains two key components. **First}, we introduce an outlier-aware quantizer to reduce errors from outliers. It uses sampling-based range estimation to reduce activation outliers, and keeps a few extreme weights in FP16 with negligible cost. **Second**, we design a frequency-aware calibration strategy. It emphasizes low- and mid-frequency components during fine-tuning, which mitigates banding artifacts caused by low-bit quantization. Extensive experiments validate that our QuantDemoire achieves large reductions in parameters and computation while maintaining quality. Meanwhile, it outperforms existing quantization methods by over **4 dB** on W4A4. Code is released at: https://github.com/zhengchen1999/QuantDemoire.

Authors:Bingtao Yang, Yujia Wang, Mengzhi Jiao, Hongwei Huo
Title: Quantization Range Estimation for Convolutional Neural Networks
Abstract:
Post-training quantization for reducing the storage of deep neural network models has been demonstrated to be an effective way in various tasks. However, low-bit quantization while maintaining model accuracy is a challenging problem. In this paper, we present a range estimation method to improve the quantization performance for post-training quantization. We model the range estimation into an optimization problem of minimizing quantization errors by layer-wise local minima. We prove this problem is locally convex and present an efficient search algorithm to find the optimal solution. We propose the application of the above search algorithm to the transformed weights space to do further improvement in practice. Our experiments demonstrate that our method outperforms state-of-the-art performance generally on top-1 accuracy for image classification tasks on the ResNet series models and Inception-v3 model. The experimental results show that the proposed method has almost no loss of top-1 accuracy in 8-bit and 6-bit settings for image classifications, and the accuracy of 4-bit quantization is also significantly improved. The code is available at https://github.com/codeiscommitting/REQuant.

Authors:Kushal Vyas, Ashok Veeraraghavan, Guha Balakrishnan
Title: Fit Pixels, Get Labels: Meta-learned Implicit Networks for Image Segmentation
Abstract:
Implicit neural representations (INRs) have achieved remarkable successes in learning expressive yet compact signal representations. However, they are not naturally amenable to predictive tasks such as segmentation, where they must learn semantic structures over a distribution of signals. In this study, we introduce MetaSeg, a meta-learning framework to train INRs for medical image segmentation. MetaSeg uses an underlying INR that simultaneously predicts per pixel intensity values and class labels. It then uses a meta-learning procedure to find optimal initial parameters for this INR over a training dataset of images and segmentation maps, such that the INR can simply be fine-tuned to fit pixels of an unseen test image, and automatically decode its class labels. We evaluated MetaSeg on 2D and 3D brain MRI segmentation tasks and report Dice scores comparable to commonly used U-Net models, but with $90\%$ fewer parameters. MetaSeg offers a fresh, scalable alternative to traditional resource-heavy architectures such as U-Nets and vision transformers for medical image segmentation. Our project is available at https://kushalvyas.github.io/metaseg.html .

Authors:Yaxin Hou, Bo Han, Yuheng Jia, Hui Liu, Junhui Hou
Title: Keep It on a Leash: Controllable Pseudo-label Generation Towards Realistic Long-Tailed Semi-Supervised Learning
Abstract:
Current long-tailed semi-supervised learning methods assume that labeled data exhibit a long-tailed distribution, and unlabeled data adhere to a typical predefined distribution (i.e., long-tailed, uniform, or inverse long-tailed). However, the distribution of the unlabeled data is generally unknown and may follow an arbitrary distribution. To tackle this challenge, we propose a Controllable Pseudo-label Generation (CPG) framework, expanding the labeled dataset with the progressively identified reliable pseudo-labels from the unlabeled dataset and training the model on the updated labeled dataset with a known distribution, making it unaffected by the unlabeled data distribution. Specifically, CPG operates through a controllable self-reinforcing optimization cycle: (i) at each training step, our dynamic controllable filtering mechanism selectively incorporates reliable pseudo-labels from the unlabeled dataset into the labeled dataset, ensuring that the updated labeled dataset follows a known distribution; (ii) we then construct a Bayes-optimal classifier using logit adjustment based on the updated labeled data distribution; (iii) this improved classifier subsequently helps identify more reliable pseudo-labels in the next training step. We further theoretically prove that this optimization cycle can significantly reduce the generalization error under some conditions. Additionally, we propose a class-aware adaptive augmentation module to further improve the representation of minority classes, and an auxiliary branch to maximize data utilization by leveraging all labeled and unlabeled samples. Comprehensive evaluations on various commonly used benchmark datasets show that CPG achieves consistent improvements, surpassing state-of-the-art methods by up to $\textbf{15.97%}$ in accuracy. The code is available at https://github.com/yaxinhou/CPG.

Authors:Sameep Vani, Shreyas Jena, Maitreya Patel, Chitta Baral, Somak Aditya, Yezhou Yang
Title: Harnessing Synthetic Preference Data for Enhancing Temporal Understanding of Video-LLMs
Abstract:
While Video Large Language Models (Video-LLMs) have demonstrated remarkable performance across general video understanding benchmarks-particularly in video captioning and descriptive tasks-they consistently underperform on tasks that require fine-grained temporal understanding. This limitation arises due to the lack of visual complexity and temporal nuance in current fine-tuning datasets, leading these models to rely heavily on language-based reasoning rather than truly understanding video dynamics. In this work, we propose TimeWarp, a systematic method to create a targeted synthetic temporal dataset to fine-tune the model's responses to encourage it to focus on the given input video. We introduce a large-scale preference dataset, created using TimeWarp, that captures intricate temporal dynamics often overlooked, grounding the model's responses to visual and temporal information. We demonstrate that when our method is applied to existing models, it significantly improves performance on temporal understanding benchmarks, highlighting the effectiveness of our proposed datasets in advancing temporal understanding in Video-LLMs, resulting in an absolute improvement in performance across seven benchmarks. Code is available at https://github.com/sameepv21/timewarp.

Authors:Hyelin Nam, Hyojun Go, Byeongjun Park, Byung-Hoon Kim, Hyungjin Chung
Title: Generating Human Motion Videos using a Cascaded Text-to-Video Framework
Abstract:
Human video generation is becoming an increasingly important task with broad applications in graphics, entertainment, and embodied AI. Despite the rapid progress of video diffusion models (VDMs), their use for general-purpose human video generation remains underexplored, with most works constrained to image-to-video setups or narrow domains like dance videos. In this work, we propose CAMEO, a cascaded framework for general human motion video generation. It seamlessly bridges Text-to-Motion (T2M) models and conditional VDMs, mitigating suboptimal factors that may arise in this process across both training and inference through carefully designed components. Specifically, we analyze and prepare both textual prompts and visual conditions to effectively train the VDM, ensuring robust alignment between motion descriptions, conditioning signals, and the generated videos. Furthermore, we introduce a camera-aware conditioning module that connects the two stages, automatically selecting viewpoints aligned with the input text to enhance coherence and reduce manual intervention. We demonstrate the effectiveness of our approach on both the MovieGen benchmark and a newly introduced benchmark tailored to the T2M-VDM combination, while highlighting its versatility across diverse use cases.

Authors:Md. Atabuzzaman, Andrew Zhang, Chris Thomas
Title: Zero-Shot Fine-Grained Image Classification Using Large Vision-Language Models
Abstract:
Large Vision-Language Models (LVLMs) have demonstrated impressive performance on vision-language reasoning tasks. However, their potential for zero-shot fine-grained image classification, a challenging task requiring precise differentiation between visually similar categories, remains underexplored. We present a novel method that transforms zero-shot fine-grained image classification into a visual question-answering framework, leveraging LVLMs' comprehensive understanding capabilities rather than relying on direct class name generation. We enhance model performance through a novel attention intervention technique. We also address a key limitation in existing datasets by developing more comprehensive and precise class description benchmarks. We validate the effectiveness of our method through extensive experimentation across multiple fine-grained image classification benchmarks. Our proposed method consistently outperforms the current state-of-the-art (SOTA) approach, demonstrating both the effectiveness of our method and the broader potential of LVLMs for zero-shot fine-grained classification tasks. Code and Datasets: https://github.com/Atabuzzaman/Fine-grained-classification

Authors:Minseo Lee, Byeonghyeon Lee, Lucas Yunkyu Lee, Eunsoo Lee, Sangmin Kim, Seunghyeon Song, Joo Chan Lee, Jong Hwan Ko, Jaesik Park, Eunbyung Park
Title: Optimized Minimal 4D Gaussian Splatting
Abstract:
4D Gaussian Splatting has emerged as a new paradigm for dynamic scene representation, enabling real-time rendering of scenes with complex motions. However, it faces a major challenge of storage overhead, as millions of Gaussians are required for high-fidelity reconstruction. While several studies have attempted to alleviate this memory burden, they still face limitations in compression ratio or visual quality. In this work, we present OMG4 (Optimized Minimal 4D Gaussian Splatting), a framework that constructs a compact set of salient Gaussians capable of faithfully representing 4D Gaussian models. Our method progressively prunes Gaussians in three stages: (1) Gaussian Sampling to identify primitives critical to reconstruction fidelity, (2) Gaussian Pruning to remove redundancies, and (3) Gaussian Merging to fuse primitives with similar characteristics. In addition, we integrate implicit appearance compression and generalize Sub-Vector Quantization (SVQ) to 4D representations, further reducing storage while preserving quality. Extensive experiments on standard benchmark datasets demonstrate that OMG4 significantly outperforms recent state-of-the-art methods, reducing model sizes by over 60% while maintaining reconstruction quality. These results position OMG4 as a significant step forward in compact 4D scene representation, opening new possibilities for a wide range of applications. Our source code is available at https://minshirley.github.io/OMG4/.

Authors:Rui Qian, Xin Yin, Chuanhang Deng, Zhiyuan Peng, Jian Xiong, Wei Zhai, Dejing Dou
Title: UGround: Towards Unified Visual Grounding with Unrolled Transformers
Abstract:
We present UGround, a \textbf{U}nified visual \textbf{Ground}ing paradigm that dynamically selects intermediate layers across \textbf{U}nrolled transformers as ``mask as prompt'', diverging from the prevailing pipeline that leverages the fixed last hidden layer as ``\texttt{} as prompt''. UGround addresses two primary challenges posed by the prevailing paradigm: (1) its reliance on the fixed last hidden layer, which sequentially amplifies cumulative errors arising from layer-by-layer propagation without intermediate correction, and (2) its use of \texttt{} as a prompt, which implicitly projects textual embeddings into visual space without explicit spatial cues (\eg, coordinates). Central to UGround is Policy-Prompted Masking, which comprises two key components: Stochastic Skip Connection (SSC) and Mask as Prompt (MasP). SSC is a reinforcement learning policy that, via stochastic sampling, allows each \texttt{} token to slide across unrolled transformer layers, enabling dynamic layer selection at which it connects to the vision model (\eg, SAM) in a skip-connection fashion. Given the selected hidden layer, MasP uses the similarity map derived from the \texttt{} token and image tokens as a soft logit mask to prompt SAM for mask generation, offering explicit spatial cues through its activation regions. To validate the effectiveness of UGround, we, for the first time, have unified visual grounding within a single framework from an attribute perspective, spanning from traditional refer expression segmentation to newly proposed reasoning segmentation, single-target to multi-target, positive query to false premise (empty target). All codes and models are publicly available at \href{https://github.com/rui-qian/UGround}{https://github.com/rui-qian/UGround}.

Authors:Shuoyan Wei, Feng Li, Shengeng Tang, Runmin Cong, Yao Zhao, Meng Wang, Huihui Bai
Title: Towards Robust and Generalizable Continuous Space-Time Video Super-Resolution with Events
Abstract:
Continuous space-time video super-resolution (C-STVSR) has garnered increasing interest for its capability to reconstruct high-resolution and high-frame-rate videos at arbitrary spatial and temporal scales. However, prevailing methods often generalize poorly, producing unsatisfactory results when applied to out-of-distribution (OOD) scales. To overcome this limitation, we present EvEnhancer, a novel approach that marries the unique properties of high temporal resolution and high dynamic range encapsulated in event streams to achieve robust and generalizable C-STVSR. Our approach incorporates event-adapted synthesis that capitalizes on the spatiotemporal correlations between frames and events to capture long-term motion trajectories, enabling adaptive interpolation and fusion across space and time. This is then coupled with a local implicit video transformer that integrates local implicit video neural function with cross-scale spatiotemporal attention to learn continuous video representations and generate plausible videos at arbitrary resolutions and frame rates. We further develop EvEnhancerPlus, which builds a controllable switching mechanism that dynamically determines the reconstruction difficulty for each spatiotemporal pixel based on local event statistics. This allows the model to adaptively route reconstruction along the most suitable pathways at a fine-grained pixel level, substantially reducing computational overhead while maintaining excellent performance. Furthermore, we devise a cross-derivative training strategy that stabilizes the convergence of such a multi-pathway framework through staged cross-optimization. Extensive experiments demonstrate that our method achieves state-of-the-art performance on both synthetic and real-world datasets, while maintaining superior generalizability at OOD scales. The code is available at https://github.com/W-Shuoyan/EvEnhancerPlus.

Authors:Xueyang Zhou, Yangming Xu, Guiyao Tie, Yongchao Chen, Guowen Zhang, Duanfeng Chu, Pan Zhou, Lichao Sun
Title: LIBERO-PRO: Towards Robust and Fair Evaluation of Vision-Language-Action Models Beyond Memorization
Abstract:
LIBERO has emerged as a widely adopted benchmark for evaluating Vision-Language-Action (VLA) models; however, its current training and evaluation settings are problematic, often leading to inflated performance estimates and preventing fair model comparison. To address these issues, we introduce LIBERO-PRO, an extended LIBERO benchmark that systematically evaluates model performance under reasonable perturbations across four dimensions: manipulated objects, initial states, task instructions, and environments. Experimental results reveal that, although existing models achieve over 90% accuracy under the standard LIBERO evaluation, their performance collapses to 0.0% under our generalized setting. Crucially, this discrepancy exposes the models' reliance on rote memorization of action sequences and environment layouts from the training set, rather than genuine task understanding or environmental perception. For instance, models persist in executing grasping actions when the target object is replaced with irrelevant items, and their outputs remain unchanged even when given corrupted instructions or even messy tokens. These findings expose the severe flaws in current evaluation practices, and we call on the community to abandon misleading methodologies in favor of robust assessments of model generalization and comprehension. Our code is available at: https://github.com/Zxy-MLlab/LIBERO-PRO.

Authors:Yiheng Dong, Yi Lin, Xin Yang
Title: CoPA: Hierarchical Concept Prompting and Aggregating Network for Explainable Diagnosis
Abstract:
The transparency of deep learning models is essential for clinical diagnostics. Concept Bottleneck Model provides clear decision-making processes for diagnosis by transforming the latent space of black-box models into human-understandable concepts. However, concept-based methods still face challenges in concept capture capabilities. These methods often rely on encode features solely from the final layer, neglecting shallow and multiscale features, and lack effective guidance in concept encoding, hindering fine-grained concept extraction. To address these issues, we introduce Concept Prompting and Aggregating (CoPA), a novel framework designed to capture multilayer concepts under prompt guidance. This framework utilizes the Concept-aware Embedding Generator (CEG) to extract concept representations from each layer of the visual encoder. Simultaneously, these representations serve as prompts for Concept Prompt Tuning (CPT), steering the model towards amplifying critical concept-related visual cues. Visual representations from each layer are aggregated to align with textual concept representations. With the proposed method, valuable concept-wise information in the images is captured and utilized effectively, thus improving the performance of concept and disease prediction. Extensive experimental results demonstrate that CoPA outperforms state-of-the-art methods on three public datasets. Code is available at https://github.com/yihengd/CoPA.

Authors:Jiaxin Deng, Junbiao Pang
Title: Adaptively Sampling-Reusing-Mixing Decomposed Gradients to Speed Up Sharpness Aware Minimization
Abstract:
Sharpness-Aware Minimization (SAM) improves model generalization but doubles the computational cost of Stochastic Gradient Descent (SGD) by requiring twice the gradient calculations per optimization step. To mitigate this, we propose Adaptively sampling-Reusing-mixing decomposed gradients to significantly accelerate SAM (ARSAM). Concretely, we firstly discover that SAM's gradient can be decomposed into the SGD gradient and the Projection of the Second-order gradient onto the First-order gradient (PSF). Furthermore, we observe that the SGD gradient and PSF dynamically evolve during training, emphasizing the growing role of the PSF to achieve a flat minima. Therefore, ARSAM is proposed to the reused PSF and the timely updated PSF still maintain the model's generalization ability. Extensive experiments show that ARSAM achieves state-of-the-art accuracies comparable to SAM across diverse network architectures. On CIFAR-10/100, ARSAM is comparable to SAM while providing a speedup of about 40\%. Moreover, ARSAM accelerates optimization for the various challenge tasks (\textit{e.g.}, human pose estimation, and model quantization) without sacrificing performance, demonstrating its broad practicality.% The code is publicly accessible at: https://github.com/ajiaaa/ARSAM.

Authors:Zuomin Qu, Yimao Guo, Qianyue Hu, Wei Lu
Title: LoRA Patching: Exposing the Fragility of Proactive Defenses against Deepfakes
Abstract:
Deepfakes pose significant societal risks, motivating the development of proactive defenses that embed adversarial perturbations in facial images to prevent manipulation. However, in this paper, we show that these preemptive defenses often lack robustness and reliability. We propose a novel approach, Low-Rank Adaptation (LoRA) patching, which injects a plug-and-play LoRA patch into Deepfake generators to bypass state-of-the-art defenses. A learnable gating mechanism adaptively controls the effect of the LoRA patch and prevents gradient explosions during fine-tuning. We also introduce a Multi-Modal Feature Alignment (MMFA) loss, encouraging the features of adversarial outputs to align with those of the desired outputs at the semantic level. Beyond bypassing, we present defensive LoRA patching, embedding visible warnings in the outputs as a complementary solution to mitigate this newly identified security vulnerability. With only 1,000 facial examples and a single epoch of fine-tuning, LoRA patching successfully defeats multiple proactive defenses. These results reveal a critical weakness in current paradigms and underscore the need for more robust Deepfake defense strategies. Our code is available at https://github.com/ZOMIN28/LoRA-Patching.

Authors:Claudia Takyi Ankomah, Livingstone Eli Ayivor, Ireneaus Nyame, Leslie Wambo, Patrick Yeboah Bonsu, Aondona Moses Iorumbur, Raymond Confidence, Toufiq Musah
Title: How We Won BraTS-SSA 2025: Brain Tumor Segmentation in the Sub-Saharan African Population Using Segmentation-Aware Data Augmentation and Model Ensembling
Abstract:
Brain tumors, particularly gliomas, pose significant chall-enges due to their complex growth patterns, infiltrative nature, and the variability in brain structure across individuals, which makes accurate diagnosis and monitoring difficult. Deep learning models have been developed to accurately delineate these tumors. However, most of these models were trained on relatively homogenous high-resource datasets, limiting their robustness when deployed in underserved regions. In this study, we performed segmentation-aware offline data augmentation on the BraTS-Africa dataset to increase the data sample size and diversity to enhance generalization. We further constructed an ensemble of three distinct architectures, MedNeXt, SegMamba, and Residual-Encoder U-Net, to leverage their complementary strengths. Our best-performing model, MedNeXt, was trained on 1000 epochs and achieved the highest average lesion-wise dice and normalized surface distance scores of 0.86 and 0.81 respectively. However, the ensemble model trained for 500 epochs produced the most balanced segmentation performance across the tumour subregions. This work demonstrates that a combination of advanced augmentation and model ensembling can improve segmentation accuracy and robustness on diverse and underrepresented datasets. Code available at: https://github.com/SPARK-Academy-2025/SPARK-2025/tree/main/SPARK2025_BraTs_MODELS/SPARK_NeuroAshanti

Authors:Sixten Norelius, Aaron O. Feldman, Mac Schwager
Title: SketchPlan: Diffusion Based Drone Planning From Human Sketches
Abstract:
We propose SketchPlan, a diffusion-based planner that interprets 2D hand-drawn sketches over depth images to generate 3D flight paths for drone navigation. SketchPlan comprises two components: a SketchAdapter that learns to map the human sketches to projected 2D paths, and DiffPath, a diffusion model that infers 3D trajectories from 2D projections and a first person view depth image. Our model achieves zero-shot sim-to-real transfer, generating accurate and safe flight paths in previously unseen real-world environments. To train the model, we build a synthetic dataset of 32k flight paths using a diverse set of photorealistic 3D Gaussian Splatting scenes. We automatically label the data by computing 2D projections of the 3D flight paths onto the camera plane, and use this to train the DiffPath diffusion model. However, since real human 2D sketches differ significantly from ideal 2D projections, we additionally label 872 of the 3D flight paths with real human sketches and use this to train the SketchAdapter to infer the 2D projection from the human sketch. We demonstrate SketchPlan's effectiveness in both simulated and real-world experiments, and show through ablations that training on a mix of human labeled and auto-labeled data together with a modular design significantly boosts its capabilities to correctly interpret human intent and infer 3D paths. In real-world drone tests, SketchPlan achieved 100\% success in low/medium clutter and 40\% in unseen high-clutter environments, outperforming key ablations by 20-60\% in task completion.

Authors:Lyes Saad Saoud, Loic Lesobre, Enrico Sorato, Irfan Hussain
Title: Real-Time Threaded Houbara Detection and Segmentation for Wildlife Conservation using Mobile Platforms
Abstract:
Real-time animal detection and segmentation in natural environments are vital for wildlife conservation, enabling non-invasive monitoring through remote camera streams. However, these tasks remain challenging due to limited computational resources and the cryptic appearance of many species. We propose a mobile-optimized two-stage deep learning framework that integrates a Threading Detection Model (TDM) to parallelize YOLOv10-based detection and MobileSAM-based segmentation. Unlike prior YOLO+SAM pipelines, our approach improves real-time performance by reducing latency through threading. YOLOv10 handles detection while MobileSAM performs lightweight segmentation, both executed concurrently for efficient resource use. On the cryptic Houbara Bustard, a conservation-priority species, our model achieves mAP50 of 0.9627, mAP75 of 0.7731, mAP95 of 0.7178, and a MobileSAM mIoU of 0.7421. YOLOv10 operates at 43.7 ms per frame, confirming real-time readiness. We introduce a curated Houbara dataset of 40,000 annotated images to support model training and evaluation across diverse conditions. The code and dataset used in this study are publicly available on GitHub at https://github.com/LyesSaadSaoud/mobile-houbara-detseg. For interactive demos and additional resources, visit https://lyessaadsaoud.github.io/LyesSaadSaoud-Threaded-YOLO-SAM-Houbara.

Authors:Renrong Shao, Wei Zhang, Jun wang
Title: Conditional Pseudo-Supervised Contrast for Data-Free Knowledge Distillation
Abstract:
Data-free knowledge distillation~(DFKD) is an effective manner to solve model compression and transmission restrictions while retaining privacy protection, which has attracted extensive attention in recent years. Currently, the majority of existing methods utilize a generator to synthesize images to support the distillation. Although the current methods have achieved great success, there are still many issues to be explored. Firstly, the outstanding performance of supervised learning in deep learning drives us to explore a pseudo-supervised paradigm on DFKD. Secondly, current synthesized methods cannot distinguish the distributions of different categories of samples, thus producing ambiguous samples that may lead to an incorrect evaluation by the teacher. Besides, current methods cannot optimize the category-wise diversity samples, which will hinder the student model learning from diverse samples and further achieving better performance. In this paper, to address the above limitations, we propose a novel learning paradigm, i.e., conditional pseudo-supervised contrast for data-free knowledge distillation~(CPSC-DFKD). The primary innovations of CPSC-DFKD are: (1) introducing a conditional generative adversarial network to synthesize category-specific diverse images for pseudo-supervised learning, (2) improving the modules of the generator to distinguish the distributions of different categories, and (3) proposing pseudo-supervised contrastive learning based on teacher and student views to enhance diversity. Comprehensive experiments on three commonly-used datasets validate the performance lift of both the student and generator brought by CPSC-DFKD. The code is available at https://github.com/RoryShao/CPSC-DFKD.git

Authors:Zhe Zhang, Mingxiu Cai, Gaochang Wu, Jing Zhang, Lingqiao Liu, Dacheng Tao, Tianyou Chai, Xiatian Zhu
Title: Unified Unsupervised Anomaly Detection via Matching Cost Filtering
Abstract:
Unsupervised anomaly detection (UAD) aims to identify image- and pixel-level anomalies using only normal training data, with wide applications such as industrial inspection and medical analysis, where anomalies are scarce due to privacy concerns and cold-start constraints. Existing methods, whether reconstruction-based (restoring normal counterparts) or embedding-based (pretrained representations), fundamentally conduct image- or feature-level matching to generate anomaly maps. Nonetheless, matching noise has been largely overlooked, limiting their detection ability. Beyond earlier focus on unimodal RGB-based UAD, recent advances expand to multimodal scenarios, e.g., RGB-3D and RGB-Text, enabled by point cloud sensing and vision-language models. Despite shared challenges, these lines remain largely isolated, hindering a comprehensive understanding and knowledge transfer. In this paper, we advocate unified UAD for both unimodal and multimodal settings in the matching perspective. Under this insight, we present Unified Cost Filtering (UCF), a generic post-hoc refinement framework for refining anomaly cost volume of any UAD model. The cost volume is constructed by matching a test sample against normal samples from the same or different modalities, followed by a learnable filtering module with multi-layer attention guidance from the test sample, mitigating matching noise and highlighting subtle anomalies. Comprehensive experiments on 22 diverse benchmarks demonstrate the efficacy of UCF in enhancing a variety of UAD methods, consistently achieving new state-of-the-art results in both unimodal (RGB) and multimodal (RGB-3D, RGB-Text) UAD scenarios. Code and models will be released at https://github.com/ZHE-SAPI/CostFilter-AD.

Authors:Mahdi Farahbakhsh, Vishnu Teja Kunde, Dileep Kalathil, Krishna Narayanan, Jean-Francois Chamberland
Title: Inference-Time Search using Side Information for Diffusion-based Image Reconstruction
Abstract:
Diffusion models have emerged as powerful priors for solving inverse problems. However, existing approaches typically overlook side information that could significantly improve reconstruction quality, especially in severely ill-posed settings. In this work, we propose a novel inference-time search algorithm that guides the sampling process using the side information in a manner that balances exploration and exploitation. This enables more accurate and reliable reconstructions, providing an alternative to the gradient-based guidance that is prone to reward-hacking artifacts. Our approach can be seamlessly integrated into a wide range of existing diffusion-based image reconstruction pipelines. Through extensive experiments on a number of inverse problems, such as box inpainting, super-resolution, and various deblurring tasks including motion, Gaussian, nonlinear, and blind deblurring, we show that our approach consistently improves the qualitative and quantitative performance of diffusion-based image reconstruction algorithms. We also show the superior performance of our approach with respect to other baselines, including reward gradient-based guidance algorithms. The code is available at \href{https://github.com/mhdfb/sideinfo-search-reconstruction}{this repository}.

Authors:Rong Liu, Zhongpai Gao, Benjamin Planche, Meida Chen, Van Nguyen Nguyen, Meng Zheng, Anwesa Choudhuri, Terrence Chen, Yue Wang, Andrew Feng, Ziyan Wu
Title: Universal Beta Splatting
Abstract:
We introduce Universal Beta Splatting (UBS), a unified framework that generalizes 3D Gaussian Splatting to N-dimensional anisotropic Beta kernels for explicit radiance field rendering. Unlike fixed Gaussian primitives, Beta kernels enable controllable dependency modeling across spatial, angular, and temporal dimensions within a single representation. Our unified approach captures complex light transport effects, handles anisotropic view-dependent appearance, and models scene dynamics without requiring auxiliary networks or specific color encodings. UBS maintains backward compatibility by approximating to Gaussian Splatting as a special case, guaranteeing plug-in usability and lower performance bounds. The learned Beta parameters naturally decompose scene properties into interpretable without explicit supervision: spatial (surface vs. texture), angular (diffuse vs. specular), and temporal (static vs. dynamic). Our CUDA-accelerated implementation achieves real-time rendering while consistently outperforming existing methods across static, view-dependent, and dynamic benchmarks, establishing Beta kernels as a scalable universal primitive for radiance field rendering. Our project website is available at https://rongliu-leo.github.io/universal-beta-splatting/.

Authors:Akshar Gothi
Title: Convolutional Neural Nets vs Vision Transformers: A SpaceNet Case Study with Balanced vs Imbalanced Regimes
Abstract:
We present a controlled comparison of a convolutional neural network (EfficientNet-B0) and a Vision Transformer (ViT-Base) on SpaceNet under two label-distribution regimes: a naturally imbalanced five-class split and a balanced-resampled split with 700 images per class (70:20:10 train/val/test). With matched preprocessing (224x224, ImageNet normalization), lightweight augmentations, and a 40-epoch budget on a single NVIDIA P100, we report accuracy, macro-F1, balanced accuracy, per-class recall, and deployment metrics (model size and latency). On the imbalanced split, EfficientNet-B0 reaches 93% test accuracy with strong macro-F1 and lower latency; ViT-Base is competitive at 93% with a larger parameter count and runtime. On the balanced split, both models are strong; EfficientNet-B0 reaches 99% while ViT-Base remains competitive, indicating that balancing narrows architecture gaps while CNNs retain an efficiency edge. We release manifests, logs, and per-image predictions to support reproducibility.

Authors:Junhao Xia, Ming Zhao, Limin Xiao, Xiujun Zhang
Title: SDQ-LLM: Sigma-Delta Quantization for 1-bit LLMs of any size
Abstract:
Large language models (LLMs) face significant computational and memory challenges, making extremely low-bit quantization crucial for their efficient deployment. In this work, we introduce SDQ-LLM: Sigma-Delta Quantization for 1-bit LLMs of any size, a novel framework that enables extremely low-bit quantization of LLMs while preserving their linguistic reasoning capabilities. A distinctive feature of SDQ-LLM is the continuous adjustability of the Over-Sampling Ratio (OSR), enabling dynamic adaptation to memory or VRAM constraints by selecting fractional OSR (e.g. 2.5 times) for an optimal trade-off between model size and accuracy. SDQ-LLM uses upsampling combined with Sigma-Delta Quantizer to binarize or ternarize LLMs weights, encoding high-precision parameters into 1-bit or 1.58-bit representations, replacing the multiplication operations within linear layers with addition. This approach significantly enhances inference efficiency under extremely low-bit quantization. To further reduce the loss of quantization precision, we incorporate Hadamard-based weight smoothing prior to quantization, improving the stability and robustness of the weight representations. Furthermore, to fully leverage the continuity of the OSR and reduce precision loss, recognizing the correlation between quantization sensitivity and weight variance, we propose a fine-grained, layer- and linear-wise OSR allocation strategy, MultiOSR. This strategy distributes OSR both across layers and within each layer, based on weight variance and parameter scale. Finally, extensive experiments on OPT and LLaMA model families demonstrate that SDQ-LLM achieves a more efficient and high-precision performance even under highly aggressive low-OSR settings. Our code is available at https://github.com/Dreamlittlecat/LLM-Quant-Factory.

Authors:Talha Ahmed, Nehal Ahmed Shaikh, Hassan Mohy-ud-Din
Title: Wave-GMS: Lightweight Multi-Scale Generative Model for Medical Image Segmentation
Abstract:
For equitable deployment of AI tools in hospitals and healthcare facilities, we need Deep Segmentation Networks that offer high performance and can be trained on cost-effective GPUs with limited memory and large batch sizes. In this work, we propose Wave-GMS, a lightweight and efficient multi-scale generative model for medical image segmentation. Wave-GMS has a substantially smaller number of trainable parameters, does not require loading memory-intensive pretrained vision foundation models, and supports training with large batch sizes on GPUs with limited memory. We conducted extensive experiments on four publicly available datasets (BUS, BUSI, Kvasir-Instrument, and HAM10000), demonstrating that Wave-GMS achieves state-of-the-art segmentation performance with superior cross-domain generalizability, while requiring only ~2.6M trainable parameters. Code is available at https://github.com/ATPLab-LUMS/Wave-GMS.

Authors:Jiapeng Tang, Matthew Lavine, Dor Verbin, Stephan J. Garbin, Matthias Nießner, Ricardo Martin Brualla, Pratul P. Srinivasan, Philipp Henzler
Title: ROGR: Relightable 3D Objects using Generative Relighting
Abstract:
We introduce ROGR, a novel approach that reconstructs a relightable 3D model of an object captured from multiple views, driven by a generative relighting model that simulates the effects of placing the object under novel environment illuminations. Our method samples the appearance of the object under multiple lighting environments, creating a dataset that is used to train a lighting-conditioned Neural Radiance Field (NeRF) that outputs the object's appearance under any input environmental lighting. The lighting-conditioned NeRF uses a novel dual-branch architecture to encode the general lighting effects and specularities separately. The optimized lighting-conditioned NeRF enables efficient feed-forward relighting under arbitrary environment maps without requiring per-illumination optimization or light transport simulation. We evaluate our approach on the established TensoIR and Stanford-ORB datasets, where it improves upon the state-of-the-art on most metrics, and showcase our approach on real-world object captures.

Authors:Tianyu Xu, Jiawei Chen, Jiazhao Zhang, Wenyao Zhang, Zekun Qi, Minghan Li, Zhizheng Zhang, He Wang
Title: MM-Nav: Multi-View VLA Model for Robust Visual Navigation via Multi-Expert Learning
Abstract:
Visual navigation policy is widely regarded as a promising direction, as it mimics humans by using egocentric visual observations for navigation. However, optical information of visual observations is difficult to be explicitly modeled like LiDAR point clouds or depth maps, which subsequently requires intelligent models and large-scale data. To this end, we propose to leverage the intelligence of the Vision-Language-Action (VLA) model to learn diverse navigation capabilities from synthetic expert data in a teacher-student manner. Specifically, we implement the VLA model, MM-Nav, as a multi-view VLA (with 360 observations) based on pretrained large language models and visual foundation models. For large-scale navigation data, we collect expert data from three reinforcement learning (RL) experts trained with privileged depth information in three challenging tailor-made environments for different navigation capabilities: reaching, squeezing, and avoiding. We iteratively train our VLA model using data collected online from RL experts, where the training ratio is dynamically balanced based on performance on individual capabilities. Through extensive experiments in synthetic environments, we demonstrate that our model achieves strong generalization capability. Moreover, we find that our student VLA model outperforms the RL teachers, demonstrating the synergistic effect of integrating multiple capabilities. Extensive real-world experiments further confirm the effectiveness of our method.

Authors:Gen Li, Bo Zhao, Jianfei Yang, Laura Sevilla-Lara
Title: Mask2IV: Interaction-Centric Video Generation via Mask Trajectories
Abstract:
Generating interaction-centric videos, such as those depicting humans or robots interacting with objects, is crucial for embodied intelligence, as they provide rich and diverse visual priors for robot learning, manipulation policy training, and affordance reasoning. However, existing methods often struggle to model such complex and dynamic interactions. While recent studies show that masks can serve as effective control signals and enhance generation quality, obtaining dense and precise mask annotations remains a major challenge for real-world use. To overcome this limitation, we introduce Mask2IV, a novel framework specifically designed for interaction-centric video generation. It adopts a decoupled two-stage pipeline that first predicts plausible motion trajectories for both actor and object, then generates a video conditioned on these trajectories. This design eliminates the need for dense mask inputs from users while preserving the flexibility to manipulate the interaction process. Furthermore, Mask2IV supports versatile and intuitive control, allowing users to specify the target object of interaction and guide the motion trajectory through action descriptions or spatial position cues. To support systematic training and evaluation, we curate two benchmarks covering diverse action and object categories across both human-object interaction and robotic manipulation scenarios. Extensive experiments demonstrate that our method achieves superior visual realism and controllability compared to existing baselines.

Authors:Beibei Lin, Tingting Chen, Robby T. Tan
Title: GeoComplete: Geometry-Aware Diffusion for Reference-Driven Image Completion
Abstract:
Reference-driven image completion, which restores missing regions in a target view using additional images, is particularly challenging when the target view differs significantly from the references. Existing generative methods rely solely on diffusion priors and, without geometric cues such as camera pose or depth, often produce misaligned or implausible content. We propose GeoComplete, a novel framework that incorporates explicit 3D structural guidance to enforce geometric consistency in the completed regions, setting it apart from prior image-only approaches. GeoComplete introduces two key ideas: conditioning the diffusion process on projected point clouds to infuse geometric information, and applying target-aware masking to guide the model toward relevant reference cues. The framework features a dual-branch diffusion architecture. One branch synthesizes the missing regions from the masked target, while the other extracts geometric features from the projected point cloud. Joint self-attention across branches ensures coherent and accurate completion. To address regions visible in references but absent in the target, we project the target view into each reference to detect occluded areas, which are then masked during training. This target-aware masking directs the model to focus on useful cues, enhancing performance in difficult scenarios. By integrating a geometry-aware dual-branch diffusion architecture with a target-aware masking strategy, GeoComplete offers a unified and robust solution for geometry-conditioned image completion. Experiments show that GeoComplete achieves a 17.1 PSNR improvement over state-of-the-art methods, significantly boosting geometric accuracy while maintaining high visual quality.

Authors:Xiaoyan Kui, Qianmu Xiao, Qqinsong Li, Zexin Ji, JIelin Zhang, Beiji Zou
Title: Flip Distribution Alignment VAE for Multi-Phase MRI Synthesis
Abstract:
Separating shared and independent features is crucial for multi-phase contrast-enhanced (CE) MRI synthesis. However, existing methods use deep autoencoder generators with low parameter efficiency and lack interpretable training strategies. In this paper, we propose Flip Distribution Alignment Variational Autoencoder (FDA-VAE), a lightweight feature-decoupled VAE model for multi-phase CE MRI synthesis. Our method encodes input and target images into two latent distributions that are symmetric concerning a standard normal distribution, effectively separating shared and independent features. The Y-shaped bidirectional training strategy further enhances the interpretability of feature separation. Experimental results show that compared to existing deep autoencoder-based end-to-end synthesis methods, FDA-VAE significantly reduces model parameters and inference time while effectively improving synthesis quality. The source code is publicly available at https://github.com/QianMuXiao/FDA-VAE.

Authors:Jakub Lisowski, Piotr Tyrakowski, Szymon Zyguła, Krzysztof Kaczmarski
Title: PyRadiomics-cuda: a GPU-accelerated 3D features extraction from medical images within PyRadiomics
Abstract:
PyRadiomics-cuda is a GPU-accelerated extension of the PyRadiomics library, designed to address the computational challenges of extracting three-dimensional shape features from medical images. By offloading key geometric computations to GPU hardware it dramatically reduces processing times for large volumetric datasets. The system maintains full compatibility with the original PyRadiomics API, enabling seamless integration into existing AI workflows without code modifications. This transparent acceleration facilitates efficient, scalable radiomics analysis, supporting rapid feature extraction essential for high-throughput AI pipeline. Tests performed on a typical computational cluster, budget and home devices prove usefulness in all scenarios. PyRadiomics-cuda is implemented in Python and C/CUDA and is freely available under the BSD license at https://github.com/mis-wut/pyradiomics-CUDA Additionally PyRadiomics-cuda test suite is available at https://github.com/mis-wut/pyradiomics-cuda-data-gen. It provides detailed handbook and sample scripts suited for different kinds of workflows plus detailed installation instructions. The dataset used for testing is available at Kaggle https://www.kaggle.com/datasets/sabahesaraki/kidney-tumor-segmentation-challengekits-19

Authors:Md Zahim Hassan, Md. Osama, Muhammad Ashad Kabir, Md. Saiful Islam, Zannatul Naim
Title: ELMF4EggQ: Ensemble Learning with Multimodal Feature Fusion for Non-Destructive Egg Quality Assessment
Abstract:
Accurate, non-destructive assessment of egg quality is critical for ensuring food safety, maintaining product standards, and operational efficiency in commercial poultry production. This paper introduces ELMF4EggQ, an ensemble learning framework that employs multimodal feature fusion to classify egg grade and freshness using only external attributes - image, shape, and weight. A novel, publicly available dataset of 186 brown-shelled eggs was constructed, with egg grade and freshness levels determined through laboratory-based expert assessments involving internal quality measurements, such as yolk index and Haugh unit. To the best of our knowledge, this is the first study to apply machine learning methods for internal egg quality assessment using only external, non-invasive features, and the first to release a corresponding labeled dataset. The proposed framework integrates deep features extracted from external egg images with structural characteristics such as egg shape and weight, enabling a comprehensive representation of each egg. Image feature extraction is performed using top-performing pre-trained CNN models (ResNet152, DenseNet169, and ResNet152V2), followed by PCA-based dimensionality reduction, SMOTE augmentation, and classification using multiple machine learning algorithms. An ensemble voting mechanism combines predictions from the best-performing classifiers to enhance overall accuracy. Experimental results demonstrate that the multimodal approach significantly outperforms image-only and tabular (shape and weight) only baselines, with the multimodal ensemble approach achieving 86.57% accuracy in grade classification and 70.83% in freshness prediction. All code and data are publicly available at https://github.com/Kenshin-Keeps/Egg_Quality_Prediction_ELMF4EggQ, promoting transparency, reproducibility, and further research in this domain.

Authors:Jingyuan Deng, Yujiu Yang
Title: MaskCD: Mitigating LVLM Hallucinations by Image Head Masked Contrastive Decoding
Abstract:
Large vision-language models (LVLMs) have shown remarkable performance in visual-language understanding for downstream multimodal tasks. While their capabilities are improving, problems emerge simultaneously. Among those problems, the hallucinations have attracted much attention, which stands for the phenomenon where LVLMs generate contradictory content to their input visual and text contents. Many approaches have been proposed to deal with this issue, such as contrastive decoding and attention manipulation. However, contrastive decoding methods struggle in constructing appropriate contrastive samples, and attention manipulation methods are highly sensitive, lacking stability. In this work, we propose image head Masked Contrastive Decoding (MaskCD). Our approach utilizes the "image heads" in LVLMs, masking them to construct contrastive samples for contrastive decoding. We evaluated MaskCD on LLaVA-1.5-7b and Qwen-VL-7b, using various benchmarks such as CHAIR, POPE, AMBER and MME. The results demonstrate that MaskCD effectively alleviates the phenomenon of hallucinations and retains the general capabilities of LVLMs. Corresponding resources could be found at: https://github.com/Deng-Jingyuan/MaskCD .

Authors:Ara Seo, Bryan Sangwoo Kim, Hyungjin Chung, Jong Chul Ye
Title: Align Your Query: Representation Alignment for Multimodality Medical Object Detection
Abstract:
Medical object detection suffers when a single detector is trained on mixed medical modalities (e.g., CXR, CT, MRI) due to heterogeneous statistics and disjoint representation spaces. To address this challenge, we turn to representation alignment, an approach that has proven effective for bringing features from different sources into a shared space. Specifically, we target the representations of DETR-style object queries and propose a simple, detector-agnostic framework to align them with modality context. First, we define modality tokens: compact, text-derived embeddings encoding imaging modality that are lightweight and require no extra annotations. We integrate the modality tokens into the detection process via Multimodality Context Attention (MoCA), mixing object-query representations via self-attention to propagate modality context within the query set. This preserves DETR-style architectures and adds negligible latency while injecting modality cues into object queries. We further introduce QueryREPA, a short pretraining stage that aligns query representations to their modality tokens using a task-specific contrastive objective with modality-balanced batches. Together, MoCA and QueryREPA produce modality-aware, class-faithful queries that transfer effectively to downstream training. Across diverse modalities trained altogether, the proposed approach consistently improves AP with minimal overhead and no architectural modifications, offering a practical path toward robust multimodality medical object detection. Project page: https://araseo.github.io/alignyourquery/.

Authors:Xian Zhang, Zexi Wu, Zinuo Li, Hongming Xu, Luqi Gong, Farid Boussaid, Naoufel Werghi, Mohammed Bennamoun
Title: AdaRD-key: Adaptive Relevance-Diversity Keyframe Sampling for Long-form Video understanding
Abstract:
Understanding long-form videos remains a significant challenge for vision--language models (VLMs) due to their extensive temporal length and high information density. Most current multimodal large language models (MLLMs) rely on uniform sampling, which often overlooks critical moments, leading to incorrect responses to queries. In parallel, many keyframe selection approaches impose rigid temporal spacing: once a frame is chosen, an exclusion window suppresses adjacent timestamps to reduce redundancy. While effective at limiting overlap, this strategy frequently misses short, fine-grained cues near important events. Other methods instead emphasize visual diversity but neglect query relevance. We propose AdaRD-Key, a training-free keyframe sampling module for query-driven long-form video understanding. AdaRD-Key maximizes a unified Relevance--Diversity Max-Volume (RD-MV) objective, combining a query-conditioned relevance score with a log-determinant diversity component to yield informative yet non-redundant frames. To handle broad queries with weak alignment to the video, AdaRD-Key employs a lightweight relevance-aware gating mechanism; when the relevance distribution indicates weak alignment, the method seamlessly shifts into a diversity-only mode, enhancing coverage without additional supervision. Our pipeline is training-free, computationally efficient (running in real time on a single GPU), and compatible with existing VLMs in a plug-and-play manner. Extensive experiments on LongVideoBench and Video-MME demonstrate state-of-the-art performance, particularly on long-form videos. Code available at https://github.com/Xian867/AdaRD-Key.

Authors:Junyu Shi, Yong Sun, Zhiyuan Zhang, Lijiang Liu, Zhengjie Zhang, Yuxin He, Qiang Nie
Title: MoGIC: Boosting Motion Generation via Intention Understanding and Visual Context
Abstract:
Existing text-driven motion generation methods often treat synthesis as a bidirectional mapping between language and motion, but remain limited in capturing the causal logic of action execution and the human intentions that drive behavior. The absence of visual grounding further restricts precision and personalization, as language alone cannot specify fine-grained spatiotemporal details. We propose MoGIC, a unified framework that integrates intention modeling and visual priors into multimodal motion synthesis. By jointly optimizing multimodal-conditioned motion generation and intention prediction, MoGIC uncovers latent human goals, leverages visual priors to enhance generation, and exhibits versatile multimodal generative capability. We further introduce a mixture-of-attention mechanism with adaptive scope to enable effective local alignment between conditional tokens and motion subsequences. To support this paradigm, we curate Mo440H, a 440-hour benchmark from 21 high-quality motion datasets. Experiments show that after finetuning, MoGIC reduces FID by 38.6\% on HumanML3D and 34.6\% on Mo440H, surpasses LLM-based methods in motion captioning with a lightweight text head, and further enables intention prediction and vision-conditioned generation, advancing controllable motion synthesis and intention understanding. The code is available at https://github.com/JunyuShi02/MoGIC

Authors:Beijia Lu, Ziyi Chen, Jing Xiao, Jun-Yan Zhu
Title: Input-Aware Sparse Attention for Real-Time Co-Speech Video Generation
Abstract:
Diffusion models can synthesize realistic co-speech video from audio for various applications, such as video creation and virtual agents. However, existing diffusion-based methods are slow due to numerous denoising steps and costly attention mechanisms, preventing real-time deployment. In this work, we distill a many-step diffusion video model into a few-step student model. Unfortunately, directly applying recent diffusion distillation methods degrades video quality and falls short of real-time performance. To address these issues, our new video distillation method leverages input human pose conditioning for both attention and loss functions. We first propose using accurate correspondence between input human pose keypoints to guide attention to relevant regions, such as the speaker's face, hands, and upper body. This input-aware sparse attention reduces redundant computations and strengthens temporal correspondences of body parts, improving inference efficiency and motion coherence. To further enhance visual quality, we introduce an input-aware distillation loss that improves lip synchronization and hand motion realism. By integrating our input-aware sparse attention and distillation loss, our method achieves real-time performance with improved visual quality compared to recent audio-driven and input-driven methods. We also conduct extensive experiments showing the effectiveness of our algorithmic design choices.

Authors:JoonHo Lee, Sunho Park
Title: Exploring OCR-augmented Generation for Bilingual VQA
Abstract:
We investigate OCR-augmented generation with Vision Language Models (VLMs), exploring tasks in Korean and English toward multilingualism. To support research in this domain, we train and release KLOCR, a strong bilingual OCR baseline trained on 100M instances to augment VLMs with OCR ability. To complement existing VQA benchmarks, we curate KOCRBench for Korean VQA, and analyze different prompting methods. Extensive experiments show that OCR-extracted text significantly boosts performance across open source and commercial models. Our work offers new insights into OCR-augmented generation for bilingual VQA. Model, code, and data are available at https://github.com/JHLee0513/KLOCR.

Authors:Guy Ohayon, Pierre-Etienne H. Fiquet, Florentin Guth, Jona Ballé, Eero P. Simoncelli
Title: Learning a distance measure from the information-estimation geometry of data
Abstract:
We introduce the Information-Estimation Metric (IEM), a novel form of distance function derived from an underlying continuous probability density over a domain of signals. The IEM is rooted in a fundamental relationship between information theory and estimation theory, which links the log-probability of a signal with the errors of an optimal denoiser, applied to noisy observations of the signal. In particular, the IEM between a pair of signals is obtained by comparing their denoising error vectors over a range of noise amplitudes. Geometrically, this amounts to comparing the score vector fields of the blurred density around the signals over a range of blur levels. We prove that the IEM is a valid global metric and derive a closed-form expression for its local second-order approximation, which yields a Riemannian metric. For Gaussian-distributed signals, the IEM coincides with the Mahalanobis distance. But for more complex distributions, it adapts, both locally and globally, to the geometry of the distribution. In practice, the IEM can be computed using a learned denoiser (analogous to generative diffusion models) and solving a one-dimensional integral. To demonstrate the value of our framework, we learn an IEM on the ImageNet database. Experiments show that this IEM is competitive with or outperforms state-of-the-art supervised image quality metrics in predicting human perceptual judgments.

Authors:Sung-Yeon Park, Adam Lee, Juanwu Lu, Can Cui, Luyang Jiang, Rohit Gupta, Kyungtae Han, Ahmadreza Moradipari, Ziran Wang
Title: SIMSplat: Predictive Driving Scene Editing with Language-aligned 4D Gaussian Splatting
Abstract:
Driving scene manipulation with sensor data is emerging as a promising alternative to traditional virtual driving simulators. However, existing frameworks struggle to generate realistic scenarios efficiently due to limited editing capabilities. To address these challenges, we present SIMSplat, a predictive driving scene editor with language-aligned Gaussian splatting. As a language-controlled editor, SIMSplat enables intuitive manipulation using natural language prompts. By aligning language with Gaussian-reconstructed scenes, it further supports direct querying of road objects, allowing precise and flexible editing. Our method provides detailed object-level editing, including adding new objects and modifying the trajectories of both vehicles and pedestrians, while also incorporating predictive path refinement through multi-agent motion prediction to generate realistic interactions among all agents in the scene. Experiments on the Waymo dataset demonstrate SIMSplat's extensive editing capabilities and adaptability across a wide range of scenarios. Project page: https://sungyeonparkk.github.io/simsplat/

Authors:Eric Tillmann Bill, Enis Simsar, Thomas Hofmann
Title: Optimal Control Meets Flow Matching: A Principled Route to Multi-Subject Fidelity
Abstract:
Text-to-image (T2I) models excel on single-entity prompts but struggle with multi-subject descriptions, often showing attribute leakage, identity entanglement, and subject omissions. We introduce the first theoretical framework with a principled, optimizable objective for steering sampling dynamics toward multi-subject fidelity. Viewing flow matching (FM) through stochastic optimal control (SOC), we formulate subject disentanglement as control over a trained FM sampler. This yields two architecture-agnostic algorithms: (i) a training-free test-time controller that perturbs the base velocity with a single-pass update, and (ii) Adjoint Matching, a lightweight fine-tuning rule that regresses a control network to a backward adjoint signal while preserving base-model capabilities. The same formulation unifies prior attention heuristics, extends to diffusion models via a flow-diffusion correspondence, and provides the first fine-tuning route explicitly designed for multi-subject fidelity. Empirically, on Stable Diffusion 3.5, FLUX, and Stable Diffusion XL, both algorithms consistently improve multi-subject alignment while maintaining base-model style. Test-time control runs efficiently on commodity GPUs, and fine-tuned controllers trained on limited prompts generalize to unseen ones. We further highlight FOCUS (Flow Optimal Control for Unentangled Subjects), which achieves state-of-the-art multi-subject fidelity across models.

Authors:Bo-Hsu Ke, You-Zhe Xie, Yu-Lun Liu, Wei-Chen Chiu
Title: StealthAttack: Robust 3D Gaussian Splatting Poisoning via Density-Guided Illusions
Abstract:
3D scene representation methods like Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have significantly advanced novel view synthesis. As these methods become prevalent, addressing their vulnerabilities becomes critical. We analyze 3DGS robustness against image-level poisoning attacks and propose a novel density-guided poisoning method. Our method strategically injects Gaussian points into low-density regions identified via Kernel Density Estimation (KDE), embedding viewpoint-dependent illusory objects clearly visible from poisoned views while minimally affecting innocent views. Additionally, we introduce an adaptive noise strategy to disrupt multi-view consistency, further enhancing attack effectiveness. We propose a KDE-based evaluation protocol to assess attack difficulty systematically, enabling objective benchmarking for future research. Extensive experiments demonstrate our method's superior performance compared to state-of-the-art techniques. Project page: https://hentci.github.io/stealthattack/

Authors:Enxin Song, Wenhao Chai, Shusheng Yang, Ethan Armand, Xiaojun Shan, Haiyang Xu, Jianwen Xie, Zhuowen Tu
Title: VideoNSA: Native Sparse Attention Scales Video Understanding
Abstract:
Video understanding in multimodal language models remains limited by context length: models often miss key transition frames and struggle to maintain coherence across long time scales. To address this, we adapt Native Sparse Attention (NSA) to video-language models. Our method, VideoNSA, adapts Qwen2.5-VL through end-to-end training on a 216K video instruction dataset. We employ a hardware-aware hybrid approach to attention, preserving dense attention for text, while employing NSA for video. Compared to token-compression and training-free sparse baselines, VideoNSA achieves improved performance on long-video understanding, temporal reasoning, and spatial benchmarks. Further ablation analysis reveals four key findings: (1) reliable scaling to 128K tokens; (2) an optimal global-local attention allocation at a fixed budget; (3) task-dependent branch usage patterns; and (4) the learnable combined sparse attention help induce dynamic attention sinks.

Authors:Hala Sheta, Eric Huang, Shuyu Wu, Ilia Alenabi, Jiajun Hong, Ryker Lin, Ruoxi Ning, Daniel Wei, Jialin Yang, Jiawei Zhou, Ziqiao Ma, Freda Shi
Title: From Behavioral Performance to Internal Competence: Interpreting Vision-Language Models with VLM-Lens
Abstract:
We introduce VLM-Lens, a toolkit designed to enable systematic benchmarking, analysis, and interpretation of vision-language models (VLMs) by supporting the extraction of intermediate outputs from any layer during the forward pass of open-source VLMs. VLM-Lens provides a unified, YAML-configurable interface that abstracts away model-specific complexities and supports user-friendly operation across diverse VLMs. It currently supports 16 state-of-the-art base VLMs and their over 30 variants, and is extensible to accommodate new models without changing the core logic. The toolkit integrates easily with various interpretability and analysis methods. We demonstrate its usage with two simple analytical experiments, revealing systematic differences in the hidden representations of VLMs across layers and target concepts. VLM-Lens is released as an open-sourced project to accelerate community efforts in understanding and improving VLMs.

Authors:Sathira Silva, Eman Ali, Chetan Arora, Muhammad Haris Khan
Title: microCLIP: Unsupervised CLIP Adaptation via Coarse-Fine Token Fusion for Fine-Grained Image Classification
Abstract:
Unsupervised adaptation of CLIP-based vision-language models (VLMs) for fine-grained image classification requires sensitivity to microscopic local cues. While CLIP exhibits strong zero-shot transfer, its reliance on coarse global features restricts its performance on fine-grained classification tasks. Prior efforts inject fine-grained knowledge by aligning large language model (LLM) descriptions with the CLIP $\texttt{[CLS]}$ token; however, this approach overlooks spatial precision. We propose $\textbf{microCLIP}$, a self-training framework that jointly refines CLIP's visual and textual representations using fine-grained cues. At its core is Saliency-Oriented Attention Pooling (SOAP) within a lightweight TokenFusion module, which builds a saliency-guided $\texttt{[FG]}$ token from patch embeddings and fuses it with the global $\texttt{[CLS]}$ token for coarse-fine alignment. To stabilize adaptation, we introduce a two-headed LLM-derived classifier: a frozen classifier that, via multi-view alignment, provides a stable text-based prior for pseudo-labeling, and a learnable classifier initialized from LLM descriptions and fine-tuned with TokenFusion. We further develop Dynamic Knowledge Aggregation, which convexly combines fixed LLM/CLIP priors with TokenFusion's evolving logits to iteratively refine pseudo-labels. Together, these components uncover latent fine-grained signals in CLIP, yielding a consistent $2.90\%$ average accuracy gain across 13 fine-grained benchmarks while requiring only light adaptation. Our code is available at https://github.com/sathiiii/microCLIP.

Authors:Tianchong Jiang, Jingtian Ji, Xiangshan Tan, Jiading Fang, Anand Bhattad, Vitor Guizilini, Matthew R. Walter
Title: Do You Know Where Your Camera Is? View-Invariant Policy Learning with Camera Conditioning
Abstract:
We study view-invariant imitation learning by explicitly conditioning policies on camera extrinsics. Using Plucker embeddings of per-pixel rays, we show that conditioning on extrinsics significantly improves generalization across viewpoints for standard behavior cloning policies, including ACT, Diffusion Policy, and SmolVLA. To evaluate policy robustness under realistic viewpoint shifts, we introduce six manipulation tasks in RoboSuite and ManiSkill that pair "fixed" and "randomized" scene variants, decoupling background cues from camera pose. Our analysis reveals that policies without extrinsics often infer camera pose using visual cues from static backgrounds in fixed scenes; this shortcut collapses when workspace geometry or camera placement shifts. Conditioning on extrinsics restores performance and yields robust RGB-only control without depth. We release the tasks, demonstrations, and code at https://ripl.github.io/know_your_camera/ .

Authors:Phuc Minh Nguyen, Chinh D. La, Duy M. H. Nguyen, Nitesh V. Chawla, Binh T. Nguyen, Khoa D. Doan
Title: The Reasoning Boundary Paradox: How Reinforcement Learning Constrains Language Models
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a key method for improving Large Language Models' reasoning capabilities, yet recent evidence suggests it may paradoxically shrink the reasoning boundary rather than expand it. This paper investigates the shrinkage issue of RLVR by analyzing its learning dynamics and reveals two critical phenomena that explain this failure. First, we expose negative interference in RLVR, where learning to solve certain training problems actively reduces the likelihood of correct solutions for others, leading to the decline of Pass@$k$ performance, or the probability of generating a correct solution within $k$ attempts. Second, we uncover the winner-take-all phenomenon: RLVR disproportionately reinforces problems with high likelihood, correct solutions, under the base model, while suppressing other initially low-likelihood ones. Through extensive theoretical and empirical analysis on multiple mathematical reasoning benchmarks, we show that this effect arises from the inherent on-policy sampling in standard RL objectives, causing the model to converge toward narrow solution strategies. Based on these insights, we propose a simple yet effective data curation algorithm that focuses RLVR learning on low-likelihood problems, achieving notable improvement in Pass@$k$ performance. Our code is available at https://github.com/mail-research/SELF-llm-interference.

Authors:Weijia Dou, Xu Zhang, Yi Bin, Jian Liu, Bo Peng, Guoqing Wang, Yang Yang, Heng Tao Shen
Title: GeoPurify: A Data-Efficient Geometric Distillation Framework for Open-Vocabulary 3D Segmentation
Abstract:
Recent attempts to transfer features from 2D Vision-Language Models (VLMs) to 3D semantic segmentation expose a persistent trade-off. Directly projecting 2D features into 3D yields noisy and fragmented predictions, whereas enforcing geometric coherence necessitates costly training pipelines and large-scale annotated 3D data. We argue that this limitation stems from the dominant segmentation-and-matching paradigm, which fails to reconcile 2D semantics with 3D geometric structure. The geometric cues are not eliminated during the 2D-to-3D transfer but remain latent within the noisy and view-aggregated features. To exploit this property, we propose GeoPurify that applies a small Student Affinity Network to purify 2D VLM-generated 3D point features using geometric priors distilled from a 3D self-supervised teacher model. During inference, we devise a Geometry-Guided Pooling module to further denoise the point cloud and ensure the semantic and structural consistency. Benefiting from latent geometric information and the learned affinity network, GeoPurify effectively mitigates the trade-off and achieves superior data efficiency. Extensive experiments on major 3D benchmarks demonstrate that GeoPurify achieves or surpasses state-of-the-art performance while utilizing only about 1.5% of the training data. Our codes and checkpoints are available at [https://github.com/tj12323/GeoPurify](https://github.com/tj12323/GeoPurify).

Authors:Jong Bum Won, Wesley De Neve, Joris Vankerschaver, Utku Ozbulak
Title: SpurBreast: A Curated Dataset for Investigating Spurious Correlations in Real-world Breast MRI Classification
Abstract:
Deep neural networks (DNNs) have demonstrated remarkable success in medical imaging, yet their real-world deployment remains challenging due to spurious correlations, where models can learn non-clinical features instead of meaningful medical patterns. Existing medical imaging datasets are not designed to systematically study this issue, largely due to restrictive licensing and limited supplementary patient data. To address this gap, we introduce SpurBreast, a curated breast MRI dataset that intentionally incorporates spurious correlations to evaluate their impact on model performance. Analyzing over 100 features involving patient, device, and imaging protocol, we identify two dominant spurious signals: magnetic field strength (a global feature influencing the entire image) and image orientation (a local feature affecting spatial alignment). Through controlled dataset splits, we demonstrate that DNNs can exploit these non-clinical signals, achieving high validation accuracy while failing to generalize to unbiased test data. Alongside these two datasets containing spurious correlations, we also provide benchmark datasets without spurious correlations, allowing researchers to systematically investigate clinically relevant and irrelevant features, uncertainty estimation, adversarial robustness, and generalization strategies. Models and datasets are available at https://github.com/utkuozbulak/spurbreast.

Authors:Carlijn Lems, Leslie Tessier, John-Melle Bokhorst, Mart van Rijthoven, Witali Aswolinskiy, Matteo Pozzi, Natalie Klubickova, Suzanne Dintzis, Michela Campora, Maschenka Balkenhol, Peter Bult, Joey Spronck, Thomas Detone, Mattia Barbareschi, Enrico Munari, Giuseppe Bogina, Jelle Wesseling, Esther H. Lips, Francesco Ciompi, Frédérique Meeuwsen, Jeroen van der Laak
Title: A Multicentric Dataset for Training and Benchmarking Breast Cancer Segmentation in H&E Slides
Abstract:
Automated semantic segmentation of whole-slide images (WSIs) stained with hematoxylin and eosin (H&E) is essential for large-scale artificial intelligence-based biomarker analysis in breast cancer. However, existing public datasets for breast cancer segmentation lack the morphological diversity needed to support model generalizability and robust biomarker validation across heterogeneous patient cohorts. We introduce BrEast cancEr hisTopathoLogy sEgmentation (BEETLE), a dataset for multiclass semantic segmentation of H&E-stained breast cancer WSIs. It consists of 587 biopsies and resections from three collaborating clinical centers and two public datasets, digitized using seven scanners, and covers all molecular subtypes and histological grades. Using diverse annotation strategies, we collected annotations across four classes - invasive epithelium, non-invasive epithelium, necrosis, and other - with particular focus on morphologies underrepresented in existing datasets, such as ductal carcinoma in situ and dispersed lobular tumor cells. The dataset's diversity and relevance to the rapidly growing field of automated biomarker quantification in breast cancer ensure its high potential for reuse. Finally, we provide a well-curated, multicentric external evaluation set to enable standardized benchmarking of breast cancer segmentation models.

Authors:Mengtian Li, Yunshu Bai, Yimin Chu, Yijun Shen, Zhongmei Li, Weifeng Ge, Zhifeng Xie, Chaofeng Chen
Title: GaussianMorphing: Mesh-Guided 3D Gaussians for Semantic-Aware Object Morphing
Abstract:
We introduce GaussianMorphing, a novel framework for semantic-aware 3D shape and texture morphing from multi-view images. Previous approaches usually rely on point clouds or require pre-defined homeomorphic mappings for untextured data. Our method overcomes these limitations by leveraging mesh-guided 3D Gaussian Splatting (3DGS) for high-fidelity geometry and appearance modeling. The core of our framework is a unified deformation strategy that anchors 3DGaussians to reconstructed mesh patches, ensuring geometrically consistent transformations while preserving texture fidelity through topology-aware constraints. In parallel, our framework establishes unsupervised semantic correspondence by using the mesh topology as a geometric prior and maintains structural integrity via physically plausible point trajectories. This integrated approach preserves both local detail and global semantic coherence throughout the morphing process with out requiring labeled data. On our proposed TexMorph benchmark, GaussianMorphing substantially outperforms prior 2D/3D methods, reducing color consistency error ($ΔE$) by 22.2% and EI by 26.2%. Project page: https://baiyunshu.github.io/GAUSSIANMORPHING.github.io/

Authors:Yujie Zhou, Pengyang Ling, Jiazi Bu, Yibin Wang, Yuhang Zang, Jiaqi Wang, Li Niu, Guangtao Zhai
Title: $\text{G}^2$RPO: Granular GRPO for Precise Reward in Flow Models
Abstract:
The integration of online reinforcement learning (RL) into diffusion and flow models has recently emerged as a promising approach for aligning generative models with human preferences. Stochastic sampling via Stochastic Differential Equations (SDE) is employed during the denoising process to generate diverse denoising directions for RL exploration. While existing methods effectively explore potential high-value samples, they suffer from sub-optimal preference alignment due to sparse and narrow reward signals. To address these challenges, we propose a novel Granular-GRPO ($\text{G}^2$RPO ) framework that achieves precise and comprehensive reward assessments of sampling directions in reinforcement learning of flow models. Specifically, a Singular Stochastic Sampling strategy is introduced to support step-wise stochastic exploration while enforcing a high correlation between the reward and the injected noise, thereby facilitating a faithful reward for each SDE perturbation. Concurrently, to eliminate the bias inherent in fixed-granularity denoising, we introduce a Multi-Granularity Advantage Integration module that aggregates advantages computed at multiple diffusion scales, producing a more comprehensive and robust evaluation of the sampling directions. Experiments conducted on various reward models, including both in-domain and out-of-domain evaluations, demonstrate that our $\text{G}^2$RPO significantly outperforms existing flow-based GRPO baselines,highlighting its effectiveness and robustness.

Authors:Yongyi Su, Haojie Zhang, Shijie Li, Nanqing Liu, Jingyi Liao, Junyi Pan, Yuan Liu, Xiaofen Xing, Chong Sun, Chen Li, Nancy F. Chen, Shuicheng Yan, Xulei Yang, Xun Xu
Title: Patch-as-Decodable-Token: Towards Unified Multi-Modal Vision Tasks in MLLMs
Abstract:
Multimodal large language models (MLLMs) have advanced rapidly in recent years. However, existing approaches for vision tasks often rely on indirect representations, such as generating coordinates as text for detection, which limits performance and prevents dense prediction tasks like segmentation. To overcome these challenges, we introduce Patch-as-Decodable Token (PaDT), a unified paradigm that enables MLLMs to directly generate both textual and diverse visual outputs. Central to PaDT are Visual Reference Tokens (VRTs), derived from visual patch embeddings of query images and interleaved seamlessly with LLM's output textual tokens. A lightweight decoder then transforms LLM's outputs into detection, segmentation, and grounding predictions. Unlike prior methods, PaDT processes VRTs independently at each forward pass and dynamically expands the embedding table, thus improving localization and differentiation among similar objects. We further tailor a training strategy for PaDT by randomly selecting VRTs for supervised fine-tuning and introducing a robust per-token cross-entropy loss. Our empirical studies across four visual perception and understanding tasks suggest PaDT consistently achieving state-of-the-art performance, even compared with significantly larger MLLM models. The code is available at https://github.com/Gorilla-Lab-SCUT/PaDT.

Authors:Guangyao Zhai, Yue Zhou, Xinyan Deng, Lars Heckler, Nassir Navab, Benjamin Busam
Title: Foundation Visual Encoders Are Secretly Few-Shot Anomaly Detectors
Abstract:
Few-shot anomaly detection streamlines and simplifies industrial safety inspection. However, limited samples make accurate differentiation between normal and abnormal features challenging, and even more so under category-agnostic conditions. Large-scale pre-training of foundation visual encoders has advanced many fields, as the enormous quantity of data helps to learn the general distribution of normal images. We observe that the anomaly amount in an image directly correlates with the difference in the learnt embeddings and utilize this to design a few-shot anomaly detector termed FoundAD. This is done by learning a nonlinear projection operator onto the natural image manifold. The simple operator acts as an effective tool for anomaly detection to characterize and identify out-of-distribution regions in an image. Extensive experiments show that our approach supports multi-class detection and achieves competitive performance while using substantially fewer parameters than prior methods. Backed up by evaluations with multiple foundation encoders, including fresh DINOv3, we believe this idea broadens the perspective on foundation features and advances the field of few-shot anomaly detection.

Authors:Yi Ai, Yuanhao Cai, Yulun Zhang, Xiaokang Yang
Title: Flow-Matching Guided Deep Unfolding for Hyperspectral Image Reconstruction
Abstract:
Hyperspectral imaging (HSI) provides rich spatial-spectral information but remains costly to acquire due to hardware limitations and the difficulty of reconstructing three-dimensional data from compressed measurements. Although compressive sensing systems such as CASSI improve efficiency, accurate reconstruction is still challenged by severe degradation and loss of fine spectral details. We propose the Flow-Matching-guided Unfolding network (FMU), which, to our knowledge, is the first to integrate flow matching into HSI reconstruction by embedding its generative prior within a deep unfolding framework. To further strengthen the learned dynamics, we introduce a mean velocity loss that enforces global consistency of the flow, leading to a more robust and accurate reconstruction. This hybrid design leverages the interpretability of optimization-based methods and the generative capacity of flow matching. Extensive experiments on both simulated and real datasets show that FMU significantly outperforms existing approaches in reconstruction quality. Code and models will be available at https://github.com/YiAi03/FMU.

Authors:Pierre Musacchio, Hyunmin Lee, Jaesik Park
Title: Holistic Order Prediction in Natural Scenes
Abstract:
Even in controlled settings, understanding instance-wise geometries is a challenging task for a wide range of visual models. Although specialized systems exist, modern arts rely on expensive input formats (category labels, binary segmentation masks) and inference costs (a quadratic amount of forward passes). We mitigate these limitations by proposing InstaFormer, a network capable of holistic order prediction. That is, solely given an input RGB image, InstaFormer returns the full occlusion and depth orderings for all the instances in the scene in a single forward pass. At its core, InstaFormer relies on interactions between object queries and latent mask descriptors that semantically represent the same objects while carrying complementary information. We comprehensively benchmark and ablate our approach to highlight its effectiveness. Our code and models are open-source and available at this URL: https://github.com/SNU-VGILab/InstaOrder.

Authors:Jiacong Xu, Yiqun Mei, Ke Zhang, Vishal M. Patel
Title: FreeViS: Training-free Video Stylization with Inconsistent References
Abstract:
Video stylization plays a key role in content creation, but it remains a challenging problem. Naïvely applying image stylization frame-by-frame hurts temporal consistency and reduces style richness. Alternatively, training a dedicated video stylization model typically requires paired video data and is computationally expensive. In this paper, we propose FreeViS, a training-free video stylization framework that generates stylized videos with rich style details and strong temporal coherence. Our method integrates multiple stylized references to a pretrained image-to-video (I2V) model, effectively mitigating the propagation errors observed in prior works, without introducing flickers and stutters. In addition, it leverages high-frequency compensation to constrain the content layout and motion, together with flow-based motion cues to preserve style textures in low-saliency regions. Through extensive evaluations, FreeViS delivers higher stylization fidelity and superior temporal consistency, outperforming recent baselines and achieving strong human preference. Our training-free pipeline offers a practical and economic solution for high-quality, temporally coherent video stylization. The code and videos can be accessed via https://xujiacong.github.io/FreeViS/

Authors:Ke Jia, Ji Zhou, Hanxin Li, Zhigan Zhou, Haojie Chu, Xiaojie Li
Title: An Efficient Deep Template Matching and In-Plane Pose Estimation Method via Template-Aware Dynamic Convolution
Abstract:
In industrial inspection and component alignment tasks, template matching requires efficient estimation of a target's position and geometric state (rotation and scaling) under complex backgrounds to support precise downstream operations. Traditional methods rely on exhaustive enumeration of angles and scales, leading to low efficiency under compound transformations. Meanwhile, most deep learning-based approaches only estimate similarity scores without explicitly modeling geometric pose, making them inadequate for real-world deployment. To overcome these limitations, we propose a lightweight end-to-end framework that reformulates template matching as joint localization and geometric regression, outputting the center coordinates, rotation angle, and independent horizontal and vertical scales. A Template-Aware Dynamic Convolution Module (TDCM) dynamically injects template features at inference to guide generalizable matching. The compact network integrates depthwise separable convolutions and pixel shuffle for efficient matching. To enable geometric-annotation-free training, we introduce a rotation-shear-based augmentation strategy with structure-aware pseudo labels. A lightweight refinement module further improves angle and scale precision via local optimization. Experiments show our 3.07M model achieves high precision and 14ms inference under compound transformations. It also demonstrates strong robustness in small-template and multi-object scenarios, making it highly suitable for deployment in real-time industrial applications. The code is available at:https://github.com/ZhouJ6610/PoseMatch-TDCM.

Authors:Jin Cao, Hongrui Wu, Ziyong Feng, Hujun Bao, Xiaowei Zhou, Sida Peng
Title: UniVerse: Unleashing the Scene Prior of Video Diffusion Models for Robust Radiance Field Reconstruction
Abstract:
This paper tackles the challenge of robust reconstruction, i.e., the task of reconstructing a 3D scene from a set of inconsistent multi-view images. Some recent works have attempted to simultaneously remove image inconsistencies and perform reconstruction by integrating image degradation modeling into neural 3D scene representations. However, these methods rely heavily on dense observations for robustly optimizing model parameters. To address this issue, we propose to decouple robust reconstruction into two subtasks: restoration and reconstruction, which naturally simplifies the optimization process. To this end, we introduce UniVerse, a unified framework for robust reconstruction based on a video diffusion model. Specifically, UniVerse first converts inconsistent images into initial videos, then uses a specially designed video diffusion model to restore them into consistent images, and finally reconstructs the 3D scenes from these restored images. Compared with case-by-case per-view degradation modeling, the diffusion model learns a general scene prior from large-scale data, making it applicable to diverse image inconsistencies. Extensive experiments on both synthetic and real-world datasets demonstrate the strong generalization capability and superior performance of our method in robust reconstruction. Moreover, UniVerse can control the style of the reconstructed 3D scene. Project page: https://jin-cao-tma.github.io/UniVerse.github.io/

Authors:Xiaoyang Liu, Zhengyan Zhou, Zihang Xu, Jiezhang Cao, Zheng Chen, Yulun Zhang
Title: FideDiff: Efficient Diffusion Model for High-Fidelity Image Motion Deblurring
Abstract:
Recent advancements in image motion deblurring, driven by CNNs and transformers, have made significant progress. Large-scale pre-trained diffusion models, which are rich in true-world modeling, have shown great promise for high-quality image restoration tasks such as deblurring, demonstrating stronger generative capabilities than CNN and transformer-based methods. However, challenges such as unbearable inference time and compromised fidelity still limit the full potential of the diffusion models. To address this, we introduce FideDiff, a novel single-step diffusion model designed for high-fidelity deblurring. We reformulate motion deblurring as a diffusion-like process where each timestep represents a progressively blurred image, and we train a consistency model that aligns all timesteps to the same clean image. By reconstructing training data with matched blur trajectories, the model learns temporal consistency, enabling accurate one-step deblurring. We further enhance model performance by integrating Kernel ControlNet for blur kernel estimation and introducing adaptive timestep prediction. Our model achieves superior performance on full-reference metrics, surpassing previous diffusion-based methods and matching the performance of other state-of-the-art models. FideDiff offers a new direction for applying pre-trained diffusion models to high-fidelity image restoration tasks, establishing a robust baseline for further advancing diffusion models in real-world industrial applications. Our dataset and code will be available at https://github.com/xyLiu339/FideDiff.

Authors:Angen Ye, Zeyu Zhang, Boyuan Wang, Xiaofeng Wang, Dapeng Zhang, Zheng Zhu
Title: VLA-R1: Enhancing Reasoning in Vision-Language-Action Models
Abstract:
Vision-Language-Action (VLA) models aim to unify perception, language understanding, and action generation, offering strong cross-task and cross-scene generalization with broad impact on embodied AI. However, current VLA models often lack explicit step-by-step reasoning, instead emitting final actions without considering affordance constraints or geometric relations. Their post-training pipelines also rarely reinforce reasoning quality, relying primarily on supervised fine-tuning with weak reward design. To address these challenges, we present VLA-R1, a reasoning-enhanced VLA that integrates Reinforcement Learning from Verifiable Rewards (RLVR) with Group Relative Policy Optimization (GRPO) to systematically optimize both reasoning and execution. Specifically, we design an RLVR-based post-training strategy with verifiable rewards for region alignment, trajectory consistency, and output formatting, thereby strengthening reasoning robustness and execution accuracy. Moreover, we develop VLA-CoT-13K, a high-quality dataset that provides chain-of-thought supervision explicitly aligned with affordance and trajectory annotations. Furthermore, extensive evaluations on in-domain, out-of-domain, simulation, and real-robot platforms demonstrate that VLA-R1 achieves superior generalization and real-world performance compared to prior VLA methods. We plan to release the model, code, and dataset following the publication of this work. Code: https://github.com/GigaAI-research/VLA-R1. Website: https://gigaai-research.github.io/VLA-R1.

Authors:Changmin Lee, Jihyun Lee, Tae-Kyun Kim
Title: MPMAvatar: Learning 3D Gaussian Avatars with Accurate and Robust Physics-Based Dynamics
Abstract:
While there has been significant progress in the field of 3D avatar creation from visual observations, modeling physically plausible dynamics of humans with loose garments remains a challenging problem. Although a few existing works address this problem by leveraging physical simulation, they suffer from limited accuracy or robustness to novel animation inputs. In this work, we present MPMAvatar, a framework for creating 3D human avatars from multi-view videos that supports highly realistic, robust animation, as well as photorealistic rendering from free viewpoints. For accurate and robust dynamics modeling, our key idea is to use a Material Point Method-based simulator, which we carefully tailor to model garments with complex deformations and contact with the underlying body by incorporating an anisotropic constitutive model and a novel collision handling algorithm. We combine this dynamics modeling scheme with our canonical avatar that can be rendered using 3D Gaussian Splatting with quasi-shadowing, enabling high-fidelity rendering for physically realistic animations. In our experiments, we demonstrate that MPMAvatar significantly outperforms the existing state-of-the-art physics-based avatar in terms of (1) dynamics modeling accuracy, (2) rendering accuracy, and (3) robustness and efficiency. Additionally, we present a novel application in which our avatar generalizes to unseen interactions in a zero-shot manner-which was not achievable with previous learning-based methods due to their limited simulation generalizability. Our project page is at: https://KAISTChangmin.github.io/MPMAvatar/

Authors:Ricardo Gonzalez Penuela, Felipe Arias-Russi, Victor Capriles
Title: Guiding Multimodal Large Language Models with Blind and Low Vision People Visual Questions for Proactive Visual Interpretations
Abstract:
Multimodal large language models (MLLMs) have been integrated into visual interpretation applications to support Blind and Low Vision (BLV) users because of their accuracy and ability to provide rich, human-like interpretations. However, these applications often default to comprehensive, lengthy descriptions regardless of context. This leads to inefficient exchanges, as users must go through irrelevant details rather than receiving the specific information they are likely to seek. To deliver more contextually-relevant information, we developed a system that draws on historical BLV users questions. When given an image, our system identifies similar past visual contexts from the VizWiz-LF dataset and uses the associated questions to guide the MLLM generate descriptions more relevant to BLV users. An evaluation with three human labelers who revised 92 context-aware and context-free descriptions showed that context-aware descriptions anticipated and answered users' questions in 76.1% of cases (70 out of 92) and were preferred in 54.4% of comparisons (50 out of 92). Our paper reviews, and data analysis are publicly available in a Github repository at https://github.com/rgonzalezp/guiding-multimodal-large-language-models-with-blind-and-low-vision-people-visual-questions .

Authors:Renrong Shao, Wei Zhang, Kangyang Luo, Qin Li, and Jun Wang
Title: Consistent Assistant Domains Transformer for Source-free Domain Adaptation
Abstract:
Source-free domain adaptation (SFDA) aims to address the challenge of adapting to a target domain without accessing the source domain directly. However, due to the inaccessibility of source domain data, deterministic invariable features cannot be obtained. Current mainstream methods primarily focus on evaluating invariant features in the target domain that closely resemble those in the source domain, subsequently aligning the target domain with the source domain. However, these methods are susceptible to hard samples and influenced by domain bias. In this paper, we propose a Consistent Assistant Domains Transformer for SFDA, abbreviated as CADTrans, which solves the issue by constructing invariable feature representations of domain consistency. Concretely, we develop an assistant domain module for CADTrans to obtain diversified representations from the intermediate aggregated global attentions, which addresses the limitation of existing methods in adequately representing diversity. Based on assistant and target domains, invariable feature representations are obtained by multiple consistent strategies, which can be used to distinguish easy and hard samples. Finally, to align the hard samples to the corresponding easy samples, we construct a conditional multi-kernel max mean discrepancy (CMK-MMD) strategy to distinguish between samples of the same category and those of different categories. Extensive experiments are conducted on various benchmarks such as Office-31, Office-Home, VISDA-C, and DomainNet-126, proving the significant performance improvements achieved by our proposed approaches. Code is available at https://github.com/RoryShao/CADTrans.git.

Authors:Hanyu Wang, Jiaming Han, Ziyan Yang, Qi Zhao, Shanchuan Lin, Xiangyu Yue, Abhinav Shrivastava, Zhenheng Yang, Hao Chen
Title: Growing Visual Generative Capacity for Pre-Trained MLLMs
Abstract:
Multimodal large language models (MLLMs) extend the success of language models to visual understanding, and recent efforts have sought to build unified MLLMs that support both understanding and generation. However, constructing such models remains challenging: hybrid approaches combine continuous embeddings with diffusion or flow-based objectives, producing high-quality images but breaking the autoregressive paradigm, while pure autoregressive approaches unify text and image prediction over discrete visual tokens but often face trade-offs between semantic alignment and pixel-level fidelity. In this work, we present Bridge, a pure autoregressive unified MLLM that augments pre-trained visual understanding models with generative ability through a Mixture-of-Transformers architecture, enabling both image understanding and generation within a single next-token prediction framework. To further improve visual generation fidelity, we propose a semantic-to-pixel discrete representation that integrates compact semantic tokens with fine-grained pixel tokens, achieving strong language alignment and precise description of visual details with only a 7.9% increase in sequence length. Extensive experiments across diverse multimodal benchmarks demonstrate that Bridge achieves competitive or superior results in both understanding and generation benchmarks, while requiring less training data and reduced training time compared to prior unified MLLMs.

Authors:Meilong Xu, Xiaoling Hu, Shahira Abousamra, Chen Li, Chao Chen
Title: MATCH: Multi-faceted Adaptive Topo-Consistency for Semi-Supervised Histopathology Segmentation
Abstract:
In semi-supervised segmentation, capturing meaningful semantic structures from unlabeled data is essential. This is particularly challenging in histopathology image analysis, where objects are densely distributed. To address this issue, we propose a semi-supervised segmentation framework designed to robustly identify and preserve relevant topological features. Our method leverages multiple perturbed predictions obtained through stochastic dropouts and temporal training snapshots, enforcing topological consistency across these varied outputs. This consistency mechanism helps distinguish biologically meaningful structures from transient and noisy artifacts. A key challenge in this process is to accurately match the corresponding topological features across the predictions in the absence of ground truth. To overcome this, we introduce a novel matching strategy that integrates spatial overlap with global structural alignment, minimizing discrepancies among predictions. Extensive experiments demonstrate that our approach effectively reduces topological errors, resulting in more robust and accurate segmentations essential for reliable downstream analysis. Code is available at \href{https://github.com/Melon-Xu/MATCH}{https://github.com/Melon-Xu/MATCH}.

Authors:Yuxuan Ou, Ning Bi, Jiazhen Pan, Jiancheng Yang, Boliang Yu, Usama Zidan, Regent Lee, Vicente Grau
Title: AortaDiff: A Unified Multitask Diffusion Framework For Contrast-Free AAA Imaging
Abstract:
While contrast-enhanced CT (CECT) is standard for assessing abdominal aortic aneurysms (AAA), the required iodinated contrast agents pose significant risks, including nephrotoxicity, patient allergies, and environmental harm. To reduce contrast agent use, recent deep learning methods have focused on generating synthetic CECT from non-contrast CT (NCCT) scans. However, most adopt a multi-stage pipeline that first generates images and then performs segmentation, which leads to error accumulation and fails to leverage shared semantic and anatomical structures. To address this, we propose a unified deep learning framework that generates synthetic CECT images from NCCT scans while simultaneously segmenting the aortic lumen and thrombus. Our approach integrates conditional diffusion models (CDM) with multi-task learning, enabling end-to-end joint optimization of image synthesis and anatomical segmentation. Unlike previous multitask diffusion models, our approach requires no initial predictions (e.g., a coarse segmentation mask), shares both encoder and decoder parameters across tasks, and employs a semi-supervised training strategy to learn from scans with missing segmentation labels, a common constraint in real-world clinical data. We evaluated our method on a cohort of 264 patients, where it consistently outperformed state-of-the-art single-task and multi-stage models. For image synthesis, our model achieved a PSNR of 25.61 dB, compared to 23.80 dB from a single-task CDM. For anatomical segmentation, it improved the lumen Dice score to 0.89 from 0.87 and the challenging thrombus Dice score to 0.53 from 0.48 (nnU-Net). These segmentation enhancements led to more accurate clinical measurements, reducing the lumen diameter MAE to 4.19 mm from 5.78 mm and the thrombus area error to 33.85% from 41.45% when compared to nnU-Net. Code is available at https://github.com/yuxuanou623/AortaDiff.git.

Authors:Nilay Naharas, Dang Nguyen, Nesihan Bulut, Mohammadhossein Bateni, Vahab Mirrokni, Baharan Mirzasoleiman
Title: Data Selection for Fine-tuning Vision Language Models via Cross Modal Alignment Trajectories
Abstract:
Data-efficient learning aims to eliminate redundancy in large training datasets by training models on smaller subsets of the most informative examples. While data selection has been extensively explored for vision models and large language models (LLMs), it remains underexplored for Large Vision-Language Models (LVLMs). Notably, none of existing methods can outperform random selection at different subset sizes. In this work, we propose the first principled method for data-efficient instruction tuning of LVLMs. We prove that examples with similar cross-modal attention matrices during instruction tuning have similar gradients. Thus, they influence model parameters in a similar manner and convey the same information to the model during training. Building on this insight, we propose XMAS, which clusters examples based on the trajectories of the top singular values of their attention matrices obtained from fine-tuning a small proxy LVLM. By sampling a balanced subset from these clusters, XMAS effectively removes redundancy in large-scale LVLM training data. Extensive experiments show that XMAS can discard 50% of the LLaVA-665k dataset and 85% of the Vision-Flan dataset while fully preserving performance of LLaVA-1.5-7B on 10 downstream benchmarks and speeding up its training by 1.2x. This is 30% more data reduction compared to the best baseline for LLaVA-665k. The project's website can be found at https://bigml-cs-ucla.github.io/XMAS-project-page/.

Authors:Shijia Feng, Michael Wray, Walterio Mayol-Cuevas
Title: EvoStruggle: A Dataset Capturing the Evolution of Struggle across Activities and Skill Levels
Abstract:
The ability to determine when a person struggles during skill acquisition is crucial for both optimizing human learning and enabling the development of effective assistive systems. As skills develop, the type and frequency of struggles tend to change, and understanding this evolution is key to determining the user's current stage of learning. However, existing manipulation datasets have not focused on how struggle evolves over time. In this work, we collect a dataset for struggle determination, featuring 61.68 hours of video recordings, 2,793 videos, and 5,385 annotated temporal struggle segments collected from 76 participants. The dataset includes 18 tasks grouped into four diverse activities -- tying knots, origami, tangram puzzles, and shuffling cards, representing different task variations. In addition, participants repeated the same task five times to capture their evolution of skill. We define the struggle determination problem as a temporal action localization task, focusing on identifying and precisely localizing struggle segments with start and end times. Experimental results show that Temporal Action Localization models can successfully learn to detect struggle cues, even when evaluated on unseen tasks or activities. The models attain an overall average mAP of 34.56% when generalizing across tasks and 19.24% across activities, indicating that struggle is a transferable concept across various skill-based tasks while still posing challenges for further improvement in struggle detection. Our dataset is available at https://github.com/FELIXFENG2019/EvoStruggle.

Authors:Berker Demirel, Marco Fumero, Theofanis Karaletsos, Francesco Locatello
Title: MorphGen: Controllable and Morphologically Plausible Generative Cell-Imaging
Abstract:
Simulating in silico cellular responses to interventions is a promising direction to accelerate high-content image-based assays, critical for advancing drug discovery and gene editing. To support this, we introduce MorphGen, a state-of-the-art diffusion-based generative model for fluorescent microscopy that enables controllable generation across multiple cell types and perturbations. To capture biologically meaningful patterns consistent with known cellular morphologies, MorphGen is trained with an alignment loss to match its representations to the phenotypic embeddings of OpenPhenom, a state-of-the-art biological foundation model. Unlike prior approaches that compress multichannel stains into RGB images -- thus sacrificing organelle-specific detail -- MorphGen generates the complete set of fluorescent channels jointly, preserving per-organelle structures and enabling a fine-grained morphological analysis that is essential for biological interpretation. We demonstrate biological consistency with real images via CellProfiler features, and MorphGen attains an FID score over $35\%$ lower than the prior state-of-the-art MorphoDiff, which only generates RGB images for a single cell type. Code is available at https://github.com/czi-ai/MorphGen.

Authors:Chetwin Low, Weimin Wang, Calder Katyal
Title: Ovi: Twin Backbone Cross-Modal Fusion for Audio-Video Generation
Abstract:
Audio-video generation has often relied on complex multi-stage architectures or sequential synthesis of sound and visuals. We introduce Ovi, a unified paradigm for audio-video generation that models the two modalities as a single generative process. By using blockwise cross-modal fusion of twin-DiT modules, Ovi achieves natural synchronization and removes the need for separate pipelines or post hoc alignment. To facilitate fine-grained multimodal fusion modeling, we initialize an audio tower with an architecture identical to that of a strong pretrained video model. Trained from scratch on hundreds of thousands of hours of raw audio, the audio tower learns to generate realistic sound effects, as well as speech that conveys rich speaker identity and emotion. Fusion is obtained by jointly training the identical video and audio towers via blockwise exchange of timing (via scaled-RoPE embeddings) and semantics (through bidirectional cross-attention) on a vast video corpus. Our model enables cinematic storytelling with natural speech and accurate, context-matched sound effects, producing movie-grade video clips. All the demos, code and model weights are published at https://aaxwaz.github.io/Ovi

Authors:Fei Shen, Weihao Xu, Rui Yan, Dong Zhang, Xiangbo Shu, Jinhui Tang
Title: IMAGEdit: Let Any Subject Transform
Abstract:
In this paper, we present IMAGEdit, a training-free framework for any number of video subject editing that manipulates the appearances of multiple designated subjects while preserving non-target regions, without finetuning or retraining. We achieve this by providing robust multimodal conditioning and precise mask sequences through a prompt-guided multimodal alignment module and a prior-based mask retargeting module. We first leverage large models' understanding and generation capabilities to produce multimodal information and mask motion sequences for multiple subjects across various types. Then, the obtained prior mask sequences are fed into a pretrained mask-driven video generation model to synthesize the edited video. With strong generalization capability, IMAGEdit remedies insufficient prompt-side multimodal conditioning and overcomes mask boundary entanglement in videos with any number of subjects, thereby significantly expanding the applicability of video editing. More importantly, IMAGEdit is compatible with any mask-driven video generation model, significantly improving overall performance. Extensive experiments on our newly constructed multi-subject benchmark MSVBench verify that IMAGEdit consistently surpasses state-of-the-art methods. Code, models, and datasets are publicly available at https://github.com/XWH-A/IMAGEdit.

Authors:Jiahao Wang, Luoxin Ye, TaiMing Lu, Junfei Xiao, Jiahan Zhang, Yuxiang Guo, Xijun Liu, Rama Chellappa, Cheng Peng, Alan Yuille, Jieneng Chen
Title: EvoWorld: Evolving Panoramic World Generation with Explicit 3D Memory
Abstract:
Humans possess a remarkable ability to mentally explore and replay 3D environments they have previously experienced. Inspired by this mental process, we present EvoWorld: a world model that bridges panoramic video generation with evolving 3D memory to enable spatially consistent long-horizon exploration. Given a single panoramic image as input, EvoWorld first generates future video frames by leveraging a video generator with fine-grained view control, then evolves the scene's 3D reconstruction using a feedforward plug-and-play transformer, and finally synthesizes futures by conditioning on geometric reprojections from this evolving explicit 3D memory. Unlike prior state-of-the-arts that synthesize videos only, our key insight lies in exploiting this evolving 3D reconstruction as explicit spatial guidance for the video generation process, projecting the reconstructed geometry onto target viewpoints to provide rich spatial cues that significantly enhance both visual realism and geometric consistency. To evaluate long-range exploration capabilities, we introduce the first comprehensive benchmark spanning synthetic outdoor environments, Habitat indoor scenes, and challenging real-world scenarios, with particular emphasis on loop-closure detection and spatial coherence over extended trajectories. Extensive experiments demonstrate that our evolving 3D memory substantially improves visual fidelity and maintains spatial scene coherence compared to existing approaches, representing a significant advance toward long-horizon spatially consistent world modeling.

Authors:Jiye Lee, Chenghui Li, Linh Tran, Shih-En Wei, Jason Saragih, Alexander Richard, Hanbyul Joo, Shaojie Bai
Title: Audio Driven Real-Time Facial Animation for Social Telepresence
Abstract:
We present an audio-driven real-time system for animating photorealistic 3D facial avatars with minimal latency, designed for social interactions in virtual reality for anyone. Central to our approach is an encoder model that transforms audio signals into latent facial expression sequences in real time, which are then decoded as photorealistic 3D facial avatars. Leveraging the generative capabilities of diffusion models, we capture the rich spectrum of facial expressions necessary for natural communication while achieving real-time performance (<15ms GPU time). Our novel architecture minimizes latency through two key innovations: an online transformer that eliminates dependency on future inputs and a distillation pipeline that accelerates iterative denoising into a single step. We further address critical design challenges in live scenarios for processing continuous audio signals frame-by-frame while maintaining consistent animation quality. The versatility of our framework extends to multimodal applications, including semantic modalities such as emotion conditions and multimodal sensors with head-mounted eye cameras on VR headsets. Experimental results demonstrate significant improvements in facial animation accuracy over existing offline state-of-the-art baselines, achieving 100 to 1000 times faster inference speed. We validate our approach through live VR demonstrations and across various scenarios such as multilingual speeches.

Authors:Yanzhe Chen, Kevin Qinghong Lin, Mike Zheng Shou
Title: Code2Video: A Code-centric Paradigm for Educational Video Generation
Abstract:
While recent generative models advance pixel-space video synthesis, they remain limited in producing professional educational videos, which demand disciplinary knowledge, precise visual structures, and coherent transitions, limiting their applicability in educational scenarios. Intuitively, such requirements are better addressed through the manipulation of a renderable environment, which can be explicitly controlled via logical commands (e.g., code). In this work, we propose Code2Video, a code-centric agent framework for generating educational videos via executable Python code. The framework comprises three collaborative agents: (i) Planner, which structures lecture content into temporally coherent flows and prepares corresponding visual assets; (ii) Coder, which converts structured instructions into executable Python codes while incorporating scope-guided auto-fix to enhance efficiency; and (iii) Critic, which leverages vision-language models (VLM) with visual anchor prompts to refine spatial layout and ensure clarity. To support systematic evaluation, we build MMMC, a benchmark of professionally produced, discipline-specific educational videos. We evaluate MMMC across diverse dimensions, including VLM-as-a-Judge aesthetic scores, code efficiency, and particularly, TeachQuiz, a novel end-to-end metric that quantifies how well a VLM, after unlearning, can recover knowledge by watching the generated videos. Our results demonstrate the potential of Code2Video as a scalable, interpretable, and controllable approach, achieving 40% improvement over direct code generation and producing videos comparable to human-crafted tutorials. The code and datasets are available at https://github.com/showlab/Code2Video.

Authors:Zhanpeng Luo, Haoxi Ran, Li Lu
Title: Instant4D: 4D Gaussian Splatting in Minutes
Abstract:
Dynamic view synthesis has seen significant advances, yet reconstructing scenes from uncalibrated, casual video remains challenging due to slow optimization and complex parameter estimation. In this work, we present Instant4D, a monocular reconstruction system that leverages native 4D representation to efficiently process casual video sequences within minutes, without calibrated cameras or depth sensors. Our method begins with geometric recovery through deep visual SLAM, followed by grid pruning to optimize scene representation. Our design significantly reduces redundancy while maintaining geometric integrity, cutting model size to under 10% of its original footprint. To handle temporal dynamics efficiently, we introduce a streamlined 4D Gaussian representation, achieving a 30x speed-up and reducing training time to within two minutes, while maintaining competitive performance across several benchmarks. Our method reconstruct a single video within 10 minutes on the Dycheck dataset or for a typical 200-frame video. We further apply our model to in-the-wild videos, showcasing its generalizability. Our project website is published at https://instant4d.github.io/.

Authors:Siheng Wan, Zhengtao Yao, Zhengdao Li, Junhao Dong, Yanshu Li, Yikai Li, Linshan Li, Haoyan Xu, Yijiang Li, Zhikang Dong, Huacan Wang, Jifeng Shen
Title: JEPA-T: Joint-Embedding Predictive Architecture with Text Fusion for Image Generation
Abstract:
Modern Text-to-Image (T2I) generation increasingly relies on token-centric architectures that are trained with self-supervision, yet effectively fusing text with visual tokens remains a challenge. We propose \textbf{JEPA-T}, a unified multimodal framework that encodes images and captions into discrete visual and textual tokens, processed by a joint-embedding predictive Transformer. To enhance fusion, we incorporate cross-attention after the feature predictor for conditional denoising while maintaining a task-agnostic backbone. Additionally, raw texts embeddings are injected prior to the flow matching loss to improve alignment during training. During inference, the same network performs both class-conditional and free-text image generation by iteratively denoising visual tokens conditioned on text. Evaluations on ImageNet-1K demonstrate that JEPA-T achieves strong data efficiency, open-vocabulary generalization, and consistently outperforms non-fusion and late-fusion baselines. Our approach shows that late architectural fusion combined with objective-level alignment offers an effective balance between conditioning strength and backbone generality in token-based T2I.The code is now available: https://github.com/justin-herry/JEPA-T.git

Authors:Ziqing Zhang, Kai Liu, Zheng Chen, Xi Li, Yucong Chen, Bingnan Duan, Linghe Kong, Yulun Zhang
Title: InfVSR: Breaking Length Limits of Generic Video Super-Resolution
Abstract:
Real-world videos often extend over thousands of frames. Existing video super-resolution (VSR) approaches, however, face two persistent challenges when processing long sequences: (1) inefficiency due to the heavy cost of multi-step denoising for full-length sequences; and (2) poor scalability hindered by temporal decomposition that causes artifacts and discontinuities. To break these limits, we propose InfVSR, which novelly reformulates VSR as an autoregressive-one-step-diffusion paradigm. This enables streaming inference while fully leveraging pre-trained video diffusion priors. First, we adapt the pre-trained DiT into a causal structure, maintaining both local and global coherence via rolling KV-cache and joint visual guidance. Second, we distill the diffusion process into a single step efficiently, with patch-wise pixel supervision and cross-chunk distribution matching. Together, these designs enable efficient and scalable VSR for unbounded-length videos. To fill the gap in long-form video evaluation, we build a new benchmark tailored for extended sequences and further introduce semantic-level metrics to comprehensively assess temporal consistency. Our method pushes the frontier of long-form VSR, achieves state-of-the-art quality with enhanced semantic consistency, and delivers up to 58x speed-up over existing methods such as MGLD-VSR. Code will be available at https://github.com/Kai-Liu001/InfVSR.

Authors:Ali Shadman Yazdi, Annalisa Cappella, Benedetta Baldini, Riccardo Solazzo, Gianluca Tartaglia, Chiarella Sforza, Giuseppe Baselli
Title: PAL-Net: A Point-Wise CNN with Patch-Attention for 3D Facial Landmark Localization
Abstract:
Manual annotation of anatomical landmarks on 3D facial scans is a time-consuming and expertise-dependent task, yet it remains critical for clinical assessments, morphometric analysis, and craniofacial research. While several deep learning methods have been proposed for facial landmark localization, most focus on pseudo-landmarks or require complex input representations, limiting their clinical applicability. This study presents a fully automated deep learning pipeline (PAL-Net) for localizing 50 anatomical landmarks on stereo-photogrammetry facial models. The method combines coarse alignment, region-of-interest filtering, and an initial approximation of landmarks with a patch-based pointwise CNN enhanced by attention mechanisms. Trained and evaluated on 214 annotated scans from healthy adults, PAL-Net achieved a mean localization error of 3.686 mm and preserves relevant anatomical distances with a 2.822 mm average error, comparable to intra-observer variability. To assess generalization, the model was further evaluated on 700 subjects from the FaceScape dataset, achieving a point-wise error of 0.41\,mm and a distance-wise error of 0.38\,mm. Compared to existing methods, PAL-Net offers a favorable trade-off between accuracy and computational cost. While performance degrades in regions with poor mesh quality (e.g., ears, hairline), the method demonstrates consistent accuracy across most anatomical regions. PAL-Net generalizes effectively across datasets and facial regions, outperforming existing methods in both point-wise and structural evaluations. It provides a lightweight, scalable solution for high-throughput 3D anthropometric analysis, with potential to support clinical workflows and reduce reliance on manual annotation. Source code can be found at https://github.com/Ali5hadman/PAL-Net-A-Point-Wise-CNN-with-Patch-Attention

Authors:Hyun-kyu Ko, Youbin Kim, Jihyeon Park, Dongheok Park, Gyeongjin Kang, Wonjun Cho, Hyung Yi, Eunbyung Park
Title: Gather-Scatter Mamba: Accelerating Propagation with Efficient State Space Model
Abstract:
State Space Models (SSMs)-most notably RNNs-have historically played a central role in sequential modeling. Although attention mechanisms such as Transformers have since dominated due to their ability to model global context, their quadratic complexity and limited scalability make them less suited for long sequences. Video super-resolution (VSR) methods have traditionally relied on recurrent architectures to propagate features across frames. However, such approaches suffer from well-known issues including vanishing gradients, lack of parallelism, and slow inference speed. Recent advances in selective SSMs like Mamba offer a compelling alternative: by enabling input-dependent state transitions with linear-time complexity, Mamba mitigates these issues while maintaining strong long-range modeling capabilities. Despite this potential, Mamba alone struggles to capture fine-grained spatial dependencies due to its causal nature and lack of explicit context aggregation. To address this, we propose a hybrid architecture that combines shifted window self-attention for spatial context aggregation with Mamba-based selective scanning for efficient temporal propagation. Furthermore, we introduce Gather-Scatter Mamba (GSM), an alignment-aware mechanism that warps features toward a center anchor frame within the temporal window before Mamba propagation and scatters them back afterward, effectively reducing occlusion artifacts and ensuring effective redistribution of aggregated information across all frames. The official implementation is provided at: https://github.com/Ko-Lani/GSMamba.

Authors:Xiangtao Kong, Rongyuan Wu, Shuaizheng Liu, Lingchen Sun, Lei Zhang
Title: NSARM: Next-Scale Autoregressive Modeling for Robust Real-World Image Super-Resolution
Abstract:
Most recent real-world image super-resolution (Real-ISR) methods employ pre-trained text-to-image (T2I) diffusion models to synthesize the high-quality image either from random Gaussian noise, which yields realistic results but is slow due to iterative denoising, or directly from the input low-quality image, which is efficient but at the price of lower output quality. These approaches train ControlNet or LoRA modules while keeping the pre-trained model fixed, which often introduces over-enhanced artifacts and hallucinations, suffering from the robustness to inputs of varying degradations. Recent visual autoregressive (AR) models, such as pre-trained Infinity, can provide strong T2I generation capabilities while offering superior efficiency by using the bitwise next-scale prediction strategy. Building upon next-scale prediction, we introduce a robust Real-ISR framework, namely Next-Scale Autoregressive Modeling (NSARM). Specifically, we train NSARM in two stages: a transformation network is first trained to map the input low-quality image to preliminary scales, followed by an end-to-end full-model fine-tuning. Such a comprehensive fine-tuning enhances the robustness of NSARM in Real-ISR tasks without compromising its generative capability. Extensive quantitative and qualitative evaluations demonstrate that as a pure AR model, NSARM achieves superior visual results over existing Real-ISR methods while maintaining a fast inference speed. Most importantly, it demonstrates much higher robustness to the quality of input images, showing stronger generalization performance. Project page: https://github.com/Xiangtaokong/NSARM

Authors:Joana C. Costa, Tiago Roxo, Hugo Proença, Pedro R. M. Inácio
Title: ZQBA: Zero Query Black-box Adversarial Attack
Abstract:
Current black-box adversarial attacks either require multiple queries or diffusion models to produce adversarial samples that can impair the target model performance. However, these methods require training a surrogate loss or diffusion models to produce adversarial samples, which limits their applicability in real-world settings. Thus, we propose a Zero Query Black-box Adversarial (ZQBA) attack that exploits the representations of Deep Neural Networks (DNNs) to fool other networks. Instead of requiring thousands of queries to produce deceiving adversarial samples, we use the feature maps obtained from a DNN and add them to clean images to impair the classification of a target model. The results suggest that ZQBA can transfer the adversarial samples to different models and across various datasets, namely CIFAR and Tiny ImageNet. The experiments also show that ZQBA is more effective than state-of-the-art black-box attacks with a single query, while maintaining the imperceptibility of perturbations, evaluated both quantitatively (SSIM) and qualitatively, emphasizing the vulnerabilities of employing DNNs in real-world contexts. All the source code is available at https://github.com/Joana-Cabral/ZQBA.

Authors:Myungkyu Koo, Daewon Choi, Taeyoung Kim, Kyungmin Lee, Changyeon Kim, Younggyo Seo, Jinwoo Shin
Title: HAMLET: Switch your Vision-Language-Action Model into a History-Aware Policy
Abstract:
Inherently, robotic manipulation tasks are history-dependent: leveraging past context could be beneficial. However, most existing Vision-Language-Action models (VLAs) have been designed without considering this aspect, i.e., they rely solely on the current observation, ignoring preceding context. In this paper, we propose HAMLET, a scalable framework to adapt VLAs to attend to the historical context during action prediction. Specifically, we introduce moment tokens that compactly encode perceptual information at each timestep. Their representations are initialized with time-contrastive learning, allowing them to better capture temporally distinctive aspects. Next, we employ a lightweight memory module that integrates the moment tokens across past timesteps into memory features, which are then leveraged for action prediction. Through empirical evaluation, we show that HAMLET successfully transforms a state-of-the-art VLA into a history-aware policy, especially demonstrating significant improvements on long-horizon tasks that require historical context. In particular, on top of GR00T N1.5, HAMLET achieves an average success rate of 76.4% on history-dependent real-world tasks, surpassing the baseline performance by 47.2%. Furthermore, HAMLET pushes prior art performance from 64.1% to 66.4% on RoboCasa Kitchen (100-demo setup) and from 95.6% to 97.7% on LIBERO, highlighting its effectiveness even under generic robot-manipulation benchmarks.

Authors:Steffen Meinert, Philipp Schlinge, Nils Strodthoff, Martin Atzmueller
Title: ProtoMask: Segmentation-Guided Prototype Learning
Abstract:
XAI gained considerable importance in recent years. Methods based on prototypical case-based reasoning have shown a promising improvement in explainability. However, these methods typically rely on additional post-hoc saliency techniques to explain the semantics of learned prototypes. Multiple critiques have been raised about the reliability and quality of such techniques. For this reason, we study the use of prominent image segmentation foundation models to improve the truthfulness of the mapping between embedding and input space. We aim to restrict the computation area of the saliency map to a predefined semantic image patch to reduce the uncertainty of such visualizations. To perceive the information of an entire image, we use the bounding box from each generated segmentation mask to crop the image. Each mask results in an individual input in our novel model architecture named ProtoMask. We conduct experiments on three popular fine-grained classification datasets with a wide set of metrics, providing a detailed overview on explainability characteristics. The comparison with other popular models demonstrates competitive performance and unique explainability features of our model. https://github.com/uos-sis/quanproto

Authors:Francesco Galati, Daniele Falcetta, Rosa Cortese, Ferran Prados, Ninon Burgos, Maria A. Zuluaga
Title: Multi-Domain Brain Vessel Segmentation Through Feature Disentanglement
Abstract:
The intricate morphology of brain vessels poses significant challenges for automatic segmentation models, which usually focus on a single imaging modality. However, accurately treating brain-related conditions requires a comprehensive understanding of the cerebrovascular tree, regardless of the specific acquisition procedure. Our framework effectively segments brain arteries and veins in various datasets through image-to-image translation while avoiding domain-specific model design and data harmonization between the source and the target domain. This is accomplished by employing disentanglement techniques to independently manipulate different image properties, allowing them to move from one domain to another in a label-preserving manner. Specifically, we focus on manipulating vessel appearances during adaptation while preserving spatial information, such as shapes and locations, which are crucial for correct segmentation. Our evaluation effectively bridges large and varied domain gaps across medical centers, image modalities, and vessel types. Additionally, we conduct ablation studies on the optimal number of required annotations and other architectural choices. The results highlight our framework's robustness and versatility, demonstrating the potential of domain adaptation methodologies to perform cerebrovascular image segmentation in multiple scenarios accurately. Our code is available at https://github.com/i-vesseg/MultiVesSeg.

Authors:Beomsu Kim, Byunghee Cha, Jong Chul Ye
Title: Align Your Tangent: Training Better Consistency Models via Manifold-Aligned Tangents
Abstract:
With diffusion and flow matching models achieving state-of-the-art generating performance, the interest of the community now turned to reducing the inference time without sacrificing sample quality. Consistency Models (CMs), which are trained to be consistent on diffusion or probability flow ordinary differential equation (PF-ODE) trajectories, enable one or two-step flow or diffusion sampling. However, CMs typically require prolonged training with large batch sizes to obtain competitive sample quality. In this paper, we examine the training dynamics of CMs near convergence and discover that CM tangents -- CM output update directions -- are quite oscillatory, in the sense that they move parallel to the data manifold, not towards the manifold. To mitigate oscillatory tangents, we propose a new loss function, called the manifold feature distance (MFD), which provides manifold-aligned tangents that point toward the data manifold. Consequently, our method -- dubbed Align Your Tangent (AYT) -- can accelerate CM training by orders of magnitude and even out-perform the learned perceptual image patch similarity metric (LPIPS). Furthermore, we find that our loss enables training with extremely small batch sizes without compromising sample quality. Code: https://github.com/1202kbs/AYT

Authors:Guozhen Zhang, Haiguang Wang, Chunyu Wang, Yuan Zhou, Qinglin Lu, Limin Wang
Title: Arbitrary Generative Video Interpolation
Abstract:
Video frame interpolation (VFI), which generates intermediate frames from given start and end frames, has become a fundamental function in video generation applications. However, existing generative VFI methods are constrained to synthesize a fixed number of intermediate frames, lacking the flexibility to adjust generated frame rates or total sequence duration. In this work, we present ArbInterp, a novel generative VFI framework that enables efficient interpolation at any timestamp and of any length. Specifically, to support interpolation at any timestamp, we propose the Timestamp-aware Rotary Position Embedding (TaRoPE), which modulates positions in temporal RoPE to align generated frames with target normalized timestamps. This design enables fine-grained control over frame timestamps, addressing the inflexibility of fixed-position paradigms in prior work. For any-length interpolation, we decompose long-sequence generation into segment-wise frame synthesis. We further design a novel appearance-motion decoupled conditioning strategy: it leverages prior segment endpoints to enforce appearance consistency and temporal semantics to maintain motion coherence, ensuring seamless spatiotemporal transitions across segments. Experimentally, we build comprehensive benchmarks for multi-scale frame interpolation (2x to 32x) to assess generalizability across arbitrary interpolation factors. Results show that ArbInterp outperforms prior methods across all scenarios with higher fidelity and more seamless spatiotemporal continuity. Project website: https://mcg-nju.github.io/ArbInterp-Web/.

Authors:Kaiqi Zhang, Mingguan Yang, Dali Chang, Chun Chen, Yuxiang Zhang, Kexun He, Jing Zhao
Title: Relative-Absolute Fusion: Rethinking Feature Extraction in Image-Based Iterative Method Selection for Solving Sparse Linear Systems
Abstract:
Iterative method selection is crucial for solving sparse linear systems because these methods inherently lack robustness. Though image-based selection approaches have shown promise, their feature extraction techniques might encode distinct matrices into identical image representations, leading to the same selection and suboptimal method. In this paper, we introduce RAF (Relative-Absolute Fusion), an efficient feature extraction technique to enhance image-based selection approaches. By simultaneously extracting and fusing image representations as relative features with corresponding numerical values as absolute features, RAF achieves comprehensive matrix representations that prevent feature ambiguity across distinct matrices, thus improving selection accuracy and unlocking the potential of image-based selection approaches. We conducted comprehensive evaluations of RAF on SuiteSparse and our developed BMCMat (Balanced Multi-Classification Matrix dataset), demonstrating solution time reductions of 0.08s-0.29s for sparse linear systems, which is 5.86%-11.50% faster than conventional image-based selection approaches and achieves state-of-the-art (SOTA) performance. BMCMat is available at https://github.com/zkqq/BMCMat.

Authors:Yuexin Wang, Xiaolei Wang, Yizheng Gong, Jimin Xiao
Title: Normal-Abnormal Guided Generalist Anomaly Detection
Abstract:
Generalist Anomaly Detection (GAD) aims to train a unified model on an original domain that can detect anomalies in new target domains. Previous GAD methods primarily use only normal samples as references, overlooking the valuable information contained in anomalous samples that are often available in real-world scenarios. To address this limitation, we propose a more practical approach: normal-abnormal-guided generalist anomaly detection, which leverages both normal and anomalous samples as references to guide anomaly detection across diverse domains. We introduce the Normal-Abnormal Generalist Learning (NAGL) framework, consisting of two key components: Residual Mining (RM) and Anomaly Feature Learning (AFL). RM extracts abnormal patterns from normal-abnormal reference residuals to establish transferable anomaly representations, while AFL adaptively learns anomaly features in query images through residual mapping to identify instance-aware anomalies. Our approach effectively utilizes both normal and anomalous references for more accurate and efficient cross-domain anomaly detection. Extensive experiments across multiple benchmarks demonstrate that our method significantly outperforms existing GAD approaches. This work represents the first to adopt a mixture of normal and abnormal samples as references in generalist anomaly detection. The code and datasets are available at https://github.com/JasonKyng/NAGL.

Authors:Yuheng Ji, Huajie Tan, Cheng Chi, Yijie Xu, Yuting Zhao, Enshen Zhou, Huaihai Lyu, Pengwei Wang, Zhongyuan Wang, Shanghang Zhang, Xiaolong Zheng
Title: MathSticks: A Benchmark for Visual Symbolic Compositional Reasoning with Matchstick Puzzles
Abstract:
We introduce \textsc{MathSticks}, a benchmark for Visual Symbolic Compositional Reasoning (VSCR), which unifies visual perception, symbolic manipulation, and arithmetic consistency. Each task presents an incorrect matchstick equation that must be corrected by moving one or two sticks under strict conservation rules. The benchmark includes both text-guided and purely visual settings, systematically covering digit scale, move complexity, solution multiplicity, and operator variation, with 1.4M generated instances and a curated test set. Evaluations of 14 vision--language models reveal substantial limitations: closed-source models succeed only on simple cases, open-source models fail in the visual regime, while humans exceed 90\% accuracy. These findings establish \textsc{MathSticks} as a rigorous testbed for advancing compositional reasoning across vision and symbols. Our code and dataset are publicly available at https://github.com/Yuheng2000/MathSticks.

Authors:Atif Belal, Heitor R. Medeiros, Marco Pedersoli, Eric Granger
Title: VLOD-TTA: Test-Time Adaptation of Vision-Language Object Detectors
Abstract:
Vision-language object detectors (VLODs) such as YOLO-World and Grounding DINO achieve impressive zero-shot recognition by aligning region proposals with text representations. However, their performance often degrades under domain shift. We introduce VLOD-TTA, a test-time adaptation (TTA) framework for VLODs that leverages dense proposal overlap and image-conditioned prompt scores. First, an IoU-weighted entropy objective is proposed that concentrates adaptation on spatially coherent proposal clusters and reduces confirmation bias from isolated boxes. Second, image-conditioned prompt selection is introduced, which ranks prompts by image-level compatibility and fuses the most informative prompts with the detector logits. Our benchmarking across diverse distribution shifts -- including stylized domains, driving scenes, low-light conditions, and common corruptions -- shows the effectiveness of our method on two state-of-the-art VLODs, YOLO-World and Grounding DINO, with consistent improvements over the zero-shot and TTA baselines. Code : https://github.com/imatif17/VLOD-TTA

Authors:Junhyeok Lee, Han Jang, Kyu Sung Choi
Title: Domain-Specialized Interactive Segmentation Framework for Meningioma Radiotherapy Planning
Abstract:
Precise delineation of meningiomas is crucial for effective radiotherapy (RT) planning, directly influencing treatment efficacy and preservation of adjacent healthy tissues. While automated deep learning approaches have demonstrated considerable potential, achieving consistently accurate clinical segmentation remains challenging due to tumor heterogeneity. Interactive Medical Image Segmentation (IMIS) addresses this challenge by integrating advanced AI techniques with clinical input. However, generic segmentation tools, despite widespread applicability, often lack the specificity required for clinically critical and disease-specific tasks like meningioma RT planning. To overcome these limitations, we introduce Interactive-MEN-RT, a dedicated IMIS tool specifically developed for clinician-assisted 3D meningioma segmentation in RT workflows. The system incorporates multiple clinically relevant interaction methods, including point annotations, bounding boxes, lasso tools, and scribbles, enhancing usability and clinical precision. In our evaluation involving 500 contrast-enhanced T1-weighted MRI scans from the BraTS 2025 Meningioma RT Segmentation Challenge, Interactive-MEN-RT demonstrated substantial improvement compared to other segmentation methods, achieving Dice similarity coefficients of up to 77.6\% and Intersection over Union scores of 64.8\%. These results emphasize the need for clinically tailored segmentation solutions in critical applications such as meningioma RT planning. The code is publicly available at: https://github.com/snuh-rad-aicon/Interactive-MEN-RT

Authors:Hengtao Li, Pengxiang Ding, Runze Suo, Yihao Wang, Zirui Ge, Dongyuan Zang, Kexian Yu, Mingyang Sun, Hongyin Zhang, Donglin Wang, Weihua Su
Title: VLA-RFT: Vision-Language-Action Reinforcement Fine-tuning with Verified Rewards in World Simulators
Abstract:
Vision-Language-Action (VLA) models enable embodied decision-making but rely heavily on imitation learning, leading to compounding errors and poor robustness under distribution shift. Reinforcement learning (RL) can mitigate these issues yet typically demands costly real-world interactions or suffers from sim-to-real gaps. We introduce VLA-RFT, a reinforcement fine-tuning framework that leverages a data-driven world model as a controllable simulator. Trained from real interaction data, the simulator predicts future visual observations conditioned on actions, allowing policy rollouts with dense, trajectory-level rewards derived from goal-achieving references. This design delivers an efficient and action-aligned learning signal, drastically lowering sample requirements. With fewer than 400 fine-tuning steps, VLA-RFT surpasses strong supervised baselines and achieves greater efficiency than simulator-based RL. Moreover, it exhibits strong robustness under perturbed conditions, sustaining stable task execution. Our results establish world-model-based RFT as a practical post-training paradigm to enhance the generalization and robustness of VLA models. For more details, please refer to https://vla-rft.github.io/.

Authors:Jiancong Xie, Wenjin Wang, Zhuomeng Zhang, Zihan Liu, Qi Liu, Ke Feng, Zixun Sun, Yuedong Yang
Title: OIG-Bench: A Multi-Agent Annotated Benchmark for Multimodal One-Image Guides Understanding
Abstract:
Recent advances in Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities. However, evaluating their capacity for human-like understanding in One-Image Guides remains insufficiently explored. One-Image Guides are a visual format combining text, imagery, and symbols to present reorganized and structured information for easier comprehension, which are specifically designed for human viewing and inherently embody the characteristics of human perception and understanding. Here, we present OIG-Bench, a comprehensive benchmark focused on One-Image Guide understanding across diverse domains. To reduce the cost of manual annotation, we developed a semi-automated annotation pipeline in which multiple intelligent agents collaborate to generate preliminary image descriptions, assisting humans in constructing image-text pairs. With OIG-Bench, we have conducted a comprehensive evaluation of 29 state-of-the-art MLLMs, including both proprietary and open-source models. The results show that Qwen2.5-VL-72B performs the best among the evaluated models, with an overall accuracy of 77%. Nevertheless, all models exhibit notable weaknesses in semantic understanding and logical reasoning, indicating that current MLLMs still struggle to accurately interpret complex visual-text relationships. In addition, we also demonstrate that the proposed multi-agent annotation system outperforms all MLLMs in image captioning, highlighting its potential as both a high-quality image description generator and a valuable tool for future dataset construction. Datasets are available at https://github.com/XiejcSYSU/OIG-Bench.

Authors:Xianjie Liu, Yiman Hu, Yixiong Zou, Liang Wu, Jian Xu, Bo Zheng
Title: HiDe: Rethinking The Zoom-IN method in High Resolution MLLMs via Hierarchical Decoupling
Abstract:
Multimodal Large Language Models (MLLMs) have made significant strides in visual understanding tasks. However, their performance on high-resolution images remains suboptimal. While existing approaches often attribute this limitation to perceptual constraints and argue that MLLMs struggle to recognize small objects, leading them to use "zoom in" strategies for better detail, our analysis reveals a different cause: the main issue is not object size, but rather caused by complex background interference. We systematically analyze this "zoom in" operation through a series of decoupling experiments and propose the Hierarchical Decoupling Framework (HiDe), a training-free framework that uses Token-wise Attention Decoupling (TAD) to decouple the question tokens and identify the key information tokens, then leverages their attention weights to achieve precise alignment with the target visual regions. Subsequently, it employs Layout-Preserving Decoupling (LPD) to decouple these regions from the background and reconstructs a compact representation that preserves essential spatial layouts while eliminating background interference. HiDe sets a new SOTA on V*Bench, HRBench4K, and HRBench8K, boosting Qwen2.5-VL 7B and InternVL3 8B to SOTA (92.1% and 91.6% on V*Bench), even surpassing RL methods. After optimization, HiDe uses 75% less memory than the previous training-free approach. Code is provided in https://github.com/Tennine2077/HiDe.

Authors:Youquan Fu, Ruiyang Si, Hongfa Wang, Dongzhan Zhou, Jiacheng Sun, Ping Luo, Di Hu, Hongyuan Zhang, Xuelong Li
Title: Object-AVEdit: An Object-level Audio-Visual Editing Model
Abstract:
There is a high demand for audio-visual editing in video post-production and the film making field. While numerous models have explored audio and video editing, they struggle with object-level audio-visual operations. Specifically, object-level audio-visual editing requires the ability to perform object addition, replacement, and removal across both audio and visual modalities, while preserving the structural information of the source instances during the editing process. In this paper, we present \textbf{Object-AVEdit}, achieving the object-level audio-visual editing based on the inversion-regeneration paradigm. To achieve the object-level controllability during editing, we develop a word-to-sounding-object well-aligned audio generation model, bridging the gap in object-controllability between audio and current video generation models. Meanwhile, to achieve the better structural information preservation and object-level editing effect, we propose an inversion-regeneration holistically-optimized editing algorithm, ensuring both information retention during the inversion and better regeneration effect. Extensive experiments demonstrate that our editing model achieved advanced results in both audio-video object-level editing tasks with fine audio-visual semantic alignment. In addition, our developed audio generation model also achieved advanced performance. More results on our project page: https://gewu-lab.github.io/Object_AVEdit-website/.

Authors:Xingyu Chen, Yue Chen, Yuliang Xiu, Andreas Geiger, Anpei Chen
Title: TTT3R: 3D Reconstruction as Test-Time Training
Abstract:
Modern Recurrent Neural Networks have become a competitive architecture for 3D reconstruction due to their linear-time complexity. However, their performance degrades significantly when applied beyond the training context length, revealing limited length generalization. In this work, we revisit the 3D reconstruction foundation models from a Test-Time Training perspective, framing their designs as an online learning problem. Building on this perspective, we leverage the alignment confidence between the memory state and incoming observations to derive a closed-form learning rate for memory updates, to balance between retaining historical information and adapting to new observations. This training-free intervention, termed TTT3R, substantially improves length generalization, achieving a $2\times$ improvement in global pose estimation over baselines, while operating at 20 FPS with just 6 GB of GPU memory to process thousands of images. Code available in https://rover-xingyu.github.io/TTT3R

Authors:Jessica Bader, Mateusz Pach, Maria A. Bravo, Serge Belongie, Zeynep Akata
Title: Stitch: Training-Free Position Control in Multimodal Diffusion Transformers
Abstract:
Text-to-Image (T2I) generation models have advanced rapidly in recent years, but accurately capturing spatial relationships like "above" or "to the right of" poses a persistent challenge. Earlier methods improved spatial relationship following with external position control. However, as architectures evolved to enhance image quality, these techniques became incompatible with modern models. We propose Stitch, a training-free method for incorporating external position control into Multi-Modal Diffusion Transformers (MMDiT) via automatically-generated bounding boxes. Stitch produces images that are both spatially accurate and visually appealing by generating individual objects within designated bounding boxes and seamlessly stitching them together. We find that targeted attention heads capture the information necessary to isolate and cut out individual objects mid-generation, without needing to fully complete the image. We evaluate Stitch on PosEval, our benchmark for position-based T2I generation. Featuring five new tasks that extend the concept of Position beyond the basic GenEval task, PosEval demonstrates that even top models still have significant room for improvement in position-based generation. Tested on Qwen-Image, FLUX, and SD3.5, Stitch consistently enhances base models, even improving FLUX by 218% on GenEval's Position task and by 206% on PosEval. Stitch achieves state-of-the-art results with Qwen-Image on PosEval, improving over previous models by 54%, all accomplished while integrating position control into leading models training-free. Code is available at https://github.com/ExplainableML/Stitch.

Authors:Junlin Han, Shengbang Tong, David Fan, Yufan Ren, Koustuv Sinha, Philip Torr, Filippos Kokkinos
Title: Learning to See Before Seeing: Demystifying LLM Visual Priors from Language Pre-training
Abstract:
Large Language Models (LLMs), despite being trained on text alone, surprisingly develop rich visual priors. These priors allow latent visual capabilities to be unlocked for vision tasks with a relatively small amount of multimodal data, and in some cases, to perform visual tasks without ever having seen an image. Through systematic analysis, we reveal that visual priors-the implicit, emergent knowledge about the visual world acquired during language pre-training-are composed of separable perception and reasoning priors with unique scaling trends and origins. We show that an LLM's latent visual reasoning ability is predominantly developed by pre-training on reasoning-centric data (e.g., code, math, academia) and scales progressively. This reasoning prior acquired from language pre-training is transferable and universally applicable to visual reasoning. In contrast, a perception prior emerges more diffusely from broad corpora, and perception ability is more sensitive to the vision encoder and visual instruction tuning data. In parallel, text describing the visual world proves crucial, though its performance impact saturates rapidly. Leveraging these insights, we propose a data-centric recipe for pre-training vision-aware LLMs and verify it in 1T token scale pre-training. Our findings are grounded in over 100 controlled experiments consuming 500,000 GPU-hours, spanning the full MLLM construction pipeline-from LLM pre-training to visual alignment and supervised multimodal fine-tuning-across five model scales, a wide range of data categories and mixtures, and multiple adaptation setups. Along with our main findings, we propose and investigate several hypotheses, and introduce the Multi-Level Existence Bench (MLE-Bench). Together, this work provides a new way of deliberately cultivating visual priors from language pre-training, paving the way for the next generation of multimodal LLMs.

Authors:Xiyi Chen, Shaofei Wang, Marko Mihajlovic, Taewon Kang, Sergey Prokudin, Ming Lin
Title: HART: Human Aligned Reconstruction Transformer
Abstract:
We introduce HART, a unified framework for sparse-view human reconstruction. Given a small set of uncalibrated RGB images of a person as input, it outputs a watertight clothed mesh, the aligned SMPL-X body mesh, and a Gaussian-splat representation for photorealistic novel-view rendering. Prior methods for clothed human reconstruction either optimize parametric templates, which overlook loose garments and human-object interactions, or train implicit functions under simplified camera assumptions, limiting applicability in real scenes. In contrast, HART predicts per-pixel 3D point maps, normals, and body correspondences, and employs an occlusion-aware Poisson reconstruction to recover complete geometry, even in self-occluded regions. These predictions also align with a parametric SMPL-X body model, ensuring that reconstructed geometry remains consistent with human structure while capturing loose clothing and interactions. These human-aligned meshes initialize Gaussian splats to further enable sparse-view rendering. While trained on only 2.3K synthetic scans, HART achieves state-of-the-art results: Chamfer Distance improves by 18-23 percent for clothed-mesh reconstruction, PA-V2V drops by 6-27 percent for SMPL-X estimation, LPIPS decreases by 15-27 percent for novel-view synthesis on a wide range of datasets. These results suggest that feed-forward transformers can serve as a scalable model for robust human reconstruction in real-world settings. Code and models will be released.

Authors:Haodong Li, Wangguangdong Zheng, Jing He, Yuhao Liu, Xin Lin, Xin Yang, Ying-Cong Chen, Chunchao Guo
Title: DA$^2$: Depth Anything in Any Direction
Abstract:
Panorama has a full FoV (360$^\circ\times$180$^\circ$), offering a more complete visual description than perspective images. Thanks to this characteristic, panoramic depth estimation is gaining increasing traction in 3D vision. However, due to the scarcity of panoramic data, previous methods are often restricted to in-domain settings, leading to poor zero-shot generalization. Furthermore, due to the spherical distortions inherent in panoramas, many approaches rely on perspective splitting (e.g., cubemaps), which leads to suboptimal efficiency. To address these challenges, we propose $\textbf{DA}$$^{\textbf{2}}$: $\textbf{D}$epth $\textbf{A}$nything in $\textbf{A}$ny $\textbf{D}$irection, an accurate, zero-shot generalizable, and fully end-to-end panoramic depth estimator. Specifically, for scaling up panoramic data, we introduce a data curation engine for generating high-quality panoramic depth data from perspective, and create $\sim$543K panoramic RGB-depth pairs, bringing the total to $\sim$607K. To further mitigate the spherical distortions, we present SphereViT, which explicitly leverages spherical coordinates to enforce the spherical geometric consistency in panoramic image features, yielding improved performance. A comprehensive benchmark on multiple datasets clearly demonstrates DA$^{2}$'s SoTA performance, with an average 38% improvement on AbsRel over the strongest zero-shot baseline. Surprisingly, DA$^{2}$ even outperforms prior in-domain methods, highlighting its superior zero-shot generalization. Moreover, as an end-to-end solution, DA$^{2}$ exhibits much higher efficiency over fusion-based approaches. Both the code and the curated panoramic data will be released. Project page: https://depth-any-in-any-dir.github.io/.

Authors:Jian Guo Pan, Lin Wang, Xia Cai
Title: Automated and Scalable SEM Image Analysis of Perovskite Solar Cell Materials via a Deep Segmentation Framework
Abstract:
Scanning Electron Microscopy (SEM) is indispensable for characterizing the microstructure of thin films during perovskite solar cell fabrication. Accurate identification and quantification of lead iodide and perovskite phases are critical because residual lead iodide strongly influences crystallization pathways and defect formation, while the morphology of perovskite grains governs carrier transport and device stability. Yet current SEM image analysis is still largely manual, limiting throughput and consistency. Here, we present an automated deep learning-based framework for SEM image segmentation that enables precise and efficient identification of lead iodide, perovskite and defect domains across diverse morphologies. Built upon an improved YOLOv8x architecture, our model named PerovSegNet incorporates two novel modules: (i) Adaptive Shuffle Dilated Convolution Block, which enhances multi-scale and fine-grained feature extraction through group convolutions and channel mixing; and (ii) Separable Adaptive Downsampling module, which jointly preserves fine-scale textures and large-scale structures for more robust boundary recognition. Trained on an augmented dataset of 10,994 SEM images, PerovSegNet achieves a mean Average Precision of 87.25% with 265.4 Giga Floating Point Operations, outperforming the baseline YOLOv8x-seg by 4.08%, while reducing model size and computational load by 24.43% and 25.22%, respectively. Beyond segmentation, the framework provides quantitative grain-level metrics, such as lead iodide/perovskite area and count, which can serve as reliable indicators of crystallization efficiency and microstructural quality. These capabilities establish PerovSegNet as a scalable tool for real-time process monitoring and data-driven optimization of perovskite thin-film fabrication.The source code is available at:https://github.com/wlyyj/PerovSegNet/tree/master.

Authors:Yida Xue, Mingjun Mao, Xiangyuan Ru, Yuqi Zhu, Baochang Ren, Shuofei Qiao, Mengru Wang, Shumin Deng, Xinyu An, Ningyu Zhang, Ying Chen, Huajun Chen
Title: OceanGym: A Benchmark Environment for Underwater Embodied Agents
Abstract:
We introduce OceanGym, the first comprehensive benchmark for ocean underwater embodied agents, designed to advance AI in one of the most demanding real-world environments. Unlike terrestrial or aerial domains, underwater settings present extreme perceptual and decision-making challenges, including low visibility, dynamic ocean currents, making effective agent deployment exceptionally difficult. OceanGym encompasses eight realistic task domains and a unified agent framework driven by Multi-modal Large Language Models (MLLMs), which integrates perception, memory, and sequential decision-making. Agents are required to comprehend optical and sonar data, autonomously explore complex environments, and accomplish long-horizon objectives under these harsh conditions. Extensive experiments reveal substantial gaps between state-of-the-art MLLM-driven agents and human experts, highlighting the persistent difficulty of perception, planning, and adaptability in ocean underwater environments. By providing a high-fidelity, rigorously designed platform, OceanGym establishes a testbed for developing robust embodied AI and transferring these capabilities to real-world autonomous ocean underwater vehicles, marking a decisive step toward intelligent agents capable of operating in one of Earth's last unexplored frontiers. The code and data are available at https://github.com/OceanGPT/OceanGym.

Authors:Alessio Masano, Matteo Pennisi, Federica Proietto Salanitri, Concetto Spampinato, Giovanni Bellitto
Title: Zero-Shot Decentralized Federated Learning
Abstract:
CLIP has revolutionized zero-shot learning by enabling task generalization without fine-tuning. While prompting techniques like CoOp and CoCoOp enhance CLIP's adaptability, their effectiveness in Federated Learning (FL) remains an open challenge. Existing federated prompt learning approaches, such as FedCoOp and FedTPG, improve performance but face generalization issues, high communication costs, and reliance on a central server, limiting scalability and privacy. We propose Zero-shot Decentralized Federated Learning (ZeroDFL), a fully decentralized framework that enables zero-shot adaptation across distributed clients without a central coordinator. ZeroDFL employs an iterative prompt-sharing mechanism, allowing clients to optimize and exchange textual prompts to enhance generalization while drastically reducing communication overhead. We validate ZeroDFL on nine diverse image classification datasets, demonstrating that it consistently outperforms--or remains on par with--state-of-the-art federated prompt learning methods. More importantly, ZeroDFL achieves this performance in a fully decentralized setting while reducing communication overhead by 118x compared to FedTPG. These results highlight that our approach not only enhances generalization in federated zero-shot learning but also improves scalability, efficiency, and privacy preservation--paving the way for decentralized adaptation of large vision-language models in real-world applications.

Authors:Artur Barros, Carlos Caetano, João Macedo, Jefersson A. dos Santos, Sandra Avila
Title: Attention over Scene Graphs: Indoor Scene Representations Toward CSAI Classification
Abstract:
Indoor scene classification is a critical task in computer vision, with wide-ranging applications that go from robotics to sensitive content analysis, such as child sexual abuse imagery (CSAI) classification. The problem is particularly challenging due to the intricate relationships between objects and complex spatial layouts. In this work, we propose the Attention over Scene Graphs for Sensitive Content Analysis (ASGRA), a novel framework that operates on structured graph representations instead of raw pixels. By first converting images into Scene Graphs and then employing a Graph Attention Network for inference, ASGRA directly models the interactions between a scene's components. This approach offers two key benefits: (i) inherent explainability via object and relationship identification, and (ii) privacy preservation, enabling model training without direct access to sensitive images. On Places8, we achieve 81.27% balanced accuracy, surpassing image-based methods. Real-world CSAI evaluation with law enforcement yields 74.27% balanced accuracy. Our results establish structured scene representations as a robust paradigm for indoor scene classification and CSAI classification. Code is publicly available at https://github.com/tutuzeraa/ASGRA.

Authors:Zhiwei Yang, Chen Gao, Mike Zheng Shou
Title: PANDA: Towards Generalist Video Anomaly Detection via Agentic AI Engineer
Abstract:
Video anomaly detection (VAD) is a critical yet challenging task due to the complex and diverse nature of real-world scenarios. Previous methods typically rely on domain-specific training data and manual adjustments when applying to new scenarios and unseen anomaly types, suffering from high labor costs and limited generalization. Therefore, we aim to achieve generalist VAD, i.e., automatically handle any scene and any anomaly types without training data or human involvement. In this work, we propose PANDA, an agentic AI engineer based on MLLMs. Specifically, we achieve PANDA by comprehensively devising four key capabilities: (1) self-adaptive scene-aware strategy planning, (2) goal-driven heuristic reasoning, (3) tool-augmented self-reflection, and (4) self-improving chain-of-memory. Concretely, we develop a self-adaptive scene-aware RAG mechanism, enabling PANDA to retrieve anomaly-specific knowledge for anomaly detection strategy planning. Next, we introduce a latent anomaly-guided heuristic prompt strategy to enhance reasoning precision. Furthermore, PANDA employs a progressive reflection mechanism alongside a suite of context-aware tools to iteratively refine decision-making in complex scenarios. Finally, a chain-of-memory mechanism enables PANDA to leverage historical experiences for continual performance improvement. Extensive experiments demonstrate that PANDA achieves state-of-the-art performance in multi-scenario, open-set, and complex scenario settings without training and manual involvement, validating its generalizable and robust anomaly detection capability. Code is released at https://github.com/showlab/PANDA.

Authors:Junjie Zhou, Ze Liu, Lei Xiong, Jin-Ge Yao, Yueze Wang, Shitao Xiao, Fenfen Lin, Miguel Hu Chen, Zhicheng Dou, Siqi Bao, Defu Lian, Yongping Xiong, Zheng Liu
Title: MR$^2$-Bench: Going Beyond Matching to Reasoning in Multimodal Retrieval
Abstract:
Multimodal retrieval is becoming a crucial component of modern AI applications, yet its evaluation lags behind the demands of more realistic and challenging scenarios. Existing benchmarks primarily probe surface-level semantic correspondence (e.g., object-text matching) while failing to assess the deeper reasoning required to capture complex relationships between visual and textual information. To address this gap, we introduce MR$^2$-Bench, a reasoning-intensive benchmark for multimodal retrieval. MR$^2$-Bench presents the following critical values: 1) all tasks are reasoning-driven, going beyond shallow matching to effectively assess models' capacity for logical, spatial, and causal inference; 2) it features diverse multimodal data, such as natural images, diagrams, and visual puzzles, enabling comprehensive evaluation across content types; 3) it supports complex queries and documents containing multiple images and covers diverse retrieval scenarios, more accurately reflecting real-world applications. Our benchmark contains 1,309 curated queries, derived either from manual collection and annotation or from selective consolidation of public datasets. Despite achieving strong results on existing benchmarks, current state-of-the-art models still struggle on MR$^2$-Bench: for example, the leading Seed1.6-Embedding model attains a Recall@1 of 77.78 on MMEB, but only 9.91 on MR$^2$-Bench. This substantial performance gap highlights both the increased challenge posed by our benchmark and the pressing need for further advances in reasoning-intensive multimodal retrieval. The dataset and evaluation code will be made publicly available at https://github.com/VectorSpaceLab/MR2-Bench.

Authors:Harold Haodong Chen, Xianfeng Wu, Wen-Jie Shu, Rongjin Guo, Disen Lan, Harry Yang, Ying-Cong Chen
Title: Go with Your Gut: Scaling Confidence for Autoregressive Image Generation
Abstract:
Test-time scaling (TTS) has demonstrated remarkable success in enhancing large language models, yet its application to next-token prediction (NTP) autoregressive (AR) image generation remains largely uncharted. Existing TTS approaches for visual AR (VAR), which rely on frequent partial decoding and external reward models, are ill-suited for NTP-based image generation due to the inherent incompleteness of intermediate decoding results. To bridge this gap, we introduce ScalingAR, the first TTS framework specifically designed for NTP-based AR image generation that eliminates the need for early decoding or auxiliary rewards. ScalingAR leverages token entropy as a novel signal in visual token generation and operates at two complementary scaling levels: (i) Profile Level, which streams a calibrated confidence state by fusing intrinsic and conditional signals; and (ii) Policy Level, which utilizes this state to adaptively terminate low-confidence trajectories and dynamically schedule guidance for phase-appropriate conditioning strength. Experiments on both general and compositional benchmarks show that ScalingAR (1) improves base models by 12.5% on GenEval and 15.2% on TIIF-Bench, (2) efficiently reduces visual token consumption by 62.0% while outperforming baselines, and (3) successfully enhances robustness, mitigating performance drops by 26.0% in challenging scenarios.

Authors:Keming Wu, Sicong Jiang, Max Ku, Ping Nie, Minghao Liu, Wenhu Chen
Title: EditReward: A Human-Aligned Reward Model for Instruction-Guided Image Editing
Abstract:
Recently, we have witnessed great progress in image editing with natural language instructions. Several closed-source models like GPT-Image-1, Seedream, and Google-Nano-Banana have shown highly promising progress. However, the open-source models are still lagging. The main bottleneck is the lack of a reliable reward model to scale up high-quality synthetic training data. To address this critical bottleneck, we built \mname, trained with our new large-scale human preference dataset, meticulously annotated by trained experts following a rigorous protocol containing over 200K preference pairs. \mname demonstrates superior alignment with human preferences in instruction-guided image editing tasks. Experiments show that \mname achieves state-of-the-art human correlation on established benchmarks such as GenAI-Bench, AURORA-Bench, ImagenHub, and our new \benchname, outperforming a wide range of VLM-as-judge models. Furthermore, we use \mname to select a high-quality subset from the existing noisy ShareGPT-4o-Image dataset. We train Step1X-Edit on the selected subset, which shows significant improvement over training on the full set. This demonstrates \mname's ability to serve as a reward model to scale up high-quality training data for image editing. Furthermore, its strong alignment suggests potential for advanced applications like reinforcement learning-based post-training and test-time scaling of image editing models. \mname with its training dataset will be released to help the community build more high-quality image editing training datasets.

Authors:Balamurugan Thambiraja, Malte Prinzler, Sadegh Aliakbarian, Darren Cosker, Justus Thies
Title: 3DiFACE: Synthesizing and Editing Holistic 3D Facial Animation
Abstract:
Creating personalized 3D animations with precise control and realistic head motions remains challenging for current speech-driven 3D facial animation methods. Editing these animations is especially complex and time consuming, requires precise control and typically handled by highly skilled animators. Most existing works focus on controlling style or emotion of the synthesized animation and cannot edit/regenerate parts of an input animation. They also overlook the fact that multiple plausible lip and head movements can match the same audio input. To address these challenges, we present 3DiFACE, a novel method for holistic speech-driven 3D facial animation. Our approach produces diverse plausible lip and head motions for a single audio input and allows for editing via keyframing and interpolation. Specifically, we propose a fully-convolutional diffusion model that can leverage the viseme-level diversity in our training corpus. Additionally, we employ a speaking-style personalization and a novel sparsely-guided motion diffusion to enable precise control and editing. Through quantitative and qualitative evaluations, we demonstrate that our method is capable of generating and editing diverse holistic 3D facial animations given a single audio input, with control between high fidelity and diversity. Code and models are available here: https://balamuruganthambiraja.github.io/3DiFACE

Authors:Jiayi Guo, Chuanhao Yan, Xingqian Xu, Yulin Wang, Kai Wang, Gao Huang, Humphrey Shi
Title: IMG: Calibrating Diffusion Models via Implicit Multimodal Guidance
Abstract:
Ensuring precise multimodal alignment between diffusion-generated images and input prompts has been a long-standing challenge. Earlier works finetune diffusion weight using high-quality preference data, which tends to be limited and difficult to scale up. Recent editing-based methods further refine local regions of generated images but may compromise overall image quality. In this work, we propose Implicit Multimodal Guidance (IMG), a novel re-generation-based multimodal alignment framework that requires no extra data or editing operations. Specifically, given a generated image and its prompt, IMG a) utilizes a multimodal large language model (MLLM) to identify misalignments; b) introduces an Implicit Aligner that manipulates diffusion conditioning features to reduce misalignments and enable re-generation; and c) formulates the re-alignment goal into a trainable objective, namely Iteratively Updated Preference Objective. Extensive qualitative and quantitative evaluations on SDXL, SDXL-DPO, and FLUX show that IMG outperforms existing alignment methods. Furthermore, IMG acts as a flexible plug-and-play adapter, seamlessly enhancing prior finetuning-based alignment methods. Our code will be available at https://github.com/SHI-Labs/IMG-Multimodal-Diffusion-Alignment.

Authors:Haiyang Zheng, Nan Pu, Wenjing Li, Nicu Sebe, Zhun Zhong
Title: Generalized Fine-Grained Category Discovery with Multi-Granularity Conceptual Experts
Abstract:
Generalized Category Discovery (GCD) is an open-world problem that clusters unlabeled data by leveraging knowledge from partially labeled categories. A key challenge is that unlabeled data may contain both known and novel categories. Existing approaches suffer from two main limitations. First, they fail to exploit multi-granularity conceptual information in visual data, which limits representation quality. Second, most assume that the number of unlabeled categories is known during training, which is impractical in real-world scenarios. To address these issues, we propose a Multi-Granularity Conceptual Experts (MGCE) framework that adaptively mines visual concepts and integrates multi-granularity knowledge for accurate category discovery. MGCE consists of two modules: (1) Dynamic Conceptual Contrastive Learning (DCCL), which alternates between concept mining and dual-level representation learning to jointly optimize feature learning and category discovery; and (2) Multi-Granularity Experts Collaborative Learning (MECL), which extends the single-expert paradigm by introducing additional experts at different granularities and by employing a concept alignment matrix for effective cross-expert collaboration. Importantly, MGCE can automatically estimate the number of categories in unlabeled data, making it suitable for practical open-world settings. Extensive experiments on nine fine-grained visual recognition benchmarks demonstrate that MGCE achieves state-of-the-art results, particularly in novel-class accuracy. Notably, even without prior knowledge of category numbers, MGCE outperforms parametric approaches that require knowing the exact number of categories, with an average improvement of 3.6\%. Code is available at https://github.com/HaiyangZheng/MGCE.

Authors:Chenyang Jiang, Zhengcen Li, Hang Zhao, Qiben Shan, Shaocong Wu, Jingyong Su
Title: Beyond Pixels: Efficient Dataset Distillation via Sparse Gaussian Representation
Abstract:
Dataset distillation has emerged as a promising paradigm that synthesizes compact, informative datasets capable of retaining the knowledge of large-scale counterparts, thereby addressing the substantial computational and storage burdens of modern model training. Conventional approaches typically rely on dense pixel-level representations, which introduce redundancy and are difficult to scale up. In this work, we propose GSDD, a novel and efficient sparse representation for dataset distillation based on 2D Gaussians. Instead of representing all pixels equally, GSDD encodes critical discriminative information in a distilled image using only a small number of Gaussian primitives. This sparse representation could improve dataset diversity under the same storage budget, enhancing coverage of difficult samples and boosting distillation performance. To ensure both efficiency and scalability, we adapt CUDA-based splatting operators for parallel inference and training, enabling high-quality rendering with minimal computational and memory overhead. Our method is simple yet effective, broadly applicable to different distillation pipelines, and highly scalable. Experiments show that GSDD achieves state-of-the-art performance on CIFAR-10, CIFAR-100, and ImageNet subsets, while remaining highly efficient encoding and decoding cost. Our code is available at https://github.com/j-cyoung/GSDatasetDistillation.

Authors:Yuansen Liu, Haiming Tang, Jinlong Peng, Jiangning Zhang, Xiaozhong Ji, Qingdong He, Donghao Luo, Zhenye Gan, Junwei Zhu, Yunhang Shen, Chaoyou Fu, Chengjie Wang, Xiaobin Hu, Shuicheng Yan
Title: Human-MME: A Holistic Evaluation Benchmark for Human-Centric Multimodal Large Language Models
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated significant advances in visual understanding tasks. However, their capacity to comprehend human-centric scenes has rarely been explored, primarily due to the absence of comprehensive evaluation benchmarks that take into account both the human-oriented granular level and higher-dimensional causal reasoning ability. Such high-quality evaluation benchmarks face tough obstacles, given the physical complexity of the human body and the difficulty of annotating granular structures. In this paper, we propose Human-MME, a curated benchmark designed to provide a more holistic evaluation of MLLMs in human-centric scene understanding. Compared with other existing benchmarks, our work provides three key features: 1. Diversity in human scene, spanning 4 primary visual domains with 15 secondary domains and 43 sub-fields to ensure broad scenario coverage. 2. Progressive and diverse evaluation dimensions, evaluating the human-based activities progressively from the human-oriented granular perception to the higher-dimensional reasoning, consisting of eight dimensions with 19,945 real-world image question pairs and an evaluation suite. 3. High-quality annotations with rich data paradigms, constructing the automated annotation pipeline and human-annotation platform, supporting rigorous manual labeling to facilitate precise and reliable model assessment. Our benchmark extends the single-target understanding to the multi-person and multi-image mutual understanding by constructing the choice, short-answer, grounding, ranking and judgment question components, and complex questions of their combination. The extensive experiments on 17 state-of-the-art MLLMs effectively expose the limitations and guide future MLLMs research toward better human-centric image understanding. All data and code are available at https://github.com/Yuan-Hou/Human-MME.

Authors:Kyeongryeol Go
Title: Towards Continual Expansion of Data Coverage: Automatic Text-guided Edge-case Synthesis
Abstract:
The performance of deep neural networks is strongly influenced by the quality of their training data. However, mitigating dataset bias by manually curating challenging edge cases remains a major bottleneck. To address this, we propose an automated pipeline for text-guided edge-case synthesis. Our approach employs a Large Language Model, fine-tuned via preference learning, to rephrase image captions into diverse textual prompts that steer a Text-to-Image model toward generating difficult visual scenarios. Evaluated on the FishEye8K object detection benchmark, our method achieves superior robustness, surpassing both naive augmentation and manually engineered prompts. This work establishes a scalable framework that shifts data curation from manual effort to automated, targeted synthesis, offering a promising direction for developing more reliable and continuously improving AI systems. Code is available at https://github.com/gokyeongryeol/ATES.

Authors:Sachith Abeywickrama, Emadeldeen Eldele, Min Wu, Xiaoli Li, Chau Yuen
Title: EntroPE: Entropy-Guided Dynamic Patch Encoder for Time Series Forecasting
Abstract:
Transformer-based models have significantly advanced time series forecasting, with patch-based input strategies offering efficiency and improved long-horizon modeling. Yet, existing approaches rely on temporally-agnostic patch construction, where arbitrary starting positions and fixed lengths fracture temporal coherence by splitting natural transitions across boundaries. This naive segmentation often disrupts short-term dependencies and weakens representation learning. In response, we propose EntroPE (Entropy-Guided Dynamic Patch Encoder), a novel, temporally informed framework that dynamically detects transition points via conditional entropy and dynamically places patch boundaries. This preserves temporal structure while retaining the computational benefits of patching. EntroPE consists of two key modules, namely an Entropy-based Dynamic Patcher (EDP) that applies information-theoretic criteria to locate natural temporal shifts and determine patch boundaries, and an Adaptive Patch Encoder (APE) that employs pooling and cross-attention to capture intra-patch dependencies and produce fixed-size latent representations. These embeddings are then processed by a global transformer to model inter-patch dynamics. Experiments across long-term forecasting benchmarks demonstrate that EntroPE improves both accuracy and efficiency, establishing entropy-guided dynamic patching as a promising new paradigm for time series modeling. Code is available at: https://github.com/Sachithx/EntroPE.

Authors:Shigui Li, Wei Chen, Delu Zeng
Title: EVODiff: Entropy-aware Variance Optimized Diffusion Inference
Abstract:
Diffusion models (DMs) excel in image generation, but suffer from slow inference and the training-inference discrepancies. Although gradient-based solvers like DPM-Solver accelerate the denoising inference, they lack theoretical foundations in information transmission efficiency. In this work, we introduce an information-theoretic perspective on the inference processes of DMs, revealing that successful denoising fundamentally reduces conditional entropy in reverse transitions. This principle leads to our key insights into the inference processes: (1) data prediction parameterization outperforms its noise counterpart, and (2) optimizing conditional variance offers a reference-free way to minimize both transition and reconstruction errors. Based on these insights, we propose an entropy-aware variance optimized method for the generative process of DMs, called EVODiff, which systematically reduces uncertainty by optimizing conditional entropy during denoising. Extensive experiments on DMs validate our insights and demonstrate that our method significantly and consistently outperforms state-of-the-art (SOTA) gradient-based solvers. For example, compared to the DPM-Solver++, EVODiff reduces the reconstruction error by up to 45.5\% (FID improves from 5.10 to 2.78) at 10 function evaluations (NFE) on CIFAR-10, cuts the NFE cost by 25\% (from 20 to 15 NFE) for high-quality samples on ImageNet-256, and improves text-to-image generation while reducing artifacts. Code is available at https://github.com/ShiguiLi/EVODiff.

Authors:Ioana Ciuclea, Giorgio Longari, Alice Barbara Tumpach
Title: Geometric Learning of Canonical Parameterizations of $2D$-curves
Abstract:
Most datasets encountered in computer vision and medical applications present symmetries that should be taken into account in classification tasks. A typical example is the symmetry by rotation and/or scaling in object detection. A common way to build neural networks that learn the symmetries is to use data augmentation. In order to avoid data augmentation and build more sustainable algorithms, we present an alternative method to mod out symmetries based on the notion of section of a principal fiber bundle. This framework allows the use of simple metrics on the space of objects in order to measure dissimilarities between orbits of objects under the symmetry group. Moreover, the section used can be optimized to maximize separation of classes. We illustrate this methodology on a dataset of contours of objects for the groups of translations, rotations, scalings and reparameterizations. In particular, we present a $2$-parameter family of canonical parameterizations of curves, containing the constant-speed parameterization as a special case, which we believe is interesting in its own right. We hope that this simple application will serve to convey the geometric concepts underlying this method, which have a wide range of possible applications. The code is available at the following link: $\href{https://github.com/GiLonga/Geometric-Learning}{https://github.com/GiLonga/Geometric-Learning}$. A tutorial notebook showcasing an application of the code to a specific dataset is available at the following link: $\href{https://github.com/ioanaciuclea/geometric-learning-notebook}{https://github.com/ioanaciuclea/geometric-learning-notebook}$

Authors:Yang Zhou, Kunhao Yuan, Ye Wei, Jishizhan Chen
Title: Multi-modal Liver Segmentation and Fibrosis Staging Using Real-world MRI Images
Abstract:
Liver fibrosis represents the accumulation of excessive extracellular matrix caused by sustained hepatic injury. It disrupts normal lobular architecture and function, increasing the chances of cirrhosis and liver failure. Precise staging of fibrosis for early diagnosis and intervention is often invasive, which carries risks and complications. To address this challenge, recent advances in artificial intelligence-based liver segmentation and fibrosis staging offer a non-invasive alternative. As a result, the CARE 2025 Challenge aimed for automated methods to quantify and analyse liver fibrosis in real-world scenarios, using multi-centre, multi-modal, and multi-phase MRI data. This challenge included tasks of precise liver segmentation (LiSeg) and fibrosis staging (LiFS). In this study, we developed an automated pipeline for both tasks across all the provided MRI modalities. This pipeline integrates pseudo-labelling based on multi-modal co-registration, liver segmentation using deep neural networks, and liver fibrosis staging based on shape, textural, appearance, and directional (STAD) features derived from segmentation masks and MRI images. By solely using the released data with limited annotations, our proposed pipeline demonstrated excellent generalisability for all MRI modalities, achieving top-tier performance across all competition subtasks. This approach provides a rapid and reproducible framework for quantitative MRI-based liver fibrosis assessment, supporting early diagnosis and clinical decision-making. Code is available at https://github.com/YangForever/care2025_liver_biodreamer.

Authors:Gagandeep Singh, Samudi Amarsinghe, Priyanka Singh, Xue Li
Title: DGM4+: Dataset Extension for Global Scene Inconsistency
Abstract:
The rapid advances in generative models have significantly lowered the barrier to producing convincing multimodal disinformation. Fabricated images and manipulated captions increasingly co-occur to create persuasive false narratives. While the Detecting and Grounding Multi-Modal Media Manipulation (DGM4) dataset established a foundation for research in this area, it is restricted to local manipulations such as face swaps, attribute edits, and caption changes. This leaves a critical gap: global inconsistencies, such as mismatched foregrounds and backgrounds, which are now prevalent in real-world forgeries. To address this, we extend DGM4 with 5,000 high-quality samples that introduce Foreground-Background (FG-BG) mismatches and their hybrids with text manipulations. Using OpenAI's gpt-image-1 and carefully designed prompts, we generate human-centric news-style images where authentic figures are placed into absurd or impossible backdrops (e.g., a teacher calmly addressing students on the surface of Mars). Captions are produced under three conditions: literal, text attribute, and text split, yielding three new manipulation categories: FG-BG, FG-BG+TA, and FG-BG+TS. Quality control pipelines enforce one-to-three visible faces, perceptual hash deduplication, OCR-based text scrubbing, and realistic headline length. By introducing global manipulations, our extension complements existing datasets, creating a benchmark DGM4+ that tests detectors on both local and global reasoning. This resource is intended to strengthen evaluation of multimodal models such as HAMMER, which currently struggle with FG-BG inconsistencies. We release our DGM4+ dataset and generation script at https://github.com/Gaganx0/DGM4plus

Authors:Gagandeep Singh, Samudi Amarsinghe, Urawee Thani, Ki Fung Wong, Priyanka Singh, Xue Li
Title: SGS: Segmentation-Guided Scoring for Global Scene Inconsistencies
Abstract:
We extend HAMMER, a state-of-the-art model for multimodal manipulation detection, to handle global scene inconsistencies such as foreground-background (FG-BG) mismatch. While HAMMER achieves strong performance on the DGM4 dataset, it consistently fails when the main subject is contextually misplaced into an implausible background. We diagnose this limitation as a combination of label-space bias, local attention focus, and spurious text-foreground alignment. To remedy this without retraining, we propose a lightweight segmentation-guided scoring (SGS) pipeline. SGS uses person/face segmentation masks to separate foreground and background regions, extracts embeddings with a joint vision-language model, and computes region-aware coherence scores. These scores are fused with HAMMER's original prediction to improve binary detection, grounding, and token-level explanations. SGS is inference-only, incurs negligible computational overhead, and significantly enhances robustness to global manipulations. This work demonstrates the importance of region-aware reasoning in multimodal disinformation detection. We release scripts for segmentation and scoring at https://github.com/Gaganx0/HAMMER-sgs

Authors:Christoph Timmermann, Hyunse Lee, Woojin Lee
Title: SeMoBridge: Semantic Modality Bridge for Efficient Few-Shot Adaptation of CLIP
Abstract:
While Contrastive Language-Image Pretraining (CLIP) excels at zero-shot tasks by aligning image and text embeddings, its performance in few-shot classification is hindered by a critical limitation: intra-modal misalignment. This issue, caused by a persistent modality gap and CLIP's exclusively inter-modal training objective, leaves the embedding spaces uncalibrated, making direct image-to-image comparisons unreliable. Existing methods attempt to address this by refining similarity logits or by computationally expensive per-sample optimization. To overcome these challenges, we introduce SeMoBridge, a lightweight yet powerful approach that directly addresses the misalignment. Our method maps images into the text modality, while keeping their semantic content intact through what we call a Semantic Modality Bridge. SeMoBridge is closed-form and can optionally be trained through multi-modal supervision, combining image and text-alignment losses to optimize the projection. Experiments show that the trained version, SeMoBridge-T, requires only a fraction of the training time while overall outperforming other methods, particularly in low-data scenarios (1, 2, and 4 shots). The code is available at https://github.com/christti98/semobridge.

Authors:Lubian Bai, Xiuyuan Zhang, Siqi Zhang, Zepeng Zhang, Haoyu Wang, Wei Qin, Shihong Du
Title: GeoLink: Empowering Remote Sensing Foundation Model with OpenStreetMap Data
Abstract:
Integrating ground-level geospatial data with rich geographic context, like OpenStreetMap (OSM), into remote sensing (RS) foundation models (FMs) is essential for advancing geospatial intelligence and supporting a broad spectrum of tasks. However, modality gap between RS and OSM data, including differences in data structure, content, and spatial granularity, makes effective synergy highly challenging, and most existing RS FMs focus on imagery alone. To this end, this study presents GeoLink, a multimodal framework that leverages OSM data to enhance RS FM during both the pretraining and downstream task stages. Specifically, GeoLink enhances RS self-supervised pretraining using multi-granularity learning signals derived from OSM data, guided by cross-modal spatial correlations for information interaction and collaboration. It also introduces image mask-reconstruction to enable sparse input for efficient pretraining. For downstream tasks, GeoLink generates both unimodal and multimodal fine-grained encodings to support a wide range of applications, from common RS interpretation tasks like land cover classification to more comprehensive geographic tasks like urban function zone mapping. Extensive experiments show that incorporating OSM data during pretraining enhances the performance of the RS image encoder, while fusing RS and OSM data in downstream tasks improves the FM's adaptability to complex geographic scenarios. These results underscore the potential of multimodal synergy in advancing high-level geospatial artificial intelligence. Moreover, we find that spatial correlation plays a crucial role in enabling effective multimodal geospatial data integration. Code, checkpoints, and using examples are released at https://github.com/bailubin/GeoLink_NeurIPS2025

Authors:Espen Uri Høgstedt, Christian Schellewald, Annette Stahl, Rudolf Mester
Title: A Multi-purpose Tracking Framework for Salmon Welfare Monitoring in Challenging Environments
Abstract:
Computer Vision (CV)-based continuous, automated and precise salmon welfare monitoring is a key step toward reduced salmon mortality and improved salmon welfare in industrial aquaculture net pens. Available CV methods for determining welfare indicators focus on single indicators and rely on object detectors and trackers from other application areas to aid their welfare indicator calculation algorithm. This comes with a high resource demand for real-world applications, since each indicator must be calculated separately. In addition, the methods are vulnerable to difficulties in underwater salmon scenes, such as object occlusion, similar object appearance, and similar object motion. To address these challenges, we propose a flexible tracking framework that uses a pose estimation network to extract bounding boxes around salmon and their corresponding body parts, and exploits information about the body parts, through specialized modules, to tackle challenges specific to underwater salmon scenes. Subsequently, the high-detail body part tracks are employed to calculate welfare indicators. We construct two novel datasets assessing two salmon tracking challenges: salmon ID transfers in crowded scenes and salmon ID switches during turning. Our method outperforms the current state-of-the-art pedestrian tracker, BoostTrack, for both salmon tracking challenges. Additionally, we create a dataset for calculating salmon tail beat wavelength, demonstrating that our body part tracking method is well-suited for automated welfare monitoring based on tail beat analysis. Datasets and code are available at https://github.com/espenbh/BoostCompTrack.

Authors:Yuan Zhao, Youwei Pang, Lihe Zhang, Hanqi Liu, Jiaming Zuo, Huchuan Lu, Xiaoqi Zhao
Title: UniMMAD: Unified Multi-Modal and Multi-Class Anomaly Detection via MoE-Driven Feature Decompression
Abstract:
Existing anomaly detection (AD) methods often treat the modality and class as independent factors. Although this paradigm has enriched the development of AD research branches and produced many specialized models, it has also led to fragmented solutions and excessive memory overhead. Moreover, reconstruction-based multi-class approaches typically rely on shared decoding paths, which struggle to handle large variations across domains, resulting in distorted normality boundaries, domain interference, and high false alarm rates. To address these limitations, we propose UniMMAD, a unified framework for multi-modal and multi-class anomaly detection. At the core of UniMMAD is a Mixture-of-Experts (MoE)-driven feature decompression mechanism, which enables adaptive and disentangled reconstruction tailored to specific domains. This process is guided by a ``general to specific'' paradigm. In the encoding stage, multi-modal inputs of varying combinations are compressed into compact, general-purpose features. The encoder incorporates a feature compression module to suppress latent anomalies, encourage cross-modal interaction, and avoid shortcut learning. In the decoding stage, the general features are decompressed into modality-specific and class-specific forms via a sparsely-gated cross MoE, which dynamically selects expert pathways based on input modality and class. To further improve efficiency, we design a grouped dynamic filtering mechanism and a MoE-in-MoE structure, reducing parameter usage by 75\% while maintaining sparse activation and fast inference. UniMMAD achieves state-of-the-art performance on 9 anomaly detection datasets, spanning 3 fields, 12 modalities, and 66 classes. The source code will be available at https://github.com/yuanzhao-CVLAB/UniMMAD.

Authors:Jundong Xu, Hao Fei, Yuhui Zhang, Liangming Pan, Qijun Huang, Qian Liu, Preslav Nakov, Min-Yen Kan, William Yang Wang, Mong-Li Lee, Wynne Hsu
Title: MuSLR: Multimodal Symbolic Logical Reasoning
Abstract:
Multimodal symbolic logical reasoning, which aims to deduce new facts from multimodal input via formal logic, is critical in high-stakes applications such as autonomous driving and medical diagnosis, as its rigorous, deterministic reasoning helps prevent serious consequences. To evaluate such capabilities of current state-of-the-art vision language models (VLMs), we introduce the first benchmark MuSLR for multimodal symbolic logical reasoning grounded in formal logical rules. MuSLR comprises 1,093 instances across 7 domains, including 35 atomic symbolic logic and 976 logical combinations, with reasoning depths ranging from 2 to 9. We evaluate 7 state-of-the-art VLMs on MuSLR and find that they all struggle with multimodal symbolic reasoning, with the best model, GPT-4.1, achieving only 46.8%. Thus, we propose LogiCAM, a modular framework that applies formal logical rules to multimodal inputs, boosting GPT-4.1's Chain-of-Thought performance by 14.13%, and delivering even larger gains on complex logics such as first-order logic. We also conduct a comprehensive error analysis, showing that around 70% of failures stem from logical misalignment between modalities, offering key insights to guide future improvements. All data and code are publicly available at https://llm-symbol.github.io/MuSLR.

Authors:Xinyu Tian, Shu Zou, Zhaoyuan Yang, Mengqi He, Fabian Waschkowski, Lukas Wesemann, Peter Tu, Jing Zhang
Title: More Thought, Less Accuracy? On the Dual Nature of Reasoning in Vision-Language Models
Abstract:
Reasoning has emerged as a pivotal capability in Large Language Models (LLMs). Through Reinforcement Learning (RL), typically Group Relative Policy Optimization (GRPO), these models are able to solve complex tasks such as mathematics and code generation. Building on these advances, recent research has sought to extend reasoning to Vision-Language Models (VLMs), yielding promising results across diverse visual tasks. Despite this progress, our study uncovers the dual nature of multimodal reasoning: while it substantially enhances logical inference and facilitates performance on challenging problems, it may gradually impair perceptual grounding, leading to recognition failures on otherwise basic visual questions. Through further analysis, we attribute this phenomenon to visual forgetting, wherein prolonged reasoning causes the model to increasingly disregard visual input. To address this, we propose Vision-Anchored Policy Optimization (VAPO), a simple yet effective method that explicitly steers the reasoning process toward visually grounded trajectories. Our result model, VAPO-Thinker-7B, significantly strengthens the model's reliance on visual information and achieves new state-of-the-art results on a wide range of established benchmarks. Project page: https://xytian1008.github.io/VAPO/

Authors:Yuan Gao, Sangwook Kim, Chris McIntosh
Title: EchoingECG: An Electrocardiogram Cross-Modal Model for Echocardiogram Tasks
Abstract:
Electrocardiogram (ECG) is a widely used tool for assessing cardiac function due to its low cost and accessibility. Emergent research shows that ECGs can help make predictions on key outcomes traditionally derived from more complex modalities such as echocardiograms (ECHO), enabling the use of ECGs as a more accessible method to predict broader measurements of cardiac function. ECHO, in particular, are of great importance because they require considerable hospital resources while playing a key role in clinical cardiac assessment. To aid this use case, we introduce EchoingECG, a probabilistic student-teacher model that leverages uncertainty-aware ECG embeddings and ECHO supervision to improve ECG-based cardiac function prediction. Our approach integrates Probabilistic Cross-Modal Embeddings (PCME++), a probabilistic contrastive framework, with ECHO-CLIP, a vision-language pre-trained model trained on ECHO-text pairs, to distill ECHO knowledge into ECG representations. Through experiments and external validation, we showed that EchoingECG outperforms state-of-the-art foundation ECG models in zero-shot, few-shot, and fine-tune settings for ECHO predictions based on ECG. We also highlighted that variance estimation (enabled through our method) enhanced our understanding of model performance by identifying underlying regions of uncertainty within ECGs. The code is available: https://github.com/mcintoshML/EchoingECG.

Authors:Jia Jun Cheng Xian, Muchen Li, Haotian Yang, Xin Tao, Pengfei Wan, Leonid Sigal, Renjie Liao
Title: Free Lunch Alignment of Text-to-Image Diffusion Models without Preference Image Pairs
Abstract:
Recent advances in diffusion-based text-to-image (T2I) models have led to remarkable success in generating high-quality images from textual prompts. However, ensuring accurate alignment between the text and the generated image remains a significant challenge for state-of-the-art diffusion models. To address this, existing studies employ reinforcement learning with human feedback (RLHF) to align T2I outputs with human preferences. These methods, however, either rely directly on paired image preference data or require a learned reward function, both of which depend heavily on costly, high-quality human annotations and thus face scalability limitations. In this work, we introduce Text Preference Optimization (TPO), a framework that enables "free-lunch" alignment of T2I models, achieving alignment without the need for paired image preference data. TPO works by training the model to prefer matched prompts over mismatched prompts, which are constructed by perturbing original captions using a large language model. Our framework is general and compatible with existing preference-based algorithms. We extend both DPO and KTO to our setting, resulting in TDPO and TKTO. Quantitative and qualitative evaluations across multiple benchmarks show that our methods consistently outperform their original counterparts, delivering better human preference scores and improved text-to-image alignment. Our Open-source code is available at https://github.com/DSL-Lab/T2I-Free-Lunch-Alignment.

Authors:Xinyu Pu, Hongsong Wang, Jie Gui, Pan Zhou
Title: Dragging with Geometry: From Pixels to Geometry-Guided Image Editing
Abstract:
Interactive point-based image editing serves as a controllable editor, enabling precise and flexible manipulation of image content. However, most drag-based methods operate primarily on the 2D pixel plane with limited use of 3D cues. As a result, they often produce imprecise and inconsistent edits, particularly in geometry-intensive scenarios such as rotations and perspective transformations. To address these limitations, we propose a novel geometry-guided drag-based image editing method - GeoDrag, which addresses three key challenges: 1) incorporating 3D geometric cues into pixel-level editing, 2) mitigating discontinuities caused by geometry-only guidance, and 3) resolving conflicts arising from multi-point dragging. Built upon a unified displacement field that jointly encodes 3D geometry and 2D spatial priors, GeoDrag enables coherent, high-fidelity, and structure-consistent editing in a single forward pass. In addition, a conflict-free partitioning strategy is introduced to isolate editing regions, effectively preventing interference and ensuring consistency. Extensive experiments across various editing scenarios validate the effectiveness of our method, showing superior precision, structural consistency, and reliable multi-point editability. The code will be available on https://github.com/xinyu-pu/GeoDrag .

Authors:Shunpeng Chen, Changwei Wang, Rongtao Xu, Xingtian Pei, Yukun Song, Jinzhou Lin, Wenhao Xu, Jingyi Zhang, Li Guo, Shibiao Xu
Title: SAGE: Spatial-visual Adaptive Graph Exploration for Visual Place Recognition
Abstract:
Visual Place Recognition (VPR) requires robust retrieval of geotagged images despite large appearance, viewpoint, and environmental variation. Prior methods focus on descriptor fine-tuning or fixed sampling strategies yet neglect the dynamic interplay between spatial context and visual similarity during training. We present SAGE (Spatial-visual Adaptive Graph Exploration), a unified training pipeline that enhances granular spatial-visual discrimination by jointly improving local feature aggregation, organize samples during training, and hard sample mining. We introduce a lightweight Soft Probing module that learns residual weights from training data for patch descriptors before bilinear aggregation, boosting distinctive local cues. During training we reconstruct an online geo-visual graph that fuses geographic proximity and current visual similarity so that candidate neighborhoods reflect the evolving embedding landscape. To concentrate learning on the most informative place neighborhoods, we seed clusters from high-affinity anchors and iteratively expand them with a greedy weighted clique expansion sampler. Implemented with a frozen DINOv2 backbone and parameter-efficient fine-tuning, SAGE achieves SOTA across eight benchmarks. It attains 98.9%, 95.8%, 94.5%, and 96.0% Recall@1 on SPED, Pitts30k-test, MSLS-val, and Nordland, respectively. Notably, our method obtains 100% Recall@10 on SPED only using 4096D global descriptors. Code and model will be available at: https://github.com/chenshunpeng/SAGE.

Authors:Tingyu Shi, Fan Lyu, Shaoliang Peng
Title: Annotation-Efficient Active Test-Time Adaptation with Conformal Prediction
Abstract:
Active Test-Time Adaptation (ATTA) improves model robustness under domain shift by selectively querying human annotations at deployment, but existing methods use heuristic uncertainty measures and suffer from low data selection efficiency, wasting human annotation budget. We propose Conformal Prediction Active TTA (CPATTA), which first brings principled, coverage-guaranteed uncertainty into ATTA. CPATTA employs smoothed conformal scores with a top-K certainty measure, an online weight-update algorithm driven by pseudo coverage, a domain-shift detector that adapts human supervision, and a staged update scheme balances human-labeled and model-labeled data. Extensive experiments demonstrate that CPATTA consistently outperforms the state-of-the-art ATTA methods by around 5% in accuracy. Our code and datasets are available at https://github.com/tingyushi/CPATTA.

Authors:Kaiyu Li, Zixuan Jiang, Xiangyong Cao, Jiayu Wang, Yuchen Xiao, Deyu Meng, Zhi Wang
Title: DescribeEarth: Describe Anything for Remote Sensing Images
Abstract:
Automated textual description of remote sensing images is crucial for unlocking their full potential in diverse applications, from environmental monitoring to urban planning and disaster management. However, existing studies in remote sensing image captioning primarily focus on the image level, lacking object-level fine-grained interpretation, which prevents the full utilization and transformation of the rich semantic and structural information contained in remote sensing images. To address this limitation, we propose Geo-DLC, a novel task of object-level fine-grained image captioning for remote sensing. To support this task, we construct DE-Dataset, a large-scale dataset contains 25 categories and 261,806 annotated instances with detailed descriptions of object attributes, relationships, and contexts. Furthermore, we introduce DE-Benchmark, a LLM-assisted question-answering based evaluation suite designed to systematically measure model capabilities on the Geo-DLC task. We also present DescribeEarth, a Multi-modal Large Language Model (MLLM) architecture explicitly designed for Geo-DLC, which integrates a scale-adaptive focal strategy and a domain-guided fusion module leveraging remote sensing vision-language model features to encode high-resolution details and remote sensing category priors while maintaining global context. Our DescribeEarth model consistently outperforms state-of-the-art general MLLMs on DE-Benchmark, demonstrating superior factual accuracy, descriptive richness, and grammatical soundness, particularly in capturing intrinsic object features and surrounding environmental attributes across simple, complex, and even out-of-distribution remote sensing scenarios. All data, code and weights are released at https://github.com/earth-insights/DescribeEarth.

Authors:Qinsi Wang, Bo Liu, Tianyi Zhou, Jing Shi, Yueqian Lin, Yiran Chen, Hai Helen Li, Kun Wan, Wentian Zhao
Title: Vision-Zero: Scalable VLM Self-Improvement via Strategic Gamified Self-Play
Abstract:
Although reinforcement learning (RL) can effectively enhance the reasoning capabilities of vision-language models (VLMs), current methods remain heavily dependent on labor-intensive datasets that require extensive manual construction and verification, leading to extremely high training costs and consequently constraining the practical deployment of VLMs. To address this challenge, we propose Vision-Zero, a domain-agnostic framework enabling VLM self-improvement through competitive visual games generated from arbitrary image pairs. Specifically, Vision-Zero encompasses three main attributes: (1) Strategic Self-Play Framework: Vision-Zero trains VLMs in "Who Is the Spy"-style games, where the models engage in strategic reasoning and actions across multiple roles. Through interactive gameplay, models autonomously generate their training data without human annotation. (2) Gameplay from Arbitrary Images: Unlike existing gamified frameworks, Vision-Zero can generate games from arbitrary images, thereby enhancing the model's reasoning ability across diverse domains and showing strong generalization to different tasks. We demonstrate this versatility using three distinct types of image datasets: CLEVR-based synthetic scenes, charts, and real-world images. (3) Sustainable Performance Gain: We introduce Iterative Self-Play Policy Optimization (Iterative-SPO), a novel training algorithm that alternates between Self-Play and reinforcement learning with verifiable rewards (RLVR), mitigating the performance plateau often seen in self-play-only training and achieving sustained long-term improvements. Despite using label-free data, Vision-Zero achieves state-of-the-art performance on reasoning, chart question answering, and vision-centric understanding tasks, surpassing other annotation-based methods. Models and code has been released at https://github.com/wangqinsi1/Vision-Zero.

Authors:Yuyou Zhang, Radu Corcodel, Chiori Hori, Anoop Cherian, Ding Zhao
Title: SpinBench: Perspective and Rotation as a Lens on Spatial Reasoning in VLMs
Abstract:
We present SpinBench, a cognitively grounded diagnostic benchmark for evaluating spatial reasoning in vision language models (VLMs). SpinBench is designed around the core challenge of spatial reasoning: perspective taking, the ability to reason about how scenes and object relations change under viewpoint transformation. Since perspective taking requires multiple cognitive capabilities, such as recognizing objects across views, relative positions grounding, and mentally simulating transformations, SpinBench introduces a set of fine-grained diagnostic categories. Our categories target translation, rotation, object relative pose, and viewpoint change, and are progressively structured so that single-object simpler tasks scaffold toward the most demanding multi-object perspective-taking setting. We evaluate 37 state-of-the-art VLMs, both proprietary and open source. Results reveal systematic weaknesses: strong egocentric bias, poor rotational understanding, and inconsistencies under symmetrical and syntactic reformulations. Scaling analysis shows both smooth improvements and emergent capabilities. While human subjects achieve high accuracy (91.2\%), task difficulty as measured by human response time shows strong correlation with VLM accuracy, indicating that SpinBench captures spatial reasoning challenges shared across humans and VLMs. We believe SpinBench provides critical insights into spatial reasoning in VLMs and highlights key gaps in their ability to reason about physical space. Our website can be found at https://spinbench25.github.io/.

Authors:Paul Gavrikov, Wei Lin, M. Jehanzeb Mirza, Soumya Jahagirdar, Muhammad Huzaifa, Sivan Doveh, Serena Yeung-Levy, James Glass, Hilde Kuehne
Title: VisualOverload: Probing Visual Understanding of VLMs in Really Dense Scenes
Abstract:
Is basic visual understanding really solved in state-of-the-art VLMs? We present VisualOverload, a slightly different visual question answering (VQA) benchmark comprising 2,720 question-answer pairs, with privately held ground-truth responses. Unlike prior VQA datasets that typically focus on near global image understanding, VisualOverload challenges models to perform simple, knowledge-free vision tasks in densely populated (or, overloaded) scenes. Our dataset consists of high-resolution scans of public-domain paintings that are populated with multiple figures, actions, and unfolding subplots set against elaborately detailed backdrops. We manually annotated these images with questions across six task categories to probe for a thorough understanding of the scene. We hypothesize that current benchmarks overestimate the performance of VLMs, and encoding and reasoning over details is still a challenging task for them, especially if they are confronted with densely populated scenes. Indeed, we observe that even the best model (o3) out of 37 tested models only achieves 19.6% accuracy on our hardest test split and overall 69.5% accuracy on all questions. Beyond a thorough evaluation, we complement our benchmark with an error analysis that reveals multiple failure modes, including a lack of counting skills, failure in OCR, and striking logical inconsistencies under complex tasks. Altogether, VisualOverload exposes a critical gap in current vision models and offers a crucial resource for the community to develop better models. Benchmark: http://paulgavrikov.github.io/visualoverload

Authors:Liangjian Wen, Qun Dai, Jianzhuang Liu, Jiangtao Zheng, Yong Dai, Dongkai Wang, Zhao Kang, Jun Wang, Zenglin Xu, Jiang Duan
Title: InfMasking: Unleashing Synergistic Information by Contrastive Multimodal Interactions
Abstract:
In multimodal representation learning, synergistic interactions between modalities not only provide complementary information but also create unique outcomes through specific interaction patterns that no single modality could achieve alone. Existing methods may struggle to effectively capture the full spectrum of synergistic information, leading to suboptimal performance in tasks where such interactions are critical. This is particularly problematic because synergistic information constitutes the fundamental value proposition of multimodal representation. To address this challenge, we introduce InfMasking, a contrastive synergistic information extraction method designed to enhance synergistic information through an Infinite Masking strategy. InfMasking stochastically occludes most features from each modality during fusion, preserving only partial information to create representations with varied synergistic patterns. Unmasked fused representations are then aligned with masked ones through mutual information maximization to encode comprehensive synergistic information. This infinite masking strategy enables capturing richer interactions by exposing the model to diverse partial modality combinations during training. As computing mutual information estimates with infinite masking is computationally prohibitive, we derive an InfMasking loss to approximate this calculation. Through controlled experiments, we demonstrate that InfMasking effectively enhances synergistic information between modalities. In evaluations on large-scale real-world datasets, InfMasking achieves state-of-the-art performance across seven benchmarks. Code is released at https://github.com/brightest66/InfMasking.

Authors:Yang Liu, Chuanchen Luo, Zimo Tang, Junran Peng, Zhaoxiang Zhang
Title: VGGT-X: When VGGT Meets Dense Novel View Synthesis
Abstract:
We study the problem of applying 3D Foundation Models (3DFMs) to dense Novel View Synthesis (NVS). Despite significant progress in Novel View Synthesis powered by NeRF and 3DGS, current approaches remain reliant on accurate 3D attributes (e.g., camera poses and point clouds) acquired from Structure-from-Motion (SfM), which is often slow and fragile in low-texture or low-overlap captures. Recent 3DFMs showcase orders of magnitude speedup over the traditional pipeline and great potential for online NVS. But most of the validation and conclusions are confined to sparse-view settings. Our study reveals that naively scaling 3DFMs to dense views encounters two fundamental barriers: dramatically increasing VRAM burden and imperfect outputs that degrade initialization-sensitive 3D training. To address these barriers, we introduce VGGT-X, incorporating a memory-efficient VGGT implementation that scales to 1,000+ images, an adaptive global alignment for VGGT output enhancement, and robust 3DGS training practices. Extensive experiments show that these measures substantially close the fidelity gap with COLMAP-initialized pipelines, achieving state-of-the-art results in dense COLMAP-free NVS and pose estimation. Additionally, we analyze the causes of remaining gaps with COLMAP-initialized rendering, providing insights for the future development of 3D foundation models and dense NVS. Our project page is available at https://dekuliutesla.github.io/vggt-x.github.io/

Authors:Penghao Wu, Yushan Zhang, Haiwen Diao, Bo Li, Lewei Lu, Ziwei Liu
Title: Visual Jigsaw Post-Training Improves MLLMs
Abstract:
Reinforcement learning based post-training has recently emerged as a powerful paradigm for enhancing the alignment and reasoning capabilities of multimodal large language models (MLLMs). While vision-centric post-training is crucial for enhancing MLLMs' intrinsic understanding of visual signals, current post-training paradigms are predominantly text-centric, where dense visual inputs are only leveraged to extract sparse cues for text-based reasoning. There exist a few approaches in this direction, however, they often still rely on text as an intermediate mediator or introduce additional visual generative designs. In this work, we introduce Visual Jigsaw, a generic self-supervised post-training framework designed to strengthen visual understanding in MLLMs. Visual Jigsaw is formulated as a general ordering task: visual inputs are partitioned, shuffled, and the model must reconstruct the visual information by producing the correct permutation in natural language. This naturally aligns with reinforcement learning from verifiable rewards (RLVR), requires no additional visual generative components, and derives its supervisory signal automatically without any annotations. We instantiate Visual Jigsaw across three visual modalities, including images, videos, and 3D data. Extensive experiments demonstrate substantial improvements in fine-grained perception, temporal reasoning, and 3D spatial understanding. Our findings highlight the potential of self-supervised vision-centric tasks in post-training MLLMs and aim to inspire further research on vision-centric pretext designs. Project Page: https://penghao-wu.github.io/visual_jigsaw/

Authors:Yunyang Ge, Xinhua Cheng, Chengshu Zhao, Xianyi He, Shenghai Yuan, Bin Lin, Bin Zhu, Li Yuan
Title: FlashI2V: Fourier-Guided Latent Shifting Prevents Conditional Image Leakage in Image-to-Video Generation
Abstract:
In Image-to-Video (I2V) generation, a video is created using an input image as the first-frame condition. Existing I2V methods concatenate the full information of the conditional image with noisy latents to achieve high fidelity. However, the denoisers in these methods tend to shortcut the conditional image, which is known as conditional image leakage, leading to performance degradation issues such as slow motion and color inconsistency. In this work, we further clarify that conditional image leakage leads to overfitting to in-domain data and decreases the performance in out-of-domain scenarios. Moreover, we introduce Fourier-Guided Latent Shifting I2V, named FlashI2V, to prevent conditional image leakage. Concretely, FlashI2V consists of: (1) Latent Shifting. We modify the source and target distributions of flow matching by subtracting the conditional image information from the noisy latents, thereby incorporating the condition implicitly. (2) Fourier Guidance. We use high-frequency magnitude features obtained by the Fourier Transform to accelerate convergence and enable the adjustment of detail levels in the generated video. Experimental results show that our method effectively overcomes conditional image leakage and achieves the best generalization and performance on out-of-domain data among various I2V paradigms. With only 1.3B parameters, FlashI2V achieves a dynamic degree score of 53.01 on Vbench-I2V, surpassing CogVideoX1.5-5B-I2V and Wan2.1-I2V-14B-480P. Github page: https://pku-yuangroup.github.io/FlashI2V/

Authors:Shuoshuo Zhang, Zijian Li, Yizhen Zhang, Jingjing Fu, Lei Song, Jiang Bian, Jun Zhang, Yujiu Yang, Rui Wang
Title: PixelCraft: A Multi-Agent System for High-Fidelity Visual Reasoning on Structured Images
Abstract:
Structured images (e.g., charts and geometric diagrams) remain challenging for multimodal large language models (MLLMs), as perceptual slips can cascade into erroneous conclusions. Intermediate visual cues can steer reasoning; however, existing cue-based methods are constrained with low-fidelity image processing and linear, rigid reasoning patterns, limiting their effectiveness on complex structured-image tasks. In this paper, we propose PixelCraft, a novel multi-agent system for high-fidelity image processing and flexible visual reasoning on structured images. The system comprises a dispatcher, a planner, a reasoner, critics, and a set of visual tool agents. To achieve high-fidelity processing, we construct a high-quality corpus and fine-tune an MLLM into a grounding model, whose pixel-level localizations are integrated with traditional computer vision (CV) algorithms in tool agents. Building on this foundation, PixelCraft facilitates flexible visual reasoning through a dynamic three-stage workflow of tool selection, agent discussion, and self-criticism. Moreover, unlike prior linear reasoning patterns that simply append historical images, PixelCraft maintains an image memory to allow the planner to adaptively revisit earlier visual steps, explore alternative reasoning branches, and dynamically adjust the reasoning trajectory during discussion. Extensive experiments on challenging chart and geometry benchmarks demonstrate that PixelCraft significantly improves visual reasoning performance for advanced MLLMs, setting a new standard for structured image reasoning. Our code will be available at https://github.com/microsoft/PixelCraft.

Authors:Junyu Chen, Wenkun He, Yuchao Gu, Yuyang Zhao, Jincheng Yu, Junsong Chen, Dongyun Zou, Yujun Lin, Zhekai Zhang, Muyang Li, Haocheng Xi, Ligeng Zhu, Enze Xie, Song Han, Han Cai
Title: DC-VideoGen: Efficient Video Generation with Deep Compression Video Autoencoder
Abstract:
We introduce DC-VideoGen, a post-training acceleration framework for efficient video generation. DC-VideoGen can be applied to any pre-trained video diffusion model, improving efficiency by adapting it to a deep compression latent space with lightweight fine-tuning. The framework builds on two key innovations: (i) a Deep Compression Video Autoencoder with a novel chunk-causal temporal design that achieves 32x/64x spatial and 4x temporal compression while preserving reconstruction quality and generalization to longer videos; and (ii) AE-Adapt-V, a robust adaptation strategy that enables rapid and stable transfer of pre-trained models into the new latent space. Adapting the pre-trained Wan-2.1-14B model with DC-VideoGen requires only 10 GPU days on the NVIDIA H100 GPU. The accelerated models achieve up to 14.8x lower inference latency than their base counterparts without compromising quality, and further enable 2160x3840 video generation on a single GPU. Code: https://github.com/dc-ai-projects/DC-VideoGen.

Authors:Wenkun He, Yuchao Gu, Junyu Chen, Dongyun Zou, Yujun Lin, Zhekai Zhang, Haocheng Xi, Muyang Li, Ligeng Zhu, Jincheng Yu, Junsong Chen, Enze Xie, Song Han, Han Cai
Title: DC-Gen: Post-Training Diffusion Acceleration with Deeply Compressed Latent Space
Abstract:
Existing text-to-image diffusion models excel at generating high-quality images, but face significant efficiency challenges when scaled to high resolutions, like 4K image generation. While previous research accelerates diffusion models in various aspects, it seldom handles the inherent redundancy within the latent space. To bridge this gap, this paper introduces DC-Gen, a general framework that accelerates text-to-image diffusion models by leveraging a deeply compressed latent space. Rather than a costly training-from-scratch approach, DC-Gen uses an efficient post-training pipeline to preserve the quality of the base model. A key challenge in this paradigm is the representation gap between the base model's latent space and a deeply compressed latent space, which can lead to instability during direct fine-tuning. To overcome this, DC-Gen first bridges the representation gap with a lightweight embedding alignment training. Once the latent embeddings are aligned, only a small amount of LoRA fine-tuning is needed to unlock the base model's inherent generation quality. We verify DC-Gen's effectiveness on SANA and FLUX.1-Krea. The resulting DC-Gen-SANA and DC-Gen-FLUX models achieve quality comparable to their base models but with a significant speedup. Specifically, DC-Gen-FLUX reduces the latency of 4K image generation by 53x on the NVIDIA H100 GPU. When combined with NVFP4 SVDQuant, DC-Gen-FLUX generates a 4K image in just 3.5 seconds on a single NVIDIA 5090 GPU, achieving a total latency reduction of 138x compared to the base FLUX.1-Krea model. Code: https://github.com/dc-ai-projects/DC-Gen.

Authors:Bingkui Tong, Jiaer Xia, Kaiyang Zhou
Title: Mitigating Hallucination in Multimodal LLMs with Layer Contrastive Decoding
Abstract:
Multimodal Large Language Models (MLLMs) have shown impressive perception and reasoning capabilities, yet they often suffer from hallucinations -- generating outputs that are linguistically coherent but inconsistent with the context of the input image, including inaccuracies in objects, attributes, and relations. To address this challenge, we propose a simple approach called Layer Contrastive Decoding (LayerCD). Our design is motivated by the observation that shallow visual features are much more likely than deep visual features to cause an MLLM to hallucinate as they only capture biased, low-level information that is insufficient for high-level reasoning. Therefore, LayerCD aims to filter out hallucinations by contrasting the output distributions generated from visual features of different levels, specifically those from the shallow and deep layers of the vision encoder, respectively. We conduct extensive experiments on two hallucination benchmarks and show that LayerCD significantly outperforms current state-of-the-art. The code for LayerCD is available at https://github.com/maifoundations/LayerCD .

Authors:Yuxin Jiang, Yuchao Gu, Yiren Song, Ivor Tsang, Mike Zheng Shou
Title: Personalized Vision via Visual In-Context Learning
Abstract:
Modern vision models, trained on large-scale annotated datasets, excel at predefined tasks but struggle with personalized vision -- tasks defined at test time by users with customized objects or novel objectives. Existing personalization approaches rely on costly fine-tuning or synthetic data pipelines, which are inflexible and restricted to fixed task formats. Visual in-context learning (ICL) offers a promising alternative, yet prior methods confine to narrow, in-domain tasks and fail to generalize to open-ended personalization. We introduce Personalized In-Context Operator (PICO), a simple four-panel framework that repurposes diffusion transformers as visual in-context learners. Given a single annotated exemplar, PICO infers the underlying transformation and applies it to new inputs without retraining. To enable this, we construct VisRel, a compact yet diverse tuning dataset, showing that task diversity, rather than scale, drives robust generalization. We further propose an attention-guided seed scorer that improves reliability via efficient inference scaling. Extensive experiments demonstrate that PICO (i) surpasses fine-tuning and synthetic-data baselines, (ii) flexibly adapts to novel user-defined tasks, and (iii) generalizes across both recognition and generation.

Authors:Kunhao Liu, Wenbo Hu, Jiale Xu, Ying Shan, Shijian Lu
Title: Rolling Forcing: Autoregressive Long Video Diffusion in Real Time
Abstract:
Streaming video generation, as one fundamental component in interactive world models and neural game engines, aims to generate high-quality, low-latency, and temporally coherent long video streams. However, most existing work suffers from severe error accumulation that often significantly degrades the generated stream videos over long horizons. We design Rolling Forcing, a novel video generation technique that enables streaming long videos with minimal error accumulation. Rolling Forcing comes with three novel designs. First, instead of iteratively sampling individual frames, which accelerates error propagation, we design a joint denoising scheme that simultaneously denoises multiple frames with progressively increasing noise levels. This design relaxes the strict causality across adjacent frames, effectively suppressing error growth. Second, we introduce the attention sink mechanism into the long-horizon stream video generation task, which allows the model to keep key value states of initial frames as a global context anchor and thereby enhances long-term global consistency. Third, we design an efficient training algorithm that enables few-step distillation over largely extended denoising windows. This algorithm operates on non-overlapping windows and mitigates exposure bias conditioned on self-generated histories. Extensive experiments show that Rolling Forcing enables real-time streaming generation of multi-minute videos on a single GPU, with substantially reduced error accumulation.

Authors:Fan Yuan, Yuchen Yan, Yifan Jiang, Haoran Zhao, Tao Feng, Jinyan Chen, Yanwei Lou, Wenqi Zhang, Yongliang Shen, Weiming Lu, Jun Xiao, Yueting Zhuang
Title: GSM8K-V: Can Vision Language Models Solve Grade School Math Word Problems in Visual Contexts
Abstract:
Vision language models (VLMs) achieve unified modeling of images and text, enabling them to accomplish complex real-world tasks through perception, planning, and reasoning. Among these tasks, reasoning is particularly representative, with mathematical reasoning serving as a prominent example. It highlights the high-level capability of VLMs to comprehend mathematical information in images and to perform sophisticated reasoning. Recently, numerous visual mathematical reasoning benchmarks have been proposed, but they are often restricted to geometry, lack coverage of math word problems, and rarely assess reasoning across multiple images. To address these gaps, we introduce GSM8K-V, a purely visual multi-image mathematical reasoning benchmark. GSM8K-V is built by systematically mapping each sample from the widely used text-based GSM8K into visual form. Through a carefully designed automated image-generation pipeline combined with meticulous human annotation, we curate 1,319 high-quality samples. We evaluate a wide range of open-source and closed-source models on GSM8K-V. Results show that although existing VLMs have nearly saturated performance on text-based GSM8K, there remains substantial room for improvement on GSM8K-V. For example, the best-performing model, Gemini-2.5-Pro, achieves 95.22% accuracy on GSM8K but only 46.93% on GSM8K-V. We conduct a comprehensive analysis of GSM8K-V, examining the limitations of current models as well as potential directions for improvement. GSM8K-V offers a new perspective on visual mathematical reasoning and establishes a benchmark to guide the development of more robust and generalizable VLMs.

Authors:Zhaozhi Wang, Tong Zhang, Mingyue Guo, Yaowei Wang, Qixiang Ye
Title: VideoAnchor: Reinforcing Subspace-Structured Visual Cues for Coherent Visual-Spatial Reasoning
Abstract:
Multimodal Large Language Models (MLLMs) have achieved impressive progress in vision-language alignment, yet they remain limited in visual-spatial reasoning. We first identify that this limitation arises from the attention mechanism: visual tokens are overshadowed by language tokens, preventing the model from consistently recognizing the same visual cues across frames. To address this challenge, we draw a novel connection between the self-expressiveness property in sparse subspace clustering and the attention mechanism in Transformers. Building on this insight, we propose VideoAnchor, a plug-and-play module that leverages subspace affinities to reinforce visual cues across frames without retraining, effectively anchoring attention to shared visual structures. Extensive experiments across benchmarks and backbone models show consistent performance gains -- $e.g.$, 3.2% and 4.6% improvements on VSI-Bench and Video-MME (spatial-related tasks) with InternVL2-8B and Qwen2.5VL-72B -- while qualitative analyses demonstrate more coherent subspace partitions and stronger visual grounding. Our codes will be made public available at https://github.com/feufhd/VideoAnchor.

Authors:Tomoyuki Suzuki, Kang-Jun Liu, Naoto Inoue, Kota Yamaguchi
Title: LayerD: Decomposing Raster Graphic Designs into Layers
Abstract:
Designers craft and edit graphic designs in a layer representation, but layer-based editing becomes impossible once composited into a raster image. In this work, we propose LayerD, a method to decompose raster graphic designs into layers for re-editable creative workflow. LayerD addresses the decomposition task by iteratively extracting unoccluded foreground layers. We propose a simple yet effective refinement approach taking advantage of the assumption that layers often exhibit uniform appearance in graphic designs. As decomposition is ill-posed and the ground-truth layer structure may not be reliable, we develop a quality metric that addresses the difficulty. In experiments, we show that LayerD successfully achieves high-quality decomposition and outperforms baselines. We also demonstrate the use of LayerD with state-of-the-art image generators and layer-based editing.

Authors:Chengyao Wang, Zhisheng Zhong, Bohao Peng, Senqiao Yang, Yuqi Liu, Haokun Gui, Bin Xia, Jingyao Li, Bei Yu, Jiaya Jia
Title: MGM-Omni: Scaling Omni LLMs to Personalized Long-Horizon Speech
Abstract:
We present MGM-Omni, a unified Omni LLM for omni-modal understanding and expressive, long-horizon speech generation. Unlike cascaded pipelines that isolate speech synthesis, MGM-Omni adopts a "brain-mouth" design with a dual-track, token-based architecture that cleanly decouples multimodal reasoning from real-time speech generation. This design enables efficient cross-modal interaction and low-latency, streaming speech generation. For understanding, a unified training strategy coupled with a dual audio encoder design enables long-form audio perception across diverse acoustic conditions. For generation, a chunk-based parallel decoding scheme narrows the text speech token-rate gap, accelerating inference and supporting streaming zero-shot voice cloning with stable timbre over extended durations. Compared to concurrent work, MGM-Omni achieves these capabilities with markedly data-efficient training. Extensive experiments demonstrate that MGM-Omni outperforms existing open source models in preserving timbre identity across extended sequences, producing natural and context-aware speech, and achieving superior long-form audio and omnimodal understanding. MGM-Omni establishes an efficient, end-to-end paradigm for omnimodal understanding and controllable, personalised long-horizon speech generation.

Authors:Jan Held, Renaud Vandeghen, Sanghyun Son, Daniel Rebain, Matheus Gadelha, Yi Zhou, Ming C. Lin, Marc Van Droogenbroeck, Andrea Tagliasacchi
Title: Triangle Splatting+: Differentiable Rendering with Opaque Triangles
Abstract:
Reconstructing 3D scenes and synthesizing novel views has seen rapid progress in recent years. Neural Radiance Fields demonstrated that continuous volumetric radiance fields can achieve high-quality image synthesis, but their long training and rendering times limit practicality. 3D Gaussian Splatting (3DGS) addressed these issues by representing scenes with millions of Gaussians, enabling real-time rendering and fast optimization. However, Gaussian primitives are not natively compatible with the mesh-based pipelines used in VR headsets, and real-time graphics applications. Existing solutions attempt to convert Gaussians into meshes through post-processing or two-stage pipelines, which increases complexity and degrades visual quality. In this work, we introduce Triangle Splatting+, which directly optimizes triangles, the fundamental primitive of computer graphics, within a differentiable splatting framework. We formulate triangle parametrization to enable connectivity through shared vertices, and we design a training strategy that enforces opaque triangles. The final output is immediately usable in standard graphics engines without post-processing. Experiments on the Mip-NeRF360 and Tanks & Temples datasets show that Triangle Splatting+achieves state-of-the-art performance in mesh-based novel view synthesis. Our method surpasses prior splatting approaches in visual fidelity while remaining efficient and fast to training. Moreover, the resulting semi-connected meshes support downstream applications such as physics-based simulation or interactive walkthroughs. The project page is https://trianglesplatting2.github.io/trianglesplatting2/.

Authors:AmirHossein Zamani, Bruno Roy, Arianna Rampini
Title: Unsupervised Representation Learning for 3D Mesh Parameterization with Semantic and Visibility Objectives
Abstract:
Recent 3D generative models produce high-quality textures for 3D mesh objects. However, they commonly rely on the heavy assumption that input 3D meshes are accompanied by manual mesh parameterization (UV mapping), a manual task that requires both technical precision and artistic judgment. Industry surveys show that this process often accounts for a significant share of asset creation, creating a major bottleneck for 3D content creators. Moreover, existing automatic methods often ignore two perceptually important criteria: (1) semantic awareness (UV charts should align semantically similar 3D parts across shapes) and (2) visibility awareness (cutting seams should lie in regions unlikely to be seen). To overcome these shortcomings and to automate the mesh parameterization process, we present an unsupervised differentiable framework that augments standard geometry-preserving UV learning with semantic- and visibility-aware objectives. For semantic-awareness, our pipeline (i) segments the mesh into semantic 3D parts, (ii) applies an unsupervised learned per-part UV-parameterization backbone, and (iii) aggregates per-part charts into a unified UV atlas. For visibility-awareness, we use ambient occlusion (AO) as an exposure proxy and back-propagate a soft differentiable AO-weighted seam objective to steer cutting seams toward occluded regions. By conducting qualitative and quantitative evaluations against state-of-the-art methods, we show that the proposed method produces UV atlases that better support texture generation and reduce perceptible seam artifacts compared to recent baselines. Our implementation code is publicly available at: https://github.com/AHHHZ975/Semantic-Visibility-UV-Param.

Authors:Dingning Liu, Haoyu Guo, Jingyi Zhou, Tong He
Title: BRIDGE -- Building Reinforcement-Learning Depth-to-Image Data Generation Engine for Monocular Depth Estimation
Abstract:
Monocular Depth Estimation (MDE) is a foundational task for computer vision. Traditional methods are limited by data scarcity and quality, hindering their robustness. To overcome this, we propose BRIDGE, an RL-optimized depth-to-image (D2I) generation framework that synthesizes over 20M realistic and geometrically accurate RGB images, each intrinsically paired with its ground truth depth, from diverse source depth maps. Then we train our depth estimation model on this dataset, employing a hybrid supervision strategy that integrates teacher pseudo-labels with ground truth depth for comprehensive and robust training. This innovative data generation and training paradigm enables BRIDGE to achieve breakthroughs in scale and domain diversity, consistently outperforming existing state-of-the-art approaches quantitatively and in complex scene detail capture, thereby fostering general and robust depth features. Code and models are available at https://dingning-liu.github.io/bridge.github.io/.

Authors:Huaizhi Qu, Xiao Wang, Gengwei Zhang, Jie Peng, Tianlong Chen
Title: GEM: 3D Gaussian Splatting for Efficient and Accurate Cryo-EM Reconstruction
Abstract:
Cryo-electron microscopy (cryo-EM) has become a central tool for high-resolution structural biology, yet the massive scale of datasets (often exceeding 100k particle images) renders 3D reconstruction both computationally expensive and memory intensive. Traditional Fourier-space methods are efficient but lose fidelity due to repeated transforms, while recent real-space approaches based on neural radiance fields (NeRFs) improve accuracy but incur cubic memory and computation overhead. Therefore, we introduce GEM, a novel cryo-EM reconstruction framework built on 3D Gaussian Splatting (3DGS) that operates directly in real-space while maintaining high efficiency. Instead of modeling the entire density volume, GEM represents proteins with compact 3D Gaussians, each parameterized by only 11 values. To further improve the training efficiency, we designed a novel gradient computation to 3D Gaussians that contribute to each voxel. This design substantially reduced both memory footprint and training cost. On standard cryo-EM benchmarks, GEM achieves up to 48% faster training and 12% lower memory usage compared to state-of-the-art methods, while improving local resolution by as much as 38.8%. These results establish GEM as a practical and scalable paradigm for cryo-EM reconstruction, unifying speed, efficiency, and high-resolution accuracy. Our code is available at https://github.com/UNITES-Lab/GEM.

Authors:Wenhao Li, Qiangchang Wang, Xianjing Meng, Zhibin Wu, Yilong Yin
Title: VT-FSL: Bridging Vision and Text with LLMs for Few-Shot Learning
Abstract:
Few-shot learning (FSL) aims to recognize novel concepts from only a few labeled support samples. Recent studies enhance support features by incorporating additional semantic information or designing complex semantic fusion modules. However, they still suffer from hallucinating semantics that contradict the visual evidence due to the lack of grounding in actual instances, resulting in noisy guidance and costly corrections. To address these issues, we propose a novel framework, bridging Vision and Text with LLMs for Few-Shot Learning (VT-FSL), which constructs precise cross-modal prompts conditioned on Large Language Models (LLMs) and support images, seamlessly integrating them through a geometry-aware alignment. It mainly consists of Cross-modal Iterative Prompting (CIP) and Cross-modal Geometric Alignment (CGA). Specifically, the CIP conditions an LLM on both class names and support images to generate precise class descriptions iteratively in a single structured reasoning pass. These descriptions not only enrich the semantic understanding of novel classes but also enable the zero-shot synthesis of semantically consistent images. The descriptions and synthetic images act respectively as complementary textual and visual prompts, providing high-level class semantics and low-level intra-class diversity to compensate for limited support data. Furthermore, the CGA jointly aligns the fused textual, support, and synthetic visual representations by minimizing the kernelized volume of the 3-dimensional parallelotope they span. It captures global and nonlinear relationships among all representations, enabling structured and consistent multimodal integration. The proposed VT-FSL method establishes new state-of-the-art performance across ten diverse benchmarks, including standard, cross-domain, and fine-grained few-shot learning scenarios. Code is available at https://github.com/peacelwh/VT-FSL.

Authors:Xiaoxiao Ma, Haibo Qiu, Guohui Zhang, Zhixiong Zeng, Siqi Yang, Lin Ma, Feng Zhao
Title: STAGE: Stable and Generalizable GRPO for Autoregressive Image Generation
Abstract:
Reinforcement learning has recently been explored to improve text-to-image generation, yet applying existing GRPO algorithms to autoregressive (AR) image models remains challenging. The instability of the training process easily disrupts the pretrained model capability during long runs, resulting in marginal gains, degraded image quality, and poor generalization. In this work, we revisit GRPO for AR image generation and identify two key issues: contradictory gradients from unnecessary tokens and unstable policy entropy dynamics. To address these, we introduce STAGE, a stable and generalizable framework that leverages two targeted solutions: 1) Advantage/KL reweighting. Similarity-aware reweighting to alleviate conflicting updates; and 2) Entropy reward. An entropy-based reward corresponding to reference model to stabilize learning. With the help of alleviating conflicts between tokens and an entropy reward for stabilizing training, we reduce disruption of the pretrained distribution and mitigate reward hacking, which in turn improves generalization and transfer better to other benchmarks. Experiments across multiple benchmarks show that STAGE consistently improves visual quality, stability, and cross-task generalization compared to baseline GRPO.

Authors:Mustansar Fiaz, Hiyam Debary, Paolo Fraccaro, Danda Paudel, Luc Van Gool, Fahad Khan, Salman Khan
Title: GeoVLM-R1: Reinforcement Fine-Tuning for Improved Remote Sensing Reasoning
Abstract:
Recent advances in reinforcement learning (RL) have delivered strong reasoning capabilities in natural image domains, yet their potential for Earth Observation (EO) remains largely unexplored. EO tasks introduce unique challenges, spanning referred object detection, image or region captioning, change detection, grounding, and temporal analysis, that demand task aware reasoning. We propose a novel post training framework that incorporates task aware rewards to enable effective adaptation of reasoning based RL models to diverse EO tasks. This training strategy enhances reasoning capabilities for remote sensing images, stabilizes optimization, and improves robustness. Extensive experiments across multiple EO benchmarks show consistent performance gains over state of the art generic and specialized vision language models. Code and models will be released publicly at https://mustansarfiaz.github.io/GeoVLM-R1/ .

Authors:Tooba Imtiaz, Lucy Chai, Kathryn Heal, Xuan Luo, Jungyeon Park, Jennifer Dy, John Flynn
Title: LVT: Large-Scale Scene Reconstruction via Local View Transformers
Abstract:
Large transformer models are proving to be a powerful tool for 3D vision and novel view synthesis. However, the standard Transformer's well-known quadratic complexity makes it difficult to scale these methods to large scenes. To address this challenge, we propose the Local View Transformer (LVT), a large-scale scene reconstruction and novel view synthesis architecture that circumvents the need for the quadratic attention operation. Motivated by the insight that spatially nearby views provide more useful signal about the local scene composition than distant views, our model processes all information in a local neighborhood around each view. To attend to tokens in nearby views, we leverage a novel positional encoding that conditions on the relative geometric transformation between the query and nearby views. We decode the output of our model into a 3D Gaussian Splat scene representation that includes both color and opacity view-dependence. Taken together, the Local View Transformer enables reconstruction of arbitrarily large, high-resolution scenes in a single forward pass. See our project page for results and interactive demos https://toobaimt.github.io/lvt/.

Authors:Yuyang Yin, HaoXiang Guo, Fangfu Liu, Mengyu Wang, Hanwen Liang, Eric Li, Yikai Wang, Xiaojie Jin, Yao Zhao, Yunchao Wei
Title: PanoWorld-X: Generating Explorable Panoramic Worlds via Sphere-Aware Video Diffusion
Abstract:
Generating a complete and explorable 360-degree visual world enables a wide range of downstream applications. While prior works have advanced the field, they remain constrained by either narrow field-of-view limitations, which hinder the synthesis of continuous and holistic scenes, or insufficient camera controllability that restricts free exploration by users or autonomous agents. To address this, we propose PanoWorld-X, a novel framework for high-fidelity and controllable panoramic video generation with diverse camera trajectories. Specifically, we first construct a large-scale dataset of panoramic video-exploration route pairs by simulating camera trajectories in virtual 3D environments via Unreal Engine. As the spherical geometry of panoramic data misaligns with the inductive priors from conventional video diffusion, we then introduce a Sphere-Aware Diffusion Transformer architecture that reprojects equirectangular features onto the spherical surface to model geometric adjacency in latent space, significantly enhancing visual fidelity and spatiotemporal continuity. Extensive experiments demonstrate that our PanoWorld-X achieves superior performance in various aspects, including motion range, control precision, and visual quality, underscoring its potential for real-world applications.

Authors:Haotian Dong, Wenjing Wang, Chen Li, Di Lin
Title: Wan-Alpha: High-Quality Text-to-Video Generation with Alpha Channel
Abstract:
RGBA video generation, which includes an alpha channel to represent transparency, is gaining increasing attention across a wide range of applications. However, existing methods often neglect visual quality, limiting their practical usability. In this paper, we propose Wan-Alpha, a new framework that generates transparent videos by learning both RGB and alpha channels jointly. We design an effective variational autoencoder (VAE) that encodes the alpha channel into the RGB latent space. Then, to support the training of our diffusion transformer, we construct a high-quality and diverse RGBA video dataset. Compared with state-of-the-art methods, our model demonstrates superior performance in visual quality, motion realism, and transparency rendering. Notably, our model can generate a wide variety of semi-transparent objects, glowing effects, and fine-grained details such as hair strands. The released model is available on our website: https://donghaotian123.github.io/Wan-Alpha/.

Authors:Tian Xia, Matthew Sinclair, Andreas Schuh, Fabio De Sousa Ribeiro, Raghav Mehta, Rajat Rasal, Esther Puyol-Antón, Samuel Gerber, Kersten Petersen, Michiel Schaap, Ben Glocker
Title: Segmentor-Guided Counterfactual Fine-Tuning for Locally Coherent and Targeted Image Synthesis
Abstract:
Counterfactual image generation is a powerful tool for augmenting training data, de-biasing datasets, and modeling disease. Current approaches rely on external classifiers or regressors to increase the effectiveness of subject-level interventions (e.g., changing the patient's age). For structure-specific interventions (e.g., changing the area of the left lung in a chest radiograph), we show that this is insufficient, and can result in undesirable global effects across the image domain. Previous work used pixel-level label maps as guidance, requiring a user to provide hypothetical segmentations which are tedious and difficult to obtain. We propose Segmentor-guided Counterfactual Fine-Tuning (Seg-CFT), which preserves the simplicity of intervening on scalar-valued, structure-specific variables while producing locally coherent and effective counterfactuals. We demonstrate the capability of generating realistic chest radiographs, and we show promising results for modeling coronary artery disease. Code: https://github.com/biomedia-mira/seg-cft.

Authors:Yu Ma, Guoliang Wei, Haihong Xiao, Yue Cheng
Title: HBSplat: Robust Sparse-View Gaussian Reconstruction with Hybrid-Loss Guided Depth and Bidirectional Warping
Abstract:
Novel View Synthesis (NVS) from sparse views presents a formidable challenge in 3D reconstruction, where limited multi-view constraints lead to severe overfitting, geometric distortion, and fragmented scenes. While 3D Gaussian Splatting (3DGS) delivers real-time, high-fidelity rendering, its performance drastically deteriorates under sparse inputs, plagued by floating artifacts and structural failures. To address these challenges, we introduce HBSplat, a unified framework that elevates 3DGS by seamlessly integrating robust structural cues, virtual view constraints, and occluded region completion. Our core contributions are threefold: a Hybrid-Loss Depth Estimation module that ensures multi-view consistency by leveraging dense matching priors and integrating reprojection, point propagation, and smoothness constraints; a Bidirectional Warping Virtual View Synthesis method that enforces substantially stronger constraints by creating high-fidelity virtual views through bidirectional depth-image warping and multi-view fusion; and an Occlusion-Aware Reconstruction component that recovers occluded areas using a depth-difference mask and a learning-based inpainting model. Extensive evaluations on LLFF, Blender, and DTU benchmarks validate that HBSplat sets a new state-of-the-art, achieving up to 21.13 dB PSNR and 0.189 LPIPS, while maintaining real-time inference. Code is available at: https://github.com/eternalland/HBSplat.

Authors:Jiuhong Xiao, Roshan Nayak, Ning Zhang, Daniel Tortei, Giuseppe Loianno
Title: ThermalGen: Style-Disentangled Flow-Based Generative Models for RGB-to-Thermal Image Translation
Abstract:
Paired RGB-thermal data is crucial for visual-thermal sensor fusion and cross-modality tasks, including important applications such as multi-modal image alignment and retrieval. However, the scarcity of synchronized and calibrated RGB-thermal image pairs presents a major obstacle to progress in these areas. To overcome this challenge, RGB-to-Thermal (RGB-T) image translation has emerged as a promising solution, enabling the synthesis of thermal images from abundant RGB datasets for training purposes. In this study, we propose ThermalGen, an adaptive flow-based generative model for RGB-T image translation, incorporating an RGB image conditioning architecture and a style-disentangled mechanism. To support large-scale training, we curated eight public satellite-aerial, aerial, and ground RGB-T paired datasets, and introduced three new large-scale satellite-aerial RGB-T datasets--DJI-day, Bosonplus-day, and Bosonplus-night--captured across diverse times, sensor types, and geographic regions. Extensive evaluations across multiple RGB-T benchmarks demonstrate that ThermalGen achieves comparable or superior translation performance compared to existing GAN-based and diffusion-based methods. To our knowledge, ThermalGen is the first RGB-T image translation model capable of synthesizing thermal images that reflect significant variations in viewpoints, sensor characteristics, and environmental conditions. Project page: http://xjh19971.github.io/ThermalGen

Authors:Zeyu Cai, Ziyang Li, Xiaoben Li, Boqian Li, Zeyu Wang, Zhenyu Zhang, Yuliang Xiu
Title: UP2You: Fast Reconstruction of Yourself from Unconstrained Photo Collections
Abstract:
We present UP2You, the first tuning-free solution for reconstructing high-fidelity 3D clothed portraits from extremely unconstrained in-the-wild 2D photos. Unlike previous approaches that require "clean" inputs (e.g., full-body images with minimal occlusions, or well-calibrated cross-view captures), UP2You directly processes raw, unstructured photographs, which may vary significantly in pose, viewpoint, cropping, and occlusion. Instead of compressing data into tokens for slow online text-to-3D optimization, we introduce a data rectifier paradigm that efficiently converts unconstrained inputs into clean, orthogonal multi-view images in a single forward pass within seconds, simplifying the 3D reconstruction. Central to UP2You is a pose-correlated feature aggregation module (PCFA), that selectively fuses information from multiple reference images w.r.t. target poses, enabling better identity preservation and nearly constant memory footprint, with more observations. We also introduce a perceiver-based multi-reference shape predictor, removing the need for pre-captured body templates. Extensive experiments on 4D-Dress, PuzzleIOI, and in-the-wild captures demonstrate that UP2You consistently surpasses previous methods in both geometric accuracy (Chamfer-15%, P2S-18% on PuzzleIOI) and texture fidelity (PSNR-21%, LPIPS-46% on 4D-Dress). UP2You is efficient (1.5 minutes per person), and versatile (supports arbitrary pose control, and training-free multi-garment 3D virtual try-on), making it practical for real-world scenarios where humans are casually captured. Both models and code will be released to facilitate future research on this underexplored task. Project Page: https://zcai0612.github.io/UP2You

Authors:Hongyang Zhang, Yinhao Liu, Zhenyu Kuang
Title: SkyLink: Unifying Street-Satellite Geo-Localization via UAV-Mediated 3D Scene Alignment
Abstract:
Cross-view geo-localization aims at establishing location correspondences between different viewpoints. Existing approaches typically learn cross-view correlations through direct feature similarity matching, often overlooking semantic degradation caused by extreme viewpoint disparities. To address this unique problem, we focus on robust feature retrieval under viewpoint variation and propose the novel SkyLink method. We firstly utilize the Google Retrieval Enhancement Module to perform data enhancement on street images, which mitigates the occlusion of the key target due to restricted street viewpoints. The Patch-Aware Feature Aggregation module is further adopted to emphasize multiple local feature aggregations to ensure the consistent feature extraction across viewpoints. Meanwhile, we integrate the 3D scene information constructed from multi-scale UAV images as a bridge between street and satellite viewpoints, and perform feature alignment through self-supervised and cross-view contrastive learning. Experimental results demonstrate robustness and generalization across diverse urban scenarios, which achieve 25.75$\%$ Recall@1 accuracy on University-1652 in the UAVM2025 Challenge. Code will be released at https://github.com/HRT00/CVGL-3D.

Authors:Yizhuo Ding, Mingkang Chen, Zhibang Feng, Tong Xiao, Wanying Qu, Wenqi Shao, Yanwei Fu
Title: VTPerception-R1: Enhancing Multimodal Reasoning via Explicit Visual and Textual Perceptual Grounding
Abstract:
Multimodal large language models (MLLMs) often struggle to ground reasoning in perceptual evidence. We present a systematic study of perception strategies-explicit, implicit, visual, and textual-across four multimodal benchmarks and two MLLMs. Our findings show that explicit perception, especially when paired with textual cues, consistently yields the best improvements, particularly for smaller models. Based on this insight, we propose VTPerception-R1, a unified two-stage framework that decouples perception from reasoning. Stage 1 introduces perception-augmented fine-tuning, and Stage 2 applies perception-aware reinforcement learning with novel visual, textual, and consistency rewards. Experiments demonstrate that VTPerception-R1 significantly improves reasoning accuracy and robustness across diverse tasks, offering a scalable and auditable solution for perception-grounded multimodal reasoning. Our code is available at: https://github.com/yizhuoDi/VTPerceprion-R1.

Authors:Jiaqi Chen, Xinhao Ji, Yuanyuan Gao, Hao Li, Yuning Gong, Yifei Liu, Dan Xu, Zhihang Zhong, Dingwen Zhang, Xiao Sun
Title: ExGS: Extreme 3D Gaussian Compression with Diffusion Priors
Abstract:
Neural scene representations, such as 3D Gaussian Splatting (3DGS), have enabled high-quality neural rendering; however, their large storage and transmission costs hinder deployment in resource-constrained environments. Existing compression methods either rely on costly optimization, which is slow and scene-specific, or adopt training-free pruning and quantization, which degrade rendering quality under high compression ratios. In contrast, recent data-driven approaches provide a promising direction to overcome this trade-off, enabling efficient compression while preserving high rendering quality. We introduce ExGS, a novel feed-forward framework that unifies Universal Gaussian Compression (UGC) with GaussPainter for Extreme 3DGS compression. UGC performs re-optimization-free pruning to aggressively reduce Gaussian primitives while retaining only essential information, whereas GaussPainter leverages powerful diffusion priors with mask-guided refinement to restore high-quality renderings from heavily pruned Gaussian scenes. Unlike conventional inpainting, GaussPainter not only fills in missing regions but also enhances visible pixels, yielding substantial improvements in degraded renderings. To ensure practicality, it adopts a lightweight VAE and a one-step diffusion design, enabling real-time restoration. Our framework can even achieve over 100X compression (reducing a typical 354.77 MB model to about 3.31 MB) while preserving fidelity and significantly improving image quality under challenging conditions. These results highlight the central role of diffusion priors in bridging the gap between extreme compression and high-quality neural rendering. Our code repository will be released at: https://github.com/chenttt2001/ExGS

Authors:Yang Chen, Minghao Liu, Yufan Shen, Yunwen Li, Tianyuan Huang, Xinyu Fang, Tianyu Zheng, Wenxuan Huang, Cheng Yang, Daocheng Fu, Jianbiao Mei, Rong Wu, Licheng Wen, Xuemeng Yang, Song Mao, Qunshu Lin, Zhi Yu, Yongliang Shen, Yu Qiao, Botian Shi
Title: IWR-Bench: Can LVLMs reconstruct interactive webpage from a user interaction video?
Abstract:
The webpage-to-code task requires models to understand visual representations of webpages and generate corresponding code. However, existing benchmarks primarily focus on static screenshot-to-code tasks, thereby overlooking the dynamic interactions fundamental to real-world web applications. To address this limitation, this paper introduces IWR-Bench, a novel benchmark for evaluating the capabilities of Large Vision-Language Models (LVLMs) in interactive webpage reconstruction from video. IWR-Bench comprises 113 meticulously curated tasks from 100 real-world websites, with 1,001 actions and featuring diverse interaction complexities (e.g., web games), visual styles, and domains. Aligning with standard web development practices, each task includes not only user interaction videos but also all crawled static assets (e.g., images, videos). This benchmark evaluates models on two fundamental challenges: comprehensive multi-modal reasoning to infer interaction logic from video and assets, and advanced code generation to translate this logic into functional code. An agent-as-a-judge framework with a comprehensive metric system automatically assesses the functional correctness and visual fidelity of generated webpages. Extensive experiments on 28 LVLMs reveal a significant challenge: the best model achieves an overall score of only 36.35%, as functional correctness (24.39% IFS) lags significantly behind visual fidelity (64.25% VFS). These results highlight critical limitations in current models' ability to reason about temporal dynamics and synthesize event-driven logic, establishing IWR-Bench as a challenging frontier for vision-language research. The benchmark and evaluation code will be made publicly available. Code is available at https://github.com/L-O-I/IWR-Bench.

Authors:Zidu Wang, Meng Xu, Miao Xu, Hengyuan Ma, Jiankuo Zhao, Xutao Li, Xiangyu Zhu, Zhen Lei
Title: BFSM: 3D Bidirectional Face-Skull Morphable Model
Abstract:
Building a joint face-skull morphable model holds great potential for applications such as remote diagnostics, surgical planning, medical education, and physically based facial simulation. However, realizing this vision is constrained by the scarcity of paired face-skull data, insufficient registration accuracy, and limited exploration of reconstruction and clinical applications. Moreover, individuals with craniofacial deformities are often overlooked, resulting in underrepresentation and limited inclusivity. To address these challenges, we first construct a dataset comprising over 200 samples, including both normal cases and rare craniofacial conditions. Each case contains a CT-based skull, a CT-based face, and a high-fidelity textured face scan. Secondly, we propose a novel dense ray matching registration method that ensures topological consistency across face, skull, and their tissue correspondences. Based on this, we introduce the 3D Bidirectional Face-Skull Morphable Model (BFSM), which enables shape inference between the face and skull through a shared coefficient space, while also modeling tissue thickness variation to support one-to-many facial reconstructions from the same skull, reflecting individual changes such as fat over time. Finally, we demonstrate the potential of BFSM in medical applications, including 3D face-skull reconstruction from a single image and surgical planning prediction. Extensive experiments confirm the robustness and accuracy of our method. BFSM is available at https://github.com/wang-zidu/BFSM

Authors:Peter Hönig, Stefan Thalhammer, Jean-Baptiste Weibel, Matthias Hirschmanner, Markus Vincze
Title: SCOPE: Semantic Conditioning for Sim2Real Category-Level Object Pose Estimation in Robotics
Abstract:
Object manipulation requires accurate object pose estimation. In open environments, robots encounter unknown objects, which requires semantic understanding in order to generalize both to known categories and beyond. To resolve this challenge, we present SCOPE, a diffusion-based category-level object pose estimation model that eliminates the need for discrete category labels by leveraging DINOv2 features as continuous semantic priors. By combining these DINOv2 features with photorealistic training data and a noise model for point normals, we reduce the Sim2Real gap in category-level object pose estimation. Furthermore, injecting the continuous semantic priors via cross-attention enables SCOPE to learn canonicalized object coordinate systems across object instances beyond the distribution of known categories. SCOPE outperforms the current state of the art in synthetically trained category-level object pose estimation, achieving a relative improvement of 31.9\% on the 5$^\circ$5cm metric. Additional experiments on two instance-level datasets demonstrate generalization beyond known object categories, enabling grasping of unseen objects from unknown categories with a success rate of up to 100\%. Code available: https://github.com/hoenigpeter/scope.

Authors:Zi-Yuan Hu, Shuo Liang, Duo Zheng, Yanyang Li, Yeyao Tao, Shijia Huang, Wei Feng, Jia Qin, Jianguang Yu, Jing Huang, Meng Fang, Yin Li, Liwei Wang
Title: NeMo: Needle in a Montage for Video-Language Understanding
Abstract:
Recent advances in video large language models (VideoLLMs) call for new evaluation protocols and benchmarks for complex temporal reasoning in video-language understanding. Inspired by the needle in a haystack test widely used by LLMs, we introduce a novel task of Needle in a Montage (NeMo), designed to assess VideoLLMs' critical reasoning capabilities, including long-context recall and temporal grounding. To generate video question answering data for our task, we develop a scalable automated data generation pipeline that facilitates high-quality data synthesis. Built upon the proposed pipeline, we present NeMoBench, a video-language benchmark centered on our task. Specifically, our full set of NeMoBench features 31,378 automatically generated question-answer (QA) pairs from 13,486 videos with various durations ranging from seconds to hours. Experiments demonstrate that our pipeline can reliably and automatically generate high-quality evaluation data, enabling NeMoBench to be continuously updated with the latest videos. We evaluate 20 state-of-the-art models on our benchmark, providing extensive results and key insights into their capabilities and limitations. Our project page is available at: https://lavi-lab.github.io/NeMoBench.

Authors:Shijie Lian, Changti Wu, Laurence Tianruo Yang, Hang Yuan, Bin Yu, Lei Zhang, Kai Chen
Title: Euclid's Gift: Enhancing Spatial Perception and Reasoning in Vision-Language Models via Geometric Surrogate Tasks
Abstract:
Spatial intelligence spans a rich suite of abilities, including visualising and transforming shapes, mentally rotating objects, judging relational positions and containment, and estimating numerosity. However, it still remains a critical unresolved challenge for Multimodal Large Language Models (MLLMs).To fill this gap, we propose to treat Euclidean geometry problem-solving as a surrogate task. Specifically, we meticulously constructed a curated multimodal dataset, called Euclid30K, comprising approximately 30K plane and solid geometry problems. To enable the model to acquire and apply Euclidean principles from these geometry problems, we employed Group Relative Policy Optimization (GRPO) to finetune the Qwen2.5VL family and RoboBrain2.0 family, inspiring the models to identify shapes, count, and relate entities, and perform multi-step deductive reasoning using Euclidean principles. Our experiments demonstrate that the resulting models achieve substantial zero-shot gains across four spatial reasoning benchmarks (Super-CLEVR, Omni3DBench, VSI-Bench, and MindCube) without any task-specific adaptations. Notably, after training on the Euclid30K, the mean VSI-Bench accuracy of all evaluated models rose from 34.5% to 40.5%, improving by 5.5 percentage points. Among them, RoboBrain2.0-Euclid-7B achieves 49.6\% accuracy, surpassing the previous state-of-the-art model, Spatial-MLLM.To our knowledge, this is the first systematic study showing that geometry-centric fine-tuning can confer vision-language models with broadly transferable spatial skills. Code and Euclid30K dataset can be found in https://zgca-ai4edu.github.io/Euclids_Gift.

Authors:Kai Liu, Shaoqiu Zhang, Linghe Kong, Yulun Zhang
Title: CLQ: Cross-Layer Guided Orthogonal-based Quantization for Diffusion Transformers
Abstract:
Visual generation quality has been greatly promoted with the rapid advances in diffusion transformers (DiTs), which is attributed to the scaling of model size and complexity. However, these attributions also hinder the practical deployment of DiTs on edge devices, limiting their development and application. Serve as an efficient model compression technique, model post-training quantization (PTQ) can reduce the memory consumption and speed up the inference, with inevitable performance degradation. To alleviate the degradation, we propose CLQ, a cross-layer guided orthogonal-based quantization method for DiTs. To be specific, CLQ consists of three key designs. First, we observe that the calibration data used by most of the PTQ methods can not honestly represent the distribution of the activations. Therefore, we propose cross-block calibration (CBC) to obtain accurate calibration data, with which the quantization can be better guided. Second, we propose orthogonal-based smoothing (OBS), which quantifies the outlier score of each channel and leverages block Hadamard matrix to smooth the outliers with negligible overhead. Third, we propose cross-layer parameter searching (CLPS) to search. We evaluate CLQ with both image generation and video generation models and successfully compress the model into W4A4 with negligible degradation in visual quality and metrics. CLQ achieves 3.98x memory saving and 3.95x speedup. Our code is available at \hyperlink{https://github.com/Kai-Liu001/CLQ}{https://github.com/Kai-Liu001/CLQ}.

Authors:Junyi Gu, Beatriz Cabrero-Daniel, Ali Nouri, Lydia Armini, Christian Berger
Title: PCICF: A Pedestrian Crossing Identification and Classification Framework
Abstract:
We have recently observed the commercial roll-out of robotaxis in various countries. They are deployed within an operational design domain (ODD) on specific routes and environmental conditions, and are subject to continuous monitoring to regain control in safety-critical situations. Since ODDs typically cover urban areas, robotaxis must reliably detect vulnerable road users (VRUs) such as pedestrians, bicyclists, or e-scooter riders. To better handle such varied traffic situations, end-to-end AI, which directly compute vehicle control actions from multi-modal sensor data instead of only for perception, is on the rise. High quality data is needed for systematically training and evaluating such systems within their OOD. In this work, we propose PCICF, a framework to systematically identify and classify VRU situations to support ODD's incident analysis. We base our work on the existing synthetic dataset SMIRK, and enhance it by extending its single-pedestrian-only design into the MoreSMIRK dataset, a structured dictionary of multi-pedestrian crossing situations constructed systematically. We then use space-filling curves (SFCs) to transform multi-dimensional features of scenarios into characteristic patterns, which we match with corresponding entries in MoreSMIRK. We evaluate PCICF with the large real-world dataset PIE, which contains more than 150 manually annotated pedestrian crossing videos. We show that PCICF can successfully identify and classify complex pedestrian crossings, even when groups of pedestrians merge or split. By leveraging computationally efficient components like SFCs, PCICF has even potential to be used onboard of robotaxis for OOD detection for example. We share an open-source replication package for PCICF containing its algorithms, the complete MoreSMIRK dataset and dictionary, as well as our experiment results presented in: https://github.com/Claud1234/PCICF

Authors:Hao Chen, Fang Xu, Tamer Saleh, Weifeng Hao, Gui-Song Xia
Title: Mask Clustering-based Annotation Engine for Large-Scale Submeter Land Cover Mapping
Abstract:
Recent advances in remote sensing technology have made submeter resolution imagery increasingly accessible, offering remarkable detail for fine-grained land cover analysis. However, its full potential remains underutilized - particularly for large-scale land cover mapping - due to the lack of sufficient, high-quality annotated datasets. Existing labels are typically derived from pre-existing products or manual annotation, which are often unreliable or prohibitively expensive, particularly given the rich visual detail and massive data volumes of submeter imagery. Inspired by the spatial autocorrelation principle, which suggests that objects of the same class tend to co-occur with similar visual features in local neighborhoods, we propose the Mask Clustering-based Annotation Engine (MCAE), which treats semantically consistent mask groups as the minimal annotating units to enable efficient, simultaneous annotation of multiple instances. It significantly improves annotation efficiency by one to two orders of magnitude, while preserving label quality, semantic diversity, and spatial representativeness. With MCAE, we build a high-quality annotated dataset of about 14 billion labeled pixels, referred to as HiCity-LC, which supports the generation of city-scale land cover maps across five major Chinese cities with classification accuracies above 85%. It is the first publicly available submeter resolution city-level land cover benchmark, highlighting the scalability and practical utility of MCAE for large-scale, submeter resolution mapping. The dataset is available at https://github.com/chenhaocs/MCAE

Authors:Congjia Chen, Yufu Qu
Title: DINOReg: Strong Point Cloud Registration with Vision Foundation Model
Abstract:
Point cloud registration is a fundamental task in 3D computer vision. Most existing methods rely solely on geometric information for feature extraction and matching. Recently, several studies have incorporated color information from RGB-D data into feature extraction. Although these methods achieve remarkable improvements, they have not fully exploited the abundant texture and semantic information in images, and the feature fusion is performed in an image-lossy manner, which limit their performance. In this paper, we propose DINOReg, a registration network that sufficiently utilizes both visual and geometric information to solve the point cloud registration problem. Inspired by advances in vision foundation models, we employ DINOv2 to extract informative visual features from images, and fuse visual and geometric features at the patch level. This design effectively combines the rich texture and global semantic information extracted by DINOv2 with the detailed geometric structure information captured by the geometric backbone. Additionally, a mixed positional embedding is proposed to encode positional information from both image space and point cloud space, which enhances the model's ability to perceive spatial relationships between patches. Extensive experiments on the RGBD-3DMatch and RGBD-3DLoMatch datasets demonstrate that our method achieves significant improvements over state-of-the-art geometry-only and multi-modal registration methods, with a 14.2% increase in patch inlier ratio and a 15.7% increase in registration recall. The code is publicly available at https://github.com/ccjccjccj/DINOReg.

Authors:Jitai Hao, Hao Liu, Xinyan Xiao, Qiang Huang, Jun Yu
Title: Uni-X: Mitigating Modality Conflict with a Two-End-Separated Architecture for Unified Multimodal Models
Abstract:
Unified Multimodal Models (UMMs) built on shared autoregressive (AR) transformers are attractive for their architectural simplicity. However, we identify a critical limitation: when trained on multimodal inputs, modality-shared transformers suffer from severe gradient conflicts between vision and text, particularly in shallow and deep layers. We trace this issue to the fundamentally different low-level statistical properties of images and text, while noting that conflicts diminish in middle layers where representations become more abstract and semantically aligned. To overcome this challenge, we propose Uni-X, a two-end-separated, middle-shared architecture. Uni-X dedicates its initial and final layers to modality-specific processing, while maintaining shared parameters in the middle layers for high-level semantic fusion. This X-shaped design not only eliminates gradient conflicts at both ends but also further alleviates residual conflicts in the shared layers. Extensive experiments validate the effectiveness of Uni-X. Under identical training conditions, Uni-X achieves superior training efficiency compared to strong baselines. When scaled to 3B parameters with larger training data, Uni-X matches or surpasses 7B AR-based UMMs, achieving a GenEval score of 82 for image generation alongside strong performance in text and vision understanding tasks. These results establish Uni-X as a parameter-efficient and scalable foundation for future unified multimodal modeling. Our code is available at https://github.com/CURRENTF/Uni-X

Authors:Hao Yang, Weijie Qiu, Ru Zhang, Zhou Fang, Ruichao Mao, Xiaoyu Lin, Maji Huang, Zhaosong Huang, Teng Guo, Shuoyang Liu, Hai Rao
Title: UI-UG: A Unified MLLM for UI Understanding and Generation
Abstract:
Although Multimodal Large Language Models (MLLMs) have been widely applied across domains, they are still facing challenges in domain-specific tasks, such as User Interface (UI) understanding accuracy and UI generation quality. In this paper, we introduce UI-UG (a unified MLLM for UI Understanding and Generation), integrating both capabilities. For understanding tasks, we employ Supervised Fine-tuning (SFT) combined with Group Relative Policy Optimization (GRPO) to enhance fine-grained understanding on the modern complex UI data. For generation tasks, we further use Direct Preference Optimization (DPO) to make our model generate human-preferred UIs. In addition, we propose an industrially effective workflow, including the design of an LLM-friendly domain-specific language (DSL), training strategies, rendering processes, and evaluation metrics. In experiments, our model achieves state-of-the-art (SOTA) performance on understanding tasks, outperforming both larger general-purpose MLLMs and similarly-sized UI-specialized models. Our model is also on par with these larger MLLMs in UI generation performance at a fraction of the computational cost. We also demonstrate that integrating understanding and generation tasks can improve accuracy and quality for both tasks. Code and Model: https://github.com/neovateai/UI-UG

Authors:Wankun Chen, Feng Gao, Yanhai Gan, Jingchao Cao, Junyu Dong, Qian Du
Title: Wavelet-Assisted Mamba for Satellite-Derived Sea Surface Temperature Super-Resolution
Abstract:
Sea surface temperature (SST) is an essential indicator of global climate change and one of the most intuitive factors reflecting ocean conditions. Obtaining high-resolution SST data remains challenging due to limitations in physical imaging, and super-resolution via deep neural networks is a promising solution. Recently, Mamba-based approaches leveraging State Space Models (SSM) have demonstrated significant potential for long-range dependency modeling with linear complexity. However, their application to SST data super-resolution remains largely unexplored. To this end, we propose the Wavelet-assisted Mamba Super-Resolution (WMSR) framework for satellite-derived SST data. The WMSR includes two key components: the Low-Frequency State Space Module (LFSSM) and High-Frequency Enhancement Module (HFEM). The LFSSM uses 2D-SSM to capture global information of the input data, and the robust global modeling capabilities of SSM are exploited to preserve the critical temperature information in the low-frequency component. The HFEM employs the pixel difference convolution to match and correct the high-frequency feature, achieving accurate and clear textures. Through comprehensive experiments on three SST datasets, our WMSR demonstrated superior performance over state-of-the-art methods. Our codes and datasets will be made publicly available at https://github.com/oucailab/WMSR.

Authors:Sai Raj Kishore Perla, Aditya Vora, Sauradip Nag, Ali Mahdavi-Amiri, Hao Zhang
Title: ASIA: Adaptive 3D Segmentation using Few Image Annotations
Abstract:
We introduce ASIA (Adaptive 3D Segmentation using few Image Annotations), a novel framework that enables segmentation of possibly non-semantic and non-text-describable "parts" in 3D. Our segmentation is controllable through a few user-annotated in-the-wild images, which are easier to collect than multi-view images, less demanding to annotate than 3D models, and more precise than potentially ambiguous text descriptions. Our method leverages the rich priors of text-to-image diffusion models, such as Stable Diffusion (SD), to transfer segmentations from image space to 3D, even when the annotated and target objects differ significantly in geometry or structure. During training, we optimize a text token for each segment and fine-tune our model with a novel cross-view part correspondence loss. At inference, we segment multi-view renderings of the 3D mesh, fuse the labels in UV-space via voting, refine them with our novel Noise Optimization technique, and finally map the UV-labels back onto the mesh. ASIA provides a practical and generalizable solution for both semantic and non-semantic 3D segmentation tasks, outperforming existing methods by a noticeable margin in both quantitative and qualitative evaluations.

Authors:Siyan Dong, Zijun Wang, Lulu Cai, Yi Ma, Yanchao Yang
Title: PROFusion: Robust and Accurate Dense Reconstruction via Camera Pose Regression and Optimization
Abstract:
Real-time dense scene reconstruction during unstable camera motions is crucial for robotics, yet current RGB-D SLAM systems fail when cameras experience large viewpoint changes, fast motions, or sudden shaking. Classical optimization-based methods deliver high accuracy but fail with poor initialization during large motions, while learning-based approaches provide robustness but lack sufficient accuracy for dense reconstruction. We address this challenge through a combination of learning-based initialization with optimization-based refinement. Our method employs a camera pose regression network to predict metric-aware relative poses from consecutive RGB-D frames, which serve as reliable starting points for a randomized optimization algorithm that further aligns depth images with the scene geometry. Extensive experiments demonstrate promising results: our approach outperforms the best competitor on challenging benchmarks, while maintaining comparable accuracy on stable motion sequences. The system operates in real-time, showcasing that combining simple and principled techniques can achieve both robustness for unstable motions and accuracy for dense reconstruction. Project page: https://github.com/siyandong/PROFusion.

Authors:Yingdong Hu, Yisheng He, Jinnan Chen, Weihao Yuan, Kejie Qiu, Zehong Lin, Siyu Zhu, Zilong Dong, Jun Zhang
Title: Forge4D: Feed-Forward 4D Human Reconstruction and Interpolation from Uncalibrated Sparse-view Videos
Abstract:
Instant reconstruction of dynamic 3D humans from uncalibrated sparse-view videos is critical for numerous downstream applications. Existing methods, however, are either limited by the slow reconstruction speeds or incapable of generating novel-time representations. To address these challenges, we propose Forge4D, a feed-forward 4D human reconstruction and interpolation model that efficiently reconstructs temporally aligned representations from uncalibrated sparse-view videos, enabling both novel view and novel time synthesis. Our model simplifies the 4D reconstruction and interpolation problem as a joint task of streaming 3D Gaussian reconstruction and dense motion prediction. For the task of streaming 3D Gaussian reconstruction, we first reconstruct static 3D Gaussians from uncalibrated sparse-view images and then introduce learnable state tokens to enforce temporal consistency in a memory-friendly manner by interactively updating shared information across different timestamps. For novel time synthesis, we design a novel motion prediction module to predict dense motions for each 3D Gaussian between two adjacent frames, coupled with an occlusion-aware Gaussian fusion process to interpolate 3D Gaussians at arbitrary timestamps. To overcome the lack of the ground truth for dense motion supervision, we formulate dense motion prediction as a dense point matching task and introduce a self-supervised retargeting loss to optimize this module. An additional occlusion-aware optical flow loss is introduced to ensure motion consistency with plausible human movement, providing stronger regularization. Extensive experiments demonstrate the effectiveness of our model on both in-domain and out-of-domain datasets. Project page and code at: https://zhenliuzju.github.io/huyingdong/Forge4D.

Authors:Jiabin Luo, Junhui Lin, Zeyu Zhang, Biao Wu, Meng Fang, Ling Chen, Hao Tang
Title: UniVid: The Open-Source Unified Video Model
Abstract:
Unified video modeling that combines generation and understanding capabilities is increasingly important but faces two key challenges: maintaining semantic faithfulness during flow-based generation due to text-visual token imbalance and the limitations of uniform cross-modal attention across the flow trajectory, and efficiently extending image-centric MLLMs to video without costly retraining. We present UniVid, a unified architecture that couples an MLLM with a diffusion decoder through a lightweight adapter, enabling both video understanding and generation. We introduce Temperature Modality Alignment to improve prompt adherence and Pyramid Reflection for efficient temporal reasoning via dynamic keyframe selection. Extensive experiments on standard benchmarks demonstrate state-of-the-art performance, achieving a 2.2% improvement on VBench-Long total score compared to EasyAnimateV5.1, and 1.0% and 3.3% accuracy gains on MSVD-QA and ActivityNet-QA, respectively, compared with the best prior 7B baselines. Code: https://github.com/AIGeeksGroup/UniVid. Website: https://aigeeksgroup.github.io/UniVid.

Authors:Le Dong, Jinghao Bian, Jingyang Hou, Jingliang Hu, Yilei Shi, Weisheng Dong, Xiao Xiang Zhu, Lichao Mou
Title: High-Order Progressive Trajectory Matching for Medical Image Dataset Distillation
Abstract:
Medical image analysis faces significant challenges in data sharing due to privacy regulations and complex institutional protocols. Dataset distillation offers a solution to address these challenges by synthesizing compact datasets that capture essential information from real, large medical datasets. Trajectory matching has emerged as a promising methodology for dataset distillation; however, existing methods primarily focus on terminal states, overlooking crucial information in intermediate optimization states. We address this limitation by proposing a shape-wise potential that captures the geometric structure of parameter trajectories, and an easy-to-complex matching strategy that progressively addresses parameters based on their complexity. Experiments on medical image classification tasks demonstrate that our method improves distillation performance while preserving privacy and maintaining model accuracy comparable to training on the original datasets. Our code is available at https://github.com/Bian-jh/HoP-TM.

Authors:Jun-Hao Wang, Yi-Yang Tian, Baoquan Chen, Peng-Shuai Wang
Title: Neural Visibility of Point Sets
Abstract:
Point clouds are widely used representations of 3D data, but determining the visibility of points from a given viewpoint remains a challenging problem due to their sparse nature and lack of explicit connectivity. Traditional methods, such as Hidden Point Removal (HPR), face limitations in computational efficiency, robustness to noise, and handling concave regions or low-density point clouds. In this paper, we propose a novel approach to visibility determination in point clouds by formulating it as a binary classification task. The core of our network consists of a 3D U-Net that extracts view-independent point-wise features and a shared multi-layer perceptron (MLP) that predicts point visibility using the extracted features and view direction as inputs. The network is trained end-to-end with ground-truth visibility labels generated from rendered 3D models. Our method significantly outperforms HPR in both accuracy and computational efficiency, achieving up to 126 times speedup on large point clouds. Additionally, our network demonstrates robustness to noise and varying point cloud densities and generalizes well to unseen shapes. We validate the effectiveness of our approach through extensive experiments on the ShapeNet, ABC Dataset and real-world datasets, showing substantial improvements in visibility accuracy. We also demonstrate the versatility of our method in various applications, including point cloud visualization, surface reconstruction, normal estimation, shadow rendering, and viewpoint optimization. Our code and models are available at https://github.com/octree-nn/neural-visibility.

Authors:Jianze Li, Yong Guo, Yulun Zhang, Xiaokang Yang
Title: Asymmetric VAE for One-Step Video Super-Resolution Acceleration
Abstract:
Diffusion models have significant advantages in the field of real-world video super-resolution and have demonstrated strong performance in past research. In recent diffusion-based video super-resolution (VSR) models, the number of sampling steps has been reduced to just one, yet there remains significant room for further optimization in inference efficiency. In this paper, we propose FastVSR, which achieves substantial reductions in computational cost by implementing a high compression VAE (spatial compression ratio of 16, denoted as f16). We design the structure of the f16 VAE and introduce a stable training framework. We employ pixel shuffle and channel replication to achieve additional upsampling. Furthermore, we propose a lower-bound-guided training strategy, which introduces a simpler training objective as a lower bound for the VAE's performance. It makes the training process more stable and easier to converge. Experimental results show that FastVSR achieves speedups of 111.9 times compared to multi-step models and 3.92 times compared to existing one-step models. We will release code and models at https://github.com/JianzeLi-114/FastVSR.

Authors:Li Zhang, Haoxiang Gao, Zhihao Zhang, Luoxiao Huang, Tao Zhang
Title: SVAC: Scaling Is All You Need For Referring Video Object Segmentation
Abstract:
Referring Video Object Segmentation (RVOS) aims to segment target objects in video sequences based on natural language descriptions. While recent advances in Multi-modal Large Language Models (MLLMs) have improved RVOS performance through enhanced text-video understanding, several challenges remain, including insufficient exploitation of MLLMs' prior knowledge, prohibitive computational and memory costs for long-duration videos, and inadequate handling of complex temporal dynamics. In this work, we propose SVAC, a unified model that improves RVOS by scaling up input frames and segmentation tokens to enhance video-language interaction and segmentation precision. To address the resulting computational challenges, SVAC incorporates the Anchor-Based Spatio-Temporal Compression (ASTC) module to compress visual tokens while preserving essential spatio-temporal structure. Moreover, the Clip-Specific Allocation (CSA) strategy is introduced to better handle dynamic object behaviors across video clips. Experimental results demonstrate that SVAC achieves state-of-the-art performance on multiple RVOS benchmarks with competitive efficiency. Our code is available at https://github.com/lizhang1998/SVAC.

Authors:Zhiqi Huang, Dulongkai Cui, Jinglu Hu
Title: SIE3D: Single-image Expressive 3D Avatar generation via Semantic Embedding and Perceptual Expression Loss
Abstract:
Generating high-fidelity 3D head avatars from a single image is challenging, as current methods lack fine-grained, intuitive control over expressions via text. This paper proposes SIE3D, a framework that generates expressive 3D avatars from a single image and descriptive text. SIE3D fuses identity features from the image with semantic embedding from text through a novel conditioning scheme, enabling detailed control. To ensure generated expressions accurately match the text, it introduces an innovative perceptual expression loss function. This loss uses a pre-trained expression classifier to regularize the generation process, guaranteeing expression accuracy. Extensive experiments show SIE3D significantly improves controllability and realism, outperforming competitive methods in identity preservation and expression fidelity on a single consumer-grade GPU. Project page: https://blazingcrystal1747.github.io/SIE3D/

Authors:Matej Palider, Omar Eldardeer, Viktor Kocur
Title: Gaze Estimation for Human-Robot Interaction: Analysis Using the NICO Platform
Abstract:
This paper evaluates the current gaze estimation methods within an HRI context of a shared workspace scenario. We introduce a new, annotated dataset collected with the NICO robotic platform. We evaluate four state-of-the-art gaze estimation models. The evaluation shows that the angular errors are close to those reported on general-purpose benchmarks. However, when expressed in terms of distance in the shared workspace the best median error is 16.48 cm quantifying the practical limitations of current methods. We conclude by discussing these limitations and offering recommendations on how to best integrate gaze estimation as a modality in HRI systems.

Authors:Jinpei Guo, Yifei Ji, Zheng Chen, Yufei Wang, Sizhuo Ma, Yong Guo, Yulun Zhang, Jian Wang
Title: Towards Redundancy Reduction in Diffusion Models for Efficient Video Super-Resolution
Abstract:
Diffusion models have recently shown promising results for video super-resolution (VSR). However, directly adapting generative diffusion models to VSR can result in redundancy, since low-quality videos already preserve substantial content information. Such redundancy leads to increased computational overhead and learning burden, as the model performs superfluous operations and must learn to filter out irrelevant information. To address this problem, we propose OASIS, an efficient $\textbf{o}$ne-step diffusion model with $\textbf{a}$ttention $\textbf{s}$pecialization for real-world v$\textbf{i}$deo $\textbf{s}$uper-resolution. OASIS incorporates an attention specialization routing that assigns attention heads to different patterns according to their intrinsic behaviors. This routing mitigates redundancy while effectively preserving pretrained knowledge, allowing diffusion models to better adapt to VSR and achieve stronger performance. Moreover, we propose a simple yet effective progressive training strategy, which starts with temporally consistent degradations and then shifts to inconsistent settings. This strategy facilitates learning under complex degradations. Extensive experiments demonstrate that OASIS achieves state-of-the-art performance on both synthetic and real-world datasets. OASIS also provides superior inference speed, offering a $\textbf{6.2$\times$}$ speedup over one-step diffusion baselines such as SeedVR2. The code will be available at \href{https://github.com/jp-guo/OASIS}{https://github.com/jp-guo/OASIS}.

Authors:Siyu Cao, Hangting Chen, Peng Chen, Yiji Cheng, Yutao Cui, Xinchi Deng, Ying Dong, Kipper Gong, Tianpeng Gu, Xiusen Gu, Tiankai Hang, Duojun Huang, Jie Jiang, Zhengkai Jiang, Weijie Kong, Changlin Li, Donghao Li, Junzhe Li, Xin Li, Yang Li, Zhenxi Li, Zhimin Li, Jiaxin Lin, Linus, Lucaz Liu, Shu Liu, Songtao Liu, Yu Liu, Yuhong Liu, Yanxin Long, Fanbin Lu, Qinglin Lu, Yuyang Peng, Yuanbo Peng, Xiangwei Shen, Yixuan Shi, Jiale Tao, Yangyu Tao, Qi Tian, Pengfei Wan, Chunyu Wang, Kai Wang, Lei Wang, Linqing Wang, Lucas Wang, Qixun Wang, Weiyan Wang, Hao Wen, Bing Wu, Jianbing Wu, Yue Wu, Senhao Xie, Fang Yang, Miles Yang, Xiaofeng Yang, Xuan Yang, Zhantao Yang, Jingmiao Yu, Zheng Yuan, Chao Zhang, Jian-Wei Zhang, Peizhen Zhang, Shi-Xue Zhang, Tao Zhang, Weigang Zhang, Yepeng Zhang, Yingfang Zhang, Zihao Zhang, Zijian Zhang, Penghao Zhao, Zhiyuan Zhao, Xuefei Zhe, Jianchen Zhu, Zhao Zhong
Title: HunyuanImage 3.0 Technical Report
Abstract:
We present HunyuanImage 3.0, a native multimodal model that unifies multimodal understanding and generation within an autoregressive framework, with its image generation module publicly available. The achievement of HunyuanImage 3.0 relies on several key components, including meticulous data curation, advanced architecture design, a native Chain-of-Thoughts schema, progressive model pre-training, aggressive model post-training, and an efficient infrastructure that enables large-scale training and inference. With these advancements, we successfully trained a Mixture-of-Experts (MoE) model comprising over 80 billion parameters in total, with 13 billion parameters activated per token during inference, making it the largest and most powerful open-source image generative model to date. We conducted extensive experiments and the results of automatic and human evaluation of text-image alignment and visual quality demonstrate that HunyuanImage 3.0 rivals previous state-of-the-art models. By releasing the code and weights of HunyuanImage 3.0, we aim to enable the community to explore new ideas with a state-of-the-art foundation model, fostering a dynamic and vibrant multimodal ecosystem. All open source assets are publicly available at https://github.com/Tencent-Hunyuan/HunyuanImage-3.0

Authors:Dragoş-Andrei Chileban, Andrei-Ştefan Bulzan, Cosmin Cernǎzanu-Glǎvan
Title: CrashSplat: 2D to 3D Vehicle Damage Segmentation in Gaussian Splatting
Abstract:
Automatic car damage detection has been a topic of significant interest for the auto insurance industry as it promises faster, accurate, and cost-effective damage assessments. However, few works have gone beyond 2D image analysis to leverage 3D reconstruction methods, which have the potential to provide a more comprehensive and geometrically accurate representation of the damage. Moreover, recent methods employing 3D representations for novel view synthesis, particularly 3D Gaussian Splatting (3D-GS), have demonstrated the ability to generate accurate and coherent 3D reconstructions from a limited number of views. In this work we introduce an automatic car damage detection pipeline that performs 3D damage segmentation by up-lifting 2D masks. Additionally, we propose a simple yet effective learning-free approach for single-view 3D-GS segmentation. Specifically, Gaussians are projected onto the image plane using camera parameters obtained via Structure from Motion (SfM). They are then filtered through an algorithm that utilizes Z-buffering along with a normal distribution model of depth and opacities. Through experiments we found that this method is particularly effective for challenging scenarios like car damage detection, where target objects (e.g., scratches, small dents) may only be clearly visible in a single view, making multi-view consistency approaches impractical or impossible. The code is publicly available at: https://github.com/DragosChileban/CrashSplat.

Authors:Hanshi Wang, Yuhao Xu, Zekun Xu, Jin Gao, Yufan Liu, Weiming Hu, Ke Wang, Zhipeng Zhang
Title: AutoPrune: Each Complexity Deserves a Pruning Policy
Abstract:
The established redundancy in visual tokens within large vision-language models allows pruning to effectively reduce their substantial computational demands. Previous methods typically employ heuristic layer-specific pruning strategies where, although the number of tokens removed may differ across decoder layers, the overall pruning schedule is fixed and applied uniformly to all input samples and tasks, failing to align token elimination with the model's holistic reasoning trajectory. Cognitive science indicates that human visual processing often begins with broad exploration to accumulate evidence before narrowing focus as the target becomes distinct. Our experiments reveal an analogous pattern in these models. This observation suggests that neither a fixed pruning schedule nor a heuristic layer-wise strategy can optimally accommodate the diverse complexities inherent in different inputs. To overcome this limitation, we introduce Complexity-Adaptive Pruning (AutoPrune), a training-free, plug-and-play framework that tailors pruning policies to varying sample and task complexities. Specifically, AutoPrune quantifies the mutual information between visual and textual tokens, then projects this signal to a budget-constrained logistic retention curve. Each such logistic curve, defined by its unique shape, corresponds to the specific complexity of different tasks and can guarantee adherence to predefined computational constraints. We evaluate AutoPrune on standard vision-language tasks and on Vision-Language-Action models for autonomous driving. Notably, when applied to LLaVA-1.5-7B, our method prunes 89% of visual tokens and reduces inference FLOPs by 76.8% while retaining 96.7% of the original accuracy averaged over all tasks. This corresponds to a 9.1% improvement over the recent work PDrop, demonstrating the effectiveness. Code is available at https://github.com/AutoLab-SAI-SJTU/AutoPrune.

Authors:Haibao Yu, Wenxian Yang, Ruiyang Hao, Chuanye Wang, Jiaru Zhong, Ping Luo, Zaiqing Nie
Title: DriveE2E: Closed-Loop Benchmark for End-to-End Autonomous Driving through Real-to-Simulation
Abstract:
Closed-loop evaluation is increasingly critical for end-to-end autonomous driving. Current closed-loop benchmarks using the CARLA simulator rely on manually configured traffic scenarios, which can diverge from real-world conditions, limiting their ability to reflect actual driving performance. To address these limitations, we introduce a simple yet challenging closed-loop evaluation framework that closely integrates real-world driving scenarios into the CARLA simulator with infrastructure cooperation. Our approach involves extracting 800 dynamic traffic scenarios selected from a comprehensive 100-hour video dataset captured by high-mounted infrastructure sensors, and creating static digital twin assets for 15 real-world intersections with consistent visual appearance. These digital twins accurately replicate the traffic and environmental characteristics of their real-world counterparts, enabling more realistic simulations in CARLA. This evaluation is challenging due to the diversity of driving behaviors, locations, weather conditions, and times of day at complex urban intersections. In addition, we provide a comprehensive closed-loop benchmark for evaluating end-to-end autonomous driving models. Project URL: \href{https://github.com/AIR-THU/DriveE2E}{https://github.com/AIR-THU/DriveE2E}.

Authors:Xiyan Xu, Sirui Xu, Yu-Xiong Wang, Liang-Yan Gui
Title: MoReact: Generating Reactive Motion from Textual Descriptions
Abstract:
Modeling and generating human reactions poses a significant challenge with broad applications for computer vision and human-computer interaction. Existing methods either treat multiple individuals as a single entity, directly generating interactions, or rely solely on one person's motion to generate the other's reaction, failing to integrate the rich semantic information that underpins human interactions. Yet, these methods often fall short in adaptive responsiveness, i.e., the ability to accurately respond to diverse and dynamic interaction scenarios. Recognizing this gap, our work introduces an approach tailored to address the limitations of existing models by focusing on text-driven human reaction generation. Our model specifically generates realistic motion sequences for individuals that responding to the other's actions based on a descriptive text of the interaction scenario. The goal is to produce motion sequences that not only complement the opponent's movements but also semantically fit the described interactions. To achieve this, we present MoReact, a diffusion-based method designed to disentangle the generation of global trajectories and local motions sequentially. This approach stems from the observation that generating global trajectories first is crucial for guiding local motion, ensuring better alignment with given action and text. Furthermore, we introduce a novel interaction loss to enhance the realism of generated close interactions. Our experiments, utilizing data adapted from a two-person motion dataset, demonstrate the efficacy of our approach for this novel task, which is capable of producing realistic, diverse, and controllable reactions that not only closely match the movements of the counterpart but also adhere to the textual guidance. Please find our webpage at https://xiyan-xu.github.io/MoReactWebPage.

Authors:Xin Luo, Jiahao Wang, Chenyuan Wu, Shitao Xiao, Xiyan Jiang, Defu Lian, Jiajun Zhang, Dong Liu, Zheng liu
Title: EditScore: Unlocking Online RL for Image Editing via High-Fidelity Reward Modeling
Abstract:
Instruction-guided image editing has achieved remarkable progress, yet current models still face challenges with complex instructions and often require multiple samples to produce a desired result. Reinforcement Learning (RL) offers a promising solution, but its adoption in image editing has been severely hindered by the lack of a high-fidelity, efficient reward signal. In this work, we present a comprehensive methodology to overcome this barrier, centered on the development of a state-of-the-art, specialized reward model. We first introduce EditReward-Bench, a comprehensive benchmark to systematically evaluate reward models on editing quality. Building on this benchmark, we develop EditScore, a series of reward models (7B-72B) for evaluating the quality of instruction-guided image editing. Through meticulous data curation and filtering, EditScore effectively matches the performance of learning proprietary VLMs. Furthermore, coupled with an effective self-ensemble strategy tailored for the generative nature of EditScore, our largest variant even surpasses GPT-5 in the benchmark. We then demonstrate that a high-fidelity reward model is the key to unlocking online RL for image editing. Our experiments show that, while even the largest open-source VLMs fail to provide an effective learning signal, EditScore enables efficient and robust policy optimization. Applying our framework to a strong base model, OmniGen2, results in a final model that shows a substantial and consistent performance uplift. Overall, this work provides the first systematic path from benchmarking to reward modeling to RL training in image editing, showing that a high-fidelity, domain-specialized reward model is the key to unlocking the full potential of RL in this domain.

Authors:You Zhou, Lijiang Chen, Shuchang Lyu, Guangxia Cui, Wenpei Bai, Zheng Zhou, Meng Li, Guangliang Cheng, Huiyu Zhou, Qi Zhao
Title: Adversarial Versus Federated: An Adversarial Learning based Multi-Modality Cross-Domain Federated Medical Segmentation
Abstract:
Federated learning enables collaborative training of machine learning models among different clients while ensuring data privacy, emerging as the mainstream for breaking data silos in the healthcare domain. However, the imbalance of medical resources, data corruption or improper data preservation may lead to a situation where different clients possess medical images of different modality. This heterogeneity poses a significant challenge for cross-domain medical image segmentation within the federated learning framework. To address this challenge, we propose a new Federated Domain Adaptation (FedDA) segmentation training framework. Specifically, we propose a feature-level adversarial learning among clients by aligning feature maps across clients through embedding an adversarial training mechanism. This design can enhance the model's generalization on multiple domains and alleviate the negative impact from domain-shift. Comprehensive experiments on three medical image datasets demonstrate that our proposed FedDA substantially achieves cross-domain federated aggregation, endowing single modality client with cross-modality processing capabilities, and consistently delivers robust performance compared to state-of-the-art federated aggregation algorithms in objective and subjective assessment. Our code are available at https://github.com/GGbond-study/FedDA.

Authors:Yukun Chen, Boheng Li, Yu Yuan, Leyi Qi, Yiming Li, Tianwei Zhang, Zhan Qin, Kui Ren
Title: Taught Well Learned Ill: Towards Distillation-conditional Backdoor Attack
Abstract:
Knowledge distillation (KD) is a vital technique for deploying deep neural networks (DNNs) on resource-constrained devices by transferring knowledge from large teacher models to lightweight student models. While teacher models from third-party platforms may undergo security verification (\eg, backdoor detection), we uncover a novel and critical threat: distillation-conditional backdoor attacks (DCBAs). DCBA injects dormant and undetectable backdoors into teacher models, which become activated in student models via the KD process, even with clean distillation datasets. While the direct extension of existing methods is ineffective for DCBA, we implement this attack by formulating it as a bilevel optimization problem and proposing a simple yet effective method (\ie, SCAR). Specifically, the inner optimization simulates the KD process by optimizing a surrogate student model, while the outer optimization leverages outputs from this surrogate to optimize the teacher model for implanting the conditional backdoor. Our SCAR addresses this complex optimization utilizing an implicit differentiation algorithm with a pre-optimized trigger injection function. Extensive experiments across diverse datasets, model architectures, and KD techniques validate the effectiveness of our SCAR and its resistance against existing backdoor detection, highlighting a significant yet previously overlooked vulnerability in the KD process. Our code is available at https://github.com/WhitolfChen/SCAR.

Authors:Bingyang Cui, Yujie Zhang, Qi Yang, Zhu Li, Yiling Xu
Title: Towards Fine-Grained Text-to-3D Quality Assessment: A Benchmark and A Two-Stage Rank-Learning Metric
Abstract:
Recent advances in Text-to-3D (T23D) generative models have enabled the synthesis of diverse, high-fidelity 3D assets from textual prompts. However, existing challenges restrict the development of reliable T23D quality assessment (T23DQA). First, existing benchmarks are outdated, fragmented, and coarse-grained, making fine-grained metric training infeasible. Moreover, current objective metrics exhibit inherent design limitations, resulting in non-representative feature extraction and diminished metric robustness. To address these limitations, we introduce T23D-CompBench, a comprehensive benchmark for compositional T23D generation. We define five components with twelve sub-components for compositional prompts, which are used to generate 3,600 textured meshes from ten state-of-the-art generative models. A large-scale subjective experiment is conducted to collect 129,600 reliable human ratings across different perspectives. Based on T23D-CompBench, we further propose Rank2Score, an effective evaluator with two-stage training for T23DQA. Rank2Score enhances pairwise training via supervised contrastive regression and curriculum learning in the first stage, and subsequently refines predictions using mean opinion scores to achieve closer alignment with human judgments in the second stage. Extensive experiments and downstream applications demonstrate that Rank2Score consistently outperforms existing metrics across multiple dimensions and can additionally serve as a reward function to optimize generative models. The project is available at https://cbysjtu.github.io/Rank2Score/.

Authors:Cancan Li, Fei Su, Juan Liu, Hui Bu, Yulong Wan, Hongbin Suo, Ming Li
Title: AISHELL6-whisper: A Chinese Mandarin Audio-visual Whisper Speech Dataset with Speech Recognition Baselines
Abstract:
Whisper speech recognition is crucial not only for ensuring privacy in sensitive communications but also for providing a critical communication bridge for patients under vocal restraint and enabling discrete interaction in noise-sensitive environments. The development of Chinese mandarin audio-visual whisper speech recognition is hindered by the lack of large-scale datasets. We present AISHELL6-Whisper, a large-scale open-source audio-visual whisper speech dataset, featuring 30 hours each of whisper speech and parallel normal speech, with synchronized frontal facial videos. Moreover, we propose an audio-visual speech recognition (AVSR) baseline based on the Whisper-Flamingo framework, which integrates a parallel training strategy to align embeddings across speech types, and employs a projection layer to adapt to whisper speech's spectral properties. The model achieves a Character Error Rate (CER) of 4.13% for whisper speech and 1.11% for normal speech in the test set of our dataset, and establishes new state-of-the-art results on the wTIMIT benchmark. The dataset and the AVSR baseline codes are open-sourced at https://zutm.github.io/AISHELL6-Whisper.

Authors:Xiaojie Li, Bei Wang, Jianlong Wu, Yue Yu, Liqiang Nie, Min Zhang
Title: GenView++: Unifying Adaptive View Generation and Quality-Driven Supervision for Contrastive Representation Learning
Abstract:
The success of contrastive learning depends on the construction and utilization of high-quality positive pairs. However, current methods face critical limitations on two fronts: on the construction side, both handcrafted and generative augmentations often suffer from limited diversity and risk semantic corruption; on the learning side, the absence of a quality assessment mechanism leads to suboptimal supervision where all pairs are treated equally. To tackle these challenges, we propose GenView++, a unified framework that addresses both fronts by introducing two synergistic innovations. To improve pair construction, GenView++ introduces a multi-source adaptive view generation mechanism to synthesize diverse yet semantically coherent views by dynamically modulating generative parameters across image-conditioned, text-conditioned, and image-text-conditioned strategies. Second, a quality-driven contrastive learning mechanism assesses each pair's semantic alignment and diversity to dynamically reweight their training contribution, prioritizing high-quality pairs while suppressing redundant or misaligned pairs. Extensive experiments demonstrate the effectiveness of GenView++ across both vision and vision-language tasks. For vision representation learning, it improves MoCov2 by +2.5% on ImageNet linear classification. For vision-language learning, it raises the average zero-shot classification accuracy by +12.31% over CLIP and +5.31% over SLIP across ten datasets, and further improves Flickr30k text retrieval R@5 by +3.2%. The code is available at https://github.com/xiaojieli0903/GenViewPlusPlus.

Authors:Lezhong Wang, Shutong Jin, Ruiqi Cui, Anders Bjorholm Dahl, Jeppe Revall Frisvad, Siavash Bigdeli
Title: ReLumix: Extending Image Relighting to Video via Video Diffusion Models
Abstract:
Controlling illumination during video post-production is a crucial yet elusive goal in computational photography. Existing methods often lack flexibility, restricting users to certain relighting models. This paper introduces ReLumix, a novel framework that decouples the relighting algorithm from temporal synthesis, thereby enabling any image relighting technique to be seamlessly applied to video. Our approach reformulates video relighting into a simple yet effective two-stage process: (1) an artist relights a single reference frame using any preferred image-based technique (e.g., Diffusion Models, physics-based renderers); and (2) a fine-tuned stable video diffusion (SVD) model seamlessly propagates this target illumination throughout the sequence. To ensure temporal coherence and prevent artifacts, we introduce a gated cross-attention mechanism for smooth feature blending and a temporal bootstrapping strategy that harnesses SVD's powerful motion priors. Although trained on synthetic data, ReLumix shows competitive generalization to real-world videos. The method demonstrates significant improvements in visual fidelity, offering a scalable and versatile solution for dynamic lighting control.

Authors:Arshia Yousefi Nezhad, Helia Aghaei, Hedieh Sajedi
Title: PVTAdpNet: Polyp Segmentation using Pyramid vision transformer with a novel Adapter block
Abstract:
Colorectal cancer ranks among the most common and deadly cancers, emphasizing the need for effective early detection and treatment. To address the limitations of traditional colonoscopy, including high miss rates due to polyp variability, we introduce the Pyramid Vision Transformer Adapter Residual Network (PVTAdpNet). This model integrates a U-Net-style encoder-decoder structure with a Pyramid Vision Transformer backbone, novel residual blocks, and adapter-based skip connections. The design enhances feature extraction, dense prediction, and gradient flow, supported by squeeze-and-excitation attention for improved channel-wise feature refinement. PVTAdpNet achieves real-time, accurate polyp segmentation, demonstrating superior performance on benchmark datasets with high mDice and mIoU scores, making it highly suitable for clinical applications. PVTAdpNet obtains a high Dice coefficient of 0.8851 and a mean Intersection over Union (mIoU) of 0.8167 on out-of-distribution polyp datasets. Evaluation of the PolypGen dataset demonstrates PVTAdpNet's capability for real-time, accurate performance within familiar distributions. The source code of our network is available at https://github.com/ayousefinejad/PVTAdpNet.git

Authors:Yewang Chen, Junfeng Li, Shuyin Xia, Qinghong Lai, Xinbo Gao, Guoyin Wang, Dongdong Cheng, Yi Liu, Yi Wang
Title: GBSK: Skeleton Clustering via Granular-ball Computing and Multi-Sampling for Large-Scale Data
Abstract:
To effectively handle clustering task for large-scale datasets, we propose a novel scalable skeleton clustering algorithm, namely GBSK, which leverages the granular-ball technique to capture the underlying structure of data. By multi-sampling the dataset and constructing multi-grained granular-balls, GBSK progressively uncovers a statistical "skeleton" -- a spatial abstraction that approximates the essential structure and distribution of the original data. This strategy enables GBSK to dramatically reduce computational overhead while maintaining high clustering accuracy. In addition, we introduce an adaptive version, AGBSK, with simplified parameter settings to enhance usability and facilitate deployment in real-world scenarios. Extensive experiments conducted on standard computing hardware demonstrate that GBSK achieves high efficiency and strong clustering performance on large-scale datasets, including one with up to 100 million instances across 256 dimensions. Our implementation and experimental results are available at: https://github.com/XFastDataLab/GBSK/.

Authors:Xincheng Yao, Chao Shi, Muming Zhao, Guangtao Zhai, Chongyang Zhang
Title: ResAD++: Towards Class Agnostic Anomaly Detection via Residual Feature Learning
Abstract:
This paper explores the problem of class-agnostic anomaly detection (AD), where the objective is to train one class-agnostic AD model that can generalize to detect anomalies in diverse new classes from different domains without any retraining or fine-tuning on the target data. When applied for new classes, the performance of current single- and multi-class AD methods is still unsatisfactory. One fundamental reason is that representation learning in existing methods is still class-related, namely, feature correlation. To address this issue, we propose residual features and construct a simple but effective framework, termed ResAD. Our core insight is to learn the residual feature distribution rather than the initial feature distribution. Residual features are formed by matching and then subtracting normal reference features. In this way, we can effectively realize feature decorrelation. Even in new classes, the distribution of normal residual features would not remarkably shift from the learned distribution. In addition, we think that residual features still have one issue: scale correlation. To this end, we propose a feature hypersphere constraining approach, which learns to constrain initial normal residual features into a spatial hypersphere for enabling the feature scales of different classes as consistent as possible. Furthermore, we propose a novel logbarrier bidirectional contraction OCC loss and vector quantization based feature distribution matching module to enhance ResAD, leading to the improved version of ResAD (ResAD++). Comprehensive experiments on eight real-world AD datasets demonstrate that our ResAD++ can achieve remarkable AD results when directly used in new classes, outperforming state-of-the-art competing methods and also surpassing ResAD. The code is available at https://github.com/xcyao00/ResAD.

Authors:Hangtian Zhao, Xiang Chen, Yizhe Li, Qianhao Wang, Haibo Lu, Fei Gao
Title: FastViDAR: Real-Time Omnidirectional Depth Estimation via Alternative Hierarchical Attention
Abstract:
In this paper we propose FastViDAR, a novel framework that takes four fisheye camera inputs and produces a full $360^\circ$ depth map along with per-camera depth, fusion depth, and confidence estimates. Our main contributions are: (1) We introduce Alternative Hierarchical Attention (AHA) mechanism that efficiently fuses features across views through separate intra-frame and inter-frame windowed self-attention, achieving cross-view feature mixing with reduced overhead. (2) We propose a novel ERP fusion approach that projects multi-view depth estimates to a shared equirectangular coordinate system to obtain the final fusion depth. (3) We generate ERP image-depth pairs using HM3D and 2D3D-S datasets for comprehensive evaluation, demonstrating competitive zero-shot performance on real datasets while achieving up to 20 FPS on NVIDIA Orin NX embedded hardware. Project page: \href{https://3f7dfc.github.io/FastVidar/}{https://3f7dfc.github.io/FastVidar/}

Authors:Yiheng Zhang, Zhuojiang Cai, Mingdao Wang, Meitong Guo, Tianxiao Li, Li Lin, Yuwang Wang
Title: M3DLayout: A Multi-Source Dataset of 3D Indoor Layouts and Structured Descriptions for 3D Generation
Abstract:
In text-driven 3D scene generation, object layout serves as a crucial intermediate representation that bridges high-level language instructions with detailed geometric output. It not only provides a structural blueprint for ensuring physical plausibility but also supports semantic controllability and interactive editing. However, the learning capabilities of current 3D indoor layout generation models are constrained by the limited scale, diversity, and annotation quality of existing datasets. To address this, we introduce M3DLayout, a large-scale, multi-source dataset for 3D indoor layout generation. M3DLayout comprises 15,080 layouts and over 258k object instances, integrating three distinct sources: real-world scans, professional CAD designs, and procedurally generated scenes. Each layout is paired with detailed structured text describing global scene summaries, relational placements of large furniture, and fine-grained arrangements of smaller items. This diverse and richly annotated resource enables models to learn complex spatial and semantic patterns across a wide variety of indoor environments. To assess the potential of M3DLayout, we establish a benchmark using a text-conditioned diffusion model. Experimental results demonstrate that our dataset provides a solid foundation for training layout generation models. Its multi-source composition enhances diversity, notably through the Inf3DLayout subset which provides rich small-object information, enabling the generation of more complex and detailed scenes. We hope that M3DLayout can serve as a valuable resource for advancing research in text-driven 3D scene synthesis.

Authors:Yunjiang Xu, Lingzhi Li, Jin Wang, Yupeng Ouyang, Benyuan Yang
Title: INSTINCT: Instance-Level Interaction Architecture for Query-Based Collaborative Perception
Abstract:
Collaborative perception systems overcome single-vehicle limitations in long-range detection and occlusion scenarios by integrating multi-agent sensory data, improving accuracy and safety. However, frequent cooperative interactions and real-time requirements impose stringent bandwidth constraints. Previous works proves that query-based instance-level interaction reduces bandwidth demands and manual priors, however, LiDAR-focused implementations in collaborative perception remain underdeveloped, with performance still trailing state-of-the-art approaches. To bridge this gap, we propose INSTINCT (INSTance-level INteraCtion ArchiTecture), a novel collaborative perception framework featuring three core components: 1) a quality-aware filtering mechanism for high-quality instance feature selection; 2) a dual-branch detection routing scheme to decouple collaboration-irrelevant and collaboration-relevant instances; and 3) a Cross Agent Local Instance Fusion module to aggregate local hybrid instance features. Additionally, we enhance the ground truth (GT) sampling technique to facilitate training with diverse hybrid instance features. Extensive experiments across multiple datasets demonstrate that INSTINCT achieves superior performance. Specifically, our method achieves an improvement in accuracy 13.23%/33.08% in DAIR-V2X and V2V4Real while reducing the communication bandwidth to 1/281 and 1/264 compared to state-of-the-art methods. The code is available at https://github.com/CrazyShout/INSTINCT.

Authors:Weilun Feng, Chuanguang Yang, Haotong Qin, Mingqiang Wu, Yuqi Li, Xiangqi Li, Zhulin An, Libo Huang, Yulun Zhang, Michele Magno, Yongjun Xu
Title: QuantSparse: Comprehensively Compressing Video Diffusion Transformer with Model Quantization and Attention Sparsification
Abstract:
Diffusion transformers exhibit remarkable video generation capability, yet their prohibitive computational and memory costs hinder practical deployment. Model quantization and attention sparsification are two promising directions for compression, but each alone suffers severe performance degradation under aggressive compression. Combining them promises compounded efficiency gains, but naive integration is ineffective. The sparsity-induced information loss exacerbates quantization noise, leading to amplified attention shifts. To address this, we propose \textbf{QuantSparse}, a unified framework that integrates model quantization with attention sparsification. Specifically, we introduce \textit{Multi-Scale Salient Attention Distillation}, which leverages both global structural guidance and local salient supervision to mitigate quantization-induced bias. In addition, we develop \textit{Second-Order Sparse Attention Reparameterization}, which exploits the temporal stability of second-order residuals to efficiently recover information lost under sparsity. Experiments on HunyuanVideo-13B demonstrate that QuantSparse achieves 20.88 PSNR, substantially outperforming the state-of-the-art quantization baseline Q-VDiT (16.85 PSNR), while simultaneously delivering a \textbf{3.68$\times$} reduction in storage and \textbf{1.88$\times$} acceleration in end-to-end inference. Our code will be released in https://github.com/wlfeng0509/QuantSparse.

Authors:Dayu Tan, Ziwei Zhang, Yansan Su, Xin Peng, Yike Dai, Chunhou Zheng, Weimin Zhong
Title: MSD-KMamba: Bidirectional Spatial-Aware Multi-Modal 3D Brain Segmentation via Multi-scale Self-Distilled Fusion Strategy
Abstract:
Numerous CNN-Transformer hybrid models rely on high-complexity global attention mechanisms to capture long-range dependencies, which introduces non-linear computational complexity and leads to significant resource consumption. Although knowledge distillation and sparse attention mechanisms can improve efficiency, they often fall short of delivering the high segmentation accuracy necessary for complex tasks. Balancing model performance with computational efficiency remains a critical challenge. In this work, we propose a novel 3D multi-modal image segmentation framework, termed MSD-KMamba, which integrates bidirectional spatial perception with multi-scale self-distillation. The bidirectional spatial aware branch effectively captures long-range spatial context dependencies across brain regions, while also incorporating a powerful nonlinear feature extraction mechanism that further enhances the model's ability to learn complex and heterogeneous patterns. In addition, the proposed multi-scale self-distilled fusion strategy strengthens hierarchical feature representations and improves the transfer of semantic information at different resolution levels. By jointly leveraging the bidirectional spatial perception branch and the multi-scale self-distilled fusion strategy, our framework effectively mitigates the bottleneck of quadratic computational complexity in volumetric segmentation, while simultaneously addressing the limitation of insufficient global perception. Extensive experiments on multiple standard benchmark datasets demonstrate that MSD-KMamba consistently outperforms state-of-the-art methods in segmentation accuracy, robustness, and generalization, while maintaining high computational efficiency and favorable scalability. The source code of MSD-KMamba is publicly available at https://github.com/daimao-zhang/MSD-KMamba.

Authors:Boyu Han, Qianqian Xu, Shilong Bao, Zhiyong Yang, Kangli Zi, Qingming Huang
Title: LightFair: Towards an Efficient Alternative for Fair T2I Diffusion via Debiasing Pre-trained Text Encoders
Abstract:
This paper explores a novel lightweight approach LightFair to achieve fair text-to-image diffusion models (T2I DMs) by addressing the adverse effects of the text encoder. Most existing methods either couple different parts of the diffusion model for full-parameter training or rely on auxiliary networks for correction. They incur heavy training or sampling burden and unsatisfactory performance. Since T2I DMs consist of multiple components, with the text encoder being the most fine-tunable and front-end module, this paper focuses on mitigating bias by fine-tuning text embeddings. To validate feasibility, we observe that the text encoder's neutral embedding output shows substantial skewness across image embeddings of various attributes in the CLIP space. More importantly, the noise prediction network further amplifies this imbalance. To finetune the text embedding, we propose a collaborative distance-constrained debiasing strategy that balances embedding distances to improve fairness without auxiliary references. However, mitigating bias can compromise the original generation quality. To address this, we introduce a two-stage text-guided sampling strategy to limit when the debiased text encoder intervenes. Extensive experiments demonstrate that LightFair is effective and efficient. Notably, on Stable Diffusion v1.5, our method achieves SOTA debiasing at just $1/4$ of the training burden, with virtually no increase in sampling burden. The code is available at https://github.com/boyuh/LightFair.

Authors:Cheng Huang, Weizheng Xie, Fan Gao, Yutong Liu, Ruoling Wu, Zeyu Han, Jingxi Qiu, Xiangxiang Wang, Zhenglin Yang, Hao Wang, Yongbin Yu
Title: BioVessel-Net and RetinaMix: Unsupervised Retinal Vessel Segmentation from OCTA Images
Abstract:
Structural changes in retinal blood vessels are critical biomarkers for the onset and progression of glaucoma and other ocular diseases. However, current vessel segmentation approaches largely rely on supervised learning and extensive manual annotations, which are costly, error-prone, and difficult to obtain in optical coherence tomography angiography. Here we present BioVessel-Net, an unsupervised generative framework that integrates vessel biostatistics with adversarial refinement and a radius-guided segmentation strategy. Unlike pixel-based methods, BioVessel-Net directly models vascular structures with biostatistical coherence, achieving accurate and explainable vessel extraction without labeled data or high-performance computing. To support training and evaluation, we introduce RetinaMix, a new benchmark dataset of 2D and 3D OCTA images with high-resolution vessel details from diverse populations. Experimental results demonstrate that BioVessel-Net achieves near-perfect segmentation accuracy across RetinaMix and existing datasets, substantially outperforming state-of-the-art supervised and semi-supervised methods. Together, BioVessel-Net and RetinaMix provide a label-free, computationally efficient, and clinically interpretable solution for retinal vessel analysis, with broad potential for glaucoma monitoring, blood flow modeling, and progression prediction. Code and dataset are available: https://github.com/VikiXie/SatMar8.

Authors:Xiang Tang, Ruotong Li, Xiaopeng Fan
Title: ZeroScene: A Zero-Shot Framework for 3D Scene Generation from a Single Image and Controllable Texture Editing
Abstract:
In the field of 3D content generation, single image scene reconstruction methods still struggle to simultaneously ensure the quality of individual assets and the coherence of the overall scene in complex environments, while texture editing techniques often fail to maintain both local continuity and multi-view consistency. In this paper, we propose a novel system ZeroScene, which leverages the prior knowledge of large vision models to accomplish both single image-to-3D scene reconstruction and texture editing in a zero-shot manner. ZeroScene extracts object-level 2D segmentation and depth information from input images to infer spatial relationships within the scene. It then jointly optimizes 3D and 2D projection losses of the point cloud to update object poses for precise scene alignment, ultimately constructing a coherent and complete 3D scene that encompasses both foreground and background. Moreover, ZeroScene supports texture editing of objects in the scene. By imposing constraints on the diffusion model and introducing a mask-guided progressive image generation strategy, we effectively maintain texture consistency across multiple viewpoints and further enhance the realism of rendered results through Physically Based Rendering (PBR) material estimation. Experimental results demonstrate that our framework not only ensures the geometric and appearance accuracy of generated assets, but also faithfully reconstructs scene layouts and produces highly detailed textures that closely align with text prompts.

Authors:Han Hu, Zhuoran Zheng, Liang Li, Chen Lyu
Title: VAMamba: An Efficient Visual Adaptive Mamba for Image Restoration
Abstract:
Recent Mamba-based image restoration methods have achieved promising results but remain limited by fixed scanning patterns and inefficient feature utilization. Conventional Mamba architectures rely on predetermined paths that cannot adapt to diverse degradations, constraining both restoration performance and computational efficiency. To overcome these limitations, we propose VAMamba, a Visual Adaptive Mamba framework with two key innovations. First, QCLAM(Queue-basedCacheLow-rankAdaptiveMemory)enhancesfeaturelearningthrougha FIFO cache that stores historical representations. Similarity between current LoRA-adapted and cached features guides intelligent fusion, enabling dynamic reuse while effectively controlling memorygrowth.Second, GPS-SS2D(GreedyPathScanSS2D)introducesadaptive scanning. A Vision Transformer generates score maps to estimate pixel importance, and a greedy strategy de termines optimal forward and backward scanning paths. These learned trajectories replace rigid patterns, enabling SS2D to perform targeted feature extraction. The integration of QCLAM and GPS-SS2D allows VAMamba to adaptively focus on degraded regions while maintaining high computational efficiency. Extensive experiments across diverse restoration tasks demonstrate that VAMamba consistently outperforms existing approaches in both restoration quality and efficiency, establishing new benchmarks for adaptive image restoration. Our code is available at https://github.com/WaterHQH/VAMamba.

Authors:Kaicheng Yang, Xun Zhang, Haotong Qin, Yucheng Lin, Kaisen Yang, Xianglong Yan, Yulun Zhang
Title: RobuQ: Pushing DiTs to W1.58A2 via Robust Activation Quantization
Abstract:
Diffusion Transformers (DiTs) have recently emerged as a powerful backbone for image generation, demonstrating superior scalability and performance over U-Net architectures. However, their practical deployment is hindered by substantial computational and memory costs. While Quantization-Aware Training (QAT) has shown promise for U-Nets, its application to DiTs faces unique challenges, primarily due to the sensitivity and distributional complexity of activations. In this work, we identify activation quantization as the primary bottleneck for pushing DiTs to extremely low-bit settings. To address this, we propose a systematic QAT framework for DiTs, named RobuQ. We start by establishing a strong ternary weight (W1.58A4) DiT baseline. Building upon this, we propose RobustQuantizer to achieve robust activation quantization. Our theoretical analyses show that the Hadamard transform can convert unknown per-token distributions into per-token normal distributions, providing a strong foundation for this method. Furthermore, we propose AMPN, the first Activation-only Mixed-Precision Network pipeline for DiTs. This method applies ternary weights across the entire network while allocating different activation precisions to each layer to eliminate information bottlenecks. Through extensive experiments on unconditional and conditional image generation, our RobuQ framework achieves state-of-the-art performance for DiT quantization in sub-4-bit quantization configuration. To the best of our knowledge, RobuQ is the first achieving stable and competitive image generation on large datasets like ImageNet-1K with activations quantized to average 2 bits. The code and models will be available at https://github.com/racoonykc/RobuQ .

Authors:Junyi Wu, Jiachen Tao, Haoxuan Wang, Gaowen Liu, Ramana Rao Kompella, Yan Yan
Title: Orientation-anchored Hyper-Gaussian for 4D Reconstruction from Casual Videos
Abstract:
We present Orientation-anchored Gaussian Splatting (OriGS), a novel framework for high-quality 4D reconstruction from casually captured monocular videos. While recent advances extend 3D Gaussian Splatting to dynamic scenes via various motion anchors, such as graph nodes or spline control points, they often rely on low-rank assumptions and fall short in modeling complex, region-specific deformations inherent to unconstrained dynamics. OriGS addresses this by introducing a hyperdimensional representation grounded in scene orientation. We first estimate a Global Orientation Field that propagates principal forward directions across space and time, serving as stable structural guidance for dynamic modeling. Built upon this, we propose Orientation-aware Hyper-Gaussian, a unified formulation that embeds time, space, geometry, and orientation into a coherent probabilistic state. This enables inferring region-specific deformation through principled conditioned slicing, adaptively capturing diverse local dynamics in alignment with global motion intent. Experiments demonstrate the superior reconstruction fidelity of OriGS over mainstream methods in challenging real-world dynamic scenes.

Authors:Mohammad Hossein Sameti, Amir M. Mansourian, Arash Marioriyad, Soheil Fadaee Oshyani, Mohammad Hossein Rohban, Mahdieh Soleymani Baghshah
Title: No Concept Left Behind: Test-Time Optimization for Compositional Text-to-Image Generation
Abstract:
Despite recent advances in text-to-image (T2I) models, they often fail to faithfully render all elements of complex prompts, frequently omitting or misrepresenting specific objects and attributes. Test-time optimization has emerged as a promising approach to address this limitation by refining generation without the need for retraining. In this paper, we propose a fine-grained test-time optimization framework that enhances compositional faithfulness in T2I generation. Unlike most of prior approaches that rely solely on a global image/text similarity score, our method decomposes the input prompt into semantic concepts and evaluates alignment at both the global and concept levels. A fine-grained variant of CLIP is used to compute concept-level correspondence, producing detailed feedback on missing or inaccurate concepts. This feedback is fed into an iterative prompt refinement loop, enabling the large language model to propose improved prompts. Experiments on DrawBench and CompBench prompts demonstrate that our method significantly improves concept coverage and human-judged faithfulness over both standard test-time optimization and the base T2I model. Code is available at: https://github.com/AmirMansurian/NoConceptLeftBehind

Authors:Tharindu Ekanayake, Constantino Álvarez Casado, Miguel Bordallo López
Title: 3DPCNet: Pose Canonicalization for Robust Viewpoint-Invariant 3D Kinematic Analysis from Monocular RGB cameras
Abstract:
Monocular 3D pose estimators produce camera-centered skeletons, creating view-dependent kinematic signals that complicate comparative analysis in applications such as health and sports science. We present 3DPCNet, a compact, estimator-agnostic module that operates directly on 3D joint coordinates to rectify any input pose into a consistent, body-centered canonical frame. Its hybrid encoder fuses local skeletal features from a graph convolutional network with global context from a transformer via a gated cross-attention mechanism. From this representation, the model predicts a continuous 6D rotation that is mapped to an $SO(3)$ matrix to align the pose. We train the model in a self-supervised manner on the MM-Fi dataset using synthetically rotated poses, guided by a composite loss ensuring both accurate rotation and pose reconstruction. On the MM-Fi benchmark, 3DPCNet reduces the mean rotation error from over 20$^{\circ}$ to 3.4$^{\circ}$ and the Mean Per Joint Position Error from ~64 mm to 47 mm compared to a geometric baseline. Qualitative evaluations on the TotalCapture dataset further demonstrate that our method produces acceleration signals from video that show strong visual correspondence to ground-truth IMU sensor data, confirming that our module removes viewpoint variability to enable physically plausible motion analysis.

Authors:Sahithya Ravi, Aditya Chinchure, Raymond T. Ng, Leonid Sigal, Vered Shwartz
Title: SPIKE-RL: Video-LLMs meet Bayesian Surprise
Abstract:
Real-world videos often show routine activities punctuated by memorable, surprising events. However, most Video-LLMs process videos by sampling frames uniformly, likely missing critical moments that define a video's narrative. We introduce SPIKE, an inference-time framework that quantifies Bayesian Surprise as the belief update triggered by new visual evidence in the video stream, identifying moments where new visual evidence conflicts with prior beliefs. SPIKE effectively localizes surprise in videos, strongly correlated with humans on positive (FunQA) and negative (Oops!) surprise benchmarks. Since the beliefs of zero-shot Video-LLMs are often suboptimal, we develop SPIKE-RL, which leverages GRPO to optimize belief hypotheses based on a reward signal from the video caption. SPIKE and SPIKE-RL guide query-agnostic surprise-weighted frame sampling, which allocates more frames to interesting moments in the video. With this strategy, we achieve consistent performance gains on five downstream benchmarks over uniform sampling. By enabling Video-LLMs to track beliefs and register surprise, our work paves the way for more robust models that can revise their understanding in response to new information.

Authors:Takehiko Ohkawa, Jihyun Lee, Shunsuke Saito, Jason Saragih, Fabian Prado, Yichen Xu, Shoou-I Yu, Ryosuke Furuta, Yoichi Sato, Takaaki Shiratori
Title: Generative Modeling of Shape-Dependent Self-Contact Human Poses
Abstract:
One can hardly model self-contact of human poses without considering underlying body shapes. For example, the pose of rubbing a belly for a person with a low BMI leads to penetration of the hand into the belly for a person with a high BMI. Despite its relevance, existing self-contact datasets lack the variety of self-contact poses and precise body shapes, limiting conclusive analysis between self-contact poses and shapes. To address this, we begin by introducing the first extensive self-contact dataset with precise body shape registration, Goliath-SC, consisting of 383K self-contact poses across 130 subjects. Using this dataset, we propose generative modeling of self-contact prior conditioned by body shape parameters, based on a body-part-wise latent diffusion with self-attention. We further incorporate this prior into single-view human pose estimation while refining estimated poses to be in contact. Our experiments suggest that shape conditioning is vital to the successful modeling of self-contact pose distribution, hence improving single-view pose estimation in self-contact.

Authors:Xi Ding, Lei Wang, Piotr Koniusz, Yongsheng Gao
Title: Graph Your Own Prompt
Abstract:
We propose Graph Consistency Regularization (GCR), a novel framework that injects relational graph structures, derived from model predictions, into the learning process to promote class-aware, semantically meaningful feature representations. Functioning as a form of self-prompting, GCR enables the model to refine its internal structure using its own outputs. While deep networks learn rich representations, these often capture noisy inter-class similarities that contradict the model's predicted semantics. GCR addresses this issue by introducing parameter-free Graph Consistency Layers (GCLs) at arbitrary depths. Each GCL builds a batch-level feature similarity graph and aligns it with a global, class-aware masked prediction graph, derived by modulating softmax prediction similarities with intra-class indicators. This alignment enforces that feature-level relationships reflect class-consistent prediction behavior, acting as a semantic regularizer throughout the network. Unlike prior work, GCR introduces a multi-layer, cross-space graph alignment mechanism with adaptive weighting, where layer importance is learned from graph discrepancy magnitudes. This allows the model to prioritize semantically reliable layers and suppress noisy ones, enhancing feature quality without modifying the architecture or training procedure. GCR is model-agnostic, lightweight, and improves semantic structure across various networks and datasets. Experiments show that GCR promotes cleaner feature structure, stronger intra-class cohesion, and improved generalization, offering a new perspective on learning from prediction structure. [Project website](https://darcyddx.github.io/gcr/) [Code](https://github.com/Darcyddx/graph-prompt)

Authors:Zhaohua Zhang, Jianhuan Zhuo, Muxi Chen, Chenchen Zhao, Wenyu Jiang, Tianwen Jiang, Mingyang Chen, Yu Tang, Qiuyong Xiao, Jihong Zhang, Zhixun Su
Title: GRAPE: Let GPRO Supervise Query Rewriting by Ranking for Retrieval
Abstract:
The CLIP model has become a cornerstone of large-scale retrieval systems by aligning text and image data in a unified embedding space. Despite its simplicity and efficiency, CLIP struggles when applied to tasks whose input distributions diverge from its training corpus, such as queries with multilingual, long-form, or multimodal differences. To avoid costly retraining, existing methods mainly adopt query-rewriting strategies with large language models (LLMs), aiming to mitigate distribution gaps at the query level. However, due to the lack of supervision signals, LLMs fail to generate the optimal one that fits the training distribution. We address this challenge with GRAPE (Grouped Ranking-Aware Policy Optimization Enhancement), a plug-and-play enhancement approach that incorporates ranking signals into retrieval-guided query rewriting with LLMs. Intuitively, GRAPE proposes to leverage GRPO to bridge distributional differences -- including length, multilingual, and modality shifts -- by transforming queries into forms better aligned with the retriever's training distribution. However, our preliminary experiment finds that naively finetuning LLM with similarity scores can lead to score inflation, where nearly all candidates are assigned unexpectedly high scores regardless of their true relevance. To address score inflation, we propose a corpus-relative ranking-based reward, which explicitly aligns optimization with ranking metrics while suppressing spurious score inflation. Extensive experiments demonstrate that GRAPE consistently improves retrieval performance under distributional shifts -- including multilingual differences (Flickr30k-CN, CVLUE, XM3600), length differences (Wikipedia), and multimodal differences (CIRR) -- achieving an average improvement of 4.9\% in Recall\@10. The code is available at https://github.com/Chinese0123456/GRAPE.git

Authors:Siheng Wang, Zhengdao Li, Yanshu Li, Canran Xiao, Haibo Zhan, Zhengtao Yao, Xuzhi Zhang, Jiale Kang, Linshan Li, Weiming Liu, Zhikang Dong, Jifeng Shen, Junhao Dong, Qiang Sun, Piotr Koniusz
Title: C3-OWD: A Curriculum Cross-modal Contrastive Learning Framework for Open-World Detection
Abstract:
Object detection has advanced significantly in the closed-set setting, but real-world deployment remains limited by two challenges: poor generalization to unseen categories and insufficient robustness under adverse conditions. Prior research has explored these issues separately: visible-infrared detection improves robustness but lacks generalization, while open-world detection leverages vision-language alignment strategy for category diversity but struggles under extreme environments. This trade-off leaves robustness and diversity difficult to achieve simultaneously. To mitigate these issues, we propose \textbf{C3-OWD}, a curriculum cross-modal contrastive learning framework that unifies both strengths. Stage~1 enhances robustness by pretraining with RGBT data, while Stage~2 improves generalization via vision-language alignment. To prevent catastrophic forgetting between two stages, we introduce an Exponential Moving Average (EMA) mechanism that theoretically guarantees preservation of pre-stage performance with bounded parameter lag and function consistency. Experiments on FLIR, OV-COCO, and OV-LVIS demonstrate the effectiveness of our approach: C3-OWD achieves $80.1$ AP$^{50}$ on FLIR, $48.6$ AP$^{50}_{\text{Novel}}$ on OV-COCO, and $35.7$ mAP$_r$ on OV-LVIS, establishing competitive performance across both robustness and diversity evaluations. Code available at: https://github.com/justin-herry/C3-OWD.git.

Authors:Hao Liu, Yongjie Zheng, Yuhan Kang, Mingyang Zhang, Maoguo Gong, Lorenzo Bruzzone
Title: Balanced Diffusion-Guided Fusion for Multimodal Remote Sensing Classification
Abstract:
Deep learning-based techniques for the analysis of multimodal remote sensing data have become popular due to their ability to effectively integrate complementary spatial, spectral, and structural information from different sensors. Recently, denoising diffusion probabilistic models (DDPMs) have attracted attention in the remote sensing community due to their powerful ability to capture robust and complex spatial-spectral distributions. However, pre-training multimodal DDPMs may result in modality imbalance, and effectively leveraging diffusion features to guide complementary diversity feature extraction remains an open question. To address these issues, this paper proposes a balanced diffusion-guided fusion (BDGF) framework that leverages multimodal diffusion features to guide a multi-branch network for land-cover classification. Specifically, we propose an adaptive modality masking strategy to encourage the DDPMs to obtain a modality-balanced rather than spectral image-dominated data distribution. Subsequently, these diffusion features hierarchically guide feature extraction among CNN, Mamba, and transformer networks by integrating feature fusion, group channel attention, and cross-attention mechanisms. Finally, a mutual learning strategy is developed to enhance inter-branch collaboration by aligning the probability entropy and feature similarity of individual subnetworks. Extensive experiments on four multimodal remote sensing datasets demonstrate that the proposed method achieves superior classification performance. The code is available at https://github.com/HaoLiu-XDU/BDGF.

Authors:Minsun Jeon, Simon S. Woo
Title: Seeing Through the Blur: Unlocking Defocus Maps for Deepfake Detection
Abstract:
The rapid advancement of generative AI has enabled the mass production of photorealistic synthetic images, blurring the boundary between authentic and fabricated visual content. This challenge is particularly evident in deepfake scenarios involving facial manipulation, but also extends to broader AI-generated content (AIGC) cases involving fully synthesized scenes. As such content becomes increasingly difficult to distinguish from reality, the integrity of visual media is under threat. To address this issue, we propose a physically interpretable deepfake detection framework and demonstrate that defocus blur can serve as an effective forensic signal. Defocus blur is a depth-dependent optical phenomenon that naturally occurs in camera-captured images due to lens focus and scene geometry. In contrast, synthetic images often lack realistic depth-of-field (DoF) characteristics. To capture these discrepancies, we construct a defocus blur map and use it as a discriminative feature for detecting manipulated content. Unlike RGB textures or frequency-domain signals, defocus blur arises universally from optical imaging principles and encodes physical scene structure. This makes it a robust and generalizable forensic cue. Our approach is supported by three in-depth feature analyses, and experimental results confirm that defocus blur provides a reliable and interpretable cue for identifying synthetic images. We aim for our defocus-based detection pipeline and interpretability tools to contribute meaningfully to ongoing research in media forensics. The implementation is publicly available at: https://github.com/irissun9602/Defocus-Deepfake-Detection

Authors:Atakan Topaloglu, Kunyi Li, Michael Niemeyer, Nassir Navab, A. Murat Tekalp, Federico Tombari
Title: OracleGS: Grounding Generative Priors for Sparse-View Gaussian Splatting
Abstract:
Sparse-view novel view synthesis is fundamentally ill-posed due to severe geometric ambiguity. Current methods are caught in a trade-off: regressive models are geometrically faithful but incomplete, whereas generative models can complete scenes but often introduce structural inconsistencies. We propose OracleGS, a novel framework that reconciles generative completeness with regressive fidelity for sparse view Gaussian Splatting. Instead of using generative models to patch incomplete reconstructions, our "propose-and-validate" framework first leverages a pre-trained 3D-aware diffusion model to synthesize novel views to propose a complete scene. We then repurpose a multi-view stereo (MVS) model as a 3D-aware oracle to validate the 3D uncertainties of generated views, using its attention maps to reveal regions where the generated views are well-supported by multi-view evidence versus where they fall into regions of high uncertainty due to occlusion, lack of texture, or direct inconsistency. This uncertainty signal directly guides the optimization of a 3D Gaussian Splatting model via an uncertainty-weighted loss. Our approach conditions the powerful generative prior on multi-view geometric evidence, filtering hallucinatory artifacts while preserving plausible completions in under-constrained regions, outperforming state-of-the-art methods on datasets including Mip-NeRF 360 and NeRF Synthetic.

Authors:Sasan Sharifipour, Constantino Álvarez Casado, Le Nguyen, Tharindu Ekanayake, Manuel Lage Cañellas, Nhi Nguyen, Miguel Bordallo López
Title: LiDAR-based Human Activity Recognition through Laplacian Spectral Analysis
Abstract:
Human Activity Recognition supports applications in healthcare, manufacturing, and human-machine interaction. LiDAR point clouds offer a privacy-preserving alternative to cameras and are robust to illumination. We propose a HAR method based on graph spectral analysis. Each LiDAR frame is mapped to a proximity graph (epsilon-graph) and the Laplacian spectrum is computed. Eigenvalues and statistics of eigenvectors form pose descriptors, and temporal statistics over sliding windows yield fixed vectors for classification with support vector machines and random forests. On the MM-Fi dataset with 40 subjects and 27 activities, under a strict subject-independent protocol, the method reaches 94.4% accuracy on a 13-class rehabilitation set and 90.3% on all 27 activities. It also surpasses the skeleton-based baselines reported for MM-Fi. The contribution is a compact and interpretable feature set derived directly from point cloud geometry that provides an accurate and efficient alternative to end-to-end deep learning.

Authors:Donghao Zhang, Yimin Chen, Kauê TN Duarte, Taha Aslan, Mohamed AlShamrani, Brij Karmur, Yan Wan, Shengcai Chen, Bo Hu, Bijoy K Menon, Wu Qiu
Title: Benchmarking DINOv3 for Multi-Task Stroke Analysis on Non-Contrast CT
Abstract:
Non-contrast computed tomography (NCCT) is essential for rapid stroke diagnosis but is limited by low image contrast and signal to noise ratio. We address this challenge by leveraging DINOv3, a state-of-the-art self-supervised vision transformer, to generate powerful feature representations for a comprehensive set of stroke analysis tasks. Our evaluation encompasses infarct and hemorrhage segmentation, anomaly classification (normal vs. stroke and normal vs. infarct vs. hemorrhage), hemorrhage subtype classification (EDH, SDH, SAH, IPH, IVH), and dichotomized ASPECTS classification (<=6 vs. >6) on multiple public and private datasets. This study establishes strong benchmarks for these tasks and demonstrates the potential of advanced self-supervised models to improve automated stroke diagnosis from NCCT, providing a clear analysis of both the advantages and current constraints of the approach. The code is available at https://github.com/Zzz0251/DINOv3-stroke.

Authors:Yutao Shen, Junkun Yuan, Toru Aonishi, Hideki Nakayama, Yue Ma
Title: Follow-Your-Preference: Towards Preference-Aligned Image Inpainting
Abstract:
This paper investigates image inpainting with preference alignment. Instead of introducing a novel method, we go back to basics and revisit fundamental problems in achieving such alignment. We leverage the prominent direct preference optimization approach for alignment training and employ public reward models to construct preference training datasets. Experiments are conducted across nine reward models, two benchmarks, and two baseline models with varying structures and generative algorithms. Our key findings are as follows: (1) Most reward models deliver valid reward scores for constructing preference data, even if some of them are not reliable evaluators. (2) Preference data demonstrates robust trends in both candidate scaling and sample scaling across models and benchmarks. (3) Observable biases in reward models, particularly in brightness, composition, and color scheme, render them susceptible to cause reward hacking. (4) A simple ensemble of these models yields robust and generalizable results by mitigating such biases. Built upon these observations, our alignment models significantly outperform prior models across standard metrics, GPT-4 assessments, and human evaluations, without any changes to model structures or the use of new datasets. We hope our work can set a simple yet solid baseline, pushing this promising frontier. Our code is open-sourced at: https://github.com/shenytzzz/Follow-Your-Preference.

Authors:Ben Liang, Yuan Liu, Bingwen Qiu, Yihong Wang, Xiubao Sui, Qian Chen
Title: FMC-DETR: Frequency-Decoupled Multi-Domain Coordination for Aerial-View Object Detection
Abstract:
Aerial-view object detection is a critical technology for real-world applications such as natural resource monitoring, traffic management, and UAV-based search and rescue. Detecting tiny objects in high-resolution aerial imagery presents a long-standing challenge due to their limited visual cues and the difficulty of modeling global context in complex scenes. Existing methods are often hampered by delayed contextual fusion and inadequate non-linear modeling, failing to effectively use global information to refine shallow features and thus encountering a performance bottleneck. To address these challenges, we propose FMC-DETR, a novel framework with frequency-decoupled fusion for aerial-view object detection. First, we introduce the Wavelet Kolmogorov-Arnold Transformer (WeKat) backbone, which applies cascaded wavelet transforms to enhance global low-frequency context perception in shallow features while preserving fine-grained details, and employs Kolmogorov-Arnold networks to achieve adaptive non-linear modeling of multi-scale dependencies. Next, a lightweight Cross-stage Partial Fusion (CPF) module reduces redundancy and improves multi-scale feature interaction. Finally, we introduce the Multi-Domain Feature Coordination (MDFC) module, which unifies spatial, frequency, and structural priors to to balance detail preservation and global enhancement. Extensive experiments on benchmark aerial-view datasets demonstrate that FMC-DETR achieves state-of-the-art performance with fewer parameters. On the challenging VisDrone dataset, our model achieves improvements of 6.5% AP and 8.2% AP50 over the baseline, highlighting its effectiveness in tiny object detection. The code can be accessed at https://github.com/bloomingvision/FMC-DETR.

Authors:Ye-eun Kim, Suhyeon Lim, Andrew J. Choi
Title: MMeViT: Multi-Modal ensemble ViT for Post-Stroke Rehabilitation Action Recognition
Abstract:
Rehabilitation therapy for stroke patients faces a supply shortage despite the increasing demand. To address this issue, remote monitoring systems that reduce the burden on medical staff are emerging as a viable alternative. A key component of these remote monitoring systems is Human Action Recognition (HAR) technology, which classifies actions. However, existing HAR studies have primarily focused on non-disable individuals, making them unsuitable for recognizing the actions of stroke patients. HAR research for stroke has largely concentrated on classifying relatively simple actions using machine learning rather than deep learning. In this study, we designed a system to monitor the actions of stroke patients, focusing on domiciliary upper limb Activities of Daily Living (ADL). Our system utilizes IMU (Inertial Measurement Unit) sensors and an RGB-D camera, which are the most common modalities in HAR. We directly collected a dataset through this system, investigated an appropriate preprocess and proposed a deep learning model suitable for processing multimodal data. We analyzed the collected dataset and found that the action data of stroke patients is less clustering than that of non-disabled individuals. Simultaneously, we found that the proposed model learns similar tendencies for each label in data with features that are difficult to clustering. This study suggests the possibility of expanding the deep learning model, which has learned the action features of stroke patients, to not only simple action recognition but also feedback such as assessment contributing to domiciliary rehabilitation in future research. The code presented in this study is available at https://github.com/ye-Kim/MMeViT.

Authors:Gabriel A. Viana, Luis F. Alves Pereira, Tsang Ing Ren, George D. C. Cavalcanti, Jan Sijbers
Title: Perceptual Influence: Improving the Perceptual Loss Design for Low-Dose CT Enhancement
Abstract:
Perceptual losses have emerged as powerful tools for training networks to enhance Low-Dose Computed Tomography (LDCT) images, offering an alternative to traditional pixel-wise losses such as Mean Squared Error, which often lead to over-smoothed reconstructions and loss of clinically relevant details in LDCT images. The perceptual losses operate in a latent feature space defined by a pretrained encoder and aim to preserve semantic content by comparing high-level features rather than raw pixel values. However, the design of perceptual losses involves critical yet underexplored decisions, including the feature representation level, the dataset used to pretrain the encoder, and the relative importance assigned to the perceptual component during optimization. In this work, we introduce the concept of perceptual influence (a metric that quantifies the relative contribution of the perceptual loss term to the total loss) and propose a principled framework to assess the impact of the loss design choices on the model training performance. Through systematic experimentation, we show that the widely used configurations in the literature to set up a perceptual loss underperform compared to better-designed alternatives. Our findings show that better perceptual loss designs lead to significant improvements in noise reduction and structural fidelity of reconstructed CT images, without requiring any changes to the network architecture. We also provide objective guidelines, supported by statistical analysis, to inform the effective use of perceptual losses in LDCT denoising. Our source code is available at https://github.com/vngabriel/perceptual-influence.

Authors:Zhiqiang Tian, Weigang Li, Chunhua Deng, Junwei Hu, Yongqiang Wang, Wenping Liu
Title: Desensitizing for Improving Corruption Robustness in Point Cloud Classification through Adversarial Training
Abstract:
Due to scene complexity, sensor inaccuracies, and processing imprecision, point cloud corruption is inevitable. Over-reliance on input features is the root cause of DNN vulnerabilities. It remains unclear whether this issue exists in 3D tasks involving point clouds and whether reducing dependence on these features can enhance the model's robustness to corrupted point clouds. This study attempts to answer these questions. Specifically, we quantified the sensitivity of the DNN to point cloud features using Shapley values and found that models trained using traditional methods exhibited high sensitivity values for certain features. Furthermore, under an equal pruning ratio, prioritizing the pruning of highly sensitive features causes more severe damage to model performance than random pruning. We propose `Desensitized Adversarial Training' (DesenAT), generating adversarial samples using feature desensitization and conducting training within a self-distillation framework, which aims to alleviate DNN's over-reliance on point clouds features by smoothing sensitivity. First, data points with high contribution components are eliminated, and spatial transformation is used to simulate corruption scenes, generate adversarial samples, and conduct adversarial training on the model. Next, to compensate for information loss in adversarial samples, we use the self-distillation method to transfer knowledge from clean samples to adversarial samples, and perform adversarial training in a distillation manner.Extensive experiments on ModelNet-C and PointCloud-C demonstrate show that the propose method can effectively improve the robustness of the model without reducing the performance of clean data sets. This code is publicly available at \href{https://github.com/JerkyT/DesenAT/tree/master}{https://github.com/JerkyT/DesenAT}.

Authors:Siheng Zhao, Jiageng Mao, Wei Chow, Zeyu Shangguan, Tianheng Shi, Rong Xue, Yuxi Zheng, Yijia Weng, Yang You, Daniel Seita, Leonidas Guibas, Sergey Zakharov, Vitor Guizilini, Yue Wang
Title: Robot Learning from Any Images
Abstract:
We introduce RoLA, a framework that transforms any in-the-wild image into an interactive, physics-enabled robotic environment. Unlike previous methods, RoLA operates directly on a single image without requiring additional hardware or digital assets. Our framework democratizes robotic data generation by producing massive visuomotor robotic demonstrations within minutes from a wide range of image sources, including camera captures, robotic datasets, and Internet images. At its core, our approach combines a novel method for single-view physical scene recovery with an efficient visual blending strategy for photorealistic data collection. We demonstrate RoLA's versatility across applications like scalable robotic data generation and augmentation, robot learning from Internet images, and single-image real-to-sim-to-real systems for manipulators and humanoids. Video results are available at https://sihengz02.github.io/RoLA .

Authors:Federico Chinello, Giacomo Boracchi
Title: Convolutional Set Transformer
Abstract:
We introduce the Convolutional Set Transformer (CST), a novel neural architecture designed to process image sets of arbitrary cardinality that are visually heterogeneous yet share high-level semantics - such as a common category, scene, or concept. Existing set-input networks, e.g., Deep Sets and Set Transformer, are limited to vector inputs and cannot directly handle 3D image tensors. As a result, they must be cascaded with a feature extractor, typically a CNN, which encodes images into embeddings before the set-input network can model inter-image relationships. In contrast, CST operates directly on 3D image tensors, performing feature extraction and contextual modeling simultaneously, thereby enabling synergies between the two processes. This design yields superior performance in tasks such as Set Classification and Set Anomaly Detection and further provides native compatibility with CNN explainability methods such as Grad-CAM, unlike competing approaches that remain opaque. Finally, we show that CSTs can be pre-trained on large-scale datasets and subsequently adapted to new domains and tasks through standard Transfer Learning schemes. To support further research, we release CST-15, a CST backbone pre-trained on ImageNet (https://github.com/chinefed/convolutional-set-transformer).

Authors:Xuan He, Dongfu Jiang, Ping Nie, Minghao Liu, Zhengxuan Jiang, Mingyi Su, Wentao Ma, Junru Lin, Chun Ye, Yi Lu, Keming Wu, Benjamin Schneider, Quy Duc Do, Zhuofeng Li, Yiming Jia, Yuxuan Zhang, Guo Cheng, Haozhe Wang, Wangchunshu Zhou, Qunshu Lin, Yuanxing Zhang, Ge Zhang, Wenhao Huang, Wenhu Chen
Title: VideoScore2: Think before You Score in Generative Video Evaluation
Abstract:
Recent advances in text-to-video generation have produced increasingly realistic and diverse content, yet evaluating such videos remains a fundamental challenge due to their multi-faceted nature encompassing visual quality, semantic alignment, and physical consistency. Existing evaluators and reward models are limited to single opaque scores, lack interpretability, or provide only coarse analysis, making them insufficient for capturing the comprehensive nature of video quality assessment. We present VideoScore2, a multi-dimensional, interpretable, and human-aligned framework that explicitly evaluates visual quality, text-to-video alignment, and physical/common-sense consistency while producing detailed chain-of-thought rationales. Our model is trained on a large-scale dataset VideoFeedback2 containing 27,168 human-annotated videos with both scores and reasoning traces across three dimensions, using a two-stage pipeline of supervised fine-tuning followed by reinforcement learning with Group Relative Policy Optimization (GRPO) to enhance analytical robustness. Extensive experiments demonstrate that VideoScore2 achieves superior performance with 44.35 (+5.94) accuracy on our in-domain benchmark VideoScore-Bench-v2 and 50.37 (+4.32) average performance across four out-of-domain benchmarks (VideoGenReward-Bench, VideoPhy2, etc), while providing interpretable assessments that bridge the gap between evaluation and controllable generation through effective reward modeling for Best-of-N sampling. Project Page: https://tiger-ai-lab.github.io/VideoScore2/

Authors:Komal Kumar, Rao Muhammad Anwer, Fahad Shahbaz Khan, Salman Khan, Ivan Laptev, Hisham Cholakkal
Title: DEFT: Decompositional Efficient Fine-Tuning for Text-to-Image Models
Abstract:
Efficient fine-tuning of pre-trained Text-to-Image (T2I) models involves adjusting the model to suit a particular task or dataset while minimizing computational resources and limiting the number of trainable parameters. However, it often faces challenges in striking a trade-off between aligning with the target distribution: learning a novel concept from a limited image for personalization and retaining the instruction ability needed for unifying multiple tasks, all while maintaining editability (aligning with a variety of prompts or in-context generation). In this work, we introduce DEFT, Decompositional Efficient Fine-Tuning, an efficient fine-tuning framework that adapts a pre-trained weight matrix by decomposing its update into two components with two trainable matrices: (1) a projection onto the complement of a low-rank subspace spanned by a low-rank matrix, and (2) a low-rank update. The single trainable low-rank matrix defines the subspace, while the other trainable low-rank matrix enables flexible parameter adaptation within that subspace. We conducted extensive experiments on the Dreambooth and Dreambench Plus datasets for personalization, the InsDet dataset for object and scene adaptation, and the VisualCloze dataset for a universal image generation framework through visual in-context learning with both Stable Diffusion and a unified model. Our results demonstrated state-of-the-art performance, highlighting the emergent properties of efficient fine-tuning. Our code is available on \href{https://github.com/MAXNORM8650/DEFT}{DEFTBase}.

Authors:Fernando Julio Cendra, Kai Han
Title: PartCo: Part-Level Correspondence Priors Enhance Category Discovery
Abstract:
Generalized Category Discovery (GCD) aims to identify both known and novel categories within unlabeled data by leveraging a set of labeled examples from known categories. Existing GCD methods primarily depend on semantic labels and global image representations, often overlooking the detailed part-level cues that are crucial for distinguishing closely related categories. In this paper, we introduce PartCo, short for Part-Level Correspondence Prior, a novel framework that enhances category discovery by incorporating part-level visual feature correspondences. By leveraging part-level relationships, PartCo captures finer-grained semantic structures, enabling a more nuanced understanding of category relationships. Importantly, PartCo seamlessly integrates with existing GCD methods without requiring significant modifications. Our extensive experiments on multiple benchmark datasets demonstrate that PartCo significantly improves the performance of current GCD approaches, achieving state-of-the-art results by bridging the gap between semantic labels and part-level visual compositions, thereby setting new benchmarks for GCD. Project page: https://visual-ai.github.io/partco

Authors:Le Zhang, Ao Li, Qibin Hou, Ce Zhu, Yonina C. Eldar
Title: Deep Learning Empowered Super-Resolution: A Comprehensive Survey and Future Prospects
Abstract:
Super-resolution (SR) has garnered significant attention within the computer vision community, driven by advances in deep learning (DL) techniques and the growing demand for high-quality visual applications. With the expansion of this field, numerous surveys have emerged. Most existing surveys focus on specific domains, lacking a comprehensive overview of this field. Here, we present an in-depth review of diverse SR methods, encompassing single image super-resolution (SISR), video super-resolution (VSR), stereo super-resolution (SSR), and light field super-resolution (LFSR). We extensively cover over 150 SISR methods, nearly 70 VSR approaches, and approximately 30 techniques for SSR and LFSR. We analyze methodologies, datasets, evaluation protocols, empirical results, and complexity. In addition, we conducted a taxonomy based on each backbone structure according to the diverse purposes. We also explore valuable yet under-studied open issues in the field. We believe that this work will serve as a valuable resource and offer guidance to researchers in this domain. To facilitate access to related work, we created a dedicated repository available at https://github.com/AVC2-UESTC/Holistic-Super-Resolution-Review.

Authors:Ha-Hieu Pham, Minh Le, Han Huynh, Nguyen Quoc Khanh Le, Huy-Hieu Pham
Title: Graph-Theoretic Consistency for Robust and Topology-Aware Semi-Supervised Histopathology Segmentation
Abstract:
Semi-supervised semantic segmentation (SSSS) is vital in computational pathology, where dense annotations are costly and limited. Existing methods often rely on pixel-level consistency, which propagates noisy pseudo-labels and produces fragmented or topologically invalid masks. We propose Topology Graph Consistency (TGC), a framework that integrates graph-theoretic constraints by aligning Laplacian spectra, component counts, and adjacency statistics between prediction graphs and references. This enforces global topology and improves segmentation accuracy. Experiments on GlaS and CRAG demonstrate that TGC achieves state-of-the-art performance under 5-10% supervision and significantly narrows the gap to full supervision. Code is available at https://github.com/hieuphamha19/TGC.

Authors:Yash Thube
Title: Pathological Truth Bias in Vision-Language Models
Abstract:
Vision Language Models (VLMs) are improving quickly, but standard benchmarks can hide systematic failures that reduce real world trust. We introduce MATS (Multimodal Audit for Truthful Spatialization), a compact behavioral audit that measures whether models reject visually contradicted statements, and two metrics Spatial Consistency Score (SCS) and Incorrect Agreement Rate (IAR). Instruction tuned generative VLMs (LLaVA 1.5, QwenVLchat) exhibit very low SCS and high IAR, while contrastive encoders (CLIP, SigLIP) are far more robust. Activation patching causally localizes failure loci (mid to late cross attention for generative models, pooled projection components for contrastive models) and suggests concrete repair paths.

Authors:E-Ro Nguyen, Yichi Zhang, Kanchana Ranasinghe, Xiang Li, Michael S. Ryoo
Title: Pixel Motion Diffusion is What We Need for Robot Control
Abstract:
We present DAWN (Diffusion is All We Need for robot control), a unified diffusion-based framework for language-conditioned robotic manipulation that bridges high-level motion intent and low-level robot action via structured pixel motion representation. In DAWN, both the high-level and low-level controllers are modeled as diffusion processes, yielding a fully trainable, end-to-end system with interpretable intermediate motion abstractions. DAWN achieves state-of-the-art results on the challenging CALVIN benchmark, demonstrating strong multi-task performance, and further validates its effectiveness on MetaWorld. Despite the substantial domain gap between simulation and reality and limited real-world data, we demonstrate reliable real-world transfer with only minimal finetuning, illustrating the practical viability of diffusion-based motion abstractions for robotic control. Our results show the effectiveness of combining diffusion modeling with motion-centric representations as a strong baseline for scalable and robust robot learning. Project page: https://nero1342.github.io/DAWN/

Authors:Ke Wang, Houxing Ren, Zimu Lu, Mingjie Zhan, Hongsheng Li
Title: VoiceAssistant-Eval: Benchmarking AI Assistants across Listening, Speaking, and Viewing
Abstract:
The growing capabilities of large language models and multimodal systems have spurred interest in voice-first AI assistants, yet existing benchmarks are inadequate for evaluating the full range of these systems' capabilities. We introduce VoiceAssistant-Eval, a comprehensive benchmark designed to assess AI assistants across listening, speaking, and viewing. VoiceAssistant-Eval comprises 10,497 curated examples spanning 13 task categories. These tasks include natural sounds, music, and spoken dialogue for listening; multi-turn dialogue, role-play imitation, and various scenarios for speaking; and highly heterogeneous images for viewing. To demonstrate its utility, we evaluate 21 open-source models and GPT-4o-Audio, measuring the quality of the response content and speech, as well as their consistency. The results reveal three key findings: (1) proprietary models do not universally outperform open-source models; (2) most models excel at speaking tasks but lag in audio understanding; and (3) well-designed smaller models can rival much larger ones. Notably, the mid-sized Step-Audio-2-mini (7B) achieves more than double the listening accuracy of LLaMA-Omni2-32B-Bilingual. However, challenges remain: multimodal (audio plus visual) input and role-play voice imitation tasks are difficult for current models, and significant gaps persist in robustness and safety alignment. VoiceAssistant-Eval identifies these gaps and establishes a rigorous framework for evaluating and guiding the development of next-generation AI assistants. Code and data will be released at https://mathllm.github.io/VoiceAssistantEval/ .

Authors:Long Xing, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Jianze Liang, Qidong Huang, Jiaqi Wang, Feng Wu, Dahua Lin
Title: CapRL: Stimulating Dense Image Caption Capabilities via Reinforcement Learning
Abstract:
Image captioning is a fundamental task that bridges the visual and linguistic domains, playing a critical role in pre-training Large Vision-Language Models (LVLMs). Current state-of-the-art captioning models are typically trained with Supervised Fine-Tuning (SFT), a paradigm that relies on expensive, non-scalable data annotated by humans or proprietary models. This approach often leads to models that memorize specific ground-truth answers, limiting their generality and ability to generate diverse, creative descriptions. To overcome the limitation of SFT, we propose applying the Reinforcement Learning with Verifiable Rewards (RLVR) paradigm to the open-ended task of image captioning. A primary challenge, however, is designing an objective reward function for the inherently subjective nature of what constitutes a "good" caption. We introduce Captioning Reinforcement Learning (CapRL), a novel training framework that redefines caption quality through its utility: a high-quality caption should enable a non-visual language model to accurately answer questions about the corresponding image. CapRL employs a decoupled two-stage pipeline where an LVLM generates a caption, and the objective reward is derived from the accuracy of a separate, vision-free LLM answering Multiple-Choice Questions based solely on that caption. As the first study to apply RLVR to the subjective image captioning task, we demonstrate that CapRL significantly enhances multiple settings. Pretraining on the CapRL-5M caption dataset annotated by CapRL-3B results in substantial gains across 12 benchmarks. Moreover, within the Prism Framework for caption quality evaluation, CapRL achieves performance comparable to Qwen2.5-VL-72B, while exceeding the baseline by an average margin of 8.4%. Code is available here: https://github.com/InternLM/CapRL.

Authors:Alexandre Lopes, Roberto Souza, Helio Pedrini
Title: CCNeXt: An Effective Self-Supervised Stereo Depth Estimation Approach
Abstract:
Depth Estimation plays a crucial role in recent applications in robotics, autonomous vehicles, and augmented reality. These scenarios commonly operate under constraints imposed by computational power. Stereo image pairs offer an effective solution for depth estimation since it only needs to estimate the disparity of pixels in image pairs to determine the depth in a known rectified system. Due to the difficulty in acquiring reliable ground-truth depth data across diverse scenarios, self-supervised techniques emerge as a solution, particularly when large unlabeled datasets are available. We propose a novel self-supervised convolutional approach that outperforms existing state-of-the-art Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) while balancing computational cost. The proposed CCNeXt architecture employs a modern CNN feature extractor with a novel windowed epipolar cross-attention module in the encoder, complemented by a comprehensive redesign of the depth estimation decoder. Our experiments demonstrate that CCNeXt achieves competitive metrics on the KITTI Eigen Split test data while being 10.18$\times$ faster than the current best model and achieves state-of-the-art results in all metrics in the KITTI Eigen Split Improved Ground Truth and Driving Stereo datasets when compared to recently proposed techniques. To ensure complete reproducibility, our project is accessible at \href{https://github.com/alelopes/CCNext}{\texttt{https://github.com/alelopes/CCNext}}.

Authors:Ziyu Liu, Yuhang Zang, Shengyuan Ding, Yuhang Cao, Xiaoyi Dong, Haodong Duan, Dahua Lin, Jiaqi Wang
Title: SPARK: Synergistic Policy And Reward Co-Evolving Framework
Abstract:
Recent Large Language Models (LLMs) and Large Vision-Language Models (LVLMs) increasingly use Reinforcement Learning (RL) for post-pretraining, such as RL with Verifiable Rewards (RLVR) for objective tasks and RL from Human Feedback (RLHF) for subjective tasks. However, RLHF incurs high costs and potential reward-policy mismatch due to reliance on human preferences, while RLVR still wastes supervision by discarding rollouts and correctness signals after each update. To address these challenges, we introduce the Synergistic Policy And Reward Co-Evolving Framework (SPARK), an efficient, on-policy, and stable method that builds on RLVR. Instead of discarding rollouts and correctness data, SPARK recycles this valuable information to simultaneously train the model itself as a generative reward model. This auxiliary training uses a mix of objectives, such as pointwise reward score, pairwise comparison, and evaluation conditioned on further-reflection responses, to teach the model to evaluate and improve its own responses. Our process eliminates the need for a separate reward model and costly human preference data. SPARK creates a positive co-evolving feedback loop: improved reward accuracy yields better policy gradients, which in turn produce higher-quality rollouts that further refine the reward model. Our unified framework supports test-time scaling via self-reflection without external reward models and their associated costs. We show that SPARK achieves significant performance gains on multiple LLM and LVLM models and multiple reasoning, reward models, and general benchmarks. For example, SPARK-VL-7B achieves an average 9.7% gain on 7 reasoning benchmarks, 12.1% on 2 reward benchmarks, and 1.5% on 8 general benchmarks over the baselines, demonstrating robustness and broad generalization.

Authors:Shuai Yang, Wei Huang, Ruihang Chu, Yicheng Xiao, Yuyang Zhao, Xianbang Wang, Muyang Li, Enze Xie, Yingcong Chen, Yao Lu, Song Han, Yukang Chen
Title: LongLive: Real-time Interactive Long Video Generation
Abstract:
We present LongLive, a frame-level autoregressive (AR) framework for real-time and interactive long video generation. Long video generation presents challenges in both efficiency and quality. Diffusion and Diffusion-Forcing models can produce high-quality videos but suffer from low efficiency due to bidirectional attention. Causal attention AR models support KV caching for faster inference, but often degrade in quality on long videos due to memory challenges during long-video training. In addition, beyond static prompt-based generation, interactive capabilities, such as streaming prompt inputs, are critical for dynamic content creation, enabling users to guide narratives in real time. This interactive requirement significantly increases complexity, especially in ensuring visual consistency and semantic coherence during prompt transitions. To address these challenges, LongLive adopts a causal, frame-level AR design that integrates a KV-recache mechanism that refreshes cached states with new prompts for smooth, adherent switches; streaming long tuning to enable long video training and to align training and inference (train-long-test-long); and short window attention paired with a frame-level attention sink, shorten as frame sink, preserving long-range consistency while enabling faster generation. With these key designs, LongLive fine-tunes a 1.3B-parameter short-clip model to minute-long generation in just 32 GPU-days. At inference, LongLive sustains 20.7 FPS on a single NVIDIA H100, achieves strong performance on VBench in both short and long videos. LongLive supports up to 240-second videos on a single H100 GPU. LongLive further supports INT8-quantized inference with only marginal quality loss.

Authors:Shuang Zeng, Dekang Qi, Xinyuan Chang, Feng Xiong, Shichao Xie, Xiaolong Wu, Shiyi Liang, Mu Xu, Xing Wei
Title: JanusVLN: Decoupling Semantics and Spatiality with Dual Implicit Memory for Vision-Language Navigation
Abstract:
Vision-and-Language Navigation requires an embodied agent to navigate through unseen environments, guided by natural language instructions and a continuous video stream. Recent advances in VLN have been driven by the powerful semantic understanding of Multimodal Large Language Models. However, these methods typically rely on explicit semantic memory, such as building textual cognitive maps or storing historical visual frames. This type of method suffers from spatial information loss, computational redundancy, and memory bloat, which impede efficient navigation. Inspired by the implicit scene representation in human navigation, analogous to the left brain's semantic understanding and the right brain's spatial cognition, we propose JanusVLN, a novel VLN framework featuring a dual implicit neural memory that models spatial-geometric and visual-semantic memory as separate, compact, and fixed-size neural representations. This framework first extends the MLLM to incorporate 3D prior knowledge from the spatial-geometric encoder, thereby enhancing the spatial reasoning capabilities of models based solely on RGB input. Then, the historical key-value caches from the spatial-geometric and visual-semantic encoders are constructed into a dual implicit memory. By retaining only the KVs of tokens in the initial and sliding window, redundant computation is avoided, enabling efficient incremental updates. Extensive experiments demonstrate that JanusVLN outperforms over 20 recent methods to achieve SOTA performance. For example, the success rate improves by 10.5-35.5 compared to methods using multiple data types as input and by 3.6-10.8 compared to methods using more RGB training data. This indicates that the proposed dual implicit neural memory, as a novel paradigm, explores promising new directions for future VLN research. Ours project page: https://miv-xjtu.github.io/JanusVLN.github.io/.

Authors:Zhenqi He, Yuanpei Liu, Kai Han
Title: Category Discovery: An Open-World Perspective
Abstract:
Category discovery (CD) is an emerging open-world learning task, which aims at automatically categorizing unlabelled data containing instances from unseen classes, given some labelled data from seen classes. This task has attracted significant attention over the years and leads to a rich body of literature trying to address the problem from different perspectives. In this survey, we provide a comprehensive review of the literature, and offer detailed analysis and in-depth discussion on different methods. Firstly, we introduce a taxonomy for the literature by considering two base settings, namely novel category discovery (NCD) and generalized category discovery (GCD), and several derived settings that are designed to address the extra challenges in different real-world application scenarios, including continual category discovery, skewed data distribution, federated category discovery, etc. Secondly, for each setting, we offer a detailed analysis of the methods encompassing three fundamental components, representation learning, label assignment, and estimation of class number. Thirdly, we benchmark all the methods and distill key insights showing that large-scale pretrained backbones, hierarchical and auxiliary cues, and curriculum-style training are all beneficial for category discovery, while challenges remain in the design of label assignment, the estimation of class numbers, and scaling to complex multi-object scenarios. Finally, we discuss the key insights from the literature so far and point out promising future research directions. We compile a living survey of the category discovery literature at https://github.com/Visual-AI/Category-Discovery.

Authors:Ruoyu Chen, Xiaoqing Guo, Kangwei Liu, Siyuan Liang, Shiming Liu, Qunli Zhang, Hua Zhang, Xiaochun Cao
Title: Where MLLMs Attend and What They Rely On: Explaining Autoregressive Token Generation
Abstract:
Multimodal large language models (MLLMs) have demonstrated remarkable capabilities in aligning visual inputs with natural language outputs. Yet, the extent to which generated tokens depend on visual modalities remains poorly understood, limiting interpretability and reliability. In this work, we present EAGLE, a lightweight black-box framework for explaining autoregressive token generation in MLLMs. EAGLE attributes any selected tokens to compact perceptual regions while quantifying the relative influence of language priors and perceptual evidence. The framework introduces an objective function that unifies sufficiency (insight score) and indispensability (necessity score), optimized via greedy search over sparsified image regions for faithful and efficient attribution. Beyond spatial attribution, EAGLE performs modality-aware analysis that disentangles what tokens rely on, providing fine-grained interpretability of model decisions. Extensive experiments across open-source MLLMs show that EAGLE consistently outperforms existing methods in faithfulness, localization, and hallucination diagnosis, while requiring substantially less GPU memory. These results highlight its effectiveness and practicality for advancing the interpretability of MLLMs. The code is available at https://github.com/RuoyuChen10/EAGLE.

Authors:Guohui Zhang, Hu Yu, Xiaoxiao Ma, JingHao Zhang, Yaning Pan, Mingde Yao, Jie Xiao, Linjiang Huang, Feng Zhao
Title: Group Critical-token Policy Optimization for Autoregressive Image Generation
Abstract:
Recent studies have extended Reinforcement Learning with Verifiable Rewards (RLVR) to autoregressive (AR) visual generation and achieved promising progress. However, existing methods typically apply uniform optimization across all image tokens, while the varying contributions of different image tokens for RLVR's training remain unexplored. In fact, the key obstacle lies in how to identify more critical image tokens during AR generation and implement effective token-wise optimization for them. To tackle this challenge, we propose $\textbf{G}$roup $\textbf{C}$ritical-token $\textbf{P}$olicy $\textbf{O}$ptimization ($\textbf{GCPO}$), which facilitates effective policy optimization on critical tokens. We identify the critical tokens in RLVR-based AR generation from three perspectives, specifically: $\textbf{(1)}$ Causal dependency: early tokens fundamentally determine the later tokens and final image effect due to unidirectional dependency; $\textbf{(2)}$ Entropy-induced spatial structure: tokens with high entropy gradients correspond to image structure and bridges distinct visual regions; $\textbf{(3)}$ RLVR-focused token diversity: tokens with low visual similarity across a group of sampled images contribute to richer token-level diversity. For these identified critical tokens, we further introduce a dynamic token-wise advantage weight to encourage exploration, based on confidence divergence between the policy model and reference model. By leveraging 30\% of the image tokens, GCPO achieves better performance than GRPO with full tokens. Extensive experiments on multiple text-to-image benchmarks for both AR models and unified multimodal models demonstrate the effectiveness of GCPO for AR visual generation.

Authors:Mishal Fatima, Shashank Agnihotri, Marius Bock, Kanchana Vaishnavi Gandikota, Kristof Van Laerhoven, Michael Moeller, Margret Keuper
Title: $γ$-Quant: Towards Learnable Quantization for Low-bit Pattern Recognition
Abstract:
Most pattern recognition models are developed on pre-proce\-ssed data. In computer vision, for instance, RGB images processed through image signal processing (ISP) pipelines designed to cater to human perception are the most frequent input to image analysis networks. However, many modern vision tasks operate without a human in the loop, raising the question of whether such pre-processing is optimal for automated analysis. Similarly, human activity recognition (HAR) on body-worn sensor data commonly takes normalized floating-point data arising from a high-bit analog-to-digital converter (ADC) as an input, despite such an approach being highly inefficient in terms of data transmission, significantly affecting the battery life of wearable devices. In this work, we target low-bandwidth and energy-constrained settings where sensors are limited to low-bit-depth capture. We propose $γ$-Quant, i.e.~the task-specific learning of a non-linear quantization for pattern recognition. We exemplify our approach on raw-image object detection as well as HAR of wearable data, and demonstrate that raw data with a learnable quantization using as few as 4-bits can perform on par with the use of raw 12-bit data. All code to reproduce our experiments is publicly available via https://github.com/Mishalfatima/Gamma-Quant

Authors:Song Fei, Tian Ye, Lujia Wang, Lei Zhu
Title: LucidFlux: Caption-Free Universal Image Restoration via a Large-Scale Diffusion Transformer
Abstract:
Universal image restoration (UIR) aims to recover images degraded by unknown mixtures while preserving semantics -- conditions under which discriminative restorers and UNet-based diffusion priors often oversmooth, hallucinate, or drift. We present LucidFlux, a caption-free UIR framework that adapts a large diffusion transformer (Flux.1) without image captions. LucidFlux introduces a lightweight dual-branch conditioner that injects signals from the degraded input and a lightly restored proxy to respectively anchor geometry and suppress artifacts. Then, a timestep- and layer-adaptive modulation schedule is designed to route these cues across the backbone's hierarchy, in order to yield coarse-to-fine and context-aware updates that protect the global structure while recovering texture. After that, to avoid the latency and instability of text prompts or MLLM captions, we enforce caption-free semantic alignment via SigLIP features extracted from the proxy. A scalable curation pipeline further filters large-scale data for structure-rich supervision. Across synthetic and in-the-wild benchmarks, LucidFlux consistently outperforms strong open-source and commercial baselines, and ablation studies verify the necessity of each component. LucidFlux shows that, for large DiTs, when, where, and what to condition on -- rather than adding parameters or relying on text prompts -- is the governing lever for robust and caption-free universal image restoration in the wild.

Authors:Haoyu Li, XiaoSong Li
Title: Gradient-based multi-focus image fusion with focus-aware saliency enhancement
Abstract:
Multi-focus image fusion (MFIF) aims to yield an all-focused image from multiple partially focused inputs, which is crucial in applications cover sur-veillance, microscopy, and computational photography. However, existing methods struggle to preserve sharp focus-defocus boundaries, often resulting in blurred transitions and focused details loss. To solve this problem, we propose a MFIF method based on significant boundary enhancement, which generates high-quality fused boundaries while effectively detecting focus in-formation. Particularly, we propose a gradient-domain-based model that can obtain initial fusion results with complete boundaries and effectively pre-serve the boundary details. Additionally, we introduce Tenengrad gradient detection to extract salient features from both the source images and the ini-tial fused image, generating the corresponding saliency maps. For boundary refinement, we develop a focus metric based on gradient and complementary information, integrating the salient features with the complementary infor-mation across images to emphasize focused regions and produce a high-quality initial decision result. Extensive experiments on four public datasets demonstrate that our method consistently outperforms 12 state-of-the-art methods in both subjective and objective evaluations. We have realized codes in https://github.com/Lihyua/GICI

Authors:Xiao Wang, Shujuan Wu, Xiaoxia Cheng, Changwei Bi, Jin Tang, Bin Luo
Title: Pedestrian Attribute Recognition via Hierarchical Cross-Modality HyperGraph Learning
Abstract:
Current Pedestrian Attribute Recognition (PAR) algorithms typically focus on mapping visual features to semantic labels or attempt to enhance learning by fusing visual and attribute information. However, these methods fail to fully exploit attribute knowledge and contextual information for more accurate recognition. Although recent works have started to consider using attribute text as additional input to enhance the association between visual and semantic information, these methods are still in their infancy. To address the above challenges, this paper proposes the construction of a multi-modal knowledge graph, which is utilized to mine the relationships between local visual features and text, as well as the relationships between attributes and extensive visual context samples. Specifically, we propose an effective multi-modal knowledge graph construction method that fully considers the relationships among attributes and the relationships between attributes and vision tokens. To effectively model these relationships, this paper introduces a knowledge graph-guided cross-modal hypergraph learning framework to enhance the standard pedestrian attribute recognition framework. Comprehensive experiments on multiple PAR benchmark datasets have thoroughly demonstrated the effectiveness of our proposed knowledge graph for the PAR task, establishing a strong foundation for knowledge-guided pedestrian attribute recognition. The source code of this paper will be released on https://github.com/Event-AHU/OpenPAR

Authors:Pierrick Chatillon, Julien Rabin, David Tschumperlé
Title: NIFTY: a Non-Local Image Flow Matching for Texture Synthesis
Abstract:
This paper addresses the problem of exemplar-based texture synthesis. We introduce NIFTY, a hybrid framework that combines recent insights on diffusion models trained with convolutional neural networks, and classical patch-based texture optimization techniques. NIFTY is a non-parametric flow-matching model built on non-local patch matching, which avoids the need for neural network training while alleviating common shortcomings of patch-based methods, such as poor initialization or visual artifacts. Experimental results demonstrate the effectiveness of the proposed approach compared to representative methods from the literature. Code is available at https://github.com/PierrickCh/Nifty.git

Authors:Jinpeng Lu, Linghan Cai, Yinda Chen, Guo Tang, Songhan Jiang, Haoyuan Shi, Zhiwei Xiong
Title: Johnson-Lindenstrauss Lemma Guided Network for Efficient 3D Medical Segmentation
Abstract:
Lightweight 3D medical image segmentation remains constrained by a fundamental "efficiency / robustness conflict", particularly when processing complex anatomical structures and heterogeneous modalities. In this paper, we study how to redesign the framework based on the characteristics of high-dimensional 3D images, and explore data synergy to overcome the fragile representation of lightweight methods. Our approach, VeloxSeg, begins with a deployable and extensible dual-stream CNN-Transformer architecture composed of Paired Window Attention (PWA) and Johnson-Lindenstrauss lemma-guided convolution (JLC). For each 3D image, we invoke a "glance-and-focus" principle, where PWA rapidly retrieves multi-scale information, and JLC ensures robust local feature extraction with minimal parameters, significantly enhancing the model's ability to operate with low computational budget. Followed by an extension of the dual-stream architecture that incorporates modal interaction into the multi-scale image-retrieval process, VeloxSeg efficiently models heterogeneous modalities. Finally, Spatially Decoupled Knowledge Transfer (SDKT) via Gram matrices injects the texture prior extracted by a self-supervised network into the segmentation network, yielding stronger representations than baselines at no extra inference cost. Experimental results on multimodal benchmarks show that VeloxSeg achieves a 26% Dice improvement, alongside increasing GPU throughput by 11x and CPU by 48x. Codes are available at https://github.com/JinPLu/VeloxSeg.

Authors:Michael Jungo, Andreas Fischer
Title: Rule-Based Reinforcement Learning for Document Image Classification with Vision Language Models
Abstract:
Rule-based reinforcement learning has been gaining popularity ever since DeepSeek-R1 has demonstrated its success through simple verifiable rewards. In the domain of document analysis, reinforcement learning is not as prevalent, even though many downstream tasks may benefit from the emerging properties of reinforcement learning, particularly the enhanced reason capabilities. We study the effects of rule-based reinforcement learning with the task of Document Image Classification which is one of the most commonly studied downstream tasks in document analysis. We find that reinforcement learning tends to have better generalisation capabilities to out-of-distritbution data, which we examine in three different scenarios, namely out-of-distribution images, unseen classes and different modalities. Our code is available at https://github.com/jungomi/vision-finetune.

Authors:Junyi Wu, Zhiteng Li, Haotong Qin, Xiaohong Liu, Linghe Kong, Yulun Zhang, Xiaokang Yang
Title: FlashEdit: Decoupling Speed, Structure, and Semantics for Precise Image Editing
Abstract:
Text-guided image editing with diffusion models has achieved remarkable quality but suffers from prohibitive latency, hindering real-world applications. We introduce FlashEdit, a novel framework designed to enable high-fidelity, real-time image editing. Its efficiency stems from three key innovations: (1) a One-Step Inversion-and-Editing (OSIE) pipeline that bypasses costly iterative processes; (2) a Background Shield (BG-Shield) technique that guarantees background preservation by selectively modifying features only within the edit region; and (3) a Sparsified Spatial Cross-Attention (SSCA) mechanism that ensures precise, localized edits by suppressing semantic leakage to the background. Extensive experiments demonstrate that FlashEdit maintains superior background consistency and structural integrity, while performing edits in under 0.2 seconds, which is an over 150$\times$ speedup compared to prior multi-step methods. Our code will be made publicly available at https://github.com/JunyiWuCode/FlashEdit.

Authors:Junbo Niu, Zheng Liu, Zhuangcheng Gu, Bin Wang, Linke Ouyang, Zhiyuan Zhao, Tao Chu, Tianyao He, Fan Wu, Qintong Zhang, Zhenjiang Jin, Guang Liang, Rui Zhang, Wenzheng Zhang, Yuan Qu, Zhifei Ren, Yuefeng Sun, Yuanhong Zheng, Dongsheng Ma, Zirui Tang, Boyu Niu, Ziyang Miao, Hejun Dong, Siyi Qian, Junyuan Zhang, Jingzhou Chen, Fangdong Wang, Xiaomeng Zhao, Liqun Wei, Wei Li, Shasha Wang, Ruiliang Xu, Yuanyuan Cao, Lu Chen, Qianqian Wu, Huaiyu Gu, Lindong Lu, Keming Wang, Dechen Lin, Guanlin Shen, Xuanhe Zhou, Linfeng Zhang, Yuhang Zang, Xiaoyi Dong, Jiaqi Wang, Bo Zhang, Lei Bai, Pei Chu, Weijia Li, Jiang Wu, Lijun Wu, Zhenxiang Li, Guangyu Wang, Zhongying Tu, Chao Xu, Kai Chen, Yu Qiao, Bowen Zhou, Dahua Lin, Wentao Zhang, Conghui He
Title: MinerU2.5: A Decoupled Vision-Language Model for Efficient High-Resolution Document Parsing
Abstract:
We introduce MinerU2.5, a 1.2B-parameter document parsing vision-language model that achieves state-of-the-art recognition accuracy while maintaining exceptional computational efficiency. Our approach employs a coarse-to-fine, two-stage parsing strategy that decouples global layout analysis from local content recognition. In the first stage, the model performs efficient layout analysis on downsampled images to identify structural elements, circumventing the computational overhead of processing high-resolution inputs. In the second stage, guided by the global layout, it performs targeted content recognition on native-resolution crops extracted from the original image, preserving fine-grained details in dense text, complex formulas, and tables. To support this strategy, we developed a comprehensive data engine that generates diverse, large-scale training corpora for both pretraining and fine-tuning. Ultimately, MinerU2.5 demonstrates strong document parsing ability, achieving state-of-the-art performance on multiple benchmarks, surpassing both general-purpose and domain-specific models across various recognition tasks, while maintaining significantly lower computational overhead.

Authors:Inzamamul Alam, Md Tanvir Islam, Simon S. Woo
Title: SpecXNet: A Dual-Domain Convolutional Network for Robust Deepfake Detection
Abstract:
The increasing realism of content generated by GANs and diffusion models has made deepfake detection significantly more challenging. Existing approaches often focus solely on spatial or frequency-domain features, limiting their generalization to unseen manipulations. We propose the Spectral Cross-Attentional Network (SpecXNet), a dual-domain architecture for robust deepfake detection. The core \textbf{Dual-Domain Feature Coupler (DDFC)} decomposes features into a local spatial branch for capturing texture-level anomalies and a global spectral branch that employs Fast Fourier Transform to model periodic inconsistencies. This dual-domain formulation allows SpecXNet to jointly exploit localized detail and global structural coherence, which are critical for distinguishing authentic from manipulated images. We also introduce the \textbf{Dual Fourier Attention (DFA)} module, which dynamically fuses spatial and spectral features in a content-aware manner. Built atop a modified XceptionNet backbone, we embed the DDFC and DFA modules within a separable convolution block. Extensive experiments on multiple deepfake benchmarks show that SpecXNet achieves state-of-the-art accuracy, particularly under cross-dataset and unseen manipulation scenarios, while maintaining real-time feasibility. Our results highlight the effectiveness of unified spatial-spectral learning for robust and generalizable deepfake detection. To ensure reproducibility, we released the full code on \href{https://github.com/inzamamulDU/SpecXNet}{\textcolor{blue}{\textbf{GitHub}}}.

Authors:Muxi Chen, Zhaohua Zhang, Chenchen Zhao, Mingyang Chen, Wenyu Jiang, Tianwen Jiang, Jianhuan Zhuo, Yu Tang, Qiuyong Xiao, Jihong Zhang, Qiang Xu
Title: FailureAtlas:Mapping the Failure Landscape of T2I Models via Active Exploration
Abstract:
Static benchmarks have provided a valuable foundation for comparing Text-to-Image (T2I) models. However, their passive design offers limited diagnostic power, struggling to uncover the full landscape of systematic failures or isolate their root causes. We argue for a complementary paradigm: active exploration. We introduce FailureAtlas, the first framework designed to autonomously explore and map the vast failure landscape of T2I models at scale. FailureAtlas frames error discovery as a structured search for minimal, failure-inducing concepts. While it is a computationally explosive problem, we make it tractable with novel acceleration techniques. When applied to Stable Diffusion models, our method uncovers hundreds of thousands of previously unknown error slices (over 247,000 in SD1.5 alone) and provides the first large-scale evidence linking these failures to data scarcity in the training set. By providing a principled and scalable engine for deep model auditing, FailureAtlas establishes a new, diagnostic-first methodology to guide the development of more robust generative AI. The code is available at https://github.com/cure-lab/FailureAtlas

Authors:Jewon Lee, Wooksu Shin, Seungmin Yang, Ki-Ung Song, DongUk Lim, Jaeyeon Kim, Tae-Ho Kim, Bo-Kyeong Kim
Title: ERGO: Efficient High-Resolution Visual Understanding for Vision-Language Models
Abstract:
Efficient processing of high-resolution images is crucial for real-world vision-language applications. However, existing Large Vision-Language Models (LVLMs) incur substantial computational overhead due to the large number of vision tokens. With the advent of "thinking with images" models, reasoning now extends beyond text to the visual domain. This capability motivates our two-stage "coarse-to-fine" reasoning pipeline: first, a downsampled image is analyzed to identify task-relevant regions; then, only these regions are cropped at full resolution and processed in a subsequent reasoning stage. This approach reduces computational cost while preserving fine-grained visual details where necessary. A major challenge lies in inferring which regions are truly relevant to a given query. Recent related methods often fail in the first stage after input-image downsampling, due to perception-driven reasoning, where clear visual information is required for effective reasoning. To address this issue, we propose ERGO (Efficient Reasoning & Guided Observation) that performs reasoning-driven perception-leveraging multimodal context to determine where to focus. Our model can account for perceptual uncertainty, expanding the cropped region to cover visually ambiguous areas for answering questions. To this end, we develop simple yet effective reward components in a reinforcement learning framework for coarse-to-fine perception. Across multiple datasets, our approach delivers higher accuracy than the original model and competitive methods, with greater efficiency. For instance, ERGO surpasses Qwen2.5-VL-7B on the V* benchmark by 4.7 points while using only 23% of the vision tokens, achieving a 3x inference speedup. The code and models can be found at: https://github.com/nota-github/ERGO.

Authors:Abdelrahman Eldesokey, Aleksandar Cvejic, Bernard Ghanem, Peter Wonka
Title: Mind-the-Glitch: Visual Correspondence for Detecting Inconsistencies in Subject-Driven Generation
Abstract:
We propose a novel approach for disentangling visual and semantic features from the backbones of pre-trained diffusion models, enabling visual correspondence in a manner analogous to the well-established semantic correspondence. While diffusion model backbones are known to encode semantically rich features, they must also contain visual features to support their image synthesis capabilities. However, isolating these visual features is challenging due to the absence of annotated datasets. To address this, we introduce an automated pipeline that constructs image pairs with annotated semantic and visual correspondences based on existing subject-driven image generation datasets, and design a contrastive architecture to separate the two feature types. Leveraging the disentangled representations, we propose a new metric, Visual Semantic Matching (VSM), that quantifies visual inconsistencies in subject-driven image generation. Empirical results show that our approach outperforms global feature-based metrics such as CLIP, DINO, and vision--language models in quantifying visual inconsistencies while also enabling spatial localization of inconsistent regions. To our knowledge, this is the first method that supports both quantification and localization of inconsistencies in subject-driven generation, offering a valuable tool for advancing this task. Project Page:https://abdo-eldesokey.github.io/mind-the-glitch/

Authors:Zhe Zhu, Le Wan, Rui Xu, Yiheng Zhang, Honghua Chen, Zhiyang Dou, Cheng Lin, Yuan Liu, Mingqiang Wei
Title: PartSAM: A Scalable Promptable Part Segmentation Model Trained on Native 3D Data
Abstract:
Segmenting 3D objects into parts is a long-standing challenge in computer vision. To overcome taxonomy constraints and generalize to unseen 3D objects, recent works turn to open-world part segmentation. These approaches typically transfer supervision from 2D foundation models, such as SAM, by lifting multi-view masks into 3D. However, this indirect paradigm fails to capture intrinsic geometry, leading to surface-only understanding, uncontrolled decomposition, and limited generalization. We present PartSAM, the first promptable part segmentation model trained natively on large-scale 3D data. Following the design philosophy of SAM, PartSAM employs an encoder-decoder architecture in which a triplane-based dual-branch encoder produces spatially structured tokens for scalable part-aware representation learning. To enable large-scale supervision, we further introduce a model-in-the-loop annotation pipeline that curates over five million 3D shape-part pairs from online assets, providing diverse and fine-grained labels. This combination of scalable architecture and diverse 3D data yields emergent open-world capabilities: with a single prompt, PartSAM achieves highly accurate part identification, and in a Segment-Every-Part mode, it automatically decomposes shapes into both surface and internal structures. Extensive experiments show that PartSAM outperforms state-of-the-art methods by large margins across multiple benchmarks, marking a decisive step toward foundation models for 3D part understanding.

Authors:Tao Wu, Yibo Jiang, Yehao Lu, Zhizhong Wang, Zeyi Huang, Zequn Qin, Xi Li
Title: MultiCrafter: High-Fidelity Multi-Subject Generation via Spatially Disentangled Attention and Identity-Aware Reinforcement Learning
Abstract:
Multi-subject image generation aims to synthesize user-provided subjects in a single image while preserving subject fidelity, ensuring prompt consistency, and aligning with human aesthetic preferences. However, existing methods, particularly those built on the In-Context-Learning paradigm, are limited by their reliance on simple reconstruction-based objectives, leading to both severe attribute leakage that compromises subject fidelity and failing to align with nuanced human preferences. To address this, we propose MultiCrafter, a framework that ensures high-fidelity, preference-aligned generation. First, we find that the root cause of attribute leakage is a significant entanglement of attention between different subjects during the generation process. Therefore, we introduce explicit positional supervision to explicitly separate attention regions for each subject, effectively mitigating attribute leakage. To enable the model to accurately plan the attention region of different subjects in diverse scenarios, we employ a Mixture-of-Experts architecture to enhance the model's capacity, allowing different experts to focus on different scenarios. Finally, we design a novel online reinforcement learning framework to align the model with human preferences, featuring a scoring mechanism to accurately assess multi-subject fidelity and a more stable training strategy tailored for the MoE architecture. Experiments validate that our framework significantly improves subject fidelity while aligning with human preferences better.

Authors:Daiqing Wu, Dongbao Yang, Sicheng Zhao, Can Ma, Yu Zhou
Title: Customizing Visual Emotion Evaluation for MLLMs: An Open-vocabulary, Multifaceted, and Scalable Approach
Abstract:
Recently, Multimodal Large Language Models (MLLMs) have achieved exceptional performance across diverse tasks, continually surpassing previous expectations regarding their capabilities. Nevertheless, their proficiency in perceiving emotions from images remains debated, with studies yielding divergent results in zero-shot scenarios. We argue that this inconsistency stems partly from constraints in existing evaluation methods, including the oversight of plausible responses, limited emotional taxonomies, neglect of contextual factors, and labor-intensive annotations. To facilitate customized visual emotion evaluation for MLLMs, we propose an Emotion Statement Judgment task that overcomes these constraints. Complementing this task, we devise an automated pipeline that efficiently constructs emotion-centric statements with minimal human effort. Through systematically evaluating prevailing MLLMs, our study showcases their stronger performance in emotion interpretation and context-based emotion judgment, while revealing relative limitations in comprehending perception subjectivity. When compared to humans, even top-performing MLLMs like GPT4o demonstrate remarkable performance gaps, underscoring key areas for future improvement. By developing a fundamental evaluation framework and conducting a comprehensive MLLM assessment, we hope this work contributes to advancing emotional intelligence in MLLMs. Project page: https://github.com/wdqqdw/MVEI.

Authors:Woosung Joung, Daewon Chae, Jinkyu Kim
Title: SemanticControl: A Training-Free Approach for Handling Loosely Aligned Visual Conditions in ControlNet
Abstract:
ControlNet has enabled detailed spatial control in text-to-image diffusion models by incorporating additional visual conditions such as depth or edge maps. However, its effectiveness heavily depends on the availability of visual conditions that are precisely aligned with the generation goal specified by text prompt-a requirement that often fails in practice, especially for uncommon or imaginative scenes. For example, generating an image of a cat cooking in a specific pose may be infeasible due to the lack of suitable visual conditions. In contrast, structurally similar cues can often be found in more common settings-for instance, poses of humans cooking are widely available and can serve as rough visual guides. Unfortunately, existing ControlNet models struggle to use such loosely aligned visual conditions, often resulting in low text fidelity or visual artifacts. To address this limitation, we propose SemanticControl, a training-free method for effectively leveraging misaligned but semantically relevant visual conditions. Our approach adaptively suppresses the influence of the visual condition where it conflicts with the prompt, while strengthening guidance from the text. The key idea is to first run an auxiliary denoising process using a surrogate prompt aligned with the visual condition (e.g., "a human playing guitar" for a human pose condition) to extract informative attention masks, and then utilize these masks during the denoising of the actual target prompt (e.g., cat playing guitar). Experimental results demonstrate that our method improves performance under loosely aligned conditions across various conditions, including depth maps, edge maps, and human skeletons, outperforming existing baselines. Our code is available at https://mung3477.github.io/semantic-control.

Authors:Jibin Song, Mingi Kwon, Jaeseok Jeong, Youngjung Uh
Title: Syncphony: Synchronized Audio-to-Video Generation with Diffusion Transformers
Abstract:
Text-to-video and image-to-video generation have made rapid progress in visual quality, but they remain limited in controlling the precise timing of motion. In contrast, audio provides temporal cues aligned with video motion, making it a promising condition for temporally controlled video generation. However, existing audio-to-video (A2V) models struggle with fine-grained synchronization due to indirect conditioning mechanisms or limited temporal modeling capacity. We present Syncphony, which generates 380x640 resolution, 24fps videos synchronized with diverse audio inputs. Our approach builds upon a pre-trained video backbone and incorporates two key components to improve synchronization: (1) Motion-aware Loss, which emphasizes learning at high-motion regions; (2) Audio Sync Guidance, which guides the full model using a visually aligned off-sync model without audio layers to better exploit audio cues at inference while maintaining visual quality. To evaluate synchronization, we propose CycleSync, a video-to-audio-based metric that measures the amount of motion cues in the generated video to reconstruct the original audio. Experiments on AVSync15 and The Greatest Hits datasets demonstrate that Syncphony outperforms existing methods in both synchronization accuracy and visual quality. Project page is available at: https://jibin86.github.io/syncphony_project_page

Authors:Minje Kim, Tae-Kyun Kim
Title: SRHand: Super-Resolving Hand Images and 3D Shapes via View/Pose-aware Neural Image Representations and Explicit 3D Meshes
Abstract:
Reconstructing detailed hand avatars plays a crucial role in various applications. While prior works have focused on capturing high-fidelity hand geometry, they heavily rely on high-resolution multi-view image inputs and struggle to generalize on low-resolution images. Multi-view image super-resolution methods have been proposed to enforce 3D view consistency. These methods, however, are limited to static objects/scenes with fixed resolutions and are not applicable to articulated deformable hands. In this paper, we propose SRHand (Super-Resolution Hand), the method for reconstructing detailed 3D geometry as well as textured images of hands from low-resolution images. SRHand leverages the advantages of implicit image representation with explicit hand meshes. Specifically, we introduce a geometric-aware implicit image function (GIIF) that learns detailed hand prior by upsampling the coarse input images. By jointly optimizing the implicit image function and explicit 3D hand shapes, our method preserves multi-view and pose consistency among upsampled hand images, and achieves fine-detailed 3D reconstruction (wrinkles, nails). In experiments using the InterHand2.6M and Goliath datasets, our method significantly outperforms state-of-the-art image upsampling methods adapted to hand datasets, and 3D hand reconstruction methods, quantitatively and qualitatively. Project page: https://yunminjin2.github.io/projects/srhand

Authors:Yu Shang, Yangcheng Yu, Xin Zhang, Xin Jin, Haisheng Su, Wei Wu, Yong Li
Title: MoWM: Mixture-of-World-Models for Embodied Planning via Latent-to-Pixel Feature Modulation
Abstract:
Embodied action planning is a core challenge in robotics, requiring models to generate precise actions from visual observations and language instructions. While video generation world models are promising, their reliance on pixel-level reconstruction often introduces visual redundancies that hinder action decoding and generalization. Latent world models offer a compact, motion-aware representation, but overlook the fine-grained details critical for precise manipulation. To overcome these limitations, we propose MoWM, a mixture-of-world-model framework that fuses representations from hybrid world models for embodied action planning. Our approach uses motion-aware representations from a latent model as a high-level prior, which guides the extraction of fine-grained visual features from the pixel space model. This design allows MoWM to highlight the informative visual details needed for action decoding. Extensive evaluations on the CALVIN benchmark demonstrate that our method achieves state-of-the-art task success rates and superior generalization. We also provide a comprehensive analysis of the strengths of each feature space, offering valuable insights for future research in embodied planning. The code is available at: https://github.com/tsinghua-fib-lab/MoWM.

Authors:Yu Shang, Lei Jin, Yiding Ma, Xin Zhang, Chen Gao, Wei Wu, Yong Li
Title: LongScape: Advancing Long-Horizon Embodied World Models with Context-Aware MoE
Abstract:
Video-based world models hold significant potential for generating high-quality embodied manipulation data. However, current video generation methods struggle to achieve stable long-horizon generation: classical diffusion-based approaches often suffer from temporal inconsistency and visual drift over multiple rollouts, while autoregressive methods tend to compromise on visual detail. To solve this, we introduce LongScape, a hybrid framework that adaptively combines intra-chunk diffusion denoising with inter-chunk autoregressive causal generation. Our core innovation is an action-guided, variable-length chunking mechanism that partitions video based on the semantic context of robotic actions. This ensures each chunk represents a complete, coherent action, enabling the model to flexibly generate diverse dynamics. We further introduce a Context-aware Mixture-of-Experts (CMoE) framework that adaptively activates specialized experts for each chunk during generation, guaranteeing high visual quality and seamless chunk transitions. Extensive experimental results demonstrate that our method achieves stable and consistent long-horizon generation over extended rollouts. Our code is available at: https://github.com/tsinghua-fib-lab/Longscape.

Authors:Xinlei Yu, Chengming Xu, Guibin Zhang, Yongbo He, Zhangquan Chen, Zhucun Xue, Jiangning Zhang, Yue Liao, Xiaobin Hu, Yu-Gang Jiang, Shuicheng Yan
Title: Visual Multi-Agent System: Mitigating Hallucination Snowballing via Visual Flow
Abstract:
Multi-Agent System (MAS) powered by Visual Language Models (VLMs) enables challenging tasks but suffers from a novel failure term, multi-agent visual hallucination snowballing, where hallucinations are seeded in a single agent and amplified by following ones due to the over-reliance on textual flow to relay visual information. Through turn-, layer-, and token-wise attention analyses, we provide detailed insights into the essence of hallucination snowballing regarding the reduction of visual attention allocation. It leads us to identify a subset of vision tokens with a unimodal attention peak in middle layers that best preserve visual evidence but gradually diminish in deeper agent turns, resulting in the visual hallucination snowballing in MAS. Thus, we propose ViF, a lightweight, plug-and-play mitigation paradigm that relays inter-agent messages with Visual Flow powered by the selected visual relay tokens and applies attention reallocation to amplify this pattern. The experiment results demonstrate that our method markedly reduces hallucination snowballing, consistently improving the performance across eight benchmarks based on four common MAS structures and ten base models. The source code will be available at: https://github.com/YU-deep/ViF.git.

Authors:Lihao Zheng, Jiawei Chen, Xintian Shen, Hao Ma, Tao Wei
Title: MIRG-RL: Multi-Image Reasoning and Grounding with Reinforcement Learning
Abstract:
Multi-image reasoning and grounding require understanding complex cross-image relationships at both object levels and image levels. Current Large Visual Language Models (LVLMs) face two critical challenges: the lack of cross-image reasoning capabilities and insufficient cross-image reference reward modeling. To address these issues, we propose a unified framework - Multi-Image Reasoning and Grounding with Reinforcement Learning (MIRG-RL). Specifically, our two-stage training paradigm combines supervised fine-tuning with annotated trajectories and image-aware reinforcement learning optimization, progressively developing multi-image reasoning capabilities. Furthermore, we innovatively propose a method for constructing the trajectory data, which integrates object-level and image-level annotation information, and use this method to generate a lightweight reasoning-enhanced dataset. To effectively resolve cross-image ambiguities, we design an image-aware RL policy with dual reward functions for objects and images. Experiments demonstrate that MIRG-RL achieves state-of-the-art (SOTA) performance in multi-image grounding benchmarks, attaining 64.82% on cross-image reasoning tasks - exceeding the previous best method by 1%. The code and dataset have been released at https://github.com/ZEUS2035/MIRG-RL.

Authors:Tianci Wu, Guangming Zhu, Jiang Lu, Siyuan Wang, Ning Wang, Nuoye Xiong, Zhang Liang
Title: Prompt-guided Representation Disentanglement for Action Recognition
Abstract:
Action recognition is a fundamental task in video understanding. Existing methods typically extract unified features to process all actions in one video, which makes it challenging to model the interactions between different objects in multi-action scenarios. To alleviate this issue, we explore disentangling any specified actions from complex scenes as an effective solution. In this paper, we propose Prompt-guided Disentangled Representation for Action Recognition (ProDA), a novel framework that disentangles any specified actions from a multi-action scene. ProDA leverages Spatio-temporal Scene Graphs (SSGs) and introduces Dynamic Prompt Module (DPM) to guide a Graph Parsing Neural Network (GPNN) in generating action-specific representations. Furthermore, we design a video-adapted GPNN that aggregates information using dynamic weights. Experiments in video action recognition demonstrate the effectiveness of our approach when compared with the state-of-the-art methods. Our code can be found in https://github.com/iamsnaping/ProDA.git

Authors:Lan Chen, Yuchao Gu, Qi Mao
Title: UniVid: Unifying Vision Tasks with Pre-trained Video Generation Models
Abstract:
Large language models, trained on extensive corpora, successfully unify diverse linguistic tasks within a single generative framework. Inspired by this, recent works like Large Vision Model (LVM) extend this paradigm to vision by organizing tasks into sequential visual sentences, where visual prompts serve as the context to guide outputs. However, such modeling requires task-specific pre-training across modalities and sources, which is costly and limits scalability to unseen tasks. Given that pre-trained video generation models inherently capture temporal sequence dependencies, we explore a more unified and scalable alternative: can a pre-trained video generation model adapt to diverse image and video tasks? To answer this, we propose UniVid, a framework that fine-tunes a video diffusion transformer to handle various vision tasks without task-specific modifications. Tasks are represented as visual sentences, where the context sequence defines both the task and the expected output modality. We evaluate the generalization of UniVid from two perspectives: (1) cross-modal inference with contexts composed of both images and videos, extending beyond LVM's uni-modal setting; (2) cross-source tasks from natural to annotated data, without multi-source pre-training. Despite being trained solely on natural video data, UniVid generalizes well in both settings. Notably, understanding and generation tasks can easily switch by simply reversing the visual sentence order in this paradigm. These findings highlight the potential of pre-trained video generation models to serve as a scalable and unified foundation for vision modeling. Our code will be released at https://github.com/CUC-MIPG/UniVid.

Authors:Mehwish Mehmood, Ivor Spence, Muhammad Fahim
Title: LFA-Net: A Lightweight Network with LiteFusion Attention for Retinal Vessel Segmentation
Abstract:
Lightweight retinal vessel segmentation is important for the early diagnosis of vision-threatening and systemic diseases, especially in a real-world clinical environment with limited computational resources. Although segmentation methods based on deep learning are improving, existing models are still facing challenges of small vessel segmentation and high computational costs. To address these challenges, we proposed a new vascular segmentation network, LFA-Net, which incorporates a newly designed attention module, LiteFusion-Attention. This attention module incorporates residual learning connections, Vision Mamba-inspired dynamics, and modulation-based attention, enabling the model to capture local and global context efficiently and in a lightweight manner. LFA-Net offers high performance with 0.11 million parameters, 0.42 MB memory size, and 4.46 GFLOPs, which make it ideal for resource-constrained environments. We validated our proposed model on DRIVE, STARE, and CHASE_DB with outstanding performance in terms of dice scores of 83.28, 87.44, and 84.50% and Jaccard indices of 72.85, 79.31, and 74.70%, respectively. The code of LFA-Net is available online https://github.com/Mehwish4593/LFA-Net.

Authors:Mahindra Singh Rautela, Alexander Most, Siddharth Mansingh, Bradley C. Love, Ayan Biswas, Diane Oyen, Earl Lawrence
Title: MORPH: Shape-agnostic PDE Foundation Models
Abstract:
We introduce MORPH, a shape-agnostic, autoregressive foundation model for partial differential equations (PDEs). MORPH is built on a convolutional vision transformer backbone that seamlessly handles heterogeneous spatiotemporal datasets of varying data dimensionality (1D--3D) at different resolutions, multiple fields with mixed scalar and vector components. The architecture combines (i) component-wise convolution, which jointly processes scalar and vector channels to capture local interactions, (ii) inter-field cross-attention, which models and selectively propagates information between different physical fields, (iii) axial attentions, which factorizes full spatiotemporal self-attention along individual spatial and temporal axes to reduce computational burden while retaining expressivity. We pretrain multiple model variants on a diverse collection of heterogeneous PDE datasets and evaluate transfer to a range of downstream prediction tasks. Using both full-model fine-tuning and parameter-efficient low-rank adapters (LoRA), MORPH outperforms models trained from scratch in both zero-shot and full-shot generalization. Across extensive evaluations, MORPH matches or surpasses strong baselines and recent state-of-the-art models. Collectively, these capabilities present a flexible and powerful backbone for learning from heterogeneous and multimodal nature of scientific observations, charting a path toward scalable and data-efficient scientific machine learning. The source code, datasets, and models are publicly available at https://github.com/lanl/MORPH.

Authors:You Xie, Tianpei Gu, Zenan Li, Chenxu Zhang, Guoxian Song, Xiaochen Zhao, Chao Liang, Jianwen Jiang, Hongyi Xu, Linjie Luo
Title: X-Streamer: Unified Human World Modeling with Audiovisual Interaction
Abstract:
We introduce X-Streamer, an end-to-end multimodal human world modeling framework for building digital human agents capable of infinite interactions across text, speech, and video within a single unified architecture. Starting from a single portrait, X-Streamer enables real-time, open-ended video calls driven by streaming multimodal inputs. At its core is a Thinker-Actor dual-transformer architecture that unifies multimodal understanding and generation, turning a static portrait into persistent and intelligent audiovisual interactions. The Thinker module perceives and reasons over streaming user inputs, while its hidden states are translated by the Actor into synchronized multimodal streams in real time. Concretely, the Thinker leverages a pretrained large language-speech model, while the Actor employs a chunk-wise autoregressive diffusion model that cross-attends to the Thinker's hidden states to produce time-aligned multimodal responses with interleaved discrete text and audio tokens and continuous video latents. To ensure long-horizon stability, we design inter- and intra-chunk attentions with time-aligned multimodal positional embeddings for fine-grained cross-modality alignment and context retention, further reinforced by chunk-wise diffusion forcing and global identity referencing. X-Streamer runs in real time on two A100 GPUs, sustaining hours-long consistent video chat experiences from arbitrary portraits and paving the way toward unified world modeling of interactive digital humans.

Authors:Prasanna Reddy Pulakurthi, Jiamian Wang, Majid Rabbani, Sohail Dianat, Raghuveer Rao, Zhiqiang Tao
Title: X-CoT: Explainable Text-to-Video Retrieval via LLM-based Chain-of-Thought Reasoning
Abstract:
Prevalent text-to-video retrieval systems mainly adopt embedding models for feature extraction and compute cosine similarities for ranking. However, this design presents two limitations. Low-quality text-video data pairs could compromise the retrieval, yet are hard to identify and examine. Cosine similarity alone provides no explanation for the ranking results, limiting the interpretability. We ask that can we interpret the ranking results, so as to assess the retrieval models and examine the text-video data? This work proposes X-CoT, an explainable retrieval framework upon LLM CoT reasoning in place of the embedding model-based similarity ranking. We first expand the existing benchmarks with additional video annotations to support semantic understanding and reduce data bias. We also devise a retrieval CoT consisting of pairwise comparison steps, yielding detailed reasoning and complete ranking. X-CoT empirically improves the retrieval performance and produces detailed rationales. It also facilitates the model behavior and data quality analysis. Code and data are available at: https://github.com/PrasannaPulakurthi/X-CoT.

Authors:Rohan Sanda, Asad Aali, Andrew Johnston, Eduardo Reis, Jonathan Singh, Gordon Wetzstein, Sara Fridovich-Keil
Title: Patch-Based Diffusion for Data-Efficient, Radiologist-Preferred MRI Reconstruction
Abstract:
Magnetic resonance imaging (MRI) requires long acquisition times, raising costs, reducing accessibility, and making scans more susceptible to motion artifacts. Diffusion probabilistic models that learn data-driven priors can potentially assist in reducing acquisition time. However, they typically require large training datasets that can be prohibitively expensive to collect. Patch-based diffusion models have shown promise in learning effective data-driven priors over small real-valued datasets, but have not yet demonstrated clinical value in MRI. We extend the Patch-based Diffusion Inverse Solver (PaDIS) to complex-valued, multi-coil MRI reconstruction, and compare it against a state-of-the-art whole-image diffusion baseline (FastMRI-EDM) for 7x undersampled MRI reconstruction on the FastMRI brain dataset. We show that PaDIS-MRI models trained on small datasets of as few as 25 k-space images outperform FastMRI-EDM on image quality metrics (PSNR, SSIM, NRMSE), pixel-level uncertainty, cross-contrast generalization, and robustness to severe k-space undersampling. In a blinded study with three radiologists, PaDIS-MRI reconstructions were chosen as diagnostically superior in 91.7% of cases, compared to baselines (i) FastMRI-EDM and (ii) classical convex reconstruction with wavelet sparsity. These findings highlight the potential of patch-based diffusion priors for high-fidelity MRI reconstruction in data-scarce clinical settings where diagnostic confidence matters.

Authors:Yuan Gao, Hao Wu, Qingsong Wen, Kun Wang, Xian Wu, Xiaomeng Huang
Title: VISION: Prompting Ocean Vertical Velocity Reconstruction from Incomplete Observations
Abstract:
Reconstructing subsurface ocean dynamics, such as vertical velocity fields, from incomplete surface observations poses a critical challenge in Earth science, a field long hampered by the lack of standardized, analysis-ready benchmarks. To systematically address this issue and catalyze research, we first build and release KD48, a high-resolution ocean dynamics benchmark derived from petascale simulations and curated with expert-driven denoising. Building on this benchmark, we introduce VISION, a novel reconstruction paradigm based on Dynamic Prompting designed to tackle the core problem of missing data in real-world observations. The essence of VISION lies in its ability to generate a visual prompt on-the-fly from any available subset of observations, which encodes both data availability and the ocean's physical state. More importantly, we design a State-conditioned Prompting module that efficiently injects this prompt into a universal backbone, endowed with geometry- and scale-aware operators, to guide its adaptive adjustment of computational strategies. This mechanism enables VISION to precisely handle the challenges posed by varying input combinations. Extensive experiments on the KD48 benchmark demonstrate that VISION not only substantially outperforms state-of-the-art models but also exhibits strong generalization under extreme data missing scenarios. By providing a high-quality benchmark and a robust model, our work establishes a solid infrastructure for ocean science research under data uncertainty. Our codes are available at: https://github.com/YuanGao-YG/VISION.

Authors:Hude Liu, Jerry Yao-Chieh Hu, Jennifer Yuntong Zhang, Zhao Song, Han Liu
Title: Are Hallucinations Bad Estimations?
Abstract:
We formalize hallucinations in generative models as failures to link an estimate to any plausible cause. Under this interpretation, we show that even loss-minimizing optimal estimators still hallucinate. We confirm this with a general high probability lower bound on hallucinate rate for generic data distributions. This reframes hallucination as structural misalignment between loss minimization and human-acceptable outputs, and hence estimation errors induced by miscalibration. Experiments on coin aggregation, open-ended QA, and text-to-image support our theory.

Authors:Anton Konushin, Nikita Drozdov, Bulat Gabdullin, Alexey Zakharov, Anna Vorontsova, Danila Rukhovich, Maksim Kolodiazhnyi
Title: TUN3D: Towards Real-World Scene Understanding from Unposed Images
Abstract:
Layout estimation and 3D object detection are two fundamental tasks in indoor scene understanding. When combined, they enable the creation of a compact yet semantically rich spatial representation of a scene. Existing approaches typically rely on point cloud input, which poses a major limitation since most consumer cameras lack depth sensors and visual-only data remains far more common. We address this issue with TUN3D, the first method that tackles joint layout estimation and 3D object detection in real scans, given multi-view images as input, and does not require ground-truth camera poses or depth supervision. Our approach builds on a lightweight sparse-convolutional backbone and employs two dedicated heads: one for 3D object detection and one for layout estimation, leveraging a novel and effective parametric wall representation. Extensive experiments show that TUN3D achieves state-of-the-art performance across three challenging scene understanding benchmarks: (i) using ground-truth point clouds, (ii) using posed images, and (iii) using unposed images. While performing on par with specialized 3D object detection methods, TUN3D significantly advances layout estimation, setting a new benchmark in holistic indoor scene understanding. Code is available at https://github.com/col14m/tun3d .

Authors:Anja Sheppard, Tyler Smithline, Andrew Scheffer, David Smith, Advaith V. Sethuraman, Ryan Bird, Sabrina Lin, Katherine A. Skinner
Title: ShipwreckFinder: A QGIS Tool for Shipwreck Detection in Multibeam Sonar Data
Abstract:
In this paper, we introduce ShipwreckFinder, an open-source QGIS plugin that detects shipwrecks from multibeam sonar data. Shipwrecks are an important historical marker of maritime history, and can be discovered through manual inspection of bathymetric data. However, this is a time-consuming process and often requires expert analysis. Our proposed tool allows users to automatically preprocess bathymetry data, perform deep learning inference, threshold model outputs, and produce either pixel-wise segmentation masks or bounding boxes of predicted shipwrecks. The backbone of this open-source tool is a deep learning model, which is trained on a variety of shipwreck data from the Great Lakes and the coasts of Ireland. Additionally, we employ synthetic data generation in order to increase the size and diversity of our dataset. We demonstrate superior segmentation performance with our open-source tool and training pipeline as compared to a deep learning-based ArcGIS toolkit and a more classical inverse sinkhole detection method. The open-source tool can be found at https://github.com/umfieldrobotics/ShipwreckFinderQGISPlugin.

Authors:Yinfeng Yu, Hailong Zhang, Meiling Zhu
Title: Dynamic Multi-Target Fusion for Efficient Audio-Visual Navigation
Abstract:
Audiovisual embodied navigation enables robots to locate audio sources by dynamically integrating visual observations from onboard sensors with the auditory signals emitted by the target. The core challenge lies in effectively leveraging multimodal cues to guide navigation. While prior works have explored basic fusion of visual and audio data, they often overlook deeper perceptual context. To address this, we propose the Dynamic Multi-Target Fusion for Efficient Audio-Visual Navigation (DMTF-AVN). Our approach uses a multi-target architecture coupled with a refined Transformer mechanism to filter and selectively fuse cross-modal information. Extensive experiments on the Replica and Matterport3D datasets demonstrate that DMTF-AVN achieves state-of-the-art performance, outperforming existing methods in success rate (SR), path efficiency (SPL), and scene adaptation (SNA). Furthermore, the model exhibits strong scalability and generalizability, paving the way for advanced multimodal fusion strategies in robotic navigation. The code and videos are available at https://github.com/zzzmmm-svg/DMTF.

Authors:Jiahao Zhang, Wenzhe Yin, Shujian Yu
Title: Cross-Modal Retrieval with Cauchy-Schwarz Divergence
Abstract:
Effective cross-modal retrieval requires robust alignment of heterogeneous data types. Most existing methods focus on bi-modal retrieval tasks and rely on distributional alignment techniques such as Kullback-Leibler divergence, Maximum Mean Discrepancy, and correlation alignment. However, these methods often suffer from critical limitations, including numerical instability, sensitivity to hyperparameters, and their inability to capture the full structure of the underlying distributions. In this paper, we introduce the Cauchy-Schwarz (CS) divergence, a hyperparameter-free measure that improves both training stability and retrieval performance. We further propose a novel Generalized CS (GCS) divergence inspired by Hölder's inequality. This extension enables direct alignment of three or more modalities within a unified mathematical framework through a bidirectional circular comparison scheme, eliminating the need for exhaustive pairwise comparisons. Extensive experiments on six benchmark datasets demonstrate the effectiveness of our method in both bi-modal and tri-modal retrieval tasks. The code of our CS/GCS divergence is publicly available at https://github.com/JiahaoZhang666/CSD.

Authors:Hmrishav Bandyopadhyay, Rahim Entezari, Jim Scott, Reshinth Adithyan, Yi-Zhe Song, Varun Jampani
Title: SD3.5-Flash: Distribution-Guided Distillation of Generative Flows
Abstract:
We present SD3.5-Flash, an efficient few-step distillation framework that brings high-quality image generation to accessible consumer devices. Our approach distills computationally prohibitive rectified flow models through a reformulated distribution matching objective tailored specifically for few-step generation. We introduce two key innovations: "timestep sharing" to reduce gradient noise and "split-timestep fine-tuning" to improve prompt alignment. Combined with comprehensive pipeline optimizations like text encoder restructuring and specialized quantization, our system enables both rapid generation and memory-efficient deployment across different hardware configurations. This democratizes access across the full spectrum of devices, from mobile phones to desktop computers. Through extensive evaluation including large-scale user studies, we demonstrate that SD3.5-Flash consistently outperforms existing few-step methods, making advanced generative AI truly accessible for practical deployment.

Authors:Yu Yuan, Xijun Wang, Tharindu Wickremasinghe, Zeeshan Nadir, Bole Ma, Stanley H. Chan
Title: NewtonGen: Physics-Consistent and Controllable Text-to-Video Generation via Neural Newtonian Dynamics
Abstract:
A primary bottleneck in large-scale text-to-video generation today is physical consistency and controllability. Despite recent advances, state-of-the-art models often produce unrealistic motions, such as objects falling upward, or abrupt changes in velocity and direction. Moreover, these models lack precise parameter control, struggling to generate physically consistent dynamics under different initial conditions. We argue that this fundamental limitation stems from current models learning motion distributions solely from appearance, while lacking an understanding of the underlying dynamics. In this work, we propose NewtonGen, a framework that integrates data-driven synthesis with learnable physical principles. At its core lies trainable Neural Newtonian Dynamics (NND), which can model and predict a variety of Newtonian motions, thereby injecting latent dynamical constraints into the video generation process. By jointly leveraging data priors and dynamical guidance, NewtonGen enables physically consistent video synthesis with precise parameter control.

Authors:Weilun Feng, Haotong Qin, Mingqiang Wu, Chuanguang Yang, Yuqi Li, Xiangqi Li, Zhulin An, Libo Huang, Yulun Zhang, Michele Magno, Yongjun Xu
Title: Quantized Visual Geometry Grounded Transformer
Abstract:
Learning-based 3D reconstruction models, represented by Visual Geometry Grounded Transformers (VGGTs), have made remarkable progress with the use of large-scale transformers. Their prohibitive computational and memory costs severely hinder real-world deployment. Post-Training Quantization (PTQ) has become a common practice for compressing and accelerating models. However, we empirically observe that PTQ faces unique obstacles when compressing billion-scale VGGTs: the data-independent special tokens induce heavy-tailed activation distributions, while the multi-view nature of 3D data makes calibration sample selection highly unstable. This paper proposes the first Quantization framework for VGGTs, namely QuantVGGT. This mainly relies on two technical contributions: First, we introduce Dual-Smoothed Fine-Grained Quantization, which integrates pre-global Hadamard rotation and post-local channel smoothing to mitigate heavy-tailed distributions and inter-channel variance robustly. Second, we design Noise-Filtered Diverse Sampling, which filters outliers via deep-layer statistics and constructs frame-aware diverse calibration clusters to ensure stable quantization ranges. Comprehensive experiments demonstrate that QuantVGGT achieves the state-of-the-art results across different benchmarks and bit-width, surpassing the previous state-of-the-art generic quantization method with a great margin. We highlight that our 4-bit QuantVGGT can deliver a 3.7$\times$ memory reduction and 2.5$\times$ acceleration in real-hardware inference, while maintaining reconstruction accuracy above 98\% of its full-precision counterpart. This demonstrates the vast advantages and practicality of QuantVGGT in resource-constrained scenarios. Our code is released in https://github.com/wlfeng0509/QuantVGGT.

Authors:Yidan Zhang, Mutian Xu, Yiming Hao, Kun Zhou, Jiahao Chang, Xiaoqiang Liu, Pengfei Wan, Hongbo Fu, Xiaoguang Han
Title: VC-Agent: An Interactive Agent for Customized Video Dataset Collection
Abstract:
Facing scaling laws, video data from the internet becomes increasingly important. However, collecting extensive videos that meet specific needs is extremely labor-intensive and time-consuming. In this work, we study the way to expedite this collection process and propose VC-Agent, the first interactive agent that is able to understand users' queries and feedback, and accordingly retrieve/scale up relevant video clips with minimal user input. Specifically, considering the user interface, our agent defines various user-friendly ways for the user to specify requirements based on textual descriptions and confirmations. As for agent functions, we leverage existing multi-modal large language models to connect the user's requirements with the video content. More importantly, we propose two novel filtering policies that can be updated when user interaction is continually performed. Finally, we provide a new benchmark for personalized video dataset collection, and carefully conduct the user study to verify our agent's usage in various real scenarios. Extensive experiments demonstrate the effectiveness and efficiency of our agent for customized video dataset collection. Project page: https://allenyidan.github.io/vcagent_page/.

Authors:Sicong Leng, Jing Wang, Jiaxi Li, Hao Zhang, Zhiqiang Hu, Boqiang Zhang, Yuming Jiang, Hang Zhang, Xin Li, Lidong Bing, Deli Zhao, Wei Lu, Yu Rong, Aixin Sun, Shijian Lu
Title: MMR1: Enhancing Multimodal Reasoning with Variance-Aware Sampling and Open Resources
Abstract:
Large multimodal reasoning models have achieved rapid progress, but their advancement is constrained by two major limitations: the absence of open, large-scale, high-quality long chain-of-thought (CoT) data, and the instability of reinforcement learning (RL) algorithms in post-training. Group Relative Policy Optimization (GRPO), the standard framework for RL fine-tuning, is prone to gradient vanishing when reward variance is low, which weakens optimization signals and impairs convergence. This work makes three contributions: (1) We propose Variance-Aware Sampling (VAS), a data selection strategy guided by Variance Promotion Score (VPS) that combines outcome variance and trajectory diversity to promote reward variance and stabilize policy optimization. (2) We release large-scale, carefully curated resources containing ~1.6M long CoT cold-start data and ~15k RL QA pairs, designed to ensure quality, difficulty, and diversity, along with a fully reproducible end-to-end training codebase. (3) We open-source a family of multimodal reasoning models in multiple scales, establishing standardized baselines for the community. Experiments across mathematical reasoning benchmarks demonstrate the effectiveness of both the curated data and the proposed VAS. Comprehensive ablation studies and analyses provide further insight into the contributions of each component. In addition, we theoretically establish that reward variance lower-bounds the expected policy gradient magnitude, with VAS serving as a practical mechanism to realize this guarantee. Our code, data, and checkpoints are available at https://github.com/LengSicong/MMR1.

Authors:Xinyu Liu, Guolei Sun, Cheng Wang, Yixuan Yuan, Ender Konukoglu
Title: MedVSR: Medical Video Super-Resolution with Cross State-Space Propagation
Abstract:
High-resolution (HR) medical videos are vital for accurate diagnosis, yet are hard to acquire due to hardware limitations and physiological constraints. Clinically, the collected low-resolution (LR) medical videos present unique challenges for video super-resolution (VSR) models, including camera shake, noise, and abrupt frame transitions, which result in significant optical flow errors and alignment difficulties. Additionally, tissues and organs exhibit continuous and nuanced structures, but current VSR models are prone to introducing artifacts and distorted features that can mislead doctors. To this end, we propose MedVSR, a tailored framework for medical VSR. It first employs Cross State-Space Propagation (CSSP) to address the imprecise alignment by projecting distant frames as control matrices within state-space models, enabling the selective propagation of consistent and informative features to neighboring frames for effective alignment. Moreover, we design an Inner State-Space Reconstruction (ISSR) module that enhances tissue structures and reduces artifacts with joint long-range spatial feature learning and large-kernel short-range information aggregation. Experiments across four datasets in diverse medical scenarios, including endoscopy and cataract surgeries, show that MedVSR significantly outperforms existing VSR models in reconstruction performance and efficiency. Code released at https://github.com/CUHK-AIM-Group/MedVSR.

Authors:Seyed Amir Kasaei, Ali Aghayari, Arash Marioriyad, Niki Sepasian, MohammadAmin Fazli, Mahdieh Soleymani Baghshah, Mohammad Hossein Rohban
Title: Evaluating the Evaluators: Metrics for Compositional Text-to-Image Generation
Abstract:
Text-image generation has advanced rapidly, but assessing whether outputs truly capture the objects, attributes, and relations described in prompts remains a central challenge. Evaluation in this space relies heavily on automated metrics, yet these are often adopted by convention or popularity rather than validated against human judgment. Because evaluation and reported progress in the field depend directly on these metrics, it is critical to understand how well they reflect human preferences. To address this, we present a broad study of widely used metrics for compositional text-image evaluation. Our analysis goes beyond simple correlation, examining their behavior across diverse compositional challenges and comparing how different metric families align with human judgments. The results show that no single metric performs consistently across tasks: performance varies with the type of compositional problem. Notably, VQA-based metrics, though popular, are not uniformly superior, while certain embedding-based metrics prove stronger in specific cases. Image-only metrics, as expected, contribute little to compositional evaluation, as they are designed for perceptual quality rather than alignment. These findings underscore the importance of careful and transparent metric selection, both for trustworthy evaluation and for their use as reward models in generation. Project page is available at \href{https://amirkasaei.com/eval-the-evals/}{this URL}.

Authors:Killian Steunou, Théo Druilhe, Sigurd Saue
Title: Sparse Representations Improve Adversarial Robustness of Neural Network Classifiers
Abstract:
Deep neural networks perform remarkably well on image classification tasks but remain vulnerable to carefully crafted adversarial perturbations. This work revisits linear dimensionality reduction as a simple, data-adapted defense. We empirically compare standard Principal Component Analysis (PCA) with its sparse variant (SPCA) as front-end feature extractors for downstream classifiers, and we complement these experiments with a theoretical analysis. On the theory side, we derive exact robustness certificates for linear heads applied to SPCA features: for both $\ell_\infty$ and $\ell_2$ threat models (binary and multiclass), the certified radius grows as the dual norms of $W^\top u$ shrink, where $W$ is the projection and $u$ the head weights. We further show that for general (non-linear) heads, sparsity reduces operator-norm bounds through a Lipschitz composition argument, predicting lower input sensitivity. Empirically, with a small non-linear network after the projection, SPCA consistently degrades more gracefully than PCA under strong white-box and black-box attacks while maintaining competitive clean accuracy. Taken together, the theory identifies the mechanism (sparser projections reduce adversarial leverage) and the experiments verify that this benefit persists beyond the linear setting. Our code is available at https://github.com/killian31/SPCARobustness.

Authors:Yuze He, Yanning Zhou, Wang Zhao, Jingwen Ye, Yushi Bai, Kaiwen Xiao, Yong-Jin Liu, Zhongqian Sun, Wei Yang
Title: CHARM: Control-point-based 3D Anime Hairstyle Auto-Regressive Modeling
Abstract:
We present CHARM, a novel parametric representation and generative framework for anime hairstyle modeling. While traditional hair modeling methods focus on realistic hair using strand-based or volumetric representations, anime hairstyle exhibits highly stylized, piecewise-structured geometry that challenges existing techniques. Existing works often rely on dense mesh modeling or hand-crafted spline curves, making them inefficient for editing and unsuitable for scalable learning. CHARM introduces a compact, invertible control-point-based parameterization, where a sequence of control points represents each hair card, and each point is encoded with only five geometric parameters. This efficient and accurate representation supports both artist-friendly design and learning-based generation. Built upon this representation, CHARM introduces an autoregressive generative framework that effectively generates anime hairstyles from input images or point clouds. By interpreting anime hairstyles as a sequential "hair language", our autoregressive transformer captures both local geometry and global hairstyle topology, resulting in high-fidelity anime hairstyle creation. To facilitate both training and evaluation of anime hairstyle generation, we construct AnimeHair, a large-scale dataset of 37K high-quality anime hairstyles with separated hair cards and processed mesh data. Extensive experiments demonstrate state-of-the-art performance of CHARM in both reconstruction accuracy and generation quality, offering an expressive and scalable solution for anime hairstyle modeling. Project page: https://hyzcluster.github.io/charm/

Authors:Suaiba Amina Salahuddin, Teresa Dorszewski, Marit Almenning Martiniussen, Tone Hovda, Antonio Portaluri, Solveig Thrun, Michael Kampffmeyer, Elisabeth Wetzer, Kristoffer Wickstrøm, Robert Jenssen
Title: Mammo-CLIP Dissect: A Framework for Analysing Mammography Concepts in Vision-Language Models
Abstract:
Understanding what deep learning (DL) models learn is essential for the safe deployment of artificial intelligence (AI) in clinical settings. While previous work has focused on pixel-based explainability methods, less attention has been paid to the textual concepts learned by these models, which may better reflect the reasoning used by clinicians. We introduce Mammo-CLIP Dissect, the first concept-based explainability framework for systematically dissecting DL vision models trained for mammography. Leveraging a mammography-specific vision-language model (Mammo-CLIP) as a "dissector," our approach labels neurons at specified layers with human-interpretable textual concepts and quantifies their alignment to domain knowledge. Using Mammo-CLIP Dissect, we investigate three key questions: (1) how concept learning differs between DL vision models trained on general image datasets versus mammography-specific datasets; (2) how fine-tuning for downstream mammography tasks affects concept specialisation; and (3) which mammography-relevant concepts remain underrepresented. We show that models trained on mammography data capture more clinically relevant concepts and align more closely with radiologists' workflows than models not trained on mammography data. Fine-tuning for task-specific classification enhances the capture of certain concept categories (e.g., benign calcifications) but can reduce coverage of others (e.g., density-related features), indicating a trade-off between specialisation and generalisation. Our findings show that Mammo-CLIP Dissect provides insights into how convolutional neural networks (CNNs) capture mammography-specific knowledge. By comparing models across training data and fine-tuning regimes, we reveal how domain-specific training and task-specific adaptation shape concept learning. Code and concept set are available: https://github.com/Suaiba/Mammo-CLIP-Dissect.

Authors:Guojun Lei, Rong Zhang, Chi Wang, Tianhang Liu, Hong Li, Zhiyuan Ma, Weiwei Xu
Title: UniTransfer: Video Concept Transfer via Progressive Spatial and Timestep Decomposition
Abstract:
We propose a novel architecture UniTransfer, which introduces both spatial and diffusion timestep decomposition in a progressive paradigm, achieving precise and controllable video concept transfer. Specifically, in terms of spatial decomposition, we decouple videos into three key components: the foreground subject, the background, and the motion flow. Building upon this decomposed formulation, we further introduce a dual-to-single-stream DiT-based architecture for supporting fine-grained control over different components in the videos. We also introduce a self-supervised pretraining strategy based on random masking to enhance the decomposed representation learning from large-scale unlabeled video data. Inspired by the Chain-of-Thought reasoning paradigm, we further revisit the denoising diffusion process and propose a Chain-of-Prompt (CoP) mechanism to achieve the timestep decomposition. We decompose the denoising process into three stages of different granularity and leverage large language models (LLMs) for stage-specific instructions to guide the generation progressively. We also curate an animal-centric video dataset called OpenAnimal to facilitate the advancement and benchmarking of research in video concept transfer. Extensive experiments demonstrate that our method achieves high-quality and controllable video concept transfer across diverse reference images and scenes, surpassing existing baselines in both visual fidelity and editability. Web Page: https://yu-shaonian.github.io/UniTransfer-Web/

Authors:Songyue Cai, Zongqian Wu, Yujie Mo, Liang Peng, Ping Hu, Xiaoshuang Shi, Xiaofeng Zhu
Title: Background Prompt for Few-Shot Out-of-Distribution Detection
Abstract:
Existing foreground-background (FG-BG) decomposition methods for the few-shot out-of-distribution (FS-OOD) detection often suffer from low robustness due to over-reliance on the local class similarity and a fixed background patch extraction strategy. To address these challenges, we propose a new FG-BG decomposition framework, namely Mambo, for FS-OOD detection. Specifically, we propose to first learn a background prompt to obtain the local background similarity containing both the background and image semantic information, and then refine the local background similarity using the local class similarity. As a result, we use both the refined local background similarity and the local class similarity to conduct background extraction, reducing the dependence of the local class similarity in previous methods. Furthermore, we propose the patch self-calibrated tuning to consider the sample diversity to flexibly select numbers of background patches for different samples, and thus exploring the issue of fixed background extraction strategies in previous methods. Extensive experiments on real-world datasets demonstrate that our proposed Mambo achieves the best performance, compared to SOTA methods in terms of OOD detection and near OOD detection setting. The source code will be released at https://github.com/YuzunoKawori/Mambo.

Authors:Sarmistha Das, R E Zera Marveen Lyngkhoi, Sriparna Saha, Alka Maurya
Title: Unlocking Financial Insights: An advanced Multimodal Summarization with Multimodal Output Framework for Financial Advisory Videos
Abstract:
The dynamic propagation of social media has broadened the reach of financial advisory content through podcast videos, yet extracting insights from lengthy, multimodal segments (30-40 minutes) remains challenging. We introduce FASTER (Financial Advisory Summariser with Textual Embedded Relevant images), a modular framework that tackles three key challenges: (1) extracting modality-specific features, (2) producing optimized, concise summaries, and (3) aligning visual keyframes with associated textual points. FASTER employs BLIP for semantic visual descriptions, OCR for textual patterns, and Whisper-based transcription with Speaker diarization as BOS features. A modified Direct Preference Optimization (DPO)-based loss function, equipped with BOS-specific fact-checking, ensures precision, relevance, and factual consistency against the human-aligned summary. A ranker-based retrieval mechanism further aligns keyframes with summarized content, enhancing interpretability and cross-modal coherence. To acknowledge data resource scarcity, we introduce Fin-APT, a dataset comprising 470 publicly accessible financial advisory pep-talk videos for robust multimodal research. Comprehensive cross-domain experiments confirm FASTER's strong performance, robustness, and generalizability when compared to Large Language Models (LLMs) and Vision-Language Models (VLMs). By establishing a new standard for multimodal summarization, FASTER makes financial advisory content more accessible and actionable, thereby opening new avenues for research. The dataset and code are available at: https://github.com/sarmistha-D/FASTER

Authors:Jianbo Zhao, Taiyu Ban, Xiangjie Li, Xingtai Gui, Hangning Zhou, Lei Liu, Hongwei Zhao, Bin Li
Title: Autoregressive End-to-End Planning with Time-Invariant Spatial Alignment and Multi-Objective Policy Refinement
Abstract:
The inherent sequential modeling capabilities of autoregressive models make them a formidable baseline for end-to-end planning in autonomous driving. Nevertheless, their performance is constrained by a spatio-temporal misalignment, as the planner must condition future actions on past sensory data. This creates an inconsistent worldview, limiting the upper bound of performance for an otherwise powerful approach. To address this, we propose a Time-Invariant Spatial Alignment (TISA) module that learns to project initial environmental features into a consistent ego-centric frame for each future time step, effectively correcting the agent's worldview without explicit future scene prediction. In addition, we employ a kinematic action prediction head (i.e., acceleration and yaw rate) to ensure physically feasible trajectories. Finally, we introduce a multi-objective post-training stage using Direct Preference Optimization (DPO) to move beyond pure imitation. Our approach provides targeted feedback on specific driving behaviors, offering a more fine-grained learning signal than the single, overall objective used in standard DPO. Our model achieves a state-of-the-art 89.8 PDMS on the NAVSIM dataset among autoregressive models. The video document is available at https://tisa-dpo-e2e.github.io/.

Authors:Wenhao Tang, Heng Fang, Ge Wu, Xiang Li, Ming-Ming Cheng
Title: Revisiting Data Challenges of Computational Pathology: A Pack-based Multiple Instance Learning Framework
Abstract:
Computational pathology (CPath) digitizes pathology slides into whole slide images (WSIs), enabling analysis for critical healthcare tasks such as cancer diagnosis and prognosis. However, WSIs possess extremely long sequence lengths (up to 200K), significant length variations (from 200 to 200K), and limited supervision. These extreme variations in sequence length lead to high data heterogeneity and redundancy. Conventional methods often compromise on training efficiency and optimization to preserve such heterogeneity under limited supervision. To comprehensively address these challenges, we propose a pack-based MIL framework. It packs multiple sampled, variable-length feature sequences into fixed-length ones, enabling batched training while preserving data heterogeneity. Moreover, we introduce a residual branch that composes discarded features from multiple slides into a hyperslide which is trained with tailored labels. It offers multi-slide supervision while mitigating feature loss from sampling. Meanwhile, an attention-driven downsampler is introduced to compress features in both branches to reduce redundancy. By alleviating these challenges, our approach achieves an accuracy improvement of up to 8% while using only 12% of the training time in the PANDA(UNI). Extensive experiments demonstrate that focusing data challenges in CPath holds significant potential in the era of foundation models. The code is https://github.com/FangHeng/PackMIL

Authors:Zhifei Li, Feng Qiu, Yiran Wang, Yujing Xia, Kui Xiao, Miao Zhang, Yan Zhang
Title: Integrating Object Interaction Self-Attention and GAN-Based Debiasing for Visual Question Answering
Abstract:
Visual Question Answering (VQA) presents a unique challenge by requiring models to understand and reason about visual content to answer questions accurately. Existing VQA models often struggle with biases introduced by the training data, leading to over-reliance on superficial patterns and inadequate generalization to diverse questions and images. This paper presents a novel model, IOG-VQA, which integrates Object Interaction Self-Attention and GAN-Based Debiasing to enhance VQA model performance. The self-attention mechanism allows our model to capture complex interactions between objects within an image, providing a more comprehensive understanding of the visual context. Meanwhile, the GAN-based debiasing framework generates unbiased data distributions, helping the model to learn more robust and generalizable features. By leveraging these two components, IOG-VQA effectively combines visual and textual information to address the inherent biases in VQA datasets. Extensive experiments on the VQA-CP v1 and VQA-CP v2 datasets demonstrate that our model shows excellent performance compared with the existing methods, particularly in handling biased and imbalanced data distributions highlighting the importance of addressing both object interactions and dataset biases in advancing VQA tasks. Our code is available at https://github.com/HubuKG/IOG-VQA.

Authors:Yan Zhang, Jiaqing Lin, Miao Zhang, Kui Xiao, Xiaoju Hou, Yue Zhao, Zhifei Li
Title: SCRA-VQA: Summarized Caption-Rerank for Augmented Large Language Models in Visual Question Answering
Abstract:
Acquiring high-quality knowledge is a central focus in Knowledge-Based Visual Question Answering (KB-VQA). Recent methods use large language models (LLMs) as knowledge engines for answering. These methods generally employ image captions as visual text descriptions to assist LLMs in interpreting images. However, the captions frequently include excessive noise irrelevant to the question, and LLMs generally do not comprehend VQA tasks, limiting their reasoning capabilities. To address this issue, we propose the Summarized Caption-Rerank Augmented VQA (SCRA-VQA), which employs a pre-trained visual language model to convert images into captions. Moreover, SCRA-VQA generates contextual examples for the captions while simultaneously summarizing and reordering them to exclude unrelated information. The caption-rerank process enables LLMs to understand the image information and questions better, thus enhancing the model's reasoning ability and task adaptability without expensive end-to-end training. Based on an LLM with 6.7B parameters, SCRA-VQA performs excellently on two challenging knowledge-based VQA datasets: OK-VQA and A-OKVQA, achieving accuracies of 38.8% and 34.6%. Our code is available at https://github.com/HubuKG/SCRA-VQA.

Authors:Xiaonan Hu, Xuebing Li, Jinyu Xu, Abdulkadir Duran Adan, Letian Zhou, Xuhui Zhu, Yanan Li, Wei Guo, Shouyang Liu, Wenzhong Liu, Hao Lu
Title: TasselNetV4: A vision foundation model for cross-scene, cross-scale, and cross-species plant counting
Abstract:
Accurate plant counting provides valuable information for agriculture such as crop yield prediction, plant density assessment, and phenotype quantification. Vision-based approaches are currently the mainstream solution. Prior art typically uses a detection or a regression model to count a specific plant. However, plants have biodiversity, and new cultivars are increasingly bred each year. It is almost impossible to exhaust and build all species-dependent counting models. Inspired by class-agnostic counting (CAC) in computer vision, we argue that it is time to rethink the problem formulation of plant counting, from what plants to count to how to count plants. In contrast to most daily objects with spatial and temporal invariance, plants are dynamic, changing with time and space. Their non-rigid structure often leads to worse performance than counting rigid instances like heads and cars such that current CAC and open-world detection models are suboptimal to count plants. In this work, we inherit the vein of the TasselNet plant counting model and introduce a new extension, TasselNetV4, shifting from species-specific counting to cross-species counting. TasselNetV4 marries the local counting idea of TasselNet with the extract-and-match paradigm in CAC. It builds upon a plain vision transformer and incorporates novel multi-branch box-aware local counters used to enhance cross-scale robustness. Two challenging datasets, PAC-105 and PAC-Somalia, are harvested. Extensive experiments against state-of-the-art CAC models show that TasselNetV4 achieves not only superior counting performance but also high efficiency.Our results indicate that TasselNetV4 emerges to be a vision foundation model for cross-scene, cross-scale, and cross-species plant counting.

Authors:Shihua Huang, Yongjie Hou, Longfei Liu, Xuanlong Yu, Xi Shen
Title: Real-Time Object Detection Meets DINOv3
Abstract:
Benefiting from the simplicity and effectiveness of Dense O2O and MAL, DEIM has become the mainstream training framework for real-time DETRs, significantly outperforming the YOLO series. In this work, we extend it with DINOv3 features, resulting in DEIMv2. DEIMv2 spans eight model sizes from X to Atto, covering GPU, edge, and mobile deployment. For the X, L, M, and S variants, we adopt DINOv3-pretrained or distilled backbones and introduce a Spatial Tuning Adapter (STA), which efficiently converts DINOv3's single-scale output into multi-scale features and complements strong semantics with fine-grained details to enhance detection. For ultra-lightweight models (Nano, Pico, Femto, and Atto), we employ HGNetv2 with depth and width pruning to meet strict resource budgets. Together with a simplified decoder and an upgraded Dense O2O, this unified design enables DEIMv2 to achieve a superior performance-cost trade-off across diverse scenarios, establishing new state-of-the-art results. Notably, our largest model, DEIMv2-X, achieves 57.8 AP with only 50.3 million parameters, surpassing prior X-scale models that require over 60 million parameters for just 56.5 AP. On the compact side, DEIMv2-S is the first sub-10 million model (9.71 million) to exceed the 50 AP milestone on COCO, reaching 50.9 AP. Even the ultra-lightweight DEIMv2-Pico, with just 1.5 million parameters, delivers 38.5 AP, matching YOLOv10-Nano (2.3 million) with around 50 percent fewer parameters. Our code and pre-trained models are available at https://github.com/Intellindust-AI-Lab/DEIMv2

Authors:Hyomin Choi, Heeji Han, Chris Rosewarne, Fabien Racapé
Title: CompressAI-Vision: Open-source software to evaluate compression methods for computer vision tasks
Abstract:
With the increasing use of neural network (NN)-based computer vision applications that process image and video data as input, interest has emerged in video compression technology optimized for computer vision tasks. In fact, given the variety of vision tasks, associated NN models and datasets, a consolidated platform is needed as a common ground to implement and evaluate compression methods optimized for downstream vision tasks. CompressAI-Vision is introduced as a comprehensive evaluation platform where new coding tools compete to efficiently compress the input of vision network while retaining task accuracy in the context of two different inference scenarios: "remote" and "split" inferencing. Our study showcases various use cases of the evaluation platform incorporated with standard codecs (under development) by examining the compression gain on several datasets in terms of bit-rate versus task accuracy. This evaluation platform has been developed as open-source software and is adopted by the Moving Pictures Experts Group (MPEG) for the development the Feature Coding for Machines (FCM) standard. The software is available publicly at https://github.com/InterDigitalInc/CompressAI-Vision.

Authors:Yuxuan Zhou, Xingxing Li, Shengyu Li, Zhuohao Yan, Chunxi Xia, Shaoquan Feng
Title: MASt3R-Fusion: Integrating Feed-Forward Visual Model with IMU, GNSS for High-Functionality SLAM
Abstract:
Visual SLAM is a cornerstone technique in robotics, autonomous driving and extended reality (XR), yet classical systems often struggle with low-texture environments, scale ambiguity, and degraded performance under challenging visual conditions. Recent advancements in feed-forward neural network-based pointmap regression have demonstrated the potential to recover high-fidelity 3D scene geometry directly from images, leveraging learned spatial priors to overcome limitations of traditional multi-view geometry methods. However, the widely validated advantages of probabilistic multi-sensor information fusion are often discarded in these pipelines. In this work, we propose MASt3R-Fusion,a multi-sensor-assisted visual SLAM framework that tightly integrates feed-forward pointmap regression with complementary sensor information, including inertial measurements and GNSS data. The system introduces Sim(3)-based visualalignment constraints (in the Hessian form) into a universal metric-scale SE(3) factor graph for effective information fusion. A hierarchical factor graph design is developed, which allows both real-time sliding-window optimization and global optimization with aggressive loop closures, enabling real-time pose tracking, metric-scale structure perception and globally consistent mapping. We evaluate our approach on both public benchmarks and self-collected datasets, demonstrating substantial improvements in accuracy and robustness over existing visual-centered multi-sensor SLAM systems. The code will be released open-source to support reproducibility and further research (https://github.com/GREAT-WHU/MASt3R-Fusion).

Authors:Yu Guo, Shengfeng He, Yuxu Lu, Haonan An, Yihang Tao, Huilin Zhu, Jingxian Liu, Yuguang Fang
Title: Neptune-X: Active X-to-Maritime Generation for Universal Maritime Object Detection
Abstract:
Maritime object detection is essential for navigation safety, surveillance, and autonomous operations, yet constrained by two key challenges: the scarcity of annotated maritime data and poor generalization across various maritime attributes (e.g., object category, viewpoint, location, and imaging environment). To address these challenges, we propose Neptune-X, a data-centric generative-selection framework that enhances training effectiveness by leveraging synthetic data generation with task-aware sample selection. From the generation perspective, we develop X-to-Maritime, a multi-modality-conditioned generative model that synthesizes diverse and realistic maritime scenes. A key component is the Bidirectional Object-Water Attention module, which captures boundary interactions between objects and their aquatic surroundings to improve visual fidelity. To further improve downstream tasking performance, we propose Attribute-correlated Active Sampling, which dynamically selects synthetic samples based on their task relevance. To support robust benchmarking, we construct the Maritime Generation Dataset, the first dataset tailored for generative maritime learning, encompassing a wide range of semantic conditions. Extensive experiments demonstrate that our approach sets a new benchmark in maritime scene synthesis, significantly improving detection accuracy, particularly in challenging and previously underrepresented settings. The code is available at https://github.com/gy65896/Neptune-X.

Authors:Ruixu Zhang, Yuran Wang, Xinyi Hu, Chaoyu Mai, Wenxuan Liu, Danni Xu, Xian Zhong, Zheng Wang
Title: Beyond the Individual: Introducing Group Intention Forecasting with SHOT Dataset
Abstract:
Intention recognition has traditionally focused on individual intentions, overlooking the complexities of collective intentions in group settings. To address this limitation, we introduce the concept of group intention, which represents shared goals emerging through the actions of multiple individuals, and Group Intention Forecasting (GIF), a novel task that forecasts when group intentions will occur by analyzing individual actions and interactions before the collective goal becomes apparent. To investigate GIF in a specific scenario, we propose SHOT, the first large-scale dataset for GIF, consisting of 1,979 basketball video clips captured from 5 camera views and annotated with 6 types of individual attributes. SHOT is designed with 3 key characteristics: multi-individual information, multi-view adaptability, and multi-level intention, making it well-suited for studying emerging group intentions. Furthermore, we introduce GIFT (Group Intention ForecasTer), a framework that extracts fine-grained individual features and models evolving group dynamics to forecast intention emergence. Experimental results confirm the effectiveness of SHOT and GIFT, establishing a strong foundation for future research in group intention forecasting. The dataset is available at https://xinyi-hu.github.io/SHOT_DATASET.

Authors:Yandan Yang, Baoxiong Jia, Shujie Zhang, Siyuan Huang
Title: SceneWeaver: All-in-One 3D Scene Synthesis with an Extensible and Self-Reflective Agent
Abstract:
Indoor scene synthesis has become increasingly important with the rise of Embodied AI, which requires 3D environments that are not only visually realistic but also physically plausible and functionally diverse. While recent approaches have advanced visual fidelity, they often remain constrained to fixed scene categories, lack sufficient object-level detail and physical consistency, and struggle to align with complex user instructions. In this work, we present SceneWeaver, a reflective agentic framework that unifies diverse scene synthesis paradigms through tool-based iterative refinement. At its core, SceneWeaver employs a language model-based planner to select from a suite of extensible scene generation tools, ranging from data-driven generative models to visual- and LLM-based methods, guided by self-evaluation of physical plausibility, visual realism, and semantic alignment with user input. This closed-loop reason-act-reflect design enables the agent to identify semantic inconsistencies, invoke targeted tools, and update the environment over successive iterations. Extensive experiments on both common and open-vocabulary room types demonstrate that SceneWeaver not only outperforms prior methods on physical, visual, and semantic metrics, but also generalizes effectively to complex scenes with diverse instructions, marking a step toward general-purpose 3D environment generation. Project website: https://scene-weaver.github.io/.

Authors:Chen Wang, Chuhao Chen, Yiming Huang, Zhiyang Dou, Yuan Liu, Jiatao Gu, Lingjie Liu
Title: PhysCtrl: Generative Physics for Controllable and Physics-Grounded Video Generation
Abstract:
Existing video generation models excel at producing photo-realistic videos from text or images, but often lack physical plausibility and 3D controllability. To overcome these limitations, we introduce PhysCtrl, a novel framework for physics-grounded image-to-video generation with physical parameters and force control. At its core is a generative physics network that learns the distribution of physical dynamics across four materials (elastic, sand, plasticine, and rigid) via a diffusion model conditioned on physics parameters and applied forces. We represent physical dynamics as 3D point trajectories and train on a large-scale synthetic dataset of 550K animations generated by physics simulators. We enhance the diffusion model with a novel spatiotemporal attention block that emulates particle interactions and incorporates physics-based constraints during training to enforce physical plausibility. Experiments show that PhysCtrl generates realistic, physics-grounded motion trajectories which, when used to drive image-to-video models, yield high-fidelity, controllable videos that outperform existing methods in both visual quality and physical plausibility. Project Page: https://cwchenwang.github.io/physctrl

Authors:Bishal Adhikari, Jiajia Li, Eric S. Michel, Jacob Dykes, Te-Ming Paul Tseng, Mary Love Tagert, Dong Chen
Title: A Comprehensive Evaluation of YOLO-based Deer Detection Performance on Edge Devices
Abstract:
The escalating economic losses in agriculture due to deer intrusion, estimated to be in the hundreds of millions of dollars annually in the U.S., highlight the inadequacy of traditional mitigation strategies since these methods are often labor-intensive, costly, and ineffective for modern farming systems. To overcome this, there is a critical need for intelligent, autonomous solutions which require accurate and efficient deer detection. But the progress in this field is impeded by a significant gap in the literature, mainly the lack of a domain-specific, practical dataset and limited study on the on-field deployability of deer detection systems. Addressing this gap, this study presents a comprehensive evaluation of state-of-the-art deep learning models for deer detection in challenging real-world scenarios. The contributions of this work are threefold. First, we introduce a curated, publicly available dataset of 3,095 annotated images with bounding-box annotations of deer, derived from the Idaho Cameratraps project. Second, we provide an extensive comparative analysis of 12 model variants across four recent YOLO architectures(v8, v9, v10, and v11). Finally, we benchmarked performance on a high-end NVIDIA RTX 5090 GPU and evaluated on two representative edge computing platforms: Raspberry Pi 5 and NVIDIA Jetson AGX Xavier. Results show that the real-time detection is not feasible in Raspberry Pi without hardware-specific model optimization, while NVIDIA Jetson provides greater than 30 FPS with GPU-accelerated inference on 's' and 'n' series models. This study also reveals that smaller, architecturally advanced models such as YOLOv11n, YOLOv8s, and YOLOv9s offer the optimal balance of high accuracy (AP@.5 > 0.85) and computational efficiency (FPS > 30). To support further research, both the source code and datasets are publicly available at https://github.com/WinnerBishal/track-the-deer.

Authors:Xichen Xu, Yanshu Wang, Jinbao Wang, Xiaoning Lei, Guoyang Xie, Guannan Jiang, Zhichao Lu
Title: FAST: Foreground-aware Diffusion with Accelerated Sampling Trajectory for Segmentation-oriented Anomaly Synthesis
Abstract:
Industrial anomaly segmentation relies heavily on pixel-level annotations, yet real-world anomalies are often scarce, diverse, and costly to label. Segmentation-oriented industrial anomaly synthesis (SIAS) has emerged as a promising alternative; however, existing methods struggle to balance sampling efficiency and generation quality. Moreover, most approaches treat all spatial regions uniformly, overlooking the distinct statistical differences between anomaly and background areas. This uniform treatment hinders the synthesis of controllable, structure-specific anomalies tailored for segmentation tasks. In this paper, we propose FAST, a foreground-aware diffusion framework featuring two novel modules: the Anomaly-Informed Accelerated Sampling (AIAS) and the Foreground-Aware Reconstruction Module (FARM). AIAS is a training-free sampling algorithm specifically designed for segmentation-oriented industrial anomaly synthesis, which accelerates the reverse process through coarse-to-fine aggregation and enables the synthesis of state-of-the-art segmentation-oriented anomalies in as few as 10 steps. Meanwhile, FARM adaptively adjusts the anomaly-aware noise within the masked foreground regions at each sampling step, preserving localized anomaly signals throughout the denoising trajectory. Extensive experiments on multiple industrial benchmarks demonstrate that FAST consistently outperforms existing anomaly synthesis methods in downstream segmentation tasks. We release the code at: https://github.com/Chhro123/fast-foreground-aware-anomaly-synthesis.

Authors:Dayu Tan, Zhenpeng Xu, Yansen Su, Xin Peng, Chunhou Zheng, Weimin Zhong
Title: HiPerformer: A High-Performance Global-Local Segmentation Model with Modular Hierarchical Fusion Strategy
Abstract:
Both local details and global context are crucial in medical image segmentation, and effectively integrating them is essential for achieving high accuracy. However, existing mainstream methods based on CNN-Transformer hybrid architectures typically employ simple feature fusion techniques such as serial stacking, endpoint concatenation, or pointwise addition, which struggle to address the inconsistencies between features and are prone to information conflict and loss. To address the aforementioned challenges, we innovatively propose HiPerformer. The encoder of HiPerformer employs a novel modular hierarchical architecture that dynamically fuses multi-source features in parallel, enabling layer-wise deep integration of heterogeneous information. The modular hierarchical design not only retains the independent modeling capability of each branch in the encoder, but also ensures sufficient information transfer between layers, effectively avoiding the degradation of features and information loss that come with traditional stacking methods. Furthermore, we design a Local-Global Feature Fusion (LGFF) module to achieve precise and efficient integration of local details and global semantic information, effectively alleviating the feature inconsistency problem and resulting in a more comprehensive feature representation. To further enhance multi-scale feature representation capabilities and suppress noise interference, we also propose a Progressive Pyramid Aggregation (PPA) module to replace traditional skip connections. Experiments on eleven public datasets demonstrate that the proposed method outperforms existing segmentation techniques, demonstrating higher segmentation accuracy and robustness. The code is available at https://github.com/xzphappy/HiPerformer.

Authors:Hao Lu, Zhuang Ma, Guangfeng Jiang, Wenhang Ge, Bohan Li, Yuzhan Cai, Wenzhao Zheng, Yunpeng Zhang, Yingcong Chen
Title: 4D Driving Scene Generation With Stereo Forcing
Abstract:
Current generative models struggle to synthesize dynamic 4D driving scenes that simultaneously support temporal extrapolation and spatial novel view synthesis (NVS) without per-scene optimization. Bridging generation and novel view synthesis remains a major challenge. We present PhiGenesis, a unified framework for 4D scene generation that extends video generation techniques with geometric and temporal consistency. Given multi-view image sequences and camera parameters, PhiGenesis produces temporally continuous 4D Gaussian splatting representations along target 3D trajectories. In its first stage, PhiGenesis leverages a pre-trained video VAE with a novel range-view adapter to enable feed-forward 4D reconstruction from multi-view images. This architecture supports single-frame or video inputs and outputs complete 4D scenes including geometry, semantics, and motion. In the second stage, PhiGenesis introduces a geometric-guided video diffusion model, using rendered historical 4D scenes as priors to generate future views conditioned on trajectories. To address geometric exposure bias in novel views, we propose Stereo Forcing, a novel conditioning strategy that integrates geometric uncertainty during denoising. This method enhances temporal coherence by dynamically adjusting generative influence based on uncertainty-aware perturbations. Our experimental results demonstrate that our method achieves state-of-the-art performance in both appearance and geometric reconstruction, temporal generation and novel view synthesis (NVS) tasks, while simultaneously delivering competitive performance in downstream evaluations. Homepage is at \href{https://jiangxb98.github.io/PhiGensis}{PhiGensis}.

Authors:Kwang-Hyun Uhm, Hyunjun Cho, Sung-Hoo Hong, Seung-Won Jung
Title: An Anisotropic Cross-View Texture Transfer with Multi-Reference Non-Local Attention for CT Slice Interpolation
Abstract:
Computed tomography (CT) is one of the most widely used non-invasive imaging modalities for medical diagnosis. In clinical practice, CT images are usually acquired with large slice thicknesses due to the high cost of memory storage and operation time, resulting in an anisotropic CT volume with much lower inter-slice resolution than in-plane resolution. Since such inconsistent resolution may lead to difficulties in disease diagnosis, deep learning-based volumetric super-resolution methods have been developed to improve inter-slice resolution. Most existing methods conduct single-image super-resolution on the through-plane or synthesize intermediate slices from adjacent slices; however, the anisotropic characteristic of 3D CT volume has not been well explored. In this paper, we propose a novel cross-view texture transfer approach for CT slice interpolation by fully utilizing the anisotropic nature of 3D CT volume. Specifically, we design a unique framework that takes high-resolution in-plane texture details as a reference and transfers them to low-resolution through-plane images. To this end, we introduce a multi-reference non-local attention module that extracts meaningful features for reconstructing through-plane high-frequency details from multiple in-plane images. Through extensive experiments, we demonstrate that our method performs significantly better in CT slice interpolation than existing competing methods on public CT datasets including a real-paired benchmark, verifying the effectiveness of the proposed framework. The source code of this work is available at https://github.com/khuhm/ACVTT.

Authors:Tom Burgert, Oliver Stoll, Paolo Rota, Begüm Demir
Title: ImageNet-trained CNNs are not biased towards texture: Revisiting feature reliance through controlled suppression
Abstract:
The hypothesis that Convolutional Neural Networks (CNNs) are inherently texture-biased has shaped much of the discourse on feature use in deep learning. We revisit this hypothesis by examining limitations in the cue-conflict experiment by Geirhos et al. To address these limitations, we propose a domain-agnostic framework that quantifies feature reliance through systematic suppression of shape, texture, and color cues, avoiding the confounds of forced-choice conflicts. By evaluating humans and neural networks under controlled suppression conditions, we find that CNNs are not inherently texture-biased but predominantly rely on local shape features. Nonetheless, this reliance can be substantially mitigated through modern training strategies or architectures (ConvNeXt, ViTs). We further extend the analysis across computer vision, medical imaging, and remote sensing, revealing that reliance patterns differ systematically: computer vision models prioritize shape, medical imaging models emphasize color, and remote sensing models exhibit a stronger reliance on texture. Code is available at https://github.com/tomburgert/feature-reliance.

Authors:Mahmoud Khater, Mona Strauss, Philipp von Olshausen, Alexander Reiterer
Title: PU-Gaussian: Point Cloud Upsampling using 3D Gaussian Representation
Abstract:
Point clouds produced by 3D sensors are often sparse and noisy, posing challenges for tasks requiring dense and high-fidelity 3D representations. Prior work has explored both implicit feature-based upsampling and distance-function learning to address this, but often at the expense of geometric interpretability or robustness to input sparsity. To overcome these limitations, we propose PU-Gaussian, a novel upsampling network that models the local neighborhood around each point using anisotropic 3D Gaussian distributions. These Gaussians capture the underlying geometric structure, allowing us to perform upsampling explicitly in the local geometric domain by direct point sampling. The sampling process generates a dense, but coarse, point cloud. A subsequent refinement network adjusts the coarse output to produce a more uniform distribution and sharper edges. We perform extensive testing on the PU1K and PUGAN datasets, demonstrating that PU-Gaussian achieves state-of-the-art performance. We make code and model weights publicly available at https://github.com/mvg-inatech/PU-Gaussian.git.

Authors:Zhi Qin Tan, Xiatian Zhu, Owen Addison, Yunpeng Li
Title: U-Mamba2-SSL for Semi-Supervised Tooth and Pulp Segmentation in CBCT
Abstract:
Accurate segmentation of teeth and pulp in Cone-Beam Computed Tomography (CBCT) is vital for clinical applications like treatment planning and diagnosis. However, this process requires extensive expertise and is exceptionally time-consuming, highlighting the critical need for automated algorithms that can effectively utilize unlabeled data. In this paper, we propose U-Mamba2-SSL, a novel semi-supervised learning framework that builds on the U-Mamba2 model and employs a multi-stage training strategy. The framework first pre-trains U-Mamba2 in a self-supervised manner using a disruptive autoencoder. It then leverages unlabeled data through consistency regularization, where we introduce input and feature perturbations to ensure stable model outputs. Finally, a pseudo-labeling strategy is implemented with a reduced loss weighting to minimize the impact of potential errors. U-Mamba2-SSL achieved an average score of 0.789 and a DSC of 0.917 on the hidden test set, achieving first place in Task 1 of the STSR 2025 challenge. The code is available at https://github.com/zhiqin1998/UMamba2.

Authors:Min Cen, Zhenfeng Zhuang, Yuzhe Zhang, Min Zeng, Baptiste Magnier, Lequan Yu, Hong Zhang, Liansheng Wang
Title: C$^2$MIL: Synchronizing Semantic and Topological Causalities in Multiple Instance Learning for Robust and Interpretable Survival Analysis
Abstract:
Graph-based Multiple Instance Learning (MIL) is widely used in survival analysis with Hematoxylin and Eosin (H\&E)-stained whole slide images (WSIs) due to its ability to capture topological information. However, variations in staining and scanning can introduce semantic bias, while topological subgraphs that are not relevant to the causal relationships can create noise, resulting in biased slide-level representations. These issues can hinder both the interpretability and generalization of the analysis. To tackle this, we introduce a dual structural causal model as the theoretical foundation and propose a novel and interpretable dual causal graph-based MIL model, C$^2$MIL. C$^2$MIL incorporates a novel cross-scale adaptive feature disentangling module for semantic causal intervention and a new Bernoulli differentiable causal subgraph sampling method for topological causal discovery. A joint optimization strategy combining disentangling supervision and contrastive learning enables simultaneous refinement of both semantic and topological causalities. Experiments demonstrate that C$^2$MIL consistently improves generalization and interpretability over existing methods and can serve as a causal enhancement for diverse MIL baselines. The code is available at https://github.com/mimic0127/C2MIL.

Authors:Zizheng Yang, Hu Yu, Bing Li, Jinghao Zhang, Jie Huang, Feng Zhao
Title: Unleashing the Potential of the Semantic Latent Space in Diffusion Models for Image Dehazing
Abstract:
Diffusion models have recently been investigated as powerful generative solvers for image dehazing, owing to their remarkable capability to model the data distribution. However, the massive computational burden imposed by the retraining of diffusion models, coupled with the extensive sampling steps during the inference, limit the broader application of diffusion models in image dehazing. To address these issues, we explore the properties of hazy images in the semantic latent space of frozen pre-trained diffusion models, and propose a Diffusion Latent Inspired network for Image Dehazing, dubbed DiffLI$^2$D. Specifically, we first reveal that the semantic latent space of pre-trained diffusion models can represent the content and haze characteristics of hazy images, as the diffusion time-step changes. Building upon this insight, we integrate the diffusion latent representations at different time-steps into a delicately designed dehazing network to provide instructions for image dehazing. Our DiffLI$^2$D avoids re-training diffusion models and iterative sampling process by effectively utilizing the informative representations derived from the pre-trained diffusion models, which also offers a novel perspective for introducing diffusion models to image dehazing. Extensive experiments on multiple datasets demonstrate that the proposed method achieves superior performance to existing image dehazing methods. Code is available at https://github.com/aaaasan111/difflid.

Authors:Manahil Raza, Ayesha Azam, Talha Qaiser, Nasir Rajpoot
Title: PS3: A Multimodal Transformer Integrating Pathology Reports with Histology Images and Biological Pathways for Cancer Survival Prediction
Abstract:
Current multimodal fusion approaches in computational oncology primarily focus on integrating multi-gigapixel histology whole slide images (WSIs) with genomic or transcriptomic data, demonstrating improved survival prediction. We hypothesize that incorporating pathology reports can further enhance prognostic performance. Pathology reports, as essential components of clinical workflows, offer readily available complementary information by summarizing histopathological findings and integrating expert interpretations and clinical context. However, fusing these modalities poses challenges due to their heterogeneous nature. WSIs are high-dimensional, each containing several billion pixels, whereas pathology reports consist of concise text summaries of varying lengths, leading to potential modality imbalance. To address this, we propose a prototype-based approach to generate balanced representations, which are then integrated using a Transformer-based fusion model for survival prediction that we term PS3 (Predicting Survival from Three Modalities). Specifically, we present: (1) Diagnostic prototypes from pathology reports, leveraging self-attention to extract diagnostically relevant sections and standardize text representation; (2) Histological prototypes to compactly represent key morphological patterns in WSIs; and (3) Biological pathway prototypes to encode transcriptomic expressions, accurately capturing cellular functions. PS3, the three-modal transformer model, processes the resulting prototype-based multimodal tokens and models intra-modal and cross-modal interactions across pathology reports, WSIs and transcriptomic data. The proposed model outperforms state-of-the-art methods when evaluated against clinical, unimodal and multimodal baselines on six datasets from The Cancer Genome Atlas (TCGA). The code is available at: https://github.com/manahilr/PS3.

Authors:Nico Schulthess, Ender Konukoglu
Title: Anomaly Detection by Clustering DINO Embeddings using a Dirichlet Process Mixture
Abstract:
In this work, we leverage informative embeddings from foundational models for unsupervised anomaly detection in medical imaging. For small datasets, a memory-bank of normative features can directly be used for anomaly detection which has been demonstrated recently. However, this is unsuitable for large medical datasets as the computational burden increases substantially. Therefore, we propose to model the distribution of normative DINOv2 embeddings with a Dirichlet Process Mixture model (DPMM), a non-parametric mixture model that automatically adjusts the number of mixture components to the data at hand. Rather than using a memory bank, we use the similarity between the component centers and the embeddings as anomaly score function to create a coarse anomaly segmentation mask. Our experiments show that through DPMM embeddings of DINOv2, despite being trained on natural images, achieve very competitive anomaly detection performance on medical imaging benchmarks and can do this while at least halving the computation time at inference. Our analysis further indicates that normalized DINOv2 embeddings are generally more aligned with anatomical structures than unnormalized features, even in the presence of anomalies, making them great representations for anomaly detection. The code is available at https://github.com/NicoSchulthess/anomalydino-dpmm.

Authors:Rui Xu, Tianyang Xue, Qiujie Dong, Le Wan, Zhe Zhu, Peng Li, Zhiyang Dou, Cheng Lin, Shiqing Xin, Yuan Liu, Wenping Wang, Taku Komura
Title: MeshMosaic: Scaling Artist Mesh Generation via Local-to-Global Assembly
Abstract:
Scaling artist-designed meshes to high triangle numbers remains challenging for autoregressive generative models. Existing transformer-based methods suffer from long-sequence bottlenecks and limited quantization resolution, primarily due to the large number of tokens required and constrained quantization granularity. These issues prevent faithful reproduction of fine geometric details and structured density patterns. We introduce MeshMosaic, a novel local-to-global framework for artist mesh generation that scales to over 100K triangles--substantially surpassing prior methods, which typically handle only around 8K faces. MeshMosaic first segments shapes into patches, generating each patch autoregressively and leveraging shared boundary conditions to promote coherence, symmetry, and seamless connectivity between neighboring regions. This strategy enhances scalability to high-resolution meshes by quantizing patches individually, resulting in more symmetrical and organized mesh density and structure. Extensive experiments across multiple public datasets demonstrate that MeshMosaic significantly outperforms state-of-the-art methods in both geometric fidelity and user preference, supporting superior detail representation and practical mesh generation for real-world applications.

Authors:Phyo Thet Yee, Dimitrios Kollias, Sudeepta Mishra, Abhinav Dhall
Title: SynchroRaMa : Lip-Synchronized and Emotion-Aware Talking Face Generation via Multi-Modal Emotion Embedding
Abstract:
Audio-driven talking face generation has received growing interest, particularly for applications requiring expressive and natural human-avatar interaction. However, most existing emotion-aware methods rely on a single modality (either audio or image) for emotion embedding, limiting their ability to capture nuanced affective cues. Additionally, most methods condition on a single reference image, restricting the model's ability to represent dynamic changes in actions or attributes across time. To address these issues, we introduce SynchroRaMa, a novel framework that integrates a multi-modal emotion embedding by combining emotional signals from text (via sentiment analysis) and audio (via speech-based emotion recognition and audio-derived valence-arousal features), enabling the generation of talking face videos with richer and more authentic emotional expressiveness and fidelity. To ensure natural head motion and accurate lip synchronization, SynchroRaMa includes an audio-to-motion (A2M) module that generates motion frames aligned with the input audio. Finally, SynchroRaMa incorporates scene descriptions generated by Large Language Model (LLM) as additional textual input, enabling it to capture dynamic actions and high-level semantic attributes. Conditioning the model on both visual and textual cues enhances temporal consistency and visual realism. Quantitative and qualitative experiments on benchmark datasets demonstrate that SynchroRaMa outperforms the state-of-the-art, achieving improvements in image quality, expression preservation, and motion realism. A user study further confirms that SynchroRaMa achieves higher subjective ratings than competing methods in overall naturalness, motion diversity, and video smoothness. Our project page is available at .

Authors:Sarmistha Das, R E Zera Marveen Lyngkhoi, Kirtan Jain, Vinayak Goyal, Sriparna Saha, Manish Gupta
Title: When Words Can't Capture It All: Towards Video-Based User Complaint Text Generation with Multimodal Video Complaint Dataset
Abstract:
While there exists a lot of work on explainable complaint mining, articulating user concerns through text or video remains a significant challenge, often leaving issues unresolved. Users frequently struggle to express their complaints clearly in text but can easily upload videos depicting product defects (e.g., vague text such as `worst product' paired with a 5-second video depicting a broken headphone with the right earcup). This paper formulates a new task in the field of complaint mining to aid the common users' need to write an expressive complaint, which is Complaint Description from Videos (CoD-V) (e.g., to help the above user articulate her complaint about the defective right earcup). To this end, we introduce ComVID, a video complaint dataset containing 1,175 complaint videos and the corresponding descriptions, also annotated with the emotional state of the complainer. Additionally, we present a new complaint retention (CR) evaluation metric that discriminates the proposed (CoD-V) task against standard video summary generation and description tasks. To strengthen this initiative, we introduce a multimodal Retrieval-Augmented Generation (RAG) embedded VideoLLaMA2-7b model, designed to generate complaints while accounting for the user's emotional state. We conduct a comprehensive evaluation of several Video Language Models on several tasks (pre-trained and fine-tuned versions) with a range of established evaluation metrics, including METEOR, perplexity, and the Coleman-Liau readability score, among others. Our study lays the foundation for a new research direction to provide a platform for users to express complaints through video. Dataset and resources are available at: https://github.com/sarmistha-D/CoD-V.

Authors:Edmund Bu, Yossi Gandelsman
Title: Interpreting ResNet-based CLIP via Neuron-Attention Decomposition
Abstract:
We present a novel technique for interpreting the neurons in CLIP-ResNet by decomposing their contributions to the output into individual computation paths. More specifically, we analyze all pairwise combinations of neurons and the following attention heads of CLIP's attention-pooling layer. We find that these neuron-head pairs can be approximated by a single direction in CLIP-ResNet's image-text embedding space. Leveraging this insight, we interpret each neuron-head pair by associating it with text. Additionally, we find that only a sparse set of the neuron-head pairs have a significant contribution to the output value, and that some neuron-head pairs, while polysemantic, represent sub-concepts of their corresponding neurons. We use these observations for two applications. First, we employ the pairs for training-free semantic segmentation, outperforming previous methods for CLIP-ResNet. Second, we utilize the contributions of neuron-head pairs to monitor dataset distribution shifts. Our results demonstrate that examining individual computation paths in neural networks uncovers interpretable units, and that such units can be utilized for downstream tasks.

Authors:Hyunjin Cho, Giyun Choi, Jongwon Choi
Title: AJAHR: Amputated Joint Aware 3D Human Mesh Recovery
Abstract:
Existing human mesh recovery methods assume a standard human body structure, overlooking diverse anatomical conditions such as limb loss. This assumption introduces bias when applied to individuals with amputations - a limitation further exacerbated by the scarcity of suitable datasets. To address this gap, we propose Amputated Joint Aware 3D Human Mesh Recovery (AJAHR), which is an adaptive pose estimation framework that improves mesh reconstruction for individuals with limb loss. Our model integrates a body-part amputation classifier, jointly trained with the mesh recovery network, to detect potential amputations. We also introduce Amputee 3D (A3D), which is a synthetic dataset offering a wide range of amputee poses for robust training. While maintaining competitive performance on non-amputees, our approach achieves state-of-the-art results for amputated individuals. Additional materials can be found at the project webpage.

Authors:Guo Chen, Jiarun Liu, Sicong Du, Chenming Wu, Deqi Li, Shi-Sheng Huang, Guofeng Zhang, Sheng Yang
Title: GS-RoadPatching: Inpainting Gaussians via 3D Searching and Placing for Driving Scenes
Abstract:
This paper presents GS-RoadPatching, an inpainting method for driving scene completion by referring to completely reconstructed regions, which are represented by 3D Gaussian Splatting (3DGS). Unlike existing 3DGS inpainting methods that perform generative completion relying on 2D perspective-view-based diffusion or GAN models to predict limited appearance or depth cues for missing regions, our approach enables substitutional scene inpainting and editing directly through the 3DGS modality, extricating it from requiring spatial-temporal consistency of 2D cross-modals and eliminating the need for time-intensive retraining of Gaussians. Our key insight is that the highly repetitive patterns in driving scenes often share multi-modal similarities within the implicit 3DGS feature space and are particularly suitable for structural matching to enable effective 3DGS-based substitutional inpainting. Practically, we construct feature-embedded 3DGS scenes to incorporate a patch measurement method for abstracting local context at different scales and, subsequently, propose a structural search method to find candidate patches in 3D space effectively. Finally, we propose a simple yet effective substitution-and-fusion optimization for better visual harmony. We conduct extensive experiments on multiple publicly available datasets to demonstrate the effectiveness and efficiency of our proposed method in driving scenes, and the results validate that our method achieves state-of-the-art performance compared to the baseline methods in terms of both quality and interoperability. Additional experiments in general scenes also demonstrate the applicability of the proposed 3D inpainting strategy. The project page and code are available at: https://shanzhaguoo.github.io/GS-RoadPatching/

Authors:Miren Samaniego, Igor Rodriguez, Elena Lazkano
Title: CapStARE: Capsule-based Spatiotemporal Architecture for Robust and Efficient Gaze Estimation
Abstract:
We introduce CapStARE, a capsule-based spatio-temporal architecture for gaze estimation that integrates a ConvNeXt backbone, capsule formation with attention routing, and dual GRU decoders specialized for slow and rapid gaze dynamics. This modular design enables efficient part-whole reasoning and disentangled temporal modeling, achieving state-of-the-art performance on ETH-XGaze (3.36) and MPIIFaceGaze (2.65) while maintaining real-time inference (< 10 ms). The model also generalizes well to unconstrained conditions in Gaze360 (9.06) and human-robot interaction scenarios in RT-GENE (4.76), outperforming or matching existing methods with fewer parameters and greater interpretability. These results demonstrate that CapStARE offers a practical and robust solution for real-time gaze estimation in interactive systems. The related code and results for this article can be found on: https://github.com/toukapy/capsStare

Authors:Xiangyang Chen, Shuzhao Li, Xiuwen Zhu, Yongfan Chen, Fan Yang, Cheng Fang, Lin Qu, Xiaoxiao Xu, Hu Wei, Minggang Wu
Title: Logics-Parsing Technical Report
Abstract:
Recent advances in Large Vision-Language models (LVLM) have spurred significant progress in document parsing task. Compared to traditional pipeline-based methods, end-to-end paradigms have shown their excellence in converting PDF images into structured outputs through integrated Optical Character Recognition (OCR), table recognition, mathematical formula recognition and so on. However, the absence of explicit analytical stages for document layouts and reading orders limits the LVLM's capability in handling complex document types such as multi-column newspapers or posters. To address this limitation, we propose in this report Logics-Parsing: an end-to-end LVLM-based model augmented with reinforcement learning. Our model incorporates meticulously designed reward mechanisms to optimize complex layout analysis and reading order inference. In addition, we expand the model's versatility by incorporating diverse data types such as chemical formulas and handwritten Chinese characters into supervised fine-tuning. Finally, to enable rigorous evaluation of our approach, we introduce LogicsParsingBench, a curated set of 1,078 page-level PDF images spanning nine major categories and over twenty sub-categories, which will be released later. Comprehensive experiments conducted on LogicsParsingBench have validated the efficacy and State-of-the-art (SOTA) performance of our proposed model across diverse document analysis scenarios. Project Page: https://github.com/alibaba/Logics-Parsing

Authors:Jinhui Zheng, Xueyuan Gong
Title: ExpFace: Exponential Angular Margin Loss for Deep Face Recognition
Abstract:
Face recognition is an open-set problem requiring high discriminative power to ensure that intra-class distances remain smaller than inter-class distances. Margin-based softmax losses, such as SphereFace, CosFace, and ArcFace, have been widely adopted to enhance intra-class compactness and inter-class separability, yet they overlook the impact of noisy samples. By examining the distribution of samples in the angular space, we observe that clean samples predominantly cluster in the center region, whereas noisy samples tend to shift toward the peripheral region. Motivated by this observation, we propose the Exponential Angular Margin Loss (ExpFace), which introduces an angular exponential term as the margin. This design applies a larger penalty in the center region and a smaller penalty in the peripheral region within the angular space, thereby emphasizing clean samples while suppressing noisy samples. We present a unified analysis of ExpFace and classical margin-based softmax losses in terms of margin embedding forms, similarity curves, and gradient curves, showing that ExpFace not only avoids the training instability of SphereFace and the non-monotonicity of ArcFace, but also exhibits a similarity curve that applies penalties in the same manner as the decision boundary in the angular space. Extensive experiments demonstrate that ExpFace achieves state-of-the-art performance. To facilitate future research, we have released the source code at: https://github.com/dfr-code/ExpFace.

Authors:Yi Yang
Title: nnFilterMatch: A Unified Semi-Supervised Learning Framework with Uncertainty-Aware Pseudo-Label Filtering for Efficient Medical Segmentation
Abstract:
Semi-supervised learning (SSL) has emerged as a promising paradigm in medical image segmentation, offering competitive performance while substantially reducing the need for extensive manual annotation. When combined with active learning (AL), these strategies further minimize annotation burden by selectively incorporating the most informative samples. However, conventional SSL_AL hybrid approaches often rely on iterative and loop-based retraining cycles after each annotation round, incurring significant computational overhead and limiting scalability in clinical applications. In this study, we present a novel, annotation-efficient, and self-adaptive deep segmentation framework that integrates SSL with entropy-based pseudo-label filtering (FilterMatch), an AL-inspired mechanism, within the single-pass nnU-Net training segmentation framework (nnFilterMatch). By selectively excluding high-confidence pseudo-labels during training, our method circumvents the need for retraining loops while preserving the benefits of uncertainty-guided learning. We validate the proposed framework across multiple clinical segmentation benchmarks and demonstrate that it achieves performance comparable to or exceeding fully supervised models, even with only 5\%--20\% labeled data. This work introduces a scalable, end-to-end learning strategy for reducing annotation demands in medical image segmentation without compromising accuracy. Code is available here: https://github.com/Ordi117/nnFilterMatch.git.

Authors:Jiesi Hu, Yanwu Yang, Zhiyu Ye, Chenfei Ye, Hanyang Peng, Jianfeng Cao, Ting Ma
Title: Towards Robust In-Context Learning for Medical Image Segmentation via Data Synthesis
Abstract:
The rise of In-Context Learning (ICL) for universal medical image segmentation has introduced an unprecedented demand for large-scale, diverse datasets for training, exacerbating the long-standing problem of data scarcity. While data synthesis offers a promising solution, existing methods often fail to simultaneously achieve both high data diversity and a domain distribution suitable for medical data. To bridge this gap, we propose \textbf{SynthICL}, a novel data synthesis framework built upon domain randomization. SynthICL ensures realism by leveraging anatomical priors from real-world datasets, generates diverse anatomical structures to cover a broad data distribution, and explicitly models inter-subject variations to create data cohorts suitable for ICL. Extensive experiments on four held-out datasets validate our framework's effectiveness, showing that models trained with our data achieve performance gains of up to 63\% in average Dice and substantially enhanced generalization to unseen anatomical domains. Our work helps mitigate the data bottleneck for ICL-based segmentation, paving the way for robust models. Our code and the generated dataset are publicly available at https://github.com/jiesihu/Neuroverse3D.

Authors:Ling Lo, Kelvin C. K. Chan, Wen-Huang Cheng, Ming-Hsuan Yang
Title: From Prompt to Progression: Taming Video Diffusion Models for Seamless Attribute Transition
Abstract:
Existing models often struggle with complex temporal changes, particularly when generating videos with gradual attribute transitions. The most common prompt interpolation approach for motion transitions often fails to handle gradual attribute transitions, where inconsistencies tend to become more pronounced. In this work, we propose a simple yet effective method to extend existing models for smooth and consistent attribute transitions, through introducing frame-wise guidance during the denoising process. Our approach constructs a data-specific transitional direction for each noisy latent, guiding the gradual shift from initial to final attributes frame by frame while preserving the motion dynamics of the video. Moreover, we present the Controlled-Attribute-Transition Benchmark (CAT-Bench), which integrates both attribute and motion dynamics, to comprehensively evaluate the performance of different models. We further propose two metrics to assess the accuracy and smoothness of attribute transitions. Experimental results demonstrate that our approach performs favorably against existing baselines, achieving visual fidelity, maintaining alignment with text prompts, and delivering seamless attribute transitions. Code and CATBench are released: https://github.com/lynn-ling-lo/Prompt2Progression.

Authors:Kunlun Xu, Yibo Feng, Jiangmeng Li, Yongsheng Qi, Jiahuan Zhou
Title: C${}^2$Prompt: Class-aware Client Knowledge Interaction for Federated Continual Learning
Abstract:
Federated continual learning (FCL) tackles scenarios of learning from continuously emerging task data across distributed clients, where the key challenge lies in addressing both temporal forgetting over time and spatial forgetting simultaneously. Recently, prompt-based FCL methods have shown advanced performance through task-wise prompt communication.In this study, we underscore that the existing prompt-based FCL methods are prone to class-wise knowledge coherence between prompts across clients. The class-wise knowledge coherence includes two aspects: (1) intra-class distribution gap across clients, which degrades the learned semantics across prompts, (2) inter-prompt class-wise relevance, which highlights cross-class knowledge confusion. During prompt communication, insufficient class-wise coherence exacerbates knowledge conflicts among new prompts and induces interference with old prompts, intensifying both spatial and temporal forgetting. To address these issues, we propose a novel Class-aware Client Knowledge Interaction (C${}^2$Prompt) method that explicitly enhances class-wise knowledge coherence during prompt communication. Specifically, a local class distribution compensation mechanism (LCDC) is introduced to reduce intra-class distribution disparities across clients, thereby reinforcing intra-class knowledge consistency. Additionally, a class-aware prompt aggregation scheme (CPA) is designed to alleviate inter-class knowledge confusion by selectively strengthening class-relevant knowledge aggregation. Extensive experiments on multiple FCL benchmarks demonstrate that C${}^2$Prompt achieves state-of-the-art performance. Our source code is available at https://github.com/zhoujiahuan1991/NeurIPS2025-C2Prompt

Authors:Jason Chen, I-Chun Arthur Liu, Gaurav Sukhatme, Daniel Seita
Title: ROPA: Synthetic Robot Pose Generation for RGB-D Bimanual Data Augmentation
Abstract:
Training robust bimanual manipulation policies via imitation learning requires demonstration data with broad coverage over robot poses, contacts, and scene contexts. However, collecting diverse and precise real-world demonstrations is costly and time-consuming, which hinders scalability. Prior works have addressed this with data augmentation, typically for either eye-in-hand (wrist camera) setups with RGB inputs or for generating novel images without paired actions, leaving augmentation for eye-to-hand (third-person) RGB-D training with new action labels less explored. In this paper, we propose Synthetic Robot Pose Generation for RGB-D Bimanual Data Augmentation (ROPA), an offline imitation learning data augmentation method that fine-tunes Stable Diffusion to synthesize third-person RGB and RGB-D observations of novel robot poses. Our approach simultaneously generates corresponding joint-space action labels while employing constrained optimization to enforce physical consistency through appropriate gripper-to-object contact constraints in bimanual scenarios. We evaluate our method on 5 simulated and 3 real-world tasks. Our results across 2625 simulation trials and 300 real-world trials demonstrate that ROPA outperforms baselines and ablations, showing its potential for scalable RGB and RGB-D data augmentation in eye-to-hand bimanual manipulation. Our project website is available at: https://ropaaug.github.io/.

Authors:Weijie Wang, Yeqing Chen, Zeyu Zhang, Hengyu Liu, Haoxiao Wang, Zhiyuan Feng, Wenkang Qin, Zheng Zhu, Donny Y. Chen, Bohan Zhuang
Title: VolSplat: Rethinking Feed-Forward 3D Gaussian Splatting with Voxel-Aligned Prediction
Abstract:
Feed-forward 3D Gaussian Splatting (3DGS) has emerged as a highly effective solution for novel view synthesis. Existing methods predominantly rely on a pixel-aligned Gaussian prediction paradigm, where each 2D pixel is mapped to a 3D Gaussian. We rethink this widely adopted formulation and identify several inherent limitations: it renders the reconstructed 3D models heavily dependent on the number of input views, leads to view-biased density distributions, and introduces alignment errors, particularly when source views contain occlusions or low texture. To address these challenges, we introduce VolSplat, a new multi-view feed-forward paradigm that replaces pixel alignment with voxel-aligned Gaussians. By directly predicting Gaussians from a predicted 3D voxel grid, it overcomes pixel alignment's reliance on error-prone 2D feature matching, ensuring robust multi-view consistency. Furthermore, it enables adaptive control over Gaussian density based on 3D scene complexity, yielding more faithful Gaussian point clouds, improved geometric consistency, and enhanced novel-view rendering quality. Experiments on widely used benchmarks including RealEstate10K and ScanNet demonstrate that VolSplat achieves state-of-the-art performance while producing more plausible and view-consistent Gaussian reconstructions. In addition to superior results, our approach establishes a more scalable framework for feed-forward 3D reconstruction with denser and more robust representations, paving the way for further research in wider communities. The video results, code and trained models are available on our project page: https://lhmd.top/volsplat.

Authors:Bingnan Li, Chen-Yu Wang, Haiyang Xu, Xiang Zhang, Ethan Armand, Divyansh Srivastava, Xiaojun Shan, Zeyuan Chen, Jianwen Xie, Zhuowen Tu
Title: OverLayBench: A Benchmark for Layout-to-Image Generation with Dense Overlaps
Abstract:
Despite steady progress in layout-to-image generation, current methods still struggle with layouts containing significant overlap between bounding boxes. We identify two primary challenges: (1) large overlapping regions and (2) overlapping instances with minimal semantic distinction. Through both qualitative examples and quantitative analysis, we demonstrate how these factors degrade generation quality. To systematically assess this issue, we introduce OverLayScore, a novel metric that quantifies the complexity of overlapping bounding boxes. Our analysis reveals that existing benchmarks are biased toward simpler cases with low OverLayScore values, limiting their effectiveness in evaluating model performance under more challenging conditions. To bridge this gap, we present OverLayBench, a new benchmark featuring high-quality annotations and a balanced distribution across different levels of OverLayScore. As an initial step toward improving performance on complex overlaps, we also propose CreatiLayout-AM, a model fine-tuned on a curated amodal mask dataset. Together, our contributions lay the groundwork for more robust layout-to-image generation under realistic and challenging scenarios. Project link: https://mlpc-ucsd.github.io/OverLayBench.

Authors:Gabriel Maldonado, Narges Rashvand, Armin Danesh Pazho, Ghazal Alinezhad Noghre, Vinit Katariya, Hamed Tabkhi
Title: Adversarially-Refined VQ-GAN with Dense Motion Tokenization for Spatio-Temporal Heatmaps
Abstract:
Continuous human motion understanding remains a core challenge in computer vision due to its high dimensionality and inherent redundancy. Efficient compression and representation are crucial for analyzing complex motion dynamics. In this work, we introduce an adversarially-refined VQ-GAN framework with dense motion tokenization for compressing spatio-temporal heatmaps while preserving the fine-grained traces of human motion. Our approach combines dense motion tokenization with adversarial refinement, which eliminates reconstruction artifacts like motion smearing and temporal misalignment observed in non-adversarial baselines. Our experiments on the CMU Panoptic dataset provide conclusive evidence of our method's superiority, outperforming the dVAE baseline by 9.31% SSIM and reducing temporal instability by 37.1%. Furthermore, our dense tokenization strategy enables a novel analysis of motion complexity, revealing that 2D motion can be optimally represented with a compact 128-token vocabulary, while 3D motion's complexity demands a much larger 1024-token codebook for faithful reconstruction. These results establish practical deployment feasibility across diverse motion analysis applications. The code base for this work is available at https://github.com/TeCSAR-UNCC/Pose-Quantization.

Authors:Ioanna Ntinou, Alexandros Xenos, Yassine Ouali, Adrian Bulat, Georgios Tzimiropoulos
Title: Vision-Free Retrieval: Rethinking Multimodal Search with Textual Scene Descriptions
Abstract:
Contrastively-trained Vision-Language Models (VLMs), such as CLIP, have become the standard approach for learning discriminative vision-language representations. However, these models often exhibit shallow language understanding, manifesting bag-of-words behaviour. These limitations are reinforced by their dual-encoder design, which induces a modality gap. Additionally, the reliance on vast web-collected data corpora for training makes the process computationally expensive and introduces significant privacy concerns. To address these limitations, in this work, we challenge the necessity of vision encoders for retrieval tasks by introducing a vision-free, single-encoder retrieval pipeline. Departing from the traditional text-to-image retrieval paradigm, we migrate to a text-to-text paradigm with the assistance of VLLM-generated structured image descriptions. We demonstrate that this paradigm shift has significant advantages, including a substantial reduction of the modality gap, improved compositionality, and better performance on short and long caption queries, all attainable with only a few hours of calibration on two GPUs. Additionally, substituting raw images with textual descriptions introduces a more privacy-friendly alternative for retrieval. To further assess generalisation and address some of the shortcomings of prior compositionality benchmarks, we release two benchmarks derived from Flickr30k and COCO, containing diverse compositional queries made of short captions, which we coin subFlickr and subCOCO. Our vision-free retriever matches and often surpasses traditional multimodal models. Importantly, our approach achieves state-of-the-art zero-shot performance on multiple retrieval and compositionality benchmarks, with models as small as 0.3B parameters. Code is available at: https://github.com/IoannaNti/LexiCLIP

Authors:Yun Wang, Junjie Hu, Junhui Hou, Chenghao Zhang, Renwei Yang, Dapeng Oliver Wu
Title: RoSe: Robust Self-supervised Stereo Matching under Adverse Weather Conditions
Abstract:
Recent self-supervised stereo matching methods have made significant progress, but their performance significantly degrades under adverse weather conditions such as night, rain, and fog. We identify two primary weaknesses contributing to this performance degradation. First, adverse weather introduces noise and reduces visibility, making CNN-based feature extractors struggle with degraded regions like reflective and textureless areas. Second, these degraded regions can disrupt accurate pixel correspondences, leading to ineffective supervision based on the photometric consistency assumption. To address these challenges, we propose injecting robust priors derived from the visual foundation model into the CNN-based feature extractor to improve feature representation under adverse weather conditions. We then introduce scene correspondence priors to construct robust supervisory signals rather than relying solely on the photometric consistency assumption. Specifically, we create synthetic stereo datasets with realistic weather degradations. These datasets feature clear and adverse image pairs that maintain the same semantic context and disparity, preserving the scene correspondence property. With this knowledge, we propose a robust self-supervised training paradigm, consisting of two key steps: robust self-supervised scene correspondence learning and adverse weather distillation. Both steps aim to align underlying scene results from clean and adverse image pairs, thus improving model disparity estimation under adverse weather effects. Extensive experiments demonstrate the effectiveness and versatility of our proposed solution, which outperforms existing state-of-the-art self-supervised methods. Codes are available at \textcolor{blue}{https://github.com/cocowy1/RoSe-Robust-Self-supervised-Stereo-Matching-under-Adverse-Weather-Conditions}.

Authors:Görkay Aydemir, Weidi Xie, Fatma Güney
Title: Track-On2: Enhancing Online Point Tracking with Memory
Abstract:
In this paper, we consider the problem of long-term point tracking, which requires consistent identification of points across video frames under significant appearance changes, motion, and occlusion. We target the online setting, i.e. tracking points frame-by-frame, making it suitable for real-time and streaming applications. We extend our prior model Track-On into Track-On2, a simple and efficient transformer-based model for online long-term tracking. Track-On2 improves both performance and efficiency through architectural refinements, more effective use of memory, and improved synthetic training strategies. Unlike prior approaches that rely on full-sequence access or iterative updates, our model processes frames causally and maintains temporal coherence via a memory mechanism, which is key to handling drift and occlusions without requiring future frames. At inference, we perform coarse patch-level classification followed by refinement. Beyond architecture, we systematically study synthetic training setups and their impact on memory behavior, showing how they shape temporal robustness over long sequences. Through comprehensive experiments, Track-On2 achieves state-of-the-art results across five synthetic and real-world benchmarks, surpassing prior online trackers and even strong offline methods that exploit bidirectional context. These results highlight the effectiveness of causal, memory-based architectures trained purely on synthetic data as scalable solutions for real-world point tracking. Project page: https://kuis-ai.github.io/track_on2

Authors:Alexey Nekrasov, Ali Athar, Daan de Geus, Alexander Hermans, Bastian Leibe
Title: 3rd Place Report of LSVOS 2025 MeViS Track: Sa2VA-i: Improving Sa2VA Results with Consistent Training and Inference
Abstract:
Sa2VA is a recent model for language-guided dense grounding in images and video that achieves state-of-the-art results on multiple segmentation benchmarks and that has become widely popular. However, we found that Sa2VA does not perform according to its full potential for referring video object segmentation tasks. We identify inconsistencies between training and inference procedures as the key factor holding it back. To mitigate this issue, we propose an improved version of Sa2VA, Sa2VA-i, that rectifies these issues and improves the results. In fact, Sa2VA-i sets a new state of the art for multiple video benchmarks and achieves improvements of up to +11.6 J&F on MeViS, +1.4 on Ref-YT-VOS, +3.3 on Ref-DAVIS and +4.1 on ReVOS using the same Sa2VA checkpoints. With our fixes, the Sa2VA-i-1B model even performs on par with the original Sa2VA-26B model on the MeViS benchmark. We hope that this work will show the importance of seemingly trivial implementation details and that it will provide valuable insights for the referring video segmentation field. We provide the code and updated models at https://github.com/kumuji/sa2va-i

Authors:Honghao Chen, Xingzhou Lou, Xiaokun Feng, Kaiqi Huang, Xinlong Wang
Title: Unveiling Chain of Step Reasoning for Vision-Language Models with Fine-grained Rewards
Abstract:
Chain of thought reasoning has demonstrated remarkable success in large language models, yet its adaptation to vision-language reasoning remains an open challenge with unclear best practices. Existing attempts typically employ reasoning chains at a coarse-grained level, which struggles to perform fine-grained structured reasoning and, more importantly, are difficult to evaluate the reward and quality of intermediate reasoning. In this work, we delve into chain of step reasoning for vision-language models, enabling assessing reasoning step quality accurately and leading to effective reinforcement learning and inference-time scaling with fine-grained rewards. We present a simple, effective, and fully transparent framework, including the step-level reasoning data, process reward model (PRM), and reinforcement learning training. With the proposed approaches, our models set strong baselines with consistent improvements on challenging vision-language benchmarks. More importantly, we conduct a thorough empirical analysis and ablation study, unveiling the impact of each component and several intriguing properties of inference-time scaling. We believe this paper serves as a baseline for vision-language models and offers insights into more complex multimodal reasoning. Our dataset, PRM, and code will be available at https://github.com/baaivision/CoS.

Authors:Lorenzo Shaikewitz, Tim Nguyen, Luca Carlone
Title: Category-Level Object Shape and Pose Estimation in Less Than a Millisecond
Abstract:
Object shape and pose estimation is a foundational robotics problem, supporting tasks from manipulation to scene understanding and navigation. We present a fast local solver for shape and pose estimation which requires only category-level object priors and admits an efficient certificate of global optimality. Given an RGB-D image of an object, we use a learned front-end to detect sparse, category-level semantic keypoints on the target object. We represent the target object's unknown shape using a linear active shape model and pose a maximum a posteriori optimization problem to solve for position, orientation, and shape simultaneously. Expressed in unit quaternions, this problem admits first-order optimality conditions in the form of an eigenvalue problem with eigenvector nonlinearities. Our primary contribution is to solve this problem efficiently with self-consistent field iteration, which only requires computing a 4-by-4 matrix and finding its minimum eigenvalue-vector pair at each iterate. Solving a linear system for the corresponding Lagrange multipliers gives a simple global optimality certificate. One iteration of our solver runs in about 100 microseconds, enabling fast outlier rejection. We test our method on synthetic data and a variety of real-world settings, including two public datasets and a drone tracking scenario. Code is released at https://github.com/MIT-SPARK/Fast-ShapeAndPose.

Authors:Pamela Osuna-Vargas, Altug Kamacioglu, Dominik F. Aschauer, Petros E. Vlachos, Sercan Alipek, Jochen Triesch, Simon Rumpel, Matthias Kaschube
Title: SynapFlow: A Modular Framework Towards Large-Scale Analysis of Dendritic Spines
Abstract:
Dendritic spines are key structural components of excitatory synapses in the brain. Given the size of dendritic spines provides a proxy for synaptic efficacy, their detection and tracking across time is important for studies of the neural basis of learning and memory. Despite their relevance, large-scale analyses of the structural dynamics of dendritic spines in 3D+time microscopy data remain challenging and labor-intense. Here, we present a modular machine learning-based pipeline designed to automate the detection, time-tracking, and feature extraction of dendritic spines in volumes chronically recorded with two-photon microscopy. Our approach tackles the challenges posed by biological data by combining a transformer-based detection module, a depth-tracking component that integrates spatial features, a time-tracking module to associate 3D spines across time by leveraging spatial consistency, and a feature extraction unit that quantifies biologically relevant spine properties. We validate our method on open-source labeled spine data, and on two complementary annotated datasets that we publish alongside this work: one for detection and depth-tracking, and one for time-tracking, which, to the best of our knowledge, is the first data of this kind. To encourage future research, we release our data, code, and pre-trained weights at https://github.com/pamelaosuna/SynapFlow, establishing a baseline for scalable, end-to-end analysis of dendritic spine dynamics.

Authors:Kartik Teotia, Helge Rhodin, Mohit Mendiratta, Hyeongwoo Kim, Marc Habermann, Christian Theobalt
Title: Audio-Driven Universal Gaussian Head Avatars
Abstract:
We introduce the first method for audio-driven universal photorealistic avatar synthesis, combining a person-agnostic speech model with our novel Universal Head Avatar Prior (UHAP). UHAP is trained on cross-identity multi-view videos. In particular, our UHAP is supervised with neutral scan data, enabling it to capture the identity-specific details at high fidelity. In contrast to previous approaches, which predominantly map audio features to geometric deformations only while ignoring audio-dependent appearance variations, our universal speech model directly maps raw audio inputs into the UHAP latent expression space. This expression space inherently encodes, both, geometric and appearance variations. For efficient personalization to new subjects, we employ a monocular encoder, which enables lightweight regression of dynamic expression variations across video frames. By accounting for these expression-dependent changes, it enables the subsequent model fine-tuning stage to focus exclusively on capturing the subject's global appearance and geometry. Decoding these audio-driven expression codes via UHAP generates highly realistic avatars with precise lip synchronization and nuanced expressive details, such as eyebrow movement, gaze shifts, and realistic mouth interior appearance as well as motion. Extensive evaluations demonstrate that our method is not only the first generalizable audio-driven avatar model that can account for detailed appearance modeling and rendering, but it also outperforms competing (geometry-only) methods across metrics measuring lip-sync accuracy, quantitative image quality, and perceptual realism.

Authors:Chuni Liu, Hongjie Li, Jiaqi Du, Yangyang Hou, Qian Sun, Lei Jin, Ke Xu
Title: Advancing Metallic Surface Defect Detection via Anomaly-Guided Pretraining on a Large Industrial Dataset
Abstract:
The pretraining-finetuning paradigm is a crucial strategy in metallic surface defect detection for mitigating the challenges posed by data scarcity. However, its implementation presents a critical dilemma. Pretraining on natural image datasets such as ImageNet, faces a significant domain gap. Meanwhile, naive self-supervised pretraining on in-domain industrial data is often ineffective due to the inability of existing learning objectives to distinguish subtle defect patterns from complex background noise and textures. To resolve this, we introduce Anomaly-Guided Self-Supervised Pretraining (AGSSP), a novel paradigm that explicitly guides representation learning through anomaly priors. AGSSP employs a two-stage framework: (1) it first pretrains the model's backbone by distilling knowledge from anomaly maps, encouraging the network to capture defect-salient features; (2) it then pretrains the detector using pseudo-defect boxes derived from these maps, aligning it with localization tasks. To enable this, we develop a knowledge-enhanced method to generate high-quality anomaly maps and collect a large-scale industrial dataset of 120,000 images. Additionally, we present two small-scale, pixel-level labeled metallic surface defect datasets for validation. Extensive experiments demonstrate that AGSSP consistently enhances performance across various settings, achieving up to a 10\% improvement in mAP@0.5 and 11.4\% in mAP@0.5:0.95 compared to ImageNet-based models. All code, pretrained models, and datasets are publicly available at https://clovermini.github.io/AGSSP-Dev/.

Authors:Suzannah Wistreich, Baiyu Shi, Stephen Tian, Samuel Clarke, Michael Nath, Chengyi Xu, Zhenan Bao, Jiajun Wu
Title: DexSkin: High-Coverage Conformable Robotic Skin for Learning Contact-Rich Manipulation
Abstract:
Human skin provides a rich tactile sensing stream, localizing intentional and unintentional contact events over a large and contoured region. Replicating these tactile sensing capabilities for dexterous robotic manipulation systems remains a longstanding challenge. In this work, we take a step towards this goal by introducing DexSkin. DexSkin is a soft, conformable capacitive electronic skin that enables sensitive, localized, and calibratable tactile sensing, and can be tailored to varying geometries. We demonstrate its efficacy for learning downstream robotic manipulation by sensorizing a pair of parallel jaw gripper fingers, providing tactile coverage across almost the entire finger surfaces. We empirically evaluate DexSkin's capabilities in learning challenging manipulation tasks that require sensing coverage across the entire surface of the fingers, such as reorienting objects in hand and wrapping elastic bands around boxes, in a learning-from-demonstration framework. We then show that, critically for data-driven approaches, DexSkin can be calibrated to enable model transfer across sensor instances, and demonstrate its applicability to online reinforcement learning on real robots. Our results highlight DexSkin's suitability and practicality for learning real-world, contact-rich manipulation. Please see our project webpage for videos and visualizations: https://dex-skin.github.io/.

Authors:Kuang Xiaodong, Li Bingxuan, Li Yuan, Rao Fan, Ma Gege, Xie Qingguo, Mok Greta S P, Liu Huafeng, Zhu Wentao
Title: A Kernel Space-based Multidimensional Sparse Model for Dynamic PET Image Denoising
Abstract:
Achieving high image quality for temporal frames in dynamic positron emission tomography (PET) is challenging due to the limited statistic especially for the short frames. Recent studies have shown that deep learning (DL) is useful in a wide range of medical image denoising tasks. In this paper, we propose a model-based neural network for dynamic PET image denoising. The inter-frame spatial correlation and intra-frame structural consistency in dynamic PET are used to establish the kernel space-based multidimensional sparse (KMDS) model. We then substitute the inherent forms of the parameter estimation with neural networks to enable adaptive parameters optimization, forming the end-to-end neural KMDS-Net. Extensive experimental results from simulated and real data demonstrate that the neural KMDS-Net exhibits strong denoising performance for dynamic PET, outperforming previous baseline methods. The proposed method may be used to effectively achieve high temporal and spatial resolution for dynamic PET. Our source code is available at https://github.com/Kuangxd/Neural-KMDS-Net/tree/main.

Authors:Ruichao Hou, Xingyuan Li, Tongwei Ren, Dongming Zhou, Gangshan Wu, Jinde Cao
Title: HyPSAM: Hybrid Prompt-driven Segment Anything Model for RGB-Thermal Salient Object Detection
Abstract:
RGB-thermal salient object detection (RGB-T SOD) aims to identify prominent objects by integrating complementary information from RGB and thermal modalities. However, learning the precise boundaries and complete objects remains challenging due to the intrinsic insufficient feature fusion and the extrinsic limitations of data scarcity. In this paper, we propose a novel hybrid prompt-driven segment anything model (HyPSAM), which leverages the zero-shot generalization capabilities of the segment anything model (SAM) for RGB-T SOD. Specifically, we first propose a dynamic fusion network (DFNet) that generates high-quality initial saliency maps as visual prompts. DFNet employs dynamic convolution and multi-branch decoding to facilitate adaptive cross-modality interaction, overcoming the limitations of fixed-parameter kernels and enhancing multi-modal feature representation. Moreover, we propose a plug-and-play refinement network (P2RNet), which serves as a general optimization strategy to guide SAM in refining saliency maps by using hybrid prompts. The text prompt ensures reliable modality input, while the mask and box prompts enable precise salient object localization. Extensive experiments on three public datasets demonstrate that our method achieves state-of-the-art performance. Notably, HyPSAM has remarkable versatility, seamlessly integrating with different RGB-T SOD methods to achieve significant performance gains, thereby highlighting the potential of prompt engineering in this field. The code and results of our method are available at: https://github.com/milotic233/HyPSAM.

Authors:Yingquan Wang, Pingping Zhang, Chong Sun, Dong Wang, Huchuan Lu
Title: What Makes You Unique? Attribute Prompt Composition for Object Re-Identification
Abstract:
Object Re-IDentification (ReID) aims to recognize individuals across non-overlapping camera views. While recent advances have achieved remarkable progress, most existing models are constrained to either single-domain or cross-domain scenarios, limiting their real-world applicability. Single-domain models tend to overfit to domain-specific features, whereas cross-domain models often rely on diverse normalization strategies that may inadvertently suppress identity-specific discriminative cues. To address these limitations, we propose an Attribute Prompt Composition (APC) framework, which exploits textual semantics to jointly enhance discrimination and generalization. Specifically, we design an Attribute Prompt Generator (APG) consisting of a Semantic Attribute Dictionary (SAD) and a Prompt Composition Module (PCM). SAD is an over-complete attribute dictionary to provide rich semantic descriptions, while PCM adaptively composes relevant attributes from SAD to generate discriminative attribute-aware features. In addition, motivated by the strong generalization ability of Vision-Language Models (VLM), we propose a Fast-Slow Training Strategy (FSTS) to balance ReID-specific discrimination and generalizable representation learning. Specifically, FSTS adopts a Fast Update Stream (FUS) to rapidly acquire ReID-specific discriminative knowledge and a Slow Update Stream (SUS) to retain the generalizable knowledge inherited from the pre-trained VLM. Through a mutual interaction, the framework effectively focuses on ReID-relevant features while mitigating overfitting. Extensive experiments on both conventional and Domain Generalized (DG) ReID datasets demonstrate that our framework surpasses state-of-the-art methods, exhibiting superior performances in terms of both discrimination and generalization. The source code is available at https://github.com/AWangYQ/APC.

Authors:Nicolas Toussaint, Emanuele Colleoni, Ricardo Sanchez-Matilla, Joshua Sutcliffe, Vanessa Thompson, Muhammad Asad, Imanol Luengo, Danail Stoyanov
Title: Zero-shot Monocular Metric Depth for Endoscopic Images
Abstract:
Monocular relative and metric depth estimation has seen a tremendous boost in the last few years due to the sharp advancements in foundation models and in particular transformer based networks. As we start to see applications to the domain of endoscopic images, there is still a lack of robust benchmarks and high-quality datasets in that area. This paper addresses these limitations by presenting a comprehensive benchmark of state-of-the-art (metric and relative) depth estimation models evaluated on real, unseen endoscopic images, providing critical insights into their generalisation and performance in clinical scenarios. Additionally, we introduce and publish a novel synthetic dataset (EndoSynth) of endoscopic surgical instruments paired with ground truth metric depth and segmentation masks, designed to bridge the gap between synthetic and real-world data. We demonstrate that fine-tuning depth foundation models using our synthetic dataset boosts accuracy on most unseen real data by a significant margin. By providing both a benchmark and a synthetic dataset, this work advances the field of depth estimation for endoscopic images and serves as an important resource for future research. Project page, EndoSynth dataset and trained weights are available at https://github.com/TouchSurgery/EndoSynth.

Authors:Yuanhuiyi Lyu, Chi Kit Wong, Chenfei Liao, Lutao Jiang, Xu Zheng, Zexin Lu, Linfeng Zhang, Xuming Hu
Title: Understanding-in-Generation: Reinforcing Generative Capability of Unified Model via Infusing Understanding into Generation
Abstract:
Recent works have made notable advancements in enhancing unified models for text-to-image generation through the Chain-of-Thought (CoT). However, these reasoning methods separate the processes of understanding and generation, which limits their ability to guide the reasoning of unified models in addressing the deficiencies of their generative capabilities. To this end, we propose a novel reasoning framework for unified models, Understanding-in-Generation (UiG), which harnesses the robust understanding capabilities of unified models to reinforce their performance in image generation. The core insight of our UiG is to integrate generative guidance by the strong understanding capabilities during the reasoning process, thereby mitigating the limitations of generative abilities. To achieve this, we introduce "Image Editing" as a bridge to infuse understanding into the generation process. Initially, we verify the generated image and incorporate the understanding of unified models into the editing instructions. Subsequently, we enhance the generated image step by step, gradually infusing the understanding into the generation process. Our UiG framework demonstrates a significant performance improvement in text-to-image generation over existing text-to-image reasoning methods, e.g., a 3.92% gain on the long prompt setting of the TIIF benchmark. The project code: https://github.com/QC-LY/UiG

Authors:Neel P. Bhatt, Yunhao Yang, Rohan Siva, Pranay Samineni, Daniel Milan, Zhangyang Wang, Ufuk Topcu
Title: VLN-Zero: Rapid Exploration and Cache-Enabled Neurosymbolic Vision-Language Planning for Zero-Shot Transfer in Robot Navigation
Abstract:
Rapid adaptation in unseen environments is essential for scalable real-world autonomy, yet existing approaches rely on exhaustive exploration or rigid navigation policies that fail to generalize. We present VLN-Zero, a two-phase vision-language navigation framework that leverages vision-language models to efficiently construct symbolic scene graphs and enable zero-shot neurosymbolic navigation. In the exploration phase, structured prompts guide VLM-based search toward informative and diverse trajectories, yielding compact scene graph representations. In the deployment phase, a neurosymbolic planner reasons over the scene graph and environmental observations to generate executable plans, while a cache-enabled execution module accelerates adaptation by reusing previously computed task-location trajectories. By combining rapid exploration, symbolic reasoning, and cache-enabled execution, the proposed framework overcomes the computational inefficiency and poor generalization of prior vision-language navigation methods, enabling robust and scalable decision-making in unseen environments. VLN-Zero achieves 2x higher success rate compared to state-of-the-art zero-shot models, outperforms most fine-tuned baselines, and reaches goal locations in half the time with 55% fewer VLM calls on average compared to state-of-the-art models across diverse environments. Codebase, datasets, and videos for VLN-Zero are available at: https://vln-zero.github.io/.

Authors:Zixin Zhu, Haoxiang Li, Xuelu Feng, He Wu, Chunming Qiao, Junsong Yuan
Title: GeoRemover: Removing Objects and Their Causal Visual Artifacts
Abstract:
Towards intelligent image editing, object removal should eliminate both the target object and its causal visual artifacts, such as shadows and reflections. However, existing image appearance-based methods either follow strictly mask-aligned training and fail to remove these causal effects which are not explicitly masked, or adopt loosely mask-aligned strategies that lack controllability and may unintentionally over-erase other objects. We identify that these limitations stem from ignoring the causal relationship between an object's geometry presence and its visual effects. To address this limitation, we propose a geometry-aware two-stage framework that decouples object removal into (1) geometry removal and (2) appearance rendering. In the first stage, we remove the object directly from the geometry (e.g., depth) using strictly mask-aligned supervision, enabling structure-aware editing with strong geometric constraints. In the second stage, we render a photorealistic RGB image conditioned on the updated geometry, where causal visual effects are considered implicitly as a result of the modified 3D geometry. To guide learning in the geometry removal stage, we introduce a preference-driven objective based on positive and negative sample pairs, encouraging the model to remove objects as well as their causal visual artifacts while avoiding new structural insertions. Extensive experiments demonstrate that our method achieves state-of-the-art performance in removing both objects and their associated artifacts on two popular benchmarks. The code is available at https://github.com/buxiangzhiren/GeoRemover.

Authors:Mohammad Hosseini, Maryam M. Shanechi
Title: Dynamical Modeling of Behaviorally Relevant Spatiotemporal Patterns in Neural Imaging Data
Abstract:
High-dimensional imaging of neural activity, such as widefield calcium and functional ultrasound imaging, provide a rich source of information for understanding the relationship between brain activity and behavior. Accurately modeling neural dynamics in these modalities is crucial for understanding this relationship but is hindered by the high-dimensionality, complex spatiotemporal dependencies, and prevalent behaviorally irrelevant dynamics in these modalities. Existing dynamical models often employ preprocessing steps to obtain low-dimensional representations from neural image modalities. However, this process can discard behaviorally relevant information and miss spatiotemporal structure. We propose SBIND, a novel data-driven deep learning framework to model spatiotemporal dependencies in neural images and disentangle their behaviorally relevant dynamics from other neural dynamics. We validate SBIND on widefield imaging datasets, and show its extension to functional ultrasound imaging, a recent modality whose dynamical modeling has largely remained unexplored. We find that our model effectively identifies both local and long-range spatial dependencies across the brain while also dissociating behaviorally relevant neural dynamics. Doing so, SBIND outperforms existing models in neural-behavioral prediction. Overall, SBIND provides a versatile tool for investigating the neural mechanisms underlying behavior using imaging modalities.

Authors:Maximilian Fehrentz, Alexander Winkler, Thomas Heiliger, Nazim Haouchine, Christian Heiliger, Nassir Navab
Title: BridgeSplat: Bidirectionally Coupled CT and Non-Rigid Gaussian Splatting for Deformable Intraoperative Surgical Navigation
Abstract:
We introduce BridgeSplat, a novel approach for deformable surgical navigation that couples intraoperative 3D reconstruction with preoperative CT data to bridge the gap between surgical video and volumetric patient data. Our method rigs 3D Gaussians to a CT mesh, enabling joint optimization of Gaussian parameters and mesh deformation through photometric supervision. By parametrizing each Gaussian relative to its parent mesh triangle, we enforce alignment between Gaussians and mesh and obtain deformations that can be propagated back to update the CT. We demonstrate BridgeSplat's effectiveness on visceral pig surgeries and synthetic data of a human liver under simulation, showing sensible deformations of the preoperative CT on monocular RGB data. Code, data, and additional resources can be found at https://maxfehrentz.github.io/ct-informed-splatting/ .

Authors:Md Mostafijur Rahman, Radu Marculescu
Title: MK-UNet: Multi-kernel Lightweight CNN for Medical Image Segmentation
Abstract:
In this paper, we introduce MK-UNet, a paradigm shift towards ultra-lightweight, multi-kernel U-shaped CNNs tailored for medical image segmentation. Central to MK-UNet is the multi-kernel depth-wise convolution block (MKDC) we design to adeptly process images through multiple kernels, while capturing complex multi-resolution spatial relationships. MK-UNet also emphasizes the images salient features through sophisticated attention mechanisms, including channel, spatial, and grouped gated attention. Our MK-UNet network, with a modest computational footprint of only 0.316M parameters and 0.314G FLOPs, represents not only a remarkably lightweight, but also significantly improved segmentation solution that provides higher accuracy over state-of-the-art (SOTA) methods across six binary medical imaging benchmarks. Specifically, MK-UNet outperforms TransUNet in DICE score with nearly 333$\times$ and 123$\times$ fewer parameters and FLOPs, respectively. Similarly, when compared against UNeXt, MK-UNet exhibits superior segmentation performance, improving the DICE score up to 6.7% margins while operating with 4.7$\times$ fewer #Params. Our MK-UNet also outperforms other recent lightweight networks, such as MedT, CMUNeXt, EGE-UNet, and Rolling-UNet, with much lower computational resources. This leap in performance, coupled with drastic computational gains, positions MK-UNet as an unparalleled solution for real-time, high-fidelity medical diagnostics in resource-limited settings, such as point-of-care devices. Our implementation is available at https://github.com/SLDGroup/MK-UNet.

Authors:Binhua Huang, Wendong Yao, Shaowu Chen, Guoxin Wang, Qingyuan Wang, Soumyabrata Dev
Title: MoCrop: Training Free Motion Guided Cropping for Efficient Video Action Recognition
Abstract:
We introduce MoCrop, a motion-aware adaptive cropping module for efficient video action recognition in the compressed domain. MoCrop uses motion vectors that are available in H.264 video to locate motion-dense regions and produces a single clip-level crop that is applied to all I-frames at inference. The module is training free, adds no parameters, and can be plugged into diverse backbones. A lightweight pipeline that includes denoising & merge (DM), Monte Carlo sampling (MCS), and adaptive cropping (AC) via a motion-density submatrix search yields robust crops with negligible overhead. On UCF101, MoCrop improves accuracy or reduces compute. With ResNet-50, it delivers +3.5% Top-1 accuracy at equal FLOPs (attention setting), or +2.4% Top-1 accuracy with 26.5% fewer FLOPs (efficiency setting). Applied to CoViAR, it reaches 89.2% Top-1 accuracy at the original cost and 88.5% Top-1 accuracy while reducing compute from 11.6 to 8.5 GFLOPs. Consistent gains on MobileNet-V3, EfficientNet-B1, and Swin-B indicate strong generality and make MoCrop practical for real-time deployment in the compressed domain. Our code and models are available at https://github.com/microa/MoCrop.

Authors:Zitian Zhang, Joshua Urban Davis, Jeanne Phuong Anh Vu, Jiangtao Kuang, Jean-François Lalonde
Title: Improving the color accuracy of lighting estimation models
Abstract:
Advances in high dynamic range (HDR) lighting estimation from a single image have opened new possibilities for augmented reality (AR) applications. Predicting complex lighting environments from a single input image allows for the realistic rendering and compositing of virtual objects. In this work, we investigate the color robustness of such methods -- an often overlooked yet critical factor for achieving visual realism. While most evaluations conflate color with other lighting attributes (e.g., intensity, direction), we isolate color as the primary variable of interest. Rather than introducing a new lighting estimation algorithm, we explore whether simple adaptation techniques can enhance the color accuracy of existing models. Using a novel HDR dataset featuring diverse lighting colors, we systematically evaluate several adaptation strategies. Our results show that preprocessing the input image with a pre-trained white balance network improves color robustness, outperforming other strategies across all tested scenarios. Notably, this approach requires no retraining of the lighting estimation model. We further validate the generality of this finding by applying the technique to three state-of-the-art lighting estimation methods from recent literature.

Authors:Binhua Huang, Ni Wang, Wendong Yao, Soumyabrata Dev
Title: MVP: Motion Vector Propagation for Zero-Shot Video Object Detection
Abstract:
Running a large open-vocabulary (Open-vocab) detector on every video frame is accurate but expensive. We introduce a training-free pipeline that invokes OWLv2 only on fixed-interval keyframes and propagates detections to intermediate frames using compressed-domain motion vectors (MV). A simple 3x3 grid aggregation of motion vectors provides translation and uniform-scale updates, augmented with an area-growth check and an optional single-class switch. The method requires no labels, no fine-tuning, and uses the same prompt list for all open-vocabulary methods. On ILSVRC2015-VID (validation dataset), our approach (MVP) attains mAP@0.5=0.609 and mAP@[0.5:0.95]=0.316. At loose intersection-over-union (IoU) thresholds it remains close to framewise OWLv2-Large (0.747/0.721 at 0.2/0.3 versus 0.784/0.780), reflecting that coarse localization is largely preserved. Under the same keyframe schedule, MVP outperforms tracker-based propagation (MOSSE, KCF, CSRT) at mAP@0.5. A supervised reference (YOLOv12x) reaches 0.631 at mAP@0.5 but requires labeled training, whereas our method remains label-free and open-vocabulary. These results indicate that compressed-domain propagation is a practical way to reduce detector invocations while keeping strong zero-shot coverage in videos. Our code and models are available at https://github.com/microa/MVP.

Authors:Mehrdad Moradi, Shengzhe Chen, Hao Yan, Kamran Paynabar
Title: A Single Image Is All You Need: Zero-Shot Anomaly Localization Without Training Data
Abstract:
Anomaly detection in images is typically addressed by learning from collections of training data or relying on reference samples. In many real-world scenarios, however, such training data may be unavailable, and only the test image itself is provided. We address this zero-shot setting by proposing a single-image anomaly localization method that leverages the inductive bias of convolutional neural networks, inspired by Deep Image Prior (DIP). Our method is named Single Shot Decomposition Network (SSDnet). Our key assumption is that natural images often exhibit unified textures and patterns, and that anomalies manifest as localized deviations from these repetitive or stochastic patterns. To learn the deep image prior, we design a patch-based training framework where the input image is fed directly into the network for self-reconstruction, rather than mapping random noise to the image as done in DIP. To avoid the model simply learning an identity mapping, we apply masking, patch shuffling, and small Gaussian noise. In addition, we use a perceptual loss based on inner-product similarity to capture structure beyond pixel fidelity. Our approach needs no external training data, labels, or references, and remains robust in the presence of noise or missing pixels. SSDnet achieves 0.99 AUROC and 0.60 AUPRC on MVTec-AD and 0.98 AUROC and 0.67 AUPRC on the fabric dataset, outperforming state-of-the-art methods. The implementation code will be released at https://github.com/mehrdadmoradi124/SSDnet

Authors:Oussema Dhaouadi, Riccardo Marin, Johannes Meier, Jacques Kaiser, Daniel Cremers
Title: OrthoLoC: UAV 6-DoF Localization and Calibration Using Orthographic Geodata
Abstract:
Accurate visual localization from aerial views is a fundamental problem with applications in mapping, large-area inspection, and search-and-rescue operations. In many scenarios, these systems require high-precision localization while operating with limited resources (e.g., no internet connection or GNSS/GPS support), making large image databases or heavy 3D models impractical. Surprisingly, little attention has been given to leveraging orthographic geodata as an alternative paradigm, which is lightweight and increasingly available through free releases by governmental authorities (e.g., the European Union). To fill this gap, we propose OrthoLoC, the first large-scale dataset comprising 16,425 UAV images from Germany and the United States with multiple modalities. The dataset addresses domain shifts between UAV imagery and geospatial data. Its paired structure enables fair benchmarking of existing solutions by decoupling image retrieval from feature matching, allowing isolated evaluation of localization and calibration performance. Through comprehensive evaluation, we examine the impact of domain shifts, data resolutions, and covisibility on localization accuracy. Finally, we introduce a refinement technique called AdHoP, which can be integrated with any feature matcher, improving matching by up to 95% and reducing translation error by up to 63%. The dataset and code are available at: https://deepscenario.github.io/OrthoLoC.

Authors:Yixin Zhang, Ryan Chamberlain, Lawrence Ngo, Kevin Kramer, Maciej A. Mazurowski
Title: Rethinking Pulmonary Embolism Segmentation: A Study of Current Approaches and Challenges with an Open Weight Model
Abstract:
In this study, we curated a densely annotated in-house dataset comprising 490 CTPA scans. Using this dataset, we systematically evaluated nine widely used segmentation architectures from both the CNN and Vision Transformer (ViT) families, initialized with either pretrained or random weights, under a unified testing framework as a performance audit. Our study leads to several important observations: (1) 3D U-Net with a ResNet encoder remains a highly effective architecture for PE segmentation; (2) 3D models are particularly well-suited to this task given the morphological characteristics of emboli; (3) CNN-based models generally yield superior performance compared to their ViT-based counterparts in PE segmentation; (4) classification-based pretraining, even on large PE datasets, can adversely impact segmentation performance compared to training from scratch, suggesting that PE classification and segmentation may rely on different sets of discriminative features; (5) different model architectures show a highly consistent pattern of segmentation performance when trained on the same data; and (6) while central and large emboli can be segmented with satisfactory accuracy, distal emboli remain challenging due to both task complexity and the scarcity of high-quality datasets. Besides these findings, our best-performing model achieves a mean Dice score of 0.7131 for segmentation. It detects 181 emboli with 49 false positives and 28 false negatives from 60 in-house testing scans. Its generalizability is further validated on public datasets.

Authors:Yi Gu, Kuniaki Saito, Jiaxin Ma
Title: Learning Contrastive Multimodal Fusion with Improved Modality Dropout for Disease Detection and Prediction
Abstract:
As medical diagnoses increasingly leverage multimodal data, machine learning models are expected to effectively fuse heterogeneous information while remaining robust to missing modalities. In this work, we propose a novel multimodal learning framework that integrates enhanced modalities dropout and contrastive learning to address real-world limitations such as modality imbalance and missingness. Our approach introduces learnable modality tokens for improving missingness-aware fusion of modalities and augments conventional unimodal contrastive objectives with fused multimodal representations. We validate our framework on large-scale clinical datasets for disease detection and prediction tasks, encompassing both visual and tabular modalities. Experimental results demonstrate that our method achieves state-of-the-art performance, particularly in challenging and practical scenarios where only a single modality is available. Furthermore, we show its adaptability through successful integration with a recent CT foundation model. Our findings highlight the effectiveness, efficiency, and generalizability of our approach for multimodal learning, offering a scalable, low-cost solution with significant potential for real-world clinical applications. The code is available at https://github.com/omron-sinicx/medical-modality-dropout.

Authors:Xiuding Cai, Yaoyao Zhu, Linjie Fu, Dong Miao, Yu Yao
Title: Self Identity Mapping
Abstract:
Regularization is essential in deep learning to enhance generalization and mitigate overfitting. However, conventional techniques often rely on heuristics, making them less reliable or effective across diverse settings. We propose Self Identity Mapping (SIM), a simple yet effective, data-intrinsic regularization framework that leverages an inverse mapping mechanism to enhance representation learning. By reconstructing the input from its transformed output, SIM reduces information loss during forward propagation and facilitates smoother gradient flow. To address computational inefficiencies, We instantiate SIM as $ ρ\text{SIM} $ by incorporating patch-level feature sampling and projection-based method to reconstruct latent features, effectively lowering complexity. As a model-agnostic, task-agnostic regularizer, SIM can be seamlessly integrated as a plug-and-play module, making it applicable to different network architectures and tasks. We extensively evaluate $ρ\text{SIM}$ across three tasks: image classification, few-shot prompt learning, and domain generalization. Experimental results show consistent improvements over baseline methods, highlighting $ρ\text{SIM}$'s ability to enhance representation learning across various tasks. We also demonstrate that $ρ\text{SIM}$ is orthogonal to existing regularization methods, boosting their effectiveness. Moreover, our results confirm that $ρ\text{SIM}$ effectively preserves semantic information and enhances performance in dense-to-dense tasks, such as semantic segmentation and image translation, as well as in non-visual domains including audio classification and time series anomaly detection. The code is publicly available at https://github.com/XiudingCai/SIM-pytorch.

Authors:Tianyu Yu, Zefan Wang, Chongyi Wang, Fuwei Huang, Wenshuo Ma, Zhihui He, Tianchi Cai, Weize Chen, Yuxiang Huang, Yuanqian Zhao, Bokai Xu, Junbo Cui, Yingjing Xu, Liqing Ruan, Luoyuan Zhang, Hanyu Liu, Jingkun Tang, Hongyuan Liu, Qining Guo, Wenhao Hu, Bingxiang He, Jie Zhou, Jie Cai, Ji Qi, Zonghao Guo, Chi Chen, Guoyang Zeng, Yuxuan Li, Ganqu Cui, Ning Ding, Xu Han, Yuan Yao, Zhiyuan Liu, Maosong Sun
Title: MiniCPM-V 4.5: Cooking Efficient MLLMs via Architecture, Data, and Training Recipe
Abstract:
Multimodal Large Language Models (MLLMs) are undergoing rapid progress and represent the frontier of AI development. However, their training and inference efficiency have emerged as a core bottleneck in making MLLMs more accessible and scalable. To address the challenges, we present MiniCPM-V 4.5, an 8B parameter model designed for high efficiency and strong performance. We introduce three core improvements in model architecture, data strategy and training method: a unified 3D-Resampler model architecture for highly compact encoding over images and videos, a unified learning paradigm for document knowledge and text recognition without heavy data engineering, and a hybrid reinforcement learning strategy for proficiency in both short and long reasoning modes. Comprehensive experimental results in OpenCompass evaluation show that MiniCPM-V 4.5 surpasses widely used proprietary models such as GPT-4o-latest, and significantly larger open-source models such as Qwen2.5-VL 72B. Notably, the strong performance is achieved with remarkable efficiency. For example, on the widely adopted VideoMME benchmark, MiniCPM-V 4.5 achieves state-of-the-art performance among models under 30B size, using just 46.7\% GPU memory cost and 8.7\% inference time of Qwen2.5-VL 7B.

Authors:Julian Kaltheuner, Alexander Oebel, Hannah Droege, Patrick Stotko, Reinhard Klein
Title: Preconditioned Deformation Grids
Abstract:
Dynamic surface reconstruction of objects from point cloud sequences is a challenging field in computer graphics. Existing approaches either require multiple regularization terms or extensive training data which, however, lead to compromises in reconstruction accuracy as well as over-smoothing or poor generalization to unseen objects and motions. To address these lim- itations, we introduce Preconditioned Deformation Grids, a novel technique for estimating coherent deformation fields directly from unstructured point cloud sequences without requiring or forming explicit correspondences. Key to our approach is the use of multi-resolution voxel grids that capture the overall motion at varying spatial scales, enabling a more flexible deformation representation. In conjunction with incorporating grid-based Sobolev preconditioning into gradient-based optimization, we show that applying a Chamfer loss between the input point clouds as well as to an evolving template mesh is sufficient to obtain accurate deformations. To ensure temporal consistency along the object surface, we include a weak isometry loss on mesh edges which complements the main objective without constraining deformation fidelity. Extensive evaluations demonstrate that our method achieves superior results, particularly for long sequences, compared to state-of-the-art techniques.

Authors:Chaehyun Kim, Heeseong Shin, Eunbeen Hong, Heeji Yoon, Anurag Arnab, Paul Hongsuck Seo, Sunghwan Hong, Seungryong Kim
Title: Seg4Diff: Unveiling Open-Vocabulary Segmentation in Text-to-Image Diffusion Transformers
Abstract:
Text-to-image diffusion models excel at translating language prompts into photorealistic images by implicitly grounding textual concepts through their cross-modal attention mechanisms. Recent multi-modal diffusion transformers extend this by introducing joint self-attention over concatenated image and text tokens, enabling richer and more scalable cross-modal alignment. However, a detailed understanding of how and where these attention maps contribute to image generation remains limited. In this paper, we introduce Seg4Diff (Segmentation for Diffusion), a systematic framework for analyzing the attention structures of MM-DiT, with a focus on how specific layers propagate semantic information from text to image. Through comprehensive analysis, we identify a semantic grounding expert layer, a specific MM-DiT block that consistently aligns text tokens with spatially coherent image regions, naturally producing high-quality semantic segmentation masks. We further demonstrate that applying a lightweight fine-tuning scheme with mask-annotated image data enhances the semantic grouping capabilities of these layers and thereby improves both segmentation performance and generated image fidelity. Our findings demonstrate that semantic grouping is an emergent property of diffusion transformers and can be selectively amplified to advance both segmentation and generation performance, paving the way for unified models that bridge visual perception and generation.

Authors:Ye Liu, Zongyang Ma, Junfu Pu, Zhongang Qi, Yang Wu, Ying Shan, Chang Wen Chen
Title: UniPixel: Unified Object Referring and Segmentation for Pixel-Level Visual Reasoning
Abstract:
Recent advances in Large Multi-modal Models (LMMs) have demonstrated their remarkable success as general-purpose multi-modal assistants, with particular focuses on holistic image- and video-language understanding. Conversely, less attention has been given to scaling fine-grained pixel-level understanding capabilities, where the models are expected to realize pixel-level alignment between visual signals and language semantics. Some previous studies have applied LMMs to related tasks such as region-level captioning and referring expression segmentation. However, these models are limited to performing either referring or segmentation tasks independently and fail to integrate these fine-grained perception capabilities into visual reasoning. To bridge this gap, we propose UniPixel, a large multi-modal model capable of flexibly comprehending visual prompt inputs and generating mask-grounded responses. Our model distinguishes itself by seamlessly integrating pixel-level perception with general visual understanding capabilities. Specifically, UniPixel processes visual prompts and generates relevant masks on demand, and performs subsequent reasoning conditioning on these intermediate pointers during inference, thereby enabling fine-grained pixel-level reasoning. The effectiveness of our approach has been verified on 10 benchmarks across a diverse set of tasks, including pixel-level referring/segmentation and object-centric understanding in images/videos. A novel PixelQA task that jointly requires referring, segmentation, and question answering is also designed to verify the flexibility of our method.

Authors:Guocheng Gordon Qian, Daniil Ostashev, Egor Nemchinov, Avihay Assouline, Sergey Tulyakov, Kuan-Chieh Jackson Wang, Kfir Aberman
Title: ComposeMe: Attribute-Specific Image Prompts for Controllable Human Image Generation
Abstract:
Generating high-fidelity images of humans with fine-grained control over attributes such as hairstyle and clothing remains a core challenge in personalized text-to-image synthesis. While prior methods emphasize identity preservation from a reference image, they lack modularity and fail to provide disentangled control over specific visual attributes. We introduce a new paradigm for attribute-specific image prompting, in which distinct sets of reference images are used to guide the generation of individual aspects of human appearance, such as hair, clothing, and identity. Our method encodes these inputs into attribute-specific tokens, which are injected into a pre-trained text-to-image diffusion model. This enables compositional and disentangled control over multiple visual factors, even across multiple people within a single image. To promote natural composition and robust disentanglement, we curate a cross-reference training dataset featuring subjects in diverse poses and expressions, and propose a multi-attribute cross-reference training strategy that encourages the model to generate faithful outputs from misaligned attribute inputs while adhering to both identity and textual conditioning. Extensive experiments show that our method achieves state-of-the-art performance in accurately following both visual and textual prompts. Our framework paves the way for more configurable human image synthesis by combining visual prompting with text-driven generation. Webpage is available at: https://snap-research.github.io/composeme/.

Authors:Jiahe Li, Jiawei Zhang, Youmin Zhang, Xiao Bai, Jin Zheng, Xiaohan Yu, Lin Gu
Title: GeoSVR: Taming Sparse Voxels for Geometrically Accurate Surface Reconstruction
Abstract:
Reconstructing accurate surfaces with radiance fields has achieved remarkable progress in recent years. However, prevailing approaches, primarily based on Gaussian Splatting, are increasingly constrained by representational bottlenecks. In this paper, we introduce GeoSVR, an explicit voxel-based framework that explores and extends the under-investigated potential of sparse voxels for achieving accurate, detailed, and complete surface reconstruction. As strengths, sparse voxels support preserving the coverage completeness and geometric clarity, while corresponding challenges also arise from absent scene constraints and locality in surface refinement. To ensure correct scene convergence, we first propose a Voxel-Uncertainty Depth Constraint that maximizes the effect of monocular depth cues while presenting a voxel-oriented uncertainty to avoid quality degradation, enabling effective and robust scene constraints yet preserving highly accurate geometries. Subsequently, Sparse Voxel Surface Regularization is designed to enhance geometric consistency for tiny voxels and facilitate the voxel-based formation of sharp and accurate surfaces. Extensive experiments demonstrate our superior performance compared to existing methods across diverse challenging scenarios, excelling in geometric accuracy, detail preservation, and reconstruction completeness while maintaining high efficiency. Code is available at https://github.com/Fictionarry/GeoSVR.

Authors:Yunheng Li, Jing Cheng, Shaoyong Jia, Hangyi Kuang, Shaohui Jiao, Qibin Hou, Ming-Ming Cheng
Title: TempSamp-R1: Effective Temporal Sampling with Reinforcement Fine-Tuning for Video LLMs
Abstract:
This paper introduces TempSamp-R1, a new reinforcement fine-tuning framework designed to improve the effectiveness of adapting multimodal large language models (MLLMs) to video temporal grounding tasks. We reveal that existing reinforcement learning methods, such as Group Relative Policy Optimization (GRPO), rely on on-policy sampling for policy updates. However, in tasks with large temporal search spaces, this strategy becomes both inefficient and limited in performance, as it often fails to identify temporally accurate solutions. To address this limitation, TempSamp-R1 leverages ground-truth annotations as off-policy supervision to provide temporally precise guidance, effectively compensating for the sparsity and misalignment in on-policy solutions. To further stabilize training and reduce variance in reward-based updates, TempSamp-R1 provides a non-linear soft advantage computation method that dynamically reshapes the reward feedback via an asymmetric transformation. By employing a hybrid Chain-of-Thought (CoT) training paradigm, TempSamp-R1 optimizes a single unified model to support both CoT and non-CoT inference modes, enabling efficient handling of queries with varying reasoning complexity. Experimental results demonstrate that TempSamp-R1 outperforms GRPO-based baselines, establishing new state-of-the-art performance on benchmark datasets: Charades-STA (R1@0.7: 52.9%, +2.7%), ActivityNet Captions (R1@0.5: 56.0%, +5.3%), and QVHighlights (mAP: 30.0%, +3.0%). Moreover, TempSamp-R1 shows robust few-shot generalization capabilities under limited data. Code: https://github.com/HVision-NKU/TempSamp-R1

Authors:Kai Li, Xingxing Weng, Yupeng Deng, Yu Meng, Chao Pang, Gui-Song Xia, Xiangyu Zhao
Title: DragOSM: Extract Building Roofs and Footprints from Aerial Images by Aligning Historical Labels
Abstract:
Extracting polygonal roofs and footprints from remote sensing images is critical for large-scale urban analysis. Most existing methods rely on segmentation-based models that assume clear semantic boundaries of roofs, but these approaches struggle in off- nadir images, where the roof and footprint are significantly displaced, and facade pixels are fused with the roof boundary. With the increasing availability of open vector map annotations, e.g., OpenStreetMap, utilizing historical labels for off-nadir image annotation has become viable because remote sensing images are georeferenced once captured. However, these historical labels commonly suffer from significant positional discrepancies with new images and only have one annotation (roof or footprint), which fails to describe the correct structures of a building. To address these discrepancies, we first introduce a concept of an alignment token, which encodes the correction vector to guide the label correction. Based on this concept, we then propose Drag OpenStreetMap Labels (DragOSM), a novel model designed to align dislocated historical labels with roofs and footprints. Specifically, DragOSM formulates the label alignment as an interactive denoising process, modeling the positional discrepancy as a Gaussian distribution. During training, it learns to correct these errors by simulating misalignment with random Gaussian perturbations; during inference, it iteratively refines the positions of input labels. To validate our method, we further present a new dataset, Repairing Buildings in OSM (ReBO), comprising 179,265 buildings with both OpenStreetMap and manually corrected annotations across 5,473 images from 41 cities. Experimental results on ReBO demonstrate the effectiveness of DragOSM. Code, dataset, and trained models are publicly available at https://github.com/likaiucas/DragOSM.git.

Authors:Romain Thoreau, Jessie Levillain, Dawa Derksen
Title: Can multimodal representation learning by alignment preserve modality-specific information?
Abstract:
Combining multimodal data is a key issue in a wide range of machine learning tasks, including many remote sensing problems. In Earth observation, early multimodal data fusion methods were based on specific neural network architectures and supervised learning. Ever since, the scarcity of labeled data has motivated self-supervised learning techniques. State-of-the-art multimodal representation learning techniques leverage the spatial alignment between satellite data from different modalities acquired over the same geographic area in order to foster a semantic alignment in the latent space. In this paper, we investigate how this methods can preserve task-relevant information that is not shared across modalities. First, we show, under simplifying assumptions, when alignment strategies fundamentally lead to an information loss. Then, we support our theoretical insight through numerical experiments in more realistic settings. With those theoretical and empirical evidences, we hope to support new developments in contrastive learning for the combination of multimodal satellite data. Our code and data is publicly available at https://github.com/Romain3Ch216/alg_maclean_25.

Authors:Yuanhan Wang, Yifei Chen, Shuo Jiang, Wenjing Yu, Mingxuan Liu, Beining Wu, Jinying Zong, Feiwei Qin, Changmiao Wang, Qiyuan Tian
Title: SmaRT: Style-Modulated Robust Test-Time Adaptation for Cross-Domain Brain Tumor Segmentation in MRI
Abstract:
Reliable brain tumor segmentation in MRI is indispensable for treatment planning and outcome monitoring, yet models trained on curated benchmarks often fail under domain shifts arising from scanner and protocol variability as well as population heterogeneity. Such gaps are especially severe in low-resource and pediatric cohorts, where conventional test-time or source-free adaptation strategies often suffer from instability and structural inconsistency. We propose SmaRT, a style-modulated robust test-time adaptation framework that enables source-free cross-domain generalization. SmaRT integrates style-aware augmentation to mitigate appearance discrepancies, a dual-branch momentum strategy for stable pseudo-label refinement, and structural priors enforcing consistency, integrity, and connectivity. This synergy ensures both adaptation stability and anatomical fidelity under extreme domain shifts. Extensive evaluations on sub-Saharan Africa and pediatric glioma datasets show that SmaRT consistently outperforms state-of-the-art methods, with notable gains in Dice accuracy and boundary precision. Overall, SmaRT bridges the gap between algorithmic advances and equitable clinical applicability, supporting robust deployment of MRI-based neuro-oncology tools in diverse clinical environments. Our source code is available at https://github.com/baiyou1234/SmaRT.

Authors:Geewook Kim, Minjoon Seo
Title: Does Audio Matter for Modern Video-LLMs and Their Benchmarks?
Abstract:
Modern multimodal large language models often claim "video understanding," yet most evaluations use muted videos or simply discard audio. We ask a direct question: how much does audio actually matter for contemporary Video-LLMs and the benchmarks that certify them? We audit widely used suites and observe that many items are even solvable from a single frame, rendering audio largely redundant. Building on LLaVA-OneVision architecture, we attach a speech/audio encoder (e.g., Whisper) and analyze when audio helps, while addressing audio token explosion with a lightweight Mamba-based state-space token compressor. We find that audio yields minimal gains on recent video benchmarks but is decisive on curated, audio-sensitive subsets. To enable faithful evaluation, we release AVQA-Hard and Music-AVQA-Hard, our model, and code. Our findings surface a growing gap between current academic practice and real-world expectations, and provide practical tools for scalable audio-visual Video-LLMs. We will fully open-source our work at https://github.com/naver-ai/LLaVA-AV-SSM.

Authors:Yiyang Chen, Xuanhua He, Xiujun Ma, Yue Ma
Title: ContextFlow: Training-Free Video Object Editing via Adaptive Context Enrichment
Abstract:
Training-free video object editing aims to achieve precise object-level manipulation, including object insertion, swapping, and deletion. However, it faces significant challenges in maintaining fidelity and temporal consistency. Existing methods, often designed for U-Net architectures, suffer from two primary limitations: inaccurate inversion due to first-order solvers, and contextual conflicts caused by crude "hard" feature replacement. These issues are more challenging in Diffusion Transformers (DiTs), where the unsuitability of prior layer-selection heuristics makes effective guidance challenging. To address these limitations, we introduce ContextFlow, a novel training-free framework for DiT-based video object editing. In detail, we first employ a high-order Rectified Flow solver to establish a robust editing foundation. The core of our framework is Adaptive Context Enrichment (for specifying what to edit), a mechanism that addresses contextual conflicts. Instead of replacing features, it enriches the self-attention context by concatenating Key-Value pairs from parallel reconstruction and editing paths, empowering the model to dynamically fuse information. Additionally, to determine where to apply this enrichment (for specifying where to edit), we propose a systematic, data-driven analysis to identify task-specific vital layers. Based on a novel Guidance Responsiveness Metric, our method pinpoints the most influential DiT blocks for different tasks (e.g., insertion, swapping), enabling targeted and highly effective guidance. Extensive experiments show that ContextFlow significantly outperforms existing training-free methods and even surpasses several state-of-the-art training-based approaches, delivering temporally coherent, high-fidelity results.

Authors:Aniello Panariello, Daniel Marczak, Simone Magistri, Angelo Porrello, Bartłomiej Twardowski, Andrew D. Bagdanov, Simone Calderara, Joost van de Weijer
Title: Accurate and Efficient Low-Rank Model Merging in Core Space
Abstract:
In this paper, we address the challenges associated with merging low-rank adaptations of large neural networks. With the rise of parameter-efficient adaptation techniques, such as Low-Rank Adaptation (LoRA), model fine-tuning has become more accessible. While fine-tuning models with LoRA is highly efficient, existing merging methods often sacrifice this efficiency by merging fully-sized weight matrices. We propose the Core Space merging framework, which enables the merging of LoRA-adapted models within a common alignment basis, thereby preserving the efficiency of low-rank adaptation while substantially improving accuracy across tasks. We further provide a formal proof that projection into Core Space ensures no loss of information and provide a complexity analysis showing the efficiency gains. Extensive empirical results demonstrate that Core Space significantly improves existing merging techniques and achieves state-of-the-art results on both vision and language tasks while utilizing a fraction of the computational resources. Codebase is available at https://github.com/apanariello4/core-space-merging.

Authors:Guanjie Wang, Zehua Ma, Han Fang, Weiming Zhang
Title: I2VWM: Robust Watermarking for Image to Video Generation
Abstract:
The rapid progress of image-guided video generation (I2V) has raised concerns about its potential misuse in misinformation and fraud, underscoring the urgent need for effective digital watermarking. While existing watermarking methods demonstrate robustness within a single modality, they fail to trace source images in I2V settings. To address this gap, we introduce the concept of Robust Diffusion Distance, which measures the temporal persistence of watermark signals in generated videos. Building on this, we propose I2VWM, a cross-modal watermarking framework designed to enhance watermark robustness across time. I2VWM leverages a video-simulation noise layer during training and employs an optical-flow-based alignment module during inference. Experiments on both open-source and commercial I2V models demonstrate that I2VWM significantly improves robustness while maintaining imperceptibility, establishing a new paradigm for cross-modal watermarking in the era of generative video. \href{https://github.com/MrCrims/I2VWM-Robust-Watermarking-for-Image-to-Video-Generation}{Code Released.}

Authors:Jin Xu, Zhifang Guo, Hangrui Hu, Yunfei Chu, Xiong Wang, Jinzheng He, Yuxuan Wang, Xian Shi, Ting He, Xinfa Zhu, Yuanjun Lv, Yongqi Wang, Dake Guo, He Wang, Linhan Ma, Pei Zhang, Xinyu Zhang, Hongkun Hao, Zishan Guo, Baosong Yang, Bin Zhang, Ziyang Ma, Xipin Wei, Shuai Bai, Keqin Chen, Xuejing Liu, Peng Wang, Mingkun Yang, Dayiheng Liu, Xingzhang Ren, Bo Zheng, Rui Men, Fan Zhou, Bowen Yu, Jianxin Yang, Le Yu, Jingren Zhou, Junyang Lin
Title: Qwen3-Omni Technical Report
Abstract:
We present Qwen3-Omni, a single multimodal model that, for the first time, maintains state-of-the-art performance across text, image, audio, and video without any degradation relative to single-modal counterparts. Qwen3-Omni matches the performance of same-sized single-modal models within the Qwen series and excels particularly on audio tasks. Across 36 audio and audio-visual benchmarks, Qwen3-Omni achieves open-source SOTA on 32 benchmarks and overall SOTA on 22, outperforming strong closed-source models such as Gemini-2.5-Pro, Seed-ASR, and GPT-4o-Transcribe. Qwen3-Omni adopts a Thinker-Talker MoE architecture that unifies perception and generation across text, images, audio, and video, yielding fluent text and natural real-time speech. It supports text interaction in 119 languages, speech understanding in 19 languages, and speech generation in 10 languages. To reduce first-packet latency in streaming synthesis, Talker autoregressively predicts discrete speech codecs using a multi-codebook scheme. Leveraging the representational capacity of these codebooks, we replace computationally intensive block-wise diffusion with a lightweight causal ConvNet, enabling streaming from the first codec frame. In cold-start settings, Qwen3-Omni achieves a theoretical end-to-end first-packet latency of 234 ms. To further strengthen multimodal reasoning, we introduce a Thinking model that explicitly reasons over inputs from any modality. Since the research community currently lacks a general-purpose audio captioning model, we fine-tuned Qwen3-Omni-30B-A3B to obtain Qwen3-Omni-30B-A3B-Captioner, which produces detailed, low-hallucination captions for arbitrary audio inputs. Qwen3-Omni-30B-A3B, Qwen3-Omni-30B-A3B-Thinking, and Qwen3-Omni-30B-A3B-Captioner are publicly released under the Apache 2.0 license.

Authors:Bo Li, Yunkuo Lei, Tingting Bao, Yaxian Wang, Lingling Zhang, Jun Liu
Title: Neurodynamics-Driven Coupled Neural P Systems for Multi-Focus Image Fusion
Abstract:
Multi-focus image fusion (MFIF) is a crucial technique in image processing, with a key challenge being the generation of decision maps with precise boundaries. However, traditional methods based on heuristic rules and deep learning methods with black-box mechanisms are difficult to generate high-quality decision maps. To overcome this challenge, we introduce neurodynamics-driven coupled neural P (CNP) systems, which are third-generation neural computation models inspired by spiking mechanisms, to enhance the accuracy of decision maps. Specifically, we first conduct an in-depth analysis of the model's neurodynamics to identify the constraints between the network parameters and the input signals. This solid analysis avoids abnormal continuous firing of neurons and ensures the model accurately distinguishes between focused and unfocused regions, generating high-quality decision maps for MFIF. Based on this analysis, we propose a Neurodynamics-Driven CNP Fusion model (ND-CNPFuse) tailored for the challenging MFIF task. Unlike current ideas of decision map generation, ND-CNPFuse distinguishes between focused and unfocused regions by mapping the source image into interpretable spike matrices. By comparing the number of spikes, an accurate decision map can be generated directly without any post-processing. Extensive experimental results show that ND-CNPFuse achieves new state-of-the-art performance on four classical MFIF datasets, including Lytro, MFFW, MFI-WHU, and Real-MFF. The code is available at https://github.com/MorvanLi/ND-CNPFuse.

Authors:Mariette Schönfeld, Wannes Meert, Hendrik Blockeel
Title: Tailored Transformation Invariance for Industrial Anomaly Detection
Abstract:
Industrial Anomaly Detection (IAD) is a subproblem within Computer Vision Anomaly Detection that has been receiving increasing amounts of attention due to its applicability to real-life scenarios. Recent research has focused on how to extract the most informative features, contrasting older kNN-based methods that use only pretrained features. These recent methods are much more expensive to train however and could complicate real-life application. Careful study of related work with regards to transformation invariance leads to the idea that popular benchmarks require robustness to only minor translations. With this idea we then formulate LWinNN, a local window based approach that creates a middle ground between kNN based methods that have either complete or no translation invariance. Our experiments demonstrate that this small change increases accuracy considerably, while simultaneously decreasing both train and test time. This teaches us two things: first, the gap between kNN-based approaches and more complex state-of-the-art methodology can still be narrowed by effective usage of the limited data available. Second, our assumption of requiring only limited translation invariance highlights potential areas of interest for future work and the need for more spatially diverse benchmarks, for which our method can hopefully serve as a new baseline. Our code can be found at https://github.com/marietteschonfeld/LWinNN .

Authors:Pingyi Chen, Yujing Lou, Shen Cao, Jinhui Guo, Lubin Fan, Yue Wu, Lin Yang, Lizhuang Ma, Jieping Ye
Title: SD-VLM: Spatial Measuring and Understanding with Depth-Encoded Vision-Language Models
Abstract:
While vision language models (VLMs) excel in 2D semantic visual understanding, their ability to quantitatively reason about 3D spatial relationships remains under-explored, due to the deficiency of 2D images' spatial representation ability. In this paper, we analyze the problem hindering VLMs' spatial understanding abilities and propose SD-VLM, a novel framework that significantly enhances fundamental spatial perception abilities of VLMs through two key contributions: (1) propose Massive Spatial Measuring and Understanding (MSMU) dataset with precise spatial annotations, and (2) introduce a simple depth positional encoding method strengthening VLMs' spatial awareness. MSMU dataset covers massive quantitative spatial tasks with 700K QA pairs, 2.5M physical numerical annotations, and 10K chain-of-thought augmented samples. We have trained SD-VLM, a strong generalist VLM which shows superior quantitative spatial measuring and understanding capability. SD-VLM not only achieves state-of-the-art performance on our proposed MSMU-Bench, but also shows spatial generalization abilities on other spatial understanding benchmarks including Q-Spatial and SpatialRGPT-Bench. Extensive experiments demonstrate that SD-VLM outperforms GPT-4o and Intern-VL3-78B by 26.91% and 25.56% respectively on MSMU-Bench. Code and models are released at https://github.com/cpystan/SD-VLM.

Authors:Sehyun Kim, Hye Jun Lee, Jiwoo Lee, Taemin Lee
Title: Clothing agnostic Pre-inpainting Virtual Try-ON
Abstract:
With the development of deep learning technology, virtual try-on technology has become an important application value in the fields of e-commerce, fashion, and entertainment. The recently proposed Leffa has improved the texture distortion problem of diffu-sion-based models, but there are limitations in that the bottom detection inaccuracy and the existing clothing silhouette remain in the synthesis results. To solve this problem, this study proposes CaP-VTON (Clothing agnostic Pre-inpainting Virtual Try-ON). CaP-VTON has improved the naturalness and consistency of whole-body clothing syn-thesis by integrating multi-category masking based on Dress Code and skin inpainting based on Stable Diffusion. In particular, a generate skin module was introduced to solve the skin restoration problem that occurs when long-sleeved images are converted into short-sleeved or sleeveless ones, and high-quality restoration was implemented consider-ing the human body posture and color. As a result, CaP-VTON recorded 92.5%, which is 15.4% better than Leffa in short-sleeved synthesis accuracy, and showed the performance of consistently reproducing the style and shape of reference clothing in visual evaluation. These structures maintain model-agnostic properties and are applicable to various diffu-sion-based virtual inspection systems, and can contribute to applications that require high-precision virtual wearing, such as e-commerce, custom styling, and avatar creation.

Authors:Soroush Mahdi, Fardin Ayar, Ehsan Javanmardi, Manabu Tsukada, Mahdi Javanmardi
Title: Evict3R: Training-Free Token Eviction for Memory-Bounded Streaming Visual Geometry Transformers
Abstract:
Streaming visual transformers like StreamVGGT achieve strong 3D perception but suffer from unbounded growth of key value (KV) memory, which limits scalability. We propose a training-free, inference-time token eviction policy that bounds memory by discarding redundant tokens while keeping the most informative ones. Our method uses significantly less memory with little to no drop in accuracy: on 7-Scenes with long sequences it reduces peak memory from 18.63 GB to 9.39 GB while accuracy and completeness drop by only 0.003. Under strict memory budgets, eviction enables denser frame sampling, which improves reconstruction accuracy compared to the baseline. Experiments across video depth estimation (Sintel, KITTI), 3D reconstruction (7-Scenes, NRGBD), and camera pose estimation (Sintel, TUM-dynamics) show that our approach closely matches StreamVGGT at a fraction of the memory and makes long-horizon streaming inference more practical.

Authors:Jinshu Chen, Xinghui Li, Xu Bai, Tianxiang Ma, Pengze Zhang, Zhuowei Chen, Gen Li, Lijie Liu, Songtao Zhao, Bingchuan Li, Qian He
Title: OmniInsert: Mask-Free Video Insertion of Any Reference via Diffusion Transformer Models
Abstract:
Recent advances in video insertion based on diffusion models are impressive. However, existing methods rely on complex control signals but struggle with subject consistency, limiting their practical applicability. In this paper, we focus on the task of Mask-free Video Insertion and aim to resolve three key challenges: data scarcity, subject-scene equilibrium, and insertion harmonization. To address the data scarcity, we propose a new data pipeline InsertPipe, constructing diverse cross-pair data automatically. Building upon our data pipeline, we develop OmniInsert, a novel unified framework for mask-free video insertion from both single and multiple subject references. Specifically, to maintain subject-scene equilibrium, we introduce a simple yet effective Condition-Specific Feature Injection mechanism to distinctly inject multi-source conditions and propose a novel Progressive Training strategy that enables the model to balance feature injection from subjects and source video. Meanwhile, we design the Subject-Focused Loss to improve the detailed appearance of the subjects. To further enhance insertion harmonization, we propose an Insertive Preference Optimization methodology to optimize the model by simulating human preferences, and incorporate a Context-Aware Rephraser module during reference to seamlessly integrate the subject into the original scenes. To address the lack of a benchmark for the field, we introduce InsertBench, a comprehensive benchmark comprising diverse scenes with meticulously selected subjects. Evaluation on InsertBench indicates OmniInsert outperforms state-of-the-art closed-source commercial solutions. The code will be released.

Authors:Aiming Zhang, Tianyuan Yu, Liang Bai, Jun Tang, Yanming Guo, Yirun Ruan, Yun Zhou, Zhihe Lu
Title: COLA: Context-aware Language-driven Test-time Adaptation
Abstract:
Test-time adaptation (TTA) has gained increasing popularity due to its efficacy in addressing ``distribution shift'' issue while simultaneously protecting data privacy. However, most prior methods assume that a paired source domain model and target domain sharing the same label space coexist, heavily limiting their applicability. In this paper, we investigate a more general source model capable of adaptation to multiple target domains without needing shared labels. This is achieved by using a pre-trained vision-language model (VLM), \egno, CLIP, that can recognize images through matching with class descriptions. While the zero-shot performance of VLMs is impressive, they struggle to effectively capture the distinctive attributes of a target domain. To that end, we propose a novel method -- Context-aware Language-driven TTA (COLA). The proposed method incorporates a lightweight context-aware module that consists of three key components: a task-aware adapter, a context-aware unit, and a residual connection unit for exploring task-specific knowledge, domain-specific knowledge from the VLM and prior knowledge of the VLM, respectively. It is worth noting that the context-aware module can be seamlessly integrated into a frozen VLM, ensuring both minimal effort and parameter efficiency. Additionally, we introduce a Class-Balanced Pseudo-labeling (CBPL) strategy to mitigate the adverse effects caused by class imbalance. We demonstrate the effectiveness of our method not only in TTA scenarios but also in class generalisation tasks. The source code is available at https://github.com/NUDT-Bai-Group/COLA-TTA.

Authors:Florinel Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu
Title: PRNU-Bench: A Novel Benchmark and Model for PRNU-Based Camera Identification
Abstract:
We propose a novel benchmark for camera identification via Photo Response Non-Uniformity (PRNU) estimation. The benchmark comprises 13K photos taken with 120+ cameras, where the training and test photos are taken in different scenarios, enabling ``in-the-wild'' evaluation. In addition, we propose a novel PRNU-based camera identification model that employs a hybrid architecture, comprising a denoising autoencoder to estimate the PRNU signal and a convolutional network that can perform 1:N verification of camera devices. Instead of using a conventional approach based on contrastive learning, our method takes the Hadamard product between reference and query PRNU signals as input. This novel design leads to significantly better results compared with state-of-the-art models based on denoising autoencoders and contrastive learning. We release our dataset and code at: https://github.com/CroitoruAlin/PRNU-Bench.

Authors:Yuxuan Li, Yicheng Zhang, Wenhao Tang, Yimian Dai, Ming-Ming Cheng, Xiang Li, Jian Yang
Title: Visual Instruction Pretraining for Domain-Specific Foundation Models
Abstract:
Modern computer vision is converging on a closed loop in which perception, reasoning and generation mutually reinforce each other. However, this loop remains incomplete: the top-down influence of high-level reasoning on the foundational learning of low-level perceptual features is not yet underexplored. This paper addresses this gap by proposing a new paradigm for pretraining foundation models in downstream domains. We introduce Visual insTruction Pretraining (ViTP), a novel approach that directly leverages reasoning to enhance perception. ViTP embeds a Vision Transformer (ViT) backbone within a Vision-Language Model and pretrains it end-to-end using a rich corpus of visual instruction data curated from target downstream domains. ViTP is powered by our proposed Visual Robustness Learning (VRL), which compels the ViT to learn robust and domain-relevant features from a sparse set of visual tokens. Extensive experiments on 16 challenging remote sensing and medical imaging benchmarks demonstrate that ViTP establishes new state-of-the-art performance across a diverse range of downstream tasks. The code is available at https://github.com/zcablii/ViTP.

Authors:Dian Jin, Yanghao Zhou, Jinxing Zhou, Jiaqi Ma, Ruohao Guo, Dan Guo
Title: SimToken: A Simple Baseline for Referring Audio-Visual Segmentation
Abstract:
Referring Audio-Visual Segmentation (Ref-AVS) aims to segment specific objects in videos based on natural language expressions involving audio, vision, and text information. This task poses significant challenges in cross-modal reasoning and fine-grained object localization. In this paper, we propose a simple framework, SimToken, that integrates a multimodal large language model (MLLM) with the Segment Anything Model (SAM). The MLLM is guided to generate a special semantic token representing the referred object. This compact token, enriched with contextual information from all modalities, acts as a prompt to guide SAM to segment objectsacross video frames. To further improve semantic learning, we introduce a novel target-consistent semantic alignment loss that aligns token embeddings from different expressions but referring to the same object. Experiments on the Ref-AVS benchmark demonstrate that our approach achieves superior performance compared to existing methods.

Authors:Zihan Zheng, Zhenlong Wu, Houqiang Zhong, Yuan Tian, Ning Cao, Lan Xu, Jiangchao Yao, Xiaoyun Zhang, Qiang Hu, Wenjun Zhang
Title: 4DGCPro: Efficient Hierarchical 4D Gaussian Compression for Progressive Volumetric Video Streaming
Abstract:
Achieving seamless viewing of high-fidelity volumetric video, comparable to 2D video experiences, remains an open challenge. Existing volumetric video compression methods either lack the flexibility to adjust quality and bitrate within a single model for efficient streaming across diverse networks and devices, or struggle with real-time decoding and rendering on lightweight mobile platforms. To address these challenges, we introduce 4DGCPro, a novel hierarchical 4D Gaussian compression framework that facilitates real-time mobile decoding and high-quality rendering via progressive volumetric video streaming in a single bitstream. Specifically, we propose a perceptually-weighted and compression-friendly hierarchical 4D Gaussian representation with motion-aware adaptive grouping to reduce temporal redundancy, preserve coherence, and enable scalable multi-level detail streaming. Furthermore, we present an end-to-end entropy-optimized training scheme, which incorporates layer-wise rate-distortion (RD) supervision and attribute-specific entropy modeling for efficient bitstream generation. Extensive experiments show that 4DGCPro enables flexible quality and multiple bitrate within a single model, achieving real-time decoding and rendering on mobile devices while outperforming existing methods in RD performance across multiple datasets. Project Page: https://mediax-sjtu.github.io/4DGCPro

Authors:Qinghua Lin, Guang-Hai Liu, Zuoyong Li, Yang Li, Yuting Jiang, Xiang Wu
Title: Multimodal Medical Image Classification via Synergistic Learning Pre-training
Abstract:
Multimodal pathological images are usually in clinical diagnosis, but computer vision-based multimodal image-assisted diagnosis faces challenges with modality fusion, especially in the absence of expert-annotated data. To achieve the modality fusion in multimodal images with label scarcity, we propose a novel ``pretraining + fine-tuning" framework for multimodal semi-supervised medical image classification. Specifically, we propose a synergistic learning pretraining framework of consistency, reconstructive, and aligned learning. By treating one modality as an augmented sample of another modality, we implement a self-supervised learning pre-train, enhancing the baseline model's feature representation capability. Then, we design a fine-tuning method for multimodal fusion. During the fine-tuning stage, we set different encoders to extract features from the original modalities and provide a multimodal fusion encoder for fusion modality. In addition, we propose a distribution shift method for multimodal fusion features, which alleviates the prediction uncertainty and overfitting risks caused by the lack of labeled samples. We conduct extensive experiments on the publicly available gastroscopy image datasets Kvasir and Kvasirv2. Quantitative and qualitative results demonstrate that the proposed method outperforms the current state-of-the-art classification methods. The code will be released at: https://github.com/LQH89757/MICS.

Authors:Xingqi Wang, Yiming Cui, Xin Yao, Shijin Wang, Guoping Hu, Xiaoyu Qin
Title: ChartHal: A Fine-grained Framework Evaluating Hallucination of Large Vision Language Models in Chart Understanding
Abstract:
Large Vision-Language Models (LVLMs) have recently demonstrated remarkable progress, yet hallucination remains a critical barrier, particularly in chart understanding, which requires sophisticated perceptual and cognitive abilities as well as rigorous factual accuracy. While prior work has investigated hallucinations and chart comprehension independently, their intersection remains largely unexplored. To address this gap, we present ChartHal, a benchmark that features a fine-grained taxonomy of hallucination scenarios in chart understanding, along with a human-validated dataset of 1,062 samples. Our evaluation shows that state-of-the-art LVLMs suffer from severe hallucinations on ChartHal, including proprietary models such as GPT-5 and o4-mini, which achieve only 34.46% and 22.79% accuracy, respectively. Further analysis reveals that questions involving information absent from or contradictory to charts are especially likely to trigger hallucinations, underscoring the urgent need for more robust mitigation strategies. Code and data are available at https://github.com/ymcui/ChartHal .

Authors:Gunjan Chhablani, Xiaomeng Ye, Muhammad Zubair Irshad, Zsolt Kira
Title: EmbodiedSplat: Personalized Real-to-Sim-to-Real Navigation with Gaussian Splats from a Mobile Device
Abstract:
The field of Embodied AI predominantly relies on simulation for training and evaluation, often using either fully synthetic environments that lack photorealism or high-fidelity real-world reconstructions captured with expensive hardware. As a result, sim-to-real transfer remains a major challenge. In this paper, we introduce EmbodiedSplat, a novel approach that personalizes policy training by efficiently capturing the deployment environment and fine-tuning policies within the reconstructed scenes. Our method leverages 3D Gaussian Splatting (GS) and the Habitat-Sim simulator to bridge the gap between realistic scene capture and effective training environments. Using iPhone-captured deployment scenes, we reconstruct meshes via GS, enabling training in settings that closely approximate real-world conditions. We conduct a comprehensive analysis of training strategies, pre-training datasets, and mesh reconstruction techniques, evaluating their impact on sim-to-real predictivity in real-world scenarios. Experimental results demonstrate that agents fine-tuned with EmbodiedSplat outperform both zero-shot baselines pre-trained on large-scale real-world datasets (HM3D) and synthetically generated datasets (HSSD), achieving absolute success rate improvements of 20% and 40% on real-world Image Navigation task. Moreover, our approach yields a high sim-vs-real correlation (0.87-0.97) for the reconstructed meshes, underscoring its effectiveness in adapting policies to diverse environments with minimal effort. Project page: https://gchhablani.github.io/embodied-splat.

Authors:Buyin Deng, Lingxin Huang, Kai Luo, Fei Teng, Kailun Yang
Title: DepTR-MOT: Unveiling the Potential of Depth-Informed Trajectory Refinement for Multi-Object Tracking
Abstract:
Visual Multi-Object Tracking (MOT) is a crucial component of robotic perception, yet existing Tracking-By-Detection (TBD) methods often rely on 2D cues, such as bounding boxes and motion modeling, which struggle under occlusions and close-proximity interactions. Trackers relying on these 2D cues are particularly unreliable in robotic environments, where dense targets and frequent occlusions are common. While depth information has the potential to alleviate these issues, most existing MOT datasets lack depth annotations, leading to its underexploited role in the domain. To unveil the potential of depth-informed trajectory refinement, we introduce DepTR-MOT, a DETR-based detector enhanced with instance-level depth information. Specifically, we propose two key innovations: (i) foundation model-based instance-level soft depth label supervision, which refines depth prediction, and (ii) the distillation of dense depth maps to maintain global depth consistency. These strategies enable DepTR-MOT to output instance-level depth during inference, without requiring foundation models and without additional computational cost. By incorporating depth cues, our method enhances the robustness of the TBD paradigm, effectively resolving occlusion and close-proximity challenges. Experiments on both the QuadTrack and DanceTrack datasets demonstrate the effectiveness of our approach, achieving HOTA scores of 27.59 and 44.47, respectively. In particular, results on QuadTrack, a robotic platform MOT dataset, highlight the advantages of our method in handling occlusion and close-proximity challenges in robotic tracking. The source code will be made publicly available at https://github.com/warriordby/DepTR-MOT.

Authors:Ranran Huang, Krystian Mikolajczyk
Title: SPFSplatV2: Efficient Self-Supervised Pose-Free 3D Gaussian Splatting from Sparse Views
Abstract:
We introduce SPFSplatV2, an efficient feed-forward framework for 3D Gaussian splatting from sparse multi-view images, requiring no ground-truth poses during training and inference. It employs a shared feature extraction backbone, enabling simultaneous prediction of 3D Gaussian primitives and camera poses in a canonical space from unposed inputs. A masked attention mechanism is introduced to efficiently estimate target poses during training, while a reprojection loss enforces pixel-aligned Gaussian primitives, providing stronger geometric constraints. We further demonstrate the compatibility of our training framework with different reconstruction architectures, resulting in two model variants. Remarkably, despite the absence of pose supervision, our method achieves state-of-the-art performance in both in-domain and out-of-domain novel view synthesis, even under extreme viewpoint changes and limited image overlap, and surpasses recent methods that rely on geometric supervision for relative pose estimation. By eliminating dependence on ground-truth poses, our method offers the scalability to leverage larger and more diverse datasets. Code and pretrained models will be available on our project page: https://ranrhuang.github.io/spfsplatv2/.

Authors:Jinchao Ge, Tengfei Cheng, Biao Wu, Zeyu Zhang, Shiya Huang, Judith Bishop, Gillian Shepherd, Meng Fang, Ling Chen, Yang Zhao
Title: VaseVQA: Multimodal Agent and Benchmark for Ancient Greek Pottery
Abstract:
Analyzing cultural-heritage artifacts remains challenging for MLLMs: general models lack domain expertise, and SFT often overfits superficial patterns, yielding brittle reasoning for authentication and historical attribution. This raises the question of how to equip MLLMs with robust, expert-level reasoning for ancient Greek pottery. We present VaseVL, an SFT-then-RL system that turns evaluation into supervision: we construct a taxonomy of question types, probe the SFT model to localize type-specific performance gaps, and optimize with type-conditioned, compositionality-oriented rewards targeting those gaps. We also release VaseVQA, a comprehensive benchmark of 31,773 images designed to probe deep understanding. Experiments show state-of-the-art results on style classification and historical attribution with marked gains in compositional robustness over SFT-only baselines, validating diagnosis-guided, taxonomy-conditioned reward engineering and providing a reusable resource for future research. Code and dataset will be available at https://github.com/AIGeeksGroup/VaseVQA.

Authors:Kabir Hamzah Muhammad, Marawan Elbatel, Yi Qin, Xiaomeng Li
Title: Echo-Path: Pathology-Conditioned Echo Video Generation
Abstract:
Cardiovascular diseases (CVDs) remain the leading cause of mortality globally, and echocardiography is critical for diagnosis of both common and congenital cardiac conditions. However, echocardiographic data for certain pathologies are scarce, hindering the development of robust automated diagnosis models. In this work, we propose Echo-Path, a novel generative framework to produce echocardiogram videos conditioned on specific cardiac pathologies. Echo-Path can synthesize realistic ultrasound video sequences that exhibit targeted abnormalities, focusing here on atrial septal defect (ASD) and pulmonary arterial hypertension (PAH). Our approach introduces a pathology-conditioning mechanism into a state-of-the-art echo video generator, allowing the model to learn and control disease-specific structural and motion patterns in the heart. Quantitative evaluation demonstrates that the synthetic videos achieve low distribution distances, indicating high visual fidelity. Clinically, the generated echoes exhibit plausible pathology markers. Furthermore, classifiers trained on our synthetic data generalize well to real data and, when used to augment real training sets, it improves downstream diagnosis of ASD and PAH by 7\% and 8\% respectively. Code, weights and dataset are available here https://github.com/Marshall-mk/EchoPathv1

Authors:Bowen Qin, Chen Yue, Fang Yin, Hui Wang, JG Yao, Jiakang Liu, Jing-Shu Zheng, Miguel Hu Chen, Richeng Xuan, Shibei Meng, Shiqi Zhou, Teng Dai, Tong-Shuai Ren, Wei Cui, Xi Yang, Xialin Du, Xiaojing Xu, Xue Sun, Xuejing Li, Yaming Liu, Yesheng Liu, Ying Liu, Yonghua Lin, Yu Zhao, Yunduo Zhang, Yuwen Luo, Zheqi He, Zhiyuan He, Zhongyuan Wang
Title: FlagEval Findings Report: A Preliminary Evaluation of Large Reasoning Models on Automatically Verifiable Textual and Visual Questions
Abstract:
We conduct a moderate-scale contamination-free (to some extent) evaluation of current large reasoning models (LRMs) with some preliminary findings. We also release ROME, our evaluation benchmark for vision language models intended to test reasoning from visual clues. We attach links to the benchmark, evaluation data, and other updates on this website: https://flageval-baai.github.io/LRM-Eval/

Authors:Yuhao Tian, Zheming Yang
Title: SAEC: Scene-Aware Enhanced Edge-Cloud Collaborative Industrial Vision Inspection with Multimodal LLM
Abstract:
Industrial vision inspection requires high accuracy under stringent resource constraints, yet existing approaches face a fundamental trade-off. Multimodal LLMs (MLLMs) deliver strong reasoning capabilities but incur prohibitive computational costs, while lightweight edge models often fail on complex cases. In this paper, we present SAEC, a scene-aware enhanced edge-cloud collaborative industrial vision inspection framework with MLLM. The framework is composed of three synergistic components: (1) Efficient MLLM Fine-Tuning for Complex Defect Inspection, (2) Lightweight Multiscale Scene-Complexity Estimation, and (3) Adaptive Edge-Cloud Scheduler. Together, these modules enable robust defect detection by tailoring multimodal reasoning to scene complexity and dynamically balancing computation between edge and cloud resources. Experimental results on MVTec AD and KSDD2 datasets demonstrate that SAEC attains 85.11% and 82.72% accuracy, surpassing Qwen by 22.1% and 20.8%, and LLaVA by 33.3% and 31.6%. It also reduces runtime by up to 22.4% and cuts energy per correct decision by 40%-74%. The code is available at https://github.com/YuHao-Tian/SAEC.

Authors:Lingzhao Kong, Jiacheng Lin, Siyu Li, Kai Luo, Zhiyong Li, Kailun Yang
Title: CoBEVMoE: Heterogeneity-aware Feature Fusion with Dynamic Mixture-of-Experts for Collaborative Perception
Abstract:
Collaborative perception aims to extend sensing coverage and improve perception accuracy by sharing information among multiple agents. However, due to differences in viewpoints and spatial positions, agents often acquire heterogeneous observations. Existing intermediate fusion methods primarily focus on aligning similar features, often overlooking the perceptual diversity among agents. To address this limitation, we propose CoBEVMoE, a novel collaborative perception framework that operates in the Bird's Eye View (BEV) space and incorporates a Dynamic Mixture-of-Experts (DMoE) architecture. In DMoE, each expert is dynamically generated based on the input features of a specific agent, enabling it to extract distinctive and reliable cues while attending to shared semantics. This design allows the fusion process to explicitly model both feature similarity and heterogeneity across agents. Furthermore, we introduce a Dynamic Expert Metric Loss (DEML) to enhance inter-expert diversity and improve the discriminability of the fused representation. Extensive experiments on the OPV2V and DAIR-V2X-C datasets demonstrate that CoBEVMoE achieves state-of-the-art performance. Specifically, it improves the IoU for Camera-based BEV segmentation by +1.5% on OPV2V and the AP@50 for LiDAR-based 3D object detection by +3.0% on DAIR-V2X-C, verifying the effectiveness of expert-based heterogeneous feature modeling in multi-agent collaborative perception. The source code will be made publicly available at https://github.com/godk0509/CoBEVMoE.

Authors:Yuzhu Li, An Sui, Fuping Wu, Xiahai Zhuang
Title: Uncertainty-Supervised Interpretable and Robust Evidential Segmentation
Abstract:
Uncertainty estimation has been widely studied in medical image segmentation as a tool to provide reliability, particularly in deep learning approaches. However, previous methods generally lack effective supervision in uncertainty estimation, leading to low interpretability and robustness of the predictions. In this work, we propose a self-supervised approach to guide the learning of uncertainty. Specifically, we introduce three principles about the relationships between the uncertainty and the image gradients around boundaries and noise. Based on these principles, two uncertainty supervision losses are designed. These losses enhance the alignment between model predictions and human interpretation. Accordingly, we introduce novel quantitative metrics for evaluating the interpretability and robustness of uncertainty. Experimental results demonstrate that compared to state-of-the-art approaches, the proposed method can achieve competitive segmentation performance and superior results in out-of-distribution (OOD) scenarios while significantly improving the interpretability and robustness of uncertainty estimation. Code is available via https://github.com/suiannaius/SURE.

Authors:Jie Chen, Yuhong Feng, Tao Dai, Mingzhe Liu, Hongtao Chen, Zhaoxi He, Jiancong Bai
Title: SFN-YOLO: Towards Free-Range Poultry Detection via Scale-aware Fusion Networks
Abstract:
Detecting and localizing poultry is essential for advancing smart poultry farming. Despite the progress of detection-centric methods, challenges persist in free-range settings due to multiscale targets, obstructions, and complex or dynamic backgrounds. To tackle these challenges, we introduce an innovative poultry detection approach named SFN-YOLO that utilizes scale-aware fusion. This approach combines detailed local features with broader global context to improve detection in intricate environments. Furthermore, we have developed a new expansive dataset (M-SCOPE) tailored for varied free-range conditions. Comprehensive experiments demonstrate our model achieves an mAP of 80.7% with just 7.2M parameters, which is 35.1% fewer than the benchmark, while retaining strong generalization capability across different domains. The efficient and real-time detection capabilities of SFN-YOLO support automated smart poultry farming. The code and dataset can be accessed at https://github.com/chenjessiee/SFN-YOLO.

Authors:Binhua Huang, Ni Wang, Arjun Pakrashi, Soumyabrata Dev
Title: MoCLIP-Lite: Efficient Video Recognition by Fusing CLIP with Motion Vectors
Abstract:
Video action recognition is a fundamental task in computer vision, but state-of-the-art models are often computationally expensive and rely on extensive video pre-training. In parallel, large-scale vision-language models like Contrastive Language-Image Pre-training (CLIP) offer powerful zero-shot capabilities on static images, while motion vectors (MV) provide highly efficient temporal information directly from compressed video streams. To synergize the strengths of these paradigms, we propose MoCLIP-Lite, a simple yet powerful two-stream late fusion framework for efficient video recognition. Our approach combines features from a frozen CLIP image encoder with features from a lightweight, supervised network trained on raw MV. During fusion, both backbones are frozen, and only a tiny Multi-Layer Perceptron (MLP) head is trained, ensuring extreme efficiency. Through comprehensive experiments on the UCF101 dataset, our method achieves a remarkable 89.2% Top-1 accuracy, significantly outperforming strong zero-shot (65.0%) and MV-only (66.5%) baselines. Our work provides a new, highly efficient baseline for video understanding that effectively bridges the gap between large static models and dynamic, low-cost motion cues. Our code and models are available at https://github.com/microa/MoCLIP-Lite.

Authors:Zipeng Wang, Dan Xu
Title: HyRF: Hybrid Radiance Fields for Memory-efficient and High-quality Novel View Synthesis
Abstract:
Recently, 3D Gaussian Splatting (3DGS) has emerged as a powerful alternative to NeRF-based approaches, enabling real-time, high-quality novel view synthesis through explicit, optimizable 3D Gaussians. However, 3DGS suffers from significant memory overhead due to its reliance on per-Gaussian parameters to model view-dependent effects and anisotropic shapes. While recent works propose compressing 3DGS with neural fields, these methods struggle to capture high-frequency spatial variations in Gaussian properties, leading to degraded reconstruction of fine details. We present Hybrid Radiance Fields (HyRF), a novel scene representation that combines the strengths of explicit Gaussians and neural fields. HyRF decomposes the scene into (1) a compact set of explicit Gaussians storing only critical high-frequency parameters and (2) grid-based neural fields that predict remaining properties. To enhance representational capacity, we introduce a decoupled neural field architecture, separately modeling geometry (scale, opacity, rotation) and view-dependent color. Additionally, we propose a hybrid rendering scheme that composites Gaussian splatting with a neural field-predicted background, addressing limitations in distant scene representation. Experiments demonstrate that HyRF achieves state-of-the-art rendering quality while reducing model size by over 20 times compared to 3DGS and maintaining real-time performance. Our project page is available at https://wzpscott.github.io/hyrf/.

Authors:Yuhong Feng, Hongtao Chen, Qi Zhang, Jie Chen, Zhaoxi He, Mingzhe Liu, Jianghai Liao
Title: A Dual-Modulation Framework for RGB-T Crowd Counting via Spatially Modulated Attention and Adaptive Fusion
Abstract:
Accurate RGB-Thermal (RGB-T) crowd counting is crucial for public safety in challenging conditions. While recent Transformer-based methods excel at capturing global context, their inherent lack of spatial inductive bias causes attention to spread to irrelevant background regions, compromising crowd localization precision. Furthermore, effectively bridging the gap between these distinct modalities remains a major hurdle. To tackle this, we propose the Dual Modulation Framework, comprising two modules: Spatially Modulated Attention (SMA), which improves crowd localization by using a learnable Spatial Decay Mask to penalize attention between distant tokens and prevent focus from spreading to the background; and Adaptive Fusion Modulation (AFM), which implements a dynamic gating mechanism to prioritize the most reliable modality for adaptive cross-modal fusion. Extensive experiments on RGB-T crowd counting datasets demonstrate the superior performance of our method compared to previous works. Code available at https://github.com/Cht2924/RGBT-Crowd-Counting.

Authors:Kihyun Kim, Michalis Lazarou, Tania Stathaki
Title: Enhanced Detection of Tiny Objects in Aerial Images
Abstract:
While one-stage detectors like YOLOv8 offer fast training speed, they often under-perform on detecting small objects as a trade-off. This becomes even more critical when detecting tiny objects in aerial imagery due to low-resolution targets and cluttered backgrounds. To address this, we introduce three enhancement strategies -- input image resolution adjustment, data augmentation, and attention mechanisms -- that can be easily implemented on YOLOv8. We demonstrate that image size enlargement and the proper use of augmentation can lead to enhancement. Additionally, we designed a Mixture of Orthogonal Neural-modules Network (MoonNet) pipeline which consists of attention-augmented CNNs. Two well-known attention modules, the Squeeze-and-Excitation Block (SE Block) and the Convolutional Block Attention Module (CBAM), were integrated into the backbone of YOLOv8 with an increased number of channels, and the MoonNet backbone obtained improved detection accuracy compared to the original YOLOv8. MoonNet further proved its adaptability and potential by achieving state-of-the-art performance on a tiny-object benchmark when integrated with the YOLC model. Our codes are available at: https://github.com/Kihyun11/MoonNet

Authors:Yao Du, Jiarong Guo, Xiaomeng Li
Title: CardiacCLIP: Video-based CLIP Adaptation for LVEF Prediction in a Few-shot Manner
Abstract:
Echocardiography is a vital non-invasive modality for cardiac assessment, with left ventricular ejection fraction (LVEF) serving as a key indicator of heart function. Existing LVEF estimation methods depend on large-scale annotated video datasets, which are costly and limit adaptability across various clinical settings. Recent vision-language models for echocardiography, such as EchoCLIP, apply image-to-text pretraining but fail to capture crucial temporal dynamics and localized cardiac structures essential for accurate diagnosis. To address these challenges, we propose CardiacCLIP, a video-based framework that enhances LVEF prediction through attention-based frame aggregation and multi-resolution input scaling. Specifically, we introduce MFL (Multi Frame Learning), a novel attention-based mechanism for selectively fusing informative frames, and EchoZoom, a multi-scale feature extraction strategy that refines spatial representations of cardiac structures. As a novel adaptation of CLIP models for few-shot echocardiogram video analysis, our approach significantly improves diagnostic accuracy, reducing MAE by 2.07 on the EchoNet-Dynamic dataset under 1-shot setting. The code is available at https://github.com/xmed-lab/CardiacCLIP.

Authors:Hang Du, Jiayang Zhang, Guoshun Nan, Wendi Deng, Zhenyan Chen, Chenyang Zhang, Wang Xiao, Shan Huang, Yuqi Pan, Tao Qi, Sicong Leng
Title: From Easy to Hard: The MIR Benchmark for Progressive Interleaved Multi-Image Reasoning
Abstract:
Multi-image Interleaved Reasoning aims to improve Multi-modal Large Language Models (MLLMs) ability to jointly comprehend and reason across multiple images and their associated textual contexts, introducing unique challenges beyond single-image or non-interleaved multi-image tasks. While current multi-image benchmarks overlook interleaved textual contexts and neglect distinct relationships between individual images and their associated texts, enabling models to reason over multi-image interleaved data may significantly enhance their comprehension of complex scenes and better capture cross-modal correlations. To bridge this gap, we introduce a novel benchmark MIR, requiring joint reasoning over multiple images accompanied by interleaved textual contexts to accurately associate image regions with corresponding texts and logically connect information across images. To enhance MLLMs ability to comprehend multi-image interleaved data, we introduce reasoning steps for each instance within the benchmark and propose a stage-wise curriculum learning strategy. This strategy follows an "easy to hard" approach, progressively guiding models from simple to complex scenarios, thereby enhancing their ability to handle challenging tasks. Extensive experiments benchmarking multiple MLLMs demonstrate that our method significantly enhances models reasoning performance on MIR and other established benchmarks. We believe that MIR will encourage further research into multi-image interleaved reasoning, facilitating advancements in MLLMs capability to handle complex inter-modal tasks.Our code and dataset are available at https://github.com/Shelly-coder239/MIRBench.

Authors:Wenxuan Fang, Jili Fan, Chao Wang, Xiantao Hu, Jiangwei Weng, Ying Tai, Jian Yang, Jun Li
Title: When Color-Space Decoupling Meets Diffusion for Adverse-Weather Image Restoration
Abstract:
Adverse Weather Image Restoration (AWIR) is a highly challenging task due to the unpredictable and dynamic nature of weather-related degradations. Traditional task-specific methods often fail to generalize to unseen or complex degradation types, while recent prompt-learning approaches depend heavily on the degradation estimation capabilities of vision-language models, resulting in inconsistent restorations. In this paper, we propose \textbf{LCDiff}, a novel framework comprising two key components: \textit{Lumina-Chroma Decomposition Network} (LCDN) and \textit{Lumina-Guided Diffusion Model} (LGDM). LCDN processes degraded images in the YCbCr color space, separately handling degradation-related luminance and degradation-invariant chrominance components. This decomposition effectively mitigates weather-induced degradation while preserving color fidelity. To further enhance restoration quality, LGDM leverages degradation-related luminance information as a guiding condition, eliminating the need for explicit degradation prompts. Additionally, LGDM incorporates a \textit{Dynamic Time Step Loss} to optimize the denoising network, ensuring a balanced recovery of both low- and high-frequency features in the image. Finally, we present DriveWeather, a comprehensive all-weather driving dataset designed to enable robust evaluation. Extensive experiments demonstrate that our approach surpasses state-of-the-art methods, setting a new benchmark in AWIR. The dataset and code are available at: https://github.com/fiwy0527/LCDiff.

Authors:Feng Han, Chao Gong, Zhipeng Wei, Jingjing Chen, Yu-Gang Jiang
Title: VCE: Safe Autoregressive Image Generation via Visual Contrast Exploitation
Abstract:
Recently, autoregressive image generation models have wowed audiences with their remarkable capability in creating surprisingly realistic images. Models such as GPT-4o and LlamaGen can not only produce images that faithfully mimic renowned artistic styles like Ghibli, Van Gogh, or Picasso, but also potentially generate Not-Safe-For-Work (NSFW) content, raising significant concerns regarding copyright infringement and ethical use. Despite these concerns, methods to safeguard autoregressive text-to-image models remain underexplored. Previous concept erasure methods, primarily designed for diffusion models that operate in denoising latent space, are not directly applicable to autoregressive models that generate images token by token. To address this critical gap, we propose Visual Contrast Exploitation (VCE), a novel framework comprising: (1) an innovative contrastive image pair construction paradigm that precisely decouples unsafe concepts from their associated content semantics, and (2) a sophisticated DPO-based training approach that enhances the model's ability to identify and leverage visual contrastive features from image pairs, enabling precise concept erasure. Our comprehensive experiments across three challenging tasks-artist style erasure, explicit content erasure, and object removal-demonstrate that our method effectively secures the model, achieving state-of-the-art results while erasing unsafe concepts and maintaining the integrity of unrelated safe concepts. The code and models are available at https://github.com/Maplebb/VCE.

Authors:Quanzhu Niu, Dengxian Gong, Shihao Chen, Tao Zhang, Yikang Zhou, Haobo Yuan, Lu Qi, Xiangtai Li, Shunping Ji
Title: The 1st Solution for 7th LSVOS RVOS Track: SaSaSa2VA
Abstract:
Referring video object segmentation (RVOS) requires segmenting and tracking objects in videos conditioned on natural-language expressions, demanding fine-grained understanding of both appearance and motion. Building on Sa2VA, which couples a Multi-modal Large Language Model (MLLM) with the video segmentation model SAM2, we identify two key bottlenecks that limit segmentation performance: sparse frame sampling and reliance on a single [SEG] token for an entire video. We propose Segmentation Augmented and Selective Averaged Sa2VA SaSaSa2VA to address these issues. On the 7th LSVOS Challenge (RVOS track), SaSaSa2VA achieves a $J\&F$ of 67.45, ranking first and surpassing the runner-up by 2.80 points. This result and ablation studies demonstrate that efficient segmentation augmentation and test-time ensembling substantially enhance grounded MLLMs for RVOS. The code is released in Sa2VA repository: https://github.com/magic-research/Sa2VA.

Authors:Leiyu Wang, Biao Jin, Feng Huang, Liqiong Chen, Zhengyong Wang, Xiaohai He, Honggang Chen
Title: MO R-CNN: Multispectral Oriented R-CNN for Object Detection in Remote Sensing Image
Abstract:
Oriented object detection for multi-spectral imagery faces significant challenges due to differences both within and between modalities. Although existing methods have improved detection accuracy through complex network architectures, their high computational complexity and memory consumption severely restrict their performance. Motivated by the success of large kernel convolutions in remote sensing, we propose MO R-CNN, a lightweight framework for multi-spectral oriented detection featuring heterogeneous feature extraction network (HFEN), single modality supervision (SMS), and condition-based multimodal label fusion (CMLF). HFEN leverages inter-modal differences to adaptively align, merge, and enhance multi-modal features. SMS constrains multi-scale features and enables the model to learn from multiple modalities. CMLF fuses multimodal labels based on specific rules, providing the model with a more robust and consistent supervisory signal. Experiments on the DroneVehicle, VEDAI and OGSOD datasets prove the superiority of our method. The source code is available at:https://github.com/Iwill-github/MORCNN.

Authors:Yuheng Shi, Xiaohuan Pei, Minjing Dong, Chang Xu
Title: Catching the Details: Self-Distilled RoI Predictors for Fine-Grained MLLM Perception
Abstract:
Multimodal Large Language Models (MLLMs) require high-resolution visual information to perform fine-grained perception, yet processing entire high-resolution images is computationally prohibitive. While recent methods leverage a Region-of-Interest (RoI) mechanism to focus on salient areas, they typically present a difficult trade-off: training-based approaches depend on large-scale annotated datasets, while training-free methods that utilize the model's internal attention are computationally inefficient and less accurate, requiring either multi-pass prefill stages or reliance on the slow auto-regressive decoding process. In this paper, we propose an efficient, annotation-free Self-Distilled Region Proposal Network (SD-RPN) that resolves this trade-off. The SD-RPN is built around a pipeline that transforms the noisy attention maps from the MLLM's middle layers into high-quality pseudo-RoI labels by explicitly denoising the signal and resolving ambiguity. We use these labels to train a lightweight Region Proposal Network (RPN) that learns a more precise localization. This RPN is also highly efficient, predicting the RoI in a single forward pass using features from the MLLM's middle layers, decoupling RoI identification from the auto-regressive generation and avoiding costly multi-pass operations.To validate our approach, we integrate the framework into the LLaVA-1.5 architecture. Despite being trained on only a few (e.g. 10K) question-answer pairs, our method demonstrates exceptional data efficiency and generalization, achieving over a 10% absolute accuracy improvement on unseen benchmarks, including TextVQA, DocVQA, and V-Star. Our work presents a practical and scalable solution for enhancing the fine-grained perception of MLLMs without requiring costly supervision or full model fine-tuning. Code is available at https://github.com/YuHengsss/SD-RPN.

Authors:Yijun Yuan, Zhuoguang Chen, Kenan Li, Weibang Wang, Hang Zhao
Title: SLAM-Former: Putting SLAM into One Transformer
Abstract:
We present SLAM-Former, a novel neural approach that integrates full SLAM capabilities into a single transformer. Similar to traditional SLAM systems, SLAM-Former comprises both a frontend and a backend that operate in tandem. The frontend processes sequential monocular images in real-time for incremental mapping and tracking, while the backend performs global refinement to ensure a geometrically consistent result. This alternating execution allows the frontend and backend to mutually promote one another, enhancing overall system performance. Comprehensive experimental results demonstrate that SLAM-Former achieves superior or highly competitive performance compared to state-of-the-art dense SLAM methods.

Authors:Youwei Pang, Xiaoqi Zhao, Lihe Zhang, Huchuan Lu, Georges El Fakhri, Xiaofeng Liu, Shijian Lu
Title: Rethinking Evaluation of Infrared Small Target Detection
Abstract:
As an essential vision task, infrared small target detection (IRSTD) has seen significant advancements through deep learning. However, critical limitations in current evaluation protocols impede further progress. First, existing methods rely on fragmented pixel- and target-level specific metrics, which fails to provide a comprehensive view of model capabilities. Second, an excessive emphasis on overall performance scores obscures crucial error analysis, which is vital for identifying failure modes and improving real-world system performance. Third, the field predominantly adopts dataset-specific training-testing paradigms, hindering the understanding of model robustness and generalization across diverse infrared scenarios. This paper addresses these issues by introducing a hybrid-level metric incorporating pixel- and target-level performance, proposing a systematic error analysis method, and emphasizing the importance of cross-dataset evaluation. These aim to offer a more thorough and rational hierarchical analysis framework, ultimately fostering the development of more effective and robust IRSTD models. An open-source toolkit has be released to facilitate standardized benchmarking.

Authors:Md. Atabuzzaman, Ali Asgarov, Chris Thomas
Title: Benchmarking and Mitigating MCQA Selection Bias of Large Vision-Language Models
Abstract:
Large Vision-Language Models (LVLMs) have achieved strong performance on vision-language tasks, particularly Visual Question Answering (VQA). While prior work has explored unimodal biases in VQA, the problem of selection bias in Multiple-Choice Question Answering (MCQA), where models may favor specific option tokens (e.g., "A") or positions, remains underexplored. In this paper, we investigate both the presence and nature of selection bias in LVLMs through fine-grained MCQA benchmarks spanning easy, medium, and hard difficulty levels, defined by the semantic similarity of the options. We further propose an inference-time logit-level debiasing method that estimates an ensemble bias vector from general and contextual prompts and applies confidence-adaptive corrections to the model's output. Our method mitigates bias without retraining and is compatible with frozen LVLMs. Extensive experiments across several state-of-the-art models reveal consistent selection biases that intensify with task difficulty, and show that our mitigation approach significantly reduces bias while improving accuracy in challenging settings. This work offers new insights into the limitations of LVLMs in MCQA and presents a practical approach to improve their robustness in fine-grained visual reasoning. Datasets and code are available at: https://github.com/Atabuzzaman/Selection-Bias-of-LVLMs

Authors:Kai Jiang, Zhengyan Shi, Dell Zhang, Hongyuan Zhang, Xuelong Li
Title: Mixture of Noise for Pre-Trained Model-Based Class-Incremental Learning
Abstract:
Class Incremental Learning (CIL) aims to continuously learn new categories while retaining the knowledge of old ones. Pre-trained models (PTMs) show promising capabilities in CIL. However, existing approaches that apply lightweight fine-tuning to backbones still induce parameter drift, thereby compromising the generalization capability of pre-trained models. Parameter drift can be conceptualized as a form of noise that obscures critical patterns learned for previous tasks. However, recent researches have shown that noise is not always harmful. For example, the large number of visual patterns learned from pre-training can be easily abused by a single task, and introducing appropriate noise can suppress some low-correlation features, thus leaving a margin for future tasks. To this end, we propose learning beneficial noise for CIL guided by information theory and propose Mixture of Noise (Min), aiming to mitigate the degradation of backbone generalization from adapting new tasks. Specifically, task-specific noise is learned from high-dimension features of new tasks. Then, a set of weights is adjusted dynamically for optimal mixture of different task noise. Finally, Min embeds the beneficial noise into the intermediate features to mask the response of inefficient patterns. Extensive experiments on six benchmark datasets demonstrate that Min achieves state-of-the-art performance in most incremental settings, with particularly outstanding results in 50-steps incremental settings. This shows the significant potential for beneficial noise in continual learning. Code is available at https://github.com/ASCIIJK/MiN-NeurIPS2025.

Authors:Pan Liu, Jinshi Liu
Title: When Confidence Fails: Revisiting Pseudo-Label Selection in Semi-supervised Semantic Segmentation
Abstract:
While significant advances exist in pseudo-label generation for semi-supervised semantic segmentation, pseudo-label selection remains understudied. Existing methods typically use fixed confidence thresholds to retain high-confidence predictions as pseudo-labels. However, these methods cannot cope with network overconfidence tendency, where correct and incorrect predictions overlap significantly in high-confidence regions, making separation challenging and amplifying model cognitive bias. Meanwhile, the direct discarding of low-confidence predictions disrupts spatial-semantic continuity, causing critical context loss. We propose Confidence Separable Learning (CSL) to address these limitations. CSL formulates pseudo-label selection as a convex optimization problem within the confidence distribution feature space, establishing sample-specific decision boundaries to distinguish reliable from unreliable predictions. Additionally, CSL introduces random masking of reliable pixels to guide the network in learning contextual relationships from low-reliability regions, thereby mitigating the adverse effects of discarding uncertain predictions. Extensive experimental results on the Pascal, Cityscapes, and COCO benchmarks show that CSL performs favorably against state-of-the-art methods. Code and model weights are available at https://github.com/PanLiuCSU/CSL.

Authors:Suorong Yang, Hongchao Yang, Suhan Guo, Furao Shen, Jian Zhao
Title: IPF-RDA: An Information-Preserving Framework for Robust Data Augmentation
Abstract:
Data augmentation is widely utilized as an effective technique to enhance the generalization performance of deep models. However, data augmentation may inevitably introduce distribution shifts and noises, which significantly constrain the potential and deteriorate the performance of deep networks. To this end, we propose a novel information-preserving framework, namely IPF-RDA, to enhance the robustness of data augmentations in this paper. IPF-RDA combines the proposal of (i) a new class-discriminative information estimation algorithm that identifies the points most vulnerable to data augmentation operations and corresponding importance scores; And (ii) a new information-preserving scheme that preserves the critical information in the augmented samples and ensures the diversity of augmented data adaptively. We divide data augmentation methods into three categories according to the operation types and integrate these approaches into our framework accordingly. After being integrated into our framework, the robustness of data augmentation methods can be enhanced and their full potential can be unleashed. Extensive experiments demonstrate that although being simple, IPF-RDA consistently improves the performance of numerous commonly used state-of-the-art data augmentation methods with popular deep models on a variety of datasets, including CIFAR-10, CIFAR-100, Tiny-ImageNet, CUHK03, Market1501, Oxford Flower, and MNIST, where its performance and scalability are stressed. The implementation is available at https://github.com/Jackbrocp/IPF-RDA.

Authors:Wenxin Li, Kunyu Peng, Di Wen, Ruiping Liu, Mengfei Duan, Kai Luo, Kailun Yang
Title: Segment-to-Act: Label-Noise-Robust Action-Prompted Video Segmentation Towards Embodied Intelligence
Abstract:
Embodied intelligence relies on accurately segmenting objects actively involved in interactions. Action-based video object segmentation addresses this by linking segmentation with action semantics, but it depends on large-scale annotations and prompts that are costly, inconsistent, and prone to multimodal noise such as imprecise masks and referential ambiguity. To date, this challenge remains unexplored. In this work, we take the first step by studying action-based video object segmentation under label noise, focusing on two sources: textual prompt noise (category flips and within-category noun substitutions) and mask annotation noise (perturbed object boundaries to mimic imprecise supervision). Our contributions are threefold. First, we introduce two types of label noises for the action-based video object segmentation task. Second, we build up the first action-based video object segmentation under a label noise benchmark ActiSeg-NL and adapt six label-noise learning strategies to this setting, and establish protocols for evaluating them under textual, boundary, and mixed noise. Third, we provide a comprehensive analysis linking noise types to failure modes and robustness gains, and we introduce a Parallel Mask Head Mechanism (PMHM) to address mask annotation noise. Qualitative evaluations further reveal characteristic failure modes, including boundary leakage and mislocalization under boundary perturbations, as well as occasional identity substitutions under textual flips. Our comparative analysis reveals that different learning strategies exhibit distinct robustness profiles, governed by a foreground-background trade-off where some achieve balanced performance while others prioritize foreground accuracy at the cost of background precision. The established benchmark and source code will be made publicly available at https://github.com/mylwx/ActiSeg-NL.

Authors:Weiran Chen, Guiqian Zhu, Ying Li, Yi Ji, Chunping Liu
Title: DA-Font: Few-Shot Font Generation via Dual-Attention Hybrid Integration
Abstract:
Few-shot font generation aims to create new fonts with a limited number of glyph references. It can be used to significantly reduce the labor cost of manual font design. However, due to the variety and complexity of font styles, the results generated by existing methods often suffer from visible defects, such as stroke errors, artifacts and blurriness. To address these issues, we propose DA-Font, a novel framework which integrates a Dual-Attention Hybrid Module (DAHM). Specifically, we introduce two synergistic attention blocks: the component attention block that leverages component information from content images to guide the style transfer process, and the relation attention block that further refines spatial relationships through interacting the content feature with both original and stylized component-wise representations. These two blocks collaborate to preserve accurate character shapes and stylistic textures. Moreover, we also design a corner consistency loss and an elastic mesh feature loss to better improve geometric alignment. Extensive experiments show that our DA-Font outperforms the state-of-the-art methods across diverse font styles and characters, demonstrating its effectiveness in enhancing structural integrity and local fidelity. The source code can be found at \href{https://github.com/wrchen2001/DA-Font}{\textit{https://github.com/wrchen2001/DA-Font}}.

Authors:Yue Ma, Zexuan Yan, Hongyu Liu, Hongfa Wang, Heng Pan, Yingqing He, Junkun Yuan, Ailing Zeng, Chengfei Cai, Heung-Yeung Shum, Zhifeng Li, Wei Liu, Linfeng Zhang, Qifeng Chen
Title: Follow-Your-Emoji-Faster: Towards Efficient, Fine-Controllable, and Expressive Freestyle Portrait Animation
Abstract:
We present Follow-Your-Emoji-Faster, an efficient diffusion-based framework for freestyle portrait animation driven by facial landmarks. The main challenges in this task are preserving the identity of the reference portrait, accurately transferring target expressions, and maintaining long-term temporal consistency while ensuring generation efficiency. To address identity preservation and accurate expression retargeting, we enhance Stable Diffusion with two key components: a expression-aware landmarks as explicit motion signals, which improve motion alignment, support exaggerated expressions, and reduce identity leakage; and a fine-grained facial loss that leverages both expression and facial masks to better capture subtle expressions and faithfully preserve the reference appearance. With these components, our model supports controllable and expressive animation across diverse portrait types, including real faces, cartoons, sculptures, and animals. However, diffusion-based frameworks typically struggle to efficiently generate long-term stable animation results, which remains a core challenge in this task. To address this, we propose a progressive generation strategy for stable long-term animation, and introduce a Taylor-interpolated cache, achieving a 2.6X lossless acceleration. These two strategies ensure that our method produces high-quality results efficiently, making it user-friendly and accessible. Finally, we introduce EmojiBench++, a more comprehensive benchmark comprising diverse portraits, driving videos, and landmark sequences. Extensive evaluations on EmojiBench++ demonstrate that Follow-Your-Emoji-Faster achieves superior performance in both animation quality and controllability. The code, training dataset and benchmark will be found in https://follow-your-emoji.github.io/.

Authors:Junjie Zhou, Haijun Xiong, Junhao Lu, Ziyu Lin, Bin Feng
Title: CGTGait: Collaborative Graph and Transformer for Gait Emotion Recognition
Abstract:
Skeleton-based gait emotion recognition has received significant attention due to its wide-ranging applications. However, existing methods primarily focus on extracting spatial and local temporal motion information, failing to capture long-range temporal representations. In this paper, we propose \textbf{CGTGait}, a novel framework that collaboratively integrates graph convolution and transformers to extract discriminative spatiotemporal features for gait emotion recognition. Specifically, CGTGait consists of multiple CGT blocks, where each block employs graph convolution to capture frame-level spatial topology and the transformer to model global temporal dependencies. Additionally, we introduce a Bidirectional Cross-Stream Fusion (BCSF) module to effectively aggregate posture and motion spatiotemporal features, facilitating the exchange of complementary information between the two streams. We evaluate our method on two widely used datasets, Emotion-Gait and ELMD, demonstrating that our CGTGait achieves state-of-the-art or at least competitive performance while reducing computational complexity by approximately \textbf{82.2\%} (only requiring 0.34G FLOPs) during testing. Code is available at \small{https://github.com/githubzjj1/CGTGait.}

Authors:Shipeng Liu, Zhonglin Zhang, Dengfeng Chen, Liang Zhao
Title: Describe-to-Score: Text-Guided Efficient Image Complexity Assessment
Abstract:
Accurately assessing image complexity (IC) is critical for computer vision, yet most existing methods rely solely on visual features and often neglect high-level semantic information, limiting their accuracy and generalization. We introduce vision-text fusion for IC modeling. This approach integrates visual and textual semantic features, increasing representational diversity. It also reduces the complexity of the hypothesis space, which enhances both accuracy and generalization in complexity assessment. We propose the D2S (Describe-to-Score) framework, which generates image captions with a pre-trained vision-language model. We propose the feature alignment and entropy distribution alignment mechanisms, D2S guides semantic information to inform complexity assessment while bridging the gap between vision and text modalities. D2S utilizes multi-modal information during training but requires only the vision branch during inference, thereby avoiding multi-modal computational overhead and enabling efficient assessment. Experimental results demonstrate that D2S outperforms existing methods on the IC9600 dataset and maintains competitiveness on no-reference image quality assessment (NR-IQA) benchmark, validating the effectiveness and efficiency of multi-modal fusion in complexity-related tasks. Code is available at: https://github.com/xauat-liushipeng/D2S

Authors:Minji Heo, Simon S. Woo
Title: FakeChain: Exposing Shallow Cues in Multi-Step Deepfake Detection
Abstract:
Multi-step or hybrid deepfakes, created by sequentially applying different deepfake creation methods such as Face-Swapping, GAN-based generation, and Diffusion methods, can pose an emerging and unforseen technical challenge for detection models trained on single-step forgeries. While prior studies have mainly focused on detecting isolated single manipulation, little is known about the detection model behavior under such compositional, hybrid, and complex manipulation pipelines. In this work, we introduce \textbf{FakeChain}, a large-scale benchmark comprising 1-, 2-, and 3-Step forgeries synthesized using five state-of-the-art representative generators. Using this approach, we analyze detection performance and spectral properties across hybrid manipulation at different step, along with varying generator combinations and quality settings. Surprisingly, our findings reveal that detection performance highly depends on the final manipulation type, with F1-score dropping by up to \textbf{58.83\%} when it differs from training distribution. This clearly demonstrates that detectors rely on last-stage artifacts rather than cumulative manipulation traces, limiting generalization. Such findings highlight the need for detection models to explicitly consider manipulation history and sequences. Our results highlight the importance of benchmarks such as FakeChain, reflecting growing synthesis complexity and diversity in real-world scenarios. Our sample code is available here\footnote{https://github.com/minjihh/FakeChain}.

Authors:Antonio Scardace, Lemuel Puglisi, Francesco Guarnera, Sebastiano Battiato, Daniele Ravì
Title: A Novel Metric for Detecting Memorization in Generative Models for Brain MRI Synthesis
Abstract:
Deep generative models have emerged as a transformative tool in medical imaging, offering substantial potential for synthetic data generation. However, recent empirical studies highlight a critical vulnerability: these models can memorize sensitive training data, posing significant risks of unauthorized patient information disclosure. Detecting memorization in generative models remains particularly challenging, necessitating scalable methods capable of identifying training data leakage across large sets of generated samples. In this work, we propose DeepSSIM, a novel self-supervised metric for quantifying memorization in generative models. DeepSSIM is trained to: i) project images into a learned embedding space and ii) force the cosine similarity between embeddings to match the ground-truth SSIM (Structural Similarity Index) scores computed in the image space. To capture domain-specific anatomical features, training incorporates structure-preserving augmentations, allowing DeepSSIM to estimate similarity reliably without requiring precise spatial alignment. We evaluate DeepSSIM in a case study involving synthetic brain MRI data generated by a Latent Diffusion Model (LDM) trained under memorization-prone conditions, using 2,195 MRI scans from two publicly available datasets (IXI and CoRR). Compared to state-of-the-art memorization metrics, DeepSSIM achieves superior performance, improving F1 scores by an average of +52.03% over the best existing method. Code and data of our approach are publicly available at the following link: https://github.com/brAIn-science/DeepSSIM.

Authors:Ji Soo Lee, Byungoh Ko, Jaewon Cho, Howoong Lee, Jaewoon Byun, Hyunwoo J. Kim
Title: Captioning for Text-Video Retrieval via Dual-Group Direct Preference Optimization
Abstract:
In text-video retrieval, auxiliary captions are often used to enhance video understanding, bridging the gap between the modalities. While recent advances in multi-modal large language models (MLLMs) have enabled strong zero-shot caption generation, we observe that such captions tend to be generic and indistinguishable across visually similar videos, limiting their utility for fine-grained retrieval. Moreover, conventional captioning approaches are typically evaluated using language generation metrics, such as BLEU, which are not typically tailored for retrieval tasks that require making discriminative distinctions between candidates. To address this, we propose $\textbf{CaRe-DPO}$, a retrieval framework that directly optimizes caption generation using retrieval relevance scores. At its core is Dual-Group Direct Preference Optimization (DG-DPO), a novel learning strategy that supervises captioning by modeling preferences across groups of distinct video and caption pairs. In addition, we present an MLLM-based retrieval model that incorporates role-embeddings to better distinguish between textual inputs with different functional roles, such as an auxiliary caption and a text query. Through extensive experiments, we demonstrate that CaRe-DPO significantly enhances retrieval performance by effectively leveraging auxiliary knowledge to generate fine-grained captions for retrieval. Code is available at https://github.com/mlvlab/CaReDPO.

Authors:Zirui Wang, Jiayi Zhang, Tianwei Guan, Yuhan Zhou, Xingyuan Li, Minjing Dong, Jinyuan Liu
Title: Efficient Rectified Flow for Image Fusion
Abstract:
Image fusion is a fundamental and important task in computer vision, aiming to combine complementary information from different modalities to fuse images. In recent years, diffusion models have made significant developments in the field of image fusion. However, diffusion models often require complex computations and redundant inference time, which reduces the applicability of these methods. To address this issue, we propose RFfusion, an efficient one-step diffusion model for image fusion based on Rectified Flow. We incorporate Rectified Flow into the image fusion task to straighten the sampling path in the diffusion model, achieving one-step sampling without the need for additional training, while still maintaining high-quality fusion results. Furthermore, we propose a task-specific variational autoencoder (VAE) architecture tailored for image fusion, where the fusion operation is embedded within the latent space to further reduce computational complexity. To address the inherent discrepancy between conventional reconstruction-oriented VAE objectives and the requirements of image fusion, we introduce a two-stage training strategy. This approach facilitates the effective learning and integration of complementary information from multi-modal source images, thereby enabling the model to retain fine-grained structural details while significantly enhancing inference efficiency. Extensive experiments demonstrate that our method outperforms other state-of-the-art methods in terms of both inference speed and fusion quality. Code is available at https://github.com/zirui0625/RFfusion.

Authors:Guangze Zheng, Shijie Lin, Haobo Zuo, Si Si, Ming-Shan Wang, Changhong Fu, Jia Pan
Title: Lattice Boltzmann Model for Learning Real-World Pixel Dynamicity
Abstract:
This work proposes the Lattice Boltzmann Model (LBM) to learn real-world pixel dynamicity for visual tracking. LBM decomposes visual representations into dynamic pixel lattices and solves pixel motion states through collision-streaming processes. Specifically, the high-dimensional distribution of the target pixels is acquired through a multilayer predict-update network to estimate the pixel positions and visibility. The predict stage formulates lattice collisions among the spatial neighborhood of target pixels and develops lattice streaming within the temporal visual context. The update stage rectifies the pixel distributions with online visual representations. Compared with existing methods, LBM demonstrates practical applicability in an online and real-time manner, which can efficiently adapt to real-world visual tracking tasks. Comprehensive evaluations of real-world point tracking benchmarks such as TAP-Vid and RoboTAP validate LBM's efficiency. A general evaluation of large-scale open-world object tracking benchmarks such as TAO, BFT, and OVT-B further demonstrates LBM's real-world practicality.

Authors:Burak Satar, Zhixin Ma, Patrick A. Irawan, Wilfried A. Mulyawan, Jing Jiang, Ee-Peng Lim, Chong-Wah Ngo
Title: Seeing Culture: A Benchmark for Visual Reasoning and Grounding
Abstract:
Multimodal vision-language models (VLMs) have made substantial progress in various tasks that require a combined understanding of visual and textual content, particularly in cultural understanding tasks, with the emergence of new cultural datasets. However, these datasets frequently fall short of providing cultural reasoning while underrepresenting many cultures. In this paper, we introduce the Seeing Culture Benchmark (SCB), focusing on cultural reasoning with a novel approach that requires VLMs to reason on culturally rich images in two stages: i) selecting the correct visual option with multiple-choice visual question answering (VQA), and ii) segmenting the relevant cultural artifact as evidence of reasoning. Visual options in the first stage are systematically organized into three types: those originating from the same country, those from different countries, or a mixed group. Notably, all options are derived from a singular category for each type. Progression to the second stage occurs only after a correct visual option is chosen. The SCB benchmark comprises 1,065 images that capture 138 cultural artifacts across five categories from seven Southeast Asia countries, whose diverse cultures are often overlooked, accompanied by 3,178 questions, of which 1,093 are unique and meticulously curated by human annotators. Our evaluation of various VLMs reveals the complexities involved in cross-modal cultural reasoning and highlights the disparity between visual reasoning and spatial grounding in culturally nuanced scenarios. The SCB serves as a crucial benchmark for identifying these shortcomings, thereby guiding future developments in the field of cultural reasoning. https://github.com/buraksatar/SeeingCulture

Authors:Haijin Zeng, Xuan Lu, Yurong Zhang, Yongyong Chen, Jingyong Su, Jie Liu
Title: SlowFast-SCI: Slow-Fast Deep Unfolding Learning for Spectral Compressive Imaging
Abstract:
Humans learn in two complementary ways: a slow, cumulative process that builds broad, general knowledge, and a fast, on-the-fly process that captures specific experiences. Existing deep-unfolding methods for spectral compressive imaging (SCI) mirror only the slow component-relying on heavy pre-training with many unfolding stages-yet they lack the rapid adaptation needed to handle new optical configurations. As a result, they falter on out-of-distribution cameras, especially in bespoke spectral setups unseen during training. This depth also incurs heavy computation and slow inference. To bridge this gap, we introduce SlowFast-SCI, a dual-speed framework seamlessly integrated into any deep unfolding network beyond SCI systems. During slow learning, we pre-train or reuse a priors-based backbone and distill it via imaging guidance into a compact fast-unfolding model. In the fast learning stage, lightweight adaptation modules are embedded within each block and trained self-supervised at test time via a dual-domain loss-without retraining the backbone. To the best of our knowledge, SlowFast-SCI is the first test-time adaptation-driven deep unfolding framework for efficient, self-adaptive spectral reconstruction. Its dual-stage design unites offline robustness with on-the-fly per-sample calibration-yielding over 70% reduction in parameters and FLOPs, up to 5.79 dB PSNR improvement on out-of-distribution data, preserved cross-domain adaptability, and a 4x faster adaptation speed. In addition, its modularity integrates with any deep-unfolding network, paving the way for self-adaptive, field-deployable imaging and expanded computational imaging modalities. Code and models are available at https://github.com/XuanLu11/SlowFast-SCI.

Authors:Joe Barrow
Title: CommonForms: A Large, Diverse Dataset for Form Field Detection
Abstract:
This paper introduces CommonForms, a web-scale dataset for form field detection. It casts the problem of form field detection as object detection: given an image of a page, predict the location and type (Text Input, Choice Button, Signature) of form fields. The dataset is constructed by filtering Common Crawl to find PDFs that have fillable elements. Starting with 8 million documents, the filtering process is used to arrive at a final dataset of roughly 55k documents that have over 450k pages. Analysis shows that the dataset contains a diverse mixture of languages and domains; one third of the pages are non-English, and among the 14 classified domains, no domain makes up more than 25% of the dataset. In addition, this paper presents a family of form field detectors, FFDNet-Small and FFDNet-Large, which attain a very high average precision on the CommonForms test set. Each model cost less than $500 to train. Ablation results show that high-resolution inputs are crucial for high-quality form field detection, and that the cleaning process improves data efficiency over using all PDFs that have fillable fields in Common Crawl. A qualitative analysis shows that they outperform a popular, commercially available PDF reader that can prepare forms. Unlike the most popular commercially available solutions, FFDNet can predict checkboxes in addition to text and signature fields. This is, to our knowledge, the first large scale dataset released for form field detection, as well as the first open source models. The dataset, models, and code will be released at https://github.com/jbarrow/commonforms

Authors:Mohamed Eltahir, Osamah Sarraj, Abdulrahman Alfrihidi, Taha Alshatiri, Mohammed Khurd, Mohammed Bremoo, Tanveer Hussain
Title: AutoArabic: A Three-Stage Framework for Localizing Video-Text Retrieval Benchmarks
Abstract:
Video-to-text and text-to-video retrieval are dominated by English benchmarks (e.g. DiDeMo, MSR-VTT) and recent multilingual corpora (e.g. RUDDER), yet Arabic remains underserved, lacking localized evaluation metrics. We introduce a three-stage framework, AutoArabic, utilizing state-of-the-art large language models (LLMs) to translate non-Arabic benchmarks into Modern Standard Arabic, reducing the manual revision required by nearly fourfold. The framework incorporates an error detection module that automatically flags potential translation errors with 97% accuracy. Applying the framework to DiDeMo, a video retrieval benchmark produces DiDeMo-AR, an Arabic variant with 40,144 fluent Arabic descriptions. An analysis of the translation errors is provided and organized into an insightful taxonomy to guide future Arabic localization efforts. We train a CLIP-style baseline with identical hyperparameters on the Arabic and English variants of the benchmark, finding a moderate performance gap (about 3 percentage points at Recall@1), indicating that Arabic localization preserves benchmark difficulty. We evaluate three post-editing budgets (zero/ flagged-only/ full) and find that performance improves monotonically with more post-editing, while the raw LLM output (zero-budget) remains usable. To ensure reproducibility to other languages, we made the code available at https://github.com/Tahaalshatiri/AutoArabic.

Authors:Zhengri Wu, Yiran Wang, Yu Wen, Zeyu Zhang, Biao Wu, Hao Tang
Title: StereoAdapter: Adapting Stereo Depth Estimation to Underwater Scenes
Abstract:
Underwater stereo depth estimation provides accurate 3D geometry for robotics tasks such as navigation, inspection, and mapping, offering metric depth from low-cost passive cameras while avoiding the scale ambiguity of monocular methods. However, existing approaches face two critical challenges: (i) parameter-efficiently adapting large vision foundation encoders to the underwater domain without extensive labeled data, and (ii) tightly fusing globally coherent but scale-ambiguous monocular priors with locally metric yet photometrically fragile stereo correspondences. To address these challenges, we propose StereoAdapter, a parameter-efficient self-supervised framework that integrates a LoRA-adapted monocular foundation encoder with a recurrent stereo refinement module. We further introduce dynamic LoRA adaptation for efficient rank selection and pre-training on the synthetic UW-StereoDepth-40K dataset to enhance robustness under diverse underwater conditions. Comprehensive evaluations on both simulated and real-world benchmarks show improvements of 6.11% on TartanAir and 5.12% on SQUID compared to state-of-the-art methods, while real-world deployment with the BlueROV2 robot further demonstrates the consistent robustness of our approach. Code: https://github.com/AIGeeksGroup/StereoAdapter. Website: https://aigeeksgroup.github.io/StereoAdapter.

Authors:Yunsoo Kim, Michal W. S. Ong, Alex Shavick, Honghan Wu, Adam P. Levine
Title: HARE: an entity and relation centric evaluation framework for histopathology reports
Abstract:
Medical domain automated text generation is an active area of research and development; however, evaluating the clinical quality of generated reports remains a challenge, especially in instances where domain-specific metrics are lacking, e.g. histopathology. We propose HARE (Histopathology Automated Report Evaluation), a novel entity and relation centric framework, composed of a benchmark dataset, a named entity recognition (NER) model, a relation extraction (RE) model, and a novel metric, which prioritizes clinically relevant content by aligning critical histopathology entities and relations between reference and generated reports. To develop the HARE benchmark, we annotated 813 de-identified clinical diagnostic histopathology reports and 652 histopathology reports from The Cancer Genome Atlas (TCGA) with domain-specific entities and relations. We fine-tuned GatorTronS, a domain-adapted language model to develop HARE-NER and HARE-RE which achieved the highest overall F1-score (0.915) among the tested models. The proposed HARE metric outperformed traditional metrics including ROUGE and Meteor, as well as radiology metrics such as RadGraph-XL, with the highest correlation and the best regression to expert evaluations (higher than the second best method, GREEN, a large language model based radiology report evaluator, by Pearson $r = 0.168$, Spearman $ρ= 0.161$, Kendall $τ= 0.123$, $R^2 = 0.176$, $RMSE = 0.018$). We release HARE, datasets, and the models at https://github.com/knowlab/HARE to foster advancements in histopathology report generation, providing a robust framework for improving the quality of reports.

Authors:Huaiyu Chen, Fahed Hassanat, Robert Laganiere, Martin Bouchard
Title: mRadNet: A Compact Radar Object Detector with MetaFormer
Abstract:
Frequency-modulated continuous wave radars have gained increasing popularity in the automotive industry. Its robustness against adverse weather conditions makes it a suitable choice for radar object detection in advanced driver assistance systems. These real-time embedded systems have requirements for the compactness and efficiency of the model, which have been largely overlooked in previous work. In this work, we propose mRadNet, a novel radar object detection model with compactness in mind. mRadNet employs a U-net style architecture with MetaFormer blocks, in which separable convolution and attention token mixers are used to capture both local and global features effectively. More efficient token embedding and merging strategies are introduced to further facilitate the lightweight design. The performance of mRadNet is validated on the CRUW dataset, improving state-of-the-art performance with the least number of parameters and FLOPs.

Authors:Xiaoqi Zhao, Youwei Pang, Chenyang Yu, Lihe Zhang, Huchuan Lu, Shijian Lu, Georges El Fakhri, Xiaofeng Liu
Title: UniMRSeg: Unified Modality-Relax Segmentation via Hierarchical Self-Supervised Compensation
Abstract:
Multi-modal image segmentation faces real-world deployment challenges from incomplete/corrupted modalities degrading performance. While existing methods address training-inference modality gaps via specialized per-combination models, they introduce high deployment costs by requiring exhaustive model subsets and model-modality matching. In this work, we propose a unified modality-relax segmentation network (UniMRSeg) through hierarchical self-supervised compensation (HSSC). Our approach hierarchically bridges representation gaps between complete and incomplete modalities across input, feature and output levels. % First, we adopt modality reconstruction with the hybrid shuffled-masking augmentation, encouraging the model to learn the intrinsic modality characteristics and generate meaningful representations for missing modalities through cross-modal fusion. % Next, modality-invariant contrastive learning implicitly compensates the feature space distance among incomplete-complete modality pairs. Furthermore, the proposed lightweight reverse attention adapter explicitly compensates for the weak perceptual semantics in the frozen encoder. Last, UniMRSeg is fine-tuned under the hybrid consistency constraint to ensure stable prediction under all modality combinations without large performance fluctuations. Without bells and whistles, UniMRSeg significantly outperforms the state-of-the-art methods under diverse missing modality scenarios on MRI-based brain tumor segmentation, RGB-D semantic segmentation, RGB-D/T salient object segmentation. The code will be released at https://github.com/Xiaoqi-Zhao-DLUT/UniMRSeg.

Authors:Vatsal Malaviya, Agneet Chatterjee, Maitreya Patel, Yezhou Yang, Chitta Baral
Title: AcT2I: Evaluating and Improving Action Depiction in Text-to-Image Models
Abstract:
Text-to-Image (T2I) models have recently achieved remarkable success in generating images from textual descriptions. However, challenges still persist in accurately rendering complex scenes where actions and interactions form the primary semantic focus. Our key observation in this work is that T2I models frequently struggle to capture nuanced and often implicit attributes inherent in action depiction, leading to generating images that lack key contextual details. To enable systematic evaluation, we introduce AcT2I, a benchmark designed to evaluate the performance of T2I models in generating images from action-centric prompts. We experimentally validate that leading T2I models do not fare well on AcT2I. We further hypothesize that this shortcoming arises from the incomplete representation of the inherent attributes and contextual dependencies in the training corpora of existing T2I models. We build upon this by developing a training-free, knowledge distillation technique utilizing Large Language Models to address this limitation. Specifically, we enhance prompts by incorporating dense information across three dimensions, observing that injecting prompts with temporal details significantly improves image generation accuracy, with our best model achieving an increase of 72%. Our findings highlight the limitations of current T2I methods in generating images that require complex reasoning and demonstrate that integrating linguistic knowledge in a systematic way can notably advance the generation of nuanced and contextually accurate images.

Authors:Shen Cheng, Haipeng Li, Haibin Huang, Xiaohong Liu, Shuaicheng Liu
Title: Blind-Spot Guided Diffusion for Self-supervised Real-World Denoising
Abstract:
In this work, we present Blind-Spot Guided Diffusion, a novel self-supervised framework for real-world image denoising. Our approach addresses two major challenges: the limitations of blind-spot networks (BSNs), which often sacrifice local detail and introduce pixel discontinuities due to spatial independence assumptions, and the difficulty of adapting diffusion models to self-supervised denoising. We propose a dual-branch diffusion framework that combines a BSN-based diffusion branch, generating semi-clean images, with a conventional diffusion branch that captures underlying noise distributions. To enable effective training without paired data, we use the BSN-based branch to guide the sampling process, capturing noise structure while preserving local details. Extensive experiments on the SIDD and DND datasets demonstrate state-of-the-art performance, establishing our method as a highly effective self-supervised solution for real-world denoising. Code and pre-trained models are released at: https://github.com/Sumching/BSGD.

Authors:Bhavesh Sandbhor, Bheeshm Sharma, Balamurugan Palaniappan
Title: SLaM-DiMM: Shared Latent Modeling for Diffusion Based Missing Modality Synthesis in MRI
Abstract:
Brain MRI scans are often found in four modalities, consisting of T1-weighted with and without contrast enhancement (T1ce and T1w), T2-weighted imaging (T2w), and Flair. Leveraging complementary information from these different modalities enables models to learn richer, more discriminative features for understanding brain anatomy, which could be used in downstream tasks such as anomaly detection. However, in clinical practice, not all MRI modalities are always available due to various reasons. This makes missing modality generation a critical challenge in medical image analysis. In this paper, we propose SLaM-DiMM, a novel missing modality generation framework that harnesses the power of diffusion models to synthesize any of the four target MRI modalities from other available modalities. Our approach not only generates high-fidelity images but also ensures structural coherence across the depth of the volume through a dedicated coherence enhancement mechanism. Qualitative and quantitative evaluations on the BraTS-Lighthouse-2025 Challenge dataset demonstrate the effectiveness of the proposed approach in synthesizing anatomically plausible and structurally consistent results. Code is available at https://github.com/BheeshmSharma/SLaM-DiMM-MICCAI-BraTS-Challenge-2025.

Authors:Shiyu Fang, Yiming Cui, Haoyang Liang, Chen Lv, Peng Hang, Jian Sun
Title: CoReVLA: A Dual-Stage End-to-End Autonomous Driving Framework for Long-Tail Scenarios via Collect-and-Refine
Abstract:
Autonomous Driving (AD) systems have made notable progress, but their performance in long-tail, safety-critical scenarios remains limited. These rare cases contribute a disproportionate number of accidents. Vision-Language Action (VLA) models have strong reasoning abilities and offer a potential solution, but their effectiveness is limited by the lack of high-quality data and inefficient learning in such conditions. To address these challenges, we propose CoReVLA, a continual learning end-to-end autonomous driving framework that improves the performance in long-tail scenarios through a dual-stage process of data Collection and behavior Refinement. First, the model is jointly fine-tuned on a mixture of open-source driving QA datasets, allowing it to acquire a foundational understanding of driving scenarios. Next, CoReVLA is deployed within the Cave Automatic Virtual Environment (CAVE) simulation platform, where driver takeover data is collected from real-time interactions. Each takeover indicates a long-tail scenario that CoReVLA fails to handle reliably. Finally, the model is refined via Direct Preference Optimization (DPO), allowing it to learn directly from human preferences and thereby avoid reward hacking caused by manually designed rewards. Extensive open-loop and closed-loop experiments demonstrate that the proposed CoReVLA model can accurately perceive driving scenarios and make appropriate decisions. On the Bench2Drive benchmark, CoReVLA achieves a Driving Score (DS) of 72.18 and a Success Rate (SR) of 50%, outperforming state-of-the-art methods by 7.96 DS and 15% SR under long-tail, safety-critical scenarios. Furthermore, case studies demonstrate the model's ability to continually improve its performance in similar failure-prone scenarios by leveraging past takeover experiences. All codea and preprocessed datasets are available at: https://github.com/FanGShiYuu/CoReVLA

Authors:Katharina Eckstein, Constantin Ulrich, Michael Baumgartner, Jessica Kächele, Dimitrios Bounias, Tassilo Wald, Ralf Floca, Klaus H. Maier-Hein
Title: The Missing Piece: A Case for Pre-Training in 3D Medical Object Detection
Abstract:
Large-scale pre-training holds the promise to advance 3D medical object detection, a crucial component of accurate computer-aided diagnosis. Yet, it remains underexplored compared to segmentation, where pre-training has already demonstrated significant benefits. Existing pre-training approaches for 3D object detection rely on 2D medical data or natural image pre-training, failing to fully leverage 3D volumetric information. In this work, we present the first systematic study of how existing pre-training methods can be integrated into state-of-the-art detection architectures, covering both CNNs and Transformers. Our results show that pre-training consistently improves detection performance across various tasks and datasets. Notably, reconstruction-based self-supervised pre-training outperforms supervised pre-training, while contrastive pre-training provides no clear benefit for 3D medical object detection. Our code is publicly available at: https://github.com/MIC-DKFZ/nnDetection-finetuning.

Authors:David Calhas, Arlindo L. Oliveira
Title: Deep Feedback Models
Abstract:
Deep Feedback Models (DFMs) are a new class of stateful neural networks that combine bottom up input with high level representations over time. This feedback mechanism introduces dynamics into otherwise static architectures, enabling DFMs to iteratively refine their internal state and mimic aspects of biological decision making. We model this process as a differential equation solved through a recurrent neural network, stabilized via exponential decay to ensure convergence. To evaluate their effectiveness, we measure DFMs under two key conditions: robustness to noise and generalization with limited data. In both object recognition and segmentation tasks, DFMs consistently outperform their feedforward counterparts, particularly in low data or high noise regimes. In addition, DFMs translate to medical imaging settings, while being robust against various types of noise corruption. These findings highlight the importance of feedback in achieving stable, robust, and generalizable learning. Code is available at https://github.com/DCalhas/deep_feedback_models.

Authors:Jiahao Li, Xinhong Chen, Zhengmin Jiang, Qian Zhou, Yung-Hui Li, Jianping Wang
Title: Global Regulation and Excitation via Attention Tuning for Stereo Matching
Abstract:
Stereo matching achieves significant progress with iterative algorithms like RAFT-Stereo and IGEV-Stereo. However, these methods struggle in ill-posed regions with occlusions, textureless, or repetitive patterns, due to a lack of global context and geometric information for effective iterative refinement. To enable the existing iterative approaches to incorporate global context, we propose the Global Regulation and Excitation via Attention Tuning (GREAT) framework which encompasses three attention modules. Specifically, Spatial Attention (SA) captures the global context within the spatial dimension, Matching Attention (MA) extracts global context along epipolar lines, and Volume Attention (VA) works in conjunction with SA and MA to construct a more robust cost-volume excited by global context and geometric details. To verify the universality and effectiveness of this framework, we integrate it into several representative iterative stereo-matching methods and validate it through extensive experiments, collectively denoted as GREAT-Stereo. This framework demonstrates superior performance in challenging ill-posed regions. Applied to IGEV-Stereo, among all published methods, our GREAT-IGEV ranks first on the Scene Flow test set, KITTI 2015, and ETH3D leaderboards, and achieves second on the Middlebury benchmark. Code is available at https://github.com/JarvisLee0423/GREAT-Stereo.

Authors:Liwei Liao, Xufeng Li, Xiaoyun Zheng, Boning Liu, Feng Gao, Ronggang Wang
Title: Zero-Shot Visual Grounding in 3D Gaussians via View Retrieval
Abstract:
3D Visual Grounding (3DVG) aims to locate objects in 3D scenes based on text prompts, which is essential for applications such as robotics. However, existing 3DVG methods encounter two main challenges: first, they struggle to handle the implicit representation of spatial textures in 3D Gaussian Splatting (3DGS), making per-scene training indispensable; second, they typically require larges amounts of labeled data for effective training. To this end, we propose \underline{G}rounding via \underline{V}iew \underline{R}etrieval (GVR), a novel zero-shot visual grounding framework for 3DGS to transform 3DVG as a 2D retrieval task that leverages object-level view retrieval to collect grounding clues from multiple views, which not only avoids the costly process of 3D annotation, but also eliminates the need for per-scene training. Extensive experiments demonstrate that our method achieves state-of-the-art visual grounding performance while avoiding per-scene training, providing a solid foundation for zero-shot 3DVG research. Video demos can be found in https://github.com/leviome/GVR_demos.

Authors:Haotian Zhang, Han Guo, Keyan Chen, Hao Chen, Zhengxia Zou, Zhenwei Shi
Title: FoBa: A Foreground-Background co-Guided Method and New Benchmark for Remote Sensing Semantic Change Detection
Abstract:
Despite the remarkable progress achieved in remote sensing semantic change detection (SCD), two major challenges remain. At the data level, existing SCD datasets suffer from limited change categories, insufficient change types, and a lack of fine-grained class definitions, making them inadequate to fully support practical applications. At the methodological level, most current approaches underutilize change information, typically treating it as a post-processing step to enhance spatial consistency, which constrains further improvements in model performance. To address these issues, we construct a new benchmark for remote sensing SCD, LevirSCD. Focused on the Beijing area, the dataset covers 16 change categories and 210 specific change types, with more fine-grained class definitions (e.g., roads are divided into unpaved and paved roads). Furthermore, we propose a foreground-background co-guided SCD (FoBa) method, which leverages foregrounds that focus on regions of interest and backgrounds enriched with contextual information to guide the model collaboratively, thereby alleviating semantic ambiguity while enhancing its ability to detect subtle changes. Considering the requirements of bi-temporal interaction and spatial consistency in SCD, we introduce a Gated Interaction Fusion (GIF) module along with a simple consistency loss to further enhance the model's detection performance. Extensive experiments on three datasets (SECOND, JL1, and the proposed LevirSCD) demonstrate that FoBa achieves competitive results compared to current SOTA methods, with improvements of 1.48%, 3.61%, and 2.81% in the SeK metric, respectively. Our code and dataset are available at https://github.com/zmoka-zht/FoBa.

Authors:Chang Soo Lim, Joonyoung Moon, Donghyeon Cho
Title: Enriched Feature Representation and Motion Prediction Module for MOSEv2 Track of 7th LSVOS Challenge: 3rd Place Solution
Abstract:
Video object segmentation (VOS) is a challenging task with wide applications such as video editing and autonomous driving. While Cutie provides strong query-based segmentation and SAM2 offers enriched representations via a pretrained ViT encoder, each has limitations in feature capacity and temporal modeling. In this report, we propose a framework that integrates their complementary strengths by replacing the encoder of Cutie with the ViT encoder of SAM2 and introducing a motion prediction module for temporal stability. We further adopt an ensemble strategy combining Cutie, SAM2, and our variant, achieving 3rd place in the MOSEv2 track of the 7th LSVOS Challenge. We refer to our final model as SCOPE (SAM2-CUTIE Object Prediction Ensemble). This demonstrates the effectiveness of enriched feature representation and motion prediction for robust video object segmentation. The code is available at https://github.com/2025-LSVOS-3rd-place/MOSEv2_3rd_place.

Authors:Yang Li, Tingfa Xu, Shuyan Bai, Peifu Liu, Jianan Li
Title: MCOD: The First Challenging Benchmark for Multispectral Camouflaged Object Detection
Abstract:
Camouflaged Object Detection (COD) aims to identify objects that blend seamlessly into natural scenes. Although RGB-based methods have advanced, their performance remains limited under challenging conditions. Multispectral imagery, providing rich spectral information, offers a promising alternative for enhanced foreground-background discrimination. However, existing COD benchmark datasets are exclusively RGB-based, lacking essential support for multispectral approaches, which has impeded progress in this area. To address this gap, we introduce MCOD, the first challenging benchmark dataset specifically designed for multispectral camouflaged object detection. MCOD features three key advantages: (i) Comprehensive challenge attributes: It captures real-world difficulties such as small object sizes and extreme lighting conditions commonly encountered in COD tasks. (ii) Diverse real-world scenarios: The dataset spans a wide range of natural environments to better reflect practical applications. (iii) High-quality pixel-level annotations: Each image is manually annotated with precise object masks and corresponding challenge attribute labels. We benchmark eleven representative COD methods on MCOD, observing a consistent performance drop due to increased task difficulty. Notably, integrating multispectral modalities substantially alleviates this degradation, highlighting the value of spectral information in enhancing detection robustness. We anticipate MCOD will provide a strong foundation for future research in multispectral camouflaged object detection. The dataset is publicly accessible at https://github.com/yl2900260-bit/MCOD.

Authors:Fangyuan Mao, Shuo Wang, Jilin Mei, Chen Min, Shun Lu, Fuyang Liu, Yu Hu
Title: UNIV: Unified Foundation Model for Infrared and Visible Modalities
Abstract:
The demand for joint RGB-visible and infrared perception is growing rapidly, particularly to achieve robust performance under diverse weather conditions. Although pre-trained models for RGB-visible and infrared data excel in their respective domains, they often underperform in multimodal scenarios, such as autonomous vehicles equipped with both sensors. To address this challenge, we propose a biologically inspired UNified foundation model for Infrared and Visible modalities (UNIV), featuring two key innovations. First, we introduce Patch-wise Cross-modality Contrastive Learning (PCCL), an attention-guided distillation framework that mimics retinal horizontal cells' lateral inhibition, which enables effective cross-modal feature alignment while remaining compatible with any transformer-based architecture. Second, our dual-knowledge preservation mechanism emulates the retina's bipolar cell signal routing - combining LoRA adapters (2% added parameters) with synchronous distillation to prevent catastrophic forgetting, thereby replicating the retina's photopic (cone-driven) and scotopic (rod-driven) functionality. To support cross-modal learning, we introduce the MVIP dataset, the most comprehensive visible-infrared benchmark to date. It contains 98,992 precisely aligned image pairs spanning diverse scenarios. Extensive experiments demonstrate UNIV's superior performance on infrared tasks (+1.7 mIoU in semantic segmentation and +0.7 mAP in object detection) while maintaining 99%+ of the baseline performance on visible RGB tasks. Our code is available at https://github.com/fangyuanmao/UNIV.

Authors:Zheng Wang, Hong Liu, Zheng Wang, Danyi Li, Min Cen, Baptiste Magnier, Li Liang, Liansheng Wang
Title: Enhancing WSI-Based Survival Analysis with Report-Auxiliary Self-Distillation
Abstract:
Survival analysis based on Whole Slide Images (WSIs) is crucial for evaluating cancer prognosis, as they offer detailed microscopic information essential for predicting patient outcomes. However, traditional WSI-based survival analysis usually faces noisy features and limited data accessibility, hindering their ability to capture critical prognostic features effectively. Although pathology reports provide rich patient-specific information that could assist analysis, their potential to enhance WSI-based survival analysis remains largely unexplored. To this end, this paper proposes a novel Report-auxiliary self-distillation (Rasa) framework for WSI-based survival analysis. First, advanced large language models (LLMs) are utilized to extract fine-grained, WSI-relevant textual descriptions from original noisy pathology reports via a carefully designed task prompt. Next, a self-distillation-based pipeline is designed to filter out irrelevant or redundant WSI features for the student model under the guidance of the teacher model's textual knowledge. Finally, a risk-aware mix-up strategy is incorporated during the training of the student model to enhance both the quantity and diversity of the training data. Extensive experiments carried out on our collected data (CRC) and public data (TCGA-BRCA) demonstrate the superior effectiveness of Rasa against state-of-the-art methods. Our code is available at https://github.com/zhengwang9/Rasa.

Authors:Zinan Lin, Enshu Liu, Xuefei Ning, Junyi Zhu, Wenyu Wang, Sergey Yekhanin
Title: Latent Zoning Network: A Unified Principle for Generative Modeling, Representation Learning, and Classification
Abstract:
Generative modeling, representation learning, and classification are three core problems in machine learning (ML), yet their state-of-the-art (SoTA) solutions remain largely disjoint. In this paper, we ask: Can a unified principle address all three? Such unification could simplify ML pipelines and foster greater synergy across tasks. We introduce Latent Zoning Network (LZN) as a step toward this goal. At its core, LZN creates a shared Gaussian latent space that encodes information across all tasks. Each data type (e.g., images, text, labels) is equipped with an encoder that maps samples to disjoint latent zones, and a decoder that maps latents back to data. ML tasks are expressed as compositions of these encoders and decoders: for example, label-conditional image generation uses a label encoder and image decoder; image embedding uses an image encoder; classification uses an image encoder and label decoder. We demonstrate the promise of LZN in three increasingly complex scenarios: (1) LZN can enhance existing models (image generation): When combined with the SoTA Rectified Flow model, LZN improves FID on CIFAR10 from 2.76 to 2.59-without modifying the training objective. (2) LZN can solve tasks independently (representation learning): LZN can implement unsupervised representation learning without auxiliary loss functions, outperforming the seminal MoCo and SimCLR methods by 9.3% and 0.2%, respectively, on downstream linear classification on ImageNet. (3) LZN can solve multiple tasks simultaneously (joint generation and classification): With image and label encoders/decoders, LZN performs both tasks jointly by design, improving FID and achieving SoTA classification accuracy on CIFAR10. The code and trained models are available at https://github.com/microsoft/latent-zoning-networks. The project website is at https://zinanlin.me/blogs/latent_zoning_networks.html.

Authors:Shilong Bao, Qianqian Xu, Feiran Li, Boyu Han, Zhiyong Yang, Xiaochun Cao, Qingming Huang
Title: Towards Size-invariant Salient Object Detection: A Generic Evaluation and Optimization Approach
Abstract:
This paper investigates a fundamental yet underexplored issue in Salient Object Detection (SOD): the size-invariant property for evaluation protocols, particularly in scenarios when multiple salient objects of significantly different sizes appear within a single image. We first present a novel perspective to expose the inherent size sensitivity of existing widely used SOD metrics. Through careful theoretical derivations, we show that the evaluation outcome of an image under current SOD metrics can be essentially decomposed into a sum of several separable terms, with the contribution of each term being directly proportional to its corresponding region size. Consequently, the prediction errors would be dominated by the larger regions, while smaller yet potentially more semantically important objects are often overlooked, leading to biased performance assessments and practical degradation. To address this challenge, a generic Size-Invariant Evaluation (SIEva) framework is proposed. The core idea is to evaluate each separable component individually and then aggregate the results, thereby effectively mitigating the impact of size imbalance across objects. Building upon this, we further develop a dedicated optimization framework (SIOpt), which adheres to the size-invariant principle and significantly enhances the detection of salient objects across a broad range of sizes. Notably, SIOpt is model-agnostic and can be seamlessly integrated with a wide range of SOD backbones. Theoretically, we also present generalization analysis of SOD methods and provide evidence supporting the validity of our new evaluation protocols. Finally, comprehensive experiments speak to the efficacy of our proposed approach. The code is available at https://github.com/Ferry-Li/SI-SOD.

Authors:Tian Lan, Yiming Zheng, Jianxin Yin
Title: Diffusion-Based Cross-Modal Feature Extraction for Multi-Label Classification
Abstract:
Multi-label classification has broad applications and depends on powerful representations capable of capturing multi-label interactions. We introduce \textit{Diff-Feat}, a simple but powerful framework that extracts intermediate features from pre-trained diffusion-Transformer models for images and text, and fuses them for downstream tasks. We observe that for vision tasks, the most discriminative intermediate feature along the diffusion process occurs at the middle step and is located in the middle block in Transformer. In contrast, for language tasks, the best feature occurs at the noise-free step and is located in the deepest block. In particular, we observe a striking phenomenon across varying datasets: a mysterious "Layer $12$" consistently yields the best performance on various downstream classification tasks for images (under DiT-XL/2-256$\times$256). We devise a heuristic local-search algorithm that pinpoints the locally optimal "image-text"$\times$"block-timestep" pair among a few candidates, avoiding an exhaustive grid search. A simple fusion-linear projection followed by addition-of the selected representations yields state-of-the-art performance: 98.6\% mAP on MS-COCO-enhanced and 45.7\% mAP on Visual Genome 500, surpassing strong CNN, graph, and Transformer baselines by a wide margin. t-SNE and clustering metrics further reveal that \textit{Diff-Feat} forms tighter semantic clusters than unimodal counterparts. The code is available at https://github.com/lt-0123/Diff-Feat.

Authors:Wei Chen, Tongguan Wang, Feiyue Xue, Junkai Li, Hui Liu, Ying Sha
Title: Beyond Words: Enhancing Desire, Emotion, and Sentiment Recognition with Non-Verbal Cues
Abstract:
Desire, as an intention that drives human behavior, is closely related to both emotion and sentiment. Multimodal learning has advanced sentiment and emotion recognition, but multimodal approaches specially targeting human desire understanding remain underexplored. And existing methods in sentiment analysis predominantly emphasize verbal cues and overlook images as complementary non-verbal cues. To address these gaps, we propose a Symmetrical Bidirectional Multimodal Learning Framework for Desire, Emotion, and Sentiment Recognition, which enforces mutual guidance between text and image modalities to effectively capture intention-related representations in the image. Specifically, low-resolution images are used to obtain global visual representations for cross-modal alignment, while high resolution images are partitioned into sub-images and modeled with masked image modeling to enhance the ability to capture fine-grained local features. A text-guided image decoder and an image-guided text decoder are introduced to facilitate deep cross-modal interaction at both local and global representations of image information. Additionally, to balance perceptual gains with computation cost, a mixed-scale image strategy is adopted, where high-resolution images are cropped into sub-images for masked modeling. The proposed approach is evaluated on MSED, a multimodal dataset that includes a desire understanding benchmark, as well as emotion and sentiment recognition. Experimental results indicate consistent improvements over other state-of-the-art methods, validating the effectiveness of our proposed method. Specifically, our method outperforms existing approaches, achieving F1-score improvements of 1.1% in desire understanding, 0.6% in emotion recognition, and 0.9% in sentiment analysis. Our code is available at: https://github.com/especiallyW/SyDES.

Authors:Abdarahmane Traore, Éric Hervet, Andy Couturier
Title: SmolRGPT: Efficient Spatial Reasoning for Warehouse Environments with 600M Parameters
Abstract:
Recent advances in vision-language models (VLMs) have enabled powerful multimodal reasoning, but state-of-the-art approaches typically rely on extremely large models with prohibitive computational and memory requirements. This makes their deployment challenging in resource-constrained environments such as warehouses, robotics, and industrial applications, where both efficiency and robust spatial understanding are critical. In this work, we present SmolRGPT, a compact vision-language architecture that explicitly incorporates region-level spatial reasoning by integrating both RGB and depth cues. SmolRGPT employs a three-stage curriculum that progressively align visual and language features, enables spatial relationship understanding, and adapts to task-specific datasets. We demonstrate that with only 600M parameters, SmolRGPT achieves competitive results on challenging warehouse spatial reasoning benchmarks, matching or exceeding the performance of much larger alternatives. These findings highlight the potential for efficient, deployable multimodal intelligence in real-world settings without sacrificing core spatial reasoning capabilities. The code of the experimentation will be available at: https://github.com/abtraore/SmolRGPT

Authors:Yulin Wang, Yang Yue, Yang Yue, Huanqian Wang, Haojun Jiang, Yizeng Han, Zanlin Ni, Yifan Pu, Minglei Shi, Rui Lu, Qisen Yang, Andrew Zhao, Zhuofan Xia, Shiji Song, Gao Huang
Title: Emulating Human-like Adaptive Vision for Efficient and Flexible Machine Visual Perception
Abstract:
Human vision is highly adaptive, efficiently sampling intricate environments by sequentially fixating on task-relevant regions. In contrast, prevailing machine vision models passively process entire scenes at once, resulting in excessive resource demands scaling with spatial-temporal input resolution and model size, yielding critical limitations impeding both future advancements and real-world application. Here we introduce AdaptiveNN, a general framework aiming to drive a paradigm shift from 'passive' to 'active, adaptive' vision models. AdaptiveNN formulates visual perception as a coarse-to-fine sequential decision-making process, progressively identifying and attending to regions pertinent to the task, incrementally combining information across fixations, and actively concluding observation when sufficient. We establish a theory integrating representation learning with self-rewarding reinforcement learning, enabling end-to-end training of the non-differentiable AdaptiveNN without additional supervision on fixation locations. We assess AdaptiveNN on 17 benchmarks spanning 9 tasks, including large-scale visual recognition, fine-grained discrimination, visual search, processing images from real driving and medical scenarios, language-driven embodied AI, and side-by-side comparisons with humans. AdaptiveNN achieves up to 28x inference cost reduction without sacrificing accuracy, flexibly adapts to varying task demands and resource budgets without retraining, and provides enhanced interpretability via its fixation patterns, demonstrating a promising avenue toward efficient, flexible, and interpretable computer vision. Furthermore, AdaptiveNN exhibits closely human-like perceptual behaviors in many cases, revealing its potential as a valuable tool for investigating visual cognition. Code is available at https://github.com/LeapLabTHU/AdaptiveNN.

Authors:Dinura Dissanayake, Ahmed Heakl, Omkar Thawakar, Noor Ahsan, Ritesh Thawkar, Ketan More, Jean Lahoud, Rao Anwer, Hisham Cholakkal, Ivan Laptev, Fahad Shahbaz Khan, Salman Khan
Title: How Good are Foundation Models in Step-by-Step Embodied Reasoning?
Abstract:
Embodied agents operating in the physical world must make decisions that are not only effective but also safe, spatially coherent, and grounded in context. While recent advances in large multimodal models (LMMs) have shown promising capabilities in visual understanding and language generation, their ability to perform structured reasoning for real-world embodied tasks remains underexplored. In this work, we aim to understand how well foundation models can perform step-by-step reasoning in embodied environments. To this end, we propose the Foundation Model Embodied Reasoning (FoMER) benchmark, designed to evaluate the reasoning capabilities of LMMs in complex embodied decision-making scenarios. Our benchmark spans a diverse set of tasks that require agents to interpret multimodal observations, reason about physical constraints and safety, and generate valid next actions in natural language. We present (i) a large-scale, curated suite of embodied reasoning tasks, (ii) a novel evaluation framework that disentangles perceptual grounding from action reasoning, and (iii) empirical analysis of several leading LMMs under this setting. Our benchmark includes over 1.1k samples with detailed step-by-step reasoning across 10 tasks and 8 embodiments, covering three different robot types. Our results highlight both the potential and current limitations of LMMs in embodied reasoning, pointing towards key challenges and opportunities for future research in robot intelligence. Our data and code will be made publicly available.

Authors:Wenda Qin, Andrea Burns, Bryan A. Plummer, Margrit Betke
Title: Walk and Read Less: Improving the Efficiency of Vision-and-Language Navigation via Tuning-Free Multimodal Token Pruning
Abstract:
Large models achieve strong performance on Vision-and-Language Navigation (VLN) tasks, but are costly to run in resource-limited environments. Token pruning offers appealing tradeoffs for efficiency with minimal performance loss by reducing model input size, but prior work overlooks VLN-specific challenges. For example, information loss from pruning can effectively increase computational cost due to longer walks. Thus, the inability to identify uninformative tokens undermines the supposed efficiency gains from pruning. To address this, we propose Navigation-Aware Pruning (NAP), which uses navigation-specific traits to simplify the pruning process by pre-filtering tokens into foreground and background. For example, image views are filtered based on whether the agent can navigate in that direction. We also extract navigation-relevant instructions using a Large Language Model. After filtering, we focus pruning on background tokens, minimizing information loss. To further help avoid increases in navigation length, we discourage backtracking by removing low-importance navigation nodes. Experiments on standard VLN benchmarks show NAP significantly outperforms prior work, preserving higher success rates while saving more than 50% FLOPS.

Authors:Di Wen, Kunyu Peng, Junwei Zheng, Yufan Chen, Yitain Shi, Jiale Wei, Ruiping Liu, Kailun Yang, Rainer Stiefelhagen
Title: MICA: Multi-Agent Industrial Coordination Assistant
Abstract:
Industrial workflows demand adaptive and trustworthy assistance that can operate under limited computing, connectivity, and strict privacy constraints. In this work, we present MICA (Multi-Agent Industrial Coordination Assistant), a perception-grounded and speech-interactive system that delivers real-time guidance for assembly, troubleshooting, part queries, and maintenance. MICA coordinates five role-specialized language agents, audited by a safety checker, to ensure accurate and compliant support. To achieve robust step understanding, we introduce Adaptive Step Fusion (ASF), which dynamically blends expert reasoning with online adaptation from natural speech feedback. Furthermore, we establish a new multi-agent coordination benchmark across representative task categories and propose evaluation metrics tailored to industrial assistance, enabling systematic comparison of different coordination topologies. Our experiments demonstrate that MICA consistently improves task success, reliability, and responsiveness over baseline structures, while remaining deployable on practical offline hardware. Together, these contributions highlight MICA as a step toward deployable, privacy-preserving multi-agent assistants for dynamic factory environments. The source code will be made publicly available at https://github.com/Kratos-Wen/MICA.

Authors:Jialiang Kang, Han Shu, Wenshuo Li, Yingjie Zhai, Xinghao Chen
Title: ViSpec: Accelerating Vision-Language Models with Vision-Aware Speculative Decoding
Abstract:
Speculative decoding is a widely adopted technique for accelerating inference in large language models (LLMs), yet its application to vision-language models (VLMs) remains underexplored, with existing methods achieving only modest speedups (<1.5x). This gap is increasingly significant as multimodal capabilities become central to large-scale models. We hypothesize that large VLMs can effectively filter redundant image information layer by layer without compromising textual comprehension, whereas smaller draft models struggle to do so. To address this, we introduce Vision-Aware Speculative Decoding (ViSpec), a novel framework tailored for VLMs. ViSpec employs a lightweight vision adaptor module to compress image tokens into a compact representation, which is seamlessly integrated into the draft model's attention mechanism while preserving original image positional information. Additionally, we extract a global feature vector for each input image and augment all subsequent text tokens with this feature to enhance multimodal coherence. To overcome the scarcity of multimodal datasets with long assistant responses, we curate a specialized training dataset by repurposing existing datasets and generating extended outputs using the target VLM with modified prompts. Our training strategy mitigates the risk of the draft model exploiting direct access to the target model's hidden states, which could otherwise lead to shortcut learning when training solely on target model outputs. Extensive experiments validate ViSpec, achieving, to our knowledge, the first substantial speedup in VLM speculative decoding. Code is available at https://github.com/KangJialiang/ViSpec.

Authors:Abhishek Basu, Fahad Shamshad, Ashshak Sharifdeen, Karthik Nandakumar, Muhammad Haris Khan
Title: Calibration-Aware Prompt Learning for Medical Vision-Language Models
Abstract:
Medical Vision-Language Models (Med-VLMs) have demonstrated remarkable performance across diverse medical imaging tasks by leveraging large-scale image-text pretraining. However, their confidence calibration is largely unexplored, and so remains a significant challenge. As such, miscalibrated predictions can lead to overconfident errors, undermining clinical trust and decision-making reliability. To address this, we introduce CalibPrompt, the first framework to calibrate Med-VLMs during prompt tuning. CalibPrompt optimizes a small set of learnable prompts with carefully designed calibration objectives under scarce labeled data regime. First, we study a regularizer that attempts to align the smoothed accuracy with the predicted model confidences. Second, we introduce an angular separation loss to maximize textual feature proximity toward improving the reliability in confidence estimates of multimodal Med-VLMs. Extensive experiments on four publicly available Med-VLMs and five diverse medical imaging datasets reveal that CalibPrompt consistently improves calibration without drastically affecting clean accuracy. Our code is available at https://github.com/iabh1shekbasu/CalibPrompt.

Authors:Silvio Mazzucco, Carl Persson, Mattia Segu, Pier Luigi Dovesi, Federico Tombari, Luc Van Gool, Matteo Poggi
Title: Lost in Translation? Vocabulary Alignment for Source-Free Adaptation in Open-Vocabulary Semantic Segmentation
Abstract:
We introduce VocAlign, a novel source-free domain adaptation framework specifically designed for VLMs in open-vocabulary semantic segmentation. Our method adopts a student-teacher paradigm enhanced with a vocabulary alignment strategy, which improves pseudo-label generation by incorporating additional class concepts. To ensure efficiency, we use Low-Rank Adaptation (LoRA) to fine-tune the model, preserving its original capabilities while minimizing computational overhead. In addition, we propose a Top-K class selection mechanism for the student model, which significantly reduces memory requirements while further improving adaptation performance. Our approach achieves a notable 6.11 mIoU improvement on the CityScapes dataset and demonstrates superior performance on zero-shot segmentation benchmarks, setting a new standard for source-free adaptation in the open-vocabulary setting.

Authors:Luca Bartolomei, Enrico Mannocci, Fabio Tosi, Matteo Poggi, Stefano Mattoccia
Title: Depth AnyEvent: A Cross-Modal Distillation Paradigm for Event-Based Monocular Depth Estimation
Abstract:
Event cameras capture sparse, high-temporal-resolution visual information, making them particularly suitable for challenging environments with high-speed motion and strongly varying lighting conditions. However, the lack of large datasets with dense ground-truth depth annotations hinders learning-based monocular depth estimation from event data. To address this limitation, we propose a cross-modal distillation paradigm to generate dense proxy labels leveraging a Vision Foundation Model (VFM). Our strategy requires an event stream spatially aligned with RGB frames, a simple setup even available off-the-shelf, and exploits the robustness of large-scale VFMs. Additionally, we propose to adapt VFMs, either a vanilla one like Depth Anything v2 (DAv2), or deriving from it a novel recurrent architecture to infer depth from monocular event cameras. We evaluate our approach with synthetic and real-world datasets, demonstrating that i) our cross-modal paradigm achieves competitive performance compared to fully supervised methods without requiring expensive depth annotations, and ii) our VFM-based models achieve state-of-the-art performance.

Authors:Zhaoyang Liu, Jingjing Xie, Zichen Ding, Zehao Li, Bowen Yang, Zhenyu Wu, Xuehui Wang, Qiushi Sun, Shi Liu, Weiyun Wang, Shenglong Ye, Qingyun Li, Xuan Dong, Yue Yu, Chenyu Lu, YunXiang Mo, Yao Yan, Zeyue Tian, Xiao Zhang, Yuan Huang, Yiqian Liu, Weijie Su, Gen Luo, Xiangyu Yue, Biqing Qi, Kai Chen, Bowen Zhou, Yu Qiao, Qifeng Chen, Wenhai Wang
Title: ScaleCUA: Scaling Open-Source Computer Use Agents with Cross-Platform Data
Abstract:
Vision-Language Models (VLMs) have enabled computer use agents (CUAs) that operate GUIs autonomously, showing great potential, yet progress is limited by the lack of large-scale, open-source computer use data and foundation models. In this work, we introduce ScaleCUA, a step toward scaling open-source CUAs. It offers a large-scale dataset spanning 6 operating systems and 3 task domains, built via a closed-loop pipeline uniting automated agents with human experts. Trained on this scaled-up data, ScaleCUA can operate seamlessly across platforms. Specifically, it delivers strong gains over baselines (+26.6 on WebArena-Lite-v2, +10.7 on ScreenSpot-Pro) and sets new state-of-the-art results (94.4% on MMBench-GUI L1-Hard, 60.6% on OSWorld-G, 47.4% on WebArena-Lite-v2). These findings underscore the power of data-driven scaling for general-purpose computer use agents. We will release data, models, and code to advance future research: https://github.com/OpenGVLab/ScaleCUA.

Authors:Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys
Title: Lightweight and Accurate Multi-View Stereo with Confidence-Aware Diffusion Model
Abstract:
To reconstruct the 3D geometry from calibrated images, learning-based multi-view stereo (MVS) methods typically perform multi-view depth estimation and then fuse depth maps into a mesh or point cloud. To improve the computational efficiency, many methods initialize a coarse depth map and then gradually refine it in higher resolutions. Recently, diffusion models achieve great success in generation tasks. Starting from a random noise, diffusion models gradually recover the sample with an iterative denoising process. In this paper, we propose a novel MVS framework, which introduces diffusion models in MVS. Specifically, we formulate depth refinement as a conditional diffusion process. Considering the discriminative characteristic of depth estimation, we design a condition encoder to guide the diffusion process. To improve efficiency, we propose a novel diffusion network combining lightweight 2D U-Net and convolutional GRU. Moreover, we propose a novel confidence-based sampling strategy to adaptively sample depth hypotheses based on the confidence estimated by diffusion model. Based on our novel MVS framework, we propose two novel MVS methods, DiffMVS and CasDiffMVS. DiffMVS achieves competitive performance with state-of-the-art efficiency in run-time and GPU memory. CasDiffMVS achieves state-of-the-art performance on DTU, Tanks & Temples and ETH3D. Code is available at: https://github.com/cvg/diffmvs.

Authors:Yuming Jiang, Siteng Huang, Shengke Xue, Yaxi Zhao, Jun Cen, Sicong Leng, Kehan Li, Jiayan Guo, Kexiang Wang, Mingxiu Chen, Fan Wang, Deli Zhao, Xin Li
Title: RynnVLA-001: Using Human Demonstrations to Improve Robot Manipulation
Abstract:
This paper presents RynnVLA-001, a vision-language-action(VLA) model built upon large-scale video generative pretraining from human demonstrations. We propose a novel two-stage pretraining methodology. The first stage, Ego-Centric Video Generative Pretraining, trains an Image-to-Video model on 12M ego-centric manipulation videos to predict future frames conditioned on an initial frame and a language instruction. The second stage, Human-Centric Trajectory-Aware Modeling, extends this by jointly predicting future keypoint trajectories, thereby effectively bridging visual frame prediction with action prediction. Furthermore, to enhance action representation, we propose ActionVAE, a variational autoencoder that compresses sequences of actions into compact latent embeddings, reducing the complexity of the VLA output space. When finetuned on the same downstream robotics datasets, RynnVLA-001 achieves superior performance over state-of-the-art baselines, demonstrating that the proposed pretraining strategy provides a more effective initialization for VLA models.

Authors:Pierre Fernandez, Tomáš Souček, Nikola Jovanović, Hady Elsahar, Sylvestre-Alvise Rebuffi, Valeriu Lacatusu, Tuan Tran, Alexandre Mourachko
Title: Geometric Image Synchronization with Deep Watermarking
Abstract:
Synchronization is the task of estimating and inverting geometric transformations (e.g., crop, rotation) applied to an image. This work introduces SyncSeal, a bespoke watermarking method for robust image synchronization, which can be applied on top of existing watermarking methods to enhance their robustness against geometric transformations. It relies on an embedder network that imperceptibly alters images and an extractor network that predicts the geometric transformation to which the image was subjected. Both networks are end-to-end trained to minimize the error between the predicted and ground-truth parameters of the transformation, combined with a discriminator to maintain high perceptual quality. We experimentally validate our method on a wide variety of geometric and valuemetric transformations, demonstrating its effectiveness in accurately synchronizing images. We further show that our synchronization can effectively upgrade existing watermarking methods to withstand geometric transformations to which they were previously vulnerable.

Authors:Zaiquan Yang, Yuhao Liu, Gerhard Hancke, Rynson W. H. Lau
Title: Unleashing the Potential of Multimodal LLMs for Zero-Shot Spatio-Temporal Video Grounding
Abstract:
Spatio-temporal video grounding (STVG) aims at localizing the spatio-temporal tube of a video, as specified by the input text query. In this paper, we utilize multimodal large language models (MLLMs) to explore a zero-shot solution in STVG. We reveal two key insights about MLLMs: (1) MLLMs tend to dynamically assign special tokens, referred to as \textit{grounding tokens}, for grounding the text query; and (2) MLLMs often suffer from suboptimal grounding due to the inability to fully integrate the cues in the text query (\textit{e.g.}, attributes, actions) for inference. Based on these insights, we propose a MLLM-based zero-shot framework for STVG, which includes novel decomposed spatio-temporal highlighting (DSTH) and temporal-augmented assembling (TAS) strategies to unleash the reasoning ability of MLLMs. The DSTH strategy first decouples the original query into attribute and action sub-queries for inquiring the existence of the target both spatially and temporally. It then uses a novel logit-guided re-attention (LRA) module to learn latent variables as spatial and temporal prompts, by regularizing token predictions for each sub-query. These prompts highlight attribute and action cues, respectively, directing the model's attention to reliable spatial and temporal related visual regions. In addition, as the spatial grounding by the attribute sub-query should be temporally consistent, we introduce the TAS strategy to assemble the predictions using the original video frames and the temporal-augmented frames as inputs to help improve temporal consistency. We evaluate our method on various MLLMs, and show that it outperforms SOTA methods on three common STVG benchmarks. The code will be available at https://github.com/zaiquanyang/LLaVA_Next_STVG.

Authors:Ali Nazari, Bardiya Kariminia, Mohsen Ebrahimi Moghaddam
Title: A Race Bias Free Face Aging Model for Reliable Kinship Verification
Abstract:
The age gap in kinship verification addresses the time difference between the photos of the parent and the child. Moreover, their same-age photos are often unavailable, and face aging models are racially biased, which impacts the likeness of photos. Therefore, we propose a face aging GAN model, RA-GAN, consisting of two new modules, RACEpSp and a feature mixer, to produce racially unbiased images. The unbiased synthesized photos are used in kinship verification to investigate the results of verifying same-age parent-child images. The experiments demonstrate that our RA-GAN outperforms SAM-GAN on an average of 13.14\% across all age groups, and CUSP-GAN in the 60+ age group by 9.1\% in terms of racial accuracy. Moreover, RA-GAN can preserve subjects' identities better than SAM-GAN and CUSP-GAN across all age groups. Additionally, we demonstrate that transforming parent and child images from the KinFaceW-I and KinFaceW-II datasets to the same age can enhance the verification accuracy across all age groups. The accuracy increases with our RA-GAN for the kinship relationships of father-son and father-daughter, mother-son, and mother-daughter, which are 5.22, 5.12, 1.63, and 0.41, respectively, on KinFaceW-I. Additionally, the accuracy for the relationships of father-daughter, father-son, and mother-son is 2.9, 0.39, and 1.6 on KinFaceW-II, respectively. The code is available at~\href{https://github.com/bardiya2254kariminia/An-Age-Transformation-whitout-racial-bias-for-Kinship-verification}{Github}

Authors:Pak-Hei Yeung, Jayroop Ramesh, Pengfei Lyu, Ana Namburete, Jagath Rajapakse
Title: Semi-Supervised 3D Medical Segmentation from 2D Natural Images Pretrained Model
Abstract:
This paper explores the transfer of knowledge from general vision models pretrained on 2D natural images to improve 3D medical image segmentation. We focus on the semi-supervised setting, where only a few labeled 3D medical images are available, along with a large set of unlabeled images. To tackle this, we propose a model-agnostic framework that progressively distills knowledge from a 2D pretrained model to a 3D segmentation model trained from scratch. Our approach, M&N, involves iterative co-training of the two models using pseudo-masks generated by each other, along with our proposed learning rate guided sampling that adaptively adjusts the proportion of labeled and unlabeled data in each training batch to align with the models' prediction accuracy and stability, minimizing the adverse effect caused by inaccurate pseudo-masks. Extensive experiments on multiple publicly available datasets demonstrate that M&N achieves state-of-the-art performance, outperforming thirteen existing semi-supervised segmentation approaches under all different settings. Importantly, ablation studies show that M&N remains model-agnostic, allowing seamless integration with different architectures. This ensures its adaptability as more advanced models emerge. The code is available at https://github.com/pakheiyeung/M-N.

Authors:Gengliang Li, Rongyu Chen, Bin Li, Linlin Yang, Guodong Ding
Title: MedFact-R1: Towards Factual Medical Reasoning via Pseudo-Label Augmentation
Abstract:
Ensuring factual consistency and reliable reasoning remains a critical challenge for medical vision-language models. We introduce MEDFACT-R1, a two-stage framework that integrates external knowledge grounding with reinforcement learning to improve the factual medical reasoning. The first stage uses pseudo-label supervised fine-tuning (SFT) to incorporate external factual expertise; while the second stage applies Group Relative Policy Optimization (GRPO) with four tailored factual reward signals to encourage self-consistent reasoning. Across three public medical QA benchmarks, MEDFACT-R1 delivers up to 22.5% absolute improvement in factual accuracy over previous state-of-the-art methods. Ablation studies highlight the necessity of pseudo-label SFT cold start and validate the contribution of each GRPO reward, underscoring the synergy between knowledge grounding and RL-driven reasoning for trustworthy medical AI. Codes are released at https://github.com/Garfieldgengliang/MEDFACT-R1.

Authors:Chau Pham, Quan Dao, Mahesh Bhosale, Yunjie Tian, Dimitris Metaxas, David Doermann
Title: AutoEdit: Automatic Hyperparameter Tuning for Image Editing
Abstract:
Recent advances in diffusion models have revolutionized text-guided image editing, yet existing editing methods face critical challenges in hyperparameter identification. To get the reasonable editing performance, these methods often require the user to brute-force tune multiple interdependent hyperparameters, such as inversion timesteps and attention modification. This process incurs high computational costs due to the huge hyperparameter search space. We consider searching optimal editing's hyperparameters as a sequential decision-making task within the diffusion denoising process. Specifically, we propose a reinforcement learning framework, which establishes a Markov Decision Process that dynamically adjusts hyperparameters across denoising steps, integrating editing objectives into a reward function. The method achieves time efficiency through proximal policy optimization while maintaining optimal hyperparameter configurations. Experiments demonstrate significant reduction in search time and computational overhead compared to existing brute-force approaches, advancing the practical deployment of a diffusion-based image editing framework in the real world. Codes can be found at https://github.com/chaupham1709/AutoEdit.git.

Authors:Shenghao Zhu, Yifei Chen, Weihong Chen, Shuo Jiang, Guanyu Zhou, Yuanhan Wang, Feiwei Qin, Changmiao Wang, Qiyuan Tian
Title: No Modality Left Behind: Adapting to Missing Modalities via Knowledge Distillation for Brain Tumor Segmentation
Abstract:
Accurate brain tumor segmentation is essential for preoperative evaluation and personalized treatment. Multi-modal MRI is widely used due to its ability to capture complementary tumor features across different sequences. However, in clinical practice, missing modalities are common, limiting the robustness and generalizability of existing deep learning methods that rely on complete inputs, especially under non-dominant modality combinations. To address this, we propose AdaMM, a multi-modal brain tumor segmentation framework tailored for missing-modality scenarios, centered on knowledge distillation and composed of three synergistic modules. The Graph-guided Adaptive Refinement Module explicitly models semantic associations between generalizable and modality-specific features, enhancing adaptability to modality absence. The Bi-Bottleneck Distillation Module transfers structural and textural knowledge from teacher to student models via global style matching and adversarial feature alignment. The Lesion-Presence-Guided Reliability Module predicts prior probabilities of lesion types through an auxiliary classification task, effectively suppressing false positives under incomplete inputs. Extensive experiments on the BraTS 2018 and 2024 datasets demonstrate that AdaMM consistently outperforms existing methods, exhibiting superior segmentation accuracy and robustness, particularly in single-modality and weak-modality configurations. In addition, we conduct a systematic evaluation of six categories of missing-modality strategies, confirming the superiority of knowledge distillation and offering practical guidance for method selection and future research. Our source code is available at https://github.com/Quanato607/AdaMM.

Authors:Xiao Wu, Ting-Zhu Huang, Liang-Jian Deng, Yanyuan Qiao, Imran Razzak, Yutong Xie
Title: A Knowledge-driven Adaptive Collaboration of LLMs for Enhancing Medical Decision-making
Abstract:
Medical decision-making often involves integrating knowledge from multiple clinical specialties, typically achieved through multidisciplinary teams. Inspired by this collaborative process, recent work has leveraged large language models (LLMs) in multi-agent collaboration frameworks to emulate expert teamwork. While these approaches improve reasoning through agent interaction, they are limited by static, pre-assigned roles, which hinder adaptability and dynamic knowledge integration. To address these limitations, we propose KAMAC, a Knowledge-driven Adaptive Multi-Agent Collaboration framework that enables LLM agents to dynamically form and expand expert teams based on the evolving diagnostic context. KAMAC begins with one or more expert agents and then conducts a knowledge-driven discussion to identify and fill knowledge gaps by recruiting additional specialists as needed. This supports flexible, scalable collaboration in complex clinical scenarios, with decisions finalized through reviewing updated agent comments. Experiments on two real-world medical benchmarks demonstrate that KAMAC significantly outperforms both single-agent and advanced multi-agent methods, particularly in complex clinical scenarios (i.e., cancer prognosis) requiring dynamic, cross-specialty expertise. Our code is publicly available at: https://github.com/XiaoXiao-Woo/KAMAC.

Authors:Chaoyin She, Ruifang Lu, Lida Chen, Wei Wang, Qinghua Huang
Title: EchoVLM: Dynamic Mixture-of-Experts Vision-Language Model for Universal Ultrasound Intelligence
Abstract:
Ultrasound imaging has become the preferred imaging modality for early cancer screening due to its advantages of non-ionizing radiation, low cost, and real-time imaging capabilities. However, conventional ultrasound diagnosis heavily relies on physician expertise, presenting challenges of high subjectivity and low diagnostic efficiency. Vision-language models (VLMs) offer promising solutions for this issue, but existing general-purpose models demonstrate limited knowledge in ultrasound medical tasks, with poor generalization in multi-organ lesion recognition and low efficiency across multi-task diagnostics. To address these limitations, we propose EchoVLM, a vision-language model specifically designed for ultrasound medical imaging. The model employs a Mixture of Experts (MoE) architecture trained on data spanning seven anatomical regions. This design enables the model to perform multiple tasks, including ultrasound report generation, diagnosis and visual question-answering (VQA). The experimental results demonstrated that EchoVLM achieved significant improvements of 10.15 and 4.77 points in BLEU-1 scores and ROUGE-1 scores respectively compared to Qwen2-VL on the ultrasound report generation task. These findings suggest that EchoVLM has substantial potential to enhance diagnostic accuracy in ultrasound imaging, thereby providing a viable technical solution for future clinical applications. Source code and model weights are available at https://github.com/Asunatan/EchoVLM.

Authors:Xingwu Zhang, Guanxuan Li, Zhuocheng Zhang, Zijun Long
Title: RoboEye: Enhancing 2D Robotic Object Identification with Selective 3D Geometric Keypoint Matching
Abstract:
The rapidly growing number of product categories in large-scale e-commerce makes accurate object identification for automated packing in warehouses substantially more difficult. As the catalog grows, intra-class variability and a long tail of rare or visually similar items increase, and when combined with diverse packaging, cluttered containers, frequent occlusion, and large viewpoint changes-these factors amplify discrepancies between query and reference images, causing sharp performance drops for methods that rely solely on 2D appearance features. Thus, we propose RoboEye, a two-stage identification framework that dynamically augments 2D semantic features with domain-adapted 3D reasoning and lightweight adapters to bridge training deployment gaps. In the first stage, we train a large vision model to extract 2D features for generating candidate rankings. A lightweight 3D-feature-awareness module then estimates 3D feature quality and predicts whether 3D re-ranking is necessary, preventing performance degradation and avoiding unnecessary computation. When invoked, the second stage uses our robot 3D retrieval transformer, comprising a 3D feature extractor that produces geometry-aware dense features and a keypoint-based matcher that computes keypoint-correspondence confidences between query and reference images instead of conventional cosine-similarity scoring. Experiments show that RoboEye improves Recall@1 by 7.1% over the prior state of the art (RoboLLM). Moreover, RoboEye operates using only RGB images, avoiding reliance on explicit 3D inputs and reducing deployment costs. The code used in this paper is publicly available at: https://github.com/longkukuhi/RoboEye.

Authors:Zhuokang Shen, Kaisen Zhang, Bohan Jia, Yuan Fang, Zhou Yu, Shaohui Lin
Title: DF-LLaVA: Unlocking MLLM's potential for Synthetic Image Detection via Prompt-Guided Knowledge Injection
Abstract:
With the increasing prevalence of synthetic images, evaluating image authenticity and locating forgeries accurately while maintaining human interpretability remains a challenging task. Existing detection models primarily focus on simple authenticity classification, ultimately providing only a forgery probability or binary judgment, which offers limited explanatory insights into image authenticity. Moreover, while MLLM-based detection methods can provide more interpretable results, they still lag behind expert models in terms of pure authenticity classification accuracy. To address this, we propose DF-LLaVA, a simple yet effective framework that unlocks the intrinsic discrimination potential of MLLMs. Our approach first extracts latent knowledge from MLLMs and then injects it into training via prompts. This framework allows LLaVA to achieve outstanding detection accuracy exceeding expert models while still maintaining the interpretability offered by MLLMs. Extensive experiments confirm the superiority of our DF-LLaVA, achieving both high accuracy and explainability in synthetic image detection. Code is available online at: https://github.com/Eliot-Shen/DF-LLaVA.

Authors:Shangrong Wu, Yanghong Zhou, Yang Chen, Feng Zhang, P. Y. Mok
Title: Chain-of-Thought Re-ranking for Image Retrieval Tasks
Abstract:
Image retrieval remains a fundamental yet challenging problem in computer vision. While recent advances in Multimodal Large Language Models (MLLMs) have demonstrated strong reasoning capabilities, existing methods typically employ them only for evaluation, without involving them directly in the ranking process. As a result, their rich multimodal reasoning abilities remain underutilized, leading to suboptimal performance. In this paper, we propose a novel Chain-of-Thought Re-Ranking (CoTRR) method to address this issue. Specifically, we design a listwise ranking prompt that enables MLLM to directly participate in re-ranking candidate images. This ranking process is grounded in an image evaluation prompt, which assesses how well each candidate aligns with users query. By allowing MLLM to perform listwise reasoning, our method supports global comparison, consistent reasoning, and interpretable decision-making - all of which are essential for accurate image retrieval. To enable structured and fine-grained analysis, we further introduce a query deconstruction prompt, which breaks down the original query into multiple semantic components. Extensive experiments on five datasets demonstrate the effectiveness of our CoTRR method, which achieves state-of-the-art performance across three image retrieval tasks, including text-to-image retrieval (TIR), composed image retrieval (CIR) and chat-based image retrieval (Chat-IR). Our code is available at https://github.com/freshfish15/CoTRR .

Authors:Kazuma Nagata, Naoshi Kaneko
Title: DACoN: DINO for Anime Paint Bucket Colorization with Any Number of Reference Images
Abstract:
Automatic colorization of line drawings has been widely studied to reduce the labor cost of hand-drawn anime production. Deep learning approaches, including image/video generation and feature-based correspondence, have improved accuracy but struggle with occlusions, pose variations, and viewpoint changes. To address these challenges, we propose DACoN, a framework that leverages foundation models to capture part-level semantics, even in line drawings. Our method fuses low-resolution semantic features from foundation models with high-resolution spatial features from CNNs for fine-grained yet robust feature extraction. In contrast to previous methods that rely on the Multiplex Transformer and support only one or two reference images, DACoN removes this constraint, allowing any number of references. Quantitative and qualitative evaluations demonstrate the benefits of using multiple reference images, achieving superior colorization performance. Our code and model are available at https://github.com/kzmngt/DACoN.

Authors:Feng Ding, Haisheng Fu, Soroush Oraki, Jie Liang
Title: LSTC-MDA: A Unified Framework for Long-Short Term Temporal Convolution and Mixed Data Augmentation in Skeleton-Based Action Recognition
Abstract:
Skeleton-based action recognition faces two longstanding challenges: the scarcity of labeled training samples and difficulty modeling short- and long-range temporal dependencies. To address these issues, we propose a unified framework, LSTC-MDA, which simultaneously improves temporal modeling and data diversity. We introduce a novel Long-Short Term Temporal Convolution (LSTC) module with parallel short- and long-term branches, these two feature branches are then aligned and fused adaptively using learned similarity weights to preserve critical long-range cues lost by conventional stride-2 temporal convolutions. We also extend Joint Mixing Data Augmentation (JMDA) with an Additive Mixup at the input level, diversifying training samples and restricting mixup operations to the same camera view to avoid distribution shifts. Ablation studies confirm each component contributes. LSTC-MDA achieves state-of-the-art results: 94.1% and 97.5% on NTU 60 (X-Sub and X-View), 90.4% and 92.0% on NTU 120 (X-Sub and X-Set),97.2% on NW-UCLA. Code: https://github.com/xiaobaoxia/LSTC-MDA.

Authors:Zhaokai Wang, Penghao Yin, Xiangyu Zhao, Changyao Tian, Yu Qiao, Wenhai Wang, Jifeng Dai, Gen Luo
Title: GenExam: A Multidisciplinary Text-to-Image Exam
Abstract:
Exams are a fundamental test of expert-level intelligence and require integrated understanding, reasoning, and generation. Existing exam-style benchmarks mainly focus on understanding and reasoning tasks, and current generation benchmarks emphasize the illustration of world knowledge and visual concepts, neglecting the evaluation of rigorous drawing exams. We introduce GenExam, the first benchmark for multidisciplinary text-to-image exams, featuring 1,000 samples across 10 subjects with exam-style prompts organized under a four-level taxonomy. Each problem is equipped with ground-truth images and fine-grained scoring points to enable a precise evaluation of semantic correctness and visual plausibility. Experiments show that even state-of-the-art models such as GPT-Image-1 and Gemini-2.5-Flash-Image achieve less than 15% strict scores, and most models yield almost 0%, suggesting the great challenge of our benchmark. By framing image generation as an exam, GenExam offers a rigorous assessment of models' ability to integrate understanding, reasoning, and generation, providing insights on the path to general AGI. Our benchmark and evaluation code are released at https://github.com/OpenGVLab/GenExam.

Authors:Peng Xu, Shengwu Xiong, Jiajun Zhang, Yaxiong Chen, Bowen Zhou, Chen Change Loy, David A. Clifton, Kyoung Mu Lee, Luc Van Gool, Ruiming He, Ruilin Yao, Xinwei Long, Jirui Huang, Kai Tian, Sa Yang, Yihua Shao, Jin Feng, Yue Zhong, Jiakai Zhou, Cheng Tang, Tianyu Zou, Yifang Zhang, Junming Liang, Guoyou Li, Zhaoxiang Wang, Qiang Zhou, Yichen Zhao, Shili Xiong, Hyeongjin Nam, Jaerin Lee, Jaeyoung Chung, JoonKyu Park, Junghun Oh, Kanggeon Lee, Wooseok Lee, Juneyoung Ro, Turghun Osman, Can Hu, Chaoyang Liao, Cheng Chen, Chengcheng Han, Chenhao Qiu, Chong Peng, Cong Xu, Dailin Li, Feiyu Wang, Feng Gao, Guibo Zhu, Guopeng Tang, Haibo Lu, Han Fang, Han Qi, Hanxiao Wu, Haobo Cheng, Hongbo Sun, Hongyao Chen, Huayong Hu, Hui Li, Jiaheng Ma, Jiang Yu, Jianing Wang, Jie Yang, Jing He, Jinglin Zhou, Jingxuan Li, Josef Kittler, Lihao Zheng, Linnan Zhao, Mengxi Jia, Muyang Yan, Nguyen Thanh Thien, Pu Luo, Qi Li, Shien Song, Shijie Dong, Shuai Shao, Shutao Li, Taofeng Xue, Tianyang Xu, Tianyi Gao, Tingting Li, Wei Zhang, Weiyang Su, Xiaodong Dong, Xiao-Jun Wu, Xiaopeng Zhou, Xin Chen, Xin Wei, Xinyi You, Xudong Kang, Xujie Zhou, Xusheng Liu, Yanan Wang, Yanbin Huang, Yang Liu, Yang Yang, Yanglin Deng, Yashu Kang, Ye Yuan, Yi Wen, Yicen Tian, Yilin Tao, Yin Tang, Yipeng Lin, Yiqing Wang, Yiting Xi, Yongkang Yu, Yumei Li, Yuxin Qin, Yuying Chen, Yuzhe Cen, Zhaofan Zou, Zhaohong Liu, Zhehao Shen, Zhenglin Du, Zhengyang Li, Zhenni Huang, Zhenwei Shao, Zhilong Song, Zhiyong Feng, Zhiyu Wang, Zhou Yu, Ziang Li, Zihan Zhai, Zijian Zhang, Ziyang Peng, Ziyun Xiao, Zongshu Li
Title: MARS2 2025 Challenge on Multimodal Reasoning: Datasets, Methods, Results, Discussion, and Outlook
Abstract:
This paper reviews the MARS2 2025 Challenge on Multimodal Reasoning. We aim to bring together different approaches in multimodal machine learning and LLMs via a large benchmark. We hope it better allows researchers to follow the state-of-the-art in this very dynamic area. Meanwhile, a growing number of testbeds have boosted the evolution of general-purpose large language models. Thus, this year's MARS2 focuses on real-world and specialized scenarios to broaden the multimodal reasoning applications of MLLMs. Our organizing team released two tailored datasets Lens and AdsQA as test sets, which support general reasoning in 12 daily scenarios and domain-specific reasoning in advertisement videos, respectively. We evaluated 40+ baselines that include both generalist MLLMs and task-specific models, and opened up three competition tracks, i.e., Visual Grounding in Real-world Scenarios (VG-RS), Visual Question Answering with Spatial Awareness (VQA-SA), and Visual Reasoning in Creative Advertisement Videos (VR-Ads). Finally, 76 teams from the renowned academic and industrial institutions have registered and 40+ valid submissions (out of 1200+) have been included in our ranking lists. Our datasets, code sets (40+ baselines and 15+ participants' methods), and rankings are publicly available on the MARS2 workshop website and our GitHub organization page https://github.com/mars2workshop/, where our updates and announcements of upcoming events will be continuously provided.

Authors:Jingyi Yuan, Jianxiong Ye, Wenkang Chen, Chenqiang Gao
Title: AD-DINOv3: Enhancing DINOv3 for Zero-Shot Anomaly Detection with Anomaly-Aware Calibration
Abstract:
Zero-Shot Anomaly Detection (ZSAD) seeks to identify anomalies from arbitrary novel categories, offering a scalable and annotation-efficient solution. Traditionally, most ZSAD works have been based on the CLIP model, which performs anomaly detection by calculating the similarity between visual and text embeddings. Recently, vision foundation models such as DINOv3 have demonstrated strong transferable representation capabilities. In this work, we are the first to adapt DINOv3 for ZSAD. However, this adaptation presents two key challenges: (i) the domain bias between large-scale pretraining data and anomaly detection tasks leads to feature misalignment; and (ii) the inherent bias toward global semantics in pretrained representations often leads to subtle anomalies being misinterpreted as part of the normal foreground objects, rather than being distinguished as abnormal regions. To overcome these challenges, we introduce AD-DINOv3, a novel vision-language multimodal framework designed for ZSAD. Specifically, we formulate anomaly detection as a multimodal contrastive learning problem, where DINOv3 is employed as the visual backbone to extract patch tokens and a CLS token, and the CLIP text encoder provides embeddings for both normal and abnormal prompts. To bridge the domain gap, lightweight adapters are introduced in both modalities, enabling their representations to be recalibrated for the anomaly detection task. Beyond this baseline alignment, we further design an Anomaly-Aware Calibration Module (AACM), which explicitly guides the CLS token to attend to anomalous regions rather than generic foreground semantics, thereby enhancing discriminability. Extensive experiments on eight industrial and medical benchmarks demonstrate that AD-DINOv3 consistently matches or surpasses state-of-the-art methods.The code will be available at https://github.com/Kaisor-Yuan/AD-DINOv3.

Authors:Gang Cheng, Xin Gao, Li Hu, Siqi Hu, Mingyang Huang, Chaonan Ji, Ju Li, Dechao Meng, Jinwei Qi, Penchong Qiao, Zhen Shen, Yafei Song, Ke Sun, Linrui Tian, Feng Wang, Guangyuan Wang, Qi Wang, Zhongjian Wang, Jiayu Xiao, Sheng Xu, Bang Zhang, Peng Zhang, Xindi Zhang, Zhe Zhang, Jingren Zhou, Lian Zhuo
Title: Wan-Animate: Unified Character Animation and Replacement with Holistic Replication
Abstract:
We introduce Wan-Animate, a unified framework for character animation and replacement. Given a character image and a reference video, Wan-Animate can animate the character by precisely replicating the expressions and movements of the character in the video to generate high-fidelity character videos. Alternatively, it can integrate the animated character into the reference video to replace the original character, replicating the scene's lighting and color tone to achieve seamless environmental integration. Wan-Animate is built upon the Wan model. To adapt it for character animation tasks, we employ a modified input paradigm to differentiate between reference conditions and regions for generation. This design unifies multiple tasks into a common symbolic representation. We use spatially-aligned skeleton signals to replicate body motion and implicit facial features extracted from source images to reenact expressions, enabling the generation of character videos with high controllability and expressiveness. Furthermore, to enhance environmental integration during character replacement, we develop an auxiliary Relighting LoRA. This module preserves the character's appearance consistency while applying the appropriate environmental lighting and color tone. Experimental results demonstrate that Wan-Animate achieves state-of-the-art performance. We are committed to open-sourcing the model weights and its source code.

Authors:Harvey Mannering, Zhiwu Huang, Adam Prugel-Bennett
Title: Noise-Level Diffusion Guidance: Well Begun is Half Done
Abstract:
Diffusion models have achieved state-of-the-art image generation. However, the random Gaussian noise used to start the diffusion process influences the final output, causing variations in image quality and prompt adherence. Existing noise-level optimization approaches generally rely on extra dataset construction, additional networks, or backpropagation-based optimization, limiting their practicality. In this paper, we propose Noise Level Guidance (NLG), a simple, efficient, and general noise-level optimization approach that refines initial noise by increasing the likelihood of its alignment with general guidance - requiring no additional training data, auxiliary networks, or backpropagation. The proposed NLG approach provides a unified framework generalizable to both conditional and unconditional diffusion models, accommodating various forms of diffusion-level guidance. Extensive experiments on five standard benchmarks demonstrate that our approach enhances output generation quality and input condition adherence. By seamlessly integrating with existing guidance methods while maintaining computational efficiency, our method establishes NLG as a practical and scalable enhancement to diffusion models. Code can be found at https://github.com/harveymannering/NoiseLevelGuidance.

Authors:Zhen Xu, Guorui Lu, Chang Gao, Qinyu Chen
Title: EvHand-FPV: Efficient Event-Based 3D Hand Tracking from First-Person View
Abstract:
Hand tracking holds great promise for intuitive interaction paradigms, but frame-based methods often struggle to meet the requirements of accuracy, low latency, and energy efficiency, especially in resource-constrained settings such as Extended Reality (XR) devices. Event cameras provide $μ$s-level temporal resolution at mW-level power by asynchronously sensing brightness changes. In this work, we present EvHand-FPV, a lightweight framework for egocentric First-Person-View 3D hand tracking from a single event camera. We construct an event-based FPV dataset that couples synthetic training data with 3D labels and real event data with 2D labels for evaluation to address the scarcity of egocentric benchmarks. EvHand-FPV also introduces a wrist-based region of interest (ROI) that localizes the hand region via geometric cues, combined with an end-to-end mapping strategy that embeds ROI offsets into the network to reduce computation without explicit reconstruction, and a multi-task learning strategy with an auxiliary geometric feature head that improves representations without test-time overhead. On our real FPV test set, EvHand-FPV improves 2D-AUCp from 0.77 to 0.85 while reducing parameters from 11.2M to 1.2M by 89% and FLOPs per inference from 1.648G to 0.185G by 89%. It also maintains a competitive 3D-AUCp of 0.84 on synthetic data. These results demonstrate accurate and efficient egocentric event-based hand tracking suitable for on-device XR applications. The dataset and code are available at https://github.com/zen5x5/EvHand-FPV.

Authors:Jovana Videnovic, Matej Kristan, Alan Lukezic
Title: Distractor-Aware Memory-Based Visual Object Tracking
Abstract:
Recent emergence of memory-based video segmentation methods such as SAM2 has led to models with excellent performance in segmentation tasks, achieving leading results on numerous benchmarks. However, these modes are not fully adjusted for visual object tracking, where distractors (i.e., objects visually similar to the target) pose a key challenge. In this paper we propose a distractor-aware drop-in memory module and introspection-based management method for SAM2, leading to DAM4SAM. Our design effectively reduces the tracking drift toward distractors and improves redetection capability after object occlusion. To facilitate the analysis of tracking in the presence of distractors, we construct DiDi, a Distractor-Distilled dataset. DAM4SAM outperforms SAM2.1 on thirteen benchmarks and sets new state-of-the-art results on ten. Furthermore, integrating the proposed distractor-aware memory into a real-time tracker EfficientTAM leads to 11% improvement and matches tracking quality of the non-real-time SAM2.1-L on multiple tracking and segmentation benchmarks, while integration with edge-based tracker EdgeTAM delivers 4% performance boost, demonstrating a very good generalization across architectures.

Authors:Qianxin Xia, Jiawei Du, Guoming Lu, Zhiyong Shu, Jielei Wang
Title: EDITS: Enhancing Dataset Distillation with Implicit Textual Semantics
Abstract:
Dataset distillation aims to synthesize a compact dataset from the original large-scale one, enabling highly efficient learning while preserving competitive model performance. However, traditional techniques primarily capture low-level visual features, neglecting the high-level semantic and structural information inherent in images. In this paper, we propose EDITS, a novel framework that exploits the implicit textual semantics within the image data to achieve enhanced distillation. First, external texts generated by a Vision Language Model (VLM) are fused with image features through a Global Semantic Query module, forming the prior clustered buffer. Local Semantic Awareness then selects representative samples from the buffer to construct image and text prototypes, with the latter produced by guiding a Large Language Model (LLM) with meticulously crafted prompt. Ultimately, Dual Prototype Guidance strategy generates the final synthetic dataset through a diffusion model. Extensive experiments confirm the effectiveness of our method.Source code is available in: https://github.com/einsteinxia/EDITS.

Authors:Puru Vaish, Felix Meister, Tobias Heimann, Christoph Brune, Jelmer M. Wolterink
Title: Consistent View Alignment Improves Foundation Models for 3D Medical Image Segmentation
Abstract:
Many recent approaches in representation learning implicitly assume that uncorrelated views of a data point are sufficient to learn meaningful representations for various downstream tasks. In this work, we challenge this assumption and demonstrate that meaningful structure in the latent space does not emerge naturally. Instead, it must be explicitly induced. We propose a method that aligns representations from different views of the data to align complementary information without inducing false positives. Our experiments show that our proposed self-supervised learning method, Consistent View Alignment, improves performance for downstream tasks, highlighting the critical role of structured view alignment in learning effective representations. Our method achieved first and second place in the MICCAI 2025 SSL3D challenge when using a Primus vision transformer and ResEnc convolutional neural network, respectively. The code and pretrained model weights are released at https://github.com/Tenbatsu24/LatentCampus.

Authors:Nguyen Lan Vi Vu, Thanh-Huy Nguyen, Thien Nguyen, Daisuke Kihara, Tianyang Wang, Xingjian Li, Min Xu
Title: Semi-MoE: Mixture-of-Experts meets Semi-Supervised Histopathology Segmentation
Abstract:
Semi-supervised learning has been employed to alleviate the need for extensive labeled data for histopathology image segmentation, but existing methods struggle with noisy pseudo-labels due to ambiguous gland boundaries and morphological misclassification. This paper introduces Semi-MOE, to the best of our knowledge, the first multi-task Mixture-of-Experts framework for semi-supervised histopathology image segmentation. Our approach leverages three specialized expert networks: A main segmentation expert, a signed distance field regression expert, and a boundary prediction expert, each dedicated to capturing distinct morphological features. Subsequently, the Multi-Gating Pseudo-labeling module dynamically aggregates expert features, enabling a robust fuse-and-refine pseudo-labeling mechanism. Furthermore, to eliminate manual tuning while dynamically balancing multiple learning objectives, we propose an Adaptive Multi-Objective Loss. Extensive experiments on GlaS and CRAG benchmarks show that our method outperforms state-of-the-art approaches in low-label settings, highlighting the potential of MoE-based architectures in advancing semi-supervised segmentation. Our code is available at https://github.com/vnlvi2k3/Semi-MoE.

Authors:Jiayu Yuan, Ming Dai, Enhui Zheng, Chao Su, Nanxing Chen, Qiming Hu, Shibo Zhu, Yibin Cao
Title: SWA-PF: Semantic-Weighted Adaptive Particle Filter for Memory-Efficient 4-DoF UAV Localization in GNSS-Denied Environments
Abstract:
Vision-based Unmanned Aerial Vehicle (UAV) localization systems have been extensively investigated for Global Navigation Satellite System (GNSS)-denied environments. However, existing retrieval-based approaches face limitations in dataset availability and persistent challenges including suboptimal real-time performance, environmental sensitivity, and limited generalization capability, particularly in dynamic or temporally varying environments. To overcome these limitations, we present a large-scale Multi-Altitude Flight Segments dataset (MAFS) for variable altitude scenarios and propose a novel Semantic-Weighted Adaptive Particle Filter (SWA-PF) method. This approach integrates robust semantic features from both UAV-captured images and satellite imagery through two key innovations: a semantic weighting mechanism and an optimized particle filtering architecture. Evaluated using our dataset, the proposed method achieves 10x computational efficiency gain over feature extraction methods, maintains global positioning errors below 10 meters, and enables rapid 4 degree of freedom (4-DoF) pose estimation within seconds using accessible low-resolution satellite maps. Code and dataset will be available at https://github.com/YuanJiayuuu/SWA-PF.

Authors:Huichun Liu, Xiaosong Li, Yang Liu, Xiaoqi Cheng, Haishu Tan
Title: NDLPNet: A Location-Aware Nighttime Deraining Network and a Real-World Benchmark Dataset
Abstract:
Visual degradation caused by rain streak artifacts in low-light conditions significantly hampers the performance of nighttime surveillance and autonomous navigation. Existing image deraining techniques are primarily designed for daytime conditions and perform poorly under nighttime illumination due to the spatial heterogeneity of rain distribution and the impact of light-dependent stripe visibility. In this paper, we propose a novel Nighttime Deraining Location-enhanced Perceptual Network(NDLPNet) that effectively captures the spatial positional information and density distribution of rain streaks in low-light environments. Specifically, we introduce a Position Perception Module (PPM) to capture and leverage spatial contextual information from input data, enhancing the model's capability to identify and recalibrate the importance of different feature channels. The proposed nighttime deraining network can effectively remove the rain streaks as well as preserve the crucial background information. Furthermore, We construct a night scene rainy (NSR) dataset comprising 900 image pairs, all based on real-world nighttime scenes, providing a new benchmark for nighttime deraining task research. Extensive qualitative and quantitative experimental evaluations on both existing datasets and the NSR dataset consistently demonstrate our method outperform the state-of-the-art (SOTA) methods in nighttime deraining tasks. The source code and dataset is available at https://github.com/Feecuin/NDLPNet.

Authors:Jinwoo Jeon, JunHyeok Oh, Hayeong Lee, Byung-Jun Lee
Title: Iterative Prompt Refinement for Safer Text-to-Image Generation
Abstract:
Text-to-Image (T2I) models have made remarkable progress in generating images from text prompts, but their output quality and safety still depend heavily on how prompts are phrased. Existing safety methods typically refine prompts using large language models (LLMs), but they overlook the images produced, which can result in unsafe outputs or unnecessary changes to already safe prompts. To address this, we propose an iterative prompt refinement algorithm that uses Vision Language Models (VLMs) to analyze both the input prompts and the generated images. By leveraging visual feedback, our method refines prompts more effectively, improving safety while maintaining user intent and reliability comparable to existing LLM-based approaches. Additionally, we introduce a new dataset labeled with both textual and visual safety signals using off-the-shelf multi-modal LLM, enabling supervised fine-tuning. Experimental results demonstrate that our approach produces safer outputs without compromising alignment with user intent, offering a practical solution for generating safer T2I content. Our code is available at https://github.com/ku-dmlab/IPR. \textbf{\textcolor{red}WARNING: This paper contains examples of harmful or inappropriate images generated by models.

Authors:Hao Yin, Xin Man, Feiyu Chen, Jie Shao, Heng Tao Shen
Title: Cross-modal Full-mode Fine-grained Alignment for Text-to-Image Person Retrieval
Abstract:
Text-to-Image Person Retrieval (TIPR) is a cross-modal matching task that aims to retrieve the most relevant person images based on a given text query. The key challenge in TIPR lies in achieving effective alignment between textual and visual modalities within a common latent space. To address this challenge, prior approaches incorporate attention mechanisms for implicit cross-modal local alignment. However, they lack the ability to verify whether all local features are correctly aligned. Moreover, existing methods primarily focus on hard negative samples during model updates, with the goal of refining distinctions between positive and negative pairs, often neglecting incorrectly matched positive pairs. To alleviate these issues, we propose FMFA, a cross-modal Full-Mode Fine-grained Alignment framework, which enhances global matching through explicit fine-grained alignment and existing implicit relational reasoning -- hence the term ``full-mode" -- without requiring additional supervision. Specifically, we design an Adaptive Similarity Distribution Matching (A-SDM) module to rectify unmatched positive sample pairs. A-SDM adaptively pulls the unmatched positive pairs closer in the joint embedding space, thereby achieving more precise global alignment. Additionally, we introduce an Explicit Fine-grained Alignment (EFA) module, which makes up for the lack of verification capability of implicit relational reasoning. EFA strengthens explicit cross-modal fine-grained interactions by sparsifying the similarity matrix and employs a hard coding method for local alignment. Our proposed method is evaluated on three public datasets, achieving state-of-the-art performance among all global matching methods. Our code is available at https://github.com/yinhao1102/FMFA.

Authors:Ming Dai, Wenxuan Cheng, Jiang-Jiang Liu, Lingfeng Yang, Zhenhua Feng, Wankou Yang, Jingdong Wang
Title: Improving Generalized Visual Grounding with Instance-aware Joint Learning
Abstract:
Generalized visual grounding tasks, including Generalized Referring Expression Comprehension (GREC) and Segmentation (GRES), extend the classical visual grounding paradigm by accommodating multi-target and non-target scenarios. Specifically, GREC focuses on accurately identifying all referential objects at the coarse bounding box level, while GRES aims for achieve fine-grained pixel-level perception. However, existing approaches typically treat these tasks independently, overlooking the benefits of jointly training GREC and GRES to ensure consistent multi-granularity predictions and streamline the overall process. Moreover, current methods often treat GRES as a semantic segmentation task, neglecting the crucial role of instance-aware capabilities and the necessity of ensuring consistent predictions between instance-level boxes and masks. To address these limitations, we propose InstanceVG, a multi-task generalized visual grounding framework equipped with instance-aware capabilities, which leverages instance queries to unify the joint and consistency predictions of instance-level boxes and masks. To the best of our knowledge, InstanceVG is the first framework to simultaneously tackle both GREC and GRES while incorporating instance-aware capabilities into generalized visual grounding. To instantiate the framework, we assign each instance query a prior reference point, which also serves as an additional basis for target matching. This design facilitates consistent predictions of points, boxes, and masks for the same instance. Extensive experiments obtained on ten datasets across four tasks demonstrate that InstanceVG achieves state-of-the-art performance, significantly surpassing the existing methods in various evaluation metrics. The code and model will be publicly available at https://github.com/Dmmm1997/InstanceVG.

Authors:Zirun Guo, Feng Zhang, Kai Jia, Tao Jin
Title: LLM-I: LLMs are Naturally Interleaved Multimodal Creators
Abstract:
We propose LLM-Interleaved (LLM-I), a flexible and dynamic framework that reframes interleaved image-text generation as a tool-use problem. LLM-I is designed to overcome the "one-tool" bottleneck of current unified models, which are limited to synthetic imagery and struggle with tasks requiring factual grounding or programmatic precision. Our framework empowers a central LLM or MLLM agent to intelligently orchestrate a diverse toolkit of specialized visual tools, including online image search, diffusion-based generation, code execution, and image editing. The agent is trained to select and apply these tools proficiently via a Reinforcement Learning (RL) framework that features a hybrid reward system combining rule-based logic with judgments from LLM and MLLM evaluators. Trained on a diverse new dataset using four different model backbones, LLM-I demonstrates state-of-the-art performance, outperforming existing methods by a large margin across four benchmarks. We also introduce a novel test-time scaling strategy that provides further performance gains. Project Page: https://github.com/ByteDance-BandAI/LLM-I.

Authors:Amir-Hossein Shahidzadeh, Jiyue Zhu, Kezhou Chen, Sha Yi, Cornelia Fermüller, Yiannis Aloimonos, Xiaolong Wang
Title: Object Pose Estimation through Dexterous Touch
Abstract:
Robust object pose estimation is essential for manipulation and interaction tasks in robotics, particularly in scenarios where visual data is limited or sensitive to lighting, occlusions, and appearances. Tactile sensors often offer limited and local contact information, making it challenging to reconstruct the pose from partial data. Our approach uses sensorimotor exploration to actively control a robot hand to interact with the object. We train with Reinforcement Learning (RL) to explore and collect tactile data. The collected 3D point clouds are used to iteratively refine the object's shape and pose. In our setup, one hand holds the object steady while the other performs active exploration. We show that our method can actively explore an object's surface to identify critical pose features without prior knowledge of the object's geometry. Supplementary material and more demonstrations will be provided at https://amirshahid.github.io/BimanualTactilePose .

Authors:Jiangbei Yue, Shuonan Yang, Tailin Chen, Jianbo Jiao, Zeyu Fu
Title: Multimodal Hate Detection Using Dual-Stream Graph Neural Networks
Abstract:
Hateful videos present serious risks to online safety and real-world well-being, necessitating effective detection methods. Although multimodal classification approaches integrating information from several modalities outperform unimodal ones, they typically neglect that even minimal hateful content defines a video's category. Specifically, they generally treat all content uniformly, instead of emphasizing the hateful components. Additionally, existing multimodal methods cannot systematically capture structured information in videos, limiting the effectiveness of multimodal fusion. To address these limitations, we propose a novel multimodal dual-stream graph neural network model. It constructs an instance graph by separating the given video into several instances to extract instance-level features. Then, a complementary weight graph assigns importance weights to these features, highlighting hateful instances. Importance weights and instance features are combined to generate video labels. Our model employs a graph-based framework to systematically model structured relationships within and across modalities. Extensive experiments on public datasets show that our model is state-of-the-art in hateful video classification and has strong explainability. Code is available: https://github.com/Multimodal-Intelligence-Lab-MIL/MultiHateGNN.

Authors:Uriel Garcilazo-Cruz, Joseph O. Okeme, Rodrigo A. Vargas--Hernández
Title: LivePyxel: Accelerating image annotations with a Python-integrated webcam live streaming
Abstract:
The lack of flexible annotation tools has hindered the deployment of AI models in some scientific areas. Most existing image annotation software requires users to upload a precollected dataset, which limits support for on-demand pipelines and introduces unnecessary steps to acquire images. This constraint is particularly problematic in laboratory environments, where real-time data acquisition from instruments such as microscopes is increasingly common. In this work, we introduce \texttt{LivePixel}, a Python-based graphical user interface that integrates with imaging systems, such as webcams, microscopes, and others, to enable real-time image annotation. LivePyxel is designed to be easy to use through a simple interface that allows users to precisely delimit areas for annotation using tools commonly found in commercial graphics editing software. Of particular interest is the availability of Bézier splines and binary masks, and the software's capacity to work with non-destructive layers that enable high-performance editing. LivePyxel also integrates a wide compatibility across video devices, and it's optimized for object detection operations via the use of OpenCV in combination with high-performance libraries designed to handle matrix and linear algebra operations via Numpy effectively. LivePyxel facilitates seamless data collection and labeling, accelerating the development of AI models in experimental workflows. LivePyxel freely available at https://github.com/UGarCil/LivePyxel

Authors:Hao Xu, Xiaolin Wu, Xi Zhang
Title: Improving 3D Gaussian Splatting Compression by Scene-Adaptive Lattice Vector Quantization
Abstract:
3D Gaussian Splatting (3DGS) is rapidly gaining popularity for its photorealistic rendering quality and real-time performance, but it generates massive amounts of data. Hence compressing 3DGS data is necessary for the cost effectiveness of 3DGS models. Recently, several anchor-based neural compression methods have been proposed, achieving good 3DGS compression performance. However, they all rely on uniform scalar quantization (USQ) due to its simplicity. A tantalizing question is whether more sophisticated quantizers can improve the current 3DGS compression methods with very little extra overhead and minimal change to the system. The answer is yes by replacing USQ with lattice vector quantization (LVQ). To better capture scene-specific characteristics, we optimize the lattice basis for each scene, improving LVQ's adaptability and R-D efficiency. This scene-adaptive LVQ (SALVQ) strikes a balance between the R-D efficiency of vector quantization and the low complexity of USQ. SALVQ can be seamlessly integrated into existing 3DGS compression architectures, enhancing their R-D performance with minimal modifications and computational overhead. Moreover, by scaling the lattice basis vectors, SALVQ can dynamically adjust lattice density, enabling a single model to accommodate multiple bit rate targets. This flexibility eliminates the need to train separate models for different compression levels, significantly reducing training time and memory consumption.

Authors:Tianyu Chen, Yasi Zhang, Zhi Zhang, Peiyu Yu, Shu Wang, Zhendong Wang, Kevin Lin, Xiaofei Wang, Zhengyuan Yang, Linjie Li, Chung-Ching Lin, Jianwen Xie, Oscar Leong, Lijuan Wang, Ying Nian Wu, Mingyuan Zhou
Title: EdiVal-Agent: An Object-Centric Framework for Automated, Scalable, Fine-Grained Evaluation of Multi-Turn Editing
Abstract:
Instruction-based image editing has advanced rapidly, yet reliable and interpretable evaluation remains a bottleneck. Current protocols either (i) depend on paired reference images -- resulting in limited coverage and inheriting biases from prior generative models -- or (ii) rely solely on zero-shot vision-language models (VLMs), whose prompt-based assessments of instruction following, content consistency, and visual quality are often imprecise. To address this, we introduce EdiVal-Agent, an automated, scalable, and fine-grained evaluation framework for multi-turn instruction-based editing from an object-centric perspective, supported by a suite of expert tools. Given an image, EdiVal-Agent first decomposes it into semantically meaningful objects, then synthesizes diverse, context-aware editing instructions. For evaluation, it integrates VLMs with open-vocabulary object detectors to assess instruction following, uses semantic-level feature extractors to evaluate content consistency, and leverages human preference models to judge visual quality. We show that combining VLMs with object detectors yields stronger agreement with human judgments in instruction-following evaluation compared to using VLMs alone and CLIP-based metrics. Furthermore, the pipeline's modular design allows future tools to be seamlessly integrated, enhancing evaluation accuracy over time. Instantiating this pipeline, we build EdiVal-Bench, a multi-turn editing benchmark covering 9 instruction types and 11 state-of-the-art editing models spanning autoregressive (AR) (including Nano Banana, GPT-Image-1), flow-matching, and diffusion paradigms. We demonstrate that EdiVal-Agent can be used to identify existing failure modes, thereby informing the development of the next generation of editing models. Project page: https://tianyucodings.github.io/EdiVAL-page/.

Authors:Hugo Carlesso, Josiane Mothe, Radu Tudor Ionescu
Title: Curriculum Multi-Task Self-Supervision Improves Lightweight Architectures for Onboard Satellite Hyperspectral Image Segmentation
Abstract:
Hyperspectral imaging (HSI) captures detailed spectral signatures across hundreds of contiguous bands per pixel, being indispensable for remote sensing applications such as land-cover classification, change detection, and environmental monitoring. Due to the high dimensionality of HSI data and the slow rate of data transfer in satellite-based systems, compact and efficient models are required to support onboard processing and minimize the transmission of redundant or low-value data, e.g. cloud-covered areas. To this end, we introduce a novel curriculum multi-task self-supervised learning (CMTSSL) framework designed for lightweight architectures for HSI analysis. CMTSSL integrates masked image modeling with decoupled spatial and spectral jigsaw puzzle solving, guided by a curriculum learning strategy that progressively increases data complexity during self-supervision. This enables the encoder to jointly capture fine-grained spectral continuity, spatial structure, and global semantic features. Unlike prior dual-task SSL methods, CMTSSL simultaneously addresses spatial and spectral reasoning within a unified and computationally efficient design, being particularly suitable for training lightweight models for onboard satellite deployment. We validate our approach on four public benchmark datasets, demonstrating consistent gains in downstream segmentation tasks, using architectures that are over 16,000x lighter than some state-of-the-art models. These results highlight the potential of CMTSSL in generalizable representation learning with lightweight architectures for real-world HSI applications. Our code is publicly available at https://github.com/hugocarlesso/CMTSSL.

Authors:Yingtai Li, Haoran Lai, Xiaoqian Zhou, Shuai Ming, Wenxin Ma, Wei Wei, Shaohua Kevin Zhou
Title: More performant and scalable: Rethinking contrastive vision-language pre-training of radiology in the LLM era
Abstract:
The emergence of Large Language Models (LLMs) presents unprecedented opportunities to revolutionize medical contrastive vision-language pre-training. In this paper, we show how LLMs can facilitate large-scale supervised pre-training, thereby advancing vision-language alignment. We begin by demonstrate that modern LLMs can automatically extract diagnostic labels from radiology reports with remarkable precision (>96\% AUC in our experiments) without complex prompt engineering, enabling the creation of large-scale "silver-standard" datasets at a minimal cost (~\$3 for 50k CT image-report pairs). Further, we find that vision encoder trained on this "silver-standard" dataset achieves performance comparable to those trained on labels extracted by specialized BERT-based models, thereby democratizing the access to large-scale supervised pre-training. Building on this foundation, we proceed to reveal that supervised pre-training fundamentally improves contrastive vision-language alignment. Our approach achieves state-of-the-art performance using only a 3D ResNet-18 with vanilla CLIP training, including 83.8\% AUC for zero-shot diagnosis on CT-RATE, 77.3\% AUC on RAD-ChestCT, and substantial improvements in cross-modal retrieval (MAP@50=53.7\% for image-image, Recall@100=52.2\% for report-image). These results demonstrate the potential of utilizing LLMs to facilitate {\bf more performant and scalable} medical AI systems. Our code is avaiable at https://github.com/SadVoxel/More-performant-and-scalable.

Authors:Ruifei Ding, Zhe Chen, Wen Fan, Chen Long, Huijuan Xiao, Yelu Zeng, Zhen Dong, Bisheng Yang
Title: WHU-STree: A Multi-modal Benchmark Dataset for Street Tree Inventory
Abstract:
Street trees are vital to urban livability, providing ecological and social benefits. Establishing a detailed, accurate, and dynamically updated street tree inventory has become essential for optimizing these multifunctional assets within space-constrained urban environments. Given that traditional field surveys are time-consuming and labor-intensive, automated surveys utilizing Mobile Mapping Systems (MMS) offer a more efficient solution. However, existing MMS-acquired tree datasets are limited by small-scale scene, limited annotation, or single modality, restricting their utility for comprehensive analysis. To address these limitations, we introduce WHU-STree, a cross-city, richly annotated, and multi-modal urban street tree dataset. Collected across two distinct cities, WHU-STree integrates synchronized point clouds and high-resolution images, encompassing 21,007 annotated tree instances across 50 species and 2 morphological parameters. Leveraging the unique characteristics, WHU-STree concurrently supports over 10 tasks related to street tree inventory. We benchmark representative baselines for two key tasks--tree species classification and individual tree segmentation. Extensive experiments and in-depth analysis demonstrate the significant potential of multi-modal data fusion and underscore cross-domain applicability as a critical prerequisite for practical algorithm deployment. In particular, we identify key challenges and outline potential future works for fully exploiting WHU-STree, encompassing multi-modal fusion, multi-task collaboration, cross-domain generalization, spatial pattern learning, and Multi-modal Large Language Model for street tree asset management. The WHU-STree dataset is accessible at: https://github.com/WHU-USI3DV/WHU-STree.

Authors:Zhihao Zhang, Chunyu Lin, Lang Nie, Jiyuan Wang, Yao Zhao
Title: Advancing Real-World Parking Slot Detection with Large-Scale Dataset and Semi-Supervised Baseline
Abstract:
As automatic parking systems evolve, the accurate detection of parking slots has become increasingly critical. This study focuses on parking slot detection using surround-view cameras, which offer a comprehensive bird's-eye view of the parking environment. However, the current datasets are limited in scale, and the scenes they contain are seldom disrupted by real-world noise (e.g., light, occlusion, etc.). Moreover, manual data annotation is prone to errors and omissions due to the complexity of real-world conditions, significantly increasing the cost of annotating large-scale datasets. To address these issues, we first construct a large-scale parking slot detection dataset (named CRPS-D), which includes various lighting distributions, diverse weather conditions, and challenging parking slot variants. Compared with existing datasets, the proposed dataset boasts the largest data scale and consists of a higher density of parking slots, particularly featuring more slanted parking slots. Additionally, we develop a semi-supervised baseline for parking slot detection, termed SS-PSD, to further improve performance by exploiting unlabeled data. To our knowledge, this is the first semi-supervised approach in parking slot detection, which is built on the teacher-student model with confidence-guided mask consistency and adaptive feature perturbation. Experimental results demonstrate the superiority of SS-PSD over the existing state-of-the-art (SoTA) solutions on both the proposed dataset and the existing dataset. Particularly, the more unlabeled data there is, the more significant the gains brought by our semi-supervised scheme. The relevant source codes and the dataset have been made publicly available at https://github.com/zzh362/CRPS-D.

Authors:Yan Xingyang, Huang Xiaohong, Zhang Zhao, You Tian, Xu Ziheng
Title: Using KL-Divergence to Focus Frequency Information in Low-Light Image Enhancement
Abstract:
In the Fourier domain, luminance information is primarily encoded in the amplitude spectrum, while spatial structures are captured in the phase components. The traditional Fourier Frequency information fitting employs pixel-wise loss functions, which tend to focus excessively on local information and may lead to global information loss. In this paper, we present LLFDisc, a U-shaped deep enhancement network that integrates cross-attention and gating mechanisms tailored for frequency-aware enhancement. We propose a novel distribution-aware loss that directly fits the Fourier-domain information and minimizes their divergence using a closed-form KL-Divergence objective. This enables the model to align Fourier-domain information more robustly than with conventional MSE-based losses. Furthermore, we enhance the perceptual loss based on VGG by embedding KL-Divergence on extracted deep features, enabling better structural fidelity. Extensive experiments across multiple benchmarks demonstrate that LLFDisc achieves state-of-the-art performance in both qualitative and quantitative evaluations. Our code will be released at: https://github.com/YanXY000/LLFDisc

Authors:Boyu Han, Qianqian Xu, Shilong Bao, Zhiyong Yang, Sicong Li, Qingming Huang
Title: Dual-Stage Reweighted MoE for Long-Tailed Egocentric Mistake Detection
Abstract:
In this report, we address the problem of determining whether a user performs an action incorrectly from egocentric video data. To handle the challenges posed by subtle and infrequent mistakes, we propose a Dual-Stage Reweighted Mixture-of-Experts (DR-MoE) framework. In the first stage, features are extracted using a frozen ViViT model and a LoRA-tuned ViViT model, which are combined through a feature-level expert module. In the second stage, three classifiers are trained with different objectives: reweighted cross-entropy to mitigate class imbalance, AUC loss to improve ranking under skewed distributions, and label-aware loss with sharpness-aware minimization to enhance calibration and generalization. Their predictions are fused using a classification-level expert module. The proposed method achieves strong performance, particularly in identifying rare and ambiguous mistake instances. The code is available at https://github.com/boyuh/DR-MoE.

Authors:Hojat Ardi, Amir Jahanshahi, Ali Diba
Title: T-SiamTPN: Temporal Siamese Transformer Pyramid Networks for Robust and Efficient UAV Tracking
Abstract:
Aerial object tracking remains a challenging task due to scale variations, dynamic backgrounds, clutter, and frequent occlusions. While most existing trackers emphasize spatial cues, they often overlook temporal dependencies, resulting in limited robustness in long-term tracking and under occlusion. Furthermore, correlation-based Siamese trackers are inherently constrained by the linear nature of correlation operations, making them ineffective against complex, non-linear appearance changes. To address these limitations, we introduce T-SiamTPN, a temporal-aware Siamese tracking framework that extends the SiamTPN architecture with explicit temporal modeling. Our approach incorporates temporal feature fusion and attention-based interactions, strengthening temporal consistency and enabling richer feature representations. These enhancements yield significant improvements over the baseline and achieve performance competitive with state-of-the-art trackers. Crucially, despite the added temporal modules, T-SiamTPN preserves computational efficiency. Deployed on the resource-constrained Jetson Nano, the tracker runs in real time at 7.1 FPS, demonstrating its suitability for real-world embedded applications without notable runtime overhead. Experimental results highlight substantial gains: compared to the baseline, T-SiamTPN improves success rate by 13.7% and precision by 14.7%. These findings underscore the importance of temporal modeling in Siamese tracking frameworks and establish T-SiamTPN as a strong and efficient solution for aerial object tracking. Code is available at: https://github.com/to/be/released

Authors:Weiming Chen, Zhihan Zhu, Yijia Wang, Zhihai He
Title: Runge-Kutta Approximation and Decoupled Attention for Rectified Flow Inversion and Semantic Editing
Abstract:
Rectified flow (RF) models have recently demonstrated superior generative performance compared to DDIM-based diffusion models. However, in real-world applications, they suffer from two major challenges: (1) low inversion accuracy that hinders the consistency with the source image, and (2) entangled multimodal attention in diffusion transformers, which hinders precise attention control. To address the first challenge, we propose an efficient high-order inversion method for rectified flow models based on the Runge-Kutta solver of differential equations. To tackle the second challenge, we introduce Decoupled Diffusion Transformer Attention (DDTA), a novel mechanism that disentangles text and image attention inside the multimodal diffusion transformers, enabling more precise semantic control. Extensive experiments on image reconstruction and text-guided editing tasks demonstrate that our method achieves state-of-the-art performance in terms of fidelity and editability. Code is available at https://github.com/wmchen/RKSovler_DDTA.

Authors:Qifei Jia, Yu Liu, Yajie Chai, Xintong Yao, Qiming Lu, Yasen Zhang, Runyu Shi, Ying Huang, Guoquan Zhang
Title: Lego-Edit: A General Image Editing Framework with Model-Level Bricks and MLLM Builder
Abstract:
Instruction-based image editing has garnered significant attention due to its direct interaction with users. However, real-world user instructions are immensely diverse, and existing methods often fail to generalize effectively to instructions outside their training domain, limiting their practical application. To address this, we propose Lego-Edit, which leverages the generalization capability of Multi-modal Large Language Model (MLLM) to organize a suite of model-level editing tools to tackle this challenge. Lego-Edit incorporates two key designs: (1) a model-level toolkit comprising diverse models efficiently trained on limited data and several image manipulation functions, enabling fine-grained composition of editing actions by the MLLM; and (2) a three-stage progressive reinforcement learning approach that uses feedback on unannotated, open-domain instructions to train the MLLM, equipping it with generalized reasoning capabilities for handling real-world instructions. Experiments demonstrate that Lego-Edit achieves state-of-the-art performance on GEdit-Bench and ImgBench. It exhibits robust reasoning capabilities for open-domain instructions and can utilize newly introduced editing tools without additional fine-tuning. Code is available: https://github.com/xiaomi-research/lego-edit.

Authors:Yabo Zhang, Yihan Zeng, Qingyun Li, Zhen Hu, Kavin Han, Wangmeng Zuo
Title: Tool-R1: Sample-Efficient Reinforcement Learning for Agentic Tool Use
Abstract:
Large language models (LLMs) have demonstrated strong capabilities in language understanding and reasoning, yet they remain limited when tackling real-world tasks that require up-to-date knowledge, precise operations, or specialized tool use. To address this, we propose Tool-R1, a reinforcement learning framework that enables LLMs to perform general, compositional, and multi-step tool use by generating executable Python code. Tool-R1 supports integration of user-defined tools and standard libraries, with variable sharing across steps to construct coherent workflows. An outcome-based reward function, combining LLM-based answer judgment and code execution success, guides policy optimization. To improve training efficiency, we maintain a dynamic sample queue to cache and reuse high-quality trajectories, reducing the overhead of costly online sampling. Experiments on the GAIA benchmark show that Tool-R1 substantially improves both accuracy and robustness, achieving about 10\% gain over strong baselines, with larger improvements on complex multi-step tasks. These results highlight the potential of Tool-R1 for enabling reliable and efficient tool-augmented reasoning in real-world applications. Our code will be available at https://github.com/YBYBZhang/Tool-R1.

Authors:Julien Walther, Rémi Giraud, Michaël Clément
Title: Superpixel Anything: A general object-based framework for accurate yet regular superpixel segmentation
Abstract:
Superpixels are widely used in computer vision to simplify image representation and reduce computational complexity. While traditional methods rely on low-level features, deep learning-based approaches leverage high-level features but also tend to sacrifice regularity of superpixels to capture complex objects, leading to accurate but less interpretable segmentations. In this work, we introduce SPAM (SuperPixel Anything Model), a versatile framework for segmenting images into accurate yet regular superpixels. We train a model to extract image features for superpixel generation, and at inference, we leverage a large-scale pretrained model for semantic-agnostic segmentation to ensure that superpixels align with object masks. SPAM can handle any prior high-level segmentation, resolving uncertainty regions, and is able to interactively focus on specific objects. Comprehensive experiments demonstrate that SPAM qualitatively and quantitatively outperforms state-of-the-art methods on segmentation tasks, making it a valuable and robust tool for various applications. Code and pre-trained models are available here: https://github.com/waldo-j/spam.

Authors:Zhehao Li, Yucheng Qian, Chong Wang, Yinghao Lu, Zhihao Yang, Jiafei Wu
Title: Contextualized Representation Learning for Effective Human-Object Interaction Detection
Abstract:
Human-Object Interaction (HOI) detection aims to simultaneously localize human-object pairs and recognize their interactions. While recent two-stage approaches have made significant progress, they still face challenges due to incomplete context modeling. In this work, we introduce a Contextualized Representation Learning that integrates both affordance-guided reasoning and contextual prompts with visual cues to better capture complex interactions. We enhance the conventional HOI detection framework by expanding it beyond simple human-object pairs to include multivariate relationships involving auxiliary entities like tools. Specifically, we explicitly model the functional role (affordance) of these auxiliary objects through triplet structures . This enables our model to identify tool-dependent interactions such as 'filling'. Furthermore, the learnable prompt is enriched with instance categories and subsequently integrated with contextual visual features using an attention mechanism. This process aligns language with image content at both global and regional levels. These contextualized representations equip the model with enriched relational cues for more reliable reasoning over complex, context-dependent interactions. Our proposed method demonstrates superior performance on both the HICO-Det and V-COCO datasets in most scenarios. The source code is available at https://github.com/lzzhhh1019/CRL.

Authors:Siju Ma, Changsiyu Gong, Xiaofeng Fan, Yong Ma, Chengjie Jiang
Title: RIS-FUSION: Rethinking Text-Driven Infrared and Visible Image Fusion from the Perspective of Referring Image Segmentation
Abstract:
Text-driven infrared and visible image fusion has gained attention for enabling natural language to guide the fusion process. However, existing methods lack a goal-aligned task to supervise and evaluate how effectively the input text contributes to the fusion outcome. We observe that referring image segmentation (RIS) and text-driven fusion share a common objective: highlighting the object referred to by the text. Motivated by this, we propose RIS-FUSION, a cascaded framework that unifies fusion and RIS through joint optimization. At its core is the LangGatedFusion module, which injects textual features into the fusion backbone to enhance semantic alignment. To support multimodal referring image segmentation task, we introduce MM-RIS, a large-scale benchmark with 12.5k training and 3.5k testing triplets, each consisting of an infrared-visible image pair, a segmentation mask, and a referring expression. Extensive experiments show that RIS-FUSION achieves state-of-the-art performance, outperforming existing methods by over 11% in mIoU. Code and dataset will be released at https://github.com/SijuMa2003/RIS-FUSION.

Authors:Wenzhuo Jin, Qianfeng Yang, Xianhao Wu, Hongming Chen, Pengpeng Li, Xiang Chen
Title: SmokeBench: A Real-World Dataset for Surveillance Image Desmoking in Early-Stage Fire Scenes
Abstract:
Early-stage fire scenes (0-15 minutes after ignition) represent a crucial temporal window for emergency interventions. During this stage, the smoke produced by combustion significantly reduces the visibility of surveillance systems, severely impairing situational awareness and hindering effective emergency response and rescue operations. Consequently, there is an urgent need to remove smoke from images to obtain clear scene information. However, the development of smoke removal algorithms remains limited due to the lack of large-scale, real-world datasets comprising paired smoke-free and smoke-degraded images. To address these limitations, we present a real-world surveillance image desmoking benchmark dataset named SmokeBench, which contains image pairs captured under diverse scenes setup and smoke concentration. The curated dataset provides precisely aligned degraded and clean images, enabling supervised learning and rigorous evaluation. We conduct comprehensive experiments by benchmarking a variety of desmoking methods on our dataset. Our dataset provides a valuable foundation for advancing robust and practical image desmoking in real-world fire scenes. This dataset has been released to the public and can be downloaded from https://github.com/ncfjd/SmokeBench.

Authors:Xianda Guo, Chenming Zhang, Ruilin Wang, Youmin Zhang, Wenzhao Zheng, Matteo Poggi, Hao Zhao, Qin Zou, Long Chen
Title: StereoCarla: A High-Fidelity Driving Dataset for Generalizable Stereo
Abstract:
Stereo matching plays a crucial role in enabling depth perception for autonomous driving and robotics. While recent years have witnessed remarkable progress in stereo matching algorithms, largely driven by learning-based methods and synthetic datasets, the generalization performance of these models remains constrained by the limited diversity of existing training data. To address these challenges, we present StereoCarla, a high-fidelity synthetic stereo dataset specifically designed for autonomous driving scenarios. Built on the CARLA simulator, StereoCarla incorporates a wide range of camera configurations, including diverse baselines, viewpoints, and sensor placements as well as varied environmental conditions such as lighting changes, weather effects, and road geometries. We conduct comprehensive cross-domain experiments across four standard evaluation datasets (KITTI2012, KITTI2015, Middlebury, ETH3D) and demonstrate that models trained on StereoCarla outperform those trained on 11 existing stereo datasets in terms of generalization accuracy across multiple benchmarks. Furthermore, when integrated into multi-dataset training, StereoCarla contributes substantial improvements to generalization accuracy, highlighting its compatibility and scalability. This dataset provides a valuable benchmark for developing and evaluating stereo algorithms under realistic, diverse, and controllable settings, facilitating more robust depth perception systems for autonomous vehicles. Code can be available at https://github.com/XiandaGuo/OpenStereo, and data can be available at https://xiandaguo.net/StereoCarla.

Authors:Jinjie Shen, Yaxiong Wang, Lechao Cheng, Nan Pu, Zhun Zhong
Title: Beyond Artificial Misalignment: Detecting and Grounding Semantic-Coordinated Multimodal Manipulations
Abstract:
The detection and grounding of manipulated content in multimodal data has emerged as a critical challenge in media forensics. While existing benchmarks demonstrate technical progress, they suffer from misalignment artifacts that poorly reflect real-world manipulation patterns: practical attacks typically maintain semantic consistency across modalities, whereas current datasets artificially disrupt cross-modal alignment, creating easily detectable anomalies. To bridge this gap, we pioneer the detection of semantically-coordinated manipulations where visual edits are systematically paired with semantically consistent textual descriptions. Our approach begins with constructing the first Semantic-Aligned Multimodal Manipulation (SAMM) dataset, generated through a two-stage pipeline: 1) applying state-of-the-art image manipulations, followed by 2) generation of contextually-plausible textual narratives that reinforce the visual deception. Building on this foundation, we propose a Retrieval-Augmented Manipulation Detection and Grounding (RamDG) framework. RamDG commences by harnessing external knowledge repositories to retrieve contextual evidence, which serves as the auxiliary texts and encoded together with the inputs through our image forgery grounding and deep manipulation detection modules to trace all manipulations. Extensive experiments demonstrate our framework significantly outperforms existing methods, achieving 2.06\% higher detection accuracy on SAMM compared to state-of-the-art approaches. The dataset and code are publicly available at https://github.com/shen8424/SAMM-RamDG-CAP.

Authors:Liming Lu, Shuchao Pang, Xu Zheng, Xiang Gu, Anan Du, Yunhuai Liu, Yongbin Zhou
Title: CIARD: Cyclic Iterative Adversarial Robustness Distillation
Abstract:
Adversarial robustness distillation (ARD) aims to transfer both performance and robustness from teacher model to lightweight student model, enabling resilient performance on resource-constrained scenarios. Though existing ARD approaches enhance student model's robustness, the inevitable by-product leads to the degraded performance on clean examples. We summarize the causes of this problem inherent in existing methods with dual-teacher framework as: 1. The divergent optimization objectives of dual-teacher models, i.e., the clean and robust teachers, impede effective knowledge transfer to the student model, and 2. The iteratively generated adversarial examples during training lead to performance deterioration of the robust teacher model. To address these challenges, we propose a novel Cyclic Iterative ARD (CIARD) method with two key innovations: a. A multi-teacher framework with contrastive push-loss alignment to resolve conflicts in dual-teacher optimization objectives, and b. Continuous adversarial retraining to maintain dynamic teacher robustness against performance degradation from the varying adversarial examples. Extensive experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that CIARD achieves remarkable performance with an average 3.53 improvement in adversarial defense rates across various attack scenarios and a 5.87 increase in clean sample accuracy, establishing a new benchmark for balancing model robustness and generalization. Our code is available at https://github.com/eminentgu/CIARD

Authors:Titong Jiang, Xuefeng Jiang, Yuan Ma, Xin Wen, Bailin Li, Kun Zhan, Peng Jia, Yahui Liu, Sheng Sun, Xianpeng Lang
Title: The Better You Learn, The Smarter You Prune: Towards Efficient Vision-language-action Models via Differentiable Token Pruning
Abstract:
We present LightVLA, a simple yet effective differentiable token pruning framework for vision-language-action (VLA) models. While VLA models have shown impressive capability in executing real-world robotic tasks, their deployment on resource-constrained platforms is often bottlenecked by the heavy attention-based computation over large sets of visual tokens. LightVLA addresses this challenge through adaptive, performance-driven pruning of visual tokens: It generates dynamic queries to evaluate visual token importance, and adopts Gumbel softmax to enable differentiable token selection. Through fine-tuning, LightVLA learns to preserve the most informative visual tokens while pruning tokens which do not contribute to task execution, thereby improving efficiency and performance simultaneously. Notably, LightVLA requires no heuristic magic numbers and introduces no additional trainable parameters, making it compatible with modern inference frameworks. Experimental results demonstrate that LightVLA outperforms different VLA models and existing token pruning methods across diverse tasks on the LIBERO benchmark, achieving higher success rates with substantially reduced computational overhead. Specifically, LightVLA reduces FLOPs and latency by 59.1% and 38.2% respectively, with a 2.6% improvement in task success rate. Meanwhile, we also investigate the learnable query-based token pruning method LightVLA* with additional trainable parameters, which also achieves satisfactory performance. Our work reveals that as VLA pursues optimal performance, LightVLA spontaneously learns to prune tokens from a performance-driven perspective. To the best of our knowledge, LightVLA is the first work to apply adaptive visual token pruning to VLA tasks with the collateral goals of efficiency and performance, marking a significant step toward more efficient, powerful and practical real-time robotic systems.

Authors:Xiang Xue, Yatu Ji, Qing-dao-er-ji Ren, Bao Shi, Min Lu, Nier Wu, Xufei Zhuang, Haiteng Xu, Gan-qi-qi-ge Cha
Title: iCD: A Implicit Clustering Distillation Mathod for Structural Information Mining
Abstract:
Logit Knowledge Distillation has gained substantial research interest in recent years due to its simplicity and lack of requirement for intermediate feature alignment; however, it suffers from limited interpretability in its decision-making process. To address this, we propose implicit Clustering Distillation (iCD): a simple and effective method that mines and transfers interpretable structural knowledge from logits, without requiring ground-truth labels or feature-space alignment. iCD leverages Gram matrices over decoupled local logit representations to enable student models to learn latent semantic structural patterns. Extensive experiments on benchmark datasets demonstrate the effectiveness of iCD across diverse teacher-student architectures, with particularly strong performance in fine-grained classification tasks -- achieving a peak improvement of +5.08% over the baseline. The code is available at: https://github.com/maomaochongaa/iCD.

Authors:Fazle Rafsani, Jay Shah, Catherine D. Chong, Todd J. Schwedt, Teresa Wu
Title: DinoAtten3D: Slice-Level Attention Aggregation of DinoV2 for 3D Brain MRI Anomaly Classification
Abstract:
Anomaly detection and classification in medical imaging are critical for early diagnosis but remain challenging due to limited annotated data, class imbalance, and the high cost of expert labeling. Emerging vision foundation models such as DINOv2, pretrained on extensive, unlabeled datasets, offer generalized representations that can potentially alleviate these limitations. In this study, we propose an attention-based global aggregation framework tailored specifically for 3D medical image anomaly classification. Leveraging the self-supervised DINOv2 model as a pretrained feature extractor, our method processes individual 2D axial slices of brain MRIs, assigning adaptive slice-level importance weights through a soft attention mechanism. To further address data scarcity, we employ a composite loss function combining supervised contrastive learning with class-variance regularization, enhancing inter-class separability and intra-class consistency. We validate our framework on the ADNI dataset and an institutional multi-class headache cohort, demonstrating strong anomaly classification performance despite limited data availability and significant class imbalance. Our results highlight the efficacy of utilizing pretrained 2D foundation models combined with attention-based slice aggregation for robust volumetric anomaly detection in medical imaging. Our implementation is publicly available at https://github.com/Rafsani/DinoAtten3D.git.

Authors:Rui-Feng Wang, Mingrui Xu, Matthew C Bauer, Iago Beffart Schardong, Xiaowen Ma, Kangning Cui
Title: Cott-ADNet: Lightweight Real-Time Cotton Boll and Flower Detection Under Field Conditions
Abstract:
Cotton is one of the most important natural fiber crops worldwide, yet harvesting remains limited by labor-intensive manual picking, low efficiency, and yield losses from missing the optimal harvest window. Accurate recognition of cotton bolls and their maturity is therefore essential for automation, yield estimation, and breeding research. We propose Cott-ADNet, a lightweight real-time detector tailored to cotton boll and flower recognition under complex field conditions. Building on YOLOv11n, Cott-ADNet enhances spatial representation and robustness through improved convolutional designs, while introducing two new modules: a NeLU-enhanced Global Attention Mechanism to better capture weak and low-contrast features, and a Dilated Receptive Field SPPF to expand receptive fields for more effective multi-scale context modeling at low computational cost. We curate a labeled dataset of 4,966 images, and release an external validation set of 1,216 field images to support future research. Experiments show that Cott-ADNet achieves 91.5% Precision, 89.8% Recall, 93.3% mAP50, 71.3% mAP, and 90.6% F1-Score with only 7.5 GFLOPs, maintaining stable performance under multi-scale and rotational variations. These results demonstrate Cott-ADNet as an accurate and efficient solution for in-field deployment, and thus provide a reliable basis for automated cotton harvesting and high-throughput phenotypic analysis. Code and dataset is available at https://github.com/SweefongWong/Cott-ADNet.

Authors:Yang Zhou, Yifan Wang, Jianjun Zhou, Wenzheng Chang, Haoyu Guo, Zizun Li, Kaijing Ma, Xinyue Li, Yating Wang, Haoyi Zhu, Mingyu Liu, Dingning Liu, Jiange Yang, Zhoujie Fu, Junyi Chen, Chunhua Shen, Jiangmiao Pang, Kaipeng Zhang, Tong He
Title: OmniWorld: A Multi-Domain and Multi-Modal Dataset for 4D World Modeling
Abstract:
The field of 4D world modeling - aiming to jointly capture spatial geometry and temporal dynamics - has witnessed remarkable progress in recent years, driven by advances in large-scale generative models and multimodal learning. However, the development of truly general 4D world models remains fundamentally constrained by the availability of high-quality data. Existing datasets and benchmarks often lack the dynamic complexity, multi-domain diversity, and spatial-temporal annotations required to support key tasks such as 4D geometric reconstruction, future prediction, and camera-control video generation. To address this gap, we introduce OmniWorld, a large-scale, multi-domain, multi-modal dataset specifically designed for 4D world modeling. OmniWorld consists of a newly collected OmniWorld-Game dataset and several curated public datasets spanning diverse domains. Compared with existing synthetic datasets, OmniWorld-Game provides richer modality coverage, larger scale, and more realistic dynamic interactions. Based on this dataset, we establish a challenging benchmark that exposes the limitations of current state-of-the-art (SOTA) approaches in modeling complex 4D environments. Moreover, fine-tuning existing SOTA methods on OmniWorld leads to significant performance gains across 4D reconstruction and video generation tasks, strongly validating OmniWorld as a powerful resource for training and evaluation. We envision OmniWorld as a catalyst for accelerating the development of general-purpose 4D world models, ultimately advancing machines' holistic understanding of the physical world.

Authors:Salma Galaaoui, Eduardo Valle, David Picard, Nermin Samet
Title: 3D Human Pose and Shape Estimation from LiDAR Point Clouds: A Review
Abstract:
In this paper, we present a comprehensive review of 3D human pose estimation and human mesh recovery from in-the-wild LiDAR point clouds. We compare existing approaches across several key dimensions, and propose a structured taxonomy to classify these methods. Following this taxonomy, we analyze each method's strengths, limitations, and design choices. In addition, (i) we perform a quantitative comparison of the three most widely used datasets, detailing their characteristics; (ii) we compile unified definitions of all evaluation metrics; and (iii) we establish benchmark tables for both tasks on these datasets to enable fair comparisons and promote progress in the field. We also outline open challenges and research directions critical for advancing LiDAR-based 3D human understanding. Moreover, we maintain an accompanying webpage that organizes papers according to our taxonomy and continuously update it with new studies: https://github.com/valeoai/3D-Human-Pose-Shape-Estimation-from-LiDAR

Authors:Felix B. Mueller, Timo Lueddecke, Richard Vogg, Alexander S. Ecker
Title: Domain-Adaptive Pretraining Improves Primate Behavior Recognition
Abstract:
Computer vision for animal behavior offers promising tools to aid research in ecology, cognition, and to support conservation efforts. Video camera traps allow for large-scale data collection, but high labeling costs remain a bottleneck to creating large-scale datasets. We thus need data-efficient learning approaches. In this work, we show that we can utilize self-supervised learning to considerably improve action recognition on primate behavior. On two datasets of great ape behavior (PanAf and ChimpACT), we outperform published state-of-the-art action recognition models by 6.1 %pt. accuracy and 6.3 %pt. mAP, respectively. We achieve this by utilizing a pretrained V-JEPA model and applying domain-adaptive pretraining (DAP), i.e. continuing the pretraining with in-domain data. We show that most of the performance gain stems from the DAP. Our method promises great potential for improving the recognition of animal behavior, as DAP does not require labeled samples. Code is available at https://github.com/ecker-lab/dap-behavior

Authors:Johanna Karras, Yingwei Li, Yasamin Jafarian, Ira Kemelmacher-Shlizerman
Title: HoloGarment: 360° Novel View Synthesis of In-the-Wild Garments
Abstract:
Novel view synthesis (NVS) of in-the-wild garments is a challenging task due significant occlusions, complex human poses, and cloth deformations. Prior methods rely on synthetic 3D training data consisting of mostly unoccluded and static objects, leading to poor generalization on real-world clothing. In this paper, we propose HoloGarment (Hologram-Garment), a method that takes 1-3 images or a continuous video of a person wearing a garment and generates 360° novel views of the garment in a canonical pose. Our key insight is to bridge the domain gap between real and synthetic data with a novel implicit training paradigm leveraging a combination of large-scale real video data and small-scale synthetic 3D data to optimize a shared garment embedding space. During inference, the shared embedding space further enables dynamic video-to-360° NVS through the construction of a garment "atlas" representation by finetuning a garment embedding on a specific real-world video. The atlas captures garment-specific geometry and texture across all viewpoints, independent of body pose or motion. Extensive experiments show that HoloGarment achieves state-of-the-art performance on NVS of in-the-wild garments from images and videos. Notably, our method robustly handles challenging real-world artifacts -- such as wrinkling, pose variation, and occlusion -- while maintaining photorealism, view consistency, fine texture details, and accurate geometry. Visit our project page for additional results: https://johannakarras.github.io/HoloGarment

Authors:Ondřej Valach, Ivan Gruber
Title: RailSafeNet: Visual Scene Understanding for Tram Safety
Abstract:
Tram-human interaction safety is an important challenge, given that trams frequently operate in densely populated areas, where collisions can range from minor injuries to fatal outcomes. This paper addresses the issue from the perspective of designing a solution leveraging digital image processing, deep learning, and artificial intelligence to improve the safety of pedestrians, drivers, cyclists, pets, and tram passengers. We present RailSafeNet, a real-time framework that fuses semantic segmentation, object detection and a rule-based Distance Assessor to highlight track intrusions. Using only monocular video, the system identifies rails, localises nearby objects and classifies their risk by comparing projected distances with the standard 1435mm rail gauge. Experiments on the diverse RailSem19 dataset show that a class-filtered SegFormer B3 model achieves 65% intersection-over-union (IoU), while a fine-tuned YOLOv8 attains 75.6% mean average precision (mAP) calculated at an intersection over union (IoU) threshold of 0.50. RailSafeNet therefore delivers accurate, annotation-light scene understanding that can warn drivers before dangerous situations escalate. Code available at https://github.com/oValach/RailSafeNet.

Authors:Bernardo Forni, Gabriele Lombardi, Federico Pozzi, Mirco Planamente
Title: FS-SAM2: Adapting Segment Anything Model 2 for Few-Shot Semantic Segmentation via Low-Rank Adaptation
Abstract:
Few-shot semantic segmentation has recently attracted great attention. The goal is to develop a model capable of segmenting unseen classes using only a few annotated samples. Most existing approaches adapt a pre-trained model by training from scratch an additional module. Achieving optimal performance with these approaches requires extensive training on large-scale datasets. The Segment Anything Model 2 (SAM2) is a foundational model for zero-shot image and video segmentation with a modular design. In this paper, we propose a Few-Shot segmentation method based on SAM2 (FS-SAM2), where SAM2's video capabilities are directly repurposed for the few-shot task. Moreover, we apply a Low-Rank Adaptation (LoRA) to the original modules in order to handle the diverse images typically found in standard datasets, unlike the temporally connected frames used in SAM2's pre-training. With this approach, only a small number of parameters is meta-trained, which effectively adapts SAM2 while benefiting from its impressive segmentation performance. Our method supports any K-shot configuration. We evaluate FS-SAM2 on the PASCAL-5$^i$, COCO-20$^i$ and FSS-1000 datasets, achieving remarkable results and demonstrating excellent computational efficiency during inference. Code is available at https://github.com/fornib/FS-SAM2

Authors:Zhi Qin Tan, Xiatian Zhu, Owen Addison, Yunpeng Li
Title: U-Mamba2: Scaling State Space Models for Dental Anatomy Segmentation in CBCT
Abstract:
Cone-Beam Computed Tomography (CBCT) is a widely used 3D imaging technique in dentistry, providing volumetric information about the anatomical structures of jaws and teeth. Accurate segmentation of these anatomies is critical for clinical applications such as diagnosis and surgical planning, but remains time-consuming and challenging. In this paper, we present U-Mamba2, a new neural network architecture designed for multi-anatomy CBCT segmentation in the context of the ToothFairy3 challenge. U-Mamba2 integrates the Mamba2 state space models into the U-Net architecture, enforcing stronger structural constraints for higher efficiency without compromising performance. In addition, we integrate interactive click prompts with cross-attention blocks, pre-train U-Mamba2 using self-supervised learning, and incorporate dental domain knowledge into the model design to address key challenges of dental anatomy segmentation in CBCT. Extensive experiments, including independent tests, demonstrate that U-Mamba2 is both effective and efficient, securing first place in both tasks of the Toothfairy3 challenge. In Task 1, U-Mamba2 achieved a mean Dice of 0.84, HD95 of 38.17 with the held-out test data, with an average inference time of 40.58s. In Task 2, U-Mamba2 achieved the mean Dice of 0.87 and HD95 of 2.15 with the held-out test data. The code is publicly available at https://github.com/zhiqin1998/UMamba2.

Authors:Farahdiba Zarin, Nicolas Padoy, Jérémy Dana, Vinkle Srivastav
Title: End-to-End Learning of Multi-Organ Implicit Surfaces from 3D Medical Imaging Data
Abstract:
The fine-grained surface reconstruction of different organs from 3D medical imaging can provide advanced diagnostic support and improved surgical planning. However, the representation of the organs is often limited by the resolution, with a detailed higher resolution requiring more memory and computing footprint. Implicit representations of objects have been proposed to alleviate this problem in general computer vision by providing compact and differentiable functions to represent the 3D object shapes. However, architectural and data-related differences prevent the direct application of these methods to medical images. This work introduces ImplMORe, an end-to-end deep learning method using implicit surface representations for multi-organ reconstruction from 3D medical images. ImplMORe incorporates local features using a 3D CNN encoder and performs multi-scale interpolation to learn the features in the continuous domain using occupancy functions. We apply our method for single and multiple organ reconstructions using the totalsegmentator dataset. By leveraging the continuous nature of occupancy functions, our approach outperforms the discrete explicit representation based surface reconstruction approaches, providing fine-grained surface details of the organ at a resolution higher than the given input image. The source code will be made publicly available at: https://github.com/CAMMA-public/ImplMORe

Authors:Sebastian Diaz, Benjamin Billot, Neel Dey, Molin Zhang, Esra Abaci Turk, P. Ellen Grant, Polina Golland, Elfar Adalsteinsson
Title: Robust Fetal Pose Estimation across Gestational Ages via Cross-Population Augmentation
Abstract:
Fetal motion is a critical indicator of neurological development and intrauterine health, yet its quantification remains challenging, particularly at earlier gestational ages (GA). Current methods track fetal motion by predicting the location of annotated landmarks on 3D echo planar imaging (EPI) time-series, primarily in third-trimester fetuses. The predicted landmarks enable simplification of the fetal body for downstream analysis. While these methods perform well within their training age distribution, they consistently fail to generalize to early GAs due to significant anatomical changes in both mother and fetus across gestation, as well as the difficulty of obtaining annotated early GA EPI data. In this work, we develop a cross-population data augmentation framework that enables pose estimation models to robustly generalize to younger GA clinical cohorts using only annotated images from older GA cohorts. Specifically, we introduce a fetal-specific augmentation strategy that simulates the distinct intrauterine environment and fetal positioning of early GAs. Our experiments find that cross-population augmentation yields reduced variability and significant improvements across both older GA and challenging early GA cases. By enabling more reliable pose estimation across gestation, our work potentially facilitates early clinical detection and intervention in challenging 4D fetal imaging settings. Code is available at https://github.com/sebodiaz/cross-population-pose.

Authors:Bingyu Li, Haocheng Dong, Da Zhang, Zhiyuan Zhao, Junyu Gao, Xuelong Li
Title: Exploring Efficient Open-Vocabulary Segmentation in the Remote Sensing
Abstract:
Open-Vocabulary Remote Sensing Image Segmentation (OVRSIS), an emerging task that adapts Open-Vocabulary Segmentation (OVS) to the remote sensing (RS) domain, remains underexplored due to the absence of a unified evaluation benchmark and the domain gap between natural and RS images. To bridge these gaps, we first establish a standardized OVRSIS benchmark (\textbf{OVRSISBench}) based on widely-used RS segmentation datasets, enabling consistent evaluation across methods. Using this benchmark, we comprehensively evaluate several representative OVS/OVRSIS models and reveal their limitations when directly applied to remote sensing scenarios. Building on these insights, we propose \textbf{RSKT-Seg}, a novel open-vocabulary segmentation framework tailored for remote sensing. RSKT-Seg integrates three key components: (1) a Multi-Directional Cost Map Aggregation (RS-CMA) module that captures rotation-invariant visual cues by computing vision-language cosine similarities across multiple directions; (2) an Efficient Cost Map Fusion (RS-Fusion) transformer, which jointly models spatial and semantic dependencies with a lightweight dimensionality reduction strategy; and (3) a Remote Sensing Knowledge Transfer (RS-Transfer) module that injects pre-trained knowledge and facilitates domain adaptation via enhanced upsampling. Extensive experiments on the benchmark show that RSKT-Seg consistently outperforms strong OVS baselines by +3.8 mIoU and +5.9 mACC, while achieving 2x faster inference through efficient aggregation. Our code is \href{https://github.com/LiBingyu01/RSKT-Seg}{\textcolor{blue}{here}}.

Authors:Zilong Zhang, Chujie Qin, Chunle Guo, Yong Zhang, Chao Xue, Ming-Ming Cheng, Chongyi Li
Title: RAM++: Robust Representation Learning via Adaptive Mask for All-in-One Image Restoration
Abstract:
This work presents Robust Representation Learning via Adaptive Mask (RAM++), a two-stage framework for all-in-one image restoration. RAM++ integrates high-level semantic understanding with low-level texture generation to achieve content-oriented robust restoration. It addresses the limitations of existing degradation-oriented methods in extreme scenarios (e.g., degradations strongly coupled with image structures). RAM++ also mitigates common challenges such as unbalanced performance across tasks, overfitting to seen degradations, and weak generalization to unseen ones through three key designs: 1) Adaptive Semantic-Aware Mask (AdaSAM): a pretraining strategy that applies pixel-level masks to semantically rich and textured regions. This design enables the network to learn both generative priors and image content priors from various degradations. 2) Mask Attribute Conductance (MAC): a selective fine-tuning strategy that adjusts the layers with higher contributions to bridge the integrity gap between masked pretraining and full-image fine-tuning while retaining learned priors. 3) Robust Feature Regularization (RFR): a strategy that leverages DINOv2's semantically consistent and degradation-invariant representations, together with efficient feature fusion, to achieve faithful and semantically coherent restoration. With these designs, RAM++ achieves robust, well-balanced, and state-of-the-art performance across seen, unseen, extreme, and mixed degradations. Our code and model will be released at https://github.com/DragonisCV/RAM

Authors:Marian Renz, Felix Igelbrink, Martin Atzmueller
Title: Integrating Prior Observations for Incremental 3D Scene Graph Prediction
Abstract:
3D semantic scene graphs (3DSSG) provide compact structured representations of environments by explicitly modeling objects, attributes, and relationships. While 3DSSGs have shown promise in robotics and embodied AI, many existing methods rely mainly on sensor data, not integrating further information from semantically rich environments. Additionally, most methods assume access to complete scene reconstructions, limiting their applicability in real-world, incremental settings. This paper introduces a novel heterogeneous graph model for incremental 3DSSG prediction that integrates additional, multi-modal information, such as prior observations, directly into the message-passing process. Utilizing multiple layers, the model flexibly incorporates global and local scene representations without requiring specialized modules or full scene reconstructions. We evaluate our approach on the 3DSSG dataset, showing that GNNs enriched with multi-modal information such as semantic embeddings (e.g., CLIP) and prior observations offer a scalable and generalizable solution for complex, real-world environments. The full source code of the presented architecture will be made available at https://github.com/m4renz/incremental-scene-graph-prediction.

Authors:Zhenni Yu, Li Zhao, Guobao Xiao, Xiaoqin Zhang
Title: SAM-TTT: Segment Anything Model via Reverse Parameter Configuration and Test-Time Training for Camouflaged Object Detection
Abstract:
This paper introduces a new Segment Anything Model (SAM) that leverages reverse parameter configuration and test-time training to enhance its performance on Camouflaged Object Detection (COD), named SAM-TTT. While most existing SAM-based COD models primarily focus on enhancing SAM by extracting favorable features and amplifying its advantageous parameters, a crucial gap is identified: insufficient attention to adverse parameters that impair SAM's semantic understanding in downstream tasks. To tackle this issue, the Reverse SAM Parameter Configuration Module is proposed to effectively mitigate the influence of adverse parameters in a train-free manner by configuring SAM's parameters. Building on this foundation, the T-Visioner Module is unveiled to strengthen advantageous parameters by integrating Test-Time Training layers, originally developed for language tasks, into vision tasks. Test-Time Training layers represent a new class of sequence modeling layers characterized by linear complexity and an expressive hidden state. By integrating two modules, SAM-TTT simultaneously suppresses adverse parameters while reinforcing advantageous ones, significantly improving SAM's semantic understanding in COD task. Our experimental results on various COD benchmarks demonstrate that the proposed approach achieves state-of-the-art performance, setting a new benchmark in the field. The code will be available at https://github.com/guobaoxiao/SAM-TTT.

Authors:Meng Luo, Shengqiong Wu, Liqiang Jing, Tianjie Ju, Li Zheng, Jinxiang Lai, Tianlong Wu, Xinya Du, Jian Li, Siyuan Yan, Jiebo Luo, William Yang Wang, Hao Fei, Mong-Li Lee, Wynne Hsu
Title: Dr.V: A Hierarchical Perception-Temporal-Cognition Framework to Diagnose Video Hallucination by Fine-grained Spatial-Temporal Grounding
Abstract:
Recent advancements in large video models (LVMs) have significantly enhance video understanding. However, these models continue to suffer from hallucinations, producing content that conflicts with input videos. To address this issue, we propose Dr.V, a hierarchical framework covering perceptive, temporal, and cognitive levels to diagnose video hallucination by fine-grained spatial-temporal grounding. Dr.V comprises of two key components: a benchmark dataset Dr.V-Bench and a satellite video agent Dr.V-Agent. Dr.V-Bench includes 10k instances drawn from 4,974 videos spanning diverse tasks, each enriched with detailed spatial-temporal annotation. Dr.V-Agent detects hallucinations in LVMs by systematically applying fine-grained spatial-temporal grounding at the perceptive and temporal levels, followed by cognitive level reasoning. This step-by-step pipeline mirrors human-like video comprehension and effectively identifies hallucinations. Extensive experiments demonstrate that Dr.V-Agent is effective in diagnosing hallucination while enhancing interpretability and reliability, offering a practical blueprint for robust video understanding in real-world scenarios. All our data and code are available at https://github.com/Eurekaleo/Dr.V.

Authors:Jiacheng Liu, Pengxiang Ding, Qihang Zhou, Yuxuan Wu, Da Huang, Zimian Peng, Wei Xiao, Weinan Zhang, Lixin Yang, Cewu Lu, Donglin Wang
Title: TrajBooster: Boosting Humanoid Whole-Body Manipulation via Trajectory-Centric Learning
Abstract:
Recent Vision-Language-Action models show potential to generalize across embodiments but struggle to quickly align with a new robot's action space when high-quality demonstrations are scarce, especially for bipedal humanoids. We present TrajBooster, a cross-embodiment framework that leverages abundant wheeled-humanoid data to boost bipedal VLA. Our key idea is to use end-effector trajectories as a morphology-agnostic interface. TrajBooster (i) extracts 6D dual-arm end-effector trajectories from real-world wheeled humanoids, (ii) retargets them in simulation to Unitree G1 with a whole-body controller trained via a heuristic-enhanced harmonized online DAgger to lift low-dimensional trajectory references into feasible high-dimensional whole-body actions, and (iii) forms heterogeneous triplets that couple source vision/language with target humanoid-compatible actions to post-pre-train a VLA, followed by only 10 minutes of teleoperation data collection on the target humanoid domain. Deployed on Unitree G1, our policy achieves beyond-tabletop household tasks, enabling squatting, cross-height manipulation, and coordinated whole-body motion with markedly improved robustness and generalization. Results show that TrajBooster allows existing wheeled-humanoid data to efficiently strengthen bipedal humanoid VLA performance, reducing reliance on costly same-embodiment data while enhancing action space understanding and zero-shot skill transfer capabilities. For more details, For more details, please refer to our \href{https://jiachengliu3.github.io/TrajBooster/}.

Authors:Liying Wang, Xiaoli Zhang, Chuanmin Jia, Siwei Ma
Title: MAFS: Masked Autoencoder for Infrared-Visible Image Fusion and Semantic Segmentation
Abstract:
Infrared-visible image fusion methods aim at generating fused images with good visual quality and also facilitate the performance of high-level tasks. Indeed, existing semantic-driven methods have considered semantic information injection for downstream applications. However, none of them investigates the potential for reciprocal promotion between pixel-wise image fusion and cross-modal feature fusion perception tasks from a macroscopic task-level perspective. To address this limitation, we propose a unified network for image fusion and semantic segmentation. MAFS is a parallel structure, containing a fusion sub-network and a segmentation sub-network. On the one hand, We devise a heterogeneous feature fusion strategy to enhance semantic-aware capabilities for image fusion. On the other hand, by cascading the fusion sub-network and a segmentation backbone, segmentation-related knowledge is transferred to promote feature-level fusion-based segmentation. Within the framework, we design a novel multi-stage Transformer decoder to aggregate fine-grained multi-scale fused features efficiently. Additionally, a dynamic factor based on the max-min fairness allocation principle is introduced to generate adaptive weights of two tasks and guarantee smooth training in a multi-task manner. Extensive experiments demonstrate that our approach achieves competitive results compared with state-of-the-art methods. The code is available at https://github.com/Abraham-Einstein/MAFS/.

Authors:Haiduo Huang, Fuwei Yang, Zhenhua Liu, Xuanwu Yin, Dong Li, Pengju Ren, Emad Barsoum
Title: SpecVLM: Fast Speculative Decoding in Vision-Language Models
Abstract:
Speculative decoding is a powerful way to accelerate autoregressive large language models (LLMs), but directly porting it to vision-language models (VLMs) faces unique systems constraints: the prefill stage is dominated by visual tokens whose count scales with image resolution and video length, inflating both compute and memory, especially the key-value (KV) cache. We study speculative decoding for VLMs and introduce SpecVLM, a practical system that (1) establishes a strong EAGLE-2-style baseline, EagleVLM, delivering 1.5--2.3x end-to-end speedups over full autoregressive inference, and (2) further accelerates VLM inference with an elastic visual compressor that adaptively selects among pruning, pooling, convolution, and resampler primitives to balance FLOPs/parameters and accuracy per input. To avoid costly offline distillation corpora, we propose an online-logit distillation protocol that trains the draft model with on-the-fly teacher logits and penultimate features using a combined cross-entropy and Smooth L1 objective, eliminating storage and preprocessing while remaining compute-efficient. This protocol reveals a training-time scaling effect: longer online training monotonically increases the draft model's average accepted length, improving speculative efficiency. Empirically, SpecVLM achieves additional acceleration, culminating in 2.5--2.9x end-to-end speedups within 5 epochs across LLaVA and MMMU, consistently over resolutions and task difficulties, while preserving the target model's output distribution (lossless decoding). Our code is available at https://github.com/haiduo/SpecVLM.

Authors:Mehwish Mehmood, Shahzaib Iqbal, Tariq Mahmood Khan, Ivor Spence, Muhammad Fahim
Title: LFRA-Net: A Lightweight Focal and Region-Aware Attention Network for Retinal Vessel Segmentatio
Abstract:
Retinal vessel segmentation is critical for the early diagnosis of vision-threatening and systemic diseases, especially in real-world clinical settings with limited computational resources. Although significant improvements have been made in deep learning-based segmentation methods, current models still face challenges in extracting tiny vessels and suffer from high computational costs. In this study, we present LFRA-Net by incorporating focal modulation attention at the encoder-decoder bottleneck and region-aware attention in the selective skip connections. LFRA-Net is a lightweight network optimized for precise and effective retinal vascular segmentation. It enhances feature representation and regional focus by efficiently capturing local and global dependencies. LFRA-Net outperformed many state-of-the-art models while maintaining lightweight characteristics with only 0.17 million parameters, 0.66 MB memory size, and 10.50 GFLOPs. We validated it on three publicly available datasets: DRIVE, STARE, and CHASE\_DB. It performed better in terms of Dice score (84.28\%, 88.44\%, and 85.50\%) and Jaccard index (72.86\%, 79.31\%, and 74.70\%) on the DRIVE, STARE, and CHASE\_DB datasets, respectively. LFRA-Net provides an ideal ratio between segmentation accuracy and computational cost compared to existing deep learning methods, which makes it suitable for real-time clinical applications in areas with limited resources. The code can be found at https://github.com/Mehwish4593/LFRA-Net.

Authors:Diogo Mendonça, Tiago Barros, Cristiano Premebida, Urbano J. Nunes
Title: Seg2Track-SAM2: SAM2-based Multi-object Tracking and Segmentation for Zero-shot Generalization
Abstract:
Autonomous systems require robust Multi-Object Tracking (MOT) capabilities to operate reliably in dynamic environments. MOT ensures consistent object identity assignment and precise spatial delineation. Recent advances in foundation models, such as SAM2, have demonstrated strong zero-shot generalization for video segmentation, but their direct application to MOTS (MOT+Segmentation) remains limited by insufficient identity management and memory efficiency. This work introduces Seg2Track-SAM2, a framework that integrates pre-trained object detectors with SAM2 and a novel Seg2Track module to address track initialization, track management, and reinforcement. The proposed approach requires no fine-tuning and remains detector-agnostic. Experimental results on KITTI MOT and KITTI MOTS benchmarks show that Seg2Track-SAM2 achieves state-of-the-art (SOTA) performance, ranking fourth overall in both car and pedestrian classes on KITTI MOTS, while establishing a new benchmark in association accuracy (AssA). Furthermore, a sliding-window memory strategy reduces memory usage by up to 75% with negligible performance degradation, supporting deployment under resource constraints. These results confirm that Seg2Track-SAM2 advances MOTS by combining robust zero-shot tracking, enhanced identity preservation, and efficient memory utilization. The code is available at https://github.com/hcmr-lab/Seg2Track-SAM2

Authors:Wa-Kin Lei, Jun-Cheng Chen, Shang-Tse Chen
Title: DRAG: Data Reconstruction Attack using Guided Diffusion
Abstract:
With the rise of large foundation models, split inference (SI) has emerged as a popular computational paradigm for deploying models across lightweight edge devices and cloud servers, addressing data privacy and computational cost concerns. However, most existing data reconstruction attacks have focused on smaller CNN classification models, leaving the privacy risks of foundation models in SI settings largely unexplored. To address this gap, we propose a novel data reconstruction attack based on guided diffusion, which leverages the rich prior knowledge embedded in a latent diffusion model (LDM) pre-trained on a large-scale dataset. Our method performs iterative reconstruction on the LDM's learned image prior, effectively generating high-fidelity images resembling the original data from their intermediate representations (IR). Extensive experiments demonstrate that our approach significantly outperforms state-of-the-art methods, both qualitatively and quantitatively, in reconstructing data from deep-layer IRs of the vision foundation model. The results highlight the urgent need for more robust privacy protection mechanisms for large models in SI scenarios. Code is available at: https://github.com/ntuaislab/DRAG.

Authors:Chuang Liu, Nan Guo
Title: Joint-octamamba:an octa joint segmentation network based on feature enhanced mamba
Abstract:
OCTA is a crucial non-invasive imaging technique for diagnosing and monitoring retinal diseases like diabetic retinopathy, age-related macular degeneration, and glaucoma. Current 2D-based methods for retinal vessel (RV) segmentation offer insufficient accuracy. To address this, we propose RVMamba, a novel architecture integrating multiple feature extraction modules with the Mamba state-space model. Moreover, existing joint segmentation models for OCTA data exhibit performance imbalance between different tasks. To simultaneously improve the segmentation of the foveal avascular zone (FAZ) and mitigate this imbalance, we introduce FAZMamba and a unified Joint-OCTAMamba framework. Experimental results on the OCTA-500 dataset demonstrate that Joint-OCTAMamba outperforms existing models across evaluation metrics.The code is available at https://github.com/lc-sfis/Joint-OCTAMamba.

Authors:Qiyuan Guan, Qianfeng Yang, Xiang Chen, Tianyu Song, Guiyue Jin, Jiyu Jin
Title: WeatherBench: A Real-World Benchmark Dataset for All-in-One Adverse Weather Image Restoration
Abstract:
Existing all-in-one image restoration approaches, which aim to handle multiple weather degradations within a single framework, are predominantly trained and evaluated using mixed single-weather synthetic datasets. However, these datasets often differ significantly in resolution, style, and domain characteristics, leading to substantial domain gaps that hinder the development and fair evaluation of unified models. Furthermore, the lack of a large-scale, real-world all-in-one weather restoration dataset remains a critical bottleneck in advancing this field. To address these limitations, we present a real-world all-in-one adverse weather image restoration benchmark dataset, which contains image pairs captured under various weather conditions, including rain, snow, and haze, as well as diverse outdoor scenes and illumination settings. The resulting dataset provides precisely aligned degraded and clean images, enabling supervised learning and rigorous evaluation. We conduct comprehensive experiments by benchmarking a variety of task-specific, task-general, and all-in-one restoration methods on our dataset. Our dataset offers a valuable foundation for advancing robust and practical all-in-one image restoration in real-world scenarios. The dataset has been publicly released and is available at https://github.com/guanqiyuan/WeatherBench.

Authors:Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Fei Ren, Shaobo Wang, Kaixin Li, Linfeng Zhang
Title: SpeCa: Accelerating Diffusion Transformers with Speculative Feature Caching
Abstract:
Diffusion models have revolutionized high-fidelity image and video synthesis, yet their computational demands remain prohibitive for real-time applications. These models face two fundamental challenges: strict temporal dependencies preventing parallelization, and computationally intensive forward passes required at each denoising step. Drawing inspiration from speculative decoding in large language models, we present SpeCa, a novel 'Forecast-then-verify' acceleration framework that effectively addresses both limitations. SpeCa's core innovation lies in introducing Speculative Sampling to diffusion models, predicting intermediate features for subsequent timesteps based on fully computed reference timesteps. Our approach implements a parameter-free verification mechanism that efficiently evaluates prediction reliability, enabling real-time decisions to accept or reject each prediction while incurring negligible computational overhead. Furthermore, SpeCa introduces sample-adaptive computation allocation that dynamically modulates resources based on generation complexity, allocating reduced computation for simpler samples while preserving intensive processing for complex instances. Experiments demonstrate 6.34x acceleration on FLUX with minimal quality degradation (5.5% drop), 7.3x speedup on DiT while preserving generation fidelity, and 79.84% VBench score at 6.1x acceleration for HunyuanVideo. The verification mechanism incurs minimal overhead (1.67%-3.5% of full inference costs), establishing a new paradigm for efficient diffusion model inference while maintaining generation quality even at aggressive acceleration ratios. Our codes have been released in Github: \textbf{https://github.com/Shenyi-Z/Cache4Diffusion}

Authors:Yanyun Pu, Kehan Li, Zeyi Huang, Zhijie Zhong, Kaixiang Yang
Title: MVQA-68K: A Multi-dimensional and Causally-annotated Dataset with Quality Interpretability for Video Assessment
Abstract:
With the rapid advancement of video generation models such as Sora, video quality assessment (VQA) is becoming increasingly crucial for selecting high-quality videos from large-scale datasets used in pre-training. Traditional VQA methods, typically producing single numerical scores, often lack comprehensiveness and interpretability. To address these challenges, we introduce MVQA-68K, a novel multi-dimensional VQA dataset comprising over 68,000 carefully annotated videos, covering seven essential quality dimensions: overall aesthetics, camera movement, dynamic degree, texture detail, composition, visual quality, and factual consistency. Each annotation includes detailed chain-of-thought reasoning to facilitate interpretability and comprehensive understanding. Extensive experiments demonstrate that MVQA-68K significantly enhances the performance of various multimodal large language models (MLLMs) on the VQA task, achieving state-of-the-art results not only on our internal test set (Fig.1) but also on public benchmarks including LSVQ-test, LSVQ-1080p, and LIVE-VQC. Meantime, incorporating explicit reasoning process during VQA training substantially boosts the zero-shot generalization. Code and dataset will be available at github: https://github.com/Controller01-ai/MVQA-68K

Authors:Haonan Shi, Yubin Wang, De Cheng, Lingfeng He, Nannan Wang, Xinbo Gao
Title: Hierarchical Identity Learning for Unsupervised Visible-Infrared Person Re-Identification
Abstract:
Unsupervised visible-infrared person re-identification (USVI-ReID) aims to learn modality-invariant image features from unlabeled cross-modal person datasets by reducing the modality gap while minimizing reliance on costly manual annotations. Existing methods typically address USVI-ReID using cluster-based contrastive learning, which represents a person by a single cluster center. However, they primarily focus on the commonality of images within each cluster while neglecting the finer-grained differences among them. To address the limitation, we propose a Hierarchical Identity Learning (HIL) framework. Since each cluster may contain several smaller sub-clusters that reflect fine-grained variations among images, we generate multiple memories for each existing coarse-grained cluster via a secondary clustering. Additionally, we propose Multi-Center Contrastive Learning (MCCL) to refine representations for enhancing intra-modal clustering and minimizing cross-modal discrepancies. To further improve cross-modal matching quality, we design a Bidirectional Reverse Selection Transmission (BRST) mechanism, which establishes reliable cross-modal correspondences by performing bidirectional matching of pseudo-labels. Extensive experiments conducted on the SYSU-MM01 and RegDB datasets demonstrate that the proposed method outperforms existing approaches. The source code is available at: https://github.com/haonanshi0125/HIL.

Authors:Dezhen Wang, Haixiang Zhao, Xiang Shen, Sheng Miao
Title: SFGNet: Semantic and Frequency Guided Network for Camouflaged Object Detection
Abstract:
Camouflaged object detection (COD) aims to segment objects that blend into their surroundings. However, most existing studies overlook the semantic differences among textual prompts of different targets as well as fine-grained frequency features. In this work, we propose a novel Semantic and Frequency Guided Network (SFGNet), which incorporates semantic prompts and frequency-domain features to capture camouflaged objects and improve boundary perception. We further design Multi-Band Fourier Module(MBFM) to enhance the ability of the network in handling complex backgrounds and blurred boundaries. In addition, we design an Interactive Structure Enhancement Block (ISEB) to ensure structural integrity and boundary details in the predictions. Extensive experiments conducted on three COD benchmark datasets demonstrate that our method significantly outperforms state-of-the-art approaches. The core code of the model is available at the following link: https://github.com/winter794444/SFGNetICASSP2026.

Authors:Wenhao Tang, Sheng Huang, Heng Fang, Fengtao Zhou, Bo Liu, Qingshan Liu
Title: Multiple Instance Learning Framework with Masked Hard Instance Mining for Gigapixel Histopathology Image Analysis
Abstract:
Digitizing pathological images into gigapixel Whole Slide Images (WSIs) has opened new avenues for Computational Pathology (CPath). As positive tissue comprises only a small fraction of gigapixel WSIs, existing Multiple Instance Learning (MIL) methods typically focus on identifying salient instances via attention mechanisms. However, this leads to a bias towards easy-to-classify instances while neglecting challenging ones. Recent studies have shown that hard examples are crucial for accurately modeling discriminative boundaries. Applying such an idea at the instance level, we elaborate a novel MIL framework with masked hard instance mining (MHIM-MIL), which utilizes a Siamese structure with a consistency constraint to explore the hard instances. Using a class-aware instance probability, MHIM-MIL employs a momentum teacher to mask salient instances and implicitly mine hard instances for training the student model. To obtain diverse, non-redundant hard instances, we adopt large-scale random masking while utilizing a global recycle network to mitigate the risk of losing key features. Furthermore, the student updates the teacher using an exponential moving average, which identifies new hard instances for subsequent training iterations and stabilizes optimization. Experimental results on cancer diagnosis, subtyping, survival analysis tasks, and 12 benchmarks demonstrate that MHIM-MIL outperforms the latest methods in both performance and efficiency. The code is available at: https://github.com/DearCaat/MHIM-MIL.

Authors:Ayhan Can Erdur, Christian Beischl, Daniel Scholz, Jiazhen Pan, Benedikt Wiestler, Daniel Rueckert, Jan C Peeken
Title: MultiMAE for Brain MRIs: Robustness to Missing Inputs Using Multi-Modal Masked Autoencoder
Abstract:
Missing input sequences are common in medical imaging data, posing a challenge for deep learning models reliant on complete input data. In this work, inspired by MultiMAE [2], we develop a masked autoencoder (MAE) paradigm for multi-modal, multi-task learning in 3D medical imaging with brain MRIs. Our method treats each MRI sequence as a separate input modality, leveraging a late-fusion-style transformer encoder to integrate multi-sequence information (multi-modal) and individual decoder streams for each modality for multi-task reconstruction. This pretraining strategy guides the model to learn rich representations per modality while also equipping it to handle missing inputs through cross-sequence reasoning. The result is a flexible and generalizable encoder for brain MRIs that infers missing sequences from available inputs and can be adapted to various downstream applications. We demonstrate the performance and robustness of our method against an MAE-ViT baseline in downstream segmentation and classification tasks, showing absolute improvement of $10.1$ overall Dice score and $0.46$ MCC over the baselines with missing input sequences. Our experiments demonstrate the strength of this pretraining strategy. The implementation is made available.

Authors:Jeanny Pan, Philipp Seeböck, Christoph Fürböck, Svitlana Pochepnia, Jennifer Straub, Lucian Beer, Helmut Prosch, Georg Langs
Title: Disentanglement of Biological and Technical Factors via Latent Space Rotation in Clinical Imaging Improves Disease Pattern Discovery
Abstract:
Identifying new disease-related patterns in medical imaging data with the help of machine learning enlarges the vocabulary of recognizable findings. This supports diagnostic and prognostic assessment. However, image appearance varies not only due to biological differences, but also due to imaging technology linked to vendors, scanning- or re- construction parameters. The resulting domain shifts impedes data representation learning strategies and the discovery of biologically meaningful cluster appearances. To address these challenges, we introduce an approach to actively learn the domain shift via post-hoc rotation of the data latent space, enabling disentanglement of biological and technical factors. Results on real-world heterogeneous clinical data showcase that the learned disentangled representation leads to stable clusters representing tissue-types across different acquisition settings. Cluster consistency is improved by +19.01% (ARI), +16.85% (NMI), and +12.39% (Dice) compared to the entangled representation, outperforming four state-of-the-art harmonization methods. When using the clusters to quantify tissue composition on idiopathic pulmonary fibrosis patients, the learned profiles enhance Cox survival prediction. This indicates that the proposed label-free framework facilitates biomarker discovery in multi-center routine imaging data. Code is available on GitHub https://github.com/cirmuw/latent-space-rotation-disentanglement.

Authors:Jian Song, Wei Mei, Yunfeng Xu, Qiang Fu, Renke Kou, Lina Bu, Yucheng Long
Title: Motion Estimation for Multi-Object Tracking using KalmanNet with Semantic-Independent Encoding
Abstract:
Motion estimation is a crucial component in multi-object tracking (MOT). It predicts the trajectory of objects by analyzing the changes in their positions in consecutive frames of images, reducing tracking failures and identity switches. The Kalman filter (KF) based on the linear constant-velocity model is one of the most commonly used methods in MOT. However, it may yield unsatisfactory results when KF's parameters are mismatched and objects move in non-stationary. In this work, we utilize the learning-aided filter to handle the motion estimation of MOT. In particular, we propose a novel method named Semantic-Independent KalmanNet (SIKNet), which encodes the state vector (the input feature) using a Semantic-Independent Encoder (SIE) by two steps. First, the SIE uses a 1D convolution with a kernel size of 1, which convolves along the dimension of homogeneous-semantic elements across different state vectors to encode independent semantic information. Then it employs a fully-connected layer and a nonlinear activation layer to encode nonlinear and cross-dependency information between heterogeneous-semantic elements. To independently evaluate the performance of the motion estimation module in MOT, we constructed a large-scale semi-simulated dataset from several open-source MOT datasets. Experimental results demonstrate that the proposed SIKNet outperforms the traditional KF and achieves superior robustness and accuracy than existing learning-aided filters. The code is available at (https://github.com/SongJgit/filternet and https://github.com/SongJgit/TBDTracker).

Authors:Ziling Liu, Ziwei Chen, Mingqi Gao, Jinyu Yang, Feng Zheng
Title: Leveraging Geometric Priors for Unaligned Scene Change Detection
Abstract:
Unaligned Scene Change Detection aims to detect scene changes between image pairs captured at different times without assuming viewpoint alignment. To handle viewpoint variations, current methods rely solely on 2D visual cues to establish cross-image correspondence to assist change detection. However, large viewpoint changes can alter visual observations, causing appearance-based matching to drift or fail. Additionally, supervision limited to 2D change masks from small-scale SCD datasets restricts the learning of generalizable multi-view knowledge, making it difficult to reliably identify visual overlaps and handle occlusions. This lack of explicit geometric reasoning represents a critical yet overlooked limitation. In this work, we introduce geometric priors for the first time to address the core challenges of unaligned SCD, for reliable identification of visual overlaps, robust correspondence establishment, and explicit occlusion detection. Building on these priors, we propose a training-free framework that integrates them with the powerful representations of a visual foundation model to enable reliable change detection under viewpoint misalignment. Through extensive evaluation on the PSCD, ChangeSim, and PASLCD datasets, we demonstrate that our approach achieves superior and robust performance. Our code will be released at https://github.com/ZilingLiu/GeoSCD.

Authors:Yifan Lu, Ziqi Zhang, Chunfeng Yuan, Jun Gao, Congxuan Zhang, Xiaojuan Qi, Bing Li, Weiming Hu
Title: Mitigating Hallucinations in Large Vision-Language Models by Self-Injecting Hallucinations
Abstract:
Large Vision-Language Models (LVLMs) suffer from serious hallucination problems, where the model-generated responses are inconsistent with the visual inputs. Existing hallucination mitigation methods are mainly based on preference alignment and require external human annotations or auxiliary models for preference data collection, which increase costs and limit sustainable improvement. To tackle these challenges, we propose Autonomous Preference Alignment via Self-Injection (APASI), a novel and generalizable method that mitigates hallucinations without external dependencies. APASI leverages the target LVLM to self-inject hallucinations into a generated response, creating a pair of responses with varying preference levels. During the self-injection process, the dis-preferred response is generated based on three key observations of hallucinations, ensuring it simulates real hallucination patterns. This fidelity offers an accurate learning signal for hallucination mitigation. Moreover, APASI incorporates an iterative alignment training strategy combined with curriculum learning to periodically update the preference data with increasing challenge, enabling stable and continuous enhancement of the LVLM. Extensive experiments across six benchmarks show that APASI not only effectively mitigates hallucinations for three baseline models but also achieves comparable or even superior performance to alignment-based methods with external dependency, thereby demonstrating its effectiveness and generalization capability. The code is available at https://github.com/davidluciolu/APASI.

Authors:Kerun Mi, Guoliang Kang, Guangyu Li, Lin Zhao, Tao Zhou, Chen Gong
Title: Cross-Domain Attribute Alignment with CLIP: A Rehearsal-Free Approach for Class-Incremental Unsupervised Domain Adaptation
Abstract:
Class-Incremental Unsupervised Domain Adaptation (CI-UDA) aims to adapt a model from a labeled source domain to an unlabeled target domain, where the sets of potential target classes appearing at different time steps are disjoint and are subsets of the source classes. The key to solving this problem lies in avoiding catastrophic forgetting of knowledge about previous target classes during continuously mitigating the domain shift. Most previous works cumbersomely combine two technical components. On one hand, they need to store and utilize rehearsal target sample from previous time steps to avoid catastrophic forgetting; on the other hand, they perform alignment only between classes shared across domains at each time step. Consequently, the memory will continuously increase and the asymmetric alignment may inevitably result in knowledge forgetting. In this paper, we propose to mine and preserve domain-invariant and class-agnostic knowledge to facilitate the CI-UDA task. Specifically, via using CLIP, we extract the class-agnostic properties which we name as "attribute". In our framework, we learn a "key-value" pair to represent an attribute, where the key corresponds to the visual prototype and the value is the textual prompt. We maintain two attribute dictionaries, each corresponding to a different domain. Then we perform attribute alignment across domains to mitigate the domain shift, via encouraging visual attention consistency and prediction consistency. Through attribute modeling and cross-domain alignment, we effectively reduce catastrophic knowledge forgetting while mitigating the domain shift, in a rehearsal-free way. Experiments on three CI-UDA benchmarks demonstrate that our method outperforms previous state-of-the-art methods and effectively alleviates catastrophic forgetting. Code is available at https://github.com/RyunMi/VisTA.

Authors:Yitong Zhang, Ximo Li, Liyi Cai, Jia Li
Title: Realistic Environmental Injection Attacks on GUI Agents
Abstract:
GUI agents built on LVLMs are increasingly used to interact with websites. However, their exposure to open-world content makes them vulnerable to Environmental Injection Attacks (EIAs) that hijack agent behavior via webpage elements. Many recent studies assume the attacker to be a regular user who can only upload a single trigger image, which is more realistic than earlier assumptions of website-level administrative control. However, these works still fall short of realism: (1) the trigger's position and surrounding context remain largely fixed between training and testing, failing to capture the dynamic nature of real webpages and (2) the trigger often occupies an unrealistically large area, whereas real-world images are typically small. To better reflect real-world scenarios, we introduce a more realistic threat model where the attacker is a regular user and the trigger image is small and embedded within a dynamically changing environment. As a result, existing attacks prove largely ineffective under this threat model. To better expose the vulnerabilities of GUI agents, we propose Chameleon, an attack framework with two main novelties. The first is LLM-Driven Environment Simulation, which automatically generates diverse and high-fidelity webpage simulations. The second is Attention Black Hole, which transforms attention weights into explicit supervisory signals that guide the agent's focus toward the trigger region. We evaluate Chameleon on 6 realistic websites and 4 representative LVLM-powered GUI agents, where it significantly outperforms existing methods. Ablation studies confirm that both novelties are critical to performance. Our findings reveal underexplored vulnerabilities in modern GUI agents and establish a robust foundation for future research on defense in open-world GUI agent systems. The code is publicly available at https://github.com/zhangyitonggg/attack2gui.

Authors:Gao Yu Lee, Tanmoy Dam, Md Meftahul Ferdaus, Daniel Puiu Poenar, Vu N. Duong
Title: ANROT-HELANet: Adverserially and Naturally Robust Attention-Based Aggregation Network via The Hellinger Distance for Few-Shot Classification
Abstract:
Few-Shot Learning (FSL), which involves learning to generalize using only a few data samples, has demonstrated promising and superior performances to ordinary CNN methods. While Bayesian based estimation approaches using Kullback-Leibler (KL) divergence have shown improvements, they remain vulnerable to adversarial attacks and natural noises. We introduce ANROT-HELANet, an Adversarially and Naturally RObusT Hellinger Aggregation Network that significantly advances the state-of-the-art in FSL robustness and performance. Our approach implements an adversarially and naturally robust Hellinger distance-based feature class aggregation scheme, demonstrating resilience to adversarial perturbations up to $ε=0.30$ and Gaussian noise up to $σ=0.30$. The network achieves substantial improvements across benchmark datasets, including gains of 1.20\% and 1.40\% for 1-shot and 5-shot scenarios on miniImageNet respectively. We introduce a novel Hellinger Similarity contrastive loss function that generalizes cosine similarity contrastive loss for variational few-shot inference scenarios. Our approach also achieves superior image reconstruction quality with a FID score of 2.75, outperforming traditional VAE (3.43) and WAE (3.38) approaches. Extensive experiments conducted on four few-shot benchmarked datasets verify that ANROT-HELANet's combination of Hellinger distance-based feature aggregation, attention mechanisms, and our novel loss function establishes new state-of-the-art performance while maintaining robustness against both adversarial and natural perturbations. Our code repository will be available at https://github.com/GreedYLearner1146/ANROT-HELANet/tree/main.

Authors:Yihang She, Andrew Blake, David Coomes, Srinivasan Keshav
Title: Scaling Up Forest Vision with Synthetic Data
Abstract:
Accurate tree segmentation is a key step in extracting individual tree metrics from forest laser scans, and is essential to understanding ecosystem functions in carbon cycling and beyond. Over the past decade, tree segmentation algorithms have advanced rapidly due to developments in AI. However existing, public, 3D forest datasets are not large enough to build robust tree segmentation systems. Motivated by the success of synthetic data in other domains such as self-driving, we investigate whether similar approaches can help with tree segmentation. In place of expensive field data collection and annotation, we use synthetic data during pretraining, and then require only minimal, real forest plot annotation for fine-tuning. We have developed a new synthetic data generation pipeline to do this for forest vision tasks, integrating advances in game-engines with physics-based LiDAR simulation. As a result, we have produced a comprehensive, diverse, annotated 3D forest dataset on an unprecedented scale. Extensive experiments with a state-of-the-art tree segmentation algorithm and a popular real dataset show that our synthetic data can substantially reduce the need for labelled real data. After fine-tuning on just a single, real, forest plot of less than 0.1 hectare, the pretrained model achieves segmentations that are competitive with a model trained on the full scale real data. We have also identified critical factors for successful use of synthetic data: physics, diversity, and scale, paving the way for more robust 3D forest vision systems in the future. Our data generation pipeline and the resulting dataset are available at https://github.com/yihshe/CAMP3D.git.

Authors:Chengde Lin, Xuezhu Gong, Shuxue Ding, Mingzhe Yang, Xijun Lu, Chengjun Mo
Title: StegOT: Trade-offs in Steganography via Optimal Transport
Abstract:
Image hiding is often referred to as steganography, which aims to hide a secret image in a cover image of the same resolution. Many steganography models are based on genera-tive adversarial networks (GANs) and variational autoencoders (VAEs). However, most existing models suffer from mode collapse. Mode collapse will lead to an information imbalance between the cover and secret images in the stego image and further affect the subsequent extraction. To address these challenges, this paper proposes StegOT, an autoencoder-based steganography model incorporating optimal transport theory. We designed the multiple channel optimal transport (MCOT) module to transform the feature distribution, which exhibits multiple peaks, into a single peak to achieve the trade-off of information. Experiments demonstrate that we not only achieve a trade-off between the cover and secret images but also enhance the quality of both the stego and recovery images. The source code will be released on https://github.com/Rss1124/StegOT.

Authors:Zhiwen Yang, Yuxin Peng
Title: SPHERE: Semantic-PHysical Engaged REpresentation for 3D Semantic Scene Completion
Abstract:
Camera-based 3D Semantic Scene Completion (SSC) is a critical task in autonomous driving systems, assessing voxel-level geometry and semantics for holistic scene perception. While existing voxel-based and plane-based SSC methods have achieved considerable progress, they struggle to capture physical regularities for realistic geometric details. On the other hand, neural reconstruction methods like NeRF and 3DGS demonstrate superior physical awareness, but suffer from high computational cost and slow convergence when handling large-scale, complex autonomous driving scenes, leading to inferior semantic accuracy. To address these issues, we propose the Semantic-PHysical Engaged REpresentation (SPHERE) for camera-based SSC, which integrates voxel and Gaussian representations for joint exploitation of semantic and physical information. First, the Semantic-guided Gaussian Initialization (SGI) module leverages dual-branch 3D scene representations to locate focal voxels as anchors to guide efficient Gaussian initialization. Then, the Physical-aware Harmonics Enhancement (PHE) module incorporates semantic spherical harmonics to model physical-aware contextual details and promote semantic-geometry consistency through focal distribution alignment, generating SSC results with realistic details. Extensive experiments and analyses on the popular SemanticKITTI and SSCBench-KITTI-360 benchmarks validate the effectiveness of SPHERE. The code is available at https://github.com/PKU-ICST-MIPL/SPHERE_ACMMM2025.

Authors:Zheng Li, Pei Qu, Yufei Jia, Shihui Zhou, Haizhou Ge, Jiahang Cao, Jinni Zhou, Guyue Zhou, Jun Ma
Title: ManiVID-3D: Generalizable View-Invariant Reinforcement Learning for Robotic Manipulation via Disentangled 3D Representations
Abstract:
Deploying visual reinforcement learning (RL) policies in real-world manipulation is often hindered by camera viewpoint changes. A policy trained from a fixed front-facing camera may fail when the camera is shifted--an unavoidable situation in real-world settings where sensor placement is hard to manage appropriately. Existing methods often rely on precise camera calibration or struggle with large perspective changes. To address these limitations, we propose ManiVID-3D, a novel 3D RL architecture designed for robotic manipulation, which learns view-invariant representations through self-supervised disentangled feature learning. The framework incorporates ViewNet, a lightweight yet effective module that automatically aligns point cloud observations from arbitrary viewpoints into a unified spatial coordinate system without the need for extrinsic calibration. Additionally, we develop an efficient GPU-accelerated batch rendering module capable of processing over 5000 frames per second, enabling large-scale training for 3D visual RL at unprecedented speeds. Extensive evaluation across 10 simulated and 5 real-world tasks demonstrates that our approach achieves a 44.7% higher success rate than state-of-the-art methods under viewpoint variations while using 80% fewer parameters. The system's robustness to severe perspective changes and strong sim-to-real performance highlight the effectiveness of learning geometrically consistent representations for scalable robotic manipulation in unstructured environments. Our project website can be found in https://zheng-joe-lee.github.io/manivid3d/.

Authors:Yuqiu Liu, Jialin Song, Manolis Savva, Wuyang Chen
Title: WildSmoke: Ready-to-Use Dynamic 3D Smoke Assets from a Single Video in the Wild
Abstract:
We propose a pipeline to extract and reconstruct dynamic 3D smoke assets from a single in-the-wild video, and further integrate interactive simulation for smoke design and editing. Recent developments in 3D vision have significantly improved reconstructing and rendering fluid dynamics, supporting realistic and temporally consistent view synthesis. However, current fluid reconstructions rely heavily on carefully controlled clean lab environments, whereas real-world videos captured in the wild are largely underexplored. We pinpoint three key challenges of reconstructing smoke in real-world videos and design targeted techniques, including smoke extraction with background removal, initialization of smoke particles and camera poses, and inferring multi-view videos. Our method not only outperforms previous reconstruction and generation methods with high-quality smoke reconstructions (+2.22 average PSNR on wild videos), but also enables diverse and realistic editing of fluid dynamics by simulating our smoke assets. We provide our models, data, and 4D smoke assets at [https://autumnyq.github.io/WildSmoke](https://autumnyq.github.io/WildSmoke).

Authors:Zhi Chen, Le Zhang
Title: UltraUPConvNet: A UPerNet- and ConvNeXt-Based Multi-Task Network for Ultrasound Tissue Segmentation and Disease Prediction
Abstract:
Ultrasound imaging is widely used in clinical practice due to its cost-effectiveness, mobility, and safety. However, current AI research often treats disease prediction and tissue segmentation as two separate tasks and their model requires substantial computational overhead. In such a situation, we introduce UltraUPConvNet, a computationally efficient universal framework designed for both ultrasound image classification and segmentation. Trained on a large-scale dataset containing more than 9,700 annotations across seven different anatomical regions, our model achieves state-of-the-art performance on certain datasets with lower computational overhead. Our model weights and codes are available at https://github.com/yyxl123/UltraUPConvNet

Authors:Chao Chen, Shunyu Yao, Yuanwu He, Tao Feng, Ruojing Song, Yuliang Guo, Xinyu Huang, Chenxu Wu, Ren Liu, Chen Feng
Title: End-to-End Visual Autonomous Parking via Control-Aided Attention
Abstract:
Precise parking requires an end-to-end system where perception adaptively provides policy-relevant details-especially in critical areas where fine control decisions are essential. End-to-end learning offers a unified framework by directly mapping sensor inputs to control actions, but existing approaches lack effective synergy between perception and control. We find that transformer-based self-attention, when used alone, tends to produce unstable and temporally inconsistent spatial attention, which undermines the reliability of downstream policy decisions over time. Instead, we propose CAA-Policy, an end-to-end imitation learning system that allows control signal to guide the learning of visual attention via a novel Control-Aided Attention (CAA) mechanism. For the first time, we train such an attention module in a self-supervised manner, using backpropagated gradients from the control outputs instead of from the training loss. This strategy encourages the attention to focus on visual features that induce high variance in action outputs, rather than merely minimizing the training loss-a shift we demonstrate leads to a more robust and generalizable policy. To further enhance stability, CAA-Policy integrates short-horizon waypoint prediction as an auxiliary task, and introduces a separately trained motion prediction module to robustly track the target spot over time. Extensive experiments in the CARLA simulator show that \titlevariable~consistently surpasses both the end-to-end learning baseline and the modular BEV segmentation + hybrid A* pipeline, achieving superior accuracy, robustness, and interpretability. Code is released at https://github.com/Joechencc/CAAPolicy.

Authors:Xiaoyu Huang, Lauren M Maxson, Trang Nguyen, Cheng Jack Song, Yuankai Huo
Title: Organoid Tracker: A SAM2-Powered Platform for Zero-shot Cyst Analysis in Human Kidney Organoid Videos
Abstract:
Recent advances in organoid models have revolutionized the study of human kidney disease mechanisms and drug discovery by enabling scalable, cost-effective research without the need for animal sacrifice. Here, we present a kidney organoid platform optimized for efficient screening in polycystic kidney disease (PKD). While these systems generate rich spatial-temporal microscopy video datasets, current manual approaches to analysis remain limited to coarse classifications (e.g., hit vs. non-hit), often missing valuable pixel-level and longitudinal information. To help overcome this bottleneck, we developed Organoid Tracker, a graphical user interface (GUI) platform designed with a modular plugin architecture, which empowers researchers to extract detailed, quantitative metrics without programming expertise. Built on the cutting-edge vision foundation model Segment Anything Model 2 (SAM2), Organoid Tracker enables zero-shot segmentation and automated analysis of spatial-temporal microscopy videos. It quantifies key metrics such as cyst formation rate, growth velocity, and morphological changes, while generating comprehensive reports. By providing an extensible, open-source framework, Organoid Tracker offers a powerful solution for improving and accelerating research in kidney development, PKD modeling, and therapeutic discovery. The platform is publicly available as open-source software at https://github.com/hrlblab/OrganoidTracker.

Authors:Gurutva Patle, Nilay Girgaonkar, Nagabhushan Somraj, Rajiv Soundararajan
Title: AD-GS: Alternating Densification for Sparse-Input 3D Gaussian Splatting
Abstract:
3D Gaussian Splatting (3DGS) has shown impressive results in real-time novel view synthesis. However, it often struggles under sparse-view settings, producing undesirable artifacts such as floaters, inaccurate geometry, and overfitting due to limited observations. We find that a key contributing factor is uncontrolled densification, where adding Gaussian primitives rapidly without guidance can harm geometry and cause artifacts. We propose AD-GS, a novel alternating densification framework that interleaves high and low densification phases. During high densification, the model densifies aggressively, followed by photometric loss based training to capture fine-grained scene details. Low densification then primarily involves aggressive opacity pruning of Gaussians followed by regularizing their geometry through pseudo-view consistency and edge-aware depth smoothness. This alternating approach helps reduce overfitting by carefully controlling model capacity growth while progressively refining the scene representation. Extensive experiments on challenging datasets demonstrate that AD-GS significantly improves rendering quality and geometric consistency compared to existing methods. The source code for our model can be found on our project page: https://gurutvapatle.github.io/publications/2025/ADGS.html .

Authors:Ali Hedayatnia, Mostafa Tavassolipour, Babak Nadjar Araabi, Abdol-Hossein Vahabie
Title: Robustifying Diffusion-Denoised Smoothing Against Covariate Shift
Abstract:
Randomized smoothing is a well-established method for achieving certified robustness against l2-adversarial perturbations. By incorporating a denoiser before the base classifier, pretrained classifiers can be seamlessly integrated into randomized smoothing without significant performance degradation. Among existing methods, Diffusion Denoised Smoothing - where a pretrained denoising diffusion model serves as the denoiser - has produced state-of-the-art results. However, we show that employing a denoising diffusion model introduces a covariate shift via misestimation of the added noise, ultimately degrading the smoothed classifier's performance. To address this issue, we propose a novel adversarial objective function focused on the added noise of the denoising diffusion model. This approach is inspired by our understanding of the origin of the covariate shift. Our goal is to train the base classifier to ensure it is robust against the covariate shift introduced by the denoiser. Our method significantly improves certified accuracy across three standard classification benchmarks - MNIST, CIFAR-10, and ImageNet - achieving new state-of-the-art performance in l2-adversarial perturbations. Our implementation is publicly available at https://github.com/ahedayat/Robustifying-DDS-Against-Covariate-Shift

Authors:Weiqiang Zhao, Tianzhu Liu, Yuzhe Gui, Yanfeng Gu
Title: Total Variation Subgradient Guided Image Fusion for Dual-Camera CASSI System
Abstract:
Spectral imaging technology has long-faced fundamental challenges in balancing spectral, spatial, and temporal resolutions. While compressive sensing-based Coded Aperture Snapshot Spectral Imaging (CASSI) mitigates this trade-off through optical encoding, high compression ratios result in ill-posed reconstruction problems. Traditional model-based methods exhibit limited performance due to reliance on handcrafted inherent image priors, while deep learning approaches are constrained by their black-box nature, which compromises physical interpretability. To address these limitations, we propose a dual-camera CASSI reconstruction framework that integrates total variation (TV) subgradient theory. By establishing an end-to-end SD-CASSI mathematical model, we reduce the computational complexity of solving the inverse problem and provide a mathematically well-founded framework for analyzing multi-camera systems. A dynamic regularization strategy is introduced, incorporating normalized gradient constraints from RGB/panchromatic-derived reference images, which constructs a TV subgradient similarity function with strict convex optimization guarantees. Leveraging spatial priors from auxiliary cameras, an adaptive reference generation and updating mechanism is designed to provide subgradient guidance. Experimental results demonstrate that the proposed method effectively preserves spatial-spectral structural consistency. The theoretical framework establishes an interpretable mathematical foundation for computational spectral imaging, demonstrating robust performance across diverse reconstruction scenarios. The source code is available at https://github.com/bestwishes43/ADMM-TVDS.

Authors:Aryan Kashyap Naveen, Bhuvanesh Singla, Raajan Wankhade, Shreesha M, Ramu S, Ram Mohana Reddy Guddeti
Title: AutoOEP -- A Multi-modal Framework for Online Exam Proctoring
Abstract:
The burgeoning of online education has created an urgent need for robust and scalable systems to ensure academic integrity during remote examinations. Traditional human proctoring is often not feasible at scale, while existing automated solutions can be intrusive or fail to detect a wide range of cheating behaviors. This paper introduces AutoOEP (Automated Online Exam Proctoring), a comprehensive, multi-modal framework that leverages computer vision and machine learning to provide effective, automated proctoring. The system utilizes a dual-camera setup to capture both a frontal view of the examinee and a side view of the workspace, minimizing blind spots. Our approach integrates several parallel analyses: the Face Module performs continuous identity verification using ArcFace, along with head pose estimation, gaze tracking, and mouth movement analysis to detect suspicious cues. Concurrently, the Hand Module employs a fine-tuned YOLOv11 model for detecting prohibited items (e.g., mobile phones, notes) and tracks hand proximity to these objects. Features from these modules are aggregated and fed into a Long Short-Term Memory (LSTM) network that analyzes temporal patterns to calculate a real-time cheating probability score. We evaluate AutoOEP on a custom-collected dataset simulating diverse exam conditions. Our system achieves an accuracy of 90.7% in classifying suspicious activities. The object detection component obtains a mean Average Precision (mAP@.5) of 0.57 for prohibited items, and the entire framework processes video streams at approximately 2.4 frames per second without a GPU. The results demonstrate that AutoOEP is an effective and resource-efficient solution for automated proctoring, significantly reducing the need for human intervention and enhancing the integrity of online assessments. The code is public and can be accessed at https://github.com/05kashyap/AutoOEP.

Authors:Qingxiang Liu, Ting Huang, Zeyu Zhang, Hao Tang
Title: Nav-R1: Reasoning and Navigation in Embodied Scenes
Abstract:
Embodied navigation requires agents to integrate perception, reasoning, and action for robust interaction in complex 3D environments. Existing approaches often suffer from incoherent and unstable reasoning traces that hinder generalization across diverse environments, and difficulty balancing long-horizon semantic reasoning with low-latency control for real-time navigation. To address these challenges, we propose Nav-R1, an embodied foundation model that unifies reasoning in embodied environments. We first construct Nav-CoT-110K, a large-scale dataset of step-by-step Chains-of-Thought (CoT) for embodied tasks, which enables cold-start initialization with structured reasoning. Building on this foundation, we design a GRPO-based reinforcement learning framework with three complementary rewards: format, understanding, and navigation, to improve structural adherence, semantic grounding, and path fidelity. Furthermore, we introduce a Fast-in-Slow reasoning paradigm, decoupling deliberate semantic reasoning from low-latency reactive control for efficient yet coherent navigation. Extensive evaluations on embodied AI benchmarks demonstrate that Nav-R1 consistently outperforms strong baselines, with over 8% average improvement in reasoning and navigation performance. Real-world deployment on a mobile robot further validates its robustness under limited onboard resources. Code: https://github.com/AIGeeksGroup/Nav-R1. Website: https://aigeeksgroup.github.io/Nav-R1.

Authors:Simone Mosco, Daniel Fusaro, Wanmeng Li, Emanuele Menegatti, Alberto Pretto
Title: Point-Plane Projections for Accurate LiDAR Semantic Segmentation in Small Data Scenarios
Abstract:
LiDAR point cloud semantic segmentation is essential for interpreting 3D environments in applications such as autonomous driving and robotics. Recent methods achieve strong performance by exploiting different point cloud representations or incorporating data from other sensors, such as cameras or external datasets. However, these approaches often suffer from high computational complexity and require large amounts of training data, limiting their generalization in data-scarce scenarios. In this paper, we improve the performance of point-based methods by effectively learning features from 2D representations through point-plane projections, enabling the extraction of complementary information while relying solely on LiDAR data. Additionally, we introduce a geometry-aware technique for data augmentation that aligns with LiDAR sensor properties and mitigates class imbalance. We implemented and evaluated our method that applies point-plane projections onto multiple informative 2D representations of the point cloud. Experiments demonstrate that this approach leads to significant improvements in limited-data scenarios, while also achieving competitive results on two publicly available standard datasets, as SemanticKITTI and PandaSet. The code of our method is available at https://github.com/SiMoM0/3PNet

Authors:Xiaoyang Ma, Yiyang Chai, Xinran Qu, Hong Sun
Title: USCTNet: A deep unfolding nuclear-norm optimization solver for physically consistent HSI reconstruction
Abstract:
Reconstructing hyperspectral images (HSIs) from a single RGB image is ill-posed and can become physically inconsistent when the camera spectral sensitivity (CSS) and scene illumination are misspecified. We formulate RGB-to-HSI reconstruction as a physics-grounded inverse problem regularized by a nuclear norm in a learnable transform domain, and we explicitly estimate CSS and illumination to define the forward operator embedded in each iteration, ensuring colorimetric consistency. To avoid the cost and instability of full singular-value decompositions (SVDs) required by singular-value thresholding (SVT), we introduce a data-adaptive low-rank subspace SVT operator. Building on these components, we develop USCTNet, a deep unfolding solver tailored to HSI that couples a parameter estimation module with learnable proximal updates. Extensive experiments on standard benchmarks show consistent improvements over state-of-the-art RGB-based methods in reconstruction accuracy. Code: https://github.com/psykheXX/USCTNet-Code-Implementation.git

Authors:Emily Kaczmarek, Justin Szeto, Brennan Nichyporuk, Tal Arbel
Title: Building a General SimCLR Self-Supervised Foundation Model Across Neurological Diseases to Advance 3D Brain MRI Diagnoses
Abstract:
3D structural Magnetic Resonance Imaging (MRI) brain scans are commonly acquired in clinical settings to monitor a wide range of neurological conditions, including neurodegenerative disorders and stroke. While deep learning models have shown promising results analyzing 3D MRI across a number of brain imaging tasks, most are highly tailored for specific tasks with limited labeled data, and are not able to generalize across tasks and/or populations. The development of self-supervised learning (SSL) has enabled the creation of large medical foundation models that leverage diverse, unlabeled datasets ranging from healthy to diseased data, showing significant success in 2D medical imaging applications. However, even the very few foundation models for 3D brain MRI that have been developed remain limited in resolution, scope, or accessibility. In this work, we present a general, high-resolution SimCLR-based SSL foundation model for 3D brain structural MRI, pre-trained on 18,759 patients (44,958 scans) from 11 publicly available datasets spanning diverse neurological diseases. We compare our model to Masked Autoencoders (MAE), as well as two supervised baselines, on four diverse downstream prediction tasks in both in-distribution and out-of-distribution settings. Our fine-tuned SimCLR model outperforms all other models across all tasks. Notably, our model still achieves superior performance when fine-tuned using only 20% of labeled training samples for predicting Alzheimer's disease. We use publicly available code and data, and release our trained model at https://github.com/emilykaczmarek/3D-Neuro-SimCLR, contributing a broadly applicable and accessible foundation model for clinical brain MRI analysis.

Authors:Prajit Sengupta, Islem Rekik
Title: FireGNN: Neuro-Symbolic Graph Neural Networks with Trainable Fuzzy Rules for Interpretable Medical Image Classification
Abstract:
Medical image classification requires not only high predictive performance but also interpretability to ensure clinical trust and adoption. Graph Neural Networks (GNNs) offer a powerful framework for modeling relational structures within datasets; however, standard GNNs often operate as black boxes, limiting transparency and usability, particularly in clinical settings. In this work, we present an interpretable graph-based learning framework named FireGNN that integrates trainable fuzzy rules into GNNs for medical image classification. These rules embed topological descriptors - node degree, clustering coefficient, and label agreement - using learnable thresholds and sharpness parameters to enable intrinsic symbolic reasoning. Additionally, we explore auxiliary self-supervised tasks (e.g., homophily prediction, similarity entropy) as a benchmark to evaluate the contribution of topological learning. Our fuzzy-rule-enhanced model achieves strong performance across five MedMNIST benchmarks and the synthetic dataset MorphoMNIST, while also generating interpretable rule-based explanations. To our knowledge, this is the first integration of trainable fuzzy rules within a GNN. Source Code: https://github.com/basiralab/FireGNN

Authors:Christian Fane
Title: A Real-Time Diminished Reality Approach to Privacy in MR Collaboration
Abstract:
Diminished reality (DR) refers to the digital removal of real-world objects by compositing background content in their place. This thesis presents a real-time, inpainting-based DR system designed to enable privacy control in shared-space mixed reality (MR) meetings. The system allows a primary headset user to selectively remove personal or sensitive items from their environment, ensuring that those objects are no longer visible to other participants. Removal is achieved through semantic segmentation and precise object selection, followed by real-time inpainting from the viewpoint of a secondary observer, implemented using a mobile ZED 2i depth camera. The solution is designed to be portable and robust, requiring neither a fixed secondary viewpoint nor prior 3D scanning of the environment. The system utilises YOLOv11 for object detection and a modified Decoupled Spatial-Temporal Transformer (DSTT) model for high-quality video inpainting. At 720p resolution, the pipeline sustains frame rates exceeding 20 fps, demonstrating the feasibility of real-time diminished reality for practical privacy-preserving MR applications.

Authors:Hang Yin, Haoyu Wei, Xiuwei Xu, Wenxuan Guo, Jie Zhou, Jiwen Lu
Title: GC-VLN: Instruction as Graph Constraints for Training-free Vision-and-Language Navigation
Abstract:
In this paper, we propose a training-free framework for vision-and-language navigation (VLN). Existing zero-shot VLN methods are mainly designed for discrete environments or involve unsupervised training in continuous simulator environments, which makes it challenging to generalize and deploy them in real-world scenarios. To achieve a training-free framework in continuous environments, our framework formulates navigation guidance as graph constraint optimization by decomposing instructions into explicit spatial constraints. The constraint-driven paradigm decodes spatial semantics through constraint solving, enabling zero-shot adaptation to unseen environments. Specifically, we construct a spatial constraint library covering all types of spatial relationship mentioned in VLN instructions. The human instruction is decomposed into a directed acyclic graph, with waypoint nodes, object nodes and edges, which are used as queries to retrieve the library to build the graph constraints. The graph constraint optimization is solved by the constraint solver to determine the positions of waypoints, obtaining the robot's navigation path and final goal. To handle cases of no solution or multiple solutions, we construct a navigation tree and the backtracking mechanism. Extensive experiments on standard benchmarks demonstrate significant improvements in success rate and navigation efficiency compared to state-of-the-art zero-shot VLN methods. We further conduct real-world experiments to show that our framework can effectively generalize to new environments and instruction sets, paving the way for a more robust and autonomous navigation framework.

Authors:Emily Kaczmarek, Justin Szeto, Brennan Nichyporuk, Tal Arbel
Title: SSL-AD: Spatiotemporal Self-Supervised Learning for Generalizability and Adaptability Across Alzheimer's Prediction Tasks and Datasets
Abstract:
Alzheimer's disease is a progressive, neurodegenerative disorder that causes memory loss and cognitive decline. While there has been extensive research in applying deep learning models to Alzheimer's prediction tasks, these models remain limited by lack of available labeled data, poor generalization across datasets, and inflexibility to varying numbers of input scans and time intervals between scans. In this study, we adapt three state-of-the-art temporal self-supervised learning (SSL) approaches for 3D brain MRI analysis, and add novel extensions designed to handle variable-length inputs and learn robust spatial features. We aggregate four publicly available datasets comprising 3,161 patients for pre-training, and show the performance of our model across multiple Alzheimer's prediction tasks including diagnosis classification, conversion detection, and future conversion prediction. Importantly, our SSL model implemented with temporal order prediction and contrastive learning outperforms supervised learning on six out of seven downstream tasks. It demonstrates adaptability and generalizability across tasks and number of input images with varying time intervals, highlighting its capacity for robust performance across clinical applications. We release our code and model publicly at https://github.com/emilykaczmarek/SSL-AD.

Authors:Iacopo Curti, Pierluigi Zama Ramirez, Alioscia Petrelli, Luigi Di Stefano
Title: Multimodal SAM-adapter for Semantic Segmentation
Abstract:
Semantic segmentation, a key task in computer vision with broad applications in autonomous driving, medical imaging, and robotics, has advanced substantially with deep learning. Nevertheless, current approaches remain vulnerable to challenging conditions such as poor lighting, occlusions, and adverse weather. To address these limitations, multimodal methods that integrate auxiliary sensor data (e.g., LiDAR, infrared) have recently emerged, providing complementary information that enhances robustness. In this work, we present MM SAM-adapter, a novel framework that extends the capabilities of the Segment Anything Model (SAM) for multimodal semantic segmentation. The proposed method employs an adapter network that injects fused multimodal features into SAM's rich RGB features. This design enables the model to retain the strong generalization ability of RGB features while selectively incorporating auxiliary modalities only when they contribute additional cues. As a result, MM SAM-adapter achieves a balanced and efficient use of multimodal information. We evaluate our approach on three challenging benchmarks, DeLiVER, FMB, and MUSES, where MM SAM-adapter delivers state-of-the-art performance. To further analyze modality contributions, we partition DeLiVER and FMB into RGB-easy and RGB-hard subsets. Results consistently demonstrate that our framework outperforms competing methods in both favorable and adverse conditions, highlighting the effectiveness of multimodal adaptation for robust scene understanding. The code is available at the following link: https://github.com/iacopo97/Multimodal-SAM-Adapter.

Authors:Fabien Allemand, Attilio Fiandrotti, Sumanta Chaudhuri, Alaa Eddine Mazouz
Title: Efficient Learned Image Compression Through Knowledge Distillation
Abstract:
Learned image compression sits at the intersection of machine learning and image processing. With advances in deep learning, neural network-based compression methods have emerged. In this process, an encoder maps the image to a low-dimensional latent space, which is then quantized, entropy-coded into a binary bitstream, and transmitted to the receiver. At the receiver end, the bitstream is entropy-decoded, and a decoder reconstructs an approximation of the original image. Recent research suggests that these models consistently outperform conventional codecs. However, they require significant processing power, making them unsuitable for real-time use on resource-constrained platforms, which hinders their deployment in mainstream applications. This study aims to reduce the resource requirements of neural networks used for image compression by leveraging knowledge distillation, a training paradigm where smaller neural networks, partially trained on the outputs of larger, more complex models, can achieve better performance than when trained independently. Our work demonstrates that knowledge distillation can be effectively applied to image compression tasks: i) across various architecture sizes, ii) to achieve different image quality/bit rate tradeoffs, and iii) to save processing and energy resources. This approach introduces new settings and hyperparameters, and future research could explore the impact of different teacher models, as well as alternative loss functions. Knowledge distillation could also be extended to transformer-based models. The code is publicly available at: https://github.com/FABallemand/PRIM .

Authors:Zhixin Zheng, Xinyu Wang, Chang Zou, Shaobo Wang, Linfeng Zhang
Title: Compute Only 16 Tokens in One Timestep: Accelerating Diffusion Transformers with Cluster-Driven Feature Caching
Abstract:
Diffusion transformers have gained significant attention in recent years for their ability to generate high-quality images and videos, yet still suffer from a huge computational cost due to their iterative denoising process. Recently, feature caching has been introduced to accelerate diffusion transformers by caching the feature computation in previous timesteps and reusing it in the following timesteps, which leverage the temporal similarity of diffusion models while ignoring the similarity in the spatial dimension. In this paper, we introduce Cluster-Driven Feature Caching (ClusCa) as an orthogonal and complementary perspective for previous feature caching. Specifically, ClusCa performs spatial clustering on tokens in each timestep, computes only one token in each cluster and propagates their information to all the other tokens, which is able to reduce the number of tokens by over 90%. Extensive experiments on DiT, FLUX and HunyuanVideo demonstrate its effectiveness in both text-to-image and text-to-video generation. Besides, it can be directly applied to any diffusion transformer without requirements for training. For instance, ClusCa achieves 4.96x acceleration on FLUX with an ImageReward of 99.49%, surpassing the original model by 0.51%. The code is available at https://github.com/Shenyi-Z/Cache4Diffusion.

Authors:Evan Murphy, Marco Viola, Vladimir A. Krylov
Title: A Stochastic Birth-and-Death Approach for Street Furniture Geolocation in Urban Environments
Abstract:
In this paper we address the problem of precise geolocation of street furniture in complex urban environments, which is a critical task for effective monitoring and maintenance of public infrastructure by local authorities and private stakeholders. To this end, we propose a probabilistic framework based on energy maps that encode the spatial likelihood of object locations. Representing the energy in a map-based geopositioned format allows the optimisation process to seamlessly integrate external geospatial information, such as GIS layers, road maps, or placement constraints, which improves contextual awareness and localisation accuracy. A stochastic birth-and-death optimisation algorithm is introduced to infer the most probable configuration of assets. We evaluate our approach using a realistic simulation informed by a geolocated dataset of street lighting infrastructure in Dublin city centre, demonstrating its potential for scalable and accurate urban asset mapping. The implementation of the algorithm will be made available in the GitHub repository https://github.com/EMurphy0108/SBD_Street_Furniture.

Authors:Jia Wang, Jie Hu, Xiaoqi Ma, Hanghang Ma, Yanbing Zeng, Xiaoming Wei
Title: MagicMirror: A Large-Scale Dataset and Benchmark for Fine-Grained Artifacts Assessment in Text-to-Image Generation
Abstract:
Text-to-image (T2I) generation has achieved remarkable progress in instruction following and aesthetics. However, a persistent challenge is the prevalence of physical artifacts, such as anatomical and structural flaws, which severely degrade perceptual quality and limit application. Given the diversity and complexity of these artifacts, a systematic and fine-grained evaluation framework is required, which is lacking in current benchmarks. To fill this gap, we introduce MagicMirror, a comprehensive framework for artifacts assessment. We first establish a detailed taxonomy of generated image artifacts. Guided by this taxonomy, we manually annotate MagicData340K, the first human-annotated large-scale dataset of 340K generated images with fine-grained artifact labels. Building on this dataset, we train MagicAssessor, a Vision-Language Model (VLM) that provides detailed assessments and corresponding labels. To overcome challenges like class imbalance and reward hacking, we design a novel data sampling strategy and a multi-level reward system for Group Relative Policy Optimization (GRPO). Finally, we leverage MagicAssessor to construct MagicBench, an automated benchmark for evaluating the image artifacts of current T2I models. Our evaluation with MagicBench reveals that despite their widespread adoption, even top-tier models like GPT-image-1 are consistently plagued by significant artifacts, highlighting artifact reduction as a critical frontier for future T2I development. Project page: https://wj-inf.github.io/MagicMirror-page/.

Authors:Rini Smita Thakur, Rajeev Ranjan Dwivedi, Vinod K Kurmi
Title: Grad-CL: Source Free Domain Adaptation with Gradient Guided Feature Disalignment
Abstract:
Accurate segmentation of the optic disc and cup is critical for the early diagnosis and management of ocular diseases such as glaucoma. However, segmentation models trained on one dataset often suffer significant performance degradation when applied to target data acquired under different imaging protocols or conditions. To address this challenge, we propose \textbf{Grad-CL}, a novel source-free domain adaptation framework that leverages a pre-trained source model and unlabeled target data to robustly adapt segmentation performance without requiring access to the original source data. Grad-CL combines a gradient-guided pseudolabel refinement module with a cosine similarity-based contrastive learning strategy. In the first stage, salient class-specific features are extracted via a gradient-based mechanism, enabling more accurate uncertainty quantification and robust prototype estimation for refining noisy pseudolabels. In the second stage, a contrastive loss based on cosine similarity is employed to explicitly enforce inter-class separability between the gradient-informed features of the optic cup and disc. Extensive experiments on challenging cross-domain fundus imaging datasets demonstrate that Grad-CL outperforms state-of-the-art unsupervised and source-free domain adaptation methods, achieving superior segmentation accuracy and improved boundary delineation. Project and code are available at https://visdomlab.github.io/GCL/.

Authors:Minsang Kong, Myeongjun Kim, Sang Gu Kang, Sang Hun Lee
Title: BEVTraj: Map-Free End-to-End Trajectory Prediction in Bird's-Eye View with Deformable Attention and Sparse Goal Proposals
Abstract:
In autonomous driving, trajectory prediction is essential for ensuring safe and efficient navigation. To improve prediction accuracy, recent approaches often rely on pre-built high-definition (HD) maps or real-time local map construction modules to incorporate static environmental information. However, pre-built HD maps are limited to specific regions and cannot adapt to transient changes. In addition, local map construction modules, which recognize only predefined elements, may fail to capture critical scene details or introduce errors that degrade prediction performance. To overcome these limitations, we propose Bird's-Eye View Trajectory Prediction (BEVTraj), a novel trajectory prediction framework that operates directly in the bird's-eye view (BEV) space utilizing real-time sensor data without relying on any pre-built maps. The BEVTraj leverages deformable attention to efficiently extract relevant context from dense BEV features. Furthermore, we introduce a Sparse Goal Candidate Proposal (SGCP) module, which enables full end-to-end prediction without requiring any post-processing steps. Extensive experiments demonstrate that the BEVTraj achieves performance comparable to state-of-the-art HD map-based models while offering greater flexibility by eliminating the dependency on pre-built maps. The source code is available at https://github.com/Kongminsang/bevtraj.

Authors:Yue Zhou, Litong Feng, Mengcheng Lan, Xue Yang, Qingyun Li, Yiping Ke, Xue Jiang, Wayne Zhang
Title: Multimodal Mathematical Reasoning Embedded in Aerial Vehicle Imagery: Benchmarking, Analysis, and Exploration
Abstract:
Mathematical reasoning is critical for tasks such as precise distance and area computations, trajectory estimations, and spatial analysis in unmanned aerial vehicle (UAV) based remote sensing, yet current vision-language models (VLMs) have not been adequately tested in this domain. To address this gap, we introduce AVI-Math, the first benchmark to rigorously evaluate multimodal mathematical reasoning in aerial vehicle imagery, moving beyond simple counting tasks to include domain-specific knowledge in areas such as geometry, logic, and algebra. The dataset comprises 3,773 high-quality vehicle-related questions captured from UAV views, covering 6 mathematical subjects and 20 topics. The data, collected at varying altitudes and from multiple UAV angles, reflects real-world UAV scenarios, ensuring the diversity and complexity of the constructed mathematical problems. In this paper, we benchmark 14 prominent VLMs through a comprehensive evaluation and demonstrate that, despite their success on previous multimodal benchmarks, these models struggle with the reasoning tasks in AVI-Math. Our detailed analysis highlights significant limitations in the mathematical reasoning capabilities of current VLMs and suggests avenues for future research. Furthermore, we explore the use of Chain-of-Thought prompting and fine-tuning techniques, which show promise in addressing the reasoning challenges in AVI-Math. Our findings not only expose the limitations of VLMs in mathematical reasoning but also offer valuable insights for advancing UAV-based trustworthy VLMs in real-world applications. The code, and datasets will be released at https://github.com/VisionXLab/avi-math

Authors:Jing Huang, Zhiya Tan, Shutao Gong, Fanwei Zeng, Joey Tianyi Zhou, Jianshu Li
Title: LaV-CoT: Language-Aware Visual CoT with Multi-Aspect Reward Optimization for Real-World Multilingual VQA
Abstract:
As large vision language models (VLMs) advance, their capabilities in multilingual visual question answering (mVQA) have significantly improved. Chain-of-thought (CoT) reasoning has been proven to enhance interpretability and complex reasoning. However, most existing approaches rely primarily on textual CoT and provide limited support for multilingual multimodal reasoning, constraining their deployment in real-world applications. To address this gap, we introduce \textbf{LaV-CoT}, the first Language-aware Visual CoT framework with Multi-Aspect Reward Optimization. LaV-CoT incorporates an interpretable multi-stage reasoning pipeline consisting of Text Summary with Bounding Box (BBox), Language Identification, Spatial Object-level Captioning, and Step-by-step Logical Reasoning. Following this reasoning pipeline, we design an automated data curation method that generates multilingual CoT annotations through iterative generation, correction, and refinement, enabling scalable and high-quality training data. To improve reasoning and generalization, LaV-CoT adopts a two-stage training paradigm combining Supervised Fine-Tuning (SFT) with Language-aware Group Relative Policy Optimization (GRPO), guided by verifiable multi-aspect rewards including language consistency, structural accuracy, and semantic alignment. Extensive evaluations on public datasets including MMMB, Multilingual MMBench, and MTVQA show that LaV-CoT achieves up to ~9.5% accuracy improvements over open-source baselines of similar size and even surpasses models with 2$\times$ larger scales by ~2.6%. Moreover, LaV-CoT outperforms advanced proprietary models such as GPT-4o-0513 and Gemini-2.5-flash. We further conducted an online A/B test to validate our method on real-world data, highlighting its effectiveness for industrial deployment. Our code is available at this link: \href{https://github.com/HJNVR/LaV-CoT}

Authors:Xiaodong Guo, Tong Liu, Yike Li, Zi'ang Lin, Zhihong Deng
Title: TUNI: Real-time RGB-T Semantic Segmentation with Unified Multi-Modal Feature Extraction and Cross-Modal Feature Fusion
Abstract:
RGB-thermal (RGB-T) semantic segmentation improves the environmental perception of autonomous platforms in challenging conditions. Prevailing models employ encoders pre-trained on RGB images to extract features from both RGB and infrared inputs, and design additional modules to achieve cross-modal feature fusion. This results in limited thermal feature extraction and suboptimal cross-modal fusion, while the redundant encoders further compromises the model's real-time efficiency. To address the above issues, we propose TUNI, with an RGB-T encoder consisting of multiple stacked blocks that simultaneously perform multi-modal feature extraction and cross-modal fusion. By leveraging large-scale pre-training with RGB and pseudo-thermal data, the RGB-T encoder learns to integrate feature extraction and fusion in a unified manner. By slimming down the thermal branch, the encoder achieves a more compact architecture. Moreover, we introduce an RGB-T local module to strengthen the encoder's capacity for cross-modal local feature fusion. The RGB-T local module employs adaptive cosine similarity to selectively emphasize salient consistent and distinct local features across RGB-T modalities. Experimental results show that TUNI achieves competitive performance with state-of-the-art models on FMB, PST900 and CART, with fewer parameters and lower computational cost. Meanwhile, it achieves an inference speed of 27 FPS on a Jetson Orin NX, demonstrating its real-time capability in deployment. Codes are available at https://github.com/xiaodonguo/TUNI.

Authors:Siying Liu, Zikai Wang, Hanle Zheng, Yifan Hu, Xilin Wang, Qingkai Yang, Jibin Wu, Hao Guo, Lei Deng
Title: ISTASTrack: Bridging ANN and SNN via ISTA Adapter for RGB-Event Tracking
Abstract:
RGB-Event tracking has become a promising trend in visual object tracking to leverage the complementary strengths of both RGB images and dynamic spike events for improved performance. However, existing artificial neural networks (ANNs) struggle to fully exploit the sparse and asynchronous nature of event streams. Recent efforts toward hybrid architectures combining ANNs and spiking neural networks (SNNs) have emerged as a promising solution in RGB-Event perception, yet effectively fusing features across heterogeneous paradigms remains a challenge. In this work, we propose ISTASTrack, the first transformer-based \textbf{A}NN-\textbf{S}NN hybrid \textbf{Track}er equipped with \textbf{ISTA} adapters for RGB-Event tracking. The two-branch model employs a vision transformer to extract spatial context from RGB inputs and a spiking transformer to capture spatio-temporal dynamics from event streams. To bridge the modality and paradigm gap between ANN and SNN features, we systematically design a model-based ISTA adapter for bidirectional feature interaction between the two branches, derived from sparse representation theory by unfolding the iterative shrinkage thresholding algorithm. Additionally, we incorporate a temporal downsampling attention module within the adapter to align multi-step SNN features with single-step ANN features in the latent space, improving temporal fusion. Experimental results on RGB-Event tracking benchmarks, such as FE240hz, VisEvent, COESOT, and FELT, have demonstrated that ISTASTrack achieves state-of-the-art performance while maintaining high energy efficiency, highlighting the effectiveness and practicality of hybrid ANN-SNN designs for robust visual tracking. The code is publicly available at https://github.com/lsying009/ISTASTrack.git.

Authors:Anne Marthe Sophie Ngo Bibinbe, Chiron Bang, Patrick Gagnon, Jamie Ahloy-Dallaire, Eric R. Paquet
Title: An HMM-based framework for identity-aware long-term multi-object tracking from sparse and uncertain identification: use case on long-term tracking in livestock
Abstract:
The need for long-term multi-object tracking (MOT) is growing due to the demand for analyzing individual behaviors in videos that span several minutes. Unfortunately, due to identity switches between objects, the tracking performance of existing MOT approaches decreases over time, making them difficult to apply for long-term tracking. However, in many real-world applications, such as in the livestock sector, it is possible to obtain sporadic identifications for some of the animals from sources like feeders. To address the challenges of long-term MOT, we propose a new framework that combines both uncertain identities and tracking using a Hidden Markov Model (HMM) formulation. In addition to providing real-world identities to animals, our HMM framework improves the F1 score of ByteTrack, a leading MOT approach even with re-identification, on a 10 minute pig tracking dataset with 21 identifications at the pen's feeding station. We also show that our approach is robust to the uncertainty of identifications, with performance increasing as identities are provided more frequently. The improved performance of our HMM framework was also validated on the MOT17 and MOT20 benchmark datasets using both ByteTrack and FairMOT. The code for this new HMM framework and the new 10-minute pig tracking video dataset are available at: https://github.com/ngobibibnbe/uncertain-identity-aware-tracking

Authors:Zhi Ying, Boxiang Rong, Jingyu Wang, Maoyuan Xu
Title: Chord: Chain of Rendering Decomposition for PBR Material Estimation from Generated Texture Images
Abstract:
Material creation and reconstruction are crucial for appearance modeling but traditionally require significant time and expertise from artists. While recent methods leverage visual foundation models to synthesize PBR materials from user-provided inputs, they often fall short in quality, flexibility, and user control. We propose a novel two-stage generate-and-estimate framework for PBR material generation. In the generation stage, a fine-tuned diffusion model synthesizes shaded, tileable texture images aligned with user input. In the estimation stage, we introduce a chained decomposition scheme that sequentially predicts SVBRDF channels by passing previously extracted representation as input into a single-step image-conditional diffusion model. Our method is efficient, high quality, and enables flexible user control. We evaluate our approach against existing material generation and estimation methods, demonstrating superior performance. Our material estimation method shows strong robustness on both generated textures and in-the-wild photographs. Furthermore, we highlight the flexibility of our framework across diverse applications, including text-to-material, image-to-material, structure-guided generation, and material editing.

Authors:Tim Broedermannn, Christos Sakaridis, Luigi Piccinelli, Wim Abbeloos, Luc Van Gool
Title: DGFusion: Depth-Guided Sensor Fusion for Robust Semantic Perception
Abstract:
Robust semantic perception for autonomous vehicles relies on effectively combining multiple sensors with complementary strengths and weaknesses. State-of-the-art sensor fusion approaches to semantic perception often treat sensor data uniformly across the spatial extent of the input, which hinders performance when faced with challenging conditions. By contrast, we propose a novel depth-guided multimodal fusion method that upgrades condition-aware fusion by integrating depth information. Our network, DGFusion, poses multimodal segmentation as a multi-task problem, utilizing the lidar measurements, which are typically available in outdoor sensor suites, both as one of the model's inputs and as ground truth for learning depth. Our corresponding auxiliary depth head helps to learn depth-aware features, which are encoded into spatially varying local depth tokens that condition our attentive cross-modal fusion. Together with a global condition token, these local depth tokens dynamically adapt sensor fusion to the spatially varying reliability of each sensor across the scene, which largely depends on depth. In addition, we propose a robust loss for our depth, which is essential for learning from lidar inputs that are typically sparse and noisy in adverse conditions. Our method achieves state-of-the-art panoptic and semantic segmentation performance on the challenging MUSES and DELIVER datasets. Code and models will be available at https://github.com/timbroed/DGFusion

Authors:Moslem Yazdanpanah, Ali Bahri, Mehrdad Noori, Sahar Dastani, Gustavo Adolfo Vargas Hakim, David Osowiechi, Ismail Ben Ayed, Christian Desrosiers
Title: Purge-Gate: Backpropagation-Free Test-Time Adaptation for Point Clouds Classification via Token Purging
Abstract:
Test-time adaptation (TTA) is crucial for mitigating performance degradation caused by distribution shifts in 3D point cloud classification. In this work, we introduce Token Purging (PG), a novel backpropagation-free approach that removes tokens highly affected by domain shifts before they reach attention layers. Unlike existing TTA methods, PG operates at the token level, ensuring robust adaptation without iterative updates. We propose two variants: PG-SP, which leverages source statistics, and PG-SF, a fully source-free version relying on CLS-token-driven adaptation. Extensive evaluations on ModelNet40-C, ShapeNet-C, and ScanObjectNN-C demonstrate that PG-SP achieves an average of +10.3\% higher accuracy than state-of-the-art backpropagation-free methods, while PG-SF sets new benchmarks for source-free adaptation. Moreover, PG is 12.4 times faster and 5.5 times more memory efficient than our baseline, making it suitable for real-world deployment. Code is available at \hyperlink{https://github.com/MosyMosy/Purge-Gate}{https://github.com/MosyMosy/Purge-Gate}

Authors:Jiahao Wang, Yufeng Yuan, Rujie Zheng, Youtian Lin, Jian Gao, Lin-Zhuo Chen, Yajie Bao, Yi Zhang, Chang Zeng, Yanxi Zhou, Xiaoxiao Long, Hao Zhu, Zhaoxiang Zhang, Xun Cao, Yao Yao
Title: SpatialVID: A Large-Scale Video Dataset with Spatial Annotations
Abstract:
Significant progress has been made in spatial intelligence, spanning both spatial reconstruction and world exploration. However, the scalability and real-world fidelity of current models remain severely constrained by the scarcity of large-scale, high-quality training data. While several datasets provide camera pose information, they are typically limited in scale, diversity, and annotation richness, particularly for real-world dynamic scenes with ground-truth camera motion. To this end, we collect \textbf{SpatialVID}, a dataset consists of a large corpus of in-the-wild videos with diverse scenes, camera movements and dense 3D annotations such as per-frame camera poses, depth, and motion instructions. Specifically, we collect more than 21,000 hours of raw video, and process them into 2.7 million clips through a hierarchical filtering pipeline, totaling 7,089 hours of dynamic content. A subsequent annotation pipeline enriches these clips with detailed spatial and semantic information, including camera poses, depth maps, dynamic masks, structured captions, and serialized motion instructions. Analysis of SpatialVID's data statistics reveals a richness and diversity that directly foster improved model generalization and performance, establishing it as a key asset for the video and 3D vision research community.

Authors:Bingkui Tong, Jiaer Xia, Sifeng Shang, Kaiyang Zhou
Title: Measuring Epistemic Humility in Multimodal Large Language Models
Abstract:
Hallucinations in multimodal large language models (MLLMs) -- where the model generates content inconsistent with the input image -- pose significant risks in real-world applications, from misinformation in visual question answering to unsafe errors in decision-making. Existing benchmarks primarily test recognition accuracy, i.e., evaluating whether models can select the correct answer among distractors. This overlooks an equally critical capability for trustworthy AI: recognizing when none of the provided options are correct, a behavior reflecting epistemic humility. We present HumbleBench, a new hallucination benchmark designed to evaluate MLLMs' ability to reject plausible but incorrect answers across three hallucination types: object, relation, and attribute. Built from a panoptic scene graph dataset, we leverage fine-grained scene graph annotations to extract ground-truth entities and relations, and prompt GPT-4-Turbo to generate multiple-choice questions, followed by a rigorous manual filtering process. Each question includes a "None of the above" option, requiring models not only to recognize correct visual information but also to identify when no provided answer is valid. We evaluate a variety of state-of-the-art MLLMs -- including both general-purpose and specialized reasoning models -- on HumbleBench and share valuable findings and insights with the community. By incorporating explicit false-option rejection, HumbleBench fills a key gap in current evaluation suites, providing a more realistic measure of MLLM reliability in safety-critical settings. Our code and dataset are released publicly and can be accessed at https://github.com/maifoundations/HumbleBench.

Authors:Sijun Dong, Yuxuan Hu, LiBo Wang, Geng Chen, Xiaoliang Meng
Title: PeftCD: Leveraging Vision Foundation Models with Parameter-Efficient Fine-Tuning for Remote Sensing Change Detection
Abstract:
To tackle the prevalence of pseudo changes, the scarcity of labeled samples, and the difficulty of cross-domain generalization in multi-temporal and multi-source remote sensing imagery, we propose PeftCD, a change detection framework built upon Vision Foundation Models (VFMs) with Parameter-Efficient Fine-Tuning (PEFT). At its core, PeftCD employs a weight-sharing Siamese encoder derived from a VFM, into which LoRA and Adapter modules are seamlessly integrated. This design enables highly efficient task adaptation by training only a minimal set of additional parameters. To fully unlock the potential of VFMs, we investigate two leading backbones: the Segment Anything Model v2 (SAM2), renowned for its strong segmentation priors, and DINOv3, a state-of-the-art self-supervised representation learner. The framework is complemented by a deliberately lightweight decoder, ensuring the focus remains on the powerful feature representations from the backbones. Extensive experiments demonstrate that PeftCD achieves state-of-the-art performance across multiple public datasets, including SYSU-CD (IoU 73.81%), WHUCD (92.05%), MSRSCD (64.07%), MLCD (76.89%), CDD (97.01%), S2Looking (52.25%) and LEVIR-CD (85.62%), with notably precise boundary delineation and strong suppression of pseudo-changes. In summary, PeftCD presents an optimal balance of accuracy, efficiency, and generalization. It offers a powerful and scalable paradigm for adapting large-scale VFMs to real-world remote sensing change detection applications. The code and pretrained models will be released at https://github.com/dyzy41/PeftCD.

Authors:Akshit Achara, Esther Puyol Anton, Alexander Hammers, Andrew P. King
Title: Invisible Attributes, Visible Biases: Exploring Demographic Shortcuts in MRI-based Alzheimer's Disease Classification
Abstract:
Magnetic resonance imaging (MRI) is the gold standard for brain imaging. Deep learning (DL) algorithms have been proposed to aid in the diagnosis of diseases such as Alzheimer's disease (AD) from MRI scans. However, DL algorithms can suffer from shortcut learning, in which spurious features, not directly related to the output label, are used for prediction. When these features are related to protected attributes, they can lead to performance bias against underrepresented protected groups, such as those defined by race and sex. In this work, we explore the potential for shortcut learning and demographic bias in DL based AD diagnosis from MRI. We first investigate if DL algorithms can identify race or sex from 3D brain MRI scans to establish the presence or otherwise of race and sex based distributional shifts. Next, we investigate whether training set imbalance by race or sex can cause a drop in model performance, indicating shortcut learning and bias. Finally, we conduct a quantitative and qualitative analysis of feature attributions in different brain regions for both the protected attribute and AD classification tasks. Through these experiments, and using multiple datasets and DL models (ResNet and SwinTransformer), we demonstrate the existence of both race and sex based shortcut learning and bias in DL based AD classification. Our work lays the foundation for fairer DL diagnostic tools in brain MRI. The code is provided at https://github.com/acharaakshit/ShortMR

Authors:Sirui Xu, Dongting Li, Yucheng Zhang, Xiyan Xu, Qi Long, Ziyin Wang, Yunzhi Lu, Shuchang Dong, Hezi Jiang, Akshat Gupta, Yu-Xiong Wang, Liang-Yan Gui
Title: InterAct: Advancing Large-Scale Versatile 3D Human-Object Interaction Generation
Abstract:
While large-scale human motion capture datasets have advanced human motion generation, modeling and generating dynamic 3D human-object interactions (HOIs) remain challenging due to dataset limitations. Existing datasets often lack extensive, high-quality motion and annotation and exhibit artifacts such as contact penetration, floating, and incorrect hand motions. To address these issues, we introduce InterAct, a large-scale 3D HOI benchmark featuring dataset and methodological advancements. First, we consolidate and standardize 21.81 hours of HOI data from diverse sources, enriching it with detailed textual annotations. Second, we propose a unified optimization framework to enhance data quality by reducing artifacts and correcting hand motions. Leveraging the principle of contact invariance, we maintain human-object relationships while introducing motion variations, expanding the dataset to 30.70 hours. Third, we define six benchmarking tasks and develop a unified HOI generative modeling perspective, achieving state-of-the-art performance. Extensive experiments validate the utility of our dataset as a foundational resource for advancing 3D human-object interaction generation. To support continued research in this area, the dataset is publicly available at https://github.com/wzyabcas/InterAct, and will be actively maintained.

Authors:Dohun Lee, Hyeonho Jeong, Jiwook Kim, Duygu Ceylan, Jong Chul Ye
Title: Improving Video Diffusion Transformer Training by Multi-Feature Fusion and Alignment from Self-Supervised Vision Encoders
Abstract:
Video diffusion models have advanced rapidly in the recent years as a result of series of architectural innovations (e.g., diffusion transformers) and use of novel training objectives (e.g., flow matching). In contrast, less attention has been paid to improving the feature representation power of such models. In this work, we show that training video diffusion models can benefit from aligning the intermediate features of the video generator with feature representations of pre-trained vision encoders. We propose a new metric and conduct an in-depth analysis of various vision encoders to evaluate their discriminability and temporal consistency, thereby assessing their suitability for video feature alignment. Based on the analysis, we present Align4Gen which provides a novel multi-feature fusion and alignment method integrated into video diffusion model training. We evaluate Align4Gen both for unconditional and class-conditional video generation tasks and show that it results in improved video generation as quantified by various metrics. Full video results are available on our project page: https://align4gen.github.io/align4gen/

Authors:Jian Zhu, Xin Zou, Xi Wang, Ning Zhang, Bian Wu, Yao Yang, Ying Zhou, Lingfang Zeng, Chang Tang, Cheng Luo
Title: Generative Diffusion Contrastive Network for Multi-View Clustering
Abstract:
In recent years, Multi-View Clustering (MVC) has been significantly advanced under the influence of deep learning. By integrating heterogeneous data from multiple views, MVC enhances clustering analysis, making multi-view fusion critical to clustering performance. However, there is a problem of low-quality data in multi-view fusion. This problem primarily arises from two reasons: 1) Certain views are contaminated by noisy data. 2) Some views suffer from missing data. This paper proposes a novel Stochastic Generative Diffusion Fusion (SGDF) method to address this problem. SGDF leverages a multiple generative mechanism for the multi-view feature of each sample. It is robust to low-quality data. Building on SGDF, we further present the Generative Diffusion Contrastive Network (GDCN). Extensive experiments show that GDCN achieves the state-of-the-art results in deep MVC tasks. The source code is publicly available at https://github.com/HackerHyper/GDCN.

Authors:Ha Linh Nguyen, Tze Ho Elden Tse, Angela Yao
Title: Improving Human Motion Plausibility with Body Momentum
Abstract:
Many studies decompose human motion into local motion in a frame attached to the root joint and global motion of the root joint in the world frame, treating them separately. However, these two components are not independent. Global movement arises from interactions with the environment, which are, in turn, driven by changes in the body configuration. Motion models often fail to precisely capture this physical coupling between local and global dynamics, while deriving global trajectories from joint torques and external forces is computationally expensive and complex. To address these challenges, we propose using whole-body linear and angular momentum as a constraint to link local motion with global movement. Since momentum reflects the aggregate effect of joint-level dynamics on the body's movement through space, it provides a physically grounded way to relate local joint behavior to global displacement. Building on this insight, we introduce a new loss term that enforces consistency between the generated momentum profiles and those observed in ground-truth data. Incorporating our loss reduces foot sliding and jitter, improves balance, and preserves the accuracy of the recovered motion. Code and data are available at the project page https://hlinhn.github.io/momentum_bmvc.

Authors:Peisong Wen, Qianqian Xu, Siran Dai, Runmin Cong, Qingming Huang
Title: Semantic Concentration for Self-Supervised Dense Representations Learning
Abstract:
Recent advances in image-level self-supervised learning (SSL) have made significant progress, yet learning dense representations for patches remains challenging. Mainstream methods encounter an over-dispersion phenomenon that patches from the same instance/category scatter, harming downstream performance on dense tasks. This work reveals that image-level SSL avoids over-dispersion by involving implicit semantic concentration. Specifically, the non-strict spatial alignment ensures intra-instance consistency, while shared patterns, i.e., similar parts of within-class instances in the input space, ensure inter-image consistency. Unfortunately, these approaches are infeasible for dense SSL due to their spatial sensitivity and complicated scene-centric data. These observations motivate us to explore explicit semantic concentration for dense SSL. First, to break the strict spatial alignment, we propose to distill the patch correspondences. Facing noisy and imbalanced pseudo labels, we propose a noise-tolerant ranking loss. The core idea is extending the Average Precision (AP) loss to continuous targets, such that its decision-agnostic and adaptive focusing properties prevent the student model from being misled. Second, to discriminate the shared patterns from complicated scenes, we propose the object-aware filter to map the output space to an object-based space. Specifically, patches are represented by learnable prototypes of objects via cross-attention. Last but not least, empirical studies across various tasks soundly support the effectiveness of our method. Code is available in https://github.com/KID-7391/CoTAP.

Authors:Yuchan Jie, Yushen Xu, Xiaosong Li, Fuqiang Zhou, Jianming Lv, Huafeng Li
Title: FS-Diff: Semantic guidance and clarity-aware simultaneous multimodal image fusion and super-resolution
Abstract:
As an influential information fusion and low-level vision technique, image fusion integrates complementary information from source images to yield an informative fused image. A few attempts have been made in recent years to jointly realize image fusion and super-resolution. However, in real-world applications such as military reconnaissance and long-range detection missions, the target and background structures in multimodal images are easily corrupted, with low resolution and weak semantic information, which leads to suboptimal results in current fusion techniques. In response, we propose FS-Diff, a semantic guidance and clarity-aware joint image fusion and super-resolution method. FS-Diff unifies image fusion and super-resolution as a conditional generation problem. It leverages semantic guidance from the proposed clarity sensing mechanism for adaptive low-resolution perception and cross-modal feature extraction. Specifically, we initialize the desired fused result as pure Gaussian noise and introduce the bidirectional feature Mamba to extract the global features of the multimodal images. Moreover, utilizing the source images and semantics as conditions, we implement a random iterative denoising process via a modified U-Net network. This network istrained for denoising at multiple noise levels to produce high-resolution fusion results with cross-modal features and abundant semantic information. We also construct a powerful aerial view multiscene (AVMS) benchmark covering 600 pairs of images. Extensive joint image fusion and super-resolution experiments on six public and our AVMS datasets demonstrated that FS-Diff outperforms the state-of-the-art methods at multiple magnifications and can recover richer details and semantics in the fused images. The code is available at https://github.com/XylonXu01/FS-Diff.

Authors:Umaima Rahman, Raza Imam, Mohammad Yaqub, Dwarikanath Mahapatra
Title: Decoupling Clinical and Class-Agnostic Features for Reliable Few-Shot Adaptation under Shift
Abstract:
Medical vision-language models (VLMs) offer promise for clinical decision support, yet their reliability under distribution shifts remains a major concern for safe deployment. These models often learn task-agnostic correlations due to variability in imaging protocols and free-text reports, limiting their generalizability and increasing the risk of failure in real-world settings. We propose DRiFt, a structured feature decoupling framework that explicitly separates clinically relevant signals from task-agnostic noise using parameter-efficient tuning (LoRA) and learnable prompt tokens. To enhance cross-modal alignment and reduce uncertainty, we curate high-quality, clinically grounded image-text pairs by generating captions for a diverse medical dataset. Our approach improves in-distribution performance by +11.4% Top-1 accuracy and +3.3% Macro-F1 over prior prompt-based methods, while maintaining strong robustness across unseen datasets. Ablation studies reveal that disentangling task-relevant features and careful alignment significantly enhance model generalization and reduce unpredictable behavior under domain shift. These insights contribute toward building safer, more trustworthy VLMs for clinical use. The code is available at https://github.com/rumaima/DRiFt.

Authors:Dimitrios Anastasiou, Razvan Caramalau, Nazir Sirajudeen, Matthew Boal, Philip Edwards, Justin Collins, John Kelly, Ashwin Sridhar, Maxine Tran, Faiz Mumtaz, Nevil Pavithran, Nader Francis, Danail Stoyanov, Evangelos B. Mazomenos
Title: Exploring Pre-training Across Domains for Few-Shot Surgical Skill Assessment
Abstract:
Automated surgical skill assessment (SSA) is a central task in surgical computer vision. Developing robust SSA models is challenging due to the scarcity of skill annotations, which are time-consuming to produce and require expert consensus. Few-shot learning (FSL) offers a scalable alternative enabling model development with minimal supervision, though its success critically depends on effective pre-training. While widely studied for several surgical downstream tasks, pre-training has remained largely unexplored in SSA. In this work, we formulate SSA as a few-shot task and investigate how self-supervised pre-training strategies affect downstream few-shot SSA performance. We annotate a publicly available robotic surgery dataset with Objective Structured Assessment of Technical Skill (OSATS) scores, and evaluate various pre-training sources across three few-shot settings. We quantify domain similarity and analyze how domain gap and the inclusion of procedure-specific data into pre-training influence transferability. Our results show that small but domain-relevant datasets can outperform large scale, less aligned ones, achieving accuracies of 60.16%, 66.03%, and 73.65% in the 1-, 2-, and 5-shot settings, respectively. Moreover, incorporating procedure-specific data into pre-training with a domain-relevant external dataset significantly boosts downstream performance, with an average gain of +1.22% in accuracy and +2.28% in F1-score; however, applying the same strategy with less similar but large-scale sources can instead lead to performance degradation. Code and models are available at https://github.com/anastadimi/ssa-fsl.

Authors:Hui Li, Yi You, Qiqi Chen, Bingfeng Zhang, George Q. Huang
Title: Fine-Grained Customized Fashion Design with Image-into-Prompt benchmark and dataset from LMM
Abstract:
Generative AI evolves the execution of complex workflows in industry, where the large multimodal model empowers fashion design in the garment industry. Current generation AI models magically transform brainstorming into fancy designs easily, but the fine-grained customization still suffers from text uncertainty without professional background knowledge from end-users. Thus, we propose the Better Understanding Generation (BUG) workflow with LMM to automatically create and fine-grain customize the cloth designs from chat with image-into-prompt. Our framework unleashes users' creative potential beyond words and also lowers the barriers of clothing design/editing without further human involvement. To prove the effectiveness of our model, we propose a new FashionEdit dataset that simulates the real-world clothing design workflow, evaluated from generation similarity, user satisfaction, and quality. The code and dataset: https://github.com/detectiveli/FashionEdit.

Authors:Illia Volkov, Nikita Kisel, Klara Janouskova, Jiri Matas
Title: Image Recognition with Vision and Language Embeddings of VLMs
Abstract:
Vision-language models (VLMs) have enabled strong zero-shot classification through image-text alignment. Yet, their purely visual inference capabilities remain under-explored. In this work, we conduct a comprehensive evaluation of both language-guided and vision-only image classification with a diverse set of dual-encoder VLMs, including both well-established and recent models such as SigLIP 2 and RADIOv2.5. The performance is compared in a standard setup on the ImageNet-1k validation set and its label-corrected variant. The key factors affecting accuracy are analysed, including prompt design, class diversity, the number of neighbours in k-NN, and reference set size. We show that language and vision offer complementary strengths, with some classes favouring textual prompts and others better handled by visual similarity. To exploit this complementarity, we introduce a simple, learning-free fusion method based on per-class precision that improves classification performance. The code is available at: https://github.com/gonikisgo/bmvc2025-vlm-image-recognition.

Authors:Zhengzhao Lai, Youbin Zheng, Zhenyang Cai, Haonan Lyu, Jinpu Yang, Hongqing Liang, Yan Hu, Benyou Wang
Title: Can Multimodal LLMs See Materials Clearly? A Multimodal Benchmark on Materials Characterization
Abstract:
Materials characterization is fundamental to acquiring materials information, revealing the processing-microstructure-property relationships that guide material design and optimization. While multimodal large language models (MLLMs) have recently shown promise in generative and predictive tasks within materials science, their capacity to understand real-world characterization imaging data remains underexplored. To bridge this gap, we present MatCha, the first benchmark for materials characterization image understanding, comprising 1,500 questions that demand expert-level domain expertise. MatCha encompasses four key stages of materials research comprising 21 distinct tasks, each designed to reflect authentic challenges faced by materials scientists. Our evaluation of state-of-the-art MLLMs on MatCha reveals a significant performance gap compared to human experts. These models exhibit degradation when addressing questions requiring higher-level expertise and sophisticated visual perception. Simple few-shot and chain-of-thought prompting struggle to alleviate these limitations. These findings highlight that existing MLLMs still exhibit limited adaptability to real-world materials characterization scenarios. We hope MatCha will facilitate future research in areas such as new material discovery and autonomous scientific agents. MatCha is available at https://github.com/FreedomIntelligence/MatCha.

Authors:Anthony P. Addison, Felix Wagner, Wentian Xu, Natalie Voets, Konstantinos Kamnitsas
Title: Modality-Agnostic Input Channels Enable Segmentation of Brain lesions in Multimodal MRI with Sequences Unavailable During Training
Abstract:
Segmentation models are important tools for the detection and analysis of lesions in brain MRI. Depending on the type of brain pathology that is imaged, MRI scanners can acquire multiple, different image modalities (contrasts). Most segmentation models for multimodal brain MRI are restricted to fixed modalities and cannot effectively process new ones at inference. Some models generalize to unseen modalities but may lose discriminative modality-specific information. This work aims to develop a model that can perform inference on data that contain image modalities unseen during training, previously seen modalities, and heterogeneous combinations of both, thus allowing a user to utilize any available imaging modalities. We demonstrate this is possible with a simple, thus practical alteration to the U-net architecture, by integrating a modality-agnostic input channel or pathway, alongside modality-specific input channels. To train this modality-agnostic component, we develop an image augmentation scheme that synthesizes artificial MRI modalities. Augmentations differentially alter the appearance of pathological and healthy brain tissue to create artificial contrasts between them while maintaining realistic anatomical integrity. We evaluate the method using 8 MRI databases that include 5 types of pathologies (stroke, tumours, traumatic brain injury, multiple sclerosis and white matter hyperintensities) and 8 modalities (T1, T1+contrast, T2, PD, SWI, DWI, ADC and FLAIR). The results demonstrate that the approach preserves the ability to effectively process MRI modalities encountered during training, while being able to process new, unseen modalities to improve its segmentation. Project code: https://github.com/Anthony-P-Addison/AGN-MOD-SEG

Authors:Jing Hao, Yuxuan Fan, Yanpeng Sun, Kaixin Guo, Lizhuo Lin, Jinrong Yang, Qi Yong H. Ai, Lun M. Wong, Hao Tang, Kuo Feng Hung
Title: Towards Better Dental AI: A Multimodal Benchmark and Instruction Dataset for Panoramic X-ray Analysis
Abstract:
Recent advances in large vision-language models (LVLMs) have demonstrated strong performance on general-purpose medical tasks. However, their effectiveness in specialized domains such as dentistry remains underexplored. In particular, panoramic X-rays, a widely used imaging modality in oral radiology, pose interpretative challenges due to dense anatomical structures and subtle pathological cues, which are not captured by existing medical benchmarks or instruction datasets. To this end, we introduce MMOral, the first large-scale multimodal instruction dataset and benchmark tailored for panoramic X-ray interpretation. MMOral consists of 20,563 annotated images paired with 1.3 million instruction-following instances across diverse task types, including attribute extraction, report generation, visual question answering, and image-grounded dialogue. In addition, we present MMOral-Bench, a comprehensive evaluation suite covering five key diagnostic dimensions in dentistry. We evaluate 64 LVLMs on MMOral-Bench and find that even the best-performing model, i.e., GPT-4o, only achieves 41.45% accuracy, revealing significant limitations of current models in this domain. To promote the progress of this specific domain, we also propose OralGPT, which conducts supervised fine-tuning (SFT) upon Qwen2.5-VL-7B with our meticulously curated MMOral instruction dataset. Remarkably, a single epoch of SFT yields substantial performance enhancements for LVLMs, e.g., OralGPT demonstrates a 24.73% improvement. Both MMOral and OralGPT hold significant potential as a critical foundation for intelligent dentistry and enable more clinically impactful multimodal AI systems in the dental field. The dataset, model, benchmark, and evaluation suite are available at https://github.com/isbrycee/OralGPT.

Authors:Jiesi Hu, Jianfeng Cao, Yanwu Yang, Chenfei Ye, Yixuan Zhang, Hanyang Peng, Ting Ma
Title: Medverse: A Universal Model for Full-Resolution 3D Medical Image Segmentation, Transformation and Enhancement
Abstract:
In-context learning (ICL) offers a promising paradigm for universal medical image analysis, enabling models to perform diverse image processing tasks without retraining. However, current ICL models for medical imaging remain limited in two critical aspects: they cannot simultaneously achieve high-fidelity predictions and global anatomical understanding, and there is no unified model trained across diverse medical imaging tasks (e.g., segmentation and enhancement) and anatomical regions. As a result, the full potential of ICL in medical imaging remains underexplored. Thus, we present \textbf{Medverse}, a universal ICL model for 3D medical imaging, trained on 22 datasets covering diverse tasks in universal image segmentation, transformation, and enhancement across multiple organs, imaging modalities, and clinical centers. Medverse employs a next-scale autoregressive in-context learning framework that progressively refines predictions from coarse to fine, generating consistent, full-resolution volumetric outputs and enabling multi-scale anatomical awareness. We further propose a blockwise cross-attention module that facilitates long-range interactions between context and target inputs while preserving computational efficiency through spatial sparsity. Medverse is extensively evaluated on a broad collection of held-out datasets covering previously unseen clinical centers, organs, species, and imaging modalities. Results demonstrate that Medverse substantially outperforms existing ICL baselines and establishes a novel paradigm for in-context learning. Code and model weights will be made publicly available. Our model are publicly available at https://github.com/jiesihu/Medverse.

Authors:Yuiko Uchida, Ren Togo, Keisuke Maeda, Takahiro Ogawa, Miki Haseyama
Title: Objectness Similarity: Capturing Object-Level Fidelity in 3D Scene Evaluation
Abstract:
This paper presents Objectness SIMilarity (OSIM), a novel evaluation metric for 3D scenes that explicitly focuses on "objects," which are fundamental units of human visual perception. Existing metrics assess overall image quality, leading to discrepancies with human perception. Inspired by neuropsychological insights, we hypothesize that human recognition of 3D scenes fundamentally involves attention to individual objects. OSIM enables object-centric evaluations by leveraging an object detection model and its feature representations to quantify the "objectness" of each object in the scene. Our user study demonstrates that OSIM aligns more closely with human perception compared to existing metrics. We also analyze the characteristics of OSIM using various approaches. Moreover, we re-evaluate recent 3D reconstruction and generation models under a standardized experimental setup to clarify advancements in this field. The code is available at https://github.com/Objectness-Similarity/OSIM.

Authors:Junhao Xing, Ryohei Miyakawa, Yang Yang, Xinpeng Liu, Risa Shinoda, Hiroaki Santo, Yosuke Toda, Fumio Okura
Title: Zero-shot Hierarchical Plant Segmentation via Foundation Segmentation Models and Text-to-image Attention
Abstract:
Foundation segmentation models achieve reasonable leaf instance extraction from top-view crop images without training (i.e., zero-shot). However, segmenting entire plant individuals with each consisting of multiple overlapping leaves remains challenging. This problem is referred to as a hierarchical segmentation task, typically requiring annotated training datasets, which are often species-specific and require notable human labor. To address this, we introduce ZeroPlantSeg, a zero-shot segmentation for rosette-shaped plant individuals from top-view images. We integrate a foundation segmentation model, extracting leaf instances, and a vision-language model, reasoning about plants' structures to extract plant individuals without additional training. Evaluations on datasets with multiple plant species, growth stages, and shooting environments demonstrate that our method surpasses existing zero-shot methods and achieves better cross-domain performance than supervised methods. Implementations are available at https://github.com/JunhaoXing/ZeroPlantSeg.

Authors:Jianqin Gao, Tianqi Wang, Yu Zhang, Yishu Zhang, Chenyuan Wang, Allan Dong, Zihao Wang
Title: FPI-Det: a face--phone Interaction Dataset for phone-use detection and understanding
Abstract:
The widespread use of mobile devices has created new challenges for vision systems in safety monitoring, workplace productivity assessment, and attention management. Detecting whether a person is using a phone requires not only object recognition but also an understanding of behavioral context, which involves reasoning about the relationship between faces, hands, and devices under diverse conditions. Existing generic benchmarks do not fully capture such fine-grained human--device interactions. To address this gap, we introduce the FPI-Det, containing 22{,}879 images with synchronized annotations for faces and phones across workplace, education, transportation, and public scenarios. The dataset features extreme scale variation, frequent occlusions, and varied capture conditions. We evaluate representative YOLO and DETR detectors, providing baseline results and an analysis of performance across object sizes, occlusion levels, and environments. Source code and dataset is available at https://github.com/KvCgRv/FPI-Det.

Authors:Jifeng Shen, Haibo Zhan, Xin Zuo, Heng Fan, Xiaohui Yuan, Jun Li, Wankou Yang
Title: IRDFusion: Iterative Relation-Map Difference guided Feature Fusion for Multispectral Object Detection
Abstract:
Current multispectral object detection methods often retain extraneous background or noise during feature fusion, limiting perceptual performance. To address this, we propose an innovative feature fusion framework based on cross-modal feature contrastive and screening strategy, diverging from conventional approaches. The proposed method adaptively enhances salient structures by fusing object-aware complementary cross-modal features while suppressing shared background interference. Our solution centers on two novel, specially designed modules: the Mutual Feature Refinement Module (MFRM) and the Differential Feature Feedback Module (DFFM). The MFRM enhances intra- and inter-modal feature representations by modeling their relationships, thereby improving cross-modal alignment and discriminative power. Inspired by feedback differential amplifiers, the DFFM dynamically computes inter-modal differential features as guidance signals and feeds them back to the MFRM, enabling adaptive fusion of complementary information while suppressing common-mode noise across modalities. To enable robust feature learning, the MFRM and DFFM are integrated into a unified framework, which is formally formulated as an Iterative Relation-Map Differential Guided Feature Fusion mechanism, termed IRDFusion. IRDFusion enables high-quality cross-modal fusion by progressively amplifying salient relational signals through iterative feedback, while suppressing feature noise, leading to significant performance gains. In extensive experiments on FLIR, LLVIP and M$^3$FD datasets, IRDFusion achieves state-of-the-art performance and consistently outperforms existing methods across diverse challenging scenarios, demonstrating its robustness and effectiveness. Code will be available at https://github.com/61s61min/IRDFusion.git.

Authors:Qiuhui Chen, Xuancheng Yao, Huping Ye, Yi Hong
Title: Enhancing 3D Medical Image Understanding with Pretraining Aided by 2D Multimodal Large Language Models
Abstract:
Understanding 3D medical image volumes is critical in the medical field, yet existing 3D medical convolution and transformer-based self-supervised learning (SSL) methods often lack deep semantic comprehension. Recent advancements in multimodal large language models (MLLMs) provide a promising approach to enhance image understanding through text descriptions. To leverage these 2D MLLMs for improved 3D medical image understanding, we propose Med3DInsight, a novel pretraining framework that integrates 3D image encoders with 2D MLLMs via a specially designed plane-slice-aware transformer module. Additionally, our model employs a partial optimal transport based alignment, demonstrating greater tolerance to noise introduced by potential noises in LLM-generated content. Med3DInsight introduces a new paradigm for scalable multimodal 3D medical representation learning without requiring human annotations. Extensive experiments demonstrate our state-of-the-art performance on two downstream tasks, i.e., segmentation and classification, across various public datasets with CT and MRI modalities, outperforming current SSL methods. Med3DInsight can be seamlessly integrated into existing 3D medical image understanding networks, potentially enhancing their performance. Our source code, generated datasets, and pre-trained models will be available at https://github.com/Qybc/Med3DInsight.

Authors:Umair Hassan
Title: COCO-Urdu: A Large-Scale Urdu Image-Caption Dataset with Multimodal Quality Estimation
Abstract:
Urdu, spoken by over 250 million people, remains critically under-served in multimodal and vision-language research. The absence of large-scale, high-quality datasets has limited the development of Urdu-capable systems and reinforced biases in multilingual vision-language models trained primarily on high-resource languages. To address this gap, we present COCO-Urdu, a large-scale image-caption dataset derived from MS COCO, containing 59,000 images and 319,000 Urdu captions selected through stratified sampling to preserve the original distribution. Captions were translated using SeamlessM4T v2 and validated with a hybrid multimodal quality estimation framework that integrates COMET-Kiwi for translation quality, CLIP-based similarity for visual grounding, and BERTScore with back-translation for semantic consistency; low-scoring captions were iteratively refined using open-source large language models. We further benchmark COCO-Urdu on BLEU, SacreBLEU, and chrF, reporting consistently strong results. To the best of our knowledge, COCO-Urdu is the largest publicly available Urdu captioning dataset. By releasing both the dataset and the quality estimation pipeline, we aim to reduce language bias in multimodal research and establish a foundation for inclusive vision-language systems.

Authors:Andrew Bell, Yan Kit Choi, Steffen E Petersen, Andrew King, Muhummad Sohaib Nazir, Alistair A Young
Title: Implicit Neural Representations of Intramyocardial Motion and Strain
Abstract:
Automatic quantification of intramyocardial motion and strain from tagging MRI remains an important but challenging task. We propose a method using implicit neural representations (INRs), conditioned on learned latent codes, to predict continuous left ventricular (LV) displacement -- without requiring inference-time optimisation. Evaluated on 452 UK Biobank test cases, our method achieved the best tracking accuracy (2.14 mm RMSE) and the lowest combined error in global circumferential (2.86%) and radial (6.42%) strain compared to three deep learning baselines. In addition, our method is $\sim$380$\times$ faster than the most accurate baseline. These results highlight the suitability of INR-based models for accurate and scalable analysis of myocardial strain in large CMR datasets. The code can be found at https://github.com/andrewjackbell/Displacement-INR

Authors:Magdalena Wysocki, Felix Duelmer, Ananya Bal, Nassir Navab, Mohammad Farid Azampour
Title: UltrON: Ultrasound Occupancy Networks
Abstract:
In free-hand ultrasound imaging, sonographers rely on expertise to mentally integrate partial 2D views into 3D anatomical shapes. Shape reconstruction can assist clinicians in this process. Central to this task is the choice of shape representation, as it determines how accurately and efficiently the structure can be visualized, analyzed, and interpreted. Implicit representations, such as SDF and occupancy function, offer a powerful alternative to traditional voxel- or mesh-based methods by modeling continuous, smooth surfaces with compact storage, avoiding explicit discretization. Recent studies demonstrate that SDF can be effectively optimized using annotations derived from segmented B-mode ultrasound images. Yet, these approaches hinge on precise annotations, overlooking the rich acoustic information embedded in B-mode intensity. Moreover, implicit representation approaches struggle with the ultrasound's view-dependent nature and acoustic shadowing artifacts, which impair reconstruction. To address the problems resulting from occlusions and annotation dependency, we propose an occupancy-based representation and introduce \gls{UltrON} that leverages acoustic features to improve geometric consistency in weakly-supervised optimization regime. We show that these features can be obtained from B-mode images without additional annotation cost. Moreover, we propose a novel loss function that compensates for view-dependency in the B-mode images and facilitates occupancy optimization from multiview ultrasound. By incorporating acoustic properties, \gls{UltrON} generalizes to shapes of the same anatomy. We show that \gls{UltrON} mitigates the limitations of occlusions and sparse labeling and paves the way for more accurate 3D reconstruction. Code and dataset will be available at https://github.com/magdalena-wysocki/ultron.

Authors:Puskal Khadka, Rodrigue Rizk, Longwei Wang, KC Santosh
Title: CoSwin: Convolution Enhanced Hierarchical Shifted Window Attention For Small-Scale Vision
Abstract:
Vision Transformers (ViTs) have achieved impressive results in computer vision by leveraging self-attention to model long-range dependencies. However, their emphasis on global context often comes at the expense of local feature extraction in small datasets, particularly due to the lack of key inductive biases such as locality and translation equivariance. To mitigate this, we propose CoSwin, a novel feature-fusion architecture that augments the hierarchical shifted window attention with localized convolutional feature learning. Specifically, CoSwin integrates a learnable local feature enhancement module into each attention block, enabling the model to simultaneously capture fine-grained spatial details and global semantic structure. We evaluate CoSwin on multiple image classification benchmarks including CIFAR-10, CIFAR-100, MNIST, SVHN, and Tiny ImageNet. Our experimental results show consistent performance gains over state-of-the-art convolutional and transformer-based models. Notably, CoSwin achieves improvements of 2.17% on CIFAR-10, 4.92% on CIFAR-100, 0.10% on MNIST, 0.26% on SVHN, and 4.47% on Tiny ImageNet over the baseline Swin Transformer. These improvements underscore the effectiveness of local-global feature fusion in enhancing the generalization and robustness of transformers for small-scale vision. Code and pretrained weights available at https://github.com/puskal-khadka/coswin

Authors:Lisa Dunlap, Joseph E. Gonzalez, Trevor Darrell, Fabian Caba Heilbron, Josef Sivic, Bryan Russell
Title: Discovering Divergent Representations between Text-to-Image Models
Abstract:
In this paper, we investigate when and how visual representations learned by two different generative models diverge. Given two text-to-image models, our goal is to discover visual attributes that appear in images generated by one model but not the other, along with the types of prompts that trigger these attribute differences. For example, "flames" might appear in one model's outputs when given prompts expressing strong emotions, while the other model does not produce this attribute given the same prompts. We introduce CompCon (Comparing Concepts), an evolutionary search algorithm that discovers visual attributes more prevalent in one model's output than the other, and uncovers the prompt concepts linked to these visual differences. To evaluate CompCon's ability to find diverging representations, we create an automated data generation pipeline to produce ID2, a dataset of 60 input-dependent differences, and compare our approach to several LLM- and VLM-powered baselines. Finally, we use CompCon to compare popular text-to-image models, finding divergent representations such as how PixArt depicts prompts mentioning loneliness with wet streets and Stable Diffusion 3.5 depicts African American people in media professions. Code at: https://github.com/adobe-research/CompCon

Authors:Rogerio Guimaraes, Frank Xiao, Pietro Perona, Markus Marks
Title: Diffusion-Based Action Recognition Generalizes to Untrained Domains
Abstract:
Humans can recognize the same actions despite large context and viewpoint variations, such as differences between species (walking in spiders vs. horses), viewpoints (egocentric vs. third-person), and contexts (real life vs movies). Current deep learning models struggle with such generalization. We propose using features generated by a Vision Diffusion Model (VDM), aggregated via a transformer, to achieve human-like action recognition across these challenging conditions. We find that generalization is enhanced by the use of a model conditioned on earlier timesteps of the diffusion process to highlight semantic information over pixel level details in the extracted features. We experimentally explore the generalization properties of our approach in classifying actions across animal species, across different viewing angles, and different recording contexts. Our model sets a new state-of-the-art across all three generalization benchmarks, bringing machine action recognition closer to human-like robustness. Project page: https://www.vision.caltech.edu/actiondiff. Code: https://github.com/frankyaoxiao/ActionDiff

Authors:Davide Caffagni, Sara Sarto, Marcella Cornia, Lorenzo Baraldi, Rita Cucchiara
Title: Recurrence Meets Transformers for Universal Multimodal Retrieval
Abstract:
With the rapid advancement of multimodal retrieval and its application in LLMs and multimodal LLMs, increasingly complex retrieval tasks have emerged. Existing methods predominantly rely on task-specific fine-tuning of vision-language models and are limited to single-modality queries or documents. In this paper, we propose ReT-2, a unified retrieval model that supports multimodal queries, composed of both images and text, and searches across multimodal document collections where text and images coexist. ReT-2 leverages multi-layer representations and a recurrent Transformer architecture with LSTM-inspired gating mechanisms to dynamically integrate information across layers and modalities, capturing fine-grained visual and textual details. We evaluate ReT-2 on the challenging M2KR and M-BEIR benchmarks across different retrieval configurations. Results demonstrate that ReT-2 consistently achieves state-of-the-art performance across diverse settings, while offering faster inference and reduced memory usage compared to prior approaches. When integrated into retrieval-augmented generation pipelines, ReT-2 also improves downstream performance on Encyclopedic-VQA and InfoSeek datasets. Our source code and trained models are publicly available at: https://github.com/aimagelab/ReT-2

Authors:David Stotko, Reinhard Klein
Title: SAFT: Shape and Appearance of Fabrics from Template via Differentiable Physical Simulations from Monocular Video
Abstract:
The reconstruction of three-dimensional dynamic scenes is a well-established yet challenging task within the domain of computer vision. In this paper, we propose a novel approach that combines the domains of 3D geometry reconstruction and appearance estimation for physically based rendering and present a system that is able to perform both tasks for fabrics, utilizing only a single monocular RGB video sequence as input. In order to obtain realistic and high-quality deformations and renderings, a physical simulation of the cloth geometry and differentiable rendering are employed. In this paper, we introduce two novel regularization terms for the 3D reconstruction task that improve the plausibility of the reconstruction by addressing the depth ambiguity problem in monocular video. In comparison with the most recent methods in the field, we have reduced the error in the 3D reconstruction by a factor of 2.64 while requiring a medium runtime of 30 min per scene. Furthermore, the optimized motion achieves sufficient quality to perform an appearance estimation of the deforming object, recovering sharp details from this single monocular RGB video.

Authors:Lena Wild, Rafael Valencia, Patric Jensfelt
Title: ArgoTweak: Towards Self-Updating HD Maps through Structured Priors
Abstract:
Reliable integration of prior information is crucial for self-verifying and self-updating HD maps. However, no public dataset includes the required triplet of prior maps, current maps, and sensor data. As a result, existing methods must rely on synthetic priors, which create inconsistencies and lead to a significant sim2real gap. To address this, we introduce ArgoTweak, the first dataset to complete the triplet with realistic map priors. At its core, ArgoTweak employs a bijective mapping framework, breaking down large-scale modifications into fine-grained atomic changes at the map element level, thus ensuring interpretability. This paradigm shift enables accurate change detection and integration while preserving unchanged elements with high fidelity. Experiments show that training models on ArgoTweak significantly reduces the sim2real gap compared to synthetic priors. Extensive ablations further highlight the impact of structured priors and detailed change annotations. By establishing a benchmark for explainable, prior-aided HD mapping, ArgoTweak advances scalable, self-improving mapping solutions. The dataset, baselines, map modification toolbox, and further resources are available at https://kth-rpl.github.io/ArgoTweak/.

Authors:Michael J. Munje, Chen Tang, Shuijing Liu, Zichao Hu, Yifeng Zhu, Jiaxun Cui, Garrett Warnell, Joydeep Biswas, Peter Stone
Title: SocialNav-SUB: Benchmarking VLMs for Scene Understanding in Social Robot Navigation
Abstract:
Robot navigation in dynamic, human-centered environments requires socially-compliant decisions grounded in robust scene understanding. Recent Vision-Language Models (VLMs) exhibit promising capabilities such as object recognition, common-sense reasoning, and contextual understanding-capabilities that align with the nuanced requirements of social robot navigation. However, it remains unclear whether VLMs can accurately understand complex social navigation scenes (e.g., inferring the spatial-temporal relations among agents and human intentions), which is essential for safe and socially compliant robot navigation. While some recent works have explored the use of VLMs in social robot navigation, no existing work systematically evaluates their ability to meet these necessary conditions. In this paper, we introduce the Social Navigation Scene Understanding Benchmark (SocialNav-SUB), a Visual Question Answering (VQA) dataset and benchmark designed to evaluate VLMs for scene understanding in real-world social robot navigation scenarios. SocialNav-SUB provides a unified framework for evaluating VLMs against human and rule-based baselines across VQA tasks requiring spatial, spatiotemporal, and social reasoning in social robot navigation. Through experiments with state-of-the-art VLMs, we find that while the best-performing VLM achieves an encouraging probability of agreeing with human answers, it still underperforms simpler rule-based approach and human consensus baselines, indicating critical gaps in social scene understanding of current VLMs. Our benchmark sets the stage for further research on foundation models for social robot navigation, offering a framework to explore how VLMs can be tailored to meet real-world social robot navigation needs. An overview of this paper along with the code and data can be found at https://larg.github.io/socialnav-sub .

Authors:Marius Dähling, Sebastian Krebs, J. Marius Zöllner
Title: CrowdQuery: Density-Guided Query Module for Enhanced 2D and 3D Detection in Crowded Scenes
Abstract:
This paper introduces a novel method for end-to-end crowd detection that leverages object density information to enhance existing transformer-based detectors. We present CrowdQuery (CQ), whose core component is our CQ module that predicts and subsequently embeds an object density map. The embedded density information is then systematically integrated into the decoder. Existing density map definitions typically depend on head positions or object-based spatial statistics. Our method extends these definitions to include individual bounding box dimensions. By incorporating density information into object queries, our method utilizes density-guided queries to improve detection in crowded scenes. CQ is universally applicable to both 2D and 3D detection without requiring additional data. Consequently, we are the first to design a method that effectively bridges 2D and 3D detection in crowded environments. We demonstrate the integration of CQ into both a general 2D and 3D transformer-based object detector, introducing the architectures CQ2D and CQ3D. CQ is not limited to the specific transformer models we selected. Experiments on the STCrowd dataset for both 2D and 3D domains show significant performance improvements compared to the base models, outperforming most state-of-the-art methods. When integrated into a state-of-the-art crowd detector, CQ can further improve performance on the challenging CrowdHuman dataset, demonstrating its generalizability. The code is released at https://github.com/mdaehl/CrowdQuery.

Authors:Sike Xiang, Shuang Chen, Amir Atapour-Abarghouei
Title: BcQLM: Efficient Vision-Language Understanding with Distilled Q-Gated Cross-Modal Fusion
Abstract:
As multimodal large language models (MLLMs) advance, their large-scale architectures pose challenges for deployment in resource-constrained environments. In the age of large models, where energy efficiency, computational scalability and environmental sustainability are paramount, the development of lightweight and high-performance models is critical for real-world applications. As such, we propose a lightweight MLLM framework for end-to-end visual question answering. Our proposed approach centres on BreezeCLIP, a compact yet powerful vision-language encoder optimised for efficient multimodal understanding. With only 1.2 billion parameters overall, our model significantly reduces computational cost while achieving performance comparable to standard-size MLLMs. Experiments conducted on multiple datasets further validate its effectiveness in balancing accuracy and efficiency. The modular and extensible design enables generalisation to broader multimodal tasks. The proposed lightweight vision-language framework is denoted as BcQLM (BreezeCLIP-enhanced Q-Gated Multimodal Language Model). It offers a promising path toward deployable MLLMs under practical hardware constraints. The source code is available at https://github.com/thico0224/BcQLM.

Authors:Stefan Podgorski, Sourav Garg, Mehdi Hosseinzadeh, Lachlan Mares, Feras Dayoub, Ian Reid
Title: TANGO: Traversability-Aware Navigation with Local Metric Control for Topological Goals
Abstract:
Visual navigation in robotics traditionally relies on globally-consistent 3D maps or learned controllers, which can be computationally expensive and difficult to generalize across diverse environments. In this work, we present a novel RGB-only, object-level topometric navigation pipeline that enables zero-shot, long-horizon robot navigation without requiring 3D maps or pre-trained controllers. Our approach integrates global topological path planning with local metric trajectory control, allowing the robot to navigate towards object-level sub-goals while avoiding obstacles. We address key limitations of previous methods by continuously predicting local trajectory using monocular depth and traversability estimation, and incorporating an auto-switching mechanism that falls back to a baseline controller when necessary. The system operates using foundational models, ensuring open-set applicability without the need for domain-specific fine-tuning. We demonstrate the effectiveness of our method in both simulated environments and real-world tests, highlighting its robustness and deployability. Our approach outperforms existing state-of-the-art methods, offering a more adaptable and effective solution for visual navigation in open-set environments. The source code is made publicly available: https://github.com/podgorki/TANGO.

Authors:Zhen Tian, Christos Anagnostopoulos, Qiyuan Wang, Zhiwei Gao
Title: Multi-Modal Robust Enhancement for Coastal Water Segmentation: A Systematic HSV-Guided Framework
Abstract:
Coastal water segmentation from satellite imagery presents unique challenges due to complex spectral characteristics and irregular boundary patterns. Traditional RGB-based approaches often suffer from training instability and poor generalization in diverse maritime environments. This paper introduces a systematic robust enhancement framework, referred to as Robust U-Net, that leverages HSV color space supervision and multi-modal constraints for improved coastal water segmentation. Our approach integrates five synergistic components: HSV-guided color supervision, gradient-based coastline optimization, morphological post-processing, sea area cleanup, and connectivity control. Through comprehensive ablation studies, we demonstrate that HSV supervision provides the highest impact (0.85 influence score), while the complete framework achieves superior training stability (84\% variance reduction) and enhanced segmentation quality. Our method shows consistent improvements across multiple evaluation metrics while maintaining computational efficiency. For reproducibility, our training configurations and code are available here: https://github.com/UofgCoastline/ICASSP-2026-Robust-Unet.

Authors:Xinhao Yan, Jiachen Xu, Yang Li, Changfeng Ma, Yunhan Yang, Chunshi Wang, Zibo Zhao, Zeqiang Lai, Yunfei Zhao, Zhuo Chen, Chunchao Guo
Title: X-Part: high fidelity and structure coherent shape decomposition
Abstract:
Generating 3D shapes at part level is pivotal for downstream applications such as mesh retopology, UV mapping, and 3D printing. However, existing part-based generation methods often lack sufficient controllability and suffer from poor semantically meaningful decomposition. To this end, we introduce X-Part, a controllable generative model designed to decompose a holistic 3D object into semantically meaningful and structurally coherent parts with high geometric fidelity. X-Part exploits the bounding box as prompts for the part generation and injects point-wise semantic features for meaningful decomposition. Furthermore, we design an editable pipeline for interactive part generation. Extensive experimental results show that X-Part achieves state-of-the-art performance in part-level shape generation. This work establishes a new paradigm for creating production-ready, editable, and structurally sound 3D assets. Codes will be released for public research.

Authors:Liyang Chen, Tianxiang Ma, Jiawei Liu, Bingchuan Li, Zhuowei Chen, Lijie Liu, Xu He, Gen Li, Qian He, Zhiyong Wu
Title: HuMo: Human-Centric Video Generation via Collaborative Multi-Modal Conditioning
Abstract:
Human-Centric Video Generation (HCVG) methods seek to synthesize human videos from multimodal inputs, including text, image, and audio. Existing methods struggle to effectively coordinate these heterogeneous modalities due to two challenges: the scarcity of training data with paired triplet conditions and the difficulty of collaborating the sub-tasks of subject preservation and audio-visual sync with multimodal inputs. In this work, we present HuMo, a unified HCVG framework for collaborative multimodal control. For the first challenge, we construct a high-quality dataset with diverse and paired text, reference images, and audio. For the second challenge, we propose a two-stage progressive multimodal training paradigm with task-specific strategies. For the subject preservation task, to maintain the prompt following and visual generation abilities of the foundation model, we adopt the minimal-invasive image injection strategy. For the audio-visual sync task, besides the commonly adopted audio cross-attention layer, we propose a focus-by-predicting strategy that implicitly guides the model to associate audio with facial regions. For joint learning of controllabilities across multimodal inputs, building on previously acquired capabilities, we progressively incorporate the audio-visual sync task. During inference, for flexible and fine-grained multimodal control, we design a time-adaptive Classifier-Free Guidance strategy that dynamically adjusts guidance weights across denoising steps. Extensive experimental results demonstrate that HuMo surpasses specialized state-of-the-art methods in sub-tasks, establishing a unified framework for collaborative multimodal-conditioned HCVG. Project Page: https://phantom-video.github.io/HuMo.

Authors:Piyush Bagad, Andrew Zisserman
Title: Chirality in Action: Time-Aware Video Representation Learning by Latent Straightening
Abstract:
Our objective is to develop compact video representations that are sensitive to visual change over time. To measure such time-sensitivity, we introduce a new task: chiral action recognition, where one needs to distinguish between a pair of temporally opposite actions, such as "opening vs. closing a door", "approaching vs. moving away from something", "folding vs. unfolding paper", etc. Such actions (i) occur frequently in everyday life, (ii) require understanding of simple visual change over time (in object state, size, spatial position, count . . . ), and (iii) are known to be poorly represented by many video embeddings. Our goal is to build time aware video representations which offer linear separability between these chiral pairs. To that end, we propose a self-supervised adaptation recipe to inject time-sensitivity into a sequence of frozen image features. Our model is based on an auto-encoder with a latent space with inductive bias inspired by perceptual straightening. We show that this results in a compact but time-sensitive video representation for the proposed task across three datasets: Something-Something, EPIC-Kitchens, and Charade. Our method (i) outperforms much larger video models pre-trained on large-scale video datasets, and (ii) leads to an improvement in classification performance on standard benchmarks when combined with these existing models.

Authors:Rongsheng Wang, Fenghe Tang, Qingsong Yao, Rui Yan, Xu Zhang, Zhen Huang, Haoran Lai, Zhiyang He, Xiaodong Tao, Zihang Jiang, Shaohua Kevin Zhou
Title: SimCroP: Radiograph Representation Learning with Similarity-driven Cross-granularity Pre-training
Abstract:
Medical vision-language pre-training shows great potential in learning representative features from massive paired radiographs and reports. However, in computed tomography (CT) scans, the distribution of lesions which contain intricate structures is characterized by spatial sparsity. Besides, the complex and implicit relationships between different pathological descriptions in each sentence of the report and their corresponding sub-regions in radiographs pose additional challenges. In this paper, we propose a Similarity-Driven Cross-Granularity Pre-training (SimCroP) framework on chest CTs, which combines similarity-driven alignment and cross-granularity fusion to improve radiograph interpretation. We first leverage multi-modal masked modeling to optimize the encoder for understanding precise low-level semantics from radiographs. Then, similarity-driven alignment is designed to pre-train the encoder to adaptively select and align the correct patches corresponding to each sentence in reports. The cross-granularity fusion module integrates multimodal information across instance level and word-patch level, which helps the model better capture key pathology structures in sparse radiographs, resulting in improved performance for multi-scale downstream tasks. SimCroP is pre-trained on a large-scale paired CT-reports dataset and validated on image classification and segmentation tasks across five public datasets. Experimental results demonstrate that SimCroP outperforms both cutting-edge medical self-supervised learning methods and medical vision-language pre-training methods. Codes and models are available at https://github.com/ToniChopp/SimCroP.

Authors:Yuelin Guo, Haoyu He, Zhiyuan Chen, Zitong Huang, Renhao Lu, Lu Shi, Zejun Wang, Weizhe Zhang
Title: Dual-Thresholding Heatmaps to Cluster Proposals for Weakly Supervised Object Detection
Abstract:
Weakly supervised object detection (WSOD) has attracted significant attention in recent years, as it does not require box-level annotations. State-of-the-art methods generally adopt a multi-module network, which employs WSDDN as the multiple instance detection network module and multiple instance refinement modules to refine performance. However, these approaches suffer from three key limitations. First, existing methods tend to generate pseudo GT boxes that either focus only on discriminative parts, failing to capture the whole object, or cover the entire object but fail to distinguish between adjacent intra-class instances. Second, the foundational WSDDN architecture lacks a crucial background class representation for each proposal and exhibits a large semantic gap between its branches. Third, prior methods discard ignored proposals during optimization, leading to slow convergence. To address these challenges, we first design a heatmap-guided proposal selector (HGPS) algorithm, which utilizes dual thresholds on heatmaps to pre-select proposals, enabling pseudo GT boxes to both capture the full object extent and distinguish between adjacent intra-class instances. We then present a weakly supervised basic detection network (WSBDN), which augments each proposal with a background class representation and uses heatmaps for pre-supervision to bridge the semantic gap between matrices. At last, we introduce a negative certainty supervision loss on ignored proposals to accelerate convergence. Extensive experiments on the challenging PASCAL VOC 2007 and 2012 datasets demonstrate the effectiveness of our framework. We achieve mAP/mCorLoc scores of 58.5%/81.8% on VOC 2007 and 55.6%/80.5% on VOC 2012, performing favorably against the state-of-the-art WSOD methods. Our code is publicly available at https://github.com/gyl2565309278/DTH-CP.

Authors:Long Gao, Yunhe Zhang, Yan Jiang, Weiying Xie, Yunsong Li
Title: Hyperspectral Mamba for Hyperspectral Object Tracking
Abstract:
Hyperspectral object tracking holds great promise due to the rich spectral information and fine-grained material distinctions in hyperspectral images, which are beneficial in challenging scenarios. While existing hyperspectral trackers have made progress by either transforming hyperspectral data into false-color images or incorporating modality fusion strategies, they often fail to capture the intrinsic spectral information, temporal dependencies, and cross-depth interactions. To address these limitations, a new hyperspectral object tracking network equipped with Mamba (HyMamba), is proposed. It unifies spectral, cross-depth, and temporal modeling through state space modules (SSMs). The core of HyMamba lies in the Spectral State Integration (SSI) module, which enables progressive refinement and propagation of spectral features with cross-depth and temporal spectral information. Embedded within each SSI, the Hyperspectral Mamba (HSM) module is introduced to learn spatial and spectral information synchronously via three directional scanning SSMs. Based on SSI and HSM, HyMamba constructs joint features from false-color and hyperspectral inputs, and enhances them through interaction with original spectral features extracted from raw hyperspectral images. Extensive experiments conducted on seven benchmark datasets demonstrate that HyMamba achieves state-of-the-art performance. For instance, it achieves 73.0\% of the AUC score and 96.3\% of the DP@20 score on the HOTC2020 dataset. The code will be released at https://github.com/lgao001/HyMamba.

Authors:Seongho Kim, Sejong Ryu, Hyoukjun You, Je Hyeong Hong
Title: GTA-Crime: A Synthetic Dataset and Generation Framework for Fatal Violence Detection with Adversarial Snippet-Level Domain Adaptation
Abstract:
Recent advancements in video anomaly detection (VAD) have enabled identification of various criminal activities in surveillance videos, but detecting fatal incidents such as shootings and stabbings remains difficult due to their rarity and ethical issues in data collection. Recognizing this limitation, we introduce GTA-Crime, a fatal video anomaly dataset and generation framework using Grand Theft Auto 5 (GTA5). Our dataset contains fatal situations such as shootings and stabbings, captured from CCTV multiview perspectives under diverse conditions including action types, weather, time of day, and viewpoints. To address the rarity of such scenarios, we also release a framework for generating these types of videos. Additionally, we propose a snippet-level domain adaptation strategy using Wasserstein adversarial training to bridge the gap between synthetic GTA-Crime features and real-world features like UCF-Crime. Experimental results validate our GTA-Crime dataset and demonstrate that incorporating GTA-Crime with our domain adaptation strategy consistently enhances real world fatal violence detection accuracy. Our dataset and the data generation framework are publicly available at https://github.com/ta-ho/GTA-Crime.

Authors:Jingjing Liu, Yinchao Han, Xianchao Xiu, Jianhua Zhang, Wanquan Liu
Title: Lightweight Deep Unfolding Networks with Enhanced Robustness for Infrared Small Target Detection
Abstract:
Infrared small target detection (ISTD) is one of the key techniques in image processing. Although deep unfolding networks (DUNs) have demonstrated promising performance in ISTD due to their model interpretability and data adaptability, existing methods still face significant challenges in parameter lightweightness and noise robustness. In this regard, we propose a highly lightweight framework based on robust principal component analysis (RPCA) called L-RPCANet. Technically, a hierarchical bottleneck structure is constructed to reduce and increase the channel dimension in the single-channel input infrared image to achieve channel-wise feature refinement, with bottleneck layers designed in each module to extract features. This reduces the number of channels in feature extraction and improves the lightweightness of network parameters. Furthermore, a noise reduction module is embedded to enhance the robustness against complex noise. In addition, squeeze-and-excitation networks (SENets) are leveraged as a channel attention mechanism to focus on the varying importance of different features across channels, thereby achieving excellent performance while maintaining both lightweightness and robustness. Extensive experiments on the ISTD datasets validate the superiority of our proposed method compared with state-of-the-art methods covering RPCANet, DRPCANet, and RPCANet++. The code will be available at https://github.com/xianchaoxiu/L-RPCANet.

Authors:Sasan Sharifipour, Constantino Álvarez Casado, Mohammad Sabokrou, Miguel Bordallo López
Title: APML: Adaptive Probabilistic Matching Loss for Robust 3D Point Cloud Reconstruction
Abstract:
Training deep learning models for point cloud prediction tasks such as shape completion and generation depends critically on loss functions that measure discrepancies between predicted and ground-truth point sets. Commonly used functions such as Chamfer Distance (CD), HyperCD, and InfoCD rely on nearest-neighbor assignments, which often induce many-to-one correspondences, leading to point congestion in dense regions and poor coverage in sparse regions. These losses also involve non-differentiable operations due to index selection, which may affect gradient-based optimization. Earth Mover Distance (EMD) enforces one-to-one correspondences and captures structural similarity more effectively, but its cubic computational complexity limits its practical use. We propose the Adaptive Probabilistic Matching Loss (APML), a fully differentiable approximation of one-to-one matching that leverages Sinkhorn iterations on a temperature-scaled similarity matrix derived from pairwise distances. We analytically compute the temperature to guarantee a minimum assignment probability, eliminating manual tuning. APML achieves near-quadratic runtime, comparable to Chamfer-based losses, and avoids non-differentiable operations. When integrated into state-of-the-art architectures (PoinTr, PCN, FoldingNet) on ShapeNet benchmarks and on a spatiotemporal Transformer (CSI2PC) that generates 3D human point clouds from WiFi CSI measurements, APM loss yields faster convergence, superior spatial distribution, especially in low-density regions, and improved or on-par quantitative performance without additional hyperparameter search. The code is available at: https://github.com/apm-loss/apml.

Authors:Hyungjin Chung, Hyelin Nam, Jiyeon Kim, Hyojun Go, Byeongjun Park, Junho Kim, Joonseok Lee, Seongsu Ha, Byung-Hoon Kim
Title: Video Parallel Scaling: Aggregating Diverse Frame Subsets for VideoLLMs
Abstract:
Video Large Language Models (VideoLLMs) face a critical bottleneck: increasing the number of input frames to capture fine-grained temporal detail leads to prohibitive computational costs and performance degradation from long context lengths. We introduce Video Parallel Scaling (VPS), an inference-time method that expands a model's perceptual bandwidth without increasing its context window. VPS operates by running multiple parallel inference streams, each processing a unique, disjoint subset of the video's frames. By aggregating the output probabilities from these complementary streams, VPS integrates a richer set of visual information than is possible with a single pass. We theoretically show that this approach effectively contracts the Chinchilla scaling law by leveraging uncorrelated visual evidence, thereby improving performance without additional training. Extensive experiments across various model architectures and scales (2B-32B) on benchmarks such as Video-MME and EventHallusion demonstrate that VPS consistently and significantly improves performance. It scales more favorably than other parallel alternatives (e.g. Self-consistency) and is complementary to other decoding strategies, offering a memory-efficient and robust framework for enhancing the temporal reasoning capabilities of VideoLLMs.

Authors:Lingdong Kong, Wesley Yang, Jianbiao Mei, Youquan Liu, Ao Liang, Dekai Zhu, Dongyue Lu, Wei Yin, Xiaotao Hu, Mingkai Jia, Junyuan Deng, Kaiwen Zhang, Yang Wu, Tianyi Yan, Shenyuan Gao, Song Wang, Linfeng Li, Liang Pan, Yong Liu, Jianke Zhu, Wei Tsang Ooi, Steven C. H. Hoi, Ziwei Liu
Title: 3D and 4D World Modeling: A Survey
Abstract:
World modeling has become a cornerstone in AI research, enabling agents to understand, represent, and predict the dynamic environments they inhabit. While prior work largely emphasizes generative methods for 2D image and video data, they overlook the rapidly growing body of work that leverages native 3D and 4D representations such as RGB-D imagery, occupancy grids, and LiDAR point clouds for large-scale scene modeling. At the same time, the absence of a standardized definition and taxonomy for ``world models'' has led to fragmented and sometimes inconsistent claims in the literature. This survey addresses these gaps by presenting the first comprehensive review explicitly dedicated to 3D and 4D world modeling and generation. We establish precise definitions, introduce a structured taxonomy spanning video-based (VideoGen), occupancy-based (OccGen), and LiDAR-based (LiDARGen) approaches, and systematically summarize datasets and evaluation metrics tailored to 3D/4D settings. We further discuss practical applications, identify open challenges, and highlight promising research directions, aiming to provide a coherent and foundational reference for advancing the field. A systematic summary of existing literature is available at https://github.com/worldbench/survey

Authors:Heeji Yoon, Jaewoo Jung, Junwan Kim, Hyungyu Choi, Heeseong Shin, Sangbeom Lim, Honggyu An, Chaehyun Kim, Jisang Han, Donghyun Kim, Chanho Eom, Sunghwan Hong, Seungryong Kim
Title: Visual Representation Alignment for Multimodal Large Language Models
Abstract:
Multimodal large language models (MLLMs) trained with visual instruction tuning have achieved strong performance across diverse tasks, yet they remain limited in vision-centric tasks such as object counting or spatial reasoning. We attribute this gap to the prevailing text-only supervision paradigm, which provides only indirect guidance for the visual pathway and often leads MLLMs to discard fine-grained visual details during training. In this paper, we present VIsual Representation ALignment (VIRAL), a simple yet effective regularization strategy that aligns the internal visual representations of MLLMs with those of pre-trained vision foundation models (VFMs). By explicitly enforcing this alignment, VIRAL enables the model not only to retain critical visual details from the input vision encoder but also to complement additional visual knowledge from VFMs, thereby enhancing its ability to reason over complex visual inputs. Our experiments demonstrate consistent improvements across all tasks on widely adopted multimodal benchmarks. Furthermore, we conduct comprehensive ablation studies to validate the key design choices underlying our framework. We believe this simple finding opens up an important direction for the effective integration of visual information in training MLLMs.

Authors:Zheng Geng, Nan Wang, Shaocong Xu, Chongjie Ye, Bohan Li, Zhaoxi Chen, Sida Peng, Hao Zhao
Title: One View, Many Worlds: Single-Image to 3D Object Meets Generative Domain Randomization for One-Shot 6D Pose Estimation
Abstract:
Estimating the 6D pose of arbitrary unseen objects from a single reference image is critical for robotics operating in the long-tail of real-world instances. However, this setting is notoriously challenging: 3D models are rarely available, single-view reconstructions lack metric scale, and domain gaps between generated models and real-world images undermine robustness. We propose OnePoseViaGen, a pipeline that tackles these challenges through two key components. First, a coarse-to-fine alignment module jointly refines scale and pose by combining multi-view feature matching with render-and-compare refinement. Second, a text-guided generative domain randomization strategy diversifies textures, enabling effective fine-tuning of pose estimators with synthetic data. Together, these steps allow high-fidelity single-view 3D generation to support reliable one-shot 6D pose estimation. On challenging benchmarks (YCBInEOAT, Toyota-Light, LM-O), OnePoseViaGen achieves state-of-the-art performance far surpassing prior approaches. We further demonstrate robust dexterous grasping with a real robot hand, validating the practicality of our method in real-world manipulation. Project page: https://gzwsama.github.io/OnePoseviaGen.github.io/

Authors:Xin Lai, Junyi Li, Wei Li, Tao Liu, Tianjian Li, Hengshuang Zhao
Title: Mini-o3: Scaling Up Reasoning Patterns and Interaction Turns for Visual Search
Abstract:
Recent advances in large multimodal models have leveraged image-based tools with reinforcement learning to tackle visual problems. However, existing open-source approaches often exhibit monotonous reasoning patterns and allow only a limited number of interaction turns, making them inadequate for difficult tasks that require trial-and-error exploration. In this work, we address this limitation by scaling up tool-based interactions and introduce Mini-o3, a system that executes deep, multi-turn reasoning -- spanning tens of steps -- and achieves state-of-the-art performance on challenging visual search tasks. Our recipe for reproducing OpenAI o3-style behaviors comprises three key components. First, we construct the Visual Probe Dataset, a collection of thousands of challenging visual search problems designed for exploratory reasoning. Second, we develop an iterative data collection pipeline to obtain cold-start trajectories that exhibit diverse reasoning patterns, including depth-first search, trial-and-error, and goal maintenance. Third, we propose an over-turn masking strategy that prevents penalization of over-turn responses (those that hit the maximum number of turns) during reinforcement learning, thereby balancing training-time efficiency with test-time scalability. Despite training with an upper bound of only six interaction turns, our model generates trajectories that naturally scale to tens of turns at inference time, with accuracy improving as the number of turns increases. Extensive experiments demonstrate that Mini-o3 produces rich reasoning patterns and deep thinking paths, effectively solving challenging visual search problems.

Authors:Boammani Aser Lompo, Marc Haraoui
Title: Visual-TableQA: Open-Domain Benchmark for Reasoning over Table Images
Abstract:
Visual reasoning over structured data such as tables is a critical capability for modern vision-language models (VLMs), yet current benchmarks remain limited in scale, diversity, or reasoning depth, especially when it comes to rendered table images. Addressing this gap, we introduce Visual-TableQA, a large-scale, open-domain multimodal dataset specifically designed to evaluate and enhance visual reasoning over complex tabular data. Our generation pipeline is modular, scalable, and fully autonomous, involving multiple reasoning LLMs collaborating across distinct roles: generation, validation, and inspiration. Visual-TableQA comprises 2.5k richly structured LaTeX-rendered tables and 6k reasoning-intensive QA pairs, all produced at a cost of under USD 100. To promote diversity and creativity, our pipeline performs multi-model collaborative data generation via cross-model prompting ('inspiration') and LLM-jury filtering. Stronger models seed layouts and topics that weaker models elaborate, collectively distilling diverse reasoning patterns and visual structures into the dataset. Empirical results show that models fine-tuned on Visual-TableQA generalize robustly to external benchmarks, outperforming several proprietary models despite the dataset's synthetic nature. The full pipeline and resources are publicly available at https://github.com/AI-4-Everyone/Visual-TableQA.

Authors:Kimiaki Shirahama, Miki Yanobu, Kaduki Yamashita, Miho Ohsaki
Title: Feature Space Analysis by Guided Diffusion Model
Abstract:
One of the key issues in Deep Neural Networks (DNNs) is the black-box nature of their internal feature extraction process. Targeting vision-related domains, this paper focuses on analysing the feature space of a DNN by proposing a decoder that can generate images whose features are guaranteed to closely match a user-specified feature. Owing to this guarantee that is missed in past studies, our decoder allows us to evidence which of various image attributes are encoded into the user-specified feature. Our decoder is implemented as a guided diffusion model that guides the reverse image generation of a pre-trained diffusion model to minimise the Euclidean distance between the feature of a clean image estimated at each step and the user-specified feature. One practical advantage of our decoder is that it can analyse feature spaces of different DNNs with no additional training and run on a single COTS GPU. The experimental results targeting CLIP's image encoder, ResNet-50 and vision transformer demonstrate that images generated by our decoder have features remarkably similar to the user-specified ones and reveal valuable insights into these DNNs' feature spaces.

Authors:Maja Schlereth, Moritz Schillinger, Katharina Breininger
Title: Faster, Self-Supervised Super-Resolution for Anisotropic Multi-View MRI Using a Sparse Coordinate Loss
Abstract:
Acquiring images in high resolution is often a challenging task. Especially in the medical sector, image quality has to be balanced with acquisition time and patient comfort. To strike a compromise between scan time and quality for Magnetic Resonance (MR) imaging, two anisotropic scans with different low-resolution (LR) orientations can be acquired. Typically, LR scans are analyzed individually by radiologists, which is time consuming and can lead to inaccurate interpretation. To tackle this, we propose a novel approach for fusing two orthogonal anisotropic LR MR images to reconstruct anatomical details in a unified representation. Our multi-view neural network is trained in a self-supervised manner, without requiring corresponding high-resolution (HR) data. To optimize the model, we introduce a sparse coordinate-based loss, enabling the integration of LR images with arbitrary scaling. We evaluate our method on MR images from two independent cohorts. Our results demonstrate comparable or even improved super-resolution (SR) performance compared to state-of-the-art (SOTA) self-supervised SR methods for different upsampling scales. By combining a patient-agnostic offline and a patient-specific online phase, we achieve a substantial speed-up of up to ten times for patient-specific reconstruction while achieving similar or better SR quality. Code is available at https://github.com/MajaSchle/tripleSR.

Authors:Hugo Blanc, Jean-Emmanuel Deschaud, Alexis Paljic
Title: RayGaussX: Accelerating Gaussian-Based Ray Marching for Real-Time and High-Quality Novel View Synthesis
Abstract:
RayGauss has achieved state-of-the-art rendering quality for novel-view synthesis on synthetic and indoor scenes by representing radiance and density fields with irregularly distributed elliptical basis functions, rendered via volume ray casting using a Bounding Volume Hierarchy (BVH). However, its computational cost prevents real-time rendering on real-world scenes. Our approach, RayGaussX, builds on RayGauss by introducing key contributions that accelerate both training and inference. Specifically, we incorporate volumetric rendering acceleration strategies such as empty-space skipping and adaptive sampling, enhance ray coherence, and introduce scale regularization to reduce false-positive intersections. Additionally, we propose a new densification criterion that improves density distribution in distant regions, leading to enhanced graphical quality on larger scenes. As a result, RayGaussX achieves 5x to 12x faster training and 50x to 80x higher rendering speeds (FPS) on real-world datasets while improving visual quality by up to +0.56 dB in PSNR. Project page with videos and code: https://raygaussx.github.io/.

Authors:Yimin Pan, Matthias Nießner, Tobias Kirschstein
Title: HairGS: Hair Strand Reconstruction based on 3D Gaussian Splatting
Abstract:
Human hair reconstruction is a challenging problem in computer vision, with growing importance for applications in virtual reality and digital human modeling. Recent advances in 3D Gaussians Splatting (3DGS) provide efficient and explicit scene representations that naturally align with the structure of hair strands. In this work, we extend the 3DGS framework to enable strand-level hair geometry reconstruction from multi-view images. Our multi-stage pipeline first reconstructs detailed hair geometry using a differentiable Gaussian rasterizer, then merges individual Gaussian segments into coherent strands through a novel merging scheme, and finally refines and grows the strands under photometric supervision. While existing methods typically evaluate reconstruction quality at the geometric level, they often neglect the connectivity and topology of hair strands. To address this, we propose a new evaluation metric that serves as a proxy for assessing topological accuracy in strand reconstruction. Extensive experiments on both synthetic and real-world datasets demonstrate that our method robustly handles a wide range of hairstyles and achieves efficient reconstruction, typically completing within one hour. The project page can be found at: https://yimin-pan.github.io/hair-gs/

Authors:Chunhang Zheng, Zichang Ren, Dou Li
Title: SEEC: Segmentation-Assisted Multi-Entropy Models for Learned Lossless Image Compression
Abstract:
Recently, learned image compression has attracted considerable attention due to its superior performance over traditional methods. However, most existing approaches employ a single entropy model to estimate the probability distribution of pixel values across the entire image, which limits their ability to capture the diverse statistical characteristics of different semantic regions. To overcome this limitation, we propose Segmentation-Assisted Multi-Entropy Models for Lossless Image Compression (SEEC). Our framework utilizes semantic segmentation to guide the selection and adaptation of multiple entropy models, enabling more accurate probability distribution estimation for distinct semantic regions. Specifically, SEEC first extracts image features and then applies semantic segmentation to identify different regions, each assigned a specialized entropy model to better capture its unique statistical properties. Finally, a multi-channel discrete logistic mixture likelihood is employed to model the pixel value distributions effectively. Experimental results on benchmark datasets demonstrate that SEEC achieves state-of-the-art compression ratios while introducing only minimal encoding and decoding latency. With superior performance, the proposed model also supports Regions of Interest (ROIs) coding condition on the provided segmentation mask. Our code is available at https://github.com/chunbaobao/SEEC.

Authors:Sung Ju Lee, Nam Ik Cho
Title: Semantic Watermarking Reinvented: Enhancing Robustness and Generation Quality with Fourier Integrity
Abstract:
Semantic watermarking techniques for latent diffusion models (LDMs) are robust against regeneration attacks, but often suffer from detection performance degradation due to the loss of frequency integrity. To tackle this problem, we propose a novel embedding method called Hermitian Symmetric Fourier Watermarking (SFW), which maintains frequency integrity by enforcing Hermitian symmetry. Additionally, we introduce a center-aware embedding strategy that reduces the vulnerability of semantic watermarking due to cropping attacks by ensuring robust information retention. To validate our approach, we apply these techniques to existing semantic watermarking schemes, enhancing their frequency-domain structures for better robustness and retrieval accuracy. Extensive experiments demonstrate that our methods achieve state-of-the-art verification and identification performance, surpassing previous approaches across various attack scenarios. Ablation studies confirm the impact of SFW on detection capabilities, the effectiveness of the center-aware embedding against cropping, and how message capacity influences identification accuracy. Notably, our method achieves the highest detection accuracy while maintaining superior image fidelity, as evidenced by FID and CLIP scores. Conclusively, our proposed SFW is shown to be an effective framework for balancing robustness and image fidelity, addressing the inherent trade-offs in semantic watermarking. Code available at https://github.com/thomas11809/SFWMark

Authors:Peijin Xie, Shun Qian, Bingquan Liu, Dexin Wang, Lin Sun, Xiangzheng Zhang
Title: TextlessRAG: End-to-End Visual Document RAG by Speech Without Text
Abstract:
Document images encapsulate a wealth of knowledge, while the portability of spoken queries enables broader and flexible application scenarios. Yet, no prior work has explored knowledge base question answering over visual document images with queries provided directly in speech. We propose TextlessRAG, the first end-to-end framework for speech-based question answering over large-scale document images. Unlike prior methods, TextlessRAG eliminates ASR, TTS and OCR, directly interpreting speech, retrieving relevant visual knowledge, and generating answers in a fully textless pipeline. To further boost performance, we integrate a layout-aware reranking mechanism to refine retrieval. Experiments demonstrate substantial improvements in both efficiency and accuracy. To advance research in this direction, we also release the first bilingual speech--document RAG dataset, featuring Chinese and English voice queries paired with multimodal document content. Both the dataset and our pipeline will be made available at repository:https://github.com/xiepeijinhit-hue/textlessrag

Authors:Kiet T. Nguyen, Chanhuyk Lee, Donggyun Kim, Dong Hoon Lee, Seunghoon Hong
Title: Universal Few-Shot Spatial Control for Diffusion Models
Abstract:
Spatial conditioning in pretrained text-to-image diffusion models has significantly improved fine-grained control over the structure of generated images. However, existing control adapters exhibit limited adaptability and incur high training costs when encountering novel spatial control conditions that differ substantially from the training tasks. To address this limitation, we propose Universal Few-Shot Control (UFC), a versatile few-shot control adapter capable of generalizing to novel spatial conditions. Given a few image-condition pairs of an unseen task and a query condition, UFC leverages the analogy between query and support conditions to construct task-specific control features, instantiated by a matching mechanism and an update on a small set of task-specific parameters. Experiments on six novel spatial control tasks show that UFC, fine-tuned with only 30 annotated examples of novel tasks, achieves fine-grained control consistent with the spatial conditions. Notably, when fine-tuned with 0.1% of the full training data, UFC achieves competitive performance with the fully supervised baselines in various control tasks. We also show that UFC is applicable agnostically to various diffusion backbones and demonstrate its effectiveness on both UNet and DiT architectures. Code is available at https://github.com/kietngt00/UFC.

Authors:Saad Lahlali, Alexandre Fournier Montgieux, Nicolas Granger, Hervé Le Borgne, Quoc Cuong Pham
Title: MVAT: Multi-View Aware Teacher for Weakly Supervised 3D Object Detection
Abstract:
Annotating 3D data remains a costly bottleneck for 3D object detection, motivating the development of weakly supervised annotation methods that rely on more accessible 2D box annotations. However, relying solely on 2D boxes introduces projection ambiguities since a single 2D box can correspond to multiple valid 3D poses. Furthermore, partial object visibility under a single viewpoint setting makes accurate 3D box estimation difficult. We propose MVAT, a novel framework that leverages temporal multi-view present in sequential data to address these challenges. Our approach aggregates object-centric point clouds across time to build 3D object representations as dense and complete as possible. A Teacher-Student distillation paradigm is employed: The Teacher network learns from single viewpoints but targets are derived from temporally aggregated static objects. Then the Teacher generates high quality pseudo-labels that the Student learns to predict from a single viewpoint for both static and moving objects. The whole framework incorporates a multi-view 2D projection loss to enforce consistency between predicted 3D boxes and all available 2D annotations. Experiments on the nuScenes and Waymo Open datasets demonstrate that MVAT achieves state-of-the-art performance for weakly supervised 3D object detection, significantly narrowing the gap with fully supervised methods without requiring any 3D box annotations. % \footnote{Code available upon acceptance} Our code is available in our public repository (\href{https://github.com/CEA-LIST/MVAT}{code}).

Authors:Wenshuo Gao, Xicheng Lan, Luyao Zhang, Shuai Yang
Title: LINR Bridge: Vector Graphic Animation via Neural Implicits and Video Diffusion Priors
Abstract:
Vector graphics, known for their scalability and user-friendliness, provide a unique approach to visual content compared to traditional pixel-based images. Animation of these graphics, driven by the motion of their elements, offers enhanced comprehensibility and controllability but often requires substantial manual effort. To automate this process, we propose a novel method that integrates implicit neural representations with text-to-video diffusion models for vector graphic animation. Our approach employs layered implicit neural representations to reconstruct vector graphics, preserving their inherent properties such as infinite resolution and precise color and shape constraints, which effectively bridges the large domain gap between vector graphics and diffusion models. The neural representations are then optimized using video score distillation sampling, which leverages motion priors from pretrained text-to-video diffusion models. Finally, the vector graphics are warped to match the representations resulting in smooth animation. Experimental results validate the effectiveness of our method in generating vivid and natural vector graphic animations, demonstrating significant improvement over existing techniques that suffer from limitations in flexibility and animation quality.

Authors:Patrick Wienholt, Christiane Kuhl, Jakob Nikolas Kather, Sven Nebelung, Daniel Truhn
Title: MedicalPatchNet: A Patch-Based Self-Explainable AI Architecture for Chest X-ray Classification
Abstract:
Deep neural networks excel in radiological image classification but frequently suffer from poor interpretability, limiting clinical acceptance. We present MedicalPatchNet, an inherently self-explainable architecture for chest X-ray classification that transparently attributes decisions to distinct image regions. MedicalPatchNet splits images into non-overlapping patches, independently classifies each patch, and aggregates predictions, enabling intuitive visualization of each patch's diagnostic contribution without post-hoc techniques. Trained on the CheXpert dataset (223,414 images), MedicalPatchNet matches the classification performance (AUROC 0.907 vs. 0.908) of EfficientNet-B0, while substantially improving interpretability: MedicalPatchNet demonstrates substantially improved interpretability with higher pathology localization accuracy (mean hit-rate 0.485 vs. 0.376 with Grad-CAM) on the CheXlocalize dataset. By providing explicit, reliable explanations accessible even to non-AI experts, MedicalPatchNet mitigates risks associated with shortcut learning, thus improving clinical trust. Our model is publicly available with reproducible training and inference scripts and contributes to safer, explainable AI-assisted diagnostics across medical imaging domains. We make the code publicly available: https://github.com/TruhnLab/MedicalPatchNet

Authors:Wenshuo Gao, Xicheng Lan, Shuai Yang
Title: ANYPORTAL: Zero-Shot Consistent Video Background Replacement
Abstract:
Despite the rapid advancements in video generation technology, creating high-quality videos that precisely align with user intentions remains a significant challenge. Existing methods often fail to achieve fine-grained control over video details, limiting their practical applicability. We introduce ANYPORTAL, a novel zero-shot framework for video background replacement that leverages pre-trained diffusion models. Our framework collaboratively integrates the temporal prior of video diffusion models with the relighting capabilities of image diffusion models in a zero-shot setting. To address the critical challenge of foreground consistency, we propose a Refinement Projection Algorithm, which enables pixel-level detail manipulation to ensure precise foreground preservation. ANYPORTAL is training-free and overcomes the challenges of achieving foreground consistency and temporally coherent relighting. Experimental results demonstrate that ANYPORTAL achieves high-quality results on consumer-grade GPUs, offering a practical and efficient solution for video content creation and editing.

Authors:Pooya Khosravi, Kun Han, Anthony T. Wu, Arghavan Rezvani, Zexin Feng, Xiaohui Xie
Title: XOCT: Enhancing OCT to OCTA Translation via Cross-Dimensional Supervised Multi-Scale Feature Learning
Abstract:
Optical Coherence Tomography Angiography (OCTA) and its derived en-face projections provide high-resolution visualization of the retinal and choroidal vasculature, which is critical for the rapid and accurate diagnosis of retinal diseases. However, acquiring high-quality OCTA images is challenging due to motion sensitivity and the high costs associated with software modifications for conventional OCT devices. Moreover, current deep learning methods for OCT-to-OCTA translation often overlook the vascular differences across retinal layers and struggle to reconstruct the intricate, dense vascular details necessary for reliable diagnosis. To overcome these limitations, we propose XOCT, a novel deep learning framework that integrates Cross-Dimensional Supervision (CDS) with a Multi-Scale Feature Fusion (MSFF) network for layer-aware vascular reconstruction. Our CDS module leverages 2D layer-wise en-face projections, generated via segmentation-weighted z-axis averaging, as supervisory signals to compel the network to learn distinct representations for each retinal layer through fine-grained, targeted guidance. Meanwhile, the MSFF module enhances vessel delineation through multi-scale feature extraction combined with a channel reweighting strategy, effectively capturing vascular details at multiple spatial scales. Our experiments on the OCTA-500 dataset demonstrate XOCT's improvements, especially for the en-face projections which are significant for clinical evaluation of retinal pathologies, underscoring its potential to enhance OCTA accessibility, reliability, and diagnostic value for ophthalmic disease detection and monitoring. The code is available at https://github.com/uci-cbcl/XOCT.

Authors:Xudong Lu, Zhi Zheng, Yi Wan, Yongxiang Yao, Annan Wang, Renrui Zhang, Panwang Xia, Qiong Wu, Qingyun Li, Weifeng Lin, Xiangyu Zhao, Peifeng Ma, Xue Yang, Hongsheng Li
Title: GLEAM: Learning to Match and Explain in Cross-View Geo-Localization
Abstract:
Cross-View Geo-Localization (CVGL) focuses on identifying correspondences between images captured from distinct perspectives of the same geographical location. However, existing CVGL approaches are typically restricted to a single view or modality, and their direct visual matching strategy lacks interpretability: they only determine whether two images correspond, without explaining the rationale behind the match. In this paper, we present GLEAM-C, a foundational CVGL model that unifies multiple views and modalities-including UAV imagery, street maps, panoramic views, and ground photographs-by aligning them exclusively with satellite imagery. Our framework enhances training efficiency through optimized implementation while achieving accuracy comparable to prior modality-specific CVGL models through a two-phase training strategy. Moreover, to address the lack of interpretability in traditional CVGL methods, we leverage the reasoning capabilities of multimodal large language models (MLLMs) to propose a new task, GLEAM-X, which combines cross-view correspondence prediction with explainable reasoning. To support this task, we construct a bilingual benchmark using GPT-4o and Doubao-1.5-Thinking-Vision-Pro to generate training and testing data. The test set is further refined through detailed human revision, enabling systematic evaluation of explainable cross-view reasoning and advancing transparency and scalability in geo-localization. Together, GLEAM-C and GLEAM-X form a comprehensive CVGL pipeline that integrates multi-modal, multi-view alignment with interpretable correspondence analysis, unifying accurate cross-view matching with explainable reasoning and advancing Geo-Localization by enabling models to better Explain And Match. Code and datasets used in this work will be made publicly accessible at https://github.com/Lucky-Lance/GLEAM.

Authors:Ze-Xin Yin, Jiaxiong Qiu, Liu Liu, Xinjie Wang, Wei Sui, Zhizhong Su, Jian Yang, Jin Xie
Title: DreamLifting: A Plug-in Module Lifting MV Diffusion Models for 3D Asset Generation
Abstract:
The labor- and experience-intensive creation of 3D assets with physically based rendering (PBR) materials demands an autonomous 3D asset creation pipeline. However, most existing 3D generation methods focus on geometry modeling, either baking textures into simple vertex colors or leaving texture synthesis to post-processing with image diffusion models. To achieve end-to-end PBR-ready 3D asset generation, we present Lightweight Gaussian Asset Adapter (LGAA), a novel framework that unifies the modeling of geometry and PBR materials by exploiting multi-view (MV) diffusion priors from a novel perspective. The LGAA features a modular design with three components. Specifically, the LGAA Wrapper reuses and adapts network layers from MV diffusion models, which encapsulate knowledge acquired from billions of images, enabling better convergence in a data-efficient manner. To incorporate multiple diffusion priors for geometry and PBR synthesis, the LGAA Switcher aligns multiple LGAA Wrapper layers encapsulating different knowledge. Then, a tamed variational autoencoder (VAE), termed LGAA Decoder, is designed to predict 2D Gaussian Splatting (2DGS) with PBR channels. Finally, we introduce a dedicated post-processing procedure to effectively extract high-quality, relightable mesh assets from the resulting 2DGS. Extensive quantitative and qualitative experiments demonstrate the superior performance of LGAA with both text-and image-conditioned MV diffusion models. Additionally, the modular design enables flexible incorporation of multiple diffusion priors, and the knowledge-preserving scheme leads to efficient convergence trained on merely 69k multi-view instances. Our code, pre-trained weights, and the dataset used will be publicly available via our project page: https://zx-yin.github.io/dreamlifting/.

Authors:Erencem Ozbey, Dimitrios I. Diochnos
Title: Dimensionally Reduced Open-World Clustering: DROWCULA
Abstract:
Working with annotated data is the cornerstone of supervised learning. Nevertheless, providing labels to instances is a task that requires significant human effort. Several critical real-world applications make things more complicated because no matter how many labels may have been identified in a task of interest, it could be the case that examples corresponding to novel classes may appear in the future. Not unsurprisingly, prior work in this, so-called, `open-world' context has focused a lot on semi-supervised approaches. Focusing on image classification, somehow paradoxically, we propose a fully unsupervised approach to the problem of determining the novel categories in a particular dataset. Our approach relies on estimating the number of clusters using Vision Transformers, which utilize attention mechanisms to generate vector embeddings. Furthermore, we incorporate manifold learning techniques to refine these embeddings by exploiting the intrinsic geometry of the data, thereby enhancing the overall image clustering performance. Overall, we establish new State-of-the-Art results on single-modal clustering and Novel Class Discovery on CIFAR-10, CIFAR-100, ImageNet-100, and Tiny ImageNet. We do so, both when the number of clusters is known or unknown ahead of time. The code is available at: https://github.com/DROWCULA/DROWCULA.

Authors:Yingsheng Wang, Shuo Lu, Jian Liang, Aihua Zheng, Ran He
Title: Frustratingly Easy Feature Reconstruction for Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection helps models identify data outside the training categories, crucial for security applications. While feature-based post-hoc methods address this by evaluating data differences in the feature space without changing network parameters, they often require access to training data, which may not be suitable for some data privacy scenarios. This may not be suitable in scenarios where data privacy protection is a concern. In this paper, we propose a simple yet effective post-hoc method, termed Classifier-based Feature Reconstruction (ClaFR), from the perspective of subspace projection. It first performs an orthogonal decomposition of the classifier's weights to extract the class-known subspace, then maps the original data features into this subspace to obtain new data representations. Subsequently, the OOD score is determined by calculating the feature reconstruction error of the data within the subspace. Compared to existing OOD detection algorithms, our method does not require access to training data while achieving leading performance on multiple OOD benchmarks. Our code is released at https://github.com/Aie0923/ClaFR.

Authors:Cedric Caruzzo, Jong Chul Ye
Title: CellPainTR: Generalizable Representation Learning for Cross-Dataset Cell Painting Analysis
Abstract:
Large-scale biological discovery requires integrating massive, heterogeneous datasets like those from the JUMP Cell Painting consortium, but technical batch effects and a lack of generalizable models remain critical roadblocks. To address this, we introduce CellPainTR, a Transformer-based architecture designed to learn foundational representations of cellular morphology that are robust to batch effects. Unlike traditional methods that require retraining on new data, CellPainTR's design, featuring source-specific context tokens, allows for effective out-of-distribution (OOD) generalization to entirely unseen datasets without fine-tuning. We validate CellPainTR on the large-scale JUMP dataset, where it outperforms established methods like ComBat and Harmony in both batch integration and biological signal preservation. Critically, we demonstrate its robustness through a challenging OOD task on the unseen Bray et al. dataset, where it maintains high performance despite significant domain and feature shifts. Our work represents a significant step towards creating truly foundational models for image-based profiling, enabling more reliable and scalable cross-study biological analysis.

Authors:Wenhao Li, Mengyuan Liu, Hong Liu, Pichao Wang, Shijian Lu, Nicu Sebe
Title: H$_{2}$OT: Hierarchical Hourglass Tokenizer for Efficient Video Pose Transformers
Abstract:
Transformers have been successfully applied in the field of video-based 3D human pose estimation. However, the high computational costs of these video pose transformers (VPTs) make them impractical on resource-constrained devices. In this paper, we present a hierarchical plug-and-play pruning-and-recovering framework, called Hierarchical Hourglass Tokenizer (H$_{2}$OT), for efficient transformer-based 3D human pose estimation from videos. H$_{2}$OT begins with progressively pruning pose tokens of redundant frames and ends with recovering full-length sequences, resulting in a few pose tokens in the intermediate transformer blocks and thus improving the model efficiency. It works with two key modules, namely, a Token Pruning Module (TPM) and a Token Recovering Module (TRM). TPM dynamically selects a few representative tokens to eliminate the redundancy of video frames, while TRM restores the detailed spatio-temporal information based on the selected tokens, thereby expanding the network output to the original full-length temporal resolution for fast inference. Our method is general-purpose: it can be easily incorporated into common VPT models on both seq2seq and seq2frame pipelines while effectively accommodating different token pruning and recovery strategies. In addition, our H$_{2}$OT reveals that maintaining the full pose sequence is unnecessary, and a few pose tokens of representative frames can achieve both high efficiency and estimation accuracy. Extensive experiments on multiple benchmark datasets demonstrate both the effectiveness and efficiency of the proposed method. Code and models are available at https://github.com/NationalGAILab/HoT.

Authors:Qi Lv, Weijie Kong, Hao Li, Jia Zeng, Zherui Qiu, Delin Qu, Haoming Song, Qizhi Chen, Xiang Deng, Jiangmiao Pang
Title: F1: A Vision-Language-Action Model Bridging Understanding and Generation to Actions
Abstract:
Executing language-conditioned tasks in dynamic visual environments remains a central challenge in embodied AI. Existing Vision-Language-Action (VLA) models predominantly adopt reactive state-to-action mappings, often leading to short-sighted behaviors and poor robustness in dynamic scenes. In this paper, we introduce F1, a pretrained VLA framework which integrates the visual foresight generation into decision-making pipeline. F1 adopts a Mixture-of-Transformer architecture with dedicated modules for perception, foresight generation, and control, thereby bridging understanding, generation, and actions. At its core, F1 employs a next-scale prediction mechanism to synthesize goal-conditioned visual foresight as explicit planning targets. By forecasting plausible future visual states, F1 reformulates action generation as a foresight-guided inverse dynamics problem, enabling actions that implicitly achieve visual goals. To endow F1 with robust and generalizable capabilities, we propose a three-stage training recipe on an extensive dataset comprising over 330k trajectories across 136 diverse tasks. This training scheme enhances modular reasoning and equips the model with transferable visual foresight, which is critical for complex and dynamic environments. Extensive evaluations on real-world tasks and simulation benchmarks demonstrate F1 consistently outperforms existing approaches, achieving substantial gains in both task success rate and generalization ability.

Authors:Wenxuan Huang, Shuang Chen, Zheyong Xie, Shaosheng Cao, Shixiang Tang, Yufan Shen, Qingyu Yin, Wenbo Hu, Xiaoman Wang, Yuntian Tang, Junbo Qiao, Yue Guo, Yao Hu, Zhenfei Yin, Philip Torr, Yu Cheng, Wanli Ouyang, Shaohui Lin
Title: Interleaving Reasoning for Better Text-to-Image Generation
Abstract:
Unified multimodal understanding and generation models recently have achieve significant improvement in image generation capability, yet a large gap remains in instruction following and detail preservation compared to systems that tightly couple comprehension with generation such as GPT-4o. Motivated by recent advances in interleaving reasoning, we explore whether such reasoning can further improve Text-to-Image (T2I) generation. We introduce Interleaving Reasoning Generation (IRG), a framework that alternates between text-based thinking and image synthesis: the model first produces a text-based thinking to guide an initial image, then reflects on the result to refine fine-grained details, visual quality, and aesthetics while preserving semantics. To train IRG effectively, we propose Interleaving Reasoning Generation Learning (IRGL), which targets two sub-goals: (1) strengthening the initial think-and-generate stage to establish core content and base quality, and (2) enabling high-quality textual reflection and faithful implementation of those refinements in a subsequent image. We curate IRGL-300K, a dataset organized into six decomposed learning modes that jointly cover learning text-based thinking, and full thinking-image trajectories. Starting from a unified foundation model that natively emits interleaved text-image outputs, our two-stage training first builds robust thinking and reflection, then efficiently tunes the IRG pipeline in the full thinking-image trajectory data. Extensive experiments show SoTA performance, yielding absolute gains of 5-10 points on GenEval, WISE, TIIF, GenAI-Bench, and OneIG-EN, alongside substantial improvements in visual quality and fine-grained fidelity. The code, model weights and datasets will be released in: https://github.com/Osilly/Interleaving-Reasoning-Generation .

Authors:Bing Han, Chen Zhu, Dong Han, Rui Yu, Songliang Cao, Jianhui Wu, Scott Chapman, Zijian Wang, Bangyou Zheng, Wei Guo, Marie Weiss, Benoit de Solan, Andreas Hund, Lukas Roth, Kirchgessner Norbert, Andrea Visioni, Yufeng Ge, Wenjuan Li, Alexis Comar, Dong Jiang, Dejun Han, Fred Baret, Yanfeng Ding, Hao Lu, Shouyang Liu
Title: FoMo4Wheat: Toward reliable crop vision foundation models with globally curated data
Abstract:
Vision-driven field monitoring is central to digital agriculture, yet models built on general-domain pretrained backbones often fail to generalize across tasks, owing to the interaction of fine, variable canopy structures with fluctuating field conditions. We present FoMo4Wheat, one of the first crop-domain vision foundation model pretrained with self-supervision on ImAg4Wheat, the largest and most diverse wheat image dataset to date (2.5 million high-resolution images collected over a decade at 30 global sites, spanning >2,000 genotypes and >500 environmental conditions). This wheat-specific pretraining yields representations that are robust for wheat and transferable to other crops and weeds. Across ten in-field vision tasks at canopy and organ levels, FoMo4Wheat models consistently outperform state-of-the-art models pretrained on general-domain dataset. These results demonstrate the value of crop-specific foundation models for reliable in-field perception and chart a path toward a universal crop foundation model with cross-species and cross-task capabilities. FoMo4Wheat models and the ImAg4Wheat dataset are publicly available online: https://github.com/PheniX-Lab/FoMo4Wheat and https://huggingface.co/PheniX-Lab/FoMo4Wheat. The demonstration website is: https://fomo4wheat.phenix-lab.com/.

Authors:Morteza Kiani Haftlang, Mohammadhossein Malmir, Foroutan Parand, Umberto Michelucci, Safouane El Ghazouali
Title: Barlow-Swin: Toward a novel siamese-based segmentation architecture using Swin-Transformers
Abstract:
Medical image segmentation is a critical task in clinical workflows, particularly for the detection and delineation of pathological regions. While convolutional architectures like U-Net have become standard for such tasks, their limited receptive field restricts global context modeling. Recent efforts integrating transformers have addressed this, but often result in deep, computationally expensive models unsuitable for real-time use. In this work, we present a novel end-to-end lightweight architecture designed specifically for real-time binary medical image segmentation. Our model combines a Swin Transformer-like encoder with a U-Net-like decoder, connected via skip pathways to preserve spatial detail while capturing contextual information. Unlike existing designs such as Swin Transformer or U-Net, our architecture is significantly shallower and competitively efficient. To improve the encoder's ability to learn meaningful features without relying on large amounts of labeled data, we first train it using Barlow Twins, a self-supervised learning method that helps the model focus on important patterns by reducing unnecessary repetition in the learned features. After this pretraining, we fine-tune the entire model for our specific task. Experiments on benchmark binary segmentation tasks demonstrate that our model achieves competitive accuracy with substantially reduced parameter count and faster inference, positioning it as a practical alternative for deployment in real-time and resource-limited clinical environments. The code for our method is available at Github repository: https://github.com/mkianih/Barlow-Swin.

Authors:Matteo Muratori, Joël Seytre
Title: ToonOut: Fine-tuned Background-Removal for Anime Characters
Abstract:
While state-of-the-art background removal models excel at realistic imagery, they frequently underperform in specialized domains such as anime-style content, where complex features like hair and transparency present unique challenges. To address this limitation, we collected and annotated a custom dataset of 1,228 high-quality anime images of characters and objects, and fine-tuned the open-sourced BiRefNet model on this dataset. This resulted in marked improvements in background removal accuracy for anime-style images, increasing from 95.3% to 99.5% for our newly introduced Pixel Accuracy metric. We are open-sourcing the code, the fine-tuned model weights, as well as the dataset at: https://github.com/MatteoKartoon/BiRefNet.

Authors:Simon Pezold, Jérôme A. Kurylec, Jan S. Liechti, Beat P. Müller, Joël L. Lavanchy
Title: Leveraging Generic Foundation Models for Multimodal Surgical Data Analysis
Abstract:
We investigate how both the adaptation of a generic foundation model via transfer learning and the integration of complementary modalities from the operating room (OR) can support surgical data science. To this end, we use V-JEPA as the single-modality foundation of a multimodal model for minimally invasive surgery support. We analyze how the model's downstream performance can benefit (a) from finetuning on unlabeled surgical video data and (b) from providing additional time-resolved data streams from the OR in a multimodal setup. In an in-house dataset of liver surgery videos, we analyze the tasks of predicting hospital length of stay and postoperative complications. In videos of the public HeiCo dataset, we analyze the task of surgical phase recognition. As a baseline, we apply pretrained V-JEPA to all tasks. We then finetune it on unlabeled, held-out videos to investigate its change in performance after domain adaptation. Following the idea of modular decision support networks, we integrate additional data streams from the OR by training a separate encoder to form a shared representation space with V-JEPA's embeddings. Our experiments show that finetuning on domain-specific data increases model performance. On the in-house data, integrating additional time-resolved data likewise benefits the model. On the HeiCo data, accuracy of the pretrained video-only, single-modality baseline setup is on par with the top-performing submissions of the EndoVis2017 challenge, while finetuning on domain-specific data increases accuracy further. Our results thus demonstrate how surgical data science can leverage public, generic foundation models. Likewise, they indicate the potential of domain adaptation and of integrating suitable complementary data streams from the OR. To support further research, we release our code and model weights at https://github.com/DigitalSurgeryLab-Basel/ML-CDS-2025.

Authors:Yufeng Cheng, Wenxu Wu, Shaojin Wu, Mengqi Huang, Fei Ding, Qian He
Title: UMO: Scaling Multi-Identity Consistency for Image Customization via Matching Reward
Abstract:
Recent advancements in image customization exhibit a wide range of application prospects due to stronger customization capabilities. However, since we humans are more sensitive to faces, a significant challenge remains in preserving consistent identity while avoiding identity confusion with multi-reference images, limiting the identity scalability of customization models. To address this, we present UMO, a Unified Multi-identity Optimization framework, designed to maintain high-fidelity identity preservation and alleviate identity confusion with scalability. With "multi-to-multi matching" paradigm, UMO reformulates multi-identity generation as a global assignment optimization problem and unleashes multi-identity consistency for existing image customization methods generally through reinforcement learning on diffusion models. To facilitate the training of UMO, we develop a scalable customization dataset with multi-reference images, consisting of both synthesised and real parts. Additionally, we propose a new metric to measure identity confusion. Extensive experiments demonstrate that UMO not only improves identity consistency significantly, but also reduces identity confusion on several image customization methods, setting a new state-of-the-art among open-source methods along the dimension of identity preserving. Code and model: https://github.com/bytedance/UMO

Authors:Changfeng Ma, Yang Li, Xinhao Yan, Jiachen Xu, Yunhan Yang, Chunshi Wang, Zibo Zhao, Yanwen Guo, Zhuo Chen, Chunchao Guo
Title: P3-SAM: Native 3D Part Segmentation
Abstract:
Segmenting 3D assets into their constituent parts is crucial for enhancing 3D understanding, facilitating model reuse, and supporting various applications such as part generation. However, current methods face limitations such as poor robustness when dealing with complex objects and cannot fully automate the process. In this paper, we propose a native 3D point-promptable part segmentation model termed P$^3$-SAM, designed to fully automate the segmentation of any 3D objects into components. Inspired by SAM, P$^3$-SAM consists of a feature extractor, multiple segmentation heads, and an IoU predictor, enabling interactive segmentation for users. We also propose an algorithm to automatically select and merge masks predicted by our model for part instance segmentation. Our model is trained on a newly built dataset containing nearly 3.7 million models with reasonable segmentation labels. Comparisons show that our method achieves precise segmentation results and strong robustness on any complex objects, attaining state-of-the-art performance. Our project page is available at https://murcherful.github.io/P3-SAM/.

Authors:Sai Kartheek Reddy Kasu, Mohammad Zia Ur Rehman, Shahid Shafi Dar, Rishi Bharat Junghare, Dhanvin Sanjay Namboodiri, Nagendra Kumar
Title: D-HUMOR: Dark Humor Understanding via Multimodal Open-ended Reasoning
Abstract:
Dark humor in online memes poses unique challenges due to its reliance on implicit, sensitive, and culturally contextual cues. To address the lack of resources and methods for detecting dark humor in multimodal content, we introduce a novel dataset of 4,379 Reddit memes annotated for dark humor, target category (gender, mental health, violence, race, disability, and other), and a three-level intensity rating (mild, moderate, severe). Building on this resource, we propose a reasoning-augmented framework that first generates structured explanations for each meme using a Large Vision-Language Model (VLM). Through a Role-Reversal Self-Loop, VLM adopts the author's perspective to iteratively refine its explanations, ensuring completeness and alignment. We then extract textual features from both the OCR transcript and the self-refined reasoning via a text encoder, while visual features are obtained using a vision transformer. A Tri-stream Cross-Reasoning Network (TCRNet) fuses these three streams, text, image, and reasoning, via pairwise attention mechanisms, producing a unified representation for classification. Experimental results demonstrate that our approach outperforms strong baselines across three tasks: dark humor detection, target identification, and intensity prediction. The dataset, annotations, and code are released to facilitate further research in multimodal humor understanding and content moderation. Code and Dataset are available at: https://github.com/Sai-Kartheek-Reddy/D-Humor-Dark-Humor-Understanding-via-Multimodal-Open-ended-Reasoning

Authors:Qing Xu, Wenting Duan, Zhen Chen
Title: Co-Seg: Mutual Prompt-Guided Collaborative Learning for Tissue and Nuclei Segmentation
Abstract:
Histopathology image analysis is critical yet challenged by the demand of segmenting tissue regions and nuclei instances for tumor microenvironment and cellular morphology analysis. Existing studies focused on tissue semantic segmentation or nuclei instance segmentation separately, but ignored the inherent relationship between these two tasks, resulting in insufficient histopathology understanding. To address this issue, we propose a Co-Seg framework for collaborative tissue and nuclei segmentation. Specifically, we introduce a novel co-segmentation paradigm, allowing tissue and nuclei segmentation tasks to mutually enhance each other. To this end, we first devise a region-aware prompt encoder (RP-Encoder) to provide high-quality semantic and instance region prompts as prior constraints. Moreover, we design a mutual prompt mask decoder (MP-Decoder) that leverages cross-guidance to strengthen the contextual consistency of both tasks, collaboratively computing semantic and instance segmentation masks. Extensive experiments on the PUMA dataset demonstrate that the proposed Co-Seg surpasses state-of-the-arts in the semantic, instance and panoptic segmentation of tumor tissues and nuclei instances. The source code is available at https://github.com/xq141839/Co-Seg.

Authors:Xin Kong, Daniel Watson, Yannick Strümpler, Michael Niemeyer, Federico Tombari
Title: CausNVS: Autoregressive Multi-view Diffusion for Flexible 3D Novel View Synthesis
Abstract:
Multi-view diffusion models have shown promise in 3D novel view synthesis, but most existing methods adopt a non-autoregressive formulation. This limits their applicability in world modeling, as they only support a fixed number of views and suffer from slow inference due to denoising all frames simultaneously. To address these limitations, we propose CausNVS, a multi-view diffusion model in an autoregressive setting, which supports arbitrary input-output view configurations and generates views sequentially. We train CausNVS with causal masking and per-frame noise, using pairwise-relative camera pose encodings (CaPE) for precise camera control. At inference time, we combine a spatially-aware sliding-window with key-value caching and noise conditioning augmentation to mitigate drift. Our experiments demonstrate that CausNVS supports a broad range of camera trajectories, enables flexible autoregressive novel view synthesis, and achieves consistently strong visual quality across diverse settings. Project page: https://kxhit.github.io/CausNVS.html.

Authors:Jibai Lin, Bo Ma, Yating Yang, Xi Zhou, Rong Ma, Turghun Osman, Ahtamjan Ahmat, Rui Dong, Lei Wang
Title: TIDE: Achieving Balanced Subject-Driven Image Generation via Target-Instructed Diffusion Enhancement
Abstract:
Subject-driven image generation (SDIG) aims to manipulate specific subjects within images while adhering to textual instructions, a task crucial for advancing text-to-image diffusion models. SDIG requires reconciling the tension between maintaining subject identity and complying with dynamic edit instructions, a challenge inadequately addressed by existing methods. In this paper, we introduce the Target-Instructed Diffusion Enhancing (TIDE) framework, which resolves this tension through target supervision and preference learning without test-time fine-tuning. TIDE pioneers target-supervised triplet alignment, modelling subject adaptation dynamics using a (reference image, instruction, target images) triplet. This approach leverages the Direct Subject Diffusion (DSD) objective, training the model with paired "winning" (balanced preservation-compliance) and "losing" (distorted) targets, systematically generated and evaluated via quantitative metrics. This enables implicit reward modelling for optimal preservation-compliance balance. Experimental results on standard benchmarks demonstrate TIDE's superior performance in generating subject-faithful outputs while maintaining instruction compliance, outperforming baseline methods across multiple quantitative metrics. TIDE's versatility is further evidenced by its successful application to diverse tasks, including structural-conditioned generation, image-to-image generation, and text-image interpolation. Our code is available at https://github.com/KomJay520/TIDE.

Authors:Zhongxiang Xie, Shuangxi Miao, Yuhan Jiang, Zhewei Zhang, Jing Yao, Xuecao Li, Jianxi Huang, Pedram Ghamisi
Title: FSG-Net: Frequency-Spatial Synergistic Gated Network for High-Resolution Remote Sensing Change Detection
Abstract:
Change detection from high-resolution remote sensing images lies as a cornerstone of Earth observation applications, yet its efficacy is often compromised by two critical challenges. First, false alarms are prevalent as models misinterpret radiometric variations from temporal shifts (e.g., illumination, season) as genuine changes. Second, a non-negligible semantic gap between deep abstract features and shallow detail-rich features tends to obstruct their effective fusion, culminating in poorly delineated boundaries. To step further in addressing these issues, we propose the Frequency-Spatial Synergistic Gated Network (FSG-Net), a novel paradigm that aims to systematically disentangle semantic changes from nuisance variations. Specifically, FSG-Net first operates in the frequency domain, where a Discrepancy-Aware Wavelet Interaction Module (DAWIM) adaptively mitigates pseudo-changes by discerningly processing different frequency components. Subsequently, the refined features are enhanced in the spatial domain by a Synergistic Temporal-Spatial Attention Module (STSAM), which amplifies the saliency of genuine change regions. To finally bridge the semantic gap, a Lightweight Gated Fusion Unit (LGFU) leverages high-level semantics to selectively gate and integrate crucial details from shallow layers. Comprehensive experiments on the CDD, GZ-CD, and LEVIR-CD benchmarks validate the superiority of FSG-Net, establishing a new state-of-the-art with F1-scores of 94.16%, 89.51%, and 91.27%, respectively. The code will be made available at https://github.com/zxXie-Air/FSG-Net after a possible publication.

Authors:Yixiao Li, Xin Li, Chris Wei Zhou, Shuo Xing, Hadi Amirpour, Xiaoshuai Hao, Guanghui Yue, Baoquan Zhao, Weide Liu, Xiaoyuan Yang, Zhengzhong Tu, Xinyu Li, Chuanbiao Song, Chenqi Zhang, Jun Lan, Huijia Zhu, Weiqiang Wang, Xiaoyan Sun, Shishun Tian, Dongyang Yan, Weixia Zhang, Junlin Chen, Wei Sun, Zhihua Wang, Zhuohang Shi, Zhizun Luo, Hang Ouyang, Tianxin Xiao, Fan Yang, Zhaowang Wu, Kaixin Deng
Title: VQualA 2025 Challenge on Image Super-Resolution Generated Content Quality Assessment: Methods and Results
Abstract:
This paper presents the ISRGC-Q Challenge, built upon the Image Super-Resolution Generated Content Quality Assessment (ISRGen-QA) dataset, and organized as part of the Visual Quality Assessment (VQualA) Competition at the ICCV 2025 Workshops. Unlike existing Super-Resolution Image Quality Assessment (SR-IQA) datasets, ISRGen-QA places a greater emphasis on SR images generated by the latest generative approaches, including Generative Adversarial Networks (GANs) and diffusion models. The primary goal of this challenge is to analyze the unique artifacts introduced by modern super-resolution techniques and to evaluate their perceptual quality effectively. A total of 108 participants registered for the challenge, with 4 teams submitting valid solutions and fact sheets for the final testing phase. These submissions demonstrated state-of-the-art (SOTA) performance on the ISRGen-QA dataset. The project is publicly available at: https://github.com/Lighting-YXLI/ISRGen-QA.

Authors:Jeongmin Yu, Susang Kim, Kisu Lee, Taekyoung Kwon, Won-Yong Shin, Ha Young Kim
Title: Multi-View Slot Attention Using Paraphrased Texts for Face Anti-Spoofing
Abstract:
Recent face anti-spoofing (FAS) methods have shown remarkable cross-domain performance by employing vision-language models like CLIP. However, existing CLIP-based FAS models do not fully exploit CLIP's patch embedding tokens, failing to detect critical spoofing clues. Moreover, these models rely on a single text prompt per class (e.g., 'live' or 'fake'), which limits generalization. To address these issues, we propose MVP-FAS, a novel framework incorporating two key modules: Multi-View Slot attention (MVS) and Multi-Text Patch Alignment (MTPA). Both modules utilize multiple paraphrased texts to generate generalized features and reduce dependence on domain-specific text. MVS extracts local detailed spatial features and global context from patch embeddings by leveraging diverse texts with multiple perspectives. MTPA aligns patches with multiple text representations to improve semantic robustness. Extensive experiments demonstrate that MVP-FAS achieves superior generalization performance, outperforming previous state-of-the-art methods on cross-domain datasets. Code: https://github.com/Elune001/MVP-FAS.

Authors:Ruiming Du, Guangxun Zhai, Tian Qiu, Yu Jiang
Title: Towards scalable organ level 3D plant segmentation: Bridging the data algorithm computing gap
Abstract:
The precise characterization of plant morphology provides valuable insights into plant environment interactions and genetic evolution. A key technology for extracting this information is 3D segmentation, which delineates individual plant organs from complex point clouds. Despite significant progress in general 3D computer vision domains, the adoption of 3D segmentation for plant phenotyping remains limited by three major challenges: i) the scarcity of large-scale annotated datasets, ii) technical difficulties in adapting advanced deep neural networks to plant point clouds, and iii) the lack of standardized benchmarks and evaluation protocols tailored to plant science. This review systematically addresses these barriers by: i) providing an overview of existing 3D plant datasets in the context of general 3D segmentation domains, ii) systematically summarizing deep learning-based methods for point cloud semantic and instance segmentation, iii) introducing Plant Segmentation Studio (PSS), an open-source framework for reproducible benchmarking, and iv) conducting extensive quantitative experiments to evaluate representative networks and sim-to-real learning strategies. Our findings highlight the efficacy of sparse convolutional backbones and transformer-based instance segmentation, while also emphasizing the complementary role of modeling-based and augmentation-based synthetic data generation for sim-to-real learning in reducing annotation demands. In general, this study bridges the gap between algorithmic advances and practical deployment, providing immediate tools for researchers and a roadmap for developing data-efficient and generalizable deep learning solutions in 3D plant phenotyping. Data and code are available at https://github.com/perrydoremi/PlantSegStudio.

Authors:Jiangnan Xie, Xiaolong Zheng, Liang Zheng
Title: Prototype-Aware Multimodal Alignment for Open-Vocabulary Visual Grounding
Abstract:
Visual Grounding (VG) aims to utilize given natural language queries to locate specific target objects within images. While current transformer-based approaches demonstrate strong localization performance in standard scene (i.e, scenarios without any novel objects), they exhibit notable limitations in open-vocabulary scene (i.e, both familiar and novel object categories during testing). These limitations primarily stem from three key factors: (1) imperfect alignment between visual and linguistic modalities, (2) insufficient cross-modal feature fusion, and (3) ineffective utilization of semantic prototype information. To overcome these challenges, we present Prototype-Aware Multimodal Learning (PAML), an innovative framework that systematically addresses these issues through several key components: First, we leverage ALBEF to establish robust cross-modal alignment during initial feature encoding. Subsequently, our Visual Discriminative Feature Encoder selectively enhances salient object representations while suppressing irrelevant visual context. The framework then incorporates a novel prototype discovering and inheriting mechanism that extracts and aggregates multi-neighbor semantic prototypes to facilitate open-vocabulary recognition. These enriched features undergo comprehensive multimodal integration through our Multi-stage Decoder before final bounding box regression. Extensive experiments across five benchmark datasets validate our approach, showing competitive performance in standard scene while achieving state-of-the-art results in open-vocabulary scene. Our code is available at https://github.com/plankXie/PAML.

Authors:Lucas Wojcik, Luiz Coelho, Roger Granada, David Menotti
Title: Exploring Light-Weight Object Recognition for Real-Time Document Detection
Abstract:
Object Recognition and Document Skew Estimation have come a long way in terms of performance and efficiency. New models follow one of two directions: improving performance using larger models, and improving efficiency using smaller models. However, real-time document detection and rectification is a niche that is largely unexplored by the literature, yet it remains a vital step for automatic information retrieval from visual documents. In this work, we strive towards an efficient document detection pipeline that is satisfactory in terms of Optical Character Recognition (OCR) retrieval and faster than other available solutions. We adapt IWPOD-Net, a license plate detection network, and train it for detection on NBID, a synthetic ID card dataset. We experiment with data augmentation and cross-dataset validation with MIDV (another synthetic ID and passport document dataset) to find the optimal scenario for the model. Other methods from both the Object Recognition and Skew Estimation state-of-the-art are evaluated for comparison with our approach. We use each method to detect and rectify the document, which is then read by an OCR system. The OCR output is then evaluated using a novel OCR quality metric based on the Levenshtein distance. Since the end goal is to improve automatic information retrieval, we use the overall OCR quality as a performance metric. We observe that with a promising model, document rectification does not have to be perfect to attain state-of-the-art performance scores. We show that our model is smaller and more efficient than current state-of-the-art solutions while retaining a competitive OCR quality metric. All code is available at https://github.com/BOVIFOCR/iwpod-doc-corners.git

Authors:Duomin Wang, Wei Zuo, Aojie Li, Ling-Hao Chen, Xinyao Liao, Deyu Zhou, Zixin Yin, Xili Dai, Daxin Jiang, Gang Yu
Title: UniVerse-1: Unified Audio-Video Generation via Stitching of Experts
Abstract:
We introduce UniVerse-1, a unified, Veo-3-like model capable of simultaneously generating coordinated audio and video. To enhance training efficiency, we bypass training from scratch and instead employ a stitching of experts (SoE) technique. This approach deeply fuses the corresponding blocks of pre-trained video and music generation experts models, thereby fully leveraging their foundational capabilities. To ensure accurate annotations and temporal alignment for both ambient sounds and speech with video content, we developed an online annotation pipeline that processes the required training data and generates labels during training process. This strategy circumvents the performance degradation often caused by misalignment text-based annotations. Through the synergy of these techniques, our model, after being finetuned on approximately 7,600 hours of audio-video data, produces results with well-coordinated audio-visuals for ambient sounds generation and strong alignment for speech generation. To systematically evaluate our proposed method, we introduce Verse-Bench, a new benchmark dataset. In an effort to advance research in audio-video generation and to close the performance gap with state-of-the-art models such as Veo3, we make our model and code publicly available. We hope this contribution will benefit the broader research community. Project page: https://dorniwang.github.io/UniVerse-1/.

Authors:Hao Liang, Ruitao Wu, Bohan Zeng, Junbo Niu, Wentao Zhang, Bin Dong
Title: Multimodal Reasoning for Science: Technical Report and 1st Place Solution to the ICML 2025 SeePhys Challenge
Abstract:
Multimodal reasoning remains a fundamental challenge in artificial intelligence. Despite substantial advances in text-based reasoning, even state-of-the-art models such as GPT-o3 struggle to maintain strong performance in multimodal scenarios. To address this gap, we introduce a caption-assisted reasoning framework that effectively bridges visual and textual modalities. Our approach achieved 1st place in the ICML 2025 AI for Math Workshop \& Challenge 2: SeePhys, highlighting its effectiveness and robustness. Furthermore, we validate its generalization on the MathVerse benchmark for geometric reasoning, demonstrating the versatility of our method. Our code is publicly available at https://github.com/OpenDCAI/SciReasoner.

Authors:Yuming Li, Yikai Wang, Yuying Zhu, Zhongyu Zhao, Ming Lu, Qi She, Shanghang Zhang
Title: BranchGRPO: Stable and Efficient GRPO with Structured Branching in Diffusion Models
Abstract:
Recent progress in aligning image and video generative models with Group Relative Policy Optimization (GRPO) has improved human preference alignment, but existing variants remain inefficient due to sequential rollouts and large numbers of sampling steps, unreliable credit assignment: sparse terminal rewards are uniformly propagated across timesteps, failing to capture the varying criticality of decisions during denoising. In this paper, we present BranchGRPO, a method that restructures the rollout process into a branching tree, where shared prefixes amortize computation and pruning removes low-value paths and redundant depths. BranchGRPO introduces three contributions: (1) a branching scheme that amortizes rollout cost through shared prefixes while preserving exploration diversity; (2) a reward fusion and depth-wise advantage estimator that transforms sparse terminal rewards into dense step-level signals; and (3) pruning strategies that cut gradient computation but leave forward rollouts and exploration unaffected. On HPDv2.1 image alignment, BranchGRPO improves alignment scores by up to \textbf{16\%} over DanceGRPO, while reducing per-iteration training time by nearly \textbf{55\%}. A hybrid variant, BranchGRPO-Mix, further accelerates training to 4.7x faster than DanceGRPO without degrading alignment. On WanX video generation, it further achieves higher Video-Align scores with sharper and temporally consistent frames compared to DanceGRPO. Codes are available at \href{https://fredreic1849.github.io/BranchGRPO-Webpage/}{BranchGRPO}.

Authors:Zhiwen Shao, Yifan Cheng, Fan Zhang, Xuehuai Shi, Canlin Li, Lizhuang Ma, Dit-yan Yeung
Title: Micro-Expression Recognition via Fine-Grained Dynamic Perception
Abstract:
Facial micro-expression recognition (MER) is a challenging task, due to the transience, subtlety, and dynamics of micro-expressions (MEs). Most existing methods resort to hand-crafted features or deep networks, in which the former often additionally requires key frames, and the latter suffers from small-scale and low-diversity training data. In this paper, we develop a novel fine-grained dynamic perception (FDP) framework for MER. We propose to rank frame-level features of a sequence of raw frames in chronological order, in which the rank process encodes the dynamic information of both ME appearances and motions. Specifically, a novel local-global feature-aware transformer is proposed for frame representation learning. A rank scorer is further adopted to calculate rank scores of each frame-level feature. Afterwards, the rank features from rank scorer are pooled in temporal dimension to capture dynamic representation. Finally, the dynamic representation is shared by a MER module and a dynamic image construction module, in which the former predicts the ME category, and the latter uses an encoder-decoder structure to construct the dynamic image. The design of dynamic image construction task is beneficial for capturing facial subtle actions associated with MEs and alleviating the data scarcity issue. Extensive experiments show that our method (i) significantly outperforms the state-of-the-art MER methods, and (ii) works well for dynamic image construction. Particularly, our FDP improves by 4.05%, 2.50%, 7.71%, and 2.11% over the previous best results in terms of F1-score on the CASME II, SAMM, CAS(ME)^2, and CAS(ME)^3 datasets, respectively. The code is available at https://github.com/CYF-cuber/FDP.

Authors:Wanyin Cheng, Zanxi Ruan
Title: BLaVe-CoT: Consistency-Aware Visual Question Answering for Blind and Low Vision Users
Abstract:
Visual Question Answering (VQA) holds great potential for assisting Blind and Low Vision (BLV) users, yet real-world usage remains challenging. Due to visual impairments, BLV users often take blurry or poorly framed photos and face difficulty in articulating specific questions about what they cannot fully see. As a result, their visual questions are frequently ambiguous, and different users may interpret them in diverse ways. This leads to multiple valid answers, each grounded in different image regions-posing a mismatch with conventional VQA systems that assume a single answer and region. To bridge this gap, we present BLaVe-CoT, a VQA framework designed to reason about answer consistency in the face of ambiguity. Our method proposes diverse candidate answers using a LoRA-tuned BLIP-2 model, then grounds each answer spatially using PolyFormer, and finally applies a chain-of-thought reasoning module to assess whether the answers refer to the same or different regions. Evaluated on the VQA-AnswerTherapy benchmark, BLaVe-CoT outperforms previous methods and proves more robust to the ambiguity and visual noise common in assistive settings. This work highlights the need for VQA systems that can adapt to real human uncertainty and provide inclusive support for BLV users. To foster further research and accessibility applications, we have made the code publicly available at https://github.com/Accecwan/BLaVe-CoT.

Authors:Mohamed Mohamed, Brennan Nichyporuk, Douglas L. Arnold, Tal Arbel
Title: Imagining Alternatives: Towards High-Resolution 3D Counterfactual Medical Image Generation via Language Guidance
Abstract:
Vision-language models have demonstrated impressive capabilities in generating 2D images under various conditions; however, the success of these models is largely enabled by extensive, readily available pretrained foundation models. Critically, comparable pretrained models do not exist for 3D, significantly limiting progress. As a result, the potential of vision-language models to produce high-resolution 3D counterfactual medical images conditioned solely on natural language remains unexplored. Addressing this gap would enable powerful clinical and research applications, such as personalized counterfactual explanations, simulation of disease progression, and enhanced medical training by visualizing hypothetical conditions in realistic detail. Our work takes a step toward this challenge by introducing a framework capable of generating high-resolution 3D counterfactual medical images of synthesized patients guided by free-form language prompts. We adapt state-of-the-art 3D diffusion models with enhancements from Simple Diffusion and incorporate augmented conditioning to improve text alignment and image quality. To our knowledge, this is the first demonstration of a language-guided native-3D diffusion model applied to neurological imaging, where faithful three-dimensional modeling is essential. On two neurological MRI datasets, our framework simulates varying counterfactual lesion loads in Multiple Sclerosis and cognitive states in Alzheimer's disease, generating high-quality images while preserving subject fidelity. Our results lay the groundwork for prompt-driven disease progression analysis in 3D medical imaging. Project link - https://lesupermomo.github.io/imagining-alternatives/.

Authors:Ye Wang, Zili Yi, Yibo Zhang, Peng Zheng, Xuping Xie, Jiang Lin, Yilin Wang, Rui Ma
Title: OmniStyle2: Scalable and High Quality Artistic Style Transfer Data Generation via Destylization
Abstract:
OmniStyle2 introduces a novel approach to artistic style transfer by reframing it as a data problem. Our key insight is destylization, reversing style transfer by removing stylistic elements from artworks to recover natural, style-free counterparts. This yields DST-100K, a large-scale dataset that provides authentic supervision signals by aligning real artistic styles with their underlying content. To build DST-100K, we develop (1) DST, a text-guided destylization model that reconstructs stylefree content, and (2) DST-Filter, a multi-stage evaluation model that employs Chain-of-Thought reasoning to automatically discard low-quality pairs while ensuring content fidelity and style accuracy. Leveraging DST-100K, we train OmniStyle2, a simple feed-forward model based on FLUX.1-dev. Despite its simplicity, OmniStyle2 consistently surpasses state-of-the-art methods across both qualitative and quantitative benchmarks. Our results demonstrate that scalable data generation via destylization provides a reliable supervision paradigm, overcoming the fundamental challenge posed by the lack of ground-truth data in artistic style transfer.

Authors:Jeonghyun Noh, Wangsu Jeon, Jinsun Park
Title: Dual Interaction Network with Cross-Image Attention for Medical Image Segmentation
Abstract:
Medical image segmentation is a crucial method for assisting professionals in diagnosing various diseases through medical imaging. However, various factors such as noise, blurriness, and low contrast often hinder the accurate diagnosis of diseases. While numerous image enhancement techniques can mitigate these issues, they may also alter crucial information needed for accurate diagnosis in the original image. Conventional image fusion strategies, such as feature concatenation can address this challenge. However, they struggle to fully leverage the advantages of both original and enhanced images while suppressing the side effects of the enhancements. To overcome the problem, we propose a dual interactive fusion module (DIFM) that effectively exploits mutual complementary information from the original and enhanced images. DIFM employs cross-attention bidirectionally to simultaneously attend to corresponding spatial information across different images, subsequently refining the complementary features via global spatial attention. This interaction leverages low- to high-level features implicitly associated with diverse structural attributes like edges, blobs, and object shapes, resulting in enhanced features that embody important spatial characteristics. In addition, we introduce a multi-scale boundary loss based on gradient extraction to improve segmentation accuracy at object boundaries. Experimental results on the ACDC and Synapse datasets demonstrate the superiority of the proposed method quantitatively and qualitatively. Code available at: https://github.com/JJeong-Gari/DIN

Authors:Feng Wang, Zihao Yu
Title: Coefficients-Preserving Sampling for Reinforcement Learning with Flow Matching
Abstract:
Reinforcement Learning (RL) has recently emerged as a powerful technique for improving image and video generation in Diffusion and Flow Matching models, specifically for enhancing output quality and alignment with prompts. A critical step for applying online RL methods on Flow Matching is the introduction of stochasticity into the deterministic framework, commonly realized by Stochastic Differential Equation (SDE). Our investigation reveals a significant drawback to this approach: SDE-based sampling introduces pronounced noise artifacts in the generated images, which we found to be detrimental to the reward learning process. A rigorous theoretical analysis traces the origin of this noise to an excess of stochasticity injected during inference. To address this, we draw inspiration from Denoising Diffusion Implicit Models (DDIM) to reformulate the sampling process. Our proposed method, Coefficients-Preserving Sampling (CPS), eliminates these noise artifacts. This leads to more accurate reward modeling, ultimately enabling faster and more stable convergence for reinforcement learning-based optimizers like Flow-GRPO and Dance-GRPO. Code will be released at https://github.com/IamCreateAI/FlowCPS

Authors:Shuolong Chen, Xingxing Li, Liu Yuan
Title: eKalibr-Inertial: Continuous-Time Spatiotemporal Calibration for Event-Based Visual-Inertial Systems
Abstract:
The bioinspired event camera, distinguished by its exceptional temporal resolution, high dynamic range, and low power consumption, has been extensively studied in recent years for motion estimation, robotic perception, and object detection. In ego-motion estimation, the visual-inertial setup is commonly adopted due to complementary characteristics between sensors (e.g., scale perception and low drift). For optimal event-based visual-inertial fusion, accurate spatiotemporal (extrinsic and temporal) calibration is required. In this work, we present eKalibr-Inertial, an accurate spatiotemporal calibrator for event-based visual-inertial systems, utilizing the widely used circle grid board. Building upon the grid pattern recognition and tracking methods in eKalibr and eKalibr-Stereo, the proposed method starts with a rigorous and efficient initialization, where all parameters in the estimator would be accurately recovered. Subsequently, a continuous-time-based batch optimization is conducted to refine the initialized parameters toward better states. The results of extensive real-world experiments show that eKalibr-Inertial can achieve accurate event-based visual-inertial spatiotemporal calibration. The implementation of eKalibr-Inertial is open-sourced at (https://github.com/Unsigned-Long/eKalibr) to benefit the research community.

Authors:Tyler Ward, Abdullah Imran
Title: A Probabilistic Segment Anything Model for Ambiguity-Aware Medical Image Segmentation
Abstract:
Recent advances in promptable segmentation, such as the Segment Anything Model (SAM), have enabled flexible, high-quality mask generation across a wide range of visual domains. However, SAM and similar models remain fundamentally deterministic, producing a single segmentation per object per prompt, and fail to capture the inherent ambiguity present in many real-world tasks. This limitation is particularly troublesome in medical imaging, where multiple plausible segmentations may exist due to annotation uncertainty or inter-expert variability. In this paper, we introduce Probabilistic SAM, a probabilistic extension of SAM that models a distribution over segmentations conditioned on both the input image and prompt. By incorporating a latent variable space and training with a variational objective, our model learns to generate diverse and plausible segmentation masks reflecting the variability in human annotations. The architecture integrates a prior and posterior network into the SAM framework, allowing latent codes to modulate the prompt embeddings during inference. The latent space allows for efficient sampling during inference, enabling uncertainty-aware outputs with minimal overhead. We evaluate Probabilistic SAM on the public LIDC-IDRI lung nodule dataset and demonstrate its ability to produce diverse outputs that align with expert disagreement, outperforming existing probabilistic baselines on uncertainty-aware metrics. Our code is available at: https://github.com/tbwa233/Probabilistic-SAM/.

Authors:Zijian Chen, Wenjie Hua, Jinhao Li, Lirong Deng, Fan Du, Tingzhu Chen, Guangtao Zhai
Title: PictOBI-20k: Unveiling Large Multimodal Models in Visual Decipherment for Pictographic Oracle Bone Characters
Abstract:
Deciphering oracle bone characters (OBCs), the oldest attested form of written Chinese, has remained the ultimate, unwavering goal of scholars, offering an irreplaceable key to understanding humanity's early modes of production. Current decipherment methodologies of OBC are primarily constrained by the sporadic nature of archaeological excavations and the limited corpus of inscriptions. With the powerful visual perception capability of large multimodal models (LMMs), the potential of using LMMs for visually deciphering OBCs has increased. In this paper, we introduce PictOBI-20k, a dataset designed to evaluate LMMs on the visual decipherment tasks of pictographic OBCs. It includes 20k meticulously collected OBC and real object images, forming over 15k multi-choice questions. We also conduct subjective annotations to investigate the consistency of the reference point between humans and LMMs in visual reasoning. Experiments indicate that general LMMs possess preliminary visual decipherment skills, and LMMs are not effectively using visual information, while most of the time they are limited by language priors. We hope that our dataset can facilitate the evaluation and optimization of visual attention in future OBC-oriented LMMs. The code and dataset will be available at https://github.com/OBI-Future/PictOBI-20k.

Authors:Leo Ho, Yinghao Huang, Dafei Qin, Mingyi Shi, Wangpok Tse, Wei Liu, Junichi Yamagishi, Taku Komura
Title: InterAct: A Large-Scale Dataset of Dynamic, Expressive and Interactive Activities between Two People in Daily Scenarios
Abstract:
We address the problem of accurate capture of interactive behaviors between two people in daily scenarios. Most previous works either only consider one person or solely focus on conversational gestures of two people, assuming the body orientation and/or position of each actor are constant or barely change over each interaction. In contrast, we propose to simultaneously model two people's activities, and target objective-driven, dynamic, and semantically consistent interactions which often span longer duration and cover bigger space. To this end, we capture a new multi-modal dataset dubbed InterAct, which is composed of 241 motion sequences where two people perform a realistic and coherent scenario for one minute or longer over a complete interaction. For each sequence, two actors are assigned different roles and emotion labels, and collaborate to finish one task or conduct a common interaction activity. The audios, body motions, and facial expressions of both persons are captured. InterAct contains diverse and complex motions of individuals and interesting and relatively long-term interaction patterns barely seen before. We also demonstrate a simple yet effective diffusion-based method that estimates interactive face expressions and body motions of two people from speech inputs. Our method regresses the body motions in a hierarchical manner, and we also propose a novel fine-tuning mechanism to improve the lip accuracy of facial expressions. To facilitate further research, the data and code is made available at https://hku-cg.github.io/interact/ .

Authors:Gašper Podobnik, Tomaž Vrtovec
Title: MeshMetrics: A Precise Implementation of Distance-Based Image Segmentation Metrics
Abstract:
The surge of research in image segmentation has yielded remarkable performance gains but also exposed a reproducibility crisis. A major contributor is performance evaluation, where both selection and implementation of metrics play critical roles. While recent efforts have improved the former, the reliability of metric implementation has received far less attention. Pitfalls in distance-based metric implementation can lead to considerable discrepancies between common open-source tools, for instance, exceeding 100 mm for the Hausdorff distance and 30%pt for the normalized surface distance for the same pair of segmentations. To address these pitfalls, we introduce MeshMetrics, a mesh-based framework that provides a more precise computation of distance-based metrics than conventional grid-based approaches. Through theoretical analysis and empirical validation, we demonstrate that MeshMetrics achieves higher accuracy and precision than established tools, and is substantially less affected by discretization artifacts, such as distance quantization. We release MeshMetrics as an open-source Python package, available at https://github.com/gasperpodobnik/MeshMetrics.

Authors:Xiaomeng Zhu, Changwei Wang, Haozhe Wang, Xinyu Liu, Fangzhen Lin
Title: OOTSM: A Decoupled Linguistic Framework for Effective Scene Graph Anticipation
Abstract:
A scene graph is a structured represention of objects and their relationships in a scene. Scene Graph Anticipation (SGA) involves predicting future scene graphs from video clips, enabling applications as intelligent surveillance and human-machine collaboration. Existing SGA approaches primarily leverage visual cues, often struggling to integrate valuable commonsense knowledge, thereby limiting long-term prediction robustness. To explicitly leverage such commonsense knowledge, we propose a new approach to better understand the objects, concepts, and relationships in a scene graph. Our approach decouples the SGA task in two steps: first a scene graph capturing model is used to convert a video clip into a sequence of scene graphs, then a pure text-based model is used to predict scene graphs in future frames. Our focus in this work is on the second step, and we call it Linguistic Scene Graph Anticipation (LSGA) and believes it should have independent interest beyond the use in SGA discussed here. For LSGA, we introduce an Object-Oriented Two-Staged Method (OOTSM) where an Large Language Model (LLM) first forecasts object appearances and disappearances before generating detailed human-object relations. We conduct extensive experiments to evaluate OOTSM in two settings. For LSGA, we evaluate our fine-tuned open-sourced LLMs against zero-shot APIs (i.e., GPT-4o, GPT-4o-mini, and DeepSeek-V3) on a benchmark constructed from Action Genome annotations. For SGA, we combine our OOTSM with STTran++ from, and our experiments demonstrate effective state-of-the-art performance: short-term mean-Recall (@10) increases by 3.4% while long-term mean-Recall (@50) improves dramatically by 21.9%. Code is available at https://github.com/ZhuXMMM/OOTSM.

Authors:Jungin Park, Jiyoung Lee, Kwanghoon Sohn
Title: Language-guided Recursive Spatiotemporal Graph Modeling for Video Summarization
Abstract:
Video summarization aims to select keyframes that are visually diverse and can represent the whole story of a given video. Previous approaches have focused on global interlinkability between frames in a video by temporal modeling. However, fine-grained visual entities, such as objects, are also highly related to the main content of the video. Moreover, language-guided video summarization, which has recently been studied, requires a comprehensive linguistic understanding of complex real-world videos. To consider how all the objects are semantically related to each other, this paper regards video summarization as a language-guided spatiotemporal graph modeling problem. We present recursive spatiotemporal graph networks, called VideoGraph, which formulate the objects and frames as nodes of the spatial and temporal graphs, respectively. The nodes in each graph are connected and aggregated with graph edges, representing the semantic relationships between the nodes. To prevent the edges from being configured with visual similarity, we incorporate language queries derived from the video into the graph node representations, enabling them to contain semantic knowledge. In addition, we adopt a recursive strategy to refine initial graphs and correctly classify each frame node as a keyframe. In our experiments, VideoGraph achieves state-of-the-art performance on several benchmarks for generic and query-focused video summarization in both supervised and unsupervised manners. The code is available at https://github.com/park-jungin/videograph.

Authors:Changtao Miao, Yi Zhang, Man Luo, Weiwei Feng, Kaiyuan Zheng, Qi Chu, Tao Gong, Jianshu Li, Yunfeng Diao, Wei Zhou, Joey Tianyi Zhou, Xiaoshuai Hao
Title: MFFI: Multi-Dimensional Face Forgery Image Dataset for Real-World Scenarios
Abstract:
Rapid advances in Artificial Intelligence Generated Content (AIGC) have enabled increasingly sophisticated face forgeries, posing a significant threat to social security. However, current Deepfake detection methods are limited by constraints in existing datasets, which lack the diversity necessary in real-world scenarios. Specifically, these data sets fall short in four key areas: unknown of advanced forgery techniques, variability of facial scenes, richness of real data, and degradation of real-world propagation. To address these challenges, we propose the Multi-dimensional Face Forgery Image (\textbf{MFFI}) dataset, tailored for real-world scenarios. MFFI enhances realism based on four strategic dimensions: 1) Wider Forgery Methods; 2) Varied Facial Scenes; 3) Diversified Authentic Data; 4) Multi-level Degradation Operations. MFFI integrates $50$ different forgery methods and contains $1024K$ image samples. Benchmark evaluations show that MFFI outperforms existing public datasets in terms of scene complexity, cross-domain generalization capability, and detection difficulty gradients. These results validate the technical advance and practical utility of MFFI in simulating real-world conditions. The dataset and additional details are publicly available at {https://github.com/inclusionConf/MFFI}.

Authors:Ashen Rodrigo, Isuru Munasinghe, Asanka Perera
Title: Vision-Based Object Detection for UAV Solar Panel Inspection Using an Enhanced Defects Dataset
Abstract:
Timely and accurate detection of defects and contaminants in solar panels is critical for maintaining the efficiency and reliability of photovoltaic systems. This study presents a comprehensive evaluation of five state-of-the-art object detection models: YOLOv3, Faster R-CNN, RetinaNet, EfficientDet, and Swin Transformer, for identifying physical and electrical defects as well as surface contaminants such as dust, dirt, and bird droppings on solar panels. A custom dataset, annotated in the COCO format and specifically designed for solar panel defect and contamination detection, was developed alongside a user interface to train and evaluate the models. The performance of each model is assessed and compared based on mean Average Precision (mAP), precision, recall, and inference speed. The results demonstrate the trade-offs between detection accuracy and computational efficiency, highlighting the relative strengths and limitations of each model. These findings provide valuable guidance for selecting appropriate detection approaches in practical solar panel monitoring and maintenance scenarios. The dataset will be publicly available at https://github.com/IsuruMunasinghe98/solar-panel-inspection-dataset.

Authors:Gaspard Beaudouin, Minghan Li, Jaeyeon Kim, Sung-Hoon Yoon, Mengyu Wang
Title: Delta Velocity Rectified Flow for Text-to-Image Editing
Abstract:
We propose Delta Velocity Rectified Flow (DVRF), a novel inversion-free, path-aware editing framework within rectified flow models for text-to-image editing. DVRF is a distillation-based method that explicitly models the discrepancy between the source and target velocity fields in order to mitigate over-smoothing artifacts rampant in prior distillation sampling approaches. We further introduce a time-dependent shift term to push noisy latents closer to the target trajectory, enhancing the alignment with the target distribution. We theoretically demonstrate that when this shift is disabled, DVRF reduces to Delta Denoising Score, thereby bridging score-based diffusion optimization and velocity-based rectified-flow optimization. Moreover, when the shift term follows a linear schedule under rectified-flow dynamics, DVRF generalizes the Inversion-free method FlowEdit and provides a principled theoretical interpretation for it. Experimental results indicate that DVRF achieves superior editing quality, fidelity, and controllability while requiring no architectural modifications, making it efficient and broadly applicable to text-to-image editing tasks. Code is available at https://github.com/Harvard-AI-and-Robotics-Lab/DeltaVelocityRectifiedFlow.

Authors:Matteo Poggi, Fabio Tosi
Title: FlowSeek: Optical Flow Made Easier with Depth Foundation Models and Motion Bases
Abstract:
We present FlowSeek, a novel framework for optical flow requiring minimal hardware resources for training. FlowSeek marries the latest advances on the design space of optical flow networks with cutting-edge single-image depth foundation models and classical low-dimensional motion parametrization, implementing a compact, yet accurate architecture. FlowSeek is trained on a single consumer-grade GPU, a hardware budget about 8x lower compared to most recent methods, and still achieves superior cross-dataset generalization on Sintel Final and KITTI, with a relative improvement of 10 and 15% over the previous state-of-the-art SEA-RAFT, as well as on Spring and LayeredFlow datasets.

Authors:Zizun Li, Jianjun Zhou, Yifan Wang, Haoyu Guo, Wenzheng Chang, Yang Zhou, Haoyi Zhu, Junyi Chen, Chunhua Shen, Tong He
Title: WinT3R: Window-Based Streaming Reconstruction with Camera Token Pool
Abstract:
We present WinT3R, a feed-forward reconstruction model capable of online prediction of precise camera poses and high-quality point maps. Previous methods suffer from a trade-off between reconstruction quality and real-time performance. To address this, we first introduce a sliding window mechanism that ensures sufficient information exchange among frames within the window, thereby improving the quality of geometric predictions without large computation. In addition, we leverage a compact representation of cameras and maintain a global camera token pool, which enhances the reliability of camera pose estimation without sacrificing efficiency. These designs enable WinT3R to achieve state-of-the-art performance in terms of online reconstruction quality, camera pose estimation, and reconstruction speed, as validated by extensive experiments on diverse datasets. Code and model are publicly available at https://github.com/LiZizun/WinT3R.

Authors:Mohammad Saeid, Amir Salarpour, Pedram MohajerAnsari
Title: Enhancing 3D Point Cloud Classification with ModelNet-R and Point-SkipNet
Abstract:
The classification of 3D point clouds is crucial for applications such as autonomous driving, robotics, and augmented reality. However, the commonly used ModelNet40 dataset suffers from limitations such as inconsistent labeling, 2D data, size mismatches, and inadequate class differentiation, which hinder model performance. This paper introduces ModelNet-R, a meticulously refined version of ModelNet40 designed to address these issues and serve as a more reliable benchmark. Additionally, this paper proposes Point-SkipNet, a lightweight graph-based neural network that leverages efficient sampling, neighborhood grouping, and skip connections to achieve high classification accuracy with reduced computational overhead. Extensive experiments demonstrate that models trained in ModelNet-R exhibit significant performance improvements. Notably, Point-SkipNet achieves state-of-the-art accuracy on ModelNet-R with a substantially lower parameter count compared to contemporary models. This research highlights the crucial role of dataset quality in optimizing model efficiency for 3D point cloud classification. For more details, see the code at: https://github.com/m-saeid/ModeNetR_PointSkipNet.

Authors:Julia Dietlmeier, Oluwabukola Grace Adegboro, Vayangi Ganepola, Claudia Mazo, Noel E. O'Connor
Title: VLSM-Ensemble: Ensembling CLIP-based Vision-Language Models for Enhanced Medical Image Segmentation
Abstract:
Vision-language models and their adaptations to image segmentation tasks present enormous potential for producing highly accurate and interpretable results. However, implementations based on CLIP and BiomedCLIP are still lagging behind more sophisticated architectures such as CRIS. In this work, instead of focusing on text prompt engineering as is the norm, we attempt to narrow this gap by showing how to ensemble vision-language segmentation models (VLSMs) with a low-complexity CNN. By doing so, we achieve a significant Dice score improvement of 6.3% on the BKAI polyp dataset using the ensembled BiomedCLIPSeg, while other datasets exhibit gains ranging from 1% to 6%. Furthermore, we provide initial results on additional four radiology and non-radiology datasets. We conclude that ensembling works differently across these datasets (from outperforming to underperforming the CRIS model), indicating a topic for future investigation by the community. The code is available at https://github.com/juliadietlmeier/VLSM-Ensemble.

Authors:Yanzhi Tian, Zeming Liu, Zhengyang Liu, Chong Feng, Xin Li, Heyan Huang, Yuhang Guo
Title: PRIM: Towards Practical In-Image Multilingual Machine Translation
Abstract:
In-Image Machine Translation (IIMT) aims to translate images containing texts from one language to another. Current research of end-to-end IIMT mainly conducts on synthetic data, with simple background, single font, fixed text position, and bilingual translation, which can not fully reflect real world, causing a significant gap between the research and practical conditions. To facilitate research of IIMT in real-world scenarios, we explore Practical In-Image Multilingual Machine Translation (IIMMT). In order to convince the lack of publicly available data, we annotate the PRIM dataset, which contains real-world captured one-line text images with complex background, various fonts, diverse text positions, and supports multilingual translation directions. We propose an end-to-end model VisTrans to handle the challenge of practical conditions in PRIM, which processes visual text and background information in the image separately, ensuring the capability of multilingual translation while improving the visual quality. Experimental results indicate the VisTrans achieves a better translation quality and visual effect compared to other models. The code and dataset are available at: https://github.com/BITHLP/PRIM.

Authors:Svetlana Pavlitska, Haixi Fan, Konstantin Ditschuneit, J. Marius Zöllner
Title: Robust Experts: the Effect of Adversarial Training on CNNs with Sparse Mixture-of-Experts Layers
Abstract:
Robustifying convolutional neural networks (CNNs) against adversarial attacks remains challenging and often requires resource-intensive countermeasures. We explore the use of sparse mixture-of-experts (MoE) layers to improve robustness by replacing selected residual blocks or convolutional layers, thereby increasing model capacity without additional inference cost. On ResNet architectures trained on CIFAR-100, we find that inserting a single MoE layer in the deeper stages leads to consistent improvements in robustness under PGD and AutoPGD attacks when combined with adversarial training. Furthermore, we discover that when switch loss is used for balancing, it causes routing to collapse onto a small set of overused experts, thereby concentrating adversarial training on these paths and inadvertently making them more robust. As a result, some individual experts outperform the gated MoE model in robustness, suggesting that robust subpaths emerge through specialization. Our code is available at https://github.com/KASTEL-MobilityLab/robust-sparse-moes.

Authors:Luca Müller, Hassan Ali, Philipp Allgeuer, Lukáš Gajdošech, Stefan Wermter
Title: Pointing-Guided Target Estimation via Transformer-Based Attention
Abstract:
Deictic gestures, like pointing, are a fundamental form of non-verbal communication, enabling humans to direct attention to specific objects or locations. This capability is essential in Human-Robot Interaction (HRI), where robots should be able to predict human intent and anticipate appropriate responses. In this work, we propose the Multi-Modality Inter-TransFormer (MM-ITF), a modular architecture to predict objects in a controlled tabletop scenario with the NICOL robot, where humans indicate targets through natural pointing gestures. Leveraging inter-modality attention, MM-ITF maps 2D pointing gestures to object locations, assigns a likelihood score to each, and identifies the most likely target. Our results demonstrate that the method can accurately predict the intended object using monocular RGB data, thus enabling intuitive and accessible human-robot collaboration. To evaluate the performance, we introduce a patch confusion matrix, providing insights into the model's predictions across candidate object locations. Code available at: https://github.com/lucamuellercode/MMITF.

Authors:Hulin Li, Qiliang Ren, Jun Li, Hanbing Wei, Zheng Liu, Linfang Fan
Title: A biologically inspired separable learning vision model for real-time traffic object perception in Dark
Abstract:
Fast and accurate object perception in low-light traffic scenes has attracted increasing attention. However, due to severe illumination degradation and the lack of reliable visual cues, existing perception models and methods struggle to quickly adapt to and accurately predict in low-light environments. Moreover, there is the absence of available large-scale benchmark specifically focused on low-light traffic scenes. To bridge this gap, we introduce a physically grounded illumination degradation method tailored to real-world low-light settings and construct Dark-traffic, the largest densely annotated dataset to date for low-light traffic scenes, supporting object detection, instance segmentation, and optical flow estimation. We further propose the Separable Learning Vision Model (SLVM), a biologically inspired framework designed to enhance perception under adverse lighting. SLVM integrates four key components: a light-adaptive pupillary mechanism for illumination-sensitive feature extraction, a feature-level separable learning strategy for efficient representation, task-specific decoupled branches for multi-task separable learning, and a spatial misalignment-aware fusion module for precise multi-feature alignment. Extensive experiments demonstrate that SLVM achieves state-of-the-art performance with reduced computational overhead. Notably, it outperforms RT-DETR by 11.2 percentage points in detection, YOLOv12 by 6.1 percentage points in instance segmentation, and reduces endpoint error (EPE) of baseline by 12.37% on Dark-traffic. On the LIS benchmark, the end-to-end trained SLVM surpasses Swin Transformer+EnlightenGAN and ConvNeXt-T+EnlightenGAN by an average of 11 percentage points across key metrics, and exceeds Mask RCNN (with light enhancement) by 3.1 percentage points. The Dark-traffic dataset and complete code is released at https://github.com/alanli1997/slvm.

Authors:Hongyi Jing, Jiafu Chen, Chen Rao, Ziqiang Dang, Jiajie Teng, Tianyi Chu, Juncheng Mo, Shuo Fang, Huaizhong Lin, Rui Lv, Chenguang Ma, Lei Zhao
Title: SparkUI-Parser: Enhancing GUI Perception with Robust Grounding and Parsing
Abstract:
The existing Multimodal Large Language Models (MLLMs) for GUI perception have made great progress. However, the following challenges still exist in prior methods: 1) They model discrete coordinates based on text autoregressive mechanism, which results in lower grounding accuracy and slower inference speed. 2) They can only locate predefined sets of elements and are not capable of parsing the entire interface, which hampers the broad application and support for downstream tasks. To address the above issues, we propose SparkUI-Parser, a novel end-to-end framework where higher localization precision and fine-grained parsing capability of the entire interface are simultaneously achieved. Specifically, instead of using probability-based discrete modeling, we perform continuous modeling of coordinates based on a pre-trained Multimodal Large Language Model (MLLM) with an additional token router and coordinate decoder. This effectively mitigates the limitations inherent in the discrete output characteristics and the token-by-token generation process of MLLMs, consequently boosting both the accuracy and the inference speed. To further enhance robustness, a rejection mechanism based on a modified Hungarian matching algorithm is introduced, which empowers the model to identify and reject non-existent elements, thereby reducing false positives. Moreover, we present ScreenParse, a rigorously constructed benchmark to systematically assess structural perception capabilities of GUI models across diverse scenarios. Extensive experiments demonstrate that our approach consistently outperforms SOTA methods on ScreenSpot, ScreenSpot-v2, CAGUI-Grounding and ScreenParse benchmarks. The resources are available at https://github.com/antgroup/SparkUI-Parser.

Authors:Ming Dai, Wenxuan Cheng, Jiedong Zhuang, Jiang-jiang Liu, Hongshen Zhao, Zhenhua Feng, Wankou Yang
Title: PropVG: End-to-End Proposal-Driven Visual Grounding with Multi-Granularity Discrimination
Abstract:
Recent advances in visual grounding have largely shifted away from traditional proposal-based two-stage frameworks due to their inefficiency and high computational complexity, favoring end-to-end direct reference paradigms. However, these methods rely exclusively on the referred target for supervision, overlooking the potential benefits of prominent prospective targets. Moreover, existing approaches often fail to incorporate multi-granularity discrimination, which is crucial for robust object identification in complex scenarios. To address these limitations, we propose PropVG, an end-to-end proposal-based framework that, to the best of our knowledge, is the first to seamlessly integrate foreground object proposal generation with referential object comprehension without requiring additional detectors. Furthermore, we introduce a Contrastive-based Refer Scoring (CRS) module, which employs contrastive learning at both sentence and word levels to enhance the capability in understanding and distinguishing referred objects. Additionally, we design a Multi-granularity Target Discrimination (MTD) module that fuses object- and semantic-level information to improve the recognition of absent targets. Extensive experiments on gRefCOCO (GREC/GRES), Ref-ZOM, R-RefCOCO, and RefCOCO (REC/RES) benchmarks demonstrate the effectiveness of PropVG. The codes and models are available at https://github.com/Dmmm1997/PropVG.

Authors:Svetlana Pavlitska, Beyza Keskin, Alwin Faßbender, Christian Hubschneider, J. Marius Zöllner
Title: Extracting Uncertainty Estimates from Mixtures of Experts for Semantic Segmentation
Abstract:
Estimating accurate and well-calibrated predictive uncertainty is important for enhancing the reliability of computer vision models, especially in safety-critical applications like traffic scene perception. While ensemble methods are commonly used to quantify uncertainty by combining multiple models, a mixture of experts (MoE) offers an efficient alternative by leveraging a gating network to dynamically weight expert predictions based on the input. Building on the promising use of MoEs for semantic segmentation in our previous works, we show that well-calibrated predictive uncertainty estimates can be extracted from MoEs without architectural modifications. We investigate three methods to extract predictive uncertainty estimates: predictive entropy, mutual information, and expert variance. We evaluate these methods for an MoE with two experts trained on a semantical split of the A2D2 dataset. Our results show that MoEs yield more reliable uncertainty estimates than ensembles in terms of conditional correctness metrics under out-of-distribution (OOD) data. Additionally, we evaluate routing uncertainty computed via gate entropy and find that simple gating mechanisms lead to better calibration of routing uncertainty estimates than more complex classwise gates. Finally, our experiments on the Cityscapes dataset suggest that increasing the number of experts can further enhance uncertainty calibration. Our code is available at https://github.com/KASTEL-MobilityLab/mixtures-of-experts/.

Authors:Kaname Yokoyama, Chihiro Nakatani, Norimichi Ukita
Title: Dynamic Group Detection using VLM-augmented Temporal Groupness Graph
Abstract:
This paper proposes dynamic human group detection in videos. For detecting complex groups, not only the local appearance features of in-group members but also the global context of the scene are important. Such local and global appearance features in each frame are extracted using a Vision-Language Model (VLM) augmented for group detection in our method. For further improvement, the group structure should be consistent over time. While previous methods are stabilized on the assumption that groups are not changed in a video, our method detects dynamically changing groups by global optimization using a graph with all frames' groupness probabilities estimated by our groupness-augmented CLIP features. Our experimental results demonstrate that our method outperforms state-of-the-art group detection methods on public datasets. Code: https://github.com/irajisamurai/VLM-GroupDetection.git

Authors:Mustafa Munir, Alex Zhang, Radu Marculescu
Title: VCMamba: Bridging Convolutions with Multi-Directional Mamba for Efficient Visual Representation
Abstract:
Recent advances in Vision Transformers (ViTs) and State Space Models (SSMs) have challenged the dominance of Convolutional Neural Networks (CNNs) in computer vision. ViTs excel at capturing global context, and SSMs like Mamba offer linear complexity for long sequences, yet they do not capture fine-grained local features as effectively as CNNs. Conversely, CNNs possess strong inductive biases for local features but lack the global reasoning capabilities of transformers and Mamba. To bridge this gap, we introduce \textit{VCMamba}, a novel vision backbone that integrates the strengths of CNNs and multi-directional Mamba SSMs. VCMamba employs a convolutional stem and a hierarchical structure with convolutional blocks in its early stages to extract rich local features. These convolutional blocks are then processed by later stages incorporating multi-directional Mamba blocks designed to efficiently model long-range dependencies and global context. This hybrid design allows for superior feature representation while maintaining linear complexity with respect to image resolution. We demonstrate VCMamba's effectiveness through extensive experiments on ImageNet-1K classification and ADE20K semantic segmentation. Our VCMamba-B achieves 82.6% top-1 accuracy on ImageNet-1K, surpassing PlainMamba-L3 by 0.3% with 37% fewer parameters, and outperforming Vision GNN-B by 0.3% with 64% fewer parameters. Furthermore, VCMamba-B obtains 47.1 mIoU on ADE20K, exceeding EfficientFormer-L7 by 2.0 mIoU while utilizing 62% fewer parameters. Code is available at https://github.com/Wertyuui345/VCMamba.

Authors:Jingyi Lu, Kai Han
Title: Inpaint4Drag: Repurposing Inpainting Models for Drag-Based Image Editing via Bidirectional Warping
Abstract:
Drag-based image editing has emerged as a powerful paradigm for intuitive image manipulation. However, existing approaches predominantly rely on manipulating the latent space of generative models, leading to limited precision, delayed feedback, and model-specific constraints. Accordingly, we present Inpaint4Drag, a novel framework that decomposes drag-based editing into pixel-space bidirectional warping and image inpainting. Inspired by elastic object deformation in the physical world, we treat image regions as deformable materials that maintain natural shape under user manipulation. Our method achieves real-time warping previews (0.01s) and efficient inpainting (0.3s) at 512x512 resolution, significantly improving the interaction experience compared to existing methods that require minutes per edit. By transforming drag inputs directly into standard inpainting formats, our approach serves as a universal adapter for any inpainting model without architecture modification, automatically inheriting all future improvements in inpainting technology. Extensive experiments demonstrate that our method achieves superior visual quality and precise control while maintaining real-time performance. Project page: https://visual-ai.github.io/inpaint4drag/

Authors:Jun-Kun Chen, Aayush Bansal, Minh Phuoc Vo, Yu-Xiong Wang
Title: Virtual Fitting Room: Generating Arbitrarily Long Videos of Virtual Try-On from a Single Image -- Technical Preview
Abstract:
We introduce the Virtual Fitting Room (VFR), a novel video generative model that produces arbitrarily long virtual try-on videos. Our VFR models long video generation tasks as an auto-regressive, segment-by-segment generation process, eliminating the need for resource-intensive generation and lengthy video data, while providing the flexibility to generate videos of arbitrary length. The key challenges of this task are twofold: ensuring local smoothness between adjacent segments and maintaining global temporal consistency across different segments. To address these challenges, we propose our VFR framework, which ensures smoothness through a prefix video condition and enforces consistency with the anchor video -- a 360-degree video that comprehensively captures the human's wholebody appearance. Our VFR generates minute-scale virtual try-on videos with both local smoothness and global temporal consistency under various motions, making it a pioneering work in long virtual try-on video generation.

Authors:Zehong Yan, Peng Qi, Wynne Hsu, Mong Li Lee
Title: TRUST-VL: An Explainable News Assistant for General Multimodal Misinformation Detection
Abstract:
Multimodal misinformation, encompassing textual, visual, and cross-modal distortions, poses an increasing societal threat that is amplified by generative AI. Existing methods typically focus on a single type of distortion and struggle to generalize to unseen scenarios. In this work, we observe that different distortion types share common reasoning capabilities while also requiring task-specific skills. We hypothesize that joint training across distortion types facilitates knowledge sharing and enhances the model's ability to generalize. To this end, we introduce TRUST-VL, a unified and explainable vision-language model for general multimodal misinformation detection. TRUST-VL incorporates a novel Question-Aware Visual Amplifier module, designed to extract task-specific visual features. To support training, we also construct TRUST-Instruct, a large-scale instruction dataset containing 198K samples featuring structured reasoning chains aligned with human fact-checking workflows. Extensive experiments on both in-domain and zero-shot benchmarks demonstrate that TRUST-VL achieves state-of-the-art performance, while also offering strong generalization and interpretability.

Authors:Xin Lin, Xian Ge, Dizhe Zhang, Zhaoliang Wan, Xianshun Wang, Xiangtai Li, Wenjie Jiang, Bo Du, Dacheng Tao, Ming-Hsuan Yang, Lu Qi
Title: One Flight Over the Gap: A Survey from Perspective to Panoramic Vision
Abstract:
Driven by the demand for spatial intelligence and holistic scene perception, omnidirectional images (ODIs), which provide a complete 360\textdegree{} field of view, are receiving growing attention across diverse applications such as virtual reality, autonomous driving, and embodied robotics. Despite their unique characteristics, ODIs exhibit remarkable differences from perspective images in geometric projection, spatial distribution, and boundary continuity, making it challenging for direct domain adaption from perspective methods. This survey reviews recent panoramic vision techniques with a particular emphasis on the perspective-to-panorama adaptation. We first revisit the panoramic imaging pipeline and projection methods to build the prior knowledge required for analyzing the structural disparities. Then, we summarize three challenges of domain adaptation: severe geometric distortions near the poles, non-uniform sampling in Equirectangular Projection (ERP), and periodic boundary continuity. Building on this, we cover 20+ representative tasks drawn from more than 300 research papers in two dimensions. On one hand, we present a cross-method analysis of representative strategies for addressing panoramic specific challenges across different tasks. On the other hand, we conduct a cross-task comparison and classify panoramic vision into four major categories: visual quality enhancement and assessment, visual understanding, multimodal understanding, and visual generation. In addition, we discuss open challenges and future directions in data, models, and applications that will drive the advancement of panoramic vision research. We hope that our work can provide new insight and forward looking perspectives to advance the development of panoramic vision technologies. Our project page is https://insta360-research-team.github.io/Survey-of-Panorama

Authors:Sabbir Mollah, Rohit Gupta, Sirnam Swetha, Qingyang Liu, Ahnaf Munir, Mubarak Shah
Title: The Telephone Game: Evaluating Semantic Drift in Unified Models
Abstract:
Employing a single, unified model (UM) for both visual understanding (image-to-text: I2T) and visual generation (text-to-image: T2I) has opened a new direction in Visual Language Model (VLM) research. While UMs can also support broader unimodal tasks (e.g., text-to-text, image-to-image), we focus on the core cross-modal pair T2I and I2T. Existing evaluation benchmarks consider these capabilities in isolation: FID and GenEval for T2I, and benchmarks such as MME, MMBench for I2T. These isolated single-pass metrics do not reveal cross-consistency: whether a model that "understands" a concept can also "render" it, nor whether semantic meaning is preserved when cycling between image and text modalities. To address this, we introduce the Semantic Drift Protocol (SDP) for Unified Models, a cyclic evaluation protocol that alternates I2T and T2I over multiple generations to quantify semantic drift. We propose two metrics: (i) Mean Cumulative Drift (MCD), an embedding-based measure of overall semantic drift; and (ii) Multi-Generation GenEval (MGG), an object-level compliance score extending GenEval. To assess generalization beyond COCO dataset, which is widely used in training; we create a new benchmark Nocaps+Docci400, sampled from NoCaps and DOCCI and evaluated on seven recent models. SDP reveals substantial variation in cross-modal stability: some models like BAGEL maintain semantic meaning over many alternations, whereas others like VILA-U drift quickly despite strong single-pass scores. Our results highlight SDP as a necessary complement to standard I2T and T2I evaluations. Code is available at https://github.com/mollahsabbir/Semantic-Drift-in-Unified-Models

Authors:Hyunsoo Cha, Byungjun Kim, Hanbyul Joo
Title: Durian: Dual Reference Image-Guided Portrait Animation with Attribute Transfer
Abstract:
We present Durian, the first method for generating portrait animation videos with cross-identity attribute transfer from one or more reference images to a target portrait. Training such models typically requires attribute pairs of the same individual, which are rarely available at scale. To address this challenge, we propose a self-reconstruction formulation that leverages ordinary portrait videos to learn attribute transfer without explicit paired data. Two frames from the same video act as a pseudo pair: one serves as an attribute reference and the other as an identity reference. To enable this self-reconstruction training, we introduce a Dual ReferenceNet that processes the two references separately and then fuses their features via spatial attention within a diffusion model. To make sure each reference functions as a specialized stream for either identity or attribute information, we apply complementary masking to the reference images. Together, these two components guide the model to reconstruct the original video, naturally learning cross-identity attribute transfer. To bridge the gap between self-reconstruction training and cross-identity inference, we introduce a mask expansion strategy and augmentation schemes, enabling robust transfer of attributes with varying spatial extent and misalignment. Durian achieves state-of-the-art performance on portrait animation with attribute transfer. Moreover, its dual reference design uniquely supports multi-attribute composition and smooth attribute interpolation within a single generation pass, enabling highly flexible and controllable synthesis.

Authors:Zanwei Zhou, Taoran Yi, Jiemin Fang, Chen Yang, Lingxi Xie, Xinggang Wang, Wei Shen, Qi Tian
Title: Few-step Flow for 3D Generation via Marginal-Data Transport Distillation
Abstract:
Flow-based 3D generation models typically require dozens of sampling steps during inference. Though few-step distillation methods, particularly Consistency Models (CMs), have achieved substantial advancements in accelerating 2D diffusion models, they remain under-explored for more complex 3D generation tasks. In this study, we propose a novel framework, MDT-dist, for few-step 3D flow distillation. Our approach is built upon a primary objective: distilling the pretrained model to learn the Marginal-Data Transport. Directly learning this objective needs to integrate the velocity fields, while this integral is intractable to be implemented. Therefore, we propose two optimizable objectives, Velocity Matching (VM) and Velocity Distillation (VD), to equivalently convert the optimization target from the transport level to the velocity and the distribution level respectively. Velocity Matching (VM) learns to stably match the velocity fields between the student and the teacher, but inevitably provides biased gradient estimates. Velocity Distillation (VD) further enhances the optimization process by leveraging the learned velocity fields to perform probability density distillation. When evaluated on the pioneer 3D generation framework TRELLIS, our method reduces sampling steps of each flow transformer from 25 to 1 or 2, achieving 0.68s (1 step x 2) and 0.94s (2 steps x 2) latency with 9.0x and 6.5x speedup on A800, while preserving high visual and geometric fidelity. Extensive experiments demonstrate that our method significantly outperforms existing CM distillation methods, and enables TRELLIS to achieve superior performance in few-step 3D generation.

Authors:Zidong Wang, Yiyuan Zhang, Xiaoyu Yue, Xiangyu Yue, Yangguang Li, Wanli Ouyang, Lei Bai
Title: Transition Models: Rethinking the Generative Learning Objective
Abstract:
A fundamental dilemma in generative modeling persists: iterative diffusion models achieve outstanding fidelity, but at a significant computational cost, while efficient few-step alternatives are constrained by a hard quality ceiling. This conflict between generation steps and output quality arises from restrictive training objectives that focus exclusively on either infinitesimal dynamics (PF-ODEs) or direct endpoint prediction. We address this challenge by introducing an exact, continuous-time dynamics equation that analytically defines state transitions across any finite time interval. This leads to a novel generative paradigm, Transition Models (TiM), which adapt to arbitrary-step transitions, seamlessly traversing the generative trajectory from single leaps to fine-grained refinement with more steps. Despite having only 865M parameters, TiM achieves state-of-the-art performance, surpassing leading models such as SD3.5 (8B parameters) and FLUX.1 (12B parameters) across all evaluated step counts. Importantly, unlike previous few-step generators, TiM demonstrates monotonic quality improvement as the sampling budget increases. Additionally, when employing our native-resolution strategy, TiM delivers exceptional fidelity at resolutions up to 4096x4096.

Authors:Jimin Xu, Bosheng Qin, Tao Jin, Zhou Zhao, Zhenhui Ye, Jun Yu, Fei Wu
Title: SSGaussian: Semantic-Aware and Structure-Preserving 3D Style Transfer
Abstract:
Recent advancements in neural representations, such as Neural Radiance Fields and 3D Gaussian Splatting, have increased interest in applying style transfer to 3D scenes. While existing methods can transfer style patterns onto 3D-consistent neural representations, they struggle to effectively extract and transfer high-level style semantics from the reference style image. Additionally, the stylized results often lack structural clarity and separation, making it difficult to distinguish between different instances or objects within the 3D scene. To address these limitations, we propose a novel 3D style transfer pipeline that effectively integrates prior knowledge from pretrained 2D diffusion models. Our pipeline consists of two key stages: First, we leverage diffusion priors to generate stylized renderings of key viewpoints. Then, we transfer the stylized key views onto the 3D representation. This process incorporates two innovative designs. The first is cross-view style alignment, which inserts cross-view attention into the last upsampling block of the UNet, allowing feature interactions across multiple key views. This ensures that the diffusion model generates stylized key views that maintain both style fidelity and instance-level consistency. The second is instance-level style transfer, which effectively leverages instance-level consistency across stylized key views and transfers it onto the 3D representation. This results in a more structured, visually coherent, and artistically enriched stylization. Extensive qualitative and quantitative experiments demonstrate that our 3D style transfer pipeline significantly outperforms state-of-the-art methods across a wide range of scenes, from forward-facing to challenging 360-degree environments. Visit our project page https://jm-xu.github.io/SSGaussian for immersive visualization.

Authors:JiYuan Wang, Chunyu Lin, Lei Sun, Rongying Liu, Lang Nie, Mingxing Li, Kang Liao, Xiangxiang Chu, Yao Zhao
Title: From Editor to Dense Geometry Estimator
Abstract:
Leveraging visual priors from pre-trained text-to-image (T2I) generative models has shown success in dense prediction. However, dense prediction is inherently an image-to-image task, suggesting that image editing models, rather than T2I generative models, may be a more suitable foundation for fine-tuning. Motivated by this, we conduct a systematic analysis of the fine-tuning behaviors of both editors and generators for dense geometry estimation. Our findings show that editing models possess inherent structural priors, which enable them to converge more stably by ``refining" their innate features, and ultimately achieve higher performance than their generative counterparts. Based on these findings, we introduce \textbf{FE2E}, a framework that pioneeringly adapts an advanced editing model based on Diffusion Transformer (DiT) architecture for dense geometry prediction. Specifically, to tailor the editor for this deterministic task, we reformulate the editor's original flow matching loss into the ``consistent velocity" training objective. And we use logarithmic quantization to resolve the precision conflict between the editor's native BFloat16 format and the high precision demand of our tasks. Additionally, we leverage the DiT's global attention for a cost-free joint estimation of depth and normals in a single forward pass, enabling their supervisory signals to mutually enhance each other. Without scaling up the training data, FE2E achieves impressive performance improvements in zero-shot monocular depth and normal estimation across multiple datasets. Notably, it achieves over 35\% performance gains on the ETH3D dataset and outperforms the DepthAnything series, which is trained on 100$\times$ data. The project page can be accessed \href{https://amap-ml.github.io/FE2E/}{here}.

Authors:Silvio Chito, Paolo Rabino, Tatiana Tommasi
Title: Efficient Odd-One-Out Anomaly Detection
Abstract:
The recently introduced odd-one-out anomaly detection task involves identifying the odd-looking instances within a multi-object scene. This problem presents several challenges for modern deep learning models, demanding spatial reasoning across multiple views and relational reasoning to understand context and generalize across varying object categories and layouts. We argue that these challenges must be addressed with efficiency in mind. To this end, we propose a DINO-based model that reduces the number of parameters by one third and shortens training time by a factor of three compared to the current state-of-the-art, while maintaining competitive performance. Our experimental evaluation also introduces a Multimodal Large Language Model baseline, providing insights into its current limitations in structured visual reasoning tasks. The project page can be found at https://silviochito.github.io/EfficientOddOneOut/

Authors:Safouane El Ghazouali, Umberto Michelucci
Title: VisioFirm: Cross-Platform AI-assisted Annotation Tool for Computer Vision
Abstract:
AI models rely on annotated data to learn pattern and perform prediction. Annotation is usually a labor-intensive step that require associating labels ranging from a simple classification label to more complex tasks such as object detection, oriented bounding box estimation, and instance segmentation. Traditional tools often require extensive manual input, limiting scalability for large datasets. To address this, we introduce VisioFirm, an open-source web application designed to streamline image labeling through AI-assisted automation. VisioFirm integrates state-of-the-art foundation models into an interface with a filtering pipeline to reduce human-in-the-loop efforts. This hybrid approach employs CLIP combined with pre-trained detectors like Ultralytics models for common classes and zero-shot models such as Grounding DINO for custom labels, generating initial annotations with low-confidence thresholding to maximize recall. Through this framework, when tested on COCO-type of classes, initial prediction have been proven to be mostly correct though the users can refine these via interactive tools supporting bounding boxes, oriented bounding boxes, and polygons. Additionally, VisioFirm has on-the-fly segmentation powered by Segment Anything accelerated through WebGPU for browser-side efficiency. The tool supports multiple export formats (YOLO, COCO, Pascal VOC, CSV) and operates offline after model caching, enhancing accessibility. VisioFirm demonstrates up to 90\% reduction in manual effort through benchmarks on diverse datasets, while maintaining high annotation accuracy via clustering of connected CLIP-based disambiguate components and IoU-graph for redundant detection suppression. VisioFirm can be accessed from \href{https://github.com/OschAI/VisioFirm}{https://github.com/OschAI/VisioFirm}.

Authors:Orlando Castaneda, Kevin So-Tang, Kshitij Gurung
Title: Revisiting Simple Baselines for In-The-Wild Deepfake Detection
Abstract:
The widespread adoption of synthetic media demands accessible deepfake detectors and realistic benchmarks. While most existing research evaluates deepfake detectors on highly controlled datasets, we focus on the recently released "in-the-wild" benchmark, Deepfake-Eval-2024. Initial reporting on Deepfake-Eval-2024 showed that three finetuned open-source models achieve accuracies between 61% and 69%, significantly lagging behind the leading commercial deepfake detector with 82% accuracy. Our work revisits one of these baseline approaches, originally introduced by Ojha et al., which adapts standard pretrained vision backbones to produce generalizable deepfake detectors. We demonstrate that with better-tuned hyperparameters, this simple approach actually yields much higher performance -- 81% accuracy on Deepfake-Eval-2024 -- surpassing the previously reported accuracy of this baseline approach by 18% and competing with commercial deepfake detectors. We discuss tradeoffs in accuracy, computational costs, and interpretability, focusing on how practical these deepfake detectors might be when deployed in real-world settings. Our code can be found at https://github.com/Deepfake-Detection-KKO/deepfake-detection.

Authors:Quang-Huy Che, Duc-Khai Lam
Title: TriLiteNet: Lightweight Model for Multi-Task Visual Perception
Abstract:
Efficient perception models are essential for Advanced Driver Assistance Systems (ADAS), as these applications require rapid processing and response to ensure safety and effectiveness in real-world environments. To address the real-time execution needs of such perception models, this study introduces the TriLiteNet model. This model can simultaneously manage multiple tasks related to panoramic driving perception. TriLiteNet is designed to optimize performance while maintaining low computational costs. Experimental results on the BDD100k dataset demonstrate that the model achieves competitive performance across three key tasks: vehicle detection, drivable area segmentation, and lane line segmentation. Specifically, the TriLiteNet_{base} demonstrated a recall of 85.6% for vehicle detection, a mean Intersection over Union (mIoU) of 92.4% for drivable area segmentation, and an Acc of 82.3% for lane line segmentation with only 2.35M parameters and a computational cost of 7.72 GFLOPs. Our proposed model includes a tiny configuration with just 0.14M parameters, which provides a multi-task solution with minimal computational demand. Evaluated for latency and power consumption on embedded devices, TriLiteNet in both configurations shows low latency and reasonable power during inference. By balancing performance, computational efficiency, and scalability, TriLiteNet offers a practical and deployable solution for real-world autonomous driving applications. Code is available at https://github.com/chequanghuy/TriLiteNet.

Authors:Ashish Tiwari, Satyam Bhardwaj, Yash Bachwana, Parag Sarvoday Sahu, T. M. Feroz Ali, Bhargava Chintalapati, Shanmuganathan Raman
Title: TensoIS: A Step Towards Feed-Forward Tensorial Inverse Subsurface Scattering for Perlin Distributed Heterogeneous Media
Abstract:
Estimating scattering parameters of heterogeneous media from images is a severely under-constrained and challenging problem. Most of the existing approaches model BSSRDF either through an analysis-by-synthesis approach, approximating complex path integrals, or using differentiable volume rendering techniques to account for heterogeneity. However, only a few studies have applied learning-based methods to estimate subsurface scattering parameters, but they assume homogeneous media. Interestingly, no specific distribution is known to us that can explicitly model the heterogeneous scattering parameters in the real world. Notably, procedural noise models such as Perlin and Fractal Perlin noise have been effective in representing intricate heterogeneities of natural, organic, and inorganic surfaces. Leveraging this, we first create HeteroSynth, a synthetic dataset comprising photorealistic images of heterogeneous media whose scattering parameters are modeled using Fractal Perlin noise. Furthermore, we propose Tensorial Inverse Scattering (TensoIS), a learning-based feed-forward framework to estimate these Perlin-distributed heterogeneous scattering parameters from sparse multi-view image observations. Instead of directly predicting the 3D scattering parameter volume, TensoIS uses learnable low-rank tensor components to represent the scattering volume. We evaluate TensoIS on unseen heterogeneous variations over shapes from the HeteroSynth test set, smoke and cloud geometries obtained from open-source realistic volumetric simulations, and some real-world samples to establish its effectiveness for inverse scattering. Overall, this study is an attempt to explore Perlin noise distribution, given the lack of any such well-defined distribution in literature, to potentially model real-world heterogeneous scattering in a feed-forward manner.

Authors:Shiku Kaito, Shinnosuke Matsuo, Daiki Suehiro, Ryoma Bise
Title: Learning from Majority Label: A Novel Problem in Multi-class Multiple-Instance Learning
Abstract:
The paper proposes a novel multi-class Multiple-Instance Learning (MIL) problem called Learning from Majority Label (LML). In LML, the majority class of instances in a bag is assigned as the bag-level label. The goal of LML is to train a classification model that estimates the class of each instance using the majority label. This problem is valuable in a variety of applications, including pathology image segmentation, political voting prediction, customer sentiment analysis, and environmental monitoring. To solve LML, we propose a Counting Network trained to produce bag-level majority labels, estimated by counting the number of instances in each class. Furthermore, analysis experiments on the characteristics of LML revealed that bags with a high proportion of the majority class facilitate learning. Based on this result, we developed a Majority Proportion Enhancement Module (MPEM) that increases the proportion of the majority class by removing minority class instances within the bags. Experiments demonstrate the superiority of the proposed method on four datasets compared to conventional MIL methods. Moreover, ablation studies confirmed the effectiveness of each module. The code is available at \href{https://github.com/Shiku-Kaito/Learning-from-Majority-Label-A-Novel-Problem-in-Multi-class-Multiple-Instance-Learning}{here}.

Authors:Yijun Zhou, Yikui Zhai, Zilu Ying, Tingfeng Xian, Wenlve Zhou, Zhiheng Zhou, Xiaolin Tian, Xudong Jia, Hongsheng Zhang, C. L. Philip Chen
Title: Multimodal Feature Fusion Network with Text Difference Enhancement for Remote Sensing Change Detection
Abstract:
Although deep learning has advanced remote sensing change detection (RSCD), most methods rely solely on image modality, limiting feature representation, change pattern modeling, and generalization especially under illumination and noise disturbances. To address this, we propose MMChange, a multimodal RSCD method that combines image and text modalities to enhance accuracy and robustness. An Image Feature Refinement (IFR) module is introduced to highlight key regions and suppress environmental noise. To overcome the semantic limitations of image features, we employ a vision language model (VLM) to generate semantic descriptions of bitemporal images. A Textual Difference Enhancement (TDE) module then captures fine grained semantic shifts, guiding the model toward meaningful changes. To bridge the heterogeneity between modalities, we design an Image Text Feature Fusion (ITFF) module that enables deep cross modal integration. Extensive experiments on LEVIRCD, WHUCD, and SYSUCD demonstrate that MMChange consistently surpasses state of the art methods across multiple metrics, validating its effectiveness for multimodal RSCD. Code is available at: https://github.com/yikuizhai/MMChange.

Authors:Minghui Zhang, Yaoyu Liu, Junyang Wu, Xin You, Hanxiao Zhang, Junjun He, Yun Gu
Title: TopoSculpt: Betti-Steered Topological Sculpting of 3D Fine-grained Tubular Shapes
Abstract:
Medical tubular anatomical structures are inherently three-dimensional conduits with lumens, enclosing walls, and complex branching topologies. Accurate reconstruction of their geometry and topology is crucial for applications such as bronchoscopic navigation and cerebral arterial connectivity assessment. Existing methods often rely on voxel-wise overlap measures, which fail to capture topological correctness and completeness. Although topology-aware losses and persistent homology constraints have shown promise, they are usually applied patch-wise and cannot guarantee global preservation or correct geometric errors at inference. To address these limitations, we propose a novel TopoSculpt, a framework for topological refinement of 3D fine-grained tubular structures. TopoSculpt (i) adopts a holistic whole-region modeling strategy to capture full spatial context, (ii) first introduces a Topological Integrity Betti (TIB) constraint that jointly enforces Betti number priors and global integrity, and (iii) employs a curriculum refinement scheme with persistent homology to progressively correct errors from coarse to fine scales. Extensive experiments on challenging pulmonary airway and Circle of Willis datasets demonstrate substantial improvements in both geometry and topology. For instance, $β_{0}$ errors are reduced from 69.00 to 3.40 on the airway dataset and from 1.65 to 0.30 on the CoW dataset, with Tree length detected and branch detected rates improving by nearly 10\%. These results highlight the effectiveness of TopoSculpt in correcting critical topological errors and advancing the high-fidelity modeling of complex 3D tubular anatomy. The project homepage is available at: https://github.com/Puzzled-Hui/TopoSculpt.

Authors:Xiaofu Chen, Israfel Salazar, Yova Kementchedjhieva
Title: SPECS: Specificity-Enhanced CLIP-Score for Long Image Caption Evaluation
Abstract:
As interest grows in generating long, detailed image captions, standard evaluation metrics become increasingly unreliable. N-gram-based metrics though efficient, fail to capture semantic correctness. Representational Similarity (RS) metrics, designed to address this, initially saw limited use due to high computational costs, while today, despite advances in hardware, they remain unpopular due to low correlation to human judgments. Meanwhile, metrics based on large language models (LLMs) show strong correlation with human judgments, but remain too expensive for iterative use during model development. We introduce SPECS (Specificity-Enhanced CLIPScore), a reference-free RS metric tailored to long image captioning. SPECS modifies CLIP with a new objective that emphasizes specificity: rewarding correct details and penalizing incorrect ones. We show that SPECS matches the performance of open-source LLM-based metrics in correlation to human judgments, while being far more efficient. This makes it a practical alternative for iterative checkpoint evaluation during image captioning model development.Our code can be found at https://github.com/mbzuai-nlp/SPECS.

Authors:Gowen Loo, Chang Liu, Qinghong Yin, Xiang Chen, Jiawei Chen, Jingyuan Zhang, Yu Tian
Title: MobileRAG: Enhancing Mobile Agent with Retrieval-Augmented Generation
Abstract:
Smartphones have become indispensable in people's daily lives, permeating nearly every aspect of modern society. With the continuous advancement of large language models (LLMs), numerous LLM-based mobile agents have emerged. These agents are capable of accurately parsing diverse user queries and automatically assisting users in completing complex or repetitive operations. However, current agents 1) heavily rely on the comprehension ability of LLMs, which can lead to errors caused by misoperations or omitted steps during tasks, 2) lack interaction with the external environment, often terminating tasks when an app cannot fulfill user queries, and 3) lack memory capabilities, requiring each instruction to reconstruct the interface and being unable to learn from and correct previous mistakes. To alleviate the above issues, we propose MobileRAG, a mobile agents framework enhanced by Retrieval-Augmented Generation (RAG), which includes InterRAG, LocalRAG, and MemRAG. It leverages RAG to more quickly and accurately identify user queries and accomplish complex and long-sequence mobile tasks. Additionally, to more comprehensively assess the performance of MobileRAG, we introduce MobileRAG-Eval, a more challenging benchmark characterized by numerous complex, real-world mobile tasks that require external knowledge assistance. Extensive experimental results on MobileRAG-Eval demonstrate that MobileRAG can easily handle real-world mobile tasks, achieving 10.3\% improvement over state-of-the-art methods with fewer operational steps. Our code is publicly available at: https://github.com/liuxiaojieOutOfWorld/MobileRAG_arxiv

Authors:Haiwei Xue, Xiangyang Luo, Zhanghao Hu, Xin Zhang, Xunzhi Xiang, Yuqin Dai, Jianzhuang Liu, Zhensong Zhang, Minglei Li, Jian Yang, Fei Ma, Zhiyong Wu, Changpeng Yang, Zonghong Dai, Fei Richard Yu
Title: Human Motion Video Generation: A Survey
Abstract:
Human motion video generation has garnered significant research interest due to its broad applications, enabling innovations such as photorealistic singing heads or dynamic avatars that seamlessly dance to music. However, existing surveys in this field focus on individual methods, lacking a comprehensive overview of the entire generative process. This paper addresses this gap by providing an in-depth survey of human motion video generation, encompassing over ten sub-tasks, and detailing the five key phases of the generation process: input, motion planning, motion video generation, refinement, and output. Notably, this is the first survey that discusses the potential of large language models in enhancing human motion video generation. Our survey reviews the latest developments and technological trends in human motion video generation across three primary modalities: vision, text, and audio. By covering over two hundred papers, we offer a thorough overview of the field and highlight milestone works that have driven significant technological breakthroughs. Our goal for this survey is to unveil the prospects of human motion video generation and serve as a valuable resource for advancing the comprehensive applications of digital humans. A complete list of the models examined in this survey is available in Our Repository https://github.com/Winn1y/Awesome-Human-Motion-Video-Generation.

Authors:Jiajun Song, Xiaoou Liu
Title: SalientFusion: Context-Aware Compositional Zero-Shot Food Recognition
Abstract:
Food recognition has gained significant attention, but the rapid emergence of new dishes requires methods for recognizing unseen food categories, motivating Zero-Shot Food Learning (ZSFL). We propose the task of Compositional Zero-Shot Food Recognition (CZSFR), where cuisines and ingredients naturally align with attributes and objects in Compositional Zero-Shot learning (CZSL). However, CZSFR faces three challenges: (1) Redundant background information distracts models from learning meaningful food features, (2) Role confusion between staple and side dishes leads to misclassification, and (3) Semantic bias in a single attribute can lead to confusion of understanding. Therefore, we propose SalientFusion, a context-aware CZSFR method with two components: SalientFormer, which removes background redundancy and uses depth features to resolve role confusion; DebiasAT, which reduces the semantic bias by aligning prompts with visual features. Using our proposed benchmarks, CZSFood-90 and CZSFood-164, we show that SalientFusion achieves state-of-the-art results on these benchmarks and the most popular general datasets for the general CZSL. The code is avaliable at https://github.com/Jiajun-RUC/SalientFusion.

Authors:Nan Yang, Yang Wang, Zhanwen Liu, Yuchao Dai, Yang Liu, Xiangmo Zhao
Title: Focus Through Motion: RGB-Event Collaborative Token Sparsification for Efficient Object Detection
Abstract:
Existing RGB-Event detection methods process the low-information regions of both modalities (background in images and non-event regions in event data) uniformly during feature extraction and fusion, resulting in high computational costs and suboptimal performance. To mitigate the computational redundancy during feature extraction, researchers have respectively proposed token sparsification methods for the image and event modalities. However, these methods employ a fixed number or threshold for token selection, hindering the retention of informative tokens for samples with varying complexity. To achieve a better balance between accuracy and efficiency, we propose FocusMamba, which performs adaptive collaborative sparsification of multimodal features and efficiently integrates complementary information. Specifically, an Event-Guided Multimodal Sparsification (EGMS) strategy is designed to identify and adaptively discard low-information regions within each modality by leveraging scene content changes perceived by the event camera. Based on the sparsification results, a Cross-Modality Focus Fusion (CMFF) module is proposed to effectively capture and integrate complementary features from both modalities. Experiments on the DSEC-Det and PKU-DAVIS-SOD datasets demonstrate that the proposed method achieves superior performance in both accuracy and efficiency compared to existing methods. The code will be available at https://github.com/Zizzzzzzz/FocusMamba.

Authors:Zongsen Qiu
Title: STA-Net: A Decoupled Shape and Texture Attention Network for Lightweight Plant Disease Classification
Abstract:
Responding to rising global food security needs, precision agriculture and deep learning-based plant disease diagnosis have become crucial. Yet, deploying high-precision models on edge devices is challenging. Most lightweight networks use attention mechanisms designed for generic object recognition, which poorly capture subtle pathological features like irregular lesion shapes and complex textures. To overcome this, we propose a twofold solution: first, using a training-free neural architecture search method (DeepMAD) to create an efficient network backbone for edge devices; second, introducing the Shape-Texture Attention Module (STAM). STAM splits attention into two branches -- one using deformable convolutions (DCNv4) for shape awareness and the other using a Gabor filter bank for texture awareness. On the public CCMT plant disease dataset, our STA-Net model (with 401K parameters and 51.1M FLOPs) reached 89.00% accuracy and an F1 score of 88.96%. Ablation studies confirm STAM significantly improves performance over baseline and standard attention models. Integrating domain knowledge via decoupled attention thus presents a promising path for edge-deployed precision agriculture AI. The source code is available at https://github.com/RzMY/STA-Net.

Authors:Taha Koleilat, Hassan Rivaz, Yiming Xiao
Title: Singular Value Few-shot Adaptation of Vision-Language Models
Abstract:
Vision-language models (VLMs) like CLIP have shown impressive zero-shot and few-shot learning capabilities across diverse applications. However, adapting these models to new fine-grained domains remains difficult due to reliance on prompt engineering and the high cost of full model fine-tuning. Existing adaptation approaches rely on augmented components, such as prompt tokens and adapter modules, which could limit adaptation quality, destabilize the model, and compromise the rich knowledge learned during pretraining. In this work, we present CLIP-SVD, a novel multi-modal and parameter-efficient adaptation technique that leverages Singular Value Decomposition (SVD) to modify the internal parameter space of CLIP without injecting additional modules. Specifically, we fine-tune only the singular values of the CLIP parameter matrices to rescale the basis vectors for domain adaptation while retaining the pretrained model. This design enables enhanced adaptation performance using only 0.04% of the model's total parameters and better preservation of its generalization ability. CLIP-SVD achieves state-of-the-art classification results on 11 natural and 10 biomedical datasets, outperforming previous methods in both accuracy and generalization under few-shot settings. Additionally, we leverage a natural language-based approach to analyze the effectiveness and dynamics of the CLIP adaptation to allow interpretability of CLIP-SVD. The code is publicly available at https://github.com/HealthX-Lab/CLIP-SVD.

Authors:Casper van Engelenburg, Jan van Gemert, Seyran Khademi
Title: LayoutGKN: Graph Similarity Learning of Floor Plans
Abstract:
Floor plans depict building layouts and are often represented as graphs to capture the underlying spatial relationships. Comparison of these graphs is critical for applications like search, clustering, and data visualization. The most successful methods to compare graphs \ie, graph matching networks, rely on costly intermediate cross-graph node-level interactions, therefore being slow in inference time. We introduce \textbf{LayoutGKN}, a more efficient approach that postpones the cross-graph node-level interactions to the end of the joint embedding architecture. We do so by using a differentiable graph kernel as a distance function on the final learned node-level embeddings. We show that LayoutGKN computes similarity comparably or better than graph matching networks while significantly increasing the speed. \href{https://github.com/caspervanengelenburg/LayoutGKN}{Code and data} are open.

Authors:Seth Z. Zhao, Huizhi Zhang, Zhaowei Li, Juntong Peng, Anthony Chui, Zewei Zhou, Zonglin Meng, Hao Xiang, Zhiyu Huang, Fujia Wang, Ran Tian, Chenfeng Xu, Bolei Zhou, Jiaqi Ma
Title: QuantV2X: A Fully Quantized Multi-Agent System for Cooperative Perception
Abstract:
Cooperative perception through Vehicle-to-Everything (V2X) communication offers significant potential for enhancing vehicle perception by mitigating occlusions and expanding the field of view. However, past research has predominantly focused on improving accuracy metrics without addressing the crucial system-level considerations of efficiency, latency, and real-world deployability. Noticeably, most existing systems rely on full-precision models, which incur high computational and transmission costs, making them impractical for real-time operation in resource-constrained environments. In this paper, we introduce \textbf{QuantV2X}, the first fully quantized multi-agent system designed specifically for efficient and scalable deployment of multi-modal, multi-agent V2X cooperative perception. QuantV2X introduces a unified end-to-end quantization strategy across both neural network models and transmitted message representations that simultaneously reduces computational load and transmission bandwidth. Remarkably, despite operating under low-bit constraints, QuantV2X achieves accuracy comparable to full-precision systems. More importantly, when evaluated under deployment-oriented metrics, QuantV2X reduces system-level latency by 3.2$\times$ and achieves a +9.5 improvement in mAP30 over full-precision baselines. Furthermore, QuantV2X scales more effectively, enabling larger and more capable models to fit within strict memory budgets. These results highlight the viability of a fully quantized multi-agent intermediate fusion system for real-world deployment. The system will be publicly released to promote research in this field: https://github.com/ucla-mobility/QuantV2X.

Authors:Rajeev Ranjan Dwivedi, Ankur Kumar, Vinod K Kurmi
Title: Multi Attribute Bias Mitigation via Representation Learning
Abstract:
Real world images frequently exhibit multiple overlapping biases, including textures, watermarks, gendered makeup, scene object pairings, etc. These biases collectively impair the performance of modern vision models, undermining both their robustness and fairness. Addressing these biases individually proves inadequate, as mitigating one bias often permits or intensifies others. We tackle this multi bias problem with Generalized Multi Bias Mitigation (GMBM), a lean two stage framework that needs group labels only while training and minimizes bias at test time. First, Adaptive Bias Integrated Learning (ABIL) deliberately identifies the influence of known shortcuts by training encoders for each attribute and integrating them with the main backbone, compelling the classifier to explicitly recognize these biases. Then Gradient Suppression Fine Tuning prunes those very bias directions from the backbone's gradients, leaving a single compact network that ignores all the shortcuts it just learned to recognize. Moreover we find that existing bias metrics break under subgroup imbalance and train test distribution shifts, so we introduce Scaled Bias Amplification (SBA): a test time measure that disentangles model induced bias amplification from distributional differences. We validate GMBM on FB CMNIST, CelebA, and COCO, where we boost worst group accuracy, halve multi attribute bias amplification, and set a new low in SBA even as bias complexity and distribution shifts intensify, making GMBM the first practical, end to end multibias solution for visual recognition. Project page: http://visdomlab.github.io/GMBM/

Authors:Reina Ishikawa, Ryo Fujii, Hideo Saito, Ryo Hachiuma
Title: Human Preference-Aligned Concept Customization Benchmark via Decomposed Evaluation
Abstract:
Evaluating concept customization is challenging, as it requires a comprehensive assessment of fidelity to generative prompts and concept images. Moreover, evaluating multiple concepts is considerably more difficult than evaluating a single concept, as it demands detailed assessment not only for each individual concept but also for the interactions among concepts. While humans can intuitively assess generated images, existing metrics often provide either overly narrow or overly generalized evaluations, resulting in misalignment with human preference. To address this, we propose Decomposed GPT Score (D-GPTScore), a novel human-aligned evaluation method that decomposes evaluation criteria into finer aspects and incorporates aspect-wise assessments using Multimodal Large Language Model (MLLM). Additionally, we release Human Preference-Aligned Concept Customization Benchmark (CC-AlignBench), a benchmark dataset containing both single- and multi-concept tasks, enabling stage-wise evaluation across a wide difficulty range -- from individual actions to multi-person interactions. Our method significantly outperforms existing approaches on this benchmark, exhibiting higher correlation with human preferences. This work establishes a new standard for evaluating concept customization and highlights key challenges for future research. The benchmark and associated materials are available at https://github.com/ReinaIshikawa/D-GPTScore.

Authors:Hui Chen, Liangyu Liu, Xianchao Xiu, Wanquan Liu
Title: Transformer-Guided Content-Adaptive Graph Learning for Hyperspectral Unmixing
Abstract:
Hyperspectral unmixing (HU) targets to decompose each mixed pixel in remote sensing images into a set of endmembers and their corresponding abundances. Despite significant progress in this field using deep learning, most methods fail to simultaneously characterize global dependencies and local consistency, making it difficult to preserve both long-range interactions and boundary details. This letter proposes a novel transformer-guided content-adaptive graph unmixing framework (T-CAGU), which overcomes these challenges by employing a transformer to capture global dependencies and introducing a content-adaptive graph neural network to enhance local relationships. Unlike previous work, T-CAGU integrates multiple propagation orders to dynamically learn the graph structure, ensuring robustness against noise. Furthermore, T-CAGU leverages a graph residual mechanism to preserve global information and stabilize training. Experimental results demonstrate its superiority over the state-of-the-art methods. Our code is available at https://github.com/xianchaoxiu/T-CAGU.

Authors:Yixiong Jing, Cheng Zhang, Haibing Wu, Guangming Wang, Olaf Wysocki, Brian Sheil
Title: InfraDiffusion: zero-shot depth map restoration with diffusion models and prompted segmentation from sparse infrastructure point clouds
Abstract:
Point clouds are widely used for infrastructure monitoring by providing geometric information, where segmentation is required for downstream tasks such as defect detection. Existing research has automated semantic segmentation of structural components, while brick-level segmentation (identifying defects such as spalling and mortar loss) has been primarily conducted from RGB images. However, acquiring high-resolution images is impractical in low-light environments like masonry tunnels. Point clouds, though robust to dim lighting, are typically unstructured, sparse, and noisy, limiting fine-grained segmentation. We present InfraDiffusion, a zero-shot framework that projects masonry point clouds into depth maps using virtual cameras and restores them by adapting the Denoising Diffusion Null-space Model (DDNM). Without task-specific training, InfraDiffusion enhances visual clarity and geometric consistency of depth maps. Experiments on masonry bridge and tunnel point cloud datasets show significant improvements in brick-level segmentation using the Segment Anything Model (SAM), underscoring its potential for automated inspection of masonry assets. Our code and data is available at https://github.com/Jingyixiong/InfraDiffusion-official-implement.

Authors:Junhao Jia, Yifei Sun, Yunyou Liu, Cheng Yang, Changmiao Wang, Feiwei Qin, Yong Peng, Wenwen Min
Title: RTGMFF: Enhanced fMRI-based Brain Disorder Diagnosis via ROI-driven Text Generation and Multimodal Feature Fusion
Abstract:
Functional magnetic resonance imaging (fMRI) is a powerful tool for probing brain function, yet reliable clinical diagnosis is hampered by low signal-to-noise ratios, inter-subject variability, and the limited frequency awareness of prevailing CNN- and Transformer-based models. Moreover, most fMRI datasets lack textual annotations that could contextualize regional activation and connectivity patterns. We introduce RTGMFF, a framework that unifies automatic ROI-level text generation with multimodal feature fusion for brain-disorder diagnosis. RTGMFF consists of three components: (i) ROI-driven fMRI text generation deterministically condenses each subject's activation, connectivity, age, and sex into reproducible text tokens; (ii) Hybrid frequency-spatial encoder fuses a hierarchical wavelet-mamba branch with a cross-scale Transformer encoder to capture frequency-domain structure alongside long-range spatial dependencies; and (iii) Adaptive semantic alignment module embeds the ROI token sequence and visual features in a shared space, using a regularized cosine-similarity loss to narrow the modality gap. Extensive experiments on the ADHD-200 and ABIDE benchmarks show that RTGMFF surpasses current methods in diagnostic accuracy, achieving notable gains in sensitivity, specificity, and area under the ROC curve. Code is available at https://github.com/BeistMedAI/RTGMFF.

Authors:Tzuhsuan Huang, Cheng Yu Yeo, Tsai-Ling Huang, Hong-Han Shuai, Wen-Huang Cheng, Jun-Cheng Chen
Title: Enhancing Robustness in Post-Processing Watermarking: An Ensemble Attack Network Using CNNs and Transformers
Abstract:
Recent studies on deep watermarking have predominantly focused on in-processing watermarking, which integrates the watermarking process into image generation. However, post-processing watermarking, which embeds watermarks after image generation, offers more flexibility. It can be applied to outputs from any generative model (e.g. GANs, diffusion models) without needing access to the model's internal structure. It also allows users to embed unique watermarks into individual images. Therefore, this study focuses on post-processing watermarking and enhances its robustness by incorporating an ensemble attack network during training. We construct various versions of attack networks using CNN and Transformer in both spatial and frequency domains to investigate how each combination influences the robustness of the watermarking model. Our results demonstrate that combining a CNN-based attack network in the spatial domain with a Transformer-based attack network in the frequency domain yields the highest robustness in watermarking models. Extensive evaluation on the WAVES benchmark, using average bit accuracy as the metric, demonstrates that our ensemble attack network significantly enhances the robustness of baseline watermarking methods under various stress tests. In particular, for the Regeneration Attack defined in WAVES, our method improves StegaStamp by 18.743%. The code is released at:https://github.com/aiiu-lab/DeepRobustWatermark.

Authors:Shuai Jiang, Yunfeng Ma, Jingyu Zhou, Yuan Bian, Yaonan Wang, Min Liu
Title: Resilient Multimodal Industrial Surface Defect Detection with Uncertain Sensors Availability
Abstract:
Multimodal industrial surface defect detection (MISDD) aims to identify and locate defect in industrial products by fusing RGB and 3D modalities. This article focuses on modality-missing problems caused by uncertain sensors availability in MISDD. In this context, the fusion of multiple modalities encounters several troubles, including learning mode transformation and information vacancy. To this end, we first propose cross-modal prompt learning, which includes: i) the cross-modal consistency prompt serves the establishment of information consistency of dual visual modalities; ii) the modality-specific prompt is inserted to adapt different input patterns; iii) the missing-aware prompt is attached to compensate for the information vacancy caused by dynamic modalities-missing. In addition, we propose symmetric contrastive learning, which utilizes text modality as a bridge for fusion of dual vision modalities. Specifically, a paired antithetical text prompt is designed to generate binary text semantics, and triple-modal contrastive pre-training is offered to accomplish multimodal learning. Experiment results show that our proposed method achieves 73.83% I-AUROC and 93.05% P-AUROC with a total missing rate 0.7 for RGB and 3D modalities (exceeding state-of-the-art methods 3.84% and 5.58% respectively), and outperforms existing approaches to varying degrees under different missing types and rates. The source code will be available at https://github.com/SvyJ/MISDD-MM.

Authors:Zeyu Liu, Shengwei Ding
Title: STAR: A Fast and Robust Rigid Registration Framework for Serial Histopathological Images
Abstract:
Registration of serial whole-slide histopathological images (WSIs) is critical for enabling direct comparison across diverse stains and for preparing paired datasets in artificial intelligence (AI) workflows such as virtual staining and biomarker prediction. While existing methods often rely on complex deformable or deep learning approaches that are computationally intensive and difficult to reproduce, lightweight rigid frameworks-sufficient for many consecutive-section scenarios-remain underdeveloped. We introduce STAR (Serial Tissue Alignment for Rigid registration), a fast and robust open-source framework for multi-WSI alignment. STAR integrates stain-conditioned preprocessing with a hierarchical coarse-to-fine correlation strategy, adaptive kernel scaling, and built-in quality control, achieving reliable rigid registration across heterogeneous tissue types and staining protocols, including hematoxylin-eosin (H&E), special histochemical stains (e.g., PAS, PASM, Masson's), and immunohistochemical (IHC) markers (e.g., CD31, KI67). Evaluated on the ANHIR 2019 and ACROBAT 2022 datasets spanning multiple organs and scanning conditions, STAR consistently produced stable alignments within minutes per slide, demonstrating robustness to cross-stain variability and partial tissue overlap. Beyond benchmarks, we present case studies on H&E-IHC alignment, construction of multi-IHC panels, and typical failure modes, underscoring both utility and limitations. Released as an open and lightweight tool, STAR provides a reproducible baseline that lowers the barrier for clinical adoption and enables large-scale paired data preparation for next-generation computational pathology.

Authors:Kimihiro Hasegawa, Wiradee Imrattanatrai, Masaki Asada, Susan Holm, Yuran Wang, Vincent Zhou, Ken Fukuda, Teruko Mitamura
Title: ProMQA-Assembly: Multimodal Procedural QA Dataset on Assembly
Abstract:
Assistants on assembly tasks have a large potential to benefit humans from everyday tasks to industrial settings. However, no testbeds support application-oriented system evaluation in a practical setting, especially in assembly. To foster the development, we propose a new multimodal QA dataset on assembly activities. Our dataset, ProMQA-Assembly, consists of 391 QA pairs that require the multimodal understanding of human-activity recordings and their instruction manuals in an online-style manner. In the development, we adopt a semi-automated QA annotation approach, where LLMs generate candidates and humans verify them, as a cost-effective method, and further improve it by integrating fine-grained action labels to diversify question types. Furthermore, we create instruction task graphs for the target tasks of assembling toy vehicles. These newly created task graphs are used in our benchmarking experiment, as well as to facilitate the human verification process in the QA annotation. Utilizing our dataset, we benchmark models, including competitive proprietary multimodal models. Our results suggest great room for improvement for the current models. We believe our new evaluation dataset can contribute to the further development of procedural-activity assistants.

Authors:Armin Saadat, Nima Hashemi, Hooman Vaseli, Michael Y. Tsang, Christina Luong, Michiel Van de Panne, Teresa S. M. Tsang, Purang Abolmaesumi
Title: PRECISE-AS: Personalized Reinforcement Learning for Efficient Point-of-Care Echocardiography in Aortic Stenosis Diagnosis
Abstract:
Aortic stenosis (AS) is a life-threatening condition caused by a narrowing of the aortic valve, leading to impaired blood flow. Despite its high prevalence, access to echocardiography (echo), the gold-standard diagnostic tool, is often limited due to resource constraints, particularly in rural and underserved areas. Point-of-care ultrasound (POCUS) offers a more accessible alternative but is restricted by operator expertise and the challenge of selecting the most relevant imaging views. To address this, we propose a reinforcement learning (RL)-driven active video acquisition framework that dynamically selects each patient's most informative echo videos. Unlike traditional methods that rely on a fixed set of videos, our approach continuously evaluates whether additional imaging is needed, optimizing both accuracy and efficiency. Tested on data from 2,572 patients, our method achieves 80.6% classification accuracy while using only 47% of the echo videos compared to a full acquisition. These results demonstrate the potential of active feature acquisition to enhance AS diagnosis, making echocardiographic assessments more efficient, scalable, and personalized. Our source code is available at: https://github.com/Armin-Saadat/PRECISE-AS.

Authors:Mennatullah Siam
Title: PixFoundation 2.0: Do Video Multi-Modal LLMs Use Motion in Visual Grounding?
Abstract:
Multi-modal large language models (MLLMs) have shown impressive generalization across tasks using images and text modalities. While their extension to video has enabled tasks such as video question answering and video captioning, their pixel-level visual grounding abilities are less studied. In this work, we raise the pertinent question of whether motion is used in pixel-level visual grounding and whether video MLLMs can segment objects based on natural language expressions describing their motion patterns. We identify the shortcomings in the current benchmarks, where we show that a single frame can often suffice for capturing the motion referring expression without any temporal reasoning. To address this, we introduce four motion-centric probing techniques, particularly designed for the visual grounding task, to study video MLLMs' ability to identify true motion from a fake one and their ability to grasp the motion order. Consequently, we provide a motion-centric benchmark, MoCentric-Bench. It ensures that video MLLMs are evaluated towards leveraging the interaction between motion and language rather than being dominated by static appearance cues emphasized in existing visual grounding datasets. We further establish strong single-image baselines that are on par with or outperform prior methods. Finally, we explore simple motion-centric adaptation techniques that provide state-of-the-art performance on our MoCentric-Bench. Our motion-centric benchmark, evaluation and findings challenge future models to improve dense spatiotemporal grounding and pixel-level understanding within videos. Code and datasets will be made publicly available at https://github.com/MSiam/PixFoundation-2.0.git.

Authors:You Shen, Zhipeng Zhang, Yansong Qu, Liujuan Cao
Title: FastVGGT: Training-Free Acceleration of Visual Geometry Transformer
Abstract:
Foundation models for 3D vision have recently demonstrated remarkable capabilities in 3D perception. However, scaling these models to long-sequence image inputs remains a significant challenge due to inference-time inefficiency. In this work, we present a detailed analysis of VGGT, a state-of-the-art feed-forward visual geometry model and identify its primary bottleneck. Visualization further reveals a token collapse phenomenon in the attention maps. Motivated by these findings, we explore the potential of token merging in the feed-forward visual geometry model. Owing to the unique architectural and task-specific properties of 3D models, directly applying existing merging techniques proves challenging. To this end, we propose FastVGGT, which, for the first time, leverages token merging in the 3D domain through a training-free mechanism for accelerating VGGT. we devise a unique token partitioning strategy tailored to 3D architectures and tasks, effectively eliminating redundant computation while preserving VGGT's powerful reconstruction capacity. Extensive experiments on multiple 3D geometry benchmarks validate the effectiveness of our approach. Notably, with 1000 input images, FastVGGT achieves a 4x speedup over VGGT while mitigating error accumulation in long-sequence scenarios. These findings underscore the potential of token merging as a principled solution for scalable 3D vision systems. Code is available at: https://mystorm16.github.io/fastvggt/.

Authors:Xinrui Gong, Oliver Hahn, Christoph Reich, Krishnakant Singh, Simone Schaub-Meyer, Daniel Cremers, Stefan Roth
Title: Motion-Refined DINOSAUR for Unsupervised Multi-Object Discovery
Abstract:
Unsupervised multi-object discovery (MOD) aims to detect and localize distinct object instances in visual scenes without any form of human supervision. Recent approaches leverage object-centric learning (OCL) and motion cues from video to identify individual objects. However, these approaches use supervision to generate pseudo labels to train the OCL model. We address this limitation with MR-DINOSAUR -- Motion-Refined DINOSAUR -- a minimalistic unsupervised approach that extends the self-supervised pre-trained OCL model, DINOSAUR, to the task of unsupervised multi-object discovery. We generate high-quality unsupervised pseudo labels by retrieving video frames without camera motion for which we perform motion segmentation of unsupervised optical flow. We refine DINOSAUR's slot representations using these pseudo labels and train a slot deactivation module to assign slots to foreground and background. Despite its conceptual simplicity, MR-DINOSAUR achieves strong multi-object discovery results on the TRI-PD and KITTI datasets, outperforming the previous state of the art despite being fully unsupervised.

Authors:Nina Wiedemann, Sainan Liu, Quentin Leboutet, Katelyn Gao, Benjamin Ummenhofer, Michael Paulitsch, Kai Yuan
Title: Unifi3D: A Study on 3D Representations for Generation and Reconstruction in a Common Framework
Abstract:
Following rapid advancements in text and image generation, research has increasingly shifted towards 3D generation. Unlike the well-established pixel-based representation in images, 3D representations remain diverse and fragmented, encompassing a wide variety of approaches such as voxel grids, neural radiance fields, signed distance functions, point clouds, or octrees, each offering distinct advantages and limitations. In this work, we present a unified evaluation framework designed to assess the performance of 3D representations in reconstruction and generation. We compare these representations based on multiple criteria: quality, computational efficiency, and generalization performance. Beyond standard model benchmarking, our experiments aim to derive best practices over all steps involved in the 3D generation pipeline, including preprocessing, mesh reconstruction, compression with autoencoders, and generation. Our findings highlight that reconstruction errors significantly impact overall performance, underscoring the need to evaluate generation and reconstruction jointly. We provide insights that can inform the selection of suitable 3D models for various applications, facilitating the development of more robust and application-specific solutions in 3D generation. The code for our framework is available at https://github.com/isl-org/unifi3d.

Authors:Jingru Fan, Yufan Dang, Jingyao Wu, Huatao Li, Runde Yang, Xiyuan Yang, Yuheng Wang, Zhong Zhang, Yaxi Lu, Yankai Lin, Zhiyuan Liu, Dahai Li, Chen Qian
Title: AppCopilot: Toward General, Accurate, Long-Horizon, and Efficient Mobile Agent
Abstract:
With the raid evolution of large language models and multimodal foundation models, the mobile-agent landscape has proliferated without converging on the fundamental challenges. This paper identifies four core problems that must be solved for mobile agents to deliver practical, scalable impact: (1) generalization across tasks, modalities, apps, and devices; (2) accuracy, specifically precise on-screen interaction and click targeting; (3) long-horizon capability for sustained, multi-step goals; and (4) efficiency, specifically high-performance runtime on resource-constrained devices. We present AppCopilot, a multimodal, multi-agent, general-purpose on-device assistant that operates across applications and constitutes a full-stack, closed-loop system from data to deployment. AppCopilot operationalizes this position through an end-to-end autonomous pipeline spanning data collection, training, deployment, high-quality and efficient inference, and mobile application development. At the model layer, it integrates multimodal foundation models with robust Chinese-English support. At the reasoning and control layer, it combines chain-of-thought reasoning, hierarchical task planning and decomposition, and multi-agent collaboration. At the execution layer, it enables user personalization and experiential adaptation, voice interaction, function calling, cross-app and cross-device orchestration, and comprehensive mobile app support. The system design incorporates profiling-driven optimization for latency, memory, and energy across heterogeneous hardware. Empirically, AppCopilot achieves significant improvements along all four dimensions: stronger generalization, higher-precision on-screen actions, more reliable long-horizon task completion, and faster, more resource-efficient runtime.

Authors:Tao Wang, Zhenxuan Zhang, Yuanbo Zhou, Xinlin Zhang, Yuanbin Chen, Tao Tan, Guang Yang, Tong Tong
Title: From Noisy Labels to Intrinsic Structure: A Geometric-Structural Dual-Guided Framework for Noise-Robust Medical Image Segmentation
Abstract:
The effectiveness of convolutional neural networks in medical image segmentation relies on large-scale, high-quality annotations, which are costly and time-consuming to obtain. Even expert-labeled datasets inevitably contain noise arising from subjectivity and coarse delineations, which disrupt feature learning and adversely impact model performance. To address these challenges, this study propose a Geometric-Structural Dual-Guided Network (GSD-Net), which integrates geometric and structural cues to improve robustness against noisy annotations. It incorporates a Geometric Distance-Aware module that dynamically adjusts pixel-level weights using geometric features, thereby strengthening supervision in reliable regions while suppressing noise. A Structure-Guided Label Refinement module further refines labels with structural priors, and a Knowledge Transfer module enriches supervision and improves sensitivity to local details. To comprehensively assess its effectiveness, we evaluated GSD-Net on six publicly available datasets: four containing three types of simulated label noise, and two with multi-expert annotations that reflect real-world subjectivity and labeling inconsistencies. Experimental results demonstrate that GSD-Net achieves state-of-the-art performance under noisy annotations, achieving improvements of 2.52% on Kvasir, 22.76% on Shenzhen, 8.87% on BU-SUC, and 4.59% on BraTS2020 under SR simulated noise. The codes of this study are available at https://github.com/ortonwang/GSD-Net.

Authors:Xiaobao Wei, Changyong Shu, Zhaokun Yue, Chang Huang, Weiwei Liu, Shuai Yang, Lirong Yang, Peng Gao, Wenbin Zhang, Gaochao Zhu, Chengxiang Wang
Title: Decoupling Bidirectional Geometric Representations of 4D cost volume with 2D convolution
Abstract:
High-performance real-time stereo matching methods invariably rely on 3D regularization of the cost volume, which is unfriendly to mobile devices. And 2D regularization based methods struggle in ill-posed regions. In this paper, we present a deployment-friendly 4D cost aggregation network DBStereo, which is based on pure 2D convolutions. Specifically, we first provide a thorough analysis of the decoupling characteristics of 4D cost volume. And design a lightweight bidirectional geometry aggregation block to capture spatial and disparity representation respectively. Through decoupled learning, our approach achieves real-time performance and impressive accuracy simultaneously. Extensive experiments demonstrate that our proposed DBStereo outperforms all existing aggregation-based methods in both inference time and accuracy, even surpassing the iterative-based method IGEV-Stereo. Our study break the empirical design of using 3D convolutions for 4D cost volume and provides a simple yet strong baseline of the proposed decouple aggregation paradigm for further study. Code will be available at (\href{https://github.com/happydummy/DBStereo}{https://github.com/happydummy/DBStereo}) soon.

Authors:Yuheng Li, Yizhou Wu, Yuxiang Lai, Mingzhe Hu, Xiaofeng Yang
Title: MedDINOv3: How to adapt vision foundation models for medical image segmentation?
Abstract:
Accurate segmentation of organs and tumors in CT and MRI scans is essential for diagnosis, treatment planning, and disease monitoring. While deep learning has advanced automated segmentation, most models remain task-specific, lacking generalizability across modalities and institutions. Vision foundation models (FMs) pretrained on billion-scale natural images offer powerful and transferable representations. However, adapting them to medical imaging faces two key challenges: (1) the ViT backbone of most foundation models still underperform specialized CNNs on medical image segmentation, and (2) the large domain gap between natural and medical images limits transferability. We introduce MedDINOv3, a simple and effective framework for adapting DINOv3 to medical segmentation. We first revisit plain ViTs and design a simple and effective architecture with multi-scale token aggregation. Then, we perform domain-adaptive pretraining on CT-3M, a curated collection of 3.87M axial CT slices, using a multi-stage DINOv3 recipe to learn robust dense features. MedDINOv3 matches or exceeds state-of-the-art performance across four segmentation benchmarks, demonstrating the potential of vision foundation models as unified backbones for medical image segmentation. The code is available at https://github.com/ricklisz/MedDINOv3.

Authors:Zeren Xiong, Zikun Chen, Zedong Zhang, Xiang Li, Ying Tai, Jian Yang, Jun Li
Title: Category-Aware 3D Object Composition with Disentangled Texture and Shape Multi-view Diffusion
Abstract:
In this paper, we tackle a new task of 3D object synthesis, where a 3D model is composited with another object category to create a novel 3D model. However, most existing text/image/3D-to-3D methods struggle to effectively integrate multiple content sources, often resulting in inconsistent textures and inaccurate shapes. To overcome these challenges, we propose a straightforward yet powerful approach, category+3D-to-3D (C33D), for generating novel and structurally coherent 3D models. Our method begins by rendering multi-view images and normal maps from the input 3D model, then generating a novel 2D object using adaptive text-image harmony (ATIH) with the front-view image and a text description from another object category as inputs. To ensure texture consistency, we introduce texture multi-view diffusion, which refines the textures of the remaining multi-view RGB images based on the novel 2D object. For enhanced shape accuracy, we propose shape multi-view diffusion to improve the 2D shapes of both the multi-view RGB images and the normal maps, also conditioned on the novel 2D object. Finally, these outputs are used to reconstruct a complete and novel 3D model. Extensive experiments demonstrate the effectiveness of our method, yielding impressive 3D creations, such as shark(3D)-crocodile(text) in the first row of Fig. 1. A project page is available at: https://xzr52.github.io/C33D/

Authors:Yihong Wu, Jinqiao Wei, Xionghui Zhao, Yidi Li, Shaoyi Du, Bin Ren, Nicu Sebe
Title: DSGC-Net: A Dual-Stream Graph Convolutional Network for Crowd Counting via Feature Correlation Mining
Abstract:
Deep learning-based crowd counting methods have achieved remarkable progress in recent years. However, in complex crowd scenarios, existing models still face challenges when adapting to significant density distribution differences between regions. Additionally, the inconsistency of individual representations caused by viewpoint changes and body posture differences further limits the counting accuracy of the models. To address these challenges, we propose DSGC-Net, a Dual-Stream Graph Convolutional Network based on feature correlation mining. DSGC-Net introduces a Density Approximation (DA) branch and a Representation Approximation (RA) branch. By modeling two semantic graphs, it captures the potential feature correlations in density variations and representation distributions. The DA branch incorporates a density prediction module that generates the density distribution map, and constructs a density-driven semantic graph based on density similarity. The RA branch establishes a representation-driven semantic graph by computing global representation similarity. Then, graph convolutional networks are applied to the two semantic graphs separately to model the latent semantic relationships, which enhance the model's ability to adapt to density variations and improve counting accuracy in multi-view and multi-pose scenarios. Extensive experiments on three widely used datasets demonstrate that DSGC-Net outperforms current state-of-the-art methods. In particular, we achieve MAE of 48.9 and 5.9 in ShanghaiTech Part A and Part B datasets, respectively. The released code is available at: https://github.com/Wu-eon/CrowdCounting-DSGCNet.

Authors:Nils Hoehing, Mayug Maniparambil, Ellen Rushe, Noel E. O'Connor, Anthony Ventresque
Title: Understanding Space Is Rocket Science -- Only Top Reasoning Models Can Solve Spatial Understanding Tasks
Abstract:
We propose RocketScience, an open-source contrastive VLM benchmark that tests for spatial relation understanding. It is comprised of entirely new real-world image-text pairs covering mostly relative spatial understanding and the order of objects. The benchmark is designed to be very easy for humans and hard for the current generation of VLMs, and this is empirically verified. Our results show a striking lack of spatial relation understanding in open source and frontier commercial VLMs and a surprisingly high performance of reasoning models. Additionally, we perform a disentanglement analysis to separate the contributions of object localization and spatial reasoning in chain-of-thought-based models and find that the performance on the benchmark is bottlenecked by spatial reasoning and not object localization capabilities. We release the dataset with a CC-BY-4.0 license and make the evaluation code available at: https://github.com/nilshoehing/rocketscience

Authors:Mohit Mendiratta, Mayur Deshmukh, Kartik Teotia, Vladislav Golyanik, Adam Kortylewski, Christian Theobalt
Title: GRMM: Real-Time High-Fidelity Gaussian Morphable Head Model with Learned Residuals
Abstract:
3D Morphable Models (3DMMs) enable controllable facial geometry and expression editing for reconstruction, animation, and AR/VR, but traditional PCA-based mesh models are limited in resolution, detail, and photorealism. Neural volumetric methods improve realism but remain too slow for interactive use. Recent Gaussian Splatting (3DGS) based facial models achieve fast, high-quality rendering but still depend solely on a mesh-based 3DMM prior for expression control, limiting their ability to capture fine-grained geometry, expressions, and full-head coverage. We introduce GRMM, the first full-head Gaussian 3D morphable model that augments a base 3DMM with residual geometry and appearance components, additive refinements that recover high-frequency details such as wrinkles, fine skin texture, and hairline variations. GRMM provides disentangled control through low-dimensional, interpretable parameters (e.g., identity shape, facial expressions) while separately modelling residuals that capture subject- and expression-specific detail beyond the base model's capacity. Coarse decoders produce vertex-level mesh deformations, fine decoders represent per-Gaussian appearance, and a lightweight CNN refines rasterised images for enhanced realism, all while maintaining 75 FPS real-time rendering. To learn consistent, high-fidelity residuals, we present EXPRESS-50, the first dataset with 60 aligned expressions across 50 identities, enabling robust disentanglement of identity and expression in Gaussian-based 3DMMs. Across monocular 3D face reconstruction, novel-view synthesis, and expression transfer, GRMM surpasses state-of-the-art methods in fidelity and expression accuracy while delivering interactive real-time performance.

Authors:Matic Fučka, Vitjan Zavrtanik, Danijel Skočaj
Title: SALAD -- Semantics-Aware Logical Anomaly Detection
Abstract:
Recent surface anomaly detection methods excel at identifying structural anomalies, such as dents and scratches, but struggle with logical anomalies, such as irregular or missing object components. The best-performing logical anomaly detection approaches rely on aggregated pretrained features or handcrafted descriptors (most often derived from composition maps), which discard spatial and semantic information, leading to suboptimal performance. We propose SALAD, a semantics-aware discriminative logical anomaly detection method that incorporates a newly proposed composition branch to explicitly model the distribution of object composition maps, consequently learning important semantic relationships. Additionally, we introduce a novel procedure for extracting composition maps that requires no hand-made labels or category-specific information, in contrast to previous methods. By effectively modelling the composition map distribution, SALAD significantly improves upon state-of-the-art methods on the standard benchmark for logical anomaly detection, MVTec LOCO, achieving an impressive image-level AUROC of 96.1%. Code: https://github.com/MaticFuc/SALAD

Authors:Ziyun Zeng, Junhao Zhang, Wei Li, Mike Zheng Shou
Title: Draw-In-Mind: Rebalancing Designer-Painter Roles in Unified Multimodal Models Benefits Image Editing
Abstract:
In recent years, integrating multimodal understanding and generation into a single unified model has emerged as a promising paradigm. While this approach achieves strong results in text-to-image (T2I) generation, it still struggles with precise image editing. We attribute this limitation to an imbalanced division of responsibilities. The understanding module primarily functions as a translator that encodes user instructions into semantic conditions, while the generation module must simultaneously act as designer and painter, inferring the original layout, identifying the target editing region, and rendering the new content. This imbalance is counterintuitive because the understanding module is typically trained with several times more data on complex reasoning tasks than the generation module. To address this issue, we introduce Draw-In-Mind (DIM), a dataset comprising two complementary subsets: (i) DIM-T2I, containing 14M long-context image-text pairs to enhance complex instruction comprehension; and (ii) DIM-Edit, consisting of 233K chain-of-thought imaginations generated by GPT-4o, serving as explicit design blueprints for image edits. We connect a frozen Qwen2.5-VL-3B with a trainable SANA1.5-1.6B via a lightweight two-layer MLP, and train it on the proposed DIM dataset, resulting in DIM-4.6B-T2I/Edit. Despite its modest parameter scale, DIM-4.6B-Edit achieves SOTA or competitive performance on the ImgEdit and GEdit-Bench benchmarks, outperforming much larger models such as UniWorld-V1 and Step1X-Edit. These findings demonstrate that explicitly assigning the design responsibility to the understanding module provides significant benefits for image editing. Our dataset and models are available at https://github.com/showlab/DIM.

Authors:Zhenyuan Chen, Chenxi Wang, Ningyu Zhang, Feng Zhang
Title: RSCC: A Large-Scale Remote Sensing Change Caption Dataset for Disaster Events
Abstract:
Remote sensing is critical for disaster monitoring, yet existing datasets lack temporal image pairs and detailed textual annotations. While single-snapshot imagery dominates current resources, it fails to capture dynamic disaster impacts over time. To address this gap, we introduce the Remote Sensing Change Caption (RSCC) dataset, a large-scale benchmark comprising 62,315 pre-/post-disaster image pairs (spanning earthquakes, floods, wildfires, and more) paired with rich, human-like change captions. By bridging the temporal and semantic divide in remote sensing data, RSCC enables robust training and evaluation of vision-language models for disaster-aware bi-temporal understanding. Our results highlight RSCC's ability to facilitate detailed disaster-related analysis, paving the way for more accurate, interpretable, and scalable vision-language applications in remote sensing. Code and dataset are available at https://github.com/Bili-Sakura/RSCC.

Authors:Zhipeng Weng, Xiaopeng Liu, Ce Liu, Xingyuan Guo, Yukai Shi, Liang Lin
Title: DroneSR: Rethinking Few-shot Thermal Image Super-Resolution from Drone-based Perspective
Abstract:
Although large scale models achieve significant improvements in performance, the overfitting challenge still frequently undermines their generalization ability. In super resolution tasks on images, diffusion models as representatives of generative models typically adopt large scale architectures. However, few-shot drone-captured infrared training data frequently induces severe overfitting in large-scale architectures. To address this key challenge, our method proposes a new Gaussian quantization representation learning method oriented to diffusion models that alleviates overfitting and enhances robustness. At the same time, an effective monitoring mechanism tracks large scale architectures during training to detect signs of overfitting. By introducing Gaussian quantization representation learning, our method effectively reduces overfitting while maintaining architecture complexity. On this basis, we construct a multi source drone-based infrared image benchmark dataset for detection and use it to emphasize overfitting issues of large scale architectures in few sample, drone-based diverse drone-based image reconstruction scenarios. To verify the efficacy of the method in mitigating overfitting, experiments are conducted on the constructed benchmark. Experimental results demonstrate that our method outperforms existing super resolution approaches and significantly mitigates overfitting of large scale architectures under complex conditions. The code and DroneSR dataset will be available at: https://github.com/wengzp1/GARLSR.

Authors:Yotam Erel, Rishabh Dabral, Vladislav Golyanik, Amit H. Bermano, Christian Theobalt
Title: PractiLight: Practical Light Control Using Foundational Diffusion Models
Abstract:
Light control in generated images is a difficult task, posing specific challenges, spanning over the entire image and frequency spectrum. Most approaches tackle this problem by training on extensive yet domain-specific datasets, limiting the inherent generalization and applicability of the foundational backbones used. Instead, PractiLight is a practical approach, effectively leveraging foundational understanding of recent generative models for the task. Our key insight is that lighting relationships in an image are similar in nature to token interaction in self-attention layers, and hence are best represented there. Based on this and other analyses regarding the importance of early diffusion iterations, PractiLight trains a lightweight LoRA regressor to produce the direct irradiance map for a given image, using a small set of training images. We then employ this regressor to incorporate the desired lighting into the generation process of another image using Classifier Guidance. This careful design generalizes well to diverse conditions and image domains. We demonstrate state-of-the-art performance in terms of quality and control with proven parameter and data efficiency compared to leading works over a wide variety of scenes types. We hope this work affirms that image lighting can feasibly be controlled by tapping into foundational knowledge, enabling practical and general relighting.

Authors:Zetong Zhou, Dongping Chen, Zixian Ma, Zhihan Hu, Mingyang Fu, Sinan Wang, Yao Wan, Zhou Zhao, Ranjay Krishna
Title: Reinforced Visual Perception with Tools
Abstract:
Visual reasoning, a cornerstone of human intelligence, encompasses complex perceptual and logical processes essential for solving diverse visual problems. While advances in computer vision have produced powerful models for various perceptual tasks, leveraging these for general visual reasoning remains challenging. Prior work demonstrates that augmenting LLMs with vision models via supervised finetuning improves performance, but faces key limitations such as expensive data generation, reliance on careful data filtering, and poor generalization. To address these issues, we propose ReVPT to enhance multi-modal LLMs' abilities to reason about and use visual tools through reinforcement learning. We introduce a novel RL algorithm based on GRPO, designed to train models to reason with a suite of four visual tools. Through extensive experiments, we show that our method achieves state-of-the-art performance on several perception-heavy benchmarks, including SAT, CV-Bench, BLINK and MMStar, significantly outperforming the supervised and text-based RL finetuning baselines. Notably, Our ReVPT-3B and ReVPT-7B outperform the instruct models by 9.03% and 9.44% on CV-Bench. Finally, we bring to the community new insights on RL-based visual tool-usage through extensive ablations. Our code is available at https://github.com/ls-kelvin/REVPT.

Authors:Yuqing Chen, Junjie Wang, Lin Liu, Ruihang Chu, Xiaopeng Zhang, Qi Tian, Yujiu Yang
Title: O-DisCo-Edit: Object Distortion Control for Unified Realistic Video Editing
Abstract:
Diffusion models have recently advanced video editing, yet controllable editing remains challenging due to the need for precise manipulation of diverse object properties. Current methods require different control signal for diverse editing tasks, which complicates model design and demands significant training resources. To address this, we propose O-DisCo-Edit, a unified framework that incorporates a novel object distortion control (O-DisCo). This signal, based on random and adaptive noise, flexibly encapsulates a wide range of editing cues within a single representation. Paired with a "copy-form" preservation module for preserving non-edited regions, O-DisCo-Edit enables efficient, high-fidelity editing through an effective training paradigm. Extensive experiments and comprehensive human evaluations consistently demonstrate that O-DisCo-Edit surpasses both specialized and multitask state-of-the-art methods across various video editing tasks. https://cyqii.github.io/O-DisCo-Edit.github.io/

Authors:Ganlin Zhang, Shenhan Qian, Xi Wang, Daniel Cremers
Title: ViSTA-SLAM: Visual SLAM with Symmetric Two-view Association
Abstract:
We present ViSTA-SLAM as a real-time monocular visual SLAM system that operates without requiring camera intrinsics, making it broadly applicable across diverse camera setups. At its core, the system employs a lightweight symmetric two-view association (STA) model as the frontend, which simultaneously estimates relative camera poses and regresses local pointmaps from only two RGB images. This design reduces model complexity significantly, the size of our frontend is only 35\% that of comparable state-of-the-art methods, while enhancing the quality of two-view constraints used in the pipeline. In the backend, we construct a specially designed Sim(3) pose graph that incorporates loop closures to address accumulated drift. Extensive experiments demonstrate that our approach achieves superior performance in both camera tracking and dense 3D reconstruction quality compared to current methods. Github repository: https://github.com/zhangganlin/vista-slam

Authors:Biao Yang, Bin Wen, Boyang Ding, Changyi Liu, Chenglong Chu, Chengru Song, Chongling Rao, Chuan Yi, Da Li, Dunju Zang, Fan Yang, Guorui Zhou, Guowang Zhang, Han Shen, Hao Peng, Haojie Ding, Hao Wang, Haonan Fan, Hengrui Ju, Jiaming Huang, Jiangxia Cao, Jiankang Chen, Jingyun Hua, Kaibing Chen, Kaiyu Jiang, Kaiyu Tang, Kun Gai, Muhao Wei, Qiang Wang, Ruitao Wang, Sen Na, Shengnan Zhang, Siyang Mao, Sui Huang, Tianke Zhang, Tingting Gao, Wei Chen, Wei Yuan, Xiangyu Wu, Xiao Hu, Xingyu Lu, Yi-Fan Zhang, Yiping Yang, Yulong Chen, Zeyi Lu, Zhenhua Wu, Zhixin Ling, Zhuoran Yang, Ziming Li, Di Xu, Haixuan Gao, Hang Li, Jing Wang, Lejian Ren, Qigen Hu, Qianqian Wang, Shiyao Wang, Xinchen Luo, Yan Li, Yuhang Hu, Zixing Zhang
Title: Kwai Keye-VL 1.5 Technical Report
Abstract:
In recent years, the development of Large Language Models (LLMs) has significantly advanced, extending their capabilities to multimodal tasks through Multimodal Large Language Models (MLLMs). However, video understanding remains a challenging area due to the dynamic and information-dense nature of videos. Existing models struggle with the trade-off between spatial resolution and temporal coverage when processing video content. We present Keye-VL-1.5, which addresses fundamental challenges in video comprehension through three key innovations. First, we introduce a novel Slow-Fast video encoding strategy that dynamically allocates computational resources based on inter-frame similarity, processing key frames with significant visual changes at higher resolution (Slow pathway) while handling relatively static frames with increased temporal coverage at lower resolution (Fast pathway). Second, we implement a progressive four-stage pre-training methodology that systematically extends the model's context length from 8K to 128K tokens, enabling processing of longer videos and more complex visual content. Third, we develop a comprehensive post-training pipeline focusing on reasoning enhancement and human preference alignment, incorporating a 5-step chain-of-thought data construction process, iterative GSPO-based reinforcement learning with progressive prompt hinting for difficult cases, and alignment training. Through extensive evaluation on public benchmarks and rigorous internal human assessment, Keye-VL-1.5 demonstrates significant improvements over existing models, particularly excelling in video understanding tasks while maintaining competitive performance on general multimodal benchmarks.

Authors:Junjie Chen, Xuyang Liu, Zichen Wen, Yiyu Wang, Siteng Huang, Honggang Chen
Title: Variation-aware Vision Token Dropping for Faster Large Vision-Language Models
Abstract:
Large vision-language models (LVLMs) have demonstrated remarkable capabilities in multimodal understanding tasks. However, the increasing demand for high-resolution image and long-video understanding results in substantial token counts, leading to reduced inference efficiency. Token compression offers a direct solution by reducing the number of tokens to be processed, thereby improving computational efficiency. Through extensive analysis, we identify two critical limitations in existing inner-LLM token compression methods: positional bias and incompatibility with efficient operators, which hinder their practical deployment for LVLM acceleration. This paper presents the first approach from a token variation perspective, revealing that visual token variations within LLMs exhibit task-agnostic properties. We propose Variation-aware Vision Token Dropping (\textit{i.e.}, \textbf{V$^2$Drop}), which progressively removes visual tokens with minimal variation during LVLM inference, thereby enhancing computational efficiency. Extensive experiments across multiple models and benchmarks demonstrate that our V$^2$Drop is able to maintain \textbf{94.0\%} and \textbf{98.6\%} of the original model performance for image and video understanding tasks respectively, while reducing LLM generation latency by \textbf{31.5\%} and \textbf{74.2\%}. When combined with efficient operators, V$^2$Drop further reduces GPU peak memory usage.

Authors:Liu Qifeng, Zhao Dawei, Dong Yabo, Xiao Liang, Wang Juan, Min Chen, Li Fuyang, Jiang Weizhong, Lu Dongming, Nie Yiming
Title: PointSlice: Accurate and Efficient Slice-Based Representation for 3D Object Detection from Point Clouds
Abstract:
3D object detection from point clouds plays a critical role in autonomous driving. Currently, the primary methods for point cloud processing are voxel-based and pillarbased approaches. Voxel-based methods offer high accuracy through fine-grained spatial segmentation but suffer from slower inference speeds. Pillar-based methods enhance inference speed but still fall short of voxel-based methods in accuracy. To address these issues, we propose a novel point cloud processing method, PointSlice, which slices point clouds along the horizontal plane and includes a dedicated detection network. The main contributions of PointSlice are: (1) A new point cloud processing technique that converts 3D point clouds into multiple sets of 2D (x-y) data slices. The model only learns 2D data distributions, treating the 3D point cloud as separate batches of 2D data, which reduces the number of model parameters and enhances inference speed; (2) The introduction of a Slice Interaction Network (SIN). To maintain vertical relationships across slices, we incorporate SIN into the 2D backbone network, which improves the model's 3D object perception capability. Extensive experiments demonstrate that PointSlice achieves high detection accuracy and inference speed. On the Waymo dataset, PointSlice is 1.13x faster and has 0.79x fewer parameters than the state-of-the-art voxel-based method (SAFDNet), with only a 1.2 mAPH accuracy reduction. On the nuScenes dataset, we achieve a state-of-the-art detection result of 66.74 mAP. On the Argoverse 2 dataset, PointSlice is 1.10x faster, with 0.66x fewer parameters and a 1.0 mAP accuracy reduction. The code will be available at https://github.com/qifeng22/PointSlice2.

Authors:Artur Díaz-Juan, Coloma Ballester, Gloria Haro
Title: SoccerHigh: A Benchmark Dataset for Automatic Soccer Video Summarization
Abstract:
Video summarization aims to extract key shots from longer videos to produce concise and informative summaries. One of its most common applications is in sports, where highlight reels capture the most important moments of a game, along with notable reactions and specific contextual events. Automatic summary generation can support video editors in the sports media industry by reducing the time and effort required to identify key segments. However, the lack of publicly available datasets poses a challenge in developing robust models for sports highlight generation. In this paper, we address this gap by introducing a curated dataset for soccer video summarization, designed to serve as a benchmark for the task. The dataset includes shot boundaries for 237 matches from the Spanish, French, and Italian leagues, using broadcast footage sourced from the SoccerNet dataset. Alongside the dataset, we propose a baseline model specifically designed for this task, which achieves an F1 score of 0.3956 in the test set. Furthermore, we propose a new metric constrained by the length of each target summary, enabling a more objective evaluation of the generated content. The dataset and code are available at https://ipcv.github.io/SoccerHigh/.

Authors:Mo Wang, Kaining Peng, Jingsheng Tang, Hongkai Wen, Quanying Liu
Title: DCA: Graph-Guided Deep Embedding Clustering for Brain Atlases
Abstract:
Brain atlases are essential for reducing the dimensionality of neuroimaging data and enabling interpretable analysis. However, most existing atlases are predefined, group-level templates with limited flexibility and resolution. We present Deep Cluster Atlas (DCA), a graph-guided deep embedding clustering framework for generating individualized, voxel-wise brain parcellations. DCA combines a pretrained autoencoder with spatially regularized deep clustering to produce functionally coherent and spatially contiguous regions. Our method supports flexible control over resolution and anatomical scope, and generalizes to arbitrary brain structures. We further introduce a standardized benchmarking platform for atlas evaluation, using multiple large-scale fMRI datasets. Across multiple datasets and scales, DCA outperforms state-of-the-art atlases, improving functional homogeneity by 98.8% and silhouette coefficient by 29%, and achieves superior performance in downstream tasks such as autism diagnosis and cognitive decoding. We also observe that a fine-tuned pretrained model achieves superior results on the corresponding task. Codes and models are available at https://github.com/ncclab-sustech/DCA .

Authors:Wei Lu, Lingyu Zhu, Si-Bao Chen
Title: Unsupervised Ultra-High-Resolution UAV Low-Light Image Enhancement: A Benchmark, Metric and Framework
Abstract:
Low light conditions significantly degrade Unmanned Aerial Vehicles (UAVs) performance in critical applications. Existing Low-light Image Enhancement (LIE) methods struggle with the unique challenges of aerial imagery, including Ultra-High Resolution (UHR), lack of paired data, severe non-uniform illumination, and deployment constraints. To address these issues, we propose three key contributions. First, we present U3D, the first unsupervised UHR UAV dataset for LIE, with a unified evaluation toolkit. Second, we introduce the Edge Efficiency Index (EEI), a novel metric balancing perceptual quality with key deployment factors: speed, resolution, model complexity, and memory footprint. Third, we develop U3LIE, an efficient framework with two training-only designs-Adaptive Pre-enhancement Augmentation (APA) for input normalization and a Luminance Interval Loss (L_int) for exposure control. U3LIE achieves SOTA results, processing 4K images at 23.8 FPS on a single GPU, making it ideal for real-time on-board deployment. In summary, these contributions provide a holistic solution (dataset, metric, and method) for advancing robust 24/7 UAV vision. The code and datasets are available at https://github.com/lwCVer/U3D_Toolkit.

Authors:Jiayi Gao, Changcheng Hua, Qingchao Chen, Yuxin Peng, Yang Liu
Title: Identity-Preserving Text-to-Video Generation via Training-Free Prompt, Image, and Guidance Enhancement
Abstract:
Identity-preserving text-to-video (IPT2V) generation creates videos faithful to both a reference subject image and a text prompt. While fine-tuning large pretrained video diffusion models on ID-matched data achieves state-of-the-art results on IPT2V, data scarcity and high tuning costs hinder broader improvement. We thus introduce a Training-Free Prompt, Image, and Guidance Enhancement (TPIGE) framework that bridges the semantic gap between the video description and the reference image and design sampling guidance that enhances identity preservation and video quality, achieving performance gains at minimal cost.Specifically, we first propose Face Aware Prompt Enhancement, using GPT-4o to enhance the text prompt with facial details derived from the reference image. We then propose Prompt Aware Reference Image Enhancement, leveraging an identity-preserving image generator to refine the reference image, rectifying conflicts with the text prompt. The above mutual refinement significantly improves input quality before video generation. Finally, we propose ID-Aware Spatiotemporal Guidance Enhancement, utilizing unified gradients to optimize identity preservation and video quality jointly during generation.Our method outperforms prior work and is validated by automatic and human evaluations on a 1000 video test set, winning first place in the ACM Multimedia 2025 Identity-Preserving Video Generation Challenge, demonstrating state-of-the-art performance and strong generality. The code is available at https://github.com/Andyplus1/IPT2V.git.

Authors:Oussama Messai, Abbass Zein-Eddine, Abdelouahid Bentamou, Mickaël Picq, Nicolas Duquesne, Stéphane Puydarrieux, Yann Gavet
Title: Image Quality Enhancement and Detection of Small and Dense Objects in Industrial Recycling Processes
Abstract:
This paper tackles two key challenges: detecting small, dense, and overlapping objects (a major hurdle in computer vision) and improving the quality of noisy images, especially those encountered in industrial environments. [1, 2]. Our focus is on evaluating methods built on supervised deep learning. We perform an analysis of these methods, using a newly developed dataset comprising over 10k images and 120k instances. By evaluating their performance, accuracy, and computational efficiency, we identify the most reliable detection systems and highlight the specific challenges they address in industrial applications. This paper also examines the use of deep learning models to improve image quality in noisy industrial environments. We introduce a lightweight model based on a fully connected convolutional network. Additionally, we suggest potential future directions for further enhancing the effectiveness of the model. The repository of the dataset and proposed model can be found at: https://github.com/o-messai/SDOOD, https://github.com/o-messai/DDSRNet

Authors:Thinh-Phuc Nguyen, Thanh-Hai Nguyen, Gia-Huy Dinh, Lam-Huy Nguyen, Minh-Triet Tran, Trung-Nghia Le
Title: ReCap: Event-Aware Image Captioning with Article Retrieval and Semantic Gaussian Normalization
Abstract:
Image captioning systems often produce generic descriptions that fail to capture event-level semantics which are crucial for applications like news reporting and digital archiving. We present ReCap, a novel pipeline for event-enriched image retrieval and captioning that incorporates broader contextual information from relevant articles to generate narrative-rich, factually grounded captions. Our approach addresses the limitations of standard vision-language models that typically focus on visible content while missing temporal, social, and historical contexts. ReCap comprises three integrated components: (1) a robust two-stage article retrieval system using DINOv2 embeddings with global feature similarity for initial candidate selection followed by patch-level mutual nearest neighbor similarity re-ranking; (2) a context extraction framework that synthesizes information from article summaries, generic captions, and original source metadata; and (3) a large language model-based caption generation system with Semantic Gaussian Normalization to enhance fluency and relevance. Evaluated on the OpenEvents V1 dataset as part of Track 1 in the EVENTA 2025 Grand Challenge, ReCap achieved a strong overall score of 0.54666, ranking 2nd on the private test set. These results highlight ReCap's effectiveness in bridging visual perception with real-world knowledge, offering a practical solution for context-aware image understanding in high-stakes domains. The code is available at https://github.com/Noridom1/EVENTA2025-Event-Enriched-Image-Captioning.

Authors:Xiangdong Zhang, Shaofeng Zhang, Junchi Yan
Title: Towards More Diverse and Challenging Pre-training for Point Cloud Learning: Self-Supervised Cross Reconstruction with Decoupled Views
Abstract:
Point cloud learning, especially in a self-supervised way without manual labels, has gained growing attention in both vision and learning communities due to its potential utility in a wide range of applications. Most existing generative approaches for point cloud self-supervised learning focus on recovering masked points from visible ones within a single view. Recognizing that a two-view pre-training paradigm inherently introduces greater diversity and variance, it may thus enable more challenging and informative pre-training. Inspired by this, we explore the potential of two-view learning in this domain. In this paper, we propose Point-PQAE, a cross-reconstruction generative paradigm that first generates two decoupled point clouds/views and then reconstructs one from the other. To achieve this goal, we develop a crop mechanism for point cloud view generation for the first time and further propose a novel positional encoding to represent the 3D relative position between the two decoupled views. The cross-reconstruction significantly increases the difficulty of pre-training compared to self-reconstruction, which enables our method to surpass previous single-modal self-reconstruction methods in 3D self-supervised learning. Specifically, it outperforms the self-reconstruction baseline (Point-MAE) by 6.5%, 7.0%, and 6.7% in three variants of ScanObjectNN with the Mlp-Linear evaluation protocol. The code is available at https://github.com/aHapBean/Point-PQAE.

Authors:Lee Chae-Yeon, Nam Hyeon-Woo, Tae-Hyun Oh
Title: Learning Correlation-aware Aleatoric Uncertainty for 3D Hand Pose Estimation
Abstract:
3D hand pose estimation is a fundamental task in understanding human hands. However, accurately estimating 3D hand poses remains challenging due to the complex movement of hands, self-similarity, and frequent occlusions. In this work, we address two limitations: the inability of existing 3D hand pose estimation methods to estimate aleatoric (data) uncertainty, and the lack of uncertainty modeling that incorporates joint correlation knowledge, which has not been thoroughly investigated. To this end, we introduce aleatoric uncertainty modeling into the 3D hand pose estimation framework, aiming to achieve a better trade-off between modeling joint correlations and computational efficiency. We propose a novel parameterization that leverages a single linear layer to capture intrinsic correlations among hand joints. This is enabled by formulating the hand joint output space as a probabilistic distribution, allowing the linear layer to capture joint correlations. Our proposed parameterization is used as a task head layer, and can be applied as an add-on module on top of the existing models. Our experiments demonstrate that our parameterization for uncertainty modeling outperforms existing approaches. Furthermore, the 3D hand pose estimation model equipped with our uncertainty head achieves favorable accuracy in 3D hand pose estimation while introducing new uncertainty modeling capability to the model. The project page is available at https://hand-uncertainty.github.io/.

Authors:Lingzhou Mu, Qiang Wang, Fan Jiang, Mengchao Wang, Yaqi Fan, Mu Xu, Kai Zhang
Title: FantasyHSI: Video-Generation-Centric 4D Human Synthesis In Any Scene through A Graph-based Multi-Agent Framework
Abstract:
Human-Scene Interaction (HSI) seeks to generate realistic human behaviors within complex environments, yet it faces significant challenges in handling long-horizon, high-level tasks and generalizing to unseen scenes. To address these limitations, we introduce FantasyHSI, a novel HSI framework centered on video generation and multi-agent systems that operates without paired data. We model the complex interaction process as a dynamic directed graph, upon which we build a collaborative multi-agent system. This system comprises a scene navigator agent for environmental perception and high-level path planning, and a planning agent that decomposes long-horizon goals into atomic actions. Critically, we introduce a critic agent that establishes a closed-loop feedback mechanism by evaluating the deviation between generated actions and the planned path. This allows for the dynamic correction of trajectory drifts caused by the stochasticity of the generative model, thereby ensuring long-term logical consistency. To enhance the physical realism of the generated motions, we leverage Direct Preference Optimization (DPO) to train the action generator, significantly reducing artifacts such as limb distortion and foot-sliding. Extensive experiments on our custom SceneBench benchmark demonstrate that FantasyHSI significantly outperforms existing methods in terms of generalization, long-horizon task completion, and physical realism. Ours project page: https://fantasy-amap.github.io/fantasy-hsi/

Authors:Yuan Liu, Zhongyin Zhao, Le Tian, Haicheng Wang, Xubing Ye, Yangxiu You, Zilin Yu, Chuhan Wu, Xiao Zhou, Yang Yu, Jie Zhou
Title: POINTS-Reader: Distillation-Free Adaptation of Vision-Language Models for Document Conversion
Abstract:
High-quality labeled data is essential for training accurate document conversion models, particularly in domains with complex formats such as tables, formulas, and multi-column text. However, manual annotation is both costly and time-consuming, while automatic labeling using existing models often lacks accuracy in handling such challenging scenarios. Consequently, training student models by distilling outputs from teacher models can significantly limit their performance in real-world applications. In this paper, we propose a fully automated, distillation-free framework comprising two stages for constructing high-quality document extraction datasets and models capable of handling diverse document formats and layouts. In the first stage, we introduce a method for generating large-scale, diverse synthetic data, which enables a model to extract key elements in a unified format with strong initial performance. In the second stage, we present a self-improvement approach that further adapts the model, initially trained on synthetic data, to real-world documents. Specifically, we first use the fine-tuned model to annotate real documents, then apply a suite of filtering strategies to verify annotation quality, and finally retrain the model on the verified dataset. By iteratively repeating this process, we progressively enhance both the model's conversion capabilities and the quality of the generated data. We train a public POINTS-1.5 model to obtain POINTS-Reader, which surpasses many existing public and proprietary models of comparable or larger size. Our model is available at https://github.com/Tencent/POINTS-Reader.

Authors:Tianwei Ye, Yong Ma, Xiaoguang Mei
Title: DcMatch: Unsupervised Multi-Shape Matching with Dual-Level Consistency
Abstract:
Establishing point-to-point correspondences across multiple 3D shapes is a fundamental problem in computer vision and graphics. In this paper, we introduce DcMatch, a novel unsupervised learning framework for non-rigid multi-shape matching. Unlike existing methods that learn a canonical embedding from a single shape, our approach leverages a shape graph attention network to capture the underlying manifold structure of the entire shape collection. This enables the construction of a more expressive and robust shared latent space, leading to more consistent shape-to-universe correspondences via a universe predictor. Simultaneously, we represent these correspondences in both the spatial and spectral domains and enforce their alignment in the shared universe space through a novel cycle consistency loss. This dual-level consistency fosters more accurate and coherent mappings. Extensive experiments on several challenging benchmarks demonstrate that our method consistently outperforms previous state-of-the-art approaches across diverse multi-shape matching scenarios. Code is available at https://github.com/YeTianwei/DcMatch.

Authors:Bingnan Yang, Mi Zhang, Zhili Zhang, Zhan Zhang, Yuanxin Zhao, Xiangyun Hu, Jianya Gong
Title: SegAssess: Panoramic quality mapping for robust and transferable unsupervised segmentation assessment
Abstract:
High-quality image segmentation is fundamental to pixel-level geospatial analysis in remote sensing, necessitating robust segmentation quality assessment (SQA), particularly in unsupervised settings lacking ground truth. Although recent deep learning (DL) based unsupervised SQA methods show potential, they often suffer from coarse evaluation granularity, incomplete assessments, and poor transferability. To overcome these limitations, this paper introduces Panoramic Quality Mapping (PQM) as a new paradigm for comprehensive, pixel-wise SQA, and presents SegAssess, a novel deep learning framework realizing this approach. SegAssess distinctively formulates SQA as a fine-grained, four-class panoramic segmentation task, classifying pixels within a segmentation mask under evaluation into true positive (TP), false positive (FP), true negative (TN), and false negative (FN) categories, thereby generating a complete quality map. Leveraging an enhanced Segment Anything Model (SAM) architecture, SegAssess uniquely employs the input mask as a prompt for effective feature integration via cross-attention. Key innovations include an Edge Guided Compaction (EGC) branch with an Aggregated Semantic Filter (ASF) module to refine predictions near challenging object edges, and an Augmented Mixup Sampling (AMS) training strategy integrating multi-source masks to significantly boost cross-domain robustness and zero-shot transferability. Comprehensive experiments across 32 datasets derived from 6 sources demonstrate that SegAssess achieves state-of-the-art (SOTA) performance and exhibits remarkable zero-shot transferability to unseen masks, establishing PQM via SegAssess as a robust and transferable solution for unsupervised SQA. The code is available at https://github.com/Yangbn97/SegAssess.

Authors:Weiren Zhao, Lanfeng Zhong, Xin Liao, Wenjun Liao, Sichuan Zhang, Shaoting Zhang, Guotai Wang
Title: MetaSSL: A General Heterogeneous Loss for Semi-Supervised Medical Image Segmentation
Abstract:
Semi-Supervised Learning (SSL) is important for reducing the annotation cost for medical image segmentation models. State-of-the-art SSL methods such as Mean Teacher, FixMatch and Cross Pseudo Supervision (CPS) are mainly based on consistency regularization or pseudo-label supervision between a reference prediction and a supervised prediction. Despite the effectiveness, they have overlooked the potential noise in the labeled data, and mainly focus on strategies to generate the reference prediction, while ignoring the heterogeneous values of different unlabeled pixels. We argue that effectively mining the rich information contained by the two predictions in the loss function, instead of the specific strategy to obtain a reference prediction, is more essential for SSL, and propose a universal framework MetaSSL based on a spatially heterogeneous loss that assigns different weights to pixels by simultaneously leveraging the uncertainty and consistency information between the reference and supervised predictions. Specifically, we split the predictions on unlabeled data into four regions with decreasing weights in the loss: Unanimous and Confident (UC), Unanimous and Suspicious (US), Discrepant and Confident (DC), and Discrepant and Suspicious (DS), where an adaptive threshold is proposed to distinguish confident predictions from suspicious ones. The heterogeneous loss is also applied to labeled images for robust learning considering the potential annotation noise. Our method is plug-and-play and general to most existing SSL methods. The experimental results showed that it improved the segmentation performance significantly when integrated with existing SSL frameworks on different datasets. Code is available at https://github.com/HiLab-git/MetaSSL.

Authors:Zhengqiang Zhang, Rongyuan Wu, Lingchen Sun, Lei Zhang
Title: GPSToken: Gaussian Parameterized Spatially-adaptive Tokenization for Image Representation and Generation
Abstract:
Effective and efficient tokenization plays an important role in image representation and generation. Conventional methods, constrained by uniform 2D/1D grid tokenization, are inflexible to represent regions with varying shapes and textures and at different locations, limiting their efficacy of feature representation. In this work, we propose $\textbf{GPSToken}$, a novel $\textbf{G}$aussian $\textbf{P}$arameterized $\textbf{S}$patially-adaptive $\textbf{Token}$ization framework, to achieve non-uniform image tokenization by leveraging parametric 2D Gaussians to dynamically model the shape, position, and textures of different image regions. We first employ an entropy-driven algorithm to partition the image into texture-homogeneous regions of variable sizes. Then, we parameterize each region as a 2D Gaussian (mean for position, covariance for shape) coupled with texture features. A specialized transformer is trained to optimize the Gaussian parameters, enabling continuous adaptation of position/shape and content-aware feature extraction. During decoding, Gaussian parameterized tokens are reconstructed into 2D feature maps through a differentiable splatting-based renderer, bridging our adaptive tokenization with standard decoders for end-to-end training. GPSToken disentangles spatial layout (Gaussian parameters) from texture features to enable efficient two-stage generation: structural layout synthesis using lightweight networks, followed by structure-conditioned texture generation. Experiments demonstrate the state-of-the-art performance of GPSToken, which achieves rFID and FID scores of 0.65 and 1.50 on image reconstruction and generation tasks using 128 tokens, respectively. Codes and models of GPSToken can be found at $\href{https://github.com/xtudbxk/GPSToken}{https://github.com/xtudbxk/GPSToken}$.

Authors:Huang Fang, Mengxi Zhang, Heng Dong, Wei Li, Zixuan Wang, Qifeng Zhang, Xueyun Tian, Yucheng Hu, Hang Li
Title: Robix: A Unified Model for Robot Interaction, Reasoning and Planning
Abstract:
We introduce Robix, a unified model that integrates robot reasoning, task planning, and natural language interaction within a single vision-language architecture. Acting as the high-level cognitive layer in a hierarchical robot system, Robix dynamically generates atomic commands for the low-level controller and verbal responses for human interaction, enabling robots to follow complex instructions, plan long-horizon tasks, and interact naturally with human within an end-to-end framework. Robix further introduces novel capabilities such as proactive dialogue, real-time interruption handling, and context-aware commonsense reasoning during task execution. At its core, Robix leverages chain-of-thought reasoning and adopts a three-stage training strategy: (1) continued pretraining to enhance foundational embodied reasoning abilities including 3D spatial understanding, visual grounding, and task-centric reasoning; (2) supervised finetuning to model human-robot interaction and task planning as a unified reasoning-action sequence; and (3) reinforcement learning to improve reasoning-action consistency and long-horizon task coherence. Extensive experiments demonstrate that Robix outperforms both open-source and commercial baselines (e.g., GPT-4o and Gemini 2.5 Pro) in interactive task execution, demonstrating strong generalization across diverse instruction types (e.g., open-ended, multi-stage, constrained, invalid, and interrupted) and various user-involved tasks such as table bussing, grocery shopping, and dietary filtering.

Authors:Dongfu Jiang, Yi Lu, Zhuofeng Li, Zhiheng Lyu, Ping Nie, Haozhe Wang, Alex Su, Hui Chen, Kai Zou, Chao Du, Tianyu Pang, Wenhu Chen
Title: VerlTool: Towards Holistic Agentic Reinforcement Learning with Tool Use
Abstract:
Reinforcement Learning with Verifiable Rewards (RLVR) has demonstrated success in enhancing LLM reasoning capabilities, but remains limited to single-turn interactions without tool integration. While recent Agentic Reinforcement Learning with Tool use (ARLT) approaches have emerged to address multi-turn tool interactions, existing works develop task-specific codebases that suffer from fragmentation, synchronous execution bottlenecks, and limited extensibility across domains. These inefficiencies hinder broader community adoption and algorithmic innovation. We introduce VerlTool, a unified and modular framework that addresses these limitations through systematic design principles. VerlTool provides four key contributions: (1) upstream alignment with VeRL ensuring compatibility and simplified maintenance, (2) unified tool management via standardized APIs supporting diverse modalities including code execution, search, SQL databases, and vision processing, (3) asynchronous rollout execution achieving near 2$\times$ speedup by eliminating synchronization bottlenecks, and (4) comprehensive evaluation demonstrating competitive performance across 6 ARLT domains. Our framework formalizes ARLT as multi-turn trajectories with multi-modal observation tokens (text/image/video), extending beyond single-turn RLVR paradigms. We train and evaluate models on mathematical reasoning, knowledge QA, SQL generation, visual reasoning, web search, and software engineering tasks, achieving results comparable to specialized systems while providing unified training infrastructure. The modular plugin architecture enables rapid tool integration requiring only lightweight Python definitions, significantly reducing development overhead and providing a scalable foundation for tool-augmented RL research. Our code is open-sourced at https://github.com/TIGER-AI-Lab/verl-tool.

Authors:Jaewoo Ahn, Junseo Kim, Heeseung Yun, Jaehyeon Son, Dongmin Park, Jaewoong Cho, Gunhee Kim
Title: FlashAdventure: A Benchmark for GUI Agents Solving Full Story Arcs in Diverse Adventure Games
Abstract:
GUI agents powered by LLMs show promise in interacting with diverse digital environments. Among these, video games offer a valuable testbed due to their varied interfaces, with adventure games posing additional challenges through complex, narrative-driven interactions. Existing game benchmarks, however, lack diversity and rarely evaluate agents on completing entire storylines. To address this, we introduce FlashAdventure, a benchmark of 34 Flash-based adventure games designed to test full story arc completion and tackle the observation-behavior gap: the challenge of remembering and acting on earlier gameplay information. We also propose CUA-as-a-Judge, an automated gameplay evaluator, and COAST, an agentic framework leveraging long-term clue memory to better plan and solve sequential tasks. Experiments show current GUI agents struggle with full story arcs, while COAST improves milestone completion by bridging the observation-behavior gap. Nonetheless, a marked discrepancy between humans and best-performing agents warrants continued research efforts to narrow this divide.

Authors:Josef Grün, Lukas Meyer, Maximilian Weiherer, Bernhard Egger, Marc Stamminger, Linus Franke
Title: Towards Integrating Multi-Spectral Imaging with Gaussian Splatting
Abstract:
We present a study of how to integrate color (RGB) and multi-spectral imagery (red, green, red-edge, and near-infrared) into the 3D Gaussian Splatting (3DGS) framework, a state-of-the-art explicit radiance-field-based method for fast and high-fidelity 3D reconstruction from multi-view images. While 3DGS excels on RGB data, naive per-band optimization of additional spectra yields poor reconstructions due to inconsistently appearing geometry in the spectral domain. This problem is prominent, even though the actual geometry is the same, regardless of spectral modality. To investigate this, we evaluate three strategies: 1) Separate per-band reconstruction with no shared structure. 2) Splitting optimization, in which we first optimize RGB geometry, copy it, and then fit each new band to the model by optimizing both geometry and band representation. 3) Joint, in which the modalities are jointly optimized, optionally with an initial RGB-only phase. We showcase through quantitative metrics and qualitative novel-view renderings on multi-spectral datasets the effectiveness of our dedicated optimized Joint strategy, increasing overall spectral reconstruction as well as enhancing RGB results through spectral cross-talk. We therefore suggest integrating multi-spectral data directly into the spherical harmonics color components to compactly model each Gaussian's multi-spectral reflectance. Moreover, our analysis reveals several key trade-offs in when and how to introduce spectral bands during optimization, offering practical insights for robust multi-modal 3DGS reconstruction.

Authors:Yutong Gao, Maoyuan Shao, Xinyang Huang, Chuang Zhu, Lijuan Sun, Yu Weng, Xuan Liu, Guoshun Nan
Title: Spotlighter: Revisiting Prompt Tuning from a Representative Mining View
Abstract:
CLIP's success has demonstrated that prompt tuning can achieve robust cross-modal semantic alignment for tasks ranging from open-domain recognition to fine-grained classification. However, redundant or weakly relevant feature components introduce noise and incur unnecessary computational costs. In this work, we propose Spotlighter, a lightweight token-selection framework that simultaneously enhances accuracy and efficiency in prompt tuning. Spotlighter evaluates each visual token's activation from both sample-wise and semantic-wise perspectives and retains only the top-scoring tokens for downstream prediction. A class-specific semantic memory bank of learned prototypes refines this selection, ensuring semantic representativeness and compensating for discarded features. To further prioritize informative signals, we introduce a two-level ranking mechanism that dynamically weights token--prototype interactions. Across 11 few-shot benchmarks, Spotlighter outperforms CLIP by up to 11.19\% in harmonic mean accuracy and achieves up to 0.8K additional FPS, with only 21 extra parameters. These results establish Spotlighter as an effective and scalable baseline for prompt tuning. Code for our method will be available at https://github.com/greatest-gourmet/Spotlighter.

Authors:Zirui Zhou, Zizhao Peng, Dongyang Jin, Chao Fan, Fengwei An, Shiqi Yu
Title: Pose as Clinical Prior: Learning Dual Representations for Scoliosis Screening
Abstract:
Recent AI-based scoliosis screening methods primarily rely on large-scale silhouette datasets, often neglecting clinically relevant postural asymmetries-key indicators in traditional screening. In contrast, pose data provide an intuitive skeletal representation, enhancing clinical interpretability across various medical applications. However, pose-based scoliosis screening remains underexplored due to two main challenges: (1) the scarcity of large-scale, annotated pose datasets; and (2) the discrete and noise-sensitive nature of raw pose coordinates, which hinders the modeling of subtle asymmetries. To address these limitations, we introduce Scoliosis1K-Pose, a 2D human pose annotation set that extends the original Scoliosis1K dataset, comprising 447,900 frames of 2D keypoints from 1,050 adolescents. Building on this dataset, we introduce the Dual Representation Framework (DRF), which integrates a continuous skeleton map to preserve spatial structure with a discrete Postural Asymmetry Vector (PAV) that encodes clinically relevant asymmetry descriptors. A novel PAV-Guided Attention (PGA) module further uses the PAV as clinical prior to direct feature extraction from the skeleton map, focusing on clinically meaningful asymmetries. Extensive experiments demonstrate that DRF achieves state-of-the-art performance. Visualizations further confirm that the model leverages clinical asymmetry cues to guide feature extraction and promote synergy between its dual representations. The dataset and code are publicly available at https://zhouzi180.github.io/Scoliosis1K/.

Authors:Xueyang Kang, Zhengkang Xiang, Zezheng Zhang, Kourosh Khoshelham
Title: Look Beyond: Two-Stage Scene View Generation via Panorama and Video Diffusion
Abstract:
Novel view synthesis (NVS) from a single image is highly ill-posed due to large unobserved regions, especially for views that deviate significantly from the input. While existing methods focus on consistency between the source and generated views, they often fail to maintain coherence and correct view alignment across long-range or looped trajectories. We propose a model that addresses this by decomposing single-view NVS into a 360-degree scene extrapolation followed by novel view interpolation. This design ensures long-term view and scene consistency by conditioning on keyframes extracted and warped from a generated panoramic representation. In the first stage, a panorama diffusion model learns the scene prior from the input perspective image. Perspective keyframes are then sampled and warped from the panorama and used as anchor frames in a pre-trained video diffusion model, which generates novel views through a proposed spatial noise diffusion process. Compared to prior work, our method produces globally consistent novel views -- even in loop closure scenarios -- while enabling flexible camera control. Experiments on diverse scene datasets demonstrate that our approach outperforms existing methods in generating coherent views along user-defined trajectories. Our implementation is available at https://github.com/YiGuYT/LookBeyond.

Authors:Sicheng Yang, Hongqiu Wang, Zhaohu Xing, Sixiang Chen, Lei Zhu
Title: SegDINO: An Efficient Design for Medical and Natural Image Segmentation with DINO-V3
Abstract:
The DINO family of self-supervised vision models has shown remarkable transferability, yet effectively adapting their representations for segmentation remains challenging. Existing approaches often rely on heavy decoders with multi-scale fusion or complex upsampling, which introduce substantial parameter overhead and computational cost. In this work, we propose SegDINO, an efficient segmentation framework that couples a frozen DINOv3 backbone with a lightweight decoder. SegDINO extracts multi-level features from the pretrained encoder, aligns them to a common resolution and channel width, and utilizes a lightweight MLP head to directly predict segmentation masks. This design minimizes trainable parameters while preserving the representational power of foundation features. Extensive experiments across six benchmarks, including three medical datasets (TN3K, Kvasir-SEG, ISIC) and three natural image datasets (MSD, VMD-D, ViSha), demonstrate that SegDINO consistently achieves state-of-the-art performance compared to existing methods. Code is available at https://github.com/script-Yang/SegDINO.

Authors:Xinlei Liu, Tao Hu, Peng Yi, Weitao Han, Jichao Xie, Baolin Li
Title: Sequential Difference Maximization: Generating Adversarial Examples via Multi-Stage Optimization
Abstract:
Efficient adversarial attack methods are critical for assessing the robustness of computer vision models. In this paper, we reconstruct the optimization objective for generating adversarial examples as "maximizing the difference between the non-true labels' probability upper bound and the true label's probability," and propose a gradient-based attack method termed Sequential Difference Maximization (SDM). SDM establishes a three-layer optimization framework of "cycle-stage-step." The processes between cycles and between iterative steps are respectively identical, while optimization stages differ in terms of loss functions: in the initial stage, the negative probability of the true label is used as the loss function to compress the solution space; in subsequent stages, we introduce the Directional Probability Difference Ratio (DPDR) loss function to gradually increase the non-true labels' probability upper bound by compressing the irrelevant labels' probabilities. Experiments demonstrate that compared with previous SOTA methods, SDM not only exhibits stronger attack performance but also achieves higher attack cost-effectiveness. Additionally, SDM can be combined with adversarial training methods to enhance their defensive effects. The code is available at https://github.com/X-L-Liu/SDM.

Authors:Zeyu Li, Annan Shu
Title: Aligned Anchor Groups Guided Line Segment Detector
Abstract:
This paper introduces a novel line segment detector, the Aligned Anchor Groups guided Line Segment Detector (AAGLSD), designed to detect line segments from images with high precision and completeness. The algorithm employs a hierarchical approach to extract candidate pixels with different saliency levels, including regular anchors and aligned anchor groups. AAGLSD initiates from these aligned anchor groups, sequentially linking anchors and updating the currently predicted line segment simultaneously. The final predictions are derived through straightforward validation and merging of adjacent line segments, avoiding complex refinement strategies. AAGLSD is evaluated on various datasets and quantitative experiments demonstrate that the proposed method can effectively extract complete line segments from input images compared to other advanced line segment detectors. The implementation is available at https://github.com/LLiDaBao/AAGLSD.

Authors:Yangsong Zhang, Abdul Ahad Butt, Gül Varol, Ivan Laptev
Title: InterPose: Learning to Generate Human-Object Interactions from Large-Scale Web Videos
Abstract:
Human motion generation has shown great advances thanks to the recent diffusion models trained on large-scale motion capture data. Most of existing works, however, currently target animation of isolated people in empty scenes. Meanwhile, synthesizing realistic human-object interactions in complex 3D scenes remains a critical challenge in computer graphics and robotics. One obstacle towards generating versatile high-fidelity human-object interactions is the lack of large-scale datasets with diverse object manipulations. Indeed, existing motion capture data is typically restricted to single people and manipulations of limited sets of objects. To address this issue, we propose an automatic motion extraction pipeline and use it to collect interaction-rich human motions. Our new dataset InterPose contains 73.8K sequences of 3D human motions and corresponding text captions automatically obtained from 45.8K videos with human-object interactions. We perform extensive experiments and demonstrate InterPose to bring significant improvements to state-of-the-art methods for human motion generation. Moreover, using InterPose we develop an LLM-based agent enabling zero-shot animation of people interacting with diverse objects and scenes.

Authors:Xiufeng Huang, Ziyuan Luo, Qi Song, Ruofei Wang, Renjie Wan
Title: MarkSplatter: Generalizable Watermarking for 3D Gaussian Splatting Model via Splatter Image Structure
Abstract:
The growing popularity of 3D Gaussian Splatting (3DGS) has intensified the need for effective copyright protection. Current 3DGS watermarking methods rely on computationally expensive fine-tuning procedures for each predefined message. We propose the first generalizable watermarking framework that enables efficient protection of Splatter Image-based 3DGS models through a single forward pass. We introduce GaussianBridge that transforms unstructured 3D Gaussians into Splatter Image format, enabling direct neural processing for arbitrary message embedding. To ensure imperceptibility, we design a Gaussian-Uncertainty-Perceptual heatmap prediction strategy for preserving visual quality. For robust message recovery, we develop a dense segmentation-based extraction mechanism that maintains reliable extraction even when watermarked objects occupy minimal regions in rendered views. Project page: https://kevinhuangxf.github.io/marksplatter.

Authors:Dinh-Khoi Vo, Van-Loc Nguyen, Minh-Triet Tran, Trung-Nghia Le
Title: EVENT-Retriever: Event-Aware Multimodal Image Retrieval for Realistic Captions
Abstract:
Event-based image retrieval from free-form captions presents a significant challenge: models must understand not only visual features but also latent event semantics, context, and real-world knowledge. Conventional vision-language retrieval approaches often fall short when captions describe abstract events, implicit causality, temporal context, or contain long, complex narratives. To tackle these issues, we introduce a multi-stage retrieval framework combining dense article retrieval, event-aware language model reranking, and efficient image collection, followed by caption-guided semantic matching and rank-aware selection. We leverage Qwen3 for article search, Qwen3-Reranker for contextual alignment, and Qwen2-VL for precise image scoring. To further enhance performance and robustness, we fuse outputs from multiple configurations using Reciprocal Rank Fusion (RRF). Our system achieves the top-1 score on the private test set of Track 2 in the EVENTA 2025 Grand Challenge, demonstrating the effectiveness of combining language-based reasoning and multimodal retrieval for complex, real-world image understanding. The code is available at https://github.com/vdkhoi20/EVENT-Retriever.

Authors:Yumeng Lin, Dong Li, Xintao Wu, Minglai Shao, Xujiang Zhao, Zhong Chen, Chen Zhao
Title: Face4FairShifts: A Large Image Benchmark for Fairness and Robust Learning across Visual Domains
Abstract:
Ensuring fairness and robustness in machine learning models remains a challenge, particularly under domain shifts. We present Face4FairShifts, a large-scale facial image benchmark designed to systematically evaluate fairness-aware learning and domain generalization. The dataset includes 100,000 images across four visually distinct domains with 39 annotations within 14 attributes covering demographic and facial features. Through extensive experiments, we analyze model performance under distribution shifts and identify significant gaps. Our findings emphasize the limitations of existing related datasets and the need for more effective fairness-aware domain adaptation techniques. Face4FairShifts provides a comprehensive testbed for advancing equitable and reliable AI systems. The dataset is available online at https://meviuslab.github.io/Face4FairShifts/.

Authors:Aviral Chharia, Wenbo Gou, Haoye Dong
Title: MV-SSM: Multi-View State Space Modeling for 3D Human Pose Estimation
Abstract:
While significant progress has been made in single-view 3D human pose estimation, multi-view 3D human pose estimation remains challenging, particularly in terms of generalizing to new camera configurations. Existing attention-based transformers often struggle to accurately model the spatial arrangement of keypoints, especially in occluded scenarios. Additionally, they tend to overfit specific camera arrangements and visual scenes from training data, resulting in substantial performance drops in new settings. In this study, we introduce a novel Multi-View State Space Modeling framework, named MV-SSM, for robustly estimating 3D human keypoints. We explicitly model the joint spatial sequence at two distinct levels: the feature level from multi-view images and the person keypoint level. We propose a Projective State Space (PSS) block to learn a generalized representation of joint spatial arrangements using state space modeling. Moreover, we modify Mamba's traditional scanning into an effective Grid Token-guided Bidirectional Scanning (GTBS), which is integral to the PSS block. Multiple experiments demonstrate that MV-SSM achieves strong generalization, outperforming state-of-the-art methods: +10.8 on AP25 (+24%) on the challenging three-camera setting in CMU Panoptic, +7.0 on AP25 (+13%) on varying camera arrangements, and +15.3 PCP (+38%) on Campus A1 in cross-dataset evaluations. Project Website: https://aviralchharia.github.io/MV-SSM

Authors:Maggie Chen, Hala Lambdouar, Luca Marini, Laura Martínez-Ferrer, Chris Bridges, Giacomo Acciarini
Title: Towards Methane Detection Onboard Satellites
Abstract:
Methane is a potent greenhouse gas and a major driver of climate change, making its timely detection critical for effective mitigation. Machine learning (ML) deployed onboard satellites can enable rapid detection while reducing downlink costs, supporting faster response systems. Conventional methane detection methods often rely on image processing techniques, such as orthorectification to correct geometric distortions and matched filters to enhance plume signals. We introduce a novel approach that bypasses these preprocessing steps by using \textit{unorthorectified} data (UnorthoDOS). We find that ML models trained on this dataset achieve performance comparable to those trained on orthorectified data. Moreover, we also train models on an orthorectified dataset, showing that they can outperform the matched filter baseline (mag1c). We release model checkpoints and two ML-ready datasets comprising orthorectified and unorthorectified hyperspectral images from the Earth Surface Mineral Dust Source Investigation (EMIT) sensor at https://huggingface.co/datasets/SpaceML/UnorthoDOS , along with code at https://github.com/spaceml-org/plume-hunter.

Authors:Yannick Kirchhoff, Maximilian Rokuss, Fabian Isensee, Klaus H. Maier-Hein
Title: Promptable Longitudinal Lesion Segmentation in Whole-Body CT
Abstract:
Accurate segmentation of lesions in longitudinal whole-body CT is essential for monitoring disease progression and treatment response. While automated methods benefit from incorporating longitudinal information, they remain limited in their ability to consistently track individual lesions across time. Task 2 of the autoPET/CT IV Challenge addresses this by providing lesion localizations and baseline delineations, framing the problem as longitudinal promptable segmentation. In this work, we extend the recently proposed LongiSeg framework with promptable capabilities, enabling lesion-specific tracking through point and mask interactions. To address the limited size of the provided training set, we leverage large-scale pretraining on a synthetic longitudinal CT dataset. Our experiments show that pretraining substantially improves the ability to exploit longitudinal context, yielding an improvement of up to 6 Dice points compared to models trained from scratch. These findings demonstrate the effectiveness of combining longitudinal context with interactive prompting for robust lesion tracking. Code is publicly available at https://github.com/MIC-DKFZ/LongiSeg/tree/autoPET.

Authors:Tao Jiang, Tianyuan Yuan, Yicheng Liu, Chenhao Lu, Jianning Cui, Xiao Liu, Shuiqi Cheng, Jiyang Gao, Huazhe Xu, Hang Zhao
Title: Galaxea Open-World Dataset and G0 Dual-System VLA Model
Abstract:
We present Galaxea Open-World Dataset, a large-scale, diverse collection of robot behaviors recorded in authentic human living and working environments. All demonstrations are gathered using a consistent robotic embodiment, paired with precise subtask-level language annotations to facilitate both training and evaluation. Building on this dataset, we introduce G0, a dual-system framework that couples a Vision-Language Model (VLM) for multimodal planning with a Vision-Language-Action (VLA) model for fine-grained execution. G0 is trained using a three-stage curriculum: cross-embodiment pre-training, single-embodiment pre-training, and task-specific post-training. A comprehensive benchmark spanning tabletop manipulation, few-shot learning, and long-horizon mobile manipulation, demonstrates the effectiveness of our approach. In particular, we find that the single-embodiment pre-training stage, together with the Galaxea Open-World Dataset, plays a critical role in achieving strong performance.

Authors:Peirong Liu, Oula Puonti, Xiaoling Hu, Karthik Gopinath, Annabel Sorby-Adams, Daniel C. Alexander, W. Taylor Kimberly, Juan E. Iglesias
Title: A Modality-agnostic Multi-task Foundation Model for Human Brain Imaging
Abstract:
Recent learning-based approaches have made astonishing advances in calibrated medical imaging like computerized tomography (CT), yet they struggle to generalize in uncalibrated modalities -- notably magnetic resonance (MR) imaging, where performance is highly sensitive to the differences in MR contrast, resolution, and orientation. This prevents broad applicability to diverse real-world clinical protocols. Here we introduce BrainFM, a modality-agnostic, multi-task vision foundation model for human brain imaging. With the proposed "mild-to-severe" intra-subject generation and "real-synth" mix-up training strategy, BrainFM is resilient to the appearance of acquired images (e.g., modality, contrast, deformation, resolution, artifacts), and can be directly applied to five fundamental brain imaging tasks, including image synthesis for CT and T1w/T2w/FLAIR MRI, anatomy segmentation, scalp-to-cortical distance, bias field estimation, and registration. We evaluate the efficacy of BrainFM on eleven public datasets, and demonstrate its robustness and effectiveness across all tasks and input modalities. Code is available at https://github.com/jhuldr/BrainFM.

Authors:Yasser Benigmim, Subhankar Roy, Khalid Oublal, Imad Eddine Marouf, Slim Essid, Vicky Kalogeiton, Stéphane Lathuilière
Title: Make me an Expert: Distilling from Generalist Black-Box Models into Specialized Models for Semantic Segmentation
Abstract:
The rise of Artificial Intelligence as a Service (AIaaS) democratizes access to pre-trained models via Application Programming Interfaces (APIs), but also raises a fundamental question: how can local models be effectively trained using black-box models that do not expose their weights, training data, or logits, a constraint in which current domain adaptation paradigms are impractical ? To address this challenge, we introduce the Black-Box Distillation (B2D) setting, which enables local model adaptation under realistic constraints: (1) the API model is open-vocabulary and trained on large-scale general-purpose data, and (2) access is limited to one-hot predictions only. We identify that open-vocabulary models exhibit significant sensitivity to input resolution, with different object classes being segmented optimally at different scales, a limitation termed the "curse of resolution". Our method, ATtention-Guided sCaler (ATGC), addresses this challenge by leveraging DINOv2 attention maps to dynamically select optimal scales for black-box model inference. ATGC scores the attention maps with entropy to identify informative scales for pseudo-labelling, enabling effective distillation. Experiments demonstrate substantial improvements under black-box supervision across multiple datasets while requiring only one-hot API predictions. Our code is available at https://github.com/yasserben/ATGC.

Authors:Xiang Chen, Renjiu Hu, Jinwei Zhang, Yuxi Zhang, Xinyao Yue, Min Liu, Yaonan Wang, Hang Zhang
Title: Encoder-Only Image Registration
Abstract:
Learning-based techniques have significantly improved the accuracy and speed of deformable image registration. However, challenges such as reducing computational complexity and handling large deformations persist. To address these challenges, we analyze how convolutional neural networks (ConvNets) influence registration performance using the Horn-Schunck optical flow equation. Supported by prior studies and our empirical experiments, we observe that ConvNets play two key roles in registration: linearizing local intensities and harmonizing global contrast variations. Based on these insights, we propose the Encoder-Only Image Registration (EOIR) framework, designed to achieve a better accuracy-efficiency trade-off. EOIR separates feature learning from flow estimation, employing only a 3-layer ConvNet for feature extraction and a set of 3-layer flow estimators to construct a Laplacian feature pyramid, progressively composing diffeomorphic deformations under a large-deformation model. Results on five datasets across different modalities and anatomical regions demonstrate EOIR's effectiveness, achieving superior accuracy-efficiency and accuracy-smoothness trade-offs. With comparable accuracy, EOIR provides better efficiency and smoothness, and vice versa. The source code of EOIR is publicly available on https://github.com/XiangChen1994/EOIR.

Authors:Xuechao Zou, Shun Zhang, Xing Fu, Yue Li, Kai Li, Yushe Cao, Congyan Lang, Pin Tao, Junliang Xing
Title: Mixture of Global and Local Experts with Diffusion Transformer for Controllable Face Generation
Abstract:
Controllable face generation poses critical challenges in generative modeling due to the intricate balance required between semantic controllability and photorealism. While existing approaches struggle with disentangling semantic controls from generation pipelines, we revisit the architectural potential of Diffusion Transformers (DiTs) through the lens of expert specialization. This paper introduces Face-MoGLE, a novel framework featuring: (1) Semantic-decoupled latent modeling through mask-conditioned space factorization, enabling precise attribute manipulation; (2) A mixture of global and local experts that captures holistic structure and region-level semantics for fine-grained controllability; (3) A dynamic gating network producing time-dependent coefficients that evolve with diffusion steps and spatial locations. Face-MoGLE provides a powerful and flexible solution for high-quality, controllable face generation, with strong potential in generative modeling and security applications. Extensive experiments demonstrate its effectiveness in multimodal and monomodal face generation settings and its robust zero-shot generalization capability. Project page is available at https://github.com/XavierJiezou/Face-MoGLE.

Authors:Shumpei Takezaki, Ryoma Bise, Shinnosuke Matsuo
Title: NoiseCutMix: A Novel Data Augmentation Approach by Mixing Estimated Noise in Diffusion Models
Abstract:
In this study, we propose a novel data augmentation method that introduces the concept of CutMix into the generation process of diffusion models, thereby exploiting both the ability of diffusion models to generate natural and high-resolution images and the characteristic of CutMix, which combines features from two classes to create diverse augmented data. Representative data augmentation methods for combining images from multiple classes include CutMix and MixUp. However, techniques like CutMix often result in unnatural boundaries between the two images due to contextual differences. Therefore, in this study, we propose a method, called NoiseCutMix, to achieve natural, high-resolution image generation featuring the fused characteristics of two classes by partially combining the estimated noise corresponding to two different classes in a diffusion model. In the classification experiments, we verified the effectiveness of the proposed method by comparing it with conventional data augmentation techniques that combine multiple classes, random image generation using Stable Diffusion, and combinations of these methods. Our codes are available at: https://github.com/shumpei-takezaki/NoiseCutMix

Authors:Zhen Chen, Xingjian Luo, Kun Yuan, Jinlin Wu, Danny T. M. Chan, Nassir Navab, Hongbin Liu, Zhen Lei, Jiebo Luo
Title: SurgLLM: A Versatile Large Multimodal Model with Spatial Focus and Temporal Awareness for Surgical Video Understanding
Abstract:
Surgical video understanding is crucial for facilitating Computer-Assisted Surgery (CAS) systems. Despite significant progress in existing studies, two major limitations persist, including inadequate visual content perception and insufficient temporal awareness in surgical videos, and hinder the development of versatile CAS solutions. In this work, we propose the SurgLLM framework, an effective large multimodal model tailored for versatile surgical video understanding tasks with enhanced spatial focus and temporal awareness. Specifically, to empower the spatial focus of surgical videos, we first devise Surgical Context-aware Multimodal Pretraining (Surg-Pretrain) for the video encoder of SurgLLM, by performing instrument-centric Masked Video Reconstruction (MV-Recon) and subsequent multimodal alignment. To incorporate surgical temporal knowledge into SurgLLM, we further propose Temporal-aware Multimodal Tuning (TM-Tuning) to enhance temporal reasoning with interleaved multimodal embeddings. Moreover, to accommodate various understanding tasks of surgical videos without conflicts, we devise a Surgical Task Dynamic Ensemble to efficiently triage a query with optimal learnable parameters in our SurgLLM. Extensive experiments performed on diverse surgical video understanding tasks, including captioning, general VQA, and temporal VQA, demonstrate significant improvements over the state-of-the-art approaches, validating the effectiveness of our SurgLLM in versatile surgical video understanding. The source code is available at https://github.com/franciszchen/SurgLLM.

Authors:Xunpeng Yi, Yibing Zhang, Xinyu Xiang, Qinglong Yan, Han Xu, Jiayi Ma
Title: LUT-Fuse: Towards Extremely Fast Infrared and Visible Image Fusion via Distillation to Learnable Look-Up Tables
Abstract:
Current advanced research on infrared and visible image fusion primarily focuses on improving fusion performance, often neglecting the applicability on real-time fusion devices. In this paper, we propose a novel approach that towards extremely fast fusion via distillation to learnable lookup tables specifically designed for image fusion, termed as LUT-Fuse. Firstly, we develop a look-up table structure that utilizing low-order approximation encoding and high-level joint contextual scene encoding, which is well-suited for multi-modal fusion. Moreover, given the lack of ground truth in multi-modal image fusion, we naturally proposed the efficient LUT distillation strategy instead of traditional quantization LUT methods. By integrating the performance of the multi-modal fusion network (MM-Net) into the MM-LUT model, our method achieves significant breakthroughs in efficiency and performance. It typically requires less than one-tenth of the time compared to the current lightweight SOTA fusion algorithms, ensuring high operational speed across various scenarios, even in low-power mobile devices. Extensive experiments validate the superiority, reliability, and stability of our fusion approach. The code is available at https://github.com/zyb5/LUT-Fuse.

Authors:Wei Ao, Vishnu Naresh Boddeti
Title: CryptoFace: End-to-End Encrypted Face Recognition
Abstract:
Face recognition is central to many authentication, security, and personalized applications. Yet, it suffers from significant privacy risks, particularly arising from unauthorized access to sensitive biometric data. This paper introduces CryptoFace, the first end-to-end encrypted face recognition system with fully homomorphic encryption (FHE). It enables secure processing of facial data across all stages of a face-recognition process--feature extraction, storage, and matching--without exposing raw images or features. We introduce a mixture of shallow patch convolutional networks to support higher-dimensional tensors via patch-based processing while reducing the multiplicative depth and, thus, inference latency. Parallel FHE evaluation of these networks ensures near-resolution-independent latency. On standard face recognition benchmarks, CryptoFace significantly accelerates inference and increases verification accuracy compared to the state-of-the-art FHE neural networks adapted for face recognition. CryptoFace will facilitate secure face recognition systems requiring robust and provable security. The code is available at https://github.com/human-analysis/CryptoFace.

Authors:Hikmat Khan, Syed Farhan Alam Zaidi, Pir Masoom Shah, Kiruthika Balakrishnan, Rabia Khan, Muhammad Waqas, Jia Wu
Title: MorphGen: Morphology-Guided Representation Learning for Robust Single-Domain Generalization in Histopathological Cancer Classification
Abstract:
Domain generalization in computational histopathology is hindered by heterogeneity in whole slide images (WSIs), caused by variations in tissue preparation, staining, and imaging conditions across institutions. Unlike machine learning systems, pathologists rely on domain-invariant morphological cues such as nuclear atypia (enlargement, irregular contours, hyperchromasia, chromatin texture, spatial disorganization), structural atypia (abnormal architecture and gland formation), and overall morphological atypia that remain diagnostic across diverse settings. Motivated by this, we hypothesize that explicitly modeling biologically robust nuclear morphology and spatial organization will enable the learning of cancer representations that are resilient to domain shifts. We propose MorphGen (Morphology-Guided Generalization), a method that integrates histopathology images, augmentations, and nuclear segmentation masks within a supervised contrastive learning framework. By aligning latent representations of images and nuclear masks, MorphGen prioritizes diagnostic features such as nuclear and morphological atypia and spatial organization over staining artifacts and domain-specific features. To further enhance out-of-distribution robustness, we incorporate stochastic weight averaging (SWA), steering optimization toward flatter minima. Attention map analyses revealed that MorphGen primarily relies on nuclear morphology, cellular composition, and spatial cell organization within tumors or normal regions for final classification. Finally, we demonstrate resilience of the learned representations to image corruptions (such as staining artifacts) and adversarial attacks, showcasing not only OOD generalization but also addressing critical vulnerabilities in current deep learning systems for digital pathology. Code, datasets, and trained models are available at: https://github.com/hikmatkhan/MorphGen

Authors:Ghassen Baklouti, Maxime Zanella, Ismail Ben Ayed
Title: Language-Aware Information Maximization for Transductive Few-Shot CLIP
Abstract:
Transductive few-shot learning has triggered an abundant literature focusing on vision-only models, but is still at a nascent stage within the recent context of foundational vision-language models (VLMs). Only a few recent methods addressed the problem, pointing to the potential of tranduction in VLMs and to the need for VLM-tailored methods. Building on this momentum, we leverage information-theoretic concepts and recent progress in parameter-efficient fine-tuning (PEFT), developing a highly competitive transductive few-shot CLIP method. Specifically, we introduce a novel Language-aware Information MaximizatiOn (LIMO) loss integrating three complementary terms: (i) the mutual information between the vision inputs and the textual class descriptions; (ii) a Kullback-Leibler (KL) divergence penalizing deviation of the network's probabilistic outputs from the text-driven zero-shot predictions; and (iii) a standard cross-entropy loss based on the labeled shots. Furthermore, we challenge the commonly followed fine-tuning practices in the context of transductive few-shot learning, and explore PEFT strategies, completely overlooked in this context. Surprisingly, we observe substantial boosts in performances, which points to the potential of adapting a subset of the model's parameters in the transductive few-shot setting. We report comprehensive evaluations, which show that LIMO outperforms the very recent transductive few-shot CLIP methods by a large margin and yields significant gains over the best-performing inductive methods. Our code is publicly available at:\[ \href{https://github.com/ghassenbaklouti/LIMO}{\text{here}} \]

Authors:Faizan Farooq Khan, Vladan Stojnić, Zakaria Laskar, Mohamed Elhoseiny, Giorgos Tolias
Title: Category-level Text-to-Image Retrieval Improved: Bridging the Domain Gap with Diffusion Models and Vision Encoders
Abstract:
This work explores text-to-image retrieval for queries that specify or describe a semantic category. While vision-and-language models (VLMs) like CLIP offer a straightforward open-vocabulary solution, they map text and images to distant regions in the representation space, limiting retrieval performance. To bridge this modality gap, we propose a two-step approach. First, we transform the text query into a visual query using a generative diffusion model. Then, we estimate image-to-image similarity with a vision model. Additionally, we introduce an aggregation network that combines multiple generated images into a single vector representation and fuses similarity scores across both query modalities. Our approach leverages advancements in vision encoders, VLMs, and text-to-image generation models. Extensive evaluations show that it consistently outperforms retrieval methods relying solely on text queries. Source code is available at: https://github.com/faixan-khan/cletir

Authors:Jasper Uijlings, Xingyi Zhou, Xiuye Gu, Arsha Nagrani, Anurag Arnab, Alireza Fathi, David Ross, Cordelia Schmid
Title: VoCap: Video Object Captioning and Segmentation from Any Prompt
Abstract:
Understanding objects in videos in terms of fine-grained localization masks and detailed semantic properties is a fundamental task in video understanding. In this paper, we propose VoCap, a flexible video model that consumes a video and a prompt of various modalities (text, box or mask), and produces a spatio-temporal masklet with a corresponding object-centric caption. As such our model addresses simultaneously the tasks of promptable video object segmentation, referring expression segmentation, and object captioning. Since obtaining data for this task is tedious and expensive, we propose to annotate an existing large-scale segmentation dataset (SAV) with pseudo object captions. We do so by preprocessing videos with their ground-truth masks to highlight the object of interest and feed this to a large Vision Language Model (VLM). For an unbiased evaluation, we collect manual annotations on the validation set. We call the resulting dataset SAV-Caption. We train our VoCap model at scale on a SAV-Caption together with a mix of other image and video datasets. Our model yields state-of-the-art results on referring expression video object segmentation, is competitive on semi-supervised video object segmentation, and establishes a benchmark for video object captioning. Our dataset will be made available at https://github.com/google-deepmind/vocap.

Authors:Jiawei Liu, Jiahe Hou, Wei Wang, Jinsong Du, Yang Cong, Huijie Fan
Title: TMUAD: Enhancing Logical Capabilities in Unified Anomaly Detection Models with a Text Memory Bank
Abstract:
Anomaly detection, which aims to identify anomalies deviating from normal patterns, is challenging due to the limited amount of normal data available. Unlike most existing unified methods that rely on carefully designed image feature extractors and memory banks to capture logical relationships between objects, we introduce a text memory bank to enhance the detection of logical anomalies. Specifically, we propose a Three-Memory framework for Unified structural and logical Anomaly Detection (TMUAD). First, we build a class-level text memory bank for logical anomaly detection by the proposed logic-aware text extractor, which can capture rich logical descriptions of objects from input images. Second, we construct an object-level image memory bank that preserves complete object contours by extracting features from segmented objects. Third, we employ visual encoders to extract patch-level image features for constructing a patch-level memory bank for structural anomaly detection. These three complementary memory banks are used to retrieve and compare normal images that are most similar to the query image, compute anomaly scores at multiple levels, and fuse them into a final anomaly score. By unifying structural and logical anomaly detection through collaborative memory banks, TMUAD achieves state-of-the-art performance across seven publicly available datasets involving industrial and medical domains. The model and code are available at https://github.com/SIA-IDE/TMUAD.

Authors:Qiyue Sun, Qiming Huang, Yang Yang, Hongjun Wang, Jianbo Jiao
Title: What Can We Learn from Harry Potter? An Exploratory Study of Visual Representation Learning from Atypical Videos
Abstract:
Humans usually show exceptional generalisation and discovery ability in the open world, when being shown uncommon new concepts. Whereas most existing studies in the literature focus on common typical data from closed sets, open-world novel discovery is under-explored in videos. In this paper, we are interested in asking: What if atypical unusual videos are exposed in the learning process? To this end, we collect a new video dataset consisting of various types of unusual atypical data (e.g., sci-fi, animation, etc.). To study how such atypical data may benefit open-world learning, we feed them into the model training process for representation learning. Focusing on three key tasks in open-world learning: out-of-distribution (OOD) detection, novel category discovery (NCD), and zero-shot action recognition (ZSAR), we found that even straightforward learning approaches with atypical data consistently improve performance across various settings. Furthermore, we found that increasing the categorical diversity of the atypical samples further boosts OOD detection performance. Additionally, in the NCD task, using a smaller yet more semantically diverse set of atypical samples leads to better performance compared to using a larger but more typical dataset. In the ZSAR setting, the semantic diversity of atypical videos helps the model generalise better to unseen action classes. These observations in our extensive experimental evaluations reveal the benefits of atypical videos for visual representation learning in the open world, together with the newly proposed dataset, encouraging further studies in this direction. The project page is at: https://julysun98.github.io/atypical_dataset.

Authors:Xavier Juanola, Giovana Morais, Magdalena Fuentes, Gloria Haro
Title: Learning from Silence and Noise for Visual Sound Source Localization
Abstract:
Visual sound source localization is a fundamental perception task that aims to detect the location of sounding sources in a video given its audio. Despite recent progress, we identify two shortcomings in current methods: 1) most approaches perform poorly in cases with low audio-visual semantic correspondence such as silence, noise, and offscreen sounds, i.e. in the presence of negative audio; and 2) most prior evaluations are limited to positive cases, where both datasets and metrics convey scenarios with a single visible sound source in the scene. To address this, we introduce three key contributions. First, we propose a new training strategy that incorporates silence and noise, which improves performance in positive cases, while being more robust against negative sounds. Our resulting self-supervised model, SSL-SaN, achieves state-of-the-art performance compared to other self-supervised models, both in sound localization and cross-modal retrieval. Second, we propose a new metric that quantifies the trade-off between alignment and separability of auditory and visual features across positive and negative audio-visual pairs. Third, we present IS3+, an extended and improved version of the IS3 synthetic dataset with negative audio. Our data, metrics and code are available on the https://xavijuanola.github.io/SSL-SaN/.

Authors:Shashank Vempati, Nishit Anand, Gaurav Talebailkar, Arpan Garai, Chetan Arora
Title: Why Stop at Words? Unveiling the Bigger Picture through Line-Level OCR
Abstract:
Conventional optical character recognition (OCR) techniques segmented each character and then recognized. This made them prone to error in character segmentation, and devoid of context to exploit language models. Advances in sequence to sequence translation in last decade led to modern techniques first detecting words and then inputting one word at a time to a model to directly output full words as sequence of characters. This allowed better utilization of language models and bypass error-prone character segmentation step. We observe that the above transition in style has moved the bottleneck in accuracy to word segmentation. Hence, in this paper, we propose a natural and logical progression from word level OCR to line-level OCR. The proposal allows to bypass errors in word detection, and provides larger sentence context for better utilization of language models. We show that the proposed technique not only improves the accuracy but also efficiency of OCR. Despite our thorough literature survey, we did not find any public dataset to train and benchmark such shift from word to line-level OCR. Hence, we also contribute a meticulously curated dataset of 251 English page images with line-level annotations. Our experimentation revealed a notable end-to-end accuracy improvement of 5.4%, underscoring the potential benefits of transitioning towards line-level OCR, especially for document images. We also report a 4 times improvement in efficiency compared to word-based pipelines. With continuous improvements in large language models, our methodology also holds potential to exploit such advances. Project Website: https://nishitanand.github.io/line-level-ocr-website

Authors:Fatih Erdoğan, Merve Rabia Barın, Fatma Güney
Title: Mapping like a Skeptic: Probabilistic BEV Projection for Online HD Mapping
Abstract:
Constructing high-definition (HD) maps from sensory input requires accurately mapping the road elements in image space to the Bird's Eye View (BEV) space. The precision of this mapping directly impacts the quality of the final vectorized HD map. Existing HD mapping approaches outsource the projection to standard mapping techniques, such as attention-based ones. However, these methods struggle with accuracy due to generalization problems, often hallucinating non-existent road elements. Our key idea is to start with a geometric mapping based on camera parameters and adapt it to the scene to extract relevant map information from camera images. To implement this, we propose a novel probabilistic projection mechanism with confidence scores to (i) refine the mapping to better align with the scene and (ii) filter out irrelevant elements that should not influence HD map generation. In addition, we improve temporal processing by using confidence scores to selectively accumulate reliable information over time. Experiments on new splits of the nuScenes and Argoverse2 datasets demonstrate improved performance over state-of-the-art approaches, indicating better generalization. The improvements are particularly pronounced on nuScenes and in the challenging long perception range. Our code and model checkpoints are available at https://github.com/Fatih-Erdogan/mapping-like-skeptic .

Authors:Maximilian Rokuss, Yannick Kirchhoff, Fabian Isensee, Klaus H. Maier-Hein
Title: Towards Interactive Lesion Segmentation in Whole-Body PET/CT with Promptable Models
Abstract:
Whole-body PET/CT is a cornerstone of oncological imaging, yet accurate lesion segmentation remains challenging due to tracer heterogeneity, physiological uptake, and multi-center variability. While fully automated methods have advanced substantially, clinical practice benefits from approaches that keep humans in the loop to efficiently refine predicted masks. The autoPET/CT IV challenge addresses this need by introducing interactive segmentation tasks based on simulated user prompts. In this work, we present our submission to Task 1. Building on the winning autoPET III nnU-Net pipeline, we extend the framework with promptable capabilities by encoding user-provided foreground and background clicks as additional input channels. We systematically investigate representations for spatial prompts and demonstrate that Euclidean Distance Transform (EDT) encodings consistently outperform Gaussian kernels. Furthermore, we propose online simulation of user interactions and a custom point sampling strategy to improve robustness under realistic prompting conditions. Our ensemble of EDT-based models, trained with and without external data, achieves the strongest cross-validation performance, reducing both false positives and false negatives compared to baseline models. These results highlight the potential of promptable models to enable efficient, user-guided segmentation workflows in multi-tracer, multi-center PET/CT. Code is publicly available at https://github.com/MIC-DKFZ/autoPET-interactive

Authors:Jonathan Tonglet, Jan Zimny, Tinne Tuytelaars, Iryna Gurevych
Title: Is this chart lying to me? Automating the detection of misleading visualizations
Abstract:
Misleading visualizations are a potent driver of misinformation on social media and the web. By violating chart design principles, they distort data and lead readers to draw inaccurate conclusions. Prior work has shown that both humans and multimodal large language models (MLLMs) are frequently deceived by such visualizations. Automatically detecting misleading visualizations and identifying the specific design rules they violate could help protect readers and reduce the spread of misinformation. However, the training and evaluation of AI models has been limited by the absence of large, diverse, and openly available datasets. In this work, we introduce Misviz, a benchmark of 2,604 real-world visualizations annotated with 12 types of misleaders. To support model training, we also release Misviz-synth, a synthetic dataset of 81,814 visualizations generated using Matplotlib and based on real-world data tables. We perform a comprehensive evaluation on both datasets using state-of-the-art MLLMs, rule-based systems, and fine-tuned classifiers. Our results reveal that the task remains highly challenging. We release Misviz, Misviz-synth, and the accompanying code.

Authors:Nicolas Soncini, Javier Cremona, Erica Vidal, Maximiliano García, Gastón Castro, Taihú Pire
Title: The Rosario Dataset v2: Multimodal Dataset for Agricultural Robotics
Abstract:
We present a multi-modal dataset collected in a soybean crop field, comprising over two hours of recorded data from sensors such as stereo infrared camera, color camera, accelerometer, gyroscope, magnetometer, GNSS (Single Point Positioning, Real-Time Kinematic and Post-Processed Kinematic), and wheel odometry. This dataset captures key challenges inherent to robotics in agricultural environments, including variations in natural lighting, motion blur, rough terrain, and long, perceptually aliased sequences. By addressing these complexities, the dataset aims to support the development and benchmarking of advanced algorithms for localization, mapping, perception, and navigation in agricultural robotics. The platform and data collection system is designed to meet the key requirements for evaluating multi-modal SLAM systems, including hardware synchronization of sensors, 6-DOF ground truth and loops on long trajectories. We run multimodal state-of-the art SLAM methods on the dataset, showcasing the existing limitations in their application on agricultural settings. The dataset and utilities to work with it are released on https://cifasis.github.io/rosariov2/.

Authors:Francisco Caetano, Christiaan Viviers, Peter H. H. de With, Fons van der Sommen
Title: MedShift: Implicit Conditional Transport for X-Ray Domain Adaptation
Abstract:
Synthetic medical data offers a scalable solution for training robust models, but significant domain gaps limit its generalizability to real-world clinical settings. This paper addresses the challenge of cross-domain translation between synthetic and real X-ray images of the head, focusing on bridging discrepancies in attenuation behavior, noise characteristics, and soft tissue representation. We propose MedShift, a unified class-conditional generative model based on Flow Matching and Schrodinger Bridges, which enables high-fidelity, unpaired image translation across multiple domains. Unlike prior approaches that require domain-specific training or rely on paired data, MedShift learns a shared domain-agnostic latent space and supports seamless translation between any pair of domains seen during training. We introduce X-DigiSkull, a new dataset comprising aligned synthetic and real skull X-rays under varying radiation doses, to benchmark domain translation models. Experimental results demonstrate that, despite its smaller model size compared to diffusion-based approaches, MedShift offers strong performance and remains flexible at inference time, as it can be tuned to prioritize either perceptual fidelity or structural consistency, making it a scalable and generalizable solution for domain adaptation in medical imaging. The code and dataset are available at https://caetas.github.io/medshift.html

Authors:Jakub Straka, Ivan Gruber
Title: SatDINO: A Deep Dive into Self-Supervised Pretraining for Remote Sensing
Abstract:
Self-supervised learning has emerged as a powerful tool for remote sensing, where large amounts of unlabeled data are available. In this work, we investigate the use of DINO, a contrastive self-supervised method, for pretraining on remote sensing imagery. We introduce SatDINO, a model tailored for representation learning in satellite imagery. Through extensive experiments on multiple datasets in multiple testing setups, we demonstrate that SatDINO outperforms other state-of-the-art methods based on much more common masked autoencoders (MAE) and achieves competitive results in multiple benchmarks. We also provide a rigorous ablation study evaluating SatDINO's individual components. Finally, we propose a few novel enhancements, such as a new way to incorporate ground sample distance (GSD) encoding and adaptive view sampling. These enhancements can be used independently on our SatDINO model. Our code and trained models are available at: https://github.com/strakaj/SatDINO.

Authors:Zhizhong Huang, Xiaoming Liu
Title: Generalizable Object Re-Identification via Visual In-Context Prompting
Abstract:
Current object re-identification (ReID) methods train domain-specific models (e.g., for persons or vehicles), which lack generalization and demand costly labeled data for new categories. While self-supervised learning reduces annotation needs by learning instance-wise invariance, it struggles to capture \textit{identity-sensitive} features critical for ReID. This paper proposes Visual In-Context Prompting~(VICP), a novel framework where models trained on seen categories can directly generalize to unseen novel categories using only \textit{in-context examples} as prompts, without requiring parameter adaptation. VICP synergizes LLMs and vision foundation models~(VFM): LLMs infer semantic identity rules from few-shot positive/negative pairs through task-specific prompting, which then guides a VFM (\eg, DINO) to extract ID-discriminative features via \textit{dynamic visual prompts}. By aligning LLM-derived semantic concepts with the VFM's pre-trained prior, VICP enables generalization to novel categories, eliminating the need for dataset-specific retraining. To support evaluation, we introduce ShopID10K, a dataset of 10K object instances from e-commerce platforms, featuring multi-view images and cross-domain testing. Experiments on ShopID10K and diverse ReID benchmarks demonstrate that VICP outperforms baselines by a clear margin on unseen categories. Code is available at https://github.com/Hzzone/VICP.

Authors:Zhenghao He, Sanchit Sinha, Guangzhi Xiong, Aidong Zhang
Title: GCAV: A Global Concept Activation Vector Framework for Cross-Layer Consistency in Interpretability
Abstract:
Concept Activation Vectors (CAVs) provide a powerful approach for interpreting deep neural networks by quantifying their sensitivity to human-defined concepts. However, when computed independently at different layers, CAVs often exhibit inconsistencies, making cross-layer comparisons unreliable. To address this issue, we propose the Global Concept Activation Vector (GCAV), a novel framework that unifies CAVs into a single, semantically consistent representation. Our method leverages contrastive learning to align concept representations across layers and employs an attention-based fusion mechanism to construct a globally integrated CAV. By doing so, our method significantly reduces the variance in TCAV scores while preserving concept relevance, ensuring more stable and reliable concept attributions. To evaluate the effectiveness of GCAV, we introduce Testing with Global Concept Activation Vectors (TGCAV) as a method to apply TCAV to GCAV-based representations. We conduct extensive experiments on multiple deep neural networks, demonstrating that our method effectively mitigates concept inconsistency across layers, enhances concept localization, and improves robustness against adversarial perturbations. By integrating cross-layer information into a coherent framework, our method offers a more comprehensive and interpretable understanding of how deep learning models encode human-defined concepts. Code and models are available at https://github.com/Zhenghao-He/GCAV.

Authors:Kevin Mayer, Alex Vesel, Xinyi Zhao, Martin Fischer
Title: SYNBUILD-3D: A large, multi-modal, and semantically rich synthetic dataset of 3D building models at Level of Detail 4
Abstract:
3D building models are critical for applications in architecture, energy simulation, and navigation. Yet, generating accurate and semantically rich 3D buildings automatically remains a major challenge due to the lack of large-scale annotated datasets in the public domain. Inspired by the success of synthetic data in computer vision, we introduce SYNBUILD-3D, a large, diverse, and multi-modal dataset of over 6.2 million synthetic 3D residential buildings at Level of Detail (LoD) 4. In the dataset, each building is represented through three distinct modalities: a semantically enriched 3D wireframe graph at LoD 4 (Modality I), the corresponding floor plan images (Modality II), and a LiDAR-like roof point cloud (Modality III). The semantic annotations for each building wireframe are derived from the corresponding floor plan images and include information on rooms, doors, and windows. Through its tri-modal nature, future work can use SYNBUILD-3D to develop novel generative AI algorithms that automate the creation of 3D building models at LoD 4, subject to predefined floor plan layouts and roof geometries, while enforcing semantic-geometric consistency. Dataset and code samples are publicly available at https://github.com/kdmayer/SYNBUILD-3D.

Authors:Ao Shen, Xueming Fu, Junfeng Jiang, Qiang Zeng, Ye Tang, Zhengming Chen, Luming Nong, Feng Wang, S. Kevin Zhou
Title: RadGS-Reg: Registering Spine CT with Biplanar X-rays via Joint 3D Radiative Gaussians Reconstruction and 3D/3D Registration
Abstract:
Computed Tomography (CT)/X-ray registration in image-guided navigation remains challenging because of its stringent requirements for high accuracy and real-time performance. Traditional "render and compare" methods, relying on iterative projection and comparison, suffer from spatial information loss and domain gap. 3D reconstruction from biplanar X-rays supplements spatial and shape information for 2D/3D registration, but current methods are limited by dense-view requirements and struggles with noisy X-rays. To address these limitations, we introduce RadGS-Reg, a novel framework for vertebral-level CT/X-ray registration through joint 3D Radiative Gaussians (RadGS) reconstruction and 3D/3D registration. Specifically, our biplanar X-rays vertebral RadGS reconstruction module explores learning-based RadGS reconstruction method with a Counterfactual Attention Learning (CAL) mechanism, focusing on vertebral regions in noisy X-rays. Additionally, a patient-specific pre-training strategy progressively adapts the RadGS-Reg from simulated to real data while simultaneously learning vertebral shape prior knowledge. Experiments on in-house datasets demonstrate the state-of-the-art performance for both tasks, surpassing existing methods. The code is available at: https://github.com/shenao1995/RadGS_Reg.

Authors:Xurui Peng, Hong Liu, Chenqian Yan, Rui Ma, Fangmin Chen, Xing Wang, Zhihua Wu, Songwei Liu, Mingbao Lin
Title: ERTACache: Error Rectification and Timesteps Adjustment for Efficient Diffusion
Abstract:
Diffusion models suffer from substantial computational overhead due to their inherently iterative inference process. While feature caching offers a promising acceleration strategy by reusing intermediate outputs across timesteps, naive reuse often incurs noticeable quality degradation. In this work, we formally analyze the cumulative error introduced by caching and decompose it into two principal components: feature shift error, caused by inaccuracies in cached outputs, and step amplification error, which arises from error propagation under fixed timestep schedules. To address these issues, we propose ERTACache, a principled caching framework that jointly rectifies both error types. Our method employs an offline residual profiling stage to identify reusable steps, dynamically adjusts integration intervals via a trajectory-aware correction coefficient, and analytically approximates cache-induced errors through a closed-form residual linearization model. Together, these components enable accurate and efficient sampling under aggressive cache reuse. Extensive experiments across standard image and video generation benchmarks show that ERTACache achieves up to 2x inference speedup while consistently preserving or even improving visual quality. Notably, on the state-of-the-art Wan2.1 video diffusion model, ERTACache delivers 2x acceleration with minimal VBench degradation, effectively maintaining baseline fidelity while significantly improving efficiency. The code is available at https://github.com/bytedance/ERTACache.

Authors:Jun-Kun Chen, Aayush Bansal, Minh Phuoc Vo, Yu-Xiong Wang
Title: Dress&Dance: Dress up and Dance as You Like It - Technical Preview
Abstract:
We present Dress&Dance, a video diffusion framework that generates high quality 5-second-long 24 FPS virtual try-on videos at 1152x720 resolution of a user wearing desired garments while moving in accordance with a given reference video. Our approach requires a single user image and supports a range of tops, bottoms, and one-piece garments, as well as simultaneous tops and bottoms try-on in a single pass. Key to our framework is CondNet, a novel conditioning network that leverages attention to unify multi-modal inputs (text, images, and videos), thereby enhancing garment registration and motion fidelity. CondNet is trained on heterogeneous training data, combining limited video data and a larger, more readily available image dataset, in a multistage progressive manner. Dress&Dance outperforms existing open source and commercial solutions and enables a high quality and flexible try-on experience.

Authors:Frano Rajič, Haofei Xu, Marko Mihajlovic, Siyuan Li, Irem Demir, Emircan Gündoğdu, Lei Ke, Sergey Prokudin, Marc Pollefeys, Siyu Tang
Title: Multi-View 3D Point Tracking
Abstract:
We introduce the first data-driven multi-view 3D point tracker, designed to track arbitrary points in dynamic scenes using multiple camera views. Unlike existing monocular trackers, which struggle with depth ambiguities and occlusion, or prior multi-camera methods that require over 20 cameras and tedious per-sequence optimization, our feed-forward model directly predicts 3D correspondences using a practical number of cameras (e.g., four), enabling robust and accurate online tracking. Given known camera poses and either sensor-based or estimated multi-view depth, our tracker fuses multi-view features into a unified point cloud and applies k-nearest-neighbors correlation alongside a transformer-based update to reliably estimate long-range 3D correspondences, even under occlusion. We train on 5K synthetic multi-view Kubric sequences and evaluate on two real-world benchmarks: Panoptic Studio and DexYCB, achieving median trajectory errors of 3.1 cm and 2.0 cm, respectively. Our method generalizes well to diverse camera setups of 1-8 views with varying vantage points and video lengths of 24-150 frames. By releasing our tracker alongside training and evaluation datasets, we aim to set a new standard for multi-view 3D tracking research and provide a practical tool for real-world applications. Project page available at https://ethz-vlg.github.io/mvtracker.

Authors:Shengqu Cai, Ceyuan Yang, Lvmin Zhang, Yuwei Guo, Junfei Xiao, Ziyan Yang, Yinghao Xu, Zhenheng Yang, Alan Yuille, Leonidas Guibas, Maneesh Agrawala, Lu Jiang, Gordon Wetzstein
Title: Mixture of Contexts for Long Video Generation
Abstract:
Long video generation is fundamentally a long context memory problem: models must retain and retrieve salient events across a long range without collapsing or drifting. However, scaling diffusion transformers to generate long-context videos is fundamentally limited by the quadratic cost of self-attention, which makes memory and computation intractable and difficult to optimize for long sequences. We recast long-context video generation as an internal information retrieval task and propose a simple, learnable sparse attention routing module, Mixture of Contexts (MoC), as an effective long-term memory retrieval engine. In MoC, each query dynamically selects a few informative chunks plus mandatory anchors (caption, local windows) to attend to, with causal routing that prevents loop closures. As we scale the data and gradually sparsify the routing, the model allocates compute to salient history, preserving identities, actions, and scenes over minutes of content. Efficiency follows as a byproduct of retrieval (near-linear scaling), which enables practical training and synthesis, and the emergence of memory and consistency at the scale of minutes.

Authors:Hao Tan, Jun Lan, Zichang Tan, Ajian Liu, Chuanbiao Song, Senyuan Shi, Huijia Zhu, Weiqiang Wang, Jun Wan, Zhen Lei
Title: Veritas: Generalizable Deepfake Detection via Pattern-Aware Reasoning
Abstract:
Deepfake detection remains a formidable challenge due to the complex and evolving nature of fake content in real-world scenarios. However, existing academic benchmarks suffer from severe discrepancies from industrial practice, typically featuring homogeneous training sources and low-quality testing images, which hinder the practical deployments of current detectors. To mitigate this gap, we introduce HydraFake, a dataset that simulates real-world challenges with hierarchical generalization testing. Specifically, HydraFake involves diversified deepfake techniques and in-the-wild forgeries, along with rigorous training and evaluation protocol, covering unseen model architectures, emerging forgery techniques and novel data domains. Building on this resource, we propose Veritas, a multi-modal large language model (MLLM) based deepfake detector. Different from vanilla chain-of-thought (CoT), we introduce pattern-aware reasoning that involves critical reasoning patterns such as "planning" and "self-reflection" to emulate human forensic process. We further propose a two-stage training pipeline to seamlessly internalize such deepfake reasoning capacities into current MLLMs. Experiments on HydraFake dataset reveal that although previous detectors show great generalization on cross-model scenarios, they fall short on unseen forgeries and data domains. Our Veritas achieves significant gains across different OOD scenarios, and is capable of delivering transparent and faithful detection outputs.

Authors:Wei Li, Renshan Zhang, Rui Shao, Jie He, Liqiang Nie
Title: CogVLA: Cognition-Aligned Vision-Language-Action Model via Instruction-Driven Routing & Sparsification
Abstract:
Recent Vision-Language-Action (VLA) models built on pre-trained Vision-Language Models (VLMs) require extensive post-training, resulting in high computational overhead that limits scalability and deployment.We propose CogVLA, a Cognition-Aligned Vision-Language-Action framework that leverages instruction-driven routing and sparsification to improve both efficiency and performance. CogVLA draws inspiration from human multimodal coordination and introduces a 3-stage progressive architecture. 1) Encoder-FiLM based Aggregation Routing (EFA-Routing) injects instruction information into the vision encoder to selectively aggregate and compress dual-stream visual tokens, forming a instruction-aware latent representation. 2) Building upon this compact visual encoding, LLM-FiLM based Pruning Routing (LFP-Routing) introduces action intent into the language model by pruning instruction-irrelevant visually grounded tokens, thereby achieving token-level sparsity. 3) To ensure that compressed perception inputs can still support accurate and coherent action generation, we introduce V-L-A Coupled Attention (CAtten), which combines causal vision-language attention with bidirectional action parallel decoding. Extensive experiments on the LIBERO benchmark and real-world robotic tasks demonstrate that CogVLA achieves state-of-the-art performance with success rates of 97.4% and 70.0%, respectively, while reducing training costs by 2.5-fold and decreasing inference latency by 2.8-fold compared to OpenVLA. CogVLA is open-sourced and publicly available at https://github.com/JiuTian-VL/CogVLA.

Authors:Huynh Tong Dang Khoa, Dang Hoai Nam, Vo Nguyen Le Duy
Title: FW-GAN: Frequency-Driven Handwriting Synthesis with Wave-Modulated MLP Generator
Abstract:
Labeled handwriting data is often scarce, limiting the effectiveness of recognition systems that require diverse, style-consistent training samples. Handwriting synthesis offers a promising solution by generating artificial data to augment training. However, current methods face two major limitations. First, most are built on conventional convolutional architectures, which struggle to model long-range dependencies and complex stroke patterns. Second, they largely ignore the crucial role of frequency information, which is essential for capturing fine-grained stylistic and structural details in handwriting. To address these challenges, we propose FW-GAN, a one-shot handwriting synthesis framework that generates realistic, writer-consistent text from a single example. Our generator integrates a phase-aware Wave-MLP to better capture spatial relationships while preserving subtle stylistic cues. We further introduce a frequency-guided discriminator that leverages high-frequency components to enhance the authenticity detection of generated samples. Additionally, we introduce a novel Frequency Distribution Loss that aligns the frequency characteristics of synthetic and real handwriting, thereby enhancing visual fidelity. Experiments on Vietnamese and English handwriting datasets demonstrate that FW-GAN generates high-quality, style-consistent handwriting, making it a valuable tool for augmenting data in low-resource handwriting recognition (HTR) pipelines. Official implementation is available at https://github.com/DAIR-Group/FW-GAN

Authors:Dale Decatur, Thibault Groueix, Wang Yifan, Rana Hanocka, Vladimir Kim, Matheus Gadelha
Title: Reusing Computation in Text-to-Image Diffusion for Efficient Generation of Image Sets
Abstract:
Text-to-image diffusion models enable high-quality image generation but are computationally expensive. While prior work optimizes per-inference efficiency, we explore an orthogonal approach: reducing redundancy across correlated prompts. Our method leverages the coarse-to-fine nature of diffusion models, where early denoising steps capture shared structures among similar prompts. We propose a training-free approach that clusters prompts based on semantic similarity and shares computation in early diffusion steps. Experiments show that for models trained conditioned on image embeddings, our approach significantly reduces compute cost while improving image quality. By leveraging UnClip's text-to-image prior, we enhance diffusion step allocation for greater efficiency. Our method seamlessly integrates with existing pipelines, scales with prompt sets, and reduces the environmental and financial burden of large-scale text-to-image generation. Project page: https://ddecatur.github.io/hierarchical-diffusion/

Authors:Paritosh Parmar, Eric Peh, Basura Fernando
Title: ChainReaction! Structured Approach with Causal Chains as Intermediate Representations for Improved and Explainable Causal Video Question Answering
Abstract:
Existing Causal-Why Video Question Answering (VideoQA) models often struggle with higher-order reasoning, relying on opaque, monolithic pipelines that entangle video understanding, causal inference, and answer generation. These black-box approaches offer limited interpretability and tend to depend on shallow heuristics. We propose a novel, modular framework that explicitly decouples causal reasoning from answer generation, introducing natural language causal chains as interpretable intermediate representations. Inspired by human cognitive models, these structured cause-effect sequences bridge low-level video content with high-level causal reasoning, enabling transparent and logically coherent inference. Our two-stage architecture comprises a Causal Chain Extractor (CCE) that generates causal chains from video-question pairs, and a Causal Chain-Driven Answerer (CCDA) that produces answers grounded in these chains. To address the lack of annotated reasoning traces, we introduce a scalable method for generating high-quality causal chains from existing datasets using large language models. We also propose CauCo, a new evaluation metric for causality-oriented captioning. Experiments on three large-scale benchmarks demonstrate that our approach not only outperforms state-of-the-art models, but also yields substantial gains in explainability, user trust, and generalization -- positioning the CCE as a reusable causal reasoning engine across diverse domains. Project page: https://paritoshparmar.github.io/chainreaction/

Authors:Patryk Będkowski, Jan Dubiński, Filip Szatkowski, Kamil Deja, Przemysław Rokita, Tomasz Trzciński
Title: ExpertSim: Fast Particle Detector Simulation Using Mixture-of-Generative-Experts
Abstract:
Simulating detector responses is a crucial part of understanding the inner workings of particle collisions in the Large Hadron Collider at CERN. Such simulations are currently performed with statistical Monte Carlo methods, which are computationally expensive and put a significant strain on CERN's computational grid. Therefore, recent proposals advocate for generative machine learning methods to enable more efficient simulations. However, the distribution of the data varies significantly across the simulations, which is hard to capture with out-of-the-box methods. In this study, we present ExpertSim - a deep learning simulation approach tailored for the Zero Degree Calorimeter in the ALICE experiment. Our method utilizes a Mixture-of-Generative-Experts architecture, where each expert specializes in simulating a different subset of the data. This allows for a more precise and efficient generation process, as each expert focuses on a specific aspect of the calorimeter response. ExpertSim not only improves accuracy, but also provides a significant speedup compared to the traditional Monte-Carlo methods, offering a promising solution for high-efficiency detector simulations in particle physics experiments at CERN. We make the code available at https://github.com/patrick-bedkowski/expertsim-mix-of-generative-experts.

Authors:Chenfan Qu, Yiwu Zhong, Bin Li, Lianwen Jin
Title: Webly-Supervised Image Manipulation Localization via Category-Aware Auto-Annotation
Abstract:
Images manipulated using image editing tools can mislead viewers and pose significant risks to social security. However, accurately localizing the manipulated regions within an image remains a challenging problem. One of the main barriers in this area is the high cost of data acquisition and the severe lack of high-quality annotated datasets. To address this challenge, we introduce novel methods that mitigate data scarcity by leveraging readily available web data. We utilize a large collection of manually forged images from the web, as well as automatically generated annotations derived from a simpler auxiliary task, constrained image manipulation localization. Specifically, we introduce a new paradigm CAAAv2, which automatically and accurately annotates manipulated regions at the pixel level. To further improve annotation quality, we propose a novel metric, QES, which filters out unreliable annotations. Through CAAA v2 and QES, we construct MIMLv2, a large-scale, diverse, and high-quality dataset containing 246,212 manually forged images with pixel-level mask annotations. This is over 120x larger than existing handcrafted datasets like IMD20. Additionally, we introduce Object Jitter, a technique that further enhances model training by generating high-quality manipulation artifacts. Building on these advances, we develop a new model, Web-IML, designed to effectively leverage web-scale supervision for the image manipulation localization task. Extensive experiments demonstrate that our approach substantially alleviates the data scarcity problem and significantly improves the performance of various models on multiple real-world forgery benchmarks. With the proposed web supervision, Web-IML achieves a striking performance gain of 31% and surpasses previous SOTA TruFor by 24.1 average IoU points. The dataset and code will be made publicly available at https://github.com/qcf-568/MIML.

Authors:Yajiao Xiong, Xiaoyu Zhou, Yongtao Wan, Deqing Sun, Ming-Hsuan Yang
Title: DrivingGaussian++: Towards Realistic Reconstruction and Editable Simulation for Surrounding Dynamic Driving Scenes
Abstract:
We present DrivingGaussian++, an efficient and effective framework for realistic reconstructing and controllable editing of surrounding dynamic autonomous driving scenes. DrivingGaussian++ models the static background using incremental 3D Gaussians and reconstructs moving objects with a composite dynamic Gaussian graph, ensuring accurate positions and occlusions. By integrating a LiDAR prior, it achieves detailed and consistent scene reconstruction, outperforming existing methods in dynamic scene reconstruction and photorealistic surround-view synthesis. DrivingGaussian++ supports training-free controllable editing for dynamic driving scenes, including texture modification, weather simulation, and object manipulation, leveraging multi-view images and depth priors. By integrating large language models (LLMs) and controllable editing, our method can automatically generate dynamic object motion trajectories and enhance their realism during the optimization process. DrivingGaussian++ demonstrates consistent and realistic editing results and generates dynamic multi-view driving scenarios, while significantly enhancing scene diversity. More results and code can be found at the project site: https://xiong-creator.github.io/DrivingGaussian_plus.github.io

Authors:Enrico Martini, Ho Jin Choi, Nadia Figueroa, Nicola Bombieri
Title: COMETH: Convex Optimization for Multiview Estimation and Tracking of Humans
Abstract:
In the era of Industry 5.0, monitoring human activity is essential for ensuring both ergonomic safety and overall well-being. While multi-camera centralized setups improve pose estimation accuracy, they often suffer from high computational costs and bandwidth requirements, limiting scalability and real-time applicability. Distributing processing across edge devices can reduce network bandwidth and computational load. On the other hand, the constrained resources of edge devices lead to accuracy degradation, and the distribution of computation leads to temporal and spatial inconsistencies. We address this challenge by proposing COMETH (Convex Optimization for Multiview Estimation and Tracking of Humans), a lightweight algorithm for real-time multi-view human pose fusion that relies on three concepts: it integrates kinematic and biomechanical constraints to increase the joint positioning accuracy; it employs convex optimization-based inverse kinematics for spatial fusion; and it implements a state observer to improve temporal consistency. We evaluate COMETH on both public and industrial datasets, where it outperforms state-of-the-art methods in localization, detection, and tracking accuracy. The proposed fusion pipeline enables accurate and scalable human motion tracking, making it well-suited for industrial and safety-critical applications. The code is publicly available at https://github.com/PARCO-LAB/COMETH.

Authors:Yifan Gao, Haoyue Li, Feng Yuan, Xiaosong Wang, Xin Gao
Title: Dino U-Net: Exploiting High-Fidelity Dense Features from Foundation Models for Medical Image Segmentation
Abstract:
Foundation models pre-trained on large-scale natural image datasets offer a powerful paradigm for medical image segmentation. However, effectively transferring their learned representations for precise clinical applications remains a challenge. In this work, we propose Dino U-Net, a novel encoder-decoder architecture designed to exploit the high-fidelity dense features of the DINOv3 vision foundation model. Our architecture introduces an encoder built upon a frozen DINOv3 backbone, which employs a specialized adapter to fuse the model's rich semantic features with low-level spatial details. To preserve the quality of these representations during dimensionality reduction, we design a new fidelity-aware projection module (FAPM) that effectively refines and projects the features for the decoder. We conducted extensive experiments on seven diverse public medical image segmentation datasets. Our results show that Dino U-Net achieves state-of-the-art performance, consistently outperforming previous methods across various imaging modalities. Our framework proves to be highly scalable, with segmentation accuracy consistently improving as the backbone model size increases up to the 7-billion-parameter variant. The findings demonstrate that leveraging the superior, dense-pretrained features from a general-purpose foundation model provides a highly effective and parameter-efficient approach to advance the accuracy of medical image segmentation. The code is available at https://github.com/yifangao112/DinoUNet.

Authors:Ye Zhang, Yu Zhou, Jingwen Qi, Yongbing Zhang, Simon Puettmann, Finn Wichmann, Larissa Pereira Ferreira, Lara Sichward, Julius Keyl, Sylvia Hartmann, Shuo Zhao, Hongxiao Wang, Xiaowei Xu, Jianxu Chen
Title: PathMR: Multimodal Visual Reasoning for Interpretable Pathology Diagnosis
Abstract:
Deep learning based automated pathological diagnosis has markedly improved diagnostic efficiency and reduced variability between observers, yet its clinical adoption remains limited by opaque model decisions and a lack of traceable rationale. To address this, recent multimodal visual reasoning architectures provide a unified framework that generates segmentation masks at the pixel level alongside semantically aligned textual explanations. By localizing lesion regions and producing expert style diagnostic narratives, these models deliver the transparent and interpretable insights necessary for dependable AI assisted pathology. Building on these advancements, we propose PathMR, a cell-level Multimodal visual Reasoning framework for Pathological image analysis. Given a pathological image and a textual query, PathMR generates expert-level diagnostic explanations while simultaneously predicting cell distribution patterns. To benchmark its performance, we evaluated our approach on the publicly available PathGen dataset as well as on our newly developed GADVR dataset. Extensive experiments on these two datasets demonstrate that PathMR consistently outperforms state-of-the-art visual reasoning methods in text generation quality, segmentation accuracy, and cross-modal alignment. These results highlight the potential of PathMR for improving interpretability in AI-driven pathological diagnosis. The code will be publicly available in https://github.com/zhangye-zoe/PathMR.

Authors:Tao Luo, Han Wu, Tong Yang, Dinggang Shen, Zhiming Cui
Title: Adapting Foundation Model for Dental Caries Detection with Dual-View Co-Training
Abstract:
Accurate dental caries detection from panoramic X-rays plays a pivotal role in preventing lesion progression. However, current detection methods often yield suboptimal accuracy due to subtle contrast variations and diverse lesion morphology of dental caries. In this work, inspired by the clinical workflow where dentists systematically combine whole-image screening with detailed tooth-level inspection, we present DVCTNet, a novel Dual-View Co-Training network for accurate dental caries detection. Our DVCTNet starts with employing automated tooth detection to establish two complementary views: a global view from panoramic X-ray images and a local view from cropped tooth images. We then pretrain two vision foundation models separately on the two views. The global-view foundation model serves as the detection backbone, generating region proposals and global features, while the local-view model extracts detailed features from corresponding cropped tooth patches matched by the region proposals. To effectively integrate information from both views, we introduce a Gated Cross-View Attention (GCV-Atten) module that dynamically fuses dual-view features, enhancing the detection pipeline by integrating the fused features back into the detection model for final caries detection. To rigorously evaluate our DVCTNet, we test it on a public dataset and further validate its performance on a newly curated, high-precision dental caries detection dataset, annotated using both intra-oral images and panoramic X-rays for double verification. Experimental results demonstrate DVCTNet's superior performance against existing state-of-the-art (SOTA) methods on both datasets, indicating the clinical applicability of our method. Our code and labeled dataset are available at https://github.com/ShanghaiTech-IMPACT/DVCTNet.

Authors:Beth Pearson, Bilal Boulbarss, Michael Wray, Martha Lewis
Title: Evaluating Compositional Generalisation in VLMs and Diffusion Models
Abstract:
A fundamental aspect of the semantics of natural language is that novel meanings can be formed from the composition of previously known parts. Vision-language models (VLMs) have made significant progress in recent years, however, there is evidence that they are unable to perform this kind of composition. For example, given an image of a red cube and a blue cylinder, a VLM such as CLIP is likely to incorrectly label the image as a red cylinder or a blue cube, indicating it represents the image as a `bag-of-words' and fails to capture compositional semantics. Diffusion models have recently gained significant attention for their impressive generative abilities, and zero-shot classifiers based on diffusion models have been shown to perform competitively with CLIP in certain compositional tasks. In this work we explore whether the generative Diffusion Classifier has improved compositional generalisation abilities compared to discriminative models. We assess three models -- Diffusion Classifier, CLIP, and ViLT -- on their ability to bind objects with attributes and relations in both zero-shot learning (ZSL) and generalised zero-shot learning (GZSL) settings. Our results show that the Diffusion Classifier and ViLT perform well at concept binding tasks, but that all models struggle significantly with the relational GZSL task, underscoring the broader challenges VLMs face with relational reasoning. Analysis of CLIP embeddings suggests that the difficulty may stem from overly similar representations of relational concepts such as left and right. Code and dataset are available at: https://github.com/otmive/diffusion_classifier_clip

Authors:Jiawen Lin, Shiran Bian, Yihang Zhu, Wenbin Tan, Yachao Zhang, Yuan Xie, Yanyun Qu
Title: SeqVLM: Proposal-Guided Multi-View Sequences Reasoning via VLM for Zero-Shot 3D Visual Grounding
Abstract:
3D Visual Grounding (3DVG) aims to localize objects in 3D scenes using natural language descriptions. Although supervised methods achieve higher accuracy in constrained settings, zero-shot 3DVG holds greater promise for real-world applications since eliminating scene-specific training requirements. However, existing zero-shot methods face challenges of spatial-limited reasoning due to reliance on single-view localization, and contextual omissions or detail degradation. To address these issues, we propose SeqVLM, a novel zero-shot 3DVG framework that leverages multi-view real-world scene images with spatial information for target object reasoning. Specifically, SeqVLM first generates 3D instance proposals via a 3D semantic segmentation network and refines them through semantic filtering, retaining only semantic-relevant candidates. A proposal-guided multi-view projection strategy then projects these candidate proposals onto real scene image sequences, preserving spatial relationships and contextual details in the conversion process of 3D point cloud to images. Furthermore, to mitigate VLM computational overload, we implement a dynamic scheduling mechanism that iteratively processes sequances-query prompts, leveraging VLM's cross-modal reasoning capabilities to identify textually specified objects. Experiments on the ScanRefer and Nr3D benchmarks demonstrate state-of-the-art performance, achieving Acc@0.25 scores of 55.6% and 53.2%, surpassing previous zero-shot methods by 4.0% and 5.2%, respectively, which advance 3DVG toward greater generalization and real-world applicability. The code is available at https://github.com/JiawLin/SeqVLM.

Authors:Yuxi Hu, Jun Zhang, Kuangyi Chen, Zhe Zhang, Friedrich Fraundorfer
Title: ${C}^{3}$-GS: Learning Context-aware, Cross-dimension, Cross-scale Feature for Generalizable Gaussian Splatting
Abstract:
Generalizable Gaussian Splatting aims to synthesize novel views for unseen scenes without per-scene optimization. In particular, recent advancements utilize feed-forward networks to predict per-pixel Gaussian parameters, enabling high-quality synthesis from sparse input views. However, existing approaches fall short in encoding discriminative, multi-view consistent features for Gaussian predictions, which struggle to construct accurate geometry with sparse views. To address this, we propose $\mathbf{C}^{3}$-GS, a framework that enhances feature learning by incorporating context-aware, cross-dimension, and cross-scale constraints. Our architecture integrates three lightweight modules into a unified rendering pipeline, improving feature fusion and enabling photorealistic synthesis without requiring additional supervision. Extensive experiments on benchmark datasets validate that $\mathbf{C}^{3}$-GS achieves state-of-the-art rendering quality and generalization ability. Code is available at: https://github.com/YuhsiHu/C3-GS.

Authors:Yibin Wang, Zhimin Li, Yuhang Zang, Yujie Zhou, Jiazi Bu, Chunyu Wang, Qinglin Lu, Cheng Jin, Jiaqi Wang
Title: Pref-GRPO: Pairwise Preference Reward-based GRPO for Stable Text-to-Image Reinforcement Learning
Abstract:
Recent advancements highlight the importance of GRPO-based reinforcement learning methods and benchmarking in enhancing text-to-image (T2I) generation. However, current methods using pointwise reward models (RM) for scoring generated images are susceptible to reward hacking. We reveal that this happens when minimal score differences between images are amplified after normalization, creating illusory advantages that drive the model to over-optimize for trivial gains, ultimately destabilizing the image generation process. To address this, we propose Pref-GRPO, a pairwise preference reward-based GRPO method that shifts the optimization objective from score maximization to preference fitting, ensuring more stable training. In Pref-GRPO, images are pairwise compared within each group using preference RM, and the win rate is used as the reward signal. Extensive experiments demonstrate that PREF-GRPO differentiates subtle image quality differences, providing more stable advantages and mitigating reward hacking. Additionally, existing T2I benchmarks are limited by coarse evaluation criteria, hindering comprehensive model assessment. To solve this, we introduce UniGenBench, a unified T2I benchmark comprising 600 prompts across 5 main themes and 20 subthemes. It evaluates semantic consistency through 10 primary and 27 sub-criteria, leveraging MLLM for benchmark construction and evaluation. Our benchmarks uncover the strengths and weaknesses of both open and closed-source T2I models and validate the effectiveness of Pref-GRPO.

Authors:Fartash Faghri, Pavan Kumar Anasosalu Vasu, Cem Koc, Vaishaal Shankar, Alexander Toshev, Oncel Tuzel, Hadi Pouransari
Title: MobileCLIP2: Improving Multi-Modal Reinforced Training
Abstract:
Foundation image-text models such as CLIP with zero-shot capabilities enable a wide array of applications. MobileCLIP is a recent family of image-text models at 3-15ms latency and 50-150M parameters with state-of-the-art zero-shot accuracy. The main ingredients in MobileCLIP were its low-latency and light architectures and a novel multi-modal reinforced training that made knowledge distillation from multiple caption-generators and CLIP teachers efficient, scalable, and reproducible. In this paper, we improve the multi-modal reinforced training of MobileCLIP through: 1) better CLIP teacher ensembles trained on the DFN dataset, 2) improved captioner teachers trained on the DFN dataset and fine-tuned on a diverse selection of high-quality image-caption datasets. We discover new insights through ablations such as the importance of temperature tuning in contrastive knowledge distillation, the effectiveness of caption-generator fine-tuning for caption diversity, and the additive improvement from combining synthetic captions generated by multiple models. We train a new family of models called MobileCLIP2 and achieve state-of-the-art ImageNet-1k zero-shot accuracies at low latencies. In particular, we observe 2.2% improvement in ImageNet-1k accuracy for MobileCLIP2-B compared with MobileCLIP-B architecture. Notably, MobileCLIP2-S4 matches the zero-shot accuracy of SigLIP-SO400M/14 on ImageNet-1k while being 2$\times$ smaller and improves on DFN ViT-L/14 at 2.5$\times$ lower latency. We release our pretrained models (https://github.com/apple/ml-mobileclip) and the data generation code (https://github.com/apple/ml-mobileclip-dr). The data generation code makes it easy to create new reinforced datasets with arbitrary teachers using distributed scalable processing.

Authors:Smriti Joshi, Lidia Garrucho, Richard Osuala, Oliver Diaz, Karim Lekadir
Title: Mask-Guided Multi-Channel SwinUNETR Framework for Robust MRI Classification
Abstract:
Breast cancer is one of the leading causes of cancer-related mortality in women, and early detection is essential for improving outcomes. Magnetic resonance imaging (MRI) is a highly sensitive tool for breast cancer detection, particularly in women at high risk or with dense breast tissue, where mammography is less effective. The ODELIA consortium organized a multi-center challenge to foster AI-based solutions for breast cancer diagnosis and classification. The dataset included 511 studies from six European centers, acquired on scanners from multiple vendors at both 1.5 T and 3 T. Each study was labeled for the left and right breast as no lesion, benign lesion, or malignant lesion. We developed a SwinUNETR-based deep learning framework that incorporates breast region masking, extensive data augmentation, and ensemble learning to improve robustness and generalizability. Our method achieved second place on the challenge leaderboard, highlighting its potential to support clinical breast MRI interpretation. We publicly share our codebase at https://github.com/smriti-joshi/bcnaim-odelia-challenge.git.

Authors:Yiguo Jiang, Xiaodong Cun, Yong Zhang, Yudian Zheng, Fan Tang, Chi-Man Pun
Title: EmoCAST: Emotional Talking Portrait via Emotive Text Description
Abstract:
Emotional talking head synthesis aims to generate talking portrait videos with vivid expressions. Existing methods still exhibit limitations in control flexibility, motion naturalness, and expression quality. Moreover, currently available datasets are primarily collected in lab settings, further exacerbating these shortcomings. Consequently, these limitations substantially hinder practical applications in real-world scenarios. To address these challenges, we propose EmoCAST, a diffusion-based framework with two key modules for precise text-driven emotional synthesis. In appearance modeling, emotional prompts are integrated through a text-guided decoupled emotive module, enhancing the spatial knowledge to improve emotion comprehension. To improve the relationship between audio and emotion, we introduce an emotive audio attention module to capture the interplay between controlled emotion and driving audio, generating emotion-aware features to guide more precise facial motion synthesis. Additionally, we construct an emotional talking head dataset with comprehensive emotive text descriptions to optimize the framework's performance. Based on the proposed dataset, we propose an emotion-aware sampling training strategy and a progressive functional training strategy that further improve the model's ability to capture nuanced expressive features and achieve accurate lip-synchronization. Overall, EmoCAST achieves state-of-the-art performance in generating realistic, emotionally expressive, and audio-synchronized talking-head videos. Project Page: https://github.com/GVCLab/EmoCAST

Authors:Jingyun Yang, Guoqing Zhang, Jingge Wang, Yang Li
Title: Learning What is Worth Learning: Active and Sequential Domain Adaptation for Multi-modal Gross Tumor Volume Segmentation
Abstract:
Accurate gross tumor volume segmentation on multi-modal medical data is critical for radiotherapy planning in nasopharyngeal carcinoma and glioblastoma. Recent advances in deep neural networks have brought promising results in medical image segmentation, leading to an increasing demand for labeled data. Since labeling medical images is time-consuming and labor-intensive, active learning has emerged as a solution to reduce annotation costs by selecting the most informative samples to label and adapting high-performance models with as few labeled samples as possible. Previous active domain adaptation (ADA) methods seek to minimize sample redundancy by selecting samples that are farthest from the source domain. However, such one-off selection can easily cause negative transfer, and access to source medical data is often limited. Moreover, the query strategy for multi-modal medical data remains unexplored. In this work, we propose an active and sequential domain adaptation framework for dynamic multi-modal sample selection in ADA. We derive a query strategy to prioritize labeling and training on the most valuable samples based on their informativeness and representativeness. Empirical validation on diverse gross tumor volume segmentation tasks demonstrates that our method achieves favorable segmentation performance, significantly outperforming state-of-the-art ADA methods. Code is available at the git repository: \href{https://github.com/Hiyoochan/mmActS}{mmActS}.

Authors:Jeong Hun Yeo, Hyeongseop Rha, Sungjune Park, Junil Won, Yong Man Ro
Title: Towards Inclusive Communication: A Unified LLM-Based Framework for Sign Language, Lip Movements, and Audio Understanding
Abstract:
Audio is the primary modality for human communication and has driven the success of Automatic Speech Recognition (ASR) technologies. However, such systems remain inherently inaccessible to individuals who are deaf or hard of hearing. Visual alternatives such as sign language and lip reading offer effective substitutes, and recent advances in Sign Language Translation (SLT) and Visual Speech Recognition (VSR) have improved audio-less communication. Yet, these modalities have largely been studied in isolation, and their integration within a unified framework remains underexplored. In this paper, we introduce the first unified framework capable of handling diverse combinations of sign language, lip movements, and audio for spoken-language text generation. We focus on three main objectives: (i) designing a unified, modality-agnostic architecture capable of effectively processing heterogeneous inputs; (ii) exploring the underexamined synergy among modalities, particularly the role of lip movements as non-manual cues in sign language comprehension; and (iii) achieving performance on par with or superior to state-of-the-art models specialized for individual tasks. Building on this framework, we achieve performance on par with or better than task-specific state-of-the-art models across SLT, VSR, ASR, and AVSR. Furthermore, our analysis reveals that explicitly modeling lip movements as a separate modality significantly improves SLT performance.

Authors:Xiaochuan Li, Guoguang Du, Runze Zhang, Liang Jin, Qi Jia, Lihua Lu, Zhenhua Guo, Yaqian Zhao, Haiyang Liu, Tianqi Wang, Changsheng Li, Xiaoli Gong, Rengang Li, Baoyu Fan
Title: Droplet3D: Commonsense Priors from Videos Facilitate 3D Generation
Abstract:
Scaling laws have validated the success and promise of large-data-trained models in creative generation across text, image, and video domains. However, this paradigm faces data scarcity in the 3D domain, as there is far less of it available on the internet compared to the aforementioned modalities. Fortunately, there exist adequate videos that inherently contain commonsense priors, offering an alternative supervisory signal to mitigate the generalization bottleneck caused by limited native 3D data. On the one hand, videos capturing multiple views of an object or scene provide a spatial consistency prior for 3D generation. On the other hand, the rich semantic information contained within the videos enables the generated content to be more faithful to the text prompts and semantically plausible. This paper explores how to apply the video modality in 3D asset generation, spanning datasets to models. We introduce Droplet3D-4M, the first large-scale video dataset with multi-view level annotations, and train Droplet3D, a generative model supporting both image and dense text input. Extensive experiments validate the effectiveness of our approach, demonstrating its ability to produce spatially consistent and semantically plausible content. Moreover, in contrast to the prevailing 3D solutions, our approach exhibits the potential for extension to scene-level applications. This indicates that the commonsense priors from the videos significantly facilitate 3D creation. We have open-sourced all resources including the dataset, code, technical framework, and model weights: https://dropletx.github.io/.

Authors:Pengpeng Yu, Haoran Li, Dingquan Li, Runqing Jiang, Jing Wang, Liang Lin, Yulan Guo
Title: Re-Densification Meets Cross-Scale Propagation: Real-Time Compression of LiDAR Point Clouds
Abstract:
LiDAR point clouds are fundamental to various applications, yet high-precision scans incur substantial storage and transmission overhead. Existing methods typically convert unordered points into hierarchical octree or voxel structures for dense-to-sparse predictive coding. However, the extreme sparsity of geometric details hinders efficient context modeling, thereby limiting their compression performance and speed. To address this challenge, we propose to generate compact features for efficient predictive coding. Our framework comprises two lightweight modules. First, the Geometry Re-Densification Module re-densifies encoded sparse geometry, extracts features at denser scale, and then re-sparsifies the features for predictive coding. This module avoids costly computation on highly sparse details while maintaining a lightweight prediction head. Second, the Cross-scale Feature Propagation Module leverages occupancy cues from multiple resolution levels to guide hierarchical feature propagation. This design facilitates information sharing across scales, thereby reducing redundant feature extraction and providing enriched features for the Geometry Re-Densification Module. By integrating these two modules, our method yields a compact feature representation that provides efficient context modeling and accelerates the coding process. Experiments on the KITTI dataset demonstrate state-of-the-art compression ratios and real-time performance, achieving 26 FPS for both encoding and decoding at 12-bit quantization. Code is available at https://github.com/pengpeng-yu/FastPCC.

Authors:Yuqi Xiong, Wuzhen Shi, Yang Wen, Ruhan Liu
Title: Graph-Based Uncertainty Modeling and Multimodal Fusion for Salient Object Detection
Abstract:
In view of the problems that existing salient object detection (SOD) methods are prone to losing details, blurring edges, and insufficient fusion of single-modal information in complex scenes, this paper proposes a dynamic uncertainty propagation and multimodal collaborative reasoning network (DUP-MCRNet). Firstly, a dynamic uncertainty graph convolution module (DUGC) is designed to propagate uncertainty between layers through a sparse graph constructed based on spatial semantic distance, and combined with channel adaptive interaction, it effectively improves the detection accuracy of small structures and edge regions. Secondly, a multimodal collaborative fusion strategy (MCF) is proposed, which uses learnable modality gating weights to weightedly fuse the attention maps of RGB, depth, and edge features. It can dynamically adjust the importance of each modality according to different scenes, effectively suppress redundant or interfering information, and strengthen the semantic complementarity and consistency between cross-modalities, thereby improving the ability to identify salient regions under occlusion, weak texture or background interference. Finally, the detection performance at the pixel level and region level is optimized through multi-scale BCE and IoU loss, cross-scale consistency constraints, and uncertainty-guided supervision mechanisms. Extensive experiments show that DUP-MCRNet outperforms various SOD methods on most common benchmark datasets, especially in terms of edge clarity and robustness to complex backgrounds. Our code is publicly available at https://github.com/YukiBear426/DUP-MCRNet.

Authors:Mang Cao, Sanping Zhou, Yizhe Li, Ye Deng, Wenli Huang, Le Wang
Title: Enhancing Mamba Decoder with Bidirectional Interaction in Multi-Task Dense Prediction
Abstract:
Sufficient cross-task interaction is crucial for success in multi-task dense prediction. However, sufficient interaction often results in high computational complexity, forcing existing methods to face the trade-off between interaction completeness and computational efficiency. To address this limitation, this work proposes a Bidirectional Interaction Mamba (BIM), which incorporates novel scanning mechanisms to adapt the Mamba modeling approach for multi-task dense prediction. On the one hand, we introduce a novel Bidirectional Interaction Scan (BI-Scan) mechanism, which constructs task-specific representations as bidirectional sequences during interaction. By integrating task-first and position-first scanning modes within a unified linear complexity architecture, BI-Scan efficiently preserves critical cross-task information. On the other hand, we employ a Multi-Scale Scan~(MS-Scan) mechanism to achieve multi-granularity scene modeling. This design not only meets the diverse granularity requirements of various tasks but also enhances nuanced cross-task feature interactions. Extensive experiments on two challenging benchmarks, \emph{i.e.}, NYUD-V2 and PASCAL-Context, show the superiority of our BIM vs its state-of-the-art competitors.

Authors:Zhixiang Chi, Yanan Wu, Li Gu, Huan Liu, Ziqiang Wang, Yang Zhang, Yang Wang, Konstantinos N. Plataniotis
Title: Plug-in Feedback Self-adaptive Attention in CLIP for Training-free Open-Vocabulary Segmentation
Abstract:
CLIP exhibits strong visual-textual alignment but struggle with open-vocabulary segmentation due to poor localization. Prior methods enhance spatial coherence by modifying intermediate attention. But, this coherence isn't consistently propagated to the final output due to subsequent operations such as projections. Additionally, intermediate attention lacks direct interaction with text representations, such semantic discrepancy limits the full potential of CLIP. In this work, we propose a training-free, feedback-driven self-adaptive framework that adapts output-based patch-level correspondences back to the intermediate attention. The output predictions, being the culmination of the model's processing, encapsulate the most comprehensive visual and textual semantics about each patch. Our approach enhances semantic consistency between internal representations and final predictions by leveraging the model's outputs as a stronger spatial coherence prior. We design key modules, including attention isolation, confidence-based pruning for sparse adaptation, and adaptation ensemble, to effectively feedback the output coherence cues. Our method functions as a plug-in module, seamlessly integrating into four state-of-the-art approaches with three backbones (ViT-B, ViT-L, ViT-H). We further validate our framework across multiple attention types (Q-K, self-self, and Proxy augmented with MAE, SAM, and DINO). Our approach consistently improves their performance across eight benchmarks.

Authors:Mert Cokelek, Halit Ozsoy, Nevrez Imamoglu, Cagri Ozcinar, Inci Ayhan, Erkut Erdem, Aykut Erdem
Title: Spherical Vision Transformers for Audio-Visual Saliency Prediction in 360-Degree Videos
Abstract:
Omnidirectional videos (ODVs) are redefining viewer experiences in virtual reality (VR) by offering an unprecedented full field-of-view (FOV). This study extends the domain of saliency prediction to 360-degree environments, addressing the complexities of spherical distortion and the integration of spatial audio. Contextually, ODVs have transformed user experience by adding a spatial audio dimension that aligns sound direction with the viewer's perspective in spherical scenes. Motivated by the lack of comprehensive datasets for 360-degree audio-visual saliency prediction, our study curates YT360-EyeTracking, a new dataset of 81 ODVs, each observed under varying audio-visual conditions. Our goal is to explore how to utilize audio-visual cues to effectively predict visual saliency in 360-degree videos. Towards this aim, we propose two novel saliency prediction models: SalViT360, a vision-transformer-based framework for ODVs equipped with spherical geometry-aware spatio-temporal attention layers, and SalViT360-AV, which further incorporates transformer adapters conditioned on audio input. Our results on a number of benchmark datasets, including our YT360-EyeTracking, demonstrate that SalViT360 and SalViT360-AV significantly outperform existing methods in predicting viewer attention in 360-degree scenes. Interpreting these results, we suggest that integrating spatial audio cues in the model architecture is crucial for accurate saliency prediction in omnidirectional videos. Code and dataset will be available at https://cyberiada.github.io/SalViT360.

Authors:Alberto Compagnoni, Davide Caffagni, Nicholas Moratelli, Lorenzo Baraldi, Marcella Cornia, Rita Cucchiara
Title: Mitigating Hallucinations in Multimodal LLMs via Object-aware Preference Optimization
Abstract:
Multimodal Large Language Models (MLLMs) emerge as a unified interface to address a multitude of tasks, ranging from NLP to computer vision. Despite showcasing state-of-the-art results in many benchmarks, a long-standing issue is the tendency of MLLMs to hallucinate, that is to generate answers to the user's query that are not reflected in the visual input. In this paper, we address the problem of hallucinations as an alignment problem, seeking to steer the MLLM so that it prefers generating content without hallucinations. In contrast to recent approaches that require complicated pipelines to build synthetic preference data for alignment training, often relying on proprietary models, we capitalize on the well-known CHAIR metric, originally proposed to gauge the degree of hallucinations in image captioning. Given a pair of generated answers, we leverage CHAIR to distinguish winner and loser options (i.e., non-hallucinated and hallucinated samples) and fine-tune off-the-shelf MLLMs via Direct Preference Optimization (DPO). The resulting method, which we refer to as CHAIR-DPO, effectively diminishes the amount of hallucinated answers on several hallucination benchmarks, demonstrating the effectiveness of fine-tuning the MLLM with a CHAIR-based reward. Source code and trained models are publicly available at https://github.com/aimagelab/CHAIR-DPO.

Authors:Guoping Xu, Jayaram K. Udupa, Jax Luo, Songlin Zhao, Yajun Yu, Scott B. Raymond, Hao Peng, Lipeng Ning, Yogesh Rathi, Wei Liu, You Zhang
Title: Is the medical image segmentation problem solved? A survey of current developments and future directions
Abstract:
Medical image segmentation has advanced rapidly over the past two decades, largely driven by deep learning, which has enabled accurate and efficient delineation of cells, tissues, organs, and pathologies across diverse imaging modalities. This progress raises a fundamental question: to what extent have current models overcome persistent challenges, and what gaps remain? In this work, we provide an in-depth review of medical image segmentation, tracing its progress and key developments over the past decade. We examine core principles, including multiscale analysis, attention mechanisms, and the integration of prior knowledge, across the encoder, bottleneck, skip connections, and decoder components of segmentation networks. Our discussion is organized around seven key dimensions: (1) the shift from supervised to semi-/unsupervised learning, (2) the transition from organ segmentation to lesion-focused tasks, (3) advances in multi-modality integration and domain adaptation, (4) the role of foundation models and transfer learning, (5) the move from deterministic to probabilistic segmentation, (6) the progression from 2D to 3D and 4D segmentation, and (7) the trend from model invocation to segmentation agents. Together, these perspectives provide a holistic overview of the trajectory of deep learning-based medical image segmentation and aim to inspire future innovation. To support ongoing research, we maintain a continually updated repository of relevant literature and open-source resources at https://github.com/apple1986/medicalSegReview

Authors:Zeyi Sun, Yuhang Cao, Jianze Liang, Qiushi Sun, Ziyu Liu, Zhixiong Zhang, Yuhang Zang, Xiaoyi Dong, Kai Chen, Dahua Lin, Jiaqi Wang
Title: CODA: Coordinating the Cerebrum and Cerebellum for a Dual-Brain Computer Use Agent with Decoupled Reinforcement Learning
Abstract:
Autonomous agents for Graphical User Interfaces (GUIs) face significant challenges in specialized domains such as scientific computing, where both long-horizon planning and precise execution are required. Existing approaches suffer from a trade-off: generalist agents excel at planning but perform poorly in execution, while specialized agents demonstrate the opposite weakness. Recent compositional frameworks attempt to bridge this gap by combining a planner and an actor, but they are typically static and non-trainable, which prevents adaptation from experience. This is a critical limitation given the scarcity of high-quality data in scientific domains. To address these limitations, we introduce CODA, a novel and trainable compositional framework that integrates a generalist planner (Cerebrum) with a specialist executor (Cerebellum), trained via a dedicated two-stage pipeline. In the first stage, Specialization, we apply a decoupled GRPO approach to train an expert planner for each scientific application individually, bootstrapping from a small set of task trajectories. In the second stage, Generalization, we aggregate all successful trajectories from the specialized experts to build a consolidated dataset, which is then used for supervised fine-tuning of the final planner. This equips CODA with both robust execution and cross-domain generalization. Evaluated on four challenging applications from the ScienceBoard benchmark, CODA significantly outperforms baselines and establishes a new state of the art among open-source models.

Authors:Yuxin Guo, Teng Wang, Yuying Ge, Shijie Ma, Yixiao Ge, Wei Zou, Ying Shan
Title: AudioStory: Generating Long-Form Narrative Audio with Large Language Models
Abstract:
Recent advances in text-to-audio (TTA) generation excel at synthesizing short audio clips but struggle with long-form narrative audio, which requires temporal coherence and compositional reasoning. To address this gap, we propose AudioStory, a unified framework that integrates large language models (LLMs) with TTA systems to generate structured, long-form audio narratives. AudioStory possesses strong instruction-following reasoning generation capabilities. It employs LLMs to decompose complex narrative queries into temporally ordered sub-tasks with contextual cues, enabling coherent scene transitions and emotional tone consistency. AudioStory has two appealing features: (1) Decoupled bridging mechanism: AudioStory disentangles LLM-diffuser collaboration into two specialized components, i.e., a bridging query for intra-event semantic alignment and a residual query for cross-event coherence preservation. (2) End-to-end training: By unifying instruction comprehension and audio generation within a single end-to-end framework, AudioStory eliminates the need for modular training pipelines while enhancing synergy between components. Furthermore, we establish a benchmark AudioStory-10K, encompassing diverse domains such as animated soundscapes and natural sound narratives. Extensive experiments show the superiority of AudioStory on both single-audio generation and narrative audio generation, surpassing prior TTA baselines in both instruction-following ability and audio fidelity. Our code is available at https://github.com/TencentARC/AudioStory

Authors:Manogna Sreenivas, Soma Biswas
Title: Segmentation Assisted Incremental Test Time Adaptation in an Open World
Abstract:
In dynamic environments, unfamiliar objects and distribution shifts are often encountered, which challenge the generalization abilities of the deployed trained models. This work addresses Incremental Test Time Adaptation of Vision Language Models, tackling scenarios where unseen classes and unseen domains continuously appear during testing. Unlike traditional Test Time Adaptation approaches, where the test stream comes only from a predefined set of classes, our framework allows models to adapt simultaneously to both covariate and label shifts, actively incorporating new classes as they emerge. Towards this goal, we establish a new benchmark for ITTA, integrating single image TTA methods for VLMs with active labeling techniques that query an oracle for samples potentially representing unseen classes during test time. We propose a segmentation assisted active labeling module, termed SegAssist, which is training free and repurposes the segmentation capabilities of VLMs to refine active sample selection, prioritizing samples likely to belong to unseen classes. Extensive experiments on several benchmark datasets demonstrate the potential of SegAssist to enhance the performance of VLMs in real world scenarios, where continuous adaptation to emerging data is essential. Project-page:https://manogna-s.github.io/segassist/

Authors:Gianluca Guzzetta
Title: Reimagining Image Segmentation using Active Contour: From Chan Vese Algorithm into a Proposal Novel Functional Loss Framework
Abstract:
In this paper, we present a comprehensive study and analysis of the Chan-Vese algorithm for image segmentation. We employ a discretized scheme derived from the empirical study of the Chan-Vese model's functional energy and its partial differential equation based on its level set function. We provide a proof of the results and an implementation using MATLAB. Leveraging modern computer vision methodologies, we propose a functional segmentation loss based on active contours, utilizing pytorch.nn.ModuleLoss and a level set based on the Chan-Vese algorithm. We compare our results with common computer vision segmentation datasets and evaluate the performance of classical loss functions against our proposed method. All code and materials used are available at https://github.com/gguzzy/chan_vese_functional_loss.

Authors:Taebaek Hwang, Minseo Kim, Gisang Lee, Seonuk Kim, Hyunjun Eun
Title: KRETA: A Benchmark for Korean Reading and Reasoning in Text-Rich VQA Attuned to Diverse Visual Contexts
Abstract:
Understanding and reasoning over text within visual contexts poses a significant challenge for Vision-Language Models (VLMs), given the complexity and diversity of real-world scenarios. To address this challenge, text-rich Visual Question Answering (VQA) datasets and benchmarks have emerged for high-resource languages like English. However, a critical gap persists for low-resource languages such as Korean, where the lack of comprehensive benchmarks hinders robust model evaluation and comparison. To bridge this gap, we introduce KRETA, a benchmark for Korean Reading and rEasoning in Text-rich VQA Attuned to diverse visual contexts. KRETA facilitates an in-depth evaluation of both visual text understanding and reasoning capabilities, while also supporting a multifaceted assessment across 15 domains and 26 image types. Additionally, we introduce a semi-automated VQA generation pipeline specifically optimized for text-rich settings, leveraging refined stepwise image decomposition and a rigorous seven-metric evaluation protocol to ensure data quality. While KRETA is tailored for Korean, we hope our adaptable and extensible pipeline will facilitate the development of similar benchmarks in other languages, thereby accelerating multilingual VLM research. The code and dataset for KRETA are available at https://github.com/tabtoyou/KRETA.

Authors:Moussa Kassem Sbeyti, Nadja Klein, Michelle Karg, Christian Wirth, Sahin Albayrak
Title: Streamlining the Development of Active Learning Methods in Real-World Object Detection
Abstract:
Active learning (AL) for real-world object detection faces computational and reliability challenges that limit practical deployment. Developing new AL methods requires training multiple detectors across iterations to compare against existing approaches. This creates high costs for autonomous driving datasets where the training of one detector requires up to 282 GPU hours. Additionally, AL method rankings vary substantially across validation sets, compromising reliability in safety-critical transportation systems. We introduce object-based set similarity ($\mathrm{OSS}$), a metric that addresses these challenges. $\mathrm{OSS}$ (1) quantifies AL method effectiveness without requiring detector training by measuring similarity between training sets and target domains using object-level features. This enables the elimination of ineffective AL methods before training. Furthermore, $\mathrm{OSS}$ (2) enables the selection of representative validation sets for robust evaluation. We validate our similarity-based approach on three autonomous driving datasets (KITTI, BDD100K, CODA) using uncertainty-based AL methods as a case study with two detector architectures (EfficientDet, YOLOv3). This work is the first to unify AL training and evaluation strategies in object detection based on object similarity. $\mathrm{OSS}$ is detector-agnostic, requires only labeled object crops, and integrates with existing AL pipelines. This provides a practical framework for deploying AL in real-world applications where computational efficiency and evaluation reliability are critical. Code is available at https://mos-ks.github.io/publications/.

Authors:Long Chen, Ashiv Patel, Mengyun Qiao, Mohammad Yousuf Salmasi, Salah A. Hammouche, Vasilis Stavrinides, Jasleen Nagi, Soodeh Kalaie, Xiao Yun Xu, Wenjia Bai, Declan P. O'Regan
Title: Multimodal Conditional MeshGAN for Personalized Aneurysm Growth Prediction
Abstract:
Personalized, accurate prediction of aortic aneurysm progression is essential for timely intervention but remains challenging due to the need to model both subtle local deformations and global anatomical changes within complex 3D geometries. We propose MCMeshGAN, the first multimodal conditional mesh-to-mesh generative adversarial network for 3D aneurysm growth prediction. MCMeshGAN introduces a dual-branch architecture combining a novel local KNN-based convolutional network (KCN) to preserve fine-grained geometric details and a global graph convolutional network (GCN) to capture long-range structural context, overcoming the over-smoothing limitations of deep GCNs. A dedicated condition branch encodes clinical attributes (age, sex) and the target time interval to generate anatomically plausible, temporally controlled predictions, enabling retrospective and prospective modeling. We curated TAAMesh, a new longitudinal thoracic aortic aneurysm mesh dataset consisting of 590 multimodal records (CT scans, 3D meshes, and clinical data) from 208 patients. Extensive experiments demonstrate that MCMeshGAN consistently outperforms state-of-the-art baselines in both geometric accuracy and clinically important diameter estimation. This framework offers a robust step toward clinically deployable, personalized 3D disease trajectory modeling. The source code for MCMeshGAN and the baseline methods is publicly available at https://github.com/ImperialCollegeLondon/MCMeshGAN.

Authors:Xiaoqi Wang, Yun Zhang, Weisi Lin
Title: Image Quality Assessment for Machines: Paradigm, Large-scale Database, and Models
Abstract:
Machine vision systems (MVS) are intrinsically vulnerable to performance degradation under adverse visual conditions. To address this, we propose a machine-centric image quality assessment (MIQA) framework that quantifies the impact of image degradations on MVS performance. We establish an MIQA paradigm encompassing the end-to-end assessment workflow. To support this, we construct a machine-centric image quality database (MIQD-2.5M), comprising 2.5 million samples that capture distinctive degradation responses in both consistency and accuracy metrics, spanning 75 vision models, 250 degradation types, and three representative vision tasks. We further propose a region-aware MIQA (RA-MIQA) model to evaluate MVS visual quality through fine-grained spatial degradation analysis. Extensive experiments benchmark the proposed RA-MIQA against seven human visual system (HVS)-based IQA metrics and five retrained classical backbones. Results demonstrate RA-MIQA's superior performance in multiple dimensions, e.g., achieving SRCC gains of 13.56% on consistency and 13.37% on accuracy for image classification, while also revealing task-specific degradation sensitivities. Critically, HVS-based metrics prove inadequate for MVS quality prediction, while even specialized MIQA models struggle with background degradations, accuracy-oriented estimation, and subtle distortions. This study can advance MVS reliability and establish foundations for machine-centric image processing and optimization. The model and code are available at: https://github.com/XiaoqiWang/MIQA.

Authors:Kaixuan Lu, Mehmet Onurcan Kaya, Dim P. Papadopoulos
Title: AutoQ-VIS: Improving Unsupervised Video Instance Segmentation via Automatic Quality Assessment
Abstract:
Video Instance Segmentation (VIS) faces significant annotation challenges due to its dual requirements of pixel-level masks and temporal consistency labels. While recent unsupervised methods like VideoCutLER eliminate optical flow dependencies through synthetic data, they remain constrained by the synthetic-to-real domain gap. We present AutoQ-VIS, a novel unsupervised framework that bridges this gap through quality-guided self-training. Our approach establishes a closed-loop system between pseudo-label generation and automatic quality assessment, enabling progressive adaptation from synthetic to real videos. Experiments demonstrate state-of-the-art performance with 52.6 $\text{AP}_{50}$ on YouTubeVIS-2019 val set, surpassing the previous state-of-the-art VideoCutLER by 4.4$\%$, while requiring no human annotations. This demonstrates the viability of quality-aware self-training for unsupervised VIS. The source code of our method is available at https://github.com/wcbup/AutoQ-VIS.

Authors:Shay Shomer Chai, Wenxuan Peng, Bharath Hariharan, Hadar Averbuch-Elor
Title: Not Every Gift Comes in Gold Paper or with a Red Ribbon: Exploring Color Perception in Text-to-Image Models
Abstract:
Text-to-image generation has recently seen remarkable success, granting users with the ability to create high-quality images through the use of text. However, contemporary methods face challenges in capturing the precise semantics conveyed by complex multi-object prompts. Consequently, many works have sought to mitigate such semantic misalignments, typically via inference-time schemes that modify the attention layers of the denoising networks. However, prior work has mostly utilized coarse metrics, such as the cosine similarity between text and image CLIP embeddings, or human evaluations, which are challenging to conduct on a larger-scale. In this work, we perform a case study on colors -- a fundamental attribute commonly associated with objects in text prompts, which offer a rich test bed for rigorous evaluation. Our analysis reveals that pretrained models struggle to generate images that faithfully reflect multiple color attributes-far more so than with single-color prompts-and that neither inference-time techniques nor existing editing methods reliably resolve these semantic misalignments. Accordingly, we introduce a dedicated image editing technique, mitigating the issue of multi-object semantic alignment for prompts containing multiple colors. We demonstrate that our approach significantly boosts performance over a wide range of metrics, considering images generated by various text-to-image diffusion-based techniques.

Authors:Qiyao Xu, Qiming Wu, Xiaowei Li
Title: SPLF-SAM: Self-Prompting Segment Anything Model for Light Field Salient Object Detection
Abstract:
Segment Anything Model (SAM) has demonstrated remarkable capabilities in solving light field salient object detection (LF SOD). However, most existing models tend to neglect the extraction of prompt information under this task. Meanwhile, traditional models ignore the analysis of frequency-domain information, which leads to small objects being overwhelmed by noise. In this paper, we put forward a novel model called self-prompting light field segment anything model (SPLF-SAM), equipped with unified multi-scale feature embedding block (UMFEB) and a multi-scale adaptive filtering adapter (MAFA). UMFEB is capable of identifying multiple objects of varying sizes, while MAFA, by learning frequency features, effectively prevents small objects from being overwhelmed by noise. Extensive experiments have demonstrated the superiority of our method over ten state-of-the-art (SOTA) LF SOD methods. Our code will be available at https://github.com/XucherCH/splfsam.

Authors:Yupeng Zhang, Dezhi Zheng, Ping Lu, Han Zhang, Lei Wang, Liping xiang, Cheng Luo, Kaijun Deng, Xiaowen Fu, Linlin Shen, Jinbao Wang
Title: LabelGS: Label-Aware 3D Gaussian Splatting for 3D Scene Segmentation
Abstract:
3D Gaussian Splatting (3DGS) has emerged as a novel explicit representation for 3D scenes, offering both high-fidelity reconstruction and efficient rendering. However, 3DGS lacks 3D segmentation ability, which limits its applicability in tasks that require scene understanding. The identification and isolating of specific object components is crucial. To address this limitation, we propose Label-aware 3D Gaussian Splatting (LabelGS), a method that augments the Gaussian representation with object label.LabelGS introduces cross-view consistent semantic masks for 3D Gaussians and employs a novel Occlusion Analysis Model to avoid overfitting occlusion during optimization, Main Gaussian Labeling model to lift 2D semantic prior to 3D Gaussian and Gaussian Projection Filter to avoid Gaussian label conflict. Our approach achieves effective decoupling of Gaussian representations and refines the 3DGS optimization process through a random region sampling strategy, significantly improving efficiency. Extensive experiments demonstrate that LabelGS outperforms previous state-of-the-art methods, including Feature-3DGS, in the 3D scene segmentation task. Notably, LabelGS achieves a remarkable 22X speedup in training compared to Feature-3DGS, at a resolution of 1440X1080. Our code will be at https://github.com/garrisonz/LabelGS.

Authors:Hou Xia, Zheren Fu, Fangcan Ling, Jiajun Li, Yi Tu, Zhendong Mao, Yongdong Zhang
Title: Video-LevelGauge: Investigating Contextual Positional Bias in Large Video Language Models
Abstract:
Large video language models (LVLMs) have made notable progress in video understanding, spurring the development of corresponding evaluation benchmarks. However, existing benchmarks generally assess overall performance across entire video sequences, overlooking nuanced behaviors such as contextual positional bias, a critical yet under-explored aspect of LVLM performance. We present Video-LevelGauge, a dedicated benchmark designed to systematically assess positional bias in LVLMs. We employ standardized probes and customized contextual setups, allowing flexible control over context length, probe position, and contextual types to simulate diverse real-world scenarios. In addition, we introduce a comprehensive analysis method that combines statistical measures with morphological pattern recognition to characterize bias. Our benchmark comprises 438 manually curated videos spanning multiple types, yielding 1,177 high-quality multiple-choice questions and 120 open-ended questions, validated for their effectiveness in exposing positional bias. Based on these, we evaluate 27 state-of-the-art LVLMs, including both commercial and open-source models. Our findings reveal significant positional biases in many leading open-source models, typically exhibiting head or neighbor-content preferences. In contrast, commercial models such as Gemini2.5-Pro show impressive, consistent performance across entire video sequences. Further analyses on context length, context variation, and model scale provide actionable insights for mitigating bias and guiding model enhancement . https://github.com/Cola-any/Video-LevelGauge

Authors:Dongjin Kim, Jaekyun Ko, Muhammad Kashif Ali, Tae Hyun Kim
Title: IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising
Abstract:
Image denoising is a fundamental challenge in computer vision, with applications in photography and medical imaging. While deep learning-based methods have shown remarkable success, their reliance on specific noise distributions limits generalization to unseen noise types and levels. Existing approaches attempt to address this with extensive training data and high computational resources but they still suffer from overfitting. To address these issues, we conduct image denoising by utilizing dynamically generated kernels via efficient operations. This approach helps prevent overfitting and improves resilience to unseen noise. Specifically, our method leverages a Feature Extraction Module for robust noise-invariant features, Global Statistics and Local Correlation Modules to capture comprehensive noise characteristics and structural correlations. The Kernel Prediction Module then employs these cues to produce pixel-wise varying kernels adapted to local structures, which are then applied iteratively for denoising. This ensures both efficiency and superior restoration quality. Despite being trained on single-level Gaussian noise, our compact model (~ 0.04 M) excels across diverse noise types and levels, demonstrating the promise of iterative dynamic filtering for practical image denoising.

Authors:Yang Li, Quan Yuan, Guiyang Luo, Xiaoyuan Fu, Rui Pan, Yujia Yang, Congzhang Shao, Yuewen Liu, Jinglin Li
Title: Beyond BEV: Optimizing Point-Level Tokens for Collaborative Perception
Abstract:
Collaborative perception allows agents to enhance their perceptual capabilities by exchanging intermediate features. Existing methods typically organize these intermediate features as 2D bird's-eye-view (BEV) representations, which discard critical fine-grained 3D structural cues essential for accurate object recognition and localization. To this end, we first introduce point-level tokens as intermediate representations for collaborative perception. However, point-cloud data are inherently unordered, massive, and position-sensitive, making it challenging to produce compact and aligned point-level token sequences that preserve detailed structural information. Therefore, we present CoPLOT, a novel Collaborative perception framework that utilizes Point-Level Optimized Tokens. It incorporates a point-native processing pipeline, including token reordering, sequence modeling, and multi-agent spatial alignment. A semantic-aware token reordering module generates adaptive 1D reorderings by leveraging scene-level and token-level semantic information. A frequency-enhanced state space model captures long-range sequence dependencies across both spatial and spectral domains, improving the differentiation between foreground tokens and background clutter. Lastly, a neighbor-to-ego alignment module applies a closed-loop process, combining global agent-level correction with local token-level refinement to mitigate localization noise. Extensive experiments on both simulated and real-world datasets show that CoPLOT outperforms state-of-the-art models, with even lower communication and computation overhead. Code will be available at https://github.com/CheeryLeeyy/CoPLOT.

Authors:Jiajun Sun, Zhen Yu, Siyuan Yan, Jason J. Ong, Zongyuan Ge, Lei Zhang
Title: Controllable Skin Synthesis via Lesion-Focused Vector Autoregression Model
Abstract:
Skin images from real-world clinical practice are often limited, resulting in a shortage of training data for deep-learning models. While many studies have explored skin image synthesis, existing methods often generate low-quality images and lack control over the lesion's location and type. To address these limitations, we present LF-VAR, a model leveraging quantified lesion measurement scores and lesion type labels to guide the clinically relevant and controllable synthesis of skin images. It enables controlled skin synthesis with specific lesion characteristics based on language prompts. We train a multiscale lesion-focused Vector Quantised Variational Auto-Encoder (VQVAE) to encode images into discrete latent representations for structured tokenization. Then, a Visual AutoRegressive (VAR) Transformer trained on tokenized representations facilitates image synthesis. Lesion measurement from the lesion region and types as conditional embeddings are integrated to enhance synthesis fidelity. Our method achieves the best overall FID score (average 0.74) among seven lesion types, improving upon the previous state-of-the-art (SOTA) by 6.3%. The study highlights our controllable skin synthesis model's effectiveness in generating high-fidelity, clinically relevant synthetic skin images. Our framework code is available at https://github.com/echosun1996/LF-VAR.

Authors:Toghrul Karimov, Hassan Imani, Allan Kazakov
Title: Quantization Robustness to Input Degradations for Object Detection
Abstract:
Post-training quantization (PTQ) is crucial for deploying efficient object detection models, like YOLO, on resource-constrained devices. However, the impact of reduced precision on model robustness to real-world input degradations such as noise, blur, and compression artifacts is a significant concern. This paper presents a comprehensive empirical study evaluating the robustness of YOLO models (nano to extra-large scales) across multiple precision formats: FP32, FP16 (TensorRT), Dynamic UINT8 (ONNX), and Static INT8 (TensorRT). We introduce and evaluate a degradation-aware calibration strategy for Static INT8 PTQ, where the TensorRT calibration process is exposed to a mix of clean and synthetically degraded images. Models were benchmarked on the COCO dataset under seven distinct degradation conditions (including various types and levels of noise, blur, low contrast, and JPEG compression) and a mixed-degradation scenario. Results indicate that while Static INT8 TensorRT engines offer substantial speedups (~1.5-3.3x) with a moderate accuracy drop (~3-7% mAP50-95) on clean data, the proposed degradation-aware calibration did not yield consistent, broad improvements in robustness over standard clean-data calibration across most models and degradations. A notable exception was observed for larger model scales under specific noise conditions, suggesting model capacity may influence the efficacy of this calibration approach. These findings highlight the challenges in enhancing PTQ robustness and provide insights for deploying quantized detectors in uncontrolled environments. All code and evaluation tables are available at https://github.com/AllanK24/QRID.

Authors:Yuhang Zhao, Zixing Wang
Title: FlowDet: Overcoming Perspective and Scale Challenges in Real-Time End-to-End Traffic Detection
Abstract:
End-to-end object detectors offer a promising NMS-free paradigm for real-time applications, yet their high computational cost remains a significant barrier, particularly for complex scenarios like intersection traffic monitoring. To address this challenge, we propose FlowDet, a high-speed detector featuring a decoupled encoder optimization strategy applied to the DETR architecture. Specifically, FlowDet employs a novel Geometric Deformable Unit (GDU) for traffic-aware geometric modeling and a Scale-Aware Attention (SAA) module to maintain high representational power across extreme scale variations. To rigorously evaluate the model's performance in environments with severe occlusion and high object density, we collected the Intersection-Flow-5k dataset, a new challenging scene for this task. Evaluated on Intersection-Flow-5k, FlowDet establishes a new state-of-the-art. Compared to the strong RT-DETR baseline, it improves AP(test) by 1.5% and AP50(test) by 1.6%, while simultaneously reducing GFLOPs by 63.2% and increasing inference speed by 16.2%. Our work demonstrates a new path towards building highly efficient and accurate detectors for demanding, real-world perception systems. The Intersection-Flow-5k dataset is available at https://github.com/AstronZh/Intersection-Flow-5K.

Authors:Yu-Wei Zhang, Tongju Han, Lipeng Gao, Mingqiang Wei, Hui Liu, Changbao Li, Caiming Zhang
Title: MonoRelief V2: Leveraging Real Data for High-Fidelity Monocular Relief Recovery
Abstract:
This paper presents MonoRelief V2, an end-to-end model designed for directly recovering 2.5D reliefs from single images under complex material and illumination variations. In contrast to its predecessor, MonoRelief V1 [1], which was solely trained on synthetic data, MonoRelief V2 incorporates real data to achieve improved robustness, accuracy and efficiency. To overcome the challenge of acquiring large-scale real-world dataset, we generate approximately 15,000 pseudo real images using a text-to-image generative model, and derive corresponding depth pseudo-labels through fusion of depth and normal predictions. Furthermore, we construct a small-scale real-world dataset (800 samples) via multi-view reconstruction and detail refinement. MonoRelief V2 is then progressively trained on the pseudo-real and real-world datasets. Comprehensive experiments demonstrate its state-of-the-art performance both in depth and normal predictions, highlighting its strong potential for a range of downstream applications. Code is at: https://github.com/glp1001/MonoreliefV2.

Authors:Eduardo Davalos, Yike Zhang, Namrata Srivastava, Yashvitha Thatigotla, Jorge A. Salas, Sara McFadden, Sun-Joo Cho, Amanda Goodwin, Ashwin TS, Gautam Biswas
Title: WEBEYETRACK: Scalable Eye-Tracking for the Browser via On-Device Few-Shot Personalization
Abstract:
With advancements in AI, new gaze estimation methods are exceeding state-of-the-art (SOTA) benchmarks, but their real-world application reveals a gap with commercial eye-tracking solutions. Factors like model size, inference time, and privacy often go unaddressed. Meanwhile, webcam-based eye-tracking methods lack sufficient accuracy, in particular due to head movement. To tackle these issues, we introduce We bEyeTrack, a framework that integrates lightweight SOTA gaze estimation models directly in the browser. It incorporates model-based head pose estimation and on-device few-shot learning with as few as nine calibration samples (k < 9). WebEyeTrack adapts to new users, achieving SOTA performance with an error margin of 2.32 cm on GazeCapture and real-time inference speeds of 2.4 milliseconds on an iPhone 14. Our open-source code is available at https://github.com/RedForestAi/WebEyeTrack.

Authors:Nannan Zhu, Yonghao Dong, Teng Wang, Xueqian Li, Shengjun Deng, Yijia Wang, Zheng Hong, Tiantian Geng, Guo Niu, Hanyan Huang, Xiongfei Yao, Shuaiwei Jiao
Title: CVBench: Evaluating Cross-Video Synergies for Complex Multimodal Understanding and Reasoning
Abstract:
While multimodal large language models (MLLMs) exhibit strong performance on single-video tasks (e.g., video question answering), their ability across multiple videos remains critically underexplored. However, this capability is essential for real-world applications, including multi-camera surveillance and cross-video procedural learning. To bridge this gap, we present CVBench, the first comprehensive benchmark designed to assess cross-video relational reasoning rigorously. CVBench comprises 1,000 question-answer pairs spanning three hierarchical tiers: cross-video object association (identifying shared entities), cross-video event association (linking temporal or causal event chains), and cross-video complex reasoning (integrating commonsense and domain knowledge). Built from five domain-diverse video clusters (e.g., sports, life records), the benchmark challenges models to synthesise information across dynamic visual contexts. Extensive evaluation of 10+ leading MLLMs (including GPT-4o, Gemini-2.0-flash, Qwen2.5-VL) under zero-shot or chain-of-thought prompting paradigms. Key findings reveal stark performance gaps: even top models, such as GPT-4o, achieve only 60% accuracy on causal reasoning tasks, compared to the 91% accuracy of human performance. Crucially, our analysis reveals fundamental bottlenecks inherent in current MLLM architectures, notably deficient inter-video context retention and poor disambiguation of overlapping entities. CVBench establishes a rigorous framework for diagnosing and advancing multi-video reasoning, offering architectural insights for next-generation MLLMs. The data and evaluation code are available at https://github.com/Hokhim2/CVBench.

Authors:Zhixin Lin, Jungang Li, Shidong Pan, Yibo Shi, Yue Yao, Dongliang Xu
Title: Mind the Third Eye! Benchmarking Privacy Awareness in MLLM-powered Smartphone Agents
Abstract:
Smartphones bring significant convenience to users but also enable devices to extensively record various types of personal information. Existing smartphone agents powered by Multimodal Large Language Models (MLLMs) have achieved remarkable performance in automating different tasks. However, as the cost, these agents are granted substantial access to sensitive users' personal information during this operation. To gain a thorough understanding of the privacy awareness of these agents, we present the first large-scale benchmark encompassing 7,138 scenarios to the best of our knowledge. In addition, for privacy context in scenarios, we annotate its type (e.g., Account Credentials), sensitivity level, and location. We then carefully benchmark seven available mainstream smartphone agents. Our results demonstrate that almost all benchmarked agents show unsatisfying privacy awareness (RA), with performance remaining below 60% even with explicit hints. Overall, closed-source agents show better privacy ability than open-source ones, and Gemini 2.0-flash achieves the best, achieving an RA of 67%. We also find that the agents' privacy detection capability is highly related to scenario sensitivity level, i.e., the scenario with a higher sensitivity level is typically more identifiable. We hope the findings enlighten the research community to rethink the unbalanced utility-privacy tradeoff about smartphone agents. Our code and benchmark are available at https://zhixin-l.github.io/SAPA-Bench.

Authors:Xinlong Zhao, Qixiang Pang, Shan Du
Title: JVLGS: Joint Vision-Language Gas Leak Segmentation
Abstract:
Gas leaks pose serious threats to human health and contribute significantly to atmospheric pollution, drawing increasing public concern. However, the lack of effective detection methods hampers timely and accurate identification of gas leaks. While some vision-based techniques leverage infrared videos for leak detection, the blurry and non-rigid nature of gas clouds often limits their effectiveness. To address these challenges, we propose a novel framework called Joint Vision-Language Gas leak Segmentation (JVLGS), which integrates the complementary strengths of visual and textual modalities to enhance gas leak representation and segmentation. Recognizing that gas leaks are sporadic and many video frames may contain no leak at all, our method incorporates a post-processing step to reduce false positives caused by noise and non-target objects, an issue that affects many existing approaches. Extensive experiments conducted across diverse scenarios show that JVLGS significantly outperforms state-of-the-art gas leak segmentation methods. We evaluate our model under both supervised and few-shot learning settings, and it consistently achieves strong performance in both, whereas competing methods tend to perform well in only one setting or poorly in both. Code available at: https://github.com/GeekEagle/JVLGS

Authors:Xueyang Li, Mingze Jiang, Gelei Xu, Jun Xia, Mengzhao Jia, Danny Chen, Yiyu Shi
Title: AT-CXR: Uncertainty-Aware Agentic Triage for Chest X-rays
Abstract:
Agentic AI is advancing rapidly, yet truly autonomous medical-imaging triage, where a system decides when to stop, escalate, or defer under real constraints, remains relatively underexplored. To address this gap, we introduce AT-CXR, an uncertainty-aware agent for chest X-rays. The system estimates per-case confidence and distributional fit, then follows a stepwise policy to issue an automated decision or abstain with a suggested label for human intervention. We evaluate two router designs that share the same inputs and actions: a deterministic rule-based router and an LLM-decided router. Across five-fold evaluation on a balanced subset of NIH ChestX-ray14 dataset, both variants outperform strong zero-shot vision-language models and state-of-the-art supervised classifiers, achieving higher full-coverage accuracy and superior selective-prediction performance, evidenced by a lower area under the risk-coverage curve (AURC) and a lower error rate at high coverage, while operating with lower latency that meets practical clinical constraints. The two routers provide complementary operating points, enabling deployments to prioritize maximal throughput or maximal accuracy. Our code is available at https://github.com/XLIAaron/uncertainty-aware-cxr-agent.

Authors:Ming Chen, Liyuan Cui, Wenyuan Zhang, Haoxian Zhang, Yan Zhou, Xiaohan Li, Songlin Tang, Jiwen Liu, Borui Liao, Hejia Chen, Xiaoqiang Liu, Pengfei Wan
Title: MIDAS: Multimodal Interactive Digital-humAn Synthesis via Real-time Autoregressive Video Generation
Abstract:
Recently, interactive digital human video generation has attracted widespread attention and achieved remarkable progress. However, building such a practical system that can interact with diverse input signals in real time remains challenging to existing methods, which often struggle with heavy computational cost and limited controllability. In this work, we introduce an autoregressive video generation framework that enables interactive multimodal control and low-latency extrapolation in a streaming manner. With minimal modifications to a standard large language model (LLM), our framework accepts multimodal condition encodings including audio, pose, and text, and outputs spatially and semantically coherent representations to guide the denoising process of a diffusion head. To support this, we construct a large-scale dialogue dataset of approximately 20,000 hours from multiple sources, providing rich conversational scenarios for training. We further introduce a deep compression autoencoder with up to 64$\times$ reduction ratio, which effectively alleviates the long-horizon inference burden of the autoregressive model. Extensive experiments on duplex conversation, multilingual human synthesis, and interactive world model highlight the advantages of our approach in low latency, high efficiency, and fine-grained multimodal controllability.

Authors:Chen Chu, Cyrus Shahabi
Title: Geo2Vec: Shape- and Distance-Aware Neural Representation of Geospatial Entities
Abstract:
Spatial representation learning is essential for GeoAI applications such as urban analytics, enabling the encoding of shapes, locations, and spatial relationships (topological and distance-based) of geo-entities like points, polylines, and polygons. Existing methods either target a single geo-entity type or, like Poly2Vec, decompose entities into simpler components to enable Fourier transformation, introducing high computational cost. Moreover, since the transformed space lacks geometric alignment, these methods rely on uniform, non-adaptive sampling, which blurs fine-grained features like edges and boundaries. To address these limitations, we introduce Geo2Vec, a novel method inspired by signed distance fields (SDF) that operates directly in the original space. Geo2Vec adaptively samples points and encodes their signed distances (positive outside, negative inside), capturing geometry without decomposition. A neural network trained to approximate the SDF produces compact, geometry-aware, and unified representations for all geo-entity types. Additionally, we propose a rotation-invariant positional encoding to model high-frequency spatial variations and construct a structured and robust embedding space for downstream GeoAI models. Empirical results show that Geo2Vec consistently outperforms existing methods in representing shape and location, capturing topological and distance relationships, and achieving greater efficiency in real-world GeoAI applications. Code and Data can be found at: https://github.com/chuchen2017/GeoNeuralRepresentation.

Authors:Abu Sufian, Anirudha Ghosh, Debaditya Barman, Marco Leo, Cosimo Distante
Title: DemoBias: An Empirical Study to Trace Demographic Biases in Vision Foundation Models
Abstract:
Large Vision Language Models (LVLMs) have demonstrated remarkable capabilities across various downstream tasks, including biometric face recognition (FR) with description. However, demographic biases remain a critical concern in FR, as these foundation models often fail to perform equitably across diverse demographic groups, considering ethnicity/race, gender, and age. Therefore, through our work DemoBias, we conduct an empirical evaluation to investigate the extent of demographic biases in LVLMs for biometric FR with textual token generation tasks. We fine-tuned and evaluated three widely used pre-trained LVLMs: LLaVA, BLIP-2, and PaliGemma on our own generated demographic-balanced dataset. We utilize several evaluation metrics, like group-specific BERTScores and the Fairness Discrepancy Rate, to quantify and trace the performance disparities. The experimental results deliver compelling insights into the fairness and reliability of LVLMs across diverse demographic groups. Our empirical study uncovered demographic biases in LVLMs, with PaliGemma and LLaVA exhibiting higher disparities for Hispanic/Latino, Caucasian, and South Asian groups, whereas BLIP-2 demonstrated comparably consistent. Repository: https://github.com/Sufianlab/DemoBias.

Authors:Lin Li, Zehuan Huang, Haoran Feng, Gengxiong Zhuang, Rui Chen, Chunchao Guo, Lu Sheng
Title: VoxHammer: Training-Free Precise and Coherent 3D Editing in Native 3D Space
Abstract:
3D local editing of specified regions is crucial for game industry and robot interaction. Recent methods typically edit rendered multi-view images and then reconstruct 3D models, but they face challenges in precisely preserving unedited regions and overall coherence. Inspired by structured 3D generative models, we propose VoxHammer, a novel training-free approach that performs precise and coherent editing in 3D latent space. Given a 3D model, VoxHammer first predicts its inversion trajectory and obtains its inverted latents and key-value tokens at each timestep. Subsequently, in the denoising and editing phase, we replace the denoising features of preserved regions with the corresponding inverted latents and cached key-value tokens. By retaining these contextual features, this approach ensures consistent reconstruction of preserved areas and coherent integration of edited parts. To evaluate the consistency of preserved regions, we constructed Edit3D-Bench, a human-annotated dataset comprising hundreds of samples, each with carefully labeled 3D editing regions. Experiments demonstrate that VoxHammer significantly outperforms existing methods in terms of both 3D consistency of preserved regions and overall quality. Our method holds promise for synthesizing high-quality edited paired data, thereby laying the data foundation for in-context 3D generation. See our project page at https://huanngzh.github.io/VoxHammer-Page/.

Authors:Oishi Deb, Anjun Hu, Ashkan Khakzar, Philip Torr, Christian Rupprecht
Title: Articulate3D: Zero-Shot Text-Driven 3D Object Posing
Abstract:
We propose a training-free method, Articulate3D, to pose a 3D asset through language control. Despite advances in vision and language models, this task remains surprisingly challenging. To achieve this goal, we decompose the problem into two steps. We modify a powerful image-generator to create target images conditioned on the input image and a text instruction. We then align the mesh to the target images through a multi-view pose optimisation step. In detail, we introduce a self-attention rewiring mechanism (RSActrl) that decouples the source structure from pose within an image generative model, allowing it to maintain a consistent structure across varying poses. We observed that differentiable rendering is an unreliable signal for articulation optimisation; instead, we use keypoints to establish correspondences between input and target images. The effectiveness of Articulate3D is demonstrated across a diverse range of 3D objects and free-form text prompts, successfully manipulating poses while maintaining the original identity of the mesh. Quantitative evaluations and a comparative user study, in which our method was preferred over 85\% of the time, confirm its superiority over existing approaches. Project page:https://odeb1.github.io/articulate3d_page_deb/

Authors:Beiqi Chen, Shuai Shao, Haitang Feng, Jianhuang Lai, Jianlou Si, Guangcong Wang
Title: Style4D-Bench: A Benchmark Suite for 4D Stylization
Abstract:
We introduce Style4D-Bench, the first benchmark suite specifically designed for 4D stylization, with the goal of standardizing evaluation and facilitating progress in this emerging area. Style4D-Bench comprises: 1) a comprehensive evaluation protocol measuring spatial fidelity, temporal coherence, and multi-view consistency through both perceptual and quantitative metrics, 2) a strong baseline that make an initial attempt for 4D stylization, and 3) a curated collection of high-resolution dynamic 4D scenes with diverse motions and complex backgrounds. To establish a strong baseline, we present Style4D, a novel framework built upon 4D Gaussian Splatting. It consists of three key components: a basic 4DGS scene representation to capture reliable geometry, a Style Gaussian Representation that leverages lightweight per-Gaussian MLPs for temporally and spatially aware appearance control, and a Holistic Geometry-Preserved Style Transfer module designed to enhance spatio-temporal consistency via contrastive coherence learning and structural content preservation. Extensive experiments on Style4D-Bench demonstrate that Style4D achieves state-of-the-art performance in 4D stylization, producing fine-grained stylistic details with stable temporal dynamics and consistent multi-view rendering. We expect Style4D-Bench to become a valuable resource for benchmarking and advancing research in stylized rendering of dynamic 3D scenes. Project page: https://becky-catherine.github.io/Style4D . Code: https://github.com/Becky-catherine/Style4D-Bench .

Authors:Hao Shi, Bin Xie, Yingfei Liu, Lin Sun, Fengrong Liu, Tiancai Wang, Erjin Zhou, Haoqiang Fan, Xiangyu Zhang, Gao Huang
Title: MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action Models for Robotic Manipulation
Abstract:
Temporal context is essential for robotic manipulation because such tasks are inherently non-Markovian, yet mainstream VLA models typically overlook it and struggle with long-horizon, temporally dependent tasks. Cognitive science suggests that humans rely on working memory to buffer short-lived representations for immediate control, while the hippocampal system preserves verbatim episodic details and semantic gist of past experience for long-term memory. Inspired by these mechanisms, we propose MemoryVLA, a Cognition-Memory-Action framework for long-horizon robotic manipulation. A pretrained VLM encodes the observation into perceptual and cognitive tokens that form working memory, while a Perceptual-Cognitive Memory Bank stores low-level details and high-level semantics consolidated from it. Working memory retrieves decision-relevant entries from the bank, adaptively fuses them with current tokens, and updates the bank by merging redundancies. Using these tokens, a memory-conditioned diffusion action expert yields temporally aware action sequences. We evaluate MemoryVLA on 150+ simulation and real-world tasks across three robots. On SimplerEnv-Bridge, Fractal, and LIBERO-5 suites, it achieves 71.9%, 72.7%, and 96.5% success rates, respectively, all outperforming state-of-the-art baselines CogACT and pi-0, with a notable +14.6 gain on Bridge. On 12 real-world tasks spanning general skills and long-horizon temporal dependencies, MemoryVLA achieves 84.0% success rate, with long-horizon tasks showing a +26 improvement over state-of-the-art baseline. Project Page: https://shihao1895.github.io/MemoryVLA

Authors:Kaveh Safavigerdini, Ramakrishna Surya, Jaired Collins, Prasad Calyam, Filiz Bunyak, Matthew R. Maschmann, Kannappan Palaniappan
Title: Automated Feature Tracking for Real-Time Kinematic Analysis and Shape Estimation of Carbon Nanotube Growth
Abstract:
Carbon nanotubes (CNTs) are critical building blocks in nanotechnology, yet the characterization of their dynamic growth is limited by the experimental challenges in nanoscale motion measurement using scanning electron microscopy (SEM) imaging. Existing ex situ methods offer only static analysis, while in situ techniques often require manual initialization and lack continuous per-particle trajectory decomposition. We present Visual Feature Tracking (VFTrack) an in-situ real-time particle tracking framework that automatically detects and tracks individual CNT particles in SEM image sequences. VFTrack integrates handcrafted or deep feature detectors and matchers within a particle tracking framework to enable kinematic analysis of CNT micropillar growth. A systematic using 13,540 manually annotated trajectories identifies the ALIKED detector with LightGlue matcher as an optimal combination (F1-score of 0.78, $α$-score of 0.89). VFTrack motion vectors decomposed into axial growth, lateral drift, and oscillations, facilitate the calculation of heterogeneous regional growth rates and the reconstruction of evolving CNT pillar morphologies. This work enables advancement in automated nano-material characterization, bridging the gap between physics-based models and experimental observation to enable real-time optimization of CNT synthesis.

Authors:Jianwen Jiang, Weihong Zeng, Zerong Zheng, Jiaqi Yang, Chao Liang, Wang Liao, Han Liang, Yuan Zhang, Mingyuan Gao
Title: OmniHuman-1.5: Instilling an Active Mind in Avatars via Cognitive Simulation
Abstract:
Existing video avatar models can produce fluid human animations, yet they struggle to move beyond mere physical likeness to capture a character's authentic essence. Their motions typically synchronize with low-level cues like audio rhythm, lacking a deeper semantic understanding of emotion, intent, or context. To bridge this gap, \textbf{we propose a framework designed to generate character animations that are not only physically plausible but also semantically coherent and expressive.} Our model, \textbf{OmniHuman-1.5}, is built upon two key technical contributions. First, we leverage Multimodal Large Language Models to synthesize a structured textual representation of conditions that provides high-level semantic guidance. This guidance steers our motion generator beyond simplistic rhythmic synchronization, enabling the production of actions that are contextually and emotionally resonant. Second, to ensure the effective fusion of these multimodal inputs and mitigate inter-modality conflicts, we introduce a specialized Multimodal DiT architecture with a novel Pseudo Last Frame design. The synergy of these components allows our model to accurately interpret the joint semantics of audio, images, and text, thereby generating motions that are deeply coherent with the character, scene, and linguistic content. Extensive experiments demonstrate that our model achieves leading performance across a comprehensive set of metrics, including lip-sync accuracy, video quality, motion naturalness and semantic consistency with textual prompts. Furthermore, our approach shows remarkable extensibility to complex scenarios, such as those involving multi-person and non-human subjects. Homepage: \href{https://omnihuman-lab.github.io/v1_5/}

Authors:Weixin Ye, Hongguang Zhu, Wei Wang, Yahui Liu, Mengyu Wang
Title: All-in-One Slider for Attribute Manipulation in Diffusion Models
Abstract:
Text-to-image (T2I) diffusion models have made significant strides in generating high-quality images. However, progressively manipulating certain attributes of generated images to meet the desired user expectations remains challenging, particularly for content with rich details, such as human faces. Some studies have attempted to address this by training slider modules. However, they follow a One-for-One manner, where an independent slider is trained for each attribute, requiring additional training whenever a new attribute is introduced. This not only results in parameter redundancy accumulated by sliders but also restricts the flexibility of practical applications and the scalability of attribute manipulation. To address this issue, we introduce the All-in-One Slider, a lightweight module that decomposes the text embedding space into sparse, semantically meaningful attribute directions. Once trained, it functions as a general-purpose slider, enabling interpretable and fine-grained continuous control over various attributes. Moreover, by recombining the learned directions, the All-in-One Slider supports zero-shot manipulation of unseen attributes (e.g., races and celebrities) and the composition of multiple attributes. Extensive experiments demonstrate that our method enables accurate and scalable attribute manipulation, achieving notable improvements compared to previous methods. Furthermore, our method can be extended to integrate with the inversion framework to perform attribute manipulation on real images, broadening its applicability to various real-world scenarios. The code and trained model will be released at: https://github.com/ywxsuperstar/KSAE-FaceSteer.

Authors:Silvio Giancola, Anthony Cioppa, Marc Gutiérrez-Pérez, Jan Held, Carlos Hinojosa, Victor Joos, Arnaud Leduc, Floriane Magera, Karen Sanchez, Vladimir Somers, Artur Xarles, Antonio Agudo, Alexandre Alahi, Olivier Barnich, Albert Clapés, Christophe De Vleeschouwer, Sergio Escalera, Bernard Ghanem, Thomas B. Moeslund, Marc Van Droogenbroeck, Tomoki Abe, Saad Alotaibi, Faisal Altawijri, Steven Araujo, Xiang Bai, Xiaoyang Bi, Jiawang Cao, Vanyi Chao, Kamil Czarnogórski, Fabian Deuser, Mingyang Du, Tianrui Feng, Patrick Frenzel, Mirco Fuchs, Jorge García, Konrad Habel, Takaya Hashiguchi, Sadao Hirose, Xinting Hu, Yewon Hwang, Ririko Inoue, Riku Itsuji, Kazuto Iwai, Hongwei Ji, Yangguang Ji, Licheng Jiao, Yuto Kageyama, Yuta Kamikawa, Yuuki Kanasugi, Hyungjung Kim, Jinwook Kim, Takuya Kurihara, Bozheng Li, Lingling Li, Xian Li, Youxing Lian, Dingkang Liang, Hongkai Lin, Jiadong Lin, Jian Liu, Liang Liu, Shuaikun Liu, Zhaohong Liu, Yi Lu, Federico Méndez, Huadong Ma, Wenping Ma, Jacek Maksymiuk, Henry Mantilla, Ismail Mathkour, Daniel Matthes, Ayaha Motomochi, Amrulloh Robbani Muhammad, Haruto Nakayama, Joohyung Oh, Yin May Oo, Marcelo Ortega, Norbert Oswald, Rintaro Otsubo, Fabian Perez, Mengshi Qi, Cristian Rey, Abel Reyes-Angulo, Oliver Rose, Hoover Rueda-Chacón, Hideo Saito, Jose Sarmiento, Kanta Sawafuji, Atom Scott, Xi Shen, Pragyan Shrestha, Jae-Young Sim, Long Sun, Yuyang Sun, Tomohiro Suzuki, Licheng Tang, Masato Tonouchi, Ikuma Uchida, Henry O. Velesaca, Tiancheng Wang, Rio Watanabe, Jay Wu, Yongliang Wu, Shunzo Yamagishi, Di Yang, Xu Yang, Yuxin Yang, Hao Ye, Xinyu Ye, Calvin Yeung, Xuanlong Yu, Chao Zhang, Dingyuan Zhang, Kexing Zhang, Zhe Zhao, Xin Zhou, Wenbo Zhu, Julian Ziegler
Title: SoccerNet 2025 Challenges Results
Abstract:
The SoccerNet 2025 Challenges mark the fifth annual edition of the SoccerNet open benchmarking effort, dedicated to advancing computer vision research in football video understanding. This year's challenges span four vision-based tasks: (1) Team Ball Action Spotting, focused on detecting ball-related actions in football broadcasts and assigning actions to teams; (2) Monocular Depth Estimation, targeting the recovery of scene geometry from single-camera broadcast clips through relative depth estimation for each pixel; (3) Multi-View Foul Recognition, requiring the analysis of multiple synchronized camera views to classify fouls and their severity; and (4) Game State Reconstruction, aimed at localizing and identifying all players from a broadcast video to reconstruct the game state on a 2D top-view of the field. Across all tasks, participants were provided with large-scale annotated datasets, unified evaluation protocols, and strong baselines as starting points. This report presents the results of each challenge, highlights the top-performing solutions, and provides insights into the progress made by the community. The SoccerNet Challenges continue to serve as a driving force for reproducible, open research at the intersection of computer vision, artificial intelligence, and sports. Detailed information about the tasks, challenges, and leaderboards can be found at https://www.soccer-net.org, with baselines and development kits available at https://github.com/SoccerNet.

Authors:Rafael Sterzinger, Tingyu Lin, Robert Sablatnig
Title: Few-Shot Connectivity-Aware Text Line Segmentation in Historical Documents
Abstract:
A foundational task for the digital analysis of documents is text line segmentation. However, automating this process with deep learning models is challenging because it requires large, annotated datasets that are often unavailable for historical documents. Additionally, the annotation process is a labor- and cost-intensive task that requires expert knowledge, which makes few-shot learning a promising direction for reducing data requirements. In this work, we demonstrate that small and simple architectures, coupled with a topology-aware loss function, are more accurate and data-efficient than more complex alternatives. We pair a lightweight UNet++ with a connectivity-aware loss, initially developed for neuron morphology, which explicitly penalizes structural errors like line fragmentation and unintended line merges. To increase our limited data, we train on small patches extracted from a mere three annotated pages per manuscript. Our methodology significantly improves upon the current state-of-the-art on the U-DIADS-TL dataset, with a 200% increase in Recognition Accuracy and a 75% increase in Line Intersection over Union. Our method also achieves an F-Measure score on par with or even exceeding that of the competition winner of the DIVA-HisDB baseline detection task, all while requiring only three annotated pages, exemplifying the efficacy of our approach. Our implementation is publicly available at: https://github.com/RafaelSterzinger/acpr_few_shot_hist.

Authors:Florian Hahlbohm, Linus Franke, Leon Overkämping, Paula Wespe, Susana Castillo, Martin Eisemann, Marcus Magnor
Title: A Bag of Tricks for Efficient Implicit Neural Point Clouds
Abstract:
Implicit Neural Point Cloud (INPC) is a recent hybrid representation that combines the expressiveness of neural fields with the efficiency of point-based rendering, achieving state-of-the-art image quality in novel view synthesis. However, as with other high-quality approaches that query neural networks during rendering, the practical usability of INPC is limited by comparatively slow rendering. In this work, we present a collection of optimizations that significantly improve both the training and inference performance of INPC without sacrificing visual fidelity. The most significant modifications are an improved rasterizer implementation, more effective sampling techniques, and the incorporation of pre-training for the convolutional neural network used for hole-filling. Furthermore, we demonstrate that points can be modeled as small Gaussians during inference to further improve quality in extrapolated, e.g., close-up views of the scene. We design our implementations to be broadly applicable beyond INPC and systematically evaluate each modification in a series of experiments. Our optimized INPC pipeline achieves up to 25% faster training, 2x faster rendering, and 20% reduced VRAM usage paired with slight image quality improvements.

Authors:Blaž Rolih, Matic Fučka, Danijel Skočaj
Title: No Label Left Behind: A Unified Surface Defect Detection Model for all Supervision Regimes
Abstract:
Surface defect detection is a critical task across numerous industries, aimed at efficiently identifying and localising imperfections or irregularities on manufactured components. While numerous methods have been proposed, many fail to meet industrial demands for high performance, efficiency, and adaptability. Existing approaches are often constrained to specific supervision scenarios and struggle to adapt to the diverse data annotations encountered in real-world manufacturing processes, such as unsupervised, weakly supervised, mixed supervision, and fully supervised settings. To address these challenges, we propose SuperSimpleNet, a highly efficient and adaptable discriminative model built on the foundation of SimpleNet. SuperSimpleNet incorporates a novel synthetic anomaly generation process, an enhanced classification head, and an improved learning procedure, enabling efficient training in all four supervision scenarios, making it the first model capable of fully leveraging all available data annotations. SuperSimpleNet sets a new standard for performance across all scenarios, as demonstrated by its results on four challenging benchmark datasets. Beyond accuracy, it is very fast, achieving an inference time below 10 ms. With its ability to unify diverse supervision paradigms while maintaining outstanding speed and reliability, SuperSimpleNet represents a promising step forward in addressing real-world manufacturing challenges and bridging the gap between academic research and industrial applications. Code: https://github.com/blaz-r/SuperSimpleNet

Authors:Gueter Josmy Faure, Min-Hung Chen, Jia-Fong Yeh, Ying Cheng, Hung-Ting Su, Yung-Hao Tang, Shang-Hong Lai, Winston H. Hsu
Title: MovieCORE: COgnitive REasoning in Movies
Abstract:
This paper introduces MovieCORE, a novel video question answering (VQA) dataset designed to probe deeper cognitive understanding of movie content. Unlike existing datasets that focus on surface-level comprehension, MovieCORE emphasizes questions that engage System-2 thinking while remaining specific to the video material. We present an innovative agentic brainstorming approach, utilizing multiple large language models (LLMs) as thought agents to generate and refine high-quality question-answer pairs. To evaluate dataset quality, we develop a set of cognitive tests assessing depth, thought-provocation potential, and syntactic complexity. We also propose a comprehensive evaluation scheme for assessing VQA model performance on deeper cognitive tasks. To address the limitations of existing video-language models (VLMs), we introduce an agentic enhancement module, Agentic Choice Enhancement (ACE), which improves model reasoning capabilities post-training by up to 25%. Our work contributes to advancing movie understanding in AI systems and provides valuable insights into the capabilities and limitations of current VQA models when faced with more challenging, nuanced questions about cinematic content. Our project page, dataset and code can be found at https://joslefaure.github.io/assets/html/moviecore.html.

Authors:Yi Pan, Yujia Zhang, Michael Kampffmeyer, Xiaoguang Zhao
Title: ProPy: Building Interactive Prompt Pyramids upon CLIP for Partially Relevant Video Retrieval
Abstract:
Partially Relevant Video Retrieval (PRVR) is a practical yet challenging task that involves retrieving videos based on queries relevant to only specific segments. While existing works follow the paradigm of developing models to process unimodal features, powerful pretrained vision-language models like CLIP remain underexplored in this field. To bridge this gap, we propose ProPy, a model with systematic architectural adaption of CLIP specifically designed for PRVR. Drawing insights from the semantic relevance of multi-granularity events, ProPy introduces two key innovations: (1) A Prompt Pyramid structure that organizes event prompts to capture semantics at multiple granularity levels, and (2) An Ancestor-Descendant Interaction Mechanism built on the pyramid that enables dynamic semantic interaction among events. With these designs, ProPy achieves SOTA performance on three public datasets, outperforming previous models by significant margins. Code is available at https://github.com/BUAAPY/ProPy.

Authors:Shaojin Wu, Mengqi Huang, Yufeng Cheng, Wenxu Wu, Jiahe Tian, Yiming Luo, Fei Ding, Qian He
Title: USO: Unified Style and Subject-Driven Generation via Disentangled and Reward Learning
Abstract:
Existing literature typically treats style-driven and subject-driven generation as two disjoint tasks: the former prioritizes stylistic similarity, whereas the latter insists on subject consistency, resulting in an apparent antagonism. We argue that both objectives can be unified under a single framework because they ultimately concern the disentanglement and re-composition of content and style, a long-standing theme in style-driven research. To this end, we present USO, a Unified Style-Subject Optimized customization model. First, we construct a large-scale triplet dataset consisting of content images, style images, and their corresponding stylized content images. Second, we introduce a disentangled learning scheme that simultaneously aligns style features and disentangles content from style through two complementary objectives, style-alignment training and content-style disentanglement training. Third, we incorporate a style reward-learning paradigm denoted as SRL to further enhance the model's performance. Finally, we release USO-Bench, the first benchmark that jointly evaluates style similarity and subject fidelity across multiple metrics. Extensive experiments demonstrate that USO achieves state-of-the-art performance among open-source models along both dimensions of subject consistency and style similarity. Code and model: https://github.com/bytedance/USO

Authors:Thien-Phuc Tran, Minh-Quang Nguyen, Minh-Triet Tran, Tam V. Nguyen, Trong-Le Do, Duy-Nam Ly, Viet-Tham Huynh, Khanh-Duy Le, Mai-Khiem Tran, Trung-Nghia Le
Title: Event-Enriched Image Analysis Grand Challenge at ACM Multimedia 2025
Abstract:
The Event-Enriched Image Analysis (EVENTA) Grand Challenge, hosted at ACM Multimedia 2025, introduces the first large-scale benchmark for event-level multimodal understanding. Traditional captioning and retrieval tasks largely focus on surface-level recognition of people, objects, and scenes, often overlooking the contextual and semantic dimensions that define real-world events. EVENTA addresses this gap by integrating contextual, temporal, and semantic information to capture the who, when, where, what, and why behind an image. Built upon the OpenEvents V1 dataset, the challenge features two tracks: Event-Enriched Image Retrieval and Captioning, and Event-Based Image Retrieval. A total of 45 teams from six countries participated, with evaluation conducted through Public and Private Test phases to ensure fairness and reproducibility. The top three teams were invited to present their solutions at ACM Multimedia 2025. EVENTA establishes a foundation for context-aware, narrative-driven multimedia AI, with applications in journalism, media analysis, cultural archiving, and accessibility. Further details about the challenge are available at the official homepage: https://ltnghia.github.io/eventa/eventa-2025.

Authors:Zhehao Li, Chong Wang, Yi Chen, Yinghao Lu, Jiangbo Qian, Jiong Wang, Jiafei Wu
Title: DQEN: Dual Query Enhancement Network for DETR-based HOI Detection
Abstract:
Human-Object Interaction (HOI) detection focuses on localizing human-object pairs and recognizing their interactions. Recently, the DETR-based framework has been widely adopted in HOI detection. In DETR-based HOI models, queries with clear meaning are crucial for accurately detecting HOIs. However, prior works have typically relied on randomly initialized queries, leading to vague representations that limit the model's effectiveness. Meanwhile, humans in the HOI categories are fixed, while objects and their interactions are variable. Therefore, we propose a Dual Query Enhancement Network (DQEN) to enhance object and interaction queries. Specifically, object queries are enhanced with object-aware encoder features, enabling the model to focus more effectively on humans interacting with objects in an object-aware way. On the other hand, we design a novel Interaction Semantic Fusion module to exploit the HOI candidates that are promoted by the CLIP model. Semantic features are extracted to enhance the initialization of interaction queries, thereby improving the model's ability to understand interactions. Furthermore, we introduce an Auxiliary Prediction Unit aimed at improving the representation of interaction features. Our proposed method achieves competitive performance on both the HICO-Det and the V-COCO datasets. The source code is available at https://github.com/lzzhhh1019/DQEN.

Authors:Wei Li, Hangjie Yuan, Zixiang Zhao, Yifan Zhu, Aojun Lu, Tao Feng, Yanan Sun
Title: C-Flat++: Towards a More Efficient and Powerful Framework for Continual Learning
Abstract:
Balancing sensitivity to new tasks and stability for retaining past knowledge is crucial in continual learning (CL). Recently, sharpness-aware minimization has proven effective in transfer learning and has also been adopted in continual learning (CL) to improve memory retention and learning efficiency. However, relying on zeroth-order sharpness alone may favor sharper minima over flatter ones in certain settings, leading to less robust and potentially suboptimal solutions. In this paper, we propose \textbf{C}ontinual \textbf{Flat}ness (\textbf{C-Flat}), a method that promotes flatter loss landscapes tailored for CL. C-Flat offers plug-and-play compatibility, enabling easy integration with minimal modifications to the code pipeline. Besides, we present a general framework that integrates C-Flat into all major CL paradigms and conduct comprehensive comparisons with loss-minima optimizers and flat-minima-based CL methods. Our results show that C-Flat consistently improves performance across a wide range of settings. In addition, we introduce C-Flat++, an efficient yet effective framework that leverages selective flatness-driven promotion, significantly reducing the update cost required by C-Flat. Extensive experiments across multiple CL methods, datasets, and scenarios demonstrate the effectiveness and efficiency of our proposed approaches. Code is available at https://github.com/WanNaa/C-Flat.

Authors:Zizheng Guo, Bochao Zou, Yinuo Jia, Xiangyu Li, Huimin Ma
Title: Boosting Micro-Expression Analysis via Prior-Guided Video-Level Regression
Abstract:
Micro-expressions (MEs) are involuntary, low-intensity, and short-duration facial expressions that often reveal an individual's genuine thoughts and emotions. Most existing ME analysis methods rely on window-level classification with fixed window sizes and hard decisions, which limits their ability to capture the complex temporal dynamics of MEs. Although recent approaches have adopted video-level regression frameworks to address some of these challenges, interval decoding still depends on manually predefined, window-based methods, leaving the issue only partially mitigated. In this paper, we propose a prior-guided video-level regression method for ME analysis. We introduce a scalable interval selection strategy that comprehensively considers the temporal evolution, duration, and class distribution characteristics of MEs, enabling precise spotting of the onset, apex, and offset phases. In addition, we introduce a synergistic optimization framework, in which the spotting and recognition tasks share parameters except for the classification heads. This fully exploits complementary information, makes more efficient use of limited data, and enhances the model's capability. Extensive experiments on multiple benchmark datasets demonstrate the state-of-the-art performance of our method, with an STRS of 0.0562 on CAS(ME)$^3$ and 0.2000 on SAMMLV. The code is available at https://github.com/zizheng-guo/BoostingVRME.

Authors:Rui Zhang, Zihan Wang, Tianli Yang, Hongwei Li, Wenbo Jiang, Qingchuan Zhao, Yang Liu, Guowen Xu
Title: Hidden Tail: Adversarial Image Causing Stealthy Resource Consumption in Vision-Language Models
Abstract:
Vision-Language Models (VLMs) are increasingly deployed in real-world applications, but their high inference cost makes them vulnerable to resource consumption attacks. Prior attacks attempt to extend VLM output sequences by optimizing adversarial images, thereby increasing inference costs. However, these extended outputs often introduce irrelevant abnormal content, compromising attack stealthiness. This trade-off between effectiveness and stealthiness poses a major limitation for existing attacks. To address this challenge, we propose \textit{Hidden Tail}, a stealthy resource consumption attack that crafts prompt-agnostic adversarial images, inducing VLMs to generate maximum-length outputs by appending special tokens invisible to users. Our method employs a composite loss function that balances semantic preservation, repetitive special token induction, and suppression of the end-of-sequence (EOS) token, optimized via a dynamic weighting strategy. Extensive experiments show that \textit{Hidden Tail} outperforms existing attacks, increasing output length by up to 19.2$\times$ and reaching the maximum token limit, while preserving attack stealthiness. These results highlight the urgent need to improve the robustness of VLMs against efficiency-oriented adversarial threats. Our code is available at https://github.com/zhangrui4041/Hidden_Tail.

Authors:Hassan Abid, Khan Muhammad, Muhammad Haris Khan
Title: Robust and Label-Efficient Deep Waste Detection
Abstract:
Effective waste sorting is critical for sustainable recycling, yet AI research in this domain continues to lag behind commercial systems due to limited datasets and reliance on legacy object detectors. In this work, we advance AI-driven waste detection by establishing strong baselines and introducing an ensemble-based semi-supervised learning framework. We first benchmark state-of-the-art Open-Vocabulary Object Detection (OVOD) models on the real-world ZeroWaste dataset, demonstrating that while class-only prompts perform poorly, LLM-optimized prompts significantly enhance zero-shot accuracy. Next, to address domain-specific limitations, we fine-tune modern transformer-based detectors, achieving a new baseline of 51.6 mAP. We then propose a soft pseudo-labeling strategy that fuses ensemble predictions using spatial and consensus-aware weighting, enabling robust semi-supervised training. Applied to the unlabeled ZeroWaste-s subset, our pseudo-annotations achieve performance gains that surpass fully supervised training, underscoring the effectiveness of scalable annotation pipelines. Our work contributes to the research community by establishing rigorous baselines, introducing a robust ensemble-based pseudo-labeling pipeline, generating high-quality annotations for the unlabeled ZeroWaste-s subset, and systematically evaluating OVOD models under real-world waste sorting conditions. Our code is available at: https://github.com/h-abid97/robust-waste-detection.

Authors:Luqing Luo, Wenjin Gui, Yunfei Liu, Ziyue Zhang, Yunxi Zhang, Fengxiang Wang, Zonghao Guo, Zizhi Ma, Xinzhu Liu, Hanxiang He, Jinhai Li, Xin Qiu, Wupeng Xie, Yangang Sun
Title: EMind: A Foundation Model for Multi-task Electromagnetic Signals Understanding
Abstract:
Deep understanding of electromagnetic signals is fundamental to dynamic spectrum management, intelligent transportation, autonomous driving and unmanned vehicle perception. The field faces challenges because electromagnetic signals differ greatly from text and images, showing high heterogeneity, strong background noise and complex joint time frequency structure, which prevents existing general models from direct use. Electromagnetic communication and sensing tasks are diverse, current methods lack cross task generalization and transfer efficiency, and the scarcity of large high quality datasets blocks the creation of a truly general multitask learning framework. To overcome these issue, we introduce EMind, an electromagnetic signals foundation model that bridges large scale pretraining and the unique nature of this modality. We build the first unified and largest standardized electromagnetic signal dataset covering multiple signal types and tasks. By exploiting the physical properties of electromagnetic signals, we devise a length adaptive multi-signal packing method and a hardware-aware training strategy that enable efficient use and representation learning from heterogeneous multi-source signals. Experiments show that EMind achieves strong performance and broad generalization across many downstream tasks, moving decisively from task specific models to a unified framework for electromagnetic intelligence. The code is available at: https://github.com/GabrielleTse/EMind.

Authors:Byung-Joon Lee, Jin-Seop Lee, Jee-Hyong Lee
Title: Stabilizing Open-Set Test-Time Adaptation via Primary-Auxiliary Filtering and Knowledge-Integrated Prediction
Abstract:
Deep neural networks demonstrate strong performance under aligned training-test distributions. However, real-world test data often exhibit domain shifts. Test-Time Adaptation (TTA) addresses this challenge by adapting the model to test data during inference. While most TTA studies assume that the training and test data share the same class set (closed-set TTA), real-world scenarios often involve open-set data (open-set TTA), which can degrade closed-set accuracy. A recent study showed that identifying open-set data during adaptation and maximizing its entropy is an effective solution. However, the previous method relies on the source model for filtering, resulting in suboptimal filtering accuracy on domain-shifted test data. In contrast, we found that the adapting model, which learns domain knowledge from noisy test streams, tends to be unstable and leads to error accumulation when used for filtering. To address this problem, we propose Primary-Auxiliary Filtering (PAF), which employs an auxiliary filter to validate data filtered by the primary filter. Furthermore, we propose Knowledge-Integrated Prediction (KIP), which calibrates the outputs of the adapting model, EMA model, and source model to integrate their complementary knowledge for OSTTA. We validate our approach across diverse closed-set and open-set datasets. Our method enhances both closed-set accuracy and open-set discrimination over existing methods. The code is available at https://github.com/powerpowe/PAF-KIP-OSTTA .

Authors:Feiwei Qin, Shichao Lu, Junhao Hou, Changmiao Wang, Meie Fang, Ligang Liu
Title: Drawing2CAD: Sequence-to-Sequence Learning for CAD Generation from Vector Drawings
Abstract:
Computer-Aided Design (CAD) generative modeling is driving significant innovations across industrial applications. Recent works have shown remarkable progress in creating solid models from various inputs such as point clouds, meshes, and text descriptions. However, these methods fundamentally diverge from traditional industrial workflows that begin with 2D engineering drawings. The automatic generation of parametric CAD models from these 2D vector drawings remains underexplored despite being a critical step in engineering design. To address this gap, our key insight is to reframe CAD generation as a sequence-to-sequence learning problem where vector drawing primitives directly inform the generation of parametric CAD operations, preserving geometric precision and design intent throughout the transformation process. We propose Drawing2CAD, a framework with three key technical components: a network-friendly vector primitive representation that preserves precise geometric information, a dual-decoder transformer architecture that decouples command type and parameter generation while maintaining precise correspondence, and a soft target distribution loss function accommodating inherent flexibility in CAD parameters. To train and evaluate Drawing2CAD, we create CAD-VGDrawing, a dataset of paired engineering drawings and parametric CAD models, and conduct thorough experiments to demonstrate the effectiveness of our method. Code and dataset are available at https://github.com/lllssc/Drawing2CAD.

Authors:Chenxuan Miao, Yutong Feng, Jianshu Zeng, Zixiang Gao, Hantang Liu, Yunfeng Yan, Donglian Qi, Xi Chen, Bin Wang, Hengshuang Zhao
Title: ROSE: Remove Objects with Side Effects in Videos
Abstract:
Video object removal has achieved advanced performance due to the recent success of video generative models. However, when addressing the side effects of objects, e.g., their shadows and reflections, existing works struggle to eliminate these effects for the scarcity of paired video data as supervision. This paper presents ROSE, termed Remove Objects with Side Effects, a framework that systematically studies the object's effects on environment, which can be categorized into five common cases: shadows, reflections, light, translucency and mirror. Given the challenges of curating paired videos exhibiting the aforementioned effects, we leverage a 3D rendering engine for synthetic data generation. We carefully construct a fully-automatic pipeline for data preparation, which simulates a large-scale paired dataset with diverse scenes, objects, shooting angles, and camera trajectories. ROSE is implemented as an video inpainting model built on diffusion transformer. To localize all object-correlated areas, the entire video is fed into the model for reference-based erasing. Moreover, additional supervision is introduced to explicitly predict the areas affected by side effects, which can be revealed through the differential mask between the paired videos. To fully investigate the model performance on various side effect removal, we presents a new benchmark, dubbed ROSE-Bench, incorporating both common scenarios and the five special side effects for comprehensive evaluation. Experimental results demonstrate that ROSE achieves superior performance compared to existing video object erasing models and generalizes well to real-world video scenarios. The project page is https://rose2025-inpaint.github.io/.

Authors:Xiaohao Sun, Divyam Goel, Angel X. Chang
Title: SemLayoutDiff: Semantic Layout Generation with Diffusion Model for Indoor Scene Synthesis
Abstract:
We present SemLayoutDiff, a unified model for synthesizing diverse 3D indoor scenes across multiple room types. The model introduces a scene layout representation combining a top-down semantic map and attributes for each object. Unlike prior approaches, which cannot condition on architectural constraints, SemLayoutDiff employs a categorical diffusion model capable of conditioning scene synthesis explicitly on room masks. It first generates a coherent semantic map, followed by a cross-attention-based network to predict furniture placements that respect the synthesized layout. Our method also accounts for architectural elements such as doors and windows, ensuring that generated furniture arrangements remain practical and unobstructed. Experiments on the 3D-FRONT dataset show that SemLayoutDiff produces spatially coherent, realistic, and varied scenes, outperforming previous methods.

Authors:Ajinkya Khoche, Qingwen Zhang, Yixi Cai, Sina Sharif Mansouri, Patric Jensfelt
Title: DoGFlow: Self-Supervised LiDAR Scene Flow via Cross-Modal Doppler Guidance
Abstract:
Accurate 3D scene flow estimation is critical for autonomous systems to navigate dynamic environments safely, but creating the necessary large-scale, manually annotated datasets remains a significant bottleneck for developing robust perception models. Current self-supervised methods struggle to match the performance of fully supervised approaches, especially in challenging long-range and adverse weather scenarios, while supervised methods are not scalable due to their reliance on expensive human labeling. We introduce DoGFlow, a novel self-supervised framework that recovers full 3D object motions for LiDAR scene flow estimation without requiring any manual ground truth annotations. This paper presents our cross-modal label transfer approach, where DoGFlow computes motion pseudo-labels in real-time directly from 4D radar Doppler measurements and transfers them to the LiDAR domain using dynamic-aware association and ambiguity-resolved propagation. On the challenging MAN TruckScenes dataset, DoGFlow substantially outperforms existing self-supervised methods and improves label efficiency by enabling LiDAR backbones to achieve over 90% of fully supervised performance with only 10% of the ground truth data. For more details, please visit https://ajinkyakhoche.github.io/DogFlow/

Authors:Md. Rashid Shahriar Khan, Md. Abrar Hasan, Mohammod Tareq Aziz Justice
Title: Context-Aware Zero-Shot Anomaly Detection in Surveillance Using Contrastive and Predictive Spatiotemporal Modeling
Abstract:
Detecting anomalies in surveillance footage is inherently challenging due to their unpredictable and context-dependent nature. This work introduces a novel context-aware zero-shot anomaly detection framework that identifies abnormal events without exposure to anomaly examples during training. The proposed hybrid architecture combines TimeSformer, DPC, and CLIP to model spatiotemporal dynamics and semantic context. TimeSformer serves as the vision backbone to extract rich spatial-temporal features, while DPC forecasts future representations to identify temporal deviations. Furthermore, a CLIP-based semantic stream enables concept-level anomaly detection through context-specific text prompts. These components are jointly trained using InfoNCE and CPC losses, aligning visual inputs with their temporal and semantic representations. A context-gating mechanism further enhances decision-making by modulating predictions with scene-aware cues or global video features. By integrating predictive modeling with vision-language understanding, the system can generalize to previously unseen behaviors in complex environments. This framework bridges the gap between temporal reasoning and semantic context in zero-shot anomaly detection for surveillance. The code for this research has been made available at https://github.com/NK-II/Context-Aware-Zero-Shot-Anomaly-Detection-in-Surveillance.

Authors:Lucas Wojcik, Gabriel E. Lima, Valfride Nascimento, Eduil Nascimento, Rayson Laroca, David Menotti
Title: LPLC: A Dataset for License Plate Legibility Classification
Abstract:
Automatic License Plate Recognition (ALPR) faces a major challenge when dealing with illegible license plates (LPs). While reconstruction methods such as super-resolution (SR) have emerged, the core issue of recognizing these low-quality LPs remains unresolved. To optimize model performance and computational efficiency, image pre-processing should be applied selectively to cases that require enhanced legibility. To support research in this area, we introduce a novel dataset comprising 10,210 images of vehicles with 12,687 annotated LPs for legibility classification (the LPLC dataset). The images span a wide range of vehicle types, lighting conditions, and camera/image quality levels. We adopt a fine-grained annotation strategy that includes vehicle- and LP-level occlusions, four legibility categories (perfect, good, poor, and illegible), and character labels for three categories (excluding illegible LPs). As a benchmark, we propose a classification task using three image recognition networks to determine whether an LP image is good enough, requires super-resolution, or is completely unrecoverable. The overall F1 score, which remained below 80% for all three baseline models (ViT, ResNet, and YOLO), together with the analyses of SR and LP recognition methods, highlights the difficulty of the task and reinforces the need for further research. The proposed dataset is publicly available at https://github.com/lmlwojcik/lplc-dataset.

Authors:Haitang Feng, Jie Liu, Jie Tang, Gangshan Wu, Beiqi Chen, Jianhuang Lai, Guangcong Wang
Title: ObjFiller-3D: Consistent Multi-view 3D Inpainting via Video Diffusion Models
Abstract:
3D inpainting often relies on multi-view 2D image inpainting, where the inherent inconsistencies across different inpainted views can result in blurred textures, spatial discontinuities, and distracting visual artifacts. These inconsistencies pose significant challenges when striving for accurate and realistic 3D object completion, particularly in applications that demand high fidelity and structural coherence. To overcome these limitations, we propose ObjFiller-3D, a novel method designed for the completion and editing of high-quality and consistent 3D objects. Instead of employing a conventional 2D image inpainting model, our approach leverages a curated selection of state-of-the-art video editing model to fill in the masked regions of 3D objects. We analyze the representation gap between 3D and videos, and propose an adaptation of a video inpainting model for 3D scene inpainting. In addition, we introduce a reference-based 3D inpainting method to further enhance the quality of reconstruction. Experiments across diverse datasets show that compared to previous methods, ObjFiller-3D produces more faithful and fine-grained reconstructions (PSNR of 26.6 vs. NeRFiller (15.9) and LPIPS of 0.19 vs. Instant3dit (0.25)). Moreover, it demonstrates strong potential for practical deployment in real-world 3D editing applications. Project page: https://objfiller3d.github.io/ Code: https://github.com/objfiller3d/ObjFiller-3D .

Authors:Ashwath Vaithinathan Aravindan, Abha Jha, Matthew Salaway, Atharva Sandeep Bhide, Duygu Nur Yaldiz
Title: Sealing The Backdoor: Unlearning Adversarial Text Triggers In Diffusion Models Using Knowledge Distillation
Abstract:
Text-to-image diffusion models have revolutionized generative AI, but their vulnerability to backdoor attacks poses significant security risks. Adversaries can inject imperceptible textual triggers into training data, causing models to generate manipulated outputs. Although text-based backdoor defenses in classification models are well-explored, generative models lack effective mitigation techniques against. We address this by selectively erasing the model's learned associations between adversarial text triggers and poisoned outputs, while preserving overall generation quality. Our approach, Self-Knowledge Distillation with Cross-Attention Guidance (SKD-CAG), uses knowledge distillation to guide the model in correcting responses to poisoned prompts while maintaining image quality by exploiting the fact that the backdoored model still produces clean outputs in the absence of triggers. Using the cross-attention mechanism, SKD-CAG neutralizes backdoor influences at the attention level, ensuring the targeted removal of adversarial effects. Extensive experiments show that our method outperforms existing approaches, achieving removal accuracy 100\% for pixel backdoors and 93\% for style-based attacks, without sacrificing robustness or image fidelity. Our findings highlight targeted unlearning as a promising defense to secure generative models. Code and model weights can be found at https://github.com/Mystic-Slice/Sealing-The-Backdoor .

Authors:Ayce Idil Aytekin, Helge Rhodin, Rishabh Dabral, Christian Theobalt
Title: Follow My Hold: Hand-Object Interaction Reconstruction through Geometric Guidance
Abstract:
We propose a novel diffusion-based framework for reconstructing 3D geometry of hand-held objects from monocular RGB images by leveraging hand-object interaction as geometric guidance. Our method conditions a latent diffusion model on an inpainted object appearance and uses inference-time guidance to optimize the object reconstruction, while simultaneously ensuring plausible hand-object interactions. Unlike prior methods that rely on extensive post-processing or produce low-quality reconstructions, our approach directly generates high-quality object geometry during the diffusion process by introducing guidance with an optimization-in-the-loop design. Specifically, we guide the diffusion model by applying supervision to the velocity field while simultaneously optimizing the transformations of both the hand and the object being reconstructed. This optimization is driven by multi-modal geometric cues, including normal and depth alignment, silhouette consistency, and 2D keypoint reprojection. We further incorporate signed distance field supervision and enforce contact and non-intersection constraints to ensure physical plausibility of hand-object interaction. Our method yields accurate, robust and coherent reconstructions under occlusion while generalizing well to in-the-wild scenarios.

Authors:Sara Ghazanfari, Wei-An Lin, Haitong Tian, Ersin Yumer
Title: SpotEdit: Evaluating Visually-Guided Image Editing Methods
Abstract:
Visually-guided image editing, where edits are conditioned on both visual cues and textual prompts, has emerged as a powerful paradigm for fine-grained, controllable content generation. Although recent generative models have shown remarkable capabilities, existing evaluations remain simple and insufficiently representative of real-world editing challenges. We present SpotEdit, a comprehensive benchmark designed to systematically assess visually-guided image editing methods across diverse diffusion, autoregressive, and hybrid generative models, uncovering substantial performance disparities. To address a critical yet underexplored challenge, our benchmark includes a dedicated component on hallucination, highlighting how leading models, such as GPT-4o, often hallucinate the existence of a visual cue and erroneously perform the editing task. Our code and benchmark are publicly released at https://github.com/SaraGhazanfari/SpotEdit.

Authors:Chun Liu, Chen Zhang, Zhuo Li, Zheng Li, Wei Yang
Title: Few-shot Unknown Class Discovery of Hyperspectral Images with Prototype Learning and Clustering
Abstract:
Open-set few-shot hyperspectral image (HSI) classification aims to classify image pixels by using few labeled pixels per class, where the pixels to be classified may be not all from the classes that have been seen. To address the open-set HSI classification challenge, current methods focus mainly on distinguishing the unknown class samples from the known class samples and rejecting them to increase the accuracy of identifying known class samples. They fails to further identify or discovery the unknow classes among the samples. This paper proposes a prototype learning and clustering method for discoverying unknown classes in HSIs under the few-shot environment. Using few labeled samples, it strives to develop the ability of infering the prototypes of unknown classes while distinguishing unknown classes from known classes. Once the unknown class samples are rejected by the learned known class classifier, the proposed method can further cluster the unknown class samples into different classes according to their distance to the inferred unknown class prototypes. Compared to existing state-of-the-art methods, extensive experiments on four benchmark HSI datasets demonstrate that our proposed method exhibits competitive performance in open-set few-shot HSI classification tasks. All the codes are available at \href{https://github.com/KOBEN-ff/OpenFUCD-main} {https://github.com/KOBEN-ff/OpenFUCD-main}

Authors:Kaiyu Li, Xiangyong Cao, Ruixun Liu, Shihong Wang, Zixuan Jiang, Zhi Wang, Deyu Meng
Title: Annotation-Free Open-Vocabulary Segmentation for Remote-Sensing Images
Abstract:
Semantic segmentation of remote sensing (RS) images is pivotal for comprehensive Earth observation, but the demand for interpreting new object categories, coupled with the high expense of manual annotation, poses significant challenges. Although open-vocabulary semantic segmentation (OVSS) offers a promising solution, existing frameworks designed for natural images are insufficient for the unique complexities of RS data. They struggle with vast scale variations and fine-grained details, and their adaptation often relies on extensive, costly annotations. To address this critical gap, this paper introduces SegEarth-OV, the first framework for annotation-free open-vocabulary segmentation of RS images. Specifically, we propose SimFeatUp, a universal upsampler that robustly restores high-resolution spatial details from coarse features, correcting distorted target shapes without any task-specific post-training. We also present a simple yet effective Global Bias Alleviation operation to subtract the inherent global context from patch features, significantly enhancing local semantic fidelity. These components empower SegEarth-OV to effectively harness the rich semantics of pre-trained VLMs, making OVSS possible in optical RS contexts. Furthermore, to extend the framework's universality to other challenging RS modalities like SAR images, where large-scale VLMs are unavailable and expensive to create, we introduce AlignEarth, which is a distillation-based strategy and can efficiently transfer semantic knowledge from an optical VLM encoder to an SAR encoder, bypassing the need to build SAR foundation models from scratch and enabling universal OVSS across diverse sensor types. Extensive experiments on both optical and SAR datasets validate that SegEarth-OV can achieve dramatic improvements over the SOTA methods, establishing a robust foundation for annotation-free and open-world Earth observation.

Authors:Pengfei Jiang, Hanjun Li, Linglan Zhao, Fei Chao, Ke Yan, Shouhong Ding, Rongrong Ji
Title: VISA: Group-wise Visual Token Selection and Aggregation via Graph Summarization for Efficient MLLMs Inference
Abstract:
In this study, we introduce a novel method called group-wise \textbf{VI}sual token \textbf{S}election and \textbf{A}ggregation (VISA) to address the issue of inefficient inference stemming from excessive visual tokens in multimoal large language models (MLLMs). Compared with previous token pruning approaches, our method can preserve more visual information while compressing visual tokens. We first propose a graph-based visual token aggregation (VTA) module. VTA treats each visual token as a node, forming a graph based on semantic similarity among visual tokens. It then aggregates information from removed tokens into kept tokens based on this graph, producing a more compact visual token representation. Additionally, we introduce a group-wise token selection strategy (GTS) to divide visual tokens into kept and removed ones, guided by text tokens from the final layers of each group. This strategy progressively aggregates visual information, enhancing the stability of the visual information extraction process. We conduct comprehensive experiments on LLaVA-1.5, LLaVA-NeXT, and Video-LLaVA across various benchmarks to validate the efficacy of VISA. Our method consistently outperforms previous methods, achieving a superior trade-off between model performance and inference speed. The code is available at https://github.com/mobiushy/VISA.

Authors:Weiqi Yan, Lvhai Chen, Shengchuan Zhang, Yan Zhang, Liujuan Cao
Title: SCOUT: Semi-supervised Camouflaged Object Detection by Utilizing Text and Adaptive Data Selection
Abstract:
The difficulty of pixel-level annotation has significantly hindered the development of the Camouflaged Object Detection (COD) field. To save on annotation costs, previous works leverage the semi-supervised COD framework that relies on a small number of labeled data and a large volume of unlabeled data. We argue that there is still significant room for improvement in the effective utilization of unlabeled data. To this end, we introduce a Semi-supervised Camouflaged Object Detection by Utilizing Text and Adaptive Data Selection (SCOUT). It includes an Adaptive Data Augment and Selection (ADAS) module and a Text Fusion Module (TFM). The ADSA module selects valuable data for annotation through an adversarial augment and sampling strategy. The TFM module further leverages the selected valuable data by combining camouflage-related knowledge and text-visual interaction. To adapt to this work, we build a new dataset, namely RefTextCOD. Extensive experiments show that the proposed method surpasses previous semi-supervised methods in the COD field and achieves state-of-the-art performance. Our code will be released at https://github.com/Heartfirey/SCOUT.

Authors:Meiqi Gong, Hao Zhang, Xunpeng Yi, Linfeng Tang, Jiayi Ma
Title: TemCoCo: Temporally Consistent Multi-modal Video Fusion with Visual-Semantic Collaboration
Abstract:
Existing multi-modal fusion methods typically apply static frame-based image fusion techniques directly to video fusion tasks, neglecting inherent temporal dependencies and leading to inconsistent results across frames. To address this limitation, we propose the first video fusion framework that explicitly incorporates temporal modeling with visual-semantic collaboration to simultaneously ensure visual fidelity, semantic accuracy, and temporal consistency. First, we introduce a visual-semantic interaction module consisting of a semantic branch and a visual branch, with Dinov2 and VGG19 employed for targeted distillation, allowing simultaneous enhancement of both the visual and semantic representations. Second, we pioneer integrate the video degradation enhancement task into the video fusion pipeline by constructing a temporal cooperative module, which leverages temporal dependencies to facilitate weak information recovery. Third, to ensure temporal consistency, we embed a temporal-enhanced mechanism into the network and devise a temporal loss to guide the optimization process. Finally, we introduce two innovative evaluation metrics tailored for video fusion, aimed at assessing the temporal consistency of the generated fused videos. Extensive experimental results on public video datasets demonstrate the superiority of our method. Our code is released at https://github.com/Meiqi-Gong/TemCoCo.

Authors:Xingyu Ai, Shaoyu Wang, Zhiyuan Jia, Ao Xu, Hongming Shan, Jianhua Ma, Qiegen Liu
Title: UniSino: Physics-Driven Foundational Model for Universal CT Sinogram Standardization
Abstract:
During raw-data acquisition in CT imaging, diverse factors can degrade the collected sinograms, with undersampling and noise leading to severe artifacts and noise in reconstructed images and compromising diagnostic accuracy. Conventional correction methods rely on manually designed algorithms or fixed empirical parameters, but these approaches often lack generalizability across heterogeneous artifact types. To address these limitations, we propose UniSino, a foundation model for universal CT sinogram standardization. Unlike existing foundational models that operate in image domain, UniSino directly standardizes data in the projection domain, which enables stronger generalization across diverse undersampling scenarios. Its training framework incorporates the physical characteristics of sinograms, enhancing generalization and enabling robust performance across multiple subtasks spanning four benchmark datasets. Experimental results demonstrate thatUniSino achieves superior reconstruction quality both single and mixed undersampling case, demonstrating exceptional robustness and generalization in sinogram enhancement for CT imaging. The code is available at: https://github.com/yqx7150/UniSino.

Authors:Hanzhi Chang, Ruijie Zhu, Wenjie Chang, Mulin Yu, Yanzhe Liang, Jiahao Lu, Zhuoyuan Li, Tianzhu Zhang
Title: MeshSplat: Generalizable Sparse-View Surface Reconstruction via Gaussian Splatting
Abstract:
Surface reconstruction has been widely studied in computer vision and graphics. However, existing surface reconstruction works struggle to recover accurate scene geometry when the input views are extremely sparse. To address this issue, we propose MeshSplat, a generalizable sparse-view surface reconstruction framework via Gaussian Splatting. Our key idea is to leverage 2DGS as a bridge, which connects novel view synthesis to learned geometric priors and then transfers these priors to achieve surface reconstruction. Specifically, we incorporate a feed-forward network to predict per-view pixel-aligned 2DGS, which enables the network to synthesize novel view images and thus eliminates the need for direct 3D ground-truth supervision. To improve the accuracy of 2DGS position and orientation prediction, we propose a Weighted Chamfer Distance Loss to regularize the depth maps, especially in overlapping areas of input views, and also a normal prediction network to align the orientation of 2DGS with normal vectors predicted by a monocular normal estimator. Extensive experiments validate the effectiveness of our proposed improvement, demonstrating that our method achieves state-of-the-art performance in generalizable sparse-view mesh reconstruction tasks. Project Page: https://hanzhichang.github.io/meshsplat_web

Authors:Toufiq Musah, Chinasa Kalaiwo, Maimoona Akram, Ubaida Napari Abdulai, Maruf Adewole, Farouk Dako, Adaobi Chiazor Emegoakor, Udunna C. Anazodo, Prince Ebenezer Adjei, Confidence Raymond
Title: Towards Trustworthy Breast Tumor Segmentation in Ultrasound using Monte Carlo Dropout and Deep Ensembles for Epistemic Uncertainty Estimation
Abstract:
Automated segmentation of BUS images is important for precise lesion delineation and tumor characterization, but is challenged by inherent artifacts and dataset inconsistencies. In this work, we evaluate the use of a modified Residual Encoder U-Net for breast ultrasound segmentation, with a focus on uncertainty quantification. We identify and correct for data duplication in the BUSI dataset, and use a deduplicated subset for more reliable estimates of generalization performance. Epistemic uncertainty is quantified using Monte Carlo dropout, deep ensembles, and their combination. Models are benchmarked on both in-distribution and out-of-distribution datasets to demonstrate how they generalize to unseen cross-domain data. Our approach achieves state-of-the-art segmentation accuracy on the Breast-Lesion-USG dataset with in-distribution validation, and provides calibrated uncertainty estimates that effectively signal regions of low model confidence. Performance declines and increased uncertainty observed in out-of-distribution evaluation highlight the persistent challenge of domain shift in medical imaging, and the importance of integrated uncertainty modeling for trustworthy clinical deployment. \footnote{Code available at: https://github.com/toufiqmusah/nn-uncertainty.git}

Authors:Seo-Bin Hwang, Yeong-Jun Cho
Title: DroneKey: Drone 3D Pose Estimation in Image Sequences using Gated Key-representation and Pose-adaptive Learning
Abstract:
Estimating the 3D pose of a drone is important for anti-drone systems, but existing methods struggle with the unique challenges of drone keypoint detection. Drone propellers serve as keypoints but are difficult to detect due to their high visual similarity and diversity of poses. To address these challenges, we propose DroneKey, a framework that combines a 2D keypoint detector and a 3D pose estimator specifically designed for drones. In the keypoint detection stage, we extract two key-representations (intermediate and compact) from each transformer encoder layer and optimally combine them using a gated sum. We also introduce a pose-adaptive Mahalanobis distance in the loss function to ensure stable keypoint predictions across extreme poses. We built new datasets of drone 2D keypoints and 3D pose to train and evaluate our method, which have been publicly released. Experiments show that our method achieves an AP of 99.68% (OKS) in keypoint detection, outperforming existing methods. Ablation studies confirm that the pose-adaptive Mahalanobis loss function improves keypoint prediction stability and accuracy. Additionally, improvements in the encoder design enable real-time processing at 44 FPS. For 3D pose estimation, our method achieved an MAE-angle of 10.62°, an RMSE of 0.221m, and an MAE-absolute of 0.076m, demonstrating high accuracy and reliability. The code and dataset are available at https://github.com/kkanuseobin/DroneKey.

Authors:Yaolei Qi, Yikai Yang, Wenbo Peng, Shumei Miao, Yutao Hu, Guanyu Yang
Title: Rethinking the Detail-Preserved Completion of Complex Tubular Structures based on Point Cloud: a Dataset and a Benchmark
Abstract:
Complex tubular structures are essential in medical imaging and computer-assisted diagnosis, where their integrity enhances anatomical visualization and lesion detection. However, existing segmentation algorithms struggle with structural discontinuities, particularly in severe clinical cases such as coronary artery stenosis and vessel occlusions, which leads to undesired discontinuity and compromising downstream diagnostic accuracy. Therefore, it is imperative to reconnect discontinuous structures to ensure their completeness. In this study, we explore the tubular structure completion based on point cloud for the first time and establish a Point Cloud-based Coronary Artery Completion (PC-CAC) dataset, which is derived from real clinical data. This dataset provides a novel benchmark for tubular structure completion. Additionally, we propose TSRNet, a Tubular Structure Reconnection Network that integrates a detail-preservated feature extractor, a multiple dense refinement strategy, and a global-to-local loss function to ensure accurate reconnection while maintaining structural integrity. Comprehensive experiments on our PC-CAC and two additional public datasets (PC-ImageCAS and PC-PTR) demonstrate that our method consistently outperforms state-of-the-art approaches across multiple evaluation metrics, setting a new benchmark for point cloud-based tubular structure reconstruction. Our benchmark is available at https://github.com/YaoleiQi/PCCAC.

Authors:Krishna Vinod, Prithvi Jai Ramesh, Pavan Kumar B N, Bharatesh Chakravarthi
Title: SEBVS: Synthetic Event-based Visual Servoing for Robot Navigation and Manipulation
Abstract:
Event cameras offer microsecond latency, high dynamic range, and low power consumption, making them ideal for real-time robotic perception under challenging conditions such as motion blur, occlusion, and illumination changes. However, despite their advantages, synthetic event-based vision remains largely unexplored in mainstream robotics simulators. This lack of simulation setup hinders the evaluation of event-driven approaches for robotic manipulation and navigation tasks. This work presents an open-source, user-friendly v2e robotics operating system (ROS) package for Gazebo simulation that enables seamless event stream generation from RGB camera feeds. The package is used to investigate event-based robotic policies (ERP) for real-time navigation and manipulation. Two representative scenarios are evaluated: (1) object following with a mobile robot and (2) object detection and grasping with a robotic manipulator. Transformer-based ERPs are trained by behavior cloning and compared to RGB-based counterparts under various operating conditions. Experimental results show that event-guided policies consistently deliver competitive advantages. The results highlight the potential of event-driven perception to improve real-time robotic navigation and manipulation, providing a foundation for broader integration of event cameras into robotic policy learning. The GitHub repo for the dataset and code: https://eventbasedvision.github.io/SEBVS/

Authors:Jonathan P. Crall, Charles V. Stewart, Tanya Y. Berger-Wolf, Daniel I. Rubenstein, Siva R. Sundaresan
Title: HotSpotter - Patterned Species Instance Recognition
Abstract:
We present HotSpotter, a fast, accurate algorithm for identifying individual animals against a labeled database. It is not species specific and has been applied to Grevy's and plains zebras, giraffes, leopards, and lionfish. We describe two approaches, both based on extracting and matching keypoints or "hotspots". The first tests each new query image sequentially against each database image, generating a score for each database image in isolation, and ranking the results. The second, building on recent techniques for instance recognition, matches the query image against the database using a fast nearest neighbor search. It uses a competitive scoring mechanism derived from the Local Naive Bayes Nearest Neighbor algorithm recently proposed for category recognition. We demonstrate results on databases of more than 1000 images, producing more accurate matches than published methods and matching each query image in just a few seconds.

Authors:Hugo Bohy, Minh Tran, Kevin El Haddad, Thierry Dutoit, Mohammad Soleymani
Title: Social-MAE: A Transformer-Based Multimodal Autoencoder for Face and Voice
Abstract:
Human social behaviors are inherently multimodal necessitating the development of powerful audiovisual models for their perception. In this paper, we present Social-MAE, our pre-trained audiovisual Masked Autoencoder based on an extended version of Contrastive Audio-Visual Masked Auto-Encoder (CAV-MAE), which is pre-trained on audiovisual social data. Specifically, we modify CAV-MAE to receive a larger number of frames as input and pre-train it on a large dataset of human social interaction (VoxCeleb2) in a self-supervised manner. We demonstrate the effectiveness of this model by finetuning and evaluating the model on different social and affective downstream tasks, namely, emotion recognition, laughter detection and apparent personality estimation. The model achieves state-of-the-art results on multimodal emotion recognition and laughter recognition and competitive results for apparent personality estimation, demonstrating the effectiveness of in-domain self-supervised pre-training. Code and model weight are available here https://github.com/HuBohy/SocialMAE.

Authors:Zhiwen Chen, Jinjian Wu, Zhiyu Zhu, Yifan Zhang, Guangming Shi, Junhui Hou
Title: Optimizing Multi-Modal Trackers via Sensitivity-aware Regularized Tuning
Abstract:
This paper tackles the critical challenge of optimizing multi-modal trackers by effectively adapting the pre-trained models for RGB data. Existing fine-tuning paradigms oscillate between excessive freedom and over-restriction, both leading to a suboptimal plasticity-stability trade-off. To mitigate this dilemma, we propose a novel sensitivity-aware regularized tuning framework, which delicately refines the learning process by incorporating intrinsic parameter sensitivities. Through a comprehensive investigation from pre-trained to multi-modal contexts, we identify that parameters sensitive to pivotal foundational patterns and cross-domain shifts are primary drivers of this issue. Specifically, we first analyze the tangent space of pre-trained weights to measure and orient prior sensitivities, dedicated to preserving generalization. Then, we further explore transfer sensitivities during the tuning phase, emphasizing adaptability and stability. By incorporating these sensitivities as regularization terms, our method significantly enhances the transferability across modalities. Extensive experiments showcase the superior performance of the proposed method, surpassing current state-of-the-art techniques across various multi-modal tracking. The source code and models will be publicly available at https://github.com/zhiwen-xdu/SRTrack.

Authors:Kaiyue Sun, Rongyao Fang, Chengqi Duan, Xian Liu, Xihui Liu
Title: T2I-ReasonBench: Benchmarking Reasoning-Informed Text-to-Image Generation
Abstract:
We propose T2I-ReasonBench, a benchmark evaluating reasoning capabilities of text-to-image (T2I) models. It consists of four dimensions: Idiom Interpretation, Textual Image Design, Entity-Reasoning and Scientific-Reasoning. We propose a two-stage evaluation protocol to assess the reasoning accuracy and image quality. We benchmark various T2I generation models, and provide comprehensive analysis on their performances.

Authors:Zijing Zhao, Zhu Xu, Qingchao Chen, Yuxin Peng, Yang Liu
Title: Investigating Domain Gaps for Indoor 3D Object Detection
Abstract:
As a fundamental task for indoor scene understanding, 3D object detection has been extensively studied, and the accuracy on indoor point cloud data has been substantially improved. However, existing researches have been conducted on limited datasets, where the training and testing sets share the same distribution. In this paper, we consider the task of adapting indoor 3D object detectors from one dataset to another, presenting a comprehensive benchmark with ScanNet, SUN RGB-D and 3D Front datasets, as well as our newly proposed large-scale datasets ProcTHOR-OD and ProcFront generated by a 3D simulator. Since indoor point cloud datasets are collected and constructed in different ways, the object detectors are likely to overfit to specific factors within each dataset, such as point cloud quality, bounding box layout and instance features. We conduct experiments across datasets on different adaptation scenarios including synthetic-to-real adaptation, point cloud quality adaptation, layout adaptation and instance feature adaptation, analyzing the impact of different domain gaps on 3D object detectors. We also introduce several approaches to improve adaptation performances, providing baselines for domain adaptive indoor 3D object detection, hoping that future works may propose detectors with stronger generalization ability across domains. Our project homepage can be found in https://jeremyzhao1998.github.io/DAVoteNet-release/.

Authors:Bin Huang, Zhong Liu, Huiying Wen, Bingsheng Huang, Xin Chen, Shuo Li
Title: E-BayesSAM: Efficient Bayesian Adaptation of SAM with Self-Optimizing KAN-Based Interpretation for Uncertainty-Aware Ultrasonic Segmentation
Abstract:
Although the Segment Anything Model (SAM) has advanced medical image segmentation, its Bayesian adaptation for uncertainty-aware segmentation remains hindered by three key issues: (1) instability in Bayesian fine-tuning of large pre-trained SAMs; (2) high computation cost due to SAM's massive parameters; (3) SAM's black-box design limits interpretability. To overcome these, we propose E-BayesSAM, an efficient framework combining Token-wise Variational Bayesian Inference (T-VBI) for efficienty Bayesian adaptation and Self-Optimizing Kolmogorov-Arnold Network (SO-KAN) for improving interpretability. T-VBI innovatively reinterprets SAM's output tokens as dynamic probabilistic weights and reparameterizes them as latent variables without auxiliary training, enabling training-free VBI for uncertainty estimation. SO-KAN improves token prediction with learnable spline activations via self-supervised learning, providing insight to prune redundant tokens to boost efficiency and accuracy. Experiments on five ultrasound datasets demonstrated that E-BayesSAM achieves: (i) real-time inference (0.03s/image), (ii) superior segmentation accuracy (average DSC: Pruned E-BayesSAM's 89.0\% vs. E-BayesSAM's 88.0% vs. MedSAM's 88.3%), and (iii) identification of four critical tokens governing SAM's decisions. By unifying efficiency, reliability, and interpretability, E-BayesSAM bridges SAM's versatility with clinical needs, advancing deployment in safety-critical medical applications. The source code is available at https://github.com/mp31192/E-BayesSAM.

Authors:Haoyu Wang, Hao Tang, Donglin Di, Zhilu Zhang, Wangmeng Zuo, Feng Gao, Siwei Ma, Shiliang Zhang
Title: MoCo: Motion-Consistent Human Video Generation via Structure-Appearance Decoupling
Abstract:
Generating human videos with consistent motion from text prompts remains a significant challenge, particularly for whole-body or long-range motion. Existing video generation models prioritize appearance fidelity, resulting in unrealistic or physically implausible human movements with poor structural coherence. Additionally, most existing human video datasets primarily focus on facial or upper-body motions, or consist of vertically oriented dance videos, limiting the scope of corresponding generation methods to simple movements. To overcome these challenges, we propose MoCo, which decouples the process of human video generation into two components: structure generation and appearance generation. Specifically, our method first employs an efficient 3D structure generator to produce a human motion sequence from a text prompt. The remaining video appearance is then synthesized under the guidance of the generated structural sequence. To improve fine-grained control over sparse human structures, we introduce Human-Aware Dynamic Control modules and integrate dense tracking constraints during training. Furthermore, recognizing the limitations of existing datasets, we construct a large-scale whole-body human video dataset featuring complex and diverse motions. Extensive experiments demonstrate that MoCo outperforms existing approaches in generating realistic and structurally coherent human videos.

Authors:Bokai Zhao, Weiyang Shi, Hanqing Chao, Zijiang Yang, Yiyang Zhang, Ming Song, Tianzi Jiang
Title: Neural Proteomics Fields for Super-resolved Spatial Proteomics Prediction
Abstract:
Spatial proteomics maps protein distributions in tissues, providing transformative insights for life sciences. However, current sequencing-based technologies suffer from low spatial resolution, and substantial inter-tissue variability in protein expression further compromises the performance of existing molecular data prediction methods. In this work, we introduce the novel task of spatial super-resolution for sequencing-based spatial proteomics (seq-SP) and, to the best of our knowledge, propose the first deep learning model for this task--Neural Proteomics Fields (NPF). NPF formulates seq-SP as a protein reconstruction problem in continuous space by training a dedicated network for each tissue. The model comprises a Spatial Modeling Module, which learns tissue-specific protein spatial distributions, and a Morphology Modeling Module, which extracts tissue-specific morphological features. Furthermore, to facilitate rigorous evaluation, we establish an open-source benchmark dataset, Pseudo-Visium SP, for this task. Experimental results demonstrate that NPF achieves state-of-the-art performance with fewer learnable parameters, underscoring its potential for advancing spatial proteomics research. Our code and dataset are publicly available at https://github.com/Bokai-Zhao/NPF.

Authors:Guoqing Zhang, Xingtong Ge, Lu Shi, Xin Zhang, Muqing Xue, Wanru Xu, Yigang Cen
Title: Condition Weaving Meets Expert Modulation: Towards Universal and Controllable Image Generation
Abstract:
The image-to-image generation task aims to produce controllable images by leveraging conditional inputs and prompt instructions. However, existing methods often train separate control branches for each type of condition, leading to redundant model structures and inefficient use of computational resources. To address this, we propose a Unified image-to-image Generation (UniGen) framework that supports diverse conditional inputs while enhancing generation efficiency and expressiveness. Specifically, to tackle the widely existing parameter redundancy and computational inefficiency in controllable conditional generation architectures, we propose the Condition Modulated Expert (CoMoE) module. This module aggregates semantically similar patch features and assigns them to dedicated expert modules for visual representation and conditional modeling. By enabling independent modeling of foreground features under different conditions, CoMoE effectively mitigates feature entanglement and redundant computation in multi-condition scenarios. Furthermore, to bridge the information gap between the backbone and control branches, we propose WeaveNet, a dynamic, snake-like connection mechanism that enables effective interaction between global text-level control from the backbone and fine-grained control from conditional branches. Extensive experiments on the Subjects-200K and MultiGen-20M datasets across various conditional image generation tasks demonstrate that our method consistently achieves state-of-the-art performance, validating its advantages in both versatility and effectiveness. The code has been uploaded to https://github.com/gavin-gqzhang/UniGen.

Authors:Hengyuan Zhang, Zhe Li, Xingqun Qi, Mengze Li, Muyi Sun, Man Zhang, Sirui Han
Title: DanceEditor: Towards Iterative Editable Music-driven Dance Generation with Open-Vocabulary Descriptions
Abstract:
Generating coherent and diverse human dances from music signals has gained tremendous progress in animating virtual avatars. While existing methods support direct dance synthesis, they fail to recognize that enabling users to edit dance movements is far more practical in real-world choreography scenarios. Moreover, the lack of high-quality dance datasets incorporating iterative editing also limits addressing this challenge. To achieve this goal, we first construct DanceRemix, a large-scale multi-turn editable dance dataset comprising the prompt featuring over 25.3M dance frames and 84.5K pairs. In addition, we propose a novel framework for iterative and editable dance generation coherently aligned with given music signals, namely DanceEditor. Considering the dance motion should be both musical rhythmic and enable iterative editing by user descriptions, our framework is built upon a prediction-then-editing paradigm unifying multi-modal conditions. At the initial prediction stage, our framework improves the authority of generated results by directly modeling dance movements from tailored, aligned music. Moreover, at the subsequent iterative editing stages, we incorporate text descriptions as conditioning information to draw the editable results through a specifically designed Cross-modality Editing Module (CEM). Specifically, CEM adaptively integrates the initial prediction with music and text prompts as temporal motion cues to guide the synthesized sequences. Thereby, the results display music harmonics while preserving fine-grained semantic alignment with text descriptions. Extensive experiments demonstrate that our method outperforms the state-of-the-art models on our newly collected DanceRemix dataset. Code is available at https://lzvsdy.github.io/DanceEditor/.

Authors:Tristan S. W. Stevens, Oisín Nolan, Ruud J. G. van Sloun
Title: Semantic Diffusion Posterior Sampling for Cardiac Ultrasound Dehazing
Abstract:
Echocardiography plays a central role in cardiac imaging, offering dynamic views of the heart that are essential for diagnosis and monitoring. However, image quality can be significantly degraded by haze arising from multipath reverberations, particularly in difficult-to-image patients. In this work, we propose a semantic-guided, diffusion-based dehazing algorithm developed for the MICCAI Dehazing Echocardiography Challenge (DehazingEcho2025). Our method integrates a pixel-wise noise model, derived from semantic segmentation of hazy inputs into a diffusion posterior sampling framework guided by a generative prior trained on clean ultrasound data. Quantitative evaluation on the challenge dataset demonstrates strong performance across contrast and fidelity metrics. Code for the submitted algorithm is available at https://github.com/tristan-deep/semantic-diffusion-echo-dehazing.

Authors:Songliang Cao, Tianqi Hu, Hao Lu
Title: First Place Solution to the MLCAS 2025 GWFSS Challenge: The Devil is in the Detail and Minority
Abstract:
In this report, we present our solution during the participation of the MLCAS 2025 GWFSS Challenge. This challenge hosts a semantic segmentation competition specific to wheat plants, which requires to segment three wheat organs including the head, leaf, and stem, and another background class. In 2025, participating a segmentation competition is significantly different from that in previous years where many tricks can play important roles. Nowadays most segmentation tricks have been well integrated into existing codebases such that our naive ViT-Adapter baseline has already achieved sufficiently good performance. Hence, we believe the key to stand out among other competitors is to focus on the problem nature of wheat per se. By probing visualizations, we identify the key -- the stem matters. In contrast to heads and leaves, stems exhibit fine structure and occupy only few pixels, which suffers from fragile predictions and class imbalance. Building on our baseline, we present three technical improvements tailored to stems: i) incorporating a dynamic upsampler SAPA used to enhance detail delineation; ii) leveraging semi-supervised guided distillation with stem-aware sample selection to mine the treasure beneath unlabeled data; and iii) applying a test-time scaling strategy to zoom in and segment twice the image. Despite being simple, the three improvements bring us to the first place of the competition, outperforming the second place by clear margins. Code and models will be released at https://github.com/tiny-smart/gwfss25.

Authors:Zhihao Chen, Qi Gao, Zilong Li, Junping Zhang, Yi Zhang, Jun Zhao, Hongming Shan
Title: FoundDiff: Foundational Diffusion Model for Generalizable Low-Dose CT Denoising
Abstract:
Low-dose computed tomography (CT) denoising is crucial for reduced radiation exposure while ensuring diagnostically acceptable image quality. Despite significant advancements driven by deep learning (DL) in recent years, existing DL-based methods, typically trained on a specific dose level and anatomical region, struggle to handle diverse noise characteristics and anatomical heterogeneity during varied scanning conditions, limiting their generalizability and robustness in clinical scenarios. In this paper, we propose FoundDiff, a foundational diffusion model for unified and generalizable LDCT denoising across various dose levels and anatomical regions. FoundDiff employs a two-stage strategy: (i) dose-anatomy perception and (ii) adaptive denoising. First, we develop a dose- and anatomy-aware contrastive language image pre-training model (DA-CLIP) to achieve robust dose and anatomy perception by leveraging specialized contrastive learning strategies to learn continuous representations that quantify ordinal dose variations and identify salient anatomical regions. Second, we design a dose- and anatomy-aware diffusion model (DA-Diff) to perform adaptive and generalizable denoising by synergistically integrating the learned dose and anatomy embeddings from DACLIP into diffusion process via a novel dose and anatomy conditional block (DACB) based on Mamba. Extensive experiments on two public LDCT datasets encompassing eight dose levels and three anatomical regions demonstrate superior denoising performance of FoundDiff over existing state-of-the-art methods and the remarkable generalization to unseen dose levels. The codes and models are available at https://github.com/hao1635/FoundDiff.

Authors:Fucai Ke, Joy Hsu, Zhixi Cai, Zixian Ma, Xin Zheng, Xindi Wu, Sukai Huang, Weiqing Wang, Pari Delir Haghighi, Gholamreza Haffari, Ranjay Krishna, Jiajun Wu, Hamid Rezatofighi
Title: Explain Before You Answer: A Survey on Compositional Visual Reasoning
Abstract:
Compositional visual reasoning has emerged as a key research frontier in multimodal AI, aiming to endow machines with the human-like ability to decompose visual scenes, ground intermediate concepts, and perform multi-step logical inference. While early surveys focus on monolithic vision-language models or general multimodal reasoning, a dedicated synthesis of the rapidly expanding compositional visual reasoning literature is still missing. We fill this gap with a comprehensive survey spanning 2023 to 2025 that systematically reviews 260+ papers from top venues (CVPR, ICCV, NeurIPS, ICML, ACL, etc.). We first formalize core definitions and describe why compositional approaches offer advantages in cognitive alignment, semantic fidelity, robustness, interpretability, and data efficiency. Next, we trace a five-stage paradigm shift: from prompt-enhanced language-centric pipelines, through tool-enhanced LLMs and tool-enhanced VLMs, to recently minted chain-of-thought reasoning and unified agentic VLMs, highlighting their architectural designs, strengths, and limitations. We then catalog 60+ benchmarks and corresponding metrics that probe compositional visual reasoning along dimensions such as grounding accuracy, chain-of-thought faithfulness, and high-resolution perception. Drawing on these analyses, we distill key insights, identify open challenges (e.g., limitations of LLM-based reasoning, hallucination, a bias toward deductive reasoning, scalable supervision, tool integration, and benchmark limitations), and outline future directions, including world-model integration, human-AI collaborative reasoning, and richer evaluation protocols. By offering a unified taxonomy, historical roadmap, and critical outlook, this survey aims to serve as a foundational reference and inspire the next generation of compositional visual reasoning research.

Authors:Breenda Das, Lennart Purucker, Timur Carstensen, Frank Hutter
Title: Quickly Tuning Foundation Models for Image Segmentation
Abstract:
Foundation models like SAM (Segment Anything Model) exhibit strong zero-shot image segmentation performance, but often fall short on domain-specific tasks. Fine-tuning these models typically requires significant manual effort and domain expertise. In this work, we introduce QTT-SEG, a meta-learning-driven approach for automating and accelerating the fine-tuning of SAM for image segmentation. Built on the Quick-Tune hyperparameter optimization framework, QTT-SEG predicts high-performing configurations using meta-learned cost and performance models, efficiently navigating a search space of over 200 million possibilities. We evaluate QTT-SEG on eight binary and five multiclass segmentation datasets under tight time constraints. Our results show that QTT-SEG consistently improves upon SAM's zero-shot performance and surpasses AutoGluon Multimodal, a strong AutoML baseline, on most binary tasks within three minutes. On multiclass datasets, QTT-SEG delivers consistent gains as well. These findings highlight the promise of meta-learning in automating model adaptation for specialized segmentation tasks. Code available at: https://github.com/ds-brx/QTT-SEG/

Authors:Xiaoyang Hao, Han Li
Title: PersPose: 3D Human Pose Estimation with Perspective Encoding and Perspective Rotation
Abstract:
Monocular 3D human pose estimation (HPE) methods estimate the 3D positions of joints from individual images. Existing 3D HPE approaches often use the cropped image alone as input for their models. However, the relative depths of joints cannot be accurately estimated from cropped images without the corresponding camera intrinsics, which determine the perspective relationship between 3D objects and the cropped images. In this work, we introduce Perspective Encoding (PE) to encode the camera intrinsics of the cropped images. Moreover, since the human subject can appear anywhere within the original image, the perspective relationship between the 3D scene and the cropped image differs significantly, which complicates model fitting. Additionally, the further the human subject deviates from the image center, the greater the perspective distortions in the cropped image. To address these issues, we propose Perspective Rotation (PR), a transformation applied to the original image that centers the human subject, thereby reducing perspective distortions and alleviating the difficulty of model fitting. By incorporating PE and PR, we propose a novel 3D HPE framework, PersPose. Experimental results demonstrate that PersPose achieves state-of-the-art (SOTA) performance on the 3DPW, MPI-INF-3DHP, and Human3.6M datasets. For example, on the in-the-wild dataset 3DPW, PersPose achieves an MPJPE of 60.1 mm, 7.54% lower than the previous SOTA approach. Code is available at: https://github.com/KenAdamsJoseph/PersPose.

Authors:Qibin Zhang, Xinyu Hao, Qiao Chen, Rui Xu, Fengyu Cong, Cheng Lu, Hongming Xu
Title: Multi-modal Knowledge Decomposition based Online Distillation for Biomarker Prediction in Breast Cancer Histopathology
Abstract:
Immunohistochemical (IHC) biomarker prediction benefits from multi-modal data fusion analysis. However, the simultaneous acquisition of multi-modal data, such as genomic and pathological information, is often challenging due to cost or technical limitations. To address this challenge, we propose an online distillation approach based on Multi-modal Knowledge Decomposition (MKD) to enhance IHC biomarker prediction in haematoxylin and eosin (H\&E) stained histopathology images. This method leverages paired genomic-pathology data during training while enabling inference using either pathology slides alone or both modalities. Two teacher and one student models are developed to extract modality-specific and modality-general features by minimizing the MKD loss. To maintain the internal structural relationships between samples, Similarity-preserving Knowledge Distillation (SKD) is applied. Additionally, Collaborative Learning for Online Distillation (CLOD) facilitates mutual learning between teacher and student models, encouraging diverse and complementary learning dynamics. Experiments on the TCGA-BRCA and in-house QHSU datasets demonstrate that our approach achieves superior performance in IHC biomarker prediction using uni-modal data. Our code is available at https://github.com/qiyuanzz/MICCAI2025_MKD.

Authors:Hyeyeon Kim, Sungwoo Han, Jingun Kwon, Hidetaka Kamigaito, Manabu Okumura
Title: MMCIG: Multimodal Cover Image Generation for Text-only Documents and Its Dataset Construction via Pseudo-labeling
Abstract:
In this study, we introduce a novel cover image generation task that produces both a concise summary and a visually corresponding image from a given text-only document. Because no existing datasets are available for this task, we propose a multimodal pseudo-labeling method to construct high-quality datasets at low cost. We first collect documents that contain multiple images with their captions, and their summaries by excluding factually inconsistent instances. Our approach selects one image from the multiple images accompanying the documents. Using the gold summary, we independently rank both the images and their captions. Then, we annotate a pseudo-label for an image when both the image and its corresponding caption are ranked first in their respective rankings. Finally, we remove documents that contain direct image references within texts. Experimental results demonstrate that the proposed multimodal pseudo-labeling method constructs more precise datasets and generates higher quality images than text- and image-only pseudo-labeling methods, which consider captions and images separately. We release our code at: https://github.com/HyeyeeonKim/MMCIG

Authors:Zhenghui Zhao, Chen Wu, Di Wang, Hongruixuan Chen, Cuiqun Chen, Zhuo Zheng, Bo Du, Liangpei Zhang
Title: Advancing Weakly-Supervised Change Detection in Satellite Images via Adversarial Class Prompting
Abstract:
Weakly-Supervised Change Detection (WSCD) aims to distinguish specific object changes (e.g., objects appearing or disappearing) from background variations (e.g., environmental changes due to light, weather, or seasonal shifts) in paired satellite images, relying only on paired image (i.e., image-level) classification labels. This technique significantly reduces the need for dense annotations required in fully-supervised change detection. However, as image-level supervision only indicates whether objects have changed in a scene, WSCD methods often misclassify background variations as object changes, especially in complex remote-sensing scenarios. In this work, we propose an Adversarial Class Prompting (AdvCP) method to address this co-occurring noise problem, including two phases: a) Adversarial Prompt Mining: After each training iteration, we introduce adversarial prompting perturbations, using incorrect one-hot image-level labels to activate erroneous feature mappings. This process reveals co-occurring adversarial samples under weak supervision, namely background variation features that are likely to be misclassified as object changes. b) Adversarial Sample Rectification: We integrate these adversarially prompt-activated pixel samples into training by constructing an online global prototype. This prototype is built from an exponentially weighted moving average of the current batch and all historical training data. Our AdvCP can be seamlessly integrated into current WSCD methods without adding additional inference cost. Experiments on ConvNet, Transformer, and Segment Anything Model (SAM)-based baselines demonstrate significant performance enhancements. Furthermore, we demonstrate the generalizability of AdvCP to other multi-class weakly-supervised dense prediction scenarios. Code is available at https://github.com/zhenghuizhao/AdvCP

Authors:Yajat Yadav, Varun Bharadwaj, Jathin Korrapati, Tanish Baranwal
Title: VROOM - Visual Reconstruction over Onboard Multiview
Abstract:
We introduce VROOM, a system for reconstructing 3D models of Formula 1 circuits using only onboard camera footage from racecars. Leveraging video data from the 2023 Monaco Grand Prix, we address video challenges such as high-speed motion and sharp cuts in camera frames. Our pipeline analyzes different methods such as DROID-SLAM, AnyCam, and Monst3r and combines preprocessing techniques such as different methods of masking, temporal chunking, and resolution scaling to account for dynamic motion and computational constraints. We show that Vroom is able to partially recover track and vehicle trajectories in complex environments. These findings indicate the feasibility of using onboard video for scalable 4D reconstruction in real-world settings. The project page can be found at https://varun-bharadwaj.github.io/vroom, and our code is available at https://github.com/yajatyadav/vroom.

Authors:Stefanos Pasios, Nikos Nikolaidis
Title: REGEN: Real-Time Photorealism Enhancement in Games via a Dual-Stage Generative Network Framework
Abstract:
Photorealism is an important aspect of modern video games since it can shape the player experience and simultaneously impact the immersion, narrative engagement, and visual fidelity. Although recent hardware technological breakthroughs, along with state-of-the-art rendering technologies, have significantly improved the visual realism of video games, achieving true photorealism in dynamic environments at real-time frame rates still remains a major challenge due to the tradeoff between visual quality and performance. In this short paper, we present a novel approach for enhancing the photorealism of rendered game frames using generative adversarial networks. To this end, we propose Real-time photorealism Enhancement in Games via a dual-stage gEnerative Network framework (REGEN), which employs a robust unpaired image-to-image translation model to produce semantically consistent photorealistic frames that transform the problem into a simpler paired image-to-image translation task. This enables training with a lightweight method that can achieve real-time inference time without compromising visual quality. We demonstrate the effectiveness of our framework on Grand Theft Auto V, showing that the approach achieves visual results comparable to the ones produced by the robust unpaired Im2Im method while improving inference speed by 32.14 times. Our findings also indicate that the results outperform the photorealism-enhanced frames produced by directly training a lightweight unpaired Im2Im translation method to translate the video game frames towards the visual characteristics of real-world images. Code, pre-trained models, and demos for this work are available at: https://github.com/stefanos50/REGEN.

Authors:Qingwen Zhang, Xiaomeng Zhu, Yushan Zhang, Yixi Cai, Olov Andersson, Patric Jensfelt
Title: DeltaFlow: An Efficient Multi-frame Scene Flow Estimation Method
Abstract:
Previous dominant methods for scene flow estimation focus mainly on input from two consecutive frames, neglecting valuable information in the temporal domain. While recent trends shift towards multi-frame reasoning, they suffer from rapidly escalating computational costs as the number of frames grows. To leverage temporal information more efficiently, we propose DeltaFlow ($Δ$Flow), a lightweight 3D framework that captures motion cues via a $Δ$ scheme, extracting temporal features with minimal computational cost, regardless of the number of frames. Additionally, scene flow estimation faces challenges such as imbalanced object class distributions and motion inconsistency. To tackle these issues, we introduce a Category-Balanced Loss to enhance learning across underrepresented classes and an Instance Consistency Loss to enforce coherent object motion, improving flow accuracy. Extensive evaluations on the Argoverse 2 and Waymo datasets show that $Δ$Flow achieves state-of-the-art performance with up to 22% lower error and $2\times$ faster inference compared to the next-best multi-frame supervised method, while also demonstrating a strong cross-domain generalization ability. The code is open-sourced at https://github.com/Kin-Zhang/DeltaFlow along with trained model weights.

Authors:Xianjing Cheng, Lintai Wu, Zuowen Wang, Junhui Hou, Jie Wen, Yong Xu
Title: PVNet: Point-Voxel Interaction LiDAR Scene Upsampling Via Diffusion Models
Abstract:
Accurate 3D scene understanding in outdoor environments heavily relies on high-quality point clouds. However, LiDAR-scanned data often suffer from extreme sparsity, severely hindering downstream 3D perception tasks. Existing point cloud upsampling methods primarily focus on individual objects, thus demonstrating limited generalization capability for complex outdoor scenes. To address this issue, we propose PVNet, a diffusion model-based point-voxel interaction framework to perform LiDAR point cloud upsampling without dense supervision. Specifically, we adopt the classifier-free guidance-based DDPMs to guide the generation, in which we employ a sparse point cloud as the guiding condition and the synthesized point clouds derived from its nearby frames as the input. Moreover, we design a voxel completion module to refine and complete the coarse voxel features for enriching the feature representation. In addition, we propose a point-voxel interaction module to integrate features from both points and voxels, which efficiently improves the environmental perception capability of each upsampled point. To the best of our knowledge, our approach is the first scene-level point cloud upsampling method supporting arbitrary upsampling rates. Extensive experiments on various benchmarks demonstrate that our method achieves state-of-the-art performance. The source code will be available at https://github.com/chengxianjing/PVNet.

Authors:Dmitry Yudin
Title: M3DMap: Object-aware Multimodal 3D Mapping for Dynamic Environments
Abstract:
3D mapping in dynamic environments poses a challenge for modern researchers in robotics and autonomous transportation. There are no universal representations for dynamic 3D scenes that incorporate multimodal data such as images, point clouds, and text. This article takes a step toward solving this problem. It proposes a taxonomy of methods for constructing multimodal 3D maps, classifying contemporary approaches based on scene types and representations, learning methods, and practical applications. Using this taxonomy, a brief structured analysis of recent methods is provided. The article also describes an original modular method called M3DMap, designed for object-aware construction of multimodal 3D maps for both static and dynamic scenes. It consists of several interconnected components: a neural multimodal object segmentation and tracking module; an odometry estimation module, including trainable algorithms; a module for 3D map construction and updating with various implementations depending on the desired scene representation; and a multimodal data retrieval module. The article highlights original implementations of these modules and their advantages in solving various practical tasks, from 3D object grounding to mobile manipulation. Additionally, it presents theoretical propositions demonstrating the positive effect of using multimodal data and modern foundational models in 3D mapping methods. Details of the taxonomy and method implementation are available at https://yuddim.github.io/M3DMap.

Authors:Raghul Asokan
Title: F4-ITS: Fine-grained Feature Fusion for Food Image-Text Search
Abstract:
The proliferation of digital food content has intensified the need for robust and accurate systems capable of fine-grained visual understanding and retrieval. In this work, we address the challenging task of food image-to-text matching, a critical component in applications such as dietary monitoring, smart kitchens, and restaurant automation. We propose F4-ITS: Fine-grained Feature Fusion for Food Image-Text Search, a training-free, vision-language model (VLM)-guided framework that significantly improves retrieval performance through enhanced multi-modal feature representations. Our approach introduces two key contributions: (1) a uni-directional(and bi-directional) multi-modal fusion strategy that combines image embeddings with VLM-generated textual descriptions to improve query expressiveness, and (2) a novel feature-based re-ranking mechanism for top-k retrieval, leveraging predicted food ingredients to refine results and boost precision. Leveraging open-source image-text encoders, we demonstrate substantial gains over standard baselines - achieving ~10% and ~7.7% improvements in top-1 retrieval under dense and sparse caption scenarios, and a ~28.6% gain in top-k ingredient-level retrieval. Additionally, we show that smaller models (e.g., ViT-B/32) can match or outperform larger counterparts (e.g., ViT-H, ViT-G, ViT-bigG) when augmented with textual fusion, highlighting the effectiveness of our method in resource-constrained settings. Code and test datasets will be made publicly available at: https://github.com/mailcorahul/f4-its

Authors:Mingliang Li, Lin Yuanbo Wu, Changhong Liu, Hanxi Li
Title: A Novel Local Focusing Mechanism for Deepfake Detection Generalization
Abstract:
The rapid advancement of deepfake generation techniques has intensified the need for robust and generalizable detection methods. Existing approaches based on reconstruction learning typically leverage deep convolutional networks to extract differential features. However, these methods show poor generalization across object categories (e.g., from faces to cars) and generation domains (e.g., from GANs to Stable Diffusion), due to intrinsic limitations of deep CNNs. First, models trained on a specific category tend to overfit to semantic feature distributions, making them less transferable to other categories, especially as network depth increases. Second, Global Average Pooling (GAP) compresses critical local forgery cues into a single vector, thus discarding discriminative patterns vital for real-fake classification. To address these issues, we propose a novel Local Focus Mechanism (LFM) that explicitly attends to discriminative local features for differentiating fake from real images. LFM integrates a Salience Network (SNet) with a task-specific Top-K Pooling (TKP) module to select the K most informative local patterns. To mitigate potential overfitting introduced by Top-K pooling, we introduce two regularization techniques: Rank-Based Linear Dropout (RBLD) and Random-K Sampling (RKS), which enhance the model's robustness. LFM achieves a 3.7 improvement in accuracy and a 2.8 increase in average precision over the state-of-the-art Neighboring Pixel Relationships (NPR) method, while maintaining exceptional efficiency at 1789 FPS on a single NVIDIA A6000 GPU. Our approach sets a new benchmark for cross-domain deepfake detection. The source code are available in https://github.com/lmlpy/LFM.git

Authors:Riad Hassan, M. Rubaiyat Hossain Mondal, Sheikh Iqbal Ahamed, Fahad Mostafa, Md Mostafijur Rahman
Title: An Efficient Dual-Line Decoder Network with Multi-Scale Convolutional Attention for Multi-organ Segmentation
Abstract:
Proper segmentation of organs-at-risk is important for radiation therapy, surgical planning, and diagnostic decision-making in medical image analysis. While deep learning-based segmentation architectures have made significant progress, they often fail to balance segmentation accuracy with computational efficiency. Most of the current state-of-the-art methods either prioritize performance at the cost of high computational complexity or compromise accuracy for efficiency. This paper addresses this gap by introducing an efficient dual-line decoder segmentation network (EDLDNet). The proposed method features a noisy decoder, which learns to incorporate structured perturbation at training time for better model robustness, yet at inference time only the noise-free decoder is executed, leading to lower computational cost. Multi-Scale convolutional Attention Modules (MSCAMs), Attention Gates (AGs), and Up-Convolution Blocks (UCBs) are further utilized to optimize feature representation and boost segmentation performance. By leveraging multi-scale segmentation masks from both decoders, we also utilize a mutation-based loss function to enhance the model's generalization. Our approach outperforms SOTA segmentation architectures on four publicly available medical imaging datasets. EDLDNet achieves SOTA performance with an 84.00% Dice score on the Synapse dataset, surpassing baseline model like UNet by 13.89% in Dice score while significantly reducing Multiply-Accumulate Operations (MACs) by 89.7%. Compared to recent approaches like EMCAD, our EDLDNet not only achieves higher Dice score but also maintains comparable computational efficiency. The outstanding performance across diverse datasets establishes EDLDNet's strong generalization, computational efficiency, and robustness. The source code, pre-processed data, and pre-trained weights will be available at https://github.com/riadhassan/EDLDNet .

Authors:Yahao Liu, Qin Wang, Lixin Duan, Wen Li
Title: Balanced Sharpness-Aware Minimization for Imbalanced Regression
Abstract:
Regression is fundamental in computer vision and is widely used in various tasks including age estimation, depth estimation, target localization, \etc However, real-world data often exhibits imbalanced distribution, making regression models perform poorly especially for target values with rare observations~(known as the imbalanced regression problem). In this paper, we reframe imbalanced regression as an imbalanced generalization problem. To tackle that, we look into the loss sharpness property for measuring the generalization ability of regression models in the observation space. Namely, given a certain perturbation on the model parameters, we check how model performance changes according to the loss values of different target observations. We propose a simple yet effective approach called Balanced Sharpness-Aware Minimization~(BSAM) to enforce the uniform generalization ability of regression models for the entire observation space. In particular, we start from the traditional sharpness-aware minimization and then introduce a novel targeted reweighting strategy to homogenize the generalization ability across the observation space, which guarantees a theoretical generalization bound. Extensive experiments on multiple vision regression tasks, including age and depth estimation, demonstrate that our BSAM method consistently outperforms existing approaches. The code is available \href{https://github.com/manmanjun/BSAM_for_Imbalanced_Regression}{here}.

Authors:Tianhang Pan, Xiuyi Jia
Title: Local Information Matters: A Rethink of Crowd Counting
Abstract:
The motivation of this paper originates from rethinking an essential characteristic of crowd counting: individuals (heads of humans) in the crowd counting task typically occupy a very small portion of the image. This characteristic has never been the focus of existing works: they typically use the same backbone as other visual tasks and pursue a large receptive field. This drives us to propose a new model design principle of crowd counting: emphasizing local modeling capability of the model. We follow the principle and design a crowd counting model named Local Information Matters Model (LIMM). The main innovation lies in two strategies: a window partitioning design that applies grid windows to the model input, and a window-wise contrastive learning design to enhance the model's ability to distinguish between local density levels. Moreover, a global attention module is applied to the end of the model to handle the occasionally occurring large-sized individuals. Extensive experiments on multiple public datasets illustrate that the proposed model shows a significant improvement in local modeling capability (8.7\% in MAE on the JHU-Crowd++ high-density subset for example), without compromising its ability to count large-sized ones, which achieves state-of-the-art performance. Code is available at: https://github.com/tianhangpan/LIMM.

Authors:Krishna Kanth Nakka, Alexandre Alahi
Title: NAT: Learning to Attack Neurons for Enhanced Adversarial Transferability
Abstract:
The generation of transferable adversarial perturbations typically involves training a generator to maximize embedding separation between clean and adversarial images at a single mid-layer of a source model. In this work, we build on this approach and introduce Neuron Attack for Transferability (NAT), a method designed to target specific neuron within the embedding. Our approach is motivated by the observation that previous layer-level optimizations often disproportionately focus on a few neurons representing similar concepts, leaving other neurons within the attacked layer minimally affected. NAT shifts the focus from embedding-level separation to a more fundamental, neuron-specific approach. We find that targeting individual neurons effectively disrupts the core units of the neural network, providing a common basis for transferability across different models. Through extensive experiments on 41 diverse ImageNet models and 9 fine-grained models, NAT achieves fooling rates that surpass existing baselines by over 14\% in cross-model and 4\% in cross-domain settings. Furthermore, by leveraging the complementary attacking capabilities of the trained generators, we achieve impressive fooling rates within just 10 queries. Our code is available at: https://krishnakanthnakka.github.io/NAT/

Authors:Qi Song, Ziyuan Luo, Ka Chun Cheung, Simon See, Renjie Wan
Title: Align 3D Representation and Text Embedding for 3D Content Personalization
Abstract:
Recent advances in NeRF and 3DGS have significantly enhanced the efficiency and quality of 3D content synthesis. However, efficient personalization of generated 3D content remains a critical challenge. Current 3D personalization approaches predominantly rely on knowledge distillation-based methods, which require computationally expensive retraining procedures. To address this challenge, we propose \textbf{Invert3D}, a novel framework for convenient 3D content personalization. Nowadays, vision-language models such as CLIP enable direct image personalization through aligned vision-text embedding spaces. However, the inherent structural differences between 3D content and 2D images preclude direct application of these techniques to 3D personalization. Our approach bridges this gap by establishing alignment between 3D representations and text embedding spaces. Specifically, we develop a camera-conditioned 3D-to-text inverse mechanism that projects 3D contents into a 3D embedding aligned with text embeddings. This alignment enables efficient manipulation and personalization of 3D content through natural language prompts, eliminating the need for computationally retraining procedures. Extensive experiments demonstrate that Invert3D achieves effective personalization of 3D content. Our work is available at: https://github.com/qsong2001/Invert3D.

Authors:Sizhe Shan, Qiulin Li, Yutao Cui, Miles Yang, Yuehai Wang, Qun Yang, Jin Zhou, Zhao Zhong
Title: HunyuanVideo-Foley: Multimodal Diffusion with Representation Alignment for High-Fidelity Foley Audio Generation
Abstract:
Recent advances in video generation produce visually realistic content, yet the absence of synchronized audio severely compromises immersion. To address key challenges in video-to-audio generation, including multimodal data scarcity, modality imbalance and limited audio quality in existing methods, we propose HunyuanVideo-Foley, an end-to-end text-video-to-audio framework that synthesizes high-fidelity audio precisely aligned with visual dynamics and semantic context. Our approach incorporates three core innovations: (1) a scalable data pipeline curating 100k-hour multimodal datasets through automated annotation; (2) a representation alignment strategy using self-supervised audio features to guide latent diffusion training, efficiently improving audio quality and generation stability; (3) a novel multimodal diffusion transformer resolving modal competition, containing dual-stream audio-video fusion through joint attention, and textual semantic injection via cross-attention. Comprehensive evaluations demonstrate that HunyuanVideo-Foley achieves new state-of-the-art performance across audio fidelity, visual-semantic alignment, temporal alignment and distribution matching. The demo page is available at: https://szczesnys.github.io/hunyuanvideo-foley/.

Authors:Prerit Gupta, Jason Alexander Fotso-Puepi, Zhengyuan Li, Jay Mehta, Aniket Bera
Title: MDD: A Dataset for Text-and-Music Conditioned Duet Dance Generation
Abstract:
We introduce Multimodal DuetDance (MDD), a diverse multimodal benchmark dataset designed for text-controlled and music-conditioned 3D duet dance motion generation. Our dataset comprises 620 minutes of high-quality motion capture data performed by professional dancers, synchronized with music, and detailed with over 10K fine-grained natural language descriptions. The annotations capture a rich movement vocabulary, detailing spatial relationships, body movements, and rhythm, making MDD the first dataset to seamlessly integrate human motions, music, and text for duet dance generation. We introduce two novel tasks supported by our dataset: (1) Text-to-Duet, where given music and a textual prompt, both the leader and follower dance motion are generated (2) Text-to-Dance Accompaniment, where given music, textual prompt, and the leader's motion, the follower's motion is generated in a cohesive, text-aligned manner. We include baseline evaluations on both tasks to support future research.

Authors:Shunyu Yao, Ming Liu, Zhilu Zhang, Zhaolin Wan, Zhilong Ji, Jinfeng Bai, Wangmeng Zuo
Title: MDIQA: Unified Image Quality Assessment for Multi-dimensional Evaluation and Restoration
Abstract:
Recent advancements in image quality assessment (IQA), driven by sophisticated deep neural network designs, have significantly improved the ability to approach human perceptions. However, most existing methods are obsessed with fitting the overall score, neglecting the fact that humans typically evaluate image quality from different dimensions before arriving at an overall quality assessment. To overcome this problem, we propose a multi-dimensional image quality assessment (MDIQA) framework. Specifically, we model image quality across various perceptual dimensions, including five technical and four aesthetic dimensions, to capture the multifaceted nature of human visual perception within distinct branches. Each branch of our MDIQA is initially trained under the guidance of a separate dimension, and the respective features are then amalgamated to generate the final IQA score. Additionally, when the MDIQA model is ready, we can deploy it for a flexible training of image restoration (IR) models, enabling the restoration results to better align with varying user preferences through the adjustment of perceptual dimension weights. Extensive experiments demonstrate that our MDIQA achieves superior performance and can be effectively and flexibly applied to image restoration tasks. The code is available: https://github.com/YaoShunyu19/MDIQA.

Authors:Xilai Li, Huichun Liu, Xiaosong Li, Tao Ye, Zhenyu Kuang, Huafeng Li
Title: AWM-Fuse: Multi-Modality Image Fusion for Adverse Weather via Global and Local Text Perception
Abstract:
Multi-modality image fusion (MMIF) in adverse weather aims to address the loss of visual information caused by weather-related degradations, providing clearer scene representations. Although less studies have attempted to incorporate textual information to improve semantic perception, they often lack effective categorization and thorough analysis of textual content. In response, we propose AWM-Fuse, a novel fusion method for adverse weather conditions, designed to handle multiple degradations through global and local text perception within a unified, shared weight architecture. In particular, a global feature perception module leverages BLIP-produced captions to extract overall scene features and identify primary degradation types, thus promoting generalization across various adverse weather conditions. Complementing this, the local module employs detailed scene descriptions produced by ChatGPT to concentrate on specific degradation effects through concrete textual cues, thereby capturing finer details. Furthermore, textual descriptions are used to constrain the generation of fusion images, effectively steering the network learning process toward better alignment with real semantic labels, thereby promoting the learning of more meaningful visual features. Extensive experiments demonstrate that AWM-Fuse outperforms current state-of-the-art methods in complex weather conditions and downstream tasks. Our code is available at https://github.com/Feecuin/AWM-Fuse.

Authors:Xin Tian, Jiazheng Wang, Yuxi Zhang, Xiang Chen, Renjiu Hu, Gaolei Li, Min Liu, Hang Zhang
Title: Gaussian Primitive Optimized Deformable Retinal Image Registration
Abstract:
Deformable retinal image registration is notoriously difficult due to large homogeneous regions and sparse but critical vascular features, which cause limited gradient signals in standard learning-based frameworks. In this paper, we introduce Gaussian Primitive Optimization (GPO), a novel iterative framework that performs structured message passing to overcome these challenges. After an initial coarse alignment, we extract keypoints at salient anatomical structures (e.g., major vessels) to serve as a minimal set of descriptor-based control nodes (DCN). Each node is modelled as a Gaussian primitive with trainable position, displacement, and radius, thus adapting its spatial influence to local deformation scales. A K-Nearest Neighbors (KNN) Gaussian interpolation then blends and propagates displacement signals from these information-rich nodes to construct a globally coherent displacement field; focusing interpolation on the top (K) neighbors reduces computational overhead while preserving local detail. By strategically anchoring nodes in high-gradient regions, GPO ensures robust gradient flow, mitigating vanishing gradient signal in textureless areas. The framework is optimized end-to-end via a multi-term loss that enforces both keypoint consistency and intensity alignment. Experiments on the FIRE dataset show that GPO reduces the target registration error from 6.2\,px to ~2.4\,px and increases the AUC at 25\,px from 0.770 to 0.938, substantially outperforming existing methods. The source code can be accessed via https://github.com/xintian-99/GPOreg.

Authors:Stefania L. Moroianu, Christian Bluethgen, Pierre Chambon, Mehdi Cherti, Jean-Benoit Delbrouck, Magdalini Paschali, Brandon Price, Judy Gichoya, Jenia Jitsev, Curtis P. Langlotz, Akshay S. Chaudhari
Title: Improving Performance, Robustness, and Fairness of Radiographic AI Models with Finely-Controllable Synthetic Data
Abstract:
Achieving robust performance and fairness across diverse patient populations remains a challenge in developing clinically deployable deep learning models for diagnostic imaging. Synthetic data generation has emerged as a promising strategy to address limitations in dataset scale and diversity. We introduce RoentGen-v2, a text-to-image diffusion model for chest radiographs that enables fine-grained control over both radiographic findings and patient demographic attributes, including sex, age, and race/ethnicity. RoentGen-v2 is the first model to generate clinically plausible images with demographic conditioning, facilitating the creation of a large, demographically balanced synthetic dataset comprising over 565,000 images. We use this large synthetic dataset to evaluate optimal training pipelines for downstream disease classification models. In contrast to prior work that combines real and synthetic data naively, we propose an improved training strategy that leverages synthetic data for supervised pretraining, followed by fine-tuning on real data. Through extensive evaluation on over 137,000 chest radiographs from five institutions, we demonstrate that synthetic pretraining consistently improves model performance, generalization to out-of-distribution settings, and fairness across demographic subgroups. Across datasets, synthetic pretraining led to a 6.5% accuracy increase in the performance of downstream classification models, compared to a modest 2.7% increase when naively combining real and synthetic data. We observe this performance improvement simultaneously with the reduction of the underdiagnosis fairness gap by 19.3%. These results highlight the potential of synthetic imaging to advance equitable and generalizable medical deep learning under real-world data constraints. We open source our code, trained models, and synthetic dataset at https://github.com/StanfordMIMI/RoentGen-v2 .

Authors:Ashwath Vaithinathan Aravindan, Abha Jha, Mihir Kulkarni
Title: Do VLMs Have Bad Eyes? Diagnosing Compositional Failures via Mechanistic Interpretability
Abstract:
Vision-Language Models (VLMs) have shown remarkable performance in integrating visual and textual information for tasks such as image captioning and visual question answering. However, these models struggle with compositional generalization and object binding, which limit their ability to handle novel combinations of objects and their attributes. Our work explores the root causes of these failures using mechanistic interpretability techniques. We show evidence that individual neurons in the MLP layers of CLIP's vision encoder represent multiple features, and this "superposition" directly hinders its compositional feature representation which consequently affects compositional reasoning and object binding capabilities. We hope this study will serve as an initial step toward uncovering the mechanistic roots of compositional failures in VLMs. The code and supporting results can be found https://github.com/Mystic-Slice/Do-VLMs-Have-Bad-Eyes.

Authors:Yosef Dayani, Omer Benishu, Sagie Benaim
Title: MV-RAG: Retrieval Augmented Multiview Diffusion
Abstract:
Text-to-3D generation approaches have advanced significantly by leveraging pretrained 2D diffusion priors, producing high-quality and 3D-consistent outputs. However, they often fail to produce out-of-domain (OOD) or rare concepts, yielding inconsistent or inaccurate results. To this end, we propose MV-RAG, a novel text-to-3D pipeline that first retrieves relevant 2D images from a large in-the-wild 2D database and then conditions a multiview diffusion model on these images to synthesize consistent and accurate multiview outputs. Training such a retrieval-conditioned model is achieved via a novel hybrid strategy bridging structured multiview data and diverse 2D image collections. This involves training on multiview data using augmented conditioning views that simulate retrieval variance for view-specific reconstruction, alongside training on sets of retrieved real-world 2D images using a distinctive held-out view prediction objective: the model predicts the held-out view from the other views to infer 3D consistency from 2D data. To facilitate a rigorous OOD evaluation, we introduce a new collection of challenging OOD prompts. Experiments against state-of-the-art text-to-3D, image-to-3D, and personalization baselines show that our approach significantly improves 3D consistency, photorealism, and text adherence for OOD/rare concepts, while maintaining competitive performance on standard benchmarks.

Authors:Yupei Zhang, Xiaofei Wang, Anran Liu, Lequan Yu, Chao Li
Title: Disentangled Multi-modal Learning of Histology and Transcriptomics for Cancer Characterization
Abstract:
Histopathology remains the gold standard for cancer diagnosis and prognosis. With the advent of transcriptome profiling, multi-modal learning combining transcriptomics with histology offers more comprehensive information. However, existing multi-modal approaches are challenged by intrinsic multi-modal heterogeneity, insufficient multi-scale integration, and reliance on paired data, restricting clinical applicability. To address these challenges, we propose a disentangled multi-modal framework with four contributions: 1) To mitigate multi-modal heterogeneity, we decompose WSIs and transcriptomes into tumor and microenvironment subspaces using a disentangled multi-modal fusion module, and introduce a confidence-guided gradient coordination strategy to balance subspace optimization. 2) To enhance multi-scale integration, we propose an inter-magnification gene-expression consistency strategy that aligns transcriptomic signals across WSI magnifications. 3) To reduce dependency on paired data, we propose a subspace knowledge distillation strategy enabling transcriptome-agnostic inference through a WSI-only student model. 4) To improve inference efficiency, we propose an informative token aggregation module that suppresses WSI redundancy while preserving subspace semantics. Extensive experiments on cancer diagnosis, prognosis, and survival prediction demonstrate our superiority over state-of-the-art methods across multiple settings. Code is available at https://github.com/helenypzhang/Disentangled-Multimodal-Learning.

Authors:Aniello Panariello, Emanuele Frascaroli, Pietro Buzzega, Lorenzo Bonicelli, Angelo Porrello, Simone Calderara
Title: Modular Embedding Recomposition for Incremental Learning
Abstract:
The advent of pre-trained Vision-Language Models (VLMs) has significantly transformed Continual Learning (CL), mainly due to their zero-shot classification abilities. Such proficiency makes VLMs well-suited for real-world applications, enabling robust performance on novel unseen classes without requiring adaptation. However, fine-tuning remains essential when downstream tasks deviate significantly from the pre-training domain. Prior CL approaches primarily focus on preserving the zero-shot capabilities of VLMs during incremental fine-tuning on a downstream task. We take a step further by devising an approach that transforms preservation into enhancement of the zero-shot capabilities of VLMs. Our approach, named MoDular Embedding Recomposition (MoDER), introduces a modular framework that trains multiple textual experts, each specialized in a single seen class, and stores them in a foundational hub. At inference time, for each unseen class, we query the hub and compose the retrieved experts to synthesize a refined prototype that improves classification. We show the effectiveness of our method across two popular zero-shot incremental protocols, Class-IL and MTIL, comprising a total of 14 datasets. The codebase is available at https://github.com/aimagelab/mammoth.

Authors:Yong Zhang, Cunjian Chen, Qiang Gao, Yi Wang, Bin Fang
Title: A Lightweight Group Multiscale Bidirectional Interactive Network for Real-Time Steel Surface Defect Detection
Abstract:
Real-time surface defect detection is critical for maintaining product quality and production efficiency in the steel manufacturing industry. Despite promising accuracy, existing deep learning methods often suffer from high computational complexity and slow inference speeds, which limit their deployment in resource-constrained industrial environments. Recent lightweight approaches adopt multibranch architectures based on depthwise separable convolution (DSConv) to capture multiscale contextual information. However, these methods often suffer from increased computational overhead and lack effective cross-scale feature interaction, limiting their ability to fully leverage multiscale representations. To address these challenges, we propose GMBINet, a lightweight framework that enhances multiscale feature extraction and interaction through novel Group Multiscale Bidirectional Interactive (GMBI) modules. The GMBI adopts a group-wise strategy for multiscale feature extraction, ensuring scale-agnostic computational complexity. It further integrates a Bidirectional Progressive Feature Interactor (BPFI) and a parameter-free Element-Wise Multiplication-Summation (EWMS) operation to enhance cross-scale interaction without introducing additional computational overhead. Experiments on SD-Saliency-900 and NRSD-MN datasets demonstrate that GMBINet delivers competitive accuracy with real-time speeds of 1048 FPS on GPU and 16.53 FPS on CPU at 512 resolution, using only 0.19 M parameters. Additional evaluations on the NEU-CLS defect classification dataset further confirm the strong generalization ability of our method, demonstrating its potential for broader industrial vision applications beyond surface defect detection. The dataset and code are publicly available at: https://github.com/zhangyongcode/GMBINet.

Authors:Fengshun Wang, Qiurui Wang, Peilin Zhao
Title: Learning Long-Range Action Representation by Two-Stream Mamba Pyramid Network for Figure Skating Assessment
Abstract:
Technical Element Score (TES) and Program Component Score (PCS) evaluations in figure skating demand precise assessment of athletic actions and artistic interpretation, respectively. Existing methods face three major challenges. Firstly, video and audio cues are regarded as common features for both TES and PCS predictions in previous works without considering the prior evaluation criterion of figure skating. Secondly, action elements in competitions are separated in time, TES should be derived from each element's score, but existing methods try to give an overall TES prediction without evaluating each action element. Thirdly, lengthy competition videos make it difficult and inefficient to handle long-range contexts. To address these challenges, we propose a two-stream Mamba pyramid network that aligns with actual judging criteria to predict TES and PCS by separating visual-feature based TES evaluation stream from audio-visual-feature based PCS evaluation stream. In the PCS evaluation stream, we introduce a multi-level fusion mechanism to guarantee that video-based features remain unaffected when assessing TES, and enhance PCS estimation by fusing visual and auditory cues across each contextual level of the pyramid. In the TES evaluation stream, the multi-scale Mamba pyramid and TES head we proposed effectively address the challenges of localizing and evaluating action elements with various temporal scales and give score predictions. With Mamba's superior ability to capture long-range dependencies and its linear computational complexity, our method is ideal for handling lengthy figure skating videos. Comprehensive experimentation demonstrates that our framework attains state-of-the-art performance on the FineFS benchmark. Our source code is available at https://github.com/ycwfs/Figure-Skating-Action-Quality-Assessment.

Authors:Yu Meng, Ligao Deng, Zhihao Xi, Jiansheng Chen, Jingbo Chen, Anzhi Yue, Diyou Liu, Kai Li, Chenhao Wang, Kaiyu Li, Yupeng Deng, Xian Sun
Title: IRSAMap:Towards Large-Scale, High-Resolution Land Cover Map Vectorization
Abstract:
With the enhancement of remote sensing image resolution and the rapid advancement of deep learning, land cover mapping is transitioning from pixel-level segmentation to object-based vector modeling. This shift demands more from deep learning models, requiring precise object boundaries and topological consistency. However, existing datasets face three main challenges: limited class annotations, small data scale, and lack of spatial structural information. To overcome these issues, we introduce IRSAMap, the first global remote sensing dataset for large-scale, high-resolution, multi-feature land cover vector mapping. IRSAMap offers four key advantages: 1) a comprehensive vector annotation system with over 1.8 million instances of 10 typical objects (e.g., buildings, roads, rivers), ensuring semantic and spatial accuracy; 2) an intelligent annotation workflow combining manual and AI-based methods to improve efficiency and consistency; 3) global coverage across 79 regions in six continents, totaling over 1,000 km; and 4) multi-task adaptability for tasks like pixel-level classification, building outline extraction, road centerline extraction, and panoramic segmentation. IRSAMap provides a standardized benchmark for the shift from pixel-based to object-based approaches, advancing geographic feature automation and collaborative modeling. It is valuable for global geographic information updates and digital twin construction. The dataset is publicly available at https://github.com/ucas-dlg/IRSAMap

Authors:Philipp D. Lösel, Aleese Barron, Yulai Zhang, Matthias Fabian, Benjamin Young, Nicolas Francois, Andrew M. Kingston
Title: Self-Validated Learning for Particle Separation: A Correctness-Based Self-Training Framework Without Human Labels
Abstract:
Non-destructive 3D imaging of large multi-particulate samples is essential for quantifying particle-level properties, such as size, shape, and spatial distribution, across applications in mining, materials science, and geology. However, accurate instance segmentation of particles in tomographic data remains challenging due to high morphological variability and frequent particle contact, which limit the effectiveness of classical methods like watershed algorithms. While supervised deep learning approaches offer improved performance, they rely on extensive annotated datasets that are labor-intensive, error-prone, and difficult to scale. In this work, we propose self-validated learning, a novel self-training framework for particle instance segmentation that eliminates the need for manual annotations. Our method leverages implicit boundary detection and iteratively refines the training set by identifying particles that can be consistently matched across reshuffled scans of the same sample. This self-validation mechanism mitigates the impact of noisy pseudo-labels, enabling robust learning from unlabeled data. After just three iterations, our approach accurately segments over 97% of the total particle volume and identifies more than 54,000 individual particles in tomographic scans of quartz fragments. Importantly, the framework also enables fully autonomous model evaluation without the need for ground truth annotations, as confirmed through comparisons with state-of-the-art instance segmentation techniques. The method is integrated into the Biomedisa image analysis platform (https://github.com/biomedisa/biomedisa/).

Authors:Hohyun Na, Seunghoo Hong, Simon S. Woo
Title: PromptFlare: Prompt-Generalized Defense via Cross-Attention Decoy in Diffusion-Based Inpainting
Abstract:
The success of diffusion models has enabled effortless, high-quality image modifications that precisely align with users' intentions, thereby raising concerns about their potential misuse by malicious actors. Previous studies have attempted to mitigate such misuse through adversarial attacks. However, these approaches heavily rely on image-level inconsistencies, which pose fundamental limitations in addressing the influence of textual prompts. In this paper, we propose PromptFlare, a novel adversarial protection method designed to protect images from malicious modifications facilitated by diffusion-based inpainting models. Our approach leverages the cross-attention mechanism to exploit the intrinsic properties of prompt embeddings. Specifically, we identify and target shared token of prompts that is invariant and semantically uninformative, injecting adversarial noise to suppress the sampling process. The injected noise acts as a cross-attention decoy, diverting the model's focus away from meaningful prompt-image alignments and thereby neutralizing the effect of prompt. Extensive experiments on the EditBench dataset demonstrate that our method achieves state-of-the-art performance across various metrics while significantly reducing computational overhead and GPU memory usage. These findings highlight PromptFlare as a robust and efficient protection against unauthorized image manipulations. The code is available at https://github.com/NAHOHYUN-SKKU/PromptFlare.

Authors:Thinesh Thiyakesan Ponbagavathi, Kunyu Peng, Alina Roitberg
Title: T-MASK: Temporal Masking for Probing Foundation Models across Camera Views in Driver Monitoring
Abstract:
Changes of camera perspective are a common obstacle in driver monitoring. While deep learning and pretrained foundation models show strong potential for improved generalization via lightweight adaptation of the final layers ('probing'), their robustness to unseen viewpoints remains underexplored. We study this challenge by adapting image foundation models to driver monitoring using a single training view, and evaluating them directly on unseen perspectives without further adaptation. We benchmark simple linear probes, advanced probing strategies, and compare two foundation models (DINOv2 and CLIP) against parameter-efficient fine-tuning (PEFT) and full fine-tuning. Building on these insights, we introduce T-MASK -- a new image-to-video probing method that leverages temporal token masking and emphasizes more dynamic video regions. Benchmarked on the public Drive&Act dataset, T-MASK improves cross-view top-1 accuracy by $+1.23\%$ over strong probing baselines and $+8.0\%$ over PEFT methods, without adding any parameters. It proves particularly effective for underrepresented secondary activities, boosting recognition by $+5.42\%$ under the trained view and $+1.36\%$ under cross-view settings. This work provides encouraging evidence that adapting foundation models with lightweight probing methods like T-MASK has strong potential in fine-grained driver observation, especially in cross-view and low-data settings. These results highlight the importance of temporal token selection when leveraging foundation models to build robust driver monitoring systems. Code and models will be made available at https://github.com/th-nesh/T-MASK to support ongoing research.

Authors:Yicheng Ji, Jun Zhang, Heming Xia, Jinpeng Chen, Lidan Shou, Gang Chen, Huan Li
Title: SpecVLM: Enhancing Speculative Decoding of Video LLMs via Verifier-Guided Token Pruning
Abstract:
Video large language models (Vid-LLMs) have shown strong capabilities in understanding video content. However, their reliance on dense video token representations introduces substantial memory and computational overhead in both prefilling and decoding. To mitigate the information loss of recent video token reduction methods and accelerate the decoding stage of Vid-LLMs losslessly, we introduce SpecVLM, a training-free speculative decoding (SD) framework tailored for Vid-LLMs that incorporates staged video token pruning. Building on our novel finding that the draft model's speculation exhibits low sensitivity to video token pruning, SpecVLM prunes up to 90% of video tokens to enable efficient speculation without sacrificing accuracy. To achieve this, we performs a two-stage pruning process: Stage I selects highly informative tokens guided by attention signals from the verifier (target model), while Stage II prunes remaining redundant ones in a spatially uniform manner. Extensive experiments on four video understanding benchmarks demonstrate the effectiveness and robustness of SpecVLM, which achieves up to 2.68$\times$ decoding speedup for LLaVA-OneVision-72B and 2.11$\times$ speedup for Qwen2.5-VL-32B. Code is available at https://github.com/zju-jiyicheng/SpecVLM.

Authors:Mohammad Mohammadzadeh Kalati, Farhad Maleki, Ian McQuillan
Title: FTIO: Frequent Temporally Integrated Objects
Abstract:
Predicting and tracking objects in real-world scenarios is a critical challenge in Video Object Segmentation (VOS) tasks. Unsupervised VOS (UVOS) has the additional challenge of finding an initial segmentation of salient objects, which affects the entire process and keeps a permanent uncertainty about the object proposals. Moreover, deformation and fast motion can lead to temporal inconsistencies. To address these problems, we propose Frequent Temporally Integrated Objects (FTIO), a post-processing framework with two key components. First, we introduce a combined criterion to improve object selection, mitigating failures common in UVOS--particularly when objects are small or structurally complex--by extracting frequently appearing salient objects. Second, we present a three-stage method to correct temporal inconsistencies by integrating missing object mask regions. Experimental results demonstrate that FTIO achieves state-of-the-art performance in multi-object UVOS. Code is available at: https://github.com/MohammadMohammadzadehKalati/FTIO

Authors:Jiaqi Ma, Guo-Sen Xie, Fang Zhao, Zechao Li
Title: Through the Looking Glass: A Dual Perspective on Weakly-Supervised Few-Shot Segmentation
Abstract:
Meta-learning aims to uniformly sample homogeneous support-query pairs, characterized by the same categories and similar attributes, and extract useful inductive biases through identical network architectures. However, this identical network design results in over-semantic homogenization. To address this, we propose a novel homologous but heterogeneous network. By treating support-query pairs as dual perspectives, we introduce heterogeneous visual aggregation (HA) modules to enhance complementarity while preserving semantic commonality. To further reduce semantic noise and amplify the uniqueness of heterogeneous semantics, we design a heterogeneous transfer (HT) module. Finally, we propose heterogeneous CLIP (HC) textual information to enhance the generalization capability of multimodal models. In the weakly-supervised few-shot semantic segmentation (WFSS) task, with only 1/24 of the parameters of existing state-of-the-art models, TLG achieves a 13.2\% improvement on Pascal-5\textsuperscript{i} and a 9.7\% improvement on COCO-20\textsuperscript{i}. To the best of our knowledge, TLG is also the first weakly supervised (image-level) model that outperforms fully supervised (pixel-level) models under the same backbone architectures. The code is available at https://github.com/jarch-ma/TLG.

Authors:Xiangde Luo, Xiyue Wang, Feyisope Eweje, Xiaoming Zhang, Sen Yang, Ryan Quinton, Jinxi Xiang, Yuchen Li, Yuanfeng Ji, Zhe Li, Yijiang Chen, Colin Bergstrom, Ted Kim, Francesca Maria Olguin, Kelley Yuan, Matthew Abikenari, Andrew Heider, Sierra Willens, Sanjeeth Rajaram, Robert West, Joel Neal, Maximilian Diehn, Ruijiang Li
Title: Ensemble learning of foundation models for precision oncology
Abstract:
Histopathology is essential for disease diagnosis and treatment decision-making. Recent advances in artificial intelligence (AI) have enabled the development of pathology foundation models that learn rich visual representations from large-scale whole-slide images (WSIs). However, existing models are often trained on disparate datasets using varying strategies, leading to inconsistent performance and limited generalizability. Here, we introduce ELF (Ensemble Learning of Foundation models), a novel framework that integrates five state-of-the-art pathology foundation models to generate unified slide-level representations. Trained on 53,699 WSIs spanning 20 anatomical sites, ELF leverages ensemble learning to capture complementary information from diverse models while maintaining high data efficiency. Unlike traditional tile-level models, ELF's slide-level architecture is particularly advantageous in clinical contexts where data are limited, such as therapeutic response prediction. We evaluated ELF across a wide range of clinical applications, including disease classification, biomarker detection, and response prediction to major anticancer therapies, cytotoxic chemotherapy, targeted therapy, and immunotherapy, across multiple cancer types. ELF consistently outperformed all constituent foundation models and existing slide-level models, demonstrating superior accuracy and robustness. Our results highlight the power of ensemble learning for pathology foundation models and suggest ELF as a scalable and generalizable solution for advancing AI-assisted precision oncology.

Authors:Zhaoyi Yan, Binghui Chen, Yunfan Liu, Qixiang Ye
Title: Expandable Residual Approximation for Knowledge Distillation
Abstract:
Knowledge distillation (KD) aims to transfer knowledge from a large-scale teacher model to a lightweight one, significantly reducing computational and storage requirements. However, the inherent learning capacity gap between the teacher and student often hinders the sufficient transfer of knowledge, motivating numerous studies to address this challenge. Inspired by the progressive approximation principle in the Stone-Weierstrass theorem, we propose Expandable Residual Approximation (ERA), a novel KD method that decomposes the approximation of residual knowledge into multiple steps, reducing the difficulty of mimicking the teacher's representation through a divide-and-conquer approach. Specifically, ERA employs a Multi-Branched Residual Network (MBRNet) to implement this residual knowledge decomposition. Additionally, a Teacher Weight Integration (TWI) strategy is introduced to mitigate the capacity disparity by reusing the teacher's head weights. Extensive experiments show that ERA improves the Top-1 accuracy on the ImageNet classification benchmark by 1.41% and the AP on the MS COCO object detection benchmark by 1.40, as well as achieving leading performance across computer vision tasks. Codes and models are available at https://github.com/Zhaoyi-Yan/ERA.

Authors:Floris Erich, Naoya Chiba, Abdullah Mustafa, Ryo Hanai, Noriaki Ando, Yusuke Yoshiyasu, Yukiyasu Domae
Title: NeuralMeshing: Complete Object Mesh Extraction from Casual Captures
Abstract:
How can we extract complete geometric models of objects that we encounter in our daily life, without having access to commercial 3D scanners? In this paper we present an automated system for generating geometric models of objects from two or more videos. Our system requires the specification of one known point in at least one frame of each video, which can be automatically determined using a fiducial marker such as a checkerboard or Augmented Reality (AR) marker. The remaining frames are automatically positioned in world space by using Structure-from-Motion techniques. By using multiple videos and merging results, a complete object mesh can be generated, without having to rely on hole filling. Code for our system is available from https://github.com/FlorisE/NeuralMeshing.

Authors:Hung-Jui Huang, Mohammad Amin Mirzaee, Michael Kaess, Wenzhen Yuan
Title: GelSLAM: A Real-time, High-Fidelity, and Robust 3D Tactile SLAM System
Abstract:
Accurately perceiving an object's pose and shape is essential for precise grasping and manipulation. Compared to common vision-based methods, tactile sensing offers advantages in precision and immunity to occlusion when tracking and reconstructing objects in contact. This makes it particularly valuable for in-hand and other high-precision manipulation tasks. In this work, we present GelSLAM, a real-time 3D SLAM system that relies solely on tactile sensing to estimate object pose over long periods and reconstruct object shapes with high fidelity. Unlike traditional point cloud-based approaches, GelSLAM uses tactile-derived surface normals and curvatures for robust tracking and loop closure. It can track object motion in real time with low error and minimal drift, and reconstruct shapes with submillimeter accuracy, even for low-texture objects such as wooden tools. GelSLAM extends tactile sensing beyond local contact to enable global, long-horizon spatial perception, and we believe it will serve as a foundation for many precise manipulation tasks involving interaction with objects in hand. The video demo is available on our website: https://joehjhuang.github.io/gelslam.

Authors:Zhaodong Jiang, Ashish Sinha, Tongtong Cao, Yuan Ren, Bingbing Liu, Binbin Xu
Title: UnPose: Uncertainty-Guided Diffusion Priors for Zero-Shot Pose Estimation
Abstract:
Estimating the 6D pose of novel objects is a fundamental yet challenging problem in robotics, often relying on access to object CAD models. However, acquiring such models can be costly and impractical. Recent approaches aim to bypass this requirement by leveraging strong priors from foundation models to reconstruct objects from single or multi-view images, but typically require additional training or produce hallucinated geometry. To this end, we propose UnPose, a novel framework for zero-shot, model-free 6D object pose estimation and reconstruction that exploits 3D priors and uncertainty estimates from a pre-trained diffusion model. Specifically, starting from a single-view RGB-D frame, UnPose uses a multi-view diffusion model to estimate an initial 3D model using 3D Gaussian Splatting (3DGS) representation, along with pixel-wise epistemic uncertainty estimates. As additional observations become available, we incrementally refine the 3DGS model by fusing new views guided by the diffusion model's uncertainty, thereby continuously improving the pose estimation accuracy and 3D reconstruction quality. To ensure global consistency, the diffusion prior-generated views and subsequent observations are further integrated in a pose graph and jointly optimized into a coherent 3DGS field. Extensive experiments demonstrate that UnPose significantly outperforms existing approaches in both 6D pose estimation accuracy and 3D reconstruction quality. We further showcase its practical applicability in real-world robotic manipulation tasks.

Authors:Yijun Liu, Yuwei Liu, Yuan Meng, Jieheng Zhang, Yuwei Zhou, Ye Li, Jiacheng Jiang, Kangye Ji, Shijia Ge, Zhi Wang, Wenwu Zhu
Title: Spatial Policy: Guiding Visuomotor Robotic Manipulation with Spatial-Aware Modeling and Reasoning
Abstract:
Vision-centric hierarchical embodied models have demonstrated strong potential for long-horizon robotic control. However, existing methods lack spatial awareness capabilities, limiting their effectiveness in bridging visual plans to actionable control in complex environments. To address this problem, we propose Spatial Policy (SP), a unified spatial-aware visuomotor robotic manipulation framework via explicit spatial modeling and reasoning. Specifically, we first design a spatial-conditioned embodied video generation module to model spatially guided predictions through a spatial plan table. Then, we propose a spatial-based action prediction module to infer executable actions with coordination. Finally, we propose a spatial reasoning feedback policy to refine the spatial plan table via dual-stage replanning. Extensive experiments show that SP significantly outperforms state-of-the-art baselines, achieving a 33.0% average improvement over the best baseline. With an 86.7% average success rate across 11 diverse tasks, SP substantially enhances the practicality of embodied models for robotic control applications. Code and checkpoints are maintained at https://plantpotatoonmoon.github.io/SpatialPolicy/.

Authors:Haonan Qiu, Ning Yu, Ziqi Huang, Paul Debevec, Ziwei Liu
Title: CineScale: Free Lunch in High-Resolution Cinematic Visual Generation
Abstract:
Visual diffusion models achieve remarkable progress, yet they are typically trained at limited resolutions due to the lack of high-resolution data and constrained computation resources, hampering their ability to generate high-fidelity images or videos at higher resolutions. Recent efforts have explored tuning-free strategies to exhibit the untapped potential higher-resolution visual generation of pre-trained models. However, these methods are still prone to producing low-quality visual content with repetitive patterns. The key obstacle lies in the inevitable increase in high-frequency information when the model generates visual content exceeding its training resolution, leading to undesirable repetitive patterns deriving from the accumulated errors. In this work, we propose CineScale, a novel inference paradigm to enable higher-resolution visual generation. To tackle the various issues introduced by the two types of video generation architectures, we propose dedicated variants tailored to each. Unlike existing baseline methods that are confined to high-resolution T2I and T2V generation, CineScale broadens the scope by enabling high-resolution I2V and V2V synthesis, built atop state-of-the-art open-source video generation frameworks. Extensive experiments validate the superiority of our paradigm in extending the capabilities of higher-resolution visual generation for both image and video models. Remarkably, our approach enables 8k image generation without any fine-tuning, and achieves 4k video generation with only minimal LoRA fine-tuning. Generated video samples are available at our website: https://eyeline-labs.github.io/CineScale/.

Authors:Gaurav Parmar, Or Patashnik, Daniil Ostashev, Kuan-Chieh Wang, Kfir Aberman, Srinivasa Narasimhan, Jun-Yan Zhu
Title: Scaling Group Inference for Diverse and High-Quality Generation
Abstract:
Generative models typically sample outputs independently, and recent inference-time guidance and scaling algorithms focus on improving the quality of individual samples. However, in real-world applications, users are often presented with a set of multiple images (e.g., 4-8) for each prompt, where independent sampling tends to lead to redundant results, limiting user choices and hindering idea exploration. In this work, we introduce a scalable group inference method that improves both the diversity and quality of a group of samples. We formulate group inference as a quadratic integer assignment problem: candidate outputs are modeled as graph nodes, and a subset is selected to optimize sample quality (unary term) while maximizing group diversity (binary term). To substantially improve runtime efficiency, we progressively prune the candidate set using intermediate predictions, allowing our method to scale up to large candidate sets. Extensive experiments show that our method significantly improves group diversity and quality compared to independent sampling baselines and recent inference algorithms. Our framework generalizes across a wide range of tasks, including text-to-image, image-to-image, image prompting, and video generation, enabling generative models to treat multiple outputs as cohesive groups rather than independent samples.

Authors:Qingyang Mao, Qi Cai, Yehao Li, Yingwei Pan, Mingyue Cheng, Ting Yao, Qi Liu, Tao Mei
Title: Visual Autoregressive Modeling for Instruction-Guided Image Editing
Abstract:
Recent advances in diffusion models have brought remarkable visual fidelity to instruction-guided image editing. However, their global denoising process inherently entangles the edited region with the entire image context, leading to unintended spurious modifications and compromised adherence to editing instructions. In contrast, autoregressive models offer a distinct paradigm by formulating image synthesis as a sequential process over discrete visual tokens. Their causal and compositional mechanism naturally circumvents the adherence challenges of diffusion-based methods. In this paper, we present VAREdit, a visual autoregressive (VAR) framework that reframes image editing as a next-scale prediction problem. Conditioned on source image features and text instructions, VAREdit generates multi-scale target features to achieve precise edits. A core challenge in this paradigm is how to effectively condition the source image tokens. We observe that finest-scale source features cannot effectively guide the prediction of coarser target features. To bridge this gap, we introduce a Scale-Aligned Reference (SAR) module, which injects scale-matched conditioning information into the first self-attention layer. VAREdit demonstrates significant advancements in both editing adherence and efficiency. On standard benchmarks, it outperforms leading diffusion-based methods by 30\%+ higher GPT-Balance score. Moreover, it completes a $512\times512$ editing in 1.2 seconds, making it 2.2$\times$ faster than the similarly sized UltraEdit. The models are available at https://github.com/HiDream-ai/VAREdit.

Authors:Yanxu Meng, Haoning Wu, Ya Zhang, Weidi Xie
Title: SceneGen: Single-Image 3D Scene Generation in One Feedforward Pass
Abstract:
3D content generation has recently attracted significant research interest due to its applications in VR/AR and embodied AI. In this work, we address the challenging task of synthesizing multiple 3D assets within a single scene image. Concretely, our contributions are fourfold: (i) we present SceneGen, a novel framework that takes a scene image and corresponding object masks as input, simultaneously producing multiple 3D assets with geometry and texture. Notably, SceneGen operates with no need for optimization or asset retrieval; (ii) we introduce a novel feature aggregation module that integrates local and global scene information from visual and geometric encoders within the feature extraction module. Coupled with a position head, this enables the generation of 3D assets and their relative spatial positions in a single feedforward pass; (iii) we demonstrate SceneGen's direct extensibility to multi-image input scenarios. Despite being trained solely on single-image inputs, our architectural design enables improved generation performance with multi-image inputs; and (iv) extensive quantitative and qualitative evaluations confirm the efficiency and robust generation abilities of our approach. We believe this paradigm offers a novel solution for high-quality 3D content generation, potentially advancing its practical applications in downstream tasks. The code and model will be publicly available at: https://mengmouxu.github.io/SceneGen.

Authors:Jinhyung Park, Javier Romero, Shunsuke Saito, Fabian Prada, Takaaki Shiratori, Yichen Xu, Federica Bogo, Shoou-I Yu, Kris Kitani, Rawal Khirodkar
Title: ATLAS: Decoupling Skeletal and Shape Parameters for Expressive Parametric Human Modeling
Abstract:
Parametric body models offer expressive 3D representation of humans across a wide range of poses, shapes, and facial expressions, typically derived by learning a basis over registered 3D meshes. However, existing human mesh modeling approaches struggle to capture detailed variations across diverse body poses and shapes, largely due to limited training data diversity and restrictive modeling assumptions. Moreover, the common paradigm first optimizes the external body surface using a linear basis, then regresses internal skeletal joints from surface vertices. This approach introduces problematic dependencies between internal skeleton and outer soft tissue, limiting direct control over body height and bone lengths. To address these issues, we present ATLAS, a high-fidelity body model learned from 600k high-resolution scans captured using 240 synchronized cameras. Unlike previous methods, we explicitly decouple the shape and skeleton bases by grounding our mesh representation in the human skeleton. This decoupling enables enhanced shape expressivity, fine-grained customization of body attributes, and keypoint fitting independent of external soft-tissue characteristics. ATLAS outperforms existing methods by fitting unseen subjects in diverse poses more accurately, and quantitative evaluations show that our non-linear pose correctives more effectively capture complex poses compared to linear models.

Authors:Yifu Zhang, Hao Yang, Yuqi Zhang, Yifei Hu, Fengda Zhu, Chuang Lin, Xiaofeng Mei, Yi Jiang, Bingyue Peng, Zehuan Yuan
Title: Waver: Wave Your Way to Lifelike Video Generation
Abstract:
We present Waver, a high-performance foundation model for unified image and video generation. Waver can directly generate videos with durations ranging from 5 to 10 seconds at a native resolution of 720p, which are subsequently upscaled to 1080p. The model simultaneously supports text-to-video (T2V), image-to-video (I2V), and text-to-image (T2I) generation within a single, integrated framework. We introduce a Hybrid Stream DiT architecture to enhance modality alignment and accelerate training convergence. To ensure training data quality, we establish a comprehensive data curation pipeline and manually annotate and train an MLLM-based video quality model to filter for the highest-quality samples. Furthermore, we provide detailed training and inference recipes to facilitate the generation of high-quality videos. Building on these contributions, Waver excels at capturing complex motion, achieving superior motion amplitude and temporal consistency in video synthesis. Notably, it ranks among the Top 3 on both the T2V and I2V leaderboards at Artificial Analysis (data as of 2025-07-30 10:00 GMT+8), consistently outperforming existing open-source models and matching or surpassing state-of-the-art commercial solutions. We hope this technical report will help the community more efficiently train high-quality video generation models and accelerate progress in video generation technologies. Official page: https://github.com/FoundationVision/Waver.

Authors:Qiaoyu Zheng, Yuze Sun, Chaoyi Wu, Weike Zhao, Pengcheng Qiu, Yongguo Yu, Kun Sun, Yanfeng Wang, Ya Zhang, Weidi Xie
Title: End-to-End Agentic RAG System Training for Traceable Diagnostic Reasoning
Abstract:
Accurate diagnosis with medical large language models is hindered by knowledge gaps and hallucinations. Retrieval and tool-augmented methods help, but their impact is limited by weak use of external knowledge and poor feedback-reasoning traceability. To address these challenges, We introduce Deep-DxSearch, an agentic RAG system trained end-to-end with reinforcement learning (RL) that enables steer tracebale retrieval-augmented reasoning for medical diagnosis. In Deep-DxSearch, we first construct a large-scale medical retrieval corpus comprising patient records and reliable medical knowledge sources to support retrieval-aware reasoning across diagnostic scenarios. More crutially, we frame the LLM as the core agent and the retrieval corpus as its environment, using tailored rewards on format, retrieval, reasoning structure, and diagnostic accuracy, thereby evolving the agentic RAG policy from large-scale data through RL. Experiments demonstrate that our end-to-end agentic RL training framework consistently outperforms prompt-engineering and training-free RAG approaches across multiple data centers. After training, Deep-DxSearch achieves substantial gains in diagnostic accuracy, surpassing strong diagnostic baselines such as GPT-4o, DeepSeek-R1, and other medical-specific frameworks for both common and rare disease diagnosis under in-distribution and out-of-distribution settings. Moreover, ablation studies on reward design and retrieval corpus components confirm their critical roles, underscoring the uniqueness and effectiveness of our approach compared with traditional implementations. Finally, case studies and interpretability analyses highlight improvements in Deep-DxSearch's diagnostic policy, providing deeper insight into its performance gains and supporting clinicians in delivering more reliable and precise preliminary diagnoses. See https://github.com/MAGIC-AI4Med/Deep-DxSearch.

Authors:Ehsan Pajouheshgar, Aditya Bhardwaj, Nathaniel Selub, Ethan Lake
Title: Exploring the Landscape of Non-Equilibrium Memories with Neural Cellular Automata
Abstract:
We investigate the landscape of many-body memories: families of local non-equilibrium dynamics that retain information about their initial conditions for thermodynamically long time scales, even in the presence of arbitrary perturbations. In two dimensions, the only well-studied memory is Toom's rule. Using a combination of rigorous proofs and machine learning methods, we show that the landscape of 2D memories is in fact quite vast. We discover memories that correct errors in ways qualitatively distinct from Toom's rule, have ordered phases stabilized by fluctuations, and preserve information only in the presence of noise. Taken together, our results show that physical systems can perform robust information storage in many distinct ways, and demonstrate that the physics of many-body memories is richer than previously realized. Interactive visualizations of the dynamics studied in this work are available at https://memorynca.github.io/2D.

Authors:Zhiheng Liu, Xueqing Deng, Shoufa Chen, Angtian Wang, Qiushan Guo, Mingfei Han, Zeyue Xue, Mengzhao Chen, Ping Luo, Linjie Yang
Title: WorldWeaver: Generating Long-Horizon Video Worlds via Rich Perception
Abstract:
Generative video modeling has made significant strides, yet ensuring structural and temporal consistency over long sequences remains a challenge. Current methods predominantly rely on RGB signals, leading to accumulated errors in object structure and motion over extended durations. To address these issues, we introduce WorldWeaver, a robust framework for long video generation that jointly models RGB frames and perceptual conditions within a unified long-horizon modeling scheme. Our training framework offers three key advantages. First, by jointly predicting perceptual conditions and color information from a unified representation, it significantly enhances temporal consistency and motion dynamics. Second, by leveraging depth cues, which we observe to be more resistant to drift than RGB, we construct a memory bank that preserves clearer contextual information, improving quality in long-horizon video generation. Third, we employ segmented noise scheduling for training prediction groups, which further mitigates drift and reduces computational cost. Extensive experiments on both diffusion- and rectified flow-based models demonstrate the effectiveness of WorldWeaver in reducing temporal drift and improving the fidelity of generated videos.

Authors:Franz Hanke, Antonia Bieringer, Olaf Wysocki, Boris Jutzi
Title: CM2LoD3: Reconstructing LoD3 Building Models Using Semantic Conflict Maps
Abstract:
Detailed 3D building models are crucial for urban planning, digital twins, and disaster management applications. While Level of Detail 1 (LoD)1 and LoD2 building models are widely available, they lack detailed facade elements essential for advanced urban analysis. In contrast, LoD3 models address this limitation by incorporating facade elements such as windows, doors, and underpasses. However, their generation has traditionally required manual modeling, making large-scale adoption challenging. In this contribution, CM2LoD3, we present a novel method for reconstructing LoD3 building models leveraging Conflict Maps (CMs) obtained from ray-to-model-prior analysis. Unlike previous works, we concentrate on semantically segmenting real-world CMs with synthetically generated CMs from our developed Semantic Conflict Map Generator (SCMG). We also observe that additional segmentation of textured models can be fused with CMs using confidence scores to further increase segmentation performance and thus increase 3D reconstruction accuracy. Experimental results demonstrate the effectiveness of our CM2LoD3 method in segmenting and reconstructing building openings, with the 61% performance with uncertainty-aware fusion of segmented building textures. This research contributes to the advancement of automated LoD3 model reconstruction, paving the way for scalable and efficient 3D city modeling. Our project is available: https://github.com/InFraHank/CM2LoD3

Authors:Ziyang Yan, Ruikai Li, Zhiyong Cui, Bohan Li, Han Jiang, Yilong Ren, Aoyong Li, Zhenning Li, Sijia Wen, Haiyang Yu
Title: MapKD: Unlocking Prior Knowledge with Cross-Modal Distillation for Efficient Online HD Map Construction
Abstract:
Online HD map construction is a fundamental task in autonomous driving systems, aiming to acquire semantic information of map elements around the ego vehicle based on real-time sensor inputs. Recently, several approaches have achieved promising results by incorporating offline priors such as SD maps and HD maps or by fusing multi-modal data. However, these methods depend on stale offline maps and multi-modal sensor suites, resulting in avoidable computational overhead at inference. To address these limitations, we employ a knowledge distillation strategy to transfer knowledge from multimodal models with prior knowledge to an efficient, low-cost, and vision-centric student model. Specifically, we propose MapKD, a novel multi-level cross-modal knowledge distillation framework with an innovative Teacher-Coach-Student (TCS) paradigm. This framework consists of: (1) a camera-LiDAR fusion model with SD/HD map priors serving as the teacher; (2) a vision-centric coach model with prior knowledge and simulated LiDAR to bridge the cross-modal knowledge transfer gap; and (3) a lightweight vision-based student model. Additionally, we introduce two targeted knowledge distillation strategies: Token-Guided 2D Patch Distillation (TGPD) for bird's eye view feature alignment and Masked Semantic Response Distillation (MSRD) for semantic learning guidance. Extensive experiments on the challenging nuScenes dataset demonstrate that MapKD improves the student model by +6.68 mIoU and +10.94 mAP while simultaneously accelerating inference speed. The code is available at:https://github.com/2004yan/MapKD2026.

Authors:Mengyu Wang, Zhenyu Liu, Kun Li, Yu Wang, Yuwei Wang, Yanyan Wei, Fei Wang
Title: Task-Generalized Adaptive Cross-Domain Learning for Multimodal Image Fusion
Abstract:
Multimodal Image Fusion (MMIF) aims to integrate complementary information from different imaging modalities to overcome the limitations of individual sensors. It enhances image quality and facilitates downstream applications such as remote sensing, medical diagnostics, and robotics. Despite significant advancements, current MMIF methods still face challenges such as modality misalignment, high-frequency detail destruction, and task-specific limitations. To address these challenges, we propose AdaSFFuse, a novel framework for task-generalized MMIF through adaptive cross-domain co-fusion learning. AdaSFFuse introduces two key innovations: the Adaptive Approximate Wavelet Transform (AdaWAT) for frequency decoupling, and the Spatial-Frequency Mamba Blocks for efficient multimodal fusion. AdaWAT adaptively separates the high- and low-frequency components of multimodal images from different scenes, enabling fine-grained extraction and alignment of distinct frequency characteristics for each modality. The Spatial-Frequency Mamba Blocks facilitate cross-domain fusion in both spatial and frequency domains, enhancing this process. These blocks dynamically adjust through learnable mappings to ensure robust fusion across diverse modalities. By combining these components, AdaSFFuse improves the alignment and integration of multimodal features, reduces frequency loss, and preserves critical details. Extensive experiments on four MMIF tasks -- Infrared-Visible Image Fusion (IVF), Multi-Focus Image Fusion (MFF), Multi-Exposure Image Fusion (MEF), and Medical Image Fusion (MIF) -- demonstrate AdaSFFuse's superior fusion performance, ensuring both low computational cost and a compact network, offering a strong balance between performance and efficiency. The code will be publicly available at https://github.com/Zhen-yu-Liu/AdaSFFuse.

Authors:Chengqi Dong, Fenghe Tang, Rongge Mao, Xinpei Gao, S. Kevin Zhou
Title: LGMSNet: Thinning a medical image segmentation model via dual-level multiscale fusion
Abstract:
Medical image segmentation plays a pivotal role in disease diagnosis and treatment planning, particularly in resource-constrained clinical settings where lightweight and generalizable models are urgently needed. However, existing lightweight models often compromise performance for efficiency and rarely adopt computationally expensive attention mechanisms, severely restricting their global contextual perception capabilities. Additionally, current architectures neglect the channel redundancy issue under the same convolutional kernels in medical imaging, which hinders effective feature extraction. To address these challenges, we propose LGMSNet, a novel lightweight framework based on local and global dual multiscale that achieves state-of-the-art performance with minimal computational overhead. LGMSNet employs heterogeneous intra-layer kernels to extract local high-frequency information while mitigating channel redundancy. In addition, the model integrates sparse transformer-convolutional hybrid branches to capture low-frequency global information. Extensive experiments across six public datasets demonstrate LGMSNet's superiority over existing state-of-the-art methods. In particular, LGMSNet maintains exceptional performance in zero-shot generalization tests on four unseen datasets, underscoring its potential for real-world deployment in resource-limited medical scenarios. The whole project code is in https://github.com/cq-dong/LGMSNet.

Authors:Huy Hoang Nguyen, Johannes Huemer, Markus Murschitz, Tobias Glueck, Minh Nhat Vu, Andreas Kugi
Title: Lang2Lift: A Framework for Language-Guided Pallet Detection and Pose Estimation Integrated in Autonomous Outdoor Forklift Operation
Abstract:
The logistics and construction industries face persistent challenges in automating pallet handling, especially in outdoor environments with variable payloads, inconsistencies in pallet quality and dimensions, and unstructured surroundings. In this paper, we tackle automation of a critical step in pallet transport: the pallet pick-up operation. Our work is motivated by labor shortages, safety concerns, and inefficiencies in manually locating and retrieving pallets under such conditions. We present Lang2Lift, a framework that leverages foundation models for natural language-guided pallet detection and 6D pose estimation, enabling operators to specify targets through intuitive commands such as "pick up the steel beam pallet near the crane." The perception pipeline integrates Florence-2 and SAM-2 for language-grounded segmentation with FoundationPose for robust pose estimation in cluttered, multi-pallet outdoor scenes under variable lighting. The resulting poses feed into a motion planning module for fully autonomous forklift operation. We validate Lang2Lift on the ADAPT autonomous forklift platform, achieving 0.76 mIoU pallet segmentation accuracy on a real-world test dataset. Timing and error analysis demonstrate the system's robustness and confirm its feasibility for deployment in operational logistics and construction environments. Video demonstrations are available at https://eric-nguyen1402.github.io/lang2lift.github.io/

Authors:Wenrui Li, Wei Han, Liang-Jian Deng, Ruiqin Xiong, Xiaopeng Fan
Title: Spiking Variational Graph Representation Inference for Video Summarization
Abstract:
With the rise of short video content, efficient video summarization techniques for extracting key information have become crucial. However, existing methods struggle to capture the global temporal dependencies and maintain the semantic coherence of video content. Additionally, these methods are also influenced by noise during multi-channel feature fusion. We propose a Spiking Variational Graph (SpiVG) Network, which enhances information density and reduces computational complexity. First, we design a keyframe extractor based on Spiking Neural Networks (SNN), leveraging the event-driven computation mechanism of SNNs to learn keyframe features autonomously. To enable fine-grained and adaptable reasoning across video frames, we introduce a Dynamic Aggregation Graph Reasoner, which decouples contextual object consistency from semantic perspective coherence. We present a Variational Inference Reconstruction Module to address uncertainty and noise arising during multi-channel feature fusion. In this module, we employ Evidence Lower Bound Optimization (ELBO) to capture the latent structure of multi-channel feature distributions, using posterior distribution regularization to reduce overfitting. Experimental results show that SpiVG surpasses existing methods across multiple datasets such as SumMe, TVSum, VideoXum, and QFVS. Our codes and pre-trained models are available at https://github.com/liwrui/SpiVG.

Authors:Olga Matykina, Dmitry Yudin
Title: RCDINO: Enhancing Radar-Camera 3D Object Detection with DINOv2 Semantic Features
Abstract:
Three-dimensional object detection is essential for autonomous driving and robotics, relying on effective fusion of multimodal data from cameras and radar. This work proposes RCDINO, a multimodal transformer-based model that enhances visual backbone features by fusing them with semantically rich representations from the pretrained DINOv2 foundation model. This approach enriches visual representations and improves the model's detection performance while preserving compatibility with the baseline architecture. Experiments on the nuScenes dataset demonstrate that RCDINO achieves state-of-the-art performance among radar-camera models, with 56.4 NDS and 48.1 mAP. Our implementation is available at https://github.com/OlgaMatykina/RCDINO.

Authors:Wutao Liu, YiDan Wang, Pan Gao
Title: First RAG, Second SEG: A Training-Free Paradigm for Camouflaged Object Detection
Abstract:
Camouflaged object detection (COD) poses a significant challenge in computer vision due to the high similarity between objects and their backgrounds. Existing approaches often rely on heavy training and large computational resources. While foundation models such as the Segment Anything Model (SAM) offer strong generalization, they still struggle to handle COD tasks without fine-tuning and require high-quality prompts to yield good performance. However, generating such prompts manually is costly and inefficient. To address these challenges, we propose \textbf{First RAG, Second SEG (RAG-SEG)}, a training-free paradigm that decouples COD into two stages: Retrieval-Augmented Generation (RAG) for generating coarse masks as prompts, followed by SAM-based segmentation (SEG) for refinement. RAG-SEG constructs a compact retrieval database via unsupervised clustering, enabling fast and effective feature retrieval. During inference, the retrieved features produce pseudo-labels that guide precise mask generation using SAM2. Our method eliminates the need for conventional training while maintaining competitive performance. Extensive experiments on benchmark COD datasets demonstrate that RAG-SEG performs on par with or surpasses state-of-the-art methods. Notably, all experiments are conducted on a \textbf{personal laptop}, highlighting the computational efficiency and practicality of our approach. We present further analysis in the Appendix, covering limitations, salient object detection extension, and possible improvements. \textcolor{blue} {Code: https://github.com/Lwt-diamond/RAG-SEG.}

Authors:Jiamu Wang, Keunho Byeon, Jinsol Song, Anh Nguyen, Sangjeong Ahn, Sung Hak Lee, Jin Tae Kwak
Title: Pathology-Informed Latent Diffusion Model for Anomaly Detection in Lymph Node Metastasis
Abstract:
Anomaly detection is an emerging approach in digital pathology for its ability to efficiently and effectively utilize data for disease diagnosis. While supervised learning approaches deliver high accuracy, they rely on extensively annotated datasets, suffering from data scarcity in digital pathology. Unsupervised anomaly detection, however, offers a viable alternative by identifying deviations from normal tissue distributions without requiring exhaustive annotations. Recently, denoising diffusion probabilistic models have gained popularity in unsupervised anomaly detection, achieving promising performance in both natural and medical imaging datasets. Building on this, we incorporate a vision-language model with a diffusion model for unsupervised anomaly detection in digital pathology, utilizing histopathology prompts during reconstruction. Our approach employs a set of pathology-related keywords associated with normal tissues to guide the reconstruction process, facilitating the differentiation between normal and abnormal tissues. To evaluate the effectiveness of the proposed method, we conduct experiments on a gastric lymph node dataset from a local hospital and assess its generalization ability under domain shift using a public breast lymph node dataset. The experimental results highlight the potential of the proposed method for unsupervised anomaly detection across various organs in digital pathology. Code: https://github.com/QuIIL/AnoPILaD.

Authors:Shihao Dong, Xiaotong Zhou, Yuhui Zheng, Huiying Xu, Xinzhong Zhu
Title: Center-Oriented Prototype Contrastive Clustering
Abstract:
Contrastive learning is widely used in clustering tasks due to its discriminative representation. However, the conflict problem between classes is difficult to solve effectively. Existing methods try to solve this problem through prototype contrast, but there is a deviation between the calculation of hard prototypes and the true cluster center. To address this problem, we propose a center-oriented prototype contrastive clustering framework, which consists of a soft prototype contrastive module and a dual consistency learning module. In short, the soft prototype contrastive module uses the probability that the sample belongs to the cluster center as a weight to calculate the prototype of each category, while avoiding inter-class conflicts and reducing prototype drift. The dual consistency learning module aligns different transformations of the same sample and the neighborhoods of different samples respectively, ensuring that the features have transformation-invariant semantic information and compact intra-cluster distribution, while providing reliable guarantees for the calculation of prototypes. Extensive experiments on five datasets show that the proposed method is effective compared to the SOTA. Our code is published on https://github.com/LouisDong95/CPCC.

Authors:Hantao Zhang, Jingyang Liu, Ed Li
Title: See it. Say it. Sorted: Agentic System for Compositional Diagram Generation
Abstract:
We study sketch-to-diagram generation: converting rough hand sketches into precise, compositional diagrams. Diffusion models excel at photorealism but struggle with the spatial precision, alignment, and symbolic structure required for flowcharts. We introduce See it. Say it. Sorted., a training-free agentic system that couples a Vision-Language Model (VLM) with Large Language Models (LLMs) to produce editable Scalable Vector Graphics (SVG) programs. The system runs an iterative loop in which a Critic VLM proposes a small set of qualitative, relational edits; multiple candidate LLMs synthesize SVG updates with diverse strategies (conservative->aggressive, alternative, focused); and a Judge VLM selects the best candidate, ensuring stable improvement. This design prioritizes qualitative reasoning over brittle numerical estimates, preserves global constraints (e.g., alignment, connectivity), and naturally supports human-in-the-loop corrections. On 10 sketches derived from flowcharts in published papers, our method more faithfully reconstructs layout and structure than two frontier closed-source image generation LLMs (GPT-5 and Gemini-2.5-Pro), accurately composing primitives (e.g., multi-headed arrows) without inserting unwanted text. Because outputs are programmatic SVGs, the approach is readily extensible to presentation tools (e.g., PowerPoint) via APIs and can be specialized with improved prompts and task-specific tools. The codebase is open-sourced at https://github.com/hantaoZhangrichard/see_it_say_it_sorted.git.

Authors:Leiyue Zhao, Yuechen Yang, Yanfan Zhu, Haichun Yang, Yuankai Huo, Paul D. Simonson, Kenji Ikemura, Mert R. Sabuncu, Yihe Yang, Ruining Deng
Title: DyMorph-B2I: Dynamic and Morphology-Guided Binary-to-Instance Segmentation for Renal Pathology
Abstract:
Accurate morphological quantification of renal pathology functional units relies on instance-level segmentation, yet most existing datasets and automated methods provide only binary (semantic) masks, limiting the precision of downstream analyses. Although classical post-processing techniques such as watershed, morphological operations, and skeletonization, are often used to separate semantic masks into instances, their individual effectiveness is constrained by the diverse morphologies and complex connectivity found in renal tissue. In this study, we present DyMorph-B2I, a dynamic, morphology-guided binary-to-instance segmentation pipeline tailored for renal pathology. Our approach integrates watershed, skeletonization, and morphological operations within a unified framework, complemented by adaptive geometric refinement and customizable hyperparameter tuning for each class of functional unit. Through systematic parameter optimization, DyMorph-B2I robustly separates adherent and heterogeneous structures present in binary masks. Experimental results demonstrate that our method outperforms individual classical approaches and naïve combinations, enabling superior instance separation and facilitating more accurate morphometric analysis in renal pathology workflows. The pipeline is publicly available at: https://github.com/ddrrnn123/DyMorph-B2I.

Authors:Yan Luo, Drake Du, Hao Huang, Yi Fang, Mengyu Wang
Title: CurveFlow: Curvature-Guided Flow Matching for Image Generation
Abstract:
Existing rectified flow models are based on linear trajectories between data and noise distributions. This linearity enforces zero curvature, which can inadvertently force the image generation process through low-probability regions of the data manifold. A key question remains underexplored: how does the curvature of these trajectories correlate with the semantic alignment between generated images and their corresponding captions, i.e., instructional compliance? To address this, we introduce CurveFlow, a novel flow matching framework designed to learn smooth, non-linear trajectories by directly incorporating curvature guidance into the flow path. Our method features a robust curvature regularization technique that penalizes abrupt changes in the trajectory's intrinsic dynamics.Extensive experiments on MS COCO 2014 and 2017 demonstrate that CurveFlow achieves state-of-the-art performance in text-to-image generation, significantly outperforming both standard rectified flow variants and other non-linear baselines like Rectified Diffusion. The improvements are especially evident in semantic consistency metrics such as BLEU, METEOR, ROUGE, and CLAIR. This confirms that our curvature-aware modeling substantially enhances the model's ability to faithfully follow complex instructions while simultaneously maintaining high image quality. The code is made publicly available at https://github.com/Harvard-AI-and-Robotics-Lab/CurveFlow.

Authors:Andrew C. Freeman, Luke Reinkensmeyer
Title: adder-viz: Real-Time Visualization Software for Transcoding Event Video
Abstract:
Recent years have brought about a surge in neuromorphic ``event'' video research, primarily targeting computer vision applications. Event video eschews video frames in favor of asynchronous, per-pixel intensity samples. While much work has focused on a handful of representations for specific event cameras, these representations have shown limitations in flexibility, speed, and compressibility. We previously proposed the unified ADDER representation to address these concerns. This paper introduces numerous improvements to the adder-viz software for visualizing real-time event transcode processes and applications in-the-loop. The MIT-licensed software is available from a centralized repository at https://github.com/ac-freeman/adder-codec-rs.

Authors:Andrei Balykin, Anvar Ganiev, Denis Kondranin, Kirill Polevoda, Nikolai Liudkevich, Artem Petrov
Title: Paired-Sampling Contrastive Framework for Joint Physical-Digital Face Attack Detection
Abstract:
Modern face recognition systems remain vulnerable to spoofing attempts, including both physical presentation attacks and digital forgeries. Traditionally, these two attack vectors have been handled by separate models, each targeting its own artifacts and modalities. However, maintaining distinct detectors increases system complexity and inference latency and leaves systems exposed to combined attack vectors. We propose the Paired-Sampling Contrastive Framework, a unified training approach that leverages automatically matched pairs of genuine and attack selfies to learn modality-agnostic liveness cues. Evaluated on the 6th Face Anti-Spoofing Challenge Unified Physical-Digital Attack Detection benchmark, our method achieves an average classification error rate (ACER) of 2.10 percent, outperforming prior solutions. The framework is lightweight (4.46 GFLOPs) and trains in under one hour, making it practical for real-world deployment. Code and pretrained models are available at https://github.com/xPONYx/iccv2025_deepfake_challenge.

Authors:Hakjin Lee, Junghoon Seo, Jaehoon Sim
Title: You Only Pose Once: A Minimalist's Detection Transformer for Monocular RGB Category-level 9D Multi-Object Pose Estimation
Abstract:
Accurately recovering the full 9-DoF pose of unseen instances within specific categories from a single RGB image remains a core challenge for robotics and automation. Most existing solutions still rely on pseudo-depth, CAD models, or multi-stage cascades that separate 2D detection from pose estimation. Motivated by the need for a simpler, RGB-only alternative that learns directly at the category level, we revisit a longstanding question: Can object detection and 9-DoF pose estimation be unified with high performance, without any additional data? We show that they can with our method, YOPO, a single-stage, query-based framework that treats category-level 9-DoF estimation as a natural extension of 2D detection. YOPO augments a transformer detector with a lightweight pose head, a bounding-box-conditioned translation module, and a 6D-aware Hungarian matching cost. The model is trained end-to-end only with RGB images and category-level pose labels. Despite its minimalist design, YOPO sets a new state of the art on three benchmarks. On the REAL275 dataset, it achieves 79.6% $\rm{IoU}_{50}$ and 54.1% under the $10^\circ$$10{\rm{cm}}$ metric, surpassing prior RGB-only methods and closing much of the gap to RGB-D systems. The code, models, and additional qualitative results can be found on our project.

Authors:Chiao-An Yang, Raymond A. Yeh
Title: Heatmap Regression without Soft-Argmax for Facial Landmark Detection
Abstract:
Facial landmark detection is an important task in computer vision with numerous applications, such as head pose estimation, expression analysis, face swapping, etc. Heatmap regression-based methods have been widely used to achieve state-of-the-art results in this task. These methods involve computing the argmax over the heatmaps to predict a landmark. Since argmax is not differentiable, these methods use a differentiable approximation, Soft-argmax, to enable end-to-end training on deep-nets. In this work, we revisit this long-standing choice of using Soft-argmax and demonstrate that it is not the only way to achieve strong performance. Instead, we propose an alternative training objective based on the classic structured prediction framework. Empirically, our method achieves state-of-the-art performance on three facial landmark benchmarks (WFLW, COFW, and 300W), converging 2.2x faster during training while maintaining better/competitive accuracy. Our code is available here: https://github.com/ca-joe-yang/regression-without-softarg.

Authors:Jia Lu, Taoran Yi, Jiemin Fang, Chen Yang, Chuiyun Wu, Wei Shen, Wenyu Liu, Qi Tian, Xinggang Wang
Title: Snap-Snap: Taking Two Images to Reconstruct 3D Human Gaussians in Milliseconds
Abstract:
Reconstructing 3D human bodies from sparse views has been an appealing topic, which is crucial to broader the related applications. In this paper, we propose a quite challenging but valuable task to reconstruct the human body from only two images, i.e., the front and back view, which can largely lower the barrier for users to create their own 3D digital humans. The main challenges lie in the difficulty of building 3D consistency and recovering missing information from the highly sparse input. We redesign a geometry reconstruction model based on foundation reconstruction models to predict consistent point clouds even input images have scarce overlaps with extensive human data training. Furthermore, an enhancement algorithm is applied to supplement the missing color information, and then the complete human point clouds with colors can be obtained, which are directly transformed into 3D Gaussians for better rendering quality. Experiments show that our method can reconstruct the entire human in 190 ms on a single NVIDIA RTX 4090, with two images at a resolution of 1024x1024, demonstrating state-of-the-art performance on the THuman2.0 and cross-domain datasets. Additionally, our method can complete human reconstruction even with images captured by low-cost mobile devices, reducing the requirements for data collection. Demos and code are available at https://hustvl.github.io/Snap-Snap/.

Authors:Licheng Shen, Saining Zhang, Honghan Li, Peilin Yang, Zihao Huang, Zongzheng Zhang, Hao Zhao
Title: GaussianArt: Unified Modeling of Geometry and Motion for Articulated Objects
Abstract:
Reconstructing articulated objects is essential for building digital twins of interactive environments. However, prior methods typically decouple geometry and motion by first reconstructing object shape in distinct states and then estimating articulation through post-hoc alignment. This separation complicates the reconstruction pipeline and restricts scalability, especially for objects with complex, multi-part articulation. We introduce a unified representation that jointly models geometry and motion using articulated 3D Gaussians. This formulation improves robustness in motion decomposition and supports articulated objects with up to 20 parts, significantly outperforming prior approaches that often struggle beyond 2--3 parts due to brittle initialization. To systematically assess scalability and generalization, we propose MPArt-90, a new benchmark consisting of 90 articulated objects across 20 categories, each with diverse part counts and motion configurations. Extensive experiments show that our method consistently achieves superior accuracy in part-level geometry reconstruction and motion estimation across a broad range of object types. We further demonstrate applicability to downstream tasks such as robotic simulation and human-scene interaction modeling, highlighting the potential of unified articulated representations in scalable physical modeling.

Authors:Bingquan Dai, Li Ray Luo, Qihong Tang, Jie Wang, Xinyu Lian, Hao Xu, Minghan Qin, Xudong Xu, Bo Dai, Haoqian Wang, Zhaoyang Lyu, Jiangmiao Pang
Title: MeshCoder: LLM-Powered Structured Mesh Code Generation from Point Clouds
Abstract:
Reconstructing 3D objects into editable programs is pivotal for applications like reverse engineering and shape editing. However, existing methods often rely on limited domain-specific languages (DSLs) and small-scale datasets, restricting their ability to model complex geometries and structures. To address these challenges, we introduce MeshCoder, a novel framework that reconstructs complex 3D objects from point clouds into editable Blender Python scripts. We develop a comprehensive set of expressive Blender Python APIs capable of synthesizing intricate geometries. Leveraging these APIs, we construct a large-scale paired object-code dataset, where the code for each object is decomposed into distinct semantic parts. Subsequently, we train a multimodal large language model (LLM) that translates 3D point cloud into executable Blender Python scripts. Our approach not only achieves superior performance in shape-to-code reconstruction tasks but also facilitates intuitive geometric and topological editing through convenient code modifications. Furthermore, our code-based representation enhances the reasoning capabilities of LLMs in 3D shape understanding tasks. Together, these contributions establish MeshCoder as a powerful and flexible solution for programmatic 3D shape reconstruction and understanding. The project homepage is available at \href{https://daibingquan.github.io/MeshCoder}{this link}.

Authors:Canyu Zhao, Xiaoman Li, Tianjian Feng, Zhiyue Zhao, Hao Chen, Chunhua Shen
Title: Tinker: Diffusion's Gift to 3D--Multi-View Consistent Editing From Sparse Inputs without Per-Scene Optimization
Abstract:
We introduce Tinker, a versatile framework for high-fidelity 3D editing that operates in both one-shot and few-shot regimes without any per-scene finetuning. Unlike prior techniques that demand extensive per-scene optimization to ensure multi-view consistency or to produce dozens of consistent edited input views, Tinker delivers robust, multi-view consistent edits from as few as one or two images. This capability stems from repurposing pretrained diffusion models, which unlocks their latent 3D awareness. To drive research in this space, we curate the first large-scale multi-view editing dataset and data pipeline, spanning diverse scenes and styles. Building on this dataset, we develop our framework capable of generating multi-view consistent edited views without per-scene training, which consists of two novel components: (1) Referring multi-view editor: Enables precise, reference-driven edits that remain coherent across all viewpoints. (2) Any-view-to-video synthesizer: Leverages spatial-temporal priors from video diffusion to perform high-quality scene completion and novel-view generation even from sparse inputs. Through extensive experiments, Tinker significantly reduces the barrier to generalizable 3D content creation, achieving state-of-the-art performance on editing, novel-view synthesis, and rendering enhancement tasks. We believe that Tinker represents a key step towards truly scalable, zero-shot 3D editing. Project webpage: https://aim-uofa.github.io/Tinker

Authors:Abhijith Punnappurath, Luxi Zhao, Hoang Le, Abdelrahman Abdelhamed, SaiKiran Kumar Tedla, Michael S. Brown
Title: Improved Mapping Between Illuminations and Sensors for RAW Images
Abstract:
RAW images are unprocessed camera sensor output with sensor-specific RGB values based on the sensor's color filter spectral sensitivities. RAW images also incur strong color casts due to the sensor's response to the spectral properties of scene illumination. The sensor- and illumination-specific nature of RAW images makes it challenging to capture RAW datasets for deep learning methods, as scenes need to be captured for each sensor and under a wide range of illumination. Methods for illumination augmentation for a given sensor and the ability to map RAW images between sensors are important for reducing the burden of data capture. To explore this problem, we introduce the first-of-its-kind dataset comprising carefully captured scenes under a wide range of illumination. Specifically, we use a customized lightbox with tunable illumination spectra to capture several scenes with different cameras. Our illumination and sensor mapping dataset has 390 illuminations, four cameras, and 18 scenes. Using this dataset, we introduce a lightweight neural network approach for illumination and sensor mapping that outperforms competing methods. We demonstrate the utility of our approach on the downstream task of training a neural ISP. Link to project page: https://github.com/SamsungLabs/illum-sensor-mapping.

Authors:Zichi Liu, Yinggui Wang, Tao Wei, Chao Ma
Title: AnchorSync: Global Consistency Optimization for Long Video Editing
Abstract:
Editing long videos remains a challenging task due to the need for maintaining both global consistency and temporal coherence across thousands of frames. Existing methods often suffer from structural drift or temporal artifacts, particularly in minute-long sequences. We introduce AnchorSync, a novel diffusion-based framework that enables high-quality, long-term video editing by decoupling the task into sparse anchor frame editing and smooth intermediate frame interpolation. Our approach enforces structural consistency through a progressive denoising process and preserves temporal dynamics via multimodal guidance. Extensive experiments show that AnchorSync produces coherent, high-fidelity edits, surpassing prior methods in visual quality and temporal stability.

Authors:Peiming Li, Ziyi Wang, Yulin Yuan, Hong Liu, Xiangming Meng, Junsong Yuan, Mengyuan Liu
Title: UST-SSM: Unified Spatio-Temporal State Space Models for Point Cloud Video Modeling
Abstract:
Point cloud videos capture dynamic 3D motion while reducing the effects of lighting and viewpoint variations, making them highly effective for recognizing subtle and continuous human actions. Although Selective State Space Models (SSMs) have shown good performance in sequence modeling with linear complexity, the spatio-temporal disorder of point cloud videos hinders their unidirectional modeling when directly unfolding the point cloud video into a 1D sequence through temporally sequential scanning. To address this challenge, we propose the Unified Spatio-Temporal State Space Model (UST-SSM), which extends the latest advancements in SSMs to point cloud videos. Specifically, we introduce Spatial-Temporal Selection Scanning (STSS), which reorganizes unordered points into semantic-aware sequences through prompt-guided clustering, thereby enabling the effective utilization of points that are spatially and temporally distant yet similar within the sequence. For missing 4D geometric and motion details, Spatio-Temporal Structure Aggregation (STSA) aggregates spatio-temporal features and compensates. To improve temporal interaction within the sampled sequence, Temporal Interaction Sampling (TIS) enhances fine-grained temporal dependencies through non-anchor frame utilization and expanded receptive fields. Experimental results on the MSR-Action3D, NTU RGB+D, and Synthia 4D datasets validate the effectiveness of our method. Our code is available at https://github.com/wangzy01/UST-SSM.

Authors:Sofiène Boutaj, Marin Scalbert, Pierre Marza, Florent Couzinie-Devy, Maria Vakalopoulou, Stergios Christodoulidis
Title: Controllable Latent Space Augmentation for Digital Pathology
Abstract:
Whole slide image (WSI) analysis in digital pathology presents unique challenges due to the gigapixel resolution of WSIs and the scarcity of dense supervision signals. While Multiple Instance Learning (MIL) is a natural fit for slide-level tasks, training robust models requires large and diverse datasets. Even though image augmentation techniques could be utilized to increase data variability and reduce overfitting, implementing them effectively is not a trivial task. Traditional patch-level augmentation is prohibitively expensive due to the large number of patches extracted from each WSI, and existing feature-level augmentation methods lack control over transformation semantics. We introduce HistAug, a fast and efficient generative model for controllable augmentations in the latent space for digital pathology. By conditioning on explicit patch-level transformations (e.g., hue, erosion), HistAug generates realistic augmented embeddings while preserving initial semantic information. Our method allows the processing of a large number of patches in a single forward pass efficiently, while at the same time consistently improving MIL model performance. Experiments across multiple slide-level tasks and diverse organs show that HistAug outperforms existing methods, particularly in low-data regimes. Ablation studies confirm the benefits of learned transformations over noise-based perturbations and highlight the importance of uniform WSI-wise augmentation. Code is available at https://github.com/MICS-Lab/HistAug.

Authors:Walter Zimmer, Ross Greer, Xingcheng Zhou, Rui Song, Marc Pavel, Daniel Lehmberg, Ahmed Ghita, Akshay Gopalkrishnan, Mohan Trivedi, Alois Knoll
Title: Safety-Critical Learning for Long-Tail Events: The TUM Traffic Accident Dataset
Abstract:
Even though a significant amount of work has been done to increase the safety of transportation networks, accidents still occur regularly. They must be understood as an unavoidable and sporadic outcome of traffic networks. We present the TUM Traffic Accident (TUMTraf-A) dataset, a collection of real-world highway accidents. It contains ten sequences of vehicle crashes at high-speed driving with 294,924 labeled 2D and 93,012 labeled 3D boxes and track IDs within 48,144 labeled frames recorded from four roadside cameras and LiDARs at 10 Hz. The dataset contains ten object classes and is provided in the OpenLABEL format. We propose Accid3nD, an accident detection model that combines a rule-based approach with a learning-based one. Experiments and ablation studies on our dataset show the robustness of our proposed method. The dataset, model, and code are available on our project website: https://tum-traffic-dataset.github.io/tumtraf-a.

Authors:Diego Belzarena, Seginus Mowlavi, Aitor Artola, Camilo Mariño, Marina Gardella, Ignacio Ramírez, Antoine Tadros, Roy He, Natalia Bottaioli, Boshra Rajaei, Gregory Randall, Jean-Michel Morel
Title: Improving OCR using internal document redundancy
Abstract:
Current OCR systems are based on deep learning models trained on large amounts of data. Although they have shown some ability to generalize to unseen data, especially in detection tasks, they can struggle with recognizing low-quality data. This is particularly evident for printed documents, where intra-domain data variability is typically low, but inter-domain data variability is high. In that context, current OCR methods do not fully exploit each document's redundancy. We propose an unsupervised method by leveraging the redundancy of character shapes within a document to correct imperfect outputs of a given OCR system and suggest better clustering. To this aim, we introduce an extended Gaussian Mixture Model (GMM) by alternating an Expectation-Maximization (EM) algorithm with an intra-cluster realignment process and normality statistical testing. We demonstrate improvements in documents with various levels of degradation, including recovered Uruguayan military archives and 17th to mid-20th century European newspapers.

Authors:Haoran Bai, Xiaoxu Chen, Canqian Yang, Zongyao He, Sibin Deng, Ying Chen
Title: Vivid-VR: Distilling Concepts from Text-to-Video Diffusion Transformer for Photorealistic Video Restoration
Abstract:
We present Vivid-VR, a DiT-based generative video restoration method built upon an advanced T2V foundation model, where ControlNet is leveraged to control the generation process, ensuring content consistency. However, conventional fine-tuning of such controllable pipelines frequently suffers from distribution drift due to limitations in imperfect multimodal alignment, resulting in compromised texture realism and temporal coherence. To tackle this challenge, we propose a concept distillation training strategy that utilizes the pretrained T2V model to synthesize training samples with embedded textual concepts, thereby distilling its conceptual understanding to preserve texture and temporal quality. To enhance generation controllability, we redesign the control architecture with two key components: 1) a control feature projector that filters degradation artifacts from input video latents to minimize their propagation through the generation pipeline, and 2) a new ControlNet connector employing a dual-branch design. This connector synergistically combines MLP-based feature mapping with cross-attention mechanism for dynamic control feature retrieval, enabling both content preservation and adaptive control signal modulation. Extensive experiments show that Vivid-VR performs favorably against existing approaches on both synthetic and real-world benchmarks, as well as AIGC videos, achieving impressive texture realism, visual vividness, and temporal consistency. The codes and checkpoints are publicly available at https://github.com/csbhr/Vivid-VR.

Authors:Xiangfei Sheng, Xiaofeng Pan, Zhichao Yang, Pengfei Chen, Leida Li
Title: Fine-grained Image Quality Assessment for Perceptual Image Restoration
Abstract:
Recent years have witnessed remarkable achievements in perceptual image restoration (IR), creating an urgent demand for accurate image quality assessment (IQA), which is essential for both performance comparison and algorithm optimization. Unfortunately, the existing IQA metrics exhibit inherent weakness for IR task, particularly when distinguishing fine-grained quality differences among restored images. To address this dilemma, we contribute the first-of-its-kind fine-grained image quality assessment dataset for image restoration, termed FGRestore, comprising 18,408 restored images across six common IR tasks. Beyond conventional scalar quality scores, FGRestore was also annotated with 30,886 fine-grained pairwise preferences. Based on FGRestore, a comprehensive benchmark was conducted on the existing IQA metrics, which reveal significant inconsistencies between score-based IQA evaluations and the fine-grained restoration quality. Motivated by these findings, we further propose FGResQ, a new IQA model specifically designed for image restoration, which features both coarse-grained score regression and fine-grained quality ranking. Extensive experiments and comparisons demonstrate that FGResQ significantly outperforms state-of-the-art IQA metrics. Codes and model weights have been released in https://pxf0429.github.io/FGResQ/

Authors:Gyusam Chang, Tuan-Anh Vu, Vivek Alumootil, Harris Song, Deanna Pham, Sangpil Kim, M. Khalid Jawed
Title: Reconstruction Using the Invisible: Intuition from NIR and Metadata for Enhanced 3D Gaussian Splatting
Abstract:
While 3D Gaussian Splatting (3DGS) has rapidly advanced, its application in agriculture remains underexplored. Agricultural scenes present unique challenges for 3D reconstruction methods, particularly due to uneven illumination, occlusions, and a limited field of view. To address these limitations, we introduce \textbf{NIRPlant}, a novel multimodal dataset encompassing Near-Infrared (NIR) imagery, RGB imagery, textual metadata, Depth, and LiDAR data collected under varied indoor and outdoor lighting conditions. By integrating NIR data, our approach enhances robustness and provides crucial botanical insights that extend beyond the visible spectrum. Additionally, we leverage text-based metadata derived from vegetation indices, such as NDVI, NDWI, and the chlorophyll index, which significantly enriches the contextual understanding of complex agricultural environments. To fully exploit these modalities, we propose \textbf{NIRSplat}, an effective multimodal Gaussian splatting architecture employing a cross-attention mechanism combined with 3D point-based positional encoding, providing robust geometric priors. Comprehensive experiments demonstrate that \textbf{NIRSplat} outperforms existing landmark methods, including 3DGS, CoR-GS, and InstantSplat, highlighting its effectiveness in challenging agricultural scenarios. The code and dataset are publicly available at: https://github.com/StructuresComp/3D-Reconstruction-NIR

Authors:Fei Peng, Junqiang Wu, Yan Li, Tingting Gao, Di Zhang, Huiyuan Fu
Title: MUSE: Multi-Subject Unified Synthesis via Explicit Layout Semantic Expansion
Abstract:
Existing text-to-image diffusion models have demonstrated remarkable capabilities in generating high-quality images guided by textual prompts. However, achieving multi-subject compositional synthesis with precise spatial control remains a significant challenge. In this work, we address the task of layout-controllable multi-subject synthesis (LMS), which requires both faithful reconstruction of reference subjects and their accurate placement in specified regions within a unified image. While recent advancements have separately improved layout control and subject synthesis, existing approaches struggle to simultaneously satisfy the dual requirements of spatial precision and identity preservation in this composite task. To bridge this gap, we propose MUSE, a unified synthesis framework that employs concatenated cross-attention (CCA) to seamlessly integrate layout specifications with textual guidance through explicit semantic space expansion. The proposed CCA mechanism enables bidirectional modality alignment between spatial constraints and textual descriptions without interference. Furthermore, we design a progressive two-stage training strategy that decomposes the LMS task into learnable sub-objectives for effective optimization. Extensive experiments demonstrate that MUSE achieves zero-shot end-to-end generation with superior spatial accuracy and identity consistency compared to existing solutions, advancing the frontier of controllable image synthesis. Our code and model are available at https://github.com/pf0607/MUSE.

Authors:Jeahun Sung, Changhyun Roh, Chanho Eom, Jihyong Oh
Title: MoCHA-former: Moiré-Conditioned Hybrid Adaptive Transformer for Video Demoiréing
Abstract:
Recent advances in portable imaging have made camera-based screen capture ubiquitous. Unfortunately, frequency aliasing between the camera's color filter array (CFA) and the display's sub-pixels induces moiré patterns that severely degrade captured photos and videos. Although various demoiréing models have been proposed to remove such moiré patterns, these approaches still suffer from several limitations: (i) spatially varying artifact strength within a frame, (ii) large-scale and globally spreading structures, (iii) channel-dependent statistics and (iv) rapid temporal fluctuations across frames. We address these issues with the Moiré Conditioned Hybrid Adaptive Transformer (MoCHA-former), which comprises two key components: Decoupled Moiré Adaptive Demoiréing (DMAD) and Spatio-Temporal Adaptive Demoiréing (STAD). DMAD separates moiré and content via a Moiré Decoupling Block (MDB) and a Detail Decoupling Block (DDB), then produces moiré-adaptive features using a Moiré Conditioning Block (MCB) for targeted restoration. STAD introduces a Spatial Fusion Block (SFB) with window attention to capture large-scale structures, and a Feature Channel Attention (FCA) to model channel dependence in RAW frames. To ensure temporal consistency, MoCHA-former performs implicit frame alignment without any explicit alignment module. We analyze moiré characteristics through qualitative and quantitative studies, and evaluate on two video datasets covering RAW and sRGB domains. MoCHA-former consistently surpasses prior methods across PSNR, SSIM, and LPIPS.

Authors:Seokjun Choi, Hoon-Gyu Chung, Yujin Jeon, Giljoo Nam, Seung-Hwan Baek
Title: A Real-world Display Inverse Rendering Dataset
Abstract:
Inverse rendering aims to reconstruct geometry and reflectance from captured images. Display-camera imaging systems offer unique advantages for this task: each pixel can easily function as a programmable point light source, and the polarized light emitted by LCD displays facilitates diffuse-specular separation. Despite these benefits, there is currently no public real-world dataset captured using display-camera systems, unlike other setups such as light stages. This absence hinders the development and evaluation of display-based inverse rendering methods. In this paper, we introduce the first real-world dataset for display-based inverse rendering. To achieve this, we construct and calibrate an imaging system comprising an LCD display and stereo polarization cameras. We then capture a diverse set of objects with diverse geometry and reflectance under one-light-at-a-time (OLAT) display patterns. We also provide high-quality ground-truth geometry. Our dataset enables the synthesis of captured images under arbitrary display patterns and different noise levels. Using this dataset, we evaluate the performance of existing photometric stereo and inverse rendering methods, and provide a simple, yet effective baseline for display inverse rendering, outperforming state-of-the-art inverse rendering methods. Code and dataset are available on our project page at https://michaelcsj.github.io/DIR/

Authors:Junchao Zhu, Ruining Deng, Junlin Guo, Tianyuan Yao, Juming Xiong, Chongyu Qu, Mengmeng Yin, Yu Wang, Shilin Zhao, Haichun Yang, Daguang Xu, Yucheng Tang, Yuankai Huo
Title: Img2ST-Net: Efficient High-Resolution Spatial Omics Prediction from Whole Slide Histology Images via Fully Convolutional Image-to-Image Learning
Abstract:
Recent advances in multi-modal AI have demonstrated promising potential for generating the currently expensive spatial transcriptomics (ST) data directly from routine histology images, offering a means to reduce the high cost and time-intensive nature of ST data acquisition. However, the increasing resolution of ST, particularly with platforms such as Visium HD achieving 8um or finer, introduces significant computational and modeling challenges. Conventional spot-by-spot sequential regression frameworks become inefficient and unstable at this scale, while the inherent extreme sparsity and low expression levels of high-resolution ST further complicate both prediction and evaluation. To address these limitations, we propose Img2ST-Net, a novel histology-to-ST generation framework for efficient and parallel high-resolution ST prediction. Unlike conventional spot-by-spot inference methods, Img2ST-Net employs a fully convolutional architecture to generate dense, HD gene expression maps in a parallelized manner. By modeling HD ST data as super-pixel representations, the task is reformulated from image-to-omics inference into a super-content image generation problem with hundreds or thousands of output channels. This design not only improves computational efficiency but also better preserves the spatial organization intrinsic to spatial omics data. To enhance robustness under sparse expression patterns, we further introduce SSIM-ST, a structural-similarity-based evaluation metric tailored for high-resolution ST analysis. We present a scalable, biologically coherent framework for high-resolution ST prediction. Img2ST-Net offers a principled solution for efficient and accurate ST inference at scale. Our contributions lay the groundwork for next-generation ST modeling that is robust and resolution-aware. The source code has been made publicly available at https://github.com/hrlblab/Img2ST-Net.

Authors:Runshi Zhang, Bimeng Jie, Yang He, Junchen Wang
Title: TCFNet: Bidirectional face-bone transformation via a Transformer-based coarse-to-fine point movement network
Abstract:
Computer-aided surgical simulation is a critical component of orthognathic surgical planning, where accurately simulating face-bone shape transformations is significant. The traditional biomechanical simulation methods are limited by their computational time consumption levels, labor-intensive data processing strategies and low accuracy. Recently, deep learning-based simulation methods have been proposed to view this problem as a point-to-point transformation between skeletal and facial point clouds. However, these approaches cannot process large-scale points, have limited receptive fields that lead to noisy points, and employ complex preprocessing and postprocessing operations based on registration. These shortcomings limit the performance and widespread applicability of such methods. Therefore, we propose a Transformer-based coarse-to-fine point movement network (TCFNet) to learn unique, complicated correspondences at the patch and point levels for dense face-bone point cloud transformations. This end-to-end framework adopts a Transformer-based network and a local information aggregation network (LIA-Net) in the first and second stages, respectively, which reinforce each other to generate precise point movement paths. LIA-Net can effectively compensate for the neighborhood precision loss of the Transformer-based network by modeling local geometric structures (edges, orientations and relative position features). The previous global features are employed to guide the local displacement using a gated recurrent unit. Inspired by deformable medical image registration, we propose an auxiliary loss that can utilize expert knowledge for reconstructing critical organs.Compared with the existing state-of-the-art (SOTA) methods on gathered datasets, TCFNet achieves outstanding evaluation metrics and visualization results. The code is available at https://github.com/Runshi-Zhang/TCFNet.

Authors:Zhujun Li, Shuo Zhang, Ioannis Stamos
Title: Learning Point Cloud Representations with Pose Continuity for Depth-Based Category-Level 6D Object Pose Estimation
Abstract:
Category-level object pose estimation aims to predict the 6D pose and 3D size of objects within given categories. Existing approaches for this task rely solely on 6D poses as supervisory signals without explicitly capturing the intrinsic continuity of poses, leading to inconsistencies in predictions and reduced generalization to unseen poses. To address this limitation, we propose HRC-Pose, a novel depth-only framework for category-level object pose estimation, which leverages contrastive learning to learn point cloud representations that preserve the continuity of 6D poses. HRC-Pose decouples object pose into rotation and translation components, which are separately encoded and leveraged throughout the network. Specifically, we introduce a contrastive learning strategy for multi-task, multi-category scenarios based on our 6D pose-aware hierarchical ranking scheme, which contrasts point clouds from multiple categories by considering rotational and translational differences as well as categorical information. We further design pose estimation modules that separately process the learned rotation-aware and translation-aware embeddings. Our experiments demonstrate that HRC-Pose successfully learns continuous feature spaces. Results on REAL275 and CAMERA25 benchmarks show that our method consistently outperforms existing depth-only state-of-the-art methods and runs in real-time, demonstrating its effectiveness and potential for real-world applications. Our code is at https://github.com/zhujunli1993/HRC-Pose.

Authors:Gaston Gustavo Rios, Pedro Dal Bianco, Franco Ronchetti, Facundo Quiroga, Oscar Stanchi, Santiago Ponte Ahón, Waldo Hasperué
Title: HandCraft: Dynamic Sign Generation for Synthetic Data Augmentation
Abstract:
Sign Language Recognition (SLR) models face significant performance limitations due to insufficient training data availability. In this article, we address the challenge of limited data in SLR by introducing a novel and lightweight sign generation model based on CMLPe. This model, coupled with a synthetic data pretraining approach, consistently improves recognition accuracy, establishing new state-of-the-art results for the LSFB and DiSPLaY datasets using our Mamba-SL and Transformer-SL classifiers. Our findings reveal that synthetic data pretraining outperforms traditional augmentation methods in some cases and yields complementary benefits when implemented alongside them. Our approach democratizes sign generation and synthetic data pretraining for SLR by providing computationally efficient methods that achieve significant performance improvements across diverse datasets.

Authors:Anushka A. Kore, Frank G. te Nijenhuis, Matthijs van der Sluijs, Wim van Zwam, Charles Majoie, Geert Lycklama à Nijeholt, Danny Ruijters, Frans Vos, Sandra Cornelissen, Ruisheng Su, Theo van Walsum
Title: OccluNet: Spatio-Temporal Deep Learning for Occlusion Detection on DSA
Abstract:
Accurate detection of vascular occlusions during endovascular thrombectomy (EVT) is critical in acute ischemic stroke (AIS). Interpretation of digital subtraction angiography (DSA) sequences poses challenges due to anatomical complexity and time constraints. This work proposes OccluNet, a spatio-temporal deep learning model that integrates YOLOX, a single-stage object detector, with transformer-based temporal attention mechanisms to automate occlusion detection in DSA sequences. We compared OccluNet with a YOLOv11 baseline trained on either individual DSA frames or minimum intensity projections. Two spatio-temporal variants were explored for OccluNet: pure temporal attention and divided space-time attention. Evaluation on DSA images from the MR CLEAN Registry revealed the model's capability to capture temporally consistent features, achieving precision and recall of 89.02% and 74.87%, respectively. OccluNet significantly outperformed the baseline models, and both attention variants attained similar performance. Source code is available at https://github.com/anushka-kore/OccluNet.git

Authors:Said Djafar Said, Torkan Gholamalizadeh, Mostafa Mehdipour Ghazi
Title: Tooth-Diffusion: Guided 3D CBCT Synthesis with Fine-Grained Tooth Conditioning
Abstract:
Despite the growing importance of dental CBCT scans for diagnosis and treatment planning, generating anatomically realistic scans with fine-grained control remains a challenge in medical image synthesis. In this work, we propose a novel conditional diffusion framework for 3D dental volume generation, guided by tooth-level binary attributes that allow precise control over tooth presence and configuration. Our approach integrates wavelet-based denoising diffusion, FiLM conditioning, and masked loss functions to focus learning on relevant anatomical structures. We evaluate the model across diverse tasks, such as tooth addition, removal, and full dentition synthesis, using both paired and distributional similarity metrics. Results show strong fidelity and generalization with low FID scores, robust inpainting performance, and SSIM values above 0.91 even on unseen scans. By enabling realistic, localized modification of dentition without rescanning, this work opens opportunities for surgical planning, patient communication, and targeted data augmentation in dental AI workflows. The codes are available at: https://github.com/djafar1/tooth-diffusion.

Authors:Tinghan Yang, Md Ashiqur Rahman, Raymond A. Yeh
Title: CLIPSym: Delving into Symmetry Detection with CLIP
Abstract:
Symmetry is one of the most fundamental geometric cues in computer vision, and detecting it has been an ongoing challenge. With the recent advances in vision-language models,~i.e., CLIP, we investigate whether a pre-trained CLIP model can aid symmetry detection by leveraging the additional symmetry cues found in the natural image descriptions. We propose CLIPSym, which leverages CLIP's image and language encoders and a rotation-equivariant decoder based on a hybrid of Transformer and $G$-Convolution to detect rotation and reflection symmetries. To fully utilize CLIP's language encoder, we have developed a novel prompting technique called Semantic-Aware Prompt Grouping (SAPG), which aggregates a diverse set of frequent object-based prompts to better integrate the semantic cues for symmetry detection. Empirically, we show that CLIPSym outperforms the current state-of-the-art on three standard symmetry detection datasets (DENDI, SDRW, and LDRS). Finally, we conduct detailed ablations verifying the benefits of CLIP's pre-training, the proposed equivariant decoder, and the SAPG technique. The code is available at https://github.com/timyoung2333/CLIPSym.

Authors:Md Ashiqur Rahman, Chiao-An Yang, Michael N. Cheng, Lim Jun Hao, Jeremiah Jiang, Teck-Yian Lim, Raymond A. Yeh
Title: Local Scale Equivariance with Latent Deep Equilibrium Canonicalizer
Abstract:
Scale variation is a fundamental challenge in computer vision. Objects of the same class can have different sizes, and their perceived size is further affected by the distance from the camera. These variations are local to the objects, i.e., different object sizes may change differently within the same image. To effectively handle scale variations, we present a deep equilibrium canonicalizer (DEC) to improve the local scale equivariance of a model. DEC can be easily incorporated into existing network architectures and can be adapted to a pre-trained model. Notably, we show that on the competitive ImageNet benchmark, DEC improves both model performance and local scale consistency across four popular pre-trained deep-nets, e.g., ViT, DeiT, Swin, and BEiT. Our code is available at https://github.com/ashiq24/local-scale-equivariance.

Authors:Ronghao Dang, Yuqian Yuan, Yunxuan Mao, Kehan Li, Jiangpin Liu, Zhikai Wang, Xin Li, Fan Wang, Deli Zhao
Title: RynnEC: Bringing MLLMs into Embodied World
Abstract:
We introduce RynnEC, a video multimodal large language model designed for embodied cognition. Built upon a general-purpose vision-language foundation model, RynnEC incorporates a region encoder and a mask decoder, enabling flexible region-level video interaction. Despite its compact architecture, RynnEC achieves state-of-the-art performance in object property understanding, object segmentation, and spatial reasoning. Conceptually, it offers a region-centric video paradigm for the brain of embodied agents, providing fine-grained perception of the physical world and enabling more precise interactions. To mitigate the scarcity of annotated 3D datasets, we propose an egocentric video based pipeline for generating embodied cognition data. Furthermore, we introduce RynnEC-Bench, a region-centered benchmark for evaluating embodied cognitive capabilities. We anticipate that RynnEC will advance the development of general-purpose cognitive cores for embodied agents and facilitate generalization across diverse embodied tasks. The code, model checkpoints, and benchmark are available at: https://github.com/alibaba-damo-academy/RynnEC

Authors:Lianghui Zhu, Bin Ouyang, Yuxuan Zhang, Tianheng Cheng, Rui Hu, Haocheng Shen, Longjin Ran, Xiaoxin Chen, Li Yu, Wenyu Liu, Xinggang Wang
Title: LENS: Learning to Segment Anything with Unified Reinforced Reasoning
Abstract:
Text-prompted image segmentation enables fine-grained visual understanding and is critical for applications such as human-computer interaction and robotics. However, existing supervised fine-tuning methods typically ignore explicit chain-of-thought (CoT) reasoning at test time, which limits their ability to generalize to unseen prompts and domains. To address this issue, we introduce LENS, a scalable reinforcement-learning framework that jointly optimizes the reasoning process and segmentation in an end-to-end manner. We propose unified reinforcement-learning rewards that span sentence-, box-, and segment-level cues, encouraging the model to generate informative CoT rationales while refining mask quality. Using a publicly available 3-billion-parameter vision-language model, i.e., Qwen2.5-VL-3B-Instruct, LENS achieves an average cIoU of 81.2% on the RefCOCO, RefCOCO+, and RefCOCOg benchmarks, outperforming the strong fine-tuned method, i.e., GLaMM, by up to 5.6%. These results demonstrate that RL-driven CoT reasoning serves as a robust prior for text-prompted segmentation and offers a practical path toward more generalizable Segment Anything models. Code is available at https://github.com/hustvl/LENS.

Authors:Chin-Yang Lin, Cheng Sun, Fu-En Yang, Min-Hung Chen, Yen-Yu Lin, Yu-Lun Liu
Title: LongSplat: Robust Unposed 3D Gaussian Splatting for Casual Long Videos
Abstract:
LongSplat addresses critical challenges in novel view synthesis (NVS) from casually captured long videos characterized by irregular camera motion, unknown camera poses, and expansive scenes. Current methods often suffer from pose drift, inaccurate geometry initialization, and severe memory limitations. To address these issues, we introduce LongSplat, a robust unposed 3D Gaussian Splatting framework featuring: (1) Incremental Joint Optimization that concurrently optimizes camera poses and 3D Gaussians to avoid local minima and ensure global consistency; (2) a robust Pose Estimation Module leveraging learned 3D priors; and (3) an efficient Octree Anchor Formation mechanism that converts dense point clouds into anchors based on spatial density. Extensive experiments on challenging benchmarks demonstrate that LongSplat achieves state-of-the-art results, substantially improving rendering quality, pose accuracy, and computational efficiency compared to prior approaches. Project page: https://linjohnss.github.io/longsplat/

Authors:Omkar Thawakar, Dmitry Demidov, Ritesh Thawkar, Rao Muhammad Anwer, Mubarak Shah, Fahad Shahbaz Khan, Salman Khan
Title: Beyond Simple Edits: Composed Video Retrieval with Dense Modifications
Abstract:
Composed video retrieval is a challenging task that strives to retrieve a target video based on a query video and a textual description detailing specific modifications. Standard retrieval frameworks typically struggle to handle the complexity of fine-grained compositional queries and variations in temporal understanding limiting their retrieval ability in the fine-grained setting. To address this issue, we introduce a novel dataset that captures both fine-grained and composed actions across diverse video segments, enabling more detailed compositional changes in retrieved video content. The proposed dataset, named Dense-WebVid-CoVR, consists of 1.6 million samples with dense modification text that is around seven times more than its existing counterpart. We further develop a new model that integrates visual and textual information through Cross-Attention (CA) fusion using grounded text encoder, enabling precise alignment between dense query modifications and target videos. The proposed model achieves state-of-the-art results surpassing existing methods on all metrics. Notably, it achieves 71.3\% Recall@1 in visual+text setting and outperforms the state-of-the-art by 3.4\%, highlighting its efficacy in terms of leveraging detailed video descriptions and dense modification texts. Our proposed dataset, code, and model are available at :https://github.com/OmkarThawakar/BSE-CoVR

Authors:Lintao Xiang, Xinkai Chen, Jianhuang Lai, Guangcong Wang
Title: Distilled-3DGS:Distilled 3D Gaussian Splatting
Abstract:
3D Gaussian Splatting (3DGS) has exhibited remarkable efficacy in novel view synthesis (NVS). However, it suffers from a significant drawback: achieving high-fidelity rendering typically necessitates a large number of 3D Gaussians, resulting in substantial memory consumption and storage requirements. To address this challenge, we propose the first knowledge distillation framework for 3DGS, featuring various teacher models, including vanilla 3DGS, noise-augmented variants, and dropout-regularized versions. The outputs of these teachers are aggregated to guide the optimization of a lightweight student model. To distill the hidden geometric structure, we propose a structural similarity loss to boost the consistency of spatial geometric distributions between the student and teacher model. Through comprehensive quantitative and qualitative evaluations across diverse datasets, the proposed Distilled-3DGS, a simple yet effective framework without bells and whistles, achieves promising rendering results in both rendering quality and storage efficiency compared to state-of-the-art methods. Project page: https://distilled3dgs.github.io . Code: https://github.com/lt-xiang/Distilled-3DGS .

Authors:Ken Deng, Yunhan Yang, Jingxiang Sun, Xihui Liu, Yebin Liu, Ding Liang, Yan-Pei Cao
Title: GeoSAM2: Unleashing the Power of SAM2 for 3D Part Segmentation
Abstract:
We introduce GeoSAM2, a prompt-controllable framework for 3D part segmentation that casts the task as multi-view 2D mask prediction. Given a textureless object, we render normal and point maps from predefined viewpoints and accept simple 2D prompts - clicks or boxes - to guide part selection. These prompts are processed by a shared SAM2 backbone augmented with LoRA and residual geometry fusion, enabling view-specific reasoning while preserving pretrained priors. The predicted masks are back-projected to the object and aggregated across views. Our method enables fine-grained, part-specific control without requiring text prompts, per-shape optimization, or full 3D labels. In contrast to global clustering or scale-based methods, prompts are explicit, spatially grounded, and interpretable. We achieve state-of-the-art class-agnostic performance on PartObjaverse-Tiny and PartNetE, outperforming both slow optimization-based pipelines and fast but coarse feedforward approaches. Our results highlight a new paradigm: aligning the paradigm of 3D segmentation with SAM2, leveraging interactive 2D inputs to unlock controllability and precision in object-level part understanding.

Authors:Tuo Chen, Jie Gui, Minjing Dong, Ju Jia, Lanting Fang, Jian Liu
Title: Backdooring Self-Supervised Contrastive Learning by Noisy Alignment
Abstract:
Self-supervised contrastive learning (CL) effectively learns transferable representations from unlabeled data containing images or image-text pairs but suffers vulnerability to data poisoning backdoor attacks (DPCLs). An adversary can inject poisoned images into pretraining datasets, causing compromised CL encoders to exhibit targeted misbehavior in downstream tasks. Existing DPCLs, however, achieve limited efficacy due to their dependence on fragile implicit co-occurrence between backdoor and target object and inadequate suppression of discriminative features in backdoored images. We propose Noisy Alignment (NA), a DPCL method that explicitly suppresses noise components in poisoned images. Inspired by powerful training-controllable CL attacks, we identify and extract the critical objective of noisy alignment, adapting it effectively into data-poisoning scenarios. Our method implements noisy alignment by strategically manipulating contrastive learning's random cropping mechanism, formulating this process as an image layout optimization problem with theoretically derived optimal parameters. The resulting method is simple yet effective, achieving state-of-the-art performance compared to existing DPCLs, while maintaining clean-data accuracy. Furthermore, Noisy Alignment demonstrates robustness against common backdoor defenses. Codes can be found at https://github.com/jsrdcht/Noisy-Alignment.

Authors:Tianyi Niu, Jaemin Cho, Elias Stengel-Eskin, Mohit Bansal
Title: RotBench: Evaluating Multimodal Large Language Models on Identifying Image Rotation
Abstract:
We investigate to what extent Multimodal Large Language Models (MLLMs) can accurately identify the orientation of input images rotated 0°, 90°, 180°, and 270°. This task demands robust visual reasoning capabilities to detect rotational cues and contextualize spatial relationships within images, regardless of their orientation. To evaluate MLLMs on these abilities, we introduce RotBench -- a 350-image manually-filtered benchmark comprising lifestyle, portrait, and landscape images. Despite the relatively simple nature of this task, we show that several state-of-the-art open and proprietary MLLMs, including GPT-5, o3, and Gemini-2.5-Pro, do not reliably identify rotation in input images. Providing models with auxiliary information -- including captions, depth maps, and more -- or using chain-of-thought prompting offers only small and inconsistent improvements. Our results indicate that most models are able to reliably identify right-side-up (0°) images, while certain models are able to identify upside-down (180°) images. None can reliably distinguish between 90° and 270°. Simultaneously showing the image rotated in different orientations leads to moderate performance gains for reasoning models, while a modified setup using voting improves the performance of weaker models. We further show that fine-tuning does not improve models' ability to distinguish 90° and 270° rotations, despite substantially improving the identification of 180° images. Together, these results reveal a significant gap between MLLMs' spatial reasoning capabilities and human perception in identifying rotation.

Authors:Jiacheng Ruan, Dan Jiang, Xian Gao, Ting Liu, Yuzhuo Fu, Yangyang Kang
Title: MME-SCI: A Comprehensive and Challenging Science Benchmark for Multimodal Large Language Models
Abstract:
Recently, multimodal large language models (MLLMs) have achieved significant advancements across various domains, and corresponding evaluation benchmarks have been continuously refined and improved. In this process, benchmarks in the scientific domain have played an important role in assessing the reasoning capabilities of MLLMs. However, existing benchmarks still face three key challenges: 1) Insufficient evaluation of models' reasoning abilities in multilingual scenarios; 2) Inadequate assessment of MLLMs' comprehensive modality coverage; 3) Lack of fine-grained annotation of scientific knowledge points. To address these gaps, we propose MME-SCI, a comprehensive and challenging benchmark. We carefully collected 1,019 high-quality question-answer pairs, which involve 3 distinct evaluation modes. These pairs cover four subjects, namely mathematics, physics, chemistry, and biology, and support five languages: Chinese, English, French, Spanish, and Japanese. We conducted extensive experiments on 16 open-source models and 4 closed-source models, and the results demonstrate that MME-SCI is widely challenging for existing MLLMs. For instance, under the Image-only evaluation mode, o4-mini achieved accuracy of only 52.11%, 24.73%, 36.57%, and 29.80% in mathematics, physics, chemistry, and biology, respectively, indicating a significantly higher difficulty level compared to existing benchmarks. More importantly, using MME-SCI's multilingual and fine-grained knowledge attributes, we analyzed existing models' performance in depth and identified their weaknesses in specific domains. The Data and Evaluation Code are available at https://github.com/JCruan519/MME-SCI.

Authors:Chunji Lv, Zequn Chen, Donglin Di, Weinan Zhang, Hao Li, Wei Chen, Changsheng Li
Title: PhysGM: Large Physical Gaussian Model for Feed-Forward 4D Synthesis
Abstract:
While physics-grounded 3D motion synthesis has seen significant progress, current methods face critical limitations. They typically rely on pre-reconstructed 3D Gaussian Splatting (3DGS) representations, while physics integration depends on either inflexible, manually defined physical attributes or unstable, optimization-heavy guidance from video models. To overcome these challenges, we introduce PhysGM, a feed-forward framework that jointly predicts a 3D Gaussian representation and its physical properties from a single image, enabling immediate, physical simulation and high-fidelity 4D rendering. We first establish a base model by jointly optimizing for Gaussian reconstruction and probabilistic physics prediction. The model is then refined with physically plausible reference videos to enhance both rendering fidelity and physics prediction accuracy. We adopt the Direct Preference Optimization (DPO) to align its simulations with reference videos, circumventing Score Distillation Sampling (SDS) optimization which needs back-propagating gradients through the complex differentiable simulation and rasterization. To facilitate the training, we introduce a new dataset PhysAssets of over 24,000 3D assets, annotated with physical properties and corresponding guiding videos. Experimental results demonstrate that our method effectively generates high-fidelity 4D simulations from a single image in one minute. This represents a significant speedup over prior works while delivering realistic rendering results. Our project page is at:https://hihixiaolv.github.io/PhysGM.github.io/

Authors:Valentina Corbetta, Floris Six Dijkstra, Regina Beets-Tan, Hoel Kervadec, Kristoffer Wickstrøm, Wilson Silva
Title: In-hoc Concept Representations to Regularise Deep Learning in Medical Imaging
Abstract:
Deep learning models in medical imaging often achieve strong in-distribution performance but struggle to generalise under distribution shifts, frequently relying on spurious correlations instead of clinically meaningful features. We introduce LCRReg, a novel regularisation approach that leverages Latent Concept Representations (LCRs) (e.g., Concept Activation Vectors (CAVs)) to guide models toward semantically grounded representations. LCRReg requires no concept labels in the main training set and instead uses a small auxiliary dataset to synthesise high-quality, disentangled concept examples. We extract LCRs for predefined relevant features, and incorporate a regularisation term that guides a Convolutional Neural Network (CNN) to activate within latent subspaces associated with those concepts. We evaluate LCRReg across synthetic and real-world medical tasks. On a controlled toy dataset, it significantly improves robustness to injected spurious correlations and remains effective even in multi-concept and multiclass settings. On the diabetic retinopathy binary classification task, LCRReg enhances performance under both synthetic spurious perturbations and out-of-distribution (OOD) generalisation. Compared to baselines, including multitask learning, linear probing, and post-hoc concept-based models, LCRReg offers a lightweight, architecture-agnostic strategy for improving model robustness without requiring dense concept supervision. Code is available at the following link: https://github.com/Trustworthy-AI-UU-NKI/lcr\_regularization

Authors:Paul Grimal, Michaël Soumm, Hervé Le Borgne, Olivier Ferret, Akihiro Sugimoto
Title: SAGA: Learning Signal-Aligned Distributions for Improved Text-to-Image Generation
Abstract:
State-of-the-art text-to-image models produce visually impressive results but often struggle with precise alignment to text prompts, leading to missing critical elements or unintended blending of distinct concepts. We propose a novel approach that learns a high-success-rate distribution conditioned on a target prompt, ensuring that generated images faithfully reflect the corresponding prompts. Our method explicitly models the signal component during the denoising process, offering fine-grained control that mitigates over-optimization and out-of-distribution artifacts. Moreover, our framework is training-free and seamlessly integrates with both existing diffusion and flow matching architectures. It also supports additional conditioning modalities -- such as bounding boxes -- for enhanced spatial alignment. Extensive experiments demonstrate that our approach outperforms current state-of-the-art methods. The code is available at https://github.com/grimalPaul/gsn-factory.

Authors:Sebastian Ibarra, Javier del Riego, Alessandro Catanese, Julian Cuba, Julian Cardona, Nataly Leon, Jonathan Infante, Karim Lekadir, Oliver Diaz, Richard Osuala
Title: Comparing Conditional Diffusion Models for Synthesizing Contrast-Enhanced Breast MRI from Pre-Contrast Images
Abstract:
Dynamic contrast-enhanced (DCE) MRI is essential for breast cancer diagnosis and treatment. However, its reliance on contrast agents introduces safety concerns, contraindications, increased cost, and workflow complexity. To this end, we present pre-contrast conditioned denoising diffusion probabilistic models to synthesize DCE-MRI, introducing, evaluating, and comparing a total of 22 generative model variants in both single-breast and full breast settings. Towards enhancing lesion fidelity, we introduce both tumor-aware loss functions and explicit tumor segmentation mask conditioning. Using a public multicenter dataset and comparing to respective pre-contrast baselines, we observe that subtraction image-based models consistently outperform post-contrast-based models across five complementary evaluation metrics. Apart from assessing the entire image, we also separately evaluate the region of interest, where both tumor-aware losses and segmentation mask inputs improve evaluation metrics. The latter notably enhance qualitative results capturing contrast uptake, albeit assuming access to tumor localization inputs that are not guaranteed to be available in screening settings. A reader study involving 2 radiologists and 4 MRI technologists confirms the high realism of the synthetic images, indicating an emerging clinical potential of generative contrast-enhancement. We share our codebase at https://github.com/sebastibar/conditional-diffusion-breast-MRI.

Authors:Tiago Assis, Ines P. Machado, Benjamin Zwick, Nuno C. Garcia, Reuben Dorent
Title: Deep Biomechanically-Guided Interpolation for Keypoint-Based Brain Shift Registration
Abstract:
Accurate compensation of brain shift is critical for maintaining the reliability of neuronavigation during neurosurgery. While keypoint-based registration methods offer robustness to large deformations and topological changes, they typically rely on simple geometric interpolators that ignore tissue biomechanics to create dense displacement fields. In this work, we propose a novel deep learning framework that estimates dense, physically plausible brain deformations from sparse matched keypoints. We first generate a large dataset of synthetic brain deformations using biomechanical simulations. Then, a residual 3D U-Net is trained to refine standard interpolation estimates into biomechanically guided deformations. Experiments on a large set of simulated displacement fields demonstrate that our method significantly outperforms classical interpolators, reducing by half the mean square error while introducing negligible computational overhead at inference time. Code available at: \href{https://github.com/tiago-assis/Deep-Biomechanical-Interpolator}{https://github.com/tiago-assis/Deep-Biomechanical-Interpolator}.

Authors:Yeji Park, Minyoung Lee, Sanghyuk Chun, Junsuk Choe
Title: Mitigating Cross-Image Information Leakage in LVLMs for Multi-Image Tasks
Abstract:
Large Vision-Language Models (LVLMs) demonstrate strong performance on single-image tasks. However, we observe that their performance degrades significantly when handling multi-image inputs. This occurs because visual cues from different images become entangled in the model's output. We refer to this phenomenon as cross-image information leakage. To address this issue, we propose FOCUS, a training-free and architecture-agnostic decoding strategy that mitigates cross-image information leakage during inference. FOCUS sequentially masks all but one image with random noise, guiding the model to focus on the single clean image. We repeat this process across all target images to obtain logits under partially masked contexts. These logits are aggregated and then contrastively refined using a noise-only reference input, which suppresses the leakage and yields more accurate outputs. FOCUS consistently improves performance across four multi-image benchmarks and diverse LVLM families. This demonstrates that FOCUS offers a general and practical solution for enhancing multi-image reasoning without additional training or architectural modifications.

Authors:Ali Abdari, Alex Falcon, Giuseppe Serra
Title: Hierarchical Vision-Language Retrieval of Educational Metaverse Content in Agriculture
Abstract:
Every day, a large amount of educational content is uploaded online across different areas, including agriculture and gardening. When these videos or materials are grouped meaningfully, they can make learning easier and more effective. One promising way to organize and enrich such content is through the Metaverse, which allows users to explore educational experiences in an interactive and immersive environment. However, searching for relevant Metaverse scenarios and finding those matching users' interests remains a challenging task. A first step in this direction has been done recently, but existing datasets are small and not sufficient for training advanced models. In this work, we make two main contributions: first, we introduce a new dataset containing 457 agricultural-themed virtual museums (AgriMuseums), each enriched with textual descriptions; and second, we propose a hierarchical vision-language model to represent and retrieve relevant AgriMuseums using natural language queries. In our experimental setting, the proposed method achieves up to about 62\% R@1 and 78\% MRR, confirming its effectiveness, and it also leads to improvements on existing benchmarks by up to 6\% R@1 and 11\% MRR. Moreover, an extensive evaluation validates our design choices. Code and dataset are available at https://github.com/aliabdari/Agricultural_Metaverse_Retrieval .

Authors:Dengxian Gong, Shunping Ji
Title: DeH4R: A Decoupled and Hybrid Method for Road Network Graph Extraction
Abstract:
The automated extraction of complete and precise road network graphs from remote sensing imagery remains a critical challenge in geospatial computer vision. Segmentation-based approaches, while effective in pixel-level recognition, struggle to maintain topology fidelity after vectorization postprocessing. Graph-growing methods build more topologically faithful graphs but suffer from computationally prohibitive iterative ROI cropping. Graph-generating methods first predict global static candidate road network vertices, and then infer possible edges between vertices. They achieve fast topology-aware inference, but limits the dynamic insertion of vertices. To address these challenges, we propose DeH4R, a novel hybrid model that combines graph-generating efficiency and graph-growing dynamics. This is achieved by decoupling the task into candidate vertex detection, adjacent vertex prediction, initial graph contruction, and graph expansion. This architectural innovation enables dynamic vertex (edge) insertions while retaining fast inference speed and enhancing both topology fidelity and spatial consistency. Comprehensive evaluations on CityScale and SpaceNet benchmarks demonstrate state-of-the-art (SOTA) performance. DeH4R outperforms the prior SOTA graph-growing method RNGDet++ by 4.62 APLS and 10.18 IoU on CityScale, while being approximately 10 $\times$ faster. The code will be made publicly available at https://github.com/7777777FAN/DeH4R.

Authors:Yutong Feng, Linlin Zhang, Hengyuan Cao, Yiming Chen, Xiaoduan Feng, Jian Cao, Yuxiong Wu, Bin Wang
Title: OmniTry: Virtual Try-On Anything without Masks
Abstract:
Virtual Try-ON (VTON) is a practical and widely-applied task, for which most of existing works focus on clothes. This paper presents OmniTry, a unified framework that extends VTON beyond garment to encompass any wearable objects, e.g., jewelries and accessories, with mask-free setting for more practical application. When extending to various types of objects, data curation is challenging for obtaining paired images, i.e., the object image and the corresponding try-on result. To tackle this problem, we propose a two-staged pipeline: For the first stage, we leverage large-scale unpaired images, i.e., portraits with any wearable items, to train the model for mask-free localization. Specifically, we repurpose the inpainting model to automatically draw objects in suitable positions given an empty mask. For the second stage, the model is further fine-tuned with paired images to transfer the consistency of object appearance. We observed that the model after the first stage shows quick convergence even with few paired samples. OmniTry is evaluated on a comprehensive benchmark consisting of 12 common classes of wearable objects, with both in-shop and in-the-wild images. Experimental results suggest that OmniTry shows better performance on both object localization and ID-preservation compared with existing methods. The code, model weights, and evaluation benchmark of OmniTry will be made publicly available at https://omnitry.github.io/.

Authors:Shunian Chen, Hejin Huang, Yexin Liu, Zihan Ye, Pengcheng Chen, Chenghao Zhu, Michael Guan, Rongsheng Wang, Junying Chen, Guanbin Li, Ser-Nam Lim, Harry Yang, Benyou Wang
Title: TalkVid: A Large-Scale Diversified Dataset for Audio-Driven Talking Head Synthesis
Abstract:
Audio-driven talking head synthesis has achieved remarkable photorealism, yet state-of-the-art (SOTA) models exhibit a critical failure: they lack generalization to the full spectrum of human diversity in ethnicity, language, and age groups. We argue that this generalization gap is a direct symptom of limitations in existing training data, which lack the necessary scale, quality, and diversity. To address this challenge, we introduce TalkVid, a new large-scale, high-quality, and diverse dataset containing 1244 hours of video from 7729 unique speakers. TalkVid is curated through a principled, multi-stage automated pipeline that rigorously filters for motion stability, aesthetic quality, and facial detail, and is validated against human judgments to ensure its reliability. Furthermore, we construct and release TalkVid-Bench, a stratified evaluation set of 500 clips meticulously balanced across key demographic and linguistic axes. Our experiments demonstrate that a model trained on TalkVid outperforms counterparts trained on previous datasets, exhibiting superior cross-dataset generalization. Crucially, our analysis on TalkVid-Bench reveals performance disparities across subgroups that are obscured by traditional aggregate metrics, underscoring its necessity for future research. Code and data can be found in https://github.com/FreedomIntelligence/TalkVid

Authors:Guiqin Wang, Peng Zhao, Cong Zhao, Jing Huang, Siyan Guo, Shusen Yang
Title: Generative Model-Based Feature Attention Module for Video Action Analysis
Abstract:
Video action analysis is a foundational technology within the realm of intelligent video comprehension, particularly concerning its application in Internet of Things(IoT). However, existing methodologies overlook feature semantics in feature extraction and focus on optimizing action proposals, thus these solutions are unsuitable for widespread adoption in high-performance IoT applications due to the limitations in precision, such as autonomous driving, which necessitate robust and scalable intelligent video analytics analysis. To address this issue, we propose a novel generative attention-based model to learn the relation of feature semantics. Specifically, by leveraging the differences of actions' foreground and background, our model simultaneously learns the frame- and segment-dependencies of temporal action feature semantics, which takes advantage of feature semantics in the feature extraction effectively. To evaluate the effectiveness of our model, we conduct extensive experiments on two benchmark video task, action recognition and action detection. In the context of action detection tasks, we substantiate the superiority of our approach through comprehensive validation on widely recognized datasets. Moreover, we extend the validation of the effectiveness of our proposed method to a broader task, video action recognition. Our code is available at https://github.com/Generative-Feature-Model/GAF.

Authors:Yuchen Yang, Linfeng Dong, Wei Wang, Zhihang Zhong, Xiao Sun
Title: Learnable SMPLify: A Neural Solution for Optimization-Free Human Pose Inverse Kinematics
Abstract:
In 3D human pose and shape estimation, SMPLify remains a robust baseline that solves inverse kinematics (IK) through iterative optimization. However, its high computational cost limits its practicality. Recent advances across domains have shown that replacing iterative optimization with data-driven neural networks can achieve significant runtime improvements without sacrificing accuracy. Motivated by this trend, we propose Learnable SMPLify, a neural framework that replaces the iterative fitting process in SMPLify with a single-pass regression model. The design of our framework targets two core challenges in neural IK: data construction and generalization. To enable effective training, we propose a temporal sampling strategy that constructs initialization-target pairs from sequential frames. To improve generalization across diverse motions and unseen poses, we propose a human-centric normalization scheme and residual learning to narrow the solution space. Learnable SMPLify supports both sequential inference and plug-in post-processing to refine existing image-based estimators. Extensive experiments demonstrate that our method establishes itself as a practical and simple baseline: it achieves nearly 200x faster runtime compared to SMPLify, generalizes well to unseen 3DPW and RICH, and operates in a model-agnostic manner when used as a plug-in tool on LucidAction. The code is available at https://github.com/Charrrrrlie/Learnable-SMPLify.

Authors:Zhen Qu, Xian Tao, Xinyi Gong, ShiChen Qu, Xiaopei Zhang, Xingang Wang, Fei Shen, Zhengtao Zhang, Mukesh Prasad, Guiguang Ding
Title: DictAS: A Framework for Class-Generalizable Few-Shot Anomaly Segmentation via Dictionary Lookup
Abstract:
Recent vision-language models (e.g., CLIP) have demonstrated remarkable class-generalizable ability to unseen classes in few-shot anomaly segmentation (FSAS), leveraging supervised prompt learning or fine-tuning on seen classes. However, their cross-category generalization largely depends on prior knowledge of real seen anomaly samples. In this paper, we propose a novel framework, namely DictAS, which enables a unified model to detect visual anomalies in unseen object categories without any retraining on the target data, only employing a few normal reference images as visual prompts. The insight behind DictAS is to transfer dictionary lookup capabilities to the FSAS task for unseen classes via self-supervised learning, instead of merely memorizing the normal and abnormal feature patterns from the training set. Specifically, DictAS mainly consists of three components: (1) Dictionary Construction - to simulate the index and content of a real dictionary using features from normal reference images. (2) Dictionary Lookup - to retrieve queried region features from the dictionary via a sparse lookup strategy. When a query feature cannot be retrieved, it is classified as an anomaly. (3) Query Discrimination Regularization - to enhance anomaly discrimination by making abnormal features harder to retrieve from the dictionary. To achieve this, Contrastive Query Constraint and Text Alignment Constraint are further proposed. Extensive experiments on seven public industrial and medical datasets demonstrate that DictAS consistently outperforms state-of-the-art FSAS methods.

Authors:Sukhun Ko, Dahyeon Kye, Kyle Min, Chanho Eom, Jihyong Oh
Title: FLAIR: Frequency- and Locality-Aware Implicit Neural Representations
Abstract:
Implicit Neural Representations (INRs) leverage neural networks to map coordinates to corresponding signals, enabling continuous and compact representations. This paradigm has driven significant advances in various vision tasks. However, existing INRs lack frequency selectivity, spatial localization, and sparse representations, leading to an over-reliance on redundant signal components. Consequently, they exhibit spectral bias, tending to learn low-frequency components early while struggling to capture fine high-frequency details. To address these issues, we propose FLAIR (Frequency- and Locality-Aware Implicit Neural Representations), which incorporates two key innovations. The first is RC-GAUSS, a novel activation designed for explicit frequency selection and spatial localization under the constraints of the time-frequency uncertainty principle (TFUP). The second is Wavelet-Energy-Guided Encoding (WEGE), which leverages the discrete wavelet transform (DWT) to compute energy scores and explicitly guide frequency information to the network. Our method consistently outperforms existing INRs in 2D image representation and restoration, as well as 3D reconstruction.

Authors:Shihao Dong, Yuhui Zheng, Huiying Xu, Xinzhong Zhu
Title: Multi-view Clustering via Bi-level Decoupling and Consistency Learning
Abstract:
Multi-view clustering has shown to be an effective method for analyzing underlying patterns in multi-view data. The performance of clustering can be improved by learning the consistency and complementarity between multi-view features, however, cluster-oriented representation learning is often overlooked. In this paper, we propose a novel Bi-level Decoupling and Consistency Learning framework (BDCL) to further explore the effective representation for multi-view data to enhance inter-cluster discriminability and intra-cluster compactness of features in multi-view clustering. Our framework comprises three modules: 1) The multi-view instance learning module aligns the consistent information while preserving the private features between views through reconstruction autoencoder and contrastive learning. 2) The bi-level decoupling of features and clusters enhances the discriminability of feature space and cluster space. 3) The consistency learning module treats the different views of the sample and their neighbors as positive pairs, learns the consistency of their clustering assignments, and further compresses the intra-cluster space. Experimental results on five benchmark datasets demonstrate the superiority of the proposed method compared with the SOTA methods. Our code is published on https://github.com/LouisDong95/BDCL.

Authors:Jingwen Yu, Jiayi Yang, Anjun Hu, Jiankun Wang, Ping Tan, Hong Zhang
Title: ROVER: Robust Loop Closure Verification with Trajectory Prior in Repetitive Environments
Abstract:
Loop closure detection is important for simultaneous localization and mapping (SLAM), which associates current observations with historical keyframes, achieving drift correction and global relocalization. However, a falsely detected loop can be fatal, and this is especially difficult in repetitive environments where appearance-based features fail due to the high similarity. Therefore, verification of a loop closure is a critical step in avoiding false positive detections. Existing works in loop closure verification predominantly focus on learning invariant appearance features, neglecting the prior knowledge of the robot's spatial-temporal motion cue, i.e., trajectory. In this letter, we propose ROVER, a loop closure verification method that leverages the historical trajectory as a prior constraint to reject false loops in challenging repetitive environments. For each loop candidate, it is first used to estimate the robot trajectory with pose-graph optimization. This trajectory is then submitted to a scoring scheme that assesses its compliance with the trajectory without the loop, which we refer to as the trajectory prior, to determine if the loop candidate should be accepted. Benchmark comparisons and real-world experiments demonstrate the effectiveness of the proposed method. Furthermore, we integrate ROVER into state-of-the-art SLAM systems to verify its robustness and efficiency. Our source code and self-collected dataset are available at https://github.com/jarvisyjw/ROVER.

Authors:Pei Liu, Luping Ji, Jiaxiang Gou, Xiangxiang Zeng
Title: Cross-Cancer Knowledge Transfer in WSI-based Prognosis Prediction
Abstract:
Whole-Slide Image (WSI) is an important tool for estimating cancer prognosis. Current studies generally follow a conventional cancer-specific paradigm where one cancer corresponds to one model. However, it naturally struggles to scale to rare tumors and cannot utilize the knowledge of other cancers. Although a multi-task learning-like framework has been studied recently, it usually has high demands on computational resources and needs considerable costs in iterative training on ultra-large multi-cancer WSI datasets. To this end, this paper makes a paradigm shift to knowledge transfer and presents the first preliminary yet systematic study on cross-cancer prognosis knowledge transfer in WSIs, called CROPKT. It has three major parts: (i) we curate a large dataset (UNI2-h-DSS) with 26 cancers and use it to measure the transferability of WSI-based prognostic knowledge across different cancers (including rare tumors); (ii) beyond a simple evaluation merely for benchmark, we design a range of experiments to gain deeper insights into the underlying mechanism of transferability; (iii) we further show the utility of cross-cancer knowledge transfer, by proposing a routing-based baseline approach (ROUPKT) that could often efficiently utilize the knowledge transferred from off-the-shelf models of other cancers. We hope CROPKT could serve as an inception and lay the foundation for this nascent paradigm, i.e., WSI-based prognosis prediction with cross-cancer knowledge transfer. Our source code is available at https://github.com/liupei101/CROPKT.

Authors:Shuxin Liang, Yihan Xiao, Wenlu Tang
Title: InnerGS: Internal Scenes Rendering via Factorized 3D Gaussian Splatting
Abstract:
3D Gaussian Splatting (3DGS) has recently gained popularity for efficient scene rendering by representing scenes as explicit sets of anisotropic 3D Gaussians. However, most existing work focuses primarily on modeling external surfaces. In this work, we target the reconstruction of internal scenes, which is crucial for applications that require a deep understanding of an object's interior. By directly modeling a continuous volumetric density through the inner 3D Gaussian distribution, our model effectively reconstructs smooth and detailed internal structures from sparse sliced data. Our approach eliminates the need for camera poses, is plug-and-play, and is inherently compatible with any data modalities. We provide cuda implementation at: https://github.com/Shuxin-Liang/InnerGS.

Authors:Zeynep Ozdemir, Hacer Yalim Keles, Omer Ozgur Tanriover
Title: CLoE: Curriculum Learning on Endoscopic Images for Robust MES Classification
Abstract:
Estimating disease severity from endoscopic images is essential in assessing ulcerative colitis, where the Mayo Endoscopic Subscore (MES) is widely used to grade inflammation. However, MES classification remains challenging due to label noise from inter-observer variability and the ordinal nature of the score, which standard models often ignore. We propose CLoE, a curriculum learning framework that accounts for both label reliability and ordinal structure. Image quality, estimated via a lightweight model trained on Boston Bowel Preparation Scale (BBPS) labels, is used as a proxy for annotation confidence to order samples from easy (clean) to hard (noisy). This curriculum is further combined with ResizeMix augmentation to improve robustness. Experiments on the LIMUC and HyperKvasir datasets, using both CNNs and Transformers, show that CLoE consistently improves performance over strong supervised and self-supervised baselines. For instance, ConvNeXt-Tiny reaches 82.5\% accuracy and a QWK of 0.894 on LIMUC with low computational cost. These results highlight the potential of difficulty-aware training strategies for improving ordinal classification under label uncertainty. Code will be released at https://github.com/zeynepozdemir/CLoE.

Authors:Suhang Hu, Wei Hu, Yuhang Su, Fan Zhang
Title: RISE: Enhancing VLM Image Annotation with Self-Supervised Reasoning
Abstract:
Vision-Language Models (VLMs) struggle with complex image annotation tasks, such as emotion classification and context-driven object detection, which demand sophisticated reasoning. Standard Supervised Fine-Tuning (SFT) focuses solely on annotation outcomes, ignoring underlying rationales, while Visual Reinforcement Fine-Tuning (Visual-RFT) produces inconsistent Chains of Thought (CoTs) due to the absence of high-quality, verified CoTs during pre-training. We introduce RISE (Reason-Inspire-Strengthen-Expertise), a two-stage framework to overcome these limitations. In the Reason stage (RISE-CoT), a reinforcement learning-driven "annotation-reasoning-annotation" closed-loop generates visually grounded, logically consistent CoTs by verifying their ability to reconstruct original annotations without direct leakage. The Inspire and Strengthen stage (RISE-R1) leverages a high-quality CoT subset, filtered by RISE-CoT rewards, for supervised fine-tuning, followed by reinforcement fine-tuning to produce interpretable reasoning and accurate annotations, achieving Expertise in complex visual tasks. Evaluated on complex and simple image annotation tasks, RISE-trained Qwen2-VL-2B outperforms SFT and Visual-RFT, achieving robust performance and enhanced explainability. RISE offers a self-supervised solution for advancing VLM reasoning without requiring manually annotated CoTs.Code and resources are available at: https://github.com/HSH55/RISE.

Authors:Shilong Li, Xingyuan Bu, Wenjie Wang, Jiaheng Liu, Jun Dong, Haoyang He, Hao Lu, Haozhe Zhang, Chenchen Jing, Zhen Li, Chuanhao Li, Jiayi Tian, Chenchen Zhang, Tianhao Peng, Yancheng He, Jihao Gu, Yuanxing Zhang, Jian Yang, Ge Zhang, Wenhao Huang, Wangchunshu Zhou, Zhaoxiang Zhang, Ruizhe Ding, Shilei Wen
Title: MM-BrowseComp: A Comprehensive Benchmark for Multimodal Browsing Agents
Abstract:
AI agents with advanced reasoning and tool use capabilities have demonstrated impressive performance in web browsing for deep search. While existing benchmarks such as BrowseComp evaluate these browsing abilities, they primarily focus on textual information, overlooking the prevalence of multimodal content. To bridge this gap, we introduce MM-BrowseComp, a novel benchmark comprising 224 challenging, hand-crafted questions specifically designed to assess agents' multimodal retrieval and reasoning capabilities. These questions often incorporate images in prompts, and crucial information encountered during the search and reasoning process may also be embedded within images or videos on webpages. Consequently, methods relying solely on text prove insufficient for our benchmark. Additionally, we provide a verified checklist for each question, enabling fine-grained analysis of multimodal dependencies and reasoning paths. Our comprehensive evaluation of state-of-the-art models on MM-BrowseComp reveals that even top models like OpenAI o3 with tools achieve only 29.02\% accuracy, highlighting the suboptimal multimodal capabilities and lack of native multimodal reasoning in current models.

Authors:Wenhao Hu, Zesheng Li, Haonan Zhou, Liu Liu, Xuexiang Wen, Zhizhong Su, Xi Li, Gaoang Wang
Title: IGFuse: Interactive 3D Gaussian Scene Reconstruction via Multi-Scans Fusion
Abstract:
Reconstructing complete and interactive 3D scenes remains a fundamental challenge in computer vision and robotics, particularly due to persistent object occlusions and limited sensor coverage. Multiview observations from a single scene scan often fail to capture the full structural details. Existing approaches typically rely on multi stage pipelines, such as segmentation, background completion, and inpainting or require per-object dense scanning, both of which are error-prone, and not easily scalable. We propose IGFuse, a novel framework that reconstructs interactive Gaussian scene by fusing observations from multiple scans, where natural object rearrangement between captures reveal previously occluded regions. Our method constructs segmentation aware Gaussian fields and enforces bi-directional photometric and semantic consistency across scans. To handle spatial misalignments, we introduce a pseudo-intermediate scene state for unified alignment, alongside collaborative co-pruning strategies to refine geometry. IGFuse enables high fidelity rendering and object level scene manipulation without dense observations or complex pipelines. Extensive experiments validate the framework's strong generalization to novel scene configurations, demonstrating its effectiveness for real world 3D reconstruction and real-to-simulation transfer. Our project page is available online.

Authors:Yuang Wang, Chao Wen, Haoyu Guo, Sida Peng, Minghan Qin, Hujun Bao, Xiaowei Zhou, Ruizhen Hu
Title: Precise Action-to-Video Generation Through Visual Action Prompts
Abstract:
We present visual action prompts, a unified action representation for action-to-video generation of complex high-DoF interactions while maintaining transferable visual dynamics across domains. Action-driven video generation faces a precision-generality trade-off: existing methods using text, primitive actions, or coarse masks offer generality but lack precision, while agent-centric action signals provide precision at the cost of cross-domain transferability. To balance action precision and dynamic transferability, we propose to "render" actions into precise visual prompts as domain-agnostic representations that preserve both geometric precision and cross-domain adaptability for complex actions; specifically, we choose visual skeletons for their generality and accessibility. We propose robust pipelines to construct skeletons from two interaction-rich data sources - human-object interactions (HOI) and dexterous robotic manipulation - enabling cross-domain training of action-driven generative models. By integrating visual skeletons into pretrained video generation models via lightweight fine-tuning, we enable precise action control of complex interaction while preserving the learning of cross-domain dynamics. Experiments on EgoVid, RT-1 and DROID demonstrate the effectiveness of our proposed approach. Project page: https://zju3dv.github.io/VAP/.

Authors:Rui Shao, Wei Li, Lingsen Zhang, Renshan Zhang, Zhiyang Liu, Ran Chen, Liqiang Nie
Title: Large VLM-based Vision-Language-Action Models for Robotic Manipulation: A Survey
Abstract:
Robotic manipulation, a key frontier in robotics and embodied AI, requires precise motor control and multimodal understanding, yet traditional rule-based methods fail to scale or generalize in unstructured, novel environments. In recent years, Vision-Language-Action (VLA) models, built upon Large Vision-Language Models (VLMs) pretrained on vast image-text datasets, have emerged as a transformative paradigm. This survey provides the first systematic, taxonomy-oriented review of large VLM-based VLA models for robotic manipulation. We begin by clearly defining large VLM-based VLA models and delineating two principal architectural paradigms: (1) monolithic models, encompassing single-system and dual-system designs with differing levels of integration; and (2) hierarchical models, which explicitly decouple planning from execution via interpretable intermediate representations. Building on this foundation, we present an in-depth examination of large VLM-based VLA models: (1) integration with advanced domains, including reinforcement learning, training-free optimization, learning from human videos, and world model integration; (2) synthesis of distinctive characteristics, consolidating architectural traits, operational strengths, and the datasets and benchmarks that support their development; (3) identification of promising directions, including memory mechanisms, 4D perception, efficient adaptation, multi-agent cooperation, and other emerging capabilities. This survey consolidates recent advances to resolve inconsistencies in existing taxonomies, mitigate research fragmentation, and fill a critical gap through the systematic integration of studies at the intersection of large VLMs and robotic manipulation. We provide a regularly updated project page to document ongoing progress: https://github.com/JiuTian-VL/Large-VLM-based-VLA-for-Robotic-Manipulation

Authors:Tejas Chaudhari, Akarsh J., Tanushree Dewangan, Mukul Lokhande, Santosh Kumar Vishvakarma
Title: XR-NPE: High-Throughput Mixed-precision SIMD Neural Processing Engine for Extended Reality Perception Workloads
Abstract:
This work proposes XR-NPE, a high-throughput Mixed-precision SIMD Neural Processing Engine, designed for extended reality (XR) perception workloads like visual inertial odometry (VIO), object classification, and eye gaze extraction. XR-NPE is first to support FP4, Posit (4,1), Posit (8,0), and Posit (16,1) formats, with layer adaptive hybrid-algorithmic implementation supporting ultra-low bit precision to significantly reduce memory bandwidth requirements, and accompanied by quantization-aware training for minimal accuracy loss. The proposed Reconfigurable Mantissa Multiplication and Exponent processing Circuitry (RMMEC) reduces dark silicon in the SIMD MAC compute engine, assisted by selective power gating to reduce energy consumption, providing 2.85x improved arithmetic intensity. XR-NPE achieves a maximum operating frequency of 1.72 GHz, area 0.016 mm2 , and arithmetic intensity 14 pJ at CMOS 28nm, reducing 42% area, 38% power compared to the best of state-of-the-art MAC approaches. The proposed XR-NPE based AXI-enabled Matrix-multiplication co-processor consumes 1.4x fewer LUTs, 1.77x fewer FFs, and provides 1.2x better energy efficiency compared to SoTA accelerators on VCU129. The proposed co-processor provides 23% better energy efficiency and 4% better compute density for VIO workloads. XR-NPE establishes itself as a scalable, precision-adaptive compute engine for future resource-constrained XR devices. The complete set for codes for results reproducibility are released publicly, enabling designers and researchers to readily adopt and build upon them. https://github.com/mukullokhande99/XR-NPE.

Authors:Ayaka Yasunaga, Hideo Saito, Dieter Schmalstieg, Shohei Mori
Title: IntelliCap: Intelligent Guidance for Consistent View Sampling
Abstract:
Novel view synthesis from images, for example, with 3D Gaussian splatting, has made great progress. Rendering fidelity and speed are now ready even for demanding virtual reality applications. However, the problem of assisting humans in collecting the input images for these rendering algorithms has received much less attention. High-quality view synthesis requires uniform and dense view sampling. Unfortunately, these requirements are not easily addressed by human camera operators, who are in a hurry, impatient, or lack understanding of the scene structure and the photographic process. Existing approaches to guide humans during image acquisition concentrate on single objects or neglect view-dependent material characteristics. We propose a novel situated visualization technique for scanning at multiple scales. During the scanning of a scene, our method identifies important objects that need extended image coverage to properly represent view-dependent appearance. To this end, we leverage semantic segmentation and category identification, ranked by a vision-language model. Spherical proxies are generated around highly ranked objects to guide the user during scanning. Our results show superior performance in real scenes compared to conventional view sampling strategies.

Authors:Ruru Xu, Ilkay Oksuz
Title: HierAdaptMR: Cross-Center Cardiac MRI Reconstruction with Hierarchical Feature Adapters
Abstract:
Deep learning-based cardiac MRI reconstruction faces significant domain shift challenges when deployed across multiple clinical centers with heterogeneous scanner configurations and imaging protocols. We propose HierAdaptMR, a hierarchical feature adaptation framework that addresses multi-level domain variations through parameter-efficient adapters. Our method employs Protocol-Level Adapters for sequence-specific characteristics and Center-Level Adapters for scanner-dependent variations, built upon a variational unrolling backbone. A Universal Adapter enables generalization to entirely unseen centers through stochastic training that learns center-invariant adaptations. The framework utilizes multi-scale SSIM loss with frequency domain enhancement and contrast-adaptive weighting for robust optimization. Comprehensive evaluation on the CMRxRecon2025 dataset spanning 5+ centers, 10+ scanners, and 9 modalities demonstrates superior cross-center generalization while maintaining reconstruction quality. code: https://github.com/Ruru-Xu/HierAdaptMR

Authors:Rohan Asthana, Joschua Conrad, Maurits Ortmanns, Vasileios Belagiannis
Title: Dextr: Zero-Shot Neural Architecture Search with Singular Value Decomposition and Extrinsic Curvature
Abstract:
Zero-shot Neural Architecture Search (NAS) typically optimises the architecture search process by exploiting the network or gradient properties at initialisation through zero-cost proxies. The existing proxies often rely on labelled data, which is usually unavailable in real-world settings. Furthermore, the majority of the current methods focus either on optimising the convergence and generalisation attributes or solely on the expressivity of the network architectures. To address both limitations, we first demonstrate how channel collinearity affects the convergence and generalisation properties of a neural network. Then, by incorporating the convergence, generalisation and expressivity in one approach, we propose a zero-cost proxy that omits the requirement of labelled data for its computation. In particular, we leverage the Singular Value Decomposition (SVD) of the neural network layer features and the extrinsic curvature of the network output to design our proxy. %As a result, the proposed proxy is formulated as the simplified harmonic mean of the logarithms of two key components: the sum of the inverse of the feature condition number and the extrinsic curvature of the network output. Our approach enables accurate prediction of network performance on test data using only a single label-free data sample. Our extensive evaluation includes a total of six experiments, including the Convolutional Neural Network (CNN) search space, i.e. DARTS and the Transformer search space, i.e. AutoFormer. The proposed proxy demonstrates a superior performance on multiple correlation benchmarks, including NAS-Bench-101, NAS-Bench-201, and TransNAS-Bench-101-micro; as well as on the NAS task within the DARTS and the AutoFormer search space, all while being notably efficient. The code is available at https://github.com/rohanasthana/Dextr.

Authors:Qirui Li, Guangcong Zheng, Qi Zhao, Jie Li, Bin Dong, Yiwu Yao, Xi Li
Title: Compact Attention: Exploiting Structured Spatio-Temporal Sparsity for Fast Video Generation
Abstract:
The computational demands of self-attention mechanisms pose a critical challenge for transformer-based video generation, particularly in synthesizing ultra-long sequences. Current approaches, such as factorized attention and fixed sparse patterns, fail to fully exploit the inherent spatio-temporal redundancies in video data. Through systematic analysis of video diffusion transformers (DiT), we uncover a key insight: Attention matrices exhibit structured, yet heterogeneous sparsity patterns, where specialized heads dynamically attend to distinct spatiotemporal regions (e.g., local pattern, cross-shaped pattern, or global pattern). Existing sparse attention methods either impose rigid constraints or introduce significant overhead, limiting their effectiveness. To address this, we propose Compact Attention, a hardware-aware acceleration framework featuring three innovations: 1) Adaptive tiling strategies that approximate diverse spatial interaction patterns via dynamic tile grouping, 2) Temporally varying windows that adjust sparsity levels based on frame proximity, and 3) An automated configuration search algorithm that optimizes sparse patterns while preserving critical attention pathways. Our method achieves 1.6~2.5x acceleration in attention computation on single-GPU setups while maintaining comparable visual quality with full-attention baselines. This work provides a principled approach to unlocking efficient long-form video generation through structured sparsity exploitation. Project Page: https://yo-ava.github.io/Compact-Attention.github.io/

Authors:Hongyang Chen, Shaoling Pu, Lingyu Zheng, Zhongwu Sun
Title: SEDEG:Sequential Enhancement of Decoder and Encoder's Generality for Class Incremental Learning with Small Memory
Abstract:
In incremental learning, enhancing the generality of knowledge is crucial for adapting to dynamic data inputs. It can develop generalized representations or more balanced decision boundaries, preventing the degradation of long-term knowledge over time and thus mitigating catastrophic forgetting. Some emerging incremental learning methods adopt an encoder-decoder architecture and have achieved promising results. In the encoder-decoder achitecture, improving the generalization capabilities of both the encoder and decoder is critical, as it helps preserve previously learned knowledge while ensuring adaptability and robustness to new, diverse data inputs. However, many existing continual methods focus solely on enhancing one of the two components, which limits their effectiveness in mitigating catastrophic forgetting. And these methods perform even worse in small-memory scenarios, where only a limited number of historical samples can be stored. To mitigate this limitation, we introduces SEDEG, a two-stage training framework for vision transformers (ViT), focusing on sequentially improving the generality of both Decoder and Encoder. Initially, SEDEG trains an ensembled encoder through feature boosting to learn generalized representations, which subsequently enhance the decoder's generality and balance the classifier. The next stage involves using knowledge distillation (KD) strategies to compress the ensembled encoder and develop a new, more generalized encoder. This involves using a balanced KD approach and feature KD for effective knowledge transfer. Extensive experiments on three benchmark datasets show SEDEG's superior performance, and ablation studies confirm the efficacy of its components. The code is available at https://github.com/ShaolingPu/CIL.

Authors:Ximiao Zhang, Min Xu, Xiuzhuang Zhou
Title: Towards High-Resolution Industrial Image Anomaly Detection
Abstract:
Current anomaly detection methods primarily focus on low-resolution scenarios. For high-resolution images, conventional downsampling often results in missed detections of subtle anomalous regions due to the loss of fine-grained discriminative information. Despite some progress, recent studies have attempted to improve detection resolution by employing lightweight networks or using simple image tiling and ensemble methods. However, these approaches still struggle to meet the practical demands of industrial scenarios in terms of detection accuracy and efficiency. To address the above issues, we propose HiAD, a general framework for high-resolution anomaly detection. HiAD is capable of detecting anomalous regions of varying sizes in high-resolution images under limited computational resources. Specifically, HiAD employs a dual-branch architecture that integrates anomaly cues across different scales to comprehensively capture both subtle and large-scale anomalies. Furthermore, it incorporates a multi-resolution feature fusion strategy to tackle the challenges posed by fine-grained texture variations in high-resolution images. To enhance both adaptability and efficiency, HiAD utilizes a detector pool in conjunction with various detector assignment strategies, enabling detectors to be adaptively assigned based on patch features, ensuring detection performance while effectively controlling computational costs. We conduct extensive experiments on our specifically constructed high-resolution anomaly detection benchmarks, including MVTec-HD, VisA-HD, and the real-world benchmark RealIAD-HD, demonstrating the superior performance of HiAD. The code is available at https://github.com/cnulab/HiAD.

Authors:Elena Izzo, Luca Parolari, Davide Vezzaro, Lamberto Ballan
Title: 7Bench: a Comprehensive Benchmark for Layout-guided Text-to-image Models
Abstract:
Layout-guided text-to-image models offer greater control over the generation process by explicitly conditioning image synthesis on the spatial arrangement of elements. As a result, their adoption has increased in many computer vision applications, ranging from content creation to synthetic data generation. A critical challenge is achieving precise alignment between the image, textual prompt, and layout, ensuring semantic fidelity and spatial accuracy. Although recent benchmarks assess text alignment, layout alignment remains overlooked, and no existing benchmark jointly evaluates both. This gap limits the ability to evaluate a model's spatial fidelity, which is crucial when using layout-guided generation for synthetic data, as errors can introduce noise and degrade data quality. In this work, we introduce 7Bench, the first benchmark to assess both semantic and spatial alignment in layout-guided text-to-image generation. It features text-and-layout pairs spanning seven challenging scenarios, investigating object generation, color fidelity, attribute recognition, inter-object relationships, and spatial control. We propose an evaluation protocol that builds on existing frameworks by incorporating the layout alignment score to assess spatial accuracy. Using 7Bench, we evaluate several state-of-the-art diffusion models, uncovering their respective strengths and limitations across diverse alignment tasks. The benchmark is available at https://github.com/Elizzo/7Bench.

Authors:Ronghao Lin, Shuai Shen, Weipeng Hu, Qiaolin He, Aolin Xiong, Li Huang, Haifeng Hu, Yap-peng Tan
Title: E3RG: Building Explicit Emotion-driven Empathetic Response Generation System with Multimodal Large Language Model
Abstract:
Multimodal Empathetic Response Generation (MERG) is crucial for building emotionally intelligent human-computer interactions. Although large language models (LLMs) have improved text-based ERG, challenges remain in handling multimodal emotional content and maintaining identity consistency. Thus, we propose E3RG, an Explicit Emotion-driven Empathetic Response Generation System based on multimodal LLMs which decomposes MERG task into three parts: multimodal empathy understanding, empathy memory retrieval, and multimodal response generation. By integrating advanced expressive speech and video generative models, E3RG delivers natural, emotionally rich, and identity-consistent responses without extra training. Experiments validate the superiority of our system on both zero-shot and few-shot settings, securing Top-1 position in the Avatar-based Multimodal Empathy Challenge on ACM MM 25. Our code is available at https://github.com/RH-Lin/E3RG.

Authors:Ronghao Lin, Sijie Mai, Ying Zeng, Qiaolin He, Aolin Xiong, Haifeng Hu
Title: Multi-source Multimodal Progressive Domain Adaption for Audio-Visual Deception Detection
Abstract:
This paper presents the winning approach for the 1st MultiModal Deception Detection (MMDD) Challenge at the 1st Workshop on Subtle Visual Computing (SVC). Aiming at the domain shift issue across source and target domains, we propose a Multi-source Multimodal Progressive Domain Adaptation (MMPDA) framework that transfers the audio-visual knowledge from diverse source domains to the target domain. By gradually aligning source and the target domain at both feature and decision levels, our method bridges domain shifts across diverse multimodal datasets. Extensive experiments demonstrate the effectiveness of our approach securing Top-2 place. Our approach reaches 60.43% on accuracy and 56.99\% on F1-score on competition stage 2, surpassing the 1st place team by 5.59% on F1-score and the 3rd place teams by 6.75% on accuracy. Our code is available at https://github.com/RH-Lin/MMPDA.

Authors:Friedhelm Hamann, Emil Mededovic, Fabian Gülhan, Yuli Wu, Johannes Stegmaier, Jing He, Yiqing Wang, Kexin Zhang, Lingling Li, Licheng Jiao, Mengru Ma, Hongxiang Huang, Yuhao Yan, Hongwei Ren, Xiaopeng Lin, Yulong Huang, Bojun Cheng, Se Hyun Lee, Gyu Sung Ham, Kanghan Oh, Gi Hyun Lim, Boxuan Yang, Bowen Du, Guillermo Gallego
Title: SIS-Challenge: Event-based Spatio-temporal Instance Segmentation Challenge at the CVPR 2025 Event-based Vision Workshop
Abstract:
We present an overview of the Spatio-temporal Instance Segmentation (SIS) challenge held in conjunction with the CVPR 2025 Event-based Vision Workshop. The task is to predict accurate pixel-level segmentation masks of defined object classes from spatio-temporally aligned event camera and grayscale camera data. We provide an overview of the task, dataset, challenge details and results. Furthermore, we describe the methods used by the top-5 ranking teams in the challenge. More resources and code of the participants' methods are available here: https://github.com/tub-rip/MouseSIS/blob/main/docs/challenge_results.md

Authors:Damian Machlanski, Stephanie Riley, Edward Moroshko, Kurt Butler, Panagiotis Dimitrakopoulos, Thomas Melistas, Akchunya Chanchal, Steven McDonagh, Ricardo Silva, Sotirios A. Tsaftaris
Title: A Shift in Perspective on Causality in Domain Generalization
Abstract:
The promise that causal modelling can lead to robust AI generalization has been challenged in recent work on domain generalization (DG) benchmarks. We revisit the claims of the causality and DG literature, reconciling apparent contradictions and advocating for a more nuanced theory of the role of causality in generalization. We also provide an interactive demo at https://chai-uk.github.io/ukairs25-causal-predictors/.

Authors:Peihao Li, Yan Fang, Man Liu, Huihui Bai, Anhong Wang, Yunchao Wei, Yao Zhao
Title: Harnessing Group-Oriented Consistency Constraints for Semi-Supervised Semantic Segmentation in CdZnTe Semiconductors
Abstract:
Labeling Cadmium Zinc Telluride (CdZnTe) semiconductor images is challenging due to the low-contrast defect boundaries, necessitating annotators to cross-reference multiple views. These views share a single ground truth (GT), forming a unique ``many-to-one'' relationship. This characteristic renders advanced semi-supervised semantic segmentation (SSS) methods suboptimal, as they are generally limited by a ``one-to-one'' relationship, where each image is independently associated with its GT. Such limitation may lead to error accumulation in low-contrast regions, further exacerbating confirmation bias. To address this issue, we revisit the SSS pipeline from a group-oriented perspective and propose a human-inspired solution: the Intra-group Consistency Augmentation Framework (ICAF). First, we experimentally validate the inherent consistency constraints within CdZnTe groups, establishing a group-oriented baseline using the Intra-group View Sampling (IVS). Building on this insight, we introduce the Pseudo-label Correction Network (PCN) to enhance consistency representation, which consists of two key modules. The View Augmentation Module (VAM) improves boundary details by dynamically synthesizing a boundary-aware view through the aggregation of multiple views. In the View Correction Module (VCM), this synthesized view is paired with other views for information interaction, effectively emphasizing salient regions while minimizing noise. Extensive experiments demonstrate the effectiveness of our solution for CdZnTe materials. Leveraging DeepLabV3+ with a ResNet-101 backbone as our segmentation model, we achieve a 70.6\% mIoU on the CdZnTe dataset using only 2 group-annotated data (5\textperthousand). The code is available at \href{https://github.com/pipixiapipi/ICAF}{https://github.com/pipixiapipi/ICAF}.

Authors:Cristo J. van den Berg, Frank G. te Nijenhuis, Mirre J. Blaauboer, Daan T. W. van Erp, Carlijn M. Keppels, Matthijs van der Sluijs, Bob Roozenbeek, Wim van Zwam, Sandra Cornelissen, Danny Ruijters, Ruisheng Su, Theo van Walsum
Title: CLAIRE-DSA: Fluoroscopic Image Classification for Quality Assurance of Computer Vision Pipelines in Acute Ischemic Stroke
Abstract:
Computer vision models can be used to assist during mechanical thrombectomy (MT) for acute ischemic stroke (AIS), but poor image quality often degrades performance. This work presents CLAIRE-DSA, a deep learning--based framework designed to categorize key image properties in minimum intensity projections (MinIPs) acquired during MT for AIS, supporting downstream quality control and workflow optimization. CLAIRE-DSA uses pre-trained ResNet backbone models, fine-tuned to predict nine image properties (e.g., presence of contrast, projection angle, motion artefact severity). Separate classifiers were trained on an annotated dataset containing $1,758$ fluoroscopic MinIPs. The model achieved excellent performance on all labels, with ROC-AUC ranging from $0.91$ to $0.98$, and precision ranging from $0.70$ to $1.00$. The ability of CLAIRE-DSA to identify suitable images was evaluated on a segmentation task by filtering poor quality images and comparing segmentation performance on filtered and unfiltered datasets. Segmentation success rate increased from $42%$ to $69%$, $p < 0.001$. CLAIRE-DSA demonstrates strong potential as an automated tool for accurately classifying image properties in DSA series of acute ischemic stroke patients, supporting image annotation and quality control in clinical and research applications. Source code is available at https://gitlab.com/icai-stroke-lab/wp3_neurointerventional_ai/claire-dsa.

Authors:Kangjie Chen, Yingji Zhong, Zhihao Li, Jiaqi Lin, Youyu Chen, Minghan Qin, Haoqian Wang
Title: Quantifying and Alleviating Co-Adaptation in Sparse-View 3D Gaussian Splatting
Abstract:
3D Gaussian Splatting (3DGS) has demonstrated impressive performance in novel view synthesis under dense-view settings. However, in sparse-view scenarios, despite the realistic renderings in training views, 3DGS occasionally manifests appearance artifacts in novel views. This paper investigates the appearance artifacts in sparse-view 3DGS and uncovers a core limitation of current approaches: the optimized Gaussians are overly-entangled with one another to aggressively fit the training views, which leads to a neglect of the real appearance distribution of the underlying scene and results in appearance artifacts in novel views. The analysis is based on a proposed metric, termed Co-Adaptation Score (CA), which quantifies the entanglement among Gaussians, i.e., co-adaptation, by computing the pixel-wise variance across multiple renderings of the same viewpoint, with different random subsets of Gaussians. The analysis reveals that the degree of co-adaptation is naturally alleviated as the number of training views increases. Based on the analysis, we propose two lightweight strategies to explicitly mitigate the co-adaptation in sparse-view 3DGS: (1) random gaussian dropout; (2) multiplicative noise injection to the opacity. Both strategies are designed to be plug-and-play, and their effectiveness is validated across various methods and benchmarks. We hope that our insights into the co-adaptation effect will inspire the community to achieve a more comprehensive understanding of sparse-view 3DGS.

Authors:Felix Embacher, David Holtz, Jonas Uhrig, Marius Cordts, Markus Enzweiler
Title: Neural Rendering for Sensor Adaptation in 3D Object Detection
Abstract:
Autonomous vehicles often have varying camera sensor setups, which is inevitable due to restricted placement options for different vehicle types. Training a perception model on one particular setup and evaluating it on a new, different sensor setup reveals the so-called cross-sensor domain gap, typically leading to a degradation in accuracy. In this paper, we investigate the impact of the cross-sensor domain gap on state-of-the-art 3D object detectors. To this end, we introduce CamShift, a dataset inspired by nuScenes and created in CARLA to specifically simulate the domain gap between subcompact vehicles and sport utility vehicles (SUVs). Using CamShift, we demonstrate significant cross-sensor performance degradation, identify robustness dependencies on model architecture, and propose a data-driven solution to mitigate the effect. On the one hand, we show that model architectures based on a dense Bird's Eye View (BEV) representation with backward projection, such as BEVFormer, are the most robust against varying sensor configurations. On the other hand, we propose a novel data-driven sensor adaptation pipeline based on neural rendering, which can transform entire datasets to match different camera sensor setups. Applying this approach improves performance across all investigated 3D object detectors, mitigating the cross-sensor domain gap by a large margin and reducing the need for new data collection by enabling efficient data reusability across vehicles with different sensor setups. The CamShift dataset and the sensor adaptation benchmark are available at https://dmholtz.github.io/camshift/.

Authors:Yuheng Zha, Kun Zhou, Yujia Wu, Yushu Wang, Jie Feng, Zhi Xu, Shibo Hao, Zhengzhong Liu, Eric P. Xing, Zhiting Hu
Title: Vision-G1: Towards General Vision Language Reasoning with Multi-Domain Data Curation
Abstract:
Despite their success, current training pipelines for reasoning VLMs focus on a limited range of tasks, such as mathematical and logical reasoning. As a result, these models face difficulties in generalizing their reasoning capabilities to a wide range of domains, primarily due to the scarcity of readily available and verifiable reward data beyond these narrowly defined areas. Moreover, integrating data from multiple domains is challenging, as the compatibility between domain-specific datasets remains uncertain. To address these limitations, we build a comprehensive RL-ready visual reasoning dataset from 46 data sources across 8 dimensions, covering a wide range of tasks such as infographic, mathematical, spatial, cross-image, graphic user interface, medical, common sense and general science. We propose an influence function based data selection and difficulty based filtering strategy to identify high-quality training samples from this dataset. Subsequently, we train the VLM, referred to as Vision-G1, using multi-round RL with a data curriculum to iteratively improve its visual reasoning capabilities. Our model achieves state-of-the-art performance across various visual reasoning benchmarks, outperforming similar-sized VLMs and even proprietary models like GPT-4o and Gemini-1.5 Flash. The model, code and dataset are publicly available at https://github.com/yuh-zha/Vision-G1.

Authors:Abhijay Ghildyal, Li-Yun Wang, Feng Liu
Title: WP-CLIP: Leveraging CLIP to Predict Wölfflin's Principles in Visual Art
Abstract:
Wölfflin's five principles offer a structured approach to analyzing stylistic variations for formal analysis. However, no existing metric effectively predicts all five principles in visual art. Computationally evaluating the visual aspects of a painting requires a metric that can interpret key elements such as color, composition, and thematic choices. Recent advancements in vision-language models (VLMs) have demonstrated their ability to evaluate abstract image attributes, making them promising candidates for this task. In this work, we investigate whether CLIP, pre-trained on large-scale data, can understand and predict Wölfflin's principles. Our findings indicate that it does not inherently capture such nuanced stylistic elements. To address this, we fine-tune CLIP on annotated datasets of real art images to predict a score for each principle. We evaluate our model, WP-CLIP, on GAN-generated paintings and the Pandora-18K art dataset, demonstrating its ability to generalize across diverse artistic styles. Our results highlight the potential of VLMs for automated art analysis.

Authors:Chen Qian, Danyang Li, Xinran Yu, Zheng Yang, Qiang Ma
Title: OpenMoCap: Rethinking Optical Motion Capture under Real-world Occlusion
Abstract:
Optical motion capture is a foundational technology driving advancements in cutting-edge fields such as virtual reality and film production. However, system performance suffers severely under large-scale marker occlusions common in real-world applications. An in-depth analysis identifies two primary limitations of current models: (i) the lack of training datasets accurately reflecting realistic marker occlusion patterns, and (ii) the absence of training strategies designed to capture long-range dependencies among markers. To tackle these challenges, we introduce the CMU-Occlu dataset, which incorporates ray tracing techniques to realistically simulate practical marker occlusion patterns. Furthermore, we propose OpenMoCap, a novel motion-solving model designed specifically for robust motion capture in environments with significant occlusions. Leveraging a marker-joint chain inference mechanism, OpenMoCap enables simultaneous optimization and construction of deep constraints between markers and joints. Extensive comparative experiments demonstrate that OpenMoCap consistently outperforms competing methods across diverse scenarios, while the CMU-Occlu dataset opens the door for future studies in robust motion solving. The proposed OpenMoCap is integrated into the MoSen MoCap system for practical deployment. The code is released at: https://github.com/qianchen214/OpenMoCap.

Authors:Tan-Hanh Pham, Chris Ngo
Title: Multimodal Chain of Continuous Thought for Latent-Space Reasoning in Vision-Language Models
Abstract:
Many reasoning techniques for large multimodal models adapt language model approaches, such as Chain-of-Thought (CoT) prompting, which express reasoning as word sequences. While effective for text, these methods are suboptimal for multimodal contexts, struggling to align audio, visual, and textual information dynamically. To explore an alternative paradigm, we propose the Multimodal Chain of Continuous Thought (MCOUT), which enables reasoning directly in a joint latent space rather than in natural language. In MCOUT, the reasoning state is represented as a continuous hidden vector, iteratively refined and aligned with visual and textual embeddings, inspired by human reflective cognition. We develop two variants: MCOUT-Base, which reuses the language model`s last hidden state as the continuous thought for iterative reasoning, and MCOUT-Multi, which integrates multimodal latent attention to strengthen cross-modal alignment between visual and textual features. Experiments on benchmarks including MMMU, ScienceQA, and MMStar show that MCOUT consistently improves multimodal reasoning, yielding up to 8.23% accuracy gains over strong baselines and improving BLEU scores up to 8.27% across multiple-choice and open-ended tasks. These findings highlight latent continuous reasoning as a promising direction for advancing LMMs beyond language-bound CoT, offering a scalable framework for human-like reflective multimodal inference. Code is available at https://github.com/Hanhpt23/OmniMod.

Authors:Hongsong Wang, Wanjiang Weng, Junbo Wang, Fang Zhao, Guo-Sen Xie, Xin Geng, Liang Wang
Title: Foundation Model for Skeleton-Based Human Action Understanding
Abstract:
Human action understanding serves as a foundational pillar in the field of intelligent motion perception. Skeletons serve as a modality- and device-agnostic representation for human modeling, and skeleton-based action understanding has potential applications in humanoid robot control and interaction. \RED{However, existing works often lack the scalability and generalization required to handle diverse action understanding tasks. There is no skeleton foundation model that can be adapted to a wide range of action understanding tasks}. This paper presents a Unified Skeleton-based Dense Representation Learning (USDRL) framework, which serves as a foundational model for skeleton-based human action understanding. USDRL consists of a Transformer-based Dense Spatio-Temporal Encoder (DSTE), Multi-Grained Feature Decorrelation (MG-FD), and Multi-Perspective Consistency Training (MPCT). The DSTE module adopts two parallel streams to learn temporal dynamic and spatial structure features. The MG-FD module collaboratively performs feature decorrelation across temporal, spatial, and instance domains to reduce dimensional redundancy and enhance information extraction. The MPCT module employs both multi-view and multi-modal self-supervised consistency training. The former enhances the learning of high-level semantics and mitigates the impact of low-level discrepancies, while the latter effectively facilitates the learning of informative multimodal features. We perform extensive experiments on 25 benchmarks across across 9 skeleton-based action understanding tasks, covering coarse prediction, dense prediction, and transferred prediction. Our approach significantly outperforms the current state-of-the-art methods. We hope that this work would broaden the scope of research in skeleton-based action understanding and encourage more attention to dense prediction tasks.

Authors:Jiayao Mai, Xiuyuan Lu, Kuan Dai, Shaojie Shen, Yi Zhou
Title: Temporal and Rotational Calibration for Event-Centric Multi-Sensor Systems
Abstract:
Event cameras generate asynchronous signals in response to pixel-level brightness changes, offering a sensing paradigm with theoretically microsecond-scale latency that can significantly enhance the performance of multi-sensor systems. Extrinsic calibration is a critical prerequisite for effective sensor fusion; however, the configuration that involves event cameras remains an understudied topic. In this paper, we propose a motion-based temporal and rotational calibration framework tailored for event-centric multi-sensor systems, eliminating the need for dedicated calibration targets. Our method uses as input the rotational motion estimates obtained from event cameras and other heterogeneous sensors, respectively. Different from conventional approaches that rely on event-to-frame conversion, our method efficiently estimates angular velocity from normal flow observations, which are derived from the spatio-temporal profile of event data. The overall calibration pipeline adopts a two-step approach: it first initializes the temporal offset and rotational extrinsics by exploiting kinematic correlations in the spirit of Canonical Correlation Analysis (CCA), and then refines both temporal and rotational parameters through a joint non-linear optimization using a continuous-time parametrization in SO(3). Extensive evaluations on both publicly available and self-collected datasets validate that the proposed method achieves calibration accuracy comparable to target-based methods, while exhibiting superior stability over purely CCA-based methods, and highlighting its precision, robustness and flexibility. To facilitate future research, our implementation will be made open-source. Code: https://github.com/NAIL-HNU/EvMultiCalib.

Authors:Krishna Teja Chitty-Venkata, Murali Emani, Venkatram Vishwanath
Title: LangVision-LoRA-NAS: Neural Architecture Search for Variable LoRA Rank in Vision Language Models
Abstract:
Vision Language Models (VLMs) integrate visual and text modalities to enable multimodal understanding and generation. These models typically combine a Vision Transformer (ViT) as an image encoder and a Large Language Model (LLM) for text generation. LoRA (Low-Rank Adaptation) is an efficient fine-tuning method to adapt pre-trained models to new tasks by introducing low-rank updates to their weights. While LoRA has emerged as a powerful technique for fine-tuning large models by introducing low-rank updates, current implementations assume a fixed rank, potentially limiting flexibility and efficiency across diverse tasks. This paper introduces \textit{LangVision-LoRA-NAS}, a novel framework that integrates Neural Architecture Search (NAS) with LoRA to optimize VLMs for variable-rank adaptation. Our approach leverages NAS to dynamically search for the optimal LoRA rank configuration tailored to specific multimodal tasks, balancing performance and computational efficiency. Through extensive experiments using the LLaMA-3.2-11B model on several datasets, LangVision-LoRA-NAS demonstrates notable improvement in model performance while reducing fine-tuning costs. Our Base and searched fine-tuned models on LLaMA-3.2-11B-Vision-Instruct can be found \href{https://huggingface.co/collections/krishnateja95/llama-32-11b-vision-instruct-langvision-lora-nas-6786cac480357a6a6fcc59ee}{\textcolor{blue}{here}} and the code for LangVision-LoRA-NAS can be found \href{https://github.com/krishnateja95/LangVision-NAS}{\textcolor{blue}{here}}.

Authors:Shayan Kebriti, Shahabedin Nabavi, Ali Gooya
Title: FractMorph: A Fractional Fourier-Based Multi-Domain Transformer for Deformable Image Registration
Abstract:
Deformable image registration (DIR) is a crucial and challenging technique for aligning anatomical structures in medical images and is widely applied in diverse clinical applications. However, existing approaches often struggle to capture fine-grained local deformations and large-scale global deformations simultaneously within a unified framework. We present FractMorph, a novel 3D dual-parallel transformer-based architecture that enhances cross-image feature matching through multi-domain fractional Fourier transform (FrFT) branches. Each Fractional Cross-Attention (FCA) block applies parallel FrFTs at fractional angles of $0^\circ$, $45^\circ$, $90^\circ$, along with a log-magnitude branch, to effectively extract local, semi-global, and global features at the same time. These features are fused via cross-attention between the fixed and moving image streams. A lightweight U-Net style network then predicts a dense deformation field from the transformer-enriched features. On the intra-patient ACDC cardiac MRI dataset, FractMorph achieves state-of-the-art performance with an overall Dice Similarity Coefficient (DSC) of $86.45\%$, an average per-structure DSC of $75.15\%$, and a 95th-percentile Hausdorff distance (HD95) of $1.54~\mathrm{mm}$ on our data split. FractMorph-Light, a lightweight variant of our model with only 29.6M parameters, preserves high accuracy while halving model complexity. Furthermore, we demonstrate the generality of our approach with solid performance on a cerebral atlas-to-patient dataset. Our results demonstrate that multi-domain spectral-spatial attention in transformers can robustly and efficiently model complex non-rigid deformations in medical images using a single end-to-end network, without the need for scenario-specific tuning or hierarchical multi-scale networks. The source code is available at https://github.com/shayankebriti/FractMorph.

Authors:Yaron Aloni, Rotem Shalev-Arkushin, Yonatan Shafir, Guy Tevet, Ohad Fried, Amit Haim Bermano
Title: Express4D: Expressive, Friendly, and Extensible 4D Facial Motion Generation Benchmark
Abstract:
Dynamic facial expression generation from natural language is a crucial task in Computer Graphics, with applications in Animation, Virtual Avatars, and Human-Computer Interaction. However, current generative models suffer from datasets that are either speech-driven or limited to coarse emotion labels, lacking the nuanced, expressive descriptions needed for fine-grained control, and were captured using elaborate and expensive equipment. We hence present a new dataset of facial motion sequences featuring nuanced performances and semantic annotation. The data is easily collected using commodity equipment and LLM-generated natural language instructions, in the popular ARKit blendshape format. This provides riggable motion, rich with expressive performances and labels. We accordingly train two baseline models, and evaluate their performance for future benchmarking. Using our Express4D dataset, the trained models can learn meaningful text-to-expression motion generation and capture the many-to-many mapping of the two modalities. The dataset, code, and video examples are available on our webpage: https://jaron1990.github.io/Express4D/

Authors:Ke Xing, Hanwen Liang, Dejia Xu, Yuyang Yin, Konstantinos N. Plataniotis, Yao Zhao, Yunchao Wei
Title: TiP4GEN: Text to Immersive Panorama 4D Scene Generation
Abstract:
With the rapid advancement and widespread adoption of VR/AR technologies, there is a growing demand for the creation of high-quality, immersive dynamic scenes. However, existing generation works predominantly concentrate on the creation of static scenes or narrow perspective-view dynamic scenes, falling short of delivering a truly 360-degree immersive experience from any viewpoint. In this paper, we introduce \textbf{TiP4GEN}, an advanced text-to-dynamic panorama scene generation framework that enables fine-grained content control and synthesizes motion-rich, geometry-consistent panoramic 4D scenes. TiP4GEN integrates panorama video generation and dynamic scene reconstruction to create 360-degree immersive virtual environments. For video generation, we introduce a \textbf{Dual-branch Generation Model} consisting of a panorama branch and a perspective branch, responsible for global and local view generation, respectively. A bidirectional cross-attention mechanism facilitates comprehensive information exchange between the branches. For scene reconstruction, we propose a \textbf{Geometry-aligned Reconstruction Model} based on 3D Gaussian Splatting. By aligning spatial-temporal point clouds using metric depth maps and initializing scene cameras with estimated poses, our method ensures geometric consistency and temporal coherence for the reconstructed scenes. Extensive experiments demonstrate the effectiveness of our proposed designs and the superiority of TiP4GEN in generating visually compelling and motion-coherent dynamic panoramic scenes. Our project page is at https://ke-xing.github.io/TiP4GEN/.

Authors:Jun Zeng, Yannan Huang, Elif Keles, Halil Ertugrul Aktas, Gorkem Durak, Nikhil Kumar Tomar, Quoc-Huy Trinh, Deepak Ranjan Nayak, Ulas Bagci, Debesh Jha
Title: SRMA-Mamba: Spatial Reverse Mamba Attention Network for Pathological Liver Segmentation in MRI Volumes
Abstract:
Liver Cirrhosis plays a critical role in the prognosis of chronic liver disease. Early detection and timely intervention are critical in significantly reducing mortality rates. However, the intricate anatomical architecture and diverse pathological changes of liver tissue complicate the accurate detection and characterization of lesions in clinical settings. Existing methods underutilize the spatial anatomical details in volumetric MRI data, thereby hindering their clinical effectiveness and explainability. To address this challenge, we introduce a novel Mamba-based network, SRMA-Mamba, designed to model the spatial relationships within the complex anatomical structures of MRI volumes. By integrating the Spatial Anatomy-Based Mamba module (SABMamba), SRMA-Mamba performs selective Mamba scans within liver cirrhotic tissues and combines anatomical information from the sagittal, coronal, and axial planes to construct a global spatial context representation, enabling efficient volumetric segmentation of pathological liver structures. Furthermore, we introduce the Spatial Reverse Attention module (SRMA), designed to progressively refine cirrhotic details in the segmentation map, utilizing both the coarse segmentation map and hierarchical encoding features. Extensive experiments demonstrate that SRMA-Mamba surpasses state-of-the-art methods, delivering exceptional performance in 3D pathological liver segmentation. Our code is available for public: https://github.com/JunZengz/SRMA-Mamba.

Authors:Liang Lv, Di Wang, Jing Zhang, Lefei Zhang
Title: S5: Scalable Semi-Supervised Semantic Segmentation in Remote Sensing
Abstract:
Semi-supervised semantic segmentation (S4) has advanced remote sensing (RS) analysis by leveraging unlabeled data through pseudo-labeling and consistency learning. However, existing S4 studies often rely on small-scale datasets and models, limiting their practical applicability. To address this, we propose S5, the first scalable framework for semi-supervised semantic segmentation in RS, which unlocks the potential of vast unlabeled Earth observation data typically underutilized due to costly pixel-level annotations. Built upon existing large-scale RS datasets, S5 introduces a data selection strategy that integrates entropy-based filtering and diversity expansion, resulting in the RS4P-1M dataset. Using this dataset, we systematically scales S4 methods by pre-training RS foundation models (RSFMs) of varying sizes on this extensive corpus, significantly boosting their performance on land cover segmentation and object detection tasks. Furthermore, during fine-tuning, we incorporate a Mixture-of-Experts (MoE)-based multi-dataset fine-tuning approach, which enables efficient adaptation to multiple RS benchmarks with fewer parameters. This approach improves the generalization and versatility of RSFMs across diverse RS benchmarks. The resulting RSFMs achieve state-of-the-art performance across all benchmarks, underscoring the viability of scaling semi-supervised learning for RS applications. All datasets, code, and models will be released at https://github.com/MiliLab/S5

Authors:Hanwen Cao, Haobo Lu, Xiaosen Wang, Kun He
Title: ViT-EnsembleAttack: Augmenting Ensemble Models for Stronger Adversarial Transferability in Vision Transformers
Abstract:
Ensemble-based attacks have been proven to be effective in enhancing adversarial transferability by aggregating the outputs of models with various architectures. However, existing research primarily focuses on refining ensemble weights or optimizing the ensemble path, overlooking the exploration of ensemble models to enhance the transferability of adversarial attacks. To address this gap, we propose applying adversarial augmentation to the surrogate models, aiming to boost overall generalization of ensemble models and reduce the risk of adversarial overfitting. Meanwhile, observing that ensemble Vision Transformers (ViTs) gain less attention, we propose ViT-EnsembleAttack based on the idea of model adversarial augmentation, the first ensemble-based attack method tailored for ViTs to the best of our knowledge. Our approach generates augmented models for each surrogate ViT using three strategies: Multi-head dropping, Attention score scaling, and MLP feature mixing, with the associated parameters optimized by Bayesian optimization. These adversarially augmented models are ensembled to generate adversarial examples. Furthermore, we introduce Automatic Reweighting and Step Size Enlargement modules to boost transferability. Extensive experiments demonstrate that ViT-EnsembleAttack significantly enhances the adversarial transferability of ensemble-based attacks on ViTs, outperforming existing methods by a substantial margin. Code is available at https://github.com/Trustworthy-AI-Group/TransferAttack.

Authors:Junyi Ma, Erhang Zhang, Yin-Dong Zheng, Yuchen Xie, Yixuan Zhou, Hesheng Wang
Title: EgoLoc: A Generalizable Solution for Temporal Interaction Localization in Egocentric Videos
Abstract:
Analyzing hand-object interaction in egocentric vision facilitates VR/AR applications and human-robot policy transfer. Existing research has mostly focused on modeling the behavior paradigm of interactive actions (i.e., ``how to interact''). However, the more challenging and fine-grained problem of capturing the critical moments of contact and separation between the hand and the target object (i.e., ``when to interact'') is still underexplored, which is crucial for immersive interactive experiences in mixed reality and robotic motion planning. Therefore, we formulate this problem as temporal interaction localization (TIL). Some recent works extract semantic masks as TIL references, but suffer from inaccurate object grounding and cluttered scenarios. Although current temporal action localization (TAL) methods perform well in detecting verb-noun action segments, they rely on category annotations during training and exhibit limited precision in localizing hand-object contact/separation moments. To address these issues, we propose a novel zero-shot approach dubbed EgoLoc to localize hand-object contact and separation timestamps in egocentric videos. EgoLoc introduces hand-dynamics-guided sampling to generate high-quality visual prompts. It exploits the vision-language model to identify contact/separation attributes, localize specific timestamps, and provide closed-loop feedback for further refinement. EgoLoc eliminates the need for object masks and verb-noun taxonomies, leading to generalizable zero-shot implementation. Comprehensive experiments on the public dataset and our novel benchmarks demonstrate that EgoLoc achieves plausible TIL for egocentric videos. It is also validated to effectively facilitate multiple downstream applications in egocentric vision and robotic manipulation tasks. Code and relevant data will be released at https://github.com/IRMVLab/EgoLoc.

Authors:Ziye Wang, Minghang Yu, Chunyan Xu, Zhen Cui
Title: Semantic Discrepancy-aware Detector for Image Forgery Identification
Abstract:
With the rapid advancement of image generation techniques, robust forgery detection has become increasingly imperative to ensure the trustworthiness of digital media. Recent research indicates that the learned semantic concepts of pre-trained models are critical for identifying fake images. However, the misalignment between the forgery and semantic concept spaces hinders the model's forgery detection performance. To address this problem, we propose a novel Semantic Discrepancy-aware Detector (SDD) that leverages reconstruction learning to align the two spaces at a fine-grained visual level. By exploiting the conceptual knowledge embedded in the pre-trained vision language model, we specifically design a semantic token sampling module to mitigate the space shifts caused by features irrelevant to both forgery traces and semantic concepts. A concept-level forgery discrepancy learning module, built upon a visual reconstruction paradigm, is proposed to strengthen the interaction between visual semantic concepts and forgery traces, effectively capturing discrepancies under the concepts' guidance. Finally, the low-level forgery feature enhancemer integrates the learned concept level forgery discrepancies to minimize redundant forgery information. Experiments conducted on two standard image forgery datasets demonstrate the efficacy of the proposed SDD, which achieves superior results compared to existing methods. The code is available at https://github.com/wzy1111111/SSD.

Authors:Xiaobin Deng, Changyu Diao, Min Li, Ruohan Yu, Duanqing Xu
Title: Improving Densification in 3D Gaussian Splatting for High-Fidelity Rendering
Abstract:
Although 3D Gaussian Splatting (3DGS) has achieved impressive performance in real-time rendering, its densification strategy often results in suboptimal reconstruction quality. In this work, we present a comprehensive improvement to the densification pipeline of 3DGS from three perspectives: when to densify, how to densify, and how to mitigate overfitting. Specifically, we propose an Edge-Aware Score to effectively select candidate Gaussians for splitting. We further introduce a Long-Axis Split strategy that reduces geometric distortions introduced by clone and split operations. To address overfitting, we design a set of techniques, including Recovery-Aware Pruning, Multi-step Update, and Growth Control. Our method enhances rendering fidelity without introducing additional training or inference overhead, achieving state-of-the-art performance with fewer Gaussians.

Authors:Hongliang Wei, Xianqi Zhang, Xingtao Wang, Xiaopeng Fan, Debin Zhao
Title: Region-Level Context-Aware Multimodal Understanding
Abstract:
Despite significant progress, existing research on Multimodal Large Language Models (MLLMs) mainly focuses on general visual understanding, overlooking the ability to integrate textual context associated with objects for a more context-aware multimodal understanding -- an ability we refer to as Region-level Context-aware Multimodal Understanding (RCMU). To address this limitation, we first formulate the RCMU task, which requires models to respond to user instructions by integrating both image content and textual information of regions or objects. To equip MLLMs with RCMU capabilities, we propose Region-level Context-aware Visual Instruction Tuning (RCVIT), which incorporates object information into the model input and enables the model to utilize bounding box coordinates to effectively associate objects' visual content with their textual information. To address the lack of datasets, we introduce the RCMU dataset, a large-scale visual instruction tuning dataset that covers multiple RCMU tasks. We also propose RC\&P-Bench, a comprehensive benchmark that can evaluate the performance of MLLMs in RCMU and multimodal personalized understanding tasks. Additionally, we propose a reference-free evaluation metric to perform a comprehensive and fine-grained evaluation of the region-level context-aware image descriptions. By performing RCVIT on Qwen2-VL models with the RCMU dataset, we developed RC-Qwen2-VL models. Experimental results indicate that RC-Qwen2-VL models not only achieve outstanding performance on multiple RCMU tasks but also demonstrate successful applications in multimodal RAG and personalized conversation. Our data, model and benchmark are available at https://github.com/hongliang-wei/RC-MLLM

Authors:Quan Chen, Xiong Yang, Rongfeng Lu, Qianyu Zhang, Yu Liu, Xiaofei Zhou, Bolun Zheng
Title: WXSOD: A Benchmark for Robust Salient Object Detection in Adverse Weather Conditions
Abstract:
Salient object detection (SOD) in complex environments remains a challenging research topic. Most existing methods perform well in natural scenes with negligible noise, and tend to leverage multi-modal information (e.g., depth and infrared) to enhance accuracy. However, few studies are concerned with the damage of weather noise on SOD performance due to the lack of dataset with pixel-wise annotations. To bridge this gap, this paper introduces a novel Weather-eXtended Salient Object Detection (WXSOD) dataset. It consists of 14,945 RGB images with diverse weather noise, along with the corresponding ground truth annotations and weather labels. To verify algorithm generalization, WXSOD contains two test sets, i.e., a synthesized test set and a real test set. The former is generated by adding weather noise to clean images, while the latter contains real-world weather noise. Based on WXSOD, we propose an efficient baseline, termed Weather-aware Feature Aggregation Network (WFANet), which adopts a fully supervised two-branch architecture. Specifically, the weather prediction branch mines weather-related deep features, while the saliency detection branch fuses semantic features extracted from the backbone with weather features for SOD. Comprehensive comparisons against 17 SOD methods shows that our WFANet achieves superior performance on WXSOD. The code and benchmark results will be made publicly available at https://github.com/C-water/WXSOD

Authors:Butian Xiong, Rong Liu, Kenneth Xu, Meida Chen, Andrew Feng
Title: Splat Feature Solver
Abstract:
Feature lifting has emerged as a crucial component in 3D scene understanding, enabling the attachment of rich image feature descriptors (e.g., DINO, CLIP) onto splat-based 3D representations. The core challenge lies in optimally assigning rich general attributes to 3D primitives while addressing the inconsistency issues from multi-view images. We present a unified, kernel- and feature-agnostic formulation of the feature lifting problem as a sparse linear inverse problem, which can be solved efficiently in closed form. Our approach admits a provable upper bound on the global optimal error under convex losses for delivering high quality lifted features. To address inconsistencies and noise in multi-view observations, we introduce two complementary regularization strategies to stabilize the solution and enhance semantic fidelity. Tikhonov Guidance enforces numerical stability through soft diagonal dominance, while Post-Lifting Aggregation filters noisy inputs via feature clustering. Extensive experiments demonstrate that our approach achieves state-of-the-art performance on open-vocabulary 3D segmentation benchmarks, outperforming training-based, grouping-based, and heuristic-forward baselines while producing the lifted features in minutes. Code is available at \href{https://github.com/saliteta/splat-distiller.git}{\textbf{github}}. We also have a \href{https://splat-distiller.pages.dev/}

Authors:Nikolaos-Antonios Ypsilantis, Kaifeng Chen, André Araujo, Ondřej Chum
Title: Infusing fine-grained visual knowledge to Vision-Language Models
Abstract:
Large-scale contrastive pre-training produces powerful Vision-and-Language Models (VLMs) capable of generating representations (embeddings) effective for a wide variety of visual and multimodal tasks. However, these pretrained embeddings remain suboptimal for fine-grained open-set visual retrieval, where state-of-the-art results require fine-tuning the vision encoder using annotated domain-specific samples. Naively performing such fine-tuning typically leads to catastrophic forgetting, severely diminishing the model's general-purpose visual and cross-modal capabilities. In this work, we propose a fine-tuning method explicitly designed to achieve optimal balance between fine-grained domain adaptation and retention of the pretrained VLM's broad multimodal knowledge. Drawing inspiration from continual learning literature, we systematically analyze standard regularization techniques aimed at knowledge retention and propose an efficient and effective combination strategy. Additionally, we address the commonly overlooked yet critical aspects of validation set design and hyperparameter tuning to ensure reproducibility and robust generalization across datasets and pretrained models. We extensively evaluate our method on both fine-grained and coarse-grained image-image and image-text retrieval benchmarks. Our approach consistently achieves strong results, notably retaining the visual-text alignment without utilizing any text data or the original text encoder during fine-tuning. Code and model checkpoints: https://github.com/nikosips/infusing .

Authors:Seungju Yoo, Hyuk Kwon, Joong-Won Hwang, Kibok Lee
Title: Automated Model Evaluation for Object Detection via Prediction Consistency and Reliablity
Abstract:
Recent advances in computer vision have made training object detectors more efficient and effective; however, assessing their performance in real-world applications still relies on costly manual annotation. To address this limitation, we develop an automated model evaluation (AutoEval) framework for object detection. We propose Prediction Consistency and Reliability (PCR), which leverages the multiple candidate bounding boxes that conventional detectors generate before non-maximum suppression (NMS). PCR estimates detection performance without ground-truth labels by jointly measuring 1) the spatial consistency between boxes before and after NMS, and 2) the reliability of the retained boxes via the confidence scores of overlapping boxes. For a more realistic and scalable evaluation, we construct a meta-dataset by applying image corruptions of varying severity. Experimental results demonstrate that PCR yields more accurate performance estimates than existing AutoEval methods, and the proposed meta-dataset covers a wider range of detection performance. The code is available at https://github.com/YonseiML/autoeval-det.

Authors:Durgesh Kumar Singh, Qing Cao, Sarina Thomas, Ahcène Boubekki, Robert Jenssen, Michael Kampffmeyer
Title: WiseLVAM: A Novel Framework For Left Ventricle Automatic Measurements
Abstract:
Clinical guidelines recommend performing left ventricular (LV) linear measurements in B-mode echocardiographic images at the basal level -- typically at the mitral valve leaflet tips -- and aligned perpendicular to the LV long axis along a virtual scanline (SL). However, most automated methods estimate landmarks directly from B-mode images for the measurement task, where even small shifts in predicted points along the LV walls can lead to significant measurement errors, reducing their clinical reliability. A recent semi-automatic method, EnLVAM, addresses this limitation by constraining landmark prediction to a clinician-defined SL and training on generated Anatomical Motion Mode (AMM) images to predict LV landmarks along the same. To enable full automation, a contour-aware SL placement approach is proposed in this work, in which the LV contour is estimated using a weakly supervised B-mode landmark detector. SL placement is then performed by inferring the LV long axis and the basal level- mimicking clinical guidelines. Building on this foundation, we introduce \textit{WiseLVAM} -- a novel, fully automated yet manually adaptable framework for automatically placing the SL and then automatically performing the LV linear measurements in the AMM mode. \textit{WiseLVAM} utilizes the structure-awareness from B-mode images and the motion-awareness from AMM mode to enhance robustness and accuracy with the potential to provide a practical solution for the routine clinical application. The source code is publicly available at https://github.com/SFI-Visual-Intelligence/wiselvam.git.

Authors:Yuanbin Fu, Liang Li, Xiaojie Guo
Title: PEdger++: Practical Edge Detection via Assembling Cross Information
Abstract:
Edge detection serves as a critical foundation for numerous computer vision applications, including object detection, semantic segmentation, and image editing, by extracting essential structural cues that define object boundaries and salient edges. To be viable for broad deployment across devices with varying computational capacities, edge detectors shall balance high accuracy with low computational complexity. While deep learning has evidently improved accuracy, they often suffer from high computational costs, limiting their applicability on resource-constrained devices. This paper addresses the challenge of achieving that balance: \textit{i.e.}, {how to efficiently capture discriminative features without relying on large-size and sophisticated models}. We propose PEdger++, a collaborative learning framework designed to reduce computational costs and model sizes while improving edge detection accuracy. The core principle of our PEdger++ is that cross-information derived from heterogeneous architectures, diverse training moments, and multiple parameter samplings, is beneficial to enhance learning from an ensemble perspective. Extensive experimental results on the BSDS500, NYUD and Multicue datasets demonstrate the effectiveness of our approach, both quantitatively and qualitatively, showing clear improvements over existing methods. We also provide multiple versions of the model with varying computational requirements, highlighting PEdger++'s adaptability with respect to different resource constraints. Codes are accessible at https://github.com/ForawardStar/EdgeDetectionviaPEdgerPlus/.

Authors:Seunghun Lee, Jiwan Seo, Jeonghoon Kim, Siwon Kim, Haeun Yun, Hyogyeong Jeon, Wonhyeok Choi, Jaehoon Jeong, Zane Durante, Sang Hyun Park, Sunghoon Im
Title: SAMDWICH: Moment-aware Video-text Alignment for Referring Video Object Segmentation
Abstract:
Referring Video Object Segmentation (RVOS) aims to segment and track objects in videos based on natural language expressions, requiring precise alignment between visual content and textual queries. However, existing methods often suffer from semantic misalignment, largely due to indiscriminate frame sampling and supervision of all visible objects during training -- regardless of their actual relevance to the expression. To address this, we introduce a moment-aware RVOS framework named SAMDWICH, along with a newly annotated dataset, MeViS-M, built upon the challenging MeViS benchmark. We manually annotate temporal moments indicating when each object is referred to by the expression, enabling semantically grounded supervision that strengthens video-text alignment. SAMDWICH leverages these aligned text-to-clip pairs to guide training, significantly enhancing referential understanding. Building upon this framework, we propose Moment-guided Dual-path Propagation (MDP), a moment-aware propagation strategy that improves both object grounding and tracking by training on both relevant and irrelevant frames through a moment-centric memory mechanism. In addition, we introduce Object-level Selective Supervision (OSS), an object-level filtering strategy that supervises only the objects temporally aligned with the expression in each training clip. This selective supervision reduces semantic noise and reinforces language-conditioned learning. Extensive experiments show that SAMDWICH achieves state-of-the-art performance on challenging MeViS benchmark, particularly excelling in complex scenarios involving diverse expressions.

Authors:Pallavi Jain, Diego Marcos, Dino Ienco, Roberto Interdonato, Tristan Berchoux
Title: TimeSenCLIP: A Vision-Language Model for Remote Sensing Using Single-Pixel Time Series
Abstract:
Vision-language models have shown significant promise in remote sensing applications, particularly for land-use and land-cover (LULC) via zero-shot classification and retrieval. However, current approaches face two key challenges: reliance on large spatial tiles that increase computational cost, and dependence on text-based supervision, which is often not readily available. In this work, we present TimeSenCLIP, a lightweight framework that reevaluate the role of spatial context by evaluating the effectiveness of a single pixel by leveraging its temporal and spectral dimensions, for classifying LULC and ecosystem types. By leveraging spectral and temporal information from Sentinel-2 imagery and cross-view learning with geo-tagged ground-level photos, we minimises the need for caption-based training while preserving semantic alignment between overhead (satellite) and ground perspectives. Our approach is grounded in the LUCAS and Sen4Map datasets, and evaluated on classification tasks including LULC, crop type, and ecosystem type. We demonstrate that single pixel inputs, when combined with temporal and spectral cues, are sufficient for thematic mapping, offering a scalable and efficient alternative for large-scale remote sensing applications. Code is available at https://github.com/pallavijain-pj/TimeSenCLIP

Authors:Runhao Zeng, Jiaqi Mao, Minghao Lai, Minh Hieu Phan, Yanjie Dong, Wei Wang, Qi Chen, Xiping Hu
Title: OVG-HQ: Online Video Grounding with Hybrid-modal Queries
Abstract:
Video grounding (VG) task focuses on locating specific moments in a video based on a query, usually in text form. However, traditional VG struggles with some scenarios like streaming video or queries using visual cues. To fill this gap, we present a new task named Online Video Grounding with Hybrid-modal Queries (OVG-HQ), which enables online segment localization using text, images, video segments, and their combinations. This task poses two new challenges: limited context in online settings and modality imbalance during training, where dominant modalities overshadow weaker ones. To address these, we propose OVG-HQ-Unify, a unified framework featuring a Parametric Memory Block (PMB) that retain previously learned knowledge to enhance current decision and a cross-modal distillation strategy that guides the learning of non-dominant modalities. This design enables a single model to effectively handle hybrid-modal queries. Due to the lack of suitable datasets, we construct QVHighlights-Unify, an expanded dataset with multi-modal queries. Besides, since offline metrics overlook prediction timeliness, we adapt them to the online setting, introducing oR@n, IoU=m, and online mean Average Precision (omAP) to evaluate both accuracy and efficiency. Experiments show that our OVG-HQ-Unify outperforms existing models, offering a robust solution for online, hybrid-modal video grounding. Source code and datasets are available at https://github.com/maojiaqi2324/OVG-HQ.

Authors:Quanwei Hu, Yinggan Tang, Xuguang Zhang
Title: Large Kernel Modulation Network for Efficient Image Super-Resolution
Abstract:
Image super-resolution (SR) in resource-constrained scenarios demands lightweight models balancing performance and latency. Convolutional neural networks (CNNs) offer low latency but lack non-local feature capture, while Transformers excel at non-local modeling yet suffer slow inference. To address this trade-off, we propose the Large Kernel Modulation Network (LKMN), a pure CNN-based model. LKMN has two core components: Enhanced Partial Large Kernel Block (EPLKB) and Cross-Gate Feed-Forward Network (CGFN). The EPLKB utilizes channel shuffle to boost inter-channel interaction, incorporates channel attention to focus on key information, and applies large kernel strip convolutions on partial channels for non-local feature extraction with reduced complexity. The CGFN dynamically adjusts discrepancies between input, local, and non-local features via a learnable scaling factor, then employs a cross-gate strategy to modulate and fuse these features, enhancing their complementarity. Extensive experiments demonstrate that our method outperforms existing state-of-the-art (SOTA) lightweight SR models while balancing quality and efficiency. Specifically, LKMN-L achieves 0.23 dB PSNR improvement over DAT-light on the Manga109 dataset at $\times$4 upscale, with nearly $\times$4.8 times faster. Codes are in the supplementary materials. The code is available at https://github.com/Supereeeee/LKMN.

Authors:Ming Cheng, Tong Wu, Jiazhen Hu, Jiaying Gong, Hoda Eldardiry
Title: VideoAVE: A Multi-Attribute Video-to-Text Attribute Value Extraction Dataset and Benchmark Models
Abstract:
Attribute Value Extraction (AVE) is important for structuring product information in e-commerce. However, existing AVE datasets are primarily limited to text-to-text or image-to-text settings, lacking support for product videos, diverse attribute coverage, and public availability. To address these gaps, we introduce VideoAVE, the first publicly available video-to-text e-commerce AVE dataset across 14 different domains and covering 172 unique attributes. To ensure data quality, we propose a post-hoc CLIP-based Mixture of Experts filtering system (CLIP-MoE) to remove the mismatched video-product pairs, resulting in a refined dataset of 224k training data and 25k evaluation data. In order to evaluate the usability of the dataset, we further establish a comprehensive benchmark by evaluating several state-of-the-art video vision language models (VLMs) under both attribute-conditioned value prediction and open attribute-value pair extraction tasks. Our results analysis reveals that video-to-text AVE remains a challenging problem, particularly in open settings, and there is still room for developing more advanced VLMs capable of leveraging effective temporal information. The dataset and benchmark code for VideoAVE are available at: https://github.com/gjiaying/VideoAVE

Authors:Haojie Zhang, Yixiong Liang, Hulin Kuang, Lihui Cen, Zhe Qu, Yigang Cen, Min Zeng, Shichao Kan
Title: Contrastive Regularization over LoRA for Multimodal Biomedical Image Incremental Learning
Abstract:
Multimodal Biomedical Image Incremental Learning (MBIIL) is essential for handling diverse tasks and modalities in the biomedical domain, as training separate models for each modality or task significantly increases inference costs. Existing incremental learning methods focus on task expansion within a single modality, whereas MBIIL seeks to train a unified model incrementally across modalities. The MBIIL faces two challenges: I) How to preserve previously learned knowledge during incremental updates? II) How to effectively leverage knowledge acquired from existing modalities to support new modalities? To address these challenges, we propose MSLoRA-CR, a method that fine-tunes Modality-Specific LoRA modules while incorporating Contrastive Regularization to enhance intra-modality knowledge sharing and promote inter-modality knowledge differentiation. Our approach builds upon a large vision-language model (LVLM), keeping the pretrained model frozen while incrementally adapting new LoRA modules for each modality or task. Experiments on the incremental learning of biomedical images demonstrate that MSLoRA-CR outperforms both the state-of-the-art (SOTA) approach of training separate models for each modality and the general incremental learning method (incrementally fine-tuning LoRA). Specifically, MSLoRA-CR achieves a 1.88% improvement in overall performance compared to unconstrained incremental learning methods while maintaining computational efficiency. Our code is publicly available at https://github.com/VentusAislant/MSLoRA_CR.

Authors:Yang Zhao, Tao Wang, Said Elhadi
Title: Data-driven RF Tomography via Cross-modal Sensing and Continual Learning
Abstract:
Data-driven radio frequency (RF) tomography has demonstrated significant potential for underground target detection, due to the penetrative nature of RF signals through soil. However, it is still challenging to achieve accurate and robust performance in dynamic environments. In this work, we propose a data-driven radio frequency tomography (DRIFT) framework with the following key components to reconstruct cross section images of underground root tubers, even with significant changes in RF signals. First, we design a cross-modal sensing system with RF and visual sensors, and propose to train an RF tomography deep neural network (DNN) model following the cross-modal learning approach. Then we propose to apply continual learning to automatically update the DNN model, once environment changes are detected in a dynamic environment. Experimental results show that our approach achieves an average equivalent diameter error of 2.29 cm, 23.2% improvement upon the state-of-the-art approach. Our DRIFT code and dataset are publicly available on https://github.com/Data-driven-RTI/DRIFT.

Authors:Shilei Wang, Gong Cheng, Pujian Lai, Dong Gao, Junwei Han
Title: Multi-State Tracker: Enhancing Efficient Object Tracking via Multi-State Specialization and Interaction
Abstract:
Efficient trackers achieve faster runtime by reducing computational complexity and model parameters. However, this efficiency often compromises the expense of weakened feature representation capacity, thus limiting their ability to accurately capture target states using single-layer features. To overcome this limitation, we propose Multi-State Tracker (MST), which utilizes highly lightweight state-specific enhancement (SSE) to perform specialized enhancement on multi-state features produced by multi-state generation (MSG) and aggregates them in an interactive and adaptive manner using cross-state interaction (CSI). This design greatly enhances feature representation while incurring minimal computational overhead, leading to improved tracking robustness in complex environments. Specifically, the MSG generates multiple state representations at multiple stages during feature extraction, while SSE refines them to highlight target-specific features. The CSI module facilitates information exchange between these states and ensures the integration of complementary features. Notably, the introduced SSE and CSI modules adopt a highly lightweight hidden state adaptation-based state space duality (HSA-SSD) design, incurring only 0.1 GFLOPs in computation and 0.66 M in parameters. Experimental results demonstrate that MST outperforms all previous efficient trackers across multiple datasets, significantly improving tracking accuracy and robustness. In particular, it shows excellent runtime performance, with an AO score improvement of 4.5\% over the previous SOTA efficient tracker HCAT on the GOT-10K dataset. The code is available at https://github.com/wsumel/MST.

Authors:Qian Liang, Zichong Chen, Yang Zhou, Hui Huang
Title: SPG: Style-Prompting Guidance for Style-Specific Content Creation
Abstract:
Although recent text-to-image (T2I) diffusion models excel at aligning generated images with textual prompts, controlling the visual style of the output remains a challenging task. In this work, we propose Style-Prompting Guidance (SPG), a novel sampling strategy for style-specific image generation. SPG constructs a style noise vector and leverages its directional deviation from unconditional noise to guide the diffusion process toward the target style distribution. By integrating SPG with Classifier-Free Guidance (CFG), our method achieves both semantic fidelity and style consistency. SPG is simple, robust, and compatible with controllable frameworks like ControlNet and IPAdapter, making it practical and widely applicable. Extensive experiments demonstrate the effectiveness and generality of our approach compared to state-of-the-art methods. Code is available at https://github.com/Rumbling281441/SPG.

Authors:Hongjin Fang, Daniel Reisenbüchler, Kenji Ikemura, Mert R. Sabuncu, Yihe Yang, Ruining Deng
Title: CoFi: A Fast Coarse-to-Fine Few-Shot Pipeline for Glomerular Basement Membrane Segmentation
Abstract:
Accurate segmentation of the glomerular basement membrane (GBM) in electron microscopy (EM) images is fundamental for quantifying membrane thickness and supporting the diagnosis of various kidney diseases. While supervised deep learning approaches achieve high segmentation accuracy, their reliance on extensive pixel-level annotation renders them impractical for clinical workflows. Few-shot learning can reduce this annotation burden but often struggles to capture the fine structural details necessary for GBM analysis. In this study, we introduce CoFi, a fast and efficient coarse-to-fine few-shot segmentation pipeline designed for GBM delineation in EM images. CoFi first trains a lightweight neural network using only three annotated images to produce an initial coarse segmentation mask. This mask is then automatically processed to generate high-quality point prompts with morphology-aware pruning, which are subsequently used to guide SAM in refining the segmentation. The proposed method achieved exceptional GBM segmentation performance, with a Dice coefficient of 74.54% and an inference speed of 1.9 FPS. We demonstrate that CoFi not only alleviates the annotation and computational burdens associated with conventional methods, but also achieves accurate and reliable segmentation results. The pipeline's speed and annotation efficiency make it well-suited for research and hold strong potential for clinical applications in renal pathology. The pipeline is publicly available at: https://github.com/ddrrnn123/CoFi.

Authors:Augustine X. W. Lee, Pak-Hei Yeung, Jagath C. Rajapakse
Title: Subcortical Masks Generation in CT Images via Ensemble-Based Cross-Domain Label Transfer
Abstract:
Subcortical segmentation in neuroimages plays an important role in understanding brain anatomy and facilitating computer-aided diagnosis of traumatic brain injuries and neurodegenerative disorders. However, training accurate automatic models requires large amounts of labelled data. Despite the availability of publicly available subcortical segmentation datasets for Magnetic Resonance Imaging (MRI), a significant gap exists for Computed Tomography (CT). This paper proposes an automatic ensemble framework to generate high-quality subcortical segmentation labels for CT scans by leveraging existing MRI-based models. We introduce a robust ensembling pipeline to integrate them and apply it to unannotated paired MRI-CT data, resulting in a comprehensive CT subcortical segmentation dataset. Extensive experiments on multiple public datasets demonstrate the superior performance of our proposed framework. Furthermore, using our generated CT dataset, we train segmentation models that achieve improved performance on related segmentation tasks. To facilitate future research, we make our source code, generated dataset, and trained models publicly available at https://github.com/SCSE-Biomedical-Computing-Group/CT-Subcortical-Segmentation, marking the first open-source release for CT subcortical segmentation to the best of our knowledge.

Authors:Yinggan Tang, Quanwei Hu
Title: LKFMixer: Exploring Large Kernel Feature For Efficient Image Super-Resolution
Abstract:
The success of self-attention (SA) in Transformer demonstrates the importance of non-local information to image super-resolution (SR), but the huge computing power required makes it difficult to implement lightweight models. To solve this problem, we propose a pure convolutional neural network (CNN) model, LKFMixer, which utilizes large convolutional kernel to simulate the ability of self-attention to capture non-local features. Specifically, we increase the kernel size to 31 to obtain the larger receptive field as possible, and reduce the parameters and computations by coordinate decomposition. Meanwhile, a spatial feature modulation block (SFMB) is designed to enhance the focus of feature information on both spatial and channel dimension. In addition, by introducing feature selection block (FSB), the model can adaptively adjust the weights between local features and non-local features. Extensive experiments show that the proposed LKFMixer family outperform other state-of-the-art (SOTA) methods in terms of SR performance and reconstruction quality. In particular, compared with SwinIR-light on Manga109 dataset, LKFMixer-L achieves 0.6dB PSNR improvement at $\times$4 scale, while the inference speed is $\times$5 times faster. The code is available at https://github.com/Supereeeee/LKFMixer.

Authors:Xinyi Wang, Smaranda Tasmoc, Nantheera Anantrasirichai, Angeliki Katsenou
Title: Guiding WaveMamba with Frequency Maps for Image Debanding
Abstract:
Compression at low bitrates in modern codecs often introduces banding artifacts, especially in smooth regions such as skies. These artifacts degrade visual quality and are common in user-generated content due to repeated transcoding. We propose a banding restoration method that employs the Wavelet State Space Model and a frequency masking map to preserve high-frequency details. Furthermore, we provide a benchmark of open-source banding restoration methods and evaluate their performance on two public banding image datasets. Experimentation on the available datasets suggests that the proposed post-processing approach effectively suppresses banding compared to the state-of-the-art method (a DBI value of 0.082 on BAND-2k) while preserving image textures. Visual inspections of the results confirm this. Code and supplementary material are available at: https://github.com/xinyiW915/Debanding-PCS2025.

Authors:Qiangong Zhou, Zhiting Wang, Mingyou Yao, Zongyang Liu
Title: Allen: Rethinking MAS Design through Step-Level Policy Autonomy
Abstract:
We introduce a new Multi-Agent System (MAS) - Allen, designed to address two core challenges in current MAS design: (1) improve system's policy autonomy, empowering agents to dynamically adapt their behavioral strategies, and (2) achieving the trade-off between collaborative efficiency, task supervision, and human oversight in complex network topologies. Our core insight is to redefine the basic execution unit in the MAS, allowing agents to autonomously form different patterns by combining these units. We have constructed a four-tier state architecture (Task, Stage, Agent, Step) to constrain system behavior from both task-oriented and execution-oriented perspectives. This achieves a unification of topological optimization and controllable progress. Allen grants unprecedented Policy Autonomy, while making a trade-off for the controllability of the collaborative structure. The project code has been open source at: https://github.com/motern88/Allen

Authors:Junjie Wang, Keyu Chen, Yulin Li, Bin Chen, Hengshuang Zhao, Xiaojuan Qi, Zhuotao Tian
Title: Generalized Decoupled Learning for Enhancing Open-Vocabulary Dense Perception
Abstract:
Dense visual perception tasks have been constrained by their reliance on predefined categories, limiting their applicability in real-world scenarios where visual concepts are unbounded. While Vision-Language Models (VLMs) like CLIP have shown promise in open-vocabulary tasks, their direct application to dense perception often leads to suboptimal performance due to limitations in local feature representation. In this work, we present our observation that CLIP's image tokens struggle to effectively aggregate information from spatially or semantically related regions, resulting in features that lack local discriminability and spatial consistency. To address this issue, we propose DeCLIP, a novel framework that enhances CLIP by decoupling the self-attention module to obtain ``content'' and ``context'' features respectively. \revise{The context features are enhanced by jointly distilling semantic correlations from Vision Foundation Models (VFMs) and object integrity cues from diffusion models, thereby enhancing spatial consistency. In parallel, the content features are aligned with image crop representations and constrained by region correlations from VFMs to improve local discriminability. Extensive experiments demonstrate that DeCLIP establishes a solid foundation for open-vocabulary dense perception, consistently achieving state-of-the-art performance across a broad spectrum of tasks, including 2D detection and segmentation, 3D instance segmentation, video instance segmentation, and 6D object pose estimation.} Code is available at https://github.com/xiaomoguhz/DeCLIP

Authors:MengChao Wang, Qiang Wang, Fan Jiang, Mu Xu
Title: FantasyTalking2: Timestep-Layer Adaptive Preference Optimization for Audio-Driven Portrait Animation
Abstract:
Recent advances in audio-driven portrait animation have demonstrated impressive capabilities. However, existing methods struggle to align with fine-grained human preferences across multiple dimensions, such as motion naturalness, lip-sync accuracy, and visual quality. This is due to the difficulty of optimizing among competing preference objectives, which often conflict with one another, and the scarcity of large-scale, high-quality datasets with multidimensional preference annotations. To address these, we first introduce Talking-Critic, a multimodal reward model that learns human-aligned reward functions to quantify how well generated videos satisfy multidimensional expectations. Leveraging this model, we curate Talking-NSQ, a large-scale multidimensional human preference dataset containing 410K preference pairs. Finally, we propose Timestep-Layer adaptive multi-expert Preference Optimization (TLPO), a novel framework for aligning diffusion-based portrait animation models with fine-grained, multidimensional preferences. TLPO decouples preferences into specialized expert modules, which are then fused across timesteps and network layers, enabling comprehensive, fine-grained enhancement across all dimensions without mutual interference. Experiments demonstrate that Talking-Critic significantly outperforms existing methods in aligning with human preference ratings. Meanwhile, TLPO achieves substantial improvements over baseline models in lip-sync accuracy, motion naturalness, and visual quality, exhibiting superior performance in both qualitative and quantitative evaluations. Ours project page: https://fantasy-amap.github.io/fantasy-talking2/

Authors:Abhinav Kumar, Yuliang Guo, Zhihao Zhang, Xinyu Huang, Liu Ren, Xiaoming Liu
Title: CHARM3R: Towards Unseen Camera Height Robust Monocular 3D Detector
Abstract:
Monocular 3D object detectors, while effective on data from one ego camera height, struggle with unseen or out-of-distribution camera heights. Existing methods often rely on Plucker embeddings, image transformations or data augmentation. This paper takes a step towards this understudied problem by first investigating the impact of camera height variations on state-of-the-art (SoTA) Mono3D models. With a systematic analysis on the extended CARLA dataset with multiple camera heights, we observe that depth estimation is a primary factor influencing performance under height variations. We mathematically prove and also empirically observe consistent negative and positive trends in mean depth error of regressed and ground-based depth models, respectively, under camera height changes. To mitigate this, we propose Camera Height Robust Monocular 3D Detector (CHARM3R), which averages both depth estimates within the model. CHARM3R improves generalization to unseen camera heights by more than $45\%$, achieving SoTA performance on the CARLA dataset. Codes and Models at https://github.com/abhi1kumar/CHARM3R

Authors:Haomin Zhang, Kristin Qi, Shuxin Yang, Zihao Chen, Chaofan Ding, Xinhan Di
Title: LD-LAudio-V1: Video-to-Long-Form-Audio Generation Extension with Dual Lightweight Adapters
Abstract:
Generating high-quality and temporally synchronized audio from video content is essential for video editing and post-production tasks, enabling the creation of semantically aligned audio for silent videos. However, most existing approaches focus on short-form audio generation for video segments under 10 seconds or rely on noisy datasets for long-form video-to-audio zsynthesis. To address these limitations, we introduce LD-LAudio-V1, an extension of state-of-the-art video-to-audio models and it incorporates dual lightweight adapters to enable long-form audio generation. In addition, we release a clean and human-annotated video-to-audio dataset that contains pure sound effects without noise or artifacts. Our method significantly reduces splicing artifacts and temporal inconsistencies while maintaining computational efficiency. Compared to direct fine-tuning with short training videos, LD-LAudio-V1 achieves significant improvements across multiple metrics: $FD_{\text{passt}}$ 450.00 $\rightarrow$ 327.29 (+27.27%), $FD_{\text{panns}}$ 34.88 $\rightarrow$ 22.68 (+34.98%), $FD_{\text{vgg}}$ 3.75 $\rightarrow$ 1.28 (+65.87%), $KL_{\text{panns}}$ 2.49 $\rightarrow$ 2.07 (+16.87%), $KL_{\text{passt}}$ 1.78 $\rightarrow$ 1.53 (+14.04%), $IS_{\text{panns}}$ 4.17 $\rightarrow$ 4.30 (+3.12%), $IB_{\text{score}}$ 0.25 $\rightarrow$ 0.28 (+12.00%), $Energy\Delta10\text{ms}$ 0.3013 $\rightarrow$ 0.1349 (+55.23%), $Energy\Delta10\text{ms(vs.GT)}$ 0.0531 $\rightarrow$ 0.0288 (+45.76%), and $Sem.\,Rel.$ 2.73 $\rightarrow$ 3.28 (+20.15%). Our dataset aims to facilitate further research in long-form video-to-audio generation and is available at https://github.com/deepreasonings/long-form-video2audio.

Authors:Wentao Mo, Qingchao Chen, Yuxin Peng, Siyuan Huang, Yang Liu
Title: Advancing 3D Scene Understanding with MV-ScanQA Multi-View Reasoning Evaluation and TripAlign Pre-training Dataset
Abstract:
The advancement of 3D vision-language (3D VL) learning is hindered by several limitations in existing 3D VL datasets: they rarely necessitate reasoning beyond a close range of objects in single viewpoint, and annotations often link instructions to single objects, missing richer contextual alignments between multiple objects. This significantly curtails the development of models capable of deep, multi-view 3D scene understanding over distant objects. To address these challenges, we introduce MV-ScanQA, a novel 3D question answering dataset where 68% of questions explicitly require integrating information from multiple views (compared to less than 7% in existing datasets), thereby rigorously testing multi-view compositional reasoning. To facilitate the training of models for such demanding scenarios, we present TripAlign dataset, a large-scale and low-cost 2D-3D-language pre-training corpus containing 1M <2D view, set of 3D objects, text> triplets that explicitly aligns groups of contextually related objects with text, providing richer, view-grounded multi-object multimodal alignment signals than previous single-object annotations. We further develop LEGO, a baseline method for the multi-view reasoning challenge in MV-ScanQA, transferring knowledge from pre-trained 2D LVLMs to 3D domain with TripAlign. Empirically, LEGO pre-trained on TripAlign achieves state-of-the-art performance not only on the proposed MV-ScanQA, but also on existing benchmarks for 3D dense captioning and question answering. Datasets and code are available at https://matthewdm0816.github.io/tripalign-mvscanqa.

Authors:Kelin Yu, Sheng Zhang, Harshit Soora, Furong Huang, Heng Huang, Pratap Tokekar, Ruohan Gao
Title: GenFlowRL: Shaping Rewards with Generative Object-Centric Flow in Visual Reinforcement Learning
Abstract:
Recent advances have shown that video generation models can enhance robot learning by deriving effective robot actions through inverse dynamics. However, these methods heavily depend on the quality of generated data and struggle with fine-grained manipulation due to the lack of environment feedback. While video-based reinforcement learning improves policy robustness, it remains constrained by the uncertainty of video generation and the challenges of collecting large-scale robot datasets for training diffusion models. To address these limitations, we propose GenFlowRL, which derives shaped rewards from generated flow trained from diverse cross-embodiment datasets. This enables learning generalizable and robust policies from diverse demonstrations using low-dimensional, object-centric features. Experiments on 10 manipulation tasks, both in simulation and real-world cross-embodiment evaluations, demonstrate that GenFlowRL effectively leverages manipulation features extracted from generated object-centric flow, consistently achieving superior performance across diverse and challenging scenarios. Our Project Page: https://colinyu1.github.io/genflowrl

Authors:Wenbin An, Jiahao Nie, Yaqiang Wu, Feng Tian, Shijian Lu, Qinghua Zheng
Title: Empowering Multimodal LLMs with External Tools: A Comprehensive Survey
Abstract:
By integrating the perception capabilities of multimodal encoders with the generative power of Large Language Models (LLMs), Multimodal Large Language Models (MLLMs), exemplified by GPT-4V, have achieved great success in various multimodal tasks, pointing toward a promising pathway to artificial general intelligence. Despite this progress, the limited quality of multimodal data, poor performance on many complex downstream tasks, and inadequate evaluation protocols continue to hinder the reliability and broader applicability of MLLMs across diverse domains. Inspired by the human ability to leverage external tools for enhanced reasoning and problem-solving, augmenting MLLMs with external tools (e.g., APIs, expert models, and knowledge bases) offers a promising strategy to overcome these challenges. In this paper, we present a comprehensive survey on leveraging external tools to enhance MLLM performance. Our discussion is structured along four key dimensions about external tools: (1) how they can facilitate the acquisition and annotation of high-quality multimodal data; (2) how they can assist in improving MLLM performance on challenging downstream tasks; (3) how they enable comprehensive and accurate evaluation of MLLMs; (4) the current limitations and future directions of tool-augmented MLLMs. Through this survey, we aim to underscore the transformative potential of external tools in advancing MLLM capabilities, offering a forward-looking perspective on their development and applications. The project page of this paper is publicly available athttps://github.com/Lackel/Awesome-Tools-for-MLLMs.

Authors:Yoli Shavit, Yosi Keller
Title: Relative Pose Regression with Pose Auto-Encoders: Enhancing Accuracy and Data Efficiency for Retail Applications
Abstract:
Accurate camera localization is crucial for modern retail environments, enabling enhanced customer experiences, streamlined inventory management, and autonomous operations. While Absolute Pose Regression (APR) from a single image offers a promising solution, approaches that incorporate visual and spatial scene priors tend to achieve higher accuracy. Camera Pose Auto-Encoders (PAEs) have recently been introduced to embed such priors into APR. In this work, we extend PAEs to the task of Relative Pose Regression (RPR) and propose a novel re-localization scheme that refines APR predictions using PAE-based RPR, without requiring additional storage of images or pose data. We first introduce PAE-based RPR and establish its effectiveness by comparing it with image-based RPR models of equivalent architectures. We then demonstrate that our refinement strategy, driven by a PAE-based RPR, enhances APR localization accuracy on indoor benchmarks. Notably, our method is shown to achieve competitive performance even when trained with only 30% of the data, substantially reducing the data collection burden for retail deployment. Our code and pre-trained models are available at: https://github.com/yolish/camera-pose-auto-encoders

Authors:Wenqi Guo, Shan Du
Title: VSF: Simple, Efficient, and Effective Negative Guidance in Few-Step Image Generation Models By Value Sign Flip
Abstract:
We introduce Value Sign Flip (VSF), a simple and efficient method for incorporating negative prompt guidance in few-step diffusion and flow-matching image generation models. Unlike existing approaches such as classifier-free guidance (CFG), NASA, and NAG, VSF dynamically suppresses undesired content by flipping the sign of attention values from negative prompts. Our method requires only small computational overhead and integrates effectively with MMDiT-style architectures such as Stable Diffusion 3.5 Turbo, as well as cross-attention-based models like Wan. We validate VSF on challenging datasets with complex prompt pairs and demonstrate superior performance in both static image and video generation tasks. Experimental results show that VSF significantly improves negative prompt adherence compared to prior methods in few-step models, and even CFG in non-few-step models, while maintaining competitive image quality. Code and ComfyUI node are available in https://github.com/weathon/VSF/tree/main.

Authors:Jianlong Wu, Wei Liu, Ye Liu, Meng Liu, Liqiang Nie, Zhouchen Lin, Chang Wen Chen
Title: A Survey on Video Temporal Grounding with Multimodal Large Language Model
Abstract:
The recent advancement in video temporal grounding (VTG) has significantly enhanced fine-grained video understanding, primarily driven by multimodal large language models (MLLMs). With superior multimodal comprehension and reasoning abilities, VTG approaches based on MLLMs (VTG-MLLMs) are gradually surpassing traditional fine-tuned methods. They not only achieve competitive performance but also excel in generalization across zero-shot, multi-task, and multi-domain settings. Despite extensive surveys on general video-language understanding, comprehensive reviews specifically addressing VTG-MLLMs remain scarce. To fill this gap, this survey systematically examines current research on VTG-MLLMs through a three-dimensional taxonomy: 1) the functional roles of MLLMs, highlighting their architectural significance; 2) training paradigms, analyzing strategies for temporal reasoning and task adaptation; and 3) video feature processing techniques, which determine spatiotemporal representation effectiveness. We further discuss benchmark datasets, evaluation protocols, and summarize empirical findings. Finally, we identify existing limitations and propose promising research directions. For additional resources and details, readers are encouraged to visit our repository at https://github.com/ki-lw/Awesome-MLLMs-for-Video-Temporal-Grounding.

Authors:Chaoyue Song, Xiu Li, Fan Yang, Zhongcong Xu, Jiacheng Wei, Fayao Liu, Jiashi Feng, Guosheng Lin, Jianfeng Zhang
Title: Puppeteer: Rig and Animate Your 3D Models
Abstract:
Modern interactive applications increasingly demand dynamic 3D content, yet the transformation of static 3D models into animated assets constitutes a significant bottleneck in content creation pipelines. While recent advances in generative AI have revolutionized static 3D model creation, rigging and animation continue to depend heavily on expert intervention. We present Puppeteer, a comprehensive framework that addresses both automatic rigging and animation for diverse 3D objects. Our system first predicts plausible skeletal structures via an auto-regressive transformer that introduces a joint-based tokenization strategy for compact representation and a hierarchical ordering methodology with stochastic perturbation that enhances bidirectional learning capabilities. It then infers skinning weights via an attention-based architecture incorporating topology-aware joint attention that explicitly encodes inter-joint relationships based on skeletal graph distances. Finally, we complement these rigging advances with a differentiable optimization-based animation pipeline that generates stable, high-fidelity animations while being computationally more efficient than existing approaches. Extensive evaluations across multiple benchmarks demonstrate that our method significantly outperforms state-of-the-art techniques in both skeletal prediction accuracy and skinning quality. The system robustly processes diverse 3D content, ranging from professionally designed game assets to AI-generated shapes, producing temporally coherent animations that eliminate the jittering issues common in existing methods.

Authors:Mengyuan Liu, Xinshun Wang, Zhongbin Fang, Deheng Ye, Xia Li, Tao Tang, Songtao Wu, Xiangtai Li, Ming-Hsuan Yang
Title: Human-in-Context: Unified Cross-Domain 3D Human Motion Modeling via In-Context Learning
Abstract:
This paper aims to model 3D human motion across domains, where a single model is expected to handle multiple modalities, tasks, and datasets. Existing cross-domain models often rely on domain-specific components and multi-stage training, which limits their practicality and scalability. To overcome these challenges, we propose a new setting to train a unified cross-domain model through a single process, eliminating the need for domain-specific components and multi-stage training. We first introduce Pose-in-Context (PiC), which leverages in-context learning to create a pose-centric cross-domain model. While PiC generalizes across multiple pose-based tasks and datasets, it encounters difficulties with modality diversity, prompting strategy, and contextual dependency handling. We thus propose Human-in-Context (HiC), an extension of PiC that broadens generalization across modalities, tasks, and datasets. HiC combines pose and mesh representations within a unified framework, expands task coverage, and incorporates larger-scale datasets. Additionally, HiC introduces a max-min similarity prompt sampling strategy to enhance generalization across diverse domains and a network architecture with dual-branch context injection for improved handling of contextual dependencies. Extensive experimental results show that HiC performs better than PiC in terms of generalization, data scale, and performance across a wide range of domains. These results demonstrate the potential of HiC for building a unified cross-domain 3D human motion model with improved flexibility and scalability. The source codes and models are available at https://github.com/BradleyWang0416/Human-in-Context.

Authors:Antoine Labatie, Michael Vaccaro, Nina Lardiere, Anatol Garioud, Nicolas Gonthier
Title: MAESTRO: Masked AutoEncoders for Multimodal, Multitemporal, and Multispectral Earth Observation Data
Abstract:
Self-supervised learning holds great promise for remote sensing, but standard self-supervised methods must be adapted to the unique characteristics of Earth observation data. We take a step in this direction by conducting a comprehensive benchmark of fusion strategies and reconstruction target normalization schemes for multimodal, multitemporal, and multispectral Earth observation data. Based on our findings, we propose MAESTRO, a novel adaptation of the Masked Autoencoder, featuring optimized fusion strategies and a tailored target normalization scheme that introduces a spectral prior as a self-supervisory signal. Evaluated on four Earth observation datasets, MAESTRO sets a new state-of-the-art on tasks that strongly rely on multitemporal dynamics, while remaining highly competitive on tasks dominated by a single mono-temporal modality. Code to reproduce all our experiments is available at https://github.com/ignf/maestro.

Authors:Yushi Lan, Yihang Luo, Fangzhou Hong, Shangchen Zhou, Honghua Chen, Zhaoyang Lyu, Shuai Yang, Bo Dai, Chen Change Loy, Xingang Pan
Title: STream3R: Scalable Sequential 3D Reconstruction with Causal Transformer
Abstract:
We present STream3R, a novel approach to 3D reconstruction that reformulates pointmap prediction as a decoder-only Transformer problem. Existing state-of-the-art methods for multi-view reconstruction either depend on expensive global optimization or rely on simplistic memory mechanisms that scale poorly with sequence length. In contrast, STream3R introduces an streaming framework that processes image sequences efficiently using causal attention, inspired by advances in modern language modeling. By learning geometric priors from large-scale 3D datasets, STream3R generalizes well to diverse and challenging scenarios, including dynamic scenes where traditional methods often fail. Extensive experiments show that our method consistently outperforms prior work across both static and dynamic scene benchmarks. Moreover, STream3R is inherently compatible with LLM-style training infrastructure, enabling efficient large-scale pretraining and fine-tuning for various downstream 3D tasks. Our results underscore the potential of causal Transformer models for online 3D perception, paving the way for real-time 3D understanding in streaming environments. More details can be found in our project page: https://nirvanalan.github.io/projects/stream3r.

Authors:Lingen Li, Guangzhi Wang, Zhaoyang Zhang, Yaowei Li, Xiaoyu Li, Qi Dou, Jinwei Gu, Tianfan Xue, Ying Shan
Title: ToonComposer: Streamlining Cartoon Production with Generative Post-Keyframing
Abstract:
Traditional cartoon and anime production involves keyframing, inbetweening, and colorization stages, which require intensive manual effort. Despite recent advances in AI, existing methods often handle these stages separately, leading to error accumulation and artifacts. For instance, inbetweening approaches struggle with large motions, while colorization methods require dense per-frame sketches. To address this, we introduce ToonComposer, a generative model that unifies inbetweening and colorization into a single post-keyframing stage. ToonComposer employs a sparse sketch injection mechanism to provide precise control using keyframe sketches. Additionally, it uses a cartoon adaptation method with the spatial low-rank adapter to tailor a modern video foundation model to the cartoon domain while keeping its temporal prior intact. Requiring as few as a single sketch and a colored reference frame, ToonComposer excels with sparse inputs, while also supporting multiple sketches at any temporal location for more precise motion control. This dual capability reduces manual workload and improves flexibility, empowering artists in real-world scenarios. To evaluate our model, we further created PKBench, a benchmark featuring human-drawn sketches that simulate real-world use cases. Our evaluation demonstrates that ToonComposer outperforms existing methods in visual quality, motion consistency, and production efficiency, offering a superior and more flexible solution for AI-assisted cartoon production.

Authors:Sushant Gautam, Vajira Thambawita, Michael Riegler, PÃ¥l Halvorsen, Steven Hicks
Title: Medico 2025: Visual Question Answering for Gastrointestinal Imaging
Abstract:
The Medico 2025 challenge addresses Visual Question Answering (VQA) for Gastrointestinal (GI) imaging, organized as part of the MediaEval task series. The challenge focuses on developing Explainable Artificial Intelligence (XAI) models that answer clinically relevant questions based on GI endoscopy images while providing interpretable justifications aligned with medical reasoning. It introduces two subtasks: (1) answering diverse types of visual questions using the Kvasir-VQA-x1 dataset, and (2) generating multimodal explanations to support clinical decision-making. The Kvasir-VQA-x1 dataset, created from 6,500 images and 159,549 complex question-answer (QA) pairs, serves as the benchmark for the challenge. By combining quantitative performance metrics and expert-reviewed explainability assessments, this task aims to advance trustworthy Artificial Intelligence (AI) in medical image analysis. Instructions, data access, and an updated guide for participation are available in the official competition repository: https://github.com/simula/MediaEval-Medico-2025

Authors:Yibo Zhang, Li Zhang, Rui Ma, Nan Cao
Title: TexVerse: A Universe of 3D Objects with High-Resolution Textures
Abstract:
We introduce TexVerse, a large-scale 3D dataset featuring high-resolution textures. While recent advances in large-scale 3D datasets have enhanced high-resolution geometry generation, creating high-resolution textures end-to-end remains underexplored due to the lack of suitable datasets. TexVerse fills this gap with a curated collection of over 858K unique high-resolution 3D models sourced from Sketchfab, including more than 158K models with physically based rendering (PBR) materials. Each model encompasses all of its high-resolution variants, bringing the total to 1.6M 3D instances. TexVerse also includes specialized subsets: TexVerse-Skeleton, with 69K rigged models, and TexVerse-Animation, with 54K animated models, both preserving original skeleton and animation data uploaded by the user. We also provide detailed model annotations describing overall characteristics, structural components, and intricate features. TexVerse offers a high-quality data resource with wide-ranging potential applications in texture synthesis, PBR material development, animation, and various 3D vision and graphics tasks.

Authors:Harold Haodong Chen, Haojian Huang, Qifeng Chen, Harry Yang, Ser-Nam Lim
Title: Hierarchical Fine-grained Preference Optimization for Physically Plausible Video Generation
Abstract:
Recent advancements in video generation have enabled the creation of high-quality, visually compelling videos. However, generating videos that adhere to the laws of physics remains a critical challenge for applications requiring realism and accuracy. In this work, we propose PhysHPO, a novel framework for Hierarchical Cross-Modal Direct Preference Optimization, to tackle this challenge by enabling fine-grained preference alignment for physically plausible video generation. PhysHPO optimizes video alignment across four hierarchical granularities: a) Instance Level, aligning the overall video content with the input prompt; b) State Level, ensuring temporal consistency using boundary frames as anchors; c) Motion Level, modeling motion trajectories for realistic dynamics; and d) Semantic Level, maintaining logical consistency between narrative and visuals. Recognizing that real-world videos are the best reflections of physical phenomena, we further introduce an automated data selection pipeline to efficiently identify and utilize "good data" from existing large-scale text-video datasets, thereby eliminating the need for costly and time-intensive dataset construction. Extensive experiments on both physics-focused and general capability benchmarks demonstrate that PhysHPO significantly improves physical plausibility and overall video generation quality of advanced models. To the best of our knowledge, this is the first work to explore fine-grained preference alignment and data selection for video generation, paving the way for more realistic and human-preferred video generation paradigms.

Authors:Tajamul Ashraf, Iqra Altaf Gillani
Title: Generalizable Federated Learning using Client Adaptive Focal Modulation
Abstract:
Federated learning (FL) has proven essential for privacy-preserving, collaborative training across distributed clients. Our prior work, TransFed, introduced a robust transformer-based FL framework that leverages a learn-to-adapt hypernetwork to generate personalized focal modulation layers per client, outperforming traditional methods in non-IID and cross-domain settings. In this extended version, we propose AdaptFED, where we deepen the investigation of focal modulation in generalizable FL by incorporating: (1) a refined adaptation strategy that integrates task-aware client embeddings to personalize modulation dynamics further, (2) enhanced theoretical bounds on adaptation performance, and (3) broader empirical validation across additional modalities, including time-series and multilingual data. We also introduce an efficient variant of TransFed that reduces server-client communication overhead via low-rank hypernetwork conditioning, enabling scalable deployment in resource-constrained environments. Extensive experiments on eight diverse datasets reaffirm the superiority of our method over state-of-the-art baselines, particularly in source-free and cross-task federated setups. Our findings not only extend the capabilities of focal modulation in FL but also pave the way for more adaptive, scalable, and generalizable transformer-based federated systems. The code is available at http://github.com/Tajamul21/TransFed

Authors:Zhangxuan Gu, Zhengwen Zeng, Zhenyu Xu, Xingran Zhou, Shuheng Shen, Yunfei Liu, Beitong Zhou, Changhua Meng, Tianyu Xia, Weizhi Chen, Yue Wen, Jingya Dou, Fei Tang, Jinzhen Lin, Yulin Liu, Zhenlin Guo, Yichen Gong, Heng Jia, Changlong Gao, Yuan Guo, Yong Deng, Zhenyu Guo, Liang Chen, Weiqiang Wang
Title: UI-Venus Technical Report: Building High-performance UI Agents with RFT
Abstract:
We present UI-Venus, a native UI agent that takes only screenshots as input based on a multimodal large language model. UI-Venus achieves SOTA performance on both UI grounding and navigation tasks using only several hundred thousand high-quality training samples through reinforcement finetune (RFT) based on Qwen2.5-VL. Specifically, the 7B and 72B variants of UI-Venus obtain 94.1% / 50.8% and 95.3% / 61.9% on the standard grounding benchmarks, i.e., Screenspot-V2 / Pro, surpassing the previous SOTA baselines including open-source GTA1 and closed-source UI-TARS-1.5. To show UI-Venus's summary and planing ability, we also evaluate it on the AndroidWorld, an online UI navigation arena, on which our 7B and 72B variants achieve 49.1% and 65.9% success rate, also beating existing models. To achieve this, we introduce carefully designed reward functions for both UI grounding and navigation tasks and corresponding efficient data cleaning strategies. To further boost navigation performance, we propose Self-Evolving Trajectory History Alignment & Sparse Action Enhancement that refine historical reasoning traces and balances the distribution of sparse but critical actions, leading to more coherent planning and better generalization in complex UI tasks. Our contributions include the publish of SOTA open-source UI agents, comprehensive data cleaning protocols and a novel self-evolving framework for improving navigation performance, which encourage further research and development in the community. Code is available at https://github.com/inclusionAI/UI-Venus.

Authors:Zhenning Shi, Zizheng Yan, Yuhang Yu, Clara Xue, Jingyu Zhuang, Qi Zhang, Jinwei Chen, Tao Li, Qingnan Fan
Title: Ultra-High-Definition Reference-Based Landmark Image Super-Resolution with Generative Diffusion Prior
Abstract:
Reference-based Image Super-Resolution (RefSR) aims to restore a low-resolution (LR) image by utilizing the semantic and texture information from an additional reference high-resolution (reference HR) image. Existing diffusion-based RefSR methods are typically built upon ControlNet, which struggles to effectively align the information between the LR image and the reference HR image. Moreover, current RefSR datasets suffer from limited resolution and poor image quality, resulting in the reference images lacking sufficient fine-grained details to support high-quality restoration. To overcome the limitations above, we propose TriFlowSR, a novel framework that explicitly achieves pattern matching between the LR image and the reference HR image. Meanwhile, we introduce Landmark-4K, the first RefSR dataset for Ultra-High-Definition (UHD) landmark scenarios. Considering the UHD scenarios with real-world degradation, in TriFlowSR, we design a Reference Matching Strategy to effectively match the LR image with the reference HR image. Experimental results show that our approach can better utilize the semantic and texture information of the reference HR image compared to previous methods. To the best of our knowledge, we propose the first diffusion-based RefSR pipeline for ultra-high definition landmark scenarios under real-world degradation. Our code and model will be available at https://github.com/nkicsl/TriFlowSR.

Authors:Lixin Jia, Zhiqing Guo, Gaobo Yang, Liejun Wang, Keqin Li
Title: Forgery Guided Learning Strategy with Dual Perception Network for Deepfake Cross-domain Detection
Abstract:
The emergence of deepfake technology has introduced a range of societal problems, garnering considerable attention. Current deepfake detection methods perform well on specific datasets, but exhibit poor performance when applied to datasets with unknown forgery techniques. Moreover, as the gap between emerging and traditional forgery techniques continues to widen, cross-domain detection methods that rely on common forgery traces are becoming increasingly ineffective. This situation highlights the urgency of developing deepfake detection technology with strong generalization to cope with fast iterative forgery techniques. To address these challenges, we propose a Forgery Guided Learning (FGL) strategy designed to enable detection networks to continuously adapt to unknown forgery techniques. Specifically, the FGL strategy captures the differential information between known and unknown forgery techniques, allowing the model to dynamically adjust its learning process in real time. To further improve the ability to perceive forgery traces, we design a Dual Perception Network (DPNet) that captures both differences and relationships among forgery traces. In the frequency stream, the network dynamically perceives and extracts discriminative features across various forgery techniques, establishing essential detection cues. These features are then integrated with spatial features and projected into the embedding space. In addition, graph convolution is employed to perceive relationships across the entire feature space, facilitating a more comprehensive understanding of forgery trace correlations. Extensive experiments show that our approach generalizes well across different scenarios and effectively handles unknown forgery challenges, providing robust support for deepfake detection. Our code is available on https://github.com/vpsg-research/FGL.

Authors:Matej Vitek, Darian Tomašević, Abhijit Das, Sabari Nathan, Gökhan Özbulak, Gözde Ayşe Tataroğlu Özbulak, Jean-Paul Calbimonte, André Anjos, Hariohm Hemant Bhatt, Dhruv Dhirendra Premani, Jay Chaudhari, Caiyong Wang, Jian Jiang, Chi Zhang, Qi Zhang, Iyyakutti Iyappan Ganapathi, Syed Sadaf Ali, Divya Velayudan, Maregu Assefa, Naoufel Werghi, Zachary A. Daniels, Leeon John, Ritesh Vyas, Jalil Nourmohammadi Khiarak, Taher Akbari Saeed, Mahsa Nasehi, Ali Kianfar, Mobina Pashazadeh Panahi, Geetanjali Sharma, Pushp Raj Panth, Raghavendra Ramachandra, Aditya Nigam, Umapada Pal, Peter Peer, Vitomir Štruc
Title: Privacy-enhancing Sclera Segmentation Benchmarking Competition: SSBC 2025
Abstract:
This paper presents a summary of the 2025 Sclera Segmentation Benchmarking Competition (SSBC), which focused on the development of privacy-preserving sclera-segmentation models trained using synthetically generated ocular images. The goal of the competition was to evaluate how well models trained on synthetic data perform in comparison to those trained on real-world datasets. The competition featured two tracks: $(i)$ one relying solely on synthetic data for model development, and $(ii)$ one combining/mixing synthetic with (a limited amount of) real-world data. A total of nine research groups submitted diverse segmentation models, employing a variety of architectural designs, including transformer-based solutions, lightweight models, and segmentation networks guided by generative frameworks. Experiments were conducted across three evaluation datasets containing both synthetic and real-world images, collected under diverse conditions. Results show that models trained entirely on synthetic data can achieve competitive performance, particularly when dedicated training strategies are employed, as evidenced by the top performing models that achieved $F_1$ scores of over $0.8$ in the synthetic data track. Moreover, performance gains in the mixed track were often driven more by methodological choices rather than by the inclusion of real data, highlighting the promise of synthetic data for privacy-aware biometric development. The code and data for the competition is available at: https://github.com/dariant/SSBC_2025.

Authors:Yanjun Li, Yuqian Fu, Tianwen Qian, Qi'ao Xu, Silong Dai, Danda Pani Paudel, Luc Van Gool, Xiaoling Wang
Title: EgoCross: Benchmarking Multimodal Large Language Models for Cross-Domain Egocentric Video Question Answering
Abstract:
Recent advances in Multimodal Large Language Models (MLLMs) have significantly pushed the frontier of egocentric video question answering (EgocentricQA). However, existing benchmarks and studies are mainly limited to common daily activities such as cooking and cleaning. In contrast, real-world deployment inevitably encounters domain shifts, where target domains differ substantially in both visual style and semantic content. To bridge this gap, we introduce \textbf{EgoCross}, a comprehensive benchmark designed to evaluate the cross-domain generalization of MLLMs in EgocentricQA. EgoCross covers four diverse and challenging domains, including surgery, industry, extreme sports, and animal perspective, representing realistic and high-impact application scenarios. It comprises approximately 1,000 QA pairs across 798 video clips, spanning four key QA tasks: prediction, recognition, localization, and counting. Each QA pair provides both OpenQA and CloseQA formats to support fine-grained evaluation. Extensive experiments show that most existing MLLMs, whether general-purpose or egocentric-specialized, struggle to generalize to domains beyond daily life, highlighting the limitations of current models. Furthermore, we conduct several pilot studies, \eg, fine-tuning and reinforcement learning, to explore potential improvements. We hope EgoCross and our accompanying analysis will serve as a foundation for advancing domain-adaptive, robust egocentric video understanding. Data and codes will be released at: \href{https://github.com/MyUniverse0726/EgoCross}{https://github.com/MyUniverse0726/EgoCross.}

Authors:NextStep Team, Chunrui Han, Guopeng Li, Jingwei Wu, Quan Sun, Yan Cai, Yuang Peng, Zheng Ge, Deyu Zhou, Haomiao Tang, Hongyu Zhou, Kenkun Liu, Ailin Huang, Bin Wang, Changxin Miao, Deshan Sun, En Yu, Fukun Yin, Gang Yu, Hao Nie, Haoran Lv, Hanpeng Hu, Jia Wang, Jian Zhou, Jianjian Sun, Kaijun Tan, Kang An, Kangheng Lin, Liang Zhao, Mei Chen, Peng Xing, Rui Wang, Shiyu Liu, Shutao Xia, Tianhao You, Wei Ji, Xianfang Zeng, Xin Han, Xuelin Zhang, Yana Wei, Yanming Xu, Yimin Jiang, Yingming Wang, Yu Zhou, Yucheng Han, Ziyang Meng, Binxing Jiao, Daxin Jiang, Xiangyu Zhang, Yibo Zhu
Title: NextStep-1: Toward Autoregressive Image Generation with Continuous Tokens at Scale
Abstract:
Prevailing autoregressive (AR) models for text-to-image generation either rely on heavy, computationally-intensive diffusion models to process continuous image tokens, or employ vector quantization (VQ) to obtain discrete tokens with quantization loss. In this paper, we push the autoregressive paradigm forward with NextStep-1, a 14B autoregressive model paired with a 157M flow matching head, training on discrete text tokens and continuous image tokens with next-token prediction objectives. NextStep-1 achieves state-of-the-art performance for autoregressive models in text-to-image generation tasks, exhibiting strong capabilities in high-fidelity image synthesis. Furthermore, our method shows strong performance in image editing, highlighting the power and versatility of our unified approach. To facilitate open research, we will release our code and models to the community.

Authors:Joohyeon Lee, Jin-Seop Lee, Jee-Hyong Lee
Title: CountCluster: Training-Free Object Quantity Guidance with Cross-Attention Map Clustering for Text-to-Image Generation
Abstract:
Diffusion-based text-to-image generation models have demonstrated strong performance in terms of image quality and diversity. However, they still struggle to generate images that accurately reflect the number of objects specified in the input prompt. Several approaches have been proposed that rely on either external counting modules for iterative refinement or quantity representations derived from learned tokens or latent features. However, they still have limitations in accurately reflecting the specified number of objects and overlook an important structural characteristic--The number of object instances in the generated image is largely determined in the early timesteps of the denoising process. To correctly reflect the object quantity for image generation, the highly activated regions in the object cross-attention map at the early timesteps should match the input object quantity, while each region should be clearly separated. To address this issue, we propose \textit{CountCluster}, a method that guides the object cross-attention map to be clustered according to the specified object count in the input, without relying on any external tools or additional training. The proposed method partitions the object cross-attention map into $k$ clusters at inference time based on attention scores, defines an ideal distribution in which each cluster is spatially well-separated, and optimizes the latent to align with this target distribution. Our method achieves an average improvement of 18.5\%p in object count accuracy compared to existing methods, and demonstrates superior quantity control performance across a variety of prompts. Code will be released at: https://github.com/JoohyeonL22/CountCluster .

Authors:Zhanwen Liu, Yujing Sun, Yang Wang, Nan Yang, Shengbo Eben Li, Xiangmo Zhao
Title: Beyond conventional vision: RGB-event fusion for robust object detection in dynamic traffic scenarios
Abstract:
The dynamic range limitation of conventional RGB cameras reduces global contrast and causes loss of high-frequency details such as textures and edges in complex traffic environments (e.g., nighttime driving, tunnels), hindering discriminative feature extraction and degrading frame-based object detection. To address this, we integrate a bio-inspired event camera with an RGB camera to provide high dynamic range information and propose a motion cue fusion network (MCFNet), which achieves optimal spatiotemporal alignment and adaptive cross-modal feature fusion under challenging lighting. Specifically, an event correction module (ECM) temporally aligns asynchronous event streams with image frames via optical-flow-based warping, jointly optimized with the detection network to learn task-aware event representations. The event dynamic upsampling module (EDUM) enhances spatial resolution of event frames to match image structures, ensuring precise spatiotemporal alignment. The cross-modal mamba fusion module (CMM) uses adaptive feature fusion with a novel interlaced scanning mechanism, effectively integrating complementary information for robust detection. Experiments conducted on the DSEC-Det and PKU-DAVIS-SOD datasets demonstrate that MCFNet significantly outperforms existing methods in various poor lighting and fast moving traffic scenarios. Notably, on the DSEC-Det dataset, MCFNet achieves a remarkable improvement, surpassing the best existing methods by 7.4% in mAP50 and 1.7% in mAP metrics, respectively. The code is available at https://github.com/Charm11492/MCFNet.

Authors:Zhaoyuan Qi, Weihua Gao, Wenlong Niu, Jie Tang, Yun Li, Xiaodong Peng
Title: HyperTea: A Hypergraph-based Temporal Enhancement and Alignment Network for Moving Infrared Small Target Detection
Abstract:
In practical application scenarios, moving infrared small target detection (MIRSTD) remains highly challenging due to the target's small size, weak intensity, and complex motion pattern. Existing methods typically only model low-order correlations between feature nodes and perform feature extraction and enhancement within a single temporal scale. Although hypergraphs have been widely used for high-order correlation learning, they have received limited attention in MIRSTD. To explore the potential of hypergraphs and enhance multi-timescale feature representation, we propose HyperTea, which integrates global and local temporal perspectives to effectively model high-order spatiotemporal correlations of features. HyperTea consists of three modules: the global temporal enhancement module (GTEM) realizes global temporal context enhancement through semantic aggregation and propagation; the local temporal enhancement module (LTEM) is designed to capture local motion patterns between adjacent frames and then enhance local temporal context; additionally, we further develop a temporal alignment module (TAM) to address potential cross-scale feature misalignment. To our best knowledge, HyperTea is the first work to integrate convolutional neural networks (CNNs), recurrent neural networks (RNNs), and hypergraph neural networks (HGNNs) for MIRSTD, significantly improving detection performance. Experiments on DAUB and IRDST demonstrate its state-of-the-art (SOTA) performance. Our source codes are available at https://github.com/Lurenjia-LRJ/HyperTea.

Authors:Feiran Li, Qianqian Xu, Shilong Bao, Boyu Han, Zhiyong Yang, Qingming Huang
Title: Hybrid Generative Fusion for Efficient and Privacy-Preserving Face Recognition Dataset Generation
Abstract:
In this paper, we present our approach to the DataCV ICCV Challenge, which centers on building a high-quality face dataset to train a face recognition model. The constructed dataset must not contain identities overlapping with any existing public face datasets. To handle this challenge, we begin with a thorough cleaning of the baseline HSFace dataset, identifying and removing mislabeled or inconsistent identities through a Mixture-of-Experts (MoE) strategy combining face embedding clustering and GPT-4o-assisted verification. We retain the largest consistent identity cluster and apply data augmentation up to a fixed number of images per identity. To further diversify the dataset, we generate synthetic identities using Stable Diffusion with prompt engineering. As diffusion models are computationally intensive, we generate only one reference image per identity and efficiently expand it using Vec2Face, which rapidly produces 49 identity-consistent variants. This hybrid approach fuses GAN-based and diffusion-based samples, enabling efficient construction of a diverse and high-quality dataset. To address the high visual similarity among synthetic identities, we adopt a curriculum learning strategy by placing them early in the training schedule, allowing the model to progress from easier to harder samples. Our final dataset contains 50 images per identity, and all newly generated identities are checked with mainstream face datasets to ensure no identity leakage. Our method achieves \textbf{1st place} in the competition, and experimental results show that our dataset improves model performance across 10K, 20K, and 100K identity scales. Code is available at https://github.com/Ferry-Li/datacv_fr.

Authors:Zhangyong Tang, Tianyang Xu, Xuefeng Zhu, Chunyang Cheng, Tao Zhou, Xiaojun Wu, Josef Kittler
Title: Serial Over Parallel: Learning Continual Unification for Multi-Modal Visual Object Tracking and Benchmarking
Abstract:
Unifying multiple multi-modal visual object tracking (MMVOT) tasks draws increasing attention due to the complementary nature of different modalities in building robust tracking systems. Existing practices mix all data sensor types in a single training procedure, structuring a parallel paradigm from the data-centric perspective and aiming for a global optimum on the joint distribution of the involved tasks. However, the absence of a unified benchmark where all types of data coexist forces evaluations on separated benchmarks, causing \textit{inconsistency} between training and testing, thus leading to performance \textit{degradation}. To address these issues, this work advances in two aspects: \ding{182} A unified benchmark, coined as UniBench300, is introduced to bridge the inconsistency by incorporating multiple task data, reducing inference passes from three to one and cutting time consumption by 27\%. \ding{183} The unification process is reformulated in a serial format, progressively integrating new tasks. In this way, the performance degradation can be specified as knowledge forgetting of previous tasks, which naturally aligns with the philosophy of continual learning (CL), motivating further exploration of injecting CL into the unification process. Extensive experiments conducted on two baselines and four benchmarks demonstrate the significance of UniBench300 and the superiority of CL in supporting a stable unification process. Moreover, while conducting dedicated analyses, the performance degradation is found to be negatively correlated with network capacity. Additionally, modality discrepancies contribute to varying degradation levels across tasks (RGBT > RGBD > RGBE in MMVOT), offering valuable insights for future multi-modal vision research. Source codes and the proposed benchmark is available at \textit{https://github.com/Zhangyong-Tang/UniBench300}.

Authors:Ryan Ramos, Vladan Stojnić, Giorgos Kordopatis-Zilos, Yuta Nakashima, Giorgos Tolias, Noa Garcia
Title: Processing and acquisition traces in visual encoders: What does CLIP know about your camera?
Abstract:
Prior work has analyzed the robustness of visual encoders to image transformations and corruptions, particularly in cases where such alterations are not seen during training. When this occurs, they introduce a form of distribution shift at test time, often leading to performance degradation. The primary focus has been on severe corruptions that, when applied aggressively, distort useful signals necessary for accurate semantic predictions. We take a different perspective by analyzing parameters of the image acquisition process and transformations that may be subtle or even imperceptible to the human eye. We find that such parameters are systematically encoded in the learned visual representations and can be easily recovered. More strikingly, their presence can have a profound impact, either positively or negatively, on semantic predictions. This effect depends on whether there is a strong correlation or anti-correlation between semantic labels and these acquisition-based or processing-based labels. Our code and data are available at: https://github.com/ryan-caesar-ramos/visual-encoder-traces

Authors:Farid Tasharofi, Fuxin Fan, Melika Qahqaie, Mareike Thies, Andreas Maier
Title: FIND-Net -- Fourier-Integrated Network with Dictionary Kernels for Metal Artifact Reduction
Abstract:
Metal artifacts, caused by high-density metallic implants in computed tomography (CT) imaging, severely degrade image quality, complicating diagnosis and treatment planning. While existing deep learning algorithms have achieved notable success in Metal Artifact Reduction (MAR), they often struggle to suppress artifacts while preserving structural details. To address this challenge, we propose FIND-Net (Fourier-Integrated Network with Dictionary Kernels), a novel MAR framework that integrates frequency and spatial domain processing to achieve superior artifact suppression and structural preservation. FIND-Net incorporates Fast Fourier Convolution (FFC) layers and trainable Gaussian filtering, treating MAR as a hybrid task operating in both spatial and frequency domains. This approach enhances global contextual understanding and frequency selectivity, effectively reducing artifacts while maintaining anatomical structures. Experiments on synthetic datasets show that FIND-Net achieves statistically significant improvements over state-of-the-art MAR methods, with a 3.07% MAE reduction, 0.18% SSIM increase, and 0.90% PSNR improvement, confirming robustness across varying artifact complexities. Furthermore, evaluations on real-world clinical CT scans confirm FIND-Net's ability to minimize modifications to clean anatomical regions while effectively suppressing metal-induced distortions. These findings highlight FIND-Net's potential for advancing MAR performance, offering superior structural preservation and improved clinical applicability. Code is available at https://github.com/Farid-Tasharofi/FIND-Net

Authors:Xinyi Wang, Angeliki Katsenou, David Bull
Title: DIVA-VQA: Detecting Inter-frame Variations in UGC Video Quality
Abstract:
The rapid growth of user-generated (video) content (UGC) has driven increased demand for research on no-reference (NR) perceptual video quality assessment (VQA). NR-VQA is a key component for large-scale video quality monitoring in social media and streaming applications where a pristine reference is not available. This paper proposes a novel NR-VQA model based on spatio-temporal fragmentation driven by inter-frame variations. By leveraging these inter-frame differences, the model progressively analyses quality-sensitive regions at multiple levels: frames, patches, and fragmented frames. It integrates frames, fragmented residuals, and fragmented frames aligned with residuals to effectively capture global and local information. The model extracts both 2D and 3D features in order to characterize these spatio-temporal variations. Experiments conducted on five UGC datasets and against state-of-the-art models ranked our proposed method among the top 2 in terms of average rank correlation (DIVA-VQA-L: 0.898 and DIVA-VQA-B: 0.886). The improved performance is offered at a low runtime complexity, with DIVA-VQA-B ranked top and DIVA-VQA-L third on average compared to the fastest existing NR-VQA method. Code and models are publicly available at: https://github.com/xinyiW915/DIVA-VQA.

Authors:Zheng Qin, Ruobing Zheng, Yabing Wang, Tianqi Li, Yi Yuan, Jingdong Chen, Le Wang
Title: HumanSense: From Multimodal Perception to Empathetic Context-Aware Responses through Reasoning MLLMs
Abstract:
While Multimodal Large Language Models (MLLMs) show immense promise for achieving truly human-like interactions, progress is hindered by the lack of fine-grained evaluation frameworks for human-centered scenarios, encompassing both the understanding of complex human intentions and the provision of empathetic, context-aware responses. Here we introduce HumanSense, a comprehensive benchmark designed to evaluate the human-centered perception and interaction capabilities of MLLMs, with a particular focus on deep understanding of extended multimodal contexts and the formulation of rational feedback. Our evaluation reveals that leading MLLMs still have considerable room for improvement, particularly for advanced interaction-oriented tasks. Supplementing visual input with audio and text information yields substantial improvements, and Omni-modal models show advantages on these tasks. Furthermore, we argue that appropriate feedback stems from a contextual analysis of the interlocutor's needs and emotions, with reasoning ability serving as the key to unlocking it. Accordingly, we employ a multi-stage, modality-progressive reinforcement learning to enhance the reasoning abilities of an Omni model, achieving substantial gains on evaluation results. Additionally, we observe that successful reasoning processes exhibit highly consistent thought patterns. By designing corresponding prompts, we also enhance the performance of non-reasoning models in a training-free manner. Project page: \textcolor{brightpink}https://digital-avatar.github.io/ai/HumanSense/

Authors:Humza Naveed, Xina Zeng, Mitch Bryson, Nagita Mehrseresht
Title: Adapting SAM via Cross-Entropy Masking for Class Imbalance in Remote Sensing Change Detection
Abstract:
Foundational models have achieved significant success in diverse domains of computer vision. They learn general representations that are easily transferable to tasks not seen during training. One such foundational model is Segment anything model (SAM), which can accurately segment objects in images. We propose adapting the SAM encoder via fine-tuning for remote sensing change detection (RSCD) along with spatial-temporal feature enhancement (STFE) and multi-scale decoder fusion (MSDF) to detect changes robustly at multiple scales. Additionally, we propose a novel cross-entropy masking (CEM) loss to handle high class imbalance in change detection datasets. Our method outperforms state-of-the-art (SOTA) methods on four change detection datasets, Levir-CD, WHU-CD, CLCD, and S2Looking. We achieved 2.5% F1-score improvement on a large complex S2Looking dataset. The code is available at: https://github.com/humza909/SAM-CEM-CD

Authors:Philipp Wolters, Johannes Gilg, Torben Teepe, Gerhard Rigoll
Title: SpaRC-AD: A Baseline for Radar-Camera Fusion in End-to-End Autonomous Driving
Abstract:
End-to-end autonomous driving systems promise stronger performance through unified optimization of perception, motion forecasting, and planning. However, vision-based approaches face fundamental limitations in adverse weather conditions, partial occlusions, and precise velocity estimation - critical challenges in safety-sensitive scenarios where accurate motion understanding and long-horizon trajectory prediction are essential for collision avoidance. To address these limitations, we propose SpaRC-AD, a query-based end-to-end camera-radar fusion framework for planning-oriented autonomous driving. Through sparse 3D feature alignment, and doppler-based velocity estimation, we achieve strong 3D scene representations for refinement of agent anchors, map polylines and motion modelling. Our method achieves strong improvements over the state-of-the-art vision-only baselines across multiple autonomous driving tasks, including 3D detection (+4.8% mAP), multi-object tracking (+8.3% AMOTA), online mapping (+1.8% mAP), motion prediction (-4.0% mADE), and trajectory planning (-0.1m L2 and -9% TPC). We achieve both spatial coherence and temporal consistency on multiple challenging benchmarks, including real-world open-loop nuScenes, long-horizon T-nuScenes, and closed-loop simulator Bench2Drive. We show the effectiveness of radar-based fusion in safety-critical scenarios where accurate motion understanding and long-horizon trajectory prediction are essential for collision avoidance. The source code of all experiments is available at https://phi-wol.github.io/sparcad/

Authors:Boyi Zheng, Qing Liu
Title: PSScreen: Partially Supervised Multiple Retinal Disease Screening
Abstract:
Leveraging multiple partially labeled datasets to train a model for multiple retinal disease screening reduces the reliance on fully annotated datasets, but remains challenging due to significant domain shifts across training datasets from various medical sites, and the label absent issue for partial classes. To solve these challenges, we propose PSScreen, a novel Partially Supervised multiple retinal disease Screening model. Our PSScreen consists of two streams and one learns deterministic features and the other learns probabilistic features via uncertainty injection. Then, we leverage the textual guidance to decouple two types of features into disease-wise features and align them via feature distillation to boost the domain generalization ability. Meanwhile, we employ pseudo label consistency between two streams to address the label absent issue and introduce a self-distillation to transfer task-relevant semantics about known classes from the deterministic to the probabilistic stream to further enhance the detection performances. Experiments show that our PSScreen significantly enhances the detection performances on six retinal diseases and the normal state averagely and achieves state-of-the-art results on both in-domain and out-of-domain datasets. Codes are available at https://github.com/boyiZheng99/PSScreen.

Authors:Yangjie Xiao, Ke Zhang, Jiacun Wang, Xin Sheng, Yurong Guo, Meijuan Chen, Zehua Ren, Zhaoye Zheng, Zhenbing Zhao
Title: A Segmentation-driven Editing Method for Bolt Defect Augmentation and Detection
Abstract:
Bolt defect detection is critical to ensure the safety of transmission lines. However, the scarcity of defect images and imbalanced data distributions significantly limit detection performance. To address this problem, we propose a segmentationdriven bolt defect editing method (SBDE) to augment the dataset. First, a bolt attribute segmentation model (Bolt-SAM) is proposed, which enhances the segmentation of complex bolt attributes through the CLAHE-FFT Adapter (CFA) and Multipart- Aware Mask Decoder (MAMD), generating high-quality masks for subsequent editing tasks. Second, a mask optimization module (MOD) is designed and integrated with the image inpainting model (LaMa) to construct the bolt defect attribute editing model (MOD-LaMa), which converts normal bolts into defective ones through attribute editing. Finally, an editing recovery augmentation (ERA) strategy is proposed to recover and put the edited defect bolts back into the original inspection scenes and expand the defect detection dataset. We constructed multiple bolt datasets and conducted extensive experiments. Experimental results demonstrate that the bolt defect images generated by SBDE significantly outperform state-of-the-art image editing models, and effectively improve the performance of bolt defect detection, which fully verifies the effectiveness and application potential of the proposed method. The code of the project is available at https://github.com/Jay-xyj/SBDE.

Authors:Hanna Herasimchyk, Robin Labryga, Tomislav Prusina
Title: Multi-Label Plant Species Prediction with Metadata-Enhanced Multi-Head Vision Transformers
Abstract:
We present a multi-head vision transformer approach for multi-label plant species prediction in vegetation plot images, addressing the PlantCLEF 2025 challenge. The task involves training models on single-species plant images while testing on multi-species quadrat images, creating a drastic domain shift. Our methodology leverages a pre-trained DINOv2 Vision Transformer Base (ViT-B/14) backbone with multiple classification heads for species, genus, and family prediction, utilizing taxonomic hierarchies. Key contributions include multi-scale tiling to capture plants at different scales, dynamic threshold optimization based on mean prediction length, and ensemble strategies through bagging and Hydra model architectures. The approach incorporates various inference techniques including image cropping to remove non-plant artifacts, top-n filtering for prediction constraints, and logit thresholding strategies. Experiments were conducted on approximately 1.4 million training images covering 7,806 plant species. Results demonstrate strong performance, making our submission 3rd best on the private leaderboard. Our code is available at https://github.com/geranium12/plant-clef-2025/tree/v1.0.0.

Authors:Baichen Liu, Qi Lyu, Xudong Wang, Jiahua Dong, Lianqing Liu, Zhi Han
Title: CRISP: Contrastive Residual Injection and Semantic Prompting for Continual Video Instance Segmentation
Abstract:
Continual video instance segmentation demands both the plasticity to absorb new object categories and the stability to retain previously learned ones, all while preserving temporal consistency across frames. In this work, we introduce Contrastive Residual Injection and Semantic Prompting (CRISP), an earlier attempt tailored to address the instance-wise, category-wise, and task-wise confusion in continual video instance segmentation. For instance-wise learning, we model instance tracking and construct instance correlation loss, which emphasizes the correlation with the prior query space while strengthening the specificity of the current task query. For category-wise learning, we build an adaptive residual semantic prompt (ARSP) learning framework, which constructs a learnable semantic residual prompt pool generated by category text and uses an adjustive query-prompt matching mechanism to build a mapping relationship between the query of the current task and the semantic residual prompt. Meanwhile, a semantic consistency loss based on the contrastive learning is introduced to maintain semantic coherence between object queries and residual prompts during incremental training. For task-wise learning, to ensure the correlation at the inter-task level within the query space, we introduce a concise yet powerful initialization strategy for incremental prompts. Extensive experiments on YouTube-VIS-2019 and YouTube-VIS-2021 datasets demonstrate that CRISP significantly outperforms existing continual segmentation methods in the long-term continual video instance segmentation task, avoiding catastrophic forgetting and effectively improving segmentation and classification performance. The code is available at https://github.com/01upup10/CRISP.

Authors:Keishi Ishihara, Kento Sasaki, Tsubasa Takahashi, Daiki Shiono, Yu Yamaguchi
Title: STRIDE-QA: Visual Question Answering Dataset for Spatiotemporal Reasoning in Urban Driving Scenes
Abstract:
Vision-Language Models (VLMs) have been applied to autonomous driving to support decision-making in complex real-world scenarios. However, their training on static, web-sourced image-text pairs fundamentally limits the precise spatiotemporal reasoning required to understand and predict dynamic traffic scenes. We address this critical gap with STRIDE-QA, a large-scale visual question answering (VQA) dataset for physically grounded reasoning from an ego-centric perspective. Constructed from 100 hours of multi-sensor driving data in Tokyo, capturing diverse and challenging conditions, STRIDE-QA is the largest VQA dataset for spatiotemporal reasoning in urban driving, offering 16 million QA pairs over 285K frames. Grounded by dense, automatically generated annotations including 3D bounding boxes, segmentation masks, and multi-object tracks, the dataset uniquely supports both object-centric and ego-centric reasoning through three novel QA tasks that require spatial localization and temporal prediction. Our benchmarks demonstrate that existing VLMs struggle significantly, achieving near-zero scores on prediction consistency. In contrast, VLMs fine-tuned on STRIDE-QA exhibit dramatic performance gains, achieving 55% success in spatial localization and 28% consistency in future motion prediction, compared to near-zero scores from general-purpose VLMs. Therefore, STRIDE-QA establishes a comprehensive foundation for developing more reliable VLMs for safety-critical autonomous systems.

Authors:Chaesong Park, Eunbin Seo, Jihyeon Hwang, Jongwoo Lim
Title: SC-Lane: Slope-aware and Consistent Road Height Estimation Framework for 3D Lane Detection
Abstract:
In this paper, we introduce SC-Lane, a novel slope-aware and temporally consistent heightmap estimation framework for 3D lane detection. Unlike previous approaches that rely on fixed slope anchors, SC-Lane adaptively determines the fusion of slope-specific height features, improving robustness to diverse road geometries. To achieve this, we propose a Slope-Aware Adaptive Feature module that dynamically predicts the appropriate weights from image cues for integrating multi-slope representations into a unified heightmap. Additionally, a Height Consistency Module enforces temporal coherence, ensuring stable and accurate height estimation across consecutive frames, which is crucial for real-world driving scenarios. To evaluate the effectiveness of SC-Lane, we employ three standardized metrics-Mean Absolute Error(MAE), Root Mean Squared Error (RMSE), and threshold-based accuracy-which, although common in surface and depth estimation, have been underutilized for road height assessment. Using the LiDAR-derived heightmap dataset introduced in prior work [20], we benchmark our method under these metrics, thereby establishing a rigorous standard for future comparisons. Extensive experiments on the OpenLane benchmark demonstrate that SC-Lane significantly improves both height estimation and 3D lane detection, achieving state-of-the-art performance with an F-score of 64.3%, outperforming existing methods by a notable margin. For detailed results and a demonstration video, please refer to our project page:https://parkchaesong.github.io/sclane/

Authors:Wenxuan Song, Ziyang Zhou, Han Zhao, Jiayi Chen, Pengxiang Ding, Haodong Yan, Yuxin Huang, Feilong Tang, Donglin Wang, Haoang Li
Title: ReconVLA: Reconstructive Vision-Language-Action Model as Effective Robot Perceiver
Abstract:
Recent advances in Vision-Language-Action (VLA) models have enabled robotic agents to integrate multimodal understanding with action execution. However, our empirical analysis reveals that current VLAs struggle to allocate visual attention to target regions. Instead, visual attention is always dispersed. To guide the visual attention grounding on the correct target, we propose ReconVLA, a reconstructive VLA model with an implicit grounding paradigm. Conditioned on the model's visual outputs, a diffusion transformer aims to reconstruct the gaze region of the image, which corresponds to the target manipulated objects. This process prompts the VLA model to learn fine-grained representations and accurately allocate visual attention, thus effectively leveraging task-specific visual information and conducting precise manipulation. Moreover, we curate a large-scale pretraining dataset comprising over 100k trajectories and 2 million data samples from open-source robotic datasets, further boosting the model's generalization in visual reconstruction. Extensive experiments in simulation and the real world demonstrate the superiority of our implicit grounding method, showcasing its capabilities of precise manipulation and generalization. Our project page is https://zionchow.github.io/ReconVLA/.

Authors:Zhaoming Kong, Jiahuan Zhang, Xiaowei Yang
Title: Efficient Image Denoising Using Global and Local Circulant Representation
Abstract:
The advancement of imaging devices and countless image data generated everyday impose an increasingly high demand on efficient and effective image denoising. In this paper, we present a computationally simple denoising algorithm, termed Haar-tSVD, aiming to explore the nonlocal self-similarity prior and leverage the connection between principal component analysis (PCA) and the Haar transform under circulant representation. We show that global and local patch correlations can be effectively captured through a unified tensor-singular value decomposition (t-SVD) projection with the Haar transform. This results in a one-step, highly parallelizable filtering method that eliminates the need for learning local bases to represent image patches, striking a balance between denoising speed and performance. Furthermore, we introduce an adaptive noise estimation scheme based on a CNN estimator and eigenvalue analysis to enhance the robustness and adaptability of the proposed method. Experiments on different real-world denoising tasks validate the efficiency and effectiveness of Haar-tSVD for noise removal and detail preservation. Datasets, code and results are publicly available at https://github.com/ZhaomingKong/Haar-tSVD.

Authors:Tao Huang, Hongbo Pan, Nanxi Zhou, Shun Zhou
Title: A Sub-Pixel Multimodal Optical Remote Sensing Images Matching Method
Abstract:
High-accuracy matching of multimodal optical images is the basis of geometric processing. However, the image matching accuracy is usually degraded by the nonlinear radiation and geometric deformation differences caused by different spectral responses. To address these problems, we proposed a phase consistency weighted least absolute deviation (PCWLAD) sub-pixel template matching method to improve the matching accuracy of multimodal optical images. This method consists of two main steps: coarse matching with the structural similarity index measure (SSIM) and fine matching with WLAD. In the coarse matching step, PCs are calculated without a noise filter to preserve the original structural details, and template matching is performed using the SSIM. In the fine matching step, we applied the radiometric and geometric transformation models between two multimodal PC templates based on the coarse matching. Furthermore, mutual structure filtering is adopted in the model to mitigate the impact of noise within the corresponding templates on the structural consistency, and the WLAD criterion is used to estimate the sub-pixel offset. To evaluate the performance of PCWLAD, we created three types of image datasets: visible to infrared Landsat images, visible to near-infrared close-range images, and visible to infrared uncrewed aerial vehicle (UAV) images. PCWLAD outperformed existing state-of-the-art eight methods in terms of correct matching rate (CMR) and root mean square error (RMSE) and reached an average matching accuracy of approximately 0.4 pixels across all three datasets. Our software and datasets are publicly available at https://github.com/huangtaocsu/PCWLAD.

Authors:Xinan Zhang, Haolin Wang, Yung-An Hsieh, Zhongyu Yang, Anthony Yezzi, Yi-Chang Tsai
Title: Deep Learning for Crack Detection: A Review of Learning Paradigms, Generalizability, and Datasets
Abstract:
Crack detection plays a crucial role in civil infrastructures, including inspection of pavements, buildings, etc., and deep learning has significantly advanced this field in recent years. While numerous technical and review papers exist in this domain, emerging trends are reshaping the landscape. These shifts include transitions in learning paradigms (from fully supervised learning to semi-supervised, weakly-supervised, unsupervised, few-shot, domain adaptation and fine-tuning foundation models), improvements in generalizability (from single-dataset performance to cross-dataset evaluation), and diversification in dataset acquisition (from RGB images to specialized sensor-based data). In this review, we systematically analyze these trends and highlight representative works. Additionally, we introduce a new annotated dataset collected with 3D laser scans, 3DCrack, to support future research and conduct extensive benchmarking experiments to establish baselines for commonly used deep learning methodologies, including recent foundation models. Our findings provide insights into the evolving methodologies and future directions in deep learning-based crack detection. Project page: https://github.com/nantonzhang/Awesome-Crack-Detection

Authors:Arianna Bunnell, Devon Cataldi, Yannik Glaser, Thomas K. Wolfgruber, Steven Heymsfield, Alan B. Zonderman, Thomas L. Kelly, Peter Sadowski, John A. Shepherd
Title: Deep Learning Enables Large-Scale Shape and Appearance Modeling in Total-Body DXA Imaging
Abstract:
Total-body dual X-ray absorptiometry (TBDXA) imaging is a relatively low-cost whole-body imaging modality, widely used for body composition assessment. We develop and validate a deep learning method for automatic fiducial point placement on TBDXA scans using 1,683 manually-annotated TBDXA scans. The method achieves 99.5% percentage correct keypoints in an external testing dataset. To demonstrate the value for shape and appearance modeling (SAM), our method is used to place keypoints on 35,928 scans for five different TBDXA imaging modes, then associations with health markers are tested in two cohorts not used for SAM model generation using two-sample Kolmogorov-Smirnov tests. SAM feature distributions associated with health biomarkers are shown to corroborate existing evidence and generate new hypotheses on body composition and shape's relationship to various frailty, metabolic, inflammation, and cardiometabolic health markers. Evaluation scripts, model weights, automatic point file generation code, and triangulation files are available at https://github.com/hawaii-ai/dxa-pointplacement.

Authors:Kaixin Peng, Mengyang Zhao, Haiyang Yu, Teng Fu, Bin Li
Title: Interpretable Oracle Bone Script Decipherment through Radical and Pictographic Analysis with LVLMs
Abstract:
As the oldest mature writing system, Oracle Bone Script (OBS) has long posed significant challenges for archaeological decipherment due to its rarity, abstractness, and pictographic diversity. Current deep learning-based methods have made exciting progress on the OBS decipherment task, but existing approaches often ignore the intricate connections between glyphs and the semantics of OBS. This results in limited generalization and interpretability, especially when addressing zero-shot settings and undeciphered OBS. To this end, we propose an interpretable OBS decipherment method based on Large Vision-Language Models, which synergistically combines radical analysis and pictograph-semantic understanding to bridge the gap between glyphs and meanings of OBS. Specifically, we propose a progressive training strategy that guides the model from radical recognition and analysis to pictographic analysis and mutual analysis, thus enabling reasoning from glyph to meaning. We also design a Radical-Pictographic Dual Matching mechanism informed by the analysis results, significantly enhancing the model's zero-shot decipherment performance. To facilitate model training, we propose the Pictographic Decipherment OBS Dataset, which comprises 47,157 Chinese characters annotated with OBS images and pictographic analysis texts. Experimental results on public benchmarks demonstrate that our approach achieves state-of-the-art Top-10 accuracy and superior zero-shot decipherment capabilities. More importantly, our model delivers logical analysis processes, possibly providing archaeologically valuable reference results for undeciphered OBS, and thus has potential applications in digital humanities and historical research. The dataset and code will be released in https://github.com/PKXX1943/PD-OBS.

Authors:David Dinkevich, Matan Levy, Omri Avrahami, Dvir Samuel, Dani Lischinski
Title: Story2Board: A Training-Free Approach for Expressive Storyboard Generation
Abstract:
We present Story2Board, a training-free framework for expressive storyboard generation from natural language. Existing methods narrowly focus on subject identity, overlooking key aspects of visual storytelling such as spatial composition, background evolution, and narrative pacing. To address this, we introduce a lightweight consistency framework composed of two components: Latent Panel Anchoring, which preserves a shared character reference across panels, and Reciprocal Attention Value Mixing, which softly blends visual features between token pairs with strong reciprocal attention. Together, these mechanisms enhance coherence without architectural changes or fine-tuning, enabling state-of-the-art diffusion models to generate visually diverse yet consistent storyboards. To structure generation, we use an off-the-shelf language model to convert free-form stories into grounded panel-level prompts. To evaluate, we propose the Rich Storyboard Benchmark, a suite of open-domain narratives designed to assess layout diversity and background-grounded storytelling, in addition to consistency. We also introduce a new Scene Diversity metric that quantifies spatial and pose variation across storyboards. Our qualitative and quantitative results, as well as a user study, show that Story2Board produces more dynamic, coherent, and narratively engaging storyboards than existing baselines.

Authors:Chengtao Lv, Bilang Zhang, Yang Yong, Ruihao Gong, Yushi Huang, Shiqiao Gu, Jiajun Wu, Yumeng Shi, Jinyang Guo, Wenya Wang
Title: LLMC+: Benchmarking Vision-Language Model Compression with a Plug-and-play Toolkit
Abstract:
Large Vision-Language Models (VLMs) exhibit impressive multi-modal capabilities but suffer from prohibitive computational and memory demands, due to their long visual token sequences and massive parameter sizes. To address these issues, recent works have proposed training-free compression methods. However, existing efforts often suffer from three major limitations: (1) Current approaches do not decompose techniques into comparable modules, hindering fair evaluation across spatial and temporal redundancy. (2) Evaluation confined to simple single-turn tasks, failing to reflect performance in realistic scenarios. (3) Isolated use of individual compression techniques, without exploring their joint potential. To overcome these gaps, we introduce LLMC+, a comprehensive VLM compression benchmark with a versatile, plug-and-play toolkit. LLMC+ supports over 20 algorithms across five representative VLM families and enables systematic study of token-level and model-level compression. Our benchmark reveals that: (1) Spatial and temporal redundancies demand distinct technical strategies. (2) Token reduction methods degrade significantly in multi-turn dialogue and detail-sensitive tasks. (3) Combining token and model compression achieves extreme compression with minimal performance loss. We believe LLMC+ will facilitate fair evaluation and inspire future research in efficient VLM. Our code is available at https://github.com/ModelTC/LightCompress.

Authors:Shuting He, Peilin Ji, Yitong Yang, Changshuo Wang, Jiayi Ji, Yinglin Wang, Henghui Ding
Title: A Survey on 3D Gaussian Splatting Applications: Segmentation, Editing, and Generation
Abstract:
3D Gaussian Splatting (3DGS) has recently emerged as a powerful alternative to Neural Radiance Fields (NeRF) for 3D scene representation, offering high-fidelity photorealistic rendering with real-time performance. Beyond novel view synthesis, the explicit and compact nature of 3DGS enables a wide range of downstream applications that require geometric and semantic understanding. This survey provides a comprehensive overview of recent progress in 3DGS applications. It first introduces 2D foundation models that support semantic understanding and control in 3DGS applications, followed by a review of NeRF-based methods that inform their 3DGS counterparts. We then categorize 3DGS applications into segmentation, editing, generation, and other functional tasks. For each, we summarize representative methods, supervision strategies, and learning paradigms, highlighting shared design principles and emerging trends. Commonly used datasets and evaluation protocols are also summarized, along with comparative analyses of recent methods across public benchmarks. To support ongoing research and development, a continually updated repository of papers, code, and resources is maintained at https://github.com/heshuting555/Awesome-3DGS-Applications.

Authors:Geonhee Sim, Gyeongsik Moon
Title: PERSONA: Personalized Whole-Body 3D Avatar with Pose-Driven Deformations from a Single Image
Abstract:
Two major approaches exist for creating animatable human avatars. The first, a 3D-based approach, optimizes a NeRF- or 3DGS-based avatar from videos of a single person, achieving personalization through a disentangled identity representation. However, modeling pose-driven deformations, such as non-rigid cloth deformations, requires numerous pose-rich videos, which are costly and impractical to capture in daily life. The second, a diffusion-based approach, learns pose-driven deformations from large-scale in-the-wild videos but struggles with identity preservation and pose-dependent identity entanglement. We present PERSONA, a framework that combines the strengths of both approaches to obtain a personalized 3D human avatar with pose-driven deformations from a single image. PERSONA leverages a diffusion-based approach to generate pose-rich videos from the input image and optimizes a 3D avatar based on them. To ensure high authenticity and sharp renderings across diverse poses, we introduce balanced sampling and geometry-weighted optimization. Balanced sampling oversamples the input image to mitigate identity shifts in diffusion-generated training videos. Geometry-weighted optimization prioritizes geometry constraints over image loss, preserving rendering quality in diverse poses.

Authors:Luca Eyring, Shyamgopal Karthik, Alexey Dosovitskiy, Nataniel Ruiz, Zeynep Akata
Title: Noise Hypernetworks: Amortizing Test-Time Compute in Diffusion Models
Abstract:
The new paradigm of test-time scaling has yielded remarkable breakthroughs in Large Language Models (LLMs) (e.g. reasoning models) and in generative vision models, allowing models to allocate additional computation during inference to effectively tackle increasingly complex problems. Despite the improvements of this approach, an important limitation emerges: the substantial increase in computation time makes the process slow and impractical for many applications. Given the success of this paradigm and its growing usage, we seek to preserve its benefits while eschewing the inference overhead. In this work we propose one solution to the critical problem of integrating test-time scaling knowledge into a model during post-training. Specifically, we replace reward guided test-time noise optimization in diffusion models with a Noise Hypernetwork that modulates initial input noise. We propose a theoretically grounded framework for learning this reward-tilted distribution for distilled generators, through a tractable noise-space objective that maintains fidelity to the base model while optimizing for desired characteristics. We show that our approach recovers a substantial portion of the quality gains from explicit test-time optimization at a fraction of the computational cost. Code is available at https://github.com/ExplainableML/HyperNoise

Authors:Tianqi Xiang, Yi Li, Qixiang Zhang, Xiaomeng Li
Title: MOC: Meta-Optimized Classifier for Few-Shot Whole Slide Image Classification
Abstract:
Recent advances in histopathology vision-language foundation models (VLFMs) have shown promise in addressing data scarcity for whole slide image (WSI) classification via zero-shot adaptation. However, these methods remain outperformed by conventional multiple instance learning (MIL) approaches trained on large datasets, motivating recent efforts to enhance VLFM-based WSI classification through fewshot learning paradigms. While existing few-shot methods improve diagnostic accuracy with limited annotations, their reliance on conventional classifier designs introduces critical vulnerabilities to data scarcity. To address this problem, we propose a Meta-Optimized Classifier (MOC) comprising two core components: (1) a meta-learner that automatically optimizes a classifier configuration from a mixture of candidate classifiers and (2) a classifier bank housing diverse candidate classifiers to enable a holistic pathological interpretation. Extensive experiments demonstrate that MOC outperforms prior arts in multiple few-shot benchmarks. Notably, on the TCGA-NSCLC benchmark, MOC improves AUC by 10.4% over the state-of-the-art few-shot VLFM-based methods, with gains up to 26.25% under 1-shot conditions, offering a critical advancement for clinical deployments where diagnostic training data is severely limited. Code is available at https://github.com/xmed-lab/MOC.

Authors:Yaohui Wang, Di Yang, Xinyuan Chen, Francois Bremond, Yu Qiao, Antitza Dantcheva
Title: LIA-X: Interpretable Latent Portrait Animator
Abstract:
We introduce LIA-X, a novel interpretable portrait animator designed to transfer facial dynamics from a driving video to a source portrait with fine-grained control. LIA-X is an autoencoder that models motion transfer as a linear navigation of motion codes in latent space. Crucially, it incorporates a novel Sparse Motion Dictionary that enables the model to disentangle facial dynamics into interpretable factors. Deviating from previous 'warp-render' approaches, the interpretability of the Sparse Motion Dictionary allows LIA-X to support a highly controllable 'edit-warp-render' strategy, enabling precise manipulation of fine-grained facial semantics in the source portrait. This helps to narrow initial differences with the driving video in terms of pose and expression. Moreover, we demonstrate the scalability of LIA-X by successfully training a large-scale model with approximately 1 billion parameters on extensive datasets. Experimental results show that our proposed method outperforms previous approaches in both self-reenactment and cross-reenactment tasks across several benchmarks. Additionally, the interpretable and controllable nature of LIA-X supports practical applications such as fine-grained, user-guided image and video editing, as well as 3D-aware portrait video manipulation.

Authors:Benjamin Adjadj, Pierre-Antoine Bannier, Guillaume Horent, Sebastien Mandela, Aurore Lyon, Kathryn Schutte, Ulysse Marteau, Valentin Gaury, Laura Dumont, Thomas Mathieu, MOSAIC consortium, Reda Belbahri, Benoît Schmauch, Eric Durand, Katharina Von Loga, Lucie Gillet
Title: Towards Comprehensive Cellular Characterisation of H&E slides
Abstract:
Cell detection, segmentation and classification are essential for analyzing tumor microenvironments (TME) on hematoxylin and eosin (H&E) slides. Existing methods suffer from poor performance on understudied cell types (rare or not present in public datasets) and limited cross-domain generalization. To address these shortcomings, we introduce HistoPLUS, a state-of-the-art model for cell analysis, trained on a novel curated pan-cancer dataset of 108,722 nuclei covering 13 cell types. In external validation across 4 independent cohorts, HistoPLUS outperforms current state-of-the-art models in detection quality by 5.2% and overall F1 classification score by 23.7%, while using 5x fewer parameters. Notably, HistoPLUS unlocks the study of 7 understudied cell types and brings significant improvements on 8 of 13 cell types. Moreover, we show that HistoPLUS robustly transfers to two oncology indications unseen during training. To support broader TME biomarker research, we release the model weights and inference code at https://github.com/owkin/histoplus/.

Authors:Xiaojiao Xiao, Jianfeng Zhao, Qinmin Vivian Hu, Guanghui Wang
Title: T-CACE: A Time-Conditioned Autoregressive Contrast Enhancement Multi-Task Framework for Contrast-Free Liver MRI Synthesis, Segmentation, and Diagnosis
Abstract:
Magnetic resonance imaging (MRI) is a leading modality for the diagnosis of liver cancer, significantly improving the classification of the lesion and patient outcomes. However, traditional MRI faces challenges including risks from contrast agent (CA) administration, time-consuming manual assessment, and limited annotated datasets. To address these limitations, we propose a Time-Conditioned Autoregressive Contrast Enhancement (T-CACE) framework for synthesizing multi-phase contrast-enhanced MRI (CEMRI) directly from non-contrast MRI (NCMRI). T-CACE introduces three core innovations: a conditional token encoding (CTE) mechanism that unifies anatomical priors and temporal phase information into latent representations; and a dynamic time-aware attention mask (DTAM) that adaptively modulates inter-phase information flow using a Gaussian-decayed attention mechanism, ensuring smooth and physiologically plausible transitions across phases. Furthermore, a constraint for temporal classification consistency (TCC) aligns the lesion classification output with the evolution of the physiological signal, further enhancing diagnostic reliability. Extensive experiments on two independent liver MRI datasets demonstrate that T-CACE outperforms state-of-the-art methods in image synthesis, segmentation, and lesion classification. This framework offers a clinically relevant and efficient alternative to traditional contrast-enhanced imaging, improving safety, diagnostic efficiency, and reliability for the assessment of liver lesion. The implementation of T-CACE is publicly available at: https://github.com/xiaojiao929/T-CACE.

Authors:Yachao Liang, Min Yu, Gang Li, Jianguo Jiang, Boquan Li, Feng Yu, Ning Zhang, Xiang Meng, Weiqing Huang
Title: SpeechForensics: Audio-Visual Speech Representation Learning for Face Forgery Detection
Abstract:
Detection of face forgery videos remains a formidable challenge in the field of digital forensics, especially the generalization to unseen datasets and common perturbations. In this paper, we tackle this issue by leveraging the synergy between audio and visual speech elements, embarking on a novel approach through audio-visual speech representation learning. Our work is motivated by the finding that audio signals, enriched with speech content, can provide precise information effectively reflecting facial movements. To this end, we first learn precise audio-visual speech representations on real videos via a self-supervised masked prediction task, which encodes both local and global semantic information simultaneously. Then, the derived model is directly transferred to the forgery detection task. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods in terms of cross-dataset generalization and robustness, without the participation of any fake video in model training. Code is available at https://github.com/Eleven4AI/SpeechForensics.

Authors:Lingyu Chen, Yawen Zeng, Yue Wang, Peng Wan, Guo-chen Ning, Hongen Liao, Daoqiang Zhang, Fang Chen
Title: COME: Dual Structure-Semantic Learning with Collaborative MoE for Universal Lesion Detection Across Heterogeneous Ultrasound Datasets
Abstract:
Conventional single-dataset training often fails with new data distributions, especially in ultrasound (US) image analysis due to limited data, acoustic shadows, and speckle noise. Therefore, constructing a universal framework for multi-heterogeneous US datasets is imperative. However, a key challenge arises: how to effectively mitigate inter-dataset interference while preserving dataset-specific discriminative features for robust downstream task? Previous approaches utilize either a single source-specific decoder or a domain adaptation strategy, but these methods experienced a decline in performance when applied to other domains. Considering this, we propose a Universal Collaborative Mixture of Heterogeneous Source-Specific Experts (COME). Specifically, COME establishes dual structure-semantic shared experts that create a universal representation space and then collaborate with source-specific experts to extract discriminative features through providing complementary features. This design enables robust generalization by leveraging cross-datasets experience distributions and providing universal US priors for small-batch or unseen data scenarios. Extensive experiments under three evaluation modes (single-dataset, intra-organ, and inter-organ integration datasets) demonstrate COME's superiority, achieving significant mean AP improvements over state-of-the-art methods. Our project is available at: https://universalcome.github.io/UniversalCOME/.

Authors:Weigao Sun, Jiaxi Hu, Yucheng Zhou, Jusen Du, Disen Lan, Kexin Wang, Tong Zhu, Xiaoye Qu, Yu Zhang, Xiaoyu Mo, Daizong Liu, Yuxuan Liang, Wenliang Chen, Guoqi Li, Yu Cheng
Title: Speed Always Wins: A Survey on Efficient Architectures for Large Language Models
Abstract:
Large Language Models (LLMs) have delivered impressive results in language understanding, generation, reasoning, and pushes the ability boundary of multimodal models. Transformer models, as the foundation of modern LLMs, offer a strong baseline with excellent scaling properties. However, the traditional transformer architecture requires substantial computations and poses significant obstacles for large-scale training and practical deployment. In this survey, we offer a systematic examination of innovative LLM architectures that address the inherent limitations of transformers and boost the efficiency. Starting from language modeling, this survey covers the background and technical details of linear and sparse sequence modeling methods, efficient full attention variants, sparse mixture-of-experts, hybrid model architectures incorporating the above techniques, and emerging diffusion LLMs. Additionally, we discuss applications of these techniques to other modalities and consider their wider implications for developing scalable, resource-aware foundation models. By grouping recent studies into the above category, this survey presents a blueprint of modern efficient LLM architectures, and we hope this could help motivate future research toward more efficient, versatile AI systems.

Authors:Shenxing Wei, Jinxi Li, Yafei Yang, Siyuan Zhou, Bo Yang
Title: RayletDF: Raylet Distance Fields for Generalizable 3D Surface Reconstruction from Point Clouds or Gaussians
Abstract:
In this paper, we present a generalizable method for 3D surface reconstruction from raw point clouds or pre-estimated 3D Gaussians by 3DGS from RGB images. Unlike existing coordinate-based methods which are often computationally intensive when rendering explicit surfaces, our proposed method, named RayletDF, introduces a new technique called raylet distance field, which aims to directly predict surface points from query rays. Our pipeline consists of three key modules: a raylet feature extractor, a raylet distance field predictor, and a multi-raylet blender. These components work together to extract fine-grained local geometric features, predict raylet distances, and aggregate multiple predictions to reconstruct precise surface points. We extensively evaluate our method on multiple public real-world datasets, demonstrating superior performance in surface reconstruction from point clouds or 3D Gaussians. Most notably, our method achieves exceptional generalization ability, successfully recovering 3D surfaces in a single-forward pass across unseen datasets in testing.

Authors:Xuhong Huang, Shiqi Liu, Kai Zhang, Ying Tai, Jian Yang, Hui Zeng, Lei Zhang
Title: Reverse Convolution and Its Applications to Image Restoration
Abstract:
Convolution and transposed convolution are fundamental operators widely used in neural networks. However, transposed convolution (a.k.a. deconvolution) does not serve as a true inverse of convolution due to inherent differences in their mathematical formulations. To date, no reverse convolution operator has been established as a standard component in neural architectures. In this paper, we propose a novel depthwise reverse convolution operator as an initial attempt to effectively reverse depthwise convolution by formulating and solving a regularized least-squares optimization problem. We thoroughly investigate its kernel initialization, padding strategies, and other critical aspects to ensure its effective implementation. Building upon this operator, we further construct a reverse convolution block by combining it with layer normalization, 1$\times$1 convolution, and GELU activation, forming a Transformer-like structure. The proposed operator and block can directly replace conventional convolution and transposed convolution layers in existing architectures, leading to the development of ConverseNet. Corresponding to typical image restoration models such as DnCNN, SRResNet and USRNet, we train three variants of ConverseNet for Gaussian denoising, super-resolution and deblurring, respectively. Extensive experiments demonstrate the effectiveness of the proposed reverse convolution operator as a basic building module. We hope this work could pave the way for developing new operators in deep model design and applications.

Authors:Valentin Boussot, Jean-Louis Dillenseger
Title: KonfAI: A Modular and Fully Configurable Framework for Deep Learning in Medical Imaging
Abstract:
KonfAI is a modular, extensible, and fully configurable deep learning framework specifically designed for medical imaging tasks. It enables users to define complete training, inference, and evaluation workflows through structured YAML configuration files, without modifying the underlying code. This declarative approach enhances reproducibility, transparency, and experimental traceability while reducing development time. Beyond the capabilities of standard pipelines, KonfAI provides native abstractions for advanced strategies including patch-based learning, test-time augmentation, model ensembling, and direct access to intermediate feature representations for deep supervision. It also supports complex multi-model training setups such as generative adversarial architectures. Thanks to its modular and extensible architecture, KonfAI can easily accommodate custom models, loss functions, and data processing components. The framework has been successfully applied to segmentation, registration, and image synthesis tasks, and has contributed to top-ranking results in several international medical imaging challenges. KonfAI is open source and available at \href{https://github.com/vboussot/KonfAI}{https://github.com/vboussot/KonfAI}.

Authors:Zijian Song, Sihan Qin, Tianshui Chen, Liang Lin, Guangrun Wang
Title: Physical Autoregressive Model for Robotic Manipulation without Action Pretraining
Abstract:
The scarcity of manipulation data has motivated the use of pretrained large models from other modalities in robotics. In this work, we build upon autoregressive video generation models to propose a Physical Autoregressive Model (PAR), where physical tokens combine frames and actions to represent the joint evolution of the robot and its environment. PAR leverages the world knowledge embedded in video pretraining to understand physical dynamics without requiring action pretraining, enabling accurate video prediction and consistent action trajectories. It also adopts a DiT-based de-tokenizer to model frames and actions as continuous tokens, mitigating quantization errors and facilitating mutual enhancement. Furthermore, we incorporate a causal mask with inverse kinematics, parallel training, and the KV-cache mechanism to further improve performance and efficiency. Experiments on the ManiSkill benchmark show that PAR achieves a 100\% success rate on the PushCube task, matches the performance of action-pretrained baselines on other tasks, and accurately predicts future videos with tightly aligned action trajectories. These findings underscore a promising direction for robotic manipulation by transferring world knowledge from autoregressive video pretraining. The project page is here: https://hcplab-sysu.github.io/PhysicalAutoregressiveModel/

Authors:Jinxi Li, Ziyang Song, Bo Yang
Title: TRACE: Learning 3D Gaussian Physical Dynamics from Multi-view Videos
Abstract:
In this paper, we aim to model 3D scene geometry, appearance, and physical information just from dynamic multi-view videos in the absence of any human labels. By leveraging physics-informed losses as soft constraints or integrating simple physics models into neural nets, existing works often fail to learn complex motion physics, or doing so requires additional labels such as object types or masks. We propose a new framework named TRACE to model the motion physics of complex dynamic 3D scenes. The key novelty of our method is that, by formulating each 3D point as a rigid particle with size and orientation in space, we directly learn a translation rotation dynamics system for each particle, explicitly estimating a complete set of physical parameters to govern the particle's motion over time. Extensive experiments on three existing dynamic datasets and one newly created challenging synthetic datasets demonstrate the extraordinary performance of our method over baselines in the task of future frame extrapolation. A nice property of our framework is that multiple objects or parts can be easily segmented just by clustering the learned physical parameters.

Authors:Nahyuk Lee, Juhong Min, Junhong Lee, Chunghyun Park, Minsu Cho
Title: Combinative Matching for Geometric Shape Assembly
Abstract:
This paper introduces a new shape-matching methodology, combinative matching, to combine interlocking parts for geometric shape assembly. Previous methods for geometric assembly typically rely on aligning parts by finding identical surfaces between the parts as in conventional shape matching and registration. In contrast, we explicitly model two distinct properties of interlocking shapes: 'identical surface shape' and 'opposite volume occupancy.' Our method thus learns to establish correspondences across regions where their surface shapes appear identical but their volumes occupy the inverted space to each other. To facilitate this process, we also learn to align regions in rotation by estimating their shape orientations via equivariant neural networks. The proposed approach significantly reduces local ambiguities in matching and allows a robust combination of parts in assembly. Experimental results on geometric assembly benchmarks demonstrate the efficacy of our method, consistently outperforming the state of the art. Project page: https://nahyuklee.github.io/cmnet.

Authors:Dianyi Wang, Siyuan Wang, Zejun Li, Yikun Wang, Yitong Li, Duyu Tang, Xiaoyu Shen, Xuanjing Huang, Zhongyu Wei
Title: MoIIE: Mixture of Intra- and Inter-Modality Experts for Large Vision Language Models
Abstract:
Large Vision-Language Models (LVLMs) have demonstrated remarkable performance across multi-modal tasks by scaling model size and training data. However, these dense LVLMs incur significant computational costs and motivate the exploration of sparse Mixture of Experts (MoE) architectures. While MoE improve parameter efficiency, effectively applying MoE to simultaneously model modality-specific features and cross-modal associations in LVLMs remains challenging. In this work, we propose to incorporate Mixture of Intra- and Inter-Modality Experts (MoIIE) to LVLMs. For each token, expert routing is guided by its modality, directing tokens to their respective intra-modality experts as well as a shared pool of inter-modality experts, enabling the model to jointly learn rich intra-modal features and cross-modal interactions. We further introduce an effective and straightforward two-stage training strategy, which facilitates the direct activation of both MoE and multi-modal capabilities. Extensive experiments across different data scales and LLM backbone demonstrate the effectiveness, efficiency and generality of our approach. Notably, our MoIIE models with 5.5B and 11.3B activated parameters match or even surpass the performance of existing advanced open-source MoE-LLMs based multi-modal models that involve more activated parameters. The code is available at https://github.com/AlenjandroWang/MoIIE.

Authors:Lin Long, Yichen He, Wentao Ye, Yiyuan Pan, Yuan Lin, Hang Li, Junbo Zhao, Wei Li
Title: Seeing, Listening, Remembering, and Reasoning: A Multimodal Agent with Long-Term Memory
Abstract:
We introduce M3-Agent, a novel multimodal agent framework equipped with long-term memory. Like humans, M3-Agent can process real-time visual and auditory inputs to build and update its long-term memory. Beyond episodic memory, it also develops semantic memory, enabling it to accumulate world knowledge over time. Its memory is organized in an entity-centric, multimodal format, allowing deeper and more consistent understanding of the environment. Given an instruction, M3-Agent autonomously performs multi-turn, iterative reasoning and retrieves relevant information from memory to accomplish the task. To evaluate memory effectiveness and memory-based reasoning in multimodal agents, we develop M3-Bench, a new long-video question answering benchmark. M3-Bench comprises 100 newly recorded real-world videos captured from a robot's perspective (M3-Bench-robot) and 920 web-sourced videos across diverse scenarios (M3-Bench-web). We annotate question-answer pairs designed to test key capabilities essential for agent applications, such as human understanding, general knowledge extraction, and cross-modal reasoning. Experimental results show that M3-Agent, trained via reinforcement learning, outperforms the strongest baseline, a prompting agent using Gemini-1.5-pro and GPT-4o, achieving 6.7%, 7.7%, and 5.3% higher accuracy on M3-Bench-robot, M3-Bench-web and VideoMME-long, respectively. Our work advances the multimodal agents toward more human-like long-term memory and provides insights into their practical design. Model, code and data are available at https://github.com/bytedance-seed/m3-agent

Authors:Shekhnaz Idrissova, Islem Rekik
Title: Multimodal Sheaf-based Network for Glioblastoma Molecular Subtype Prediction
Abstract:
Glioblastoma is a highly invasive brain tumor with rapid progression rates. Recent studies have shown that glioblastoma molecular subtype classification serves as a significant biomarker for effective targeted therapy selection. However, this classification currently requires invasive tissue extraction for comprehensive histopathological analysis. Existing multimodal approaches combining MRI and histopathology images are limited and lack robust mechanisms for preserving shared structural information across modalities. In particular, graph-based models often fail to retain discriminative features within heterogeneous graphs, and structural reconstruction mechanisms for handling missing or incomplete modality data are largely underexplored. To address these limitations, we propose a novel sheaf-based framework for structure-aware and consistent fusion of MRI and histopathology data. Our model outperforms baseline methods and demonstrates robustness in incomplete or missing data scenarios, contributing to the development of virtual biopsy tools for rapid diagnostics. Our source code is available at https://github.com/basiralab/MMSN/.

Authors:Devvrat Joshi, Islem Rekik
Title: NEURAL: Attention-Guided Pruning for Unified Multimodal Resource-Constrained Clinical Evaluation
Abstract:
The rapid growth of multimodal medical imaging data presents significant storage and transmission challenges, particularly in resource-constrained clinical settings. We propose NEURAL, a novel framework that addresses this by using semantics-guided data compression. Our approach repurposes cross-attention scores between the image and its radiological report from a fine-tuned generative vision-language model to structurally prune chest X-rays, preserving only diagnostically critical regions. This process transforms the image into a highly compressed, graph representation. This unified graph-based representation fuses the pruned visual graph with a knowledge graph derived from the clinical report, creating a universal data structure that simplifies downstream modeling. Validated on the MIMIC-CXR and CheXpert Plus dataset for pneumonia detection, NEURAL achieves a 93.4-97.7\% reduction in image data size while maintaining a high diagnostic performance of 0.88-0.95 AUC, outperforming other baseline models that use uncompressed data. By creating a persistent, task-agnostic data asset, NEURAL resolves the trade-off between data size and clinical utility, enabling efficient workflows and teleradiology without sacrificing performance. Our NEURAL code is available at https://github.com/basiralab/NEURAL.

Authors:Xingyilang Yin, Qi Zhang, Jiahao Chang, Ying Feng, Qingnan Fan, Xi Yang, Chi-Man Pun, Huaqi Zhang, Xiaodong Cun
Title: GSFixer: Improving 3D Gaussian Splatting with Reference-Guided Video Diffusion Priors
Abstract:
Reconstructing 3D scenes using 3D Gaussian Splatting (3DGS) from sparse views is an ill-posed problem due to insufficient information, often resulting in noticeable artifacts. While recent approaches have sought to leverage generative priors to complete information for under-constrained regions, they struggle to generate content that remains consistent with input observations. To address this challenge, we propose GSFixer, a novel framework designed to improve the quality of 3DGS representations reconstructed from sparse inputs. The core of our approach is the reference-guided video restoration model, built upon a DiT-based video diffusion model trained on paired artifact 3DGS renders and clean frames with additional reference-based conditions. Considering the input sparse views as references, our model integrates both 2D semantic features and 3D geometric features of reference views extracted from the visual geometry foundation model, enhancing the semantic coherence and 3D consistency when fixing artifact novel views. Furthermore, considering the lack of suitable benchmarks for 3DGS artifact restoration evaluation, we present DL3DV-Res which contains artifact frames rendered using low-quality 3DGS. Extensive experiments demonstrate our GSFixer outperforms current state-of-the-art methods in 3DGS artifact restoration and sparse-view 3D reconstruction. Project page: https://github.com/GVCLab/GSFixer.

Authors:Hao Xu, Arbind Agrahari Baniya, Sam Wells, Mohamed Reda Bouadjenek, Richard Dazely, Sunil Aryal
Title: TOTNet: Occlusion-Aware Temporal Tracking for Robust Ball Detection in Sports Videos
Abstract:
Robust ball tracking under occlusion remains a key challenge in sports video analysis, affecting tasks like event detection and officiating. We present TOTNet, a Temporal Occlusion Tracking Network that leverages 3D convolutions, visibility-weighted loss, and occlusion augmentation to improve performance under partial and full occlusions. Developed in collaboration with Paralympics Australia, TOTNet is designed for real-world sports analytics. We introduce TTA, a new occlusion-rich table tennis dataset collected from professional-level Paralympic matches, comprising 9,159 samples with 1,996 occlusion cases. Evaluated on four datasets across tennis, badminton, and table tennis, TOTNet significantly outperforms prior state-of-the-art methods, reducing RMSE from 37.30 to 7.19 and improving accuracy on fully occluded frames from 0.63 to 0.80. These results demonstrate TOTNets effectiveness for offline sports analytics in fast-paced scenarios. Code and data access:\href{https://github.com/AugustRushG/TOTNet}{AugustRushG/TOTNet}.

Authors:Shengjun Zhu, Siyu Liu, Runqing Xiong, Liping Zheng, Duo Ma, Rongshang Chen, Jiaxin Cai
Title: Multi-Contrast Fusion Module: An attention mechanism integrating multi-contrast features for fetal torso plane classification
Abstract:
Purpose: Prenatal ultrasound is a key tool in evaluating fetal structural development and detecting abnormalities, contributing to reduced perinatal complications and improved neonatal survival. Accurate identification of standard fetal torso planes is essential for reliable assessment and personalized prenatal care. However, limitations such as low contrast and unclear texture details in ultrasound imaging pose significant challenges for fine-grained anatomical recognition. Methods: We propose a novel Multi-Contrast Fusion Module (MCFM) to enhance the model's ability to extract detailed information from ultrasound images. MCFM operates exclusively on the lower layers of the neural network, directly processing raw ultrasound data. By assigning attention weights to image representations under different contrast conditions, the module enhances feature modeling while explicitly maintaining minimal parameter overhead. Results: The proposed MCFM was evaluated on a curated dataset of fetal torso plane ultrasound images. Experimental results demonstrate that MCFM substantially improves recognition performance, with a minimal increase in model complexity. The integration of multi-contrast attention enables the model to better capture subtle anatomical structures, contributing to higher classification accuracy and clinical reliability. Conclusions: Our method provides an effective solution for improving fetal torso plane recognition in ultrasound imaging. By enhancing feature representation through multi-contrast fusion, the proposed approach supports clinicians in achieving more accurate and consistent diagnoses, demonstrating strong potential for clinical adoption in prenatal screening. The codes are available at https://github.com/sysll/MCFM.

Authors:Jingwei Liu, Ling Yang, Hao Luo, Fan Wang, Hongyan Li, Mengdi Wang
Title: Preacher: Paper-to-Video Agentic System
Abstract:
The paper-to-video task converts a research paper into a structured video abstract, distilling key concepts, methods, and conclusions into an accessible, well-organized format. While state-of-the-art video generation models demonstrate potential, they are constrained by limited context windows, rigid video duration constraints, limited stylistic diversity, and an inability to represent domain-specific knowledge. To address these limitations, we introduce Preacher, the first paper-to-video agentic system. Preacher employs a topdown approach to decompose, summarize, and reformulate the paper, followed by bottom-up video generation, synthesizing diverse video segments into a coherent abstract. To align cross-modal representations, we define key scenes and introduce a Progressive Chain of Thought (P-CoT) for granular, iterative planning. Preacher successfully generates high-quality video abstracts across five research fields, demonstrating expertise beyond current video generation models. Code will be released at: https://github.com/Gen-Verse/Paper2Video

Authors:Heyi Sun, Cong Wang, Tian-Xing Xu, Jingwei Huang, Di Kang, Chunchao Guo, Song-Hai Zhang
Title: SVG-Head: Hybrid Surface-Volumetric Gaussians for High-Fidelity Head Reconstruction and Real-Time Editing
Abstract:
Creating high-fidelity and editable head avatars is a pivotal challenge in computer vision and graphics, boosting many AR/VR applications. While recent advancements have achieved photorealistic renderings and plausible animation, head editing, especially real-time appearance editing, remains challenging due to the implicit representation and entangled modeling of the geometry and global appearance. To address this, we propose Surface-Volumetric Gaussian Head Avatar (SVG-Head), a novel hybrid representation that explicitly models the geometry with 3D Gaussians bound on a FLAME mesh and leverages disentangled texture images to capture the global appearance. Technically, it contains two types of Gaussians, in which surface Gaussians explicitly model the appearance of head avatars using learnable texture images, facilitating real-time texture editing, while volumetric Gaussians enhance the reconstruction quality of non-Lambertian regions (e.g., lips and hair). To model the correspondence between 3D world and texture space, we provide a mesh-aware Gaussian UV mapping method, which leverages UV coordinates given by the FLAME mesh to obtain sharp texture images and real-time rendering speed. A hierarchical optimization strategy is further designed to pursue the optimal performance in both reconstruction quality and editing flexibility. Experiments on the NeRSemble dataset show that SVG-Head not only generates high-fidelity rendering results, but also is the first method to obtain explicit texture images for Gaussian head avatars and support real-time appearance editing.

Authors:Jiwon Kim, Pureum Kim, SeonHwa Kim, Soobin Park, Eunju Cha, Kyong Hwan Jin
Title: Dual Recursive Feedback on Generation and Appearance Latents for Pose-Robust Text-to-Image Diffusion
Abstract:
Recent advancements in controllable text-to-image (T2I) diffusion models, such as Ctrl-X and FreeControl, have demonstrated robust spatial and appearance control without requiring auxiliary module training. However, these models often struggle to accurately preserve spatial structures and fail to capture fine-grained conditions related to object poses and scene layouts. To address these challenges, we propose a training-free Dual Recursive Feedback (DRF) system that properly reflects control conditions in controllable T2I models. The proposed DRF consists of appearance feedback and generation feedback that recursively refines the intermediate latents to better reflect the given appearance information and the user's intent. This dual-update mechanism guides latent representations toward reliable manifolds, effectively integrating structural and appearance attributes. Our approach enables fine-grained generation even between class-invariant structure-appearance fusion, such as transferring human motion onto a tiger's form. Extensive experiments demonstrate the efficacy of our method in producing high-quality, semantically coherent, and structurally consistent image generations. Our source code is available at https://github.com/jwonkm/DRF.

Authors:Fengyi Wu, Yifei Dong, Zhi-Qi Cheng, Yilong Dai, Guangyu Chen, Hang Wang, Qi Dai, Alexander G. Hauptmann
Title: GoViG: Goal-Conditioned Visual Navigation Instruction Generation
Abstract:
We introduce Goal-Conditioned Visual Navigation Instruction Generation (GoViG), a new task that aims to autonomously generate precise and contextually coherent navigation instructions solely from egocentric visual observations of initial and goal states. Unlike conventional approaches that rely on structured inputs such as semantic annotations or environmental maps, GoViG exclusively leverages raw egocentric visual data, substantially improving its adaptability to unseen and unstructured environments. Our method addresses this task by decomposing it into two interconnected subtasks: (1) visual forecasting, which predicts intermediate visual states bridging the initial and goal views; and (2) instruction generation, which synthesizes linguistically coherent instructions grounded in both observed and anticipated visuals. These subtasks are integrated within an autoregressive multimodal large language model trained with tailored objectives to ensure spatial accuracy and linguistic clarity. Furthermore, we introduce two complementary multimodal reasoning strategies, one-pass and interleaved reasoning, to mimic incremental human cognitive processes during navigation. To evaluate our method, we propose the R2R-Goal dataset, combining diverse synthetic and real-world trajectories. Empirical results demonstrate significant improvements over state-of-the-art methods, achieving superior BLEU-4 and CIDEr scores along with robust cross-domain generalization.

Authors:Moinak Bhattacharya, Gagandeep Singh, Shubham Jain, Prateek Prasanna
Title: GazeLT: Visual attention-guided long-tailed disease classification in chest radiographs
Abstract:
In this work, we present GazeLT, a human visual attention integration-disintegration approach for long-tailed disease classification. A radiologist's eye gaze has distinct patterns that capture both fine-grained and coarser level disease related information. While interpreting an image, a radiologist's attention varies throughout the duration; it is critical to incorporate this into a deep learning framework to improve automated image interpretation. Another important aspect of visual attention is that apart from looking at major/obvious disease patterns, experts also look at minor/incidental findings (few of these constituting long-tailed classes) during the course of image interpretation. GazeLT harnesses the temporal aspect of the visual search process, via an integration and disintegration mechanism, to improve long-tailed disease classification. We show the efficacy of GazeLT on two publicly available datasets for long-tailed disease classification, namely the NIH-CXR-LT (n=89237) and the MIMIC-CXR-LT (n=111898) datasets. GazeLT outperforms the best long-tailed loss by 4.1% and the visual attention-based baseline by 21.7% in average accuracy metrics for these datasets. Our code is available at https://github.com/lordmoinak1/gazelt.

Authors:Yuji Wang, Moran Li, Xiaobin Hu, Ran Yi, Jiangning Zhang, Chengming Xu, Weijian Cao, Yabiao Wang, Chengjie Wang, Lizhuang Ma
Title: From Large Angles to Consistent Faces: Identity-Preserving Video Generation via Mixture of Facial Experts
Abstract:
Current video generation models struggle with identity preservation under large facial angles, primarily facing two challenges: the difficulty in exploring an effective mechanism to integrate identity features into DiT structure, and the lack of targeted coverage of large facial angles in existing open-source video datasets. To address these, we present two key innovations. First, we introduce a Mixture of Facial Experts (MoFE) that dynamically combines complementary cues from three specialized experts, each designed to capture distinct but mutually reinforcing aspects of facial attributes. The identity expert captures cross-pose identity-sensitive features, the semantic expert extracts high-level visual semantxics, and the detail expert preserves pixel-level features (e.g., skin texture, color gradients). Furthermore, to mitigate dataset limitations, we have tailored a data processing pipeline centered on two key aspects: Face Constraints and Identity Consistency. Face Constraints ensure facial angle diversity and a high proportion of facial regions, while Identity Consistency preserves coherent person-specific features across temporal sequences, collectively addressing the scarcity of large facial angles and identity-stable training data in existing datasets. Leveraging this pipeline, we have curated and refined a Large Face Angles (LFA) Dataset from existing open-source human video datasets, comprising 460K video clips with annotated facial angles. Experimental results on the LFA benchmark demonstrate that our method, empowered by the LFA dataset, significantly outperforms prior SOTA methods in face similarity, face FID, and CLIP semantic alignment. The code and dataset will be made publicly available at https://github.com/rain152/LFA-Video-Generation.

Authors:Wen Huang, Jiarui Yang, Tao Dai, Jiawei Li, Shaoxiong Zhan, Bin Wang, Shu-Tao Xia
Title: RelayFormer: A Unified Local-Global Attention Framework for Scalable Image and Video Manipulation Localization
Abstract:
Visual manipulation localization (VML) -- across both images and videos -- is a crucial task in digital forensics that involves identifying tampered regions in visual content. However, existing methods often lack cross-modal generalization and struggle to handle high-resolution or long-duration inputs efficiently. We propose RelayFormer, a unified and modular architecture for visual manipulation localization across images and videos. By leveraging flexible local units and a Global-Local Relay Attention (GLoRA) mechanism, it enables scalable, resolution-agnostic processing with strong generalization. Our framework integrates seamlessly with existing Transformer-based backbones, such as ViT and SegFormer, via lightweight adaptation modules that require only minimal architectural changes, ensuring compatibility without disrupting pretrained representations. Furthermore, we design a lightweight, query-based mask decoder that supports one-shot inference across video sequences with linear complexity. Extensive experiments across multiple benchmarks demonstrate that our approach achieves state-of-the-art localization performance, setting a new baseline for scalable and modality-agnostic VML. Code is available at: https://github.com/WenOOI/RelayFormer.

Authors:Shuai Tan, Biao Gong, Zhuoxin Liu, Yan Wang, Xi Chen, Yifan Feng, Hengshuang Zhao
Title: Animate-X++: Universal Character Image Animation with Dynamic Backgrounds
Abstract:
Character image animation, which generates high-quality videos from a reference image and target pose sequence, has seen significant progress in recent years. However, most existing methods only apply to human figures, which usually do not generalize well on anthropomorphic characters commonly used in industries like gaming and entertainment. Furthermore, previous methods could only generate videos with static backgrounds, which limits the realism of the videos. For the first challenge, our in-depth analysis suggests to attribute this limitation to their insufficient modeling of motion, which is unable to comprehend the movement pattern of the driving video, thus imposing a pose sequence rigidly onto the target character. To this end, this paper proposes Animate-X++, a universal animation framework based on DiT for various character types, including anthropomorphic characters. To enhance motion representation, we introduce the Pose Indicator, which captures comprehensive motion pattern from the driving video through both implicit and explicit manner. The former leverages CLIP visual features of a driving video to extract its gist of motion, like the overall movement pattern and temporal relations among motions, while the latter strengthens the generalization of DiT by simulating possible inputs in advance that may arise during inference. For the second challenge, we introduce a multi-task training strategy that jointly trains the animation and TI2V tasks. Combined with the proposed partial parameter training, this approach achieves not only character animation but also text-driven background dynamics, making the videos more realistic. Moreover, we introduce a new Animated Anthropomorphic Benchmark (A2Bench) to evaluate the performance of Animate-X++ on universal and widely applicable animation images. Extensive experiments demonstrate the superiority and effectiveness of Animate-X++.

Authors:Haoxiang Shi, Xiang Deng, Zaijing Li, Gongwei Chen, Yaowei Wang, Liqiang Nie
Title: DAgger Diffusion Navigation: DAgger Boosted Diffusion Policy for Vision-Language Navigation
Abstract:
Vision-Language Navigation in Continuous Environments (VLN-CE) requires agents to follow natural language instructions through free-form 3D spaces. Existing VLN-CE approaches typically use a two-stage waypoint planning framework, where a high-level waypoint predictor generates the navigable waypoints, and then a navigation planner suggests the intermediate goals in the high-level action space. However, this two-stage decomposition framework suffers from: (1) global sub-optimization due to the proxy objective in each stage, and (2) a performance bottleneck caused by the strong reliance on the quality of the first-stage predicted waypoints. To address these limitations, we propose DAgger Diffusion Navigation (DifNav), an end-to-end optimized VLN-CE policy that unifies the traditional two stages, i.e. waypoint generation and planning, into a single diffusion policy. Notably, DifNav employs a conditional diffusion policy to directly model multi-modal action distributions over future actions in continuous navigation space, eliminating the need for a waypoint predictor while enabling the agent to capture multiple possible instruction-following behaviors. To address the issues of compounding error in imitation learning and enhance spatial reasoning in long-horizon navigation tasks, we employ DAgger for online policy training and expert trajectory augmentation, and use the aggregated data to further fine-tune the policy. This approach significantly improves the policy's robustness and its ability to recover from error states. Extensive experiments on benchmark datasets demonstrate that, even without a waypoint predictor, the proposed method substantially outperforms previous state-of-the-art two-stage waypoint-based models in terms of navigation performance. Our code is available at: https://github.com/Tokishx/DifNav.

Authors:Badi Li, Ren-jie Lu, Yu Zhou, Jingke Meng, Wei-shi Zheng
Title: Distilling LLM Prior to Flow Model for Generalizable Agent's Imagination in Object Goal Navigation
Abstract:
The Object Goal Navigation (ObjectNav) task challenges agents to locate a specified object in an unseen environment by imagining unobserved regions of the scene. Prior approaches rely on deterministic and discriminative models to complete semantic maps, overlooking the inherent uncertainty in indoor layouts and limiting their ability to generalize to unseen environments. In this work, we propose GOAL, a generative flow-based framework that models the semantic distribution of indoor environments by bridging observed regions with LLM-enriched full-scene semantic maps. During training, spatial priors inferred from large language models (LLMs) are encoded as two-dimensional Gaussian fields and injected into target maps, distilling rich contextual knowledge into the flow model and enabling more generalizable completions. Extensive experiments demonstrate that GOAL achieves state-of-the-art performance on MP3D and Gibson, and shows strong generalization in transfer settings to HM3D. Codes and pretrained models are available at https://github.com/Badi-Li/GOAL.

Authors:Guangxun Zhu, Shiyu Fan, Hang Dai, Edmond S. L. Ho
Title: Waymo-3DSkelMo: A Multi-Agent 3D Skeletal Motion Dataset for Pedestrian Interaction Modeling in Autonomous Driving
Abstract:
Large-scale high-quality 3D motion datasets with multi-person interactions are crucial for data-driven models in autonomous driving to achieve fine-grained pedestrian interaction understanding in dynamic urban environments. However, existing datasets mostly rely on estimating 3D poses from monocular RGB video frames, which suffer from occlusion and lack of temporal continuity, thus resulting in unrealistic and low-quality human motion. In this paper, we introduce Waymo-3DSkelMo, the first large-scale dataset providing high-quality, temporally coherent 3D skeletal motions with explicit interaction semantics, derived from the Waymo Perception dataset. Our key insight is to utilize 3D human body shape and motion priors to enhance the quality of the 3D pose sequences extracted from the raw LiDRA point clouds. The dataset covers over 14,000 seconds across more than 800 real driving scenarios, including rich interactions among an average of 27 agents per scene (with up to 250 agents in the largest scene). Furthermore, we establish 3D pose forecasting benchmarks under varying pedestrian densities, and the results demonstrate its value as a foundational resource for future research on fine-grained human behavior understanding in complex urban environments. The dataset and code will be available at https://github.com/GuangxunZhu/Waymo-3DSkelMo

Authors:El Mustapha Mansouri
Title: Autonomous AI Bird Feeder for Backyard Biodiversity Monitoring
Abstract:
This paper presents a low cost, on premise system for autonomous backyard bird monitoring in Belgian urban gardens. A motion triggered IP camera uploads short clips via FTP to a local server, where frames are sampled and birds are localized with Detectron2; cropped regions are then classified by an EfficientNet-B3 model fine tuned on a 40-species Belgian subset derived from a larger Kaggle corpus. All processing runs on commodity hardware without a discrete GPU, preserving privacy and avoiding cloud fees. The physical feeder uses small entry ports (30 mm) to exclude pigeons and reduce nuisance triggers. Detector-guided cropping improves classification accuracy over raw-frame classification. The classifier attains high validation performance on the curated subset (about 99.5 percent) and delivers practical field accuracy (top-1 about 88 percent) on held-out species, demonstrating feasibility for citizen-science-grade biodiversity logging at home.

Authors:Kang Ni, Minrui Zou, Yuxuan Li, Xiang Li, Kehua Guo, Ming-Ming Cheng, Yimian Dai
Title: DenoDet V2: Phase-Amplitude Cross Denoising for SAR Object Detection
Abstract:
One of the primary challenges in Synthetic Aperture Radar (SAR) object detection lies in the pervasive influence of coherent noise. As a common practice, most existing methods, whether handcrafted approaches or deep learning-based methods, employ the analysis or enhancement of object spatial-domain characteristics to achieve implicit denoising. In this paper, we propose DenoDet V2, which explores a completely novel and different perspective to deconstruct and modulate the features in the transform domain via a carefully designed attention architecture. Compared to DenoDet V1, DenoDet V2 is a major advancement that exploits the complementary nature of amplitude and phase information through a band-wise mutual modulation mechanism, which enables a reciprocal enhancement between phase and amplitude spectra. Extensive experiments on various SAR datasets demonstrate the state-of-the-art performance of DenoDet V2. Notably, DenoDet V2 achieves a significant 0.8\% improvement on SARDet-100K dataset compared to DenoDet V1, while reducing the model complexity by half. The code is available at https://github.com/GrokCV/GrokSAR.

Authors:Kumar Abhishek, Jeremy Kawahara, Ghassan Hamarneh
Title: What Can We Learn from Inter-Annotator Variability in Skin Lesion Segmentation?
Abstract:
Medical image segmentation exhibits intra- and inter-annotator variability due to ambiguous object boundaries, annotator preferences, expertise, and tools, among other factors. Lesions with ambiguous boundaries, e.g., spiculated or infiltrative nodules, or irregular borders per the ABCD rule, are particularly prone to disagreement and are often associated with malignancy. In this work, we curate IMA++, the largest multi-annotator skin lesion segmentation dataset, on which we conduct an in-depth study of variability due to annotator, malignancy, tool, and skill factors. We find a statistically significant (p<0.001) association between inter-annotator agreement (IAA), measured using Dice, and the malignancy of skin lesions. We further show that IAA can be accurately predicted directly from dermoscopic images, achieving a mean absolute error of 0.108. Finally, we leverage this association by utilizing IAA as a "soft" clinical feature within a multi-task learning objective, yielding a 4.2% improvement in balanced accuracy averaged across multiple model architectures and across IMA++ and four public dermoscopic datasets. The code is available at https://github.com/sfu-mial/skin-IAV.

Authors:Md Rezwanul Haque, Md. Milon Islam, S M Taslim Uddin Raju, Fakhri Karray
Title: A Signer-Invariant Conformer and Multi-Scale Fusion Transformer for Continuous Sign Language Recognition
Abstract:
Continuous Sign Language Recognition (CSLR) faces multiple challenges, including significant inter-signer variability and poor generalization to novel sentence structures. Traditional solutions frequently fail to handle these issues efficiently. For overcoming these constraints, we propose a dual-architecture framework. For the Signer-Independent (SI) challenge, we propose a Signer-Invariant Conformer that combines convolutions with multi-head self-attention to learn robust, signer-agnostic representations from pose-based skeletal keypoints. For the Unseen-Sentences (US) task, we designed a Multi-Scale Fusion Transformer with a novel dual-path temporal encoder that captures both fine-grained posture dynamics, enabling the model's ability to comprehend novel grammatical compositions. Experiments on the challenging Isharah-1000 dataset establish a new standard for both CSLR benchmarks. The proposed conformer architecture achieves a Word Error Rate (WER) of 13.07% on the SI challenge, a reduction of 13.53% from the state-of-the-art. On the US task, the transformer model scores a WER of 47.78%, surpassing previous work. In the SignEval 2025 CSLR challenge, our team placed 2nd in the US task and 4th in the SI task, demonstrating the performance of these models. The findings validate our key hypothesis: that developing task-specific networks designed for the particular challenges of CSLR leads to considerable performance improvements and establishes a new baseline for further research. The source code is available at: https://github.com/rezwanh001/MSLR-Pose86K-CSLR-Isharah.

Authors:Md. Milon Islam, Md Rezwanul Haque, S M Taslim Uddin Raju, Fakhri Karray
Title: FusionEnsemble-Net: An Attention-Based Ensemble of Spatiotemporal Networks for Multimodal Sign Language Recognition
Abstract:
Accurate recognition of sign language in healthcare communication poses a significant challenge, requiring frameworks that can accurately interpret complex multimodal gestures. To deal with this, we propose FusionEnsemble-Net, a novel attention-based ensemble of spatiotemporal networks that dynamically fuses visual and motion data to enhance recognition accuracy. The proposed approach processes RGB video and range Doppler map radar modalities synchronously through four different spatiotemporal networks. For each network, features from both modalities are continuously fused using an attention-based fusion module before being fed into an ensemble of classifiers. Finally, the outputs of these four different fused channels are combined in an ensemble classification head, thereby enhancing the model's robustness. Experiments demonstrate that FusionEnsemble-Net outperforms state-of-the-art approaches with a test accuracy of 99.44% on the large-scale MultiMeDaLIS dataset for Italian Sign Language. Our findings indicate that an ensemble of diverse spatiotemporal networks, unified by attention-based fusion, yields a robust and accurate framework for complex, multimodal isolated gesture recognition tasks. The source code is available at: https://github.com/rezwanh001/Multimodal-Isolated-Italian-Sign-Language-Recognition.

Authors:Yifan Jiang, Ahmad Shariftabrizi, Venkata SK. Manem
Title: Lung-DDPM+: Efficient Thoracic CT Image Synthesis using Diffusion Probabilistic Model
Abstract:
Generative artificial intelligence (AI) has been playing an important role in various domains. Leveraging its high capability to generate high-fidelity and diverse synthetic data, generative AI is widely applied in diagnostic tasks, such as lung cancer diagnosis using computed tomography (CT). However, existing generative models for lung cancer diagnosis suffer from low efficiency and anatomical imprecision, which limit their clinical applicability. To address these drawbacks, we propose Lung-DDPM+, an improved version of our previous model, Lung-DDPM. This novel approach is a denoising diffusion probabilistic model (DDPM) guided by nodule semantic layouts and accelerated by a pulmonary DPM-solver, enabling the method to focus on lesion areas while achieving a better trade-off between sampling efficiency and quality. Evaluation results on the public LIDC-IDRI dataset suggest that the proposed method achieves 8$\times$ fewer FLOPs (floating point operations per second), 6.8$\times$ lower GPU memory consumption, and 14$\times$ faster sampling compared to Lung-DDPM. Moreover, it maintains comparable sample quality to both Lung-DDPM and other state-of-the-art (SOTA) generative models in two downstream segmentation tasks. We also conducted a Visual Turing Test by an experienced radiologist, showing the advanced quality and fidelity of synthetic samples generated by the proposed method. These experimental results demonstrate that Lung-DDPM+ can effectively generate high-quality thoracic CT images with lung nodules, highlighting its potential for broader applications, such as general tumor synthesis and lesion generation in medical imaging. The code and pretrained models are available at https://github.com/Manem-Lab/Lung-DDPM-PLUS.

Authors:Dongwoo Kang, Akhil Perincherry, Zachary Coalson, Aiden Gabriel, Stefan Lee, Sanghyun Hong
Title: Harnessing Input-Adaptive Inference for Efficient VLN
Abstract:
An emerging paradigm in vision-and-language navigation (VLN) is the use of history-aware multi-modal transformer models. Given a language instruction, these models process observation and navigation history to predict the most appropriate action for an agent. While they have significantly improved performance, the scale of these models can be a bottleneck in practical settings with limited computational resources. In this work, we propose a novel input-adaptive navigation method to enhance VLN model efficiency. We first show that existing input-adaptive mechanisms fail to reduce computations without substantial performance degradation. To address this, we introduce three adaptive algorithms, each deployed at a different level: (1) To improve spatial efficiency, we selectively process panoramic views at each observation of an agent. (2) To improve intra-model efficiency, we propose importance-based adaptive thresholding for the early-exit methods. (3) To improve temporal efficiency, we implement a caching mechanism that prevents reprocessing of views previously seen by the agent. In evaluations on seven VLN benchmarks, we demonstrate over a 2$\times$ reduction in computation across three off-the-shelf agents in both standard and continuous environments. Our code is publicly available at https://github.com/secure-ai-systems-group/adaptive-vision-and-language-navigation.

Authors:Jeffri Murrugarra-LLerena, Haoran Niu, K. Suzanne Barber, Hal Daumé, Yang Trista Cao, Paola Cascante-Bonilla
Title: Beyond Blanket Masking: Examining Granularity for Privacy Protection in Images Captured by Blind and Low Vision Users
Abstract:
As visual assistant systems powered by visual language models (VLMs) become more prevalent, concerns over user privacy have grown, particularly for blind and low vision users who may unknowingly capture personal private information in their images. Existing privacy protection methods rely on coarse-grained segmentation, which uniformly masks entire private objects, often at the cost of usability. In this work, we propose FiGPriv, a fine-grained privacy protection framework that selectively masks only high-risk private information while preserving low-risk information. Our approach integrates fine-grained segmentation with a data-driven risk scoring mechanism. We evaluate our framework using the BIV-Priv-Seg dataset and show that FiG-Priv preserves +26% of image content, enhancing the ability of VLMs to provide useful responses by 11% and identify the image content by 45%, while ensuring privacy protection. Project Page: https://artcs1.github.io/VLMPrivacy/

Authors:Fengxian Ji, Jingpu Yang, Zirui Song, Yuanxi Wang, Zhexuan Cui, Yuke Li, Qian Jiang, Miao Fang, Xiuying Chen
Title: FineState-Bench: A Comprehensive Benchmark for Fine-Grained State Control in GUI Agents
Abstract:
With the rapid advancement of generative artificial intelligence technology, Graphical User Interface (GUI) agents have demonstrated tremendous potential for autonomously managing daily tasks through natural language instructions. However, current evaluation frameworks for GUI agents suffer from fundamental flaws: existing benchmarks overly focus on coarse-grained task completion while neglecting fine-grained control capabilities crucial for real-world applications. To address this, we introduce FineState-Bench, the first evaluation and diagnostic standard for fine-grained GUI proxy operations, designed to quantify fine-grained control. This multi-platform (desktop, Web, mobile) framework includes 2257 task benchmarks in four components and uses a four-phase indicator for comprehensive perception-to-control assessment. To analyze perception and positioning for refined operations, we developed the plug-and-play Visual Diagnostic Assistant (VDA), enabling the first quantitative decoupling analysis of these capabilities. Experimental results on our benchmark show that the most advanced models achieve only 32.8% fine-grained interaction accuracy. Using our VDA in controlled experiments, quantifying the impact of visual capabilities, we showed that ideal visual localization boosts Gemini-2.5-Flash's success rate by 14.9\%. Our diagnostic framework confirms for the first time that the primary bottleneck for current GUI proxies is basic visual positioning capability.All resources are fully open-source. github: https://github.com/AnonymousThewarehouse/FineState-Bench huggingface: https://huggingface.co/datasets/Willtime2006/Static-FineBench

Authors:Yoni Schirris, Eric Marcus, Jonas Teuwen, Hugo Horlings, Efstratios Gavves
Title: From Explainable to Explained AI: Ideas for Falsifying and Quantifying Explanations
Abstract:
Explaining deep learning models is essential for clinical integration of medical image analysis systems. A good explanation highlights if a model depends on spurious features that undermines generalization and harms a subset of patients or, conversely, may present novel biological insights. Although techniques like GradCAM can identify influential features, they are measurement tools that do not themselves form an explanation. We propose a human-machine-VLM interaction system tailored to explaining classifiers in computational pathology, including multi-instance learning for whole-slide images. Our proof of concept comprises (1) an AI-integrated slide viewer to run sliding-window experiments to test claims of an explanation, and (2) quantification of an explanation's predictiveness using general-purpose vision-language models. The results demonstrate that this allows us to qualitatively test claims of explanations and can quantifiably distinguish competing explanations. This offers a practical path from explainable AI to explained AI in digital pathology and beyond. Code and prompts are available at https://github.com/nki-ai/x2x.

Authors:Asim Ukaye, Numan Saeed, Karthik Nandakumar
Title: FIVA: Federated Inverse Variance Averaging for Universal CT Segmentation with Uncertainty Estimation
Abstract:
Different CT segmentation datasets are typically obtained from different scanners under different capture settings and often provide segmentation labels for a limited and often disjoint set of organs. Using these heterogeneous data effectively while preserving patient privacy can be challenging. This work presents a novel federated learning approach to achieve universal segmentation across diverse abdominal CT datasets by utilizing model uncertainty for aggregation and predictive uncertainty for inference. Our approach leverages the inherent noise in stochastic mini-batch gradient descent to estimate a distribution over the model weights to provide an on-the-go uncertainty over the model parameters at the client level. The parameters are then aggregated at the server using the additional uncertainty information using a Bayesian-inspired inverse-variance aggregation scheme. Furthermore, the proposed method quantifies prediction uncertainty by propagating the uncertainty from the model weights, providing confidence measures essential for clinical decision-making. In line with recent work shown, predictive uncertainty is utilized in the inference stage to improve predictive performance. Experimental evaluations demonstrate the effectiveness of this approach in improving both the quality of federated aggregation and uncertainty-weighted inference compared to previously established baselines. The code for this work is made available at: https://github.com/asimukaye/fiva

Authors:Maria Boyko, Aleksandra Beliaeva, Dmitriy Kornilov, Alexander Bernstein, Maxim Sharaev
Title: impuTMAE: Multi-modal Transformer with Masked Pre-training for Missing Modalities Imputation in Cancer Survival Prediction
Abstract:
The use of diverse modalities, such as omics, medical images, and clinical data can not only improve the performance of prognostic models but also deepen an understanding of disease mechanisms and facilitate the development of novel treatment approaches. However, medical data are complex, often incomplete, and contains missing modalities, making effective handling its crucial for training multimodal models. We introduce impuTMAE, a novel transformer-based end-to-end approach with an efficient multimodal pre-training strategy. It learns inter- and intra-modal interactions while simultaneously imputing missing modalities by reconstructing masked patches. Our model is pre-trained on heterogeneous, incomplete data and fine-tuned for glioma survival prediction using TCGA-GBM/LGG and BraTS datasets, integrating five modalities: genetic (DNAm, RNA-seq), imaging (MRI, WSI), and clinical data. By addressing missing data during pre-training and enabling efficient resource utilization, impuTMAE surpasses prior multimodal approaches, achieving state-of-the-art performance in glioma patient survival prediction. Our code is available at https://github.com/maryjis/mtcp

Authors:Yanhui Li, Yunkang Cao, Chengliang Liu, Yuan Xiong, Xinghui Dong, Chao Huang
Title: IAD-R1: Reinforcing Consistent Reasoning in Industrial Anomaly Detection
Abstract:
Industrial anomaly detection is a critical component of modern manufacturing, yet the scarcity of defective samples restricts traditional detection methods to scenario-specific applications. Although Vision-Language Models (VLMs) demonstrate significant advantages in generalization capabilities, their performance in industrial anomaly detection remains limited. To address this challenge, we propose IAD-R1, a universal post-training framework applicable to VLMs of different architectures and parameter scales, which substantially enhances their anomaly detection capabilities. IAD-R1 employs a two-stage training strategy: the Perception Activation Supervised Fine-Tuning (PA-SFT) stage utilizes a meticulously constructed high-quality Chain-of-Thought dataset (Expert-AD) for training, enhancing anomaly perception capabilities and establishing reasoning-to-answer correlations; the Structured Control Group Relative Policy Optimization (SC-GRPO) stage employs carefully designed reward functions to achieve a capability leap from "Anomaly Perception" to "Anomaly Interpretation". Experimental results demonstrate that IAD-R1 achieves significant improvements across 7 VLMs, the largest improvement was on the DAGM dataset, with average accuracy 43.3% higher than the 0.5B baseline. Notably, the 0.5B parameter model trained with IAD-R1 surpasses commercial models including GPT-4.1 and Claude-Sonnet-4 in zero-shot settings, demonstrating the effectiveness and superiority of IAD-R1. The dataset, code, and all model weights will be publicly available at https://github.com/Yanhui-Lee/IAD-R1.

Authors:Xingle Xu, Yongkang Liu, Dexian Cai, Shi Feng, Xiaocui Yang, Daling Wang, Yifei Zhang
Title: MoLAN: A Unified Modality-Aware Noise Dynamic Editing Framework for Multimodal Sentiment Analysis
Abstract:
Multimodal Sentiment Analysis aims to integrate information from various modalities, such as audio, visual, and text, to make complementary predictions. However, it often struggles with irrelevant or misleading visual and auditory information. Most existing approaches typically treat the entire modality information (e.g., a whole image, audio segment, or text paragraph) as an independent unit for feature enhancement or denoising. They often suppress the redundant and noise information at the risk of losing critical information. To address this challenge, we propose MoLAN, a unified ModaLity-aware noise dynAmic editiNg framework. Specifically, MoLAN performs modality-aware blocking by dividing the features of each modality into multiple blocks. Each block is then dynamically assigned a distinct denoising strength based on its noise level and semantic relevance, enabling fine-grained noise suppression while preserving essential multimodal information. Notably, MoLAN is a unified and flexible framework that can be seamlessly integrated into a wide range of multimodal models. Building upon this framework, we further introduce MoLAN+, a new multimodal sentiment analysis approach. Experiments across five models and four datasets demonstrate the broad effectiveness of the MoLAN framework. Extensive evaluations show that MoLAN+ achieves the state-of-the-art performance. The code is publicly available at https://github.com/betterfly123/MoLAN-Framework.

Authors:Ya Zou, Jingfeng Yao, Siyuan Yu, Shuai Zhang, Wenyu Liu, Xinggang Wang
Title: Turbo-VAED: Fast and Stable Transfer of Video-VAEs to Mobile Devices
Abstract:
There is a growing demand for deploying large generative AI models on mobile devices. For recent popular video generative models, however, the Variational AutoEncoder (VAE) represents one of the major computational bottlenecks. Both large parameter sizes and mismatched kernels cause out-of-memory errors or extremely slow inference on mobile devices. To address this, we propose a low-cost solution that efficiently transfers widely used video VAEs to mobile devices. (1) We analyze redundancy in existing VAE architectures and get empirical design insights. By integrating 3D depthwise separable convolutions into our model, we significantly reduce the number of parameters. (2) We observe that the upsampling techniques in mainstream video VAEs are poorly suited to mobile hardware and form the main bottleneck. In response, we propose a decoupled 3D pixel shuffle scheme that slashes end-to-end delay. Building upon these, we develop a universal mobile-oriented VAE decoder, Turbo-VAED. (3) We propose an efficient VAE decoder training method. Since only the decoder is used during deployment, we distill it to Turbo-VAED instead of retraining the full VAE, enabling fast mobile adaptation with minimal performance loss. To our knowledge, our method enables real-time 720p video VAE decoding on mobile devices for the first time. This approach is widely applicable to most video VAEs. When integrated into four representative models, with training cost as low as $95, it accelerates original VAEs by up to 84.5x at 720p resolution on GPUs, uses as low as 17.5% of original parameter count, and retains 96.9% of the original reconstruction quality. Compared to mobile-optimized VAEs, Turbo-VAED achieves a 2.9x speedup in FPS and better reconstruction quality on the iPhone 16 Pro. The code and models will soon be available at https://github.com/hustvl/Turbo-VAED.

Authors:Maxim A. Patratskiy, Alexey K. Kovalev, Aleksandr I. Panov
Title: Spatial Traces: Enhancing VLA Models with Spatial-Temporal Understanding
Abstract:
Vision-Language-Action models have demonstrated remarkable capabilities in predicting agent movements within virtual environments and real-world scenarios based on visual observations and textual instructions. Although recent research has focused on enhancing spatial and temporal understanding independently, this paper presents a novel approach that integrates both aspects through visual prompting. We introduce a method that projects visual traces of key points from observations onto depth maps, enabling models to capture both spatial and temporal information simultaneously. The experiments in SimplerEnv show that the mean number of tasks successfully solved increased for 4% compared to SpatialVLA and 19% compared to TraceVLA. Furthermore, we show that this enhancement can be achieved with minimal training data, making it particularly valuable for real-world applications where data collection is challenging. The project page is available at https://ampiromax.github.io/ST-VLA.

Authors:Kaiwen Huang, Tao Zhou, Huazhu Fu, Yizhe Zhang, Yi Zhou, Xiao-Jun Wu
Title: Uncertainty-aware Cross-training for Semi-supervised Medical Image Segmentation
Abstract:
Semi-supervised learning has gained considerable popularity in medical image segmentation tasks due to its capability to reduce reliance on expert-examined annotations. Several mean-teacher (MT) based semi-supervised methods utilize consistency regularization to effectively leverage valuable information from unlabeled data. However, these methods often heavily rely on the student model and overlook the potential impact of cognitive biases within the model. Furthermore, some methods employ co-training using pseudo-labels derived from different inputs, yet generating high-confidence pseudo-labels from perturbed inputs during training remains a significant challenge. In this paper, we propose an Uncertainty-aware Cross-training framework for semi-supervised medical image Segmentation (UC-Seg). Our UC-Seg framework incorporates two distinct subnets to effectively explore and leverage the correlation between them, thereby mitigating cognitive biases within the model. Specifically, we present a Cross-subnet Consistency Preservation (CCP) strategy to enhance feature representation capability and ensure feature consistency across the two subnets. This strategy enables each subnet to correct its own biases and learn shared semantics from both labeled and unlabeled data. Additionally, we propose an Uncertainty-aware Pseudo-label Generation (UPG) component that leverages segmentation results and corresponding uncertainty maps from both subnets to generate high-confidence pseudo-labels. We extensively evaluate the proposed UC-Seg on various medical image segmentation tasks involving different modality images, such as MRI, CT, ultrasound, colonoscopy, and so on. The results demonstrate that our method achieves superior segmentation accuracy and generalization performance compared to other state-of-the-art semi-supervised methods. Our code will be released at https://github.com/taozh2017/UCSeg.

Authors:Yuhao Wang, Wei Xi
Title: UniConvNet: Expanding Effective Receptive Field while Maintaining Asymptotically Gaussian Distribution for ConvNets of Any Scale
Abstract:
Convolutional neural networks (ConvNets) with large effective receptive field (ERF), still in their early stages, have demonstrated promising effectiveness while constrained by high parameters and FLOPs costs and disrupted asymptotically Gaussian distribution (AGD) of ERF. This paper proposes an alternative paradigm: rather than merely employing extremely large ERF, it is more effective and efficient to expand the ERF while maintaining AGD of ERF by proper combination of smaller kernels, such as $7\times{7}$, $9\times{9}$, $11\times{11}$. This paper introduces a Three-layer Receptive Field Aggregator and designs a Layer Operator as the fundamental operator from the perspective of receptive field. The ERF can be expanded to the level of existing large-kernel ConvNets through the stack of proposed modules while maintaining AGD of ERF. Using these designs, we propose a universal model for ConvNet of any scale, termed UniConvNet. Extensive experiments on ImageNet-1K, COCO2017, and ADE20K demonstrate that UniConvNet outperforms state-of-the-art CNNs and ViTs across various vision recognition tasks for both lightweight and large-scale models with comparable throughput. Surprisingly, UniConvNet-T achieves $84.2\%$ ImageNet top-1 accuracy with $30M$ parameters and $5.1G$ FLOPs. UniConvNet-XL also shows competitive scalability to big data and large models, acquiring $88.4\%$ top-1 accuracy on ImageNet. Code and models are publicly available at https://github.com/ai-paperwithcode/UniConvNet.

Authors:Elman Ghazaei, Erchan Aptoula
Title: Text-conditioned State Space Model For Domain-generalized Change Detection Visual Question Answering
Abstract:
The Earth's surface is constantly changing, and detecting these changes provides valuable insights that benefit various aspects of human society. While traditional change detection methods have been employed to detect changes from bi-temporal images, these approaches typically require expert knowledge for accurate interpretation. To enable broader and more flexible access to change information by non-expert users, the task of Change Detection Visual Question Answering (CDVQA) has been introduced. However, existing CDVQA methods have been developed under the assumption that training and testing datasets share similar distributions. This assumption does not hold in real-world applications, where domain shifts often occur. In this paper, the CDVQA task is revisited with a focus on addressing domain shift. To this end, a new multi-modal and multi-domain dataset, BrightVQA, is introduced to facilitate domain generalization research in CDVQA. Furthermore, a novel state space model, termed Text-Conditioned State Space Model (TCSSM), is proposed. The TCSSM framework is designed to leverage both bi-temporal imagery and geo-disaster-related textual information in an unified manner to extract domain-invariant features across domains. Input-dependent parameters existing in TCSSM are dynamically predicted by using both bi-temporal images and geo-disaster-related description, thereby facilitating the alignment between bi-temporal visual data and the associated textual descriptions. Extensive experiments are conducted to evaluate the proposed method against state-of-the-art models, and superior performance is consistently demonstrated. The code and dataset will be made publicly available upon acceptance at https://github.com/Elman295/TCSSM.

Authors:Bin Ren, Xiaoshui Huang, Mengyuan Liu, Hong Liu, Fabio Poiesi, Nicu Sebe, Guofeng Mei
Title: Masked Clustering Prediction for Unsupervised Point Cloud Pre-training
Abstract:
Vision transformers (ViTs) have recently been widely applied to 3D point cloud understanding, with masked autoencoding as the predominant pre-training paradigm. However, the challenge of learning dense and informative semantic features from point clouds via standard ViTs remains underexplored. We propose MaskClu, a novel unsupervised pre-training method for ViTs on 3D point clouds that integrates masked point modeling with clustering-based learning. MaskClu is designed to reconstruct both cluster assignments and cluster centers from masked point clouds, thus encouraging the model to capture dense semantic information. Additionally, we introduce a global contrastive learning mechanism that enhances instance-level feature learning by contrasting different masked views of the same point cloud. By jointly optimizing these complementary objectives, i.e., dense semantic reconstruction, and instance-level contrastive learning. MaskClu enables ViTs to learn richer and more semantically meaningful representations from 3D point clouds. We validate the effectiveness of our method via multiple 3D tasks, including part segmentation, semantic segmentation, object detection, and classification, where MaskClu sets new competitive results. The code and models will be released at:https://github.com/Amazingren/maskclu.

Authors:Chaoyi Wang, Yifan Yang, Jun Pei, Lijie Xia, Jianpo Liu, Xiaobing Yuan, Xinhan Di
Title: Preview WB-DH: Towards Whole Body Digital Human Bench for the Generation of Whole-body Talking Avatar Videos
Abstract:
Creating realistic, fully animatable whole-body avatars from a single portrait is challenging due to limitations in capturing subtle expressions, body movements, and dynamic backgrounds. Current evaluation datasets and metrics fall short in addressing these complexities. To bridge this gap, we introduce the Whole-Body Benchmark Dataset (WB-DH), an open-source, multi-modal benchmark designed for evaluating whole-body animatable avatar generation. Key features include: (1) detailed multi-modal annotations for fine-grained guidance, (2) a versatile evaluation framework, and (3) public access to the dataset and tools at https://github.com/deepreasonings/WholeBodyBenchmark.

Authors:Yuqi Peng, Lingtao Zheng, Yufeng Yang, Yi Huang, Mingfu Yan, Jianzhuang Liu, Shifeng Chen
Title: TARA: Token-Aware LoRA for Composable Personalization in Diffusion Models
Abstract:
Personalized text-to-image generation aims to synthesize novel images of a specific subject or style using only a few reference images. Recent methods based on Low-Rank Adaptation (LoRA) enable efficient single-concept customization by injecting lightweight, concept-specific adapters into pre-trained diffusion models. However, combining multiple LoRA modules for multi-concept generation often leads to identity missing and visual feature leakage. In this work, we identify two key issues behind these failures: (1) token-wise interference among different LoRA modules, and (2) spatial misalignment between the attention map of a rare token and its corresponding concept-specific region. To address these issues, we propose Token-Aware LoRA (TARA), which introduces a token mask to explicitly constrain each module to focus on its associated rare token to avoid interference, and a training objective that encourages the spatial attention of a rare token to align with its concept region. Our method enables training-free multi-concept composition by directly injecting multiple independently trained TARA modules at inference time. Experimental results demonstrate that TARA enables efficient multi-concept inference and effectively preserving the visual identity of each concept by avoiding mutual interference between LoRA modules. The code and models are available at https://github.com/YuqiPeng77/TARA.

Authors:Shi-Chen Zhang, Yunheng Li, Yu-Huan Wu, Qibin Hou, Ming-Ming Cheng
Title: Revisiting Efficient Semantic Segmentation: Learning Offsets for Better Spatial and Class Feature Alignment
Abstract:
Semantic segmentation is fundamental to vision systems requiring pixel-level scene understanding, yet deploying it on resource-constrained devices demands efficient architectures. Although existing methods achieve real-time inference through lightweight designs, we reveal their inherent limitation: misalignment between class representations and image features caused by a per-pixel classification paradigm. With experimental analysis, we find that this paradigm results in a highly challenging assumption for efficient scenarios: Image pixel features should not vary for the same category in different images. To address this dilemma, we propose a coupled dual-branch offset learning paradigm that explicitly learns feature and class offsets to dynamically refine both class representations and spatial image features. Based on the proposed paradigm, we construct an efficient semantic segmentation network, OffSeg. Notably, the offset learning paradigm can be adopted to existing methods with no additional architectural changes. Extensive experiments on four datasets, including ADE20K, Cityscapes, COCO-Stuff-164K, and Pascal Context, demonstrate consistent improvements with negligible parameters. For instance, on the ADE20K dataset, our proposed offset learning paradigm improves SegFormer-B0, SegNeXt-T, and Mask2Former-Tiny by 2.7%, 1.9%, and 2.6% mIoU, respectively, with only 0.1-0.2M additional parameters required.

Authors:Zunjie Xiao, Xiao Wu, Tianhang Liu, Lingxi Hu, Yinling Zhang, Xiaoqing Zhang, Risa Higashita, Jiang Liu
Title: Adaptive Confidence-Wise Loss for Improved Lens Structure Segmentation in AS-OCT
Abstract:
Precise lens structure segmentation is essential for the design of intraocular lenses (IOLs) in cataract surgery. Existing deep segmentation networks typically weight all pixels equally under cross-entropy (CE) loss, overlooking the fact that sub-regions of lens structures are inhomogeneous (e.g., some regions perform better than others) and that boundary regions often suffer from poor segmentation calibration at the pixel level. Clinically, experts annotate different sub-regions of lens structures with varying confidence levels, considering factors such as sub-region proportions, ambiguous boundaries, and lens structure shapes. Motivated by this observation, we propose an Adaptive Confidence-Wise (ACW) loss to group each lens structure sub-region into different confidence sub-regions via a confidence threshold from the unique region aspect, aiming to exploit the potential of expert annotation confidence prior. Specifically, ACW clusters each target region into low-confidence and high-confidence groups and then applies a region-weighted loss to reweigh each confidence group. Moreover, we design an adaptive confidence threshold optimization algorithm to adjust the confidence threshold of ACW dynamically. Additionally, to better quantify the miscalibration errors in boundary region segmentation, we propose a new metric, termed Boundary Expected Calibration Error (BECE). Extensive experiments on a clinical lens structure AS-OCT dataset and other multi-structure datasets demonstrate that our ACW significantly outperforms competitive segmentation loss methods across different deep segmentation networks (e.g., MedSAM). Notably, our method surpasses CE with 6.13% IoU gain, 4.33% DSC increase, and 4.79% BECE reduction in lens structure segmentation under U-Net. The code of this paper is available at https://github.com/XiaoLing12138/Adaptive-Confidence-Wise-Loss.

Authors:Ouyang Xu, Baoming Zhang, Ruiyu Mao, Yunhui Guo
Title: SafeFix: Targeted Model Repair via Controlled Image Generation
Abstract:
Deep learning models for visual recognition often exhibit systematic errors due to underrepresented semantic subpopulations. Although existing debugging frameworks can pinpoint these failures by identifying key failure attributes, repairing the model effectively remains difficult. Current solutions often rely on manually designed prompts to generate synthetic training images -- an approach prone to distribution shift and semantic errors. To overcome these challenges, we introduce a model repair module that builds on an interpretable failure attribution pipeline. Our approach uses a conditional text-to-image model to generate semantically faithful and targeted images for failure cases. To preserve the quality and relevance of the generated samples, we further employ a large vision-language model (LVLM) to filter the outputs, enforcing alignment with the original data distribution and maintaining semantic consistency. By retraining vision models with this rare-case-augmented synthetic dataset, we significantly reduce errors associated with rare cases. Our experiments demonstrate that this targeted repair strategy improves model robustness without introducing new bugs. Code is available at https://github.com/oxu2/SafeFix

Authors:Qi Zheng, Li-Heng Chen, Chenlong He, Neil Berkbeck, Yilin Wang, Balu Adsumilli, Alan C. Bovik, Yibo Fan, Zhengzhong Tu
Title: Subjective and Objective Quality Assessment of Banding Artifacts on Compressed Videos
Abstract:
Although there have been notable advancements in video compression technologies in recent years, banding artifacts remain a serious issue affecting the quality of compressed videos, particularly on smooth regions of high-definition videos. Noticeable banding artifacts can severely impact the perceptual quality of videos viewed on a high-end HDTV or high-resolution screen. Hence, there is a pressing need for a systematic investigation of the banding video quality assessment problem for advanced video codecs. Given that the existing publicly available datasets for studying banding artifacts are limited to still picture data only, which cannot account for temporal banding dynamics, we have created a first-of-a-kind open video dataset, dubbed LIVE-YT-Banding, which consists of 160 videos generated by four different compression parameters using the AV1 video codec. A total of 7,200 subjective opinions are collected from a cohort of 45 human subjects. To demonstrate the value of this new resources, we tested and compared a variety of models that detect banding occurrences, and measure their impact on perceived quality. Among these, we introduce an effective and efficient new no-reference (NR) video quality evaluator which we call CBAND. CBAND leverages the properties of the learned statistics of natural images expressed in the embeddings of deep neural networks. Our experimental results show that the perceptual banding prediction performance of CBAND significantly exceeds that of previous state-of-the-art models, and is also orders of magnitude faster. Moreover, CBAND can be employed as a differentiable loss function to optimize video debanding models. The LIVE-YT-Banding database, code, and pre-trained model are all publically available at https://github.com/uniqzheng/CBAND.

Authors:Yimeng Geng, Mingyang Zhao, Fan Xu, Guanglin Cao, Gaofeng Meng, Hongbin Liu
Title: PADReg: Physics-Aware Deformable Registration Guided by Contact Force for Ultrasound Sequences
Abstract:
Ultrasound deformable registration estimates spatial transformations between pairs of deformed ultrasound images, which is crucial for capturing biomechanical properties and enhancing diagnostic accuracy in diseases such as thyroid nodules and breast cancer. However, ultrasound deformable registration remains highly challenging, especially under large deformation. The inherently low contrast, heavy noise and ambiguous tissue boundaries in ultrasound images severely hinder reliable feature extraction and correspondence matching. Existing methods often suffer from poor anatomical alignment and lack physical interpretability. To address the problem, we propose PADReg, a physics-aware deformable registration framework guided by contact force. PADReg leverages synchronized contact force measured by robotic ultrasound systems as a physical prior to constrain the registration. Specifically, instead of directly predicting deformation fields, we first construct a pixel-wise stiffness map utilizing the multi-modal information from contact force and ultrasound images. The stiffness map is then combined with force data to estimate a dense deformation field, through a lightweight physics-aware module inspired by Hooke's law. This design enables PADReg to achieve physically plausible registration with better anatomical alignment than previous methods relying solely on image similarity. Experiments on in-vivo datasets demonstrate that it attains a HD95 of 12.90, which is 21.34\% better than state-of-the-art methods. The source code is available at https://github.com/evelynskip/PADReg.

Authors:Jiahua Dong, Hui Yin, Wenqi Liang, Hanbin Zhao, Henghui Ding, Nicu Sebe, Salman Khan, Fahad Shahbaz Khan
Title: Hierarchical Visual Prompt Learning for Continual Video Instance Segmentation
Abstract:
Video instance segmentation (VIS) has gained significant attention for its capability in tracking and segmenting object instances across video frames. However, most of the existing VIS approaches unrealistically assume that the categories of object instances remain fixed over time. Moreover, they experience catastrophic forgetting of old classes when required to continuously learn object instances belonging to new categories. To resolve these challenges, we develop a novel Hierarchical Visual Prompt Learning (HVPL) model that overcomes catastrophic forgetting of previous categories from both frame-level and video-level perspectives. Specifically, to mitigate forgetting at the frame level, we devise a task-specific frame prompt and an orthogonal gradient correction (OGC) module. The OGC module helps the frame prompt encode task-specific global instance information for new classes in each individual frame by projecting its gradients onto the orthogonal feature space of old classes. Furthermore, to address forgetting at the video level, we design a task-specific video prompt and a video context decoder. This decoder first embeds structural inter-class relationships across frames into the frame prompt features, and then propagates task-specific global video contexts from the frame prompt features to the video prompt. Through rigorous comparisons, our HVPL model proves to be more effective than baseline approaches. The code is available at https://github.com/JiahuaDong/HVPL.

Authors:Honglei Xu, Zhilu Zhang, Junjie Fan, Xiaohe Wu, Wangmeng Zuo
Title: SelfHVD: Self-Supervised Handheld Video Deblurring for Mobile Phones
Abstract:
Shooting video with a handheld mobile phone, the most common photographic device, often results in blurry frames due to shaking hands and other instability factors. Although previous video deblurring methods have achieved impressive progress, they still struggle to perform satisfactorily on real-world handheld video due to the blur domain gap between training and testing data. To address the issue, we propose a self-supervised method for handheld video deblurring, which is driven by sharp clues in the video. First, to train the deblurring model, we extract the sharp clues from the video and take them as misalignment labels of neighboring blurry frames. Second, to improve the model's ability, we propose a novel Self-Enhanced Video Deblurring (SEVD) method to create higher-quality paired video data. Third, we propose a Self-Constrained Spatial Consistency Maintenance (SCSCM) method to regularize the model, preventing position shifts between the output and input frames. Moreover, we construct a synthetic and a real-world handheld video dataset for handheld video deblurring. Extensive experiments on these two and other common real-world datasets demonstrate that our method significantly outperforms existing self-supervised ones. The code and datasets are publicly available at https://github.com/cshonglei/SelfHVD.

Authors:Deheng Ye, Fangyun Zhou, Jiacheng Lv, Jianqi Ma, Jun Zhang, Junyan Lv, Junyou Li, Minwen Deng, Mingyu Yang, Qiang Fu, Wei Yang, Wenkai Lv, Yangbin Yu, Yewen Wang, Yonghang Guan, Zhihao Hu, Zhongbin Fang, Zhongqian Sun
Title: Yan: Foundational Interactive Video Generation
Abstract:
We present Yan, a foundational framework for interactive video generation, covering the entire pipeline from simulation and generation to editing. Specifically, Yan comprises three core modules. AAA-level Simulation: We design a highly-compressed, low-latency 3D-VAE coupled with a KV-cache-based shift-window denoising inference process, achieving real-time 1080P/60FPS interactive simulation. Multi-Modal Generation: We introduce a hierarchical autoregressive caption method that injects game-specific knowledge into open-domain multi-modal video diffusion models (VDMs), then transforming the VDM into a frame-wise, action-controllable, real-time infinite interactive video generator. Notably, when the textual and visual prompts are sourced from different domains, the model demonstrates strong generalization, allowing it to blend and compose the style and mechanics across domains flexibly according to user prompts. Multi-Granularity Editing: We propose a hybrid model that explicitly disentangles interactive mechanics simulation from visual rendering, enabling multi-granularity video content editing during interaction through text. Collectively, Yan offers an integration of these modules, pushing interactive video generation beyond isolated capabilities toward a comprehensive AI-driven interactive creation paradigm, paving the way for the next generation of creative tools, media, and entertainment. The project page is: https://greatx3.github.io/Yan/.

Authors:Wenwen Yu, Zhibo Yang, Yuliang Liu, Xiang Bai
Title: DocThinker: Explainable Multimodal Large Language Models with Rule-based Reinforcement Learning for Document Understanding
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in document understanding. However, their reasoning processes remain largely black-box, making it difficult to ensure reliability and trustworthiness, especially in high-stakes domains such as legal, financial, and medical document analysis. Existing methods use fixed Chain-of-Thought (CoT) reasoning with supervised fine-tuning (SFT) but suffer from catastrophic forgetting, poor adaptability, and limited generalization across domain tasks. In this paper, we propose DocThinker, a rule-based Reinforcement Learning (RL) framework for dynamic inference-time reasoning. Instead of relying on static CoT templates, DocThinker autonomously refines reasoning strategies via policy learning, generating explainable intermediate results, including structured reasoning processes, rephrased questions, regions of interest (RoI) supporting the answer, and the final answer. By integrating multi-objective rule-based rewards and KL-constrained optimization, our method mitigates catastrophic forgetting and enhances both adaptability and transparency. Extensive experiments on multiple benchmarks demonstrate that DocThinker significantly improves generalization while producing more explainable and human-understandable reasoning steps. Our findings highlight RL as a powerful alternative for enhancing explainability and adaptability in MLLM-based document understanding. Code will be available at https://github.com/wenwenyu/DocThinker.

Authors:Jingyun Liang, Jingkai Zhou, Shikai Li, Chenjie Cao, Lei Sun, Yichen Qian, Weihua Chen, Fan Wang
Title: RealisMotion: Decomposed Human Motion Control and Video Generation in the World Space
Abstract:
Generating human videos with realistic and controllable motions is a challenging task. While existing methods can generate visually compelling videos, they lack separate control over four key video elements: foreground subject, background video, human trajectory and action patterns. In this paper, we propose a decomposed human motion control and video generation framework that explicitly decouples motion from appearance, subject from background, and action from trajectory, enabling flexible mix-and-match composition of these elements. Concretely, we first build a ground-aware 3D world coordinate system and perform motion editing directly in the 3D space. Trajectory control is implemented by unprojecting edited 2D trajectories into 3D with focal-length calibration and coordinate transformation, followed by speed alignment and orientation adjustment; actions are supplied by a motion bank or generated via text-to-motion methods. Then, based on modern text-to-video diffusion transformer models, we inject the subject as tokens for full attention, concatenate the background along the channel dimension, and add motion (trajectory and action) control signals by addition. Such a design opens up the possibility for us to generate realistic videos of anyone doing anything anywhere. Extensive experiments on benchmark datasets and real-world cases demonstrate that our method achieves state-of-the-art performance on both element-wise controllability and overall video quality.

Authors:Tuo Liu, Qinghan Yang, Yu Zhang, Rongjun Ge, Yang Chen, Guangquan Zhou
Title: Think as Cardiac Sonographers: Marrying SAM with Left Ventricular Indicators Measurements According to Clinical Guidelines
Abstract:
Left ventricular (LV) indicator measurements following clinical echocardiog-raphy guidelines are important for diagnosing cardiovascular disease. Alt-hough existing algorithms have explored automated LV quantification, they can struggle to capture generic visual representations due to the normally small training datasets. Therefore, it is necessary to introduce vision founda-tional models (VFM) with abundant knowledge. However, VFMs represented by the segment anything model (SAM) are usually suitable for segmentation but incapable of identifying key anatomical points, which are critical in LV indicator measurements. In this paper, we propose a novel framework named AutoSAME, combining the powerful visual understanding of SAM with seg-mentation and landmark localization tasks simultaneously. Consequently, the framework mimics the operation of cardiac sonographers, achieving LV indi-cator measurements consistent with clinical guidelines. We further present fil-tered cross-branch attention (FCBA) in AutoSAME, which leverages relatively comprehensive features in the segmentation to enhance the heatmap regression (HR) of key points from the frequency domain perspective, optimizing the vis-ual representation learned by the latter. Moreover, we propose spatial-guided prompt alignment (SGPA) to automatically generate prompt embeddings guid-ed by spatial properties of LV, thereby improving the accuracy of dense pre-dictions by prior spatial knowledge. The extensive experiments on an echocar-diography dataset demonstrate the efficiency of each design and the superiori-ty of our AutoSAME in LV segmentation, landmark localization, and indicator measurements. The code will be available at https://github.com/QC-LIU-1997/AutoSAME.

Authors:Wenhao Liang, Wei Emma Zhang, Lin Yue, Miao Xu, Olaf Maennel, Weitong Chen
Title: Calibration Attention: Instance-wise Temperature Scaling for Vision Transformers
Abstract:
Probability calibration is critical when Vision Transformers are deployed in risk-sensitive applications. The standard fix, post-hoc temperature scaling, uses a single global scalar and requires a held-out validation set. We introduce Calibration Attention (CalAttn), a drop-in module that learns an adaptive, per-instance temperature directly from the ViT's CLS token. Across CIFAR-10/100, MNIST, Tiny-ImageNet, and ImageNet-1K, CalAttn reduces calibration error by up to 4x on ViT-224, DeiT, and Swin, while adding under 0.1 percent additional parameters. The learned temperatures cluster tightly around 1.0, in contrast to the large global values used by standard temperature scaling. CalAttn is simple, efficient, and architecture-agnostic, and yields more trustworthy probabilities without sacrificing accuracy. Code: [https://github.com/EagleAdelaide/CalibrationAttention-CalAttn-](https://github.com/EagleAdelaide/CalibrationAttention-CalAttn-)

Authors:Christophe EL Zeinaty, Wassim Hamidouche, Glenn Herrou, Daniel Menard
Title: Designing Object Detection Models for TinyML: Foundations, Comparative Analysis, Challenges, and Emerging Solutions
Abstract:
Object detection (OD) has become vital for numerous computer vision applications, but deploying it on resource-constrained IoT devices presents a significant challenge. These devices, often powered by energy-efficient microcontrollers, struggle to handle the computational load of deep learning-based OD models. This issue is compounded by the rapid proliferation of IoT devices, predicted to surpass 150 billion by 2030. TinyML offers a compelling solution by enabling OD on ultra-low-power devices, paving the way for efficient and real-time processing at the edge. Although numerous survey papers have been published on this topic, they often overlook the optimization challenges associated with deploying OD models in TinyML environments. To address this gap, this survey paper provides a detailed analysis of key optimization techniques for deploying OD models on resource-constrained devices. These techniques include quantization, pruning, knowledge distillation, and neural architecture search. Furthermore, we explore both theoretical approaches and practical implementations, bridging the gap between academic research and real-world edge artificial intelligence deployment. Finally, we compare the key performance indicators (KPIs) of existing OD implementations on microcontroller devices, highlighting the achieved maturity level of these solutions in terms of both prediction accuracy and efficiency. We also provide a public repository to continually track developments in this fast-evolving field: https://github.com/christophezei/Optimizing-Object-Detection-Models-for-TinyML-A-Comprehensive-Survey.

Authors:Seonyoung Kim, Dongil Kim
Title: MoSSDA: A Semi-Supervised Domain Adaptation Framework for Multivariate Time-Series Classification using Momentum Encoder
Abstract:
Deep learning has emerged as the most promising approach in various fields; however, when the distributions of training and test data are different (domain shift), the performance of deep learning models can degrade. Semi-supervised domain adaptation (SSDA) is a major approach for addressing this issue, assuming that a fully labeled training set (source domain) is available, but the test set (target domain) provides labels only for a small subset. In this study, we propose a novel two-step momentum encoder-utilized SSDA framework, MoSSDA, for multivariate time-series classification. Time series data are highly sensitive to noise, and sequential dependencies cause domain shifts resulting in critical performance degradation. To obtain a robust, domain-invariant and class-discriminative representation, MoSSDA employs a domain-invariant encoder to learn features from both source and target domains. Subsequently, the learned features are fed to a mixup-enhanced positive contrastive module consisting of an online momentum encoder. The final classifier is trained with learned features that exhibit consistency and discriminability with limited labeled target domain data, without data augmentation. We applied a two-stage process by separating the gradient flow between the encoders and the classifier to obtain rich and complex representations. Through extensive experiments on six diverse datasets, MoSSDA achieved state-of-the-art performance for three different backbones and various unlabeled ratios in the target domain data. The Ablation study confirms that each module, including two-stage learning, is effective in improving the performance. Our code is available at https://github.com/seonyoungKimm/MoSSDA

Authors:Shuting He, Guangquan Jie, Changshuo Wang, Yun Zhou, Shuming Hu, Guanbin Li, Henghui Ding
Title: ReferSplat: Referring Segmentation in 3D Gaussian Splatting
Abstract:
We introduce Referring 3D Gaussian Splatting Segmentation (R3DGS), a new task that aims to segment target objects in a 3D Gaussian scene based on natural language descriptions, which often contain spatial relationships or object attributes. This task requires the model to identify newly described objects that may be occluded or not directly visible in a novel view, posing a significant challenge for 3D multi-modal understanding. Developing this capability is crucial for advancing embodied AI. To support research in this area, we construct the first R3DGS dataset, Ref-LERF. Our analysis reveals that 3D multi-modal understanding and spatial relationship modeling are key challenges for R3DGS. To address these challenges, we propose ReferSplat, a framework that explicitly models 3D Gaussian points with natural language expressions in a spatially aware paradigm. ReferSplat achieves state-of-the-art performance on both the newly proposed R3DGS task and 3D open-vocabulary segmentation benchmarks. Dataset and code are available at https://github.com/heshuting555/ReferSplat.

Authors:Kaijun Wang, Liqin Lu, Mingyu Liu, Jianuo Jiang, Zeju Li, Bolin Zhang, Wancai Zheng, Xinyi Yu, Hao Chen, Chunhua Shen
Title: ODYSSEY: Open-World Quadrupeds Exploration and Manipulation for Long-Horizon Tasks
Abstract:
Language-guided long-horizon mobile manipulation has long been a grand challenge in embodied semantic reasoning, generalizable manipulation, and adaptive locomotion. Three fundamental limitations hinder progress: First, although large language models have improved spatial reasoning and task planning through semantic priors, existing implementations remain confined to tabletop scenarios, failing to address the constrained perception and limited actuation ranges of mobile platforms. Second, current manipulation strategies exhibit insufficient generalization when confronted with the diverse object configurations encountered in open-world environments. Third, while crucial for practical deployment, the dual requirement of maintaining high platform maneuverability alongside precise end-effector control in unstructured settings remains understudied. In this work, we present ODYSSEY, a unified mobile manipulation framework for agile quadruped robots equipped with manipulators, which seamlessly integrates high-level task planning with low-level whole-body control. To address the challenge of egocentric perception in language-conditioned tasks, we introduce a hierarchical planner powered by a vision-language model, enabling long-horizon instruction decomposition and precise action execution. At the control level, our novel whole-body policy achieves robust coordination across challenging terrains. We further present the first benchmark for long-horizon mobile manipulation, evaluating diverse indoor and outdoor scenarios. Through successful sim-to-real transfer, we demonstrate the system's generalization and robustness in real-world deployments, underscoring the practicality of legged manipulators in unstructured environments. Our work advances the feasibility of generalized robotic assistants capable of complex, dynamic tasks. Our project page: https://kaijwang.github.io/odyssey.github.io/

Authors:Wenyi Mo, Ying Ba, Tianyu Zhang, Yalong Bai, Biye Li
Title: Learning User Preferences for Image Generation Model
Abstract:
User preference prediction requires a comprehensive and accurate understanding of individual tastes. This includes both surface-level attributes, such as color and style, and deeper content-related aspects, such as themes and composition. However, existing methods typically rely on general human preferences or assume static user profiles, often neglecting individual variability and the dynamic, multifaceted nature of personal taste. To address these limitations, we propose an approach built upon Multimodal Large Language Models, introducing contrastive preference loss and preference tokens to learn personalized user preferences from historical interactions. The contrastive preference loss is designed to effectively distinguish between user ''likes'' and ''dislikes'', while the learnable preference tokens capture shared interest representations among existing users, enabling the model to activate group-specific preferences and enhance consistency across similar users. Extensive experiments demonstrate our model outperforms other methods in preference prediction accuracy, effectively identifying users with similar aesthetic inclinations and providing more precise guidance for generating images that align with individual tastes. The project page is \texttt{https://learn-user-pref.github.io/}.

Authors:Weijia Wu, Chen Gao, Joya Chen, Kevin Qinghong Lin, Qingwei Meng, Yiming Zhang, Yuke Qiu, Hong Zhou, Mike Zheng Shou
Title: Reinforcement Learning in Vision: A Survey
Abstract:
Recent advances at the intersection of reinforcement learning (RL) and visual intelligence have enabled agents that not only perceive complex visual scenes but also reason, generate, and act within them. This survey offers a critical and up-to-date synthesis of the field. We first formalize visual RL problems and trace the evolution of policy-optimization strategies from RLHF to verifiable reward paradigms, and from Proximal Policy Optimization to Group Relative Policy Optimization. We then organize more than 200 representative works into four thematic pillars: multi-modal large language models, visual generation, unified model frameworks, and vision-language-action models. For each pillar we examine algorithmic design, reward engineering, benchmark progress, and we distill trends such as curriculum-driven training, preference-aligned diffusion, and unified reward modeling. Finally, we review evaluation protocols spanning set-level fidelity, sample-level preference, and state-level stability, and we identify open challenges that include sample efficiency, generalization, and safe deployment. Our goal is to provide researchers and practitioners with a coherent map of the rapidly expanding landscape of visual RL and to highlight promising directions for future inquiry. Resources are available at: https://github.com/weijiawu/Awesome-Visual-Reinforcement-Learning.

Authors:Md Meftahul Ferdaus, Mahdi Abdelguerfi, Elias Ioup, Steven Sloan, Kendall N. Niles, Ken Pathak
Title: KARMA: Efficient Structural Defect Segmentation via Kolmogorov-Arnold Representation Learning
Abstract:
Semantic segmentation of structural defects in civil infrastructure remains challenging due to variable defect appearances, harsh imaging conditions, and significant class imbalance. Current deep learning methods, despite their effectiveness, typically require millions of parameters, rendering them impractical for real-time inspection systems. We introduce KARMA (Kolmogorov-Arnold Representation Mapping Architecture), a highly efficient semantic segmentation framework that models complex defect patterns through compositions of one-dimensional functions rather than conventional convolutions. KARMA features three technical innovations: (1) a parameter-efficient Tiny Kolmogorov-Arnold Network (TiKAN) module leveraging low-rank factorization for KAN-based feature transformation; (2) an optimized feature pyramid structure with separable convolutions for multi-scale defect analysis; and (3) a static-dynamic prototype mechanism that enhances feature representation for imbalanced classes. Extensive experiments on benchmark infrastructure inspection datasets demonstrate that KARMA achieves competitive or superior mean IoU performance compared to state-of-the-art approaches, while using significantly fewer parameters (0.959M vs. 31.04M, a 97% reduction). Operating at 0.264 GFLOPS, KARMA maintains inference speeds suitable for real-time deployment, enabling practical automated infrastructure inspection systems without compromising accuracy. The source code can be accessed at the following URL: https://github.com/faeyelab/karma.

Authors:Hongkun Jin, Hongcheng Jiang, Zejun Zhang, Yuan Zhang, Jia Fu, Tingfeng Li, Kai Luo
Title: THAT: Token-wise High-frequency Augmentation Transformer for Hyperspectral Pansharpening
Abstract:
Transformer-based methods have demonstrated strong potential in hyperspectral pansharpening by modeling long-range dependencies. However, their effectiveness is often limited by redundant token representations and a lack of multi-scale feature modeling. Hyperspectral images exhibit intrinsic spectral priors (e.g., abundance sparsity) and spatial priors (e.g., non-local similarity), which are critical for accurate reconstruction. From a spectral-spatial perspective, Vision Transformers (ViTs) face two major limitations: they struggle to preserve high-frequency components--such as material edges and texture transitions--and suffer from attention dispersion across redundant tokens. These issues stem from the global self-attention mechanism, which tends to dilute high-frequency signals and overlook localized details. To address these challenges, we propose the Token-wise High-frequency Augmentation Transformer (THAT), a novel framework designed to enhance hyperspectral pansharpening through improved high-frequency feature representation and token selection. Specifically, THAT introduces: (1) Pivotal Token Selective Attention (PTSA) to prioritize informative tokens and suppress redundancy; (2) a Multi-level Variance-aware Feed-forward Network (MVFN) to enhance high-frequency detail learning. Experiments on standard benchmarks show that THAT achieves state-of-the-art performance with improved reconstruction quality and efficiency. The source code is available at https://github.com/kailuo93/THAT.

Authors:Luca Zedda, Andrea Loddo, Cecilia Di Ruberto, Carsten Marr
Title: RedDino: A foundation model for red blood cell analysis
Abstract:
Red blood cells (RBCs) are essential to human health, and their precise morphological analysis is important for diagnosing hematological disorders. Despite the promise of foundation models in medical diagnostics, comprehensive AI solutions for RBC analysis remain scarce. We present RedDino, a self-supervised foundation model designed for RBC image analysis. RedDino uses an RBC-specific adaptation of the DINOv2 self-supervised learning framework and is trained on a curated dataset of 1.25 million RBC images from diverse acquisition modalities and sources. Extensive evaluations show that RedDino outperforms existing state-of-the-art models on RBC shape classification. Through assessments including linear probing and nearest neighbor classification, we confirm its strong feature representations and generalization ability. Our main contributions are: (1) a foundation model tailored for RBC analysis, (2) ablation studies exploring DINOv2 configurations for RBC modeling, and (3) a detailed evaluation of generalization performance. RedDino addresses key challenges in computational hematology by capturing nuanced morphological features, advancing the development of reliable diagnostic tools. The source code and pretrained models for RedDino are available at https://github.com/Snarci/RedDino, and the pretrained models can be downloaded from our Hugging Face collection at https://huggingface.co/collections/Snarcy/reddino-689a13e29241d2e5690202fc

Authors:Chongke Bi, Xin Gao, Jiangkang Deng, Guan Li, Jun Han
Title: CD-TVD: Contrastive Diffusion for 3D Super-Resolution with Scarce High-Resolution Time-Varying Data
Abstract:
Large-scale scientific simulations require significant resources to generate high-resolution time-varying data (TVD). While super-resolution is an efficient post-processing strategy to reduce costs, existing methods rely on a large amount of HR training data, limiting their applicability to diverse simulation scenarios. To address this constraint, we proposed CD-TVD, a novel framework that combines contrastive learning and an improved diffusion-based super-resolution model to achieve accurate 3D super-resolution from limited time-step high-resolution data. During pre-training on historical simulation data, the contrastive encoder and diffusion superresolution modules learn degradation patterns and detailed features of high-resolution and low-resolution samples. In the training phase, the improved diffusion model with a local attention mechanism is fine-tuned using only one newly generated high-resolution timestep, leveraging the degradation knowledge learned by the encoder. This design minimizes the reliance on large-scale high-resolution datasets while maintaining the capability to recover fine-grained details. Experimental results on fluid and atmospheric simulation datasets confirm that CD-TVD delivers accurate and resource-efficient 3D super-resolution, marking a significant advancement in data augmentation for large-scale scientific simulations. The code is available at https://github.com/Xin-Gao-private/CD-TVD.

Authors:Yan Wang, Da-Wei Zhou, Han-Jia Ye
Title: Integrating Task-Specific and Universal Adapters for Pre-Trained Model-based Class-Incremental Learning
Abstract:
Class-Incremental Learning (CIL) requires a learning system to continually learn new classes without forgetting. Existing pre-trained model-based CIL methods often freeze the pre-trained network and adapt to incremental tasks using additional lightweight modules such as adapters. However, incorrect module selection during inference hurts performance, and task-specific modules often overlook shared general knowledge, leading to errors on distinguishing between similar classes across tasks. To address the aforementioned challenges, we propose integrating Task-Specific and Universal Adapters (TUNA) in this paper. Specifically, we train task-specific adapters to capture the most crucial features relevant to their respective tasks and introduce an entropy-based selection mechanism to choose the most suitable adapter. Furthermore, we leverage an adapter fusion strategy to construct a universal adapter, which encodes the most discriminative features shared across tasks. We combine task-specific and universal adapter predictions to harness both specialized and general knowledge during inference. Extensive experiments on various benchmark datasets demonstrate the state-of-the-art performance of our approach. Code is available at: https://github.com/LAMDA-CL/ICCV2025-TUNA

Authors:Md Rezwanul Haque, Md. Milon Islam, S M Taslim Uddin Raju, Hamdi Altaheri, Lobna Nassar, Fakhri Karray
Title: MDD-Net: Multimodal Depression Detection through Mutual Transformer
Abstract:
Depression is a major mental health condition that severely impacts the emotional and physical well-being of individuals. The simple nature of data collection from social media platforms has attracted significant interest in properly utilizing this information for mental health research. A Multimodal Depression Detection Network (MDD-Net), utilizing acoustic and visual data obtained from social media networks, is proposed in this work where mutual transformers are exploited to efficiently extract and fuse multimodal features for efficient depression detection. The MDD-Net consists of four core modules: an acoustic feature extraction module for retrieving relevant acoustic attributes, a visual feature extraction module for extracting significant high-level patterns, a mutual transformer for computing the correlations among the generated features and fusing these features from multiple modalities, and a detection layer for detecting depression using the fused feature representations. The extensive experiments are performed using the multimodal D-Vlog dataset, and the findings reveal that the developed multimodal depression detection network surpasses the state-of-the-art by up to 17.37% for F1-Score, demonstrating the greater performance of the proposed system. The source code is accessible at https://github.com/rezwanh001/Multimodal-Depression-Detection.

Authors:Zizheng Guo, Bochao Zou, Junbao Zhuo, Huimin Ma
Title: ME-TST+: Micro-expression Analysis via Temporal State Transition with ROI Relationship Awareness
Abstract:
Micro-expressions (MEs) are regarded as important indicators of an individual's intrinsic emotions, preferences, and tendencies. ME analysis requires spotting of ME intervals within long video sequences and recognition of their corresponding emotional categories. Previous deep learning approaches commonly employ sliding-window classification networks. However, the use of fixed window lengths and hard classification presents notable limitations in practice. Furthermore, these methods typically treat ME spotting and recognition as two separate tasks, overlooking the essential relationship between them. To address these challenges, this paper proposes two state space model-based architectures, namely ME-TST and ME-TST+, which utilize temporal state transition mechanisms to replace conventional window-level classification with video-level regression. This enables a more precise characterization of the temporal dynamics of MEs and supports the modeling of MEs with varying durations. In ME-TST+, we further introduce multi-granularity ROI modeling and the slowfast Mamba framework to alleviate information loss associated with treating ME analysis as a time-series task. Additionally, we propose a synergy strategy for spotting and recognition at both the feature and result levels, leveraging their intrinsic connection to enhance overall analysis performance. Extensive experiments demonstrate that the proposed methods achieve state-of-the-art performance. The codes are available at https://github.com/zizheng-guo/ME-TST.

Authors:Ziad Al-Haj Hemidi, Eytan Kats, Mattias P. Heinrich
Title: PrIINeR: Towards Prior-Informed Implicit Neural Representations for Accelerated MRI
Abstract:
Accelerating Magnetic Resonance Imaging (MRI) reduces scan time but often degrades image quality. While Implicit Neural Representations (INRs) show promise for MRI reconstruction, they struggle at high acceleration factors due to weak prior constraints, leading to structural loss and aliasing artefacts. To address this, we propose PrIINeR, an INR-based MRI reconstruction method that integrates prior knowledge from pre-trained deep learning models into the INR framework. By combining population-level knowledge with instance-based optimization and enforcing dual data consistency, PrIINeR aligns both with the acquired k-space data and the prior-informed reconstruction. Evaluated on the NYU fastMRI dataset, our method not only outperforms state-of-the-art INR-based approaches but also improves upon several learning-based state-of-the-art methods, significantly improving structural preservation and fidelity while effectively removing aliasing artefacts.PrIINeR bridges deep learning and INR-based techniques, offering a more reliable solution for high-quality, accelerated MRI reconstruction. The code is publicly available on https://github.com/multimodallearning/PrIINeR.

Authors:Peng Dai, Feitong Tan, Qiangeng Xu, Yihua Huang, David Futschik, Ruofei Du, Sean Fanello, Yinda Zhang, Xiaojuan Qi
Title: S^2VG: 3D Stereoscopic and Spatial Video Generation via Denoising Frame Matrix
Abstract:
While video generation models excel at producing high-quality monocular videos, generating 3D stereoscopic and spatial videos for immersive applications remains an underexplored challenge. We present a pose-free and training-free method that leverages an off-the-shelf monocular video generation model to produce immersive 3D videos. Our approach first warps the generated monocular video into pre-defined camera viewpoints using estimated depth information, then applies a novel \textit{frame matrix} inpainting framework. This framework utilizes the original video generation model to synthesize missing content across different viewpoints and timestamps, ensuring spatial and temporal consistency without requiring additional model fine-tuning. Moreover, we develop a \dualupdate~scheme that further improves the quality of video inpainting by alleviating the negative effects propagated from disoccluded areas in the latent space. The resulting multi-view videos are then adapted into stereoscopic pairs or optimized into 4D Gaussians for spatial video synthesis. We validate the efficacy of our proposed method by conducting experiments on videos from various generative models, such as Sora, Lumiere, WALT, and Zeroscope. The experiments demonstrate that our method has a significant improvement over previous methods. Project page at: https://daipengwa.github.io/S-2VG_ProjectPage/

Authors:Huawei Sun, Zixu Wang, Hao Feng, Julius Ott, Lorenzo Servadei, Robert Wille
Title: TRIDE: A Text-assisted Radar-Image weather-aware fusion network for Depth Estimation
Abstract:
Depth estimation, essential for autonomous driving, seeks to interpret the 3D environment surrounding vehicles. The development of radar sensors, known for their cost-efficiency and robustness, has spurred interest in radar-camera fusion-based solutions. However, existing algorithms fuse features from these modalities without accounting for weather conditions, despite radars being known to be more robust than cameras under adverse weather. Additionally, while Vision-Language models have seen rapid advancement, utilizing language descriptions alongside other modalities for depth estimation remains an open challenge. This paper first introduces a text-generation strategy along with feature extraction and fusion techniques that can assist monocular depth estimation pipelines, leading to improved accuracy across different algorithms on the KITTI dataset. Building on this, we propose TRIDE, a radar-camera fusion algorithm that enhances text feature extraction by incorporating radar point information. To address the impact of weather on sensor performance, we introduce a weather-aware fusion block that adaptively adjusts radar weighting based on current weather conditions. Our method, benchmarked on the nuScenes dataset, demonstrates performance gains over the state-of-the-art, achieving a 12.87% improvement in MAE and a 9.08% improvement in RMSE. Code: https://github.com/harborsarah/TRIDE

Authors:Anqi Xiao, Weichen Yu, Hongyuan Yu
Title: Sample-aware RandAugment: Search-free Automatic Data Augmentation for Effective Image Recognition
Abstract:
Automatic data augmentation (AutoDA) plays an important role in enhancing the generalization of neural networks. However, mainstream AutoDA methods often encounter two challenges: either the search process is excessively time-consuming, hindering practical application, or the performance is suboptimal due to insufficient policy adaptation during training. To address these issues, we propose Sample-aware RandAugment (SRA), an asymmetric, search-free AutoDA method that dynamically adjusts augmentation policies while maintaining straightforward implementation. SRA incorporates a heuristic scoring module that evaluates the complexity of the original training data, enabling the application of tailored augmentations for each sample. Additionally, an asymmetric augmentation strategy is employed to maximize the potential of this scoring module. In multiple experimental settings, SRA narrows the performance gap between search-based and search-free AutoDA methods, achieving a state-of-the-art Top-1 accuracy of 78.31\% on ImageNet with ResNet-50. Notably, SRA demonstrates good compatibility with existing augmentation pipelines and solid generalization across new tasks, without requiring hyperparameter tuning. The pretrained models leveraging SRA also enhance recognition in downstream object detection tasks. SRA represents a promising step towards simpler, more effective, and practical AutoDA designs applicable to a variety of future tasks. Our code is available at \href{https://github.com/ainieli/Sample-awareRandAugment}{https://github.com/ainieli/Sample-awareRandAugment

Authors:Ajnas Muhammed, Iurri Medvedev, Nuno Gonçalves
Title: VOIDFace: A Privacy-Preserving Multi-Network Face Recognition With Enhanced Security
Abstract:
Advancement of machine learning techniques, combined with the availability of large-scale datasets, has significantly improved the accuracy and efficiency of facial recognition. Modern facial recognition systems are trained using large face datasets collected from diverse individuals or public repositories. However, for training, these datasets are often replicated and stored in multiple workstations, resulting in data replication, which complicates database management and oversight. Currently, once a user submits their face for dataset preparation, they lose control over how their data is used, raising significant privacy and ethical concerns. This paper introduces VOIDFace, a novel framework for facial recognition systems that addresses two major issues. First, it eliminates the need of data replication and improves data control to securely store training face data by using visual secret sharing. Second, it proposes a patch-based multi-training network that uses this novel training data storage mechanism to develop a robust, privacy-preserving facial recognition system. By integrating these advancements, VOIDFace aims to improve the privacy, security, and efficiency of facial recognition training, while ensuring greater control over sensitive personal face data. VOIDFace also enables users to exercise their Right-To-Be-Forgotten property to control their personal data. Experimental evaluations on the VGGFace2 dataset show that VOIDFace provides Right-To-Be-Forgotten, improved data control, security, and privacy while maintaining competitive facial recognition performance. Code is available at: https://github.com/ajnasmuhammed89/VOIDFace

Authors:Jin-Seop Lee, SungJoon Lee, Jaehan Ahn, YunSeok Choi, Jee-Hyong Lee
Title: TAG: A Simple Yet Effective Temporal-Aware Approach for Zero-Shot Video Temporal Grounding
Abstract:
Video Temporal Grounding (VTG) aims to extract relevant video segments based on a given natural language query. Recently, zero-shot VTG methods have gained attention by leveraging pretrained vision-language models (VLMs) to localize target moments without additional training. However, existing approaches suffer from semantic fragmentation, where temporally continuous frames sharing the same semantics are split across multiple segments. When segments are fragmented, it becomes difficult to predict an accurate target moment that aligns with the text query. Also, they rely on skewed similarity distributions for localization, making it difficult to select the optimal segment. Furthermore, they heavily depend on the use of LLMs which require expensive inferences. To address these limitations, we propose a \textit{TAG}, a simple yet effective Temporal-Aware approach for zero-shot video temporal Grounding, which incorporates temporal pooling, temporal coherence clustering, and similarity adjustment. Our proposed method effectively captures the temporal context of videos and addresses distorted similarity distributions without training. Our approach achieves state-of-the-art results on Charades-STA and ActivityNet Captions benchmark datasets without rely on LLMs. Our code is available at https://github.com/Nuetee/TAG

Authors:Yongtao Ge, Kangyang Xie, Guangkai Xu, Mingyu Liu, Li Ke, Longtao Huang, Hui Xue, Hao Chen, Chunhua Shen
Title: Generative Video Matting
Abstract:
Video matting has traditionally been limited by the lack of high-quality ground-truth data. Most existing video matting datasets provide only human-annotated imperfect alpha and foreground annotations, which must be composited to background images or videos during the training stage. Thus, the generalization capability of previous methods in real-world scenarios is typically poor. In this work, we propose to solve the problem from two perspectives. First, we emphasize the importance of large-scale pre-training by pursuing diverse synthetic and pseudo-labeled segmentation datasets. We also develop a scalable synthetic data generation pipeline that can render diverse human bodies and fine-grained hairs, yielding around 200 video clips with a 3-second duration for fine-tuning. Second, we introduce a novel video matting approach that can effectively leverage the rich priors from pre-trained video diffusion models. This architecture offers two key advantages. First, strong priors play a critical role in bridging the domain gap between synthetic and real-world scenes. Second, unlike most existing methods that process video matting frame-by-frame and use an independent decoder to aggregate temporal information, our model is inherently designed for video, ensuring strong temporal consistency. We provide a comprehensive quantitative evaluation across three benchmark datasets, demonstrating our approach's superior performance, and present comprehensive qualitative results in diverse real-world scenes, illustrating the strong generalization capability of our method. The code is available at https://github.com/aim-uofa/GVM.

Authors:Marco Peer, Anna Scius-Bertrand, Andreas Fischer
Title: CTC Transcription Alignment of the Bullinger Letters: Automatic Improvement of Annotation Quality
Abstract:
Handwritten text recognition for historical documents remains challenging due to handwriting variability, degraded sources, and limited layout-aware annotations. In this work, we address annotation errors - particularly hyphenation issues - in the Bullinger correspondence, a large 16th-century letter collection. We introduce a self-training method based on a CTC alignment algorithm that matches full transcriptions to text line images using dynamic programming and model output probabilities trained with the CTC loss. Our approach improves performance (e.g., by 1.1 percentage points CER with PyLaia) and increases alignment accuracy. Interestingly, we find that weaker models yield more accurate alignments, enabling an iterative training strategy. We release a new manually corrected subset of 100 pages from the Bullinger dataset, along with our code and benchmarks. Our approach can be applied iteratively to further improve the CER as well as the alignment quality for text recognition pipelines. Code and data are available via https://github.com/andreas-fischer-unifr/nntp.

Authors:Bin Cao, Sipeng Zheng, Ye Wang, Lujie Xia, Qianshan Wei, Qin Jin, Jing Liu, Zongqing Lu
Title: Being-M0.5: A Real-Time Controllable Vision-Language-Motion Model
Abstract:
Human motion generation has emerged as a critical technology with transformative potential for real-world applications. However, existing vision-language-motion models (VLMMs) face significant limitations that hinder their practical deployment. We identify controllability as a main bottleneck, manifesting in five key aspects: inadequate response to diverse human commands, limited pose initialization capabilities, poor performance on long-term sequences, insufficient handling of unseen scenarios, and lack of fine-grained control over individual body parts. To overcome these limitations, we present Being-M0.5, the first real-time, controllable VLMM that achieves state-of-the-art performance across multiple motion generation tasks. Our approach is built upon HuMo100M, the largest and most comprehensive human motion dataset to date, comprising over 5 million self-collected motion sequences, 100 million multi-task instructional instances, and detailed part-level annotations that address a critical gap in existing datasets. We introduce a novel part-aware residual quantization technique for motion tokenization that enables precise, granular control over individual body parts during generation. Extensive experimental validation demonstrates Being-M0.5's superior performance across diverse motion benchmarks, while comprehensive efficiency analysis confirms its real-time capabilities. Our contributions include design insights and detailed computational analysis to guide future development of practical motion generators. We believe that HuMo100M and Being-M0.5 represent significant advances that will accelerate the adoption of motion generation technologies in real-world applications. The project page is available at https://beingbeyond.github.io/Being-M0.5.

Authors:Shunya Nagashima, Komei Sugiura
Title: Deep Space Weather Model: Long-Range Solar Flare Prediction from Multi-Wavelength Images
Abstract:
Accurate, reliable solar flare prediction is crucial for mitigating potential disruptions to critical infrastructure, while predicting solar flares remains a significant challenge. Existing methods based on heuristic physical features often lack representation learning from solar images. On the other hand, end-to-end learning approaches struggle to model long-range temporal dependencies in solar images. In this study, we propose Deep Space Weather Model (Deep SWM), which is based on multiple deep state space models for handling both ten-channel solar images and long-range spatio-temporal dependencies. Deep SWM also features a sparse masked autoencoder, a novel pretraining strategy that employs a two-phase masking approach to preserve crucial regions such as sunspots while compressing spatial information. Furthermore, we built FlareBench, a new public benchmark for solar flare prediction covering a full 11-year solar activity cycle, to validate our method. Our method outperformed baseline methods and even human expert performance on standard metrics in terms of performance and reliability. The project page can be found at https://keio-smilab25.github.io/DeepSWM.

Authors:Jingna Qiu, Nishanth Jain, Jonas Ammeling, Marc Aubreville, Katharina Breininger
Title: Effortless Vision-Language Model Specialization in Histopathology without Annotation
Abstract:
Recent advances in Vision-Language Models (VLMs) in histopathology, such as CONCH and QuiltNet, have demonstrated impressive zero-shot classification capabilities across various tasks. However, their general-purpose design may lead to suboptimal performance in specific downstream applications. While supervised fine-tuning methods address this issue, they require manually labeled samples for adaptation. This paper investigates annotation-free adaptation of VLMs through continued pretraining on domain- and task-relevant image-caption pairs extracted from existing databases. Our experiments on two VLMs, CONCH and QuiltNet, across three downstream tasks reveal that these pairs substantially enhance both zero-shot and few-shot performance. Notably, with larger training sizes, continued pretraining matches the performance of few-shot methods while eliminating manual labeling. Its effectiveness, task-agnostic design, and annotation-free workflow make it a promising pathway for adapting VLMs to new histopathology tasks. Code is available at https://github.com/DeepMicroscopy/Annotation-free-VLM-specialization.

Authors:Animesh Jain, Alexandros Stergiou
Title: MIMIC: Multimodal Inversion for Model Interpretation and Conceptualization
Abstract:
Vision Language Models (VLMs) encode multimodal inputs over large, complex, and difficult-to-interpret architectures, which limit transparency and trust. We propose a Multimodal Inversion for Model Interpretation and Conceptualization (MIMIC) framework to visualize the internal representations of VLMs by synthesizing visual concepts corresponding to internal encodings. MIMIC uses a joint VLM-based inversion and a feature alignment objective to account for VLM's autoregressive processing. It additionally includes a triplet of regularizers for spatial alignment, natural image smoothness, and semantic realism. We quantitatively and qualitatively evaluate MIMIC by inverting visual concepts over a range of varying-length free-form VLM output texts. Reported results include both standard visual quality metrics as well as semantic text-based metrics. To the best of our knowledge, this is the first model inversion approach addressing visual interpretations of VLM concepts.

Authors:Xiaoqi Zhao, Peiqian Cao, Lihe Zhang, Zonglei Feng, Hanqi Liu, Jiaming Zuo, Youwei Pang, Weisi Lin, Georges El Fakhri, Huchuan Lu, Xiaofeng Liu
Title: Power Battery Detection
Abstract:
Power batteries are essential components in electric vehicles, where internal structural defects can pose serious safety risks. We conduct a comprehensive study on a new task, power battery detection (PBD), which aims to localize the dense endpoints of cathode and anode plates from industrial X-ray images for quality inspection. Manual inspection is inefficient and error-prone, while traditional vision algorithms struggle with densely packed plates, low contrast, scale variation, and imaging artifacts. To address this issue and drive more attention into this meaningful task, we present PBD5K, the first large-scale benchmark for this task, consisting of 5,000 X-ray images from nine battery types with fine-grained annotations and eight types of real-world visual interference. To support scalable and consistent labeling, we develop an intelligent annotation pipeline that combines image filtering, model-assisted pre-labeling, cross-verification, and layered quality evaluation. We formulate PBD as a point-level segmentation problem and propose MDCNeXt, a model designed to extract and integrate multi-dimensional structure clues including point, line, and count information from the plate itself. To improve discrimination between plates and suppress visual interference, MDCNeXt incorporates two state space modules. The first is a prompt-filtered module that learns contrastive relationships guided by task-specific prompts. The second is a density-aware reordering module that refines segmentation in regions with high plate density. In addition, we propose a distance-adaptive mask generation strategy to provide robust supervision under varying spatial distributions of anode and cathode positions. The source code and datasets will be publicly available at \href{https://github.com/Xiaoqi-Zhao-DLUT/X-ray-PBD}{PBD5K}.

Authors:Hongrui Zheng, Yuezun Li, Liejun Wang, Yunfeng Diao, Zhiqing Guo
Title: Boosting Active Defense Persistence: A Two-Stage Defense Framework Combining Interruption and Poisoning Against Deepfake
Abstract:
Active defense strategies have been developed to counter the threat of deepfake technology. However, a primary challenge is their lack of persistence, as their effectiveness is often short-lived. Attackers can bypass these defenses by simply collecting protected samples and retraining their models. This means that static defenses inevitably fail when attackers retrain their models, which severely limits practical use. We argue that an effective defense not only distorts forged content but also blocks the model's ability to adapt, which occurs when attackers retrain their models on protected images. To achieve this, we propose an innovative Two-Stage Defense Framework (TSDF). Benefiting from the intensity separation mechanism designed in this paper, the framework uses dual-function adversarial perturbations to perform two roles. First, it can directly distort the forged results. Second, it acts as a poisoning vehicle that disrupts the data preparation process essential for an attacker's retraining pipeline. By poisoning the data source, TSDF aims to prevent the attacker's model from adapting to the defensive perturbations, thus ensuring the defense remains effective long-term. Comprehensive experiments show that the performance of traditional interruption methods degrades sharply when it is subjected to adversarial retraining. However, our framework shows a strong dual defense capability, which can improve the persistence of active defense. Our code will be available at https://github.com/vpsg-research/TSDF.

Authors:Lennart Bastian, Mohammad Rashed, Nassir Navab, Tolga Birdal
Title: Forecasting Continuous Non-Conservative Dynamical Systems in SO(3)
Abstract:
Modeling the rotation of moving objects is a fundamental task in computer vision, yet $SO(3)$ extrapolation still presents numerous challenges: (1) unknown quantities such as the moment of inertia complicate dynamics, (2) the presence of external forces and torques can lead to non-conservative kinematics, and (3) estimating evolving state trajectories under sparse, noisy observations requires robustness. We propose modeling trajectories of noisy pose estimates on the manifold of 3D rotations in a physically and geometrically meaningful way by leveraging Neural Controlled Differential Equations guided with $SO(3)$ Savitzky-Golay paths. Existing extrapolation methods often rely on energy conservation or constant velocity assumptions, limiting their applicability in real-world scenarios involving non-conservative forces. In contrast, our approach is agnostic to energy and momentum conservation while being robust to input noise, making it applicable to complex, non-inertial systems. Our approach is easily integrated as a module in existing pipelines and generalizes well to trajectories with unknown physical parameters. By learning to approximate object dynamics from noisy states during training, our model attains robust extrapolation capabilities in simulation and various real-world settings. Code is available at https://github.com/bastianlb/forecasting-rotational-dynamics

Authors:Xiaoyan Liu, Kangrui Li, Jiaxin Liu
Title: Dream4D: Lifting Camera-Controlled I2V towards Spatiotemporally Consistent 4D Generation
Abstract:
The synthesis of spatiotemporally coherent 4D content presents fundamental challenges in computer vision, requiring simultaneous modeling of high-fidelity spatial representations and physically plausible temporal dynamics. Current approaches often struggle to maintain view consistency while handling complex scene dynamics, particularly in large-scale environments with multiple interacting elements. This work introduces Dream4D, a novel framework that bridges this gap through a synergy of controllable video generation and neural 4D reconstruction. Our approach seamlessly combines a two-stage architecture: it first predicts optimal camera trajectories from a single image using few-shot learning, then generates geometrically consistent multi-view sequences via a specialized pose-conditioned diffusion process, which are finally converted into a persistent 4D representation. This framework is the first to leverage both rich temporal priors from video diffusion models and geometric awareness of the reconstruction models, which significantly facilitates 4D generation and shows higher quality (e.g., mPSNR, mSSIM) over existing methods.

Authors:Jinke Li, Jiarui Yu, Chenxing Wei, Hande Dong, Qiang Lin, Liangjing Yang, Zhicai Wang, Yanbin Hao
Title: UniSVG: A Unified Dataset for Vector Graphic Understanding and Generation with Multimodal Large Language Models
Abstract:
Unlike bitmap images, scalable vector graphics (SVG) maintain quality when scaled, frequently employed in computer vision and artistic design in the representation of SVG code. In this era of proliferating AI-powered systems, enabling AI to understand and generate SVG has become increasingly urgent. However, AI-driven SVG understanding and generation (U&G) remain significant challenges. SVG code, equivalent to a set of curves and lines controlled by floating-point parameters, demands high precision in SVG U&G. Besides, SVG generation operates under diverse conditional constraints, including textual prompts and visual references, which requires powerful multi-modal processing for condition-to-SVG transformation. Recently, the rapid growth of Multi-modal Large Language Models (MLLMs) have demonstrated capabilities to process multi-modal inputs and generate complex vector controlling parameters, suggesting the potential to address SVG U&G tasks within a unified model. To unlock MLLM's capabilities in the SVG area, we propose an SVG-centric dataset called UniSVG, comprising 525k data items, tailored for MLLM training and evaluation. To our best knowledge, it is the first comprehensive dataset designed for unified SVG generation (from textual prompts and images) and SVG understanding (color, category, usage, etc.). As expected, learning on the proposed dataset boosts open-source MLLMs' performance on various SVG U&G tasks, surpassing SOTA close-source MLLMs like GPT-4V. We release dataset, benchmark, weights, codes and experiment details on https://ryanlijinke.github.io/.

Authors:Junhyuk So, Juncheol Shin, Hyunho Kook, Eunhyeok Park
Title: Grouped Speculative Decoding for Autoregressive Image Generation
Abstract:
Recently, autoregressive (AR) image models have demonstrated remarkable generative capabilities, positioning themselves as a compelling alternative to diffusion models. However, their sequential nature leads to long inference times, limiting their practical scalability. In this work, we introduce Grouped Speculative Decoding (GSD), a novel, training-free acceleration method for AR image models. While recent studies have explored Speculative Decoding (SD) as a means to speed up AR image generation, existing approaches either provide only modest acceleration or require additional training. Our in-depth analysis reveals a fundamental difference between language and image tokens: image tokens exhibit inherent redundancy and diversity, meaning multiple tokens can convey valid semantics. However, traditional SD methods are designed to accept only a single most-likely token, which fails to leverage this difference, leading to excessive false-negative rejections. To address this, we propose a new SD strategy that evaluates clusters of visually valid tokens rather than relying on a single target token. Additionally, we observe that static clustering based on embedding distance is ineffective, which motivates our dynamic GSD approach. Extensive experiments show that GSD accelerates AR image models by an average of 3.7x while preserving image quality-all without requiring any additional training. The source code is available at https://github.com/junhyukso/GSD

Authors:Bo Jia, Yanan Guo, Ying Chang, Benkui Zhang, Ying Xie, Kangning Du, Lin Cao
Title: Multi-view Normal and Distance Guidance Gaussian Splatting for Surface Reconstruction
Abstract:
3D Gaussian Splatting (3DGS) achieves remarkable results in the field of surface reconstruction. However, when Gaussian normal vectors are aligned within the single-view projection plane, while the geometry appears reasonable in the current view, biases may emerge upon switching to nearby views. To address the distance and global matching challenges in multi-view scenes, we design multi-view normal and distance-guided Gaussian splatting. This method achieves geometric depth unification and high-accuracy reconstruction by constraining nearby depth maps and aligning 3D normals. Specifically, for the reconstruction of small indoor and outdoor scenes, we propose a multi-view distance reprojection regularization module that achieves multi-view Gaussian alignment by computing the distance loss between two nearby views and the same Gaussian surface. Additionally, we develop a multi-view normal enhancement module, which ensures consistency across views by matching the normals of pixel points in nearby views and calculating the loss. Extensive experimental results demonstrate that our method outperforms the baseline in both quantitative and qualitative evaluations, significantly enhancing the surface reconstruction capability of 3DGS. Our code will be made publicly available at (https://github.com/Bistu3DV/MND-GS/).

Authors:Yimin Fu, Zhunga Liu, Dongxiu Guo, Longfei Wang
Title: Collaborative Learning of Scattering and Deep Features for SAR Target Recognition with Noisy Labels
Abstract:
The acquisition of high-quality labeled synthetic aperture radar (SAR) data is challenging due to the demanding requirement for expert knowledge. Consequently, the presence of unreliable noisy labels is unavoidable, which results in performance degradation of SAR automatic target recognition (ATR). Existing research on learning with noisy labels mainly focuses on image data. However, the non-intuitive visual characteristics of SAR data are insufficient to achieve noise-robust learning. To address this problem, we propose collaborative learning of scattering and deep features (CLSDF) for SAR ATR with noisy labels. Specifically, a multi-model feature fusion framework is designed to integrate scattering and deep features. The attributed scattering centers (ASCs) are treated as dynamic graph structure data, and the extracted physical characteristics effectively enrich the representation of deep image features. Then, the samples with clean and noisy labels are divided by modeling the loss distribution with multiple class-wise Gaussian Mixture Models (GMMs). Afterward, the semi-supervised learning of two divergent branches is conducted based on the data divided by each other. Moreover, a joint distribution alignment strategy is introduced to enhance the reliability of co-guessed labels. Extensive experiments have been done on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset, and the results show that the proposed method can achieve state-of-the-art performance under different operating conditions with various label noises.

Authors:Xiaohang Zhan, Dingming Liu
Title: LaRender: Training-Free Occlusion Control in Image Generation via Latent Rendering
Abstract:
We propose a novel training-free image generation algorithm that precisely controls the occlusion relationships between objects in an image. Existing image generation methods typically rely on prompts to influence occlusion, which often lack precision. While layout-to-image methods provide control over object locations, they fail to address occlusion relationships explicitly. Given a pre-trained image diffusion model, our method leverages volume rendering principles to "render" the scene in latent space, guided by occlusion relationships and the estimated transmittance of objects. This approach does not require retraining or fine-tuning the image diffusion model, yet it enables accurate occlusion control due to its physics-grounded foundation. In extensive experiments, our method significantly outperforms existing approaches in terms of occlusion accuracy. Furthermore, we demonstrate that by adjusting the opacities of objects or concepts during rendering, our method can achieve a variety of effects, such as altering the transparency of objects, the density of mass (e.g., forests), the concentration of particles (e.g., rain, fog), the intensity of light, and the strength of lens effects, etc.

Authors:Jian Ma, Xujie Zhu, Zihao Pan, Qirong Peng, Xu Guo, Chen Chen, Haonan Lu
Title: X2Edit: Revisiting Arbitrary-Instruction Image Editing through Self-Constructed Data and Task-Aware Representation Learning
Abstract:
Existing open-source datasets for arbitrary-instruction image editing remain suboptimal, while a plug-and-play editing module compatible with community-prevalent generative models is notably absent. In this paper, we first introduce the X2Edit Dataset, a comprehensive dataset covering 14 diverse editing tasks, including subject-driven generation. We utilize the industry-leading unified image generation models and expert models to construct the data. Meanwhile, we design reasonable editing instructions with the VLM and implement various scoring mechanisms to filter the data. As a result, we construct 3.7 million high-quality data with balanced categories. Second, to better integrate seamlessly with community image generation models, we design task-aware MoE-LoRA training based on FLUX.1, with only 8\% of the parameters of the full model. To further improve the final performance, we utilize the internal representations of the diffusion model and define positive/negative samples based on image editing types to introduce contrastive learning. Extensive experiments demonstrate that the model's editing performance is competitive among many excellent models. Additionally, the constructed dataset exhibits substantial advantages over existing open-source datasets. The open-source code, checkpoints, and datasets for X2Edit can be found at the following link: https://github.com/OPPO-Mente-Lab/X2Edit.

Authors:Wenhui Song, Hanhui Li, Jiehui Huang, Panwen Hu, Yuhao Cheng, Long Chen, Yiqiang Yan, Xiaodan Liang
Title: LaVieID: Local Autoregressive Diffusion Transformers for Identity-Preserving Video Creation
Abstract:
In this paper, we present LaVieID, a novel \underline{l}ocal \underline{a}utoregressive \underline{vi}d\underline{e}o diffusion framework designed to tackle the challenging \underline{id}entity-preserving text-to-video task. The key idea of LaVieID is to mitigate the loss of identity information inherent in the stochastic global generation process of diffusion transformers (DiTs) from both spatial and temporal perspectives. Specifically, unlike the global and unstructured modeling of facial latent states in existing DiTs, LaVieID introduces a local router to explicitly represent latent states by weighted combinations of fine-grained local facial structures. This alleviates undesirable feature interference and encourages DiTs to capture distinctive facial characteristics. Furthermore, a temporal autoregressive module is integrated into LaVieID to refine denoised latent tokens before video decoding. This module divides latent tokens temporally into chunks, exploiting their long-range temporal dependencies to predict biases for rectifying tokens, thereby significantly enhancing inter-frame identity consistency. Consequently, LaVieID can generate high-fidelity personalized videos and achieve state-of-the-art performance. Our code and models are available at https://github.com/ssugarwh/LaVieID.

Authors:Yu-Huan Wu, Wei Liu, Zi-Xuan Zhu, Zizhou Wang, Yong Liu, Liangli Zhen
Title: GAPNet: A Lightweight Framework for Image and Video Salient Object Detection via Granularity-Aware Paradigm
Abstract:
Recent salient object detection (SOD) models predominantly rely on heavyweight backbones, incurring substantial computational cost and hindering their practical application in various real-world settings, particularly on edge devices. This paper presents GAPNet, a lightweight network built on the granularity-aware paradigm for both image and video SOD. We assign saliency maps of different granularities to supervise the multi-scale decoder side-outputs: coarse object locations for high-level outputs and fine-grained object boundaries for low-level outputs. Specifically, our decoder is built with granularity-aware connections which fuse high-level features of low granularity and low-level features of high granularity, respectively. To support these connections, we design granular pyramid convolution (GPC) and cross-scale attention (CSA) modules for efficient fusion of low-scale and high-scale features, respectively. On top of the encoder, a self-attention module is built to learn global information, enabling accurate object localization with negligible computational cost. Unlike traditional U-Net-based approaches, our proposed method optimizes feature utilization and semantic interpretation while applying appropriate supervision at each processing stage. Extensive experiments show that the proposed method achieves a new state-of-the-art performance among lightweight image and video SOD models. Code is available at https://github.com/yuhuan-wu/GAPNet.

Authors:Chidaksh Ravuru
Title: Commentary Generation for Soccer Highlights
Abstract:
Automated soccer commentary generation has evolved from template-based systems to advanced neural architectures, aiming to produce real-time descriptions of sports events. While frameworks like SoccerNet-Caption laid foundational work, their inability to achieve fine-grained alignment between video content and commentary remains a significant challenge. Recent efforts such as MatchTime, with its MatchVoice model, address this issue through coarse and fine-grained alignment techniques, achieving improved temporal synchronization. In this paper, we extend MatchVoice to commentary generation for soccer highlights using the GOAL dataset, which emphasizes short clips over entire games. We conduct extensive experiments to reproduce the original MatchTime results and evaluate our setup, highlighting the impact of different training configurations and hardware limitations. Furthermore, we explore the effect of varying window sizes on zero-shot performance. While MatchVoice exhibits promising generalization capabilities, our findings suggest the need for integrating techniques from broader video-language domains to further enhance performance. Our code is available at https://github.com/chidaksh/SoccerCommentary.

Authors:Xiaoming Li, Wangmeng Zuo, Chen Change Loy
Title: Enhanced Generative Structure Prior for Chinese Text Image Super-resolution
Abstract:
Faithful text image super-resolution (SR) is challenging because each character has a unique structure and usually exhibits diverse font styles and layouts. While existing methods primarily focus on English text, less attention has been paid to more complex scripts like Chinese. In this paper, we introduce a high-quality text image SR framework designed to restore the precise strokes of low-resolution (LR) Chinese characters. Unlike methods that rely on character recognition priors to regularize the SR task, we propose a novel structure prior that offers structure-level guidance to enhance visual quality. Our framework incorporates this structure prior within a StyleGAN model, leveraging its generative capabilities for restoration. To maintain the integrity of character structures while accommodating various font styles and layouts, we implement a codebook-based mechanism that restricts the generative space of StyleGAN. Each code in the codebook represents the structure of a specific character, while the vector $w$ in StyleGAN controls the character's style, including typeface, orientation, and location. Through the collaborative interaction between the codebook and style, we generate a high-resolution structure prior that aligns with LR characters both spatially and structurally. Experiments demonstrate that this structure prior provides robust, character-specific guidance, enabling the accurate restoration of clear strokes in degraded characters, even for real-world LR Chinese text with irregular layouts. Our code and pre-trained models will be available at https://github.com/csxmli2016/MARCONetPlusPlus

Authors:Pranav Chougule
Title: Novel View Synthesis with Gaussian Splatting: Impact on Photogrammetry Model Accuracy and Resolution
Abstract:
In this paper, I present a comprehensive study comparing Photogrammetry and Gaussian Splatting techniques for 3D model reconstruction and view synthesis. I created a dataset of images from a real-world scene and constructed 3D models using both methods. To evaluate the performance, I compared the models using structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), learned perceptual image patch similarity (LPIPS), and lp/mm resolution based on the USAF resolution chart. A significant contribution of this work is the development of a modified Gaussian Splatting repository, which I forked and enhanced to enable rendering images from novel camera poses generated in the Blender environment. This innovation allows for the synthesis of high-quality novel views, showcasing the flexibility and potential of Gaussian Splatting. My investigation extends to an augmented dataset that includes both original ground images and novel views synthesized via Gaussian Splatting. This augmented dataset was employed to generate a new photogrammetry model, which was then compared against the original photogrammetry model created using only the original images. The results demonstrate the efficacy of using Gaussian Splatting to generate novel high-quality views and its potential to improve photogrammetry-based 3D reconstructions. The comparative analysis highlights the strengths and limitations of both approaches, providing valuable information for applications in extended reality (XR), photogrammetry, and autonomous vehicle simulations. Code is available at https://github.com/pranavc2255/gaussian-splatting-novel-view-render.git.

Authors:Yuxin Zhang, Yunkang Cao, Yuqi Cheng, Yihan Sun, Weiming Shen
Title: Levarging Learning Bias for Noisy Anomaly Detection
Abstract:
This paper addresses the challenge of fully unsupervised image anomaly detection (FUIAD), where training data may contain unlabeled anomalies. Conventional methods assume anomaly-free training data, but real-world contamination leads models to absorb anomalies as normal, degrading detection performance. To mitigate this, we propose a two-stage framework that systematically exploits inherent learning bias in models. The learning bias stems from: (1) the statistical dominance of normal samples, driving models to prioritize learning stable normal patterns over sparse anomalies, and (2) feature-space divergence, where normal data exhibit high intra-class consistency while anomalies display high diversity, leading to unstable model responses. Leveraging the learning bias, stage 1 partitions the training set into subsets, trains sub-models, and aggregates cross-model anomaly scores to filter a purified dataset. Stage 2 trains the final detector on this dataset. Experiments on the Real-IAD benchmark demonstrate superior anomaly detection and localization performance under different noise conditions. Ablation studies further validate the framework's contamination resilience, emphasizing the critical role of learning bias exploitation. The model-agnostic design ensures compatibility with diverse unsupervised backbones, offering a practical solution for real-world scenarios with imperfect training data. Code is available at https://github.com/hustzhangyuxin/LLBNAD.

Authors:Youqi Wang, Shunquan Tan, Rongxuan Peng, Bin Li, Jiwu Huang
Title: CLUE: Leveraging Low-Rank Adaptation to Capture Latent Uncovered Evidence for Image Forgery Localization
Abstract:
The increasing accessibility of image editing tools and generative AI has led to a proliferation of visually convincing forgeries, compromising the authenticity of digital media. In this paper, in addition to leveraging distortions from conventional forgeries, we repurpose the mechanism of a state-of-the-art (SOTA) text-to-image synthesis model by exploiting its internal generative process, turning it into a high-fidelity forgery localization tool. To this end, we propose CLUE (Capture Latent Uncovered Evidence), a framework that employs Low- Rank Adaptation (LoRA) to parameter-efficiently reconfigure Stable Diffusion 3 (SD3) as a forensic feature extractor. Our approach begins with the strategic use of SD3's Rectified Flow (RF) mechanism to inject noise at varying intensities into the latent representation, thereby steering the LoRAtuned denoising process to amplify subtle statistical inconsistencies indicative of a forgery. To complement the latent analysis with high-level semantic context and precise spatial details, our method incorporates contextual features from the image encoder of the Segment Anything Model (SAM), which is parameter-efficiently adapted to better trace the boundaries of forged regions. Extensive evaluations demonstrate CLUE's SOTA generalization performance, significantly outperforming prior methods. Furthermore, CLUE shows superior robustness against common post-processing attacks and Online Social Networks (OSNs). Code is publicly available at https://github.com/SZAISEC/CLUE.

Authors:Junyao Gao, Jiaxing Li, Wenran Liu, Yanhong Zeng, Fei Shen, Kai Chen, Yanan Sun, Cairong Zhao
Title: CharacterShot: Controllable and Consistent 4D Character Animation
Abstract:
In this paper, we propose \textbf{CharacterShot}, a controllable and consistent 4D character animation framework that enables any individual designer to create dynamic 3D characters (i.e., 4D character animation) from a single reference character image and a 2D pose sequence. We begin by pretraining a powerful 2D character animation model based on a cutting-edge DiT-based image-to-video model, which allows for any 2D pose sequnce as controllable signal. We then lift the animation model from 2D to 3D through introducing dual-attention module together with camera prior to generate multi-view videos with spatial-temporal and spatial-view consistency. Finally, we employ a novel neighbor-constrained 4D gaussian splatting optimization on these multi-view videos, resulting in continuous and stable 4D character representations. Moreover, to improve character-centric performance, we construct a large-scale dataset Character4D, containing 13,115 unique characters with diverse appearances and motions, rendered from multiple viewpoints. Extensive experiments on our newly constructed benchmark, CharacterBench, demonstrate that our approach outperforms current state-of-the-art methods. Code, models, and datasets will be publicly available at https://github.com/Jeoyal/CharacterShot.

Authors:Rongxuan Peng, Shunquan Tan, Chenqi Kong, Anwei Luo, Alex C. Kot, Jiwu Huang
Title: ForensicsSAM: Toward Robust and Unified Image Forgery Detection and Localization Resisting to Adversarial Attack
Abstract:
Parameter-efficient fine-tuning (PEFT) has emerged as a popular strategy for adapting large vision foundation models, such as the Segment Anything Model (SAM) and LLaVA, to downstream tasks like image forgery detection and localization (IFDL). However, existing PEFT-based approaches overlook their vulnerability to adversarial attacks. In this paper, we show that highly transferable adversarial images can be crafted solely via the upstream model, without accessing the downstream model or training data, significantly degrading the IFDL performance. To address this, we propose ForensicsSAM, a unified IFDL framework with built-in adversarial robustness. Our design is guided by three key ideas: (1) To compensate for the lack of forgery-relevant knowledge in the frozen image encoder, we inject forgery experts into each transformer block to enhance its ability to capture forgery artifacts. These forgery experts are always activated and shared across any input images. (2) To detect adversarial images, we design an light-weight adversary detector that learns to capture structured, task-specific artifact in RGB domain, enabling reliable discrimination across various attack methods. (3) To resist adversarial attacks, we inject adversary experts into the global attention layers and MLP modules to progressively correct feature shifts induced by adversarial noise. These adversary experts are adaptively activated by the adversary detector, thereby avoiding unnecessary interference with clean images. Extensive experiments across multiple benchmarks demonstrate that ForensicsSAM achieves superior resistance to various adversarial attack methods, while also delivering state-of-the-art performance in image-level forgery detection and pixel-level forgery localization. The resource is available at https://github.com/siriusPRX/ForensicsSAM.

Authors:Qilin Zhang, Olaf Wysocki, Boris Jutzi
Title: GS4Buildings: Prior-Guided Gaussian Splatting for 3D Building Reconstruction
Abstract:
Recent advances in Gaussian Splatting (GS) have demonstrated its effectiveness in photo-realistic rendering and 3D reconstruction. Among these, 2D Gaussian Splatting (2DGS) is particularly suitable for surface reconstruction due to its flattened Gaussian representation and integrated normal regularization. However, its performance often degrades in large-scale and complex urban scenes with frequent occlusions, leading to incomplete building reconstructions. We propose GS4Buildings, a novel prior-guided Gaussian Splatting method leveraging the ubiquity of semantic 3D building models for robust and scalable building surface reconstruction. Instead of relying on traditional Structure-from-Motion (SfM) pipelines, GS4Buildings initializes Gaussians directly from low-level Level of Detail (LoD)2 semantic 3D building models. Moreover, we generate prior depth and normal maps from the planar building geometry and incorporate them into the optimization process, providing strong geometric guidance for surface consistency and structural accuracy. We also introduce an optional building-focused mode that limits reconstruction to building regions, achieving a 71.8% reduction in Gaussian primitives and enabling a more efficient and compact representation. Experiments on urban datasets demonstrate that GS4Buildings improves reconstruction completeness by 20.5% and geometric accuracy by 32.8%. These results highlight the potential of semantic building model integration to advance GS-based reconstruction toward real-world urban applications such as smart cities and digital twins. Our project is available: https://github.com/zqlin0521/GS4Buildings.

Authors:Tingyu Yang, Jue Gong, Jinpei Guo, Wenbo Li, Yong Guo, Yulun Zhang
Title: SODiff: Semantic-Oriented Diffusion Model for JPEG Compression Artifacts Removal
Abstract:
JPEG, as a widely used image compression standard, often introduces severe visual artifacts when achieving high compression ratios. Although existing deep learning-based restoration methods have made considerable progress, they often struggle to recover complex texture details, resulting in over-smoothed outputs. To overcome these limitations, we propose SODiff, a novel and efficient semantic-oriented one-step diffusion model for JPEG artifacts removal. Our core idea is that effective restoration hinges on providing semantic-oriented guidance to the pre-trained diffusion model, thereby fully leveraging its powerful generative prior. To this end, SODiff incorporates a semantic-aligned image prompt extractor (SAIPE). SAIPE extracts rich features from low-quality (LQ) images and projects them into an embedding space semantically aligned with that of the text encoder. Simultaneously, it preserves crucial information for faithful reconstruction. Furthermore, we propose a quality factor-aware time predictor that implicitly learns the compression quality factor (QF) of the LQ image and adaptively selects the optimal denoising start timestep for the diffusion process. Extensive experimental results show that our SODiff outperforms recent leading methods in both visual quality and quantitative metrics. Code is available at: https://github.com/frakenation/SODiff

Authors:Fangtai Wu, Mushui Liu, Weijie He, Wanggui He, Hao Jiang, Zhao Wang, Yunlong Yu
Title: CoAR: Concept Injection into Autoregressive Models for Personalized Text-to-Image Generation
Abstract:
The unified autoregressive (AR) model excels at multimodal understanding and generation, but its potential for customized image generation remains underexplored. Existing customized generation methods rely on full fine-tuning or adapters, making them costly and prone to overfitting or catastrophic forgetting. In this paper, we propose \textbf{CoAR}, a novel framework for injecting subject concepts into the unified AR models while keeping all pre-trained parameters completely frozen. CoAR learns effective, specific subject representations with only a minimal number of parameters using a Layerwise Multimodal Context Learning strategy. To address overfitting and language drift, we further introduce regularization that preserves the pre-trained distribution and anchors context tokens to improve subject fidelity and re-contextualization. Additionally, CoAR supports training-free subject customization in a user-provided style. Experiments demonstrate that CoAR achieves superior performance on both subject-driven personalization and style personalization, while delivering significant gains in computational and memory efficiency. Notably, CoAR tunes less than \textbf{0.05\%} of the parameters while achieving competitive performance compared to recent Proxy-Tuning. Code: https://github.com/KZF-kzf/CoAR

Authors:Min Yang, Zihan Jia, Zhilin Dai, Sheng Guo, Limin Wang
Title: MobileViCLIP: An Efficient Video-Text Model for Mobile Devices
Abstract:
Efficient lightweight neural networks are with increasing attention due to their faster reasoning speed and easier deployment on mobile devices. However, existing video pre-trained models still focus on the common ViT architecture with high latency, and few works attempt to build efficient architecture on mobile devices. This paper bridges this gap by introducing temporal structural reparameterization into an efficient image-text model and training it on a large-scale high-quality video-text dataset, resulting in an efficient video-text model that can run on mobile devices with strong zero-shot classification and retrieval capabilities, termed as MobileViCLIP. In particular, in terms of inference speed on mobile devices, our MobileViCLIP-Small is 55.4x times faster than InternVideo2-L14 and 6.7x faster than InternVideo2-S14. In terms of zero-shot retrieval performance, our MobileViCLIP-Small obtains similar performance as InternVideo2-L14 and obtains 6.9\% better than InternVideo2-S14 on MSR-VTT. The code is available at https://github.com/MCG-NJU/MobileViCLIP.

Authors:Haiyang Guo, Fei Zhu, Hongbo Zhao, Fanhu Zeng, Wenzhuo Liu, Shijie Ma, Da-Han Wang, Xu-Yao Zhang
Title: MCITlib: Multimodal Continual Instruction Tuning Library and Benchmark
Abstract:
Continual learning aims to equip AI systems with the ability to continuously acquire and adapt to new knowledge without forgetting previously learned information, similar to human learning. While traditional continual learning methods focusing on unimodal tasks have achieved notable success, the emergence of Multimodal Large Language Models has brought increasing attention to Multimodal Continual Learning tasks involving multiple modalities, such as vision and language. In this setting, models are expected to not only mitigate catastrophic forgetting but also handle the challenges posed by cross-modal interactions and coordination. To facilitate research in this direction, we introduce MCITlib, a comprehensive and constantly evolving code library for continual instruction tuning of Multimodal Large Language Models. In MCITlib, we have currently implemented 8 representative algorithms for Multimodal Continual Instruction Tuning and systematically evaluated them on 2 carefully selected benchmarks. MCITlib will be continuously updated to reflect advances in the Multimodal Continual Learning field. The codebase is released at https://github.com/Ghy0501/MCITlib.

Authors:Ping-Mao Huang, I-Tien Chao, Ping-Chia Huang, Jia-Wei Liao, Yung-Yu Chuang
Title: BEVANet: Bilateral Efficient Visual Attention Network for Real-Time Semantic Segmentation
Abstract:
Real-time semantic segmentation presents the dual challenge of designing efficient architectures that capture large receptive fields for semantic understanding while also refining detailed contours. Vision transformers model long-range dependencies effectively but incur high computational cost. To address these challenges, we introduce the Large Kernel Attention (LKA) mechanism. Our proposed Bilateral Efficient Visual Attention Network (BEVANet) expands the receptive field to capture contextual information and extracts visual and structural features using Sparse Decomposed Large Separable Kernel Attentions (SDLSKA). The Comprehensive Kernel Selection (CKS) mechanism dynamically adapts the receptive field to further enhance performance. Furthermore, the Deep Large Kernel Pyramid Pooling Module (DLKPPM) enriches contextual features by synergistically combining dilated convolutions and large kernel attention. The bilateral architecture facilitates frequent branch communication, and the Boundary Guided Adaptive Fusion (BGAF) module enhances boundary delineation by integrating spatial and semantic features under boundary guidance. BEVANet achieves real-time segmentation at 33 FPS, yielding 79.3% mIoU without pretraining and 81.0% mIoU on Cityscapes after ImageNet pretraining, demonstrating state-of-the-art performance. The code and model is available at https://github.com/maomao0819/BEVANet.

Authors:Zhiqiang Shen, Peng Cao, Xiaoli Liu, Jinzhu Yang, Osmar R. Zaiane
Title: SynMatch: Rethinking Consistency in Medical Image Segmentation with Sparse Annotations
Abstract:
Label scarcity remains a major challenge in deep learning-based medical image segmentation. Recent studies use strong-weak pseudo supervision to leverage unlabeled data. However, performance is often hindered by inconsistencies between pseudo labels and their corresponding unlabeled images. In this work, we propose \textbf{SynMatch}, a novel framework that sidesteps the need for improving pseudo labels by synthesizing images to match them instead. Specifically, SynMatch synthesizes images using texture and shape features extracted from the same segmentation model that generates the corresponding pseudo labels for unlabeled images. This design enables the generation of highly consistent synthesized-image-pseudo-label pairs without requiring any training parameters for image synthesis. We extensively evaluate SynMatch across diverse medical image segmentation tasks under semi-supervised learning (SSL), weakly-supervised learning (WSL), and barely-supervised learning (BSL) settings with increasingly limited annotations. The results demonstrate that SynMatch achieves superior performance, especially in the most challenging BSL setting. For example, it outperforms the recent strong-weak pseudo supervision-based method by 29.71\% and 10.05\% on the polyp segmentation task with 5\% and 10\% scribble annotations, respectively. The code will be released at https://github.com/Senyh/SynMatch.

Authors:Xiang Xiang, Qinhao Zhou, Zhuo Xu, Jing Ma, Jiaxin Dai, Yifan Liang, Hanlin Li
Title: OpenHAIV: A Framework Towards Practical Open-World Learning
Abstract:
Substantial progress has been made in various techniques for open-world recognition. Out-of-distribution (OOD) detection methods can effectively distinguish between known and unknown classes in the data, while incremental learning enables continuous model knowledge updates. However, in open-world scenarios, these approaches still face limitations. Relying solely on OOD detection does not facilitate knowledge updates in the model, and incremental fine-tuning typically requires supervised conditions, which significantly deviate from open-world settings. To address these challenges, this paper proposes OpenHAIV, a novel framework that integrates OOD detection, new class discovery, and incremental continual fine-tuning into a unified pipeline. This framework allows models to autonomously acquire and update knowledge in open-world environments. The proposed framework is available at https://haiv-lab.github.io/openhaiv .

Authors:Sihan Yang, Huitong Ji, Shaolin Lu, Jiayi Chen, Binxiao Xu, Ming Lu, Yuanxing Zhang, Wenhui Dong, Wentao Zhang
Title: Small-Large Collaboration: Training-efficient Concept Personalization for Large VLM using a Meta Personalized Small VLM
Abstract:
Personalizing Vision-Language Models (VLMs) to transform them into daily assistants has emerged as a trending research direction. However, leading companies like OpenAI continue to increase model size and develop complex designs such as the chain of thought (CoT). While large VLMs are proficient in complex multi-modal understanding, their high training costs and limited access via paid APIs restrict direct personalization. Conversely, small VLMs are easily personalized and freely available, but they lack sufficient reasoning capabilities. Inspired by this, we propose a novel collaborative framework named Small-Large Collaboration (SLC) for large VLM personalization, where the small VLM is responsible for generating personalized information, while the large model integrates this personalized information to deliver accurate responses. To effectively incorporate personalized information, we develop a test-time reflection strategy, preventing the potential hallucination of the small VLM. Since SLC only needs to train a meta personalized small VLM for the large VLMs, the overall process is training-efficient. To the best of our knowledge, this is the first training-efficient framework that supports both open-source and closed-source large VLMs, enabling broader real-world personalized applications. We conduct thorough experiments across various benchmarks and large VLMs to demonstrate the effectiveness of the proposed SLC framework. The code will be released at https://github.com/Hhankyangg/SLC.

Authors:Fengchao Xiong, Zhenxing Wu, Sen Jia, Yuntao Qian
Title: SUIT: Spatial-Spectral Union-Intersection Interaction Network for Hyperspectral Object Tracking
Abstract:
Hyperspectral videos (HSVs), with their inherent spatial-spectral-temporal structure, offer distinct advantages in challenging tracking scenarios such as cluttered backgrounds and small objects. However, existing methods primarily focus on spatial interactions between the template and search regions, often overlooking spectral interactions, leading to suboptimal performance. To address this issue, this paper investigates spectral interactions from both the architectural and training perspectives. At the architectural level, we first establish band-wise long-range spatial relationships between the template and search regions using Transformers. We then model spectral interactions using the inclusion-exclusion principle from set theory, treating them as the union of spatial interactions across all bands. This enables the effective integration of both shared and band-specific spatial cues. At the training level, we introduce a spectral loss to enforce material distribution alignment between the template and predicted regions, enhancing robustness to shape deformation and appearance variations. Extensive experiments demonstrate that our tracker achieves state-of-the-art tracking performance. The source code, trained models and results will be publicly available via https://github.com/bearshng/suit to support reproducibility.

Authors:Xin Ma, Yaohui Wang, Genyun Jia, Xinyuan Chen, Tien-Tsin Wong, Cunjian Chen
Title: Consistent and Controllable Image Animation with Motion Linear Diffusion Transformers
Abstract:
Image animation has seen significant progress, driven by the powerful generative capabilities of diffusion models. However, maintaining appearance consistency with static input images and mitigating abrupt motion transitions in generated animations remain persistent challenges. While text-to-video (T2V) generation has demonstrated impressive performance with diffusion transformer models, the image animation field still largely relies on U-Net-based diffusion models, which lag behind the latest T2V approaches. Moreover, the quadratic complexity of vanilla self-attention mechanisms in Transformers imposes heavy computational demands, making image animation particularly resource-intensive. To address these issues, we propose MiraMo, a framework designed to enhance efficiency, appearance consistency, and motion smoothness in image animation. Specifically, MiraMo introduces three key elements: (1) A foundational text-to-video architecture replacing vanilla self-attention with efficient linear attention to reduce computational overhead while preserving generation quality; (2) A novel motion residual learning paradigm that focuses on modeling motion dynamics rather than directly predicting frames, improving temporal consistency; and (3) A DCT-based noise refinement strategy during inference to suppress sudden motion artifacts, complemented by a dynamics control module to balance motion smoothness and expressiveness. Extensive experiments against state-of-the-art methods validate the superiority of MiraMo in generating consistent, smooth, and controllable animations with accelerated inference speed. Additionally, we demonstrate the versatility of MiraMo through applications in motion transfer and video editing tasks.

Authors:Bo Wang, Mengyuan Xu, Yue Yan, Yuqun Yang, Kechen Shu, Wei Ping, Xu Tang, Wei Jiang, Zheng You
Title: ASM-UNet: Adaptive Scan Mamba Integrating Group Commonalities and Individual Variations for Fine-Grained Segmentation
Abstract:
Precise lesion resection depends on accurately identifying fine-grained anatomical structures. While many coarse-grained segmentation (CGS) methods have been successful in large-scale segmentation (e.g., organs), they fall short in clinical scenarios requiring fine-grained segmentation (FGS), which remains challenging due to frequent individual variations in small-scale anatomical structures. Although recent Mamba-based models have advanced medical image segmentation, they often rely on fixed manually-defined scanning orders, which limit their adaptability to individual variations in FGS. To address this, we propose ASM-UNet, a novel Mamba-based architecture for FGS. It introduces adaptive scan scores to dynamically guide the scanning order, generated by combining group-level commonalities and individual-level variations. Experiments on two public datasets (ACDC and Synapse) and a newly proposed challenging biliary tract FGS dataset, namely BTMS, demonstrate that ASM-UNet achieves superior performance in both CGS and FGS tasks. Our code and dataset are available at https://github.com/YqunYang/ASM-UNet.

Authors:Huihui Xu, Jiashi Lin, Haoyu Chen, Junjun He, Lei Zhu
Title: EventRR: Event Referential Reasoning for Referring Video Object Segmentation
Abstract:
Referring Video Object Segmentation (RVOS) aims to segment out the object in a video referred by an expression. Current RVOS methods view referring expressions as unstructured sequences, neglecting their crucial semantic structure essential for referent reasoning. Besides, in contrast to image-referring expressions whose semantics focus only on object attributes and object-object relations, video-referring expressions also encompass event attributes and event-event temporal relations. This complexity challenges traditional structured reasoning image approaches. In this paper, we propose the Event Referential Reasoning (EventRR) framework. EventRR decouples RVOS into object summarization part and referent reasoning part. The summarization phase begins by summarizing each frame into a set of bottleneck tokens, which are then efficiently aggregated in the video-level summarization step to exchange the global cross-modal temporal context. For reasoning part, EventRR extracts semantic eventful structure of a video-referring expression into highly expressive Referential Event Graph (REG), which is a single-rooted directed acyclic graph. Guided by topological traversal of REG, we propose Temporal Concept-Role Reasoning (TCRR) to accumulate the referring score of each temporal query from REG leaf nodes to root node. Each reasoning step can be interpreted as a question-answer pair derived from the concept-role relations in REG. Extensive experiments across four widely recognized benchmark datasets, show that EventRR quantitatively and qualitatively outperforms state-of-the-art RVOS methods. Code is available at https://github.com/bio-mlhui/EventRR

Authors:Yunpeng Shi, Lei Chen, Xiaolu Shen, Yanju Guo
Title: Lightweight Multi-Scale Feature Extraction with Fully Connected LMF Layer for Salient Object Detection
Abstract:
In the domain of computer vision, multi-scale feature extraction is vital for tasks such as salient object detection. However, achieving this capability in lightweight networks remains challenging due to the trade-off between efficiency and performance. This paper proposes a novel lightweight multi-scale feature extraction layer, termed the LMF layer, which employs depthwise separable dilated convolutions in a fully connected structure. By integrating multiple LMF layers, we develop LMFNet, a lightweight network tailored for salient object detection. Our approach significantly reduces the number of parameters while maintaining competitive performance. Here, we show that LMFNet achieves state-of-the-art or comparable results on five benchmark datasets with only 0.81M parameters, outperforming several traditional and lightweight models in terms of both efficiency and accuracy. Our work not only addresses the challenge of multi-scale learning in lightweight networks but also demonstrates the potential for broader applications in image processing tasks. The related code files are available at https://github.com/Shi-Yun-peng/LMFNet

Authors:Yingtie Lei, Fanghai Yi, Yihang Dong, Weihuang Liu, Xiaofeng Zhang, Zimeng Li, Chi-Man Pun, Xuhang Chen
Title: CMAMRNet: A Contextual Mask-Aware Network Enhancing Mural Restoration Through Comprehensive Mask Guidance
Abstract:
Murals, as invaluable cultural artifacts, face continuous deterioration from environmental factors and human activities. Digital restoration of murals faces unique challenges due to their complex degradation patterns and the critical need to preserve artistic authenticity. Existing learning-based methods struggle with maintaining consistent mask guidance throughout their networks, leading to insufficient focus on damaged regions and compromised restoration quality. We propose CMAMRNet, a Contextual Mask-Aware Mural Restoration Network that addresses these limitations through comprehensive mask guidance and multi-scale feature extraction. Our framework introduces two key components: (1) the Mask-Aware Up/Down-Sampler (MAUDS), which ensures consistent mask sensitivity across resolution scales through dedicated channel-wise feature selection and mask-guided feature fusion; and (2) the Co-Feature Aggregator (CFA), operating at both the highest and lowest resolutions to extract complementary features for capturing fine textures and global structures in degraded regions. Experimental results on benchmark datasets demonstrate that CMAMRNet outperforms state-of-the-art methods, effectively preserving both structural integrity and artistic details in restored murals. The code is available at~\href{https://github.com/CXH-Research/CMAMRNet}{https://github.com/CXH-Research/CMAMRNet}.

Authors:Yuke Xing, William Gordon, Qi Yang, Kaifa Yang, Jiarui Wang, Yiling Xu
Title: 3DGS-VBench: A Comprehensive Video Quality Evaluation Benchmark for 3DGS Compression
Abstract:
3D Gaussian Splatting (3DGS) enables real-time novel view synthesis with high visual fidelity, but its substantial storage requirements hinder practical deployment, prompting state-of-the-art (SOTA) 3DGS methods to incorporate compression modules. However, these 3DGS generative compression techniques introduce unique distortions lacking systematic quality assessment research. To this end, we establish 3DGS-VBench, a large-scale Video Quality Assessment (VQA) Dataset and Benchmark with 660 compressed 3DGS models and video sequences generated from 11 scenes across 6 SOTA 3DGS compression algorithms with systematically designed parameter levels. With annotations from 50 participants, we obtained MOS scores with outlier removal and validated dataset reliability. We benchmark 6 3DGS compression algorithms on storage efficiency and visual quality, and evaluate 15 quality assessment metrics across multiple paradigms. Our work enables specialized VQA model training for 3DGS, serving as a catalyst for compression and quality assessment research. The dataset is available at https://github.com/YukeXing/3DGS-VBench.

Authors:Huihui Xu, Jin Ye, Hongqiu Wang, Changkai Ji, Jiashi Lin, Ming Hu, Ziyan Huang, Ying Chen, Chenglong Ma, Tianbin Li, Lihao Liu, Junjun He, Lei Zhu
Title: S2-UniSeg: Fast Universal Agglomerative Pooling for Scalable Segment Anything without Supervision
Abstract:
Recent self-supervised image segmentation models have achieved promising performance on semantic segmentation and class-agnostic instance segmentation. However, their pretraining schedule is multi-stage, requiring a time-consuming pseudo-masks generation process between each training epoch. This time-consuming offline process not only makes it difficult to scale with training dataset size, but also leads to sub-optimal solutions due to its discontinuous optimization routine. To solve these, we first present a novel pseudo-mask algorithm, Fast Universal Agglomerative Pooling (UniAP). Each layer of UniAP can identify groups of similar nodes in parallel, allowing to generate both semantic-level and instance-level and multi-granular pseudo-masks within ens of milliseconds for one image. Based on the fast UniAP, we propose the Scalable Self-Supervised Universal Segmentation (S2-UniSeg), which employs a student and a momentum teacher for continuous pretraining. A novel segmentation-oriented pretext task, Query-wise Self-Distillation (QuerySD), is proposed to pretrain S2-UniSeg to learn the local-to-global correspondences. Under the same setting, S2-UniSeg outperforms the SOTA UnSAM model, achieving notable improvements of AP+6.9 on COCO, AR+11.1 on UVO, PixelAcc+4.5 on COCOStuff-27, RQ+8.0 on Cityscapes. After scaling up to a larger 2M-image subset of SA-1B, S2-UniSeg further achieves performance gains on all four benchmarks. Our code and pretrained models are available at https://github.com/bio-mlhui/S2-UniSeg

Authors:Qiwei Tian, Chenhao Lin, Zhengyu Zhao, Qian Li, Shuai Liu, Chao Shen
Title: Adversarial Video Promotion Against Text-to-Video Retrieval
Abstract:
Thanks to the development of cross-modal models, text-to-video retrieval (T2VR) is advancing rapidly, but its robustness remains largely unexamined. Existing attacks against T2VR are designed to push videos away from queries, i.e., suppressing the ranks of videos, while the attacks that pull videos towards selected queries, i.e., promoting the ranks of videos, remain largely unexplored. These attacks can be more impactful as attackers may gain more views/clicks for financial benefits and widespread (mis)information. To this end, we pioneer the first attack against T2VR to promote videos adversarially, dubbed the Video Promotion attack (ViPro). We further propose Modal Refinement (MoRe) to capture the finer-grained, intricate interaction between visual and textual modalities to enhance black-box transferability. Comprehensive experiments cover 2 existing baselines, 3 leading T2VR models, 3 prevailing datasets with over 10k videos, evaluated under 3 scenarios. All experiments are conducted in a multi-target setting to reflect realistic scenarios where attackers seek to promote the video regarding multiple queries simultaneously. We also evaluated our attacks for defences and imperceptibility. Overall, ViPro surpasses other baselines by over $30/10/4\%$ for white/grey/black-box settings on average. Our work highlights an overlooked vulnerability, provides a qualitative analysis on the upper/lower bound of our attacks, and offers insights into potential counterplays. Code will be publicly available at https://github.com/michaeltian108/ViPro.

Authors:Lixuan He, Jie Feng, Yong Li
Title: AMFT: Aligning LLM Reasoners by Meta-Learning the Optimal Imitation-Exploration Balance
Abstract:
Large Language Models (LLMs) are typically fine-tuned for reasoning tasks through a two-stage pipeline of Supervised Fine-Tuning (SFT) followed by Reinforcement Learning (RL), a process fraught with catastrophic forgetting and suboptimal trade-offs between imitation and exploration. Recent single-stage methods attempt to unify SFT and RL using heuristics, but lack a principled mechanism for dynamically balancing the two paradigms. In this paper, we reframe this challenge through the theoretical lens of \textbf{implicit rewards}, viewing SFT and RL not as distinct methods but as complementary reward signals. We introduce \textbf{Adaptive Meta Fine-Tuning (AMFT)}, a novel single-stage algorithm that learns the optimal balance between SFT's implicit, path-level reward and RL's explicit, outcome-based reward. The core of AMFT is a \textbf{meta-gradient adaptive weight controller} that treats the SFT-RL balance as a learnable parameter, dynamically optimizing it to maximize long-term task performance. This forward-looking approach, regularized by policy entropy for stability, autonomously discovers an effective training curriculum. We conduct a comprehensive evaluation on challenging benchmarks spanning mathematical reasoning, abstract visual reasoning (General Points), and vision-language navigation (V-IRL). AMFT consistently establishes a new state-of-the-art and demonstrats superior generalization on out-of-distribution (OOD) tasks. Ablation studies and training dynamic analysis confirm that the meta-learning controller is crucial for AMFT's stability, sample efficiency, and performance, offering a more principled and effective paradigm for LLM alignment. Our codes are open-sourced via https://github.com/hlxtsyj/AMFT.

Authors:Shihao Yuan, Yahui Liu, Yang Yue, Jingyuan Zhang, Wangmeng Zuo, Qi Wang, Fuzheng Zhang, Guorui Zhou
Title: AR-GRPO: Training Autoregressive Image Generation Models via Reinforcement Learning
Abstract:
Inspired by the success of reinforcement learning (RL) in refining large language models (LLMs), we propose AR-GRPO, an approach to integrate online RL training into autoregressive (AR) image generation models. We adapt the Group Relative Policy Optimization (GRPO) algorithm to refine the vanilla autoregressive models' outputs by carefully designed reward functions that evaluate generated images across multiple quality dimensions, including perceptual quality, realism, and semantic fidelity. We conduct comprehensive experiments on both class-conditional (i.e., class-to-image) and text-conditional (i.e., text-to-image) image generation tasks, demonstrating that our RL-enhanced framework significantly improves both the image quality and human preference of generated images compared to the standard AR baselines. Our results show consistent improvements across various evaluation metrics, establishing the viability of RL-based optimization for AR image generation and opening new avenues for controllable and high-quality image synthesis. The source codes and models are available at: https://github.com/Kwai-Klear/AR-GRPO.

Authors:Ruoxi Chen, Dongping Chen, Siyuan Wu, Sinan Wang, Shiyun Lang, Petr Sushko, Gaoyang Jiang, Yao Wan, Ranjay Krishna
Title: MultiRef: Controllable Image Generation with Multiple Visual References
Abstract:
Visual designers naturally draw inspiration from multiple visual references, combining diverse elements and aesthetic principles to create artwork. However, current image generative frameworks predominantly rely on single-source inputs -- either text prompts or individual reference images. In this paper, we focus on the task of controllable image generation using multiple visual references. We introduce MultiRef-bench, a rigorous evaluation framework comprising 990 synthetic and 1,000 real-world samples that require incorporating visual content from multiple reference images. The synthetic samples are synthetically generated through our data engine RefBlend, with 10 reference types and 33 reference combinations. Based on RefBlend, we further construct a dataset MultiRef containing 38k high-quality images to facilitate further research. Our experiments across three interleaved image-text models (i.e., OmniGen, ACE, and Show-o) and six agentic frameworks (e.g., ChatDiT and LLM + SD) reveal that even state-of-the-art systems struggle with multi-reference conditioning, with the best model OmniGen achieving only 66.6% in synthetic samples and 79.0% in real-world cases on average compared to the golden answer. These findings provide valuable directions for developing more flexible and human-like creative tools that can effectively integrate multiple sources of visual inspiration. The dataset is publicly available at: https://multiref.github.io/.

Authors:Zihao Sheng, Zilin Huang, Yen-Jung Chen, Yansong Qu, Yuhao Luo, Yue Leng, Sikai Chen
Title: SafePLUG: Empowering Multimodal LLMs with Pixel-Level Insight and Temporal Grounding for Traffic Accident Understanding
Abstract:
Multimodal large language models (MLLMs) have achieved remarkable progress across a range of vision-language tasks and demonstrate strong potential for traffic accident understanding. However, existing MLLMs in this domain primarily focus on coarse-grained image-level or video-level comprehension and often struggle to handle fine-grained visual details or localized scene components, limiting their applicability in complex accident scenarios. To address these limitations, we propose SafePLUG, a novel framework that empowers MLLMs with both Pixel-Level Understanding and temporal Grounding for comprehensive traffic accident analysis. SafePLUG supports both arbitrary-shaped visual prompts for region-aware question answering and pixel-level segmentation based on language instructions, while also enabling the recognition of temporally anchored events in traffic accident scenarios. To advance the development of MLLMs for traffic accident understanding, we curate a new dataset containing multimodal question-answer pairs centered on diverse accident scenarios, with detailed pixel-level annotations and temporal event boundaries. Experimental results show that SafePLUG achieves strong performance on multiple tasks, including region-based question answering, pixel-level segmentation, temporal event localization, and accident event understanding. These capabilities lay a foundation for fine-grained understanding of complex traffic scenes, with the potential to improve driving safety and enhance situational awareness in smart transportation systems. The code, dataset, and model checkpoints will be made publicly available at: https://zihaosheng.github.io/SafePLUG

Authors:Yash Garg, Saketh Bachu, Arindam Dutta, Rohit Lal, Sarosij Bose, Calvin-Khang Ta, M. Salman Asif, Amit Roy-Chowdhury
Title: VOccl3D: A Video Benchmark Dataset for 3D Human Pose and Shape Estimation under real Occlusions
Abstract:
Human pose and shape (HPS) estimation methods have been extensively studied, with many demonstrating high zero-shot performance on in-the-wild images and videos. However, these methods often struggle in challenging scenarios involving complex human poses or significant occlusions. Although some studies address 3D human pose estimation under occlusion, they typically evaluate performance on datasets that lack realistic or substantial occlusions, e.g., most existing datasets introduce occlusions with random patches over the human or clipart-style overlays, which may not reflect real-world challenges. To bridge this gap in realistic occlusion datasets, we introduce a novel benchmark dataset, VOccl3D, a Video-based human Occlusion dataset with 3D body pose and shape annotations. Inspired by works such as AGORA and BEDLAM, we constructed this dataset using advanced computer graphics rendering techniques, incorporating diverse real-world occlusion scenarios, clothing textures, and human motions. Additionally, we fine-tuned recent HPS methods, CLIFF and BEDLAM-CLIFF, on our dataset, demonstrating significant qualitative and quantitative improvements across multiple public datasets, as well as on the test split of our dataset, while comparing its performance with other state-of-the-art methods. Furthermore, we leveraged our dataset to enhance human detection performance under occlusion by fine-tuning an existing object detector, YOLO11, thus leading to a robust end-to-end HPS estimation system under occlusions. Overall, this dataset serves as a valuable resource for future research aimed at benchmarking methods designed to handle occlusions, offering a more realistic alternative to existing occlusion datasets. See the Project page for code and dataset:https://yashgarg98.github.io/VOccl3D-dataset/

Authors:Md Rezwanul Haque, Md. Milon Islam, S M Taslim Uddin Raju, Hamdi Altaheri, Lobna Nassar, Fakhri Karray
Title: MMFformer: Multimodal Fusion Transformer Network for Depression Detection
Abstract:
Depression is a serious mental health illness that significantly affects an individual's well-being and quality of life, making early detection crucial for adequate care and treatment. Detecting depression is often difficult, as it is based primarily on subjective evaluations during clinical interviews. Hence, the early diagnosis of depression, thanks to the content of social networks, has become a prominent research area. The extensive and diverse nature of user-generated information poses a significant challenge, limiting the accurate extraction of relevant temporal information and the effective fusion of data across multiple modalities. This paper introduces MMFformer, a multimodal depression detection network designed to retrieve depressive spatio-temporal high-level patterns from multimodal social media information. The transformer network with residual connections captures spatial features from videos, and a transformer encoder is exploited to design important temporal dynamics in audio. Moreover, the fusion architecture fused the extracted features through late and intermediate fusion strategies to find out the most relevant intermodal correlations among them. Finally, the proposed network is assessed on two large-scale depression detection datasets, and the results clearly reveal that it surpasses existing state-of-the-art approaches, improving the F1-Score by 13.92% for D-Vlog dataset and 7.74% for LMVD dataset. The code is made available publicly at https://github.com/rezwanh001/Large-Scale-Multimodal-Depression-Detection.

Authors:Zheyuan Zhang, Weihao Tang, Hong Chen
Title: Rethinking Key-frame-based Micro-expression Recognition: A Robust and Accurate Framework Against Key-frame Errors
Abstract:
Micro-expression recognition (MER) is a highly challenging task in affective computing. With the reduced-sized micro-expression (ME) input that contains key information based on key-frame indexes, key-frame-based methods have significantly improved the performance of MER. However, most of these methods focus on improving the performance with relatively accurate key-frame indexes, while ignoring the difficulty of obtaining accurate key-frame indexes and the objective existence of key-frame index errors, which impedes them from moving towards practical applications. In this paper, we propose CausalNet, a novel framework to achieve robust MER facing key-frame index errors while maintaining accurate recognition. To enhance robustness, CausalNet takes the representation of the entire ME sequence as the input. To address the information redundancy brought by the complete ME range input and maintain accurate recognition, first, the Causal Motion Position Learning Module (CMPLM) is proposed to help the model locate the muscle movement areas related to Action Units (AUs), thereby reducing the attention to other redundant areas. Second, the Causal Attention Block (CAB) is proposed to deeply learn the causal relationships between the muscle contraction and relaxation movements in MEs. Empirical experiments have demonstrated that on popular ME benchmarks, the CausalNet has achieved robust MER under different levels of key-frame index noise. Meanwhile, it has surpassed state-of-the-art (SOTA) methods on several standard MER benchmarks when using the provided annotated key-frames. Code is available at https://github.com/tony19980810/CausalNet.

Authors:Guanyu Hu, Dimitrios Kollias, Xinyu Yang
Title: Grounding Emotion Recognition with Visual Prototypes: VEGA -- Revisiting CLIP in MERC
Abstract:
Multimodal Emotion Recognition in Conversations remains a challenging task due to the complex interplay of textual, acoustic and visual signals. While recent models have improved performance via advanced fusion strategies, they often lack psychologically meaningful priors to guide multimodal alignment. In this paper, we revisit the use of CLIP and propose a novel Visual Emotion Guided Anchoring (VEGA) mechanism that introduces class-level visual semantics into the fusion and classification process. Distinct from prior work that primarily utilizes CLIP's textual encoder, our approach leverages its image encoder to construct emotion-specific visual anchors based on facial exemplars. These anchors guide unimodal and multimodal features toward a perceptually grounded and psychologically aligned representation space, drawing inspiration from cognitive theories (prototypical emotion categories and multisensory integration). A stochastic anchor sampling strategy further enhances robustness by balancing semantic stability and intra-class diversity. Integrated into a dual-branch architecture with self-distillation, our VEGA-augmented model achieves sota performance on IEMOCAP and MELD. Code is available at: https://github.com/dkollias/VEGA.

Authors:Unisha Joshi
Title: Age-Diverse Deepfake Dataset: Bridging the Age Gap in Deepfake Detection
Abstract:
The challenges associated with deepfake detection are increasing significantly with the latest advancements in technology and the growing popularity of deepfake videos and images. Despite the presence of numerous detection models, demographic bias in the deepfake dataset remains largely unaddressed. This paper focuses on the mitigation of age-specific bias in the deepfake dataset by introducing an age-diverse deepfake dataset that will improve fairness across age groups. The dataset is constructed through a modular pipeline incorporating the existing deepfake datasets Celeb-DF, FaceForensics++, and UTKFace datasets, and the creation of synthetic data to fill the age distribution gaps. The effectiveness and generalizability of this dataset are evaluated using three deepfake detection models: XceptionNet, EfficientNet, and LipForensics. Evaluation metrics, including AUC, pAUC, and EER, revealed that models trained on the age-diverse dataset demonstrated fairer performance across age groups, improved overall accuracy, and higher generalization across datasets. This study contributes a reproducible, fairness-aware deepfake dataset and model pipeline that can serve as a foundation for future research in fairer deepfake detection. The complete dataset and implementation code are available at https://github.com/unishajoshi/age-diverse-deepfake-detection.

Authors:Qi Xun Yeo, Yanyan Li, Gim Hee Lee
Title: Statistical Confidence Rescoring for Robust 3D Scene Graph Generation from Multi-View Images
Abstract:
Modern 3D semantic scene graph estimation methods utilize ground truth 3D annotations to accurately predict target objects, predicates, and relationships. In the absence of given 3D ground truth representations, we explore leveraging only multi-view RGB images to tackle this task. To attain robust features for accurate scene graph estimation, we must overcome the noisy reconstructed pseudo point-based geometry from predicted depth maps and reduce the amount of background noise present in multi-view image features. The key is to enrich node and edge features with accurate semantic and spatial information and through neighboring relations. We obtain semantic masks to guide feature aggregation to filter background features and design a novel method to incorporate neighboring node information to aid robustness of our scene graph estimates. Furthermore, we leverage on explicit statistical priors calculated from the training summary statistics to refine node and edge predictions based on their one-hop neighborhood. Our experiments show that our method outperforms current methods purely using multi-view images as the initial input. Our project page is available at https://qixun1.github.io/projects/SCRSSG.

Authors:Ming-Kun Xie, Jia-Hao Xiao, Gang Niu, Lei Feng, Zhiqiang Kou, Min-Ling Zhang, Masashi Sugiyama
Title: What Makes "Good" Distractors for Object Hallucination Evaluation in Large Vision-Language Models?
Abstract:
Large Vision-Language Models (LVLMs), empowered by the success of Large Language Models (LLMs), have achieved impressive performance across domains. Despite the great advances in LVLMs, they still suffer from the unavailable object hallucination issue, which tends to generate objects inconsistent with the image content. The most commonly used Polling-based Object Probing Evaluation (POPE) benchmark evaluates this issue by sampling negative categories according to category-level statistics, \textit{e.g.}, category frequencies and co-occurrence. However, with the continuous advancement of LVLMs, the POPE benchmark has shown diminishing effectiveness in assessing object hallucination, as it employs a simplistic sampling strategy that overlooks image-specific information and restricts distractors to negative object categories only. In this paper, we introduce the Hallucination searching-based Object Probing Evaluation (HOPE) benchmark, aiming to generate the most misleading distractors (\textit{i.e.}, non-existent objects or incorrect image descriptions) that can trigger hallucination in LVLMs, which serves as a means to more rigorously assess their immunity to hallucination. To explore the image-specific information, the content-aware hallucination searching leverages Contrastive Language-Image Pre-Training (CLIP) to approximate the predictive behavior of LVLMs by selecting negative objects with the highest predicted likelihood as distractors. To expand the scope of hallucination assessment, the description-based hallucination searching constructs highly misleading distractors by pairing true objects with false descriptions. Experimental results show that HOPE leads to a precision drop of at least 9\% and up to 23\% across various state-of-the-art LVLMs, significantly outperforming POPE in exposing hallucination vulnerabilities. The code is available at https://github.com/xiemk/HOPE.

Authors:Jiayuan Wang, Q. M. Jonathan Wu, Katsuya Suto, Ning Zhang
Title: RMT-PPAD: Real-time Multi-task Learning for Panoptic Perception in Autonomous Driving
Abstract:
Autonomous driving systems rely on panoptic driving perception that requires both precision and real-time performance. In this work, we propose RMT-PPAD, a real-time, transformer-based multi-task model that jointly performs object detection, drivable area segmentation, and lane line segmentation. We introduce a lightweight module, a gate control with an adapter to adaptively fuse shared and task-specific features, effectively alleviating negative transfer between tasks. Additionally, we design an adaptive segmentation decoder to learn the weights over multi-scale features automatically during the training stage. This avoids the manual design of task-specific structures for different segmentation tasks. We also identify and resolve the inconsistency between training and testing labels in lane line segmentation. This allows fairer evaluation. Experiments on the BDD100K dataset demonstrate that RMT-PPAD achieves state-of-the-art results with mAP50 of 84.9% and Recall of 95.4% for object detection, mIoU of 92.6% for drivable area segmentation, and IoU of 56.8% and accuracy of 84.7% for lane line segmentation. The inference speed reaches 32.6 FPS. Moreover, we introduce real-world scenarios to evaluate RMT-PPAD performance in practice. The results show that RMT-PPAD consistently delivers stable performance. The source codes and pre-trained models are released at https://github.com/JiayuanWang-JW/RMT-PPAD.

Authors:He Feng, Yongjia Ma, Donglin Di, Lei Fan, Tonghua Su, Xiangqian Wu
Title: DiTalker: A Unified DiT-based Framework for High-Quality and Speaking Styles Controllable Portrait Animation
Abstract:
Portrait animation aims to synthesize talking videos from a static reference face, conditioned on audio and style frame cues (e.g., emotion and head poses), while ensuring precise lip synchronization and faithful reproduction of speaking styles. Existing diffusion-based portrait animation methods primarily focus on lip synchronization or static emotion transformation, often overlooking dynamic styles such as head movements. Moreover, most of these methods rely on a dual U-Net architecture, which preserves identity consistency but incurs additional computational overhead. To this end, we propose DiTalker, a unified DiT-based framework for speaking style-controllable portrait animation. We design a Style-Emotion Encoding Module that employs two separate branches: a style branch extracting identity-specific style information (e.g., head poses and movements), and an emotion branch extracting identity-agnostic emotion features. We further introduce an Audio-Style Fusion Module that decouples audio and speaking styles via two parallel cross-attention layers, using these features to guide the animation process. To enhance the quality of results, we adopt and modify two optimization constraints: one to improve lip synchronization and the other to preserve fine-grained identity and background details. Extensive experiments demonstrate the superiority of DiTalker in terms of lip synchronization and speaking style controllability. Project Page: https://thenameishope.github.io/DiTalker/

Authors:Rakesh Raj Madavan, Akshat Kaimal, Hashim Faisal, Chandrakala S
Title: Med-GRIM: Enhanced Zero-Shot Medical VQA using prompt-embedded Multimodal Graph RAG
Abstract:
An ensemble of trained multimodal encoders and vision-language models (VLMs) has become a standard approach for visual question answering (VQA) tasks. However, such models often fail to produce responses with the detailed precision necessary for complex, domain-specific applications such as medical VQA. Our representation model, BIND: BLIVA Integrated with Dense Encoding, extends prior multimodal work by refining the joint embedding space through dense, query-token-based encodings inspired by contrastive pretraining techniques. This refined encoder powers Med-GRIM, a model designed for medical VQA tasks that leverages graph-based retrieval and prompt engineering to integrate domain-specific knowledge. Rather than relying on compute-heavy fine-tuning of vision and language models on specific datasets, Med-GRIM applies a low-compute, modular workflow with small language models (SLMs) for efficiency. Med-GRIM employs prompt-based retrieval to dynamically inject relevant knowledge, ensuring both accuracy and robustness in its responses. By assigning distinct roles to each agent within the VQA system, Med-GRIM achieves large language model performance at a fraction of the computational cost. Additionally, to support scalable research in zero-shot multimodal medical applications, we introduce DermaGraph, a novel Graph-RAG dataset comprising diverse dermatological conditions. This dataset facilitates both multimodal and unimodal querying. The code and dataset are available at: https://github.com/Rakesh-123-cryp/Med-GRIM.git

Authors:Yehonathan Litman, Fernando De la Torre, Shubham Tulsiani
Title: LightSwitch: Multi-view Relighting with Material-guided Diffusion
Abstract:
Recent approaches for 3D relighting have shown promise in integrating 2D image relighting generative priors to alter the appearance of a 3D representation while preserving the underlying structure. Nevertheless, generative priors used for 2D relighting that directly relight from an input image do not take advantage of intrinsic properties of the subject that can be inferred or cannot consider multi-view data at scale, leading to subpar relighting. In this paper, we propose Lightswitch, a novel finetuned material-relighting diffusion framework that efficiently relights an arbitrary number of input images to a target lighting condition while incorporating cues from inferred intrinsic properties. By using multi-view and material information cues together with a scalable denoising scheme, our method consistently and efficiently relights dense multi-view data of objects with diverse material compositions. We show that our 2D relighting prediction quality exceeds previous state-of-the-art relighting priors that directly relight from images. We further demonstrate that LightSwitch matches or outperforms state-of-the-art diffusion inverse rendering methods in relighting synthetic and real objects in as little as 2 minutes.

Authors:Yuwei Yang, Zeyu Zhang, Yunzhong Hou, Zhuowan Li, Gaowen Liu, Ali Payani, Yuan-Sen Ting, Liang Zheng
Title: Effective Training Data Synthesis for Improving MLLM Chart Understanding
Abstract:
Being able to effectively read scientific plots, or chart understanding, is a central part toward building effective agents for science. However, existing multimodal large language models (MLLMs), especially open-source ones, are still falling behind with a typical success rate of 30%-50% on challenging benchmarks. Previous studies on fine-tuning MLLMs with synthetic charts are often restricted by their inadequate similarity to the real charts, which could compromise model training and performance on complex real-world charts. In this study, we show that modularizing chart generation and diversifying visual details improves chart understanding capabilities. In particular, we design a five-step data synthesis pipeline, where we separate data and function creation for single plot generation, condition the generation of later subplots on earlier ones for multi-subplot figures, visually diversify the generated figures, filter out low quality data, and finally generate the question-answer (QA) pairs with GPT-4o. This approach allows us to streamline the generation of fine-tuning datasets and introduce the effective chart dataset (ECD), which contains 10k+ chart images and 300k+ QA pairs, covering 25 topics and featuring 250+ chart type combinations with high visual complexity. We show that ECD consistently improves the performance of various MLLMs on a range of real-world and synthetic test sets. Code, data and models are available at: https://github.com/yuweiyang-anu/ECD.

Authors:Sofiane Bouaziz, Adel Hafiane, Raphael Canals, Rachid Nedjai
Title: WGAST: Weakly-Supervised Generative Network for Daily 10 m Land Surface Temperature Estimation via Spatio-Temporal Fusion
Abstract:
Urbanization, climate change, and agricultural stress are increasing the demand for precise and timely environmental monitoring. Land Surface Temperature (LST) is a key variable in this context and is retrieved from remote sensing satellites. However, these systems face a trade-off between spatial and temporal resolution. While spatio-temporal fusion methods offer promising solutions, few have addressed the estimation of daily LST at 10 m resolution. In this study, we present WGAST, a Weakly-Supervised Generative Network for Daily 10 m LST Estimation via Spatio-Temporal Fusion of Terra MODIS, Landsat 8, and Sentinel-2. WGAST is the first end-to-end deep learning framework designed for this task. It adopts a conditional generative adversarial architecture, with a generator composed of four stages: feature extraction, fusion, LST reconstruction, and noise suppression. The first stage employs a set of encoders to extract multi-level latent representations from the inputs, which are then fused in the second stage using cosine similarity, normalization, and temporal attention mechanisms. The third stage decodes the fused features into high-resolution LST, followed by a Gaussian filter to suppress high-frequency noise. Training follows a weakly supervised strategy based on physical averaging principles and reinforced by a PatchGAN discriminator. Experiments demonstrate that WGAST outperforms existing methods in both quantitative and qualitative evaluations. Compared to the best-performing baseline, on average, WGAST reduces RMSE by 17.18% and improves SSIM by 11.00%. Furthermore, WGAST is robust to cloud-induced LST and effectively captures fine-scale thermal patterns, as validated against 33 ground-based sensors. The code is available at https://github.com/Sofianebouaziz1/WGAST.git.

Authors:Ruida Cheng, Tejas Sudharshan Mathai, Pritam Mukherjee, Benjamin Hou, Qingqing Zhu, Zhiyong Lu, Matthew McAuliffe, Ronald M. Summers
Title: Text Embedded Swin-UMamba for DeepLesion Segmentation
Abstract:
Segmentation of lesions on CT enables automatic measurement for clinical assessment of chronic diseases (e.g., lymphoma). Integrating large language models (LLMs) into the lesion segmentation workflow offers the potential to combine imaging features with descriptions of lesion characteristics from the radiology reports. In this study, we investigate the feasibility of integrating text into the Swin-UMamba architecture for the task of lesion segmentation. The publicly available ULS23 DeepLesion dataset was used along with short-form descriptions of the findings from the reports. On the test dataset, a high Dice Score of 82% and low Hausdorff distance of 6.58 (pixels) was obtained for lesion segmentation. The proposed Text-Swin-UMamba model outperformed prior approaches: 37% improvement over the LLM-driven LanGuideMedSeg model (p < 0.001),and surpassed the purely image-based xLSTM-UNet and nnUNet models by 1.74% and 0.22%, respectively. The dataset and code can be accessed at https://github.com/ruida/LLM-Swin-UMamba

Authors:Shengzhu Yang, Jiawei Du, Shuai Lu, Weihang Zhang, Ningli Wang, Huiqi Li
Title: CLIPin: A Non-contrastive Plug-in to CLIP for Multimodal Semantic Alignment
Abstract:
Large-scale natural image-text datasets, especially those automatically collected from the web, often suffer from loose semantic alignment due to weak supervision, while medical datasets tend to have high cross-modal correlation but low content diversity. These properties pose a common challenge for contrastive language-image pretraining (CLIP): they hinder the model's ability to learn robust and generalizable representations. In this work, we propose CLIPin, a unified non-contrastive plug-in that can be seamlessly integrated into CLIP-style architectures to improve multimodal semantic alignment, providing stronger supervision and enhancing alignment robustness. Furthermore, two shared pre-projectors are designed for image and text modalities respectively to facilitate the integration of contrastive and non-contrastive learning in a parameter-compromise manner. Extensive experiments on diverse downstream tasks demonstrate the effectiveness and generality of CLIPin as a plug-and-play component compatible with various contrastive frameworks. Code is available at https://github.com/T6Yang/CLIPin.

Authors:Guido Manni, Clemente Lauretti, Loredana Zollo, Paolo Soda
Title: SPARSE Data, Rich Results: Few-Shot Semi-Supervised Learning via Class-Conditioned Image Translation
Abstract:
Deep learning has revolutionized medical imaging, but its effectiveness is severely limited by insufficient labeled training data. This paper introduces a novel GAN-based semi-supervised learning framework specifically designed for low labeled-data regimes, evaluated across settings with 5 to 50 labeled samples per class. Our approach integrates three specialized neural networks -- a generator for class-conditioned image translation, a discriminator for authenticity assessment and classification, and a dedicated classifier -- within a three-phase training framework. The method alternates between supervised training on limited labeled data and unsupervised learning that leverages abundant unlabeled images through image-to-image translation rather than generation from noise. We employ ensemble-based pseudo-labeling that combines confidence-weighted predictions from the discriminator and classifier with temporal consistency through exponential moving averaging, enabling reliable label estimation for unlabeled data. Comprehensive evaluation across eleven MedMNIST datasets demonstrates that our approach achieves statistically significant improvements over six state-of-the-art GAN-based semi-supervised methods, with particularly strong performance in the extreme 5-shot setting where the scarcity of labeled data is most challenging. The framework maintains its superiority across all evaluated settings (5, 10, 20, and 50 shots per class). Our approach offers a practical solution for medical imaging applications where annotation costs are prohibitive, enabling robust classification performance even with minimal labeled data. Code is available at https://github.com/GuidoManni/SPARSE.

Authors:Youguang Xing, Xu Luo, Junlin Xie, Lianli Gao, Hengtao Shen, Jingkuan Song
Title: Shortcut Learning in Generalist Robot Policies: The Role of Dataset Diversity and Fragmentation
Abstract:
Generalist robot policies trained on large-scale datasets such as Open X-Embodiment (OXE) demonstrate strong performance across a wide range of tasks. However, they often struggle to generalize beyond the distribution of their training data. In this paper, we investigate the underlying cause of this limited generalization capability. We identify shortcut learning -- the reliance on task-irrelevant features -- as a key impediment to generalization. Through comprehensive theoretical and empirical analysis, we uncover two primary contributors to shortcut learning: (1) limited diversity within individual sub-datasets, and (2) significant distributional disparities across sub-datasets, leading to dataset fragmentation. These issues arise from the inherent structure of large-scale datasets like OXE, which are typically composed of multiple sub-datasets collected independently across varied environments and embodiments. Our findings provide critical insights into dataset collection strategies that can reduce shortcut learning and enhance the generalization ability of generalist robot policies. Moreover, in scenarios where acquiring new large-scale data is impractical, we demonstrate that carefully selected robotic data augmentation strategies can effectively reduce shortcut learning in existing offline datasets, thereby improving generalization capabilities of generalist robot policies, e.g., $π_0$, in both simulation and real-world environments. More information at https://lucky-light-sun.github.io/proj/shortcut-learning-in-grps/.

Authors:Xiangyu Wu, Feng Yu, Yang Yang, Jianfeng Lu
Title: Text as Any-Modality for Zero-Shot Classification by Consistent Prompt Tuning
Abstract:
The integration of prompt tuning with multimodal learning has shown significant generalization abilities for various downstream tasks. Despite advancements, existing methods heavily depend on massive modality-specific labeled data (e.g., video, audio, and image), or are customized for a single modality. In this study, we present Text as Any-Modality by Consistent Prompt Tuning (TaAM-CPT), a scalable approach for constructing a general representation model toward unlimited modalities using solely text data. TaAM-CPT comprises modality prompt pools, text construction, and modality-aligned text encoders from pre-trained models, which allows for extending new modalities by simply adding prompt pools and modality-aligned text encoders. To harmonize the learning across different modalities, TaAM-CPT designs intra- and inter-modal learning objectives, which can capture category details within modalities while maintaining semantic consistency across different modalities. Benefiting from its scalable architecture and pre-trained models, TaAM-CPT can be seamlessly extended to accommodate unlimited modalities. Remarkably, without any modality-specific labeled data, TaAM-CPT achieves leading results on diverse datasets spanning various modalities, including video classification, image classification, and audio classification. The code is available at https://github.com/Jinx630/TaAM-CPT.

Authors:Zelin Li, Ruohan Zong, Yifan Liu, Ruichen Yao, Yaokun Liu, Yang Zhang, Dong Wang
Title: Anti-Tamper Protection for Unauthorized Individual Image Generation
Abstract:
With the advancement of personalized image generation technologies, concerns about forgery attacks that infringe on portrait rights and privacy are growing. To address these concerns, protection perturbation algorithms have been developed to disrupt forgery generation. However, the protection algorithms would become ineffective when forgery attackers apply purification techniques to bypass the protection. To address this issue, we present a novel approach, Anti-Tamper Perturbation (ATP). ATP introduces a tamper-proof mechanism within the perturbation. It consists of protection and authorization perturbations, where the protection perturbation defends against forgery attacks, while the authorization perturbation detects purification-based tampering. Both protection and authorization perturbations are applied in the frequency domain under the guidance of a mask, ensuring that the protection perturbation does not disrupt the authorization perturbation. This design also enables the authorization perturbation to be distributed across all image pixels, preserving its sensitivity to purification-based tampering. ATP demonstrates its effectiveness in defending forgery attacks across various attack settings through extensive experiments, providing a robust solution for protecting individuals' portrait rights and privacy. Our code is available at: https://github.com/Seeyn/Anti-Tamper-Perturbation .

Authors:Zhangquan Chen, Ruihui Zhao, Chuwei Luo, Mingze Sun, Xinlei Yu, Yangyang Kang, Ruqi Huang
Title: SIFThinker: Spatially-Aware Image Focus for Visual Reasoning
Abstract:
Current multimodal large language models (MLLMs) still face significant challenges in complex visual tasks (e.g., spatial understanding, fine-grained perception). Prior methods have tried to incorporate visual reasoning, however, they fail to leverage attention correction with spatial cues to iteratively refine their focus on prompt-relevant regions. In this paper, we introduce SIFThinker, a spatially-aware "think-with-images" framework that mimics human visual perception. Specifically, SIFThinker enables attention correcting and image region focusing by interleaving depth-enhanced bounding boxes and natural language. Our contributions are twofold: First, we introduce a reverse-expansion-forward-inference strategy that facilitates the generation of interleaved image-text chains of thought for process-level supervision, which in turn leads to the construction of the SIF-50K dataset. Besides, we propose GRPO-SIF, a reinforced training paradigm that integrates depth-informed visual grounding into a unified reasoning pipeline, teaching the model to dynamically correct and focus on prompt-relevant regions. Extensive experiments demonstrate that SIFThinker outperforms state-of-the-art methods in spatial understanding and fine-grained visual perception, while maintaining strong general capabilities, highlighting the effectiveness of our method. Code: https://github.com/zhangquanchen/SIFThinker.

Authors:Md Sazidur Rahman, David Cabecinhas, Ricard Marxer
Title: Depth Jitter: Seeing through the Depth
Abstract:
Depth information is essential in computer vision, particularly in underwater imaging, robotics, and autonomous navigation. However, conventional augmentation techniques overlook depth aware transformations, limiting model robustness in real world depth variations. In this paper, we introduce Depth-Jitter, a novel depth-based augmentation technique that simulates natural depth variations to improve generalization. Our approach applies adaptive depth offsetting, guided by depth variance thresholds, to generate synthetic depth perturbations while preserving structural integrity. We evaluate Depth-Jitter on two benchmark datasets, FathomNet and UTDAC2020 demonstrating its impact on model stability under diverse depth conditions. Extensive experiments compare Depth-Jitter against traditional augmentation strategies such as ColorJitter, analyzing performance across varying learning rates, encoders, and loss functions. While Depth-Jitter does not always outperform conventional methods in absolute performance, it consistently enhances model stability and generalization in depth-sensitive environments. These findings highlight the potential of depth-aware augmentation for real-world applications and provide a foundation for further research into depth-based learning strategies. The proposed technique is publicly available to support advancements in depth-aware augmentation. The code is publicly available on \href{https://github.com/mim-team/Depth-Jitter}{github}.

Authors:Hanqing Wang, Shaoyang Wang, Yiming Zhong, Zemin Yang, Jiamin Wang, Zhiqing Cui, Jiahao Yuan, Yifan Han, Mingyu Liu, Yuexin Ma
Title: Affordance-R1: Reinforcement Learning for Generalizable Affordance Reasoning in Multimodal Large Language Model
Abstract:
Affordance grounding focuses on predicting the specific regions of objects that are associated with the actions to be performed by robots. It plays a vital role in the fields of human-robot interaction, human-object interaction, embodied manipulation, and embodied perception. Existing models often neglect the affordance shared among different objects because they lack the Chain-of-Thought(CoT) reasoning abilities, limiting their out-of-domain (OOD) generalization and explicit reasoning capabilities. To address these challenges, we propose Affordance-R1, the first unified affordance grounding framework that integrates cognitive CoT guided Group Relative Policy Optimization (GRPO) within a reinforcement learning paradigm. Specifically, we designed a sophisticated affordance function, which contains format, perception, and cognition rewards to effectively guide optimization directions. Furthermore, we constructed a high-quality affordance-centric reasoning dataset, ReasonAff, to support training. Trained exclusively via reinforcement learning with GRPO and without explicit reasoning data, Affordance-R1 achieves robust zero-shot generalization and exhibits emergent test-time reasoning capabilities. Comprehensive experiments demonstrate that our model outperforms well-established methods and exhibits open-world generalization. To the best of our knowledge, Affordance-R1 is the first to integrate GRPO-based RL with reasoning into affordance reasoning. The code of our method and our dataset is released on https://github.com/hq-King/Affordance-R1.

Authors:Zhenbang Du, Yonggan Fu, Lifu Wang, Jiayi Qian, Xiao Luo, Yingyan, Lin
Title: Fewer Denoising Steps or Cheaper Per-Step Inference: Towards Compute-Optimal Diffusion Model Deployment
Abstract:
Diffusion models have shown remarkable success across generative tasks, yet their high computational demands challenge deployment on resource-limited platforms. This paper investigates a critical question for compute-optimal diffusion model deployment: Under a post-training setting without fine-tuning, is it more effective to reduce the number of denoising steps or to use a cheaper per-step inference? Intuitively, reducing the number of denoising steps increases the variability of the distributions across steps, making the model more sensitive to compression. In contrast, keeping more denoising steps makes the differences smaller, preserving redundancy, and making post-training compression more feasible. To systematically examine this, we propose PostDiff, a training-free framework for accelerating pre-trained diffusion models by reducing redundancy at both the input level and module level in a post-training manner. At the input level, we propose a mixed-resolution denoising scheme based on the insight that reducing generation resolution in early denoising steps can enhance low-frequency components and improve final generation fidelity. At the module level, we employ a hybrid module caching strategy to reuse computations across denoising steps. Extensive experiments and ablation studies demonstrate that (1) PostDiff can significantly improve the fidelity-efficiency trade-off of state-of-the-art diffusion models, and (2) to boost efficiency while maintaining decent generation fidelity, reducing per-step inference cost is often more effective than reducing the number of denoising steps. Our code is available at https://github.com/GATECH-EIC/PostDiff.

Authors:Yuchen Guan, Chong Sun, Canmiao Fu, Zhipeng Huang, Chun Yuan, Chen Li
Title: Text-guided Visual Prompt DINO for Generic Segmentation
Abstract:
Recent advancements in multimodal vision models have highlighted limitations in late-stage feature fusion and suboptimal query selection for hybrid prompts open-world segmentation, alongside constraints from caption-derived vocabularies. To address these challenges, we propose Prompt-DINO, a text-guided visual Prompt DINO framework featuring three key innovations. First, we introduce an early fusion mechanism that unifies text/visual prompts and backbone features at the initial encoding stage, enabling deeper cross-modal interactions to resolve semantic ambiguities. Second, we design order-aligned query selection for DETR-based architectures, explicitly optimizing the structural alignment between text and visual queries during decoding to enhance semantic-spatial consistency. Third, we develop a generative data engine powered by the Recognize Anything via Prompting (RAP) model, which synthesizes 0.5B diverse training instances through a dual-path cross-verification pipeline, reducing label noise by 80.5% compared to conventional approaches. Extensive experiments demonstrate that Prompt-DINO achieves state-of-the-art performance on open-world detection benchmarks while significantly expanding semantic coverage beyond fixed-vocabulary constraints. Our work establishes a new paradigm for scalable multimodal detection and data generation in open-world scenarios. Data&Code are available at https://github.com/WeChatCV/WeVisionOne.

Authors:Hanqing Wang, Yuan Tian, Mingyu Liu, Zhenhao Zhang, Xiangyang Zhu
Title: SDEval: Safety Dynamic Evaluation for Multimodal Large Language Models
Abstract:
In the rapidly evolving landscape of Multimodal Large Language Models (MLLMs), the safety concerns of their outputs have earned significant attention. Although numerous datasets have been proposed, they may become outdated with MLLM advancements and are susceptible to data contamination issues. To address these problems, we propose \textbf{SDEval}, the \textit{first} safety dynamic evaluation framework to controllably adjust the distribution and complexity of safety benchmarks. Specifically, SDEval mainly adopts three dynamic strategies: text, image, and text-image dynamics to generate new samples from original benchmarks. We first explore the individual effects of text and image dynamics on model safety. Then, we find that injecting text dynamics into images can further impact safety, and conversely, injecting image dynamics into text also leads to safety risks. SDEval is general enough to be applied to various existing safety and even capability benchmarks. Experiments across safety benchmarks, MLLMGuard and VLSBench, and capability benchmarks, MMBench and MMVet, show that SDEval significantly influences safety evaluation, mitigates data contamination, and exposes safety limitations of MLLMs. Code is available at https://github.com/hq-King/SDEval

Authors:Shaohua Pan, Xinyu Yi, Yan Zhou, Weihua Jian, Yuan Zhang, Pengfei Wan, Feng Xu
Title: DiffCap: Diffusion-based Real-time Human Motion Capture using Sparse IMUs and a Monocular Camera
Abstract:
Combining sparse IMUs and a monocular camera is a new promising setting to perform real-time human motion capture. This paper proposes a diffusion-based solution to learn human motion priors and fuse the two modalities of signals together seamlessly in a unified framework. By delicately considering the characteristics of the two signals, the sequential visual information is considered as a whole and transformed into a condition embedding, while the inertial measurement is concatenated with the noisy body pose frame by frame to construct a sequential input for the diffusion model. Firstly, we observe that the visual information may be unavailable in some frames due to occlusions or subjects moving out of the camera view. Thus incorporating the sequential visual features as a whole to get a single feature embedding is robust to the occasional degenerations of visual information in those frames. On the other hand, the IMU measurements are robust to occlusions and always stable when signal transmission has no problem. So incorporating them frame-wisely could better explore the temporal information for the system. Experiments have demonstrated the effectiveness of the system design and its state-of-the-art performance in pose estimation compared with the previous works. Our codes are available for research at https://shaohua-pan.github.io/diffcap-page.

Authors:Michael Wehrli, Alicia Durrer, Paul Friedrich, Sidaty El Hadramy, Edwin Li, Luana Brahaj, Carol C. Hasler, Philippe C. Cattin
Title: Towards MR-Based Trochleoplasty Planning
Abstract:
To treat Trochlear Dysplasia (TD), current approaches rely mainly on low-resolution clinical Magnetic Resonance (MR) scans and surgical intuition. The surgeries are planned based on surgeons experience, have limited adoption of minimally invasive techniques, and lead to inconsistent outcomes. We propose a pipeline that generates super-resolved, patient-specific 3D pseudo-healthy target morphologies from conventional clinical MR scans. First, we compute an isotropic super-resolved MR volume using an Implicit Neural Representation (INR). Next, we segment femur, tibia, patella, and fibula with a multi-label custom-trained network. Finally, we train a Wavelet Diffusion Model (WDM) to generate pseudo-healthy target morphologies of the trochlear region. In contrast to prior work producing pseudo-healthy low-resolution 3D MR images, our approach enables the generation of sub-millimeter resolved 3D shapes compatible for pre- and intraoperative use. These can serve as preoperative blueprints for reshaping the femoral groove while preserving the native patella articulation. Furthermore, and in contrast to other work, we do not require a CT for our pipeline - reducing the amount of radiation. We evaluated our approach on 25 TD patients and could show that our target morphologies significantly improve the sulcus angle (SA) and trochlear groove depth (TGD). The code and interactive visualization are available at https://wehrlimi.github.io/sr-3d-planning/.

Authors:Chao Hao, Zitong Yu, Xin Liu, Yuhao Wang, Weicheng Xie, Jingang Shi, Huanjing Yue, Jingyu Yang
Title: Distribution-Specific Learning for Joint Salient and Camouflaged Object Detection
Abstract:
Salient object detection (SOD) and camouflaged object detection (COD) are two closely related but distinct computer vision tasks. Although both are class-agnostic segmentation tasks that map from RGB space to binary space, the former aims to identify the most salient objects in the image, while the latter focuses on detecting perfectly camouflaged objects that blend into the background in the image. These two tasks exhibit strong contradictory attributes. Previous works have mostly believed that joint learning of these two tasks would confuse the network, reducing its performance on both tasks. However, here we present an opposite perspective: with the correct approach to learning, the network can simultaneously possess the capability to find both salient and camouflaged objects, allowing both tasks to benefit from joint learning. We propose SCJoint, a joint learning scheme for SOD and COD tasks, assuming that the decoding processes of SOD and COD have different distribution characteristics. The key to our method is to learn the respective means and variances of the decoding processes for both tasks by inserting a minimal amount of task-specific learnable parameters within a fully shared network structure, thereby decoupling the contradictory attributes of the two tasks at a minimal cost. Furthermore, we propose a saliency-based sampling strategy (SBSS) to sample the training set of the SOD task to balance the training set sizes of the two tasks. In addition, SBSS improves the training set quality and shortens the training time. Based on the proposed SCJoint and SBSS, we train a powerful generalist network, named JoNet, which has the ability to simultaneously capture both ``salient" and ``camouflaged". Extensive experiments demonstrate the competitive performance and effectiveness of our proposed method. The code is available at https://github.com/linuxsino/JoNet.

Authors:Wonjung Park, Suhyun Ahn, Jinah Park
Title: LV-Net: Anatomy-aware lateral ventricle shape modeling with a case study on Alzheimer's disease
Abstract:
Lateral ventricle (LV) shape analysis holds promise as a biomarker for neurological diseases; however, challenges remain due to substantial shape variability across individuals and segmentation difficulties arising from limited MRI resolution. We introduce LV-Net, a novel framework for producing individualized 3D LV meshes from brain MRI by deforming an anatomy-aware joint LV-hippocampus template mesh. By incorporating anatomical relationships embedded within the joint template, LV-Net reduces boundary segmentation artifacts and improves reconstruction robustness. In addition, by classifying the vertices of the template mesh based on their anatomical adjacency, our method enhances point correspondence across subjects, leading to more accurate LV shape statistics. We demonstrate that LV-Net achieves superior reconstruction accuracy, even in the presence of segmentation imperfections, and delivers more reliable shape descriptors across diverse datasets. Finally, we apply LV-Net to Alzheimer's disease analysis, identifying LV subregions that show significantly associations with the disease relative to cognitively normal controls. The codes for LV shape modeling are available at https://github.com/PWonjung/LV_Shape_Modeling.

Authors:Jun Xie, Yingjian Zhu, Feng Chen, Zhenghao Zhang, Xiaohui Fan, Hongzhu Yi, Xinming Wang, Chen Yu, Yue Bi, Zhaoran Zhao, Xiongjun Guan, Zhepeng Wang
Title: More Is Better: A MoE-Based Emotion Recognition Framework with Human Preference Alignment
Abstract:
In this paper, we present our solution for the semi-supervised learning track (MER-SEMI) in MER2025. We propose a comprehensive framework, grounded in the principle that "more is better," to construct a robust Mixture of Experts (MoE) emotion recognition system. Our approach integrates a diverse range of input modalities as independent experts, including novel signals such as knowledge from large Vision-Language Models (VLMs) and temporal Action Unit (AU) information. To effectively utilize unlabeled data, we introduce a consensus-based pseudo-labeling strategy, generating high-quality labels from the agreement between a baseline model and Gemini, which are then used in a two-stage training paradigm. Finally, we employ a multi-expert voting ensemble combined with a rule-based re-ranking process to correct prediction bias and better align the outputs with human preferences. Evaluated on the MER2025-SEMI challenge dataset, our method achieves an F1-score of 0.8772 on the test set, ranking 2nd in the track. Our code is available at https://github.com/zhuyjan/MER2025-MRAC25.

Authors:Utku Ozbulak, Michaela Cohrs, Hristo L. Svilenov, Joris Vankerschaver, Wesley De Neve
Title: Improved Sub-Visible Particle Classification in Flow Imaging Microscopy via Generative AI-Based Image Synthesis
Abstract:
Sub-visible particle analysis using flow imaging microscopy combined with deep learning has proven effective in identifying particle types, enabling the distinction of harmless components such as silicone oil from protein particles. However, the scarcity of available data and severe imbalance between particle types within datasets remain substantial hurdles when applying multi-class classifiers to such problems, often forcing researchers to rely on less effective methods. The aforementioned issue is particularly challenging for particle types that appear unintentionally and in lower numbers, such as silicone oil and air bubbles, as opposed to protein particles, where obtaining large numbers of images through controlled settings is comparatively straightforward. In this work, we develop a state-of-the-art diffusion model to address data imbalance by generating high-fidelity images that can augment training datasets, enabling the effective training of multi-class deep neural networks. We validate this approach by demonstrating that the generated samples closely resemble real particle images in terms of visual quality and structure. To assess the effectiveness of using diffusion-generated images in training datasets, we conduct large-scale experiments on a validation dataset comprising 500,000 protein particle images and demonstrate that this approach improves classification performance with no negligible downside. Finally, to promote open research and reproducibility, we publicly release both our diffusion models and the trained multi-class deep neural network classifiers, along with a straightforward interface for easy integration into future studies, at https://github.com/utkuozbulak/svp-generative-ai.

Authors:Jun Feng, Zixin Wang, Zhentao Zhang, Yue Guo, Zhihan Zhou, Xiuyi Chen, Zhenyang Li, Dawei Yin
Title: MathReal: We Keep It Real! A Real Scene Benchmark for Evaluating Math Reasoning in Multimodal Large Language Models
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in visual mathematical reasoning across various existing benchmarks. However, these benchmarks are predominantly based on clean or processed multimodal inputs, without incorporating the images provided by real-world Kindergarten through 12th grade (K-12) educational users. To address this gap, we introduce MathReal, a meticulously curated dataset comprising 2,000 mathematical questions with images captured by handheld mobile devices in authentic scenarios. Each question is an image, containing the question text and visual element. We systematically classify the real images into three primary categories: image quality degradation, perspective variation, and irrelevant content interference, which are further delineated into 14 subcategories. Additionally, MathReal spans five core knowledge and ability categories, which encompass three question types and are divided into three difficulty levels. To comprehensively evaluate the multimodal mathematical reasoning abilities of state-of-the-art MLLMs in real-world scenarios, we design six experimental settings that enable a systematic analysis of their performance. Through extensive experimentation, we find that the problem-solving abilities of existing MLLMs are significantly challenged in realistic educational contexts. Based on this, we conduct a thorough analysis of their performance and error patterns, providing insights into their recognition, comprehension, and reasoning capabilities, and outlining directions for future improvements. Data and code: https://github.com/junfeng0288/MathReal.

Authors:Kai Zhang, Peng Wang, Sai Bi, Jianming Zhang, Yuanjun Xiong
Title: KnapFormer: An Online Load Balancer for Efficient Diffusion Transformers Training
Abstract:
We present KnapFormer, an efficient and versatile framework to combine workload balancing and sequence parallelism in distributed training of Diffusion Transformers (DiT). KnapFormer builds on the insight that strong synergy exists between sequence parallelism and the need to address the significant token imbalance across ranks. This imbalance arises from variable-length text inputs and varying visual token counts in mixed-resolution and image-video joint training. KnapFormer redistributes tokens by first gathering sequence length metadata across all ranks in a balancing group and solving a global knapsack problem. The solver aims to minimize the variances of total workload per-GPU, while accounting for the effect of sequence parallelism. By integrating DeepSpeed-Ulysees-based sequence parallelism in the load-balancing decision process and utilizing a simple semi-empirical workload model, KnapFormers achieves minimal communication overhead and less than 1% workload discrepancy in real-world training workloads with sequence length varying from a few hundred to tens of thousands. It eliminates straggler effects and achieves 2x to 3x speedup when training state-of-the-art diffusion models like FLUX on mixed-resolution and image-video joint data corpora. We open-source the KnapFormer implementation at https://github.com/Kai-46/KnapFormer/

Authors:Younjoon Chung, Hyoungseob Park, Patrick Rim, Xiaoran Zhang, Jihe He, Ziyao Zeng, Safa Cicek, Byung-Woo Hong, James S. Duncan, Alex Wong
Title: ETA: Energy-based Test-time Adaptation for Depth Completion
Abstract:
We propose a method for test-time adaptation of pretrained depth completion models. Depth completion models, trained on some ``source'' data, often predict erroneous outputs when transferred to ``target'' data captured in novel environmental conditions due to a covariate shift. The crux of our method lies in quantifying the likelihood of depth predictions belonging to the source data distribution. The challenge is in the lack of access to out-of-distribution (target) data prior to deployment. Hence, rather than making assumptions regarding the target distribution, we utilize adversarial perturbations as a mechanism to explore the data space. This enables us to train an energy model that scores local regions of depth predictions as in- or out-of-distribution. We update the parameters of pretrained depth completion models at test time to minimize energy, effectively aligning test-time predictions to those of the source distribution. We call our method ``Energy-based Test-time Adaptation'', or ETA for short. We evaluate our method across three indoor and three outdoor datasets, where ETA improve over the previous state-of-the-art method by an average of 6.94% for outdoors and 10.23% for indoors. Project Page: https://fuzzythecat.github.io/eta.

Authors:Lang Nie, Yuan Mei, Kang Liao, Yunqiu Xu, Chunyu Lin, Bin Xiao
Title: Robust Image Stitching with Optimal Plane
Abstract:
We present \textit{RopStitch}, an unsupervised deep image stitching framework with both robustness and naturalness. To ensure the robustness of \textit{RopStitch}, we propose to incorporate the universal prior of content perception into the image stitching model by a dual-branch architecture. It separately captures coarse and fine features and integrates them to achieve highly generalizable performance across diverse unseen real-world scenes. Concretely, the dual-branch model consists of a pretrained branch to capture semantically invariant representations and a learnable branch to extract fine-grained discriminative features, which are then merged into a whole by a controllable factor at the correlation level. Besides, considering that content alignment and structural preservation are often contradictory to each other, we propose a concept of virtual optimal planes to relieve this conflict. To this end, we model this problem as a process of estimating homography decomposition coefficients, and design an iterative coefficient predictor and minimal semantic distortion constraint to identify the optimal plane. This scheme is finally incorporated into \textit{RopStitch} by warping both views onto the optimal plane bidirectionally. Extensive experiments across various datasets demonstrate that \textit{RopStitch} significantly outperforms existing methods, particularly in scene robustness and content naturalness. The code is available at {\color{red}https://github.com/MmelodYy/RopStitch}.

Authors:Hamidreza Dastmalchi, Aijun An, Ali cheraghian
Title: ETTA: Efficient Test-Time Adaptation for Vision-Language Models through Dynamic Embedding Updates
Abstract:
Pretrained vision-language models (VLMs) like CLIP show strong zero-shot performance but struggle with generalization under distribution shifts. Test-Time Adaptation (TTA) addresses this by adapting VLMs to unlabeled test data in new domains. While some TTA methods rely on prompt-tuning, training-free cache-based approaches are preferred for efficiency. However, current cache-based TTA models store only a limited set of high-confidence samples, restricting the decision boundary to these samples and ignoring the influence of other incoming test data. To address this, we propose Efficient Test-Time Adaptation (ETTA), introducing a Recursive Updating module that integrates all incoming test samples, progressively refining the decision boundary. This strategy mimics an unbounded cache, dynamically updating contextual embeddings for improved accuracy with minimal memory and computational overhead. ETTA also includes an Adaptive Ensemble module to reduce prompt dependency in image-to-text scores by dynamically selecting optimal prompts for each class. Furthermore, ETTA adaptively combines scores from both modules based on confidence levels, leveraging their complementary strengths. Extensive experiments on two benchmarks confirm that ETTA surpasses the state-of-the-art TTA models in computational complexity and accuracy, setting a new standard for effective, efficient test-time adaptation. The code has been released at https://github.com/hamidreza-dastmalchi/ETTA.

Authors:Guoping Xu, Hua-Chieh Shao, You Zhang
Title: TSMS-SAM2: Multi-scale Temporal Sampling Augmentation and Memory-Splitting Pruning for Promptable Video Object Segmentation and Tracking in Surgical Scenarios
Abstract:
Promptable video object segmentation and tracking (VOST) has seen significant advances with the emergence of foundation models like Segment Anything Model 2 (SAM2); however, their application in surgical video analysis remains challenging due to complex motion dynamics and the redundancy of memory that impedes effective learning. In this work, we propose TSMS-SAM2, a novel framework that enhances promptable VOST in surgical videos by addressing challenges of rapid object motion and memory redundancy in SAM2. TSMS-SAM2 introduces two key strategies: multi-temporal-scale video sampling augmentation to improve robustness against motion variability, and a memory splitting and pruning mechanism that organizes and filters past frame features for more efficient and accurate segmentation. Evaluated on EndoVis2017 and EndoVis2018 datasets, TSMS-SAM2 achieved the highest mean Dice scores of 95.24 and 86.73, respectively, outperforming prior SAM-based and task-specific methods. Extensive ablation studies confirm the effectiveness of multiscale temporal augmentation and memory splitting, highlighting the framework's potential for robust, efficient segmentation in complex surgical scenarios. Our source code will be available at https://github.com/apple1986/TSMS-SAM2.

Authors:Raphael Du Sablon, David Hart
Title: Optimization-Free Style Transfer for 3D Gaussian Splats
Abstract:
The task of style transfer for 3D Gaussian splats has been explored in many previous works, but these require reconstructing or fine-tuning the splat while incorporating style information or optimizing a feature extraction network on the splat representation. We propose a reconstruction- and optimization-free approach to stylizing 3D Gaussian splats. This is done by generating a graph structure across the implicit surface of the splat representation. A feed-forward, surface-based stylization method is then used and interpolated back to the individual splats in the scene. This allows for any style image and 3D Gaussian splat to be used without any additional training or optimization. This also allows for fast stylization of splats, achieving speeds under 2 minutes even on consumer-grade hardware. We demonstrate the quality results this approach achieves and compare to other 3D Gaussian splat style transfer methods. Code is publicly available at https://github.com/davidmhart/FastSplatStyler.

Authors:Seyed Hadi Seyed, Ayberk Cansever, David Hart
Title: Improving Masked Style Transfer using Blended Partial Convolution
Abstract:
Artistic style transfer has long been possible with the advancements of convolution- and transformer-based neural networks. Most algorithms apply the artistic style transfer to the whole image, but individual users may only need to apply a style transfer to a specific region in the image. The standard practice is to simply mask the image after the stylization. This work shows that this approach tends to improperly capture the style features in the region of interest. We propose a partial-convolution-based style transfer network that accurately applies the style features exclusively to the region of interest. Additionally, we present network-internal blending techniques that account for imperfections in the region selection. We show that this visually and quantitatively improves stylization using examples from the SA-1B dataset. Code is publicly available at https://github.com/davidmhart/StyleTransferMasked.

Authors:Jinjia Peng, Zeze Tao, Huibing Wang, Meng Wang, Yang Wang
Title: Boosting Adversarial Transferability via Residual Perturbation Attack
Abstract:
Deep neural networks are susceptible to adversarial examples while suffering from incorrect predictions via imperceptible perturbations. Transfer-based attacks create adversarial examples for surrogate models and transfer these examples to target models under black-box scenarios. Recent studies reveal that adversarial examples in flat loss landscapes exhibit superior transferability to alleviate overfitting on surrogate models. However, the prior arts overlook the influence of perturbation directions, resulting in limited transferability. In this paper, we propose a novel attack method, named Residual Perturbation Attack (ResPA), relying on the residual gradient as the perturbation direction to guide the adversarial examples toward the flat regions of the loss function. Specifically, ResPA conducts an exponential moving average on the input gradients to obtain the first moment as the reference gradient, which encompasses the direction of historical gradients. Instead of heavily relying on the local flatness that stems from the current gradients as the perturbation direction, ResPA further considers the residual between the current gradient and the reference gradient to capture the changes in the global perturbation direction. The experimental results demonstrate the better transferability of ResPA than the existing typical transfer-based attack methods, while the transferability can be further improved by combining ResPA with the current input transformation methods. The code is available at https://github.com/ZezeTao/ResPA.

Authors:Jin Khye Tan, En Jun Choong, Ethan Jeremiah Chitty, Yan Pheng Choo, John Hsin Yang Wong, Chern Eu Cheah
Title: Fine-Tuning Vision-Language Models for Markdown Conversion of Financial Tables in Malaysian Audited Financial Reports
Abstract:
Accurately extracting and representing the structure of tabular data from financial documents remains a critical challenge in document understanding, particularly for regulatory and analytical use cases. This study addresses the complexity of converting financial tables from Malaysian audited financial reports into Markdown format, a task complicated by rotated layouts, multi-level headers, and implicit structural cues. We propose a fine-tuned vision-language model (VLM), based on Qwen2.5-VL-7B, optimized for high-fidelity Markdown generation from document images. Our approach includes a curated dataset of 2,152 image-text pairs with augmentations and a supervised fine-tuning strategy using LoRA. To assess performance, we evaluated our model on 100 out-of-sample tables using a dual framework: a criteria-based LLM-as-a-judge for fine-grained accuracy and our novel Markdown Tree-Edit-Distance-based Similarity (TEDS) metric for holistic structural fidelity. Our model achieves a 92.20% overall accuracy on the criteria-based assessment and a 96.53% Markdown TEDS score. This performance significantly surpasses its Qwen2.5-VL-7B base model, larger-scale VLMs, and specialized reasoning-enabled models. Compared to these self-hosted alternatives, it also significantly reduces inference time. Furthermore, its accuracy exceeds that of widely used proprietary models such as OpenAI's GPT-4o and Gemini 2.5 Flash. These results demonstrate that domain-specific fine-tuning provides an effective and efficient method to bridge the gap between unstructured financial documents and downstream automation, rivalling much larger and more general models without their computational overhead.

Authors:Mohammed Talha Alam, Fahad Shamshad, Fakhri Karray, Karthik Nandakumar
Title: FaceAnonyMixer: Cancelable Faces via Identity Consistent Latent Space Mixing
Abstract:
Advancements in face recognition (FR) technologies have amplified privacy concerns, necessitating methods that protect identity while maintaining recognition utility. Existing face anonymization methods typically focus on obscuring identity but fail to meet the requirements of biometric template protection, including revocability, unlinkability, and irreversibility. We propose FaceAnonyMixer, a cancelable face generation framework that leverages the latent space of a pre-trained generative model to synthesize privacy-preserving face images. The core idea of FaceAnonyMixer is to irreversibly mix the latent code of a real face image with a synthetic code derived from a revocable key. The mixed latent code is further refined through a carefully designed multi-objective loss to satisfy all cancelable biometric requirements. FaceAnonyMixer is capable of generating high-quality cancelable faces that can be directly matched using existing FR systems without requiring any modifications. Extensive experiments on benchmark datasets demonstrate that FaceAnonyMixer delivers superior recognition accuracy while providing significantly stronger privacy protection, achieving over an 11% gain on commercial API compared to recent cancelable biometric methods. Code is available at: https://github.com/talha-alam/faceanonymixer.

Authors:Jianpeng Yao, Xiaopan Zhang, Yu Xia, Zejin Wang, Amit K. Roy-Chowdhury, Jiachen Li
Title: Towards Generalizable Safety in Crowd Navigation via Conformal Uncertainty Handling
Abstract:
Mobile robots navigating in crowds trained using reinforcement learning are known to suffer performance degradation when faced with out-of-distribution scenarios. We propose that by properly accounting for the uncertainties of pedestrians, a robot can learn safe navigation policies that are robust to distribution shifts. Our method augments agent observations with prediction uncertainty estimates generated by adaptive conformal inference, and it uses these estimates to guide the agent's behavior through constrained reinforcement learning. The system helps regulate the agent's actions and enables it to adapt to distribution shifts. In the in-distribution setting, our approach achieves a 96.93% success rate, which is over 8.80% higher than the previous state-of-the-art baselines with over 3.72 times fewer collisions and 2.43 times fewer intrusions into ground-truth human future trajectories. In three out-of-distribution scenarios, our method shows much stronger robustness when facing distribution shifts in velocity variations, policy changes, and transitions from individual to group dynamics. We deploy our method on a real robot, and experiments show that the robot makes safe and robust decisions when interacting with both sparse and dense crowds. Our code and videos are available on https://gen-safe-nav.github.io/.

Authors:Weiqi Zhang, Junsheng Zhou, Haotian Geng, Wenyuan Zhang, Yu-Shen Liu
Title: GAP: Gaussianize Any Point Clouds with Text Guidance
Abstract:
3D Gaussian Splatting (3DGS) has demonstrated its advantages in achieving fast and high-quality rendering. As point clouds serve as a widely-used and easily accessible form of 3D representation, bridging the gap between point clouds and Gaussians becomes increasingly important. Recent studies have explored how to convert the colored points into Gaussians, but directly generating Gaussians from colorless 3D point clouds remains an unsolved challenge. In this paper, we propose GAP, a novel approach that gaussianizes raw point clouds into high-fidelity 3D Gaussians with text guidance. Our key idea is to design a multi-view optimization framework that leverages a depth-aware image diffusion model to synthesize consistent appearances across different viewpoints. To ensure geometric accuracy, we introduce a surface-anchoring mechanism that effectively constrains Gaussians to lie on the surfaces of 3D shapes during optimization. Furthermore, GAP incorporates a diffuse-based inpainting strategy that specifically targets at completing hard-to-observe regions. We evaluate GAP on the Point-to-Gaussian generation task across varying complexity levels, from synthetic point clouds to challenging real-world scans, and even large-scale scenes. Project Page: https://weiqi-zhang.github.io/GAP.

Authors:Henghui Ding, Kaining Ying, Chang Liu, Shuting He, Xudong Jiang, Yu-Gang Jiang, Philip H. S. Torr, Song Bai
Title: MOSEv2: A More Challenging Dataset for Video Object Segmentation in Complex Scenes
Abstract:
Video object segmentation (VOS) aims to segment specified target objects throughout a video. Although state-of-the-art methods have achieved impressive performance (e.g., 90+% J&F) on benchmarks such as DAVIS and YouTube-VOS, these datasets primarily contain salient, dominant, and isolated objects, limiting their generalization to real-world scenarios. To bridge this gap, the coMplex video Object SEgmentation (MOSEv1) dataset was introduced to facilitate VOS research in complex scenes. Building on the foundations and insights of MOSEv1, we present MOSEv2, a significantly more challenging dataset designed to further advance VOS methods under real-world conditions. MOSEv2 consists of 5,024 videos and 701,976 high-quality masks for 10,074 objects across 200 categories. Compared to its predecessor, MOSEv2 introduces much greater scene complexity, including {more frequent object disappearance and reappearance, severe occlusions and crowding, smaller objects, as well as a range of new challenges such as adverse weather (e.g., rain, snow, fog), low-light scenes (e.g., nighttime, underwater), multi-shot sequences, camouflaged objects, non-physical targets (e.g., shadows, reflections), and scenarios requiring external knowledge.} We benchmark 20 representative VOS methods under 5 different settings and observe consistent performance drops on MOSEv2. For example, SAM2 drops from 76.4% on MOSEv1 to only 50.9% on MOSEv2. We further evaluate 9 video object tracking methods and observe similar declines, demonstrating that MOSEv2 poses challenges across tasks. These results highlight that despite strong performance on existing datasets, current VOS methods still fall short under real-world complexities. Based on our analysis of the observed challenges, we further propose several practical tricks that enhance model performance. MOSEv2 is publicly available at https://MOSE.video.

Authors:Yong Du, Yuchen Yan, Fei Tang, Zhengxi Lu, Chang Zong, Weiming Lu, Shengpei Jiang, Yongliang Shen
Title: Test-Time Reinforcement Learning for GUI Grounding via Region Consistency
Abstract:
Graphical User Interface (GUI) grounding, the task of mapping natural language instructions to precise screen coordinates, is fundamental to autonomous GUI agents. While existing methods achieve strong performance through extensive supervised training or reinforcement learning with labeled rewards, they remain constrained by the cost and availability of pixel-level annotations. We observe that when models generate multiple predictions for the same GUI element, the spatial overlap patterns reveal implicit confidence signals that can guide more accurate localization. Leveraging this insight, we propose GUI-RC (Region Consistency), a test-time scaling method that constructs spatial voting grids from multiple sampled predictions to identify consensus regions where models show highest agreement. Without any training, GUI-RC improves accuracy by 2-3% across various architectures on ScreenSpot benchmarks. We further introduce GUI-RCPO (Region Consistency Policy Optimization), which transforms these consistency patterns into rewards for test-time reinforcement learning. By computing how well each prediction aligns with the collective consensus, GUI-RCPO enables models to iteratively refine their outputs on unlabeled data during inference. Extensive experiments demonstrate the generality of our approach: GUI-RC boosts Qwen2.5-VL-3B-Instruct from 80.11% to 83.57% on ScreenSpot-v2, while GUI-RCPO further improves it to 85.14% through self-supervised optimization. Our approach reveals the untapped potential of test-time scaling and test-time reinforcement learning for GUI grounding, offering a promising path toward more robust and data-efficient GUI agents.

Authors:Yuhan Zhang, Long Zhuo, Ziyang Chu, Tong Wu, Zhibing Li, Liang Pan, Dahua Lin, Ziwei Liu
Title: Hi3DEval: Advancing 3D Generation Evaluation with Hierarchical Validity
Abstract:
Despite rapid advances in 3D content generation, quality assessment for the generated 3D assets remains challenging. Existing methods mainly rely on image-based metrics and operate solely at the object level, limiting their ability to capture spatial coherence, material authenticity, and high-fidelity local details. 1) To address these challenges, we introduce Hi3DEval, a hierarchical evaluation framework tailored for 3D generative content. It combines both object-level and part-level evaluation, enabling holistic assessments across multiple dimensions as well as fine-grained quality analysis. Additionally, we extend texture evaluation beyond aesthetic appearance by explicitly assessing material realism, focusing on attributes such as albedo, saturation, and metallicness. 2) To support this framework, we construct Hi3DBench, a large-scale dataset comprising diverse 3D assets and high-quality annotations, accompanied by a reliable multi-agent annotation pipeline. We further propose a 3D-aware automated scoring system based on hybrid 3D representations. Specifically, we leverage video-based representations for object-level and material-subject evaluations to enhance modeling of spatio-temporal consistency and employ pretrained 3D features for part-level perception. Extensive experiments demonstrate that our approach outperforms existing image-based metrics in modeling 3D characteristics and achieves superior alignment with human preference, providing a scalable alternative to manual evaluations. The project page is available at https://zyh482.github.io/Hi3DEval/.

Authors:Luozheng Qin, Jia Gong, Yuqing Sun, Tianjiao Li, Mengping Yang, Xiaomeng Yang, Chao Qu, Zhiyu Tan, Hao Li
Title: Uni-cot: Towards Unified Chain-of-Thought Reasoning Across Text and Vision
Abstract:
Chain-of-Thought (CoT) reasoning has been widely adopted to enhance Large Language Models (LLMs) by decomposing complex tasks into simpler, sequential subtasks. However, extending CoT to vision-language reasoning tasks remains challenging, as it often requires interpreting transitions of visual states to support reasoning. Existing methods often struggle with this due to limited capacity of modeling visual state transitions or incoherent visual trajectories caused by fragmented architectures. To overcome these limitations, we propose Uni-CoT, a Unified Chain-of-Thought framework that enables coherent and grounded multimodal reasoning within a single unified model. The key idea is to leverage a model capable of both image understanding and generation to reason over visual content and model evolving visual states. However, empowering a unified model to achieve that is non-trivial, given the high computational cost and the burden of training. To address this, Uni-CoT introduces a novel two-level reasoning paradigm: A Macro-Level CoT for high-level task planning and A Micro-Level CoT for subtask execution. This design significantly reduces the computational overhead. Furthermore, we introduce a structured training paradigm that combines interleaved image-text supervision for macro-level CoT with multi-task objectives for micro-level CoT. Together, these innovations allow Uni-CoT to perform scalable and coherent multi-modal reasoning. Furthermore, thanks to our design, all experiments can be efficiently completed using only 8 A100 GPUs with 80GB VRAM each. Experimental results on reasoning-driven image generation benchmark (WISE) and editing benchmarks (RISE and KRIS) indicates that Uni-CoT demonstrates SOTA performance and strong generalization, establishing Uni-CoT as a promising solution for multi-modal reasoning. Project Page and Code: https://sais-fuxi.github.io/projects/uni-cot/

Authors:Shaobin Zhuang, Yiwei Guo, Canmiao Fu, Zhipeng Huang, Zeyue Tian, Fangyikang Wang, Ying Zhang, Chen Li, Yali Wang
Title: WeTok: Powerful Discrete Tokenization for High-Fidelity Visual Reconstruction
Abstract:
Visual tokenizer is a critical component for vision generation. However, the existing tokenizers often face unsatisfactory trade-off between compression ratios and reconstruction fidelity. To fill this gap, we introduce a powerful and concise WeTok tokenizer, which surpasses the previous leading tokenizers via two core innovations. (1) Group-wise lookup-free Quantization (GQ). We partition the latent features into groups, and perform lookup-free quantization for each group. As a result, GQ can efficiently overcome memory and computation limitations of prior tokenizers, while achieving a reconstruction breakthrough with more scalable codebooks. (2) Generative Decoding (GD). Different from prior tokenizers, we introduce a generative decoder with a prior of extra noise variable. In this case, GD can probabilistically model the distribution of visual data conditioned on discrete tokens, allowing WeTok to reconstruct visual details, especially at high compression ratios. Extensive experiments on mainstream benchmarks show superior performance of our WeTok. On the ImageNet 50k validation set, WeTok achieves a record-low zero-shot rFID (WeTok: 0.12 vs. FLUX-VAE: 0.18 vs. SD-VAE 3.5: 0.19) with a 400% compression ratio. Furthermore, our highest compression model achieves a zero-shot rFID of 3.49 with a compression ratio of 768, outperforming Cosmos (384) 4.57 which has only 50% compression rate of ours. Code and models are available: https://github.com/zhuangshaobin/WeTok.

Authors:Hao Dong, Lijun Sheng, Jian Liang, Ran He, Eleni Chatzi, Olga Fink
Title: Adapting Vision-Language Models Without Labels: A Comprehensive Survey
Abstract:
Vision-Language Models (VLMs) have demonstrated remarkable generalization capabilities across a wide range of tasks. However, their performance often remains suboptimal when directly applied to specific downstream scenarios without task-specific adaptation. To enhance their utility while preserving data efficiency, recent research has increasingly focused on unsupervised adaptation methods that do not rely on labeled data. Despite the growing interest in this area, there remains a lack of a unified, task-oriented survey dedicated to unsupervised VLM adaptation. To bridge this gap, we present a comprehensive and structured overview of the field. We propose a taxonomy based on the availability and nature of unlabeled visual data, categorizing existing approaches into four key paradigms: Data-Free Transfer (no data), Unsupervised Domain Transfer (abundant data), Episodic Test-Time Adaptation (batch data), and Online Test-Time Adaptation (streaming data). Within this framework, we analyze core methodologies and adaptation strategies associated with each paradigm, aiming to establish a systematic understanding of the field. Additionally, we review representative benchmarks across diverse applications and highlight open challenges and promising directions for future research. An actively maintained repository of relevant literature is available at https://github.com/tim-learn/Awesome-LabelFree-VLMs.

Authors:Shaowu Chen, Wei Ma, Binhua Huang, Qingyuan Wang, Guoxin Wang, Weize Sun, Lei Huang, Deepu John
Title: Optimal Brain Connection: Towards Efficient Structural Pruning
Abstract:
Structural pruning has been widely studied for its effectiveness in compressing neural networks. However, existing methods often neglect the interconnections among parameters. To address this limitation, this paper proposes a structural pruning framework termed Optimal Brain Connection. First, we introduce the Jacobian Criterion, a first-order metric for evaluating the saliency of structural parameters. Unlike existing first-order methods that assess parameters in isolation, our criterion explicitly captures both intra-component interactions and inter-layer dependencies. Second, we propose the Equivalent Pruning mechanism, which utilizes autoencoders to retain the contributions of all original connection--including pruned ones--during fine-tuning. Experimental results demonstrate that the Jacobian Criterion outperforms several popular metrics in preserving model performance, while the Equivalent Pruning mechanism effectively mitigates performance degradation after fine-tuning. Code: https://github.com/ShaowuChen/Optimal_Brain_Connection

Authors:Lin Zhu, Ruonan Liu, Xiao Wang, Lizhi Wang, Hua Huang
Title: Revealing Latent Information: A Physics-inspired Self-supervised Pre-training Framework for Noisy and Sparse Events
Abstract:
Event camera, a novel neuromorphic vision sensor, records data with high temporal resolution and wide dynamic range, offering new possibilities for accurate visual representation in challenging scenarios. However, event data is inherently sparse and noisy, mainly reflecting brightness changes, which complicates effective feature extraction. To address this, we propose a self-supervised pre-training framework to fully reveal latent information in event data, including edge information and texture cues. Our framework consists of three stages: Difference-guided Masked Modeling, inspired by the event physical sampling process, reconstructs temporal intensity difference maps to extract enhanced information from raw event data. Backbone-fixed Feature Transition contrasts event and image features without updating the backbone to preserve representations learned from masked modeling and stabilizing their effect on contrastive learning. Focus-aimed Contrastive Learning updates the entire model to improve semantic discrimination by focusing on high-value regions. Extensive experiments show our framework is robust and consistently outperforms state-of-the-art methods on various downstream tasks, including object recognition, semantic segmentation, and optical flow estimation. The code and dataset are available at https://github.com/BIT-Vision/EventPretrain.

Authors:Weikang Wang, Tobias Weißberg, Nafie El Amrani, Florian Bernard
Title: Symmetry Understanding of 3D Shapes via Chirality Disentanglement
Abstract:
Chirality information (i.e. information that allows distinguishing left from right) is ubiquitous for various data modes in computer vision, including images, videos, point clouds, and meshes. While chirality has been extensively studied in the image domain, its exploration in shape analysis (such as point clouds and meshes) remains underdeveloped. Although many shape vertex descriptors have shown appealing properties (e.g. robustness to rigid-body transformations), they are often not able to disambiguate between left and right symmetric parts. Considering the ubiquity of chirality information in different shape analysis problems and the lack of chirality-aware features within current shape descriptors, developing a chirality feature extractor becomes necessary and urgent. Based on the recent Diff3F framework, we propose an unsupervised chirality feature extraction pipeline to decorate shape vertices with chirality-aware information, extracted from 2D foundation models. We evaluated the extracted chirality features through quantitative and qualitative experiments across diverse datasets. Results from downstream tasks including left-right disentanglement, shape matching, and part segmentation demonstrate their effectiveness and practical utility. Project page: https://wei-kang-wang.github.io/chirality/

Authors:Lumin Chen, Zhiying Wu, Tianye Lei, Xuexue Bai, Ming Feng, Yuxi Wang, Gaofeng Meng, Zhen Lei, Hongbin Liu
Title: F2PASeg: Feature Fusion for Pituitary Anatomy Segmentation in Endoscopic Surgery
Abstract:
Pituitary tumors often cause deformation or encapsulation of adjacent vital structures. Anatomical structure segmentation can provide surgeons with early warnings of regions that pose surgical risks, thereby enhancing the safety of pituitary surgery. However, pixel-level annotated video stream datasets for pituitary surgeries are extremely rare. To address this challenge, we introduce a new dataset for Pituitary Anatomy Segmentation (PAS). PAS comprises 7,845 time-coherent images extracted from 120 videos. To mitigate class imbalance, we apply data augmentation techniques that simulate the presence of surgical instruments in the training data. One major challenge in pituitary anatomy segmentation is the inconsistency in feature representation due to occlusions, camera motion, and surgical bleeding. By incorporating a Feature Fusion module, F2PASeg is proposed to refine anatomical structure segmentation by leveraging both high-resolution image features and deep semantic embeddings, enhancing robustness against intraoperative variations. Experimental results demonstrate that F2PASeg consistently segments critical anatomical structures in real time, providing a reliable solution for intraoperative pituitary surgery planning. Code: https://github.com/paulili08/F2PASeg.

Authors:Rui Yu, Xianghang Zhang, Runkai Zhao, Huaicheng Yan, Meng Wang
Title: DistillDrive: End-to-End Multi-Mode Autonomous Driving Distillation by Isomorphic Hetero-Source Planning Model
Abstract:
End-to-end autonomous driving has been recently seen rapid development, exerting a profound influence on both industry and academia. However, the existing work places excessive focus on ego-vehicle status as their sole learning objectives and lacks of planning-oriented understanding, which limits the robustness of the overall decision-making prcocess. In this work, we introduce DistillDrive, an end-to-end knowledge distillation-based autonomous driving model that leverages diversified instance imitation to enhance multi-mode motion feature learning. Specifically, we employ a planning model based on structured scene representations as the teacher model, leveraging its diversified planning instances as multi-objective learning targets for the end-to-end model. Moreover, we incorporate reinforcement learning to enhance the optimization of state-to-decision mappings, while utilizing generative modeling to construct planning-oriented instances, fostering intricate interactions within the latent space. We validate our model on the nuScenes and NAVSIM datasets, achieving a 50\% reduction in collision rate and a 3-point improvement in closed-loop performance compared to the baseline model. Code and model are publicly available at https://github.com/YuruiAI/DistillDrive

Authors:Wonjun Kang, Byeongkeun Ahn, Minjae Lee, Kevin Galim, Seunghyuk Oh, Hyung Il Koo, Nam Ik Cho
Title: UNCAGE: Contrastive Attention Guidance for Masked Generative Transformers in Text-to-Image Generation
Abstract:
Text-to-image (T2I) generation has been actively studied using Diffusion Models and Autoregressive Models. Recently, Masked Generative Transformers have gained attention as an alternative to Autoregressive Models to overcome the inherent limitations of causal attention and autoregressive decoding through bidirectional attention and parallel decoding, enabling efficient and high-quality image generation. However, compositional T2I generation remains challenging, as even state-of-the-art Diffusion Models often fail to accurately bind attributes and achieve proper text-image alignment. While Diffusion Models have been extensively studied for this issue, Masked Generative Transformers exhibit similar limitations but have not been explored in this context. To address this, we propose Unmasking with Contrastive Attention Guidance (UNCAGE), a novel training-free method that improves compositional fidelity by leveraging attention maps to prioritize the unmasking of tokens that clearly represent individual objects. UNCAGE consistently improves performance in both quantitative and qualitative evaluations across multiple benchmarks and metrics, with negligible inference overhead. Our code is available at https://github.com/furiosa-ai/uncage.

Authors:Hamza Kalisch, Fabian Hörst, Jens Kleesiek, Ken Herrmann, Constantin Seibold
Title: CT-GRAPH: Hierarchical Graph Attention Network for Anatomy-Guided CT Report Generation
Abstract:
As medical imaging is central to diagnostic processes, automating the generation of radiology reports has become increasingly relevant to assist radiologists with their heavy workloads. Most current methods rely solely on global image features, failing to capture fine-grained organ relationships crucial for accurate reporting. To this end, we propose CT-GRAPH, a hierarchical graph attention network that explicitly models radiological knowledge by structuring anatomical regions into a graph, linking fine-grained organ features to coarser anatomical systems and a global patient context. Our method leverages pretrained 3D medical feature encoders to obtain global and organ-level features by utilizing anatomical masks. These features are further refined within the graph and then integrated into a large language model to generate detailed medical reports. We evaluate our approach for the task of report generation on the large-scale chest CT dataset CT-RATE. We provide an in-depth analysis of pretrained feature encoders for CT report generation and show that our method achieves a substantial improvement of absolute 7.9\% in F1 score over current state-of-the-art methods. The code is publicly available at https://github.com/hakal104/CT-GRAPH.

Authors:Yongjun Zhang, Mingtao Xiong, Yi Wan, Gui-Song Xia
Title: Cross-View Localization via Redundant Sliced Observations and A-Contrario Validation
Abstract:
Cross-view localization (CVL) matches ground-level images with aerial references to determine the geo-position of a camera, enabling smart vehicles to self-localize offline in GNSS-denied environments. However, most CVL methods output only a single observation, the camera pose, and lack the redundant observations required by surveying principles, making it challenging to assess localization reliability through the mutual validation of observational data. To tackle this, we introduce Slice-Loc, a two-stage method featuring an a-contrario reliability validation for CVL. Instead of using the query image as a single input, Slice-Loc divides it into sub-images and estimates the 3-DoF pose for each slice, creating redundant and independent observations. Then, a geometric rigidity formula is proposed to filter out the erroneous 3-DoF poses, and the inliers are merged to generate the final camera pose. Furthermore, we propose a model that quantifies the meaningfulness of localization by estimating the number of false alarms (NFA), according to the distribution of the locations of the sliced images. By eliminating gross errors, Slice-Loc boosts localization accuracy and effectively detects failures. After filtering out mislocalizations, Slice-Loc reduces the proportion of errors exceeding 10 m to under 3\%. In cross-city tests on the DReSS dataset, Slice-Loc cuts the mean localization error from 4.47 m to 1.86 m and the mean orientation error from $\mathbf{3.42^{\circ}}$ to $\mathbf{1.24^{\circ}}$, outperforming state-of-the-art methods. Code and dataset will be available at: https://github.com/bnothing/Slice-Loc.

Authors:Yue Duan, Taicai Chen, Lei Qi, Yinghuan Shi
Title: Divide-and-Conquer for Enhancing Unlabeled Learning, Stability, and Plasticity in Semi-supervised Continual Learning
Abstract:
Semi-supervised continual learning (SSCL) seeks to leverage both labeled and unlabeled data in a sequential learning setup, aiming to reduce annotation costs while managing continual data arrival. SSCL introduces complex challenges, including ensuring effective unlabeled learning (UL), while balancing memory stability (MS) and learning plasticity (LP). Previous SSCL efforts have typically focused on isolated aspects of the three, while this work presents USP, a divide-and-conquer framework designed to synergistically enhance these three aspects: (1) Feature Space Reservation (FSR) strategy for LP, which constructs reserved feature locations for future classes by shaping old classes into an equiangular tight frame; (2) Divide-and-Conquer Pseudo-labeling (DCP) approach for UL, which assigns reliable pseudo-labels across both high- and low-confidence unlabeled data; and (3) Class-mean-anchored Unlabeled Distillation (CUD) for MS, which reuses DCP's outputs to anchor unlabeled data to stable class means for distillation to prevent forgetting. Comprehensive evaluations show USP outperforms prior SSCL methods, with gains up to 5.94% in the last accuracy, validating its effectiveness. The code is available at https://github.com/NJUyued/USP4SSCL.

Authors:Meiqi Wu, Yaxuan Kang, Xuchen Li, Shiyu Hu, Xiaotang Chen, Yunfeng Kang, Weiqiang Wang, Kaiqi Huang
Title: VS-LLM: Visual-Semantic Depression Assessment based on LLM for Drawing Projection Test
Abstract:
The Drawing Projection Test (DPT) is an essential tool in art therapy, allowing psychologists to assess participants' mental states through their sketches. Specifically, through sketches with the theme of "a person picking an apple from a tree (PPAT)", it can be revealed whether the participants are in mental states such as depression. Compared with scales, the DPT can enrich psychologists' understanding of an individual's mental state. However, the interpretation of the PPAT is laborious and depends on the experience of the psychologists. To address this issue, we propose an effective identification method to support psychologists in conducting a large-scale automatic DPT. Unlike traditional sketch recognition, DPT more focus on the overall evaluation of the sketches, such as color usage and space utilization. Moreover, PPAT imposes a time limit and prohibits verbal reminders, resulting in low drawing accuracy and a lack of detailed depiction. To address these challenges, we propose the following efforts: (1) Providing an experimental environment for automated analysis of PPAT sketches for depression assessment; (2) Offering a Visual-Semantic depression assessment based on LLM (VS-LLM) method; (3) Experimental results demonstrate that our method improves by 17.6% compared to the psychologist assessment method. We anticipate that this work will contribute to the research in mental state assessment based on PPAT sketches' elements recognition. Our datasets and codes are available at https://github.com/wmeiqi/VS-LLM.

Authors:Xiaoyang Zhang, Guodong Fan, Guang-Yong Chen, Zhen Hua, Jinjiang Li, Min Gan, C. L. Philip Chen
Title: Wavelet-Guided Dual-Frequency Encoding for Remote Sensing Change Detection
Abstract:
Change detection in remote sensing imagery plays a vital role in various engineering applications, such as natural disaster monitoring, urban expansion tracking, and infrastructure management. Despite the remarkable progress of deep learning in recent years, most existing methods still rely on spatial-domain modeling, where the limited diversity of feature representations hinders the detection of subtle change regions. We observe that frequency-domain feature modeling particularly in the wavelet domain an amplify fine-grained differences in frequency components, enhancing the perception of edge changes that are challenging to capture in the spatial domain. Thus, we propose a method called Wavelet-Guided Dual-Frequency Encoding (WGDF). Specifically, we first apply Discrete Wavelet Transform (DWT) to decompose the input images into high-frequency and low-frequency components, which are used to model local details and global structures, respectively. In the high-frequency branch, we design a Dual-Frequency Feature Enhancement (DFFE) module to strengthen edge detail representation and introduce a Frequency-Domain Interactive Difference (FDID) module to enhance the modeling of fine-grained changes. In the low-frequency branch, we exploit Transformers to capture global semantic relationships and employ a Progressive Contextual Difference Module (PCDM) to progressively refine change regions, enabling precise structural semantic characterization. Finally, the high- and low-frequency features are synergistically fused to unify local sensitivity with global discriminability. Extensive experiments on multiple remote sensing datasets demonstrate that WGDF significantly alleviates edge ambiguity and achieves superior detection accuracy and robustness compared to state-of-the-art methods. The code will be available at https://github.com/boshizhang123/WGDF.

Authors:Changho Choi, Youngwoo Shin, Gyojin Han, Dong-Jae Lee, Junmo Kim
Title: B4DL: A Benchmark for 4D LiDAR LLM in Spatio-Temporal Understanding
Abstract:
Understanding dynamic outdoor environments requires capturing complex object interactions and their evolution over time. LiDAR-based 4D point clouds provide precise spatial geometry and rich temporal cues, making them ideal for representing real-world scenes. However, despite their potential, 4D LiDAR remains underexplored in the context of Multimodal Large Language Models (MLLMs) due to the absence of high-quality, modality-specific annotations and the lack of MLLM architectures capable of processing its high-dimensional composition. To address these challenges, we introduce B4DL, a new benchmark specifically designed for training and evaluating MLLMs on 4D LiDAR understanding. In addition, we propose a scalable data generation pipeline and an MLLM model that, for the first time, directly processes raw 4D LiDAR by bridging it with language understanding. Combined with our dataset and benchmark, our model offers a unified solution for spatio-temporal reasoning in dynamic outdoor environments. We provide rendered 4D LiDAR videos, generated dataset, and inference outputs on diverse scenarios at: https://mmb4dl.github.io/mmb4dl/

Authors:Xiaoyang Zhang, jinjiang Li, Guodong Fan, Yakun Ju, Linwei Fan, Jun Liu, Alex C. Kot
Title: SGDFuse: SAM-Guided Diffusion for High-Fidelity Infrared and Visible Image Fusion
Abstract:
Infrared and visible image fusion (IVIF) aims to combine the thermal radiation information from infrared images with the rich texture details from visible images to enhance perceptual capabilities for downstream visual tasks. However, existing methods often fail to preserve key targets due to a lack of deep semantic understanding of the scene, while the fusion process itself can also introduce artifacts and detail loss, severely compromising both image quality and task performance. To address these issues, this paper proposes SGDFuse, a conditional diffusion model guided by the Segment Anything Model (SAM), to achieve high-fidelity and semantically-aware image fusion. The core of our method is to utilize high-quality semantic masks generated by SAM as explicit priors to guide the optimization of the fusion process via a conditional diffusion model. Specifically, the framework operates in a two-stage process: it first performs a preliminary fusion of multi-modal features, and then utilizes the semantic masks from SAM jointly with the preliminary fused image as a condition to drive the diffusion model's coarse-to-fine denoising generation. This ensures the fusion process not only has explicit semantic directionality but also guarantees the high fidelity of the final result. Extensive experiments demonstrate that SGDFuse achieves state-of-the-art performance in both subjective and objective evaluations, as well as in its adaptability to downstream tasks, providing a powerful solution to the core challenges in image fusion. The code of SGDFuse is available at https://github.com/boshizhang123/SGDFuse.

Authors:Hyunjoon Lee, Joonkyu Min, Jaesik Park
Title: CF3: Compact and Fast 3D Feature Fields
Abstract:
3D Gaussian Splatting (3DGS) has begun incorporating rich information from 2D foundation models. However, most approaches rely on a bottom-up optimization process that treats raw 2D features as ground truth, incurring increased computational costs. We propose a top-down pipeline for constructing compact and fast 3D Gaussian feature fields, namely, CF3. We first perform a fast weighted fusion of multi-view 2D features with pre-trained Gaussians. This approach enables training a per-Gaussian autoencoder directly on the lifted features, instead of training autoencoders in the 2D domain. As a result, the autoencoder better aligns with the feature distribution. More importantly, we introduce an adaptive sparsification method that optimizes the Gaussian attributes of the feature field while pruning and merging the redundant Gaussians, constructing an efficient representation with preserved geometric details. Our approach achieves a competitive 3D feature field using as little as 5% of the Gaussians compared to Feature-3DGS.

Authors:Xiao Wang, Liye Jin, Xufeng Lou, Shiao Wang, Lan Chen, Bo Jiang, Zhipeng Zhang
Title: ReasoningTrack: Chain-of-Thought Reasoning for Long-term Vision-Language Tracking
Abstract:
Vision-language tracking has received increasing attention in recent years, as textual information can effectively address the inflexibility and inaccuracy associated with specifying the target object to be tracked. Existing works either directly fuse the fixed language with vision features or simply modify using attention, however, their performance is still limited. Recently, some researchers have explored using text generation to adapt to the variations in the target during tracking, however, these works fail to provide insights into the model's reasoning process and do not fully leverage the advantages of large models, which further limits their overall performance. To address the aforementioned issues, this paper proposes a novel reasoning-based vision-language tracking framework, named ReasoningTrack, based on a pre-trained vision-language model Qwen2.5-VL. Both SFT (Supervised Fine-Tuning) and reinforcement learning GRPO are used for the optimization of reasoning and language generation. We embed the updated language descriptions and feed them into a unified tracking backbone network together with vision features. Then, we adopt a tracking head to predict the specific location of the target object. In addition, we propose a large-scale long-term vision-language tracking benchmark dataset, termed TNLLT, which contains 200 video sequences. 20 baseline visual trackers are re-trained and evaluated on this dataset, which builds a solid foundation for the vision-language visual tracking task. Extensive experiments on multiple vision-language tracking benchmark datasets fully validated the effectiveness of our proposed reasoning-based natural language generation strategy. The source code of this paper will be released on https://github.com/Event-AHU/Open_VLTrack

Authors:Jianming Liu, Wenlong Qiu, Haitao Wei
Title: Textual and Visual Guided Task Adaptation for Source-Free Cross-Domain Few-Shot Segmentation
Abstract:
Few-Shot Segmentation(FSS) aims to efficient segmentation of new objects with few labeled samples. However, its performance significantly degrades when domain discrepancies exist between training and deployment. Cross-Domain Few-Shot Segmentation(CD-FSS) is proposed to mitigate such performance degradation. Current CD-FSS methods primarily sought to develop segmentation models on a source domain capable of cross-domain generalization. However, driven by escalating concerns over data privacy and the imperative to minimize data transfer and training expenses, the development of source-free CD-FSS approaches has become essential. In this work, we propose a source-free CD-FSS method that leverages both textual and visual information to facilitate target domain task adaptation without requiring source domain data. Specifically, we first append Task-Specific Attention Adapters (TSAA) to the feature pyramid of a pretrained backbone, which adapt multi-level features extracted from the shared pre-trained backbone to the target task. Then, the parameters of the TSAA are trained through a Visual-Visual Embedding Alignment (VVEA) module and a Text-Visual Embedding Alignment (TVEA) module. The VVEA module utilizes global-local visual features to align image features across different views, while the TVEA module leverages textual priors from pre-aligned multi-modal features (e.g., from CLIP) to guide cross-modal adaptation. By combining the outputs of these modules through dense comparison operations and subsequent fusion via skip connections, our method produces refined prediction masks. Under both 1-shot and 5-shot settings, the proposed approach achieves average segmentation accuracy improvements of 2.18\% and 4.11\%, respectively, across four cross-domain datasets, significantly outperforming state-of-the-art CD-FSS methods. Code are available at https://github.com/ljm198134/TVGTANet.

Authors:Bingyu Yang, Qingyao Tian, Yimeng Geng, Huai Liao, Xinyan Huang, Jiebo Luo, Hongbin Liu
Title: EndoMatcher: Generalizable Endoscopic Image Matcher via Multi-Domain Pre-training for Robot-Assisted Surgery
Abstract:
Generalizable dense feature matching in endoscopic images is crucial for robot-assisted tasks, including 3D reconstruction, navigation, and surgical scene understanding. Yet, it remains a challenge due to difficult visual conditions (e.g., weak textures, large viewpoint variations) and a scarcity of annotated data. To address these challenges, we propose EndoMatcher, a generalizable endoscopic image matcher via large-scale, multi-domain data pre-training. To address difficult visual conditions, EndoMatcher employs a two-branch Vision Transformer to extract multi-scale features, enhanced by dual interaction blocks for robust correspondence learning. To overcome data scarcity and improve domain diversity, we construct Endo-Mix6, the first multi-domain dataset for endoscopic matching. Endo-Mix6 consists of approximately 1.2M real and synthetic image pairs across six domains, with correspondence labels generated using Structure-from-Motion and simulated transformations. The diversity and scale of Endo-Mix6 introduce new challenges in training stability due to significant variations in dataset sizes, distribution shifts, and error imbalance. To address them, a progressive multi-objective training strategy is employed to promote balanced learning and improve representation quality across domains. This enables EndoMatcher to generalize across unseen organs and imaging conditions in a zero-shot fashion. Extensive zero-shot matching experiments demonstrate that EndoMatcher increases the number of inlier matches by 140.69% and 201.43% on the Hamlyn and Bladder datasets over state-of-the-art methods, respectively, and improves the Matching Direction Prediction Accuracy (MDPA) by 9.40% on the Gastro-Matching dataset, achieving dense and accurate matching under challenging endoscopic conditions. The code is publicly available at https://github.com/Beryl2000/EndoMatcher.

Authors:Dongchen Si, Di Wang, Erzhong Gao, Xiaolei Qin, Liu Zhao, Jing Zhang, Minqiang Xu, Jianbo Zhan, Jianshe Wang, Lin Liu, Bo Du, Liangpei Zhang
Title: SPEX: A Vision-Language Model for Land Cover Extraction on Spectral Remote Sensing Images
Abstract:
Spectral information has long been recognized as a critical cue in remote sensing observations. Although numerous vision-language models have been developed for pixel-level interpretation, spectral information remains underutilized, resulting in suboptimal performance, particularly in multispectral scenarios. To address this limitation, we construct a vision-language instruction-following dataset named SPIE, which encodes spectral priors of land-cover objects into textual attributes recognizable by large language models (LLMs), based on classical spectral index computations. Leveraging this dataset, we propose SPEX, a multimodal LLM designed for instruction-driven land cover extraction. To this end, we introduce several carefully designed components and training strategies, including multiscale feature aggregation, token context condensation, and multispectral visual pre-training, to achieve precise and flexible pixel-level interpretation. To the best of our knowledge, SPEX is the first multimodal vision-language model dedicated to land cover extraction in spectral remote sensing imagery. Extensive experiments on five public multispectral datasets demonstrate that SPEX consistently outperforms existing state-of-the-art methods in extracting typical land cover categories such as vegetation, buildings, and water bodies. Moreover, SPEX is capable of generating textual explanations for its predictions, thereby enhancing interpretability and user-friendliness. Code will be released at: https://github.com/MiliLab/SPEX.

Authors:Zhuohang Jiang, Pangjing Wu, Xu Yuan, Wenqi Fan, Qing Li
Title: QA-Dragon: Query-Aware Dynamic RAG System for Knowledge-Intensive Visual Question Answering
Abstract:
Retrieval-Augmented Generation (RAG) has been introduced to mitigate hallucinations in Multimodal Large Language Models (MLLMs) by incorporating external knowledge into the generation process, and it has become a widely adopted approach for knowledge-intensive Visual Question Answering (VQA). However, existing RAG methods typically retrieve from either text or images in isolation, limiting their ability to address complex queries that require multi-hop reasoning or up-to-date factual knowledge. To address this limitation, we propose QA-Dragon, a Query-Aware Dynamic RAG System for Knowledge-Intensive VQA. Specifically, QA-Dragon introduces a domain router to identify the query's subject domain for domain-specific reasoning, along with a search router that dynamically selects optimal retrieval strategies. By orchestrating both text and image search agents in a hybrid setup, our system supports multimodal, multi-turn, and multi-hop reasoning, enabling it to tackle complex VQA tasks effectively. We evaluate our QA-Dragon on the Meta CRAG-MM Challenge at KDD Cup 2025, where it significantly enhances the reasoning performance of base models under challenging scenarios. Our framework achieves substantial improvements in both answer accuracy and knowledge overlap scores, outperforming baselines by 5.06% on the single-source task, 6.35% on the multi-source task, and 5.03% on the multi-turn task.

Authors:Yongjie Bai, Zhouxia Wang, Yang Liu, Weixing Chen, Ziliang Chen, Mingtong Dai, Yongsen Zheng, Lingbo Liu, Guanbin Li, Liang Lin
Title: Learning to See and Act: Task-Aware View Planning for Robotic Manipulation
Abstract:
Recent vision-language-action (VLA) models for multi-task robotic manipulation commonly rely on static viewpoints and shared visual encoders, which limit 3D perception and cause task interference, hindering robustness and generalization. In this work, we propose Task-Aware View Planning (TAVP), a framework designed to overcome these challenges by integrating active view planning with task-specific representation learning. TAVP employs an efficient exploration policy, accelerated by a novel pseudo-environment, to actively acquire informative views. Furthermore, we introduce a Mixture-of-Experts (MoE) visual encoder to disentangle features across different tasks, boosting both representation fidelity and task generalization. By learning to see the world in a task-aware way, TAVP generates more complete and discriminative visual representations, demonstrating significantly enhanced action prediction across a wide array of manipulation challenges. Extensive experiments on RLBench tasks show that our proposed TAVP model achieves superior performance over state-of-the-art fixed-view approaches. Visual results and code are provided at: https://hcplab-sysu.github.io/TAVP.

Authors:Qi Xie, Jiahong Fu, Zongben Xu, Deyu Meng
Title: Rotation Equivariant Arbitrary-scale Image Super-Resolution
Abstract:
The arbitrary-scale image super-resolution (ASISR), a recent popular topic in computer vision, aims to achieve arbitrary-scale high-resolution recoveries from a low-resolution input image. This task is realized by representing the image as a continuous implicit function through two fundamental modules, a deep-network-based encoder and an implicit neural representation (INR) module. Despite achieving notable progress, a crucial challenge of such a highly ill-posed setting is that many common geometric patterns, such as repetitive textures, edges, or shapes, are seriously warped and deformed in the low-resolution images, naturally leading to unexpected artifacts appearing in their high-resolution recoveries. Embedding rotation equivariance into the ASISR network is thus necessary, as it has been widely demonstrated that this enhancement enables the recovery to faithfully maintain the original orientations and structural integrity of geometric patterns underlying the input image. Motivated by this, we make efforts to construct a rotation equivariant ASISR method in this study. Specifically, we elaborately redesign the basic architectures of INR and encoder modules, incorporating intrinsic rotation equivariance capabilities beyond those of conventional ASISR networks. Through such amelioration, the ASISR network can, for the first time, be implemented with end-to-end rotational equivariance maintained from input to output. We also provide a solid theoretical analysis to evaluate its intrinsic equivariance error, demonstrating its inherent nature of embedding such an equivariance structure. The superiority of the proposed method is substantiated by experiments conducted on both simulated and real datasets. We also validate that the proposed framework can be readily integrated into current ASISR methods in a plug \& play manner to further enhance their performance.

Authors:Yifu Guo, Yuquan Lu, Wentao Zhang, Zishan Xu, Dexia Chen, Siyu Zhang, Yizhe Zhang, Ruixuan Wang
Title: Decoupling Continual Semantic Segmentation
Abstract:
Continual Semantic Segmentation (CSS) requires learning new classes without forgetting previously acquired knowledge, addressing the fundamental challenge of catastrophic forgetting in dense prediction tasks. However, existing CSS methods typically employ single-stage encoder-decoder architectures where segmentation masks and class labels are tightly coupled, leading to interference between old and new class learning and suboptimal retention-plasticity balance. We introduce DecoupleCSS, a novel two-stage framework for CSS. By decoupling class-aware detection from class-agnostic segmentation, DecoupleCSS enables more effective continual learning, preserving past knowledge while learning new classes. The first stage leverages pre-trained text and image encoders, adapted using LoRA, to encode class-specific information and generate location-aware prompts. In the second stage, the Segment Anything Model (SAM) is employed to produce precise segmentation masks, ensuring that segmentation knowledge is shared across both new and previous classes. This approach improves the balance between retention and adaptability in CSS, achieving state-of-the-art performance across a variety of challenging tasks. Our code is publicly available at: https://github.com/euyis1019/Decoupling-Continual-Semantic-Segmentation.

Authors:Md Redwanul Haque, Manzur Murshed, Manoranjan Paul, Tsz-Kwan Lee
Title: A Novel Image Similarity Metric for Scene Composition Structure
Abstract:
The rapid advancement of generative AI models necessitates novel methods for evaluating image quality that extend beyond human perception. A critical concern for these models is the preservation of an image's underlying Scene Composition Structure (SCS), which defines the geometric relationships among objects and the background, their relative positions, sizes, orientations, etc. Maintaining SCS integrity is paramount for ensuring faithful and structurally accurate GenAI outputs. Traditional image similarity metrics often fall short in assessing SCS. Pixel-level approaches are overly sensitive to minor visual noise, while perception-based metrics prioritize human aesthetic appeal, neither adequately capturing structural fidelity. Furthermore, recent neural-network-based metrics introduce training overheads and potential generalization issues. We introduce the SCS Similarity Index Measure (SCSSIM), a novel, analytical, and training-free metric that quantifies SCS preservation by exploiting statistical measures derived from the Cuboidal hierarchical partitioning of images, robustly capturing non-object-based structural relationships. Our experiments demonstrate SCSSIM's high invariance to non-compositional distortions, accurately reflecting unchanged SCS. Conversely, it shows a strong monotonic decrease for compositional distortions, precisely indicating when SCS has been altered. Compared to existing metrics, SCSSIM exhibits superior properties for structural evaluation, making it an invaluable tool for developing and evaluating generative models, ensuring the integrity of scene composition.

Authors:Shushi Wang, Chunyi Li, Zicheng Zhang, Han Zhou, Wei Dong, Jun Chen, Guangtao Zhai, Xiaohong Liu
Title: AU-IQA: A Benchmark Dataset for Perceptual Quality Assessment of AI-Enhanced User-Generated Content
Abstract:
AI-based image enhancement techniques have been widely adopted in various visual applications, significantly improving the perceptual quality of user-generated content (UGC). However, the lack of specialized quality assessment models has become a significant limiting factor in this field, limiting user experience and hindering the advancement of enhancement methods. While perceptual quality assessment methods have shown strong performance on UGC and AIGC individually, their effectiveness on AI-enhanced UGC (AI-UGC) which blends features from both, remains largely unexplored. To address this gap, we construct AU-IQA, a benchmark dataset comprising 4,800 AI-UGC images produced by three representative enhancement types which include super-resolution, low-light enhancement, and denoising. On this dataset, we further evaluate a range of existing quality assessment models, including traditional IQA methods and large multimodal models. Finally, we provide a comprehensive analysis of how well current approaches perform in assessing the perceptual quality of AI-UGC. The access link to the AU-IQA is https://github.com/WNNGGU/AU-IQA-Dataset.

Authors:Shenglun Chen, Xinzhu Ma, Hong Zhang, Haojie Li, Zhihui Wang
Title: Propagating Sparse Depth via Depth Foundation Model for Out-of-Distribution Depth Completion
Abstract:
Depth completion is a pivotal challenge in computer vision, aiming at reconstructing the dense depth map from a sparse one, typically with a paired RGB image. Existing learning based models rely on carefully prepared but limited data, leading to significant performance degradation in out-of-distribution (OOD) scenarios. Recent foundation models have demonstrated exceptional robustness in monocular depth estimation through large-scale training, and using such models to enhance the robustness of depth completion models is a promising solution. In this work, we propose a novel depth completion framework that leverages depth foundation models to attain remarkable robustness without large-scale training. Specifically, we leverage a depth foundation model to extract environmental cues, including structural and semantic context, from RGB images to guide the propagation of sparse depth information into missing regions. We further design a dual-space propagation approach, without any learnable parameters, to effectively propagates sparse depth in both 3D and 2D spaces to maintain geometric structure and local consistency. To refine the intricate structure, we introduce a learnable correction module to progressively adjust the depth prediction towards the real depth. We train our model on the NYUv2 and KITTI datasets as in-distribution datasets and extensively evaluate the framework on 16 other datasets. Our framework performs remarkably well in the OOD scenarios and outperforms existing state-of-the-art depth completion methods. Our models are released in https://github.com/shenglunch/PSD.

Authors:Zheng Chen, Mingde Zhou, Jinpei Guo, Jiale Yuan, Yifei Ji, Yulun Zhang
Title: Steering One-Step Diffusion Model with Fidelity-Rich Decoder for Fast Image Compression
Abstract:
Diffusion-based image compression has demonstrated impressive perceptual performance. However, it suffers from two critical drawbacks: (1) excessive decoding latency due to multi-step sampling, and (2) poor fidelity resulting from over-reliance on generative priors. To address these issues, we propose SODEC, a novel single-step diffusion image compression model. We argue that in image compression, a sufficiently informative latent renders multi-step refinement unnecessary. Based on this insight, we leverage a pre-trained VAE-based model to produce latents with rich information, and replace the iterative denoising process with a single-step decoding. Meanwhile, to improve fidelity, we introduce the fidelity guidance module, encouraging output that is faithful to the original image. Furthermore, we design the rate annealing training strategy to enable effective training under extremely low bitrates. Extensive experiments show that SODEC significantly outperforms existing methods, achieving superior rate-distortion-perception performance. Moreover, compared to previous diffusion-based compression models, SODEC improves decoding speed by more than 20$\times$. Code is released at: https://github.com/zhengchen1999/SODEC.

Authors:Zhu Xu, Ting Lei, Zhimin Li, Guan Wang, Qingchao Chen, Yuxin Peng, Yang liu
Title: TRKT: Weakly Supervised Dynamic Scene Graph Generation with Temporal-enhanced Relation-aware Knowledge Transferring
Abstract:
Dynamic Scene Graph Generation (DSGG) aims to create a scene graph for each video frame by detecting objects and predicting their relationships. Weakly Supervised DSGG (WS-DSGG) reduces annotation workload by using an unlocalized scene graph from a single frame per video for training. Existing WS-DSGG methods depend on an off-the-shelf external object detector to generate pseudo labels for subsequent DSGG training. However, detectors trained on static, object-centric images struggle in dynamic, relation-aware scenarios required for DSGG, leading to inaccurate localization and low-confidence proposals. To address the challenges posed by external object detectors in WS-DSGG, we propose a Temporal-enhanced Relation-aware Knowledge Transferring (TRKT) method, which leverages knowledge to enhance detection in relation-aware dynamic scenarios. TRKT is built on two key components:(1)Relation-aware knowledge mining: we first employ object and relation class decoders that generate category-specific attention maps to highlight both object regions and interactive areas. Then we propose an Inter-frame Attention Augmentation strategy that exploits optical flow for neighboring frames to enhance the attention maps, making them motion-aware and robust to motion blur. This step yields relation- and motion-aware knowledge mining for WS-DSGG. (2) we introduce a Dual-stream Fusion Module that integrates category-specific attention maps into external detections to refine object localization and boost confidence scores for object proposals. Extensive experiments demonstrate that TRKT achieves state-of-the-art performance on Action Genome dataset. Our code is avaliable at https://github.com/XZPKU/TRKT.git.

Authors:Suchisrit Gangopadhyay, Jung-Hee Kim, Xien Chen, Patrick Rim, Hyoungseob Park, Alex Wong
Title: Extending Foundational Monocular Depth Estimators to Fisheye Cameras with Calibration Tokens
Abstract:
We propose a method to extend foundational monocular depth estimators (FMDEs), trained on perspective images, to fisheye images. Despite being trained on tens of millions of images, FMDEs are susceptible to the covariate shift introduced by changes in camera calibration (intrinsic, distortion) parameters, leading to erroneous depth estimates. Our method aligns the distribution of latent embeddings encoding fisheye images to those of perspective images, enabling the reuse of FMDEs for fisheye cameras without retraining or finetuning. To this end, we introduce a set of Calibration Tokens as a light-weight adaptation mechanism that modulates the latent embeddings for alignment. By exploiting the already expressive latent space of FMDEs, we posit that modulating their embeddings avoids the negative impact of artifacts and loss introduced in conventional recalibration or map projection to a canonical reference frame in the image space. Our method is self-supervised and does not require fisheye images but leverages publicly available large-scale perspective image datasets. This is done by recalibrating perspective images to fisheye images, and enforcing consistency between their estimates during training. We evaluate our approach with several FMDEs, on both indoors and outdoors, where we consistently improve over state-of-the-art methods using a single set of tokens for both. Code available at: https://github.com/JungHeeKim29/calibration-token.

Authors:Shuonan Yang, Tailin Chen, Rahul Singh, Jiangbei Yue, Jianbo Jiao, Zeyu Fu
Title: Revealing Temporal Label Noise in Multimodal Hateful Video Classification
Abstract:
The rapid proliferation of online multimedia content has intensified the spread of hate speech, presenting critical societal and regulatory challenges. While recent work has advanced multimodal hateful video detection, most approaches rely on coarse, video-level annotations that overlook the temporal granularity of hateful content. This introduces substantial label noise, as videos annotated as hateful often contain long non-hateful segments. In this paper, we investigate the impact of such label ambiguity through a fine-grained approach. Specifically, we trim hateful videos from the HateMM and MultiHateClip English datasets using annotated timestamps to isolate explicitly hateful segments. We then conduct an exploratory analysis of these trimmed segments to examine the distribution and characteristics of both hateful and non-hateful content. This analysis highlights the degree of semantic overlap and the confusion introduced by coarse, video-level annotations. Finally, controlled experiments demonstrated that time-stamp noise fundamentally alters model decision boundaries and weakens classification confidence, highlighting the inherent context dependency and temporal continuity of hate speech expression. Our findings provide new insights into the temporal dynamics of multimodal hateful videos and highlight the need for temporally aware models and benchmarks for improved robustness and interpretability. Code and data are available at https://github.com/Multimodal-Intelligence-Lab-MIL/HatefulVideoLabelNoise.

Authors:Noreen Anwar, Guillaume-Alexandre Bilodeau, Wassim Bouachir
Title: Dual-Stream Attention with Multi-Modal Queries for Object Detection in Transportation Applications
Abstract:
Transformer-based object detectors often struggle with occlusions, fine-grained localization, and computational inefficiency caused by fixed queries and dense attention. We propose DAMM, Dual-stream Attention with Multi-Modal queries, a novel framework introducing both query adaptation and structured cross-attention for improved accuracy and efficiency. DAMM capitalizes on three types of queries: appearance-based queries from vision-language models, positional queries using polygonal embeddings, and random learned queries for general scene coverage. Furthermore, a dual-stream cross-attention module separately refines semantic and spatial features, boosting localization precision in cluttered scenes. We evaluated DAMM on four challenging benchmarks, and it achieved state-of-the-art performance in average precision (AP) and recall, demonstrating the effectiveness of multi-modal query adaptation and dual-stream attention. Source code is at: \href{https://github.com/DET-LIP/DAMM}{GitHub}.

Authors:Chenhui Qiang, Zhaoyang Wei, Xumeng Han, Zipeng Wang, Siyao Li, Xiangyuan Lan, Jianbin Jiao, Zhenjun Han
Title: VER-Bench: Evaluating MLLMs on Reasoning with Fine-Grained Visual Evidence
Abstract:
With the rapid development of MLLMs, evaluating their visual capabilities has become increasingly crucial. Current benchmarks primarily fall into two main types: basic perception benchmarks, which focus on local details but lack deep reasoning (e.g., "what is in the image?"), and mainstream reasoning benchmarks, which concentrate on prominent image elements but may fail to assess subtle clues requiring intricate analysis. However, profound visual understanding and complex reasoning depend more on interpreting subtle, inconspicuous local details than on perceiving salient, macro-level objects. These details, though occupying minimal image area, often contain richer, more critical information for robust analysis. To bridge this gap, we introduce the VER-Bench, a novel framework to evaluate MLLMs' ability to: 1) identify fine-grained visual clues, often occupying on average just 0.25% of the image area; 2) integrate these clues with world knowledge for complex reasoning. Comprising 374 carefully designed questions across Geospatial, Temporal, Situational, Intent, System State, and Symbolic reasoning, each question in VER-Bench is accompanied by structured evidence: visual clues and question-related reasoning derived from them. VER-Bench reveals current models' limitations in extracting subtle visual evidence and constructing evidence-based arguments, highlighting the need to enhance models's capabilities in fine-grained visual evidence extraction, integration, and reasoning for genuine visual understanding and human-like analysis. Dataset and additional materials are available https://github.com/verbta/ACMMM-25-Materials.

Authors:Seungyong Lee, Jeong-gi Kwak
Title: Voost: A Unified and Scalable Diffusion Transformer for Bidirectional Virtual Try-On and Try-Off
Abstract:
Virtual try-on aims to synthesize a realistic image of a person wearing a target garment, but accurately modeling garment-body correspondence remains a persistent challenge, especially under pose and appearance variation. In this paper, we propose Voost - a unified and scalable framework that jointly learns virtual try-on and try-off with a single diffusion transformer. By modeling both tasks jointly, Voost enables each garment-person pair to supervise both directions and supports flexible conditioning over generation direction and garment category, enhancing garment-body relational reasoning without task-specific networks, auxiliary losses, or additional labels. In addition, we introduce two inference-time techniques: attention temperature scaling for robustness to resolution or mask variation, and self-corrective sampling that leverages bidirectional consistency between tasks. Extensive experiments demonstrate that Voost achieves state-of-the-art results on both try-on and try-off benchmarks, consistently outperforming strong baselines in alignment accuracy, visual fidelity, and generalization.

Authors:Mehrdad Moradi, Marco Grasso, Bianca Maria Colosimo, Kamran Paynabar
Title: Single-Step Reconstruction-Free Anomaly Detection and Segmentation via Diffusion Models
Abstract:
Generative models have demonstrated significant success in anomaly detection and segmentation over the past decade. Recently, diffusion models have emerged as a powerful alternative, outperforming previous approaches such as GANs and VAEs. In typical diffusion-based anomaly detection, a model is trained on normal data, and during inference, anomalous images are perturbed to a predefined intermediate step in the forward diffusion process. The corresponding normal image is then reconstructed through iterative reverse sampling. However, reconstruction-based approaches present three major challenges: (1) the reconstruction process is computationally expensive due to multiple sampling steps, making real-time applications impractical; (2) for complex or subtle patterns, the reconstructed image may correspond to a different normal pattern rather than the original input; and (3) Choosing an appropriate intermediate noise level is challenging because it is application-dependent and often assumes prior knowledge of anomalies, an assumption that does not hold in unsupervised settings. We introduce Reconstruction-free Anomaly Detection with Attention-based diffusion models in Real-time (RADAR), which overcomes the limitations of reconstruction-based anomaly detection. Unlike current SOTA methods that reconstruct the input image, RADAR directly produces anomaly maps from the diffusion model, improving both detection accuracy and computational efficiency. We evaluate RADAR on real-world 3D-printed material and the MVTec-AD dataset. Our approach surpasses state-of-the-art diffusion-based and statistical machine learning models across all key metrics, including accuracy, precision, recall, and F1 score. Specifically, RADAR improves F1 score by 7% on MVTec-AD and 13% on the 3D-printed material dataset compared to the next best model. Code available at: https://github.com/mehrdadmoradi124/RADAR

Authors:Ziyang Leng, Jiawei Yang, Wenlong Yi, Bolei Zhou
Title: Occupancy Learning with Spatiotemporal Memory
Abstract:
3D occupancy becomes a promising perception representation for autonomous driving to model the surrounding environment at a fine-grained scale. However, it remains challenging to efficiently aggregate 3D occupancy over time across multiple input frames due to the high processing cost and the uncertainty and dynamics of voxels. To address this issue, we propose ST-Occ, a scene-level occupancy representation learning framework that effectively learns the spatiotemporal feature with temporal consistency. ST-Occ consists of two core designs: a spatiotemporal memory that captures comprehensive historical information and stores it efficiently through a scene-level representation and a memory attention that conditions the current occupancy representation on the spatiotemporal memory with a model of uncertainty and dynamic awareness. Our method significantly enhances the spatiotemporal representation learned for 3D occupancy prediction tasks by exploiting the temporal dependency between multi-frame inputs. Experiments show that our approach outperforms the state-of-the-art methods by a margin of 3 mIoU and reduces the temporal inconsistency by 29%.

Authors:Zeyi Sun, Ziyu Liu, Yuhang Zang, Yuhang Cao, Xiaoyi Dong, Tong Wu, Dahua Lin, Jiaqi Wang
Title: SEAgent: Self-Evolving Computer Use Agent with Autonomous Learning from Experience
Abstract:
Repurposing large vision-language models (LVLMs) as computer use agents (CUAs) has led to substantial breakthroughs, primarily driven by human-labeled data. However, these models often struggle with novel and specialized software, particularly in scenarios lacking human annotations. To address this challenge, we propose SEAgent, an agentic self-evolving framework enabling CUAs to autonomously evolve through interactions with unfamiliar software. Specifically, SEAgent empowers computer-use agents to autonomously master novel software environments via experiential learning, where agents explore new software, learn through iterative trial-and-error, and progressively tackle auto-generated tasks organized from simple to complex. To achieve this goal, we design a World State Model for step-wise trajectory assessment, along with a Curriculum Generator that generates increasingly diverse and challenging tasks. The agent's policy is updated through experiential learning, comprised of adversarial imitation of failure actions and Group Relative Policy Optimization (GRPO) on successful ones. Furthermore, we introduce a specialist-to-generalist training strategy that integrates individual experiential insights from specialist agents, facilitating the development of a stronger generalist CUA capable of continuous autonomous evolution. This unified agent ultimately achieves performance surpassing ensembles of individual specialist agents on their specialized software. We validate the effectiveness of SEAgent across five novel software environments within OS-World. Our approach achieves a significant improvement of 23.2% in success rate, from 11.3% to 34.5%, over a competitive open-source CUA, i.e., UI-TARS.

Authors:Liang Xu, Chengqun Yang, Zili Lin, Fei Xu, Yifan Liu, Congsheng Xu, Yiyi Zhang, Jie Qin, Xingdong Sheng, Yunhui Liu, Xin Jin, Yichao Yan, Wenjun Zeng, Xiaokang Yang
Title: Perceiving and Acting in First-Person: A Dataset and Benchmark for Egocentric Human-Object-Human Interactions
Abstract:
Learning action models from real-world human-centric interaction datasets is important towards building general-purpose intelligent assistants with efficiency. However, most existing datasets only offer specialist interaction category and ignore that AI assistants perceive and act based on first-person acquisition. We urge that both the generalist interaction knowledge and egocentric modality are indispensable. In this paper, we embed the manual-assisted task into a vision-language-action framework, where the assistant provides services to the instructor following egocentric vision and commands. With our hybrid RGB-MoCap system, pairs of assistants and instructors engage with multiple objects and the scene following GPT-generated scripts. Under this setting, we accomplish InterVLA, the first large-scale human-object-human interaction dataset with 11.4 hours and 1.2M frames of multimodal data, spanning 2 egocentric and 5 exocentric videos, accurate human/object motions and verbal commands. Furthermore, we establish novel benchmarks on egocentric human motion estimation, interaction synthesis, and interaction prediction with comprehensive analysis. We believe that our InterVLA testbed and the benchmarks will foster future works on building AI agents in the physical world.

Authors:Gustav Hanning, Kalle Åström, Viktor Larsson
Title: PixCuboid: Room Layout Estimation from Multi-view Featuremetric Alignment
Abstract:
Coarse room layout estimation provides important geometric cues for many downstream tasks. Current state-of-the-art methods are predominantly based on single views and often assume panoramic images. We introduce PixCuboid, an optimization-based approach for cuboid-shaped room layout estimation, which is based on multi-view alignment of dense deep features. By training with the optimization end-to-end, we learn feature maps that yield large convergence basins and smooth loss landscapes in the alignment. This allows us to initialize the room layout using simple heuristics. For the evaluation we propose two new benchmarks based on ScanNet++ and 2D-3D-Semantics, with manually verified ground truth 3D cuboids. In thorough experiments we validate our approach and significantly outperform the competition. Finally, while our network is trained with single cuboids, the flexibility of the optimization-based approach allow us to easily extend to multi-room estimation, e.g. larger apartments or offices. Code and model weights are available at https://github.com/ghanning/PixCuboid.

Authors:Hao Wang, Limeng Qiao, Zequn Jie, Zhijian Huang, Chengjian Feng, Qingfang Zheng, Lin Ma, Xiangyuan Lan, Xiaodan Liang
Title: X-SAM: From Segment Anything to Any Segmentation
Abstract:
Large Language Models (LLMs) demonstrate strong capabilities in broad knowledge representation, yet they are inherently deficient in pixel-level perceptual understanding. Although the Segment Anything Model (SAM) represents a significant advancement in visual-prompt-driven image segmentation, it exhibits notable limitations in multi-mask prediction and category-specific segmentation tasks, and it cannot integrate all segmentation tasks within a unified model architecture. To address these limitations, we present X-SAM, a streamlined Multimodal Large Language Model (MLLM) framework that extends the segmentation paradigm from \textit{segment anything} to \textit{any segmentation}. Specifically, we introduce a novel unified framework that enables more advanced pixel-level perceptual comprehension for MLLMs. Furthermore, we propose a new segmentation task, termed Visual GrounDed (VGD) segmentation, which segments all instance objects with interactive visual prompts and empowers MLLMs with visual grounded, pixel-wise interpretative capabilities. To enable effective training on diverse data sources, we present a unified training strategy that supports co-training across multiple datasets. Experimental results demonstrate that X-SAM achieves state-of-the-art performance on a wide range of image segmentation benchmarks, highlighting its efficiency for multimodal, pixel-level visual understanding. Code is available at https://github.com/wanghao9610/X-SAM.

Authors:Baihui Xiao, Chengjian Feng, Zhijian Huang, Feng yan, Yujie Zhong, Lin Ma
Title: RoboTron-Sim: Improving Real-World Driving via Simulated Hard-Case
Abstract:
Collecting real-world data for rare high-risk scenarios, long-tailed driving events, and complex interactions remains challenging, leading to poor performance of existing autonomous driving systems in these critical situations. In this paper, we propose RoboTron-Sim that improves real-world driving in critical situations by utilizing simulated hard cases. First, we develop a simulated dataset called Hard-case Augmented Synthetic Scenarios (HASS), which covers 13 high-risk edge-case categories, as well as balanced environmental conditions such as day/night and sunny/rainy. Second, we introduce Scenario-aware Prompt Engineering (SPE) and an Image-to-Ego Encoder (I2E Encoder) to enable multimodal large language models to effectively learn real-world challenging driving skills from HASS, via adapting to environmental deviations and hardware differences between real-world and simulated scenarios. Extensive experiments on nuScenes show that RoboTron-Sim improves driving performance in challenging scenarios by around 50%, achieving state-of-the-art results in real-world open-loop planning. Qualitative results further demonstrate the effectiveness of RoboTron-Sim in better managing rare high-risk driving scenarios. Project page: https://stars79689.github.io/RoboTron-Sim/

Authors:Tongfan Guan, Jiaxin Guo, Chen Wang, Yun-Hui Liu
Title: BridgeDepth: Bridging Monocular and Stereo Reasoning with Latent Alignment
Abstract:
Monocular and stereo depth estimation offer complementary strengths: monocular methods capture rich contextual priors but lack geometric precision, while stereo approaches leverage epipolar geometry yet struggle with ambiguities such as reflective or textureless surfaces. Despite post-hoc synergies, these paradigms remain largely disjoint in practice. We introduce a unified framework that bridges both through iterative bidirectional alignment of their latent representations. At its core, a novel cross-attentive alignment mechanism dynamically synchronizes monocular contextual cues with stereo hypothesis representations during stereo reasoning. This mutual alignment resolves stereo ambiguities (e.g., specular surfaces) by injecting monocular structure priors while refining monocular depth with stereo geometry within a single network. Extensive experiments demonstrate state-of-the-art results: \textbf{it reduces zero-shot generalization error by $\!>\!40\%$ on Middlebury and ETH3D}, while addressing longstanding failures on transparent and reflective surfaces. By harmonizing multi-view geometry with monocular context, our approach enables robust 3D perception that transcends modality-specific limitations. Codes available at https://github.com/aeolusguan/BridgeDepth.

Authors:Jun Li, Che Liu, Wenjia Bai, Mingxuan Liu, Rossella Arcucci, Cosmin I. Bercea, Julia A. Schnabel
Title: Knowledge to Sight: Reasoning over Visual Attributes via Knowledge Decomposition for Abnormality Grounding
Abstract:
In this work, we address the problem of grounding abnormalities in medical images, where the goal is to localize clinical findings based on textual descriptions. While generalist Vision-Language Models (VLMs) excel in natural grounding tasks, they often struggle in the medical domain due to rare, compositional, and domain-specific terms that are poorly aligned with visual patterns. Specialized medical VLMs address this challenge via large-scale domain pretraining, but at the cost of substantial annotation and computational resources. To overcome these limitations, we propose \textbf{Knowledge to Sight (K2Sight)}, a framework that introduces structured semantic supervision by decomposing clinical concepts into interpretable visual attributes, such as shape, density, and anatomical location. These attributes are distilled from domain ontologies and encoded into concise instruction-style prompts, which guide region-text alignment during training. Unlike conventional report-level supervision, our approach explicitly bridges domain knowledge and spatial structure, enabling data-efficient training of compact models. We train compact models with 0.23B and 2B parameters using only 1.5\% of the data required by state-of-the-art medical VLMs. Despite their small size and limited training data, these models achieve performance on par with or better than 7B+ medical VLMs, with up to 9.82\% improvement in $mAP_{50}$. Code and models: \href{https://lijunrio.github.io/K2Sight/}{\textcolor{SOTAPink}{https://lijunrio.github.io/K2Sight/}}.

Authors:Yijie Li, Wei Zhang, Xi Zhu, Ye Wu, Yogesh Rathi, Lauren J. O'Donnell, Fan Zhang
Title: DDTracking: A Deep Generative Framework for Diffusion MRI Tractography with Streamline Local-Global Spatiotemporal Modeling
Abstract:
This paper presents DDTracking, a novel deep generative framework for diffusion MRI tractography that formulates streamline propagation as a conditional denoising diffusion process. In DDTracking, we introduce a dual-pathway encoding network that jointly models local spatial encoding (capturing fine-scale structural details at each streamline point) and global temporal dependencies (ensuring long-range consistency across the entire streamline). Furthermore, we design a conditional diffusion model module, which leverages the learned local and global embeddings to predict streamline propagation orientations for tractography in an end-to-end trainable manner. We conduct a comprehensive evaluation across diverse, independently acquired dMRI datasets, including both synthetic and clinical data. Experiments on two well-established benchmarks with ground truth (ISMRM Challenge and TractoInferno) demonstrate that DDTracking largely outperforms current state-of-the-art tractography methods. Furthermore, our results highlight DDTracking's strong generalizability across heterogeneous datasets, spanning varying health conditions, age groups, imaging protocols, and scanner types. Collectively, DDTracking offers anatomically plausible and robust tractography, presenting a scalable, adaptable, and end-to-end learnable solution for broad dMRI applications. Code is available at: https://github.com/yishengpoxiao/DDtracking.git

Authors:Jinxi Liu, Zijian He, Guangrun Wang, Guanbin Li, Liang Lin
Title: One Model For All: Partial Diffusion for Unified Try-On and Try-Off in Any Pose
Abstract:
Recent diffusion-based approaches have made significant advances in image-based virtual try-on, enabling more realistic and end-to-end garment synthesis. However, most existing methods remain constrained by their reliance on exhibition garments and segmentation masks, as well as their limited ability to handle flexible pose variations. These limitations reduce their practicality in real-world scenarios-for instance, users cannot easily transfer garments worn by one person onto another, and the generated try-on results are typically restricted to the same pose as the reference image. In this paper, we introduce \textbf{OMFA} (\emph{One Model For All}), a unified diffusion framework for both virtual try-on and try-off that operates without the need for exhibition garments and supports arbitrary poses. For example, OMFA enables removing garments from a source person (try-off) and transferring them onto a target person (try-on), while also allowing the generated target to appear in novel poses-even without access to multi-pose images of that person. OMFA is built upon a novel \emph{partial diffusion} strategy that selectively applies noise and denoising to individual components of the joint input-such as the garment, the person image, or the face-enabling dynamic subtask control and efficient bidirectional garment-person transformation. The framework is entirely mask-free and requires only a single portrait and a target pose as input, making it well-suited for real-world applications. Additionally, by leveraging SMPL-X-based pose conditioning, OMFA supports multi-view and arbitrary-pose try-on from just one image. Extensive experiments demonstrate that OMFA achieves state-of-the-art results on both try-on and try-off tasks, providing a practical and generalizable solution for virtual garment synthesis. The project page is here: https://onemodelforall.github.io/.

Authors:Minghang Zheng, Yuxin Peng, Benyuan Sun, Yi Yang, Yang Liu
Title: Hierarchical Event Memory for Accurate and Low-latency Online Video Temporal Grounding
Abstract:
In this paper, we tackle the task of online video temporal grounding (OnVTG), which requires the model to locate events related to a given text query within a video stream. Unlike regular video temporal grounding, OnVTG requires the model to make predictions without observing future frames. As online videos are streaming inputs and can go on indefinitely, it is impractical and inefficient to store all historical inputs. The existing OnVTG models employ memory to store recent historical video frame features and predict scores indicating whether the current frame corresponds to the start or end time of the target event. However, these methods lack effective event modeling and cannot retain long-term historical information, leading to low performance. To tackle these challenges, we propose a hierarchical event memory for OnVTG. We propose an event-based OnVTG framework that makes predictions based on event proposals that model event-level information with various durations. To preserve historically valuable event information, we introduce a hierarchical event memory that retains historical events, allowing the model to access both recent and long-term information. To enable the real-time prediction, we further propose a future prediction branch that predicts whether the target event will occur shortly and further regresses the start time of the event. We achieve state-of-the-art performance on the TACoS, ActivityNet Captions, and MAD datasets. Code is available at https://github.com/minghangz/OnVTG.

Authors:Safwen Naimi, Arij Said, Wassim Bouachir, Guillaume-Alexandre Bilodeau
Title: InceptoFormer: A Multi-Signal Neural Framework for Parkinson's Disease Severity Evaluation from Gait
Abstract:
We present InceptoFormer, a multi-signal neural framework designed for Parkinson's Disease (PD) severity evaluation via gait dynamics analysis. Our architecture introduces a 1D adaptation of the Inception model, which we refer to as Inception1D, along with a Transformer-based framework to stage PD severity according to the Hoehn and Yahr (H&Y) scale. The Inception1D component captures multi-scale temporal features by employing parallel 1D convolutional filters with varying kernel sizes, thereby extracting features across multiple temporal scales. The transformer component efficiently models long-range dependencies within gait sequences, providing a comprehensive understanding of both local and global patterns. To address the issue of class imbalance in PD severity staging, we propose a data structuring and preprocessing strategy based on oversampling to enhance the representation of underrepresented severity levels. The overall design enables to capture fine-grained temporal variations and global dynamics in gait signal, significantly improving classification performance for PD severity evaluation. Through extensive experimentation, InceptoFormer achieves an accuracy of 96.6%, outperforming existing state-of-the-art methods in PD severity assessment. The source code for our implementation is publicly available at https://github.com/SafwenNaimi/InceptoFormer

Authors:Johannes Tischer, Patric Kienast, Marlene Stümpflen, Gregor Kasprian, Georg Langs, Roxane Licandro
Title: Conditional Fetal Brain Atlas Learning for Automatic Tissue Segmentation
Abstract:
Magnetic Resonance Imaging (MRI) of the fetal brain has become a key tool for studying brain development in vivo. Yet, its assessment remains challenging due to variability in brain maturation, imaging protocols, and uncertain estimates of Gestational Age (GA). To overcome these, brain atlases provide a standardized reference framework that facilitates objective evaluation and comparison across subjects by aligning the atlas and subjects in a common coordinate system. In this work, we introduce a novel deep-learning framework for generating continuous, age-specific fetal brain atlases for real-time fetal brain tissue segmentation. The framework combines a direct registration model with a conditional discriminator. Trained on a curated dataset of 219 neurotypical fetal MRIs spanning from 21 to 37 weeks of gestation. The method achieves high registration accuracy, captures dynamic anatomical changes with sharp structural detail, and robust segmentation performance with an average Dice Similarity Coefficient (DSC) of 86.3% across six brain tissues. Furthermore, volumetric analysis of the generated atlases reveals detailed neurotypical growth trajectories, providing valuable insights into the maturation of the fetal brain. This approach enables individualized developmental assessment with minimal pre-processing and real-time performance, supporting both research and clinical applications. The model code is available at https://github.com/cirmuw/fetal-brain-atlas

Authors:Uzay Gökay, Federico Spurio, Dominik R. Bach, Juergen Gall
Title: Skeleton Motion Words for Unsupervised Skeleton-Based Temporal Action Segmentation
Abstract:
Current state-of-the-art methods for skeleton-based temporal action segmentation are predominantly supervised and require annotated data, which is expensive to collect. In contrast, existing unsupervised temporal action segmentation methods have focused primarily on video data, while skeleton sequences remain underexplored, despite their relevance to real-world applications, robustness, and privacy-preserving nature. In this paper, we propose a novel approach for unsupervised skeleton-based temporal action segmentation. Our method utilizes a sequence-to-sequence temporal autoencoder that keeps the information of the different joints disentangled in the embedding space. Latent skeleton sequences are then divided into non-overlapping patches and quantized to obtain distinctive skeleton motion words, driving the discovery of semantically meaningful action clusters. We thoroughly evaluate the proposed approach on three widely used skeleton-based datasets, namely HuGaDB, LARa, and BABEL. The results demonstrate that our model outperforms the current state-of-the-art unsupervised temporal action segmentation methods. Code is available at https://github.com/bachlab/SMQ .

Authors:Bowen Chai, Zheng Chen, Libo Zhu, Wenbo Li, Yong Guo, Yulun Zhang
Title: QuantVSR: Low-Bit Post-Training Quantization for Real-World Video Super-Resolution
Abstract:
Diffusion models have shown superior performance in real-world video super-resolution (VSR). However, the slow processing speeds and heavy resource consumption of diffusion models hinder their practical application and deployment. Quantization offers a potential solution for compressing the VSR model. Nevertheless, quantizing VSR models is challenging due to their temporal characteristics and high fidelity requirements. To address these issues, we propose QuantVSR, a low-bit quantization model for real-world VSR. We propose a spatio-temporal complexity aware (STCA) mechanism, where we first utilize the calibration dataset to measure both spatial and temporal complexities for each layer. Based on these statistics, we allocate layer-specific ranks to the low-rank full-precision (FP) auxiliary branch. Subsequently, we jointly refine the FP and low-bit branches to achieve simultaneous optimization. In addition, we propose a learnable bias alignment (LBA) module to reduce the biased quantization errors. Extensive experiments on synthetic and real-world datasets demonstrate that our method obtains comparable performance with the FP model and significantly outperforms recent leading low-bit quantization methods. Code is available at: https://github.com/bowenchai/QuantVSR.

Authors:Qingguo Hu, Ante Wang, Jia Song, Delai Qiu, Qingsong Liu, Jinsong Su
Title: Boosting Visual Knowledge-Intensive Training for LVLMs Through Causality-Driven Visual Object Completion
Abstract:
Large Vision-Language Models (LVLMs) have experienced significant advancements in recent years. However, their performance still falls short in tasks requiring deep visual perception, such as identifying subtle differences between images. A potential cause is the scarcity of visual knowledge in popular instruction-tuning corpora, resulting in inadequate visual perception and reasoning capabilities. To address this challenge, we introduce a self-improvement framework grounded in a novel visual knowledge-intensive task, \underline{C}ausality-driven \underline{V}isual object \underline{C}ompletion (CVC). This task requires LVLMs to infer the masked object in an image based on its \textit{causal} relationships with the other visible information. We first obtain rich examples cheaply through our automated instance construction pipeline, without relying on sophisticated LVLMs (\textit{e.g.}, GPT-4V) or human assistance. Then, LVLMs effectively self-improve through trial and error learning using these created instances. Our experiments demonstrate substantial gains across four challenging specialized tasks and four widely-used comprehensive benchmarks. Especially on specialized tasks, our method achieves an average improvement of 5.4\% and 4.0\% compared to the corresponding baselines when utilizing LLaVA-1.5-7B and LLaVA-1.5-13B, respectively. The code is available at https://github.com/XMUDeepLIT/CVC.

Authors:Xuan Loc Pham, Gwendolyn Vuurberg, Marjan Doppen, Joey Roosen, Tip Stille, Thi Quynh Ha, Thuy Duong Quach, Quoc Vu Dang, Manh Ha Luu, Ewoud J. Smit, Hong Son Mai, Mattias Heinrich, Bram van Ginneken, Mathias Prokop, Alessa Hering
Title: TotalRegistrator: Towards a Lightweight Foundation Model for CT Image Registration
Abstract:
Image registration is a fundamental technique in the analysis of longitudinal and multi-phase CT images within clinical practice. However, most existing methods are tailored for single-organ applications, limiting their generalizability to other anatomical regions. This work presents TotalRegistrator, an image registration framework capable of aligning multiple anatomical regions simultaneously using a standard UNet architecture and a novel field decomposition strategy. The model is lightweight, requiring only 11GB of GPU memory for training. To train and evaluate our method, we constructed a large-scale longitudinal dataset comprising 695 whole-body (thorax-abdomen-pelvic) paired CT scans from individual patients acquired at different time points. We benchmarked TotalRegistrator against a generic classical iterative algorithm and a recent foundation model for image registration. To further assess robustness and generalizability, we evaluated our model on three external datasets: the public thoracic and abdominal datasets from the Learn2Reg challenge, and a private multiphase abdominal dataset from a collaborating hospital. Experimental results on the in-house dataset show that the proposed approach generally surpasses baseline methods in multi-organ abdominal registration, with a slight drop in lung alignment performance. On out-of-distribution datasets, it achieved competitive results compared to leading single-organ models, despite not being fine-tuned for those tasks, demonstrating strong generalizability. The source code will be publicly available at: https://github.com/DIAGNijmegen/oncology_image_registration.git.

Authors:Ethan Dack, Lorenzo Brigato, Vasilis Dedousis, Janine Gote-Schniering, Cheryl, Hanno Hoppe, Aristomenis Exadaktylos, Manuela Funke-Chambour, Thomas Geiser, Andreas Christe, Lukas Ebner, Stavroula Mougiakakou
Title: Unmasking Interstitial Lung Diseases: Leveraging Masked Autoencoders for Diagnosis
Abstract:
Masked autoencoders (MAEs) have emerged as a powerful approach for pre-training on unlabelled data, capable of learning robust and informative feature representations. This is particularly advantageous in diffused lung disease research, where annotated imaging datasets are scarce. To leverage this, we train an MAE on a curated collection of over 5,000 chest computed tomography (CT) scans, combining in-house data with publicly available scans from related conditions that exhibit similar radiological patterns, such as COVID-19 and bacterial pneumonia. The pretrained MAE is then fine-tuned on a downstream classification task for diffused lung disease diagnosis. Our findings demonstrate that MAEs can effectively extract clinically meaningful features and improve diagnostic performance, even in the absence of large-scale labelled datasets. The code and the models are available here: https://github.com/eedack01/lung_masked_autoencoder.

Authors:Jinxing Zhou, Yanghao Zhou, Mingfei Han, Tong Wang, Xiaojun Chang, Hisham Cholakkal, Rao Muhammad Anwer
Title: Think Before You Segment: An Object-aware Reasoning Agent for Referring Audio-Visual Segmentation
Abstract:
Referring Audio-Visual Segmentation (Ref-AVS) aims to segment target objects in audible videos based on given reference expressions. Prior works typically rely on learning latent embeddings via multimodal fusion to prompt a tunable SAM/SAM2 decoder for segmentation, which requires strong pixel-level supervision and lacks interpretability. From a novel perspective of explicit reference understanding, we propose TGS-Agent, which decomposes the task into a Think-Ground-Segment process, mimicking the human reasoning procedure by first identifying the referred object through multimodal analysis, followed by coarse-grained grounding and precise segmentation. To this end, we first propose Ref-Thinker, a multimodal language model capable of reasoning over textual, visual, and auditory cues. We construct an instruction-tuning dataset with explicit object-aware think-answer chains for Ref-Thinker fine-tuning. The object description inferred by Ref-Thinker is used as an explicit prompt for Grounding-DINO and SAM2, which perform grounding and segmentation without relying on pixel-level supervision. Additionally, we introduce R\textsuperscript{2}-AVSBench, a new benchmark with linguistically diverse and reasoning-intensive references for better evaluating model generalization. Our approach achieves state-of-the-art results on both standard Ref-AVSBench and proposed R\textsuperscript{2}-AVSBench. Code will be available at https://github.com/jasongief/TGS-Agent.

Authors:Haoji Zhang, Xin Gu, Jiawen Li, Chixiang Ma, Sule Bai, Chubin Zhang, Bowen Zhang, Zhichao Zhou, Dongliang He, Yansong Tang
Title: Thinking With Videos: Multimodal Tool-Augmented Reinforcement Learning for Long Video Reasoning
Abstract:
The video reasoning ability of multimodal large language models (MLLMs) is crucial for downstream tasks like video question answering and temporal grounding. While recent approaches have explored text-based chain-of-thought (CoT) reasoning for MLLMs, these methods often suffer from limited cross-modal interaction and increased hallucination, especially with longer videos or reasoning chains. To address these challenges, we propose Video Intelligence via Tool-Augmented Learning (VITAL), a novel end-to-end agentic video reasoning framework. With a visual toolbox, the model can densely sample new video frames on demand and generate multimodal CoT for precise long video reasoning. We observe that temporal grounding and question answering are mutually beneficial for video understanding tasks. Therefore, we construct two high-quality multi-task video reasoning datasets MTVR-CoT-72k for supervised fine-tuning and MTVR-RL-110k for reinforcement learning. Moreover, we propose a Difficulty-aware Group Relative Policy Optimization algorithm (DGRPO) to mitigate difficulty imbalance in multi-task reinforcement learning. Extensive experiments on 11 challenging video understanding benchmarks demonstrate the advanced reasoning ability of VITAL, outperforming existing methods in video question answering and temporal grounding tasks, especially in long video scenarios. Code is available at https://zhang9302002.github.io/thinkingwithvideos-page/.

Authors:Canhui Tang, Zifan Han, Hongbo Sun, Sanping Zhou, Xuchong Zhang, Xin Wei, Ye Yuan, Huayu Zhang, Jinglin Xu, Hao Sun
Title: TSPO: Temporal Sampling Policy Optimization for Long-form Video Language Understanding
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated significant progress in vision-language tasks, yet they still face challenges when processing long-duration video inputs. The limitation arises from MLLMs' context limit and training costs, necessitating sparse frame sampling before feeding videos into MLLMs. However, building a trainable sampling method remains challenging due to the unsupervised and non-differentiable nature of sparse frame sampling in Video-MLLMs. To address these problems, we propose Temporal Sampling Policy Optimization (TSPO), advancing MLLMs' long-form video-language understanding via reinforcement learning. Specifically, we first propose a trainable event-aware temporal agent, which captures event-query correlation for performing probabilistic keyframe selection. Then, we propose the TSPO reinforcement learning paradigm, which models keyframe selection and language generation as a joint decision-making process, enabling end-to-end group relative optimization for the temporal sampling policy. Furthermore, we propose a dual-style long video training data construction pipeline, balancing comprehensive temporal understanding and key segment localization. Finally, we incorporate rule-based answering accuracy and temporal locating reward mechanisms to optimize the temporal sampling policy. Comprehensive experiments show that our TSPO achieves state-of-the-art performance across multiple long video understanding benchmarks, and shows transferable ability across different cutting-edge Video-MLLMs. Our code is available at https://github.com/Hui-design/TSPO

Authors:Junan Lin, Daizong Liu, Xianke Chen, Xiaoye Qu, Xun Yang, Jixiang Zhu, Sanyuan Zhang, Jianfeng Dong
Title: Audio Does Matter: Importance-Aware Multi-Granularity Fusion for Video Moment Retrieval
Abstract:
Video Moment Retrieval (VMR) aims to retrieve a specific moment semantically related to the given query. To tackle this task, most existing VMR methods solely focus on the visual and textual modalities while neglecting the complementary but important audio modality. Although a few recent works try to tackle the joint audio-vision-text reasoning, they treat all modalities equally and simply embed them without fine-grained interaction for moment retrieval. These designs are counter-practical as: Not all audios are helpful for video moment retrieval, and the audio of some videos may be complete noise or background sound that is meaningless to the moment determination. To this end, we propose a novel Importance-aware Multi-Granularity fusion model (IMG), which learns to dynamically and selectively aggregate the audio-vision-text contexts for VMR. Specifically, after integrating the textual guidance with vision and audio separately, we first design a pseudo-label-supervised audio importance predictor that predicts the importance score of the audio, and accordingly assigns weights to mitigate the interference caused by noisy audio. Then, we design a multi-granularity audio fusion module that adaptively fuses audio and visual modalities at local-, event-, and global-level, fully capturing their complementary contexts. We further propose a cross-modal knowledge distillation strategy to address the challenge of missing audio modality during inference. To evaluate our method, we further construct a new VMR dataset, i.e., Charades-AudioMatter, where audio-related samples are manually selected and re-organized from the original Charades-STA to validate the model's capability in utilizing audio modality. Extensive experiments validate the effectiveness of our method, achieving state-of-the-art with audio-video fusion in VMR methods. Our code is available at https://github.com/HuiGuanLab/IMG.

Authors:Xiao Wang, Ziwen Wang, Wentao Wu, Anjie Wang, Jiashu Wu, Yantao Pan, Chenglong Li
Title: Segment Any Vehicle: Semantic and Visual Context Driven SAM and A Benchmark
Abstract:
With the rapid advancement of autonomous driving, vehicle perception, particularly detection and segmentation, has placed increasingly higher demands on algorithmic performance. Pre-trained large segmentation models, especially Segment Anything Model (SAM), have sparked significant interest and inspired new research directions in artificial intelligence. However, SAM cannot be directly applied to the fine-grained task of vehicle part segmentation, as its text-prompted segmentation functionality is not publicly accessible, and the mask regions generated by its default mode lack semantic labels, limiting its utility in structured, category-specific segmentation tasks. To address these limitations, we propose SAV, a novel framework comprising three core components: a SAM-based encoder-decoder, a vehicle part knowledge graph, and a context sample retrieval encoding module. The knowledge graph explicitly models the spatial and geometric relationships among vehicle parts through a structured ontology, effectively encoding prior structural knowledge. Meanwhile, the context retrieval module enhances segmentation by identifying and leveraging visually similar vehicle instances from training data, providing rich contextual priors for improved generalization. Furthermore, we introduce a new large-scale benchmark dataset for vehicle part segmentation, named VehicleSeg10K, which contains 11,665 high-quality pixel-level annotations across diverse scenes and viewpoints. We conduct comprehensive experiments on this dataset and two other datasets, benchmarking multiple representative baselines to establish a solid foundation for future research and comparison. % Both the dataset and source code of this paper will be released upon acceptance. Both the dataset and source code of this paper will be released on https://github.com/Event-AHU/SAV

Authors:Kangrui Cen, Baixuan Zhao, Yi Xin, Siqi Luo, Guangtao Zhai, Xiaohong Liu
Title: LayerT2V: Interactive Multi-Object Trajectory Layering for Video Generation
Abstract:
Controlling object motion trajectories in Text-to-Video (T2V) generation is a challenging and relatively under-explored area, particularly in scenarios involving multiple moving objects. Most community models and datasets in the T2V domain are designed for single-object motion, limiting the performance of current generative models in multi-object tasks. Additionally, existing motion control methods in T2V either lack support for multi-object motion scenes or experience severe performance degradation when object trajectories intersect, primarily due to the semantic conflicts in colliding regions. To address these limitations, we introduce LayerT2V, the first approach for generating video by compositing background and foreground objects layer by layer. This layered generation enables flexible integration of multiple independent elements within a video, positioning each element on a distinct "layer" and thus facilitating coherent multi-object synthesis while enhancing control over the generation process. Extensive experiments demonstrate the superiority of LayerT2V in generating complex multi-object scenarios, showcasing 1.4x and 4.5x improvements in mIoU and AP50 metrics over state-of-the-art (SOTA) methods. Project page and code are available at https://kr-panghu.github.io/LayerT2V/ .

Authors:Yuyang Liu, Qiuhe Hong, Linlan Huang, Alexandra Gomez-Villa, Dipam Goswami, Xialei Liu, Joost van de Weijer, Yonghong Tian
Title: Continual Learning for VLMs: A Survey and Taxonomy Beyond Forgetting
Abstract:
Vision-language models (VLMs) have achieved impressive performance across diverse multimodal tasks by leveraging large-scale pre-training. However, enabling them to learn continually from non-stationary data remains a major challenge, as their cross-modal alignment and generalization capabilities are particularly vulnerable to catastrophic forgetting. Unlike traditional unimodal continual learning (CL), VLMs face unique challenges such as cross-modal feature drift, parameter interference due to shared architectures, and zero-shot capability erosion. This survey offers the first focused and systematic review of continual learning for VLMs (VLM-CL). We begin by identifying the three core failure modes that degrade performance in VLM-CL. Based on these, we propose a challenge-driven taxonomy that maps solutions to their target problems: (1) \textit{Multi-Modal Replay Strategies} address cross-modal drift through explicit or implicit memory mechanisms; (2) \textit{Cross-Modal Regularization} preserves modality alignment during updates; and (3) \textit{Parameter-Efficient Adaptation} mitigates parameter interference with modular or low-rank updates. We further analyze current evaluation protocols, datasets, and metrics, highlighting the need for better benchmarks that capture VLM-specific forgetting and compositional generalization. Finally, we outline open problems and future directions, including continual pre-training and compositional zero-shot learning. This survey aims to serve as a comprehensive and diagnostic reference for researchers developing lifelong vision-language systems. All resources are available at: https://github.com/YuyangSunshine/Awesome-Continual-learning-of-Vision-Language-Models.

Authors:Jianxun Yu, Ruiquan Ge, Zhipeng Wang, Cheng Yang, Chenyu Lin, Xianjun Fu, Jikui Liu, Ahmed Elazab, Changmiao Wang
Title: Small Lesions-aware Bidirectional Multimodal Multiscale Fusion Network for Lung Disease Classification
Abstract:
The diagnosis of medical diseases faces challenges such as the misdiagnosis of small lesions. Deep learning, particularly multimodal approaches, has shown great potential in the field of medical disease diagnosis. However, the differences in dimensionality between medical imaging and electronic health record data present challenges for effective alignment and fusion. To address these issues, we propose the Multimodal Multiscale Cross-Attention Fusion Network (MMCAF-Net). This model employs a feature pyramid structure combined with an efficient 3D multi-scale convolutional attention module to extract lesion-specific features from 3D medical images. To further enhance multimodal data integration, MMCAF-Net incorporates a multi-scale cross-attention module, which resolves dimensional inconsistencies, enabling more effective feature fusion. We evaluated MMCAF-Net on the Lung-PET-CT-Dx dataset, and the results showed a significant improvement in diagnostic accuracy, surpassing current state-of-the-art methods. The code is available at https://github.com/yjx1234/MMCAF-Net

Authors:Wengang Guo, Wei Ye, Chunchun Chen, Xin Sun, Christian Böhm, Claudia Plant, Susanto Rahardja
Title: Bootstrap Deep Spectral Clustering with Optimal Transport
Abstract:
Spectral clustering is a leading clustering method. Two of its major shortcomings are the disjoint optimization process and the limited representation capacity. To address these issues, we propose a deep spectral clustering model (named BootSC), which jointly learns all stages of spectral clustering -- affinity matrix construction, spectral embedding, and $k$-means clustering -- using a single network in an end-to-end manner. BootSC leverages effective and efficient optimal-transport-derived supervision to bootstrap the affinity matrix and the cluster assignment matrix. Moreover, a semantically-consistent orthogonal re-parameterization technique is introduced to orthogonalize spectral embeddings, significantly enhancing the discrimination capability. Experimental results indicate that BootSC achieves state-of-the-art clustering performance. For example, it accomplishes a notable 16\% NMI improvement over the runner-up method on the challenging ImageNet-Dogs dataset. Our code is available at https://github.com/spdj2271/BootSC.

Authors:Yan Zhang, Gangyan Zeng, Daiqing Wu, Huawen Shen, Binbin Li, Yu Zhou, Can Ma, Xiaojun Bi
Title: Gather and Trace: Rethinking Video TextVQA from an Instance-oriented Perspective
Abstract:
Video text-based visual question answering (Video TextVQA) aims to answer questions by explicitly reading and reasoning about the text involved in a video. Most works in this field follow a frame-level framework which suffers from redundant text entities and implicit relation modeling, resulting in limitations in both accuracy and efficiency. In this paper, we rethink the Video TextVQA task from an instance-oriented perspective and propose a novel model termed GAT (Gather and Trace). First, to obtain accurate reading result for each video text instance, a context-aggregated instance gathering module is designed to integrate the visual appearance, layout characteristics, and textual contents of the related entities into a unified textual representation. Then, to capture dynamic evolution of text in the video flow, an instance-focused trajectory tracing module is utilized to establish spatio-temporal relationships between instances and infer the final answer. Extensive experiments on several public Video TextVQA datasets validate the effectiveness and generalization of our framework. GAT outperforms existing Video TextVQA methods, video-language pretraining methods, and video large language models in both accuracy and inference speed. Notably, GAT surpasses the previous state-of-the-art Video TextVQA methods by 3.86\% in accuracy and achieves ten times of faster inference speed than video large language models. The source code is available at https://github.com/zhangyan-ucas/GAT.

Authors:Fengyi Wu, Yimian Dai, Tianfang Zhang, Yixuan Ding, Jian Yang, Ming-Ming Cheng, Zhenming Peng
Title: RPCANet++: Deep Interpretable Robust PCA for Sparse Object Segmentation
Abstract:
Robust principal component analysis (RPCA) decomposes an observation matrix into low-rank background and sparse object components. This capability has enabled its application in tasks ranging from image restoration to segmentation. However, traditional RPCA models suffer from computational burdens caused by matrix operations, reliance on finely tuned hyperparameters, and rigid priors that limit adaptability in dynamic scenarios. To solve these limitations, we propose RPCANet++, a sparse object segmentation framework that fuses the interpretability of RPCA with efficient deep architectures. Our approach unfolds a relaxed RPCA model into a structured network comprising a Background Approximation Module (BAM), an Object Extraction Module (OEM), and an Image Restoration Module (IRM). To mitigate inter-stage transmission loss in the BAM, we introduce a Memory-Augmented Module (MAM) to enhance background feature preservation, while a Deep Contrast Prior Module (DCPM) leverages saliency cues to expedite object extraction. Extensive experiments on diverse datasets demonstrate that RPCANet++ achieves state-of-the-art performance under various imaging scenarios. We further improve interpretability via visual and numerical low-rankness and sparsity measurements. By combining the theoretical strengths of RPCA with the efficiency of deep networks, our approach sets a new baseline for reliable and interpretable sparse object segmentation. Codes are available at our Project Webpage https://fengyiwu98.github.io/rpcanetx.

Authors:Jingchao Wang, Zhijian Wu, Dingjiang Huang, Yefeng Zheng, Hong Wang
Title: Unlocking the Potential of MLLMs in Referring Expression Segmentation via a Light-weight Mask Decoder
Abstract:
Reference Expression Segmentation (RES) aims to segment image regions specified by referring expressions and has become popular with the rise of multimodal large models (MLLMs). While MLLMs excel in semantic understanding, their token-generation paradigm struggles with pixel-level dense prediction. Existing RES methods either couple MLLMs with the parameter-heavy Segment Anything Model (SAM) with 632M network parameters or adopt SAM-free lightweight pipelines that sacrifice accuracy. To address the trade-off between performance and cost, we specifically propose MLLMSeg, a novel framework that fully exploits the inherent visual detail features encoded in the MLLM vision encoder without introducing an extra visual encoder. Besides, we propose a detail-enhanced and semantic-consistent feature fusion module (DSFF) that fully integrates the detail-related visual feature with the semantic-related feature output by the large language model (LLM) of MLLM. Finally, we establish a light-weight mask decoder with only 34M network parameters that optimally leverages detailed spatial features from the visual encoder and semantic features from the LLM to achieve precise mask prediction. Extensive experiments demonstrate that our method generally surpasses both SAM-based and SAM-free competitors, striking a better balance between performance and cost. Code is available at https://github.com/jcwang0602/MLLMSeg.

Authors:Zunhui Xia, Hongxing Li, Libin Lan
Title: TCSAFormer: Efficient Vision Transformer with Token Compression and Sparse Attention for Medical Image Segmentation
Abstract:
In recent years, transformer-based methods have achieved remarkable progress in medical image segmentation due to their superior ability to capture long-range dependencies. However, these methods typically suffer from two major limitations. First, their computational complexity scales quadratically with the input sequences. Second, the feed-forward network (FFN) modules in vanilla Transformers typically rely on fully connected layers, which limits models' ability to capture local contextual information and multiscale features critical for precise semantic segmentation. To address these issues, we propose an efficient medical image segmentation network, named TCSAFormer. The proposed TCSAFormer adopts two key ideas. First, it incorporates a Compressed Attention (CA) module, which combines token compression and pixel-level sparse attention to dynamically focus on the most relevant key-value pairs for each query. This is achieved by pruning globally irrelevant tokens and merging redundant ones, significantly reducing computational complexity while enhancing the model's ability to capture relationships between tokens. Second, it introduces a Dual-Branch Feed-Forward Network (DBFFN) module as a replacement for the standard FFN to capture local contextual features and multiscale information, thereby strengthening the model's feature representation capability. We conduct extensive experiments on three publicly available medical image segmentation datasets: ISIC-2018, CVC-ClinicDB, and Synapse, to evaluate the segmentation performance of TCSAFormer. Experimental results demonstrate that TCSAFormer achieves superior performance compared to existing state-of-the-art (SOTA) methods, while maintaining lower computational overhead, thus achieving an optimal trade-off between efficiency and accuracy.

Authors:Yuheng Ji, Yipu Wang, Yuyang Liu, Xiaoshuai Hao, Yue Liu, Yuting Zhao, Huaihai Lyu, Xiaolong Zheng
Title: VisualTrans: A Benchmark for Real-World Visual Transformation Reasoning
Abstract:
Visual transformation reasoning (VTR) is a vital cognitive capability that empowers intelligent agents to understand dynamic scenes, model causal relationships, and predict future states, and thereby guiding actions and laying the foundation for advanced intelligent systems. However, existing benchmarks suffer from a sim-to-real gap, limited task complexity, and incomplete reasoning coverage, limiting their practical use in real-world scenarios. To address these limitations, we introduce VisualTrans, the first comprehensive benchmark specifically designed for VTR in real-world human-object interaction scenarios. VisualTrans encompasses 12 semantically diverse manipulation tasks and systematically evaluates three essential reasoning dimensions - spatial, procedural, and quantitative - through 6 well-defined subtask types. The benchmark features 472 high-quality question-answer pairs in various formats, including multiple-choice, open-ended counting, and target enumeration. We introduce a scalable data construction pipeline built upon first-person manipulation videos, which integrates task selection, image pair extraction, automated metadata annotation with large multimodal models, and structured question generation. Human verification ensures the final benchmark is both high-quality and interpretable. Evaluations of various state-of-the-art vision-language models show strong performance in static spatial tasks. However, they reveal notable shortcomings in dynamic, multi-step reasoning scenarios, particularly in areas like intermediate state recognition and transformation sequence planning. These findings highlight fundamental weaknesses in temporal modeling and causal reasoning, providing clear directions for future research aimed at developing more capable and generalizable VTR systems. The dataset and code are available at https://github.com/WangYipu2002/VisualTrans.

Authors:Tongshun Zhang, Pingling Liu, Zijian Zhang, Qiuzhan Zhou
Title: SPJFNet: Self-Mining Prior-Guided Joint Frequency Enhancement for Ultra-Efficient Dark Image Restoration
Abstract:
Current dark image restoration methods suffer from severe efficiency bottlenecks, primarily stemming from: (1) computational burden and error correction costs associated with reliance on external priors (manual or cross-modal); (2) redundant operations in complex multi-stage enhancement pipelines; and (3) indiscriminate processing across frequency components in frequency-domain methods, leading to excessive global computational demands. To address these challenges, we propose an Efficient Self-Mining Prior-Guided Joint Frequency Enhancement Network (SPJFNet). Specifically, we first introduce a Self-Mining Guidance Module (SMGM) that generates lightweight endogenous guidance directly from the network, eliminating dependence on external priors and thereby bypassing error correction overhead while improving inference speed. Second, through meticulous analysis of different frequency domain characteristics, we reconstruct and compress multi-level operation chains into a single efficient operation via lossless wavelet decomposition and joint Fourier-based advantageous frequency enhancement, significantly reducing parameters. Building upon this foundation, we propose a Dual-Frequency Guidance Framework (DFGF) that strategically deploys specialized high/low frequency branches (wavelet-domain high-frequency enhancement and Fourier-domain low-frequency restoration), decoupling frequency processing to substantially reduce computational complexity. Rigorous evaluation across multiple benchmarks demonstrates that SPJFNet not only surpasses state-of-the-art performance but also achieves significant efficiency improvements, substantially reducing model complexity and computational overhead. Code is available at https://github.com/bywlzts/SPJFNet.

Authors:Zechen Li, Baiyu Chen, Hao Xue, Flora D. Salim
Title: ZARA: Zero-shot Motion Time-Series Analysis via Knowledge and Retrieval Driven LLM Agents
Abstract:
Motion sensor time-series are central to human activity recognition (HAR), with applications in health, sports, and smart devices. However, existing methods are trained for fixed activity sets and require costly retraining when new behaviours or sensor setups appear. Recent attempts to use large language models (LLMs) for HAR, typically by converting signals into text or images, suffer from limited accuracy and lack verifiable interpretability. We propose ZARA, the first agent-based framework for zero-shot, explainable HAR directly from raw motion time-series. ZARA integrates an automatically derived pair-wise feature knowledge base that captures discriminative statistics for every activity pair, a multi-sensor retrieval module that surfaces relevant evidence, and a hierarchical agent pipeline that guides the LLM to iteratively select features, draw on this evidence, and produce both activity predictions and natural-language explanations. ZARA enables flexible and interpretable HAR without any fine-tuning or task-specific classifiers. Extensive experiments on 8 HAR benchmarks show that ZARA achieves SOTA zero-shot performance, delivering clear reasoning while exceeding the strongest baselines by 2.53x in macro F1. Ablation studies further confirm the necessity of each module, marking ZARA as a promising step toward trustworthy, plug-and-play motion time-series analysis. Our codes are available at https://github.com/zechenli03/ZARA.

Authors:Trinh Quoc Nguyen, Oky Dicky Ardiansyah Prima, Syahid Al Irfan, Hindriyanto Dwi Purnomo, Radius Tanone
Title: CORE-ReID V2: Advancing the Domain Adaptation for Object Re-Identification with Optimized Training and Ensemble Fusion
Abstract:
This study presents CORE-ReID V2, an enhanced framework building upon CORE-ReID. The new framework extends its predecessor by addressing Unsupervised Domain Adaptation (UDA) challenges in Person ReID and Vehicle ReID, with further applicability to Object ReID. During pre-training, CycleGAN is employed to synthesize diverse data, bridging image characteristic gaps across different domains. In the fine-tuning, an advanced ensemble fusion mechanism, consisting of the Efficient Channel Attention Block (ECAB) and the Simplified Efficient Channel Attention Block (SECAB), enhances both local and global feature representations while reducing ambiguity in pseudo-labels for target samples. Experimental results on widely used UDA Person ReID and Vehicle ReID datasets demonstrate that the proposed framework outperforms state-of-the-art methods, achieving top performance in Mean Average Precision (mAP) and Rank-k Accuracy (Top-1, Top-5, Top-10). Moreover, the framework supports lightweight backbones such as ResNet18 and ResNet34, ensuring both scalability and efficiency. Our work not only pushes the boundaries of UDA-based Object ReID but also provides a solid foundation for further research and advancements in this domain. Our codes and models are available at https://github.com/TrinhQuocNguyen/CORE-ReID-V2.

Authors:Hee-Yeun Kim, Byeonggyu Park, Byonghyok Choi, Hansang Cho, Byungkwan Kim, Soomok Lee, Mingu Jeon, Seung-Woo Seo, Seong-Woo Kim
Title: Radar-Based NLoS Pedestrian Localization for Darting-Out Scenarios Near Parked Vehicles with Camera-Assisted Point Cloud Interpretation
Abstract:
The presence of Non-Line-of-Sight (NLoS) blind spots resulting from roadside parking in urban environments poses a significant challenge to road safety, particularly due to the sudden emergence of pedestrians. mmWave technology leverages diffraction and reflection to observe NLoS regions, and recent studies have demonstrated its potential for detecting obscured objects. However, existing approaches predominantly rely on predefined spatial information or assume simple wall reflections, thereby limiting their generalizability and practical applicability. A particular challenge arises in scenarios where pedestrians suddenly appear from between parked vehicles, as these parked vehicles act as temporary spatial obstructions. Furthermore, since parked vehicles are dynamic and may relocate over time, spatial information obtained from satellite maps or other predefined sources may not accurately reflect real-time road conditions, leading to erroneous sensor interpretations. To address this limitation, we propose an NLoS pedestrian localization framework that integrates monocular camera image with 2D radar point cloud (PCD) data. The proposed method initially detects parked vehicles through image segmentation, estimates depth to infer approximate spatial characteristics, and subsequently refines this information using 2D radar PCD to achieve precise spatial inference. Experimental evaluations conducted in real-world urban road environments demonstrate that the proposed approach enhances early pedestrian detection and contributes to improved road safety. Supplementary materials are available at https://hiyeun.github.io/NLoS/.

Authors:Junyi Wang, Jinjiang Li, Guodong Fan, Yakun Ju, Xiang Fang, Alex C. Kot
Title: Prototype-Driven Structure Synergy Network for Remote Sensing Images Segmentation
Abstract:
In the semantic segmentation of remote sensing images, acquiring complete ground objects is critical for achieving precise analysis. However, this task is severely hindered by two major challenges: high intra-class variance and high inter-class similarity. Traditional methods often yield incomplete segmentation results due to their inability to effectively unify class representations and distinguish between similar features. Even emerging class-guided approaches are limited by coarse class prototype representations and a neglect of target structural information. Therefore, this paper proposes a Prototype-Driven Structure Synergy Network (PDSSNet). The design of this network is based on a core concept, a complete ground object is jointly defined by its invariant class semantics and its variant spatial structure. To implement this, we have designed three key modules. First, the Adaptive Prototype Extraction Module (APEM) ensures semantic accuracy from the source by encoding the ground truth to extract unbiased class prototypes. Subsequently, the designed Semantic-Structure Coordination Module (SSCM) follows a hierarchical semantics-first, structure-second principle. This involves first establishing a global semantic cognition, then leveraging structural information to constrain and refine the semantic representation, thereby ensuring the integrity of class information. Finally, the Channel Similarity Adjustment Module (CSAM) employs a dynamic step-size adjustment mechanism to focus on discriminative features between classes. Extensive experiments demonstrate that PDSSNet outperforms state-of-the-art methods. The source code is available at https://github.com/wangjunyi-1/PDSSNet.

Authors:Haiqi Yang, Jinzhe Li, Gengxu Li, Yi Chang, Yuan Wu
Title: Can Large Multimodal Models Actively Recognize Faulty Inputs? A Systematic Evaluation Framework of Their Input Scrutiny Ability
Abstract:
Large Multimodal Models (LMMs) have witnessed remarkable growth, showcasing formidable capabilities in handling intricate multimodal tasks with exceptional performance. Recent research has underscored the inclination of large language models to passively accept defective inputs, often resulting in futile reasoning on invalid prompts. However, the same critical question of whether LMMs can actively detect and scrutinize erroneous inputs still remains unexplored. To address this gap, we introduce the Input Scrutiny Ability Evaluation Framework (ISEval), which encompasses seven categories of flawed premises and three evaluation metrics. Our extensive evaluation of ten advanced LMMs has identified key findings. Most models struggle to actively detect flawed textual premises without guidance, which reflects a strong reliance on explicit prompts for premise error identification. Error type affects performance: models excel at identifying logical fallacies but struggle with surface-level linguistic errors and certain conditional flaws. Modality trust varies-Gemini 2.5 pro and Claude Sonnet 4 balance visual and textual info, while aya-vision-8b over-rely on text in conflicts. These insights underscore the urgent need to enhance LMMs' proactive verification of input validity and shed novel insights into mitigating the problem. The code is available at https://github.com/MLGroupJLU/LMM_ISEval.

Authors:Weilun Feng, Haotong Qin, Chuanguang Yang, Xiangqi Li, Han Yang, Yuqi Li, Zhulin An, Libo Huang, Michele Magno, Yongjun Xu
Title: S$^2$Q-VDiT: Accurate Quantized Video Diffusion Transformer with Salient Data and Sparse Token Distillation
Abstract:
Diffusion transformers have emerged as the mainstream paradigm for video generation models. However, the use of up to billions of parameters incurs significant computational costs. Quantization offers a promising solution by reducing memory usage and accelerating inference. Nonetheless, we observe that the joint modeling of spatial and temporal information in video diffusion models (V-DMs) leads to extremely long token sequences, which introduces high calibration variance and learning challenges. To address these issues, we propose S$^2$Q-VDiT, a post-training quantization framework for V-DMs that leverages Salient data and Sparse token distillation. During the calibration phase, we identify that quantization performance is highly sensitive to the choice of calibration data. To mitigate this, we introduce \textit{Hessian-aware Salient Data Selection}, which constructs high-quality calibration datasets by considering both diffusion and quantization characteristics unique to V-DMs. To tackle the learning challenges, we further analyze the sparse attention patterns inherent in V-DMs. Based on this observation, we propose \textit{Attention-guided Sparse Token Distillation}, which exploits token-wise attention distributions to emphasize tokens that are more influential to the model's output. Under W4A6 quantization, S$^2$Q-VDiT achieves lossless performance while delivering $3.9\times$ model compression and $1.3\times$ inference acceleration. Code will be available at https://github.com/wlfeng0509/s2q-vdit.

Authors:Jinwei Zhang, Lianrui Zuo, Blake E. Dewey, Samuel W. Remedios, Yihao Liu, Savannah P. Hays, Dzung L. Pham, Ellen M. Mowry, Scott D. Newsome, Peter A. Calabresi, Aaron Carass, Jerry L. Prince
Title: UNISELF: A Unified Network with Instance Normalization and Self-Ensembled Lesion Fusion for Multiple Sclerosis Lesion Segmentation
Abstract:
Automated segmentation of multiple sclerosis (MS) lesions using multicontrast magnetic resonance (MR) images improves efficiency and reproducibility compared to manual delineation, with deep learning (DL) methods achieving state-of-the-art performance. However, these DL-based methods have yet to simultaneously optimize in-domain accuracy and out-of-domain generalization when trained on a single source with limited data, or their performance has been unsatisfactory. To fill this gap, we propose a method called UNISELF, which achieves high accuracy within a single training domain while demonstrating strong generalizability across multiple out-of-domain test datasets. UNISELF employs a novel test-time self-ensembled lesion fusion to improve segmentation accuracy, and leverages test-time instance normalization (TTIN) of latent features to address domain shifts and missing input contrasts. Trained on the ISBI 2015 longitudinal MS segmentation challenge training dataset, UNISELF ranks among the best-performing methods on the challenge test dataset. Additionally, UNISELF outperforms all benchmark methods trained on the same ISBI training data across diverse out-of-domain test datasets with domain shifts and missing contrasts, including the public MICCAI 2016 and UMCL datasets, as well as a private multisite dataset. These test datasets exhibit domain shifts and/or missing contrasts caused by variations in acquisition protocols, scanner types, and imaging artifacts arising from imperfect acquisition. Our code is available at https://github.com/uponacceptance.

Authors:Yajun Liu, Zenghui Zhang, Jiang Yue, Weiwei Guo, Dongying Li
Title: M$^3$HL: Mutual Mask Mix with High-Low Level Feature Consistency for Semi-Supervised Medical Image Segmentation
Abstract:
Data augmentation methods inspired by CutMix have demonstrated significant potential in recent semi-supervised medical image segmentation tasks. However, these approaches often apply CutMix operations in a rigid and inflexible manner, while paying insufficient attention to feature-level consistency constraints. In this paper, we propose a novel method called Mutual Mask Mix with High-Low level feature consistency (M$^3$HL) to address the aforementioned challenges, which consists of two key components: 1) M$^3$: An enhanced data augmentation operation inspired by the masking strategy from Masked Image Modeling (MIM), which advances conventional CutMix through dynamically adjustable masks to generate spatially complementary image pairs for collaborative training, thereby enabling effective information fusion between labeled and unlabeled images. 2) HL: A hierarchical consistency regularization framework that enforces high-level and low-level feature consistency between unlabeled and mixed images, enabling the model to better capture discriminative feature representations.Our method achieves state-of-the-art performance on widely adopted medical image segmentation benchmarks including the ACDC and LA datasets. Source code is available at https://github.com/PHPJava666/M3HL

Authors:Weiwei Cao, Jianpeng Zhang, Zhongyi Shui, Sinuo Wang, Zeli Chen, Xi Li, Le Lu, Xianghua Ye, Tingbo Liang, Qi Zhang, Ling Zhang
Title: Boosting Vision Semantic Density with Anatomy Normality Modeling for Medical Vision-language Pre-training
Abstract:
Vision-language pre-training (VLP) has great potential for developing multifunctional and general medical diagnostic capabilities. However, aligning medical images with a low signal-to-noise ratio (SNR) to reports with a high SNR presents a semantic density gap, leading to visual alignment bias. In this paper, we propose boosting vision semantic density to improve alignment effectiveness. On one hand, we enhance visual semantics through disease-level vision contrastive learning, which strengthens the model's ability to differentiate between normal and abnormal samples for each anatomical structure. On the other hand, we introduce an anatomical normality modeling method to model the distribution of normal samples for each anatomy, leveraging VQ-VAE for reconstructing normal vision embeddings in the latent space. This process amplifies abnormal signals by leveraging distribution shifts in abnormal samples, enhancing the model's perception and discrimination of abnormal attributes. The enhanced visual representation effectively captures the diagnostic-relevant semantics, facilitating more efficient and accurate alignment with the diagnostic report. We conduct extensive experiments on two chest CT datasets, CT-RATE and Rad-ChestCT, and an abdominal CT dataset, MedVL-CT69K, and comprehensively evaluate the diagnosis performance across multiple tasks in the chest and abdominal CT scenarios, achieving state-of-the-art zero-shot performance. Notably, our method achieved an average AUC of 84.9% across 54 diseases in 15 organs, significantly surpassing existing methods. Additionally, we demonstrate the superior transfer learning capabilities of our pre-trained model. Code is available at https://github.com/alibaba-damo-academy/ViSD-Boost.

Authors:Kushal Kanwar, Dushyant Singh Chauhan, Gopendra Vikram Singh, Asif Ekbal
Title: What is Beneath Misogyny: Misogynous Memes Classification and Explanation
Abstract:
Memes are popular in the modern world and are distributed primarily for entertainment. However, harmful ideologies such as misogyny can be propagated through innocent-looking memes. The detection and understanding of why a meme is misogynous is a research challenge due to its multimodal nature (image and text) and its nuanced manifestations across different societal contexts. We introduce a novel multimodal approach, \textit{namely}, \textit{\textbf{MM-Misogyny}} to detect, categorize, and explain misogynistic content in memes. \textit{\textbf{MM-Misogyny}} processes text and image modalities separately and unifies them into a multimodal context through a cross-attention mechanism. The resulting multimodal context is then easily processed for labeling, categorization, and explanation via a classifier and Large Language Model (LLM). The evaluation of the proposed model is performed on a newly curated dataset (\textit{\textbf{W}hat's \textbf{B}eneath \textbf{M}isogynous \textbf{S}tereotyping (WBMS)}) created by collecting misogynous memes from cyberspace and categorizing them into four categories, \textit{namely}, Kitchen, Leadership, Working, and Shopping. The model not only detects and classifies misogyny, but also provides a granular understanding of how misogyny operates in domains of life. The results demonstrate the superiority of our approach compared to existing methods. The code and dataset are available at \href{https://github.com/kushalkanwarNS/WhatisBeneathMisogyny/tree/main}{https://github.com/Misogyny}.

Authors:Jianxiong Gao, Zhaoxi Chen, Xian Liu, Jianfeng Feng, Chenyang Si, Yanwei Fu, Yu Qiao, Ziwei Liu
Title: LongVie: Multimodal-Guided Controllable Ultra-Long Video Generation
Abstract:
Controllable ultra-long video generation is a fundamental yet challenging task. Although existing methods are effective for short clips, they struggle to scale due to issues such as temporal inconsistency and visual degradation. In this paper, we initially investigate and identify three key factors: separate noise initialization, independent control signal normalization, and the limitations of single-modality guidance. To address these issues, we propose LongVie, an end-to-end autoregressive framework for controllable long video generation. LongVie introduces two core designs to ensure temporal consistency: 1) a unified noise initialization strategy that maintains consistent generation across clips, and 2) global control signal normalization that enforces alignment in the control space throughout the entire video. To mitigate visual degradation, LongVie employs 3) a multi-modal control framework that integrates both dense (e.g., depth maps) and sparse (e.g., keypoints) control signals, complemented by 4) a degradation-aware training strategy that adaptively balances modality contributions over time to preserve visual quality. We also introduce LongVGenBench, a comprehensive benchmark consisting of 100 high-resolution videos spanning diverse real-world and synthetic environments, each lasting over one minute. Extensive experiments show that LongVie achieves state-of-the-art performance in long-range controllability, consistency, and quality.

Authors:Katherine Liu, Sergey Zakharov, Dian Chen, Takuya Ikeda, Greg Shakhnarovich, Adrien Gaidon, Rares Ambrus
Title: OmniShape: Zero-Shot Multi-Hypothesis Shape and Pose Estimation in the Real World
Abstract:
We would like to estimate the pose and full shape of an object from a single observation, without assuming known 3D model or category. In this work, we propose OmniShape, the first method of its kind to enable probabilistic pose and shape estimation. OmniShape is based on the key insight that shape completion can be decoupled into two multi-modal distributions: one capturing how measurements project into a normalized object reference frame defined by the dataset and the other modelling a prior over object geometries represented as triplanar neural fields. By training separate conditional diffusion models for these two distributions, we enable sampling multiple hypotheses from the joint pose and shape distribution. OmniShape demonstrates compelling performance on challenging real world datasets. Project website: https://tri-ml.github.io/omnishape

Authors:Xinyu Wang, Yue Zhang, Liqiang Jing
Title: Can Large Vision-Language Models Understand Multimodal Sarcasm?
Abstract:
Sarcasm is a complex linguistic phenomenon that involves a disparity between literal and intended meanings, making it challenging for sentiment analysis and other emotion-sensitive tasks. While traditional sarcasm detection methods primarily focus on text, recent approaches have incorporated multimodal information. However, the application of Large Visual Language Models (LVLMs) in Multimodal Sarcasm Analysis (MSA) remains underexplored. In this paper, we evaluate LVLMs in MSA tasks, specifically focusing on Multimodal Sarcasm Detection and Multimodal Sarcasm Explanation. Through comprehensive experiments, we identify key limitations, such as insufficient visual understanding and a lack of conceptual knowledge. To address these issues, we propose a training-free framework that integrates in-depth object extraction and external conceptual knowledge to improve the model's ability to interpret and explain sarcasm in multimodal contexts. The experimental results on multiple models show the effectiveness of our proposed framework. The code is available at https://github.com/cp-cp/LVLM-MSA.

Authors:Xiangyu Sun, Haoyi Jiang, Liu Liu, Seungtae Nam, Gyeongjin Kang, Xinjie Wang, Wei Sui, Zhizhong Su, Wenyu Liu, Xinggang Wang, Eunbyung Park
Title: Uni3R: Unified 3D Reconstruction and Semantic Understanding via Generalizable Gaussian Splatting from Unposed Multi-View Images
Abstract:
Reconstructing and semantically interpreting 3D scenes from sparse 2D views remains a fundamental challenge in computer vision. Conventional methods often decouple semantic understanding from reconstruction or necessitate costly per-scene optimization, thereby restricting their scalability and generalizability. In this paper, we introduce Uni3R, a novel feed-forward framework that jointly reconstructs a unified 3D scene representation enriched with open-vocabulary semantics, directly from unposed multi-view images. Our approach leverages a Cross-View Transformer to robustly integrate information across arbitrary multi-view inputs, which then regresses a set of 3D Gaussian primitives endowed with semantic feature fields. This unified representation facilitates high-fidelity novel view synthesis, open-vocabulary 3D semantic segmentation, and depth prediction, all within a single, feed-forward pass. Extensive experiments demonstrate that Uni3R establishes a new state-of-the-art across multiple benchmarks, including 25.07 PSNR on RE10K and 55.84 mIoU on ScanNet. Our work signifies a novel paradigm towards generalizable, unified 3D scene reconstruction and understanding. The code is available at https://github.com/HorizonRobotics/Uni3R.

Authors:Wuyang Li, Wentao Pan, Xiaoyuan Liu, Zhendong Luo, Chenxin Li, Hengyu Liu, Din Ping Tsai, Mu Ku Chen, Yixuan Yuan
Title: MetaScope: Optics-Driven Neural Network for Ultra-Micro Metalens Endoscopy
Abstract:
Miniaturized endoscopy has advanced accurate visual perception within the human body. Prevailing research remains limited to conventional cameras employing convex lenses, where the physical constraints with millimetre-scale thickness impose serious impediments on the micro-level clinical. Recently, with the emergence of meta-optics, ultra-micro imaging based on metalenses (micron-scale) has garnered great attention, serving as a promising solution. However, due to the physical difference of metalens, there is a large gap in data acquisition and algorithm research. In light of this, we aim to bridge this unexplored gap, advancing the novel metalens endoscopy. First, we establish datasets for metalens endoscopy and conduct preliminary optical simulation, identifying two derived optical issues that physically adhere to strong optical priors. Second, we propose MetaScope, a novel optics-driven neural network tailored for metalens endoscopy driven by physical optics. MetaScope comprises two novel designs: Optics-informed Intensity Adjustment (OIA), rectifying intensity decay by learning optical embeddings, and Optics-informed Chromatic Correction (OCC), mitigating chromatic aberration by learning spatial deformations informed by learned Point Spread Function (PSF) distributions. To enhance joint learning, we further deploy a gradient-guided distillation to transfer knowledge from the foundational model adaptively. Extensive experiments demonstrate that MetaScope not only outperforms state-of-the-art methods in both metalens segmentation and restoration but also achieves impressive generalized ability in real biomedical scenes.

Authors:Xinyu Xiong, Zihuang Wu, Lei Zhang, Lei Lu, Ming Li, Guanbin Li
Title: SAM2-UNeXT: An Improved High-Resolution Baseline for Adapting Foundation Models to Downstream Segmentation Tasks
Abstract:
Recent studies have highlighted the potential of adapting the Segment Anything Model (SAM) for various downstream tasks. However, constructing a more powerful and generalizable encoder to further enhance performance remains an open challenge. In this work, we propose SAM2-UNeXT, an advanced framework that builds upon the core principles of SAM2-UNet while extending the representational capacity of SAM2 through the integration of an auxiliary DINOv2 encoder. By incorporating a dual-resolution strategy and a dense glue layer, our approach enables more accurate segmentation with a simple architecture, relaxing the need for complex decoder designs. Extensive experiments conducted on four benchmarks, including dichotomous image segmentation, camouflaged object detection, marine animal segmentation, and remote sensing saliency detection, demonstrate the superior performance of our proposed method. The code is available at https://github.com/WZH0120/SAM2-UNeXT.

Authors:Kaishen Yuan, Yuting Zhang, Shang Gao, Yijie Zhu, Wenshuo Chen, Yutao Yue
Title: CoEmoGen: Towards Semantically-Coherent and Scalable Emotional Image Content Generation
Abstract:
Emotional Image Content Generation (EICG) aims to generate semantically clear and emotionally faithful images based on given emotion categories, with broad application prospects. While recent text-to-image diffusion models excel at generating concrete concepts, they struggle with the complexity of abstract emotions. There have also emerged methods specifically designed for EICG, but they excessively rely on word-level attribute labels for guidance, which suffer from semantic incoherence, ambiguity, and limited scalability. To address these challenges, we propose CoEmoGen, a novel pipeline notable for its semantic coherence and high scalability. Specifically, leveraging multimodal large language models (MLLMs), we construct high-quality captions focused on emotion-triggering content for context-rich semantic guidance. Furthermore, inspired by psychological insights, we design a Hierarchical Low-Rank Adaptation (HiLoRA) module to cohesively model both polarity-shared low-level features and emotion-specific high-level semantics. Extensive experiments demonstrate CoEmoGen's superiority in emotional faithfulness and semantic coherence from quantitative, qualitative, and user study perspectives. To intuitively showcase scalability, we curate EmoArt, a large-scale dataset of emotionally evocative artistic images, providing endless inspiration for emotion-driven artistic creation. The dataset and code are available at https://github.com/yuankaishen2001/CoEmoGen.

Authors:Yazhou Zhu, Haofeng Zhang
Title: MAUP: Training-free Multi-center Adaptive Uncertainty-aware Prompting for Cross-domain Few-shot Medical Image Segmentation
Abstract:
Cross-domain Few-shot Medical Image Segmentation (CD-FSMIS) is a potential solution for segmenting medical images with limited annotation using knowledge from other domains. The significant performance of current CD-FSMIS models relies on the heavily training procedure over other source medical domains, which degrades the universality and ease of model deployment. With the development of large visual models of natural images, we propose a training-free CD-FSMIS model that introduces the Multi-center Adaptive Uncertainty-aware Prompting (MAUP) strategy for adapting the foundation model Segment Anything Model (SAM), which is trained with natural images, into the CD-FSMIS task. To be specific, MAUP consists of three key innovations: (1) K-means clustering based multi-center prompts generation for comprehensive spatial coverage, (2) uncertainty-aware prompts selection that focuses on the challenging regions, and (3) adaptive prompt optimization that can dynamically adjust according to the target region complexity. With the pre-trained DINOv2 feature encoder, MAUP achieves precise segmentation results across three medical datasets without any additional training compared with several conventional CD-FSMIS models and training-free FSMIS model. The source code is available at: https://github.com/YazhouZhu19/MAUP.

Authors:Deqiang Yin, Junyi Guo, Huanda Lu, Fangyu Wu, Dongming Lu
Title: EditGarment: An Instruction-Based Garment Editing Dataset Constructed with Automated MLLM Synthesis and Semantic-Aware Evaluation
Abstract:
Instruction-based garment editing enables precise image modifications via natural language, with broad applications in fashion design and customization. Unlike general editing tasks, it requires understanding garment-specific semantics and attribute dependencies. However, progress is limited by the scarcity of high-quality instruction-image pairs, as manual annotation is costly and hard to scale. While MLLMs have shown promise in automated data synthesis, their application to garment editing is constrained by imprecise instruction modeling and a lack of fashion-specific supervisory signals. To address these challenges, we present an automated pipeline for constructing a garment editing dataset. We first define six editing instruction categories aligned with real-world fashion workflows to guide the generation of balanced and diverse instruction-image triplets. Second, we introduce Fashion Edit Score, a semantic-aware evaluation metric that captures semantic dependencies between garment attributes and provides reliable supervision during construction. Using this pipeline, we construct a total of 52,257 candidate triplets and retain 20,596 high-quality triplets to build EditGarment, the first instruction-based dataset tailored to standalone garment editing. The project page is https://yindq99.github.io/EditGarment-project/.

Authors:Haotian Wang, Yuzhe Weng, Jun Du, Haoran Xu, Xiaoyan Wu, Shan He, Bing Yin, Cong Liu, Jianqing Gao, Qingfeng Liu
Title: READ: Real-time and Efficient Asynchronous Diffusion for Audio-driven Talking Head Generation
Abstract:
The introduction of diffusion models has brought significant advances to the field of audio-driven talking head generation. However, the extremely slow inference speed severely limits the practical implementation of diffusion-based talking head generation models. In this study, we propose READ, the first real-time diffusion-transformer-based talking head generation framework. Our approach first learns a spatiotemporal highly compressed video latent space via a temporal VAE, significantly reducing the token count to accelerate generation. To achieve better audio-visual alignment within this compressed latent space, a pre-trained Speech Autoencoder (SpeechAE) is proposed to generate temporally compressed speech latent codes corresponding to the video latent space. These latent representations are then modeled by a carefully designed Audio-to-Video Diffusion Transformer (A2V-DiT) backbone for efficient talking head synthesis. Furthermore, to ensure temporal consistency and accelerated inference in extended generation, we propose a novel asynchronous noise scheduler (ANS) for both the training and inference process of our framework. The ANS leverages asynchronous add-noise and asynchronous motion-guided generation in the latent space, ensuring consistency in generated video clips. Experimental results demonstrate that READ outperforms state-of-the-art methods by generating competitive talking head videos with significantly reduced runtime, achieving an optimal balance between quality and speed while maintaining robust metric stability in long-time generation.

Authors:Qiyu Chen, Zhen Qu, Wei Luo, Haiming Yao, Yunkang Cao, Yuxin Jiang, Yinan Duan, Huiyuan Luo, Chengkan Lv, Zhengtao Zhang
Title: CoPS: Conditional Prompt Synthesis for Zero-Shot Anomaly Detection
Abstract:
Recently, large pre-trained vision-language models have shown remarkable performance in zero-shot anomaly detection (ZSAD). With fine-tuning on a single auxiliary dataset, the model enables cross-category anomaly detection on diverse datasets covering industrial defects and medical lesions. Compared to manually designed prompts, prompt learning eliminates the need for expert knowledge and trial-and-error. However, it still faces the following challenges: (i) static learnable tokens struggle to capture the continuous and diverse patterns of normal and anomalous states, limiting generalization to unseen categories; (ii) fixed textual labels provide overly sparse category information, making the model prone to overfitting to a specific semantic subspace. To address these issues, we propose Conditional Prompt Synthesis (CoPS), a novel framework that synthesizes dynamic prompts conditioned on visual features to enhance ZSAD performance. Specifically, we extract representative normal and anomaly prototypes from fine-grained patch features and explicitly inject them into prompts, enabling adaptive state modeling. Given the sparsity of class labels, we leverage a variational autoencoder to model semantic image features and implicitly fuse varied class tokens into prompts. Additionally, integrated with our spatially-aware alignment mechanism, extensive experiments demonstrate that CoPS surpasses state-of-the-art methods by 2.5% AUROC in both classification and segmentation across 13 industrial and medical datasets. Code will be available at https://github.com/cqylunlun/CoPS.

Authors:Ning Zhu, Xiaochuan Ma, Shaoting Zhang, Guotai Wang
Title: MedCAL-Bench: A Comprehensive Benchmark on Cold-Start Active Learning with Foundation Models for Medical Image Analysis
Abstract:
Cold-Start Active Learning (CSAL) aims to select informative samples for annotation without prior knowledge, which is important for improving annotation efficiency and model performance under a limited annotation budget in medical image analysis. Most existing CSAL methods rely on Self-Supervised Learning (SSL) on the target dataset for feature extraction, which is inefficient and limited by insufficient feature representation. Recently, pre-trained Foundation Models (FMs) have shown powerful feature extraction ability with a potential for better CSAL. However, this paradigm has been rarely investigated, with a lack of benchmarks for comparison of FMs in CSAL tasks. To this end, we propose MedCAL-Bench, the first systematic FM-based CSAL benchmark for medical image analysis. We evaluate 14 FMs and 7 CSAL strategies across 7 datasets under different annotation budgets, covering classification and segmentation tasks from diverse medical modalities. It is also the first CSAL benchmark that evaluates both the feature extraction and sample selection stages. Our experimental results reveal that: 1) Most FMs are effective feature extractors for CSAL, with DINO family performing the best in segmentation; 2) The performance differences of these FMs are large in segmentation tasks, while small for classification; 3) Different sample selection strategies should be considered in CSAL on different datasets, with Active Learning by Processing Surprisal (ALPS) performing the best in segmentation while RepDiv leading for classification. The code is available at https://github.com/HiLab-git/MedCAL-Bench.

Authors:Futian Wang, Yuhan Qiao, Xiao Wang, Fuling Wang, Yuxiang Zhang, Dengdi Sun
Title: R2GenKG: Hierarchical Multi-modal Knowledge Graph for LLM-based Radiology Report Generation
Abstract:
X-ray medical report generation is one of the important applications of artificial intelligence in healthcare. With the support of large foundation models, the quality of medical report generation has significantly improved. However, challenges such as hallucination and weak disease diagnostic capability still persist. In this paper, we first construct a large-scale multi-modal medical knowledge graph (termed M3KG) based on the ground truth medical report using the GPT-4o. It contains 2477 entities, 3 kinds of relations, 37424 triples, and 6943 disease-aware vision tokens for the CheXpert Plus dataset. Then, we sample it to obtain multi-granularity semantic graphs and use an R-GCN encoder for feature extraction. For the input X-ray image, we adopt the Swin-Transformer to extract the vision features and interact with the knowledge using cross-attention. The vision tokens are fed into a Q-former and retrieved the disease-aware vision tokens using another cross-attention. Finally, we adopt the large language model to map the semantic knowledge graph, input X-ray image, and disease-aware vision tokens into language descriptions. Extensive experiments on multiple datasets fully validated the effectiveness of our proposed knowledge graph and X-ray report generation framework. The source code of this paper will be released on https://github.com/Event-AHU/Medical_Image_Analysis.

Authors:Xinlei Yu, Zhangquan Chen, Yudong Zhang, Shilin Lu, Ruolin Shen, Jiangning Zhang, Xiaobin Hu, Yanwei Fu, Shuicheng Yan
Title: Visual Document Understanding and Question Answering: A Multi-Agent Collaboration Framework with Test-Time Scaling
Abstract:
Existing vision-language models (VLMs), whether generalists or specialists, remain constrained by their parameter scale, lack robust self-correction capabilities, and underperform in tasks involving long visual contexts and complex reasoning, resulting in suboptimal performance on document-based tasks. To address this, we propose MACT, a Multi-Agent Collaboration framework with Test-Time scaling, tailored for visual document understanding and visual question answering (VQA). It comprises four distinct small-scale agents, i.e., planning, execution, judgment, and answer agents, with clearly defined roles and effective collaboration. Notably, the judgment agent exclusively verifies correctness and redirects to prior agents for revisions, outperforming conventional correction strategies. To further expand the capability boundaries of the framework, we propose mixed reward modeling that balances agent-specific abilities and global collaboration, as well as agent-wise hybrid test-time scaling, which customizes different scaling strategies for each agent based on their functions. Evaluated on benchmarks spanning both document-based and non-document-based settings, our MACT shows superior performance with a smaller parameter scale without sacrificing the ability of general and mathematical tasks. Especially, it stands out in benchmarks involving long visual contexts and complicated reasoning. The three variants of MACT consistently hold the top three positions in average scores, leading in 13 of the 15 benchmarks. Code will be available at: https://github.com/YU-deep/MACT.git.

Authors:Pingchuan Ma, Xiaopei Yang, Yusong Li, Ming Gui, Felix Krause, Johannes Schusterbauer, Björn Ommer
Title: SCFlow: Implicitly Learning Style and Content Disentanglement with Flow Models
Abstract:
Explicitly disentangling style and content in vision models remains challenging due to their semantic overlap and the subjectivity of human perception. Existing methods propose separation through generative or discriminative objectives, but they still face the inherent ambiguity of disentangling intertwined concepts. Instead, we ask: Can we bypass explicit disentanglement by learning to merge style and content invertibly, allowing separation to emerge naturally? We propose SCFlow, a flow-matching framework that learns bidirectional mappings between entangled and disentangled representations. Our approach is built upon three key insights: 1) Training solely to merge style and content, a well-defined task, enables invertible disentanglement without explicit supervision; 2) flow matching bridges on arbitrary distributions, avoiding the restrictive Gaussian priors of diffusion models and normalizing flows; and 3) a synthetic dataset of 510,000 samples (51 styles $\times$ 10,000 content samples) was curated to simulate disentanglement through systematic style-content pairing. Beyond controllable generation tasks, we demonstrate that SCFlow generalizes to ImageNet-1k and WikiArt in zero-shot settings and achieves competitive performance, highlighting that disentanglement naturally emerges from the invertible merging process.

Authors:Yifei Sun, Zhanghao Chen, Hao Zheng, Yuqing Lu, Lixin Duan, Fenglei Fan, Ahmed Elazab, Xiang Wan, Changmiao Wang, Ruiquan Ge
Title: GL-LCM: Global-Local Latent Consistency Models for Fast High-Resolution Bone Suppression in Chest X-Ray Images
Abstract:
Chest X-Ray (CXR) imaging for pulmonary diagnosis raises significant challenges, primarily because bone structures can obscure critical details necessary for accurate diagnosis. Recent advances in deep learning, particularly with diffusion models, offer significant promise for effectively minimizing the visibility of bone structures in CXR images, thereby improving clarity and diagnostic accuracy. Nevertheless, existing diffusion-based methods for bone suppression in CXR imaging struggle to balance the complete suppression of bones with preserving local texture details. Additionally, their high computational demand and extended processing time hinder their practical use in clinical settings. To address these limitations, we introduce a Global-Local Latent Consistency Model (GL-LCM) architecture. This model combines lung segmentation, dual-path sampling, and global-local fusion, enabling fast high-resolution bone suppression in CXR images. To tackle potential boundary artifacts and detail blurring in local-path sampling, we further propose Local-Enhanced Guidance, which addresses these issues without additional training. Comprehensive experiments on a self-collected dataset SZCH-X-Rays, and the public dataset JSRT, reveal that our GL-LCM delivers superior bone suppression and remarkable computational efficiency, significantly outperforming several competitive methods. Our code is available at https://github.com/diaoquesang/GL-LCM.

Authors:Haoran Lin, Wenrui Chen, Xianchi Chen, Fan Yang, Qiang Diao, Wenxin Xie, Sijie Wu, Kailun Yang, Maojun Li, Yaonan Wang
Title: UniFucGrasp: Human-Hand-Inspired Unified Functional Grasp Annotation Strategy and Dataset for Diverse Dexterous Hands
Abstract:
Dexterous grasp datasets are vital for embodied intelligence, but mostly emphasize grasp stability, ignoring functional grasps needed for tasks like opening bottle caps or holding cup handles. Most rely on bulky, costly, and hard-to-control high-DOF Shadow Hands. Inspired by the human hand's underactuated mechanism, we establish UniFucGrasp, a universal functional grasp annotation strategy and dataset for multiple dexterous hand types. Based on biomimicry, it maps natural human motions to diverse hand structures and uses geometry-based force closure to ensure functional, stable, human-like grasps. This method supports low-cost, efficient collection of diverse, high-quality functional grasps. Finally, we establish the first multi-hand functional grasp dataset and provide a synthesis model to validate its effectiveness. Experiments on the UFG dataset, IsaacSim, and complex robotic tasks show that our method improves functional manipulation accuracy and grasp stability, enables efficient generalization across diverse robotic hands, and overcomes annotation cost and generalization challenges in dexterous grasping. The project page is at https://haochen611.github.io/UFG.

Authors:Tongshun Zhang, Pingping Liu, Zixuan Zhong, Zijian Zhang, Qiuzhan Zhou
Title: Beyond Illumination: Fine-Grained Detail Preservation in Extreme Dark Image Restoration
Abstract:
Recovering fine-grained details in extremely dark images remains challenging due to severe structural information loss and noise corruption. Existing enhancement methods often fail to preserve intricate details and sharp edges, limiting their effectiveness in downstream applications like text and edge detection. To address these deficiencies, we propose an efficient dual-stage approach centered on detail recovery for dark images. In the first stage, we introduce a Residual Fourier-Guided Module (RFGM) that effectively restores global illumination in the frequency domain. RFGM captures inter-stage and inter-channel dependencies through residual connections, providing robust priors for high-fidelity frequency processing while mitigating error accumulation risks from unreliable priors. The second stage employs complementary Mamba modules specifically designed for textural structure refinement: (1) Patch Mamba operates on channel-concatenated non-downsampled patches, meticulously modeling pixel-level correlations to enhance fine-grained details without resolution loss. (2) Grad Mamba explicitly focuses on high-gradient regions, alleviating state decay in state space models and prioritizing reconstruction of sharp edges and boundaries. Extensive experiments on multiple benchmark datasets and downstream applications demonstrate that our method significantly improves detail recovery performance while maintaining efficiency. Crucially, the proposed modules are lightweight and can be seamlessly integrated into existing Fourier-based frameworks with minimal computational overhead. Code is available at https://github.com/bywlzts/RFGM.

Authors:Jun Luo, Zijing Zhao, Yang Liu
Title: Zero Shot Domain Adaptive Semantic Segmentation by Synthetic Data Generation and Progressive Adaptation
Abstract:
Deep learning-based semantic segmentation models achieve impressive results yet remain limited in handling distribution shifts between training and test data. In this paper, we present SDGPA (Synthetic Data Generation and Progressive Adaptation), a novel method that tackles zero-shot domain adaptive semantic segmentation, in which no target images are available, but only a text description of the target domain's style is provided. To compensate for the lack of target domain training data, we utilize a pretrained off-the-shelf text-to-image diffusion model, which generates training images by transferring source domain images to target style. Directly editing source domain images introduces noise that harms segmentation because the layout of source images cannot be precisely maintained. To address inaccurate layouts in synthetic data, we propose a method that crops the source image, edits small patches individually, and then merges them back together, which helps improve spatial precision. Recognizing the large domain gap, SDGPA constructs an augmented intermediate domain, leveraging easier adaptation subtasks to enable more stable model adaptation to the target domain. Additionally, to mitigate the impact of noise in synthetic data, we design a progressive adaptation strategy, ensuring robust learning throughout the training process. Extensive experiments demonstrate that our method achieves state-of-the-art performance in zero-shot semantic segmentation. The code is available at https://github.com/ROUJINN/SDGPA

Authors:Hang Guo, Qing Zhang, Zixuan Gao, Siyuan Yang, Shulin Peng, Xiang Tao, Ting Yu, Yan Wang, Qingli Li
Title: Efficient Multi-Slide Visual-Language Feature Fusion for Placental Disease Classification
Abstract:
Accurate prediction of placental diseases via whole slide images (WSIs) is critical for preventing severe maternal and fetal complications. However, WSI analysis presents significant computational challenges due to the massive data volume. Existing WSI classification methods encounter critical limitations: (1) inadequate patch selection strategies that either compromise performance or fail to sufficiently reduce computational demands, and (2) the loss of global histological context resulting from patch-level processing approaches. To address these challenges, we propose an Efficient multimodal framework for Patient-level placental disease Diagnosis, named EmmPD. Our approach introduces a two-stage patch selection module that combines parameter-free and learnable compression strategies, optimally balancing computational efficiency with critical feature preservation. Additionally, we develop a hybrid multimodal fusion module that leverages adaptive graph learning to enhance pathological feature representation and incorporates textual medical reports to enrich global contextual understanding. Extensive experiments conducted on both a self-constructed patient-level Placental dataset and two public datasets demonstrating that our method achieves state-of-the-art diagnostic performance. The code is available at https://github.com/ECNU-MultiDimLab/EmmPD.

Authors:Gang Dai, Yifan Zhang, Yutao Qin, Qiangya Guo, Shuangping Huang, Shuicheng Yan
Title: Beyond Isolated Words: Diffusion Brush for Handwritten Text-Line Generation
Abstract:
Existing handwritten text generation methods primarily focus on isolated words. However, realistic handwritten text demands attention not only to individual words but also to the relationships between them, such as vertical alignment and horizontal spacing. Therefore, generating entire text lines emerges as a more promising and comprehensive task. However, this task poses significant challenges, including the accurate modeling of complex style patterns encompassing both intra- and inter-word relationships, and maintaining content accuracy across numerous characters. To address these challenges, we propose DiffBrush, a novel diffusion-based model for handwritten text-line generation. Unlike existing methods, DiffBrush excels in both style imitation and content accuracy through two key strategies: (1) content-decoupled style learning, which disentangles style from content to better capture intra-word and inter-word style patterns by using column- and row-wise masking; and (2) multi-scale content learning, which employs line and word discriminators to ensure global coherence and local accuracy of textual content. Extensive experiments show that DiffBrush excels in generating high-quality text lines, particularly in style reproduction and content preservation. Code is available at https://github.com/dailenson/DiffBrush.

Authors:Jisoo Kim, Wooseok Seo, Junwan Kim, Seungho Park, Sooyeon Park, Youngjae Yu
Title: V.I.P. : Iterative Online Preference Distillation for Efficient Video Diffusion Models
Abstract:
With growing interest in deploying text-to-video (T2V) models in resource-constrained environments, reducing their high computational cost has become crucial, leading to extensive research on pruning and knowledge distillation methods while maintaining performance. However, existing distillation methods primarily rely on supervised fine-tuning (SFT), which often leads to mode collapse as pruned models with reduced capacity fail to directly match the teacher's outputs, ultimately resulting in degraded quality. To address this challenge, we propose an effective distillation method, ReDPO, that integrates DPO and SFT. Our approach leverages DPO to guide the student model to focus on recovering only the targeted properties, rather than passively imitating the teacher, while also utilizing SFT to enhance overall performance. We additionally propose V.I.P., a novel framework for filtering and curating high-quality pair datasets, along with a step-by-step online approach for calibrated training. We validate our method on two leading T2V models, VideoCrafter2 and AnimateDiff, achieving parameter reduction of 36.2% and 67.5% each, while maintaining or even surpassing the performance of full models. Further experiments demonstrate the effectiveness of both ReDPO and V.I.P. framework in enabling efficient and high-quality video generation. Our code and videos are available at https://jiiiisoo.github.io/VIP.github.io/.

Authors:Xingchao Yang, Shiori Ueda, Yuantian Huang, Tomoya Akiyama, Takafumi Taketomi
Title: FFHQ-Makeup: Paired Synthetic Makeup Dataset with Facial Consistency Across Multiple Styles
Abstract:
Paired bare-makeup facial images are essential for a wide range of beauty-related tasks, such as virtual try-on, facial privacy protection, and facial aesthetics analysis. However, collecting high-quality paired makeup datasets remains a significant challenge. Real-world data acquisition is constrained by the difficulty of collecting large-scale paired images, while existing synthetic approaches often suffer from limited realism or inconsistencies between bare and makeup images. Current synthetic methods typically fall into two categories: warping-based transformations, which often distort facial geometry and compromise the precision of makeup; and text-to-image generation, which tends to alter facial identity and expression, undermining consistency. In this work, we present FFHQ-Makeup, a high-quality synthetic makeup dataset that pairs each identity with multiple makeup styles while preserving facial consistency in both identity and expression. Built upon the diverse FFHQ dataset, our pipeline transfers real-world makeup styles from existing datasets onto 18K identities by introducing an improved makeup transfer method that disentangles identity and makeup. Each identity is paired with 5 different makeup styles, resulting in a total of 90K high-quality bare-makeup image pairs. To the best of our knowledge, this is the first work that focuses specifically on constructing a makeup dataset. We hope that FFHQ-Makeup fills the gap of lacking high-quality bare-makeup paired datasets and serves as a valuable resource for future research in beauty-related tasks.

Authors:Ting Lei, Shaofeng Yin, Qingchao Chen, Yuxin Peng, Yang Liu
Title: Open-Vocabulary HOI Detection with Interaction-aware Prompt and Concept Calibration
Abstract:
Open Vocabulary Human-Object Interaction (HOI) detection aims to detect interactions between humans and objects while generalizing to novel interaction classes beyond the training set. Current methods often rely on Vision and Language Models (VLMs) but face challenges due to suboptimal image encoders, as image-level pre-training does not align well with the fine-grained region-level interaction detection required for HOI. Additionally, effectively encoding textual descriptions of visual appearances remains difficult, limiting the model's ability to capture detailed HOI relationships. To address these issues, we propose INteraction-aware Prompting with Concept Calibration (INP-CC), an end-to-end open-vocabulary HOI detector that integrates interaction-aware prompts and concept calibration. Specifically, we propose an interaction-aware prompt generator that dynamically generates a compact set of prompts based on the input scene, enabling selective sharing among similar interactions. This approach directs the model's attention to key interaction patterns rather than generic image-level semantics, enhancing HOI detection. Furthermore, we refine HOI concept representations through language model-guided calibration, which helps distinguish diverse HOI concepts by investigating visual similarities across categories. A negative sampling strategy is also employed to improve inter-modal similarity modeling, enabling the model to better differentiate visually similar but semantically distinct actions. Extensive experimental results demonstrate that INP-CC significantly outperforms state-of-the-art models on the SWIG-HOI and HICO-DET datasets. Code is available at https://github.com/ltttpku/INP-CC.

Authors:Yidan Wang, Chenyi Zhuang, Wutao Liu, Pan Gao, Nicu Sebe
Title: AlignCAT: Visual-Linguistic Alignment of Category and Attributefor Weakly Supervised Visual Grounding
Abstract:
Weakly supervised visual grounding (VG) aims to locate objects in images based on text descriptions. Despite significant progress, existing methods lack strong cross-modal reasoning to distinguish subtle semantic differences in text expressions due to category-based and attribute-based ambiguity. To address these challenges, we introduce AlignCAT, a novel query-based semantic matching framework for weakly supervised VG. To enhance visual-linguistic alignment, we propose a coarse-grained alignment module that utilizes category information and global context, effectively mitigating interference from category-inconsistent objects. Subsequently, a fine-grained alignment module leverages descriptive information and captures word-level text features to achieve attribute consistency. By exploiting linguistic cues to their fullest extent, our proposed AlignCAT progressively filters out misaligned visual queries and enhances contrastive learning efficiency. Extensive experiments on three VG benchmarks, namely RefCOCO, RefCOCO+, and RefCOCOg, verify the superiority of AlignCAT against existing weakly supervised methods on two VG tasks. Our code is available at: https://github.com/I2-Multimedia-Lab/AlignCAT.

Authors:Liangyang Ouyang, Jiafeng Mao
Title: LORE: Latent Optimization for Precise Semantic Control in Rectified Flow-based Image Editing
Abstract:
Text-driven image editing enables users to flexibly modify visual content through natural language instructions, and is widely applied to tasks such as semantic object replacement, insertion, and removal. While recent inversion-based editing methods using rectified flow models have achieved promising results in image quality, we identify a structural limitation in their editing behavior: the semantic bias toward the source concept encoded in the inverted noise tends to suppress attention to the target concept. This issue becomes particularly critical when the source and target semantics are dissimilar, where the attention mechanism inherently leads to editing failure or unintended modifications in non-target regions. In this paper, we systematically analyze and validate this structural flaw, and introduce LORE, a training-free and efficient image editing method. LORE directly optimizes the inverted noise, addressing the core limitations in generalization and controllability of existing approaches, enabling stable, controllable, and general-purpose concept replacement, without requiring architectural modification or model fine-tuning. We conduct comprehensive evaluations on three challenging benchmarks: PIEBench, SmartEdit, and GapEdit. Experimental results show that LORE significantly outperforms strong baselines in terms of semantic alignment, image quality, and background fidelity, demonstrating the effectiveness and scalability of latent-space optimization for general-purpose image editing. Our implementation is available at https://github.com/oyly16/LORE.

Authors:Haozhou Zhai, Yanzhe Gao, Tianjiang Hu
Title: Uint: Building Uint Detection Dataset
Abstract:
Fire scene datasets are crucial for training robust computer vision models, particularly in tasks such as fire early warning and emergency rescue operations. However, among the currently available fire-related data, there is a significant shortage of annotated data specifically targeting building units.To tackle this issue, we introduce an annotated dataset of building units captured by drones, which incorporates multiple enhancement techniques. We construct backgrounds using real multi-story scenes, combine motion blur and brightness adjustment to enhance the authenticity of the captured images, simulate drone shooting conditions under various circumstances, and employ large models to generate fire effects at different locations.The synthetic dataset generated by this method encompasses a wide range of building scenarios, with a total of 1,978 images. This dataset can effectively improve the generalization ability of fire unit detection, providing multi-scenario and scalable data while reducing the risks and costs associated with collecting real fire data. The dataset is available at https://github.com/boilermakerr/FireUnitData.

Authors:Sai Ma, Zhuang Li, John A Taylor
Title: Landsat30-AU: A Vision-Language Dataset for Australian Landsat Imagery
Abstract:
Vision language models (VLMs) that enable natural language interaction with satellite imagery can democratize Earth observation by accelerating expert workflows, making data accessible to non-specialists, and enabling planet-scale automation. However, existing datasets focus mainly on short-term, high-resolution imagery from a limited number of satellites, overlooking low-resolution, multi-satellite, long-term archives, such as Landsat, that are essential for affordable and bias-robust global monitoring. We address this gap with Landsat30-AU, a large-scale vision-language dataset built from 30-meter resolution imagery collected by four Landsat satellites (5, 7, 8, and 9) over Australia, spanning more than 36 years. The dataset includes two components: Landsat30-AU-Cap, containing $196,262$ image-caption pairs, and Landsat30-AU-VQA, comprising 17,725 human-verified visual question answering (VQA) samples across eight remote sensing domains. Both datasets are curated through a bootstrapped pipeline that leverages generic VLMs with iterative refinement and human verification to ensure quality. Our evaluation of eight VLMs on our benchmark reveals that off-the-shelf models struggle to understand satellite imagery. The open-source remote-sensing VLM EarthDial achieves only 0.07 SPIDEr in captioning and a VQA accuracy of 0.48, highlighting the limitations of current approaches. Encouragingly, lightweight fine-tuning of Qwen2.5-VL-7B on Landsat30-AU improves captioning performance from 0.11 to 0.31 SPIDEr and boosts VQA accuracy from 0.74 to 0.87. Code and data are available at https://github.com/papersubmit1/landsat30-au.

Authors:Heng Jia, Linchao Zhu, Na Zhao
Title: H3R: Hybrid Multi-view Correspondence for Generalizable 3D Reconstruction
Abstract:
Despite recent advances in feed-forward 3D Gaussian Splatting, generalizable 3D reconstruction remains challenging, particularly in multi-view correspondence modeling. Existing approaches face a fundamental trade-off: explicit methods achieve geometric precision but struggle with ambiguous regions, while implicit methods provide robustness but suffer from slow convergence. We present H3R, a hybrid framework that addresses this limitation by integrating volumetric latent fusion with attention-based feature aggregation. Our framework consists of two complementary components: an efficient latent volume that enforces geometric consistency through epipolar constraints, and a camera-aware Transformer that leverages Plücker coordinates for adaptive correspondence refinement. By integrating both paradigms, our approach enhances generalization while converging 2$\times$ faster than existing methods. Furthermore, we show that spatial-aligned foundation models (e.g., SD-VAE) substantially outperform semantic-aligned models (e.g., DINOv2), resolving the mismatch between semantic representations and spatial reconstruction requirements. Our method supports variable-number and high-resolution input views while demonstrating robust cross-dataset generalization. Extensive experiments show that our method achieves state-of-the-art performance across multiple benchmarks, with significant PSNR improvements of 0.59 dB, 1.06 dB, and 0.22 dB on the RealEstate10K, ACID, and DTU datasets, respectively. Code is available at https://github.com/JiaHeng-DLUT/H3R.

Authors:Tianjiao Jiang, Zhen Zhang, Yuhang Liu, Javen Qinfeng Shi
Title: Causal Disentanglement and Cross-Modal Alignment for Enhanced Few-Shot Learning
Abstract:
Few-shot learning (FSL) often requires effective adaptation of models using limited labeled data. However, most existing FSL methods rely on entangled representations, requiring the model to implicitly recover the unmixing process to obtain disentangled representations using only limited supervision, which hinders effective adaptation. Recent theoretical studies show that multimodal contrastive learning methods, such as CLIP, can disentangle latent representations up to linear transformations. In light of this, we propose the Causal CLIP Adapter (CCA), a novel framework that explicitly disentangles visual features extracted from CLIP using unsupervised Independent Component Analysis (ICA). This removes the need to learn the unmixing process from the labeled data, thereby reducing the number of trainable parameters and mitigating overfitting. Taking a step further, while ICA can obtain visual disentangled representations, it may also disrupt CLIP's intra- and inter-modal alignment. To counteract this, CCA further leverages CLIP's inherent cross-modal alignment by enhancing it in two ways: unidirectionally, through fine-tuning a CLIP-based text classifier, and bidirectionally, via a cross-attention mechanism that enriches visual and textual representations through mutual interaction. Both unimodal and cross-modal classification outputs can be effectively combined linearly to improve classification accuracy. Extensive experiments on 11 benchmark datasets demonstrate that our method consistently outperforms state-of-the-art approaches in terms of few-shot performance and robustness to distributional shifts, while maintaining computational efficiency. Code will be available at https://github.com/tianjiao-j/CCA.

Authors:Trinh Quoc Nguyen, Oky Dicky Ardiansyah Prima, Katsuyoshi Hotta
Title: CORE-ReID: Comprehensive Optimization and Refinement through Ensemble fusion in Domain Adaptation for person re-identification
Abstract:
This study introduces a novel framework, "Comprehensive Optimization and Refinement through Ensemble Fusion in Domain Adaptation for Person Re-identification (CORE-ReID)", to address an Unsupervised Domain Adaptation (UDA) for Person Re-identification (ReID). The framework utilizes CycleGAN to generate diverse data that harmonizes differences in image characteristics from different camera sources in the pre-training stage. In the fine-tuning stage, based on a pair of teacher-student networks, the framework integrates multi-view features for multi-level clustering to derive diverse pseudo labels. A learnable Ensemble Fusion component that focuses on fine-grained local information within global features is introduced to enhance learning comprehensiveness and avoid ambiguity associated with multiple pseudo-labels. Experimental results on three common UDAs in Person ReID demonstrate significant performance gains over state-of-the-art approaches. Additional enhancements, such as Efficient Channel Attention Block and Bidirectional Mean Feature Normalization mitigate deviation effects and adaptive fusion of global and local features using the ResNet-based model, further strengthening the framework. The proposed framework ensures clarity in fusion features, avoids ambiguity, and achieves high ac-curacy in terms of Mean Average Precision, Top-1, Top-5, and Top-10, positioning it as an advanced and effective solution for the UDA in Person ReID. Our codes and models are available at https://github.com/TrinhQuocNguyen/CORE-ReID.

Authors:Hyebin Cho, Jaehyup Lee
Title: Uncertainty-Guided Face Matting for Occlusion-Aware Face Transformation
Abstract:
Face filters have become a key element of short-form video content, enabling a wide array of visual effects such as stylization and face swapping. However, their performance often degrades in the presence of occlusions, where objects like hands, hair, or accessories obscure the face. To address this limitation, we introduce the novel task of face matting, which estimates fine-grained alpha mattes to separate occluding elements from facial regions. We further present FaceMat, a trimap-free, uncertainty-aware framework that predicts high-quality alpha mattes under complex occlusions. Our approach leverages a two-stage training pipeline: a teacher model is trained to jointly estimate alpha mattes and per-pixel uncertainty using a negative log-likelihood (NLL) loss, and this uncertainty is then used to guide the student model through spatially adaptive knowledge distillation. This formulation enables the student to focus on ambiguous or occluded regions, improving generalization and preserving semantic consistency. Unlike previous approaches that rely on trimaps or segmentation masks, our framework requires no auxiliary inputs making it well-suited for real-time applications. In addition, we reformulate the matting objective by explicitly treating skin as foreground and occlusions as background, enabling clearer compositing strategies. To support this task, we newly constructed CelebAMat, a large-scale synthetic dataset specifically designed for occlusion-aware face matting. Extensive experiments show that FaceMat outperforms state-of-the-art methods across multiple benchmarks, enhancing the visual quality and robustness of face filters in real-world, unconstrained video scenarios. The source code and CelebAMat dataset are available at https://github.com/hyebin-c/FaceMat.git

Authors:Zeyu Zhu, Weijia Wu, Mike Zheng Shou
Title: Multi-human Interactive Talking Dataset
Abstract:
Existing studies on talking video generation have predominantly focused on single-person monologues or isolated facial animations, limiting their applicability to realistic multi-human interactions. To bridge this gap, we introduce MIT, a large-scale dataset specifically designed for multi-human talking video generation. To this end, we develop an automatic pipeline that collects and annotates multi-person conversational videos. The resulting dataset comprises 12 hours of high-resolution footage, each featuring two to four speakers, with fine-grained annotations of body poses and speech interactions. It captures natural conversational dynamics in multi-speaker scenario, offering a rich resource for studying interactive visual behaviors. To demonstrate the potential of MIT, we furthur propose CovOG, a baseline model for this novel task. It integrates a Multi-Human Pose Encoder (MPE) to handle varying numbers of speakers by aggregating individual pose embeddings, and an Interactive Audio Driver (IAD) to modulate head dynamics based on speaker-specific audio features. Together, these components showcase the feasibility and challenges of generating realistic multi-human talking videos, establishing MIT as a valuable benchmark for future research. The code is avalibale at: https://github.com/showlab/Multi-human-Talking-Video-Dataset.

Authors:Zachary Yahn, Selim Furkan Tekin, Fatih Ilhan, Sihao Hu, Tiansheng Huang, Yichang Xu, Margaret Loper, Ling Liu
Title: Adversarial Attention Perturbations for Large Object Detection Transformers
Abstract:
Adversarial perturbations are useful tools for exposing vulnerabilities in neural networks. Existing adversarial perturbation methods for object detection are either limited to attacking CNN-based detectors or weak against transformer-based detectors. This paper presents an Attention-Focused Offensive Gradient (AFOG) attack against object detection transformers. By design, AFOG is neural-architecture agnostic and effective for attacking both large transformer-based object detectors and conventional CNN-based detectors with a unified adversarial attention framework. This paper makes three original contributions. First, AFOG utilizes a learnable attention mechanism that focuses perturbations on vulnerable image regions in multi-box detection tasks, increasing performance over non-attention baselines by up to 30.6%. Second, AFOG's attack loss is formulated by integrating two types of feature loss through learnable attention updates with iterative injection of adversarial perturbations. Finally, AFOG is an efficient and stealthy adversarial perturbation method. It probes the weak spots of detection transformers by adding strategically generated and visually imperceptible perturbations which can cause well-trained object detection models to fail. Extensive experiments conducted with twelve large detection transformers on COCO demonstrate the efficacy of AFOG. Our empirical results also show that AFOG outperforms existing attacks on transformer-based and CNN-based object detectors by up to 83% with superior speed and imperceptibility. Code is available at https://github.com/zacharyyahn/AFOG.

Authors:Chenxu Zhang, Zenan Li, Hongyi Xu, You Xie, Xiaochen Zhao, Tianpei Gu, Guoxian Song, Xin Chen, Chao Liang, Jianwen Jiang, Linjie Luo
Title: X-Actor: Emotional and Expressive Long-Range Portrait Acting from Audio
Abstract:
We present X-Actor, a novel audio-driven portrait animation framework that generates lifelike, emotionally expressive talking head videos from a single reference image and an input audio clip. Unlike prior methods that emphasize lip synchronization and short-range visual fidelity in constrained speaking scenarios, X-Actor enables actor-quality, long-form portrait performance capturing nuanced, dynamically evolving emotions that flow coherently with the rhythm and content of speech. Central to our approach is a two-stage decoupled generation pipeline: an audio-conditioned autoregressive diffusion model that predicts expressive yet identity-agnostic facial motion latent tokens within a long temporal context window, followed by a diffusion-based video synthesis module that translates these motions into high-fidelity video animations. By operating in a compact facial motion latent space decoupled from visual and identity cues, our autoregressive diffusion model effectively captures long-range correlations between audio and facial dynamics through a diffusion-forcing training paradigm, enabling infinite-length emotionally-rich motion prediction without error accumulation. Extensive experiments demonstrate that X-Actor produces compelling, cinematic-style performances that go beyond standard talking head animations and achieves state-of-the-art results in long-range, audio-driven emotional portrait acting.

Authors:Mahnoor Fatima Saad, Ziad Al-Halah
Title: How Would It Sound? Material-Controlled Multimodal Acoustic Profile Generation for Indoor Scenes
Abstract:
How would the sound in a studio change with a carpeted floor and acoustic tiles on the walls? We introduce the task of material-controlled acoustic profile generation, where, given an indoor scene with specific audio-visual characteristics, the goal is to generate a target acoustic profile based on a user-defined material configuration at inference time. We address this task with a novel encoder-decoder approach that encodes the scene's key properties from an audio-visual observation and generates the target Room Impulse Response (RIR) conditioned on the material specifications provided by the user. Our model enables the generation of diverse RIRs based on various material configurations defined dynamically at inference time. To support this task, we create a new benchmark, the Acoustic Wonderland Dataset, designed for developing and evaluating material-aware RIR prediction methods under diverse and challenging settings. Our results demonstrate that the proposed model effectively encodes material information and generates high-fidelity RIRs, outperforming several baselines and state-of-the-art methods.

Authors:Mehrdad Moradi, Kamran Paynabar
Title: RDDPM: Robust Denoising Diffusion Probabilistic Model for Unsupervised Anomaly Segmentation
Abstract:
Recent advancements in diffusion models have demonstrated significant success in unsupervised anomaly segmentation. For anomaly segmentation, these models are first trained on normal data; then, an anomalous image is noised to an intermediate step, and the normal image is reconstructed through backward diffusion. Unlike traditional statistical methods, diffusion models do not rely on specific assumptions about the data or target anomalies, making them versatile for use across different domains. However, diffusion models typically assume access to normal data for training, limiting their applicability in realistic settings. In this paper, we propose novel robust denoising diffusion models for scenarios where only contaminated (i.e., a mix of normal and anomalous) unlabeled data is available. By casting maximum likelihood estimation of the data as a nonlinear regression problem, we reinterpret the denoising diffusion probabilistic model through a regression lens. Using robust regression, we derive a robust version of denoising diffusion probabilistic models. Our novel framework offers flexibility in constructing various robust diffusion models. Our experiments show that our approach outperforms current state of the art diffusion models, for unsupervised anomaly segmentation when only contaminated data is available. Our method outperforms existing diffusion-based approaches, achieving up to 8.08\% higher AUROC and 10.37\% higher AUPRC on MVTec datasets. The implementation code is available at: https://github.com/mehrdadmoradi124/RDDPM

Authors:Farzad Beizaee, Sina Hajimiri, Ismail Ben Ayed, Gregory Lodygensky, Christian Desrosiers, Jose Dolz
Title: REFLECT: Rectified Flows for Efficient Brain Anomaly Correction Transport
Abstract:
Unsupervised anomaly detection (UAD) in brain imaging is crucial for identifying pathologies without the need for labeled data. However, accurately localizing anomalies remains challenging due to the intricate structure of brain anatomy and the scarcity of abnormal examples. In this work, we introduce REFLECT, a novel framework that leverages rectified flows to establish a direct, linear trajectory for correcting abnormal MR images toward a normal distribution. By learning a straight, one-step correction transport map, our method efficiently corrects brain anomalies and can precisely localize anomalies by detecting discrepancies between anomalous input and corrected counterpart. In contrast to the diffusion-based UAD models, which require iterative stochastic sampling, rectified flows provide a direct transport map, enabling single-step inference. Extensive experiments on popular UAD brain segmentation benchmarks demonstrate that REFLECT significantly outperforms state-of-the-art unsupervised anomaly detection methods. The code is available at https://github.com/farzad-bz/REFLECT.

Authors:Mikołaj Zieliński, Krzysztof Byrski, Tomasz Szczepanik, Przemysław Spurek
Title: GENIE: Gaussian Encoding for Neural Radiance Fields Interactive Editing
Abstract:
Neural Radiance Fields (NeRF) and Gaussian Splatting (GS) have recently transformed 3D scene representation and rendering. NeRF achieves high-fidelity novel view synthesis by learning volumetric representations through neural networks, but its implicit encoding makes editing and physical interaction challenging. In contrast, GS represents scenes as explicit collections of Gaussian primitives, enabling real-time rendering, faster training, and more intuitive manipulation. This explicit structure has made GS particularly well-suited for interactive editing and integration with physics-based simulation. In this paper, we introduce GENIE (Gaussian Encoding for Neural Radiance Fields Interactive Editing), a hybrid model that combines the photorealistic rendering quality of NeRF with the editable and structured representation of GS. Instead of using spherical harmonics for appearance modeling, we assign each Gaussian a trainable feature embedding. These embeddings are used to condition a NeRF network based on the k nearest Gaussians to each query point. To make this conditioning efficient, we introduce Ray-Traced Gaussian Proximity Search (RT-GPS), a fast nearest Gaussian search based on a modified ray-tracing pipeline. We also integrate a multi-resolution hash grid to initialize and update Gaussian features. Together, these components enable real-time, locality-aware editing: as Gaussian primitives are repositioned or modified, their interpolated influence is immediately reflected in the rendered output. By combining the strengths of implicit and explicit representations, GENIE supports intuitive scene manipulation, dynamic interaction, and compatibility with physical simulation, bridging the gap between geometry-based editing and neural rendering. The code can be found under (https://github.com/MikolajZielinski/genie)

Authors:Haoyang Li, Liang Wang, Chao Wang, Siyu Zhou, Jing Jiang, Yan Peng, Guodong Long
Title: Raw Data Matters: Enhancing Prompt Tuning by Internal Augmentation on Vision-Language Models
Abstract:
For CLIP-based prompt tuning, introducing more data as additional knowledge for enhancing fine-tuning process is proved to be an effective approach. Existing data amplification strategies for prompt tuning typically rely on external knowledge (e.g., large language models or pre-structured knowledge bases), resulting in higher costs for data collection and processing, while generally ignoring further utilization of features in image modality. To address this, we propose Augmentation-driven Prompt Tuning (AugPT), a self-contained distillation-based prompt tuning approach using only internal augmentation on raw dataset to better exploit known features. Specifically, AugPT employs self-supervised augmentation on unlabeled images in the training set, and introduces a novel gating mechanism based on consensus test, reusing the pre-trained prompt tuning backbone model to spontaneously filter noisy samples, further enhancing the quality of augmented views. Extensive experiments validate that AugPT simultaneously enhances model performance and generalization capability without using appended external knowledge. The code of AugPT is available at: https://github.com/JREion/AugPT .

Authors:Xiaoke Huang, Juncheng Wu, Hui Liu, Xianfeng Tang, Yuyin Zhou
Title: MedVLThinker: Simple Baselines for Multimodal Medical Reasoning
Abstract:
Large Reasoning Models (LRMs) have introduced a new paradigm in AI by enabling models to ``think before responding" via chain-of-thought reasoning. However, the absence of open and reproducible recipes for building reasoning-centric medical LMMs hinders community-wide research, analysis, and comparison. In this paper, we present MedVLThinker, a suite of simple yet strong baselines. Our fully open recipe consists of: (1) systematic data curation for both text-only and image-text medical data, filtered according to varying levels of reasoning difficulty, and (2) two training paradigms: Supervised Fine-Tuning (SFT) on distilled reasoning traces and Reinforcement Learning with Verifiable Rewards (RLVR) based on final answer correctness. Across extensive experiments on the Qwen2.5-VL model family (3B, 7B) and six medical QA benchmarks, we find that RLVR consistently and significantly outperforms SFT. Additionally, under the RLVR framework, a key, counter-intuitive finding is that training on our curated text-only reasoning data provides a more substantial performance boost than training on multimodal image-text data. Our best open 7B model, trained using the RLVR recipe on text-only data, establishes a new state-of-the-art on existing public VQA benchmarks, surpassing all previous open-source medical LMMs. Furthermore, scaling our model to 32B achieves performance on par with the proprietary GPT-4o. We release all curated data, models, and code to provide the community with a strong, open foundation for future research in multimodal medical reasoning.

Authors:Zhengdao Li, Siheng Wang, Zeyu Zhang, Hao Tang
Title: ReMoMask: Retrieval-Augmented Masked Motion Generation
Abstract:
Text-to-Motion (T2M) generation aims to synthesize realistic and semantically aligned human motion sequences from natural language descriptions. However, current approaches face dual challenges: Generative models (e.g., diffusion models) suffer from limited diversity, error accumulation, and physical implausibility, while Retrieval-Augmented Generation (RAG) methods exhibit diffusion inertia, partial-mode collapse, and asynchronous artifacts. To address these limitations, we propose ReMoMask, a unified framework integrating three key innovations: 1) A Bidirectional Momentum Text-Motion Model decouples negative sample scale from batch size via momentum queues, substantially improving cross-modal retrieval precision; 2) A Semantic Spatio-temporal Attention mechanism enforces biomechanical constraints during part-level fusion to eliminate asynchronous artifacts; 3) RAG-Classier-Free Guidance incorporates minor unconditional generation to enhance generalization. Built upon MoMask's RVQ-VAE, ReMoMask efficiently generates temporally coherent motions in minimal steps. Extensive experiments on standard benchmarks demonstrate the state-of-the-art performance of ReMoMask, achieving a 3.88% and 10.97% improvement in FID scores on HumanML3D and KIT-ML, respectively, compared to the previous SOTA method RAG-T2M. Code: https://github.com/AIGeeksGroup/ReMoMask. Website: https://aigeeksgroup.github.io/ReMoMask.

Authors:Wei Sun, Linhan Cao, Yuqin Cao, Weixia Zhang, Wen Wen, Kaiwei Zhang, Zijian Chen, Fangfang Lu, Xiongkuo Min, Guangtao Zhai
Title: Engagement Prediction of Short Videos with Large Multimodal Models
Abstract:
The rapid proliferation of user-generated content (UGC) on short-form video platforms has made video engagement prediction increasingly important for optimizing recommendation systems and guiding content creation. However, this task remains challenging due to the complex interplay of factors such as semantic content, visual quality, audio characteristics, and user background. Prior studies have leveraged various types of features from different modalities, such as visual quality, semantic content, background sound, etc., but often struggle to effectively model their cross-feature and cross-modality interactions. In this work, we empirically investigate the potential of large multimodal models (LMMs) for video engagement prediction. We adopt two representative LMMs: VideoLLaMA2, which integrates audio, visual, and language modalities, and Qwen2.5-VL, which models only visual and language modalities. Specifically, VideoLLaMA2 jointly processes key video frames, text-based metadata, and background sound, while Qwen2.5-VL utilizes only key video frames and text-based metadata. Trained on the SnapUGC dataset, both models demonstrate competitive performance against state-of-the-art baselines, showcasing the effectiveness of LMMs in engagement prediction. Notably, VideoLLaMA2 consistently outperforms Qwen2.5-VL, highlighting the importance of audio features in engagement prediction. By ensembling two types of models, our method achieves first place in the ICCV VQualA 2025 EVQA-SnapUGC Challenge on short-form video engagement prediction. The code is available at https://github.com/sunwei925/LMM-EVQA.git.

Authors:Sheng Wu, Fei Teng, Hao Shi, Qi Jiang, Kai Luo, Kaiwei Wang, Kailun Yang
Title: QuaDreamer: Controllable Panoramic Video Generation for Quadruped Robots
Abstract:
Panoramic cameras, capturing comprehensive 360-degree environmental data, are suitable for quadruped robots in surrounding perception and interaction with complex environments. However, the scarcity of high-quality panoramic training data-caused by inherent kinematic constraints and complex sensor calibration challenges-fundamentally limits the development of robust perception systems tailored to these embodied platforms. To address this issue, we propose QuaDreamer-the first panoramic data generation engine specifically designed for quadruped robots. QuaDreamer focuses on mimicking the motion paradigm of quadruped robots to generate highly controllable, realistic panoramic videos, providing a data source for downstream tasks. Specifically, to effectively capture the unique vertical vibration characteristics exhibited during quadruped locomotion, we introduce Vertical Jitter Encoding (VJE). VJE extracts controllable vertical signals through frequency-domain feature filtering and provides high-quality prompts. To facilitate high-quality panoramic video generation under jitter signal control, we propose a Scene-Object Controller (SOC) that effectively manages object motion and boosts background jitter control through the attention mechanism. To address panoramic distortions in wide-FoV video generation, we propose the Panoramic Enhancer (PE)-a dual-stream architecture that synergizes frequency-texture refinement for local detail enhancement with spatial-structure correction for global geometric consistency. We further demonstrate that the generated video sequences can serve as training data for the quadruped robot's panoramic visual perception model, enhancing the performance of multi-object tracking in 360-degree scenes. The source code and model weights will be publicly available at https://github.com/losehu/QuaDreamer.

Authors:Yaofeng Cheng, Xinkai Gao, Sen Zhang, Chao Zeng, Fusheng Zha, Lining Sun, Chenguang Yang
Title: Rethinking Transparent Object Grasping: Depth Completion with Monocular Depth Estimation and Instance Mask
Abstract:
Due to the optical properties, transparent objects often lead depth cameras to generate incomplete or invalid depth data, which in turn reduces the accuracy and reliability of robotic grasping. Existing approaches typically input the RGB-D image directly into the network to output the complete depth, expecting the model to implicitly infer the reliability of depth values. However, while effective in training datasets, such methods often fail to generalize to real-world scenarios, where complex light interactions lead to highly variable distributions of valid and invalid depth data. To address this, we propose ReMake, a novel depth completion framework guided by an instance mask and monocular depth estimation. By explicitly distinguishing transparent regions from non-transparent ones, the mask enables the model to concentrate on learning accurate depth estimation in these areas from RGB-D input during training. This targeted supervision reduces reliance on implicit reasoning and improves generalization to real-world scenarios. Additionally, monocular depth estimation provides depth context between the transparent object and its surroundings, enhancing depth prediction accuracy. Extensive experiments show that our method outperforms existing approaches on both benchmark datasets and real-world scenarios, demonstrating superior accuracy and generalization capability. Code and videos are available at https://chengyaofeng.github.io/ReMake.github.io/.

Authors:Jianchao Wang, Peng Zhou, Cen Li, Rong Quan, Jie Qin
Title: Low-Frequency First: Eliminating Floating Artifacts in 3D Gaussian Splatting
Abstract:
3D Gaussian Splatting (3DGS) is a powerful and computationally efficient representation for 3D reconstruction. Despite its strengths, 3DGS often produces floating artifacts, which are erroneous structures detached from the actual geometry and significantly degrade visual fidelity. The underlying mechanisms causing these artifacts, particularly in low-quality initialization scenarios, have not been fully explored. In this paper, we investigate the origins of floating artifacts from a frequency-domain perspective and identify under-optimized Gaussians as the primary source. Based on our analysis, we propose \textit{Eliminating-Floating-Artifacts} Gaussian Splatting (EFA-GS), which selectively expands under-optimized Gaussians to prioritize accurate low-frequency learning. Additionally, we introduce complementary depth-based and scale-based strategies to dynamically refine Gaussian expansion, effectively mitigating detail erosion. Extensive experiments on both synthetic and real-world datasets demonstrate that EFA-GS substantially reduces floating artifacts while preserving high-frequency details, achieving an improvement of 1.68 dB in PSNR over baseline method on our RWLQ dataset. Furthermore, we validate the effectiveness of our approach in downstream 3D editing tasks. We provide our implementation in https://jcwang-gh.github.io/EFA-GS.

Authors:Junxiao Xue, Xiaozhen Liu, Xuecheng Wu, Fei Yu, Jun Wang
Title: InfoSyncNet: Information Synchronization Temporal Convolutional Network for Visual Speech Recognition
Abstract:
Estimating spoken content from silent videos is crucial for applications in Assistive Technology (AT) and Augmented Reality (AR). However, accurately mapping lip movement sequences in videos to words poses significant challenges due to variability across sequences and the uneven distribution of information within each sequence. To tackle this, we introduce InfoSyncNet, a non-uniform sequence modeling network enhanced by tailored data augmentation techniques. Central to InfoSyncNet is a non-uniform quantization module positioned between the encoder and decoder, enabling dynamic adjustment to the network's focus and effectively handling the natural inconsistencies in visual speech data. Additionally, multiple training strategies are incorporated to enhance the model's capability to handle variations in lighting and the speaker's orientation. Comprehensive experiments on the LRW and LRW1000 datasets confirm the superiority of InfoSyncNet, achieving new state-of-the-art accuracies of 92.0% and 60.7% Top-1 ACC. The code is available for download (see comments).

Authors:Xiao Wang, Hao Si, Fan Zhang, Xiaoya Zhou, Dengdi Sun, Wanli Lyu, Qingquan Yang, Jin Tang
Title: HGTS-Former: Hierarchical HyperGraph Transformer for Multivariate Time Series Analysis
Abstract:
Multivariate time series analysis has long been one of the key research topics in the field of artificial intelligence. However, analyzing complex time series data remains a challenging and unresolved problem due to its high dimensionality, dynamic nature, and complex interactions among variables. Inspired by the strong structural modeling capability of hypergraphs, this paper proposes a novel hypergraph-based time series transformer backbone network, termed HGTS-Former, to address the multivariate coupling in time series data. Specifically, given the multivariate time series signal, we first normalize and embed each patch into tokens. Then, we adopt the multi-head self-attention to enhance the temporal representation of each patch. The hierarchical hypergraphs are constructed to aggregate the temporal patterns within each channel and fine-grained relations between different variables. After that, we convert the hyperedge into node features through the EdgeToNode module and adopt the feed-forward network to further enhance the output features. Extensive experiments conducted on two multivariate time series tasks and eight datasets fully validated the effectiveness of our proposed HGTS-Former. The source code will be released on https://github.com/Event-AHU/Time_Series_Analysis.

Authors:Jialiang Wang, Xiong Zhou, Deming Zhai, Junjun Jiang, Xiangyang Ji, Xianming Liu
Title: $ε$-Softmax: Approximating One-Hot Vectors for Mitigating Label Noise
Abstract:
Noisy labels pose a common challenge for training accurate deep neural networks. To mitigate label noise, prior studies have proposed various robust loss functions to achieve noise tolerance in the presence of label noise, particularly symmetric losses. However, they usually suffer from the underfitting issue due to the overly strict symmetric condition. In this work, we propose a simple yet effective approach for relaxing the symmetric condition, namely $ε$-softmax, which simply modifies the outputs of the softmax layer to approximate one-hot vectors with a controllable error $ε$. Essentially, $ε$-softmax not only acts as an alternative for the softmax layer, but also implicitly plays the crucial role in modifying the loss function. We prove theoretically that $ε$-softmax can achieve noise-tolerant learning with controllable excess risk bound for almost any loss function. Recognizing that $ε$-softmax-enhanced losses may slightly reduce fitting ability on clean datasets, we further incorporate them with one symmetric loss, thereby achieving a better trade-off between robustness and effective learning. Extensive experiments demonstrate the superiority of our method in mitigating synthetic and real-world label noise. The code is available at https://github.com/cswjl/eps-softmax.

Authors:Shuo Lu, Yanyin Chen, Wei Feng, Jiahao Fan, Fengheng Li, Zheng Zhang, Jingjing Lv, Junjie Shen, Ching Law, Jian Liang
Title: Uni-Layout: Integrating Human Feedback in Unified Layout Generation and Evaluation
Abstract:
Layout generation plays a crucial role in enhancing both user experience and design efficiency. However, current approaches suffer from task-specific generation capabilities and perceptually misaligned evaluation metrics, leading to limited applicability and ineffective measurement. In this paper, we propose \textit{Uni-Layout}, a novel framework that achieves unified generation, human-mimicking evaluation and alignment between the two. For universal generation, we incorporate various layout tasks into a single taxonomy and develop a unified generator that handles background or element contents constrained tasks via natural language prompts. To introduce human feedback for the effective evaluation of layouts, we build \textit{Layout-HF100k}, the first large-scale human feedback dataset with 100,000 expertly annotated layouts. Based on \textit{Layout-HF100k}, we introduce a human-mimicking evaluator that integrates visual and geometric information, employing a Chain-of-Thought mechanism to conduct qualitative assessments alongside a confidence estimation module to yield quantitative measurements. For better alignment between the generator and the evaluator, we integrate them into a cohesive system by adopting Dynamic-Margin Preference Optimization (DMPO), which dynamically adjusts margins based on preference strength to better align with human judgments. Extensive experiments show that \textit{Uni-Layout} significantly outperforms both task-specific and general-purpose methods. Our code is publicly available at https://github.com/JD-GenX/Uni-Layout.

Authors:Marian Lupascu, Mihai-Sorin Stupariu
Title: Optimal Transport for Rectified Flow Image Editing: Unifying Inversion-Based and Direct Methods
Abstract:
Image editing in rectified flow models remains challenging due to the fundamental trade-off between reconstruction fidelity and editing flexibility. While inversion-based methods suffer from trajectory deviation, recent inversion-free approaches like FlowEdit offer direct editing pathways but can benefit from additional guidance to improve structure preservation. In this work, we demonstrate that optimal transport theory provides a unified framework for improving both paradigms in rectified flow editing. We introduce a zero-shot transport-guided inversion framework that leverages optimal transport during the reverse diffusion process, and extend optimal transport principles to enhance inversion-free methods through transport-optimized velocity field corrections. Incorporating transport-based guidance can effectively balance reconstruction accuracy and editing controllability across different rectified flow editing approaches. For inversion-based editing, our method achieves high-fidelity reconstruction with LPIPS scores of 0.001 and SSIM of 0.992 on face editing benchmarks, observing 7.8% to 12.9% improvements over RF-Inversion on LSUN datasets. For inversion-free editing with FlowEdit on FLUX and Stable Diffusion 3, we demonstrate consistent improvements in semantic consistency and structure preservation across diverse editing scenarios. Our semantic face editing experiments show an 11.2% improvement in identity preservation and enhanced perceptual quality. The unified optimal transport framework produces visually compelling edits with superior detail preservation across both inversion-based and direct editing paradigms. Code is available for RF-Inversion and FlowEdit at: https://github.com/marianlupascu/OT-RF

Authors:Xu Wang, Shengeng Tang, Fei Wang, Lechao Cheng, Dan Guo, Feng Xue, Richang Hong
Title: Text2Lip: Progressive Lip-Synced Talking Face Generation from Text via Viseme-Guided Rendering
Abstract:
Generating semantically coherent and visually accurate talking faces requires bridging the gap between linguistic meaning and facial articulation. Although audio-driven methods remain prevalent, their reliance on high-quality paired audio visual data and the inherent ambiguity in mapping acoustics to lip motion pose significant challenges in terms of scalability and robustness. To address these issues, we propose Text2Lip, a viseme-centric framework that constructs an interpretable phonetic-visual bridge by embedding textual input into structured viseme sequences. These mid-level units serve as a linguistically grounded prior for lip motion prediction. Furthermore, we design a progressive viseme-audio replacement strategy based on curriculum learning, enabling the model to gradually transition from real audio to pseudo-audio reconstructed from enhanced viseme features via cross-modal attention. This allows for robust generation in both audio-present and audio-free scenarios. Finally, a landmark-guided renderer synthesizes photorealistic facial videos with accurate lip synchronization. Extensive evaluations show that Text2Lip outperforms existing approaches in semantic fidelity, visual realism, and modality robustness, establishing a new paradigm for controllable and flexible talking face generation. Our project homepage is https://plyon1.github.io/Text2Lip/.

Authors:Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai Bai, Xiao Xu, Yilei Chen, Yuxiang Chen, Zecheng Tang, Zekai Zhang, Zhengyi Wang, An Yang, Bowen Yu, Chen Cheng, Dayiheng Liu, Deqing Li, Hang Zhang, Hao Meng, Hu Wei, Jingyuan Ni, Kai Chen, Kuan Cao, Liang Peng, Lin Qu, Minggang Wu, Peng Wang, Shuting Yu, Tingkun Wen, Wensen Feng, Xiaoxiao Xu, Yi Wang, Yichang Zhang, Yongqiang Zhu, Yujia Wu, Yuxuan Cai, Zenan Liu
Title: Qwen-Image Technical Report
Abstract:
We present Qwen-Image, an image generation foundation model in the Qwen series that achieves significant advances in complex text rendering and precise image editing. To address the challenges of complex text rendering, we design a comprehensive data pipeline that includes large-scale data collection, filtering, annotation, synthesis, and balancing. Moreover, we adopt a progressive training strategy that starts with non-text-to-text rendering, evolves from simple to complex textual inputs, and gradually scales up to paragraph-level descriptions. This curriculum learning approach substantially enhances the model's native text rendering capabilities. As a result, Qwen-Image not only performs exceptionally well in alphabetic languages such as English, but also achieves remarkable progress on more challenging logographic languages like Chinese. To enhance image editing consistency, we introduce an improved multi-task training paradigm that incorporates not only traditional text-to-image (T2I) and text-image-to-image (TI2I) tasks but also image-to-image (I2I) reconstruction, effectively aligning the latent representations between Qwen2.5-VL and MMDiT. Furthermore, we separately feed the original image into Qwen2.5-VL and the VAE encoder to obtain semantic and reconstructive representations, respectively. This dual-encoding mechanism enables the editing module to strike a balance between preserving semantic consistency and maintaining visual fidelity. Qwen-Image achieves state-of-the-art performance, demonstrating its strong capabilities in both image generation and editing across multiple benchmarks.

Authors:Philipp Wulff, Felix Wimbauer, Dominik Muhle, Daniel Cremers
Title: Dream-to-Recon: Monocular 3D Reconstruction with Diffusion-Depth Distillation from Single Images
Abstract:
Volumetric scene reconstruction from a single image is crucial for a broad range of applications like autonomous driving and robotics. Recent volumetric reconstruction methods achieve impressive results, but generally require expensive 3D ground truth or multi-view supervision. We propose to leverage pre-trained 2D diffusion models and depth prediction models to generate synthetic scene geometry from a single image. This can then be used to distill a feed-forward scene reconstruction model. Our experiments on the challenging KITTI-360 and Waymo datasets demonstrate that our method matches or outperforms state-of-the-art baselines that use multi-view supervision, and offers unique advantages, for example regarding dynamic scenes.

Authors:Dmitrii Seletkov, Sophie Starck, Ayhan Can Erdur, Yundi Zhang, Daniel Rueckert, Rickmer Braren
Title: Whole-body Representation Learning For Competing Preclinical Disease Risk Assessment
Abstract:
Reliable preclinical disease risk assessment is essential to move public healthcare from reactive treatment to proactive identification and prevention. However, image-based risk prediction algorithms often consider one condition at a time and depend on hand-crafted features obtained through segmentation tools. We propose a whole-body self-supervised representation learning method for the preclinical disease risk assessment under a competing risk modeling. This approach outperforms whole-body radiomics in multiple diseases, including cardiovascular disease (CVD), type 2 diabetes (T2D), chronic obstructive pulmonary disease (COPD), and chronic kidney disease (CKD). Simulating a preclinical screening scenario and subsequently combining with cardiac MRI, it sharpens further the prediction for CVD subgroups: ischemic heart disease (IHD), hypertensive diseases (HD), and stroke. The results indicate the translational potential of whole-body representations as a standalone screening modality and as part of a multi-modal framework within clinical workflows for early personalized risk stratification. The code is available at https://github.com/yayapa/WBRLforCR/

Authors:Jae-Young Kang, Hoonhee Cho, Kuk-Jin Yoon
Title: Unleashing the Temporal Potential of Stereo Event Cameras for Continuous-Time 3D Object Detection
Abstract:
3D object detection is essential for autonomous systems, enabling precise localization and dimension estimation. While LiDAR and RGB cameras are widely used, their fixed frame rates create perception gaps in high-speed scenarios. Event cameras, with their asynchronous nature and high temporal resolution, offer a solution by capturing motion continuously. The recent approach, which integrates event cameras with conventional sensors for continuous-time detection, struggles in fast-motion scenarios due to its dependency on synchronized sensors. We propose a novel stereo 3D object detection framework that relies solely on event cameras, eliminating the need for conventional 3D sensors. To compensate for the lack of semantic and geometric information in event data, we introduce a dual filter mechanism that extracts both. Additionally, we enhance regression by aligning bounding boxes with object-centric information. Experiments show that our method outperforms prior approaches in dynamic environments, demonstrating the potential of event cameras for robust, continuous-time 3D perception. The code is available at https://github.com/mickeykang16/Ev-Stereo3D.

Authors:Wenchuan Zhang, Jingru Guo, Hengzhe Zhang, Penghao Zhang, Jie Chen, Shuwan Zhang, Zhang Zhang, Yuhao Yi, Hong Bu
Title: Patho-AgenticRAG: Towards Multimodal Agentic Retrieval-Augmented Generation for Pathology VLMs via Reinforcement Learning
Abstract:
Although Vision Language Models (VLMs) have shown strong generalization in medical imaging, pathology presents unique challenges due to ultra-high resolution, complex tissue structures, and nuanced clinical semantics. These factors make pathology VLMs prone to hallucinations, i.e., generating outputs inconsistent with visual evidence, which undermines clinical trust. Existing RAG approaches in this domain largely depend on text-based knowledge bases, limiting their ability to leverage diagnostic visual cues. To address this, we propose Patho-AgenticRAG, a multimodal RAG framework with a database built on page-level embeddings from authoritative pathology textbooks. Unlike traditional text-only retrieval systems, it supports joint text-image search, enabling direct retrieval of textbook pages that contain both the queried text and relevant visual cues, thus avoiding the loss of critical image-based information. Patho-AgenticRAG also supports reasoning, task decomposition, and multi-turn search interactions, improving accuracy in complex diagnostic scenarios. Experiments show that Patho-AgenticRAG significantly outperforms existing multimodal models in complex pathology tasks like multiple-choice diagnosis and visual question answering. Our project is available at the Patho-AgenticRAG repository: https://github.com/Wenchuan-Zhang/Patho-AgenticRAG.

Authors:Yuanbin Fu, Xiaojie Guo
Title: Semi-Supervised Semantic Segmentation via Derivative Label Propagation
Abstract:
Semi-supervised semantic segmentation, which leverages a limited set of labeled images, helps to relieve the heavy annotation burden. While pseudo-labeling strategies yield promising results, there is still room for enhancing the reliability of pseudo-labels. Hence, we develop a semi-supervised framework, namely DerProp, equipped with a novel derivative label propagation to rectify imperfect pseudo-labels. Our label propagation method imposes discrete derivative operations on pixel-wise feature vectors as additional regularization, thereby generating strictly regularized similarity metrics. Doing so effectively alleviates the ill-posed problem that identical similarities correspond to different features, through constraining the solution space. Extensive experiments are conducted to verify the rationality of our design, and demonstrate our superiority over other methods. Codes are available at https://github.com/ForawardStar/DerProp/.

Authors:Ziyan Liu, Junwen Li, Kaiwen Li, Tong Ruan, Chao Wang, Xinyan He, Zongyu Wang, Xuezhi Cao, Jingping Liu
Title: I2CR: Intra- and Inter-modal Collaborative Reflections for Multimodal Entity Linking
Abstract:
Multimodal entity linking plays a crucial role in a wide range of applications. Recent advances in large language model-based methods have become the dominant paradigm for this task, effectively leveraging both textual and visual modalities to enhance performance. Despite their success, these methods still face two challenges, including unnecessary incorporation of image data in certain scenarios and the reliance only on a one-time extraction of visual features, which can undermine their effectiveness and accuracy. To address these challenges, we propose a novel LLM-based framework for the multimodal entity linking task, called Intra- and Inter-modal Collaborative Reflections. This framework prioritizes leveraging text information to address the task. When text alone is insufficient to link the correct entity through intra- and inter-modality evaluations, it employs a multi-round iterative strategy that integrates key visual clues from various aspects of the image to support reasoning and enhance matching accuracy. Extensive experiments on three widely used public datasets demonstrate that our framework consistently outperforms current state-of-the-art methods in the task, achieving improvements of 3.2%, 5.1%, and 1.6%, respectively. Our code is available at https://github.com/ziyan-xiaoyu/I2CR/.

Authors:Xiaoliu Guan, Lielin Jiang, Hanqi Chen, Xu Zhang, Jiaxing Yan, Guanzhong Wang, Yi Liu, Zetao Zhang, Yu Wu
Title: Forecasting When to Forecast: Accelerating Diffusion Models with Confidence-Gated Taylor
Abstract:
Diffusion Transformers (DiTs) have demonstrated remarkable performance in visual generation tasks. However, their low inference speed limits their deployment in low-resource applications. Recent training-free approaches exploit the redundancy of features across timesteps by caching and reusing past representations to accelerate inference. Building on this idea, TaylorSeer instead uses cached features to predict future ones via Taylor expansion. However, its module-level prediction across all transformer blocks (e.g., attention or feedforward modules) requires storing fine-grained intermediate features, leading to notable memory and computation overhead. Moreover, it adopts a fixed caching schedule without considering the varying accuracy of predictions across timesteps, which can lead to degraded outputs when prediction fails. To address these limitations, we propose a novel approach to better leverage Taylor-based acceleration. First, we shift the Taylor prediction target from the module level to the last block level, significantly reducing the number of cached features. Furthermore, observing strong sequential dependencies among Transformer blocks, we propose to use the error between the Taylor-estimated and actual outputs of the first block as an indicator of prediction reliability. If the error is small, we trust the Taylor prediction for the last block; otherwise, we fall back to full computation, thereby enabling a dynamic caching mechanism. Empirical results show that our method achieves a better balance between speed and quality, achieving a 3.17x acceleration on FLUX, 2.36x on DiT, and 4.14x on Wan Video with negligible quality drop. The Project Page is \href{https://cg-taylor-acce.github.io/CG-Taylor/}{here.}

Authors:Yanyun Wang, Li Liu
Title: Failure Cases Are Better Learned But Boundary Says Sorry: Facilitating Smooth Perception Change for Accuracy-Robustness Trade-Off in Adversarial Training
Abstract:
Adversarial Training (AT) is one of the most effective methods to train robust Deep Neural Networks (DNNs). However, AT creates an inherent trade-off between clean accuracy and adversarial robustness, which is commonly attributed to the more complicated decision boundary caused by the insufficient learning of hard adversarial samples. In this work, we reveal a counterintuitive fact for the first time: From the perspective of perception consistency, hard adversarial samples that can still attack the robust model after AT are already learned better than those successfully defended. Thus, different from previous views, we argue that it is rather the over-sufficient learning of hard adversarial samples that degrades the decision boundary and contributes to the trade-off problem. Specifically, the excessive pursuit of perception consistency would force the model to view the perturbations as noise and ignore the information within them, which should have been utilized to induce a smoother perception transition towards the decision boundary to support its establishment to an appropriate location. In response, we define a new AT objective named Robust Perception, encouraging the model perception to change smoothly with input perturbations, based on which we propose a novel Robust Perception Adversarial Training (RPAT) method, effectively mitigating the current accuracy-robustness trade-off. Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet with ResNet-18, PreActResNet-18, and WideResNet-34-10 demonstrate the effectiveness of our method beyond four common baselines and 12 state-of-the-art (SOTA) works. The code is available at https://github.com/FlaAI/RPAT.

Authors:Zeshuai Deng, Guohao Chen, Shuaicheng Niu, Hui Luo, Shuhai Zhang, Yifan Yang, Renjie Chen, Wei Luo, Mingkui Tan
Title: Test-Time Model Adaptation for Quantized Neural Networks
Abstract:
Quantizing deep models prior to deployment is a widely adopted technique to speed up inference for various real-time applications, such as autonomous driving. However, quantized models often suffer from severe performance degradation in dynamic environments with potential domain shifts and this degradation is significantly more pronounced compared with their full-precision counterparts, as shown by our theoretical and empirical illustrations. To address the domain shift problem, test-time adaptation (TTA) has emerged as an effective solution by enabling models to learn adaptively from test data. Unfortunately, existing TTA methods are often impractical for quantized models as they typically rely on gradient backpropagation--an operation that is unsupported on quantized models due to vanishing gradients, as well as memory and latency constraints. In this paper, we focus on TTA for quantized models to improve their robustness and generalization ability efficiently. We propose a continual zeroth-order adaptation (ZOA) framework that enables efficient model adaptation using only two forward passes, eliminating the computational burden of existing methods. Moreover, we propose a domain knowledge management scheme to store and reuse different domain knowledge with negligible memory consumption, reducing the interference of different domain knowledge and fostering the knowledge accumulation during long-term adaptation. Experimental results on three classical architectures, including quantized transformer-based and CNN-based models, demonstrate the superiority of our methods for quantized model adaptation. On the quantized W6A6 ViT-B model, our ZOA is able to achieve a 5.0\% improvement over the state-of-the-art FOA on ImageNet-C dataset. The source code is available at https://github.com/DengZeshuai/ZOA.

Authors:Bufano Michele, Kotter Elmar
Title: Deep classification algorithm for De-identification of DICOM medical images
Abstract:
Background : De-identification of DICOM (Digital Imaging and Communi-cations in Medicine) files is an essential component of medical image research. Personal Identifiable Information (PII) and/or Personal Health Identifying Information (PHI) need to be hidden or removed due to legal reasons. According to the Health Insurance Portability and Accountability Act (HIPAA) and privacy rules, also full-face photographic images and any compa-rable images are direct identifiers and are considered protected health information that also need to be de-identified. Objective : The study aimed to implement a method that permit to de-identify the PII and PHI information present in the header and burned on the pixel data of DICOM. Methods : To execute the de-identification, we implemented an algorithm based on the safe harbor method, defined by HIPAA. Our algorithm uses input customizable parameter to classify and then possibly de-identify individual DICOM tags. Results : The most sensible information, like names, history, personal data and institution were successfully recognized. Conclusions : We developed a python algorithm that is able to classify infor-mation present in a DICOM file. The flexibility provided by the use of customi-zable input parameters, which allow the user to customize the entire process de-pending on the case (e.g., the language), makes the entire program very promis-ing for both everyday use and research purposes. Our code is available at https://github.com/rtdicomexplorer/deep_deidentification.

Authors:Lei Yao, Yi Wang, Yi Zhang, Moyun Liu, Lap-Pui Chau
Title: GaussianCross: Cross-modal Self-supervised 3D Representation Learning via Gaussian Splatting
Abstract:
The significance of informative and robust point representations has been widely acknowledged for 3D scene understanding. Despite existing self-supervised pre-training counterparts demonstrating promising performance, the model collapse and structural information deficiency remain prevalent due to insufficient point discrimination difficulty, yielding unreliable expressions and suboptimal performance. In this paper, we present GaussianCross, a novel cross-modal self-supervised 3D representation learning architecture integrating feed-forward 3D Gaussian Splatting (3DGS) techniques to address current challenges. GaussianCross seamlessly converts scale-inconsistent 3D point clouds into a unified cuboid-normalized Gaussian representation without missing details, enabling stable and generalizable pre-training. Subsequently, a tri-attribute adaptive distillation splatting module is incorporated to construct a 3D feature field, facilitating synergetic feature capturing of appearance, geometry, and semantic cues to maintain cross-modal consistency. To validate GaussianCross, we perform extensive evaluations on various benchmarks, including ScanNet, ScanNet200, and S3DIS. In particular, GaussianCross shows a prominent parameter and data efficiency, achieving superior performance through linear probing (<0.1% parameters) and limited data training (1% of scenes) compared to state-of-the-art methods. Furthermore, GaussianCross demonstrates strong generalization capabilities, improving the full fine-tuning accuracy by 9.3% mIoU and 6.1% AP$_{50}$ on ScanNet200 semantic and instance segmentation tasks, respectively, supporting the effectiveness of our approach. The code, weights, and visualizations are publicly available at \href{https://rayyoh.github.io/GaussianCross/}{https://rayyoh.github.io/GaussianCross/}.

Authors:Tom Fischer, Xiaojie Zhang, Eddy Ilg
Title: Unified Category-Level Object Detection and Pose Estimation from RGB Images using 3D Prototypes
Abstract:
Recognizing objects in images is a fundamental problem in computer vision. Although detecting objects in 2D images is common, many applications require determining their pose in 3D space. Traditional category-level methods rely on RGB-D inputs, which may not always be available, or employ two-stage approaches that use separate models and representations for detection and pose estimation. For the first time, we introduce a unified model that integrates detection and pose estimation into a single framework for RGB images by leveraging neural mesh models with learned features and multi-model RANSAC. Our approach achieves state-of-the-art results for RGB category-level pose estimation on REAL275, improving on the current state-of-the-art by 22.9% averaged across all scale-agnostic metrics. Finally, we demonstrate that our unified method exhibits greater robustness compared to single-stage baselines. Our code and models are available at https://github.com/Fischer-Tom/unified-detection-and-pose-estimation.

Authors:Daniel Lengerer, Mathias Pechinger, Klaus Bogenberger, Carsten Markgraf
Title: AID4AD: Aerial Image Data for Automated Driving Perception
Abstract:
This work investigates the integration of spatially aligned aerial imagery into perception tasks for automated vehicles (AVs). As a central contribution, we present AID4AD, a publicly available dataset that augments the nuScenes dataset with high-resolution aerial imagery precisely aligned to its local coordinate system. The alignment is performed using SLAM-based point cloud maps provided by nuScenes, establishing a direct link between aerial data and nuScenes local coordinate system. To ensure spatial fidelity, we propose an alignment workflow that corrects for localization and projection distortions. A manual quality control process further refines the dataset by identifying a set of high-quality alignments, which we publish as ground truth to support future research on automated registration. We demonstrate the practical value of AID4AD in two representative tasks: in online map construction, aerial imagery serves as a complementary input that improves the mapping process; in motion prediction, it functions as a structured environmental representation that replaces high-definition maps. Experiments show that aerial imagery leads to a 15-23% improvement in map construction accuracy and a 2% gain in trajectory prediction performance. These results highlight the potential of aerial imagery as a scalable and adaptable source of environmental context in automated vehicle systems, particularly in scenarios where high-definition maps are unavailable, outdated, or costly to maintain. AID4AD, along with evaluation code and pretrained models, is publicly released to foster further research in this direction: https://github.com/DriverlessMobility/AID4AD.

Authors:Kuo Wang, Quanlong Zheng, Junlin Xie, Yanhao Zhang, Jinguo Luo, Haonan Lu, Liang Lin, Fan Zhou, Guanbin Li
Title: Free-MoRef: Instantly Multiplexing Context Perception Capabilities of Video-MLLMs within Single Inference
Abstract:
Video Multimodal Large Language Models~(Video-MLLM) have achieved remarkable advancements in video understanding tasks. However, constrained by the context length limitation in the underlying LLMs, existing Video-MLLMs typically exhibit suboptimal performance on long video scenarios. To understand extended input frames, common solutions span token compression and streaming inference techniques, which sacrifice feature granularity or inference efficiency. Differently, to efficiently achieve comprehensive understanding of longer frame inputs, we draw ideas from MoE and propose a training-free approach \textbf{Free-MoRef}, which instantly multiplexes the context perception capabilities of Video-MLLMs within one inference pass. Specifically, Free-MoRef reconstructs the vision tokens into several short sequences as multi-references. Subsequently, we introduce MoRef-attention, which gathers clues from the multi-reference chunks in parallel to summarize unified query activations. After the shadow layers in LLMs, a reference fusion step is derived to compose a final mixed reasoning sequence with key tokens from parallel chunks, which compensates the cross-reference vision interactions that are neglected in MoRef-attention. By splitting and fusing the long vision token sequences, Free-MoRef achieves improved performance under much lower computing costs in reasoning multiplexed context length, demonstrating strong efficiency and effectiveness. Experiments on VideoMME, MLVU, LongVideoBench show that Free-MoRef achieves full perception of 2$\times$ to 8$\times$ longer input frames without compression on a single A100 GPU while keeping instant responses, thereby bringing significant performance gains, even surpassing dedicatedly trained long-video-MLLMs. Codes are available at https://github.com/wkfdb/Free-MoRef

Authors:Yihang Huang, Yuanfei Huang, Junhui Lin, Hua Huang
Title: DeflareMamba: Hierarchical Vision Mamba for Contextually Consistent Lens Flare Removal
Abstract:
Lens flare removal remains an information confusion challenge in the underlying image background and the optical flares, due to the complex optical interactions between light sources and camera lens. While recent solutions have shown promise in decoupling the flare corruption from image, they often fail to maintain contextual consistency, leading to incomplete and inconsistent flare removal. To eliminate this limitation, we propose DeflareMamba, which leverages the efficient sequence modeling capabilities of state space models while maintains the ability to capture local-global dependencies. Particularly, we design a hierarchical framework that establishes long-range pixel correlations through varied stride sampling patterns, and utilize local-enhanced state space models that simultaneously preserves local details. To the best of our knowledge, this is the first work that introduces state space models to the flare removal task. Extensive experiments demonstrate that our method effectively removes various types of flare artifacts, including scattering and reflective flares, while maintaining the natural appearance of non-flare regions. Further downstream applications demonstrate the capacity of our method to improve visual object recognition and cross-modal semantic understanding. Code is available at https://github.com/BNU-ERC-ITEA/DeflareMamba.

Authors:Yuanfei Huang, Hua Huang
Title: Tackling Ill-posedness of Reversible Image Conversion with Well-posed Invertible Network
Abstract:
Reversible image conversion (RIC) suffers from ill-posedness issues due to its forward conversion process being considered an underdetermined system. Despite employing invertible neural networks (INN), existing RIC methods intrinsically remain ill-posed as inevitably introducing uncertainty by incorporating randomly sampled variables. To tackle the ill-posedness dilemma, we focus on developing a reliable approximate left inverse for the underdetermined system by constructing an overdetermined system with a non-zero Gram determinant, thus ensuring a well-posed solution. Based on this principle, we propose a well-posed invertible $1\times1$ convolution (WIC), which eliminates the reliance on random variable sampling and enables the development of well-posed invertible networks. Furthermore, we design two innovative networks, WIN-Naïve and WIN, with the latter incorporating advanced skip-connections to enhance long-term memory. Our methods are evaluated across diverse RIC tasks, including reversible image hiding, image rescaling, and image decolorization, consistently achieving state-of-the-art performance. Extensive experiments validate the effectiveness of our approach, demonstrating its ability to overcome the bottlenecks of existing RIC solutions and setting a new benchmark in the field. Codes are available in https://github.com/BNU-ERC-ITEA/WIN.

Authors:Hongzhao Chen, Hexiao Ding, Yufeng Jiang, Jing Lan, Ka Chun Li, Gerald W. Y. Cheng, Sam Ng, Chi Lai Ho, Jing Cai, Liang-ting Lin, Jung Sun Yoo
Title: REACT-KD: Region-Aware Cross-modal Topological Knowledge Distillation for Interpretable Medical Image Classification
Abstract:
Reliable and interpretable tumor classification from clinical imaging remains a core challenge due to heterogeneous modality quality, limited annotations, and the lack of structured anatomical guidance. We introduce REACT-KD, a Region-Aware Cross-modal Topological Knowledge Distillation framework that transfers rich supervision from high-fidelity multi-modal sources into a lightweight CT-based student model. The framework uses a dual teacher design: one branch captures structure-function relationships using dual-tracer PET/CT, and the other models dose-aware features through synthetically degraded low-dose CT data. These branches jointly guide the student model through two complementary objectives. The first focuses on semantic alignment via logits distillation, while the second models anatomical topology using region graph distillation. A shared CBAM-3D module is employed to maintain consistent attention across modalities. To improve reliability for deployment, REACT-KD introduces modality dropout during training, allowing inference under partial or noisy inputs. The staging task for hepatocellular carcinoma (HCC) is conducted as a case study. REACT-KD achieves an average AUC of 93.4% on an internal PET/CT cohort and maintains 76.6% to 81.5% AUC across varying dose levels in external CT testing. Decision curve analysis shows that REACT-KD consistently provides the highest clinical benefit across decision thresholds, supporting its potential in real-world diagnostics. Code is available at https://github.com/Kinetics-JOJO/REACT-KD.

Authors:Haoxin Yang, Weihong Chen, Xuemiao Xu, Cheng Xu, Peng Xiao, Cuifeng Sun, Shaoyu Huang, Shengfeng He
Title: StarPose: 3D Human Pose Estimation via Spatial-Temporal Autoregressive Diffusion
Abstract:
Monocular 3D human pose estimation remains a challenging task due to inherent depth ambiguities and occlusions. Compared to traditional methods based on Transformers or Convolutional Neural Networks (CNNs), recent diffusion-based approaches have shown superior performance, leveraging their probabilistic nature and high-fidelity generation capabilities. However, these methods often fail to account for the spatial and temporal correlations across predicted frames, resulting in limited temporal consistency and inferior accuracy in predicted 3D pose sequences. To address these shortcomings, this paper proposes StarPose, an autoregressive diffusion framework that effectively incorporates historical 3D pose predictions and spatial-temporal physical guidance to significantly enhance both the accuracy and temporal coherence of pose predictions. Unlike existing approaches, StarPose models the 2D-to-3D pose mapping as an autoregressive diffusion process. By synergically integrating previously predicted 3D poses with 2D pose inputs via a Historical Pose Integration Module (HPIM), the framework generates rich and informative historical pose embeddings that guide subsequent denoising steps, ensuring temporally consistent predictions. In addition, a fully plug-and-play Spatial-Temporal Physical Guidance (STPG) mechanism is tailored to refine the denoising process in an iterative manner, which further enforces spatial anatomical plausibility and temporal motion dynamics, rendering robust and realistic pose estimates. Extensive experiments on benchmark datasets demonstrate that StarPose outperforms state-of-the-art methods, achieving superior accuracy and temporal consistency in 3D human pose estimation. Code is available at https://github.com/wileychan/StarPose.

Authors:Sparsh Garg, Abhishek Aich
Title: Mapillary Vistas Validation for Fine-Grained Traffic Signs: A Benchmark Revealing Vision-Language Model Limitations
Abstract:
Obtaining high-quality fine-grained annotations for traffic signs is critical for accurate and safe decision-making in autonomous driving. Widely used datasets, such as Mapillary, often provide only coarse-grained labels - without distinguishing semantically important types such as stop signs or speed limit signs. To this end, we present a new validation set for traffic signs derived from the Mapillary dataset called Mapillary Vistas Validation for Traffic Signs (MVV), where we decompose composite traffic signs into granular, semantically meaningful categories. The dataset includes pixel-level instance masks and has been manually annotated by expert annotators to ensure label fidelity. Further, we benchmark several state-of-the-art VLMs against the self-supervised DINOv2 model on this dataset and show that DINOv2 consistently outperforms all VLM baselines-not only on traffic sign recognition, but also on heavily represented categories like vehicles and humans. Our analysis reveals significant limitations in current vision-language models for fine-grained visual understanding and establishes DINOv2 as a strong baseline for dense semantic matching in autonomous driving scenarios. This dataset and evaluation framework pave the way for more reliable, interpretable, and scalable perception systems. Code and data are available at: https://github.com/nec-labs-ma/relabeling

Authors:Chen Li, Chinthani Sugandhika, Yeo Keat Ee, Eric Peh, Hao Zhang, Hong Yang, Deepu Rajan, Basura Fernando
Title: IMoRe: Implicit Program-Guided Reasoning for Human Motion Q&A
Abstract:
Existing human motion Q\&A methods rely on explicit program execution, where the requirement for manually defined functional modules may limit the scalability and adaptability. To overcome this, we propose an implicit program-guided motion reasoning (IMoRe) framework that unifies reasoning across multiple query types without manually designed modules. Unlike existing implicit reasoning approaches that infer reasoning operations from question words, our model directly conditions on structured program functions, ensuring a more precise execution of reasoning steps. Additionally, we introduce a program-guided reading mechanism, which dynamically selects multi-level motion representations from a pretrained motion Vision Transformer (ViT), capturing both high-level semantics and fine-grained motion cues. The reasoning module iteratively refines memory representations, leveraging structured program functions to extract relevant information for different query types. Our model achieves state-of-the-art performance on Babel-QA and generalizes to a newly constructed motion Q\&A dataset based on HuMMan, demonstrating its adaptability across different motion reasoning datasets. Code and dataset are available at: https://github.com/LUNAProject22/IMoRe.

Authors:Yaroslav Prytula, Illia Tsiporenko, Ali Zeynalli, Dmytro Fishman
Title: IAUNet: Instance-Aware U-Net
Abstract:
Instance segmentation is critical in biomedical imaging to accurately distinguish individual objects like cells, which often overlap and vary in size. Recent query-based methods, where object queries guide segmentation, have shown strong performance. While U-Net has been a go-to architecture in medical image segmentation, its potential in query-based approaches remains largely unexplored. In this work, we present IAUNet, a novel query-based U-Net architecture. The core design features a full U-Net architecture, enhanced by a novel lightweight convolutional Pixel decoder, making the model more efficient and reducing the number of parameters. Additionally, we propose a Transformer decoder that refines object-specific features across multiple scales. Finally, we introduce the 2025 Revvity Full Cell Segmentation Dataset, a unique resource with detailed annotations of overlapping cell cytoplasm in brightfield images, setting a new benchmark for biomedical instance segmentation. Experiments on multiple public datasets and our own show that IAUNet outperforms most state-of-the-art fully convolutional, transformer-based, and query-based models and cell segmentation-specific models, setting a strong baseline for cell instance segmentation tasks. Code is available at https://github.com/SlavkoPrytula/IAUNet

Authors:Weiqi Yan, Chenlu Lin, Youbiao Wang, Zhipeng Cai, Xiuhong Lin, Yangyang Shi, Weiquan Liu, Yu Zang
Title: OmniEvent: Unified Event Representation Learning
Abstract:
Event cameras have gained increasing popularity in computer vision due to their ultra-high dynamic range and temporal resolution. However, event networks heavily rely on task-specific designs due to the unstructured data distribution and spatial-temporal (S-T) inhomogeneity, making it hard to reuse existing architectures for new tasks. We propose OmniEvent, the first unified event representation learning framework that achieves SOTA performance across diverse tasks, fully removing the need of task-specific designs. Unlike previous methods that treat event data as 3D point clouds with manually tuned S-T scaling weights, OmniEvent proposes a decouple-enhance-fuse paradigm, where the local feature aggregation and enhancement is done independently on the spatial and temporal domains to avoid inhomogeneity issues. Space-filling curves are applied to enable large receptive fields while improving memory and compute efficiency. The features from individual domains are then fused by attention to learn S-T interactions. The output of OmniEvent is a grid-shaped tensor, which enables standard vision models to process event data without architecture change. With a unified framework and similar hyper-parameters, OmniEvent out-performs (tasks-specific) SOTA by up to 68.2% across 3 representative tasks and 10 datasets (Fig.1). Code will be ready in https://github.com/Wickyan/OmniEvent .

Authors:Toufiq Musah
Title: Large Kernel MedNeXt for Breast Tumor Segmentation and Self-Normalizing Network for pCR Classification in Magnetic Resonance Images
Abstract:
Accurate breast tumor segmentation in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is important for downstream tasks such as pathological complete response (pCR) assessment. In this work, we address both segmentation and pCR classification using the large-scale MAMA-MIA DCE-MRI dataset. We employ a large-kernel MedNeXt architecture with a two-stage training strategy that expands the receptive field from 3x3x3 to 5x5x5 kernels using the UpKern algorithm. This approach allows stable transfer of learned features to larger kernels, improving segmentation performance on the unseen validation set. An ensemble of large-kernel models achieved a Dice score of 0.67 and a normalized Hausdorff Distance (NormHD) of 0.24. For pCR classification, we trained a self-normalizing network (SNN) on radiomic features extracted from the predicted segmentations and first post-contrast DCE-MRI, reaching an average balanced accuracy of 57\%, and up to 75\% in some subgroups. Our findings highlight the benefits of combining larger receptive fields and radiomics-driven classification while motivating future work on advanced ensembling and the integration of clinical variables to further improve performance and generalization. Code: https://github.com/toufiqmusah/caladan-mama-mia.git

Authors:Atom Scott, Ikuma Uchida, Kento Kuroda, Yufi Kim, Keisuke Fujii
Title: SoccerTrack v2: A Full-Pitch Multi-View Soccer Dataset for Game State Reconstruction
Abstract:
SoccerTrack v2 is a new public dataset for advancing multi-object tracking (MOT), game state reconstruction (GSR), and ball action spotting (BAS) in soccer analytics. Unlike prior datasets that use broadcast views or limited scenarios, SoccerTrack v2 provides 10 full-length, panoramic 4K recordings of university-level matches, captured with BePro cameras for complete player visibility. Each video is annotated with GSR labels (2D pitch coordinates, jersey-based player IDs, roles, teams) and BAS labels for 12 action classes (e.g., Pass, Drive, Shot). This technical report outlines the datasets structure, collection pipeline, and annotation process. SoccerTrack v2 is designed to advance research in computer vision and soccer analytics, enabling new benchmarks and practical applications in tactical analysis and automated tools.

Authors:Xiaotong Zhang, Alexander Broersen, Gonnie CM van Erp, Silvia L. Pintea, Jouke Dijkstra
Title: Skip priors and add graph-based anatomical information, for point-based Couinaud segmentation
Abstract:
The preoperative planning of liver surgery relies on Couinaud segmentation from computed tomography (CT) images, to reduce the risk of bleeding and guide the resection procedure. Using 3D point-based representations, rather than voxelizing the CT volume, has the benefit of preserving the physical resolution of the CT. However, point-based representations need prior knowledge of the liver vessel structure, which is time consuming to acquire. Here, we propose a point-based method for Couinaud segmentation, without explicitly providing the prior liver vessel structure. To allow the model to learn this anatomical liver vessel structure, we add a graph reasoning module on top of the point features. This adds implicit anatomical information to the model, by learning affinities across point neighborhoods. Our method is competitive on the MSD and LiTS public datasets in Dice coefficient and average surface distance scores compared to four pioneering point-based methods. Our code is available at https://github.com/ZhangXiaotong015/GrPn.

Authors:Zhigang Sun, Yiru Wang, Anqing Jiang, Shuo Wang, Yu Gao, Yuwen Heng, Shouyi Zhang, An He, Hao Jiang, Jinhao Chai, Zichong Gu, Wang Jijun, Shichen Tang, Lavdim Halilaj, Juergen Luettin, Hao Sun
Title: DiffSemanticFusion: Semantic Raster BEV Fusion for Autonomous Driving via Online HD Map Diffusion
Abstract:
Autonomous driving requires accurate scene understanding, including road geometry, traffic agents, and their semantic relationships. In online HD map generation scenarios, raster-based representations are well-suited to vision models but lack geometric precision, while graph-based representations retain structural detail but become unstable without precise maps. To harness the complementary strengths of both, we propose DiffSemanticFusion -- a fusion framework for multimodal trajectory prediction and planning. Our approach reasons over a semantic raster-fused BEV space, enhanced by a map diffusion module that improves both the stability and expressiveness of online HD map representations. We validate our framework on two downstream tasks: trajectory prediction and planning-oriented end-to-end autonomous driving. Experiments on real-world autonomous driving benchmarks, nuScenes and NAVSIM, demonstrate improved performance over several state-of-the-art methods. For the prediction task on nuScenes, we integrate DiffSemanticFusion with the online HD map informed QCNet, achieving a 5.1\% performance improvement. For end-to-end autonomous driving in NAVSIM, DiffSemanticFusion achieves state-of-the-art results, with a 15\% performance gain in NavHard scenarios. In addition, extensive ablation and sensitivity studies show that our map diffusion module can be seamlessly integrated into other vector-based approaches to enhance performance. All artifacts are available at https://github.com/SunZhigang7/DiffSemanticFusion.

Authors:Shuo Feng, Zihan Wang, Yuchen Li, Rui Kong, Hengyi Cai, Shuaiqiang Wang, Gim Hee Lee, Piji Li, Shuqiang Jiang
Title: VPN: Visual Prompt Navigation
Abstract:
While natural language is commonly used to guide embodied agents, the inherent ambiguity and verbosity of language often hinder the effectiveness of language-guided navigation in complex environments. To this end, we propose Visual Prompt Navigation (VPN), a novel paradigm that guides agents to navigate using only user-provided visual prompts within 2D top-view maps. This visual prompt primarily focuses on marking the visual navigation trajectory on a top-down view of a scene, offering intuitive and spatially grounded guidance without relying on language instructions. It is more friendly for non-expert users and reduces interpretive ambiguity. We build VPN tasks in both discrete and continuous navigation settings, constructing two new datasets, R2R-VP and R2R-CE-VP, by extending existing R2R and R2R-CE episodes with corresponding visual prompts. Furthermore, we introduce VPNet, a dedicated baseline network to handle the VPN tasks, with two data augmentation strategies: view-level augmentation (altering initial headings and prompt orientations) and trajectory-level augmentation (incorporating diverse trajectories from large-scale 3D scenes), to enhance navigation performance. Extensive experiments evaluate how visual prompt forms, top-view map formats, and data augmentation strategies affect the performance of visual prompt navigation. The code is available at https://github.com/farlit/VPN.

Authors:Yuxiang Zhang, Wei Li, Mengmeng Zhang, Jiawei Han, Ran Tao, Shunlin Liang
Title: SpectralX: Parameter-efficient Domain Generalization for Spectral Remote Sensing Foundation Models
Abstract:
Recent advances in Remote Sensing Foundation Models (RSFMs) have led to significant breakthroughs in the field. While many RSFMs have been pretrained with massive optical imagery, more multispectral/hyperspectral data remain lack of the corresponding foundation models. To leverage the advantages of spectral imagery in earth observation, we explore whether existing RSFMs can be effectively adapted to process diverse spectral modalities without requiring extensive spectral pretraining. In response to this challenge, we proposed SpectralX, an innovative parameter-efficient fine-tuning framework that adapt existing RSFMs as backbone while introducing a two-stage training approach to handle various spectral inputs, thereby significantly improving domain generalization performance. In the first stage, we employ a masked-reconstruction task and design a specialized Hyper Tokenizer (HyperT) to extract attribute tokens from both spatial and spectral dimensions. Simultaneously, we develop an Attribute-oriented Mixture of Adapter (AoMoA) that dynamically aggregates multi-attribute expert knowledge while performing layer-wise fine-tuning. With semantic segmentation as downstream task in the second stage, we insert an Attribute-refined Adapter (Are-adapter) into the first stage framework. By iteratively querying low-level semantic features with high-level representations, the model learns to focus on task-beneficial attributes, enabling customized adjustment of RSFMs. Following this two-phase adaptation process, SpectralX is capable of interpreting spectral imagery from new regions or seasons. The codes will be available from the website: https://github.com/YuxiangZhang-BIT.

Authors:Han Wang, Zhuoran Wang, Roy Ka-Wei Lee
Title: HateClipSeg: A Segment-Level Annotated Dataset for Fine-Grained Hate Video Detection
Abstract:
Detecting hate speech in videos remains challenging due to the complexity of multimodal content and the lack of fine-grained annotations in existing datasets. We present HateClipSeg, a large-scale multimodal dataset with both video-level and segment-level annotations, comprising over 11,714 segments labeled as Normal or across five Offensive categories: Hateful, Insulting, Sexual, Violence, Self-Harm, along with explicit target victim labels. Our three-stage annotation process yields high inter-annotator agreement (Krippendorff's alpha = 0.817). We propose three tasks to benchmark performance: (1) Trimmed Hateful Video Classification, (2) Temporal Hateful Video Localization, and (3) Online Hateful Video Classification. Results highlight substantial gaps in current models, emphasizing the need for more sophisticated multimodal and temporally aware approaches. The HateClipSeg dataset are publicly available at https://github.com/Social-AI-Studio/HateClipSeg.git.

Authors:Bowen Yang, Yun Cao, Chen He, Xiaosu Su
Title: GAID: Frame-Level Gated Audio-Visual Integration with Directional Perturbation for Text-Video Retrieval
Abstract:
Text-to-video retrieval requires precise alignment between language and temporally rich video signals. Existing methods predominantly exploit visual cues and often overlook complementary audio semantics or adopt coarse fusion strategies, leading to suboptimal multimodal representations. We present GAID, a framework that jointly address this gap via two key components: (i) a Frame-level Gated Fusion (FGF) that adaptively integrates audio and visual features under textual guidance, enabling fine-grained temporal alignment; and (ii) a Directional Adaptive Semantic Perturbation (DASP) that injects structure-aware perturbations into text embeddings, enhancing robustness and discrimination without incurring multi-pass inference. These modules complement each other -- fusion reduces modality gaps while perturbation regularizes cross-modal matching -- yielding more stable and expressive representations. Extensive experiments on MSR-VTT, DiDeMo, LSMDC, and VATEX show consistent state-of-the-art results across all retrieval metrics with notable efficiency gains. Our code is available at https://github.com/YangBowenn/GAID.

Authors:Luqi Cheng, Zhangshuo Qi, Zijie Zhou, Chao Lu, Guangming Xiong
Title: LT-Gaussian: Long-Term Map Update Using 3D Gaussian Splatting for Autonomous Driving
Abstract:
Maps play an important role in autonomous driving systems. The recently proposed 3D Gaussian Splatting (3D-GS) produces rendering-quality explicit scene reconstruction results, demonstrating the potential for map construction in autonomous driving scenarios. However, because of the time and computational costs involved in generating Gaussian scenes, how to update the map becomes a significant challenge. In this paper, we propose LT-Gaussian, a map update method for 3D-GS-based maps. LT-Gaussian consists of three main components: Multimodal Gaussian Splatting, Structural Change Detection Module, and Gaussian-Map Update Module. Firstly, the Gaussian map of the old scene is generated using our proposed Multimodal Gaussian Splatting. Subsequently, during the map update process, we compare the outdated Gaussian map with the current LiDAR data stream to identify structural changes. Finally, we perform targeted updates to the Gaussian-map to generate an up-to-date map. We establish a benchmark for map updating on the nuScenes dataset to quantitatively evaluate our method. The experimental results show that LT-Gaussian can effectively and efficiently update the Gaussian-map, handling common environmental changes in autonomous driving scenarios. Furthermore, by taking full advantage of information from both new and old scenes, LT-Gaussian is able to produce higher quality reconstruction results compared to map update strategies that reconstruct maps from scratch. Our open-source code is available at https://github.com/ChengLuqi/LT-gaussian.

Authors:Zhixiang Wei, Xiaoxiao Ma, Ruishen Yan, Tao Tu, Huaian Chen, Jinjin Zheng, Yi Jin, Enhong Chen
Title: Rein++: Efficient Generalization and Adaptation for Semantic Segmentation with Vision Foundation Models
Abstract:
Vision Foundation Models(VFMs) have achieved remarkable success in various computer vision tasks. However, their application to semantic segmentation is hindered by two significant challenges: (1) the disparity in data scale, as segmentation datasets are typically much smaller than those used for VFM pre-training, and (2) domain distribution shifts, where real-world segmentation scenarios are diverse and often underrepresented during pre-training. To overcome these limitations, we present Rein++, an efficient VFM-based segmentation framework that demonstrates superior generalization from limited data and enables effective adaptation to diverse unlabeled scenarios. Specifically, Rein++ comprises a domain generalization solution Rein-G and a domain adaptation solution Rein-A. Rein-G introduces a set of trainable, instance-aware tokens that effectively refine the VFM's features for the segmentation task. This parameter-efficient approach fine-tunes less than 1% of the backbone's parameters, enabling robust generalization. Building on the Rein-G, Rein-A performs unsupervised domain adaptation at both the instance and logit levels to mitigate domain shifts. In addition, it incorporates a semantic transfer module that leverages the class-agnostic capabilities of the segment anything model to enhance boundary details in the target domain. The integrated Rein++ pipeline first learns a generalizable model on a source domain (e.g., daytime scenes) and subsequently adapts it to diverse target domains (e.g., nighttime scenes) without any target labels. Comprehensive experiments demonstrate that Rein++ significantly outperforms state-of-the-art methods with efficient training, underscoring its roles an efficient, generalizable, and adaptive segmentation solution for VFMs, even for large models with billions of parameters. The code is available at https://github.com/wloves/Rein.

Authors:Na Zhang, Moran Li, Chengming Xu, Han Feng, Xiaobin Hu, Jiangning Zhang, Weijian Cao, Chengjie Wang, Yanwei Fu
Title: StrandDesigner: Towards Practical Strand Generation with Sketch Guidance
Abstract:
Realistic hair strand generation is crucial for applications like computer graphics and virtual reality. While diffusion models can generate hairstyles from text or images, these inputs lack precision and user-friendliness. Instead, we propose the first sketch-based strand generation model, which offers finer control while remaining user-friendly. Our framework tackles key challenges, such as modeling complex strand interactions and diverse sketch patterns, through two main innovations: a learnable strand upsampling strategy that encodes 3D strands into multi-scale latent spaces, and a multi-scale adaptive conditioning mechanism using a transformer with diffusion heads to ensure consistency across granularity levels. Experiments on several benchmark datasets show our method outperforms existing approaches in realism and precision. Qualitative results further confirm its effectiveness. Code will be released at [GitHub](https://github.com/fighting-Zhang/StrandDesigner).

Authors:Peiyuan Jiang, Yao Liu, Qiao Liu, Zongshun Zhang, Jiaye Yang, Lu Liu, Daibing Yao
Title: DRKF: Decoupled Representations with Knowledge Fusion for Multimodal Emotion Recognition
Abstract:
Multimodal emotion recognition (MER) aims to identify emotional states by integrating and analyzing information from multiple modalities. However, inherent modality heterogeneity and inconsistencies in emotional cues remain key challenges that hinder performance. To address these issues, we propose a Decoupled Representations with Knowledge Fusion (DRKF) method for MER. DRKF consists of two main modules: an Optimized Representation Learning (ORL) Module and a Knowledge Fusion (KF) Module. ORL employs a contrastive mutual information estimation method with progressive modality augmentation to decouple task-relevant shared representations and modality-specific features while mitigating modality heterogeneity. KF includes a lightweight self-attention-based Fusion Encoder (FE) that identifies the dominant modality and integrates emotional information from other modalities to enhance the fused representation. To handle potential errors from incorrect dominant modality selection under emotionally inconsistent conditions, we introduce an Emotion Discrimination Submodule (ED), which enforces the fused representation to retain discriminative cues of emotional inconsistency. This ensures that even if the FE selects an inappropriate dominant modality, the Emotion Classification Submodule (EC) can still make accurate predictions by leveraging preserved inconsistency information. Experiments show that DRKF achieves state-of-the-art (SOTA) performance on IEMOCAP, MELD, and M3ED. The source code is publicly available at https://github.com/PANPANKK/DRKF.

Authors:Xuanzhao Dong, Wenhui Zhu, Xiwen Chen, Zhipeng Wang, Peijie Qiu, Shao Tang, Xin Li, Yalin Wang
Title: LLaDA-MedV: Exploring Large Language Diffusion Models for Biomedical Image Understanding
Abstract:
Autoregressive models (ARMs) have long dominated the landscape of biomedical vision-language models (VLMs). Recently, masked diffusion models such as LLaDA have emerged as promising alternatives, yet their application in the biomedical domain remains largely underexplored. To bridge this gap, we introduce \textbf{LLaDA-MedV}, the first large language diffusion model tailored for biomedical image understanding through vision instruction tuning. LLaDA-MedV achieves relative performance gains of 7.855\% over LLaVA-Med and 1.867\% over LLaDA-V in the open-ended biomedical visual conversation task, and sets new state-of-the-art accuracy on the closed-form subset of three VQA benchmarks: 84.93\% on VQA-RAD, 92.31\% on SLAKE, and 95.15\% on PathVQA. Furthermore, a detailed comparison with LLaVA-Med suggests that LLaDA-MedV is capable of generating reasonably longer responses by explicitly controlling response length, which can lead to more informative outputs. We also conduct an in-depth analysis of both the training and inference stages, highlighting the critical roles of initialization weight selection, fine-tuning strategies, and the interplay between sampling steps and response repetition. The code and model weight is released at https://github.com/LLM-VLM-GSL/LLaDA-MedV.

Authors:Kai Han, Chongwen Lyu, Lele Ma, Chengxuan Qian, Siqi Ma, Zheng Pang, Jun Chen, Zhe Liu
Title: CLIMD: A Curriculum Learning Framework for Imbalanced Multimodal Diagnosis
Abstract:
Clinicians usually combine information from multiple sources to achieve the most accurate diagnosis, and this has sparked increasing interest in leveraging multimodal deep learning for diagnosis. However, in real clinical scenarios, due to differences in incidence rates, multimodal medical data commonly face the issue of class imbalance, which makes it difficult to adequately learn the features of minority classes. Most existing methods tackle this issue with resampling or loss reweighting, but they are prone to overfitting or underfitting and fail to capture cross-modal interactions. Therefore, we propose a Curriculum Learning framework for Imbalanced Multimodal Diagnosis (CLIMD). Specifically, we first design multimodal curriculum measurer that combines two indicators, intra-modal confidence and inter-modal complementarity, to enable the model to focus on key samples and gradually adapt to complex category distributions. Additionally, a class distribution-guided training scheduler is introduced, which enables the model to progressively adapt to the imbalanced class distribution during training. Extensive experiments on multiple multimodal medical datasets demonstrate that the proposed method outperforms state-of-the-art approaches across various metrics and excels in handling imbalanced multimodal medical data. Furthermore, as a plug-and-play CL framework, CLIMD can be easily integrated into other models, offering a promising path for improving multimodal disease diagnosis accuracy. Code is publicly available at https://github.com/KHan-UJS/CLIMD.

Authors:Kun Ding, Ying Wang, Shiming Xiang
Title: EvoVLMA: Evolutionary Vision-Language Model Adaptation
Abstract:
Pre-trained Vision-Language Models (VLMs) have been exploited in various Computer Vision tasks (e.g., few-shot recognition) via model adaptation, such as prompt tuning and adapters. However, existing adaptation methods are designed by human experts, requiring significant time cost and experience. Inspired by recent advances in Large Language Models (LLMs) based code generation, we propose an Evolutionary Vision-Language Model Adaptation (EvoVLMA) method to automatically search training-free efficient adaptation algorithms for VLMs. We recognize feature selection and logits computation as the key functions in training-free VLM adaptation, and propose a two-stage LLM-assisted evolutionary algorithm for optimizing these parts in a sequential manner, effectively addressing the challenge posed by the expansive search space through a divide-and-conquer strategy. Besides, to enhance the stability and efficiency of searching process, we propose low-precision code conversion, web based code execution and process monitoring, leading to a highly effective automatic algorithm design system. Extensive experiments demonstrate that the algorithms found by EvoVLMA can obtain promising results compared to previous manually-designed ones. More specifically, in the 8-shot image classification setting, the classical APE algorithm can be improved by 1.91 points in recognition accuracy. This research opens new possibilities for automating the optimization of adaptation algorithms of pre-trained multimodal models. Code is available at: https://github.com/kding1225/EvoVLMA

Authors:Chengming Wang, Guodong Fan, Jinjiang Li, Min Gan, C. L. Philip Chen
Title: MGCR-Net:Multimodal Graph-Conditioned Vision-Language Reconstruction Network for Remote Sensing Change Detection
Abstract:
With the advancement of remote sensing satellite technology and the rapid progress of deep learning, remote sensing change detection (RSCD) has become a key technique for regional monitoring. Traditional change detection (CD) methods and deep learning-based approaches have made significant contributions to change analysis and detection, however, many outstanding methods still face limitations in the exploration and application of multimodal data. To address this, we propose the multimodal graph-conditioned vision-language reconstruction network (MGCR-Net) to further explore the semantic interaction capabilities of multimodal data. Multimodal large language models (MLLM) have attracted widespread attention for their outstanding performance in computer vision, particularly due to their powerful visual-language understanding and dialogic interaction capabilities. Specifically, we design a MLLM-based optimization strategy to generate multimodal textual data from the original CD images, which serve as textual input to MGCR. Visual and textual features are extracted through a dual encoder framework. For the first time in the RSCD task, we introduce a multimodal graph-conditioned vision-language reconstruction mechanism, which is integrated with graph attention to construct a semantic graph-conditioned reconstruction module (SGCM), this module generates vision-language (VL) tokens through graph-based conditions and enables cross-dimensional interaction between visual and textual features via multihead attention. The reconstructed VL features are then deeply fused using the language vision transformer (LViT), achieving fine-grained feature alignment and high-level semantic interaction. Experimental results on four public datasets demonstrate that MGCR achieves superior performance compared to mainstream CD methods. Our code is available on https://github.com/cn-xvkong/MGCR

Authors:Quan-Sheng Zeng, Yunheng Li, Qilong Wang, Peng-Tao Jiang, Zuxuan Wu, Ming-Ming Cheng, Qibin Hou
Title: A Glimpse to Compress: Dynamic Visual Token Pruning for Large Vision-Language Models
Abstract:
Visual token compression is critical for Large Vision-Language Models (LVLMs) to efficiently process high-resolution inputs. Existing methods that typically adopt fixed compression ratios cannot adapt to scenes of varying complexity, often causing imprecise pruning that discards informative visual tokens and results in degraded model performance. To address this issue, we introduce a dynamic pruning framework, GlimpsePrune, inspired by human cognition. It takes a data-driven ''glimpse'' and prunes irrelevant visual tokens in a single forward pass before answer generation. This approach prunes 92.6% of visual tokens while on average fully retaining the baseline performance on free-form VQA tasks. The reduced computational cost also enables more effective fine-tuning: an enhanced GlimpsePrune+ achieves 110% of the baseline performance while maintaining a similarly high pruning rate. Our work paves a new way for building more powerful and efficient LVLMs.

Authors:Rushin H. Gindra, Giovanni Palla, Mathias Nguyen, Sophia J. Wagner, Manuel Tran, Fabian J Theis, Dieter Saur, Lorin Crawford, Tingying Peng
Title: A Large-Scale Benchmark of Cross-Modal Learning for Histology and Gene Expression in Spatial Transcriptomics
Abstract:
Spatial transcriptomics enables simultaneous measurement of gene expression and tissue morphology, offering unprecedented insights into cellular organization and disease mechanisms. However, the field lacks comprehensive benchmarks for evaluating multimodal learning methods that leverage both histology images and gene expression data. Here, we present HESCAPE, a large-scale benchmark for cross-modal contrastive pretraining in spatial transcriptomics, built on a curated pan-organ dataset spanning 6 different gene panels and 54 donors. We systematically evaluated state-of-the-art image and gene expression encoders across multiple pretraining strategies and assessed their effectiveness on two downstream tasks: gene mutation classification and gene expression prediction. Our benchmark demonstrates that gene expression encoders are the primary determinant of strong representational alignment, and that gene models pretrained on spatial transcriptomics data outperform both those trained without spatial data and simple baseline approaches. However, downstream task evaluation reveals a striking contradiction: while contrastive pretraining consistently improves gene mutation classification performance, it degrades direct gene expression prediction compared to baseline encoders trained without cross-modal objectives. We identify batch effects as a key factor that interferes with effective cross-modal alignment. Our findings highlight the critical need for batch-robust multimodal learning approaches in spatial transcriptomics. To accelerate progress in this direction, we release HESCAPE, providing standardized datasets, evaluation protocols, and benchmarking tools for the community

Authors:Peirong Zhang, Kai Ding, Lianwen Jin
Title: Capturing More: Learning Multi-Domain Representations for Robust Online Handwriting Verification
Abstract:
In this paper, we propose SPECTRUM, a temporal-frequency synergistic model that unlocks the untapped potential of multi-domain representation learning for online handwriting verification (OHV). SPECTRUM comprises three core components: (1) a multi-scale interactor that finely combines temporal and frequency features through dual-modal sequence interaction and multi-scale aggregation, (2) a self-gated fusion module that dynamically integrates global temporal and frequency features via self-driven balancing. These two components work synergistically to achieve micro-to-macro spectral-temporal integration. (3) A multi-domain distance-based verifier then utilizes both temporal and frequency representations to improve discrimination between genuine and forged handwriting, surpassing conventional temporal-only approaches. Extensive experiments demonstrate SPECTRUM's superior performance over existing OHV methods, underscoring the effectiveness of temporal-frequency multi-domain learning. Furthermore, we reveal that incorporating multiple handwritten biometrics fundamentally enhances the discriminative power of handwriting representations and facilitates verification. These findings not only validate the efficacy of multi-domain learning in OHV but also pave the way for future research in multi-domain approaches across both feature and biometric domains. Code is publicly available at https://github.com/NiceRingNode/SPECTRUM.

Authors:Onat Vuran, Hsuan-I Ho
Title: ReMu: Reconstructing Multi-layer 3D Clothed Human from Image Layers
Abstract:
The reconstruction of multi-layer 3D garments typically requires expensive multi-view capture setups and specialized 3D editing efforts. To support the creation of life-like clothed human avatars, we introduce ReMu for reconstructing multi-layer clothed humans in a new setup, Image Layers, which captures a subject wearing different layers of clothing with a single RGB camera. To reconstruct physically plausible multi-layer 3D garments, a unified 3D representation is necessary to model these garments in a layered manner. Thus, we first reconstruct and align each garment layer in a shared coordinate system defined by the canonical body pose. Afterwards, we introduce a collision-aware optimization process to address interpenetration and further refine the garment boundaries leveraging implicit neural fields. It is worth noting that our method is template-free and category-agnostic, which enables the reconstruction of 3D garments in diverse clothing styles. Through our experiments, we show that our method reconstructs nearly penetration-free 3D clothed humans and achieves competitive performance compared to category-specific methods. Project page: https://eth-ait.github.io/ReMu/

Authors:Haoquan Lu, Hanzhe Liang, Jie Zhang, Chenxi Hu, Jinbao Wang, Can Gao
Title: C3D-AD: Toward Continual 3D Anomaly Detection via Kernel Attention with Learnable Advisor
Abstract:
3D Anomaly Detection (AD) has shown great potential in detecting anomalies or defects of high-precision industrial products. However, existing methods are typically trained in a class-specific manner and also lack the capability of learning from emerging classes. In this study, we proposed a continual learning framework named Continual 3D Anomaly Detection (C3D-AD), which can not only learn generalized representations for multi-class point clouds but also handle new classes emerging over time.Specifically, in the feature extraction module, to extract generalized local features from diverse product types of different tasks efficiently, Kernel Attention with random feature Layer (KAL) is introduced, which normalizes the feature space. Then, to reconstruct data correctly and continually, an efficient Kernel Attention with learnable Advisor (KAA) mechanism is proposed, which learns the information from new categories while discarding redundant old information within both the encoder and decoder. Finally, to keep the representation consistency over tasks, a Reconstruction with Parameter Perturbation (RPP) module is proposed by designing a representation rehearsal loss function, which ensures that the model remembers previous category information and returns category-adaptive representation.Extensive experiments on three public datasets demonstrate the effectiveness of the proposed method, achieving an average performance of 66.4%, 83.1%, and 63.4% AUROC on Real3D-AD, Anomaly-ShapeNet, and MulSen-AD, respectively.

Authors:Alec Sargood, Lemuel Puglisi, James H. Cole, Neil P. Oxtoby, Daniele Ravì, Daniel C. Alexander
Title: CoCoLIT: ControlNet-Conditioned Latent Image Translation for MRI to Amyloid PET Synthesis
Abstract:
Synthesizing amyloid PET scans from the more widely available and accessible structural MRI modality offers a promising, cost-effective approach for large-scale Alzheimer's Disease (AD) screening. This is motivated by evidence that, while MRI does not directly detect amyloid pathology, it may nonetheless encode information correlated with amyloid deposition that can be uncovered through advanced modeling. However, the high dimensionality and structural complexity of 3D neuroimaging data pose significant challenges for existing MRI-to-PET translation methods. Modeling the cross-modality relationship in a lower-dimensional latent space can simplify the learning task and enable more effective translation. As such, we present CoCoLIT (ControlNet-Conditioned Latent Image Translation), a diffusion-based latent generative framework that incorporates three main innovations: (1) a novel Weighted Image Space Loss (WISL) that improves latent representation learning and synthesis quality; (2) a theoretical and empirical analysis of Latent Average Stabilization (LAS), an existing technique used in similar generative models to enhance inference consistency; and (3) the introduction of ControlNet-based conditioning for MRI-to-PET translation. We evaluate CoCoLIT's performance on publicly available datasets and find that our model significantly outperforms state-of-the-art methods on both image-based and amyloid-related metrics. Notably, in amyloid-positivity classification, CoCoLIT outperforms the second-best method with improvements of +10.5% on the internal dataset and +23.7% on the external dataset. The code and models of our approach are available at https://github.com/brAIn-science/CoCoLIT.

Authors:Zeyu Pan, Ping Li, Wenxiao Wang
Title: SGCap: Decoding Semantic Group for Zero-shot Video Captioning
Abstract:
Zero-shot video captioning aims to generate sentences for describing videos without training the model on video-text pairs, which remains underexplored. Existing zero-shot image captioning methods typically adopt a text-only training paradigm, where a language decoder reconstructs single-sentence embeddings obtained from CLIP. However, directly extending them to the video domain is suboptimal, as applying average pooling over all frames neglects temporal dynamics. To address this challenge, we propose a Semantic Group Captioning (SGCap) method for zero-shot video captioning. In particular, it develops the Semantic Group Decoding (SGD) strategy to employ multi-frame information while explicitly modeling inter-frame temporal relationships. Furthermore, existing zero-shot captioning methods that rely on cosine similarity for sentence retrieval and reconstruct the description supervised by a single frame-level caption, fail to provide sufficient video-level supervision. To alleviate this, we introduce two key components, including the Key Sentences Selection (KSS) module and the Probability Sampling Supervision (PSS) module. The two modules construct semantically-diverse sentence groups that models temporal dynamics and guide the model to capture inter-sentence causal relationships, thereby enhancing its generalization ability to video captioning. Experimental results on several benchmarks demonstrate that SGCap significantly outperforms previous state-of-the-art zero-shot alternatives and even achieves performance competitive with fully supervised ones. Code is available at https://github.com/mlvccn/SGCap_Video.

Authors:Xiaoqin Wang, Xianxu Hou, Meidan Ding, Junliang Chen, Kaijun Deng, Jinheng Xie, Linlin Shen
Title: DisFaceRep: Representation Disentanglement for Co-occurring Facial Components in Weakly Supervised Face Parsing
Abstract:
Face parsing aims to segment facial images into key components such as eyes, lips, and eyebrows. While existing methods rely on dense pixel-level annotations, such annotations are expensive and labor-intensive to obtain. To reduce annotation cost, we introduce Weakly Supervised Face Parsing (WSFP), a new task setting that performs dense facial component segmentation using only weak supervision, such as image-level labels and natural language descriptions. WSFP introduces unique challenges due to the high co-occurrence and visual similarity of facial components, which lead to ambiguous activations and degraded parsing performance. To address this, we propose DisFaceRep, a representation disentanglement framework designed to separate co-occurring facial components through both explicit and implicit mechanisms. Specifically, we introduce a co-occurring component disentanglement strategy to explicitly reduce dataset-level bias, and a text-guided component disentanglement loss to guide component separation using language supervision implicitly. Extensive experiments on CelebAMask-HQ, LaPa, and Helen demonstrate the difficulty of WSFP and the effectiveness of DisFaceRep, which significantly outperforms existing weakly supervised semantic segmentation methods. The code will be released at \href{https://github.com/CVI-SZU/DisFaceRep}{\textcolor{cyan}{https://github.com/CVI-SZU/DisFaceRep}}.

Authors:Xinyu Chen, Haotian Zhai, Can Zhang, Xiupeng Shi, Ruirui Li
Title: Multi-Cache Enhanced Prototype Learning for Test-Time Generalization of Vision-Language Models
Abstract:
In zero-shot setting, test-time adaptation adjusts pre-trained models using unlabeled data from the test phase to enhance performance on unknown test distributions. Existing cache-enhanced TTA methods rely on a low-entropy criterion to select samples for prototype construction, assuming intra-class compactness. However, low-entropy samples may be unreliable under distribution shifts, and the resulting prototypes may not ensure compact intra-class distributions. This study identifies a positive correlation between cache-enhanced performance and intra-class compactness. Based on this observation, we propose a Multi-Cache enhanced Prototype-based Test-Time Adaptation (MCP) featuring three caches: an entropy cache for initializing prototype representations with low-entropy samples, an align cache for integrating visual and textual information to achieve compact intra-class distributions, and a negative cache for prediction calibration using high-entropy samples. We further developed MCP++, a framework incorporating cross-modal prototype alignment and residual learning, introducing prototype residual fine-tuning. Comparative and ablation experiments across 15 downstream tasks demonstrate that the proposed method and framework achieve state-of-the-art generalization performance. Project Page available at: https://zhaihaotian.github.io/MCP-ICCV25/

Authors:Yuanlin Yang, Quanjian Song, Zhexian Gao, Ge Wang, Shanshan Li, Xiaoyan Zhang
Title: StyDeco: Unsupervised Style Transfer with Distilling Priors and Semantic Decoupling
Abstract:
Diffusion models have emerged as the dominant paradigm for style transfer, but their text-driven mechanism is hindered by a core limitation: it treats textual descriptions as uniform, monolithic guidance. This limitation overlooks the semantic gap between the non-spatial nature of textual descriptions and the spatially-aware attributes of visual style, often leading to the loss of semantic structure and fine-grained details during stylization. In this paper, we propose StyDeco, an unsupervised framework that resolves this limitation by learning text representations specifically tailored for the style transfer task. Our framework first employs Prior-Guided Data Distillation (PGD), a strategy designed to distill stylistic knowledge without human supervision. It leverages a powerful frozen generative model to automatically synthesize pseudo-paired data. Subsequently, we introduce Contrastive Semantic Decoupling (CSD), a task-specific objective that adapts a text encoder using domain-specific weights. CSD performs a two-class clustering in the semantic space, encouraging source and target representations to form distinct clusters. Extensive experiments on three classic benchmarks demonstrate that our framework outperforms several existing approaches in both stylistic fidelity and structural preservation, highlighting its effectiveness in style transfer with semantic preservation. In addition, our framework supports a unique de-stylization process, further demonstrating its extensibility. Our code is vailable at https://github.com/QuanjianSong/StyDeco.

Authors:Zhan Shi, Song Wang, Junbo Chen, Jianke Zhu
Title: A Coarse-to-Fine Approach to Multi-Modality 3D Occupancy Grounding
Abstract:
Visual grounding aims to identify objects or regions in a scene based on natural language descriptions, essential for spatially aware perception in autonomous driving. However, existing visual grounding tasks typically depend on bounding boxes that often fail to capture fine-grained details. Not all voxels within a bounding box are occupied, resulting in inaccurate object representations. To address this, we introduce a benchmark for 3D occupancy grounding in challenging outdoor scenes. Built on the nuScenes dataset, it integrates natural language with voxel-level occupancy annotations, offering more precise object perception compared to the traditional grounding task. Moreover, we propose GroundingOcc, an end-to-end model designed for 3D occupancy grounding through multi-modal learning. It combines visual, textual, and point cloud features to predict object location and occupancy information from coarse to fine. Specifically, GroundingOcc comprises a multimodal encoder for feature extraction, an occupancy head for voxel-wise predictions, and a grounding head to refine localization. Additionally, a 2D grounding module and a depth estimation module enhance geometric understanding, thereby boosting model performance. Extensive experiments on the benchmark demonstrate that our method outperforms existing baselines on 3D occupancy grounding. The dataset is available at https://github.com/RONINGOD/GroundingOcc.

Authors:Ranran Huang, Krystian Mikolajczyk
Title: No Pose at All: Self-Supervised Pose-Free 3D Gaussian Splatting from Sparse Views
Abstract:
We introduce SPFSplat, an efficient framework for 3D Gaussian splatting from sparse multi-view images, requiring no ground-truth poses during training or inference. It employs a shared feature extraction backbone, enabling simultaneous prediction of 3D Gaussian primitives and camera poses in a canonical space from unposed inputs within a single feed-forward step. Alongside the rendering loss based on estimated novel-view poses, a reprojection loss is integrated to enforce the learning of pixel-aligned Gaussian primitives for enhanced geometric constraints. This pose-free training paradigm and efficient one-step feed-forward design make SPFSplat well-suited for practical applications. Remarkably, despite the absence of pose supervision, SPFSplat achieves state-of-the-art performance in novel view synthesis even under significant viewpoint changes and limited image overlap. It also surpasses recent methods trained with geometry priors in relative pose estimation. Code and trained models are available on our project page: https://ranrhuang.github.io/spfsplat/.

Authors:Xinyu Yan, Meijun Sun, Ge-Peng Ji, Fahad Shahbaz Khan, Salman Khan, Deng-Ping Fan
Title: LawDIS: Language-Window-based Controllable Dichotomous Image Segmentation
Abstract:
We present LawDIS, a language-window-based controllable dichotomous image segmentation (DIS) framework that produces high-quality object masks. Our framework recasts DIS as an image-conditioned mask generation task within a latent diffusion model, enabling seamless integration of user controls. LawDIS is enhanced with macro-to-micro control modes. Specifically, in macro mode, we introduce a language-controlled segmentation strategy (LS) to generate an initial mask based on user-provided language prompts. In micro mode, a window-controlled refinement strategy (WR) allows flexible refinement of user-defined regions (i.e., size-adjustable windows) within the initial mask. Coordinated by a mode switcher, these modes can operate independently or jointly, making the framework well-suited for high-accuracy, personalised applications. Extensive experiments on the DIS5K benchmark reveal that our LawDIS significantly outperforms 11 cutting-edge methods across all metrics. Notably, compared to the second-best model MVANet, we achieve $F_β^ω$ gains of 4.6\% with both the LS and WR strategies and 3.6\% gains with only the LS strategy on DIS-TE. Codes will be made available at https://github.com/XinyuYanTJU/LawDIS.

Authors:Yu Lei, Jinbin Bai, Qingyu Shi, Aosong Feng, Kaidong Yu
Title: Personalized Safety Alignment for Text-to-Image Diffusion Models
Abstract:
Text-to-image diffusion models have revolutionized visual content generation, but current safety mechanisms apply uniform standards that often fail to account for individual user preferences. These models overlook the diverse safety boundaries shaped by factors like age, mental health, and personal beliefs. To address this, we propose Personalized Safety Alignment (PSA), a framework that allows user-specific control over safety behaviors in generative models. PSA integrates personalized user profiles into the diffusion process, adjusting the model's behavior to match individual safety preferences while preserving image quality. We introduce a new dataset, Sage, which captures user-specific safety preferences and incorporates these profiles through a cross-attention mechanism. Experiments show that PSA outperforms existing methods in harmful content suppression and aligns generated content better with user constraints, achieving higher Win Rate and Pass Rate scores. Our code, data, and models are publicly available at https://m-e-agi-lab.github.io/PSAlign/.

Authors:Dianyi Yang, Xihan Wang, Yu Gao, Shiyang Liu, Bohan Ren, Yufeng Yue, Yi Yang
Title: OpenGS-Fusion: Open-Vocabulary Dense Mapping with Hybrid 3D Gaussian Splatting for Refined Object-Level Understanding
Abstract:
Recent advancements in 3D scene understanding have made significant strides in enabling interaction with scenes using open-vocabulary queries, particularly for VR/AR and robotic applications. Nevertheless, existing methods are hindered by rigid offline pipelines and the inability to provide precise 3D object-level understanding given open-ended queries. In this paper, we present OpenGS-Fusion, an innovative open-vocabulary dense mapping framework that improves semantic modeling and refines object-level understanding. OpenGS-Fusion combines 3D Gaussian representation with a Truncated Signed Distance Field to facilitate lossless fusion of semantic features on-the-fly. Furthermore, we introduce a novel multimodal language-guided approach named MLLM-Assisted Adaptive Thresholding, which refines the segmentation of 3D objects by adaptively adjusting similarity thresholds, achieving an improvement 17\% in 3D mIoU compared to the fixed threshold strategy. Extensive experiments demonstrate that our method outperforms existing methods in 3D object understanding and scene reconstruction quality, as well as showcasing its effectiveness in language-guided scene interaction. The code is available at https://young-bit.github.io/opengs-fusion.github.io/ .

Authors:Huyu Wu, Duo Su, Junjie Hou, Guang Li
Title: Dataset Condensation with Color Compensation
Abstract:
Dataset condensation always faces a constitutive trade-off: balancing performance and fidelity under extreme compression. Existing methods struggle with two bottlenecks: image-level selection methods (Coreset Selection, Dataset Quantization) suffer from inefficiency condensation, while pixel-level optimization (Dataset Distillation) introduces semantic distortion due to over-parameterization. With empirical observations, we find that a critical problem in dataset condensation is the oversight of color's dual role as an information carrier and a basic semantic representation unit. We argue that improving the colorfulness of condensed images is beneficial for representation learning. Motivated by this, we propose DC3: a Dataset Condensation framework with Color Compensation. After a calibrated selection strategy, DC3 utilizes the latent diffusion model to enhance the color diversity of an image rather than creating a brand-new one. Extensive experiments demonstrate the superior performance and generalization of DC3 that outperforms SOTA methods across multiple benchmarks. To the best of our knowledge, besides focusing on downstream tasks, DC3 is the first research to fine-tune pre-trained diffusion models with condensed datasets. The FID results prove that training networks with our high-quality datasets is feasible without model collapse or other degradation issues. Code and generated data are available at https://github.com/528why/Dataset-Condensation-with-Color-Compensation.

Authors:Chaitanya Patel, Hiroki Nakamura, Yuta Kyuragi, Kazuki Kozuka, Juan Carlos Niebles, Ehsan Adeli
Title: UniEgoMotion: A Unified Model for Egocentric Motion Reconstruction, Forecasting, and Generation
Abstract:
Egocentric human motion generation and forecasting with scene-context is crucial for enhancing AR/VR experiences, improving human-robot interaction, advancing assistive technologies, and enabling adaptive healthcare solutions by accurately predicting and simulating movement from a first-person perspective. However, existing methods primarily focus on third-person motion synthesis with structured 3D scene contexts, limiting their effectiveness in real-world egocentric settings where limited field of view, frequent occlusions, and dynamic cameras hinder scene perception. To bridge this gap, we introduce Egocentric Motion Generation and Egocentric Motion Forecasting, two novel tasks that utilize first-person images for scene-aware motion synthesis without relying on explicit 3D scene. We propose UniEgoMotion, a unified conditional motion diffusion model with a novel head-centric motion representation tailored for egocentric devices. UniEgoMotion's simple yet effective design supports egocentric motion reconstruction, forecasting, and generation from first-person visual inputs in a unified framework. Unlike previous works that overlook scene semantics, our model effectively extracts image-based scene context to infer plausible 3D motion. To facilitate training, we introduce EE4D-Motion, a large-scale dataset derived from EgoExo4D, augmented with pseudo-ground-truth 3D motion annotations. UniEgoMotion achieves state-of-the-art performance in egocentric motion reconstruction and is the first to generate motion from a single egocentric image. Extensive evaluations demonstrate the effectiveness of our unified framework, setting a new benchmark for egocentric motion modeling and unlocking new possibilities for egocentric applications.

Authors:Saba Ahmadi, Rabiul Awal, Ankur Sikarwar, Amirhossein Kazemnejad, Ge Ya Luo, Juan A. Rodriguez, Sai Rajeswar, Siva Reddy, Christopher Pal, Benno Krojer, Aishwarya Agrawal
Title: The Promise of RL for Autoregressive Image Editing
Abstract:
We explore three strategies to enhance performance on a wide range of image editing tasks: supervised fine-tuning (SFT), reinforcement learning (RL), and Chain-of-Thought (CoT) reasoning. In order to study all these components in one consistent framework, we adopt an autoregressive multimodal model that processes textual and visual tokens in a unified manner. We find RL combined with a large multi-modal LLM verifier to be the most effective of these strategies. As a result, we release EARL: Editing with Autoregression and RL, a strong RL-based image editing model that performs competitively on a diverse range of edits compared to strong baselines, despite using much less training data. Thus, EARL pushes the frontier of autoregressive multimodal models on image editing. We release our code, training data, and trained models at https://github.com/mair-lab/EARL.

Authors:Fenghe Tang, Bingkun Nian, Jianrui Ding, Wenxin Ma, Quan Quan, Chengqi Dong, Jie Yang, Wei Liu, S. Kevin Zhou
Title: Mobile U-ViT: Revisiting large kernel and U-shaped ViT for efficient medical image segmentation
Abstract:
In clinical practice, medical image analysis often requires efficient execution on resource-constrained mobile devices. However, existing mobile models-primarily optimized for natural images-tend to perform poorly on medical tasks due to the significant information density gap between natural and medical domains. Combining computational efficiency with medical imaging-specific architectural advantages remains a challenge when developing lightweight, universal, and high-performing networks. To address this, we propose a mobile model called Mobile U-shaped Vision Transformer (Mobile U-ViT) tailored for medical image segmentation. Specifically, we employ the newly purposed ConvUtr as a hierarchical patch embedding, featuring a parameter-efficient large-kernel CNN with inverted bottleneck fusion. This design exhibits transformer-like representation learning capacity while being lighter and faster. To enable efficient local-global information exchange, we introduce a novel Large-kernel Local-Global-Local (LGL) block that effectively balances the low information density and high-level semantic discrepancy of medical images. Finally, we incorporate a shallow and lightweight transformer bottleneck for long-range modeling and employ a cascaded decoder with downsample skip connections for dense prediction. Despite its reduced computational demands, our medical-optimized architecture achieves state-of-the-art performance across eight public 2D and 3D datasets covering diverse imaging modalities, including zero-shot testing on four unseen datasets. These results establish it as an efficient yet powerful and generalization solution for mobile medical image analysis. Code is available at https://github.com/FengheTan9/Mobile-U-ViT.

Authors:Cihang Peng, Qiming Hou, Zhong Ren, Kun Zhou
Title: ROVI: A VLM-LLM Re-Captioned Dataset for Open-Vocabulary Instance-Grounded Text-to-Image Generation
Abstract:
We present ROVI, a high-quality synthetic dataset for instance-grounded text-to-image generation, created by labeling 1M curated web images. Our key innovation is a strategy called re-captioning, focusing on the pre-detection stage, where a VLM (Vision-Language Model) generates comprehensive visual descriptions that are then processed by an LLM (Large Language Model) to extract a flat list of potential categories for OVDs (Open-Vocabulary Detectors) to detect. This approach yields a global prompt inherently linked to instance annotations while capturing secondary visual elements humans typically overlook. Evaluations show that ROVI exceeds existing detection datasets in image quality and resolution while containing two orders of magnitude more categories with an open-vocabulary nature. For demonstrative purposes, a text-to-image model GLIGEN trained on ROVI significantly outperforms state-of-the-art alternatives in instance grounding accuracy, prompt fidelity, and aesthetic quality. Our dataset and reproducible pipeline are available at https://github.com/CihangPeng/ROVI.

Authors:Mohammad Mohammadi, Ziyi Wu, Igor Gilitschenski
Title: TESPEC: Temporally-Enhanced Self-Supervised Pretraining for Event Cameras
Abstract:
Long-term temporal information is crucial for event-based perception tasks, as raw events only encode pixel brightness changes. Recent works show that when trained from scratch, recurrent models achieve better results than feedforward models in these tasks. However, when leveraging self-supervised pre-trained weights, feedforward models can outperform their recurrent counterparts. Current self-supervised learning (SSL) methods for event-based pre-training largely mimic RGB image-based approaches. They pre-train feedforward models on raw events within a short time interval, ignoring the temporal information of events. In this work, we introduce TESPEC, a self-supervised pre-training framework tailored for learning spatio-temporal information. TESPEC is well-suited for recurrent models, as it is the first framework to leverage long event sequences during pre-training. TESPEC employs the masked image modeling paradigm with a new reconstruction target. We design a novel method to accumulate events into pseudo grayscale videos containing high-level semantic information about the underlying scene, which is robust to sensor noise and reduces motion blur. Reconstructing this target thus requires the model to reason about long-term history of events. Extensive experiments demonstrate our state-of-the-art results in downstream tasks, including object detection, semantic segmentation, and monocular depth estimation. Project webpage: https://mhdmohammadi.github.io/TESPEC_webpage.

Authors:Wenxuan Guo, Xiuwei Xu, Hang Yin, Ziwei Wang, Jianjiang Feng, Jie Zhou, Jiwen Lu
Title: IGL-Nav: Incremental 3D Gaussian Localization for Image-goal Navigation
Abstract:
Visual navigation with an image as goal is a fundamental and challenging problem. Conventional methods either rely on end-to-end RL learning or modular-based policy with topological graph or BEV map as memory, which cannot fully model the geometric relationship between the explored 3D environment and the goal image. In order to efficiently and accurately localize the goal image in 3D space, we build our navigation system upon the renderable 3D gaussian (3DGS) representation. However, due to the computational intensity of 3DGS optimization and the large search space of 6-DoF camera pose, directly leveraging 3DGS for image localization during agent exploration process is prohibitively inefficient. To this end, we propose IGL-Nav, an Incremental 3D Gaussian Localization framework for efficient and 3D-aware image-goal navigation. Specifically, we incrementally update the scene representation as new images arrive with feed-forward monocular prediction. Then we coarsely localize the goal by leveraging the geometric information for discrete space matching, which can be equivalent to efficient 3D convolution. When the agent is close to the goal, we finally solve the fine target pose with optimization via differentiable rendering. The proposed IGL-Nav outperforms existing state-of-the-art methods by a large margin across diverse experimental configurations. It can also handle the more challenging free-view image-goal setting and be deployed on real-world robotic platform using a cellphone to capture goal image at arbitrary pose. Project page: https://gwxuan.github.io/IGL-Nav/.

Authors:Irene Iele, Francesco Di Feola, Valerio Guarrasi, Paolo Soda
Title: Sample-Aware Test-Time Adaptation for Medical Image-to-Image Translation
Abstract:
Image-to-image translation has emerged as a powerful technique in medical imaging, enabling tasks such as image denoising and cross-modality conversion. However, it suffers from limitations in handling out-of-distribution samples without causing performance degradation. To address this limitation, we propose a novel Test-Time Adaptation (TTA) framework that dynamically adjusts the translation process based on the characteristics of each test sample. Our method introduces a Reconstruction Module to quantify the domain shift and a Dynamic Adaptation Block that selectively modifies the internal features of a pretrained translation model to mitigate the shift without compromising the performance on in-distribution samples that do not require adaptation. We evaluate our approach on two medical image-to-image translation tasks: low-dose CT denoising and T1 to T2 MRI translation, showing consistent improvements over both the baseline translation model without TTA and prior TTA methods. Our analysis highlights the limitations of the state-of-the-art that uniformly apply the adaptation to both out-of-distribution and in-distribution samples, demonstrating that dynamic, sample-specific adjustment offers a promising path to improve model resilience in real-world scenarios. The code is available at: https://github.com/Sample-Aware-TTA/Code.

Authors:Regine Hartwig, Dominik Muhle, Riccardo Marin, Daniel Cremers
Title: GECO: Geometrically Consistent Embedding with Lightspeed Inference
Abstract:
Recent advances in feature learning have shown that self-supervised vision foundation models can capture semantic correspondences but often lack awareness of underlying 3D geometry. GECO addresses this gap by producing geometrically coherent features that semantically distinguish parts based on geometry (e.g., left/right eyes, front/back legs). We propose a training framework based on optimal transport, enabling supervision beyond keypoints, even under occlusions and disocclusions. With a lightweight architecture, GECO runs at 30 fps, 98.2% faster than prior methods, while achieving state-of-the-art performance on PFPascal, APK, and CUB, improving PCK by 6.0%, 6.2%, and 4.1%, respectively. Finally, we show that PCK alone is insufficient to capture geometric quality and introduce new metrics and insights for more geometry-aware feature learning. Link to project page: https://reginehartwig.github.io/publications/geco/

Authors:Chende Zheng, Ruiqi suo, Chenhao Lin, Zhengyu Zhao, Le Yang, Shuai Liu, Minghui Yang, Cong Wang, Chao Shen
Title: D3: Training-Free AI-Generated Video Detection Using Second-Order Features
Abstract:
The evolution of video generation techniques, such as Sora, has made it increasingly easy to produce high-fidelity AI-generated videos, raising public concern over the dissemination of synthetic content. However, existing detection methodologies remain limited by their insufficient exploration of temporal artifacts in synthetic videos. To bridge this gap, we establish a theoretical framework through second-order dynamical analysis under Newtonian mechanics, subsequently extending the Second-order Central Difference features tailored for temporal artifact detection. Building on this theoretical foundation, we reveal a fundamental divergence in second-order feature distributions between real and AI-generated videos. Concretely, we propose Detection by Difference of Differences (D3), a novel training-free detection method that leverages the above second-order temporal discrepancies. We validate the superiority of our D3 on 4 open-source datasets (Gen-Video, VideoPhy, EvalCrafter, VidProM), 40 subsets in total. For example, on GenVideo, D3 outperforms the previous best method by 10.39% (absolute) mean Average Precision. Additional experiments on time cost and post-processing operations demonstrate D3's exceptional computational efficiency and strong robust performance. Our code is available at https://github.com/Zig-HS/D3.

Authors:Junhao Zheng, Jiahao Sun, Chenhao Lin, Zhengyu Zhao, Chen Ma, Chong Zhang, Cong Wang, Qian Wang, Chao Shen
Title: Revisiting Adversarial Patch Defenses on Object Detectors: Unified Evaluation, Large-Scale Dataset, and New Insights
Abstract:
Developing reliable defenses against patch attacks on object detectors has attracted increasing interest. However, we identify that existing defense evaluations lack a unified and comprehensive framework, resulting in inconsistent and incomplete assessments of current methods. To address this issue, we revisit 11 representative defenses and present the first patch defense benchmark, involving 2 attack goals, 13 patch attacks, 11 object detectors, and 4 diverse metrics. This leads to the large-scale adversarial patch dataset with 94 types of patches and 94,000 images. Our comprehensive analyses reveal new insights: (1) The difficulty in defending against naturalistic patches lies in the data distribution, rather than the commonly believed high frequencies. Our new dataset with diverse patch distributions can be used to improve existing defenses by 15.09% AP@0.5. (2) The average precision of the attacked object, rather than the commonly pursued patch detection accuracy, shows high consistency with defense performance. (3) Adaptive attacks can substantially bypass existing defenses, and defenses with complex/stochastic models or universal patch properties are relatively robust. We hope that our analyses will serve as guidance on properly evaluating patch attacks/defenses and advancing their design. Code and dataset are available at https://github.com/Gandolfczjh/APDE, where we will keep integrating new attacks/defenses.

Authors:Junzhe Lu, Jing Lin, Hongkun Dou, Ailing Zeng, Yue Deng, Xian Liu, Zhongang Cai, Lei Yang, Yulun Zhang, Haoqian Wang, Ziwei Liu
Title: DPoser-X: Diffusion Model as Robust 3D Whole-body Human Pose Prior
Abstract:
We present DPoser-X, a diffusion-based prior model for 3D whole-body human poses. Building a versatile and robust full-body human pose prior remains challenging due to the inherent complexity of articulated human poses and the scarcity of high-quality whole-body pose datasets. To address these limitations, we introduce a Diffusion model as body Pose prior (DPoser) and extend it to DPoser-X for expressive whole-body human pose modeling. Our approach unifies various pose-centric tasks as inverse problems, solving them through variational diffusion sampling. To enhance performance on downstream applications, we introduce a novel truncated timestep scheduling method specifically designed for pose data characteristics. We also propose a masked training mechanism that effectively combines whole-body and part-specific datasets, enabling our model to capture interdependencies between body parts while avoiding overfitting to specific actions. Extensive experiments demonstrate DPoser-X's robustness and versatility across multiple benchmarks for body, hand, face, and full-body pose modeling. Our model consistently outperforms state-of-the-art alternatives, establishing a new benchmark for whole-body human pose prior modeling.

Authors:Jiajun Le, Jiayi Ma
Title: GeoMoE: Divide-and-Conquer Motion Field Modeling with Mixture-of-Experts for Two-View Geometry
Abstract:
Recent progress in two-view geometry increasingly emphasizes enforcing smoothness and global consistency priors when estimating motion fields between pairs of images. However, in complex real-world scenes, characterized by extreme viewpoint and scale changes as well as pronounced depth discontinuities, the motion field often exhibits diverse and heterogeneous motion patterns. Most existing methods lack targeted modeling strategies and fail to explicitly account for this variability, resulting in estimated motion fields that diverge from their true underlying structure and distribution. We observe that Mixture-of-Experts (MoE) can assign dedicated experts to motion sub-fields, enabling a divide-and-conquer strategy for heterogeneous motion patterns. Building on this insight, we re-architect motion field modeling in two-view geometry with GeoMoE, a streamlined framework. Specifically, we first devise a Probabilistic Prior-Guided Decomposition strategy that exploits inlier probability signals to perform a structure-aware decomposition of the motion field into heterogeneous sub-fields, sharply curbing outlier-induced bias. Next, we introduce an MoE-Enhanced Bi-Path Rectifier that enhances each sub-field along spatial-context and channel-semantic paths and routes it to a customized expert for targeted modeling, thereby decoupling heterogeneous motion regimes, suppressing cross-sub-field interference and representational entanglement, and yielding fine-grained motion-field rectification. With this minimalist design, GeoMoE outperforms prior state-of-the-art methods in relative pose and homography estimation and shows strong generalization. The source code and pre-trained models are available at https://github.com/JiajunLe/GeoMoE.

Authors:Marc Hölle, Walter Kellermann, Vasileios Belagiannis
Title: Uncertainty-Aware Likelihood Ratio Estimation for Pixel-Wise Out-of-Distribution Detection
Abstract:
Semantic segmentation models trained on known object classes often fail in real-world autonomous driving scenarios by confidently misclassifying unknown objects. While pixel-wise out-of-distribution detection can identify unknown objects, existing methods struggle in complex scenes where rare object classes are often confused with truly unknown objects. We introduce an uncertainty-aware likelihood ratio estimation method that addresses these limitations. Our approach uses an evidential classifier within a likelihood ratio test to distinguish between known and unknown pixel features from a semantic segmentation model, while explicitly accounting for uncertainty. Instead of producing point estimates, our method outputs probability distributions that capture uncertainty from both rare training examples and imperfect synthetic outliers. We show that by incorporating uncertainty in this way, outlier exposure can be leveraged more effectively. Evaluated on five standard benchmark datasets, our method achieves the lowest average false positive rate (2.5%) among state-of-the-art while maintaining high average precision (90.91%) and incurring only negligible computational overhead. Code is available at https://github.com/glasbruch/ULRE.

Authors:Jingchao Xie, Oussema Dhaouadi, Weirong Chen, Johannes Meier, Jacques Kaiser, Daniel Cremers
Title: CoProU-VO: Combining Projected Uncertainty for End-to-End Unsupervised Monocular Visual Odometry
Abstract:
Visual Odometry (VO) is fundamental to autonomous navigation, robotics, and augmented reality, with unsupervised approaches eliminating the need for expensive ground-truth labels. However, these methods struggle when dynamic objects violate the static scene assumption, leading to erroneous pose estimations. We tackle this problem by uncertainty modeling, which is a commonly used technique that creates robust masks to filter out dynamic objects and occlusions without requiring explicit motion segmentation. Traditional uncertainty modeling considers only single-frame information, overlooking the uncertainties across consecutive frames. Our key insight is that uncertainty must be propagated and combined across temporal frames to effectively identify unreliable regions, particularly in dynamic scenes. To address this challenge, we introduce Combined Projected Uncertainty VO (CoProU-VO), a novel end-to-end approach that combines target frame uncertainty with projected reference frame uncertainty using a principled probabilistic formulation. Built upon vision transformer backbones, our model simultaneously learns depth, uncertainty estimation, and camera poses. Consequently, experiments on the KITTI and nuScenes datasets demonstrate significant improvements over previous unsupervised monocular end-to-end two-frame-based methods and exhibit strong performance in challenging highway scenes where other approaches often fail. Additionally, comprehensive ablation studies validate the effectiveness of cross-frame uncertainty propagation.

Authors:Jizhihui Liu, Feiyi Du, Guangdao Zhu, Niu Lian, Jun Li, Bin Chen
Title: HiPrune: Training-Free Visual Token Pruning via Hierarchical Attention in Vision-Language Models
Abstract:
Vision-Language Models (VLMs) encode images into lengthy sequences of visual tokens, leading to excessive computational overhead and limited inference efficiency. While prior efforts prune or merge tokens to address this issue, they often rely on special tokens (e.g., CLS) or require task-specific training, hindering scalability across architectures. In this paper, we propose HiPrune, a training-free and model-agnostic token Pruning framework that exploits the Hierarchical attention structure within vision encoders. We identify that middle layers attend to object-centric regions, while deep layers capture global contextual features. Based on this observation, HiPrune selects three types of informative tokens: (1) Anchor tokens with high attention in object-centric layers, (2) Buffer tokens adjacent to anchors for spatial continuity, and (3) Register tokens with strong attention in deep layers for global summarization. Our method requires no retraining and integrates seamlessly with any ViT-based VLM. Extensive experiments on LLaVA-1.5, LLaVA-NeXT, and Qwen2.5-VL demonstrate that HiPrune achieves state-of-the-art pruning performance, preserving up to 99.3% task accuracy with only 33.3% tokens, and maintaining 99.5% accuracy with just 11.1% tokens. Meanwhile, it reduces inference FLOPs and latency by up to 9$\times$, showcasing strong generalization across models and tasks. Code is available at https://github.com/Danielement321/HiPrune.

Authors:Seunghyun Shin, Dongmin Shin, Jisu Shin, Hae-Gon Jeon, Joon-Young Lee
Title: Video Color Grading via Look-Up Table Generation
Abstract:
Different from color correction and transfer, color grading involves adjusting colors for artistic or storytelling purposes in a video, which is used to establish a specific look or mood. However, due to the complexity of the process and the need for specialized editing skills, video color grading remains primarily the domain of professional colorists. In this paper, we present a reference-based video color grading framework. Our key idea is explicitly generating a look-up table (LUT) for color attribute alignment between reference scenes and input video via a diffusion model. As a training objective, we enforce that high-level features of the reference scenes like look, mood, and emotion should be similar to that of the input video. Our LUT-based approach allows for color grading without any loss of structural details in the whole video frames as well as achieving fast inference. We further build a pipeline to incorporate a user-preference via text prompts for low-level feature enhancement such as contrast and brightness, etc. Experimental results, including extensive user studies, demonstrate the effectiveness of our approach for video color grading. Codes are publicly available at https://github.com/seunghyuns98/VideoColorGrading.

Authors:Shuo Liang, Yiwu Zhong, Zi-Yuan Hu, Yeyao Tao, Liwei Wang
Title: Fine-grained Spatiotemporal Grounding on Egocentric Videos
Abstract:
Spatiotemporal video grounding aims to localize target entities in videos based on textual queries. While existing research has made significant progress in exocentric videos, the egocentric setting remains relatively underexplored, despite its growing importance in applications such as augmented reality and robotics. In this work, we conduct a systematic analysis of the discrepancies between egocentric and exocentric videos, revealing key challenges such as shorter object durations, sparser trajectories, smaller object sizes, and larger positional shifts. To address these challenges, we introduce EgoMask, the first pixel-level benchmark for fine-grained spatiotemporal grounding in egocentric videos. It is constructed by our proposed automatic annotation pipeline, which annotates referring expressions and object masks across short-, medium-, and long-term videos. Additionally, we create EgoMask-Train, a large-scale training dataset to facilitate model development. Experiments demonstrate that the state-of-the-art spatiotemporal grounding models perform poorly on our benchmark EgoMask, but fine-tuning on EgoMask-Train yields significant improvements, while preserving performance on exocentric datasets. Our work thus provides essential resources and insights for advancing egocentric video understanding. Our code is available at https://github.com/LaVi-Lab/EgoMask .

Authors:Mohammed Kamran, Maria Bernathova, Raoul Varga, Christian F. Singer, Zsuzsanna Bago-Horvath, Thomas Helbich, Georg Langs, Philipp Seeböck
Title: LesiOnTime -- Joint Temporal and Clinical Modeling for Small Breast Lesion Segmentation in Longitudinal DCE-MRI
Abstract:
Accurate segmentation of small lesions in Breast Dynamic Contrast-Enhanced MRI (DCE-MRI) is critical for early cancer detection, especially in high-risk patients. While recent deep learning methods have advanced lesion segmentation, they primarily target large lesions and neglect valuable longitudinal and clinical information routinely used by radiologists. In real-world screening, detecting subtle or emerging lesions requires radiologists to compare across timepoints and consider previous radiology assessments, such as the BI-RADS score. We propose LesiOnTime, a novel 3D segmentation approach that mimics clinical diagnostic workflows by jointly leveraging longitudinal imaging and BIRADS scores. The key components are: (1) a Temporal Prior Attention (TPA) block that dynamically integrates information from previous and current scans; and (2) a BI-RADS Consistency Regularization (BCR) loss that enforces latent space alignment for scans with similar radiological assessments, thus embedding domain knowledge into the training process. Evaluated on a curated in-house longitudinal dataset of high-risk patients with DCE-MRI, our approach outperforms state-of-the-art single-timepoint and longitudinal baselines by 5% in terms of Dice. Ablation studies demonstrate that both TPA and BCR contribute complementary performance gains. These results highlight the importance of incorporating temporal and clinical context for reliable early lesion segmentation in real-world breast cancer screening. Our code is publicly available at https://github.com/cirmuw/LesiOnTime

Authors:Yuzhuo Chen, Zehua Ma, Jianhua Wang, Kai Kang, Shunyu Yao, Weiming Zhang
Title: LAMIC: Layout-Aware Multi-Image Composition via Scalability of Multimodal Diffusion Transformer
Abstract:
In controllable image synthesis, generating coherent and consistent images from multiple references with spatial layout awareness remains an open challenge. We present LAMIC, a Layout-Aware Multi-Image Composition framework that, for the first time, extends single-reference diffusion models to multi-reference scenarios in a training-free manner. Built upon the MMDiT model, LAMIC introduces two plug-and-play attention mechanisms: 1) Group Isolation Attention (GIA) to enhance entity disentanglement; and 2) Region-Modulated Attention (RMA) to enable layout-aware generation. To comprehensively evaluate model capabilities, we further introduce three metrics: 1) Inclusion Ratio (IN-R) and Fill Ratio (FI-R) for assessing layout control; and 2) Background Similarity (BG-S) for measuring background consistency. Extensive experiments show that LAMIC achieves state-of-the-art performance across most major metrics: it consistently outperforms existing multi-reference baselines in ID-S, BG-S, IN-R and AVG scores across all settings, and achieves the best DPG in complex composition tasks. These results demonstrate LAMIC's superior abilities in identity keeping, background preservation, layout control, and prompt-following, all achieved without any training or fine-tuning, showcasing strong zero-shot generalization ability. By inheriting the strengths of advanced single-reference models and enabling seamless extension to multi-image scenarios, LAMIC establishes a new training-free paradigm for controllable multi-image composition. As foundation models continue to evolve, LAMIC's performance is expected to scale accordingly. Our implementation is available at: https://github.com/Suchenl/LAMIC.

Authors:Longfei Huang, Yu Liang, Hao Zhang, Jinwei Chen, Wei Dong, Lunde Chen, Wanyu Liu, Bo Li, Peng-Tao Jiang
Title: SDMatte: Grafting Diffusion Models for Interactive Matting
Abstract:
Recent interactive matting methods have shown satisfactory performance in capturing the primary regions of objects, but they fall short in extracting fine-grained details in edge regions. Diffusion models trained on billions of image-text pairs, demonstrate exceptional capability in modeling highly complex data distributions and synthesizing realistic texture details, while exhibiting robust text-driven interaction capabilities, making them an attractive solution for interactive matting. To this end, we propose SDMatte, a diffusion-driven interactive matting model, with three key contributions. First, we exploit the powerful priors of diffusion models and transform the text-driven interaction capability into visual prompt-driven interaction capability to enable interactive matting. Second, we integrate coordinate embeddings of visual prompts and opacity embeddings of target objects into U-Net, enhancing SDMatte's sensitivity to spatial position information and opacity information. Third, we propose a masked self-attention mechanism that enables the model to focus on areas specified by visual prompts, leading to better performance. Extensive experiments on multiple datasets demonstrate the superior performance of our method, validating its effectiveness in interactive matting. Our code and model are available at https://github.com/vivoCameraResearch/SDMatte.

Authors:M. A. Pérez-Cutiño, J. Valverde, J. Capitán, J. M. Díaz-Báñez
Title: Reducing the gap between general purpose data and aerial images in concentrated solar power plants
Abstract:
In the context of Concentrated Solar Power (CSP) plants, aerial images captured by drones present a unique set of challenges. Unlike urban or natural landscapes commonly found in existing datasets, solar fields contain highly reflective surfaces, and domain-specific elements that are uncommon in traditional computer vision benchmarks. As a result, machine learning models trained on generic datasets struggle to generalize to this setting without extensive retraining and large volumes of annotated data. However, collecting and labeling such data is costly and time-consuming, making it impractical for rapid deployment in industrial applications. To address this issue, we propose a novel approach: the creation of AerialCSP, a virtual dataset that simulates aerial imagery of CSP plants. By generating synthetic data that closely mimic real-world conditions, our objective is to facilitate pretraining of models before deployment, significantly reducing the need for extensive manual labeling. Our main contributions are threefold: (1) we introduce AerialCSP, a high-quality synthetic dataset for aerial inspection of CSP plants, providing annotated data for object detection and image segmentation; (2) we benchmark multiple models on AerialCSP, establishing a baseline for CSP-related vision tasks; and (3) we demonstrate that pretraining on AerialCSP significantly improves real-world fault detection, particularly for rare and small defects, reducing the need for extensive manual labeling. AerialCSP is made publicly available at https://mpcutino.github.io/aerialcsp/.

Authors:Sumin Seo, In Kyu Lee, Hyun-Woo Kim, Jaesik Min, Chung-Hwan Jung
Title: Diffusion-Based User-Guided Data Augmentation for Coronary Stenosis Detection
Abstract:
Coronary stenosis is a major risk factor for ischemic heart events leading to increased mortality, and medical treatments for this condition require meticulous, labor-intensive analysis. Coronary angiography provides critical visual cues for assessing stenosis, supporting clinicians in making informed decisions for diagnosis and treatment. Recent advances in deep learning have shown great potential for automated localization and severity measurement of stenosis. In real-world scenarios, however, the success of these competent approaches is often hindered by challenges such as limited labeled data and class imbalance. In this study, we propose a novel data augmentation approach that uses an inpainting method based on a diffusion model to generate realistic lesions, allowing user-guided control of severity. Extensive evaluation on lesion detection and severity classification across various synthetic dataset sizes shows superior performance of our method on both a large-scale in-house dataset and a public coronary angiography dataset. Furthermore, our approach maintains high detection and classification performance even when trained with limited data, highlighting its clinical importance in improving the assessment of severity of stenosis and optimizing data utilization for more reliable decision support.

Authors:Runmin Cong, Zongji Yu, Hao Fang, Haoyan Sun, Sam Kwong
Title: UIS-Mamba: Exploring Mamba for Underwater Instance Segmentation via Dynamic Tree Scan and Hidden State Weaken
Abstract:
Underwater Instance Segmentation (UIS) tasks are crucial for underwater complex scene detection. Mamba, as an emerging state space model with inherently linear complexity and global receptive fields, is highly suitable for processing image segmentation tasks with long sequence features. However, due to the particularity of underwater scenes, there are many challenges in applying Mamba to UIS. The existing fixed-patch scanning mechanism cannot maintain the internal continuity of scanned instances in the presence of severely underwater color distortion and blurred instance boundaries, and the hidden state of the complex underwater background can also inhibit the understanding of instance objects. In this work, we propose the first Mamba-based underwater instance segmentation model UIS-Mamba, and design two innovative modules, Dynamic Tree Scan (DTS) and Hidden State Weaken (HSW), to migrate Mamba to the underwater task. DTS module maintains the continuity of the internal features of the instance objects by allowing the patches to dynamically offset and scale, thereby guiding the minimum spanning tree and providing dynamic local receptive fields. HSW module suppresses the interference of complex backgrounds and effectively focuses the information flow of state propagation to the instances themselves through the Ncut-based hidden state weakening mechanism. Experimental results show that UIS-Mamba achieves state-of-the-art performance on both UIIS and USIS10K datasets, while maintaining a low number of parameters and computational complexity. Code is available at https://github.com/Maricalce/UIS-Mamba.

Authors:Sangwoo Youn, Minji Lee, Nokap Tony Park, Yeonggyoo Jeon, Taeyoung Na
Title: IN2OUT: Fine-Tuning Video Inpainting Model for Video Outpainting Using Hierarchical Discriminator
Abstract:
Video outpainting presents a unique challenge of extending the borders while maintaining consistency with the given content. In this paper, we suggest the use of video inpainting models that excel in object flow learning and reconstruction in outpainting rather than solely generating the background as in existing methods. However, directly applying or fine-tuning inpainting models to outpainting has shown to be ineffective, often leading to blurry results. Our extensive experiments on discriminator designs reveal that a critical component missing in the outpainting fine-tuning process is a discriminator capable of effectively assessing the perceptual quality of the extended areas. To tackle this limitation, we differentiate the objectives of adversarial training into global and local goals and introduce a hierarchical discriminator that meets both objectives. Additionally, we develop a specialized outpainting loss function that leverages both local and global features of the discriminator. Fine-tuning on this adversarial loss function enhances the generator's ability to produce both visually appealing and globally coherent outpainted scenes. Our proposed method outperforms state-of-the-art methods both quantitatively and qualitatively. Supplementary materials including the demo video and the code are available in SigPort.

Authors:Junyu Chen, Dongyun Zou, Wenkun He, Junsong Chen, Enze Xie, Song Han, Han Cai
Title: DC-AE 1.5: Accelerating Diffusion Model Convergence with Structured Latent Space
Abstract:
We present DC-AE 1.5, a new family of deep compression autoencoders for high-resolution diffusion models. Increasing the autoencoder's latent channel number is a highly effective approach for improving its reconstruction quality. However, it results in slow convergence for diffusion models, leading to poorer generation quality despite better reconstruction quality. This issue limits the quality upper bound of latent diffusion models and hinders the employment of autoencoders with higher spatial compression ratios. We introduce two key innovations to address this challenge: i) Structured Latent Space, a training-based approach to impose a desired channel-wise structure on the latent space with front latent channels capturing object structures and latter latent channels capturing image details; ii) Augmented Diffusion Training, an augmented diffusion training strategy with additional diffusion training objectives on object latent channels to accelerate convergence. With these techniques, DC-AE 1.5 delivers faster convergence and better diffusion scaling results than DC-AE. On ImageNet 512x512, DC-AE-1.5-f64c128 delivers better image generation quality than DC-AE-f32c32 while being 4x faster. Code: https://github.com/dc-ai-projects/DC-Gen.

Authors:Janika Deborah Gajo, Gerarld Paul Merales, Jerome Escarcha, Brenden Ashley Molina, Gian Nartea, Emmanuel G. Maminta, Juan Carlos Roldan, Rowel O. Atienza
Title: Sari Sandbox: A Virtual Retail Store Environment for Embodied AI Agents
Abstract:
We present Sari Sandbox, a high-fidelity, photorealistic 3D retail store simulation for benchmarking embodied agents against human performance in shopping tasks. Addressing a gap in retail-specific sim environments for embodied agent training, Sari Sandbox features over 250 interactive grocery items across three store configurations, controlled via an API. It supports both virtual reality (VR) for human interaction and a vision language model (VLM)-powered embodied agent. We also introduce SariBench, a dataset of annotated human demonstrations across varied task difficulties. Our sandbox enables embodied agents to navigate, inspect, and manipulate retail items, providing baselines against human performance. We conclude with benchmarks, performance analysis, and recommendations for enhancing realism and scalability. The source code can be accessed via https://github.com/upeee/sari-sandbox-env.

Authors:Raiyaan Abdullah, Yogesh Singh Rawat, Shruti Vyas
Title: iSafetyBench: A video-language benchmark for safety in industrial environment
Abstract:
Recent advances in vision-language models (VLMs) have enabled impressive generalization across diverse video understanding tasks under zero-shot settings. However, their capabilities in high-stakes industrial domains-where recognizing both routine operations and safety-critical anomalies is essential-remain largely underexplored. To address this gap, we introduce iSafetyBench, a new video-language benchmark specifically designed to evaluate model performance in industrial environments across both normal and hazardous scenarios. iSafetyBench comprises 1,100 video clips sourced from real-world industrial settings, annotated with open-vocabulary, multi-label action tags spanning 98 routine and 67 hazardous action categories. Each clip is paired with multiple-choice questions for both single-label and multi-label evaluation, enabling fine-grained assessment of VLMs in both standard and safety-critical contexts. We evaluate eight state-of-the-art video-language models under zero-shot conditions. Despite their strong performance on existing video benchmarks, these models struggle with iSafetyBench-particularly in recognizing hazardous activities and in multi-label scenarios. Our results reveal significant performance gaps, underscoring the need for more robust, safety-aware multimodal models for industrial applications. iSafetyBench provides a first-of-its-kind testbed to drive progress in this direction. The dataset is available at: https://github.com/iSafetyBench/data.

Authors:Fei Zhang, Tianfei Zhou, Jiangchao Yao, Ya Zhang, Ivor W. Tsang, Yanfeng Wang
Title: Decouple before Align: Visual Disentanglement Enhances Prompt Tuning
Abstract:
Prompt tuning (PT), as an emerging resource-efficient fine-tuning paradigm, has showcased remarkable effectiveness in improving the task-specific transferability of vision-language models. This paper delves into a previously overlooked information asymmetry issue in PT, where the visual modality mostly conveys more context than the object-oriented textual modality. Correspondingly, coarsely aligning these two modalities could result in the biased attention, driving the model to merely focus on the context area. To address this, we propose DAPT, an effective PT framework based on an intuitive decouple-before-align concept. First, we propose to explicitly decouple the visual modality into the foreground and background representation via exploiting coarse-and-fine visual segmenting cues, and then both of these decoupled patterns are aligned with the original foreground texts and the hand-crafted background classes, thereby symmetrically strengthening the modal alignment. To further enhance the visual concentration, we propose a visual pull-push regularization tailored for the foreground-background patterns, directing the original visual representation towards unbiased attention on the region-of-interest object. We demonstrate the power of architecture-free DAPT through few-shot learning, base-to-novel generalization, and data-efficient learning, all of which yield superior performance across prevailing benchmarks. Our code will be released at https://github.com/Ferenas/DAPT.

Authors:Guanjie Huang, Danny H. K. Tsang, Shan Yang, Guangzhi Lei, Li Liu
Title: Cued-Agent: A Collaborative Multi-Agent System for Automatic Cued Speech Recognition
Abstract:
Cued Speech (CS) is a visual communication system that combines lip-reading with hand coding to facilitate communication for individuals with hearing impairments. Automatic CS Recognition (ACSR) aims to convert CS hand gestures and lip movements into text via AI-driven methods. Traditionally, the temporal asynchrony between hand and lip movements requires the design of complex modules to facilitate effective multimodal fusion. However, constrained by limited data availability, current methods demonstrate insufficient capacity for adequately training these fusion mechanisms, resulting in suboptimal performance. Recently, multi-agent systems have shown promising capabilities in handling complex tasks with limited data availability. To this end, we propose the first collaborative multi-agent system for ACSR, named Cued-Agent. It integrates four specialized sub-agents: a Multimodal Large Language Model-based Hand Recognition agent that employs keyframe screening and CS expert prompt strategies to decode hand movements, a pretrained Transformer-based Lip Recognition agent that extracts lip features from the input video, a Hand Prompt Decoding agent that dynamically integrates hand prompts with lip features during inference in a training-free manner, and a Self-Correction Phoneme-to-Word agent that enables post-process and end-to-end conversion from phoneme sequences to natural language sentences for the first time through semantic refinement. To support this study, we expand the existing Mandarin CS dataset by collecting data from eight hearing-impaired cuers, establishing a mixed dataset of fourteen subjects. Extensive experiments demonstrate that our Cued-Agent performs superbly in both normal and hearing-impaired scenarios compared with state-of-the-art methods. The implementation is available at https://github.com/DennisHgj/Cued-Agent.

Authors:Won June Cho, Hongjun Yoon, Daeky Jeong, Hyeongyeol Lim, Yosep Chong
Title: $MV_{Hybrid}$: Improving Spatial Transcriptomics Prediction with Hybrid State Space-Vision Transformer Backbone in Pathology Vision Foundation Models
Abstract:
Spatial transcriptomics reveals gene expression patterns within tissue context, enabling precision oncology applications such as treatment response prediction, but its high cost and technical complexity limit clinical adoption. Predicting spatial gene expression (biomarkers) from routine histopathology images offers a practical alternative, yet current vision foundation models (VFMs) in pathology based on Vision Transformer (ViT) backbones perform below clinical standards. Given that VFMs are already trained on millions of diverse whole slide images, we hypothesize that architectural innovations beyond ViTs may better capture the low-frequency, subtle morphological patterns correlating with molecular phenotypes. By demonstrating that state space models initialized with negative real eigenvalues exhibit strong low-frequency bias, we introduce $MV_{Hybrid}$, a hybrid backbone architecture combining state space models (SSMs) with ViT. We compare five other different backbone architectures for pathology VFMs, all pretrained on identical colorectal cancer datasets using the DINOv2 self-supervised learning method. We evaluate all pretrained models using both random split and leave-one-study-out (LOSO) settings of the same biomarker dataset. In LOSO evaluation, $MV_{Hybrid}$ achieves 57% higher correlation than the best-performing ViT and shows 43% smaller performance degradation compared to random split in gene expression prediction, demonstrating superior performance and robustness, respectively. Furthermore, $MV_{Hybrid}$ shows equal or better downstream performance in classification, patch retrieval, and survival prediction tasks compared to that of ViT, showing its promise as a next-generation pathology VFM backbone. Our code is publicly available at: https://github.com/deepnoid-ai/MVHybrid.

Authors:Joonmyung Choi, Sanghyeok Lee, Byungoh Ko, Eunseo Kim, Jihyung Kil, Hyunwoo J. Kim
Title: Representation Shift: Unifying Token Compression with FlashAttention
Abstract:
Transformers have demonstrated remarkable success across vision, language, and video. Yet, increasing task complexity has led to larger models and more tokens, raising the quadratic cost of self-attention and the overhead of GPU memory access. To reduce the computation cost of self-attention, prior work has proposed token compression techniques that drop redundant or less informative tokens. Meanwhile, fused attention kernels such as FlashAttention have been developed to alleviate memory overhead by avoiding attention map construction and its associated I/O to HBM. This, however, makes it incompatible with most training-free token compression methods, which rely on attention maps to determine token importance. Here, we propose Representation Shift, a training-free, model-agnostic metric that measures the degree of change in each token's representation. This seamlessly integrates token compression with FlashAttention, without attention maps or retraining. Our method further generalizes beyond Transformers to CNNs and state space models. Extensive experiments show that Representation Shift enables effective token compression compatible with FlashAttention, yielding significant speedups of up to 5.5% and 4.4% in video-text retrieval and video QA, respectively. Code is available at https://github.com/mlvlab/Representation-Shift.

Authors:Liang Han, Xu Zhang, Haichuan Song, Kanle Shi, Yu-Shen Liu, Zhizhong Han
Title: SparseRecon: Neural Implicit Surface Reconstruction from Sparse Views with Feature and Depth Consistencies
Abstract:
Surface reconstruction from sparse views aims to reconstruct a 3D shape or scene from few RGB images. The latest methods are either generalization-based or overfitting-based. However, the generalization-based methods do not generalize well on views that were unseen during training, while the reconstruction quality of overfitting-based methods is still limited by the limited geometry clues. To address this issue, we propose SparseRecon, a novel neural implicit reconstruction method for sparse views with volume rendering-based feature consistency and uncertainty-guided depth constraint. Firstly, we introduce a feature consistency loss across views to constrain the neural implicit field. This design alleviates the ambiguity caused by insufficient consistency information of views and ensures completeness and smoothness in the reconstruction results. Secondly, we employ an uncertainty-guided depth constraint to back up the feature consistency loss in areas with occlusion and insignificant features, which recovers geometry details for better reconstruction quality. Experimental results demonstrate that our method outperforms the state-of-the-art methods, which can produce high-quality geometry with sparse-view input, especially in the scenarios with small overlapping views. Project page: https://hanl2010.github.io/SparseRecon/.

Authors:Tianshuang Qiu, Zehan Ma, Karim El-Refai, Hiya Shah, Chung Min Kim, Justin Kerr, Ken Goldberg
Title: Omni-Scan: Creating Visually-Accurate Digital Twin Object Models Using a Bimanual Robot with Handover and Gaussian Splat Merging
Abstract:
3D Gaussian Splats (3DGSs) are 3D object models derived from multi-view images. Such "digital twins" are useful for simulations, virtual reality, marketing, robot policy fine-tuning, and part inspection. 3D object scanning usually requires multi-camera arrays, precise laser scanners, or robot wrist-mounted cameras, which have restricted workspaces. We propose Omni-Scan, a pipeline for producing high-quality 3D Gaussian Splat models using a bi-manual robot that grasps an object with one gripper and rotates the object with respect to a stationary camera. The object is then re-grasped by a second gripper to expose surfaces that were occluded by the first gripper. We present the Omni-Scan robot pipeline using DepthAny-thing, Segment Anything, as well as RAFT optical flow models to identify and isolate objects held by a robot gripper while removing the gripper and the background. We then modify the 3DGS training pipeline to support concatenated datasets with gripper occlusion, producing an omni-directional (360 degree view) model of the object. We apply Omni-Scan to part defect inspection, finding that it can identify visual or geometric defects in 12 different industrial and household objects with an average accuracy of 83%. Interactive videos of Omni-Scan 3DGS models can be found at https://berkeleyautomation.github.io/omni-scan/

Authors:Suhang Cai, Xiaohao Peng, Chong Wang, Xiaojie Cai, Jiangbo Qian
Title: GV-VAD : Exploring Video Generation for Weakly-Supervised Video Anomaly Detection
Abstract:
Video anomaly detection (VAD) plays a critical role in public safety applications such as intelligent surveillance. However, the rarity, unpredictability, and high annotation cost of real-world anomalies make it difficult to scale VAD datasets, which limits the performance and generalization ability of existing models. To address this challenge, we propose a generative video-enhanced weakly-supervised video anomaly detection (GV-VAD) framework that leverages text-conditioned video generation models to produce semantically controllable and physically plausible synthetic videos. These virtual videos are used to augment training data at low cost. In addition, a synthetic sample loss scaling strategy is utilized to control the influence of generated synthetic samples for efficient training. The experiments show that the proposed framework outperforms state-of-the-art methods on UCF-Crime datasets. The code is available at https://github.com/Sumutan/GV-VAD.git.

Authors:Henghui Ding, Song Tang, Shuting He, Chang Liu, Zuxuan Wu, Yu-Gang Jiang
Title: Multimodal Referring Segmentation: A Survey
Abstract:
Multimodal referring segmentation aims to segment target objects in visual scenes, such as images, videos, and 3D scenes, based on referring expressions in text or audio format. This task plays a crucial role in practical applications requiring accurate object perception based on user instructions. Over the past decade, it has gained significant attention in the multimodal community, driven by advances in convolutional neural networks, transformers, and large language models, all of which have substantially improved multimodal perception capabilities. This paper provides a comprehensive survey of multimodal referring segmentation. We begin by introducing this field's background, including problem definitions and commonly used datasets. Next, we summarize a unified meta architecture for referring segmentation and review representative methods across three primary visual scenes, including images, videos, and 3D scenes. We further discuss Generalized Referring Expression (GREx) methods to address the challenges of real-world complexity, along with related tasks and practical applications. Extensive performance comparisons on standard benchmarks are also provided. We continually track related works at https://github.com/henghuiding/Awesome-Multimodal-Referring-Segmentation.

Authors:Bhavya Goyal, Felipe Gutierrez-Barragan, Wei Lin, Andreas Velten, Yin Li, Mohit Gupta
Title: Robust 3D Object Detection using Probabilistic Point Clouds from Single-Photon LiDARs
Abstract:
LiDAR-based 3D sensors provide point clouds, a canonical 3D representation used in various scene understanding tasks. Modern LiDARs face key challenges in several real-world scenarios, such as long-distance or low-albedo objects, producing sparse or erroneous point clouds. These errors, which are rooted in the noisy raw LiDAR measurements, get propagated to downstream perception models, resulting in potentially severe loss of accuracy. This is because conventional 3D processing pipelines do not retain any uncertainty information from the raw measurements when constructing point clouds. We propose Probabilistic Point Clouds (PPC), a novel 3D scene representation where each point is augmented with a probability attribute that encapsulates the measurement uncertainty (or confidence) in the raw data. We further introduce inference approaches that leverage PPC for robust 3D object detection; these methods are versatile and can be used as computationally lightweight drop-in modules in 3D inference pipelines. We demonstrate, via both simulations and real captures, that PPC-based 3D inference methods outperform several baselines using LiDAR as well as camera-LiDAR fusion models, across challenging indoor and outdoor scenarios involving small, distant, and low-albedo objects, as well as strong ambient light. Our project webpage is at https://bhavyagoyal.github.io/ppc .

Authors:Tomasz Szczepański, Szymon Płotka, Michal K. Grzeszczyk, Arleta Adamowicz, Piotr Fudalej, Przemysław Korzeniowski, Tomasz Trzciński, Arkadiusz Sitek
Title: GEPAR3D: Geometry Prior-Assisted Learning for 3D Tooth Segmentation
Abstract:
Tooth segmentation in Cone-Beam Computed Tomography (CBCT) remains challenging, especially for fine structures like root apices, which is critical for assessing root resorption in orthodontics. We introduce GEPAR3D, a novel approach that unifies instance detection and multi-class segmentation into a single step tailored to improve root segmentation. Our method integrates a Statistical Shape Model of dentition as a geometric prior, capturing anatomical context and morphological consistency without enforcing restrictive adjacency constraints. We leverage a deep watershed method, modeling each tooth as a continuous 3D energy basin encoding voxel distances to boundaries. This instance-aware representation ensures accurate segmentation of narrow, complex root apices. Trained on publicly available CBCT scans from a single center, our method is evaluated on external test sets from two in-house and two public medical centers. GEPAR3D achieves the highest overall segmentation performance, averaging a Dice Similarity Coefficient (DSC) of 95.0% (+2.8% over the second-best method) and increasing recall to 95.2% (+9.5%) across all test sets. Qualitative analyses demonstrated substantial improvements in root segmentation quality, indicating significant potential for more accurate root resorption assessment and enhanced clinical decision-making in orthodontics. We provide the implementation and dataset at https://github.com/tomek1911/GEPAR3D.

Authors:Li Mi, Manon Bechaz, Zeming Chen, Antoine Bosselut, Devis Tuia
Title: GeoExplorer: Active Geo-localization with Curiosity-Driven Exploration
Abstract:
Active Geo-localization (AGL) is the task of localizing a goal, represented in various modalities (e.g., aerial images, ground-level images, or text), within a predefined search area. Current methods approach AGL as a goal-reaching reinforcement learning (RL) problem with a distance-based reward. They localize the goal by implicitly learning to minimize the relative distance from it. However, when distance estimation becomes challenging or when encountering unseen targets and environments, the agent exhibits reduced robustness and generalization ability due to the less reliable exploration strategy learned during training. In this paper, we propose GeoExplorer, an AGL agent that incorporates curiosity-driven exploration through intrinsic rewards. Unlike distance-based rewards, our curiosity-driven reward is goal-agnostic, enabling robust, diverse, and contextually relevant exploration based on effective environment modeling. These capabilities have been proven through extensive experiments across four AGL benchmarks, demonstrating the effectiveness and generalization ability of GeoExplorer in diverse settings, particularly in localizing unfamiliar targets and environments.

Authors:Ashkan Shakarami, Yousef Yeganeh, Azade Farshad, Lorenzo Nicole, Stefano Ghidoni, Nassir Navab
Title: Stress-Aware Resilient Neural Training
Abstract:
This paper introduces Stress-Aware Learning, a resilient neural training paradigm in which deep neural networks dynamically adjust their optimization behavior - whether under stable training regimes or in settings with uncertain dynamics - based on the concept of Temporary (Elastic) and Permanent (Plastic) Deformation, inspired by structural fatigue in materials science. To instantiate this concept, we propose Plastic Deformation Optimizer, a stress-aware mechanism that injects adaptive noise into model parameters whenever an internal stress signal - reflecting stagnation in training loss and accuracy - indicates persistent optimization difficulty. This enables the model to escape sharp minima and converge toward flatter, more generalizable regions of the loss landscape. Experiments across six architectures, four optimizers, and seven vision benchmarks demonstrate improved robustness and generalization with minimal computational overhead. The code and 3D visuals will be available on GitHub: https://github.com/Stress-Aware-Learning/SAL.

Authors:Raiyaan Abdullah, Jared Claypoole, Michael Cogswell, Ajay Divakaran, Yogesh Rawat
Title: Punching Bag vs. Punching Person: Motion Transferability in Videos
Abstract:
Action recognition models demonstrate strong generalization, but can they effectively transfer high-level motion concepts across diverse contexts, even within similar distributions? For example, can a model recognize the broad action "punching" when presented with an unseen variation such as "punching person"? To explore this, we introduce a motion transferability framework with three datasets: (1) Syn-TA, a synthetic dataset with 3D object motions; (2) Kinetics400-TA; and (3) Something-Something-v2-TA, both adapted from natural video datasets. We evaluate 13 state-of-the-art models on these benchmarks and observe a significant drop in performance when recognizing high-level actions in novel contexts. Our analysis reveals: 1) Multimodal models struggle more with fine-grained unknown actions than with coarse ones; 2) The bias-free Syn-TA proves as challenging as real-world datasets, with models showing greater performance drops in controlled settings; 3) Larger models improve transferability when spatial cues dominate but struggle with intensive temporal reasoning, while reliance on object and background cues hinders generalization. We further explore how disentangling coarse and fine motions can improve recognition in temporally challenging datasets. We believe this study establishes a crucial benchmark for assessing motion transferability in action recognition. Datasets and relevant code: https://github.com/raiyaan-abdullah/Motion-Transfer.

Authors:Bowen Zhang, Sicheng Xu, Chuxin Wang, Jiaolong Yang, Feng Zhao, Dong Chen, Baining Guo
Title: Gaussian Variation Field Diffusion for High-fidelity Video-to-4D Synthesis
Abstract:
In this paper, we present a novel framework for video-to-4D generation that creates high-quality dynamic 3D content from single video inputs. Direct 4D diffusion modeling is extremely challenging due to costly data construction and the high-dimensional nature of jointly representing 3D shape, appearance, and motion. We address these challenges by introducing a Direct 4DMesh-to-GS Variation Field VAE that directly encodes canonical Gaussian Splats (GS) and their temporal variations from 3D animation data without per-instance fitting, and compresses high-dimensional animations into a compact latent space. Building upon this efficient representation, we train a Gaussian Variation Field diffusion model with temporal-aware Diffusion Transformer conditioned on input videos and canonical GS. Trained on carefully-curated animatable 3D objects from the Objaverse dataset, our model demonstrates superior generation quality compared to existing methods. It also exhibits remarkable generalization to in-the-wild video inputs despite being trained exclusively on synthetic data, paving the way for generating high-quality animated 3D content. Project page: https://gvfdiffusion.github.io/.

Authors:Jessica Bader, Leander Girrbach, Stephan Alaniz, Zeynep Akata
Title: SUB: Benchmarking CBM Generalization via Synthetic Attribute Substitutions
Abstract:
Concept Bottleneck Models (CBMs) and other concept-based interpretable models show great promise for making AI applications more transparent, which is essential in fields like medicine. Despite their success, we demonstrate that CBMs struggle to reliably identify the correct concepts under distribution shifts. To assess the robustness of CBMs to concept variations, we introduce SUB: a fine-grained image and concept benchmark containing 38,400 synthetic images based on the CUB dataset. To create SUB, we select a CUB subset of 33 bird classes and 45 concepts to generate images which substitute a specific concept, such as wing color or belly pattern. We introduce a novel Tied Diffusion Guidance (TDG) method to precisely control generated images, where noise sharing for two parallel denoising processes ensures that both the correct bird class and the correct attribute are generated. This novel benchmark enables rigorous evaluation of CBMs and similar interpretable models, contributing to the development of more robust methods. Our code is available at https://github.com/ExplainableML/sub and the dataset at http://huggingface.co/datasets/Jessica-bader/SUB.

Authors:Zihan Wang, Jeff Tan, Tarasha Khurana, Neehar Peri, Deva Ramanan
Title: MonoFusion: Sparse-View 4D Reconstruction via Monocular Fusion
Abstract:
We address the problem of dynamic scene reconstruction from sparse-view videos. Prior work often requires dense multi-view captures with hundreds of calibrated cameras (e.g. Panoptic Studio). Such multi-view setups are prohibitively expensive to build and cannot capture diverse scenes in-the-wild. In contrast, we aim to reconstruct dynamic human behaviors, such as repairing a bike or dancing, from a small set of sparse-view cameras with complete scene coverage (e.g. four equidistant inward-facing static cameras). We find that dense multi-view reconstruction methods struggle to adapt to this sparse-view setup due to limited overlap between viewpoints. To address these limitations, we carefully align independent monocular reconstructions of each camera to produce time- and view-consistent dynamic scene reconstructions. Extensive experiments on PanopticStudio and Ego-Exo4D demonstrate that our method achieves higher quality reconstructions than prior art, particularly when rendering novel views. Code, data, and data-processing scripts are available on https://github.com/ImNotPrepared/MonoFusion.

Authors:Miaosen Zhang, Ziqiang Xu, Jialiang Zhu, Qi Dai, Kai Qiu, Yifan Yang, Chong Luo, Tianyi Chen, Justin Wagle, Tim Franklin, Baining Guo
Title: Phi-Ground Tech Report: Advancing Perception in GUI Grounding
Abstract:
With the development of multimodal reasoning models, Computer Use Agents (CUAs), akin to Jarvis from \textit{"Iron Man"}, are becoming a reality. GUI grounding is a core component for CUAs to execute actual actions, similar to mechanical control in robotics, and it directly leads to the success or failure of the system. It determines actions such as clicking and typing, as well as related parameters like the coordinates for clicks. Current end-to-end grounding models still achieve less than 65\% accuracy on challenging benchmarks like ScreenSpot-pro and UI-Vision, indicating they are far from being ready for deployment. % , as a single misclick can result in unacceptable consequences. In this work, we conduct an empirical study on the training of grounding models, examining details from data collection to model training. Ultimately, we developed the \textbf{Phi-Ground} model family, which achieves state-of-the-art performance across all five grounding benchmarks for models under $10B$ parameters in agent settings. In the end-to-end model setting, our model still achieves SOTA results with scores of \textit{\textbf{43.2}} on ScreenSpot-pro and \textit{\textbf{27.2}} on UI-Vision. We believe that the various details discussed in this paper, along with our successes and failures, not only clarify the construction of grounding models but also benefit other perception tasks. Project homepage: \href{https://zhangmiaosen2000.github.io/Phi-Ground/}{https://zhangmiaosen2000.github.io/Phi-Ground/}

Authors:Justin Kay, Grant Van Horn, Subhransu Maji, Daniel Sheldon, Sara Beery
Title: Consensus-Driven Active Model Selection
Abstract:
The widespread availability of off-the-shelf machine learning models poses a challenge: which model, of the many available candidates, should be chosen for a given data analysis task? This question of model selection is traditionally answered by collecting and annotating a validation dataset -- a costly and time-intensive process. We propose a method for active model selection, using predictions from candidate models to prioritize the labeling of test data points that efficiently differentiate the best candidate. Our method, CODA, performs consensus-driven active model selection by modeling relationships between classifiers, categories, and data points within a probabilistic framework. The framework uses the consensus and disagreement between models in the candidate pool to guide the label acquisition process, and Bayesian inference to update beliefs about which model is best as more information is collected. We validate our approach by curating a collection of 26 benchmark tasks capturing a range of model selection scenarios. CODA outperforms existing methods for active model selection significantly, reducing the annotation effort required to discover the best model by upwards of 70% compared to the previous state-of-the-art. Code and data are available at https://github.com/justinkay/coda.

Authors:Rongzhen Zhao, Yi Zhao, Juho Kannala, Joni Pajarinen
Title: Slot Attention with Re-Initialization and Self-Distillation
Abstract:
Unlike popular solutions based on dense feature maps, Object-Centric Learning (OCL) represents visual scenes as sub-symbolic object-level feature vectors, termed slots, which are highly versatile for tasks involving visual modalities. OCL typically aggregates object superpixels into slots by iteratively applying competitive cross attention, known as Slot Attention, with the slots as the query. However, once initialized, these slots are reused naively, causing redundant slots to compete with informative ones for representing objects. This often results in objects being erroneously segmented into parts. Additionally, mainstream methods derive supervision signals solely from decoding slots into the input's reconstruction, overlooking potential supervision based on internal information. To address these issues, we propose Slot Attention with re-Initialization and self-Distillation (DIAS): $\emph{i)}$ We reduce redundancy in the aggregated slots and re-initialize extra aggregation to update the remaining slots; $\emph{ii)}$ We drive the bad attention map at the first aggregation iteration to approximate the good at the last iteration to enable self-distillation. Experiments demonstrate that DIAS achieves state-of-the-art on OCL tasks like object discovery and recognition, while also improving advanced visual prediction and reasoning. Our source code and model checkpoints are available on https://github.com/Genera1Z/DIAS.

Authors:Dongming Wu, Yanping Fu, Saike Huang, Yingfei Liu, Fan Jia, Nian Liu, Feng Dai, Tiancai Wang, Rao Muhammad Anwer, Fahad Shahbaz Khan, Jianbing Shen
Title: RAGNet: Large-scale Reasoning-based Affordance Segmentation Benchmark towards General Grasping
Abstract:
General robotic grasping systems require accurate object affordance perception in diverse open-world scenarios following human instructions. However, current studies suffer from the problem of lacking reasoning-based large-scale affordance prediction data, leading to considerable concern about open-world effectiveness. To address this limitation, we build a large-scale grasping-oriented affordance segmentation benchmark with human-like instructions, named RAGNet. It contains 273k images, 180 categories, and 26k reasoning instructions. The images cover diverse embodied data domains, such as wild, robot, ego-centric, and even simulation data. They are carefully annotated with an affordance map, while the difficulty of language instructions is largely increased by removing their category name and only providing functional descriptions. Furthermore, we propose a comprehensive affordance-based grasping framework, named AffordanceNet, which consists of a VLM pre-trained on our massive affordance data and a grasping network that conditions an affordance map to grasp the target. Extensive experiments on affordance segmentation benchmarks and real-robot manipulation tasks show that our model has a powerful open-world generalization ability. Our data and code is available at https://github.com/wudongming97/AffordanceNet.

Authors:Emery Pierson, Lei Li, Angela Dai, Maks Ovsjanikov
Title: DiffuMatch: Category-Agnostic Spectral Diffusion Priors for Robust Non-rigid Shape Matching
Abstract:
Deep functional maps have recently emerged as a powerful tool for solving non-rigid shape correspondence tasks. Methods that use this approach combine the power and flexibility of the functional map framework, with data-driven learning for improved accuracy and generality. However, most existing methods in this area restrict the learning aspect only to the feature functions and still rely on axiomatic modeling for formulating the training loss or for functional map regularization inside the networks. This limits both the accuracy and the applicability of the resulting approaches only to scenarios where assumptions of the axiomatic models hold. In this work, we show, for the first time, that both in-network regularization and functional map training can be replaced with data-driven methods. For this, we first train a generative model of functional maps in the spectral domain using score-based generative modeling, built from a large collection of high-quality maps. We then exploit the resulting model to promote the structural properties of ground truth functional maps on new shape collections. Remarkably, we demonstrate that the learned models are category-agnostic, and can fully replace commonly used strategies such as enforcing Laplacian commutativity or orthogonality of functional maps. Our key technical contribution is a novel distillation strategy from diffusion models in the spectral domain. Experiments demonstrate that our learned regularization leads to better results than axiomatic approaches for zero-shot non-rigid shape matching. Our code is available at: https://github.com/daidedou/diffumatch/

Authors:Yang Gao, Po-Chien Luan, Kaouther Messaoud, Lan Feng, Alexandre Alahi
Title: OmniTraj: Pre-Training on Heterogeneous Data for Adaptive and Zero-Shot Human Trajectory Prediction
Abstract:
While large-scale pre-training has advanced human trajectory prediction, a critical challenge remains: zero-shot transfer to unseen dataset with varying temporal dynamics. State-of-the-art pre-trained models often require fine-tuning to adapt to new datasets with different frame rates or observation horizons, limiting their scalability and practical utility. In this work, we systematically investigate this limitation and propose a robust solution. We first demonstrate that existing data-aware discrete models struggle when transferred to new scenarios with shifted temporal setups. We then isolate the temporal generalization from dataset shift, revealing that a simple, explicit conditioning mechanism for temporal metadata is a highly effective solution. Based on this insight, we present OmniTraj, a Transformer-based model pre-trained on a large-scale, heterogeneous dataset. Our experiments show that explicitly conditioning on the frame rate enables OmniTraj to achieve state-of-the-art zero-shot transfer performance, reducing prediction error by over 70\% in challenging cross-setup scenarios. After fine-tuning, OmniTraj achieves state-of-the-art results on four datasets, including NBA, JTA, WorldPose, and ETH-UCY. The code is publicly available: https://github.com/vita-epfl/omnitraj

Authors:Dustin Carrión-Ojeda, Stefan Roth, Simone Schaub-Meyer
Title: Efficient Masked Attention Transformer for Few-Shot Classification and Segmentation
Abstract:
Few-shot classification and segmentation (FS-CS) focuses on jointly performing multi-label classification and multi-class segmentation using few annotated examples. Although the current state of the art (SOTA) achieves high accuracy in both tasks, it struggles with small objects. To overcome this, we propose the Efficient Masked Attention Transformer (EMAT), which improves classification and segmentation accuracy, especially for small objects. EMAT introduces three modifications: a novel memory-efficient masked attention mechanism, a learnable downscaling strategy, and parameter-efficiency enhancements. EMAT outperforms all FS-CS methods on the PASCAL-5$^i$ and COCO-20$^i$ datasets, using at least four times fewer trainable parameters. Moreover, as the current FS-CS evaluation setting discards available annotations, despite their costly collection, we introduce two novel evaluation settings that consider these annotations to better reflect practical scenarios.

Authors:Xin Li, Keren Fu, Qijun Zhao
Title: Mamba-based Efficient Spatio-Frequency Motion Perception for Video Camouflaged Object Detection
Abstract:
Existing video camouflaged object detection (VCOD) methods primarily rely on spatial appearance features to perceive motion cues for breaking camouflage. However, the high similarity between foreground and background in VCOD results in limited discriminability of spatial appearance features (e.g., color and texture), restricting detection accuracy and completeness. Recent studies demonstrate that frequency features can not only enhance feature representation to compensate for appearance limitations but also perceive motion through dynamic variations in frequency energy. Furthermore, the emerging state space model called Mamba, enables efficient perception of motion cues in frame sequences due to its linear-time long-sequence modeling capability. Motivated by this, we propose a novel visual camouflage Mamba (Vcamba) based on spatio-frequency motion perception that integrates frequency and spatial features for efficient and accurate VCOD. Specifically, we propose a receptive field visual state space (RFVSS) module to extract multi-scale spatial features after sequence modeling. For frequency learning, we introduce an adaptive frequency component enhancement (AFE) module with a novel frequency-domain sequential scanning strategy to maintain semantic consistency. Then we propose a space-based long-range motion perception (SLMP) module and a frequency-based long-range motion perception (FLMP) module to model spatio-temporal and frequency-temporal sequences in spatial and frequency phase domains. Finally, the space and frequency motion fusion module (SFMF) integrates dual-domain features for unified motion representation. Experimental results show that our Vcamba outperforms state-of-the-art methods across 6 evaluation metrics on 2 datasets with lower computation cost, confirming the superiority of Vcamba. Our code is available at: https://github.com/BoydeLi/Vcamba.

Authors:Zijian Dong, Longteng Duan, Jie Song, Michael J. Black, Andreas Geiger
Title: MoGA: 3D Generative Avatar Prior for Monocular Gaussian Avatar Reconstruction
Abstract:
We present MoGA, a novel method to reconstruct high-fidelity 3D Gaussian avatars from a single-view image. The main challenge lies in inferring unseen appearance and geometric details while ensuring 3D consistency and realism. Most previous methods rely on 2D diffusion models to synthesize unseen views; however, these generated views are sparse and inconsistent, resulting in unrealistic 3D artifacts and blurred appearance. To address these limitations, we leverage a generative avatar model, that can generate diverse 3D avatars by sampling deformed Gaussians from a learned prior distribution. Due to limited 3D training data, such a 3D model alone cannot capture all image details of unseen identities. Consequently, we integrate it as a prior, ensuring 3D consistency by projecting input images into its latent space and enforcing additional 3D appearance and geometric constraints. Our novel approach formulates Gaussian avatar creation as model inversion by fitting the generative avatar to synthetic views from 2D diffusion models. The generative avatar provides an initialization for model fitting, enforces 3D regularization, and helps in refining pose. Experiments show that our method surpasses state-of-the-art techniques and generalizes well to real-world scenarios. Our Gaussian avatars are also inherently animatable. For code, see https://zj-dong.github.io/MoGA/.

Authors:Yaoye Zhu, Zhe Wang, Yan Wang
Title: MamV2XCalib: V2X-based Target-less Infrastructure Camera Calibration with State Space Model
Abstract:
As cooperative systems that leverage roadside cameras to assist autonomous vehicle perception become increasingly widespread, large-scale precise calibration of infrastructure cameras has become a critical issue. Traditional manual calibration methods are often time-consuming, labor-intensive, and may require road closures. This paper proposes MamV2XCalib, the first V2X-based infrastructure camera calibration method with the assistance of vehicle-side LiDAR. MamV2XCalib only requires autonomous vehicles equipped with LiDAR to drive near the cameras to be calibrated in the infrastructure, without the need for specific reference objects or manual intervention. We also introduce a new targetless LiDAR-camera calibration method, which combines multi-scale features and a 4D correlation volume to estimate the correlation between vehicle-side point clouds and roadside images. We model the temporal information and estimate the rotation angles with Mamba, effectively addressing calibration failures in V2X scenarios caused by defects in the vehicle-side data (such as occlusions) and large differences in viewpoint. We evaluate MamV2XCalib on the V2X-Seq and TUMTraf-V2X real-world datasets, demonstrating the effectiveness and robustness of our V2X-based automatic calibration approach. Compared to previous LiDAR-camera methods designed for calibration on one car, our approach achieves better and more stable calibration performance in V2X scenarios with fewer parameters. The code is available at https://github.com/zhuyaoye/MamV2XCalib.

Authors:Woo Kyoung Han, Yongjun Lee, Byeonghun Lee, Sang Hyun Park, Sunghoon Im, Kyong Hwan Jin
Title: JPEG Processing Neural Operator for Backward-Compatible Coding
Abstract:
Despite significant advances in learning-based lossy compression algorithms, standardizing codecs remains a critical challenge. In this paper, we present the JPEG Processing Neural Operator (JPNeO), a next-generation JPEG algorithm that maintains full backward compatibility with the current JPEG format. Our JPNeO improves chroma component preservation and enhances reconstruction fidelity compared to existing artifact removal methods by incorporating neural operators in both the encoding and decoding stages. JPNeO achieves practical benefits in terms of reduced memory usage and parameter count. We further validate our hypothesis about the existence of a space with high mutual information through empirical evidence. In summary, the JPNeO functions as a high-performance out-of-the-box image compression pipeline without changing source coding's protocol. Our source code is available at https://github.com/WooKyoungHan/JPNeO.

Authors:Mutian Xu, Chongjie Ye, Haolin Liu, Yushuang Wu, Jiahao Chang, Xiaoguang Han
Title: Stable-Sim2Real: Exploring Simulation of Real-Captured 3D Data with Two-Stage Depth Diffusion
Abstract:
3D data simulation aims to bridge the gap between simulated and real-captured 3D data, which is a fundamental problem for real-world 3D visual tasks. Most 3D data simulation methods inject predefined physical priors but struggle to capture the full complexity of real data. An optimal approach involves learning an implicit mapping from synthetic to realistic data in a data-driven manner, but progress in this solution has met stagnation in recent studies. This work explores a new solution path of data-driven 3D simulation, called Stable-Sim2Real, based on a novel two-stage depth diffusion model. The initial stage finetunes Stable-Diffusion to generate the residual between the real and synthetic paired depth, producing a stable but coarse depth, where some local regions may deviate from realistic patterns. To enhance this, both the synthetic and initial output depth are fed into a second-stage diffusion, where diffusion loss is adjusted to prioritize these distinct areas identified by a 3D discriminator. We provide a new benchmark scheme to evaluate 3D data simulation methods. Extensive experiments show that training the network with the 3D simulated data derived from our method significantly enhances performance in real-world 3D visual tasks. Moreover, the evaluation demonstrates the high similarity between our 3D simulated data and real-captured patterns. Project page: https://mutianxu.github.io/stable-sim2real/.

Authors:Ting Huang, Zeyu Zhang, Hao Tang
Title: 3D-R1: Enhancing Reasoning in 3D VLMs for Unified Scene Understanding
Abstract:
Large vision-language models (VLMs) have made significant strides in 2D visual understanding tasks, sparking interest in extending these capabilities to 3D scene understanding. However, current 3D VLMs often struggle with robust reasoning and generalization due to limitations in high-quality spatial data and the static nature of viewpoint assumptions. To address these challenges, we propose 3D-R1, a foundation model that enhances the reasoning capabilities of 3D VLMs. Specifically, we first construct a high-quality synthetic dataset with CoT, named Scene-30K, leveraging existing 3D-VL datasets and a data engine based on Gemini 2.5 Pro. It serves as cold-start initialization data for 3D-R1. Moreover, we leverage RLHF policy such as GRPO in the reinforcement learning training process to enhance reasoning capabilities and introduce three reward functions: a perception reward, a semantic similarity reward and a format reward to maintain detection accuracy and answer semantic precision. Furthermore, we introduce a dynamic view selection strategy that adaptively chooses the most informative perspectives for 3D scene understanding. Extensive experiments demonstrate that 3D-R1 delivers an average improvement of 10% across various 3D scene benchmarks, highlighting its effectiveness in enhancing reasoning and generalization in 3D scene understanding. Code: https://github.com/AIGeeksGroup/3D-R1. Website: https://aigeeksgroup.github.io/3D-R1.

Authors:Yijie Zhu, Lingsen Zhang, Zitong Yu, Rui Shao, Tao Tan, Liqiang Nie
Title: UniEmo: Unifying Emotional Understanding and Generation with Learnable Expert Queries
Abstract:
Emotional understanding and generation are often treated as separate tasks, yet they are inherently complementary and can mutually enhance each other. In this paper, we propose the UniEmo, a unified framework that seamlessly integrates these two tasks. The key challenge lies in the abstract nature of emotions, necessitating the extraction of visual representations beneficial for both tasks. To address this, we propose a hierarchical emotional understanding chain with learnable expert queries that progressively extracts multi-scale emotional features, thereby serving as a foundational step for unification. Simultaneously, we fuse these expert queries and emotional representations to guide the diffusion model in generating emotion-evoking images. To enhance the diversity and fidelity of the generated emotional images, we further introduce the emotional correlation coefficient and emotional condition loss into the fusion process. This step facilitates fusion and alignment for emotional generation guided by the understanding. In turn, we demonstrate that joint training allows the generation component to provide implicit feedback to the understanding part. Furthermore, we propose a novel data filtering algorithm to select high-quality and diverse emotional images generated by the well-trained model, which explicitly feedback into the understanding part. Together, these generation-driven dual feedback processes enhance the model's understanding capacity. Extensive experiments show that UniEmo significantly outperforms state-of-the-art methods in both emotional understanding and generation tasks. The code for the proposed method is available at https://github.com/JiuTian-VL/UniEmo.

Authors:Ali Youssef
Title: VMatcher: State-Space Semi-Dense Local Feature Matching
Abstract:
This paper introduces VMatcher, a hybrid Mamba-Transformer network for semi-dense feature matching between image pairs. Learning-based feature matching methods, whether detector-based or detector-free, achieve state-of-the-art performance but depend heavily on the Transformer's attention mechanism, which, while effective, incurs high computational costs due to its quadratic complexity. In contrast, Mamba introduces a Selective State-Space Model (SSM) that achieves comparable or superior performance with linear complexity, offering significant efficiency gains. VMatcher leverages a hybrid approach, integrating Mamba's highly efficient long-sequence processing with the Transformer's attention mechanism. Multiple VMatcher configurations are proposed, including hierarchical architectures, demonstrating their effectiveness in setting new benchmarks efficiently while ensuring robustness and practicality for real-time applications where rapid inference is crucial. Source Code is available at: https://github.com/ayoussf/VMatcher

Authors:Ji Ma, Wei Suo, Peng Wang, Yanning Zhang
Title: Short-LVLM: Compressing and Accelerating Large Vision-Language Models by Pruning Redundant Layers
Abstract:
Although large vision-language models (LVLMs) have demonstrated impressive capabilities in multi-modal understanding and reasoning, their practical applications are still limited by massive model parameters and high computational costs. Recent efforts from natural language processing (NLP) have shown the effectiveness of layer pruning, offering a plausible training-free compression solution. However, due to the modality divergence between vision and language, it is unclear whether these NLP techniques are still effective in LVLMs. In this paper, we empirically prove that directly applying these layer pruning methods to LVLMs is ineffective. Through extensive experiments, we find that non-essential vision-language (VL) tokens and inter-layer feature gaps pose critical challenges to pruning layers in LVLMs. Based on these insights, we propose a novel framework Short-LVLM (SVL) that can utilize important VL tokens and mitigate the layer-wise feature gaps. Notably, Short-LVLM not only achieves a superior trade-off between performance and efficiency but also exhibits several potential advantages, i.e., training-free, model-agnostic, and highly compatible. The code for this work is publicly available at https://github.com/ASGO-MM/Short-LVLM.

Authors:Yingjie Zhou, Jiezhang Cao, Zicheng Zhang, Farong Wen, Yanwei Jiang, Jun Jia, Xiaohong Liu, Xiongkuo Min, Guangtao Zhai
Title: Who is a Better Talker: Subjective and Objective Quality Assessment for AI-Generated Talking Heads
Abstract:
Speech-driven methods for portraits are figuratively known as "Talkers" because of their capability to synthesize speaking mouth shapes and facial movements. Especially with the rapid development of the Text-to-Image (T2I) models, AI-Generated Talking Heads (AGTHs) have gradually become an emerging digital human media. However, challenges persist regarding the quality of these talkers and AGTHs they generate, and comprehensive studies addressing these issues remain limited. To address this gap, this paper presents the largest AGTH quality assessment dataset THQA-10K to date, which selects 12 prominent T2I models and 14 advanced talkers to generate AGTHs for 14 prompts. After excluding instances where AGTH generation is unsuccessful, the THQA-10K dataset contains 10,457 AGTHs. Then, volunteers are recruited to subjectively rate the AGTHs and give the corresponding distortion categories. In our analysis for subjective experimental results, we evaluate the performance of talkers in terms of generalizability and quality, and also expose the distortions of existing AGTHs. Finally, an objective quality assessment method based on the first frame, Y-T slice and tone-lip consistency is proposed. Experimental results show that this method can achieve state-of-the-art (SOTA) performance in AGTH quality assessment. The work is released at https://github.com/zyj-2000/Talker.

Authors:Vineet Kumar Rakesh, Soumya Mazumdar, Tapas Samanta, Sarbajit Pal, Amitabha Das
Title: Impact of Hyperparameter Optimization on the Accuracy of Lightweight Deep Learning Models for Real-Time Image Classification
Abstract:
Lightweight convolutional and transformer-based models have become vital for real-time image classification in resource-constrained applications, such as embedded systems and edge devices. This work analyzes the influence of hyperparameter adjustment on the accuracy and convergence behavior of seven efficient deep learning architectures: EfficientNetV2-S, ConvNeXt-T, MobileViT v2 (XXS/XS/S), MobileNetV3-L, TinyViT-21M, and RepVGG-A2. All models are trained on the ImageNet-1K dataset under consistent training settings, with an emphasis on real-time practicality. An comprehensive ablation study is undertaken to separate the effect of critical hyperparameters, including learning rate schedules, batch sizes, input resolution, data augmentation, regularization approaches, and optimizer choice. To assess appropriateness for real-time applications, each model is assessed not only in terms of Top-1 and Top-5 classification accuracy, but also in terms of inference time, parameter count, model size, and frames-per-second (FPS) on a GPU-accelerated edge deployment simulation. Results demonstrate that cosine learning rate decay and adjustable batch size may greatly boost both accuracy and convergence speed, while keeping low latency and memory cost. Notably, RepVGG-A2 achieves over 80% Top-1 accuracy with efficient inference performance, offering a compelling balance between accuracy and deployment cost for VGG-style models. The results give practical guidance for constructing resource-efficient deep learning models appropriate for real-time image processing pipelines. All code and training logs are publicly accessible at https://github.com/VineetKumarRakesh/lcnn-opt.

Authors:Alfio Ferrara, Sergio Picascia, Elisabetta Rocchetti
Title: The Cow of Rembrandt - Analyzing Artistic Prompt Interpretation in Text-to-Image Models
Abstract:
Text-to-image diffusion models have demonstrated remarkable capabilities in generating artistic content by learning from billions of images, including popular artworks. However, the fundamental question of how these models internally represent concepts, such as content and style in paintings, remains unexplored. Traditional computer vision assumes content and style are orthogonal, but diffusion models receive no explicit guidance about this distinction during training. In this work, we investigate how transformer-based text-to-image diffusion models encode content and style concepts when generating artworks. We leverage cross-attention heatmaps to attribute pixels in generated images to specific prompt tokens, enabling us to isolate image regions influenced by content-describing versus style-describing tokens. Our findings reveal that diffusion models demonstrate varying degrees of content-style separation depending on the specific artistic prompt and style requested. In many cases, content tokens primarily influence object-related regions while style tokens affect background and texture areas, suggesting an emergent understanding of the content-style distinction. These insights contribute to our understanding of how large-scale generative models internally represent complex artistic concepts without explicit supervision. We share the code and dataset, together with an exploratory tool for visualizing attention maps at https://github.com/umilISLab/artistic-prompt-interpretation.

Authors:Xihang Hu, Fuming Sun, Jiazhe Liu, Feilong Xu, Xiaoli Zhang
Title: ST-SAM: SAM-Driven Self-Training Framework for Semi-Supervised Camouflaged Object Detection
Abstract:
Semi-supervised Camouflaged Object Detection (SSCOD) aims to reduce reliance on costly pixel-level annotations by leveraging limited annotated data and abundant unlabeled data. However, existing SSCOD methods based on Teacher-Student frameworks suffer from severe prediction bias and error propagation under scarce supervision, while their multi-network architectures incur high computational overhead and limited scalability. To overcome these limitations, we propose ST-SAM, a highly annotation-efficient yet concise framework that breaks away from conventional SSCOD constraints. Specifically, ST-SAM employs Self-Training strategy that dynamically filters and expands high-confidence pseudo-labels to enhance a single-model architecture, thereby fundamentally circumventing inter-model prediction bias. Furthermore, by transforming pseudo-labels into hybrid prompts containing domain-specific knowledge, ST-SAM effectively harnesses the Segment Anything Model's potential for specialized tasks to mitigate error accumulation in self-training. Experiments on COD benchmark datasets demonstrate that ST-SAM achieves state-of-the-art performance with only 1\% labeled data, outperforming existing SSCOD methods and even matching fully supervised methods. Remarkably, ST-SAM requires training only a single network, without relying on specific models or loss functions. This work establishes a new paradigm for annotation-efficient SSCOD. Codes will be available at https://github.com/hu-xh/ST-SAM.

Authors:Hanshen Zhu, Zhen Zhu, Kaile Zhang, Yiming Gong, Yuliang Liu, Xiang Bai
Title: Training-free Geometric Image Editing on Diffusion Models
Abstract:
We tackle the task of geometric image editing, where an object within an image is repositioned, reoriented, or reshaped while preserving overall scene coherence. Previous diffusion-based editing methods often attempt to handle all relevant subtasks in a single step, proving difficult when transformations become large or structurally complex. We address this by proposing a decoupled pipeline that separates object transformation, source region inpainting, and target region refinement. Both inpainting and refinement are implemented using a training-free diffusion approach, FreeFine. In experiments on our new GeoBench benchmark, which contains both 2D and 3D editing scenarios, FreeFine outperforms state-of-the-art alternatives in image fidelity, and edit precision, especially under demanding transformations. Code and benchmark are available at: https://github.com/CIawevy/FreeFine

Authors:Dohwan Ko, Ji Soo Lee, Minhyuk Choi, Zihang Meng, Hyunwoo J. Kim
Title: Bidirectional Likelihood Estimation with Multi-Modal Large Language Models for Text-Video Retrieval
Abstract:
Text-Video Retrieval aims to find the most relevant text (or video) candidate given a video (or text) query from large-scale online databases. Recent work leverages multi-modal large language models (MLLMs) to improve retrieval, especially for long or complex query-candidate pairs. However, we observe that the naive application of MLLMs, i.e., retrieval based on candidate likelihood, introduces candidate prior bias, favoring candidates with inherently higher priors over those more relevant to the query. To this end, we propose a novel retrieval framework, Bidirectional Likelihood Estimation with MLLM (BLiM), which leverages both query and candidate likelihoods by training the model to generate text from a given video as well as video features from a given text. Furthermore, we introduce Candidate Prior Normalization (CPN), a simple yet effective training-free score calibration module designed to mitigate candidate prior bias in candidate likelihood. On four Text-Video Retrieval benchmarks, our BLiM equipped with CPN outperforms previous state-of-the-art models by 6.4 R@1 on average, effectively alleviating candidate prior bias and emphasizing query-candidate relevance. Our in-depth analysis across various multi-modal tasks beyond retrieval highlights the broad applicability of CPN which enhances visual understanding by reducing reliance on textual priors. Code is available at https://github.com/mlvlab/BLiM.

Authors:Gyeongjin Kang, Seungtae Nam, Xiangyu Sun, Sameh Khamis, Abdelrahman Mohamed, Eunbyung Park
Title: iLRM: An Iterative Large 3D Reconstruction Model
Abstract:
Feed-forward 3D modeling has emerged as a promising approach for rapid and high-quality 3D reconstruction. In particular, directly generating explicit 3D representations, such as 3D Gaussian splatting, has attracted significant attention due to its fast and high-quality rendering, as well as numerous applications. However, many state-of-the-art methods, primarily based on transformer architectures, suffer from severe scalability issues because they rely on full attention across image tokens from multiple input views, resulting in prohibitive computational costs as the number of views or image resolution increases. Toward a scalable and efficient feed-forward 3D reconstruction, we introduce an iterative Large 3D Reconstruction Model (iLRM) that generates 3D Gaussian representations through an iterative refinement mechanism, guided by three core principles: (1) decoupling the scene representation from input-view images to enable compact 3D representations; (2) decomposing fully-attentional multi-view interactions into a two-stage attention scheme to reduce computational costs; and (3) injecting high-resolution information at every layer to achieve high-fidelity reconstruction. Experimental results on widely used datasets, such as RE10K and DL3DV, demonstrate that iLRM outperforms existing methods in both reconstruction quality and speed. Notably, iLRM exhibits superior scalability, delivering significantly higher reconstruction quality under comparable computational cost by efficiently leveraging a larger number of input views.

Authors:Yang Ren, Hai Jiang, Wei Li, Menglong Yang, Heng Zhang, Zehua Sheng, Qingsheng Ye, Shuaicheng Liu
Title: Learning Arbitrary-Scale RAW Image Downscaling with Wavelet-based Recurrent Reconstruction
Abstract:
Image downscaling is critical for efficient storage and transmission of high-resolution (HR) images. Existing learning-based methods focus on performing downscaling within the sRGB domain, which typically suffers from blurred details and unexpected artifacts. RAW images, with their unprocessed photonic information, offer greater flexibility but lack specialized downscaling frameworks. In this paper, we propose a wavelet-based recurrent reconstruction framework that leverages the information lossless attribute of wavelet transformation to fulfill the arbitrary-scale RAW image downscaling in a coarse-to-fine manner, in which the Low-Frequency Arbitrary-Scale Downscaling Module (LASDM) and the High-Frequency Prediction Module (HFPM) are proposed to preserve structural and textural integrity of the reconstructed low-resolution (LR) RAW images, alongside an energy-maximization loss to align high-frequency energy between HR and LR domain. Furthermore, we introduce the Realistic Non-Integer RAW Downscaling (Real-NIRD) dataset, featuring a non-integer downscaling factor of 1.3$\times$, and incorporate it with publicly available datasets with integer factors (2$\times$, 3$\times$, 4$\times$) for comprehensive benchmarking arbitrary-scale image downscaling purposes. Extensive experiments demonstrate that our method outperforms existing state-of-the-art competitors both quantitatively and visually. The code and dataset will be released at https://github.com/RenYangSCU/ASRD.

Authors:Youngsun Jang, Dongyoun Kim, Chulwoo Pack, Kwanghee Won
Title: A Novel Dataset for Flood Detection Robust to Seasonal Changes in Satellite Imagery
Abstract:
This study introduces a novel dataset for segmenting flooded areas in satellite images. After reviewing 77 existing benchmarks utilizing satellite imagery, we identified a shortage of suitable datasets for this specific task. To fill this gap, we collected satellite imagery of the 2019 Midwestern USA floods from Planet Explorer by Planet Labs (Image \c{opyright} 2024 Planet Labs PBC). The dataset consists of 10 satellite images per location, each containing both flooded and non-flooded areas. We selected ten locations from each of the five states: Iowa, Kansas, Montana, Nebraska, and South Dakota. The dataset ensures uniform resolution and resizing during data processing. For evaluating semantic segmentation performance, we tested state-of-the-art models in computer vision and remote sensing on our dataset. Additionally, we conducted an ablation study varying window sizes to capture temporal characteristics. Overall, the models demonstrated modest results, suggesting a requirement for future multimodal and temporal learning strategies. The dataset will be publicly available on .

Authors:Xiaochen Zhao, Hongyi Xu, Guoxian Song, You Xie, Chenxu Zhang, Xiu Li, Linjie Luo, Jinli Suo, Yebin Liu
Title: X-NeMo: Expressive Neural Motion Reenactment via Disentangled Latent Attention
Abstract:
We propose X-NeMo, a novel zero-shot diffusion-based portrait animation pipeline that animates a static portrait using facial movements from a driving video of a different individual. Our work first identifies the root causes of the key issues in prior approaches, such as identity leakage and difficulty in capturing subtle and extreme expressions. To address these challenges, we introduce a fully end-to-end training framework that distills a 1D identity-agnostic latent motion descriptor from driving image, effectively controlling motion through cross-attention during image generation. Our implicit motion descriptor captures expressive facial motion in fine detail, learned end-to-end from a diverse video dataset without reliance on pretrained motion detectors. We further enhance expressiveness and disentangle motion latents from identity cues by supervising their learning with a dual GAN decoder, alongside spatial and color augmentations. By embedding the driving motion into a 1D latent vector and controlling motion via cross-attention rather than additive spatial guidance, our design eliminates the transmission of spatial-aligned structural clues from the driving condition to the diffusion backbone, substantially mitigating identity leakage. Extensive experiments demonstrate that X-NeMo surpasses state-of-the-art baselines, producing highly expressive animations with superior identity resemblance. Our code and models are available for research.

Authors:Dmitry Demidov, Zaigham Zaheer, Omkar Thawakar, Salman Khan, Fahad Shahbaz Khan
Title: Vocabulary-free Fine-grained Visual Recognition via Enriched Contextually Grounded Vision-Language Model
Abstract:
Fine-grained image classification, the task of distinguishing between visually similar subcategories within a broader category (e.g., bird species, car models, flower types), is a challenging computer vision problem. Traditional approaches rely heavily on fixed vocabularies and closed-set classification paradigms, limiting their scalability and adaptability in real-world settings where novel classes frequently emerge. Recent research has demonstrated that combining large language models (LLMs) with vision-language models (VLMs) makes open-set recognition possible without the need for predefined class labels. However, the existing methods are often limited in harnessing the power of LLMs at the classification phase, and also rely heavily on the guessed class names provided by an LLM without thorough analysis and refinement. To address these bottlenecks, we propose our training-free method, Enriched-FineR (or E-FineR for short), which demonstrates state-of-the-art results in fine-grained visual recognition while also offering greater interpretability, highlighting its strong potential in real-world scenarios and new domains where expert annotations are difficult to obtain. Additionally, we demonstrate the application of our proposed approach to zero-shot and few-shot classification, where it demonstrated performance on par with the existing SOTA while being training-free and not requiring human interventions. Overall, our vocabulary-free framework supports the shift in image classification from rigid label prediction to flexible, language-driven understanding, enabling scalable and generalizable systems for real-world applications. Well-documented code is available on https://github.com/demidovd98/e-finer.

Authors:Giuseppe Cartella, Vittorio Cuculo, Alessandro D'Amelio, Marcella Cornia, Giuseppe Boccignone, Rita Cucchiara
Title: Modeling Human Gaze Behavior with Diffusion Models for Unified Scanpath Prediction
Abstract:
Predicting human gaze scanpaths is crucial for understanding visual attention, with applications in human-computer interaction, autonomous systems, and cognitive robotics. While deep learning models have advanced scanpath prediction, most existing approaches generate averaged behaviors, failing to capture the variability of human visual exploration. In this work, we present ScanDiff, a novel architecture that combines diffusion models with Vision Transformers to generate diverse and realistic scanpaths. Our method explicitly models scanpath variability by leveraging the stochastic nature of diffusion models, producing a wide range of plausible gaze trajectories. Additionally, we introduce textual conditioning to enable task-driven scanpath generation, allowing the model to adapt to different visual search objectives. Experiments on benchmark datasets show that ScanDiff surpasses state-of-the-art methods in both free-viewing and task-driven scenarios, producing more diverse and accurate scanpaths. These results highlight its ability to better capture the complexity of human visual behavior, pushing forward gaze prediction research. Source code and models are publicly available at https://aimagelab.github.io/ScanDiff.

Authors:Zhensheng Yuan, Haozhi Huang, Zhen Xiong, Di Wang, Guanghua Yang
Title: Robust and Efficient 3D Gaussian Splatting for Urban Scene Reconstruction
Abstract:
We present a framework that enables fast reconstruction and real-time rendering of urban-scale scenes while maintaining robustness against appearance variations across multi-view captures. Our approach begins with scene partitioning for parallel training, employing a visibility-based image selection strategy to optimize training efficiency. A controllable level-of-detail (LOD) strategy explicitly regulates Gaussian density under a user-defined budget, enabling efficient training and rendering while maintaining high visual fidelity. The appearance transformation module mitigates the negative effects of appearance inconsistencies across images while enabling flexible adjustments. Additionally, we utilize enhancement modules, such as depth regularization, scale regularization, and antialiasing, to improve reconstruction fidelity. Experimental results demonstrate that our method effectively reconstructs urban-scale scenes and outperforms previous approaches in both efficiency and quality. The source code is available at: https://yzslab.github.io/REUrbanGS.

Authors:Ruslan Khrulev
Title: CHECK-MAT: Checking Hand-Written Mathematical Answers for the Russian Unified State Exam
Abstract:
This paper introduces a novel benchmark, EGE-Math Solutions Assessment Benchmark, for evaluating Vision-Language Models (VLMs) on their ability to assess hand-written mathematical solutions. Unlike existing benchmarks that focus on problem solving, our approach centres on understanding student solutions, identifying mistakes, and assigning grades according to fixed criteria. We compile 122 scanned solutions from the Russian Unified State Exam (EGE) together with official expert grades, and evaluate seven modern VLMs from Google, OpenAI, Arcee AI, and Alibaba Cloud in three inference modes. The results reveal current limitations in mathematical reasoning and human-rubric alignment, opening new research avenues in AI-assisted assessment. You can find code in https://github.com/Karifannaa/Auto-check-EGE-math

Authors:Harry Shomer, Jiejun Xu
Title: Automated Label Placement on Maps via Large Language Models
Abstract:
Label placement is a critical aspect of map design, serving as a form of spatial annotation that directly impacts clarity and interpretability. Despite its importance, label placement remains largely manual and difficult to scale, as existing automated systems struggle to integrate cartographic conventions, adapt to context, or interpret labeling instructions. In this work, we introduce a new paradigm for automatic label placement (ALP) that formulates the task as a data editing problem and leverages large language models (LLMs) for context-aware spatial annotation. To support this direction, we curate MAPLE, the first known benchmarking dataset for evaluating ALP on real-world maps, encompassing diverse landmark types and label placement annotations from open-source data. Our method retrieves labeling guidelines relevant to each landmark type leveraging retrieval-augmented generation (RAG), integrates them into prompts, and employs instruction-tuned LLMs to generate ideal label coordinates. We evaluate four open-source LLMs on MAPLE, analyzing both overall performance and generalization across different types of landmarks. This includes both zero-shot and instruction-tuned performance. Our results demonstrate that LLMs, when guided by structured prompts and domain-specific retrieval, can learn to perform accurate spatial edits, aligning the generated outputs with expert cartographic standards. Overall, our work presents a scalable framework for AI-assisted map finishing and demonstrates the potential of foundation models in structured data editing tasks. The code and data can be found at https://github.com/HarryShomer/MAPLE.

Authors:Xiaoyu Pan, Yang Bai, Ke Zou, Yang Zhou, Jun Zhou, Huazhu Fu, Yih-Chung Tham, Yong Liu
Title: EH-Benchmark Ophthalmic Hallucination Benchmark and Agent-Driven Top-Down Traceable Reasoning Workflow
Abstract:
Medical Large Language Models (MLLMs) play a crucial role in ophthalmic diagnosis, holding significant potential to address vision-threatening diseases. However, their accuracy is constrained by hallucinations stemming from limited ophthalmic knowledge, insufficient visual localization and reasoning capabilities, and a scarcity of multimodal ophthalmic data, which collectively impede precise lesion detection and disease diagnosis. Furthermore, existing medical benchmarks fail to effectively evaluate various types of hallucinations or provide actionable solutions to mitigate them. To address the above challenges, we introduce EH-Benchmark, a novel ophthalmology benchmark designed to evaluate hallucinations in MLLMs. We categorize MLLMs' hallucinations based on specific tasks and error types into two primary classes: Visual Understanding and Logical Composition, each comprising multiple subclasses. Given that MLLMs predominantly rely on language-based reasoning rather than visual processing, we propose an agent-centric, three-phase framework, including the Knowledge-Level Retrieval stage, the Task-Level Case Studies stage, and the Result-Level Validation stage. Experimental results show that our multi-agent framework significantly mitigates both types of hallucinations, enhancing accuracy, interpretability, and reliability. Our project is available at https://github.com/ppxy1/EH-Benchmark.

Authors:Siqi Luo, Haoran Yang, Yi Xin, Mingyang Yi, Guangyang Wu, Guangtao Zhai, Xiaohong Liu
Title: TR-PTS: Task-Relevant Parameter and Token Selection for Efficient Tuning
Abstract:
Large pre-trained models achieve remarkable performance in vision tasks but are impractical for fine-tuning due to high computational and storage costs. Parameter-Efficient Fine-Tuning (PEFT) methods mitigate this issue by updating only a subset of parameters; however, most existing approaches are task-agnostic, failing to fully exploit task-specific adaptations, which leads to suboptimal efficiency and performance. To address this limitation, we propose Task-Relevant Parameter and Token Selection (TR-PTS), a task-driven framework that enhances both computational efficiency and accuracy. Specifically, we introduce Task-Relevant Parameter Selection, which utilizes the Fisher Information Matrix (FIM) to identify and fine-tune only the most informative parameters in a layer-wise manner, while keeping the remaining parameters frozen. Simultaneously, Task-Relevant Token Selection dynamically preserves the most informative tokens and merges redundant ones, reducing computational overhead. By jointly optimizing parameters and tokens, TR-PTS enables the model to concentrate on task-discriminative information. We evaluate TR-PTS on benchmark, including FGVC and VTAB-1k, where it achieves state-of-the-art performance, surpassing full fine-tuning by 3.40% and 10.35%, respectively. The code are available at https://github.com/synbol/TR-PTS.

Authors:Yilei Jiang, Yaozhi Zheng, Yuxuan Wan, Jiaming Han, Qunzhong Wang, Michael R. Lyu, Xiangyu Yue
Title: ScreenCoder: Advancing Visual-to-Code Generation for Front-End Automation via Modular Multimodal Agents
Abstract:
Automating the transformation of user interface (UI) designs into front-end code holds significant promise for accelerating software development and democratizing design workflows. While recent large language models (LLMs) have demonstrated progress in text-to-code generation, many existing approaches rely solely on natural language prompts, limiting their effectiveness in capturing spatial layout and visual design intent. In contrast, UI development in practice is inherently multimodal, often starting from visual sketches or mockups. To address this gap, we introduce a modular multi-agent framework that performs UI-to-code generation in three interpretable stages: grounding, planning, and generation. The grounding agent uses a vision-language model to detect and label UI components, the planning agent constructs a hierarchical layout using front-end engineering priors, and the generation agent produces HTML/CSS code via adaptive prompt-based synthesis. This design improves robustness, interpretability, and fidelity over end-to-end black-box methods. Furthermore, we extend the framework into a scalable data engine that automatically produces large-scale image-code pairs. Using these synthetic examples, we fine-tune and reinforce an open-source VLM, yielding notable gains in UI understanding and code quality. Extensive experiments demonstrate that our approach achieves state-of-the-art performance in layout accuracy, structural coherence, and code correctness. Our code is made publicly available at https://github.com/leigest519/ScreenCoder.

Authors:Hossein Mirzaei, Zeinab Taghavi, Sepehr Rezaee, Masoud Hadi, Moein Madadi, Mackenzie W. Mathis
Title: DISTIL: Data-Free Inversion of Suspicious Trojan Inputs via Latent Diffusion
Abstract:
Deep neural networks have demonstrated remarkable success across numerous tasks, yet they remain vulnerable to Trojan (backdoor) attacks, raising serious concerns about their safety in real-world mission-critical applications. A common countermeasure is trigger inversion -- reconstructing malicious "shortcut" patterns (triggers) inserted by an adversary during training. Current trigger-inversion methods typically search the full pixel space under specific assumptions but offer no assurances that the estimated trigger is more than an adversarial perturbation that flips the model output. Here, we propose a data-free, zero-shot trigger-inversion strategy that restricts the search space while avoiding strong assumptions on trigger appearance. Specifically, we incorporate a diffusion-based generator guided by the target classifier; through iterative generation, we produce candidate triggers that align with the internal representations the model relies on for malicious behavior. Empirical evaluations, both quantitative and qualitative, show that our approach reconstructs triggers that effectively distinguish clean versus Trojaned models. DISTIL surpasses alternative methods by high margins, achieving up to 7.1% higher accuracy on the BackdoorBench dataset and a 9.4% improvement on trojaned object detection model scanning, offering a promising new direction for reliable backdoor defense without reliance on extensive data or strong prior assumptions about triggers. The code is available at https://github.com/AdaptiveMotorControlLab/DISTIL.

Authors:Dongli He, Hu Wang, Mohammad Yaqub
Title: Advancing Fetal Ultrasound Image Quality Assessment in Low-Resource Settings
Abstract:
Accurate fetal biometric measurements, such as abdominal circumference, play a vital role in prenatal care. However, obtaining high-quality ultrasound images for these measurements heavily depends on the expertise of sonographers, posing a significant challenge in low-income countries due to the scarcity of trained personnel. To address this issue, we leverage FetalCLIP, a vision-language model pretrained on a curated dataset of over 210,000 fetal ultrasound image-caption pairs, to perform automated fetal ultrasound image quality assessment (IQA) on blind-sweep ultrasound data. We introduce FetalCLIP$_{CLS}$, an IQA model adapted from FetalCLIP using Low-Rank Adaptation (LoRA), and evaluate it on the ACOUSLIC-AI dataset against six CNN and Transformer baselines. FetalCLIP$_{CLS}$ achieves the highest F1 score of 0.757. Moreover, we show that an adapted segmentation model, when repurposed for classification, further improves performance, achieving an F1 score of 0.771. Our work demonstrates how parameter-efficient fine-tuning of fetal ultrasound foundation models can enable task-specific adaptations, advancing prenatal care in resource-limited settings. The experimental code is available at: https://github.com/donglihe-hub/FetalCLIP-IQA.

Authors:Hang Su, Yunlong Feng, Daniel Gehrig, Panfeng Jiang, Ling Gao, Xavier Lagorce, Laurent Kneip
Title: A Linear N-Point Solver for Structure and Motion from Asynchronous Tracks
Abstract:
Structure and continuous motion estimation from point correspondences is a fundamental problem in computer vision that has been powered by well-known algorithms such as the familiar 5-point or 8-point algorithm. However, despite their acclaim, these algorithms are limited to processing point correspondences originating from a pair of views each one representing an instantaneous capture of the scene. Yet, in the case of rolling shutter cameras, or more recently, event cameras, this synchronization breaks down. In this work, we present a unified approach for structure and linear motion estimation from 2D point correspondences with arbitrary timestamps, from an arbitrary set of views. By formulating the problem in terms of first-order dynamics and leveraging a constant velocity motion model, we derive a novel, linear point incidence relation allowing for the efficient recovery of both linear velocity and 3D points with predictable degeneracies and solution multiplicities. Owing to its general formulation, it can handle correspondences from a wide range of sensing modalities such as global shutter, rolling shutter, and event cameras, and can even combine correspondences from different collocated sensors. We validate the effectiveness of our solver on both simulated and real-world data, where we show consistent improvement across all modalities when compared to recent approaches. We believe our work opens the door to efficient structure and motion estimation from asynchronous data. Code can be found at https://github.com/suhang99/AsyncTrack-Motion-Solver.

Authors:Thuy Tran, Ruochen Chen, Shaifali Parashar
Title: Image-Guided Shape-from-Template Using Mesh Inextensibility Constraints
Abstract:
Shape-from-Template (SfT) refers to the class of methods that reconstruct the 3D shape of a deforming object from images/videos using a 3D template. Traditional SfT methods require point correspondences between images and the texture of the 3D template in order to reconstruct 3D shapes from images/videos in real time. Their performance severely degrades when encountered with severe occlusions in the images because of the unavailability of correspondences. In contrast, modern SfT methods use a correspondence-free approach by incorporating deep neural networks to reconstruct 3D objects, thus requiring huge amounts of data for supervision. Recent advances use a fully unsupervised or self-supervised approach by combining differentiable physics and graphics to deform 3D template to match input images. In this paper, we propose an unsupervised SfT which uses only image observations: color features, gradients and silhouettes along with a mesh inextensibility constraint to reconstruct at a $400\times$ faster pace than (best-performing) unsupervised SfT. Moreover, when it comes to generating finer details and severe occlusions, our method outperforms the existing methodologies by a large margin. Code is available at https://github.com/dvttran/nsft.

Authors:Federico Girella, Davide Talon, Ziyue Liu, Zanxi Ruan, Yiming Wang, Marco Cristani
Title: LOTS of Fashion! Multi-Conditioning for Image Generation via Sketch-Text Pairing
Abstract:
Fashion design is a complex creative process that blends visual and textual expressions. Designers convey ideas through sketches, which define spatial structure and design elements, and textual descriptions, capturing material, texture, and stylistic details. In this paper, we present LOcalized Text and Sketch for fashion image generation (LOTS), an approach for compositional sketch-text based generation of complete fashion outlooks. LOTS leverages a global description with paired localized sketch + text information for conditioning and introduces a novel step-based merging strategy for diffusion adaptation. First, a Modularized Pair-Centric representation encodes sketches and text into a shared latent space while preserving independent localized features; then, a Diffusion Pair Guidance phase integrates both local and global conditioning via attention-based guidance within the diffusion model's multi-step denoising process. To validate our method, we build on Fashionpedia to release Sketchy, the first fashion dataset where multiple text-sketch pairs are provided per image. Quantitative results show LOTS achieves state-of-the-art image generation performance on both global and localized metrics, while qualitative examples and a human evaluation study highlight its unprecedented level of design customization.

Authors:Shenghao Zhu, Yifei Chen, Weihong Chen, Yuanhan Wang, Chang Liu, Shuo Jiang, Feiwei Qin, Changmiao Wang
Title: Bridging the Gap in Missing Modalities: Leveraging Knowledge Distillation and Style Matching for Brain Tumor Segmentation
Abstract:
Accurate and reliable brain tumor segmentation, particularly when dealing with missing modalities, remains a critical challenge in medical image analysis. Previous studies have not fully resolved the challenges of tumor boundary segmentation insensitivity and feature transfer in the absence of key imaging modalities. In this study, we introduce MST-KDNet, aimed at addressing these critical issues. Our model features Multi-Scale Transformer Knowledge Distillation to effectively capture attention weights at various resolutions, Dual-Mode Logit Distillation to improve the transfer of knowledge, and a Global Style Matching Module that integrates feature matching with adversarial learning. Comprehensive experiments conducted on the BraTS and FeTS 2024 datasets demonstrate that MST-KDNet surpasses current leading methods in both Dice and HD95 scores, particularly in conditions with substantial modality loss. Our approach shows exceptional robustness and generalization potential, making it a promising candidate for real-world clinical applications. Our source code is available at https://github.com/Quanato607/MST-KDNet.

Authors:Takuma Amada, Kazuya Kakizaki, Taiki Miyagawa, Akinori F. Ebihara, Kaede Shiohara, Toshihiko Yamasaki
Title: Robust Deepfake Detection for Electronic Know Your Customer Systems Using Registered Images
Abstract:
In this paper, we present a deepfake detection algorithm specifically designed for electronic Know Your Customer (eKYC) systems. To ensure the reliability of eKYC systems against deepfake attacks, it is essential to develop a robust deepfake detector capable of identifying both face swapping and face reenactment, while also being robust to image degradation. We address these challenges through three key contributions: (1)~Our approach evaluates the video's authenticity by detecting temporal inconsistencies in identity vectors extracted by face recognition models, leading to comprehensive detection of both face swapping and face reenactment. (2)~In addition to processing video input, the algorithm utilizes a registered image (assumed to be genuine) to calculate identity discrepancies between the input video and the registered image, significantly improving detection accuracy. (3)~We find that employing a face feature extractor trained on a larger dataset enhances both detection performance and robustness against image degradation. Our experimental results show that our proposed method accurately detects both face swapping and face reenactment comprehensively and is robust against various forms of unseen image degradation. Our source code is publicly available https://github.com/TaikiMiyagawa/DeepfakeDetection4eKYC.

Authors:Galadrielle Humblot-Renaux, Gianni Franchi, Sergio Escalera, Thomas B. Moeslund
Title: COOkeD: Ensemble-based OOD detection in the era of zero-shot CLIP
Abstract:
Out-of-distribution (OOD) detection is an important building block in trustworthy image recognition systems as unknown classes may arise at test-time. OOD detection methods typically revolve around a single classifier, leading to a split in the research field between the classical supervised setting (e.g. ResNet18 classifier trained on CIFAR100) vs. the zero-shot setting (class names fed as prompts to CLIP). In both cases, an overarching challenge is that the OOD detection performance is implicitly constrained by the classifier's capabilities on in-distribution (ID) data. In this work, we show that given a little open-mindedness from both ends, remarkable OOD detection can be achieved by instead creating a heterogeneous ensemble - COOkeD combines the predictions of a closed-world classifier trained end-to-end on a specific dataset, a zero-shot CLIP classifier, and a linear probe classifier trained on CLIP image features. While bulky at first sight, this approach is modular, post-hoc and leverages the availability of pre-trained VLMs, thus introduces little overhead compared to training a single standard classifier. We evaluate COOkeD on popular CIFAR100 and ImageNet benchmarks, but also consider more challenging, realistic settings ranging from training-time label noise, to test-time covariate shift, to zero-shot shift which has been previously overlooked. Despite its simplicity, COOkeD achieves state-of-the-art performance and greater robustness compared to both classical and CLIP-based OOD detection methods. Code is available at https://github.com/glhr/COOkeD

Authors:Shijing Chen, Xinrui Zhou, Yuhao Wang, Yuhao Huang, Ao Chang, Dong Ni, Ruobing Huang
Title: Subtyping Breast Lesions via Generative Augmentation based Long-tailed Recognition in Ultrasound
Abstract:
Accurate identification of breast lesion subtypes can facilitate personalized treatment and interventions. Ultrasound (US), as a safe and accessible imaging modality, is extensively employed in breast abnormality screening and diagnosis. However, the incidence of different subtypes exhibits a skewed long-tailed distribution, posing significant challenges for automated recognition. Generative augmentation provides a promising solution to rectify data distribution. Inspired by this, we propose a dual-phase framework for long-tailed classification that mitigates distributional bias through high-fidelity data synthesis while avoiding overuse that corrupts holistic performance. The framework incorporates a reinforcement learning-driven adaptive sampler, dynamically calibrating synthetic-real data ratios by training a strategic multi-agent to compensate for scarcities of real data while ensuring stable discriminative capability. Furthermore, our class-controllable synthetic network integrates a sketch-grounded perception branch that harnesses anatomical priors to maintain distinctive class features while enabling annotation-free inference. Extensive experiments on an in-house long-tailed and a public imbalanced breast US datasets demonstrate that our method achieves promising performance compared to state-of-the-art approaches. More synthetic images can be found at https://github.com/Stinalalala/Breast-LT-GenAug.

Authors:Weicheng Gao
Title: Exploration of Low-Cost but Accurate Radar-Based Human Motion Direction Determination
Abstract:
This work is completed on a whim after discussions with my junior colleague. The motion direction angle affects the micro-Doppler spectrum width, thus determining the human motion direction can provide important prior information for downstream tasks such as gait recognition. However, Doppler-Time map (DTM)-based methods still have room for improvement in achieving feature augmentation and motion determination simultaneously. In response, a low-cost but accurate radar-based human motion direction determination (HMDD) method is explored in this paper. In detail, the radar-based human gait DTMs are first generated, and then the feature augmentation is achieved using feature linking model. Subsequently, the HMDD is implemented through a lightweight and fast Vision Transformer-Convolutional Neural Network hybrid model structure. The effectiveness of the proposed method is verified through open-source dataset. The open-source code of this work is released at: https://github.com/JoeyBGOfficial/Low-Cost-Accurate-Radar-Based-Human-Motion-Direction-Determination.

Authors:Xincheng Yao, Yijun Yang, Kangwei Guo, Ruiqiang Xiao, Haipeng Zhou, Haisu Tao, Jian Yang, Lei Zhu
Title: HRVVS: A High-resolution Video Vasculature Segmentation Network via Hierarchical Autoregressive Residual Priors
Abstract:
The segmentation of the hepatic vasculature in surgical videos holds substantial clinical significance in the context of hepatectomy procedures. However, owing to the dearth of an appropriate dataset and the inherently complex task characteristics, few researches have been reported in this domain. To address this issue, we first introduce a high quality frame-by-frame annotated hepatic vasculature dataset containing 35 long hepatectomy videos and 11442 high-resolution frames. On this basis, we propose a novel high-resolution video vasculature segmentation network, dubbed as HRVVS. We innovatively embed a pretrained visual autoregressive modeling (VAR) model into different layers of the hierarchical encoder as prior information to reduce the information degradation generated during the downsampling process. In addition, we designed a dynamic memory decoder on a multi-view segmentation network to minimize the transmission of redundant information while preserving more details between frames. Extensive experiments on surgical video datasets demonstrate that our proposed HRVVS significantly outperforms the state-of-the-art methods. The source code and dataset will be publicly available at \{https://github.com/scott-yjyang/HRVVS}.

Authors:Ziyi Wang, Peiming Li, Hong Liu, Zhichao Deng, Can Wang, Jun Liu, Junsong Yuan, Mengyuan Liu
Title: Recognizing Actions from Robotic View for Natural Human-Robot Interaction
Abstract:
Natural Human-Robot Interaction (N-HRI) requires robots to recognize human actions at varying distances and states, regardless of whether the robot itself is in motion or stationary. This setup is more flexible and practical than conventional human action recognition tasks. However, existing benchmarks designed for traditional action recognition fail to address the unique complexities in N-HRI due to limited data, modalities, task categories, and diversity of subjects and environments. To address these challenges, we introduce ACTIVE (Action from Robotic View), a large-scale dataset tailored specifically for perception-centric robotic views prevalent in mobile service robots. ACTIVE comprises 30 composite action categories, 80 participants, and 46,868 annotated video instances, covering both RGB and point cloud modalities. Participants performed various human actions in diverse environments at distances ranging from 3m to 50m, while the camera platform was also mobile, simulating real-world scenarios of robot perception with varying camera heights due to uneven ground. This comprehensive and challenging benchmark aims to advance action and attribute recognition research in N-HRI. Furthermore, we propose ACTIVE-PC, a method that accurately perceives human actions at long distances using Multilevel Neighborhood Sampling, Layered Recognizers, Elastic Ellipse Query, and precise decoupling of kinematic interference from human actions. Experimental results demonstrate the effectiveness of ACTIVE-PC. Our code is available at: https://github.com/wangzy01/ACTIVE-Action-from-Robotic-View.

Authors:Haipeng Li, Tianhao Zhou, Zhanglei Yang, Yi Wu, Yan Chen, Zijing Mao, Shen Cheng, Bing Zeng, Shuaicheng Liu
Title: Estimating 2D Camera Motion with Hybrid Motion Basis
Abstract:
Estimating 2D camera motion is a fundamental computer vision task that models the projection of 3D camera movements onto the 2D image plane. Current methods rely on either homography-based approaches, limited to planar scenes, or meshflow techniques that use grid-based local homographies but struggle with complex non-linear transformations. A key insight of our work is that combining flow fields from different homographies creates motion patterns that cannot be represented by any single homography. We introduce CamFlow, a novel framework that represents camera motion using hybrid motion bases: physical bases derived from camera geometry and stochastic bases for complex scenarios. Our approach includes a hybrid probabilistic loss function based on the Laplace distribution that enhances training robustness. For evaluation, we create a new benchmark by masking dynamic objects in existing optical flow datasets to isolate pure camera motion. Experiments show CamFlow outperforms state-of-the-art methods across diverse scenarios, demonstrating superior robustness and generalization in zero-shot settings. Code and datasets are available at our project page: https://lhaippp.github.io/CamFlow/.

Authors:Hui Liu, Chen Jia, Fan Shi, Xu Cheng, Mengfei Shi, Xia Xie, Shengyong Chen
Title: LIDAR: Lightweight Adaptive Cue-Aware Fusion Vision Mamba for Multimodal Segmentation of Structural Cracks
Abstract:
Achieving pixel-level segmentation with low computational cost using multimodal data remains a key challenge in crack segmentation tasks. Existing methods lack the capability for adaptive perception and efficient interactive fusion of cross-modal features. To address these challenges, we propose a Lightweight Adaptive Cue-Aware Vision Mamba network (LIDAR), which efficiently perceives and integrates morphological and textural cues from different modalities under multimodal crack scenarios, generating clear pixel-level crack segmentation maps. Specifically, LIDAR is composed of a Lightweight Adaptive Cue-Aware Visual State Space module (LacaVSS) and a Lightweight Dual Domain Dynamic Collaborative Fusion module (LD3CF). LacaVSS adaptively models crack cues through the proposed mask-guided Efficient Dynamic Guided Scanning Strategy (EDG-SS), while LD3CF leverages an Adaptive Frequency Domain Perceptron (AFDP) and a dual-pooling fusion strategy to effectively capture spatial and frequency-domain cues across modalities. Moreover, we design a Lightweight Dynamically Modulated Multi-Kernel convolution (LDMK) to perceive complex morphological structures with minimal computational overhead, replacing most convolutional operations in LIDAR. Experiments on three datasets demonstrate that our method outperforms other state-of-the-art (SOTA) methods. On the light-field depth dataset, our method achieves 0.8204 in F1 and 0.8465 in mIoU with only 5.35M parameters. Code and datasets are available at https://github.com/Karl1109/LIDAR-Mamba.

Authors:Zheng Xiangyu, He Songcheng, Li Wanyun, Li Xiaoqiang, Zhang Wei
Title: Shallow Features Matter: Hierarchical Memory with Heterogeneous Interaction for Unsupervised Video Object Segmentation
Abstract:
Unsupervised Video Object Segmentation (UVOS) aims to predict pixel-level masks for the most salient objects in videos without any prior annotations. While memory mechanisms have been proven critical in various video segmentation paradigms, their application in UVOS yield only marginal performance gains despite sophisticated design. Our analysis reveals a simple but fundamental flaw in existing methods: over-reliance on memorizing high-level semantic features. UVOS inherently suffers from the deficiency of lacking fine-grained information due to the absence of pixel-level prior knowledge. Consequently, memory design relying solely on high-level features, which predominantly capture abstract semantic cues, is insufficient to generate precise predictions. To resolve this fundamental issue, we propose a novel hierarchical memory architecture to incorporate both shallow- and high-level features for memory, which leverages the complementary benefits of pixel and semantic information. Furthermore, to balance the simultaneous utilization of the pixel and semantic memory features, we propose a heterogeneous interaction mechanism to perform pixel-semantic mutual interactions, which explicitly considers their inherent feature discrepancies. Through the design of Pixel-guided Local Alignment Module (PLAM) and Semantic-guided Global Integration Module (SGIM), we achieve delicate integration of the fine-grained details in shallow-level memory and the semantic representations in high-level memory. Our Hierarchical Memory with Heterogeneous Interaction Network (HMHI-Net) consistently achieves state-of-the-art performance across all UVOS and video saliency detection benchmarks. Moreover, HMHI-Net consistently exhibits high performance across different backbones, further demonstrating its superiority and robustness. Project page: https://github.com/ZhengxyFlow/HMHI-Net .

Authors:Jaeha Kim, Junghun Oh, Kyoung Mu Lee
Title: Exploiting Diffusion Prior for Task-driven Image Restoration
Abstract:
Task-driven image restoration (TDIR) has recently emerged to address performance drops in high-level vision tasks caused by low-quality (LQ) inputs. Previous TDIR methods struggle to handle practical scenarios in which images are degraded by multiple complex factors, leaving minimal clues for restoration. This motivates us to leverage the diffusion prior, one of the most powerful natural image priors. However, while the diffusion prior can help generate visually plausible results, using it to restore task-relevant details remains challenging, even when combined with recent TDIR methods. To address this, we propose EDTR, which effectively harnesses the power of diffusion prior to restore task-relevant details. Specifically, we propose directly leveraging useful clues from LQ images in the diffusion process by generating from pixel-error-based pre-restored LQ images with mild noise added. Moreover, we employ a small number of denoising steps to prevent the generation of redundant details that dilute crucial task-related information. We demonstrate that our method effectively utilizes diffusion prior for TDIR, significantly enhancing task performance and visual quality across diverse tasks with multiple complex degradations.

Authors:Jiuming Liu, Zheng Huang, Mengmeng Liu, Tianchen Deng, Francesco Nex, Hao Cheng, Hesheng Wang
Title: TopoLiDM: Topology-Aware LiDAR Diffusion Models for Interpretable and Realistic LiDAR Point Cloud Generation
Abstract:
LiDAR scene generation is critical for mitigating real-world LiDAR data collection costs and enhancing the robustness of downstream perception tasks in autonomous driving. However, existing methods commonly struggle to capture geometric realism and global topological consistency. Recent LiDAR Diffusion Models (LiDMs) predominantly embed LiDAR points into the latent space for improved generation efficiency, which limits their interpretable ability to model detailed geometric structures and preserve global topological consistency. To address these challenges, we propose TopoLiDM, a novel framework that integrates graph neural networks (GNNs) with diffusion models under topological regularization for high-fidelity LiDAR generation. Our approach first trains a topological-preserving VAE to extract latent graph representations by graph construction and multiple graph convolutional layers. Then we freeze the VAE and generate novel latent topological graphs through the latent diffusion models. We also introduce 0-dimensional persistent homology (PH) constraints, ensuring the generated LiDAR scenes adhere to real-world global topological structures. Extensive experiments on the KITTI-360 dataset demonstrate TopoLiDM's superiority over state-of-the-art methods, achieving improvements of 22.6% lower Frechet Range Image Distance (FRID) and 9.2% lower Minimum Matching Distance (MMD). Notably, our model also enables fast generation speed with an average inference time of 1.68 samples/s, showcasing its scalability for real-world applications. We will release the related codes at https://github.com/IRMVLab/TopoLiDM.

Authors:Youngho Kim, Hoonhee Cho, Kuk-Jin Yoon
Title: From Sharp to Blur: Unsupervised Domain Adaptation for 2D Human Pose Estimation Under Extreme Motion Blur Using Event Cameras
Abstract:
Human pose estimation is critical for applications such as rehabilitation, sports analytics, and AR/VR systems. However, rapid motion and low-light conditions often introduce motion blur, significantly degrading pose estimation due to the domain gap between sharp and blurred images. Most datasets assume stable conditions, making models trained on sharp images struggle in blurred environments. To address this, we introduce a novel domain adaptation approach that leverages event cameras, which capture high temporal resolution motion data and are inherently robust to motion blur. Using event-based augmentation, we generate motion-aware blurred images, effectively bridging the domain gap between sharp and blurred domains without requiring paired annotations. Additionally, we develop a student-teacher framework that iteratively refines pseudo-labels, leveraging mutual uncertainty masking to eliminate incorrect labels and enable more effective learning. Experimental results demonstrate that our approach outperforms conventional domain-adaptive human pose estimation methods, achieving robust pose estimation under motion blur without requiring annotations in the target domain. Our findings highlight the potential of event cameras as a scalable and effective solution for domain adaptation in real-world motion blur environments. Our project codes are available at https://github.com/kmax2001/EvSharp2Blur.

Authors:Phi Van Nguyen, Ngoc Huynh Trinh, Duy Minh Lam Nguyen, Phu Loc Nguyen, Quoc Long Tran
Title: Aleatoric Uncertainty Medical Image Segmentation Estimation via Flow Matching
Abstract:
Quantifying aleatoric uncertainty in medical image segmentation is critical since it is a reflection of the natural variability observed among expert annotators. A conventional approach is to model the segmentation distribution using the generative model, but current methods limit the expression ability of generative models. While current diffusion-based approaches have demonstrated impressive performance in approximating the data distribution, their inherent stochastic sampling process and inability to model exact densities limit their effectiveness in accurately capturing uncertainty. In contrast, our proposed method leverages conditional flow matching, a simulation-free flow-based generative model that learns an exact density, to produce highly accurate segmentation results. By guiding the flow model on the input image and sampling multiple data points, our approach synthesizes segmentation samples whose pixel-wise variance reliably reflects the underlying data distribution. This sampling strategy captures uncertainties in regions with ambiguous boundaries, offering robust quantification that mirrors inter-annotator differences. Experimental results demonstrate that our method not only achieves competitive segmentation accuracy but also generates uncertainty maps that provide deeper insights into the reliability of the segmentation outcomes. The code for this paper is freely available at https://github.com/huynhspm/Data-Uncertainty

Authors:Sijie Wang, Siqi Li, Yawei Zhang, Shangshu Yu, Shenghai Yuan, Rui She, Quanjiang Guo, JinXuan Zheng, Ong Kang Howe, Leonrich Chandra, Shrivarshann Srijeyan, Aditya Sivadas, Toshan Aggarwal, Heyuan Liu, Hongming Zhang, Chujie Chen, Junyu Jiang, Lihua Xie, Wee Peng Tay
Title: UAVScenes: A Multi-Modal Dataset for UAVs
Abstract:
Multi-modal perception is essential for unmanned aerial vehicle (UAV) operations, as it enables a comprehensive understanding of the UAVs' surrounding environment. However, most existing multi-modal UAV datasets are primarily biased toward localization and 3D reconstruction tasks, or only support map-level semantic segmentation due to the lack of frame-wise annotations for both camera images and LiDAR point clouds. This limitation prevents them from being used for high-level scene understanding tasks. To address this gap and advance multi-modal UAV perception, we introduce UAVScenes, a large-scale dataset designed to benchmark various tasks across both 2D and 3D modalities. Our benchmark dataset is built upon the well-calibrated multi-modal UAV dataset MARS-LVIG, originally developed only for simultaneous localization and mapping (SLAM). We enhance this dataset by providing manually labeled semantic annotations for both frame-wise images and LiDAR point clouds, along with accurate 6-degree-of-freedom (6-DoF) poses. These additions enable a wide range of UAV perception tasks, including segmentation, depth estimation, 6-DoF localization, place recognition, and novel view synthesis (NVS). Our dataset is available at https://github.com/sijieaaa/UAVScenes

Authors:Seungryong Lee, Woojeong Baek, Younghyun Kim, Eunwoo Kim, Haru Moon, Donggon Yoo, Eunbyung Park
Title: Moiré Zero: An Efficient and High-Performance Neural Architecture for Moiré Removal
Abstract:
Moiré patterns, caused by frequency aliasing between fine repetitive structures and a camera sensor's sampling process, have been a significant obstacle in various real-world applications, such as consumer photography and industrial defect inspection. With the advancements in deep learning algorithms, numerous studies-predominantly based on convolutional neural networks-have suggested various solutions to address this issue. Despite these efforts, existing approaches still struggle to effectively eliminate artifacts due to the diverse scales, orientations, and color shifts of moiré patterns, primarily because the constrained receptive field of CNN-based architectures limits their ability to capture the complex characteristics of moiré patterns. In this paper, we propose MZNet, a U-shaped network designed to bring images closer to a 'Moire-Zero' state by effectively removing moiré patterns. It integrates three specialized components: Multi-Scale Dual Attention Block (MSDAB) for extracting and refining multi-scale features, Multi-Shape Large Kernel Convolution Block (MSLKB) for capturing diverse moiré structures, and Feature Fusion-Based Skip Connection for enhancing information flow. Together, these components enhance local texture restoration and large-scale artifact suppression. Experiments on benchmark datasets demonstrate that MZNet achieves state-of-the-art performance on high-resolution datasets and delivers competitive results on lower-resolution dataset, while maintaining a low computational cost, suggesting that it is an efficient and practical solution for real-world applications. Project page: https://sngryonglee.github.io/MoireZero

Authors:Anubhav Kataria, Surbhi Madan, Shreya Ghosh, Tom Gedeon, Abhinav Dhall
Title: Gems: Group Emotion Profiling Through Multimodal Situational Understanding
Abstract:
Understanding individual, group and event level emotions along with contextual information is crucial for analyzing a multi-person social situation. To achieve this, we frame emotion comprehension as the task of predicting fine-grained individual emotion to coarse grained group and event level emotion. We introduce GEMS that leverages a multimodal swin-transformer and S3Attention based architecture, which processes an input scene, group members, and context information to generate joint predictions. Existing multi-person emotion related benchmarks mainly focus on atomic interactions primarily based on emotion perception over time and group level. To this end, we extend and propose VGAF-GEMS to provide more fine grained and holistic analysis on top of existing group level annotation of VGAF dataset. GEMS aims to predict basic discrete and continuous emotions (including valence and arousal) as well as individual, group and event level perceived emotions. Our benchmarking effort links individual, group and situational emotional responses holistically. The quantitative and qualitative comparisons with adapted state-of-the-art models demonstrate the effectiveness of GEMS framework on VGAF-GEMS benchmarking. We believe that it will pave the way of further research. The code and data is available at: https://github.com/katariaak579/GEMS

Authors:Pei Deng, Wenqian Zhou, Hanlin Wu
Title: DeltaVLM: Interactive Remote Sensing Image Change Analysis via Instruction-guided Difference Perception
Abstract:
Accurate interpretation of land-cover changes in multi-temporal satellite imagery is critical for real-world scenarios. However, existing methods typically provide only one-shot change masks or static captions, limiting their ability to support interactive, query-driven analysis. In this work, we introduce remote sensing image change analysis (RSICA) as a new paradigm that combines the strengths of change detection and visual question answering to enable multi-turn, instruction-guided exploration of changes in bi-temporal remote sensing images. To support this task, we construct ChangeChat-105k, a large-scale instruction-following dataset, generated through a hybrid rule-based and GPT-assisted process, covering six interaction types: change captioning, classification, quantification, localization, open-ended question answering, and multi-turn dialogues. Building on this dataset, we propose DeltaVLM, an end-to-end architecture tailored for interactive RSICA. DeltaVLM features three innovations: (1) a fine-tuned bi-temporal vision encoder to capture temporal differences; (2) a visual difference perception module with a cross-semantic relation measuring (CSRM) mechanism to interpret changes; and (3) an instruction-guided Q-former to effectively extract query-relevant difference information from visual changes, aligning them with textual instructions. We train DeltaVLM on ChangeChat-105k using a frozen large language model, adapting only the vision and alignment modules to optimize efficiency. Extensive experiments and ablation studies demonstrate that DeltaVLM achieves state-of-the-art performance on both single-turn captioning and multi-turn interactive change analysis, outperforming existing multimodal large language models and remote sensing vision-language models. Code, dataset and pre-trained weights are available at https://github.com/hanlinwu/DeltaVLM.

Authors:Yuki Fujimura, Takahiro Kushida, Kazuya Kitano, Takuya Funatomi, Yasuhiro Mukaigawa
Title: UFV-Splatter: Pose-Free Feed-Forward 3D Gaussian Splatting Adapted to Unfavorable Views
Abstract:
This paper presents a pose-free, feed-forward 3D Gaussian Splatting (3DGS) framework designed to handle unfavorable input views. A common rendering setup for training feed-forward approaches places a 3D object at the world origin and renders it from cameras pointed toward the origin -- i.e., from favorable views, limiting the applicability of these models to real-world scenarios involving varying and unknown camera poses. To overcome this limitation, we introduce a novel adaptation framework that enables pretrained pose-free feed-forward 3DGS models to handle unfavorable views. We leverage priors learned from favorable images by feeding recentered images into a pretrained model augmented with low-rank adaptation (LoRA) layers. We further propose a Gaussian adapter module to enhance the geometric consistency of the Gaussians derived from the recentered inputs, along with a Gaussian alignment method to render accurate target views for training. Additionally, we introduce a new training strategy that utilizes an off-the-shelf dataset composed solely of favorable images. Experimental results on both synthetic images from the Google Scanned Objects dataset and real images from the OmniObject3D dataset validate the effectiveness of our method in handling unfavorable input views.

Authors:Shaoan Xie, Lingjing Kong, Yujia Zheng, Yu Yao, Zeyu Tang, Eric P. Xing, Guangyi Chen, Kun Zhang
Title: SmartCLIP: Modular Vision-language Alignment with Identification Guarantees
Abstract:
Contrastive Language-Image Pre-training (CLIP)~\citep{radford2021learning} has emerged as a pivotal model in computer vision and multimodal learning, achieving state-of-the-art performance at aligning visual and textual representations through contrastive learning. However, CLIP struggles with potential information misalignment in many image-text datasets and suffers from entangled representation. On the one hand, short captions for a single image in datasets like MSCOCO may describe disjoint regions in the image, leaving the model uncertain about which visual features to retain or disregard. On the other hand, directly aligning long captions with images can lead to the retention of entangled details, preventing the model from learning disentangled, atomic concepts -- ultimately limiting its generalization on certain downstream tasks involving short prompts. In this paper, we establish theoretical conditions that enable flexible alignment between textual and visual representations across varying levels of granularity. Specifically, our framework ensures that a model can not only \emph{preserve} cross-modal semantic information in its entirety but also \emph{disentangle} visual representations to capture fine-grained textual concepts. Building on this foundation, we introduce \ours, a novel approach that identifies and aligns the most relevant visual and textual representations in a modular manner. Superior performance across various tasks demonstrates its capability to handle information misalignment and supports our identification theory. The code is available at https://github.com/Mid-Push/SmartCLIP.

Authors:Umair Nawaz, Muhammad Zaigham Zaheer, Fahad Shahbaz Khan, Hisham Cholakkal, Salman Khan, Rao Muhammad Anwer
Title: AI in Agriculture: A Survey of Deep Learning Techniques for Crops, Fisheries and Livestock
Abstract:
Crops, fisheries and livestock form the backbone of global food production, essential to feed the ever-growing global population. However, these sectors face considerable challenges, including climate variability, resource limitations, and the need for sustainable management. Addressing these issues requires efficient, accurate, and scalable technological solutions, highlighting the importance of artificial intelligence (AI). This survey presents a systematic and thorough review of more than 200 research works covering conventional machine learning approaches, advanced deep learning techniques (e.g., vision transformers), and recent vision-language foundation models (e.g., CLIP) in the agriculture domain, focusing on diverse tasks such as crop disease detection, livestock health management, and aquatic species monitoring. We further cover major implementation challenges such as data variability and experimental aspects: datasets, performance evaluation metrics, and geographical focus. We finish the survey by discussing potential open research directions emphasizing the need for multimodal data integration, efficient edge-device deployment, and domain-adaptable AI models for diverse farming environments. Rapid growth of evolving developments in this field can be actively tracked on our project page: https://github.com/umair1221/AI-in-Agriculture

Authors:Sicheng Zhang, Binzhu Xie, Zhonghao Yan, Yuli Zhang, Donghao Zhou, Xiaofei Chen, Shi Qiu, Jiaqi Liu, Guoyang Xie, Zhichao Lu
Title: Trade-offs in Image Generation: How Do Different Dimensions Interact?
Abstract:
Model performance in text-to-image (T2I) and image-to-image (I2I) generation often depends on multiple aspects, including quality, alignment, diversity, and robustness. However, models' complex trade-offs among these dimensions have rarely been explored due to (1) the lack of datasets that allow fine-grained quantification of these trade-offs, and (2) the use of a single metric for multiple dimensions. To bridge this gap, we introduce TRIG-Bench (Trade-offs in Image Generation), which spans 10 dimensions (Realism, Originality, Aesthetics, Content, Relation, Style, Knowledge, Ambiguity, Toxicity, and Bias), contains 40,200 samples, and covers 132 pairwise dimensional subsets. Furthermore, we develop TRIGScore, a VLM-as-judge metric that automatically adapts to various dimensions. Based on TRIG-Bench and TRIGScore, we evaluate 14 models across T2I and I2I tasks. In addition, we propose the Relation Recognition System to generate the Dimension Trade-off Map (DTM) that visualizes the trade-offs among model-specific capabilities. Our experiments demonstrate that DTM consistently provides a comprehensive understanding of the trade-offs between dimensions for each type of generative model. Notably, we show that the model's dimension-specific weaknesses can be mitigated through fine-tuning on DTM to enhance overall performance. Code is available at: https://github.com/fesvhtr/TRIG

Authors:Shuquan Lian, Yuhang Wu, Jia Ma, Yifan Ding, Zihan Song, Bingqi Chen, Xiawu Zheng, Hui Li
Title: UI-AGILE: Advancing GUI Agents with Effective Reinforcement Learning and Precise Inference-Time Grounding
Abstract:
The emergence of Multimodal Large Language Models (MLLMs) has driven significant advances in Graphical User Interface (GUI) agent capabilities. Nevertheless, existing GUI agent training and inference techniques still suffer from a dilemma for reasoning designs, ineffective reward, and visual noise. To address these issues, we introduce UI-AGILE for enhancing GUI agents at both training and inference. For training, we propose a suite of improvements to the Supervised Fine-Tuning (SFT) process: 1) a continuous reward function to incentivize high-precision grounding; 2) a ``Simple Thinking'' reward to balance planning with speed and grounding accuracy; and 3) a cropping-based resampling strategy to mitigate the sparse reward problem and improve learning on complex tasks. For inference, we present decomposed grounding with selection to dramatically improve grounding accuracy on high-resolution displays by breaking the image into smaller, manageable parts. Experiments show that UI-AGILE achieves the state-of-the-art grounding performance on two benchmarks ScreenSpot-Pro and ScreenSpot-v2 while it also exhibits strong general agent capabilities. For instance, using both our training and inference enhancement methods brings 23\% grounding accuracy improvement over the best baseline on ScreenSpot-Pro. We provide the code in https://github.com/KDEGroup/UI-AGILE.

Authors:Ziyun Dai, Xiaoqiang Li, Shaohua Zhang, Yuanchen Wu, Jide Li
Title: See Different, Think Better: Visual Variations Mitigating Hallucinations in LVLMs
Abstract:
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in visual understanding and multimodal reasoning. However, LVLMs frequently exhibit hallucination phenomena, manifesting as the generated textual responses that demonstrate inconsistencies with the provided visual content. Existing hallucination mitigation methods are predominantly text-centric, the challenges of visual-semantic alignment significantly limit their effectiveness, especially when confronted with fine-grained visual understanding scenarios. To this end, this paper presents ViHallu, a Vision-Centric Hallucination mitigation framework that enhances visual-semantic alignment through Visual Variation Image Generation and Visual Instruction Construction. ViHallu introduces visual variation images with controllable visual alterations while maintaining the overall image structure. These images, combined with carefully constructed visual instructions, enable LVLMs to better understand fine-grained visual content through fine-tuning, allowing models to more precisely capture the correspondence between visual content and text, thereby enhancing visual-semantic alignment. Extensive experiments on multiple benchmarks show that ViHallu effectively enhances models' fine-grained visual understanding while significantly reducing hallucination tendencies. Furthermore, we release ViHallu-Instruction, a visual instruction dataset specifically designed for hallucination mitigation and visual-semantic alignment. Code is available at https://github.com/oliviadzy/ViHallu.

Authors:Jihao Gu, Kun Li, Fei Wang, Yanyan Wei, Zhiliang Wu, Hehe Fan, Meng Wang
Title: Motion Matters: Motion-guided Modulation Network for Skeleton-based Micro-Action Recognition
Abstract:
Micro-Actions (MAs) are an important form of non-verbal communication in social interactions, with potential applications in human emotional analysis. However, existing methods in Micro-Action Recognition often overlook the inherent subtle changes in MAs, which limits the accuracy of distinguishing MAs with subtle changes. To address this issue, we present a novel Motion-guided Modulation Network (MMN) that implicitly captures and modulates subtle motion cues to enhance spatial-temporal representation learning. Specifically, we introduce a Motion-guided Skeletal Modulation module (MSM) to inject motion cues at the skeletal level, acting as a control signal to guide spatial representation modeling. In parallel, we design a Motion-guided Temporal Modulation module (MTM) to incorporate motion information at the frame level, facilitating the modeling of holistic motion patterns in micro-actions. Finally, we propose a motion consistency learning strategy to aggregate the motion cues from multi-scale features for micro-action classification. Experimental results on the Micro-Action 52 and iMiGUE datasets demonstrate that MMN achieves state-of-the-art performance in skeleton-based micro-action recognition, underscoring the importance of explicitly modeling subtle motion cues. The code will be available at https://github.com/momiji-bit/MMN.

Authors:Jiahui Ren, Mochu Xiang, Jiajun Zhu, Yuchao Dai
Title: PanoSplatt3R: Leveraging Perspective Pretraining for Generalized Unposed Wide-Baseline Panorama Reconstruction
Abstract:
Wide-baseline panorama reconstruction has emerged as a highly effective and pivotal approach for not only achieving geometric reconstruction of the surrounding 3D environment, but also generating highly realistic and immersive novel views. Although existing methods have shown remarkable performance across various benchmarks, they are predominantly reliant on accurate pose information. In real-world scenarios, the acquisition of precise pose often requires additional computational resources and is highly susceptible to noise. These limitations hinder the broad applicability and practicality of such methods. In this paper, we present PanoSplatt3R, an unposed wide-baseline panorama reconstruction method. We extend and adapt the foundational reconstruction pretrainings from the perspective domain to the panoramic domain, thus enabling powerful generalization capabilities. To ensure a seamless and efficient domain-transfer process, we introduce RoPE rolling that spans rolled coordinates in rotary positional embeddings across different attention heads, maintaining a minimal modification to RoPE's mechanism, while modeling the horizontal periodicity of panorama images. Comprehensive experiments demonstrate that PanoSplatt3R, even in the absence of pose information, significantly outperforms current state-of-the-art methods. This superiority is evident in both the generation of high-quality novel views and the accuracy of depth estimation, thereby showcasing its great potential for practical applications. Project page: https://npucvr.github.io/PanoSplatt3R

Authors:Tianhong Gao, Yannian Fu, Weiqun Wu, Haixiao Yue, Shanshan Liu, Gang Zhang
Title: MMAT-1M: A Large Reasoning Dataset for Multimodal Agent Tuning
Abstract:
Large Language Models (LLMs), enhanced through agent tuning, have demonstrated remarkable capabilities in Chain-of-Thought (CoT) and tool utilization, significantly surpassing the performance of standalone models. However, the multimodal domain still lacks a large-scale, high-quality agent tuning dataset to unlock the full potential of multimodal large language models. To bridge this gap, we introduce MMAT-1M, the first million-scale multimodal agent tuning dataset designed to support CoT, reflection, and dynamic tool usage. Our dataset is constructed through a novel four-stage data engine: 1) We first curate publicly available multimodal datasets containing question-answer pairs; 2) Then, leveraging GPT-4o, we generate rationales for the original question-answer pairs and dynamically integrate API calls and Retrieval Augmented Generation (RAG) information through a multi-turn paradigm; 3) Furthermore, we refine the rationales through reflection to ensure logical consistency and accuracy, creating a multi-turn dialogue dataset with both Rationale and Reflection (RR); 4) Finally, to enhance efficiency, we optionally compress multi-turn dialogues into a One-turn Rationale and Reflection (ORR) format. By fine-tuning open-source multimodal models on the MMAT-1M, we observe significant performance gains. For instance, the InternVL2.5-8B-RR model achieves an average improvement of 2.7% across eight public benchmarks and 8.8% on the RAG benchmark Dyn-VQA, demonstrating the dataset's effectiveness in enhancing multimodal reasoning and tool-based capabilities. The dataset is publicly available at https://github.com/VIS-MPU-Agent/MMAT-1M.

Authors:Nicola Fanelli, Gennaro Vessio, Giovanna Castellano
Title: ArtSeek: Deep artwork understanding via multimodal in-context reasoning and late interaction retrieval
Abstract:
Analyzing digitized artworks presents unique challenges, requiring not only visual interpretation but also a deep understanding of rich artistic, contextual, and historical knowledge. We introduce ArtSeek, a multimodal framework for art analysis that combines multimodal large language models with retrieval-augmented generation. Unlike prior work, our pipeline relies only on image input, enabling applicability to artworks without links to Wikidata or Wikipedia-common in most digitized collections. ArtSeek integrates three key components: an intelligent multimodal retrieval module based on late interaction retrieval, a contrastive multitask classification network for predicting artist, genre, style, media, and tags, and an agentic reasoning strategy enabled through in-context examples for complex visual question answering and artwork explanation via Qwen2.5-VL. Central to this approach is WikiFragments, a Wikipedia-scale dataset of image-text fragments curated to support knowledge-grounded multimodal reasoning. Our framework achieves state-of-the-art results on multiple benchmarks, including a +8.4% F1 improvement in style classification over GraphCLIP and a +7.1 BLEU@1 gain in captioning on ArtPedia. Qualitative analyses show that ArtSeek can interpret visual motifs, infer historical context, and retrieve relevant knowledge, even for obscure works. Though focused on visual arts, our approach generalizes to other domains requiring external knowledge, supporting scalable multimodal AI research. Both the dataset and the source code will be made publicly available at https://github.com/cilabuniba/artseek.

Authors:Shengjia Chen, Ruchika Verma, Kevin Clare, Jannes Jegminat, Eugenia Alleva, Kuan-lin Huang, Brandon Veremis, Thomas Fuchs, Gabriele Campanella
Title: Predict Patient Self-reported Race from Skin Histological Images
Abstract:
Artificial Intelligence (AI) has demonstrated success in computational pathology (CPath) for disease detection, biomarker classification, and prognosis prediction. However, its potential to learn unintended demographic biases, particularly those related to social determinants of health, remains understudied. This study investigates whether deep learning models can predict self-reported race from digitized dermatopathology slides and identifies potential morphological shortcuts. Using a multisite dataset with a racially diverse population, we apply an attention-based mechanism to uncover race-associated morphological features. After evaluating three dataset curation strategies to control for confounding factors, the final experiment showed that White and Black demographic groups retained high prediction performance (AUC: 0.799, 0.762), while overall performance dropped to 0.663. Attention analysis revealed the epidermis as a key predictive feature, with significant performance declines when these regions were removed. These findings highlight the need for careful data curation and bias mitigation to ensure equitable AI deployment in pathology. Code available at: https://github.com/sinai-computational-pathology/CPath_SAIF.

Authors:Viacheslav Pirogov, Maksim Artemev
Title: Evaluating Deepfake Detectors in the Wild
Abstract:
Deepfakes powered by advanced machine learning models present a significant and evolving threat to identity verification and the authenticity of digital media. Although numerous detectors have been developed to address this problem, their effectiveness has yet to be tested when applied to real-world data. In this work we evaluate modern deepfake detectors, introducing a novel testing procedure designed to mimic real-world scenarios for deepfake detection. Using state-of-the-art deepfake generation methods, we create a comprehensive dataset containing more than 500,000 high-quality deepfake images. Our analysis shows that detecting deepfakes still remains a challenging task. The evaluation shows that in fewer than half of the deepfake detectors tested achieved an AUC score greater than 60%, with the lowest being 50%. We demonstrate that basic image manipulations, such as JPEG compression or image enhancement, can significantly reduce model performance. All code and data are publicly available at https://github.com/SumSubstance/Deepfake-Detectors-in-the-Wild.

Authors:Julia Wolleb, Florentin Bieder, Paul Friedrich, Hemant D. Tagare, Xenophon Papademetris
Title: VidFuncta: Towards Generalizable Neural Representations for Ultrasound Videos
Abstract:
Ultrasound is widely used in clinical care, yet standard deep learning methods often struggle with full video analysis due to non-standardized acquisition and operator bias. We offer a new perspective on ultrasound video analysis through implicit neural representations (INRs). We build on Functa, an INR framework in which each image is represented by a modulation vector that conditions a shared neural network. However, its extension to the temporal domain of medical videos remains unexplored. To address this gap, we propose VidFuncta, a novel framework that leverages Functa to encode variable-length ultrasound videos into compact, time-resolved representations. VidFuncta disentangles each video into a static video-specific vector and a sequence of time-dependent modulation vectors, capturing both temporal dynamics and dataset-level redundancies. Our method outperforms 2D and 3D baselines on video reconstruction and enables downstream tasks to directly operate on the learned 1D modulation vectors. We validate VidFuncta on three public ultrasound video datasets -- cardiac, lung, and breast -- and evaluate its downstream performance on ejection fraction prediction, B-line detection, and breast lesion classification. These results highlight the potential of VidFuncta as a generalizable and efficient representation framework for ultrasound videos. Our code is publicly available under https://github.com/JuliaWolleb/VidFuncta_public.

Authors:Jiahao He, Daerji Suolang, Keren Fu, Qijun Zhao
Title: Unleashing the Power of Motion and Depth: A Selective Fusion Strategy for RGB-D Video Salient Object Detection
Abstract:
Applying salient object detection (SOD) to RGB-D videos is an emerging task called RGB-D VSOD and has recently gained increasing interest, due to considerable performance gains of incorporating motion and depth and that RGB-D videos can be easily captured now in daily life. Existing RGB-D VSOD models have different attempts to derive motion cues, in which extracting motion information explicitly from optical flow appears to be a more effective and promising alternative. Despite this, there remains a key issue that how to effectively utilize optical flow and depth to assist the RGB modality in SOD. Previous methods always treat optical flow and depth equally with respect to model designs, without explicitly considering their unequal contributions in individual scenarios, limiting the potential of motion and depth. To address this issue and unleash the power of motion and depth, we propose a novel selective cross-modal fusion framework (SMFNet) for RGB-D VSOD, incorporating a pixel-level selective fusion strategy (PSF) that achieves optimal fusion of optical flow and depth based on their actual contributions. Besides, we propose a multi-dimensional selective attention module (MSAM) to integrate the fused features derived from PSF with the remaining RGB modality at multiple dimensions, effectively enhancing feature representation to generate refined features. We conduct comprehensive evaluation of SMFNet against 19 state-of-the-art models on both RDVS and DVisal datasets, making the evaluation the most comprehensive RGB-D VSOD benchmark up to date, and it also demonstrates the superiority of SMFNet over other models. Meanwhile, evaluation on five video benchmark datasets incorporating synthetic depth validates the efficacy of SMFNet as well. Our code and benchmark results are made publicly available at https://github.com/Jia-hao999/SMFNet.

Authors:Junzhe Li, Yutao Cui, Tao Huang, Yinping Ma, Chun Fan, Miles Yang, Zhao Zhong
Title: MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Abstract:
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose $\textbf{MixGRPO}$, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for sampling. So we present a faster variant, termed $\textbf{MixGRPO-Flash}$, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%. Codes and models are available at $\href{https://github.com/Tencent-Hunyuan/MixGRPO}{MixGRPO}$.

Authors:Zhaolong Wang, Tongfeng Sun, Mingzheng Du, Yachao Huang
Title: MSGCoOp: Multiple Semantic-Guided Context Optimization for Few-Shot Learning
Abstract:
Vision-language pre-trained models (VLMs) such as CLIP have demonstrated remarkable zero-shot generalization, and prompt learning has emerged as an efficient alternative to full fine-tuning. However, existing methods often struggle with generalization to novel classes, a phenomenon attributed to overfitting on seen classes and forgetting general knowledge. Furthermore, recent approaches that improve generalization often introduce complex architectures or heavy computational overhead. In this paper, we propose a Multiple Semantic-Guided Context Optimization (MSGCoOp) framework to enhance few-shot generalization while maintaining computational efficiency. Our approach leverages an ensemble of parallel learnable context vectors to capture diverse semantic aspects. To enrich these prompts, we introduce a semantic guidance mechanism that aligns them with comprehensive class descriptions automatically generated by a Large Language Model (LLM). Furthermore, a diversity regularization loss encourages the prompts to learn complementary and orthogonal features, preventing them from collapsing into redundant representations. Extensive experiments on 11 benchmark datasets show that MSGCoOp significantly improves performance on base-to-novel generalization, achieving an average harmonic mean improvement of 1.10\% over the strong KgCoOp baseline. Our method also demonstrates enhanced robustness in cross-domain generalization tasks. Our code is avaliable at: \href{https://github.com/Rain-Bus/MSGCoOp}{https://github.com/Rain-Bus/MSGCoOp}.

Authors:Zhishu Liu, Kaishen Yuan, Bo Zhao, Yong Xu, Zitong Yu
Title: AU-LLM: Micro-Expression Action Unit Detection via Enhanced LLM-Based Feature Fusion
Abstract:
The detection of micro-expression Action Units (AUs) is a formidable challenge in affective computing, pivotal for decoding subtle, involuntary human emotions. While Large Language Models (LLMs) demonstrate profound reasoning abilities, their application to the fine-grained, low-intensity domain of micro-expression AU detection remains unexplored. This paper pioneers this direction by introducing \textbf{AU-LLM}, a novel framework that for the first time uses LLM to detect AUs in micro-expression datasets with subtle intensities and the scarcity of data. We specifically address the critical vision-language semantic gap, the \textbf{Enhanced Fusion Projector (EFP)}. The EFP employs a Multi-Layer Perceptron (MLP) to intelligently fuse mid-level (local texture) and high-level (global semantics) visual features from a specialized 3D-CNN backbone into a single, information-dense token. This compact representation effectively empowers the LLM to perform nuanced reasoning over subtle facial muscle movements.Through extensive evaluations on the benchmark CASME II and SAMM datasets, including stringent Leave-One-Subject-Out (LOSO) and cross-domain protocols, AU-LLM establishes a new state-of-the-art, validating the significant potential and robustness of LLM-based reasoning for micro-expression analysis. The codes are available at https://github.com/ZS-liu-JLU/AU-LLMs.

Authors:Aybora Koksal, A. Aydin Alatan
Title: Few-Shot Vision-Language Reasoning for Satellite Imagery via Verifiable Rewards
Abstract:
Recent advances in large language and vision-language models have enabled strong reasoning capabilities, yet they remain impractical for specialized domains like remote sensing, where annotated data is scarce and expensive. We present the first few-shot reinforcement learning with verifiable reward (RLVR) framework for satellite imagery that eliminates the need for caption supervision--relying solely on lightweight, rule-based binary or IoU-based rewards. Adapting the "1-shot RLVR" paradigm from language models to vision-language models, we employ policy-gradient optimization with as few as one curated example to align model outputs for satellite reasoning tasks. Comprehensive experiments across multiple remote sensing benchmarks--including classification, visual question answering, and grounding--show that even a single example yields substantial improvements over the base model. Scaling to 128 examples matches or exceeds models trained on thousands of annotated samples. While the extreme one-shot setting can induce mild, task-specific overfitting, our approach consistently demonstrates robust generalization and efficiency across diverse tasks. Further, we find that prompt design and loss weighting significantly influence training stability and final accuracy. Our method enables cost-effective and data-efficient development of domain-specialist vision-language reasoning models, offering a pragmatic recipe for data-scarce fields: start from a compact VLM, curate a handful of reward-checkable cases, and train via RLVR.

Authors:Shaojun E, Yuchen Yang, Jiaheng Wu, Yan Zhang, Tiejun Zhao, Ziyan Chen
Title: MAGE: Multimodal Alignment and Generation Enhancement via Bridging Visual and Semantic Spaces
Abstract:
In the latest advancements in multimodal learning, effectively addressing the spatial and semantic losses of visual data after encoding remains a critical challenge. This is because the performance of large multimodal models is positively correlated with the coupling between visual encoders and large language models. Existing approaches often face issues such as vector gaps or semantic disparities, resulting in information loss during the propagation process. To address these issues, we propose MAGE (Multimodal Alignment and Generation Enhancement), a novel framework that bridges the semantic spaces of vision and text through an innovative alignment mechanism. By introducing the Intelligent Alignment Network (IAN), MAGE achieves dimensional and semantic alignment. To reduce the gap between synonymous heterogeneous data, we employ a training strategy that combines cross-entropy and mean squared error, significantly enhancing the alignment effect. Moreover, to enhance MAGE's "Any-to-Any" capability, we developed a fine-tuning dataset for multimodal tool-calling instructions to expand the model's output capability boundaries. Finally, our proposed multimodal large model architecture, MAGE, achieved significantly better performance compared to similar works across various evaluation benchmarks, including MME, MMBench, and SEED. Complete code and appendix are available at: https://github.com/GTCOM-NLP/MAGE.

Authors:Qianxiong Xu, Lanyun Zhu, Chenxi Liu, Guosheng Lin, Cheng Long, Ziyue Li, Rui Zhao
Title: SAMITE: Position Prompted SAM2 with Calibrated Memory for Visual Object Tracking
Abstract:
Visual Object Tracking (VOT) is widely used in applications like autonomous driving to continuously track targets in videos. Existing methods can be roughly categorized into template matching and autoregressive methods, where the former usually neglects the temporal dependencies across frames and the latter tends to get biased towards the object categories during training, showing weak generalizability to unseen classes. To address these issues, some methods propose to adapt the video foundation model SAM2 for VOT, where the tracking results of each frame would be encoded as memory for conditioning the rest of frames in an autoregressive manner. Nevertheless, existing methods fail to overcome the challenges of object occlusions and distractions, and do not have any measures to intercept the propagation of tracking errors. To tackle them, we present a SAMITE model, built upon SAM2 with additional modules, including: (1) Prototypical Memory Bank: We propose to quantify the feature-wise and position-wise correctness of each frame's tracking results, and select the best frames to condition subsequent frames. As the features of occluded and distracting objects are feature-wise and position-wise inaccurate, their scores would naturally be lower and thus can be filtered to intercept error propagation; (2) Positional Prompt Generator: To further reduce the impacts of distractors, we propose to generate positional mask prompts to provide explicit positional clues for the target, leading to more accurate tracking. Extensive experiments have been conducted on six benchmarks, showing the superiority of SAMITE. The code is available at https://github.com/Sam1224/SAMITE.

Authors:Yaozong Zheng, Bineng Zhong, Qihua Liang, Ning Li, Shuxiang Song
Title: Decoupled Spatio-Temporal Consistency Learning for Self-Supervised Tracking
Abstract:
The success of visual tracking has been largely driven by datasets with manual box annotations. However, these box annotations require tremendous human effort, limiting the scale and diversity of existing tracking datasets. In this work, we present a novel Self-Supervised Tracking framework named \textbf{\tracker}, designed to eliminate the need of box annotations. Specifically, a decoupled spatio-temporal consistency training framework is proposed to learn rich target information across timestamps through global spatial localization and local temporal association. This allows for the simulation of appearance and motion variations of instances in real-world scenarios. Furthermore, an instance contrastive loss is designed to learn instance-level correspondences from a multi-view perspective, offering robust instance supervision without additional labels. This new design paradigm enables {\tracker} to effectively learn generic tracking representations in a self-supervised manner, while reducing reliance on extensive box annotations. Extensive experiments on nine benchmark datasets demonstrate that {\tracker} surpasses \textit{SOTA} self-supervised tracking methods, achieving an improvement of more than 25.3\%, 20.4\%, and 14.8\% in AUC (AO) score on the GOT10K, LaSOT, TrackingNet datasets, respectively. Code: https://github.com/GXNU-ZhongLab/SSTrack.

Authors:Jiong Yin, Liang Li, Jiehua Zhang, Yuhan Gao, Chenggang Yan, Xichun Sheng
Title: Progressive Homeostatic and Plastic Prompt Tuning for Audio-Visual Multi-Task Incremental Learning
Abstract:
Audio-visual multi-task incremental learning aims to continuously learn from multiple audio-visual tasks without the need for joint training on all tasks. The challenge of the problem is how to preserve the old task knowledge while facilitating the learning of new task with previous experiences. To address these challenges, we introduce a three-stage Progressive Homeostatic and Plastic audio-visual prompt (PHP) method. In the shallow phase, we design the task-shared modality aggregating adapter to foster cross-task and cross-modal audio-visual representation learning to enhance shared understanding between tasks. In the middle phase, we propose the task-specific modality-shared dynamic generating adapter, which constructs prompts that are tailored to individual tasks while remaining general across modalities, which balances the models ability to retain knowledge against forgetting with its potential for versatile multi-task transferability. In the deep phase, we introduce the task-specific modality-independent prompts to further refine the understand ability by targeting individual information for each task and modality. By incorporating these three phases, PHP retains task-specific prompts while adapting shared parameters for new tasks to effectively balance knowledge sharing and specificity. Our method achieves SOTA performance in different orders of four tasks (AVE, AVVP, AVS and AVQA). Our code can be available at https://github.com/ENJOY-Yin-jiong/PHP.

Authors:Yanxu Zhu, Shitong Duan, Xiangxu Zhang, Jitao Sang, Peng Zhang, Tun Lu, Xiao Zhou, Jing Yao, Xiaoyuan Yi, Xing Xie
Title: MoHoBench: Assessing Honesty of Multimodal Large Language Models via Unanswerable Visual Questions
Abstract:
Recently Multimodal Large Language Models (MLLMs) have achieved considerable advancements in vision-language tasks, yet produce potentially harmful or untrustworthy content. Despite substantial work investigating the trustworthiness of language models, MMLMs' capability to act honestly, especially when faced with visually unanswerable questions, remains largely underexplored. This work presents the first systematic assessment of honesty behaviors across various MLLMs. We ground honesty in models' response behaviors to unanswerable visual questions, define four representative types of such questions, and construct MoHoBench, a large-scale MMLM honest benchmark, consisting of 12k+ visual question samples, whose quality is guaranteed by multi-stage filtering and human verification. Using MoHoBench, we benchmarked the honesty of 28 popular MMLMs and conducted a comprehensive analysis. Our findings show that: (1) most models fail to appropriately refuse to answer when necessary, and (2) MMLMs' honesty is not solely a language modeling issue, but is deeply influenced by visual information, necessitating the development of dedicated methods for multimodal honesty alignment. Therefore, we implemented initial alignment methods using supervised and preference learning to improve honesty behavior, providing a foundation for future work on trustworthy MLLMs. Our data and code can be found at https://github.com/DSTTSD/MoHoBench.

Authors:Zhichuan Wang, Yang Zhou, Zhe Liu, Rui Yu, Song Bai, Yulong Wang, Xinwei He, Xiang Bai
Title: Describe, Adapt and Combine: Empowering CLIP Encoders for Open-set 3D Object Retrieval
Abstract:
Open-set 3D object retrieval (3DOR) is an emerging task aiming to retrieve 3D objects of unseen categories beyond the training set. Existing methods typically utilize all modalities (i.e., voxels, point clouds, multi-view images) and train specific backbones before fusion. However, they still struggle to produce generalized representations due to insufficient 3D training data. Being contrastively pre-trained on web-scale image-text pairs, CLIP inherently produces generalized representations for a wide range of downstream tasks. Building upon it, we present a simple yet effective framework named Describe, Adapt and Combine (DAC) by taking only multi-view images for open-set 3DOR. DAC innovatively synergizes a CLIP model with a multi-modal large language model (MLLM) to learn generalized 3D representations, where the MLLM is used for dual purposes. First, it describes the seen category information to align with CLIP's training objective for adaptation during training. Second, it provides external hints about unknown objects complementary to visual cues during inference. To improve the synergy, we introduce an Additive-Bias Low-Rank adaptation (AB-LoRA), which alleviates overfitting and further enhances the generalization to unseen categories. With only multi-view images, DAC significantly surpasses prior arts by an average of +10.01\% mAP on four open-set 3DOR datasets. Moreover, its generalization is also validated on image-based and cross-dataset setups. Code is available at https://github.com/wangzhichuan123/DAC.

Authors:Han Wu, Chong Wang, Zhiming Cui
Title: Dual Cross-image Semantic Consistency with Self-aware Pseudo Labeling for Semi-supervised Medical Image Segmentation
Abstract:
Semi-supervised learning has proven highly effective in tackling the challenge of limited labeled training data in medical image segmentation. In general, current approaches, which rely on intra-image pixel-wise consistency training via pseudo-labeling, overlook the consistency at more comprehensive semantic levels (e.g., object region) and suffer from severe discrepancy of extracted features resulting from an imbalanced number of labeled and unlabeled data. To overcome these limitations, we present a new \underline{Du}al \underline{C}ross-\underline{i}mage \underline{S}emantic \underline{C}onsistency (DuCiSC) learning framework, for semi-supervised medical image segmentation. Concretely, beyond enforcing pixel-wise semantic consistency, DuCiSC proposes dual paradigms to encourage region-level semantic consistency across: 1) labeled and unlabeled images; and 2) labeled and fused images, by explicitly aligning their prototypes. Relying on the dual paradigms, DuCiSC can effectively establish consistent cross-image semantics via prototype representations, thereby addressing the feature discrepancy issue. Moreover, we devise a novel self-aware confidence estimation strategy to accurately select reliable pseudo labels, allowing for exploiting the training dynamics of unlabeled data. Our DuCiSC method is extensively validated on four datasets, including two popular binary benchmarks in segmenting the left atrium and pancreas, a multi-class Automatic Cardiac Diagnosis Challenge dataset, and a challenging scenario of segmenting the inferior alveolar nerve that features complicated anatomical structures, showing superior segmentation results over previous state-of-the-art approaches. Our code is publicly available at \href{https://github.com/ShanghaiTech-IMPACT/DuCiSC}{https://github.com/ShanghaiTech-IMPACT/DuCiSC}.

Authors:Shijie Zhou, Ruiyi Zhang, Huaisheng Zhu, Branislav Kveton, Yufan Zhou, Jiuxiang Gu, Jian Chen, Changyou Chen
Title: Multimodal LLMs as Customized Reward Models for Text-to-Image Generation
Abstract:
We introduce LLaVA-Reward, an efficient reward model designed to automatically evaluate text-to-image (T2I) generations across multiple perspectives, leveraging pretrained multimodal large language models (MLLMs). Existing MLLM-based approaches require instruction-following data for supervised fine-tuning and evaluate generation quality on analyzing text response, which is time-consuming and difficult to train. To address this problem, we propose LLaVA-Reward, which directly utilizes the hidden states of MLLMs given text-image pairs. To enhance the bidirectional interaction between visual and textual representations in decoder-only MLLMs, we further propose adding a Skip-connection Cross Attention (SkipCA) module. This design enhances text-image correlation reasoning by connecting early-layer visual features with later-layer hidden representations. In addition, LLaVA-Reward supports different types of preference data for efficient fine-tuning, including paired preference data and unpaired data. We train LLaVA-Reward on four evaluation perspectives: text-image alignment, fidelity/artifact, safety, and overall ranking. Empirical results demonstrate that LLaVA-Reward outperforms conventional and MLLM-based methods in generating human-aligned scores for automatic evaluations and inference-time scaling in text-to-image generations.

Authors:Jicheng Yuan, Manh Nguyen Duc, Qian Liu, Manfred Hauswirth, Danh Le Phuoc
Title: Collaborative Perceiver: Elevating Vision-based 3D Object Detection via Local Density-Aware Spatial Occupancy
Abstract:
Vision-based bird's-eye-view (BEV) 3D object detection has advanced significantly in autonomous driving by offering cost-effectiveness and rich contextual information. However, existing methods often construct BEV representations by collapsing extracted object features, neglecting intrinsic environmental contexts, such as roads and pavements. This hinders detectors from comprehensively perceiving the characteristics of the physical world. To alleviate this, we introduce a multi-task learning framework, Collaborative Perceiver (CoP), that leverages spatial occupancy as auxiliary information to mine consistent structural and conceptual similarities shared between 3D object detection and occupancy prediction tasks, bridging gaps in spatial representations and feature refinement. To this end, we first propose a pipeline to generate dense occupancy ground truths incorporating local density information (LDO) for reconstructing detailed environmental information. Next, we employ a voxel-height-guided sampling (VHS) strategy to distill fine-grained local features according to distinct object properties. Furthermore, we develop a global-local collaborative feature fusion (CFF) module that seamlessly integrates complementary knowledge between both tasks, thus composing more robust BEV representations. Extensive experiments on the nuScenes benchmark demonstrate that CoP outperforms existing vision-based frameworks, achieving 49.5\% mAP and 59.2\% NDS on the test set. Code and supplementary materials are available at this link https://github.com/jichengyuan/Collaborative-Perceiver.

Authors:Amirmohammad Shamaei, Alexander Stebner, Salome, Bosshart, Johanna Ospel, Gouri Ginde, Mariana Bento, Roberto Souza
Title: Enhancing and Accelerating Brain MRI through Deep Learning Reconstruction Using Prior Subject-Specific Imaging
Abstract:
Magnetic resonance imaging (MRI) is a crucial medical imaging modality. However, long acquisition times remain a significant challenge, leading to increased costs, and reduced patient comfort. Recent studies have shown the potential of using deep learning models that incorporate information from prior subject-specific MRI scans to improve reconstruction quality of present scans. Integrating this prior information requires registration of the previous scan to the current image reconstruction, which can be time-consuming. We propose a novel deep-learning-based MRI reconstruction framework which consists of an initial reconstruction network, a deep registration model, and a transformer-based enhancement network. We validated our method on a longitudinal dataset of T1-weighted MRI scans with 2,808 images from 18 subjects at four acceleration factors (R5, R10, R15, R20). Quantitative metrics confirmed our approach's superiority over existing methods (p < 0.05, Wilcoxon signed-rank test). Furthermore, we analyzed the impact of our MRI reconstruction method on the downstream task of brain segmentation and observed improved accuracy and volumetric agreement with reference segmentations. Our approach also achieved a substantial reduction in total reconstruction time compared to methods that use traditional registration algorithms, making it more suitable for real-time clinical applications. The code associated with this work is publicly available at https://github.com/amirshamaei/longitudinal-mri-deep-recon.

Authors:Feixiang Zhou, Zhuangzhi Gao, He Zhao, Jianyang Xie, Yanda Meng, Yitian Zhao, Gregory Y. H. Lip, Yalin Zheng
Title: GLCP: Global-to-Local Connectivity Preservation for Tubular Structure Segmentation
Abstract:
Accurate segmentation of tubular structures, such as vascular networks, plays a critical role in various medical domains. A remaining significant challenge in this task is structural fragmentation, which can adversely impact downstream applications. Existing methods primarily focus on designing various loss functions to constrain global topological structures. However, they often overlook local discontinuity regions, leading to suboptimal segmentation results. To overcome this limitation, we propose a novel Global-to-Local Connectivity Preservation (GLCP) framework that can simultaneously perceive global and local structural characteristics of tubular networks. Specifically, we propose an Interactive Multi-head Segmentation (IMS) module to jointly learn global segmentation, skeleton maps, and local discontinuity maps, respectively. This enables our model to explicitly target local discontinuity regions while maintaining global topological integrity. In addition, we design a lightweight Dual-Attention-based Refinement (DAR) module to further improve segmentation quality by refining the resulting segmentation maps. Extensive experiments on both 2D and 3D datasets demonstrate that our GLCP achieves superior accuracy and continuity in tubular structure segmentation compared to several state-of-the-art approaches. The source codes will be available at https://github.com/FeixiangZhou/GLCP.

Authors:Théo Sourget, David Restrepo, Céline Hudelot, Enzo Ferrante, Stergios Christodoulidis, Maria Vakalopoulou
Title: Fairness and Robustness of CLIP-Based Models for Chest X-rays
Abstract:
Motivated by the strong performance of CLIP-based models in natural image-text domains, recent efforts have adapted these architectures to medical tasks, particularly in radiology, where large paired datasets of images and reports, such as chest X-rays, are available. While these models have shown encouraging results in terms of accuracy and discriminative performance, their fairness and robustness in the different clinical tasks remain largely underexplored. In this study, we extensively evaluate six widely used CLIP-based models on chest X-ray classification using three publicly available datasets: MIMIC-CXR, NIH-CXR14, and NEATX. We assess the models fairness across six conditions and patient subgroups based on age, sex, and race. Additionally, we assess the robustness to shortcut learning by evaluating performance on pneumothorax cases with and without chest drains. Our results indicate performance gaps between patients of different ages, but more equitable results for the other attributes. Moreover, all models exhibit lower performance on images without chest drains, suggesting reliance on spurious correlations. We further complement the performance analysis with a study of the embeddings generated by the models. While the sensitive attributes could be classified from the embeddings, we do not see such patterns using PCA, showing the limitations of these visualisation techniques when assessing models. Our code is available at https://github.com/TheoSourget/clip_cxr_fairness

Authors:Christopher Indris, Raiyan Rahman, Goetz Bramesfeld, Guanghui Wang
Title: Tracking Moose using Aerial Object Detection
Abstract:
Aerial wildlife tracking is critical for conservation efforts and relies on detecting small objects on the ground below the aircraft. It presents technical challenges: crewed aircraft are expensive, risky and disruptive; autonomous drones have limited computational capacity for onboard AI systems. Since the objects of interest may appear only a few pixels wide, small object detection is an inherently challenging computer vision subfield compounded by computational efficiency needs. This paper applies a patching augmentation to datasets to study model performance under various settings. A comparative study of three common yet architecturally diverse object detectors is conducted using the data, varying the patching method's hyperparameters against detection accuracy. Each model achieved at least 93\% mAP@IoU=0.5 on at least one patching configuration. Statistical analyses provide an in-depth commentary on the effects of various factors. Analysis also shows that faster, simpler models are about as effective as models that require more computational power for this task and perform well given limited patch scales, encouraging UAV deployment. Datasets and models will be made available via https://github.com/chrisindris/Moose.

Authors:Donglu Yang, Liang Zhang, Zihao Yue, Liangyu Chen, Yichen Xu, Wenxuan Wang, Qin Jin
Title: ChartM$^3$: Benchmarking Chart Editing with Multimodal Instructions
Abstract:
Charts are a fundamental visualization format widely used in data analysis across research and industry. While enabling users to edit charts based on high-level intentions is of great practical value, existing methods primarily rely on natural language instructions, which are often too ambiguous to support fine-grained editing. In this work, we introduce a novel paradigm for multimodal chart editing, where user intent is expressed through a combination of natural language and visual indicators that explicitly highlight the elements to be modified. To support this paradigm, we present Chart$\text{M}^3$, a new benchmark for Multimodal chart editing with Multi-level complexity and Multi-perspective evaluation. Chart$\text{M}^3$ contains 1,000 samples spanning four levels of editing difficulty. Each sample includes triplets in the form of (chart, code, multimodal instructions). To comprehensively evaluate chart editing models, Chart$\text{M}^3$ provides metrics that assess both visual appearance and code correctness. Our benchmark reveals significant limitations in current multimodal large language models (MLLMs), including GPT-4o, particularly in their ability to interpret and act on visual indicators. To address this, we construct Chart$\text{M}^3$-Train, a large-scale training set with 24,000 multimodal chart editing samples. Fine-tuning MLLMs on this dataset leads to substantial improvements, demonstrating the importance of multimodal supervision in building practical chart editing systems. Our datasets, codes, and evaluation tools are available at https://github.com/MLrollIT/ChartM3. %https://github.com/MLrollIT/ChartM3Our datasets, codes, and evaluation tools are available at https://github.com/yaolinli/VCE.

Authors:Zedong Wang, Siyuan Li, Dan Xu
Title: Rep-MTL: Unleashing the Power of Representation-level Task Saliency for Multi-Task Learning
Abstract:
Despite the promise of Multi-Task Learning in leveraging complementary knowledge across tasks, existing multi-task optimization (MTO) techniques remain fixated on resolving conflicts via optimizer-centric loss scaling and gradient manipulation strategies, yet fail to deliver consistent gains. In this paper, we argue that the shared representation space, where task interactions naturally occur, offers rich information and potential for operations complementary to existing optimizers, especially for facilitating the inter-task complementarity, which is rarely explored in MTO. This intuition leads to Rep-MTL, which exploits the representation-level task saliency to quantify interactions between task-specific optimization and shared representation learning. By steering these saliencies through entropy-based penalization and sample-wise cross-task alignment, Rep-MTL aims to mitigate negative transfer by maintaining the effective training of individual tasks instead pure conflict-solving, while explicitly promoting complementary information sharing. Experiments are conducted on four challenging MTL benchmarks covering both task-shift and domain-shift scenarios. The results show that Rep-MTL, even paired with the basic equal weighting policy, achieves competitive performance gains with favorable efficiency. Beyond standard performance metrics, Power Law exponent analysis demonstrates Rep-MTL's efficacy in balancing task-specific learning and cross-task sharing. The project page is available at HERE.

Authors:Yukang Cao, Jiahao Lu, Zhisheng Huang, Zhuowen Shen, Chengfeng Zhao, Fangzhou Hong, Zhaoxi Chen, Xin Li, Wenping Wang, Yuan Liu, Ziwei Liu
Title: Reconstructing 4D Spatial Intelligence: A Survey
Abstract:
Reconstructing 4D spatial intelligence from visual observations has long been a central yet challenging task in computer vision, with broad real-world applications. These range from entertainment domains like movies, where the focus is often on reconstructing fundamental visual elements, to embodied AI, which emphasizes interaction modeling and physical realism. Fueled by rapid advances in 3D representations and deep learning architectures, the field has evolved quickly, outpacing the scope of previous surveys. Additionally, existing surveys rarely offer a comprehensive analysis of the hierarchical structure of 4D scene reconstruction. To address this gap, we present a new perspective that organizes existing methods into five progressive levels of 4D spatial intelligence: (1) Level 1 -- reconstruction of low-level 3D attributes (e.g., depth, pose, and point maps); (2) Level 2 -- reconstruction of 3D scene components (e.g., objects, humans, structures); (3) Level 3 -- reconstruction of 4D dynamic scenes; (4) Level 4 -- modeling of interactions among scene components; and (5) Level 5 -- incorporation of physical laws and constraints. We conclude the survey by discussing the key challenges at each level and highlighting promising directions for advancing toward even richer levels of 4D spatial intelligence. To track ongoing developments, we maintain an up-to-date project page: https://github.com/yukangcao/Awesome-4D-Spatial-Intelligence.

Authors:Licai Sun, Xingxun Jiang, Haoyu Chen, Yante Li, Zheng Lian, Biu Liu, Yuan Zong, Wenming Zheng, Jukka M. Leppänen, Guoying Zhao
Title: Learning Transferable Facial Emotion Representations from Large-Scale Semantically Rich Captions
Abstract:
Current facial emotion recognition systems are predominately trained to predict a fixed set of predefined categories or abstract dimensional values. This constrained form of supervision hinders generalization and applicability, as it reduces the rich and nuanced spectrum of emotions into oversimplified labels or scales. In contrast, natural language provides a more flexible, expressive, and interpretable way to represent emotions, offering a much broader source of supervision. Yet, leveraging semantically rich natural language captions as supervisory signals for facial emotion representation learning remains relatively underexplored, primarily due to two key challenges: 1) the lack of large-scale caption datasets with rich emotional semantics, and 2) the absence of effective frameworks tailored to harness such rich supervision. To this end, we introduce EmoCap100K, a large-scale facial emotion caption dataset comprising over 100,000 samples, featuring rich and structured semantic descriptions that capture both global affective states and fine-grained local facial behaviors. Building upon this dataset, we further propose EmoCapCLIP, which incorporates a joint global-local contrastive learning framework enhanced by a cross-modal guided positive mining module. This design facilitates the comprehensive exploitation of multi-level caption information while accommodating semantic similarities between closely related expressions. Extensive evaluations on over 20 benchmarks covering five tasks demonstrate the superior performance of our method, highlighting the promise of learning facial emotion representations from large-scale semantically rich captions. The code and data will be available at https://github.com/sunlicai/EmoCapCLIP.

Authors:Shen Li, Liuyi Yao, Wujia Niu, Lan Zhang, Yaliang Li
Title: Security Tensors as a Cross-Modal Bridge: Extending Text-Aligned Safety to Vision in LVLM
Abstract:
Large visual-language models (LVLMs) integrate aligned large language models (LLMs) with visual modules to process multimodal inputs. However, the safety mechanisms developed for text-based LLMs do not naturally extend to visual modalities, leaving LVLMs vulnerable to harmful image inputs. To address this cross-modal safety gap, we introduce security tensors - trainable input vectors applied during inference through either the textual or visual modality. These tensors transfer textual safety alignment to visual processing without modifying the model's parameters. They are optimized using a curated dataset containing (i) malicious image-text pairs requiring rejection, (ii) contrastive benign pairs with text structurally similar to malicious queries, with the purpose of being contrastive examples to guide visual reliance, and (iii) general benign samples preserving model functionality. Experimental results demonstrate that both textual and visual security tensors significantly enhance LVLMs' ability to reject diverse harmful visual inputs while maintaining near-identical performance on benign tasks. Further internal analysis towards hidden-layer representations reveals that security tensors successfully activate the language module's textual "safety layers" in visual inputs, thereby effectively extending text-based safety to the visual modality.

Authors:Xinhan Di, Kristin Qi, Pengqian Yu
Title: JWB-DH-V1: Benchmark for Joint Whole-Body Talking Avatar and Speech Generation Version 1
Abstract:
Recent advances in diffusion-based video generation have enabled photo-realistic short clips, but current methods still struggle to achieve multi-modal consistency when jointly generating whole-body motion and natural speech. Current approaches lack comprehensive evaluation frameworks that assess both visual and audio quality, and there are insufficient benchmarks for region-specific performance analysis. To address these gaps, we introduce the Joint Whole-Body Talking Avatar and Speech Generation Version I(JWB-DH-V1), comprising a large-scale multi-modal dataset with 10,000 unique identities across 2 million video samples, and an evaluation protocol for assessing joint audio-video generation of whole-body animatable avatars. Our evaluation of SOTA models reveals consistent performance disparities between face/hand-centric and whole-body performance, which incidates essential areas for future research. The dataset and evaluation tools are publicly available at https://github.com/deepreasonings/WholeBodyBenchmark.

Authors:Xiao Fang, Minhyek Jeon, Zheyang Qin, Stanislav Panev, Celso de Melo, Shuowen Hu, Shayok Chakraborty, Fernando De la Torre
Title: Adapting Vehicle Detectors for Aerial Imagery to Unseen Domains with Weak Supervision
Abstract:
Detecting vehicles in aerial imagery is a critical task with applications in traffic monitoring, urban planning, and defense intelligence. Deep learning methods have provided state-of-the-art (SOTA) results for this application. However, a significant challenge arises when models trained on data from one geographic region fail to generalize effectively to other areas. Variability in factors such as environmental conditions, urban layouts, road networks, vehicle types, and image acquisition parameters (e.g., resolution, lighting, and angle) leads to domain shifts that degrade model performance. This paper proposes a novel method that uses generative AI to synthesize high-quality aerial images and their labels, improving detector training through data augmentation. Our key contribution is the development of a multi-stage, multi-modal knowledge transfer framework utilizing fine-tuned latent diffusion models (LDMs) to mitigate the distribution gap between the source and target environments. Extensive experiments across diverse aerial imagery domains show consistent performance improvements in AP50 over supervised learning on source domain data, weakly supervised adaptation methods, unsupervised domain adaptation methods, and open-set object detectors by 4-23%, 6-10%, 7-40%, and more than 50%, respectively. Furthermore, we introduce two newly annotated aerial datasets from New Zealand and Utah to support further research in this field. Project page is available at: https://humansensinglab.github.io/AGenDA

Authors:Yuying Ge, Yixiao Ge, Chen Li, Teng Wang, Junfu Pu, Yizhuo Li, Lu Qiu, Jin Ma, Lisheng Duan, Xinyu Zuo, Jinwen Luo, Weibo Gu, Zexuan Li, Xiaojing Zhang, Yangyu Tao, Han Hu, Di Wang, Ying Shan
Title: ARC-Hunyuan-Video-7B: Structured Video Comprehension of Real-World Shorts
Abstract:
Real-world user-generated short videos, especially those distributed on platforms such as WeChat Channel and TikTok, dominate the mobile internet. However, current large multimodal models lack essential temporally-structured, detailed, and in-depth video comprehension capabilities, which are the cornerstone of effective video search and recommendation, as well as emerging video applications. Understanding real-world shorts is actually challenging due to their complex visual elements, high information density in both visuals and audio, and fast pacing that focuses on emotional expression and viewpoint delivery. This requires advanced reasoning to effectively integrate multimodal information, including visual, audio, and text. In this work, we introduce ARC-Hunyuan-Video, a multimodal model that processes visual, audio, and textual signals from raw video inputs end-to-end for structured comprehension. The model is capable of multi-granularity timestamped video captioning and summarization, open-ended video question answering, temporal video grounding, and video reasoning. Leveraging high-quality data from an automated annotation pipeline, our compact 7B-parameter model is trained through a comprehensive regimen: pre-training, instruction fine-tuning, cold start, reinforcement learning (RL) post-training, and final instruction fine-tuning. Quantitative evaluations on our introduced benchmark ShortVid-Bench and qualitative comparisons demonstrate its strong performance in real-world video comprehension, and it supports zero-shot or fine-tuning with a few samples for diverse downstream applications. The real-world production deployment of our model has yielded tangible and measurable improvements in user engagement and satisfaction, a success supported by its remarkable efficiency, with stress tests indicating an inference time of just 10 seconds for a one-minute video on H20 GPU.

Authors:Kai Ye, YingShi Luan, Zhudi Chen, Guangyue Meng, Pingyang Dai, Liujuan Cao
Title: RIS-LAD: A Benchmark and Model for Referring Low-Altitude Drone Image Segmentation
Abstract:
Referring Image Segmentation (RIS), which aims to segment specific objects based on natural language descriptions, plays an essential role in vision-language understanding. Despite its progress in remote sensing applications, RIS in Low-Altitude Drone (LAD) scenarios remains underexplored. Existing datasets and methods are typically designed for high-altitude and static-view imagery. They struggle to handle the unique characteristics of LAD views, such as diverse viewpoints and high object density. To fill this gap, we present RIS-LAD, the first fine-grained RIS benchmark tailored for LAD scenarios. This dataset comprises 13,871 carefully annotated image-text-mask triplets collected from realistic drone footage, with a focus on small, cluttered, and multi-viewpoint scenes. It highlights new challenges absent in previous benchmarks, such as category drift caused by tiny objects and object drift under crowded same-class objects. To tackle these issues, we propose the Semantic-Aware Adaptive Reasoning Network (SAARN). Rather than uniformly injecting all linguistic features, SAARN decomposes and routes semantic information to different stages of the network. Specifically, the Category-Dominated Linguistic Enhancement (CDLE) aligns visual features with object categories during early encoding, while the Adaptive Reasoning Fusion Module (ARFM) dynamically selects semantic cues across scales to improve reasoning in complex scenes. The experimental evaluation reveals that RIS-LAD presents substantial challenges to state-of-the-art RIS algorithms, and also demonstrates the effectiveness of our proposed model in addressing these challenges. The dataset and code will be publicly released soon at: https://github.com/AHideoKuzeA/RIS-LAD/.

Authors:Ziling Wu, Armaghan Moemeni, Praminda Caleb-Solly
Title: Ensemble Foreground Management for Unsupervised Object Discovery
Abstract:
Unsupervised object discovery (UOD) aims to detect and segment objects in 2D images without handcrafted annotations. Recent progress in self-supervised representation learning has led to some success in UOD algorithms. However, the absence of ground truth provides existing UOD methods with two challenges: 1) determining if a discovered region is foreground or background, and 2) knowing how many objects remain undiscovered. To address these two problems, previous solutions rely on foreground priors to distinguish if the discovered region is foreground, and conduct one or fixed iterations of discovery. However, the existing foreground priors are heuristic and not always robust, and a fixed number of discoveries leads to under or over-segmentation, since the number of objects in images varies. This paper introduces UnionCut, a robust and well-grounded foreground prior based on min-cut and ensemble methods that detects the union of foreground areas of an image, allowing UOD algorithms to identify foreground objects and stop discovery once the majority of the foreground union in the image is segmented. In addition, we propose UnionSeg, a distilled transformer of UnionCut that outputs the foreground union more efficiently and accurately. Our experiments show that by combining with UnionCut or UnionSeg, previous state-of-the-art UOD methods witness an increase in the performance of single object discovery, saliency detection and self-supervised instance segmentation on various benchmarks. The code is available at https://github.com/YFaris/UnionCut.

Authors:Yuchen Liu, Yaoming Wang, Bowen Shi, Xiaopeng Zhang, Wenrui Dai, Chenglin Li, Hongkai Xiong, Qi Tian
Title: METEOR: Multi-Encoder Collaborative Token Pruning for Efficient Vision Language Models
Abstract:
Vision encoders serve as the cornerstone of multimodal understanding. Single-encoder architectures like CLIP exhibit inherent constraints in generalizing across diverse multimodal tasks, while recent multi-encoder fusion methods introduce prohibitive computational overhead to achieve superior performance using complementary visual representations from multiple vision encoders. To address this, we propose a progressive pruning framework, namely Multi-Encoder collaboraTivE tOken pRuning (METEOR), that eliminates redundant visual tokens across the encoding, fusion, and decoding stages for multi-encoder MLLMs. For multi-vision encoding, we discard redundant tokens within each encoder via a rank guided collaborative token assignment strategy. Subsequently, for multi-vision fusion, we combine the visual features from different encoders while reducing cross-encoder redundancy with cooperative pruning. Finally, we propose an adaptive token pruning method in the LLM decoding stage to further discard irrelevant tokens based on the text prompts with dynamically adjusting pruning ratios for specific task demands. To our best knowledge, this is the first successful attempt that achieves an efficient multi-encoder based vision language model with multi-stage pruning strategies. Extensive experiments on 11 benchmarks demonstrate the effectiveness of our proposed approach. Compared with EAGLE, a typical multi-encoder MLLMs, METEOR reduces 76% visual tokens with only 0.3% performance drop in average. The code is available at https://github.com/YuchenLiu98/METEOR.

Authors:Chunshi Wang, Bin Zhao, Shuxue Ding
Title: SCANet: Split Coordinate Attention Network for Building Footprint Extraction
Abstract:
Building footprint extraction holds immense significance in remote sensing image analysis and has great value in urban planning, land use, environmental protection and disaster assessment. Despite the progress made by conventional and deep learning approaches in this field, they continue to encounter significant challenges. This paper introduces a novel plug-and-play attention module, Split Coordinate Attention (SCA), which ingeniously captures spatially remote interactions by employing two spatial range of pooling kernels, strategically encoding each channel along x and y planes, and separately performs a series of split operations for each feature group, thus enabling more efficient semantic feature extraction. By inserting into a 2D CNN to form an effective SCANet, our SCANet outperforms recent SOTA methods on the public Wuhan University (WHU) Building Dataset and Massachusetts Building Dataset in terms of various metrics. Particularly SCANet achieves the best IoU, 91.61% and 75.49% for the two datasets. Our code is available at https://github.com/AiEson/SCANet

Authors:Yang Chen, Yufan Shen, Wenxuan Huang, Sheng Zhou, Qunshu Lin, Xinyu Cai, Zhi Yu, Jiajun Bu, Botian Shi, Yu Qiao
Title: Learning Only with Images: Visual Reinforcement Learning with Reasoning, Rendering, and Visual Feedback
Abstract:
Multimodal Large Language Models (MLLMs) exhibit impressive performance across various visual tasks. Subsequent investigations into enhancing their visual reasoning abilities have significantly expanded their performance envelope. However, a critical bottleneck in the advancement of MLLMs toward deep visual reasoning is their heavy reliance on curated image-text supervision. To solve this problem, we introduce a novel framework, ``Reasoning-Rendering-Visual-Feedback'' (RRVF), that enables MLLMs to learn complex visual reasoning from only raw images. This framework builds on the ``Asymmetry of Verification'' principle, i.e., verifying the rendered output against the source image is substantially easier than performing deep visual reasoning to generate a faithful, structured representation such as code. We demonstrate that this relative ease provides an ideal reward signal for optimization via Reinforcement Learning (RL), thereby reducing reliance on image-text supervision. RRVF implements a closed-loop iterative process encompassing reasoning, rendering, and visual feedback components, enabling the model to perform complex reasoning, including self-correction through multi-turn interactions. This process is optimized end-to-end using the GRPO algorithm. Extensive evaluations are conducted on image-to-code generation across two diverse domains: data charts and web interfaces. The RRVF-trained model not only outperforms existing similarly sized open-source MLLMs and supervised fine-tuning baselines but also exhibits superior generalization. Notably, the model outperforms the more advanced MLLM used to generate visual feedback during training. Code is available at https://github.com/L-O-I/RRVF.

Authors:Kangcheng Bin, Chen Chen, Ting Hu, Jiahao Qi, Ping Zhong
Title: ATR-UMMIM: A Benchmark Dataset for UAV-Based Multimodal Image Registration under Complex Imaging Conditions
Abstract:
Multimodal fusion has become a key enabler for UAV-based object detection, as each modality provides complementary cues for robust feature extraction. However, due to significant differences in resolution, field of view, and sensing characteristics across modalities, accurate registration is a prerequisite before fusion. Despite its importance, there is currently no publicly available benchmark specifically designed for multimodal registration in UAV-based aerial scenarios, which severely limits the development and evaluation of advanced registration methods under real-world conditions. To bridge this gap, we present ATR-UMMIM, the first benchmark dataset specifically tailored for multimodal image registration in UAV-based applications. This dataset includes 7,969 triplets of raw visible, infrared, and precisely registered visible images captured covers diverse scenarios including flight altitudes from 80m to 300m, camera angles from 0° to 75°, and all-day, all-year temporal variations under rich weather and illumination conditions. To ensure high registration quality, we design a semi-automated annotation pipeline to introduce reliable pixel-level ground truth to each triplet. In addition, each triplet is annotated with six imaging condition attributes, enabling benchmarking of registration robustness under real-world deployment settings. To further support downstream tasks, we provide object-level annotations on all registered images, covering 11 object categories with 77,753 visible and 78,409 infrared bounding boxes. We believe ATR-UMMIM will serve as a foundational benchmark for advancing multimodal registration, fusion, and perception in real-world UAV scenarios. The datatset can be download from https://github.com/supercpy/ATR-UMMIM

Authors:Zhuoer Yin, Calvin Yeung, Tomohiro Suzuki, Ryota Tanaka, Keisuke Fujii
Title: KASportsFormer: Kinematic Anatomy Enhanced Transformer for 3D Human Pose Estimation on Short Sports Scene Video
Abstract:
Recent transformer based approaches have demonstrated impressive performance in solving real-world 3D human pose estimation problems. Albeit these approaches achieve fruitful results on benchmark datasets, they tend to fall short of sports scenarios where human movements are more complicated than daily life actions, as being hindered by motion blur, occlusions, and domain shifts. Moreover, due to the fact that critical motions in a sports game often finish in moments of time (e.g., shooting), the ability to focus on momentary actions is becoming a crucial factor in sports analysis, where current methods appear to struggle with instantaneous scenarios. To overcome these limitations, we introduce KASportsFormer, a novel transformer based 3D pose estimation framework for sports that incorporates a kinematic anatomy-informed feature representation and integration module. In which the inherent kinematic motion information is extracted with the Bone Extractor (BoneExt) and Limb Fuser (LimbFus) modules and encoded in a multimodal manner. This improved the capability of comprehending sports poses in short videos. We evaluate our method through two representative sports scene datasets: SportsPose and WorldPose. Experimental results show that our proposed method achieves state-of-the-art results with MPJPE errors of 58.0mm and 34.3mm, respectively. Our code and models are available at: https://github.com/jw0r1n/KASportsFormer

Authors:Zeyu Huang, Wei Meng, Quan Liu, Kun Chen, Li Ma
Title: AR-LIF: Adaptive reset leaky integrate-and-fire neuron for spiking neural networks
Abstract:
Spiking neural networks offer low energy consumption due to their event-driven nature. Beyond binary spike outputs, their intrinsic floating-point dynamics merit greater attention. Neuronal threshold levels and reset modes critically determine spike count and timing. Hard reset cause information loss, while soft reset apply uniform treatment to neurons. To address these issues, we design an adaptive reset neuron that establishes relationships between inputs, outputs, and reset, while integrating a simple yet effective threshold adjustment strategy. Experimental results demonstrate that our method achieves excellent performance while maintaining lower energy consumption. In particular, it attains state-of-the-art accuracy on Tiny-ImageNet and CIFAR10-DVS. Codes are available at https://github.com/2ephyrus/AR-LIF.

Authors:Yue Zhu, Haiwen Diao, Shang Gao, Jiazuo Yu, Jiawen Zhu, Yunzhi Zhuge, Shuai Hao, Xu Jia, Lu Zhang, Ying Zhang, Huchuan Lu
Title: Regularizing Subspace Redundancy of Low-Rank Adaptation
Abstract:
Low-Rank Adaptation (LoRA) and its variants have delivered strong capability in Parameter-Efficient Transfer Learning (PETL) by minimizing trainable parameters and benefiting from reparameterization. However, their projection matrices remain unrestricted during training, causing high representation redundancy and diminishing the effectiveness of feature adaptation in the resulting subspaces. While existing methods mitigate this by manually adjusting the rank or implicitly applying channel-wise masks, they lack flexibility and generalize poorly across various datasets and architectures. Hence, we propose ReSoRA, a method that explicitly models redundancy between mapping subspaces and adaptively Regularizes Subspace redundancy of Low-Rank Adaptation. Specifically, it theoretically decomposes the low-rank submatrices into multiple equivalent subspaces and systematically applies de-redundancy constraints to the feature distributions across different projections. Extensive experiments validate that our proposed method consistently facilitates existing state-of-the-art PETL methods across various backbones and datasets in vision-language retrieval and standard visual classification benchmarks. Besides, as a training supervision, ReSoRA can be seamlessly integrated into existing approaches in a plug-and-play manner, with no additional inference costs. Code is publicly available at: https://github.com/Lucenova/ReSoRA.

Authors:Haowen Li, Zhenfeng Fan, Zhang Wen, Zhengzhou Zhu, Yunjin Li
Title: AIComposer: Any Style and Content Image Composition via Feature Integration
Abstract:
Image composition has advanced significantly with large-scale pre-trained T2I diffusion models. Despite progress in same-domain composition, cross-domain composition remains under-explored. The main challenges are the stochastic nature of diffusion models and the style gap between input images, leading to failures and artifacts. Additionally, heavy reliance on text prompts limits practical applications. This paper presents the first cross-domain image composition method that does not require text prompts, allowing natural stylization and seamless compositions. Our method is efficient and robust, preserving the diffusion prior, as it involves minor steps for backward inversion and forward denoising without training the diffuser. Our method also uses a simple multilayer perceptron network to integrate CLIP features from foreground and background, manipulating diffusion with a local cross-attention strategy. It effectively preserves foreground content while enabling stable stylization without a pre-stylization network. Finally, we create a benchmark dataset with diverse contents and styles for fair evaluation, addressing the lack of testing datasets for cross-domain image composition. Our method outperforms state-of-the-art techniques in both qualitative and quantitative evaluations, significantly improving the LPIPS score by 30.5% and the CSD metric by 18.1%. We believe our method will advance future research and applications. Code and benchmark at https://github.com/sherlhw/AIComposer.

Authors:Ao Li, Yuxiang Duan, Jinghui Zhang, Congbo Ma, Yutong Xie, Gustavo Carneiro, Mohammad Yaqub, Hu Wang
Title: TransPrune: Token Transition Pruning for Efficient Large Vision-Language Model
Abstract:
Large Vision-Language Models (LVLMs) have advanced multimodal learning but face high computational costs due to the large number of visual tokens, motivating token pruning to improve inference efficiency. The key challenge lies in identifying which tokens are truly important. Most existing approaches rely on attention-based criteria to estimate token importance. However, they inherently suffer from certain limitations, such as positional bias. In this work, we explore a new perspective on token importance based on token transitions in LVLMs. We observe that the transition of token representations provides a meaningful signal of semantic information. Based on this insight, we propose TransPrune, a training-free and efficient token pruning method. Specifically, TransPrune progressively prunes tokens by assessing their importance through a combination of Token Transition Variation (TTV)-which measures changes in both the magnitude and direction of token representations-and Instruction-Guided Attention (IGA), which measures how strongly the instruction attends to image tokens via attention. Extensive experiments demonstrate that TransPrune achieves comparable multimodal performance to original LVLMs, such as LLaVA-v1.5 and LLaVA-Next, across eight benchmarks, while reducing inference TFLOPs by more than half. Moreover, TTV alone can serve as an effective criterion without relying on attention, achieving performance comparable to attention-based methods. The code will be made publicly available upon acceptance of the paper at https://github.com/liaolea/TransPrune.

Authors:Zhixi Cai, Kartik Kuckreja, Shreya Ghosh, Akanksha Chuchra, Muhammad Haris Khan, Usman Tariq, Tom Gedeon, Abhinav Dhall
Title: AV-Deepfake1M++: A Large-Scale Audio-Visual Deepfake Benchmark with Real-World Perturbations
Abstract:
The rapid surge of text-to-speech and face-voice reenactment models makes video fabrication easier and highly realistic. To encounter this problem, we require datasets that rich in type of generation methods and perturbation strategy which is usually common for online videos. To this end, we propose AV-Deepfake1M++, an extension of the AV-Deepfake1M having 2 million video clips with diversified manipulation strategy and audio-visual perturbation. This paper includes the description of data generation strategies along with benchmarking of AV-Deepfake1M++ using state-of-the-art methods. We believe that this dataset will play a pivotal role in facilitating research in Deepfake domain. Based on this dataset, we host the 2025 1M-Deepfakes Detection Challenge. The challenge details, dataset and evaluation scripts are available online under a research-only license at https://deepfakes1m.github.io/2025.

Authors:Yanyin Guo, Runxuan An, Junwei Li, Zhiyuan Zhang
Title: LSFDNet: A Single-Stage Fusion and Detection Network for Ships Using SWIR and LWIR
Abstract:
Traditional ship detection methods primarily rely on single-modal approaches, such as visible or infrared images, which limit their application in complex scenarios involving varying lighting conditions and heavy fog. To address this issue, we explore the advantages of short-wave infrared (SWIR) and long-wave infrared (LWIR) in ship detection and propose a novel single-stage image fusion detection algorithm called LSFDNet. This algorithm leverages feature interaction between the image fusion and object detection subtask networks, achieving remarkable detection performance and generating visually impressive fused images. To further improve the saliency of objects in the fused images and improve the performance of the downstream detection task, we introduce the Multi-Level Cross-Fusion (MLCF) module. This module combines object-sensitive fused features from the detection task and aggregates features across multiple modalities, scales, and tasks to obtain more semantically rich fused features. Moreover, we utilize the position prior from the detection task in the Object Enhancement (OE) loss function, further increasing the retention of object semantics in the fused images. The detection task also utilizes preliminary fused features from the fusion task to complement SWIR and LWIR features, thereby enhancing detection performance. Additionally, we have established a Nearshore Ship Long-Short Wave Registration (NSLSR) dataset to train effective SWIR and LWIR image fusion and detection networks, bridging a gap in this field. We validated the superiority of our proposed single-stage fusion detection algorithm on two datasets. The source code and dataset are available at https://github.com/Yanyin-Guo/LSFDNet

Authors:Hyung Kyu Kim, Hak Gu Kim
Title: Learning Phonetic Context-Dependent Viseme for Enhancing Speech-Driven 3D Facial Animation
Abstract:
Speech-driven 3D facial animation aims to generate realistic facial movements synchronized with audio. Traditional methods primarily minimize reconstruction loss by aligning each frame with ground-truth. However, this frame-wise approach often fails to capture the continuity of facial motion, leading to jittery and unnatural outputs due to coarticulation. To address this, we propose a novel phonetic context-aware loss, which explicitly models the influence of phonetic context on viseme transitions. By incorporating a viseme coarticulation weight, we assign adaptive importance to facial movements based on their dynamic changes over time, ensuring smoother and perceptually consistent animations. Extensive experiments demonstrate that replacing the conventional reconstruction loss with ours improves both quantitative metrics and visual quality. It highlights the importance of explicitly modeling phonetic context-dependent visemes in synthesizing natural speech-driven 3D facial animation. Project page: https://cau-irislab.github.io/interspeech25/

Authors:Hyung Kyu Kim, Sangmin Lee, Hak Gu Kim
Title: MemoryTalker: Personalized Speech-Driven 3D Facial Animation via Audio-Guided Stylization
Abstract:
Speech-driven 3D facial animation aims to synthesize realistic facial motion sequences from given audio, matching the speaker's speaking style. However, previous works often require priors such as class labels of a speaker or additional 3D facial meshes at inference, which makes them fail to reflect the speaking style and limits their practical use. To address these issues, we propose MemoryTalker which enables realistic and accurate 3D facial motion synthesis by reflecting speaking style only with audio input to maximize usability in applications. Our framework consists of two training stages: 1-stage is storing and retrieving general motion (i.e., Memorizing), and 2-stage is to perform the personalized facial motion synthesis (i.e., Animating) with the motion memory stylized by the audio-driven speaking style feature. In this second stage, our model learns about which facial motion types should be emphasized for a particular piece of audio. As a result, our MemoryTalker can generate a reliable personalized facial animation without additional prior information. With quantitative and qualitative evaluations, as well as user study, we show the effectiveness of our model and its performance enhancement for personalized facial animation over state-of-the-art methods.

Authors:Chieh-Yun Chen, Min Shi, Gong Zhang, Humphrey Shi
Title: T2I-Copilot: A Training-Free Multi-Agent Text-to-Image System for Enhanced Prompt Interpretation and Interactive Generation
Abstract:
Text-to-Image (T2I) generative models have revolutionized content creation but remain highly sensitive to prompt phrasing, often requiring users to repeatedly refine prompts multiple times without clear feedback. While techniques such as automatic prompt engineering, controlled text embeddings, denoising, and multi-turn generation mitigate these issues, they offer limited controllability, or often necessitate additional training, restricting the generalization abilities. Thus, we introduce T2I-Copilot, a training-free multi-agent system that leverages collaboration between (Multimodal) Large Language Models to automate prompt phrasing, model selection, and iterative refinement. This approach significantly simplifies prompt engineering while enhancing generation quality and text-image alignment compared to direct generation. Specifically, T2I-Copilot consists of three agents: (1) Input Interpreter, which parses the input prompt, resolves ambiguities, and generates a standardized report; (2) Generation Engine, which selects the appropriate model from different types of T2I models and organizes visual and textual prompts to initiate generation; and (3) Quality Evaluator, which assesses aesthetic quality and text-image alignment, providing scores and feedback for potential regeneration. T2I-Copilot can operate fully autonomously while also supporting human-in-the-loop intervention for fine-grained control. On GenAI-Bench, using open-source generation models, T2I-Copilot achieves a VQA score comparable to commercial models RecraftV3 and Imagen 3, surpasses FLUX1.1-pro by 6.17% at only 16.59% of its cost, and outperforms FLUX.1-dev and SD 3.5 Large by 9.11% and 6.36%. Code will be released at: https://github.com/SHI-Labs/T2I-Copilot.

Authors:Risa Shinoda, Nakamasa Inoue, Hirokatsu Kataoka, Masaki Onishi, Yoshitaka Ushiku
Title: AgroBench: Vision-Language Model Benchmark in Agriculture
Abstract:
Precise automated understanding of agricultural tasks such as disease identification is essential for sustainable crop production. Recent advances in vision-language models (VLMs) are expected to further expand the range of agricultural tasks by facilitating human-model interaction through easy, text-based communication. Here, we introduce AgroBench (Agronomist AI Benchmark), a benchmark for evaluating VLM models across seven agricultural topics, covering key areas in agricultural engineering and relevant to real-world farming. Unlike recent agricultural VLM benchmarks, AgroBench is annotated by expert agronomists. Our AgroBench covers a state-of-the-art range of categories, including 203 crop categories and 682 disease categories, to thoroughly evaluate VLM capabilities. In our evaluation on AgroBench, we reveal that VLMs have room for improvement in fine-grained identification tasks. Notably, in weed identification, most open-source VLMs perform close to random. With our wide range of topics and expert-annotated categories, we analyze the types of errors made by VLMs and suggest potential pathways for future VLM development. Our dataset and code are available at https://dahlian00.github.io/AgroBenchPage/ .

Authors:Yili Li, Gang Xiong, Gaopeng Gou, Xiangyan Qu, Jiamin Zhuang, Zhen Li, Junzheng Shi
Title: T2VParser: Adaptive Decomposition Tokens for Partial Alignment in Text to Video Retrieval
Abstract:
Text-to-video retrieval essentially aims to train models to align visual content with textual descriptions accurately. Due to the impressive general multimodal knowledge demonstrated by image-text pretrained models such as CLIP, existing work has primarily focused on extending CLIP knowledge for video-text tasks. However, videos typically contain richer information than images. In current video-text datasets, textual descriptions can only reflect a portion of the video content, leading to partial misalignment in video-text matching. Therefore, directly aligning text representations with video representations can result in incorrect supervision, ignoring the inequivalence of information. In this work, we propose T2VParser to extract multiview semantic representations from text and video, achieving adaptive semantic alignment rather than aligning the entire representation. To extract corresponding representations from different modalities, we introduce Adaptive Decomposition Tokens, which consist of a set of learnable tokens shared across modalities. The goal of T2VParser is to emphasize precise alignment between text and video while retaining the knowledge of pretrained models. Experimental results demonstrate that T2VParser achieves accurate partial alignment through effective cross-modal content decomposition. The code is available at https://github.com/Lilidamowang/T2VParser.

Authors:Alexandru Brateanu, Raul Balmez, Ciprian Orhei, Codruta Ancuti, Cosmin Ancuti
Title: ModalFormer: Multimodal Transformer for Low-Light Image Enhancement
Abstract:
Low-light image enhancement (LLIE) is a fundamental yet challenging task due to the presence of noise, loss of detail, and poor contrast in images captured under insufficient lighting conditions. Recent methods often rely solely on pixel-level transformations of RGB images, neglecting the rich contextual information available from multiple visual modalities. In this paper, we present ModalFormer, the first large-scale multimodal framework for LLIE that fully exploits nine auxiliary modalities to achieve state-of-the-art performance. Our model comprises two main components: a Cross-modal Transformer (CM-T) designed to restore corrupted images while seamlessly integrating multimodal information, and multiple auxiliary subnetworks dedicated to multimodal feature reconstruction. Central to the CM-T is our novel Cross-modal Multi-headed Self-Attention mechanism (CM-MSA), which effectively fuses RGB data with modality-specific features--including deep feature embeddings, segmentation information, geometric cues, and color information--to generate information-rich hybrid attention maps. Extensive experiments on multiple benchmark datasets demonstrate ModalFormer's state-of-the-art performance in LLIE. Pre-trained models and results are made available at https://github.com/albrateanu/ModalFormer.

Authors:Peng Liu, Bianca Güttner, Yutong Su, Chenyang Li, Jinjing Xu, Mingyang Liu, Zhe Min, Andrey Zhylka, Jasper Smit, Karin Olthof, Matteo Fusaglia, Rudi Apolle, Matthias Miederer, Laura Frohneberger, Carina Riediger, Jügen Weitz, Fiona Kolbinger, Stefanie Speidel, Micha Pfeiffer
Title: PIVOTS: Aligning unseen Structures using Preoperative to Intraoperative Volume-To-Surface Registration for Liver Navigation
Abstract:
Non-rigid registration is essential for Augmented Reality guided laparoscopic liver surgery by fusing preoperative information, such as tumor location and vascular structures, into the limited intraoperative view, thereby enhancing surgical navigation. A prerequisite is the accurate prediction of intraoperative liver deformation which remains highly challenging due to factors such as large deformation caused by pneumoperitoneum, respiration and tool interaction as well as noisy intraoperative data, and limited field of view due to occlusion and constrained camera movement. To address these challenges, we introduce PIVOTS, a Preoperative to Intraoperative VOlume-To-Surface registration neural network that directly takes point clouds as input for deformation prediction. The geometric feature extraction encoder allows multi-resolution feature extraction, and the decoder, comprising novel deformation aware cross attention modules, enables pre- and intraoperative information interaction and accurate multi-level displacement prediction. We train the neural network on synthetic data simulated from a biomechanical simulation pipeline and validate its performance on both synthetic and real datasets. Results demonstrate superior registration performance of our method compared to baseline methods, exhibiting strong robustness against high amounts of noise, large deformation, and various levels of intraoperative visibility. We publish the training and test sets as evaluation benchmarks and call for a fair comparison of liver registration methods with volume-to-surface data. Code and datasets are available here https://github.com/pengliu-nct/PIVOTS.

Authors:Chenjian Gao, Lihe Ding, Rui Han, Zhanpeng Huang, Zibin Wang, Tianfan Xue
Title: From Gallery to Wrist: Realistic 3D Bracelet Insertion in Videos
Abstract:
Inserting 3D objects into videos is a longstanding challenge in computer graphics with applications in augmented reality, virtual try-on, and video composition. Achieving both temporal consistency, or realistic lighting remains difficult, particularly in dynamic scenarios with complex object motion, perspective changes, and varying illumination. While 2D diffusion models have shown promise for producing photorealistic edits, they often struggle with maintaining temporal coherence across frames. Conversely, traditional 3D rendering methods excel in spatial and temporal consistency but fall short in achieving photorealistic lighting. In this work, we propose a hybrid object insertion pipeline that combines the strengths of both paradigms. Specifically, we focus on inserting bracelets into dynamic wrist scenes, leveraging the high temporal consistency of 3D Gaussian Splatting (3DGS) for initial rendering and refining the results using a 2D diffusion-based enhancement model to ensure realistic lighting interactions. Our method introduces a shading-driven pipeline that separates intrinsic object properties (albedo, shading, reflectance) and refines both shading and sRGB images for photorealism. To maintain temporal coherence, we optimize the 3DGS model with multi-frame weighted adjustments. This is the first approach to synergize 3D rendering and 2D diffusion for video object insertion, offering a robust solution for realistic and consistent video editing. Project Page: https://cjeen.github.io/BraceletPaper/

Authors:Qiaosi Yi, Shuai Li, Rongyuan Wu, Lingchen Sun, Yuhui Wu, Lei Zhang
Title: Fine-structure Preserved Real-world Image Super-resolution via Transfer VAE Training
Abstract:
Impressive results on real-world image super-resolution (Real-ISR) have been achieved by employing pre-trained stable diffusion (SD) models. However, one critical issue of such methods lies in their poor reconstruction of image fine structures, such as small characters and textures, due to the aggressive resolution reduction of the VAE (eg., 8$\times$ downsampling) in the SD model. One solution is to employ a VAE with a lower downsampling rate for diffusion; however, adapting its latent features with the pre-trained UNet while mitigating the increased computational cost poses new challenges. To address these issues, we propose a Transfer VAE Training (TVT) strategy to transfer the 8$\times$ downsampled VAE into a 4$\times$ one while adapting to the pre-trained UNet. Specifically, we first train a 4$\times$ decoder based on the output features of the original VAE encoder, then train a 4$\times$ encoder while keeping the newly trained decoder fixed. Such a TVT strategy aligns the new encoder-decoder pair with the original VAE latent space while enhancing image fine details. Additionally, we introduce a compact VAE and compute-efficient UNet by optimizing their network architectures, reducing the computational cost while capturing high-resolution fine-scale features. Experimental results demonstrate that our TVT method significantly improves fine-structure preservation, which is often compromised by other SD-based methods, while requiring fewer FLOPs than state-of-the-art one-step diffusion models. The official code can be found at https://github.com/Joyies/TVT.

Authors:Dingkun Liu, Zhu Chen, Jingwei Luo, Shijie Lian, Dongrui Wu
Title: MIRepNet: A Pipeline and Foundation Model for EEG-Based Motor Imagery Classification
Abstract:
Brain-computer interfaces (BCIs) enable direct communication between the brain and external devices. Recent EEG foundation models aim to learn generalized representations across diverse BCI paradigms. However, these approaches overlook fundamental paradigm-specific neurophysiological distinctions, limiting their generalization ability. Importantly, in practical BCI deployments, the specific paradigm such as motor imagery (MI) for stroke rehabilitation or assistive robotics, is generally determined prior to data acquisition. This paper proposes MIRepNet, the first EEG foundation model tailored for the MI paradigm. MIRepNet comprises a high-quality EEG preprocessing pipeline incorporating a neurophysiologically-informed channel template, adaptable to EEG headsets with arbitrary electrode configurations. Furthermore, we introduce a hybrid pretraining strategy that combines self-supervised masked token reconstruction and supervised MI classification, facilitating rapid adaptation and accurate decoding on novel downstream MI tasks with fewer than 30 trials per class. Extensive evaluations across five public MI datasets demonstrated that MIRepNet consistently achieved state-of-the-art performance, significantly outperforming both specialized and generalized EEG models. Our code will be available on GitHub\footnote{https://github.com/staraink/MIRepNet}.

Authors:Risa Shinoda, Nakamasa Inoue, Iro Laina, Christian Rupprecht, Hirokatsu Kataoka
Title: AnimalClue: Recognizing Animals by their Traces
Abstract:
Wildlife observation plays an important role in biodiversity conservation, necessitating robust methodologies for monitoring wildlife populations and interspecies interactions. Recent advances in computer vision have significantly contributed to automating fundamental wildlife observation tasks, such as animal detection and species identification. However, accurately identifying species from indirect evidence like footprints and feces remains relatively underexplored, despite its importance in contributing to wildlife monitoring. To bridge this gap, we introduce AnimalClue, the first large-scale dataset for species identification from images of indirect evidence. Our dataset consists of 159,605 bounding boxes encompassing five categories of indirect clues: footprints, feces, eggs, bones, and feathers. It covers 968 species, 200 families, and 65 orders. Each image is annotated with species-level labels, bounding boxes or segmentation masks, and fine-grained trait information, including activity patterns and habitat preferences. Unlike existing datasets primarily focused on direct visual features (e.g., animal appearances), AnimalClue presents unique challenges for classification, detection, and instance segmentation tasks due to the need for recognizing more detailed and subtle visual features. In our experiments, we extensively evaluate representative vision models and identify key challenges in animal identification from their traces. Our dataset and code are available at https://dahlian00.github.io/AnimalCluePage/

Authors:Ruizi Yang, Xiaolu Liu, Junbo Chen, Jianke Zhu
Title: MambaMap: Online Vectorized HD Map Construction using State Space Model
Abstract:
High-definition (HD) maps are essential for autonomous driving, as they provide precise road information for downstream tasks. Recent advances highlight the potential of temporal modeling in addressing challenges like occlusions and extended perception range. However, existing methods either fail to fully exploit temporal information or incur substantial computational overhead in handling extended sequences. To tackle these challenges, we propose MambaMap, a novel framework that efficiently fuses long-range temporal features in the state space to construct online vectorized HD maps. Specifically, MambaMap incorporates a memory bank to store and utilize information from historical frames, dynamically updating BEV features and instance queries to improve robustness against noise and occlusions. Moreover, we introduce a gating mechanism in the state space, selectively integrating dependencies of map elements in high computational efficiency. In addition, we design innovative multi-directional and spatial-temporal scanning strategies to enhance feature extraction at both BEV and instance levels. These strategies significantly boost the prediction accuracy of our approach while ensuring robust temporal consistency. Extensive experiments on the nuScenes and Argoverse2 datasets demonstrate that our proposed MambaMap approach outperforms state-of-the-art methods across various splits and perception ranges. Source code will be available at https://github.com/ZiziAmy/MambaMap.

Authors:Bohong Chen, Yumeng Li, Youyi Zheng, Yao-Xiang Ding, Kun Zhou
Title: Motion-example-controlled Co-speech Gesture Generation Leveraging Large Language Models
Abstract:
The automatic generation of controllable co-speech gestures has recently gained growing attention. While existing systems typically achieve gesture control through predefined categorical labels or implicit pseudo-labels derived from motion examples, these approaches often compromise the rich details present in the original motion examples. We present MECo, a framework for motion-example-controlled co-speech gesture generation by leveraging large language models (LLMs). Our method capitalizes on LLMs' comprehension capabilities through fine-tuning to simultaneously interpret speech audio and motion examples, enabling the synthesis of gestures that preserve example-specific characteristics while maintaining speech congruence. Departing from conventional pseudo-labeling paradigms, we position motion examples as explicit query contexts within the prompt structure to guide gesture generation. Experimental results demonstrate state-of-the-art performance across three metrics: Fréchet Gesture Distance (FGD), motion diversity, and example-gesture similarity. Furthermore, our framework enables granular control of individual body parts and accommodates diverse input modalities including motion clips, static poses, human video sequences, and textual descriptions. Our code, pre-trained models, and videos are available at https://robinwitch.github.io/MECo-Page.

Authors:Kele Shao, Keda Tao, Kejia Zhang, Sicheng Feng, Mu Cai, Yuzhang Shang, Haoxuan You, Can Qin, Yang Sui, Huan Wang
Title: When Tokens Talk Too Much: A Survey of Multimodal Long-Context Token Compression across Images, Videos, and Audios
Abstract:
Multimodal large language models (MLLMs) have made remarkable strides, largely driven by their ability to process increasingly long and complex contexts, such as high-resolution images, extended video sequences, and lengthy audio input. While this ability significantly enhances MLLM capabilities, it introduces substantial computational challenges, primarily due to the quadratic complexity of self-attention mechanisms with numerous input tokens. To mitigate these bottlenecks, token compression has emerged as an auspicious and critical approach, efficiently reducing the number of tokens during both training and inference. In this paper, we present the first systematic survey and synthesis of the burgeoning field of multimodal long context token compression. Recognizing that effective compression strategies are deeply tied to the unique characteristics and redundancies of each modality, we categorize existing approaches by their primary data focus, enabling researchers to quickly access and learn methods tailored to their specific area of interest: (1) image-centric compression, which addresses spatial redundancy in visual data; (2) video-centric compression, which tackles spatio-temporal redundancy in dynamic sequences; and (3) audio-centric compression, which handles temporal and spectral redundancy in acoustic signals. Beyond this modality-driven categorization, we further dissect methods based on their underlying mechanisms, including transformation-based, similarity-based, attention-based, and query-based approaches. By providing a comprehensive and structured overview, this survey aims to consolidate current progress, identify key challenges, and inspire future research directions in this rapidly evolving domain. We also maintain a public repository to continuously track and update the latest advances in this promising area.

Authors:Li Jinfu, Song Hong, Xia Jianghan, Lin Yucong, Wang Ting, Shao Long, Fan Jingfan, Yang Jian
Title: MoCTEFuse: Illumination-Gated Mixture of Chiral Transformer Experts for Multi-Level Infrared and Visible Image Fusion
Abstract:
While illumination changes inevitably affect the quality of infrared and visible image fusion, many outstanding methods still ignore this factor and directly merge the information from source images, leading to modality bias in the fused results. To this end, we propose a dynamic multi-level image fusion network called MoCTEFuse, which applies an illumination-gated Mixture of Chiral Transformer Experts (MoCTE) to adaptively preserve texture details and object contrasts in balance. MoCTE consists of high- and low-illumination expert subnetworks, each built upon the Chiral Transformer Fusion Block (CTFB). Guided by the illumination gating signals, CTFB dynamically switches between the primary and auxiliary modalities as well as assigning them corresponding weights with its asymmetric cross-attention mechanism. Meanwhile, it is stacked at multiple stages to progressively aggregate and refine modality-specific and cross-modality information. To facilitate robust training, we propose a competitive loss function that integrates illumination distributions with three levels of sub-loss terms. Extensive experiments conducted on the DroneVehicle, MSRS, TNO and RoadScene datasets show MoCTEFuse's superior fusion performance. Finally, it achieves the best detection mean Average Precision (mAP) of 70.93% on the MFNet dataset and 45.14% on the DroneVehicle dataset. The code and model are released at https://github.com/Bitlijinfu/MoCTEFuse.

Authors:Yaozong Zheng, Bineng Zhong, Qihua Liang, Shengping Zhang, Guorong Li, Xianxian Li, Rongrong Ji
Title: Towards Universal Modal Tracking with Online Dense Temporal Token Learning
Abstract:
We propose a universal video-level modality-awareness tracking model with online dense temporal token learning (called {\modaltracker}). It is designed to support various tracking tasks, including RGB, RGB+Thermal, RGB+Depth, and RGB+Event, utilizing the same model architecture and parameters. Specifically, our model is designed with three core goals: \textbf{Video-level Sampling}. We expand the model's inputs to a video sequence level, aiming to see a richer video context from an near-global perspective. \textbf{Video-level Association}. Furthermore, we introduce two simple yet effective online dense temporal token association mechanisms to propagate the appearance and motion trajectory information of target via a video stream manner. \textbf{Modality Scalable}. We propose two novel gated perceivers that adaptively learn cross-modal representations via a gated attention mechanism, and subsequently compress them into the same set of model parameters via a one-shot training manner for multi-task inference. This new solution brings the following benefits: (i) The purified token sequences can serve as temporal prompts for the inference in the next video frames, whereby previous information is leveraged to guide future inference. (ii) Unlike multi-modal trackers that require independent training, our one-shot training scheme not only alleviates the training burden, but also improves model representation. Extensive experiments on visible and multi-modal benchmarks show that our {\modaltracker} achieves a new \textit{SOTA} performance. The code will be available at https://github.com/GXNU-ZhongLab/ODTrack.

Authors:Fei Kong, Jinhao Duan, Kaidi Xu, Zhenhua Guo, Xiaofeng Zhu, Xiaoshuang Shi
Title: LRR-Bench: Left, Right or Rotate? Vision-Language models Still Struggle With Spatial Understanding Tasks
Abstract:
Real-world applications, such as autonomous driving and humanoid robot manipulation, require precise spatial perception. However, it remains underexplored how Vision-Language Models (VLMs) recognize spatial relationships and perceive spatial movement. In this work, we introduce a spatial evaluation pipeline and construct a corresponding benchmark. Specifically, we categorize spatial understanding into two main types: absolute spatial understanding, which involves querying the absolute spatial position (e.g., left, right) of an object within an image, and 3D spatial understanding, which includes movement and rotation. Notably, our dataset is entirely synthetic, enabling the generation of test samples at a low cost while also preventing dataset contamination. We conduct experiments on multiple state-of-the-art VLMs and observe that there is significant room for improvement in their spatial understanding abilities. Explicitly, in our experiments, humans achieve near-perfect performance on all tasks, whereas current VLMs attain human-level performance only on the two simplest tasks. For the remaining tasks, the performance of VLMs is distinctly lower than that of humans. In fact, the best-performing Vision-Language Models even achieve near-zero scores on multiple tasks. The dataset and code are available on https://github.com/kong13661/LRR-Bench.

Authors:Zeyu Xi, Haoying Sun, Yaofei Wu, Junchi Yan, Haoran Zhang, Lifang Wu, Liang Wang, Changwen Chen
Title: Player-Centric Multimodal Prompt Generation for Large Language Model Based Identity-Aware Basketball Video Captioning
Abstract:
Existing sports video captioning methods often focus on the action yet overlook player identities, limiting their applicability. Although some methods integrate extra information to generate identity-aware descriptions, the player identities are sometimes incorrect because the extra information is independent of the video content. This paper proposes a player-centric multimodal prompt generation network for identity-aware sports video captioning (LLM-IAVC), which focuses on recognizing player identities from a visual perspective. Specifically, an identity-related information extraction module (IRIEM) is designed to extract player-related multimodal embeddings. IRIEM includes a player identification network (PIN) for extracting visual features and player names, and a bidirectional semantic interaction module (BSIM) to link player features with video content for mutual enhancement. Additionally, a visual context learning module (VCLM) is designed to capture the key video context information. Finally, by integrating the outputs of the above modules as the multimodal prompt for the large language model (LLM), it facilitates the generation of descriptions with player identities. To support this work, we construct a new benchmark called NBA-Identity, a large identity-aware basketball video captioning dataset with 9,726 videos covering 9 major event types. The experimental results on NBA-Identity and VC-NBA-2022 demonstrate that our proposed model achieves advanced performance. Code and dataset are publicly available at https://github.com/Zeyu1226-mt/LLM-IAVC.

Authors:Yuhong Zhang, Liyao Wang, Han Wang, Danni Wu, Zuzeng Lin, Feng Wang, Li Song
Title: AnimeColor: Reference-based Animation Colorization with Diffusion Transformers
Abstract:
Animation colorization plays a vital role in animation production, yet existing methods struggle to achieve color accuracy and temporal consistency. To address these challenges, we propose \textbf{AnimeColor}, a novel reference-based animation colorization framework leveraging Diffusion Transformers (DiT). Our approach integrates sketch sequences into a DiT-based video diffusion model, enabling sketch-controlled animation generation. We introduce two key components: a High-level Color Extractor (HCE) to capture semantic color information and a Low-level Color Guider (LCG) to extract fine-grained color details from reference images. These components work synergistically to guide the video diffusion process. Additionally, we employ a multi-stage training strategy to maximize the utilization of reference image color information. Extensive experiments demonstrate that AnimeColor outperforms existing methods in color accuracy, sketch alignment, temporal consistency, and visual quality. Our framework not only advances the state of the art in animation colorization but also provides a practical solution for industrial applications. The code will be made publicly available at \href{https://github.com/IamCreateAI/AnimeColor}{https://github.com/IamCreateAI/AnimeColor}.

Authors:Daulet Toibazar, Kesen Wang, Sherif Mohamed, Abdulaziz Al-Badawi, Abdulrahman Alfulayt, Pedro J. Moreno
Title: Trust the Model: Compact VLMs as In-Context Judges for Image-Text Data Quality
Abstract:
Vision-language models (VLMs) extend the conventional large language models by integrating visual data, enabling richer multimodal reasoning and significantly broadens the practical applications of AI. However, including visual inputs also brings new challenges in maintaining data quality. Empirical evidence consistently shows that carefully curated and representative training examples often yield superior results compared to simply increasing the quantity of data. Inspired by this observation, we introduce a streamlined data filtration framework that employs a compact VLM, fine-tuned on a high-quality image-caption annotated dataset. This model effectively evaluates and filters potential training samples based on caption and image quality and alignment. Unlike previous approaches, which typically add auxiliary filtration modules on top of existing full-scale VLMs, our method exclusively utilizes the inherent evaluative capability of a purpose-built small VLM. This strategy eliminates the need for extra modules and reduces training overhead. Our lightweight model efficiently filters out inaccurate, noisy web data, improving image-text alignment and caption linguistic fluency. Experimental results show that datasets underwent high-precision filtration using our compact VLM perform on par with, or even surpass, larger and noisier datasets gathered through high-volume web crawling. Thus, our method provides a lightweight yet robust solution for building high-quality vision-language training corpora. \\ \textbf{Availability and implementation:} Our compact VLM filtration model, training data, utility scripts, and Supplementary data (Appendices) are freely available at https://github.com/daulettoibazar/Compact_VLM_Filter.

Authors:Jingxi Liao, Shijie Hao, Richang Hong, Meng Wang
Title: GT-Mean Loss: A Simple Yet Effective Solution for Brightness Mismatch in Low-Light Image Enhancement
Abstract:
Low-light image enhancement (LLIE) aims to improve the visual quality of images captured under poor lighting conditions. In supervised LLIE research, there exists a significant yet often overlooked inconsistency between the overall brightness of an enhanced image and its ground truth counterpart, referred to as brightness mismatch in this study. Brightness mismatch negatively impact supervised LLIE models by misleading model training. However, this issue is largely neglected in current research. In this context, we propose the GT-mean loss, a simple yet effective loss function directly modeling the mean values of images from a probabilistic perspective. The GT-mean loss is flexible, as it extends existing supervised LLIE loss functions into the GT-mean form with minimal additional computational costs. Extensive experiments demonstrate that the incorporation of the GT-mean loss results in consistent performance improvements across various methods and datasets.

Authors:Shizuka Akahori, Shotaro Teruya, Pragyan Shrestha, Yuichi Yoshii, Satoshi Iizuka, Akira Ikumi, Hiromitsu Tsuge, Itaru Kitahara
Title: Detection of Medial Epicondyle Avulsion in Elbow Ultrasound Images via Bone Structure Reconstruction
Abstract:
This study proposes a reconstruction-based framework for detecting medial epicondyle avulsion in elbow ultrasound images, trained exclusively on normal cases. Medial epicondyle avulsion, commonly observed in baseball players, involves bone detachment and deformity, often appearing as discontinuities in bone contour. Therefore, learning the structure and continuity of normal bone is essential for detecting such abnormalities. To achieve this, we propose a masked autoencoder-based, structure-aware reconstruction framework that learns the continuity of normal bone structures. Even in the presence of avulsion, the model attempts to reconstruct the normal structure, resulting in large reconstruction errors at the avulsion site. For evaluation, we constructed a novel dataset comprising normal and avulsion ultrasound images from 16 baseball players, with pixel-level annotations under orthopedic supervision. Our method outperformed existing approaches, achieving a pixel-wise AUC of 0.965 and an image-wise AUC of 0.967. The dataset is publicly available at: https://github.com/Akahori000/Ultrasound-Medial-Epicondyle-Avulsion-Dataset.

Authors:Haoyue Li, Di Wu
Title: Hybrid-Domain Synergistic Transformer for Hyperspectral Image Denoising
Abstract:
Hyperspectral image denoising faces the challenge of multi-dimensional coupling of spatially non-uniform noise and spectral correlation interference. Existing deep learning methods mostly focus on RGB images and struggle to effectively handle the unique spatial-spectral characteristics and complex noise distributions of hyperspectral images (HSI). This paper proposes an HSI denoising framework, Hybrid-Domain Synergistic Transformer Network (HDST), based on frequency domain enhancement and multiscale modeling, achieving three-dimensional collaborative processing of spatial, frequency and channel domains. The method innovatively integrates three key mechanisms: (1) introducing an FFT preprocessing module with multi-band convolution to extract cross-band correlations and decouple spectral noise components; (2) designing a dynamic cross-domain attention module that adaptively fuses spatial domain texture features and frequency domain noise priors through a learnable gating mechanism; (3) building a hierarchical architecture where shallow layers capture global noise statistics using multiscale atrous convolution, and deep layers achieve detail recovery through frequency domain postprocessing. Experiments on both real and synthetic datasets demonstrate that HDST significantly improves denoising performance while maintaining computational efficiency, validating the effectiveness of the proposed method. This research provides new insights and a universal framework for addressing complex noise coupling issues in HSI and other high-dimensional visual data. The code is available at https://github.com/lhy-cn/HDST-HSIDenoise.

Authors:Shibang Liu, Xuemei Xie, Guangming Shi
Title: KB-DMGen: Knowledge-Based Global Guidance and Dynamic Pose Masking for Human Image Generation
Abstract:
Recent methods using diffusion models have made significant progress in Human Image Generation (HIG) with various control signals such as pose priors. In HIG, both accurate human poses and coherent visual quality are crucial for image generation. However, most existing methods mainly focus on pose accuracy while neglecting overall image quality, often improving pose alignment at the cost of image quality. To address this, we propose Knowledge-Based Global Guidance and Dynamic pose Masking for human image Generation (KB-DMGen). The Knowledge Base (KB), implemented as a visual codebook, provides coarse, global guidance based on input text-related visual features, improving pose accuracy while maintaining image quality, while the Dynamic pose Mask (DM) offers fine-grained local control to enhance precise pose accuracy. By injecting KB and DM at different stages of the diffusion process, our framework enhances pose accuracy through both global and local control without compromising image quality. Experiments demonstrate the effectiveness of KB-DMGen, achieving new state-of-the-art results in terms of AP and CAP on the HumanArt dataset. The project page and code are available at https://lushbng.github.io/KBDMGen.

Authors:Yin Xie, Kaicheng Yang, Xiang An, Kun Wu, Yongle Zhao, Weimo Deng, Zimin Ran, Yumeng Wang, Ziyong Feng, Roy Miles, Ismail Elezi, Jiankang Deng
Title: Region-based Cluster Discrimination for Visual Representation Learning
Abstract:
Learning visual representations is foundational for a broad spectrum of downstream tasks. Although recent vision-language contrastive models, such as CLIP and SigLIP, have achieved impressive zero-shot performance via large-scale vision-language alignment, their reliance on global representations constrains their effectiveness for dense prediction tasks, such as grounding, OCR, and segmentation. To address this gap, we introduce Region-Aware Cluster Discrimination (RICE), a novel method that enhances region-level visual and OCR capabilities. We first construct a billion-scale candidate region dataset and propose a Region Transformer layer to extract rich regional semantics. We further design a unified region cluster discrimination loss that jointly supports object and OCR learning within a single classification framework, enabling efficient and scalable distributed training on large-scale data. Extensive experiments show that RICE consistently outperforms previous methods on tasks, including segmentation, dense detection, and visual perception for Multimodal Large Language Models (MLLMs). The pre-trained models have been released at https://github.com/deepglint/MVT.

Authors:Lehan Wang, Hualiang Wang, Chubin Ou, Lushi Chen, Yunyi Liang, Xiaomeng Li
Title: VAMPIRE: Uncovering Vessel Directional and Morphological Information from OCTA Images for Cardiovascular Disease Risk Factor Prediction
Abstract:
Cardiovascular disease (CVD) remains the leading cause of death worldwide, requiring urgent development of effective risk assessment methods for timely intervention. While current research has introduced non-invasive and efficient approaches to predict CVD risk from retinal imaging with deep learning models, the commonly used fundus photographs and Optical Coherence Tomography (OCT) fail to capture detailed vascular features critical for CVD assessment compared with OCT angiography (OCTA) images. Moreover, existing methods typically classify CVD risk only as high or low, without providing a deeper analysis on CVD-related blood factor conditions, thus limiting prediction accuracy and clinical utility. As a result, we propose a novel multi-purpose paradigm of CVD risk assessment that jointly performs CVD risk and CVD-related condition prediction, aligning with clinical experiences. Based on this core idea, we introduce OCTA-CVD, the first OCTA dataset for CVD risk assessment, and a Vessel-Aware Mamba-based Prediction model with Informative Enhancement (VAMPIRE) based on OCTA enface images. Our proposed model aims to extract crucial vascular characteristics through two key components: (1) a Mamba-Based Directional (MBD) Module that captures fine-grained vascular trajectory features and (2) an Information-Enhanced Morphological (IEM) Module that incorporates comprehensive vessel morphology knowledge. Experimental results demonstrate that our method can surpass standard classification backbones, OCTA-based detection methods, and ophthalmologic foundation models. Our codes and the collected OCTA-CVD dataset are available at https://github.com/xmed-lab/VAMPIRE.

Authors:Hao-Yu Hou, Chun-Yi Lee, Motoharu Sonogashira, Yasutomo Kawanishi
Title: FROSS: Faster-than-Real-Time Online 3D Semantic Scene Graph Generation from RGB-D Images
Abstract:
The ability to abstract complex 3D environments into simplified and structured representations is crucial across various domains. 3D semantic scene graphs (SSGs) achieve this by representing objects as nodes and their interrelationships as edges, facilitating high-level scene understanding. Existing methods for 3D SSG generation, however, face significant challenges, including high computational demands and non-incremental processing that hinder their suitability for real-time open-world applications. To address this issue, we propose FROSS (Faster-than-Real-Time Online 3D Semantic Scene Graph Generation), an innovative approach for online and faster-than-real-time 3D SSG generation that leverages the direct lifting of 2D scene graphs to 3D space and represents objects as 3D Gaussian distributions. This framework eliminates the dependency on precise and computationally-intensive point cloud processing. Furthermore, we extend the Replica dataset with inter-object relationship annotations, creating the ReplicaSSG dataset for comprehensive evaluation of FROSS. The experimental results from evaluations on ReplicaSSG and 3DSSG datasets show that FROSS can achieve superior performance while operating significantly faster than prior 3D SSG generation methods. Our implementation and dataset are publicly available at https://github.com/Howardkhh/FROSS.

Authors:Mizanur Rahman, Md Tahmid Rahman Laskar, Shafiq Joty, Enamul Hoque
Title: Text2Vis: A Challenging and Diverse Benchmark for Generating Multimodal Visualizations from Text
Abstract:
Automated data visualization plays a crucial role in simplifying data interpretation, enhancing decision-making, and improving efficiency. While large language models (LLMs) have shown promise in generating visualizations from natural language, the absence of comprehensive benchmarks limits the rigorous evaluation of their capabilities. We introduce Text2Vis, a benchmark designed to assess text-to-visualization models, covering 20+ chart types and diverse data science queries, including trend analysis, correlation, outlier detection, and predictive analytics. It comprises 1,985 samples, each with a data table, natural language query, short answer, visualization code, and annotated charts. The queries involve complex reasoning, conversational turns, and dynamic data retrieval. We benchmark 11 open-source and closed-source models, revealing significant performance gaps, highlighting key challenges, and offering insights for future advancements. To close this gap, we propose the first cross-modal actor-critic agentic framework that jointly refines the textual answer and visualization code, increasing GPT-4o`s pass rate from 26% to 42% over the direct approach and improving chart quality. We also introduce an automated LLM-based evaluation framework that enables scalable assessment across thousands of samples without human annotation, measuring answer correctness, code execution success, visualization readability, and chart accuracy. We release Text2Vis at https://github.com/vis-nlp/Text2Vis.

Authors:Cesar Kadir Torrico Villanueva, Jiaxin Cindy Tu, Mihir Tripathy, Connor Lane, Rishab Iyer, Paul S. Scotti
Title: Predicting Brain Responses To Natural Movies With Multimodal LLMs
Abstract:
We present MedARC's team solution to the Algonauts 2025 challenge. Our pipeline leveraged rich multimodal representations from various state-of-the-art pretrained models across video (V-JEPA2), speech (Whisper), text (Llama 3.2), vision-text (InternVL3), and vision-text-audio (Qwen2.5-Omni). These features extracted from the models were linearly projected to a latent space, temporally aligned to the fMRI time series, and finally mapped to cortical parcels through a lightweight encoder comprising a shared group head plus subject-specific residual heads. We trained hundreds of model variants across hyperparameter settings, validated them on held-out movies and assembled ensembles targeted to each parcel in each subject. Our final submission achieved a mean Pearson's correlation of 0.2085 on the test split of withheld out-of-distribution movies, placing our team in fourth place for the competition. We further discuss a last-minute optimization that would have raised us to second place. Our results highlight how combining features from models trained in different modalities, using a simple architecture consisting of shared-subject and single-subject components, and conducting comprehensive model selection and ensembling improves generalization of encoding models to novel movie stimuli. All code is available on GitHub.

Authors:Chengyu Zheng, Jin Huang, Honghua Chen, Mingqiang Wei
Title: RARE: Refine Any Registration of Pairwise Point Clouds via Zero-Shot Learning
Abstract:
Recent research leveraging large-scale pretrained diffusion models has demonstrated the potential of using diffusion features to establish semantic correspondences in images. Inspired by advancements in diffusion-based techniques, we propose a novel zero-shot method for refining point cloud registration algorithms. Our approach leverages correspondences derived from depth images to enhance point feature representations, eliminating the need for a dedicated training dataset. Specifically, we first project the point cloud into depth maps from multiple perspectives and extract implicit knowledge from a pretrained diffusion network as depth diffusion features. These features are then integrated with geometric features obtained from existing methods to establish more accurate correspondences between point clouds. By leveraging these refined correspondences, our approach achieves significantly improved registration accuracy. Extensive experiments demonstrate that our method not only enhances the performance of existing point cloud registration techniques but also exhibits robust generalization capabilities across diverse datasets. Codes are available at https://github.com/zhengcy-lambo/RARE.git.

Authors:Qingqing Fang, Wenxi Lv, Qinliang Su
Title: AF-CLIP: Zero-Shot Anomaly Detection via Anomaly-Focused CLIP Adaptation
Abstract:
Visual anomaly detection has been widely used in industrial inspection and medical diagnosis. Existing methods typically demand substantial training samples, limiting their utility in zero-/few-shot scenarios. While recent efforts have leveraged CLIP's zero-shot recognition capability for this task, they often ignore optimizing visual features to focus on local anomalies, reducing their efficacy. In this work, we propose AF-CLIP (Anomaly-Focused CLIP) by dramatically enhancing its visual representations to focus on local defects. Our approach introduces a lightweight adapter that emphasizes anomaly-relevant patterns in visual features, simultaneously optimizing both class-level features for image classification and patch-level features for precise localization. To capture anomalies of different sizes and improve detection accuracy, prior to the adapter, we develop a multi-scale spatial aggregation mechanism to effectively consolidate neighborhood context. Complementing these visual enhancements, we design learnable textual prompts that generically characterize normal and abnormal states. After optimization on auxiliary datasets using a composite objective function, AF-CLIP demonstrates strong zero-shot detection capability. Our method is also extended to few-shot scenarios by extra memory banks. Experimental results across diverse industrial and medical datasets demonstrate the effectiveness and generalization of our proposed method. Code is available at https://github.com/Faustinaqq/AF-CLIP.

Authors:Qing Xu, Yanming Chen, Yue Li, Ziyu Liu, Zhenye Lou, Yixuan Zhang, Xiangjian He
Title: MambaVesselNet++: A Hybrid CNN-Mamba Architecture for Medical Image Segmentation
Abstract:
Medical image segmentation plays an important role in computer-aided diagnosis. Traditional convolution-based U-shape segmentation architectures are usually limited by the local receptive field. Existing vision transformers have been widely applied to diverse medical segmentation frameworks due to their superior capabilities of capturing global contexts. Despite the advantage, the real-world application of vision transformers is challenged by their non-linear self-attention mechanism, requiring huge computational costs. To address this issue, the selective state space model (SSM) Mamba has gained recognition for its adeptness in modeling long-range dependencies in sequential data, particularly noted for its efficient memory costs. In this paper, we propose MambaVesselNet++, a Hybrid CNN-Mamba framework for medical image segmentation. Our MambaVesselNet++ is comprised of a hybrid image encoder (Hi-Encoder) and a bifocal fusion decoder (BF-Decoder). In Hi-Encoder, we first devise the texture-aware layer to capture low-level semantic features by leveraging convolutions. Then, we utilize Mamba to effectively model long-range dependencies with linear complexity. The Bi-Decoder adopts skip connections to combine local and global information of the Hi-Encoder for the accurate generation of segmentation masks. Extensive experiments demonstrate that MambaVesselNet++ outperforms current convolution-based, transformer-based, and Mamba-based state-of-the-arts across diverse medical 2D, 3D, and instance segmentation tasks. The code is available at https://github.com/CC0117/MambaVesselNet.

Authors:Chang Liu, Yunfan Ye, Fan Zhang, Qingyang Zhou, Yuchuan Luo, Zhiping Cai
Title: HumanSAM: Classifying Human-centric Forgery Videos in Human Spatial, Appearance, and Motion Anomaly
Abstract:
Numerous synthesized videos from generative models, especially human-centric ones that simulate realistic human actions, pose significant threats to human information security and authenticity. While progress has been made in binary forgery video detection, the lack of fine-grained understanding of forgery types raises concerns regarding both reliability and interpretability, which are critical for real-world applications. To address this limitation, we propose HumanSAM, a new framework that builds upon the fundamental challenges of video generation models. Specifically, HumanSAM aims to classify human-centric forgeries into three distinct types of artifacts commonly observed in generated content: spatial, appearance, and motion anomaly. To better capture the features of geometry, semantics and spatiotemporal consistency, we propose to generate the human forgery representation by fusing two branches of video understanding and spatial depth. We also adopt a rank-based confidence enhancement strategy during the training process to learn more robust representation by introducing three prior scores. For training and evaluation, we construct the first public benchmark, the Human-centric Forgery Video (HFV) dataset, with all types of forgeries carefully annotated semi-automatically. In our experiments, HumanSAM yields promising results in comparison with state-of-the-art methods, both in binary and multi-class forgery classification.

Authors:Drandreb Earl O. Juanico, Rowel O. Atienza, Jeffrey Kenneth Go
Title: Interpretable Open-Vocabulary Referring Object Detection with Reverse Contrast Attention
Abstract:
We propose Reverse Contrast Attention (RCA), a plug-in method that enhances object localization in vision-language transformers without retraining. RCA reweights final-layer attention by suppressing extremes and amplifying mid-level activations to let semantically relevant but subdued tokens guide predictions. We evaluate it on Open Vocabulary Referring Object Detection (OV-RefOD), introducing FitAP, a confidence-free average precision metric based on IoU and box area. RCA improves FitAP in 11 out of 15 open-source VLMs, with gains up to $+26.6\%$. Effectiveness aligns with attention sharpness and fusion timing; while late-fusion models benefit consistently, models like $\texttt{DeepSeek-VL2}$ also improve, pointing to capacity and disentanglement as key factors. RCA offers both interpretability and performance gains for multimodal transformers. Codes and dataset are available from https://github.com/earl-juanico/rca

Authors:X. Feng, S. Hu, X. Li, D. Zhang, M. Wu, J. Zhang, X. Chen, K. Huang
Title: ATCTrack: Aligning Target-Context Cues with Dynamic Target States for Robust Vision-Language Tracking
Abstract:
Vision-language tracking aims to locate the target object in the video sequence using a template patch and a language description provided in the initial frame. To achieve robust tracking, especially in complex long-term scenarios that reflect real-world conditions as recently highlighted by MGIT, it is essential not only to characterize the target features but also to utilize the context features related to the target. However, the visual and textual target-context cues derived from the initial prompts generally align only with the initial target state. Due to their dynamic nature, target states are constantly changing, particularly in complex long-term sequences. It is intractable for these cues to continuously guide Vision-Language Trackers (VLTs). Furthermore, for the text prompts with diverse expressions, our experiments reveal that existing VLTs struggle to discern which words pertain to the target or the context, complicating the utilization of textual cues. In this work, we present a novel tracker named ATCTrack, which can obtain multimodal cues Aligned with the dynamic target states through comprehensive Target-Context feature modeling, thereby achieving robust tracking. Specifically, (1) for the visual modality, we propose an effective temporal visual target-context modeling approach that provides the tracker with timely visual cues. (2) For the textual modality, we achieve precise target words identification solely based on textual content, and design an innovative context words calibration method to adaptively utilize auxiliary context words. (3) We conduct extensive experiments on mainstream benchmarks and ATCTrack achieves a new SOTA performance. The code and models will be released at: https://github.com/XiaokunFeng/ATCTrack.

Authors:Wenjie Zhu, Yabin Zhang, Xin Jin, Wenjun Zeng, Lei Zhang
Title: Knowledge Regularized Negative Feature Tuning of Vision-Language Models for Out-of-Distribution Detection
Abstract:
Out-of-distribution (OOD) detection is crucial for building reliable machine learning models. Although negative prompt tuning has enhanced the OOD detection capabilities of vision-language models, these tuned models often suffer from reduced generalization performance on unseen classes and styles. To address this challenge, we propose a novel method called Knowledge Regularized Negative Feature Tuning (KR-NFT), which integrates an innovative adaptation architecture termed Negative Feature Tuning (NFT) and a corresponding knowledge-regularization (KR) optimization strategy. Specifically, NFT applies distribution-aware transformations to pre-trained text features, effectively separating positive and negative features into distinct spaces. This separation maximizes the distinction between in-distribution (ID) and OOD images. Additionally, we introduce image-conditional learnable factors through a lightweight meta-network, enabling dynamic adaptation to individual images and mitigating sensitivity to class and style shifts. Compared to traditional negative prompt tuning, NFT demonstrates superior efficiency and scalability. To optimize this adaptation architecture, the KR optimization strategy is designed to enhance the discrimination between ID and OOD sets while mitigating pre-trained knowledge forgetting. This enhances OOD detection performance on trained ID classes while simultaneously improving OOD detection on unseen ID datasets. Notably, when trained with few-shot samples from ImageNet dataset, KR-NFT not only improves ID classification accuracy and OOD detection but also significantly reduces the FPR95 by 5.44\% under an unexplored generalization setting with unseen ID categories. Codes can be found at \href{https://github.com/ZhuWenjie98/KRNFT}.

Authors:Yuze Wang, Yue Qi
Title: Taking Language Embedded 3D Gaussian Splatting into the Wild
Abstract:
Recent advances in leveraging large-scale Internet photo collections for 3D reconstruction have enabled immersive virtual exploration of landmarks and historic sites worldwide. However, little attention has been given to the immersive understanding of architectural styles and structural knowledge, which remains largely confined to browsing static text-image pairs. Therefore, can we draw inspiration from 3D in-the-wild reconstruction techniques and use unconstrained photo collections to create an immersive approach for understanding the 3D structure of architectural components? To this end, we extend language embedded 3D Gaussian splatting (3DGS) and propose a novel framework for open-vocabulary scene understanding from unconstrained photo collections. Specifically, we first render multiple appearance images from the same viewpoint as the unconstrained image with the reconstructed radiance field, then extract multi-appearance CLIP features and two types of language feature uncertainty maps-transient and appearance uncertainty-derived from the multi-appearance features to guide the subsequent optimization process. Next, we propose a transient uncertainty-aware autoencoder, a multi-appearance language field 3DGS representation, and a post-ensemble strategy to effectively compress, learn, and fuse language features from multiple appearances. Finally, to quantitatively evaluate our method, we introduce PT-OVS, a new benchmark dataset for assessing open-vocabulary segmentation performance on unconstrained photo collections. Experimental results show that our method outperforms existing methods, delivering accurate open-vocabulary segmentation and enabling applications such as interactive roaming with open-vocabulary queries, architectural style pattern recognition, and 3D scene editing.

Authors:Yanrui Yu, Tianfei Zhou, Jiaxin Sun, Lianpeng Qiao, Lizhong Ding, Ye Yuan, Guoren Wang
Title: LAVA: Language Driven Scalable and Versatile Traffic Video Analytics
Abstract:
In modern urban environments, camera networks generate massive amounts of operational footage -- reaching petabytes each day -- making scalable video analytics essential for efficient processing. Many existing approaches adopt an SQL-based paradigm for querying such large-scale video databases; however, this constrains queries to rigid patterns with predefined semantic categories, significantly limiting analytical flexibility. In this work, we explore a language-driven video analytics paradigm aimed at enabling flexible and efficient querying of high-volume video data driven by natural language. Particularly, we build \textsc{Lava}, a system that accepts natural language queries and retrieves traffic targets across multiple levels of granularity and arbitrary categories. \textsc{Lava} comprises three main components: 1) a multi-armed bandit-based efficient sampling method for video segment-level localization; 2) a video-specific open-world detection module for object-level retrieval; and 3) a long-term object trajectory extraction scheme for temporal object association, yielding complete trajectories for object-of-interests. To support comprehensive evaluation, we further develop a novel benchmark by providing diverse, semantically rich natural language predicates and fine-grained annotations for multiple videos. Experiments on this benchmark demonstrate that \textsc{Lava} improves $F_1$-scores for selection queries by $\mathbf{14\%}$, reduces MPAE for aggregation queries by $\mathbf{0.39}$, and achieves top-$k$ precision of $\mathbf{86\%}$, while processing videos $ \mathbf{9.6\times} $ faster than the most accurate baseline. Our code and dataset are available at https://github.com/yuyanrui/LAVA.

Authors:Guiping Cao, Xiangyuan Lan, Wenjian Huang, Jianguo Zhang, Dongmei Jiang, Yaowei Wang
Title: DS-Det: Single-Query Paradigm and Attention Disentangled Learning for Flexible Object Detection
Abstract:
Popular transformer detectors have achieved promising performance through query-based learning using attention mechanisms. However, the roles of existing decoder query types (e.g., content query and positional query) are still underexplored. These queries are generally predefined with a fixed number (fixed-query), which limits their flexibility. We find that the learning of these fixed-query is impaired by Recurrent Opposing inTeractions (ROT) between two attention operations: Self-Attention (query-to-query) and Cross-Attention (query-to-encoder), thereby degrading decoder efficiency. Furthermore, "query ambiguity" arises when shared-weight decoder layers are processed with both one-to-one and one-to-many label assignments during training, violating DETR's one-to-one matching principle. To address these challenges, we propose DS-Det, a more efficient detector capable of detecting a flexible number of objects in images. Specifically, we reformulate and introduce a new unified Single-Query paradigm for decoder modeling, transforming the fixed-query into flexible. Furthermore, we propose a simplified decoder framework through attention disentangled learning: locating boxes with Cross-Attention (one-to-many process), deduplicating predictions with Self-Attention (one-to-one process), addressing "query ambiguity" and "ROT" issues directly, and enhancing decoder efficiency. We further introduce a unified PoCoo loss that leverages box size priors to prioritize query learning on hard samples such as small objects. Extensive experiments across five different backbone models on COCO2017 and WiderPerson datasets demonstrate the general effectiveness and superiority of DS-Det. The source codes are available at https://github.com/Med-Process/DS-Det/.

Authors:Peng Cai, Qiang Li, Kaicheng Yang, Dong Guo, Jia Li, Nan Zhou, Xiang An, Ninghua Yang, Jiankang Deng
Title: ForCenNet: Foreground-Centric Network for Document Image Rectification
Abstract:
Document image rectification aims to eliminate geometric deformation in photographed documents to facilitate text recognition. However, existing methods often neglect the significance of foreground elements, which provide essential geometric references and layout information for document image correction. In this paper, we introduce Foreground-Centric Network (ForCenNet) to eliminate geometric distortions in document images. Specifically, we initially propose a foreground-centric label generation method, which extracts detailed foreground elements from an undistorted image. Then we introduce a foreground-centric mask mechanism to enhance the distinction between readable and background regions. Furthermore, we design a curvature consistency loss to leverage the detailed foreground labels to help the model understand the distorted geometric distribution. Extensive experiments demonstrate that ForCenNet achieves new state-of-the-art on four real-world benchmarks, such as DocUNet, DIR300, WarpDoc, and DocReal. Quantitative analysis shows that the proposed method effectively undistorts layout elements, such as text lines and table borders. The resources for further comparison are provided at https://github.com/caipeng328/ForCenNet.

Authors:Kanglin Qu, Pan Gao, Qun Dai, Yuanhao Sun
Title: HydraMamba: Multi-Head State Space Model for Global Point Cloud Learning
Abstract:
The attention mechanism has become a dominant operator in point cloud learning, but its quadratic complexity leads to limited inter-point interactions, hindering long-range dependency modeling between objects. Due to excellent long-range modeling capability with linear complexity, the selective state space model (S6), as the core of Mamba, has been exploited in point cloud learning for long-range dependency interactions over the entire point cloud. Despite some significant progress, related works still suffer from imperfect point cloud serialization and lack of locality learning. To this end, we explore a state space model-based point cloud network termed HydraMamba to address the above challenges. Specifically, we design a shuffle serialization strategy, making unordered point sets better adapted to the causal nature of S6. Meanwhile, to overcome the deficiency of existing techniques in locality learning, we propose a ConvBiS6 layer, which is capable of capturing local geometries and global context dependencies synergistically. Besides, we propose MHS6 by extending the multi-head design to S6, further enhancing its modeling capability. HydraMamba achieves state-of-the-art results on various tasks at both object-level and scene-level. The code is available at https://github.com/Point-Cloud-Learning/HydraMamba.

Authors:Seunghun Lee, Jiwan Seo, Minwoo Choi, Kiljoon Han, Jaehoon Jeong, Zane Durante, Ehsan Adeli, Sang Hyun Park, Sunghoon Im
Title: Latest Object Memory Management for Temporally Consistent Video Instance Segmentation
Abstract:
In this paper, we present Latest Object Memory Management (LOMM) for temporally consistent video instance segmentation that significantly improves long-term instance tracking. At the core of our method is Latest Object Memory (LOM), which robustly tracks and continuously updates the latest states of objects by explicitly modeling their presence in each frame. This enables consistent tracking and accurate identity management across frames, enhancing both performance and reliability through the VIS process. Moreover, we introduce Decoupled Object Association (DOA), a strategy that separately handles newly appearing and already existing objects. By leveraging our memory system, DOA accurately assigns object indices, improving matching accuracy and ensuring stable identity consistency, even in dynamic scenes where objects frequently appear and disappear. Extensive experiments and ablation studies demonstrate the superiority of our method over traditional approaches, setting a new benchmark in VIS. Notably, our LOMM achieves state-of-the-art AP score of 54.0 on YouTube-VIS 2022, a dataset known for its challenging long videos. Project page: https://seung-hun-lee.github.io/projects/LOMM/

Authors:Liyang Wang, Shiqian Wu, Shun Fang, Qile Zhu, Jiaxin Wu, Sos Again
Title: Quaternion-Based Robust PCA for Efficient Moving Target Detection and Background Recovery in Color Videos
Abstract:
Moving target detection is a challenging computer vision task aimed at generating accurate segmentation maps in diverse in-the-wild color videos captured by static cameras. If backgrounds and targets can be simultaneously extracted and recombined, such synthetic data can significantly enrich annotated in-the-wild datasets and enhance the generalization ability of deep models. Quaternion-based RPCA (QRPCA) is a promising unsupervised paradigm for color image processing. However, in color video processing, Quaternion Singular Value Decomposition (QSVD) incurs high computational costs, and rank-1 quaternion matrix fails to yield rank-1 color channels. In this paper, we reduce the computational complexity of QSVD to o(1) by utilizing a quaternion Riemannian manifold. Furthermor, we propose the universal QRPCA (uQRPCA) framework, which achieves a balance in simultaneously segmenting targets and recovering backgrounds from color videos. Moreover, we expand to uQRPCA+ by introducing the Color Rank-1 Batch (CR1B) method to further process and obtain the ideal low-rank background across color channels. Experiments demonstrate our uQRPCA+ achieves State Of The Art (SOTA) performance on moving target detection and background recovery tasks compared to existing open-source methods. Our implementation is publicly available on GitHub at https://github.com/Ruchtech/uQRPCA

Authors:Bermet Burkanova, Payam Jome Yazdian, Chuxuan Zhang, Trinity Evans, Paige Tuttösí, Angelica Lim
Title: Salsa as a Nonverbal Embodied Language -- The CoMPAS3D Dataset and Benchmarks
Abstract:
Imagine a humanoid that can safely and creatively dance with a human, adapting to its partner's proficiency, using haptic signaling as a primary form of communication. While today's AI systems excel at text or voice-based interaction with large language models, human communication extends far beyond text-it includes embodied movement, timing, and physical coordination. Modeling coupled interaction between two agents poses a formidable challenge: it is continuous, bidirectionally reactive, and shaped by individual variation. We present CoMPAS3D, the largest and most diverse motion capture dataset of improvised salsa dancing, designed as a challenging testbed for interactive, expressive humanoid AI. The dataset includes 3 hours of leader-follower salsa dances performed by 18 dancers spanning beginner, intermediate, and professional skill levels. For the first time, we provide fine-grained salsa expert annotations, covering over 2,800 move segments, including move types, combinations, execution errors and stylistic elements. We draw analogies between partner dance communication and natural language, evaluating CoMPAS3D on two benchmark tasks for synthetic humans that parallel key problems in spoken language and dialogue processing: leader or follower generation with proficiency levels (speaker or listener synthesis), and duet (conversation) generation. Towards a long-term goal of partner dance with humans, we release the dataset, annotations, and code, along with a multitask SalsaAgent model capable of performing all benchmark tasks, alongside additional baselines to encourage research in socially interactive embodied AI and creative, expressive humanoid motion generation.

Authors:Haochen Wang, Qirui Chen, Cilin Yan, Jiayin Cai, Xiaolong Jiang, Yao Hu, Weidi Xie, Stratis Gavves
Title: Object-centric Video Question Answering with Visual Grounding and Referring
Abstract:
Video Large Language Models (VideoLLMs) have recently demonstrated remarkable progress in general video understanding. However, existing models primarily focus on high-level comprehension and are limited to text-only responses, restricting the flexibility for object-centric, multiround interactions. In this paper, we make three contributions: (i) we address these limitations by introducing a VideoLLM model, capable of performing both object referring for input and grounding for output in video reasoning tasks, i.e., allowing users to interact with videos using both textual and visual prompts; (ii) we propose STOM (Spatial-Temporal Overlay Module), a novel approach that propagates arbitrary visual prompts input at any single timestamp to the remaining frames within a video; (iii) we present VideoInfer, a manually curated object-centric video instruction dataset featuring questionanswering pairs that require reasoning. We conduct comprehensive experiments on VideoInfer and other existing benchmarks across video question answering and referring object segmentation. The results on 12 benchmarks of 6 tasks show that our proposed model consistently outperforms baselines in both video question answering and segmentation, underscoring its robustness in multimodal, object-centric video and image understanding. Project page: https://qirui-chen.github.io/RGA3-release/.

Authors:Jovana Kondic, Pengyuan Li, Dhiraj Joshi, Zexue He, Shafiq Abedin, Jennifer Sun, Ben Wiesel, Eli Schwartz, Ahmed Nassar, Bo Wu, Assaf Arbelle, Aude Oliva, Dan Gutfreund, Leonid Karlinsky, Rogerio Feris
Title: ChartGen: Scaling Chart Understanding Via Code-Guided Synthetic Chart Generation
Abstract:
Chart-to-code reconstruction -- the task of recovering executable plotting scripts from chart images -- provides important insights into a model's ability to ground data visualizations in precise, machine-readable form. Yet many existing multimodal benchmarks largely focus primarily on answering questions about charts or summarizing them. To bridge this gap, we present ChartGen, a fully-automated pipeline for code-guided synthetic chart generation. Starting from seed chart images, ChartGen (i) prompts a vision-language model (VLM) to reconstruct each image into a python script, and (ii) iteratively augments that script with a code-oriented large language model (LLM). Using ChartGen, we create 222.5K unique chart-image code pairs from 13K seed chart images, and present an open-source synthetic chart dataset covering 27 chart types, 11 plotting libraries, and multiple data modalities (image, code, text, CSV, DocTags). From this corpus, we curate a held-out chart-to-code evaluation subset of 4.3K chart image-code pairs, and evaluate six open-weight VLMs (3B - 26B parameters), highlighting substantial room for progress. We release the pipeline, prompts, and the dataset to help accelerate efforts towards robust chart understanding and vision-conditioned code generation: https://github.com/SD122025/ChartGen/

Authors:Byungjun Kim, Shunsuke Saito, Giljoo Nam, Tomas Simon, Jason Saragih, Hanbyul Joo, Junxuan Li
Title: HairCUP: Hair Compositional Universal Prior for 3D Gaussian Avatars
Abstract:
We present a universal prior model for 3D head avatars with explicit hair compositionality. Existing approaches to build generalizable priors for 3D head avatars often adopt a holistic modeling approach, treating the face and hair as an inseparable entity. This overlooks the inherent compositionality of the human head, making it difficult for the model to naturally disentangle face and hair representations, especially when the dataset is limited. Furthermore, such holistic models struggle to support applications like 3D face and hairstyle swapping in a flexible and controllable manner. To address these challenges, we introduce a prior model that explicitly accounts for the compositionality of face and hair, learning their latent spaces separately. A key enabler of this approach is our synthetic hairless data creation pipeline, which removes hair from studio-captured datasets using estimated hairless geometry and texture derived from a diffusion prior. By leveraging a paired dataset of hair and hairless captures, we train disentangled prior models for face and hair, incorporating compositionality as an inductive bias to facilitate effective separation. Our model's inherent compositionality enables seamless transfer of face and hair components between avatars while preserving identity. Additionally, we demonstrate that our model can be fine-tuned in a few-shot manner using monocular captures to create high-fidelity, hair-compositional 3D head avatars for unseen subjects. These capabilities highlight the practical applicability of our approach in real-world scenarios, paving the way for flexible and expressive 3D avatar generation.

Authors:Xuehui Wang, Zhenyu Wu, JingJing Xie, Zichen Ding, Bowen Yang, Zehao Li, Zhaoyang Liu, Qingyun Li, Xuan Dong, Zhe Chen, Weiyun Wang, Xiangyu Zhao, Jixuan Chen, Haodong Duan, Tianbao Xie, Chenyu Yang, Shiqian Su, Yue Yu, Yuan Huang, Yiqian Liu, Xiao Zhang, Yanting Zhang, Xiangyu Yue, Weijie Su, Xizhou Zhu, Wei Shen, Jifeng Dai, Wenhai Wang
Title: MMBench-GUI: Hierarchical Multi-Platform Evaluation Framework for GUI Agents
Abstract:
We introduce MMBench-GUI, a hierarchical benchmark for evaluating GUI automation agents across Windows, macOS, Linux, iOS, Android, and Web platforms. It comprises four levels: GUI Content Understanding, Element Grounding, Task Automation, and Task Collaboration, covering essential skills for GUI agents. In addition, we propose a novel Efficiency-Quality Area (EQA) metric to assess GUI agent execution efficiency in online automation scenarios. Through MMBench-GUI, we identify accurate visual grounding as a critical determinant of overall task success, emphasizing the substantial benefits of modular frameworks that integrate specialized grounding modules. Furthermore, to achieve reliable GUI automation, an agent requires strong task planning and cross-platform generalization abilities, with long-context memory, a broad action space, and long-term reasoning playing a critical role. More important, task efficiency remains a critically underexplored dimension, and all models suffer from substantial inefficiencies, with excessive redundant steps even when tasks are ultimately completed. The integration of precise localization, effective planning, and early stopping strategies is indispensable to enable truly efficient and scalable GUI automation. Our benchmark code, evaluation data, and running environment will be publicly available at https://github.com/open-compass/MMBench-GUI.

Authors:Chen Zhu, Wangbo Zhao, Huiwen Zhang, Samir Khaki, Yuhao Zhou, Weidong Tang, Shuo Wang, Zhihang Yuan, Yuzhang Shang, Xiaojiang Peng, Kai Wang, Dawei Yang
Title: EA-ViT: Efficient Adaptation for Elastic Vision Transformer
Abstract:
Vision Transformers (ViTs) have emerged as a foundational model in computer vision, excelling in generalization and adaptation to downstream tasks. However, deploying ViTs to support diverse resource constraints typically requires retraining multiple, size-specific ViTs, which is both time-consuming and energy-intensive. To address this issue, we propose an efficient ViT adaptation framework that enables a single adaptation process to generate multiple models of varying sizes for deployment on platforms with various resource constraints. Our approach comprises two stages. In the first stage, we enhance a pre-trained ViT with a nested elastic architecture that enables structural flexibility across MLP expansion ratio, number of attention heads, embedding dimension, and network depth. To preserve pre-trained knowledge and ensure stable adaptation, we adopt a curriculum-based training strategy that progressively increases elasticity. In the second stage, we design a lightweight router to select submodels according to computational budgets and downstream task demands. Initialized with Pareto-optimal configurations derived via a customized NSGA-II algorithm, the router is then jointly optimized with the backbone. Extensive experiments on multiple benchmarks demonstrate the effectiveness and versatility of EA-ViT. The code is available at https://github.com/zcxcf/EA-ViT.

Authors:Lanmiao Liu, Esam Ghaleb, Aslı Özyürek, Zerrin Yumak
Title: SemGes: Semantics-aware Co-Speech Gesture Generation using Semantic Coherence and Relevance Learning
Abstract:
Creating a virtual avatar with semantically coherent gestures that are aligned with speech is a challenging task. Existing gesture generation research mainly focused on generating rhythmic beat gestures, neglecting the semantic context of the gestures. In this paper, we propose a novel approach for semantic grounding in co-speech gesture generation that integrates semantic information at both fine-grained and global levels. Our approach starts with learning the motion prior through a vector-quantized variational autoencoder. Built on this model, a second-stage module is applied to automatically generate gestures from speech, text-based semantics and speaker identity that ensures consistency between the semantic relevance of generated gestures and co-occurring speech semantics through semantic coherence and relevance modules. Experimental results demonstrate that our approach enhances the realism and coherence of semantic gestures. Extensive experiments and user studies show that our method outperforms state-of-the-art approaches across two benchmarks in co-speech gesture generation in both objective and subjective metrics. The qualitative results of our model, code, dataset and pre-trained models can be viewed at https://semgesture.github.io/.

Authors:Muhammad Ibrahim, Naveed Akhtar, Haitian Wang, Saeed Anwar, Ajmal Mian
Title: Multistream Network for LiDAR and Camera-based 3D Object Detection in Outdoor Scenes
Abstract:
Fusion of LiDAR and RGB data has the potential to enhance outdoor 3D object detection accuracy. To address real-world challenges in outdoor 3D object detection, fusion of LiDAR and RGB input has started gaining traction. However, effective integration of these modalities for precise object detection task still remains a largely open problem. To address that, we propose a MultiStream Detection (MuStD) network, that meticulously extracts task-relevant information from both data modalities. The network follows a three-stream structure. Its LiDAR-PillarNet stream extracts sparse 2D pillar features from the LiDAR input while the LiDAR-Height Compression stream computes Bird's-Eye View features. An additional 3D Multimodal stream combines RGB and LiDAR features using UV mapping and polar coordinate indexing. Eventually, the features containing comprehensive spatial, textural and geometric information are carefully fused and fed to a detection head for 3D object detection. Our extensive evaluation on the challenging KITTI Object Detection Benchmark using public testing server at https://www.cvlibs.net/datasets/kitti/eval_object_detail.php?&result=d162ec699d6992040e34314d19ab7f5c217075e0 establishes the efficacy of our method by achieving new state-of-the-art or highly competitive results in different categories while remaining among the most efficient methods. Our code will be released through MuStD GitHub repository at https://github.com/IbrahimUWA/MuStD.git

Authors:Sakuya Ota, Qing Yu, Kent Fujiwara, Satoshi Ikehata, Ikuro Sato
Title: PINO: Person-Interaction Noise Optimization for Long-Duration and Customizable Motion Generation of Arbitrary-Sized Groups
Abstract:
Generating realistic group interactions involving multiple characters remains challenging due to increasing complexity as group size expands. While existing conditional diffusion models incrementally generate motions by conditioning on previously generated characters, they rely on single shared prompts, limiting nuanced control and leading to overly simplified interactions. In this paper, we introduce Person-Interaction Noise Optimization (PINO), a novel, training-free framework designed for generating realistic and customizable interactions among groups of arbitrary size. PINO decomposes complex group interactions into semantically relevant pairwise interactions, and leverages pretrained two-person interaction diffusion models to incrementally compose group interactions. To ensure physical plausibility and avoid common artifacts such as overlapping or penetration between characters, PINO employs physics-based penalties during noise optimization. This approach allows precise user control over character orientation, speed, and spatial relationships without additional training. Comprehensive evaluations demonstrate that PINO generates visually realistic, physically coherent, and adaptable multi-person interactions suitable for diverse animation, gaming, and robotics applications.

Authors:Guoping Xu, Yan Dai, Hengrui Zhao, Ying Zhang, Jie Deng, Weiguo Lu, You Zhang
Title: SAM2-Aug: Prior knowledge-based Augmentation for Target Volume Auto-Segmentation in Adaptive Radiation Therapy Using Segment Anything Model 2
Abstract:
Purpose: Accurate tumor segmentation is vital for adaptive radiation therapy (ART) but remains time-consuming and user-dependent. Segment Anything Model 2 (SAM2) shows promise for prompt-based segmentation but struggles with tumor accuracy. We propose prior knowledge-based augmentation strategies to enhance SAM2 for ART. Methods: Two strategies were introduced to improve SAM2: (1) using prior MR images and annotations as contextual inputs, and (2) improving prompt robustness via random bounding box expansion and mask erosion/dilation. The resulting model, SAM2-Aug, was fine-tuned and tested on the One-Seq-Liver dataset (115 MRIs from 31 liver cancer patients), and evaluated without retraining on Mix-Seq-Abdomen (88 MRIs, 28 patients) and Mix-Seq-Brain (86 MRIs, 37 patients). Results: SAM2-Aug outperformed convolutional, transformer-based, and prompt-driven models across all datasets, achieving Dice scores of 0.86(liver), 0.89(abdomen), and 0.90(brain). It demonstrated strong generalization across tumor types and imaging sequences, with improved performance in boundary-sensitive metrics. Conclusions: Incorporating prior images and enhancing prompt diversity significantly boosts segmentation accuracy and generalizability. SAM2-Aug offers a robust, efficient solution for tumor segmentation in ART. Code and models will be released at https://github.com/apple1986/SAM2-Aug.

Authors:An Xiang, Zixuan Huang, Xitong Gao, Kejiang Ye, Cheng-zhong Xu
Title: BridgeNet: A Unified Multimodal Framework for Bridging 2D and 3D Industrial Anomaly Detection
Abstract:
Industrial anomaly detection for 2D objects has gained significant attention and achieved progress in anomaly detection (AD) methods. However, identifying 3D depth anomalies using only 2D information is insufficient. Despite explicitly fusing depth information into RGB images or using point cloud backbone networks to extract depth features, both approaches struggle to adequately represent 3D information in multimodal scenarios due to the disparities among different modal information. Additionally, due to the scarcity of abnormal samples in industrial data, especially in multimodal scenarios, it is necessary to perform anomaly generation to simulate real-world abnormal samples. Therefore, we propose a novel unified multimodal anomaly detection framework to address these issues. Our contributions consist of 3 key aspects. (1) We extract visible depth information from 3D point cloud data simply and use 2D RGB images to represent appearance, which disentangles depth and appearance to support unified anomaly generation. (2) Benefiting from the flexible input representation, the proposed Multi-Scale Gaussian Anomaly Generator and Unified Texture Anomaly Generator can generate richer anomalies in RGB and depth. (3) All modules share parameters for both RGB and depth data, effectively bridging 2D and 3D anomaly detection. Subsequent modules can directly leverage features from both modalities without complex fusion. Experiments show our method outperforms state-of-the-art (SOTA) on MVTec-3D AD and Eyecandies datasets. Code available at: https://github.com/Xantastic/BridgeNet

Authors:Jiaru Zhong, Jiahao Wang, Jiahui Xu, Xiaofan Li, Zaiqing Nie, Haibao Yu
Title: CoopTrack: Exploring End-to-End Learning for Efficient Cooperative Sequential Perception
Abstract:
Cooperative perception aims to address the inherent limitations of single-vehicle autonomous driving systems through information exchange among multiple agents. Previous research has primarily focused on single-frame perception tasks. However, the more challenging cooperative sequential perception tasks, such as cooperative 3D multi-object tracking, have not been thoroughly investigated. Therefore, we propose CoopTrack, a fully instance-level end-to-end framework for cooperative tracking, featuring learnable instance association, which fundamentally differs from existing approaches. CoopTrack transmits sparse instance-level features that significantly enhance perception capabilities while maintaining low transmission costs. Furthermore, the framework comprises two key components: Multi-Dimensional Feature Extraction, and Cross-Agent Association and Aggregation, which collectively enable comprehensive instance representation with semantic and motion features, and adaptive cross-agent association and fusion based on a feature graph. Experiments on both the V2X-Seq and Griffin datasets demonstrate that CoopTrack achieves excellent performance. Specifically, it attains state-of-the-art results on V2X-Seq, with 39.0\% mAP and 32.8\% AMOTA. The project is available at https://github.com/zhongjiaru/CoopTrack.

Authors:Donggeun Lim, Jinseok Bae, Inwoo Hwang, Seungmin Lee, Hwanhee Lee, Young Min Kim
Title: Event-Driven Storytelling with Multiple Lifelike Humans in a 3D Scene
Abstract:
In this work, we propose a framework that creates a lively virtual dynamic scene with contextual motions of multiple humans. Generating multi-human contextual motion requires holistic reasoning over dynamic relationships among human-human and human-scene interactions. We adapt the power of a large language model (LLM) to digest the contextual complexity within textual input and convert the task into tangible subproblems such that we can generate multi-agent behavior beyond the scale that was not considered before. Specifically, our event generator formulates the temporal progression of a dynamic scene into a sequence of small events. Each event calls for a well-defined motion involving relevant characters and objects. Next, we synthesize the motions of characters at positions sampled based on spatial guidance. We employ a high-level module to deliver scalable yet comprehensive context, translating events into relative descriptions that enable the retrieval of precise coordinates. As the first to address this problem at scale and with diversity, we offer a benchmark to assess diverse aspects of contextual reasoning. Benchmark results and user studies show that our framework effectively captures scene context with high scalability. The code and benchmark, along with result videos, are available at our project page: https://rms0329.github.io/Event-Driven-Storytelling/.

Authors:Hanbing Wu, Ping Jiang, Anyang Su, Chenxu Zhao, Tianyu Fu, Minghui Wu, Beiping Tan, Huiying Li
Title: PRE-MAP: Personalized Reinforced Eye-tracking Multimodal LLM for High-Resolution Multi-Attribute Point Prediction
Abstract:
Visual selective attention, driven by individual preferences, regulates human prioritization of visual stimuli by bridging subjective cognitive mechanisms with objective visual elements, thereby steering the semantic interpretation and hierarchical processing of dynamic visual scenes. However, existing models and datasets predominantly neglect the influence of subjective cognitive diversity on fixation behavior. Conventional saliency prediction models, typically employing segmentation approaches, rely on low-resolution imagery to generate saliency heatmaps, subsequently upscaled to native resolutions, which limiting their capacity to capture personalized attention patterns. Furthermore, MLLMs are constrained by factors such as hallucinations, making it very costly to strictly adhere to the expected format in tasks involving multiple point predictions, and achieving precise point positioning is challenging. To address these limitations, we present Subjective Personalized Attention for Advertisement Videos, namely SPA-ADV, a large-scale multimodal dataset capturing gaze behaviors from over 4,500 participants varying in age and gender with 486 videos. Furthermore, we propose PRE-MAP, a novel eye-tracking saliency model that characterizes Personalized visual disparities through Reinforcement learning-optimized Eye-tracking, built upon MLLMs and guided by Multi-Attribute user profiles to predict Points. To ensure MLLMs produce prediction points that are both format-correct and spatially accurate, we introduce Consistency Group Relative Policy Optimization (C-GRPO), inspired by the variability in eye movement points and Multi-Attribute profiles. Extensive experiments on SPA-ADV and other benchmarks demonstrate the effectiveness of our approach. The code and dataset are available at \href{https://github.com/mininglamp-MLLM/PRE-MAP}{this URL}.

Authors:Xin Li, Kaixiang Yang, Qiang Li, Zhiwei Wang
Title: Joint Holistic and Lesion Controllable Mammogram Synthesis via Gated Conditional Diffusion Model
Abstract:
Mammography is the most commonly used imaging modality for breast cancer screening, driving an increasing demand for deep-learning techniques to support large-scale analysis. However, the development of accurate and robust methods is often limited by insufficient data availability and a lack of diversity in lesion characteristics. While generative models offer a promising solution for data synthesis, current approaches often fail to adequately emphasize lesion-specific features and their relationships with surrounding tissues. In this paper, we propose Gated Conditional Diffusion Model (GCDM), a novel framework designed to jointly synthesize holistic mammogram images and localized lesions. GCDM is built upon a latent denoising diffusion framework, where the noised latent image is concatenated with a soft mask embedding that represents breast, lesion, and their transitional regions, ensuring anatomical coherence between them during the denoising process. To further emphasize lesion-specific features, GCDM incorporates a gated conditioning branch that guides the denoising process by dynamically selecting and fusing the most relevant radiomic and geometric properties of lesions, effectively capturing their interplay. Experimental results demonstrate that GCDM achieves precise control over small lesion areas while enhancing the realism and diversity of synthesized mammograms. These advancements position GCDM as a promising tool for clinical applications in mammogram synthesis. Our code is available at https://github.com/lixinHUST/Gated-Conditional-Diffusion-Model/

Authors:Kang Wang, Chen Qin, Zhang Shi, Haoran Wang, Xiwen Zhang, Chen Chen, Cheng Ouyang, Chengliang Dai, Yuanhan Mo, Chenchen Dai, Xutong Kuang, Ruizhe Li, Xin Chen, Xiuzheng Yue, Song Tian, Alejandro Mora-Rubio, Kumaradevan Punithakumar, Shizhan Gong, Qi Dou, Sina Amirrajab, Yasmina Al Khalil, Cian M. Scannell, Lexiaozi Fan, Huili Yang, Xiaowu Sun, Rob van der Geest, Tewodros Weldebirhan Arega, Fabrice Meriaudeau, Caner Özer, Amin Ranem, John Kalkhof, İlkay Öksüz, Anirban Mukhopadhyay, Abdul Qayyum, Moona Mazher, Steven A Niederer, Carles Garcia-Cabrera, Eric Arazo, Michal K. Grzeszczyk, Szymon Płotka, Wanqin Ma, Xiaomeng Li, Rongjun Ge, Yongqing Kou, Xinrong Chen, He Wang, Chengyan Wang, Wenjia Bai, Shuo Wang
Title: Extreme Cardiac MRI Analysis under Respiratory Motion: Results of the CMRxMotion Challenge
Abstract:
Deep learning models have achieved state-of-the-art performance in automated Cardiac Magnetic Resonance (CMR) analysis. However, the efficacy of these models is highly dependent on the availability of high-quality, artifact-free images. In clinical practice, CMR acquisitions are frequently degraded by respiratory motion, yet the robustness of deep learning models against such artifacts remains an underexplored problem. To promote research in this domain, we organized the MICCAI CMRxMotion challenge. We curated and publicly released a dataset of 320 CMR cine series from 40 healthy volunteers who performed specific breathing protocols to induce a controlled spectrum of motion artifacts. The challenge comprised two tasks: 1) automated image quality assessment to classify images based on motion severity, and 2) robust myocardial segmentation in the presence of motion artifacts. A total of 22 algorithms were submitted and evaluated on the two designated tasks. This paper presents a comprehensive overview of the challenge design and dataset, reports the evaluation results for the top-performing methods, and further investigates the impact of motion artifacts on five clinically relevant biomarkers. All resources and code are publicly available at: https://github.com/CMRxMotion

Authors:Jie Chen, Zhangchi Hu, Peixi Wu, Huyue Zhu, Hebei Li, Xiaoyan Sun
Title: DASH: 4D Hash Encoding with Self-Supervised Decomposition for Real-Time Dynamic Scene Rendering
Abstract:
Dynamic scene reconstruction is a long-term challenge in 3D vision. Existing plane-based methods in dynamic Gaussian splatting suffer from an unsuitable low-rank assumption, causing feature overlap and poor rendering quality. Although 4D hash encoding provides an explicit representation without low-rank constraints, directly applying it to the entire dynamic scene leads to substantial hash collisions and redundancy. To address these challenges, we present DASH, a real-time dynamic scene rendering framework that employs 4D hash encoding coupled with self-supervised decomposition. Our approach begins with a self-supervised decomposition mechanism that separates dynamic and static components without manual annotations or precomputed masks. Next, we introduce a multiresolution 4D hash encoder for dynamic elements, providing an explicit representation that avoids the low-rank assumption. Finally, we present a spatio-temporal smoothness regularization strategy to mitigate unstable deformation artifacts. Experiments on real-world datasets demonstrate that DASH achieves state-of-the-art dynamic rendering performance, exhibiting enhanced visual quality at real-time speeds of 264 FPS on a single 4090 GPU. Code: https://github.com/chenj02/DASH.

Authors:Tianyu Zou, Shengwu Xiong, Ruilin Yao, Yi Rong
Title: Balancing Conservatism and Aggressiveness: Prototype-Affinity Hybrid Network for Few-Shot Segmentation
Abstract:
This paper studies the few-shot segmentation (FSS) task, which aims to segment objects belonging to unseen categories in a query image by learning a model on a small number of well-annotated support samples. Our analysis of two mainstream FSS paradigms reveals that the predictions made by prototype learning methods are usually conservative, while those of affinity learning methods tend to be more aggressive. This observation motivates us to balance the conservative and aggressive information captured by these two types of FSS frameworks so as to improve the segmentation performance. To achieve this, we propose a **P**rototype-**A**ffinity **H**ybrid **Net**work (PAHNet), which introduces a Prototype-guided Feature Enhancement (PFE) module and an Attention Score Calibration (ASC) module in each attention block of an affinity learning model (called affinity learner). These two modules utilize the predictions generated by a pre-trained prototype learning model (called prototype predictor) to enhance the foreground information in support and query image representations and suppress the mismatched foreground-background (FG-BG) relationships between them, respectively. In this way, the aggressiveness of the affinity learner can be effectively mitigated, thereby eventually increasing the segmentation accuracy of our PAHNet method. Experimental results show that PAHNet outperforms most recently proposed methods across 1-shot and 5-shot settings on both PASCAL-5$^i$ and COCO-20$^i$ datasets, suggesting its effectiveness. The code is available at: [GitHub - tianyu-zou/PAHNet: Balancing Conservatism and Aggressiveness: Prototype-Affinity Hybrid Network for Few-Shot Segmentation (ICCV'25)](https://github.com/tianyu-zou/PAHNet)

Authors:Xuetian Chen, Yinghao Chen, Xinfeng Yuan, Zhuo Peng, Lu Chen, Yuekeng Li, Zhoujia Zhang, Yingqian Huang, Leyan Huang, Jiaqing Liang, Tianbao Xie, Zhiyong Wu, Qiushi Sun, Biqing Qi, Bowen Zhou
Title: OS-MAP: How Far Can Computer-Using Agents Go in Breadth and Depth?
Abstract:
Computer-using agents have shown strong potential to boost human productivity and enable new application forms across platforms. While recent advances have led to usable applications, existing benchmarks fail to account for the internal task heterogeneity and the corresponding agent capabilities, as well as their alignment with actual user demands-hindering both targeted capability development and the reliable transition of research progress into practical deployment. To bridge the gap, we present OS-MAP, a benchmark for daily computer-using automation that organizes its 416 realistic tasks across 15 applications along two key dimensions: a five-level taxonomy of automation and a generalization scope derived from a real-world user demand hierarchy. To enable fine-grained analysis of required capabilities and alignment with real-world scenarios, OS-MAP evaluates agents along two dimensions: automation level across a five-level taxonomy, and generalization scope across a demand hierarchy. This design captures varying levels of required agent autonomy and generalization, forming a performance-generalization evaluation matrix for structured and comprehensive assessment. Experiments show that even State-of-the-Art agents with VLM backbones struggle with higher-level tasks involving perception, reasoning, and coordination-highlighting the need for a deeper understanding of current strengths and limitations to drive the future progress in computer-using agents research and deployment. All code, environments, baselines, and data are publicly available at https://github.com/OS-Copilot/OS-Map.

Authors:Yuqi Li, Haotian Zhang, Li Li, Dong Liu
Title: Learned Image Compression with Hierarchical Progressive Context Modeling
Abstract:
Context modeling is essential in learned image compression for accurately estimating the distribution of latents. While recent advanced methods have expanded context modeling capacity, they still struggle to efficiently exploit long-range dependency and diverse context information across different coding steps. In this paper, we introduce a novel Hierarchical Progressive Context Model (HPCM) for more efficient context information acquisition. Specifically, HPCM employs a hierarchical coding schedule to sequentially model the contextual dependencies among latents at multiple scales, which enables more efficient long-range context modeling. Furthermore, we propose a progressive context fusion mechanism that incorporates contextual information from previous coding steps into the current step, effectively exploiting diverse contextual information. Experimental results demonstrate that our method achieves state-of-the-art rate-distortion performance and strikes a better balance between compression performance and computational complexity. The code is available at https://github.com/lyq133/LIC-HPCM.

Authors:Shuhao Li, Weidong Yang, Yue Cui, Xiaoxing Liu, Lingkai Meng, Lipeng Ma, Fan Zhang
Title: Fine-Grained Traffic Inference from Road to Lane via Spatio-Temporal Graph Node Generation
Abstract:
Fine-grained traffic management and prediction are fundamental to key applications such as autonomous driving, lane change guidance, and traffic signal control. However, obtaining lane-level traffic data has become a critical bottleneck for data-driven models due to limitations in the types and number of sensors and issues with the accuracy of tracking algorithms. To address this, we propose the Fine-grained Road Traffic Inference (FRTI) task, which aims to generate more detailed lane-level traffic information using limited road data, providing a more energy-efficient and cost-effective solution for precise traffic management. This task is abstracted as the first scene of the spatio-temporal graph node generation problem. We designed a two-stage framework--RoadDiff--to solve the FRTI task. solve the FRTI task. This framework leverages the Road-Lane Correlation Autoencoder-Decoder and the Lane Diffusion Module to fully utilize the limited spatio-temporal dependencies and distribution relationships of road data to accurately infer fine-grained lane traffic states. Based on existing research, we designed several baseline models with the potential to solve the FRTI task and conducted extensive experiments on six datasets representing different road conditions to validate the effectiveness of the RoadDiff model in addressing the FRTI task. The relevant datasets and code are available at https://github.com/ShuhaoLii/RoadDiff.

Authors:Rui Pan, Ruiying Lu
Title: SP-Mamba: Spatial-Perception State Space Model for Unsupervised Medical Anomaly Detection
Abstract:
Radiography imaging protocols target on specific anatomical regions, resulting in highly consistent images with recurrent structural patterns across patients. Recent advances in medical anomaly detection have demonstrated the effectiveness of CNN- and transformer-based approaches. However, CNNs exhibit limitations in capturing long-range dependencies, while transformers suffer from quadratic computational complexity. In contrast, Mamba-based models, leveraging superior long-range modeling, structural feature extraction, and linear computational efficiency, have emerged as a promising alternative. To capitalize on the inherent structural regularity of medical images, this study introduces SP-Mamba, a spatial-perception Mamba framework for unsupervised medical anomaly detection. The window-sliding prototype learning and Circular-Hilbert scanning-based Mamba are introduced to better exploit consistent anatomical patterns and leverage spatial information for medical anomaly detection. Furthermore, we excavate the concentration and contrast characteristics of anomaly maps for improving anomaly detection. Extensive experiments on three diverse medical anomaly detection benchmarks confirm the proposed method's state-of-the-art performance, validating its efficacy and robustness. The code is available at https://github.com/Ray-RuiPan/SP-Mamba.

Authors:Shuiqing Zhao, Meihuan Wang, Jiaxuan Xu, Jie Feng, Wei Qian, Rongchang Chen, Zhenyu Liang, Shouliang Qi, Yanan Wu
Title: A Self-training Framework for Semi-supervised Pulmonary Vessel Segmentation and Its Application in COPD
Abstract:
Background: It is fundamental for accurate segmentation and quantification of the pulmonary vessel, particularly smaller vessels, from computed tomography (CT) images in chronic obstructive pulmonary disease (COPD) patients. Objective: The aim of this study was to segment the pulmonary vasculature using a semi-supervised method. Methods: In this study, a self-training framework is proposed by leveraging a teacher-student model for the segmentation of pulmonary vessels. First, the high-quality annotations are acquired in the in-house data by an interactive way. Then, the model is trained in the semi-supervised way. A fully supervised model is trained on a small set of labeled CT images, yielding the teacher model. Following this, the teacher model is used to generate pseudo-labels for the unlabeled CT images, from which reliable ones are selected based on a certain strategy. The training of the student model involves these reliable pseudo-labels. This training process is iteratively repeated until an optimal performance is achieved. Results: Extensive experiments are performed on non-enhanced CT scans of 125 COPD patients. Quantitative and qualitative analyses demonstrate that the proposed method, Semi2, significantly improves the precision of vessel segmentation by 2.3%, achieving a precision of 90.3%. Further, quantitative analysis is conducted in the pulmonary vessel of COPD, providing insights into the differences in the pulmonary vessel across different severity of the disease. Conclusion: The proposed method can not only improve the performance of pulmonary vascular segmentation, but can also be applied in COPD analysis. The code will be made available at https://github.com/wuyanan513/semi-supervised-learning-for-vessel-segmentation.

Authors:Haochen Han, Alex Jinpeng Wang, Fangming Liu, Jun Zhu
Title: Negation-Aware Test-Time Adaptation for Vision-Language Models
Abstract:
In this paper, we study a practical but less-touched problem in Vision-Language Models (VLMs), \ie, negation understanding. Specifically, many real-world applications require models to explicitly identify what is false or non-existent, \eg, radiologists may search for images that exclude specific conditions. Despite the impressive transferability of VLMs through large-scale training, they suffer from a critical limitation that fails to handle negation. To address this challenge, existing methods attribute its root cause to the scarcity of negation training data and propose to fine-tune VLMs on massive data containing explicit negation. Undoubtedly, such data-centric solutions demand substantial data and computational resources, limiting their sustainable widespread adoption. To tackle negation in a low-carbon manner, we empirically observe that the key obstacle lies in the dual-concept shifts between the affirmation and negation distributions. Therefore, we propose a Negation-Aware Test-Time Adaptation (NEAT) method to efficiently adjust distribution-related parameters during inference. In brief, NEAT can reduce distribution shift in consistent semantics while eliminating false distributional consistency in unrelated semantics. Extensive experiments on the various negation understanding tasks verify the effectiveness of the proposed method. Remarkably, with less than 0.01\% of trainable parameters, NEAT achieves comparable or superior performance to state-of-the-art post-training approaches. Our code is available at https://github.com/hhc1997/NEAT.

Authors:Chong Xia, Shengjun Zhang, Fangfu Liu, Chang Liu, Khodchaphun Hirunyaratsameewong, Yueqi Duan
Title: ScenePainter: Semantically Consistent Perpetual 3D Scene Generation with Concept Relation Alignment
Abstract:
Perpetual 3D scene generation aims to produce long-range and coherent 3D view sequences, which is applicable for long-term video synthesis and 3D scene reconstruction. Existing methods follow a "navigate-and-imagine" fashion and rely on outpainting for successive view expansion. However, the generated view sequences suffer from semantic drift issue derived from the accumulated deviation of the outpainting module. To tackle this challenge, we propose ScenePainter, a new framework for semantically consistent 3D scene generation, which aligns the outpainter's scene-specific prior with the comprehension of the current scene. To be specific, we introduce a hierarchical graph structure dubbed SceneConceptGraph to construct relations among multi-level scene concepts, which directs the outpainter for consistent novel views and can be dynamically refined to enhance diversity. Extensive experiments demonstrate that our framework overcomes the semantic drift issue and generates more consistent and immersive 3D view sequences. Project Page: https://xiac20.github.io/ScenePainter/.

Authors:Binxu Li, Yuhui Zhang, Xiaohan Wang, Weixin Liang, Ludwig Schmidt, Serena Yeung-Levy
Title: Closing the Modality Gap for Mixed Modality Search
Abstract:
Mixed modality search -- retrieving information across a heterogeneous corpus composed of images, texts, and multimodal documents -- is an important yet underexplored real-world application. In this work, we investigate how contrastive vision-language models, such as CLIP, perform on the mixed modality search task. Our analysis reveals a critical limitation: these models exhibit a pronounced modality gap in the embedding space, where image and text embeddings form distinct clusters, leading to intra-modal ranking bias and inter-modal fusion failure. To address this issue, we propose GR-CLIP, a lightweight post-hoc calibration method that removes the modality gap in CLIP's embedding space. Evaluated on MixBench -- the first benchmark specifically designed for mixed modality search -- GR-CLIP improves NDCG@10 by up to 26 percentage points over CLIP, surpasses recent vision-language generative embedding models by 4 percentage points, while using 75x less compute.

Authors:Yufei Ma, Hanwen Zhang, Qiya Yang, Guibo Luo, Yuesheng Zhu
Title: A New One-Shot Federated Learning Framework for Medical Imaging Classification with Feature-Guided Rectified Flow and Knowledge Distillation
Abstract:
In multi-center scenarios, One-Shot Federated Learning (OSFL) has attracted increasing attention due to its low communication overhead, requiring only a single round of transmission. However, existing generative model-based OSFL methods suffer from low training efficiency and potential privacy leakage in the healthcare domain. Additionally, achieving convergence within a single round of model aggregation is challenging under non-Independent and Identically Distributed (non-IID) data. To address these challenges, in this paper a modified OSFL framework is proposed, in which a new Feature-Guided Rectified Flow Model (FG-RF) and Dual-Layer Knowledge Distillation (DLKD) aggregation method are developed. FG-RF on the client side accelerates generative modeling in medical imaging scenarios while preserving privacy by synthesizing feature-level images rather than pixel-level images. To handle non-IID distributions, DLKD enables the global student model to simultaneously mimic the output logits and align the intermediate-layer features of client-side teacher models during aggregation. Experimental results on three non-IID medical imaging datasets show that our new framework and method outperform multi-round federated learning approaches, achieving up to 21.73% improvement, and exceeds the baseline FedISCA by an average of 21.75%. Furthermore, our experiments demonstrate that feature-level synthetic images significantly reduce privacy leakage risks compared to pixel-level synthetic images. The code is available at https://github.com/LMIAPC/one-shot-fl-medical.

Authors:Ying Ba, Tianyu Zhang, Yalong Bai, Wenyi Mo, Tao Liang, Bing Su, Ji-Rong Wen
Title: Enhancing Reward Models for High-quality Image Generation: Beyond Text-Image Alignment
Abstract:
Contemporary image generation systems have achieved high fidelity and superior aesthetic quality beyond basic text-image alignment. However, existing evaluation frameworks have failed to evolve in parallel. This study reveals that human preference reward models fine-tuned based on CLIP and BLIP architectures have inherent flaws: they inappropriately assign low scores to images with rich details and high aesthetic value, creating a significant discrepancy with actual human aesthetic preferences. To address this issue, we design a novel evaluation score, ICT (Image-Contained-Text) score, that achieves and surpasses the objectives of text-image alignment by assessing the degree to which images represent textual content. Building upon this foundation, we further train an HP (High-Preference) score model using solely the image modality to enhance image aesthetics and detail quality while maintaining text-image alignment. Experiments demonstrate that the proposed evaluation model improves scoring accuracy by over 10\% compared to existing methods, and achieves significant results in optimizing state-of-the-art text-to-image models. This research provides theoretical and empirical support for evolving image generation technology toward higher-order human aesthetic preferences. Code is available at https://github.com/BarretBa/ICTHP.

Authors:Yongsong Huang, Tomo Miyazaki, Xiaofeng Liu, Shinichiro Omachi
Title: GPSMamba: A Global Phase and Spectral Prompt-guided Mamba for Infrared Image Super-Resolution
Abstract:
Infrared Image Super-Resolution (IRSR) is challenged by the low contrast and sparse textures of infrared data, requiring robust long-range modeling to maintain global coherence. While State-Space Models like Mamba offer proficiency in modeling long-range dependencies for this task, their inherent 1D causal scanning mechanism fragments the global context of 2D images, hindering fine-detail restoration. To address this, we propose Global Phase and Spectral Prompt-guided Mamba (GPSMamba), a framework that synergizes architectural guidance with non-causal supervision. First, our Adaptive Semantic-Frequency State Space Module (ASF-SSM) injects a fused semantic-frequency prompt directly into the Mamba block, integrating non-local context to guide reconstruction. Then, a novel Thermal-Spectral Attention and Phase Consistency Loss provides explicit, non-causal supervision to enforce global structural and spectral fidelity. By combining these two innovations, our work presents a systematic strategy to mitigate the limitations of causal modeling. Extensive experiments demonstrate that GPSMamba achieves state-of-the-art performance, validating our approach as a powerful new paradigm for infrared image restoration. Code is available at https://github.com/yongsongH/GPSMamba.

Authors:Zixiang Ai, Zhenyu Cui, Yuxin Peng, Jiahuan Zhou
Title: UPP: Unified Point-Level Prompting for Robust Point Cloud Analysis
Abstract:
Pre-trained point cloud analysis models have shown promising advancements in various downstream tasks, yet their effectiveness is typically suffering from low-quality point cloud (i.e., noise and incompleteness), which is a common issue in real scenarios due to casual object occlusions and unsatisfactory data collected by 3D sensors. To this end, existing methods focus on enhancing point cloud quality by developing dedicated denoising and completion models. However, due to the isolation between the point cloud enhancement and downstream tasks, these methods fail to work in various real-world domains. In addition, the conflicting objectives between denoising and completing tasks further limit the ensemble paradigm to preserve critical geometric features. To tackle the above challenges, we propose a unified point-level prompting method that reformulates point cloud denoising and completion as a prompting mechanism, enabling robust analysis in a parameter-efficient manner. We start by introducing a Rectification Prompter to adapt to noisy points through the predicted rectification vector prompts, effectively filtering noise while preserving intricate geometric features essential for accurate analysis. Sequentially, we further incorporate a Completion Prompter to generate auxiliary point prompts based on the rectified point clouds, facilitating their robustness and adaptability. Finally, a Shape-Aware Unit module is exploited to efficiently unify and capture the filtered geometric features for the downstream point cloud analysis.Extensive experiments on four datasets demonstrate the superiority and robustness of our method when handling noisy and incomplete point cloud data against existing state-of-the-art methods. Our code is released at https://github.com/zhoujiahuan1991/ICCV2025-UPP.

Authors:Jionghao Wang, Cheng Lin, Yuan Liu, Rui Xu, Zhiyang Dou, Xiao-Xiao Long, Hao-Xiang Guo, Taku Komura, Wenping Wang, Xin Li
Title: PDT: Point Distribution Transformation with Diffusion Models
Abstract:
Point-based representations have consistently played a vital role in geometric data structures. Most point cloud learning and processing methods typically leverage the unordered and unconstrained nature to represent the underlying geometry of 3D shapes. However, how to extract meaningful structural information from unstructured point cloud distributions and transform them into semantically meaningful point distributions remains an under-explored problem. We present PDT, a novel framework for point distribution transformation with diffusion models. Given a set of input points, PDT learns to transform the point set from its original geometric distribution into a target distribution that is semantically meaningful. Our method utilizes diffusion models with novel architecture and learning strategy, which effectively correlates the source and the target distribution through a denoising process. Through extensive experiments, we show that our method successfully transforms input point clouds into various forms of structured outputs - ranging from surface-aligned keypoints, and inner sparse joints to continuous feature lines. The results showcase our framework's ability to capture both geometric and semantic features, offering a powerful tool for various 3D geometry processing tasks where structured point distributions are desired. Code will be available at this link: https://github.com/shanemankiw/PDT.

Authors:Jian Chen, Yuxuan Hu, Haifeng Lu, Wei Wang, Min Yang, Chengming Li, Xiping Hu
Title: MGHFT: Multi-Granularity Hierarchical Fusion Transformer for Cross-Modal Sticker Emotion Recognition
Abstract:
Although pre-trained visual models with text have demonstrated strong capabilities in visual feature extraction, sticker emotion understanding remains challenging due to its reliance on multi-view information, such as background knowledge and stylistic cues. To address this, we propose a novel multi-granularity hierarchical fusion transformer (MGHFT), with a multi-view sticker interpreter based on Multimodal Large Language Models. Specifically, inspired by the human ability to interpret sticker emotions from multiple views, we first use Multimodal Large Language Models to interpret stickers by providing rich textual context via multi-view descriptions. Then, we design a hierarchical fusion strategy to fuse the textual context into visual understanding, which builds upon a pyramid visual transformer to extract both global and local sticker features at multiple stages. Through contrastive learning and attention mechanisms, textual features are injected at different stages of the visual backbone, enhancing the fusion of global- and local-granularity visual semantics with textual guidance. Finally, we introduce a text-guided fusion attention mechanism to effectively integrate the overall multimodal features, enhancing semantic understanding. Extensive experiments on 2 public sticker emotion datasets demonstrate that MGHFT significantly outperforms existing sticker emotion recognition approaches, achieving higher accuracy and more fine-grained emotion recognition. Compared to the best pre-trained visual models, our MGHFT also obtains an obvious improvement, 5.4% on F1 and 4.0% on accuracy. The code is released at https://github.com/cccccj-03/MGHFT_ACMMM2025.

Authors:Zhihao Luo, Luojun Lin, Zheng Lin
Title: Synthetic-to-Real Camouflaged Object Detection
Abstract:
Due to the high cost of collection and labeling, there are relatively few datasets for camouflaged object detection (COD). In particular, for certain specialized categories, the available image dataset is insufficiently populated. Synthetic datasets can be utilized to alleviate the problem of limited data to some extent. However, directly training with synthetic datasets compared to real datasets can lead to a degradation in model performance. To tackle this problem, in this work, we investigate a new task, namely Syn-to-Real Camouflaged Object Detection (S2R-COD). In order to improve the model performance in real world scenarios, a set of annotated synthetic camouflaged images and a limited number of unannotated real images must be utilized. We propose the Cycling Syn-to-Real Domain Adaptation Framework (CSRDA), a method based on the student-teacher model. Specially, CSRDA propagates class information from the labeled source domain to the unlabeled target domain through pseudo labeling combined with consistency regularization. Considering that narrowing the intra-domain gap can improve the quality of pseudo labeling, CSRDA utilizes a recurrent learning framework to build an evolving real domain for bridging the source and target domain. Extensive experiments demonstrate the effectiveness of our framework, mitigating the problem of limited data and handcraft annotations in COD. Our code is publicly available at: https://github.com/Muscape/S2R-COD.

Authors:Beidi Zhao, SangMook Kim, Hao Chen, Chen Zhou, Zu-hua Gao, Gang Wang, Xiaoxiao Li
Title: PTCMIL: Multiple Instance Learning via Prompt Token Clustering for Whole Slide Image Analysis
Abstract:
Multiple Instance Learning (MIL) has advanced WSI analysis but struggles with the complexity and heterogeneity of WSIs. Existing MIL methods face challenges in aggregating diverse patch information into robust WSI representations. While ViTs and clustering-based approaches show promise, they are computationally intensive and fail to capture task-specific and slide-specific variability. To address these limitations, we propose PTCMIL, a novel Prompt Token Clustering-based ViT for MIL aggregation. By introducing learnable prompt tokens into the ViT backbone, PTCMIL unifies clustering and prediction tasks in an end-to-end manner. It dynamically aligns clustering with downstream tasks, using projection-based clustering tailored to each WSI, reducing complexity while preserving patch heterogeneity. Through token merging and prototype-based pooling, PTCMIL efficiently captures task-relevant patterns. Extensive experiments on eight datasets demonstrate its superior performance in classification and survival analysis tasks, outperforming state-of-the-art methods. Systematic ablation studies confirm its robustness and strong interpretability. The code is released at https://github.com/ubc-tea/PTCMIL.

Authors:Fabio De Sousa Ribeiro, Omar Todd, Charles Jones, Avinash Kori, Raghav Mehta, Ben Glocker
Title: Flow Stochastic Segmentation Networks
Abstract:
We introduce the Flow Stochastic Segmentation Network (Flow-SSN), a generative segmentation model family featuring discrete-time autoregressive and modern continuous-time flow variants. We prove fundamental limitations of the low-rank parameterisation of previous methods and show that Flow-SSNs can estimate arbitrarily high-rank pixel-wise covariances without assuming the rank or storing the distributional parameters. Flow-SSNs are also more efficient to sample from than standard diffusion-based segmentation models, thanks to most of the model capacity being allocated to learning the base distribution of the flow, constituting an expressive prior. We apply Flow-SSNs to challenging medical imaging benchmarks and achieve state-of-the-art results. Code available: https://github.com/biomedia-mira/flow-ssn.

Authors:Miguel Saavedra-Ruiz, Samer B. Nashed, Charlie Gauthier, Liam Paull
Title: Perpetua: Multi-Hypothesis Persistence Modeling for Semi-Static Environments
Abstract:
Many robotic systems require extended deployments in complex, dynamic environments. In such deployments, parts of the environment may change between subsequent robot observations. Most robotic mapping or environment modeling algorithms are incapable of representing dynamic features in a way that enables predicting their future state. Instead, they opt to filter certain state observations, either by removing them or some form of weighted averaging. This paper introduces Perpetua, a method for modeling the dynamics of semi-static features. Perpetua is able to: incorporate prior knowledge about the dynamics of the feature if it exists, track multiple hypotheses, and adapt over time to enable predicting of future feature states. Specifically, we chain together mixtures of "persistence" and "emergence" filters to model the probability that features will disappear or reappear in a formal Bayesian framework. The approach is an efficient, scalable, general, and robust method for estimating the states of features in an environment, both in the present as well as at arbitrary future times. Through experiments on simulated and real-world data, we find that Perpetua yields better accuracy than similar approaches while also being online adaptable and robust to missing observations.

Authors:Yiguo He, Xinjun Cheng, Junjie Zhu, Chunping Qiu, Jun Wang, Xichuan Zhang, Qiangjuan Huang, Ke Yang
Title: SAR-TEXT: A Large-Scale SAR Image-Text Dataset Built with SAR-Narrator and A Progressive Learning Strategy for Downstream Tasks
Abstract:
Vision Language Models (VLMs) have achieved remarkable breakthroughs in the field of remote sensing in recent years. Synthetic Aperture Radar (SAR) imagery, with its all-weather capability, is essential in remote sensing, yet the lack of large-scale, high-quality SAR image-text datasets hinders its semantic understanding. In this paper, we construct SAR-TEXT, a large-scale and high-quality dataset consisting of over 130,000 SAR image-text pairs. To construct the SAR-TEXT dataset, we design the SAR-Narrator framework, which generates textual descriptions for SAR images through a multi-stage strategy. To verify the effectiveness of the SAR-TEXT dataset, we conduct experiments on three typical vision-language tasks: image-text retrieval, image captioning, and visual question answering (VQA). Specifically, we construct three representative models on SAR-TEXT: SAR-RS-CLIP, SAR-RS-CoCa, and SAR-GPT. SAR-RS-CLIP achieves notable improvements in retrieval performance, boosting average recall by 12.97% and 10.0% on the OSdataset_512 and HRSID test sets, respectively. In the captioning task, SAR-RS-CoCa achieves significant improvements over the original CoCa models in terms of BLEU-4, SPICE, and CIDEr scores. In the VQA task, SAR-GPT outperforms baseline and single-stage models on multiple SAR-VQA datasets, demonstrating stronger semantic understanding and reasoning ability, as further confirmed by qualitative results. It is worth noting that, as a flexible captioning tool, SAR-Narrator can be readily adopted by the community to construct larger-scale SAR image-text datasets. All code, pretrained models, and the SAR-Text dataset are publicly available at: https://github.com/YiguoHe/SAR-TEXT.

Authors:Siyu Mu, Wei Xuan Chan, Choon Hwai Yap
Title: HeartUnloadNet: A Weakly-Supervised Cycle-Consistent Graph Network for Predicting Unloaded Cardiac Geometry from Diastolic States
Abstract:
The unloaded cardiac geometry (i.e., the state of the heart devoid of luminal pressure) serves as a valuable zero-stress and zero-strain reference and is critical for personalized biomechanical modeling of cardiac function, to understand both healthy and diseased physiology and to predict the effects of cardiac interventions. However, estimating the unloaded geometry from clinical images remains a challenging task. Traditional approaches rely on inverse finite element (FE) solvers that require iterative optimization and are computationally expensive. In this work, we introduce HeartUnloadNet, a deep learning framework that predicts the unloaded left ventricular (LV) shape directly from the end diastolic (ED) mesh while explicitly incorporating biophysical priors. The network accepts a mesh of arbitrary size along with physiological parameters such as ED pressure, myocardial stiffness scale, and fiber helix orientation, and outputs the corresponding unloaded mesh. It adopts a graph attention architecture and employs a cycle-consistency strategy to enable bidirectional (loading and unloading) prediction, allowing for partial self-supervision that improves accuracy and reduces the need for large training datasets. Trained and tested on 20,700 FE simulations across diverse LV geometries and physiological conditions, HeartUnloadNet achieves sub-millimeter accuracy, with an average DSC of 0.986 and HD of 0.083 cm, while reducing inference time to just 0.02 seconds per case, over 10^5 times faster and significantly more accurate than traditional inverse FE solvers. Ablation studies confirm the effectiveness of the architecture. Notably, the cycle-consistent design enables the model to maintain a DSC of 97% even with as few as 200 training samples. This work thus presents a scalable and accurate surrogate for inverse FE solvers, supporting real-time clinical applications in the future.

Authors:James Dickens, Kamyar Hamad
Title: Part Segmentation of Human Meshes via Multi-View Human Parsing
Abstract:
Recent advances in point cloud deep learning have led to models that achieve high per-part labeling accuracy on large-scale point clouds, using only the raw geometry of unordered point sets. In parallel, the field of human parsing focuses on predicting body part and clothing/accessory labels from images. This work aims to bridge these two domains by enabling per-vertex semantic segmentation of large-scale human meshes. To achieve this, a pseudo-ground truth labeling pipeline is developed for the Thuman2.1 dataset: meshes are first aligned to a canonical pose, segmented from multiple viewpoints, and the resulting point-level labels are then backprojected onto the original mesh to produce per-point pseudo ground truth annotations. Subsequently, a novel, memory-efficient sampling strategy is introduced, a windowed iterative farthest point sampling (FPS) with space-filling curve-based serialization to effectively downsample the point clouds. This is followed by a purely geometric segmentation using PointTransformer, enabling semantic parsing of human meshes without relying on texture information. Experimental results confirm the effectiveness and accuracy of the proposed approach. Project code and pre-processed data is available at https://github.com/JamesMcCullochDickens/Human3DParsing/tree/master.

Authors:Haiyang Liu, Xiaolin Hong, Xuancheng Yang, Yudi Ruan, Xiang Lian, Michael Lingelbach, Hongwei Yi, Wei Li
Title: Livatar-1: Real-Time Talking Heads Generation with Tailored Flow Matching
Abstract:
We present Livatar, a real-time audio-driven talking heads videos generation framework. Existing baselines suffer from limited lip-sync accuracy and long-term pose drift. We address these limitations with a flow matching based framework. Coupled with system optimizations, Livatar achieves competitive lip-sync quality with a 8.50 LipSync Confidence on the HDTF dataset, and reaches a throughput of 141 FPS with an end-to-end latency of 0.17s on a single A10 GPU. This makes high-fidelity avatars accessible to broader applications. Our project is available at https://www.hedra.com/ with with examples at https://h-liu1997.github.io/Livatar-1/

Authors:Grace Su, Sheng-Yu Wang, Aaron Hertzmann, Eli Shechtman, Jun-Yan Zhu, Richard Zhang
Title: Identifying Prompted Artist Names from Generated Images
Abstract:
A common and controversial use of text-to-image models is to generate pictures by explicitly naming artists, such as "in the style of Greg Rutkowski". We introduce a benchmark for prompted-artist recognition: predicting which artist names were invoked in the prompt from the image alone. The dataset contains 1.95M images covering 110 artists and spans four generalization settings: held-out artists, increasing prompt complexity, multiple-artist prompts, and different text-to-image models. We evaluate feature similarity baselines, contrastive style descriptors, data attribution methods, supervised classifiers, and few-shot prototypical networks. Generalization patterns vary: supervised and few-shot models excel on seen artists and complex prompts, whereas style descriptors transfer better when the artist's style is pronounced; multi-artist prompts remain the most challenging. Our benchmark reveals substantial headroom and provides a public testbed to advance the responsible moderation of text-to-image models. We release the dataset and benchmark to foster further research: https://graceduansu.github.io/IdentifyingPromptedArtists/

Authors:Xinyu Wang, Jinghua Hou, Zhe Liu, Yingying Zhu
Title: HybridTM: Combining Transformer and Mamba for 3D Semantic Segmentation
Abstract:
Transformer-based methods have demonstrated remarkable capabilities in 3D semantic segmentation through their powerful attention mechanisms, but the quadratic complexity limits their modeling of long-range dependencies in large-scale point clouds. While recent Mamba-based approaches offer efficient processing with linear complexity, they struggle with feature representation when extracting 3D features. However, effectively combining these complementary strengths remains an open challenge in this field. In this paper, we propose HybridTM, the first hybrid architecture that integrates Transformer and Mamba for 3D semantic segmentation. In addition, we propose the Inner Layer Hybrid Strategy, which combines attention and Mamba at a finer granularity, enabling simultaneous capture of long-range dependencies and fine-grained local features. Extensive experiments demonstrate the effectiveness and generalization of our HybridTM on diverse indoor and outdoor datasets. Furthermore, our HybridTM achieves state-of-the-art performance on ScanNet, ScanNet200, and nuScenes benchmarks. The code will be made available at https://github.com/deepinact/HybridTM.

Authors:Baoyao Yang, Wanyun Li, Dixin Chen, Junxiang Chen, Wenbin Yao, Haifeng Lin
Title: VideoMind: An Omni-Modal Video Dataset with Intent Grounding for Deep-Cognitive Video Understanding
Abstract:
This paper introduces VideoMind, a video-centric omni-modal dataset designed for deep video content cognition and enhanced multi-modal feature representation. The dataset comprises 103K video samples (3K reserved for testing), each paired with audio and systematically detailed textual descriptions. Specifically, every video and its audio is described across three hierarchical layers (factual, abstract, and intent), progressing from surface to depth. It contains over 22 million words, averaging ~225 words per sample. VideoMind's key distinction from existing datasets is its provision of intent expressions, which require contextual integration across the entire video and are not directly observable. These deep-cognitive expressions are generated using a Chain-of-Thought (COT) approach, prompting the mLLM through step-by-step reasoning. Each description includes annotations for subject, place, time, event, action, and intent, supporting downstream recognition tasks. Crucially, we establish a gold-standard benchmark with 3,000 manually validated samples for evaluating deep-cognitive video understanding. We design hybrid-cognitive retrieval experiments, scored by multi-level retrieval metrics, to appropriately assess deep video comprehension. Evaluation results for models (e.g., InternVideo, VAST, UMT-L) are released. VideoMind serves as a powerful benchmark for fine-grained cross-modal alignment and advances fields requiring in-depth video understanding, such as emotion and intent recognition. The data is publicly available on GitHub, HuggingFace, and OpenDataLab, https://github.com/cdx-cindy/VideoMind.

Authors:Daniil Morozov, Reuben Dorent, Nazim Haouchine
Title: A 3D Cross-modal Keypoint Descriptor for MR-US Matching and Registration
Abstract:
Intraoperative registration of real-time ultrasound (iUS) to preoperative Magnetic Resonance Imaging (MRI) remains an unsolved problem due to severe modality-specific differences in appearance, resolution, and field-of-view. To address this, we propose a novel 3D cross-modal keypoint descriptor for MRI-iUS matching and registration. Our approach employs a patient-specific matching-by-synthesis approach, generating synthetic iUS volumes from preoperative MRI. This enables supervised contrastive training to learn a shared descriptor space. A probabilistic keypoint detection strategy is then employed to identify anatomically salient and modality-consistent locations. During training, a curriculum-based triplet loss with dynamic hard negative mining is used to learn descriptors that are i) robust to iUS artifacts such as speckle noise and limited coverage, and ii) rotation-invariant . At inference, the method detects keypoints in MR and real iUS images and identifies sparse matches, which are then used to perform rigid registration. Our approach is evaluated using 3D MRI-iUS pairs from the ReMIND dataset. Experiments show that our approach outperforms state-of-the-art keypoint matching methods across 11 patients, with an average precision of $69.8\%$. For image registration, our method achieves a competitive mean Target Registration Error of 2.39 mm on the ReMIND2Reg benchmark. Compared to existing iUS-MR registration approach, our framework is interpretable, requires no manual initialization, and shows robustness to iUS field-of-view variation. Code is available at https://github.com/morozovdd/CrossKEY.

Authors:Zhekai Chen, Ruihang Chu, Yukang Chen, Shiwei Zhang, Yujie Wei, Yingya Zhang, Xihui Liu
Title: TTS-VAR: A Test-Time Scaling Framework for Visual Auto-Regressive Generation
Abstract:
Scaling visual generation models is essential for real-world content creation, yet requires substantial training and computational expenses. Alternatively, test-time scaling has garnered growing attention due to resource efficiency and promising performance. In this work, we present TTS-VAR, the first general test-time scaling framework for visual auto-regressive (VAR) models, modeling the generation process as a path searching problem. To dynamically balance computational efficiency with exploration capacity, we first introduce an adaptive descending batch size schedule throughout the causal generation process. Besides, inspired by VAR's hierarchical coarse-to-fine multi-scale generation, our framework integrates two key components: (i) At coarse scales, we observe that generated tokens are hard for evaluation, possibly leading to erroneous acceptance of inferior samples or rejection of superior samples. Noticing that the coarse scales contain sufficient structural information, we propose clustering-based diversity search. It preserves structural variety through semantic feature clustering, enabling later selection on samples with higher potential. (ii) In fine scales, resampling-based potential selection prioritizes promising candidates using potential scores, which are defined as reward functions incorporating multi-scale generation history. Experiments on the powerful VAR model Infinity show a notable 8.7% GenEval score improvement (from 0.69 to 0.75). Key insights reveal that early-stage structural features effectively influence final quality, and resampling efficacy varies across generation scales. Code is available at https://github.com/ali-vilab/TTS-VAR.

Authors:Tianheng Qiu, Jingchun Gao, Jingyu Li, Huiyi Leong, Xuan Huang, Xi Wang, Xiaocheng Zhang, Kele Xu, Lan Zhang
Title: IntentVCNet: Bridging Spatio-Temporal Gaps for Intention-Oriented Controllable Video Captioning
Abstract:
Intent-oriented controlled video captioning aims to generate targeted descriptions for specific targets in a video based on customized user intent. Current Large Visual Language Models (LVLMs) have gained strong instruction following and visual comprehension capabilities. Although the LVLMs demonstrated proficiency in spatial and temporal understanding respectively, it was not able to perform fine-grained spatial control in time sequences in direct response to instructions. This substantial spatio-temporal gap complicates efforts to achieve fine-grained intention-oriented control in video. Towards this end, we propose a novel IntentVCNet that unifies the temporal and spatial understanding knowledge inherent in LVLMs to bridge the spatio-temporal gap from both prompting and model perspectives. Specifically, we first propose a prompt combination strategy designed to enable LLM to model the implicit relationship between prompts that characterize user intent and video sequences. We then propose a parameter efficient box adapter that augments the object semantic information in the global visual context so that the visual token has a priori information about the user intent. The final experiment proves that the combination of the two strategies can further enhance the LVLM's ability to model spatial details in video sequences, and facilitate the LVLMs to accurately generate controlled intent-oriented captions. Our proposed method achieved state-of-the-art results in several open source LVLMs and was the runner-up in the IntentVC challenge. Our code is available on https://github.com/thqiu0419/IntentVCNet.

Authors:Clément Cornet, Romaric Besançon, Hervé Le Borgne
Title: Explaining How Visual, Textual and Multimodal Encoders Share Concepts
Abstract:
Sparse autoencoders (SAEs) have emerged as a powerful technique for extracting human-interpretable features from neural networks activations. Previous works compared different models based on SAE-derived features but those comparisons have been restricted to models within the same modality. We propose a novel indicator allowing quantitative comparison of models across SAE features, and use it to conduct a comparative study of visual, textual and multimodal encoders. We also propose to quantify the Comparative Sharedness of individual features between different classes of models. With these two new tools, we conduct several studies on 21 encoders of the three types, with two significantly different sizes, and considering generalist and domain specific datasets. The results allow to revisit previous studies at the light of encoders trained in a multimodal context and to quantify to which extent all these models share some representations or features. They also suggest that visual features that are specific to VLMs among vision encoders are shared with text encoders, highlighting the impact of text pretraining. The code is available at https://github.com/CEA-LIST/SAEshareConcepts

Authors:Zongzheng Zhang, Xuchong Qiu, Boran Zhang, Guantian Zheng, Xunjiang Gu, Guoxuan Chi, Huan-ang Gao, Leichen Wang, Ziming Liu, Xinrun Li, Igor Gilitschenski, Hongyang Li, Hang Zhao, Hao Zhao
Title: Delving into Mapping Uncertainty for Mapless Trajectory Prediction
Abstract:
Recent advances in autonomous driving are moving towards mapless approaches, where High-Definition (HD) maps are generated online directly from sensor data, reducing the need for expensive labeling and maintenance. However, the reliability of these online-generated maps remains uncertain. While incorporating map uncertainty into downstream trajectory prediction tasks has shown potential for performance improvements, current strategies provide limited insights into the specific scenarios where this uncertainty is beneficial. In this work, we first analyze the driving scenarios in which mapping uncertainty has the greatest positive impact on trajectory prediction and identify a critical, previously overlooked factor: the agent's kinematic state. Building on these insights, we propose a novel Proprioceptive Scenario Gating that adaptively integrates map uncertainty into trajectory prediction based on forecasts of the ego vehicle's future kinematics. This lightweight, self-supervised approach enhances the synergy between online mapping and trajectory prediction, providing interpretability around where uncertainty is advantageous and outperforming previous integration methods. Additionally, we introduce a Covariance-based Map Uncertainty approach that better aligns with map geometry, further improving trajectory prediction. Extensive ablation studies confirm the effectiveness of our approach, achieving up to 23.6% improvement in mapless trajectory prediction performance over the state-of-the-art method using the real-world nuScenes driving dataset. Our code, data, and models are publicly available at https://github.com/Ethan-Zheng136/Map-Uncertainty-for-Trajectory-Prediction.

Authors:Frauke Wilm, Luis Carlos Rivera Monroy, Mathias Öttl, Lukas Mürdter, Leonid Mill, Andreas Maier
Title: A COCO-Formatted Instance-Level Dataset for Plasmodium Falciparum Detection in Giemsa-Stained Blood Smears
Abstract:
Accurate detection of Plasmodium falciparum in Giemsa-stained blood smears is an essential component of reliable malaria diagnosis, especially in developing countries. Deep learning-based object detection methods have demonstrated strong potential for automated Malaria diagnosis, but their adoption is limited by the scarcity of datasets with detailed instance-level annotations. In this work, we present an enhanced version of the publicly available NIH malaria dataset, with detailed bounding box annotations in COCO format to support object detection training. We validated the revised annotations by training a Faster R-CNN model to detect infected and non-infected red blood cells, as well as white blood cells. Cross-validation on the original dataset yielded F1 scores of up to 0.88 for infected cell detection. These results underscore the importance of annotation volume and consistency, and demonstrate that automated annotation refinement combined with targeted manual correction can produce training data of sufficient quality for robust detection performance. The updated annotations set is publicly available via GitHub: https://github.com/MIRA-Vision-Microscopy/malaria-thin-smear-coco.

Authors:Francesco Dalmonte, Emirhan Bayar, Emre Akbas, Mariana-Iuliana Georgescu
Title: Q-Former Autoencoder: A Modern Framework for Medical Anomaly Detection
Abstract:
Anomaly detection in medical images is an important yet challenging task due to the diversity of possible anomalies and the practical impossibility of collecting comprehensively annotated data sets. In this work, we tackle unsupervised medical anomaly detection proposing a modernized autoencoder-based framework, the Q-Former Autoencoder, that leverages state-of-the-art pretrained vision foundation models, such as DINO, DINOv2 and Masked Autoencoder. Instead of training encoders from scratch, we directly utilize frozen vision foundation models as feature extractors, enabling rich, multi-stage, high-level representations without domain-specific fine-tuning. We propose the usage of the Q-Former architecture as the bottleneck, which enables the control of the length of the reconstruction sequence, while efficiently aggregating multiscale features. Additionally, we incorporate a perceptual loss computed using features from a pretrained Masked Autoencoder, guiding the reconstruction towards semantically meaningful structures. Our framework is evaluated on four diverse medical anomaly detection benchmarks, achieving state-of-the-art results on BraTS2021, RESC, and RSNA. Our results highlight the potential of vision foundation model encoders, pretrained on natural images, to generalize effectively to medical image analysis tasks without further fine-tuning. We release the code and models at https://github.com/emirhanbayar/QFAE.

Authors:Haoran Xu, Saining Zhang, Peishuo Li, Baijun Ye, Xiaoxue Chen, Huan-ang Gao, Jv Zheng, Xiaowei Song, Ziqiao Peng, Run Miao, Jinrang Jia, Yifeng Shi, Guangqi Yi, Hang Zhao, Hao Tang, Hongyang Li, Kaicheng Yu, Hao Zhao
Title: CRUISE: Cooperative Reconstruction and Editing in V2X Scenarios using Gaussian Splatting
Abstract:
Vehicle-to-everything (V2X) communication plays a crucial role in autonomous driving, enabling cooperation between vehicles and infrastructure. While simulation has significantly contributed to various autonomous driving tasks, its potential for data generation and augmentation in V2X scenarios remains underexplored. In this paper, we introduce CRUISE, a comprehensive reconstruction-and-synthesis framework designed for V2X driving environments. CRUISE employs decomposed Gaussian Splatting to accurately reconstruct real-world scenes while supporting flexible editing. By decomposing dynamic traffic participants into editable Gaussian representations, CRUISE allows for seamless modification and augmentation of driving scenes. Furthermore, the framework renders images from both ego-vehicle and infrastructure views, enabling large-scale V2X dataset augmentation for training and evaluation. Our experimental results demonstrate that: 1) CRUISE reconstructs real-world V2X driving scenes with high fidelity; 2) using CRUISE improves 3D detection across ego-vehicle, infrastructure, and cooperative views, as well as cooperative 3D tracking on the V2X-Seq benchmark; and 3) CRUISE effectively generates challenging corner cases.

Authors:Simin Huo, Ning Li
Title: Iwin Transformer: Hierarchical Vision Transformer using Interleaved Windows
Abstract:
We introduce Iwin Transformer, a novel position-embedding-free hierarchical vision transformer, which can be fine-tuned directly from low to high resolution, through the collaboration of innovative interleaved window attention and depthwise separable convolution. This approach uses attention to connect distant tokens and applies convolution to link neighboring tokens, enabling global information exchange within a single module, overcoming Swin Transformer's limitation of requiring two consecutive blocks to approximate global attention. Extensive experiments on visual benchmarks demonstrate that Iwin Transformer exhibits strong competitiveness in tasks such as image classification (87.4 top-1 accuracy on ImageNet-1K), semantic segmentation and video action recognition. We also validate the effectiveness of the core component in Iwin as a standalone module that can seamlessly replace the self-attention module in class-conditional image generation. The concepts and methods introduced by the Iwin Transformer have the potential to inspire future research, like Iwin 3D Attention in video generation. The code and models are available at https://github.com/cominder/Iwin-Transformer.

Authors:Yilong Hu, Shijie Chang, Lihe Zhang, Feng Tian, Weibing Sun, Huchuan Lu
Title: UniSegDiff: Boosting Unified Lesion Segmentation via a Staged Diffusion Model
Abstract:
The Diffusion Probabilistic Model (DPM) has demonstrated remarkable performance across a variety of generative tasks. The inherent randomness in diffusion models helps address issues such as blurring at the edges of medical images and labels, positioning Diffusion Probabilistic Models (DPMs) as a promising approach for lesion segmentation. However, we find that the current training and inference strategies of diffusion models result in an uneven distribution of attention across different timesteps, leading to longer training times and suboptimal solutions. To this end, we propose UniSegDiff, a novel diffusion model framework designed to address lesion segmentation in a unified manner across multiple modalities and organs. This framework introduces a staged training and inference approach, dynamically adjusting the prediction targets at different stages, forcing the model to maintain high attention across all timesteps, and achieves unified lesion segmentation through pre-training the feature extraction network for segmentation. We evaluate performance on six different organs across various imaging modalities. Comprehensive experimental results demonstrate that UniSegDiff significantly outperforms previous state-of-the-art (SOTA) approaches. The code is available at https://github.com/HUYILONG-Z/UniSegDiff.

Authors:Runmin Zhang, Zhu Yu, Si-Yuan Cao, Lingyu Zhu, Guangyi Zhang, Xiaokai Bai, Hui-Liang Shen
Title: Boosting Multi-View Indoor 3D Object Detection via Adaptive 3D Volume Construction
Abstract:
This work presents SGCDet, a novel multi-view indoor 3D object detection framework based on adaptive 3D volume construction. Unlike previous approaches that restrict the receptive field of voxels to fixed locations on images, we introduce a geometry and context aware aggregation module to integrate geometric and contextual information within adaptive regions in each image and dynamically adjust the contributions from different views, enhancing the representation capability of voxel features. Furthermore, we propose a sparse volume construction strategy that adaptively identifies and selects voxels with high occupancy probabilities for feature refinement, minimizing redundant computation in free space. Benefiting from the above designs, our framework achieves effective and efficient volume construction in an adaptive way. Better still, our network can be supervised using only 3D bounding boxes, eliminating the dependence on ground-truth scene geometry. Experimental results demonstrate that SGCDet achieves state-of-the-art performance on the ScanNet, ScanNet200 and ARKitScenes datasets. The source code is available at https://github.com/RM-Zhang/SGCDet.

Authors:Jiangjun Peng, Yisi Luo, Xiangyong Cao, Shuang Xu, Deyu Meng
Title: Beyond Low-rankness: Guaranteed Matrix Recovery via Modified Nuclear Norm
Abstract:
The nuclear norm (NN) has been widely explored in matrix recovery problems, such as Robust PCA and matrix completion, leveraging the inherent global low-rank structure of the data. In this study, we introduce a new modified nuclear norm (MNN) framework, where the MNN family norms are defined by adopting suitable transformations and performing the NN on the transformed matrix. The MNN framework offers two main advantages: (1) it jointly captures both local information and global low-rankness without requiring trade-off parameter tuning; (2) Under mild assumptions on the transformation, we provided exact theoretical recovery guarantees for both Robust PCA and MC tasks-an achievement not shared by existing methods that combine local and global information. Thanks to its general and flexible design, MNN can accommodate various proven transformations, enabling a unified and effective approach to structured low-rank recovery. Extensive experiments demonstrate the effectiveness of our method. Code and supplementary material are available at https://github.com/andrew-pengjj/modified_nuclear_norm.

Authors:Minje Park, Jeonghwa Lim, Taehyung Yu, Sunghoon Joo
Title: SemiSegECG: A Multi-Dataset Benchmark for Semi-Supervised Semantic Segmentation in ECG Delineation
Abstract:
Electrocardiogram (ECG) delineation, the segmentation of meaningful waveform features, is critical for clinical diagnosis. Despite recent advances using deep learning, progress has been limited by the scarcity of publicly available annotated datasets. Semi-supervised learning presents a promising solution by leveraging abundant unlabeled ECG data. In this study, we present SemiSegECG, the first systematic benchmark for semi-supervised semantic segmentation (SemiSeg) in ECG delineation. We curated and unified multiple public datasets, including previously underused sources, to support robust and diverse evaluation. We adopted five representative SemiSeg algorithms from computer vision, implemented them on two different architectures: the convolutional network and the transformer, and evaluated them in two different settings: in-domain and cross-domain. Additionally, we propose ECG-specific training configurations and augmentation strategies and introduce a standardized evaluation framework. Our results show that the transformer outperforms the convolutional network in semi-supervised ECG delineation. We anticipate that SemiSegECG will serve as a foundation for advancing semi-supervised ECG delineation methods and will facilitate further research in this domain.

Authors:Jincheng Li, Chunyu Xie, Ji Ao, Dawei Leng, Yuhui Yin
Title: LMM-Det: Make Large Multimodal Models Excel in Object Detection
Abstract:
Large multimodal models (LMMs) have garnered wide-spread attention and interest within the artificial intelligence research and industrial communities, owing to their remarkable capability in multimodal understanding, reasoning, and in-context learning, among others. While LMMs have demonstrated promising results in tackling multimodal tasks like image captioning, visual question answering, and visual grounding, the object detection capabilities of LMMs exhibit a significant gap compared to specialist detectors. To bridge the gap, we depart from the conventional methods of integrating heavy detectors with LMMs and propose LMM-Det, a simple yet effective approach that leverages a Large Multimodal Model for vanilla object Detection without relying on specialized detection modules. Specifically, we conduct a comprehensive exploratory analysis when a large multimodal model meets with object detection, revealing that the recall rate degrades significantly compared with specialist detection models. To mitigate this, we propose to increase the recall rate by introducing data distribution adjustment and inference optimization tailored for object detection. We re-organize the instruction conversations to enhance the object detection capabilities of large multimodal models. We claim that a large multimodal model possesses detection capability without any extra detection modules. Extensive experiments support our claim and show the effectiveness of the versatile LMM-Det. The datasets, models, and codes are available at https://github.com/360CVGroup/LMM-Det.

Authors:Chenyu Su, Weiwei Shang, Chen Qian, Fei Zhang, Shuang Cong
Title: ReSem3D: Refinable 3D Spatial Constraints via Fine-Grained Semantic Grounding for Generalizable Robotic Manipulation
Abstract:
Semantics-driven 3D spatial constraints align highlevel semantic representations with low-level action spaces, facilitating the unification of task understanding and execution in robotic manipulation. The synergistic reasoning of Multimodal Large Language Models (MLLMs) and Vision Foundation Models (VFMs) enables cross-modal 3D spatial constraint construction. Nevertheless, existing methods have three key limitations: (1) coarse semantic granularity in constraint modeling, (2) lack of real-time closed-loop planning, (3) compromised robustness in semantically diverse environments. To address these challenges, we propose ReSem3D, a unified manipulation framework for semantically diverse environments, leveraging the synergy between VFMs and MLLMs to achieve fine-grained visual grounding and dynamically constructs hierarchical 3D spatial constraints for real-time manipulation. Specifically, the framework is driven by hierarchical recursive reasoning in MLLMs, which interact with VFMs to automatically construct 3D spatial constraints from natural language instructions and RGB-D observations in two stages: part-level extraction and region-level refinement. Subsequently, these constraints are encoded as real-time optimization objectives in joint space, enabling reactive behavior to dynamic disturbances. Extensive simulation and real-world experiments are conducted in semantically rich household and sparse chemical lab environments. The results demonstrate that ReSem3D performs diverse manipulation tasks under zero-shot conditions, exhibiting strong adaptability and generalization. Code and videos are available at https://github.com/scy-v/ReSem3D and https://resem3d.github.io.

Authors:Zhuoguang Chen, Minghui Qin, Tianyuan Yuan, Zhe Liu, Hang Zhao
Title: LONG3R: Long Sequence Streaming 3D Reconstruction
Abstract:
Recent advancements in multi-view scene reconstruction have been significant, yet existing methods face limitations when processing streams of input images. These methods either rely on time-consuming offline optimization or are restricted to shorter sequences, hindering their applicability in real-time scenarios. In this work, we propose LONG3R (LOng sequence streaming 3D Reconstruction), a novel model designed for streaming multi-view 3D scene reconstruction over longer sequences. Our model achieves real-time processing by operating recurrently, maintaining and updating memory with each new observation. We first employ a memory gating mechanism to filter relevant memory, which, together with a new observation, is fed into a dual-source refined decoder for coarse-to-fine interaction. To effectively capture long-sequence memory, we propose a 3D spatio-temporal memory that dynamically prunes redundant spatial information while adaptively adjusting resolution along the scene. To enhance our model's performance on long sequences while maintaining training efficiency, we employ a two-stage curriculum training strategy, each stage targeting specific capabilities. Experiments demonstrate that LONG3R outperforms state-of-the-art streaming methods, particularly for longer sequences, while maintaining real-time inference speed. Project page: https://zgchen33.github.io/LONG3R/.

Authors:Chengchang Tian, Jianwei Ma, Yan Huang, Zhanye Chen, Honghao Wei, Hui Zhang, Wei Hong
Title: DATA: Domain-And-Time Alignment for High-Quality Feature Fusion in Collaborative Perception
Abstract:
Feature-level fusion shows promise in collaborative perception (CP) through balanced performance and communication bandwidth trade-off. However, its effectiveness critically relies on input feature quality. The acquisition of high-quality features faces domain gaps from hardware diversity and deployment conditions, alongside temporal misalignment from transmission delays. These challenges degrade feature quality with cumulative effects throughout the collaborative network. In this paper, we present the Domain-And-Time Alignment (DATA) network, designed to systematically align features while maximizing their semantic representations for fusion. Specifically, we propose a Consistency-preserving Domain Alignment Module (CDAM) that reduces domain gaps through proximal-region hierarchical downsampling and observability-constrained discriminator. We further propose a Progressive Temporal Alignment Module (PTAM) to handle transmission delays via multi-scale motion modeling and two-stage compensation. Building upon the aligned features, an Instance-focused Feature Aggregation Module (IFAM) is developed to enhance semantic representations. Extensive experiments demonstrate that DATA achieves state-of-the-art performance on three typical datasets, maintaining robustness with severe communication delays and pose errors. The code will be released at https://github.com/ChengchangTian/DATA.

Authors:Minghao Fu, Guo-Hua Wang, Xiaohao Chen, Qing-Guo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang
Title: TeEFusion: Blending Text Embeddings to Distill Classifier-Free Guidance
Abstract:
Recent advances in text-to-image synthesis largely benefit from sophisticated sampling strategies and classifier-free guidance (CFG) to ensure high-quality generation. However, CFG's reliance on two forward passes, especially when combined with intricate sampling algorithms, results in prohibitively high inference costs. To address this, we introduce TeEFusion (Text Embeddings Fusion), a novel and efficient distillation method that directly incorporates the guidance magnitude into the text embeddings and distills the teacher model's complex sampling strategy. By simply fusing conditional and unconditional text embeddings using linear operations, TeEFusion reconstructs the desired guidance without adding extra parameters, simultaneously enabling the student model to learn from the teacher's output produced via its sophisticated sampling approach. Extensive experiments on state-of-the-art models such as SD3 demonstrate that our method allows the student to closely mimic the teacher's performance with a far simpler and more efficient sampling strategy. Consequently, the student model achieves inference speeds up to 6$\times$ faster than the teacher model, while maintaining image quality at levels comparable to those obtained through the teacher's complex sampling approach. The code is publicly available at https://github.com/AIDC-AI/TeEFusion.

Authors:SeungJun Moon, Hah Min Lew, Seungeun Lee, Ji-Su Kang, Gyeong-Moon Park
Title: GeoAvatar: Adaptive Geometrical Gaussian Splatting for 3D Head Avatar
Abstract:
Despite recent progress in 3D head avatar generation, balancing identity preservation, i.e., reconstruction, with novel poses and expressions, i.e., animation, remains a challenge. Existing methods struggle to adapt Gaussians to varying geometrical deviations across facial regions, resulting in suboptimal quality. To address this, we propose GeoAvatar, a framework for adaptive geometrical Gaussian Splatting. GeoAvatar leverages Adaptive Pre-allocation Stage (APS), an unsupervised method that segments Gaussians into rigid and flexible sets for adaptive offset regularization. Then, based on mouth anatomy and dynamics, we introduce a novel mouth structure and the part-wise deformation strategy to enhance the animation fidelity of the mouth. Finally, we propose a regularization loss for precise rigging between Gaussians and 3DMM faces. Moreover, we release DynamicFace, a video dataset with highly expressive facial motions. Extensive experiments show the superiority of GeoAvatar compared to state-of-the-art methods in reconstruction and novel animation scenarios.

Authors:Jinhong He, Minglong Xue, Zhipu Liu, Mingliang Zhou, Aoxiang Ning, Palaiahnakote Shivakumara
Title: Degradation-Consistent Learning via Bidirectional Diffusion for Low-Light Image Enhancement
Abstract:
Low-light image enhancement aims to improve the visibility of degraded images to better align with human visual perception. While diffusion-based methods have shown promising performance due to their strong generative capabilities. However, their unidirectional modelling of degradation often struggles to capture the complexity of real-world degradation patterns, leading to structural inconsistencies and pixel misalignments. To address these challenges, we propose a bidirectional diffusion optimization mechanism that jointly models the degradation processes of both low-light and normal-light images, enabling more precise degradation parameter matching and enhancing generation quality. Specifically, we perform bidirectional diffusion-from low-to-normal light and from normal-to-low light during training and introduce an adaptive feature interaction block (AFI) to refine feature representation. By leveraging the complementarity between these two paths, our approach imposes an implicit symmetry constraint on illumination attenuation and noise distribution, facilitating consistent degradation learning and improving the models ability to perceive illumination and detail degradation. Additionally, we design a reflection-aware correction module (RACM) to guide color restoration post-denoising and suppress overexposed regions, ensuring content consistency and generating high-quality images that align with human visual perception. Extensive experiments on multiple benchmark datasets demonstrate that our method outperforms state-of-the-art methods in both quantitative and qualitative evaluations while generalizing effectively to diverse degradation scenarios. Code at https://github.com/hejh8/BidDiff

Authors:Binghua Li, Ziqing Chang, Tong Liang, Chao Li, Toshihisa Tanaka, Shigeki Aoki, Qibin Zhao, Zhe Sun
Title: Parameter-Efficient Fine-Tuning of 3D DDPM for MRI Image Generation Using Tensor Networks
Abstract:
We address the challenge of parameter-efficient fine-tuning (PEFT) for three-dimensional (3D) U-Net-based denoising diffusion probabilistic models (DDPMs) in magnetic resonance imaging (MRI) image generation. Despite its practical significance, research on parameter-efficient representations of 3D convolution operations remains limited. To bridge this gap, we propose Tensor Volumetric Operator (TenVOO), a novel PEFT method specifically designed for fine-tuning DDPMs with 3D convolutional backbones. Leveraging tensor network modeling, TenVOO represents 3D convolution kernels with lower-dimensional tensors, effectively capturing complex spatial dependencies during fine-tuning with few parameters. We evaluate TenVOO on three downstream brain MRI datasets-ADNI, PPMI, and BraTS2021-by fine-tuning a DDPM pretrained on 59,830 T1-weighted brain MRI scans from the UK Biobank. Our results demonstrate that TenVOO achieves state-of-the-art performance in multi-scale structural similarity index measure (MS-SSIM), outperforming existing approaches in capturing spatial dependencies while requiring only 0.3% of the trainable parameters of the original model. Our code is available at: https://github.com/xiaovhua/tenvoo

Authors:Qianyi He, Yuan Chang Leong
Title: A Multimodal Seq2Seq Transformer for Predicting Brain Responses to Naturalistic Stimuli
Abstract:
The Algonauts 2025 Challenge called on the community to develop encoding models that predict whole-brain fMRI responses to naturalistic multimodal movies. In this submission, we propose a sequence-to-sequence Transformer that autoregressively predicts fMRI activity from visual, auditory, and language inputs. Stimulus features were extracted using pretrained models including VideoMAE, HuBERT, Qwen, and BridgeTower. The decoder integrates information from prior brain states and current stimuli via dual cross-attention mechanisms that attend to both perceptual information extracted from the stimulus as well as narrative information provided by high-level summaries of the content. One core innovation of our approach is the use of sequences of multimodal context to predict sequences of brain activity, enabling the model to capture long-range temporal structure in both stimuli and neural responses. Another is the combination of a shared encoder with partial subject-specific decoder, which leverages common representational structure across subjects while accounting for individual variability. Our model achieves strong performance on both in-distribution and out-of-distribution data, demonstrating the effectiveness of temporally-aware, multimodal sequence modeling for brain activity prediction. The code is available at https://github.com/Angelneer926/Algonauts_challenge.

Authors:Pascal Spiegler, Taha Koleilat, Arash Harirpoush, Corey S. Miller, Hassan Rivaz, Marta Kersten-Oertel, Yiming Xiao
Title: TextSAM-EUS: Text Prompt Learning for SAM to Accurately Segment Pancreatic Tumor in Endoscopic Ultrasound
Abstract:
Pancreatic cancer carries a poor prognosis and relies on endoscopic ultrasound (EUS) for targeted biopsy and radiotherapy. However, the speckle noise, low contrast, and unintuitive appearance of EUS make segmentation of pancreatic tumors with fully supervised deep learning (DL) models both error-prone and dependent on large, expert-curated annotation datasets. To address these challenges, we present TextSAM-EUS, a novel, lightweight, text-driven adaptation of the Segment Anything Model (SAM) that requires no manual geometric prompts at inference. Our approach leverages text prompt learning (context optimization) through the BiomedCLIP text encoder in conjunction with a LoRA-based adaptation of SAM's architecture to enable automatic pancreatic tumor segmentation in EUS, tuning only 0.86% of the total parameters. On the public Endoscopic Ultrasound Database of the Pancreas, TextSAM-EUS with automatic prompts attains 82.69% Dice and 85.28% normalized surface distance (NSD), and with manual geometric prompts reaches 83.10% Dice and 85.70% NSD, outperforming both existing state-of-the-art (SOTA) supervised DL models and foundation models (e.g., SAM and its variants). As the first attempt to incorporate prompt learning in SAM-based medical image segmentation, TextSAM-EUS offers a practical option for efficient and robust automatic EUS segmentation. Code is available at https://github.com/HealthX-Lab/TextSAM-EUS .

Authors:Xiaoran Sun, Liyan Wang, Cong Wang, Yeying Jin, Kin-man Lam, Zhixun Su, Yang Yang, Jinshan Pan
Title: Adapting Large VLMs with Iterative and Manual Instructions for Generative Low-light Enhancement
Abstract:
Most existing low-light image enhancement (LLIE) methods rely on pre-trained model priors, low-light inputs, or both, while neglecting the semantic guidance available from normal-light images. This limitation hinders their effectiveness in complex lighting conditions. In this paper, we propose VLM-IMI, a novel framework that leverages large vision-language models (VLMs) with iterative and manual instructions (IMIs) for LLIE. VLM-IMI incorporates textual descriptions of the desired normal-light content as enhancement cues, enabling semantically informed restoration. To effectively integrate cross-modal priors, we introduce an instruction prior fusion module, which dynamically aligns and fuses image and text features, promoting the generation of detailed and semantically coherent outputs. During inference, we adopt an iterative and manual instruction strategy to refine textual instructions, progressively improving visual quality. This refinement enhances structural fidelity, semantic alignment, and the recovery of fine details under extremely low-light conditions. Extensive experiments across diverse scenarios demonstrate that VLM-IMI outperforms state-of-the-art methods in both quantitative metrics and perceptual quality. The source code is available at https://github.com/sunxiaoran01/VLM-IMI.

Authors:Duy Nguyen, Archiki Prasad, Elias Stengel-Eskin, Mohit Bansal
Title: GrAInS: Gradient-based Attribution for Inference-Time Steering of LLMs and VLMs
Abstract:
Inference-time steering methods offer a lightweight alternative to fine-tuning large language models (LLMs) and vision-language models (VLMs) by modifying internal activations at test time without updating model weights. However, most existing approaches rely on fixed, global intervention vectors, overlook the causal influence of individual input tokens, and fail to leverage informative gradients from the model's logits, particularly in multimodal settings where visual and textual inputs contribute unevenly. To address these limitations, we introduce GrAInS, an inference-time steering approach that operates across both language-only and vision-language models and tasks. GrAInS uses contrastive, gradient-based attribution via Integrated Gradients to identify the top-k most influential tokens, both positively and negatively attributed based on their contribution to preferred versus dispreferred outputs. These tokens are then used to construct directional steering vectors that capture semantic shifts from undesirable to desirable behavior. During inference, GrAInS adjusts hidden activations at transformer layers guided by token-level attribution signals, and normalizes activations to preserve representational scale. This enables fine-grained, interpretable, and modular control over model behavior, without retraining or auxiliary supervision. Empirically, GrAInS consistently outperforms both fine-tuning and existing steering baselines: it achieves a 13.22% accuracy gain on TruthfulQA using Llama-3.1-8B, reduces hallucination rates on MMHal-Bench from 0.624 to 0.514 with LLaVA-1.6-7B, and improves alignment win rates on SPA-VL by 8.11%, all while preserving the model's fluency and general capabilities.

Authors:Yuezun Li, Delong Zhu, Xinjie Cui, Siwei Lyu
Title: Celeb-DF++: A Large-scale Challenging Video DeepFake Benchmark for Generalizable Forensics
Abstract:
The rapid advancement of AI technologies has significantly increased the diversity of DeepFake videos circulating online, posing a pressing challenge for \textit{generalizable forensics}, \ie, detecting a wide range of unseen DeepFake types using a single model. Addressing this challenge requires datasets that are not only large-scale but also rich in forgery diversity. However, most existing datasets, despite their scale, include only a limited variety of forgery types, making them insufficient for developing generalizable detection methods. Therefore, we build upon our earlier Celeb-DF dataset and introduce {Celeb-DF++}, a new large-scale and challenging video DeepFake benchmark dedicated to the generalizable forensics challenge. Celeb-DF++ covers three commonly encountered forgery scenarios: Face-swap (FS), Face-reenactment (FR), and Talking-face (TF). Each scenario contains a substantial number of high-quality forged videos, generated using a total of 22 various recent DeepFake methods. These methods differ in terms of architectures, generation pipelines, and targeted facial regions, covering the most prevalent DeepFake cases witnessed in the wild. We also introduce evaluation protocols for measuring the generalizability of 24 recent detection methods, highlighting the limitations of existing detection methods and the difficulty of our new dataset.

Authors:Jaeho Shin, Hyeonjae Gil, Junwoo Jang, Maani Ghaffari, Ayoung Kim
Title: Registration beyond Points: General Affine Subspace Alignment via Geodesic Distance on Grassmann Manifold
Abstract:
Affine Grassmannian has been favored for expressing proximity between lines and planes due to its theoretical exactness in measuring distances among features. Despite this advantage, the existing method can only measure the proximity without yielding the distance as an explicit function of rigid body transformation. Thus, an optimizable distance function on the manifold has remained underdeveloped, stifling its application in registration problems. This paper is the first to explicitly derive an optimizable cost function between two Grassmannian features with respect to rigid body transformation ($\mathbf{R}$ and $\mathbf{t}$). Specifically, we present a rigorous mathematical proof demonstrating that the bases of high-dimensional linear subspaces can serve as an explicit representation of the cost. Finally, we propose an optimizable cost function based on the transformed bases that can be applied to the registration problem of any affine subspace. Compared to vector parameter-based approaches, our method is able to find a globally optimal solution by directly minimizing the geodesic distance which is agnostic to representation ambiguity. The resulting cost function and its extension to the inlier-set maximizing Branch-and-Bound (BnB) solver have been demonstrated to improve the convergence of existing solutions or outperform them in various computer vision tasks. The code is available on https://github.com/joomeok/GrassmannRegistration.

Authors:Huy Nguyen, Kien Nguyen, Akila Pemasiri, Akmal Jahan, Clinton Fookes, Sridha Sridharan
Title: AG-VPReID.VIR: Bridging Aerial and Ground Platforms for Video-based Visible-Infrared Person Re-ID
Abstract:
Person re-identification (Re-ID) across visible and infrared modalities is crucial for 24-hour surveillance systems, but existing datasets primarily focus on ground-level perspectives. While ground-based IR systems offer nighttime capabilities, they suffer from occlusions, limited coverage, and vulnerability to obstructions--problems that aerial perspectives uniquely solve. To address these limitations, we introduce AG-VPReID.VIR, the first aerial-ground cross-modality video-based person Re-ID dataset. This dataset captures 1,837 identities across 4,861 tracklets (124,855 frames) using both UAV-mounted and fixed CCTV cameras in RGB and infrared modalities. AG-VPReID.VIR presents unique challenges including cross-viewpoint variations, modality discrepancies, and temporal dynamics. Additionally, we propose TCC-VPReID, a novel three-stream architecture designed to address the joint challenges of cross-platform and cross-modality person Re-ID. Our approach bridges the domain gaps between aerial-ground perspectives and RGB-IR modalities, through style-robust feature learning, memory-based cross-view adaptation, and intermediary-guided temporal modeling. Experiments show that AG-VPReID.VIR presents distinctive challenges compared to existing datasets, with our TCC-VPReID framework achieving significant performance gains across multiple evaluation protocols. Dataset and code are available at https://github.com/agvpreid25/AG-VPReID.VIR.

Authors:Deepa Krishnaswamy, Cosmin Ciausu, Steve Pieper, Ron Kikinis, Benjamin Billot, Andrey Fedorov
Title: Benchmarking of Deep Learning Methods for Generic MRI Multi-Organ Abdominal Segmentation
Abstract:
Recent advances in deep learning have led to robust automated tools for segmentation of abdominal computed tomography (CT). Meanwhile, segmentation of magnetic resonance imaging (MRI) is substantially more challenging due to the inherent signal variability and the increased effort required for annotating training datasets. Hence, existing approaches are trained on limited sets of MRI sequences, which might limit their generalizability. To characterize the landscape of MRI abdominal segmentation tools, we present here a comprehensive benchmarking of the three state-of-the-art and open-source models: MRSegmentator, MRISegmentator-Abdomen, and TotalSegmentator MRI. Since these models are trained using labor-intensive manual annotation cycles, we also introduce and evaluate ABDSynth, a SynthSeg-based model purely trained on widely available CT segmentations (no real images). More generally, we assess accuracy and generalizability by leveraging three public datasets (not seen by any of the evaluated methods during their training), which span all major manufacturers, five MRI sequences, as well as a variety of subject conditions, voxel resolutions, and fields-of-view. Our results reveal that MRSegmentator achieves the best performance and is most generalizable. In contrast, ABDSynth yields slightly less accurate results, but its relaxed requirements in training data make it an alternative when the annotation budget is limited. The evaluation code and datasets are given for future benchmarking at https://github.com/deepakri201/AbdoBench, along with inference code and weights for ABDSynth.

Authors:Rameen Abdal, Or Patashnik, Ekaterina Deyneka, Hao Chen, Aliaksandr Siarohin, Sergey Tulyakov, Daniel Cohen-Or, Kfir Aberman
Title: Zero-Shot Dynamic Concept Personalization with Grid-Based LoRA
Abstract:
Recent advances in text-to-video generation have enabled high-quality synthesis from text and image prompts. While the personalization of dynamic concepts, which capture subject-specific appearance and motion from a single video, is now feasible, most existing methods require per-instance fine-tuning, limiting scalability. We introduce a fully zero-shot framework for dynamic concept personalization in text-to-video models. Our method leverages structured 2x2 video grids that spatially organize input and output pairs, enabling the training of lightweight Grid-LoRA adapters for editing and composition within these grids. At inference, a dedicated Grid Fill module completes partially observed layouts, producing temporally coherent and identity preserving outputs. Once trained, the entire system operates in a single forward pass, generalizing to previously unseen dynamic concepts without any test-time optimization. Extensive experiments demonstrate high-quality and consistent results across a wide range of subjects beyond trained concepts and editing scenarios.

Authors:Md. Al-Masrur Khan, Durgakant Pushp, Lantao Liu
Title: AFRDA: Attentive Feature Refinement for Domain Adaptive Semantic Segmentation
Abstract:
In Unsupervised Domain Adaptive Semantic Segmentation (UDA-SS), a model is trained on labeled source domain data (e.g., synthetic images) and adapted to an unlabeled target domain (e.g., real-world images) without access to target annotations. Existing UDA-SS methods often struggle to balance fine-grained local details with global contextual information, leading to segmentation errors in complex regions. To address this, we introduce the Adaptive Feature Refinement (AFR) module, which enhances segmentation accuracy by refining highresolution features using semantic priors from low-resolution logits. AFR also integrates high-frequency components, which capture fine-grained structures and provide crucial boundary information, improving object delineation. Additionally, AFR adaptively balances local and global information through uncertaintydriven attention, reducing misclassifications. Its lightweight design allows seamless integration into HRDA-based UDA methods, leading to state-of-the-art segmentation performance. Our approach improves existing UDA-SS methods by 1.05% mIoU on GTA V --> Cityscapes and 1.04% mIoU on Synthia-->Cityscapes. The implementation of our framework is available at: https://github.com/Masrur02/AFRDA

Authors:Dou Hoon Kwark, Shirui Luo, Xiyue Zhu, Yudu Li, Zhi-Pei Liang, Volodymyr Kindratenko
Title: Hierarchical Diffusion Framework for Pseudo-Healthy Brain MRI Inpainting with Enhanced 3D Consistency
Abstract:
Pseudo-healthy image inpainting is an essential preprocessing step for analyzing pathological brain MRI scans. Most current inpainting methods favor slice-wise 2D models for their high in-plane fidelity, but their independence across slices produces discontinuities in the volume. Fully 3D models alleviate this issue, but their high model capacity demands extensive training data for reliable, high-fidelity synthesis -- often impractical in medical settings. We address these limitations with a hierarchical diffusion framework by replacing direct 3D modeling with two perpendicular coarse-to-fine 2D stages. An axial diffusion model first yields a coarse, globally consistent inpainting; a coronal diffusion model then refines anatomical details. By combining perpendicular spatial views with adaptive resampling, our method balances data efficiency and volumetric consistency. Our experiments show our approach outperforms state-of-the-art baselines in both realism and volumetric consistency, making it a promising solution for pseudo-healthy image inpainting. Code is available at https://github.com/dou0000/3dMRI-Consistent-Inpaint.

Authors:Semih Eren, Deniz Kucukahmetler, Nico Scherf
Title: Multimodal Recurrent Ensembles for Predicting Brain Responses to Naturalistic Movies (Algonauts 2025)
Abstract:
Accurately predicting distributed cortical responses to naturalistic stimuli requires models that integrate visual, auditory and semantic information over time. We present a hierarchical multimodal recurrent ensemble that maps pretrained video, audio, and language embeddings to fMRI time series recorded while four subjects watched almost 80 hours of movies provided by the Algonauts 2025 challenge. Modality-specific bidirectional RNNs encode temporal dynamics; their hidden states are fused and passed to a second recurrent layer, and lightweight subject-specific heads output responses for 1000 cortical parcels. Training relies on a composite MSE-correlation loss and a curriculum that gradually shifts emphasis from early sensory to late association regions. Averaging 100 model variants further boosts robustness. The resulting system ranked third on the competition leaderboard, achieving an overall Pearson r = 0.2094 and the highest single-parcel peak score (mean r = 0.63) among all participants, with particularly strong gains for the most challenging subject (Subject 5). The approach establishes a simple, extensible baseline for future multimodal brain-encoding benchmarks.

Authors:Yi Xin, Juncheng Yan, Qi Qin, Zhen Li, Dongyang Liu, Shicheng Li, Victor Shea-Jay Huang, Yupeng Zhou, Renrui Zhang, Le Zhuo, Tiancheng Han, Xiaoqing Sun, Siqi Luo, Mengmeng Wang, Bin Fu, Yuewen Cao, Hongsheng Li, Guangtao Zhai, Xiaohong Liu, Yu Qiao, Peng Gao
Title: Lumina-mGPT 2.0: Stand-Alone AutoRegressive Image Modeling
Abstract:
We present Lumina-mGPT 2.0, a stand-alone, decoder-only autoregressive model that revisits and revitalizes the autoregressive paradigm for high-quality image generation and beyond. Unlike existing approaches that rely on pretrained components or hybrid architectures, Lumina-mGPT 2.0 is trained entirely from scratch, enabling unrestricted architectural design and licensing freedom. It achieves generation quality on par with state-of-the-art diffusion models such as DALL-E 3 and SANA, while preserving the inherent flexibility and compositionality of autoregressive modeling. Our unified tokenization scheme allows the model to seamlessly handle a wide spectrum of tasks-including subject-driven generation, image editing, controllable synthesis, and dense prediction-within a single generative framework. To further boost usability, we incorporate efficient decoding strategies like inference-time scaling and speculative Jacobi sampling to improve quality and speed, respectively. Extensive evaluations on standard text-to-image benchmarks (e.g., GenEval, DPG) demonstrate that Lumina-mGPT 2.0 not only matches but in some cases surpasses diffusion-based models. Moreover, we confirm its multi-task capabilities on the Graph200K benchmark, with the native Lumina-mGPT 2.0 performing exceptionally well. These results position Lumina-mGPT 2.0 as a strong, flexible foundation model for unified multimodal generation. We have released our training details, code, and models at https://github.com/Alpha-VLLM/Lumina-mGPT-2.0.

Authors:Yiwen Chen, Zhihao Li, Yikai Wang, Hu Zhang, Qin Li, Chi Zhang, Guosheng Lin
Title: Ultra3D: Efficient and High-Fidelity 3D Generation with Part Attention
Abstract:
Recent advances in sparse voxel representations have significantly improved the quality of 3D content generation, enabling high-resolution modeling with fine-grained geometry. However, existing frameworks suffer from severe computational inefficiencies due to the quadratic complexity of attention mechanisms in their two-stage diffusion pipelines. In this work, we propose Ultra3D, an efficient 3D generation framework that significantly accelerates sparse voxel modeling without compromising quality. Our method leverages the compact VecSet representation to efficiently generate a coarse object layout in the first stage, reducing token count and accelerating voxel coordinate prediction. To refine per-voxel latent features in the second stage, we introduce Part Attention, a geometry-aware localized attention mechanism that restricts attention computation within semantically consistent part regions. This design preserves structural continuity while avoiding unnecessary global attention, achieving up to 6.7x speed-up in latent generation. To support this mechanism, we construct a scalable part annotation pipeline that converts raw meshes into part-labeled sparse voxels. Extensive experiments demonstrate that Ultra3D supports high-resolution 3D generation at 1024 resolution and achieves state-of-the-art performance in both visual fidelity and user preference.

Authors:Xiaofeng Mao, Shaoheng Lin, Zhen Li, Chuanhao Li, Wenshuo Peng, Tong He, Jiangmiao Pang, Mingmin Chi, Yu Qiao, Kaipeng Zhang
Title: Yume: An Interactive World Generation Model
Abstract:
Yume aims to use images, text, or videos to create an interactive, realistic, and dynamic world, which allows exploration and control using peripheral devices or neural signals. In this report, we present a preview version of \method, which creates a dynamic world from an input image and allows exploration of the world using keyboard actions. To achieve this high-fidelity and interactive video world generation, we introduce a well-designed framework, which consists of four main components, including camera motion quantization, video generation architecture, advanced sampler, and model acceleration. First, we quantize camera motions for stable training and user-friendly interaction using keyboard inputs. Then, we introduce the Masked Video Diffusion Transformer~(MVDT) with a memory module for infinite video generation in an autoregressive manner. After that, training-free Anti-Artifact Mechanism (AAM) and Time Travel Sampling based on Stochastic Differential Equations (TTS-SDE) are introduced to the sampler for better visual quality and more precise control. Moreover, we investigate model acceleration by synergistic optimization of adversarial distillation and caching mechanisms. We use the high-quality world exploration dataset \sekai to train \method, and it achieves remarkable results in diverse scenes and applications. All data, codebase, and model weights are available on https://github.com/stdstu12/YUME. Yume will update monthly to achieve its original goal. Project page: https://stdstu12.github.io/YUME-Project/.

Authors:Jialiang Wang, Xianming Liu, Xiong Zhou, Gangfeng Hu, Deming Zhai, Junjun Jiang, Xiangyang Ji
Title: Joint Asymmetric Loss for Learning with Noisy Labels
Abstract:
Learning with noisy labels is a crucial task for training accurate deep neural networks. To mitigate label noise, prior studies have proposed various robust loss functions, particularly symmetric losses. Nevertheless, symmetric losses usually suffer from the underfitting issue due to the overly strict constraint. To address this problem, the Active Passive Loss (APL) jointly optimizes an active and a passive loss to mutually enhance the overall fitting ability. Within APL, symmetric losses have been successfully extended, yielding advanced robust loss functions. Despite these advancements, emerging theoretical analyses indicate that asymmetric losses, a new class of robust loss functions, possess superior properties compared to symmetric losses. However, existing asymmetric losses are not compatible with advanced optimization frameworks such as APL, limiting their potential and applicability. Motivated by this theoretical gap and the prospect of asymmetric losses, we extend the asymmetric loss to the more complex passive loss scenario and propose the Asymetric Mean Square Error (AMSE), a novel asymmetric loss. We rigorously establish the necessary and sufficient condition under which AMSE satisfies the asymmetric condition. By substituting the traditional symmetric passive loss in APL with our proposed AMSE, we introduce a novel robust loss framework termed Joint Asymmetric Loss (JAL). Extensive experiments demonstrate the effectiveness of our method in mitigating label noise. Code available at: https://github.com/cswjl/joint-asymmetric-loss

Authors:Daiqi Liu, Tomás Arias-Vergara, Jana Hutter, Andreas Maier, Paula Andrea Pérez-Toro
Title: Audio-Vision Contrastive Learning for Phonological Class Recognition
Abstract:
Accurate classification of articulatory-phonological features plays a vital role in understanding human speech production and developing robust speech technologies, particularly in clinical contexts where targeted phonemic analysis and therapy can improve disease diagnosis accuracy and personalized rehabilitation. In this work, we propose a multimodal deep learning framework that combines real-time magnetic resonance imaging (rtMRI) and speech signals to classify three key articulatory dimensions: manner of articulation, place of articulation, and voicing. We perform classification on 15 phonological classes derived from the aforementioned articulatory dimensions and evaluate the system with four audio/vision configurations: unimodal rtMRI, unimodal audio signals, multimodal middle fusion, and contrastive learning-based audio-vision fusion. Experimental results on the USC-TIMIT dataset show that our contrastive learning-based approach achieves state-of-the-art performance, with an average F1-score of 0.81, representing an absolute increase of 0.23 over the unimodal baseline. The results confirm the effectiveness of contrastive representation learning for multimodal articulatory analysis. Our code and processed dataset will be made publicly available at https://github.com/DaE-plz/AC_Contrastive_Phonology to support future research.

Authors:Jiahui Yin, Xinxing Cheng, Jinming Duan, Yan Pang, Declan O'Regan, Hadrien Reynaud, Qingjie Meng
Title: MCM: Mamba-based Cardiac Motion Tracking using Sequential Images in MRI
Abstract:
Myocardial motion tracking is important for assessing cardiac function and diagnosing cardiovascular diseases, for which cine cardiac magnetic resonance (CMR) has been established as the gold standard imaging modality. Many existing methods learn motion from single image pairs consisting of a reference frame and a randomly selected target frame from the cardiac cycle. However, these methods overlook the continuous nature of cardiac motion and often yield inconsistent and non-smooth motion estimations. In this work, we propose a novel Mamba-based cardiac motion tracking network (MCM) that explicitly incorporates target image sequence from the cardiac cycle to achieve smooth and temporally consistent motion tracking. By developing a bi-directional Mamba block equipped with a bi-directional scanning mechanism, our method facilitates the estimation of plausible deformation fields. With our proposed motion decoder that integrates motion information from frames adjacent to the target frame, our method further enhances temporal coherence. Moreover, by taking advantage of Mamba's structured state-space formulation, the proposed method learns the continuous dynamics of the myocardium from sequential images without increasing computational complexity. We evaluate the proposed method on two public datasets. The experimental results demonstrate that the proposed method quantitatively and qualitatively outperforms both conventional and state-of-the-art learning-based cardiac motion tracking methods. The code is available at https://github.com/yjh-0104/MCM.

Authors:Xuzhi Wang, Xinran Wu, Song Wang, Lingdong Kong, Ziping Zhao
Title: Monocular Semantic Scene Completion via Masked Recurrent Networks
Abstract:
Monocular Semantic Scene Completion (MSSC) aims to predict the voxel-wise occupancy and semantic category from a single-view RGB image. Existing methods adopt a single-stage framework that aims to simultaneously achieve visible region segmentation and occluded region hallucination, while also being affected by inaccurate depth estimation. Such methods often achieve suboptimal performance, especially in complex scenes. We propose a novel two-stage framework that decomposes MSSC into coarse MSSC followed by the Masked Recurrent Network. Specifically, we propose the Masked Sparse Gated Recurrent Unit (MS-GRU) which concentrates on the occupied regions by the proposed mask updating mechanism, and a sparse GRU design is proposed to reduce the computation cost. Additionally, we propose the distance attention projection to reduce projection errors by assigning different attention scores according to the distance to the observed surface. Experimental results demonstrate that our proposed unified framework, MonoMRN, effectively supports both indoor and outdoor scenes and achieves state-of-the-art performance on the NYUv2 and SemanticKITTI datasets. Furthermore, we conduct robustness analysis under various disturbances, highlighting the role of the Masked Recurrent Network in enhancing the model's resilience to such challenges. The source code is publicly available.

Authors:Yotam Erel, Olaf Dünkel, Rishabh Dabral, Vladislav Golyanik, Christian Theobalt, Amit H. Bermano
Title: Attention (as Discrete-Time Markov) Chains
Abstract:
We introduce a new interpretation of the attention matrix as a discrete-time Markov chain. Our interpretation sheds light on common operations involving attention scores such as selection, summation, and averaging in a unified framework. It further extends them by considering indirect attention, propagated through the Markov chain, as opposed to previous studies that only model immediate effects. Our main observation is that tokens corresponding to semantically similar regions form a set of metastable states, where the attention clusters, while noisy attention scores tend to disperse. Metastable states and their prevalence can be easily computed through simple matrix multiplication and eigenanalysis, respectively. Using these lightweight tools, we demonstrate state-of-the-art zero-shot segmentation. Lastly, we define TokenRank -- the steady state vector of the Markov chain, which measures global token importance. We demonstrate that using it brings improvements in unconditional image generation. We believe our framework offers a fresh view of how tokens are being attended in modern visual transformers.

Authors:Olaf Dünkel, Artur Jesslen, Jiahao Xie, Christian Theobalt, Christian Rupprecht, Adam Kortylewski
Title: CNS-Bench: Benchmarking Image Classifier Robustness Under Continuous Nuisance Shifts
Abstract:
An important challenge when using computer vision models in the real world is to evaluate their performance in potential out-of-distribution (OOD) scenarios. While simple synthetic corruptions are commonly applied to test OOD robustness, they often fail to capture nuisance shifts that occur in the real world. Recently, diffusion models have been applied to generate realistic images for benchmarking, but they are restricted to binary nuisance shifts. In this work, we introduce CNS-Bench, a Continuous Nuisance Shift Benchmark to quantify OOD robustness of image classifiers for continuous and realistic generative nuisance shifts. CNS-Bench allows generating a wide range of individual nuisance shifts in continuous severities by applying LoRA adapters to diffusion models. To address failure cases, we propose a filtering mechanism that outperforms previous methods, thereby enabling reliable benchmarking with generative models. With the proposed benchmark, we perform a large-scale study to evaluate the robustness of more than 40 classifiers under various nuisance shifts. Through carefully designed comparisons and analyses, we find that model rankings can change for varying shifts and shift scales, which cannot be captured when applying common binary shifts. Additionally, we show that evaluating the model performance on a continuous scale allows the identification of model failure points, providing a more nuanced understanding of model robustness. Project page including code and data: https://genintel.github.io/CNS.

Authors:Yang Li, Zongzheng Zhang, Xuchong Qiu, Xinrun Li, Ziming Liu, Leichen Wang, Ruikai Li, Zhenxin Zhu, Huan-ang Gao, Xiaojian Lin, Zhiyong Cui, Hang Zhao, Hao Zhao
Title: Reusing Attention for One-stage Lane Topology Understanding
Abstract:
Understanding lane toplogy relationships accurately is critical for safe autonomous driving. However, existing two-stage methods suffer from inefficiencies due to error propagations and increased computational overheads. To address these challenges, we propose a one-stage architecture that simultaneously predicts traffic elements, lane centerlines and topology relationship, improving both the accuracy and inference speed of lane topology understanding for autonomous driving. Our key innovation lies in reusing intermediate attention resources within distinct transformer decoders. This approach effectively leverages the inherent relational knowledge within the element detection module to enable the modeling of topology relationships among traffic elements and lanes without requiring additional computationally expensive graph networks. Furthermore, we are the first to demonstrate that knowledge can be distilled from models that utilize standard definition (SD) maps to those operates without using SD maps, enabling superior performance even in the absence of SD maps. Extensive experiments on the OpenLane-V2 dataset show that our approach outperforms baseline methods in both accuracy and efficiency, achieving superior results in lane detection, traffic element identification, and topology reasoning. Our code is available at https://github.com/Yang-Li-2000/one-stage.git.

Authors:Maciej K. Wozniak, Lianhang Liu, Yixi Cai, Patric Jensfelt
Title: PRIX: Learning to Plan from Raw Pixels for End-to-End Autonomous Driving
Abstract:
While end-to-end autonomous driving models show promising results, their practical deployment is often hindered by large model sizes, a reliance on expensive LiDAR sensors and computationally intensive BEV feature representations. This limits their scalability, especially for mass-market vehicles equipped only with cameras. To address these challenges, we propose PRIX (Plan from Raw Pixels). Our novel and efficient end-to-end driving architecture operates using only camera data, without explicit BEV representation and forgoing the need for LiDAR. PRIX leverages a visual feature extractor coupled with a generative planning head to predict safe trajectories from raw pixel inputs directly. A core component of our architecture is the Context-aware Recalibration Transformer (CaRT), a novel module designed to effectively enhance multi-level visual features for more robust planning. We demonstrate through comprehensive experiments that PRIX achieves state-of-the-art performance on the NavSim and nuScenes benchmarks, matching the capabilities of larger, multimodal diffusion planners while being significantly more efficient in terms of inference speed and model size, making it a practical solution for real-world deployment. Our work is open-source and the code will be at https://maxiuw.github.io/prix.

Authors:Yuqing Lan, Chenyang Zhu, Shuaifeng Zhi, Jiazhao Zhang, Zhoufeng Wang, Renjiao Yi, Yijie Wang, Kai Xu
Title: RemixFusion: Residual-based Mixed Representation for Large-scale Online RGB-D Reconstruction
Abstract:
The introduction of the neural implicit representation has notably propelled the advancement of online dense reconstruction techniques. Compared to traditional explicit representations, such as TSDF, it improves the mapping completeness and memory efficiency. However, the lack of reconstruction details and the time-consuming learning of neural representations hinder the widespread application of neural-based methods to large-scale online reconstruction. We introduce RemixFusion, a novel residual-based mixed representation for scene reconstruction and camera pose estimation dedicated to high-quality and large-scale online RGB-D reconstruction. In particular, we propose a residual-based map representation comprised of an explicit coarse TSDF grid and an implicit neural module that produces residuals representing fine-grained details to be added to the coarse grid. Such mixed representation allows for detail-rich reconstruction with bounded time and memory budget, contrasting with the overly-smoothed results by the purely implicit representations, thus paving the way for high-quality camera tracking. Furthermore, we extend the residual-based representation to handle multi-frame joint pose optimization via bundle adjustment (BA). In contrast to the existing methods, which optimize poses directly, we opt to optimize pose changes. Combined with a novel technique for adaptive gradient amplification, our method attains better optimization convergence and global optimality. Furthermore, we adopt a local moving volume to factorize the mixed scene representation with a divide-and-conquer design to facilitate efficient online learning in our residual-based framework. Extensive experiments demonstrate that our method surpasses all state-of-the-art ones, including those based either on explicit or implicit representations, in terms of the accuracy of both mapping and tracking on large-scale scenes.

Authors:Xinyao Liu, Diping Song
Title: Constructing Ophthalmic MLLM for Positioning-diagnosis Collaboration Through Clinical Cognitive Chain Reasoning
Abstract:
Multimodal large language models (MLLMs) demonstrate significant potential in the field of medical diagnosis. However, they face critical challenges in specialized domains such as ophthalmology, particularly the fragmentation of annotation granularity and inconsistencies in clinical reasoning logic, which hinder precise cross-modal understanding. This paper introduces FundusExpert, an ophthalmology-specific MLLM with integrated positioning-diagnosis reasoning capabilities, along with FundusGen, a dataset constructed through the intelligent Fundus-Engine system. Fundus-Engine automates localization and leverages MLLM-based semantic expansion to integrate global disease classification, local object detection, and fine-grained feature analysis within a single fundus image. Additionally, by constructing a clinically aligned cognitive chain, it guides the model to generate interpretable reasoning paths. FundusExpert, fine-tuned with instruction data from FundusGen, achieves the best performance in ophthalmic question-answering tasks, surpassing the average accuracy of the 40B MedRegA by 26.6%. It also excels in zero-shot report generation tasks, achieving a clinical consistency of 77.0%, significantly outperforming GPT-4o's 47.6%. Furthermore, we reveal a scaling law between data quality and model capability ($L \propto N^{0.068}$), demonstrating that the cognitive alignment annotations in FundusGen enhance data utilization efficiency. By integrating region-level localization with diagnostic reasoning chains, our work develops a scalable, clinically-aligned MLLM and explores a pathway toward bridging the visual-language gap in specific MLLMs. Our project can be found at https://github.com/MeteorElf/FundusExpert.

Authors:Jiajun Luo, Yicheng Xiao, Jianru Xu, Yangxiu You, Rongwei Lu, Chen Tang, Jingyan Jiang, Zhi Wang
Title: Accelerating Parallel Diffusion Model Serving with Residual Compression
Abstract:
Diffusion models produce realistic images and videos but require substantial computational resources, necessitating multi-accelerator parallelism for real-time deployment. However, parallel inference introduces significant communication overhead from exchanging large activations between devices, limiting efficiency and scalability. We present CompactFusion, a compression framework that significantly reduces communication while preserving generation quality. Our key observation is that diffusion activations exhibit strong temporal redundancy-adjacent steps produce highly similar activations, saturating bandwidth with near-duplicate data carrying little new information. To address this inefficiency, we seek a more compact representation that encodes only the essential information. CompactFusion achieves this via Residual Compression that transmits only compressed residuals (step-wise activation differences). Based on empirical analysis and theoretical justification, we show that it effectively removes redundant data, enabling substantial data reduction while maintaining high fidelity. We also integrate lightweight error feedback to prevent error accumulation. CompactFusion establishes a new paradigm for parallel diffusion inference, delivering lower latency and significantly higher generation quality than prior methods. On 4xL20, it achieves 3.0x speedup while greatly improving fidelity. It also uniquely supports communication-heavy strategies like sequence parallelism on slow networks, achieving 6.7x speedup over prior overlap-based method. CompactFusion applies broadly across diffusion models and parallel settings, and integrates easily without requiring pipeline rework. Portable implementation demonstrated on xDiT is publicly available at https://github.com/Cobalt-27/CompactFusion

Authors:Jorgen Cani, Christos Diou, Spyridon Evangelatos, Vasileios Argyriou, Panagiotis Radoglou-Grammatikis, Panagiotis Sarigiannidis, Iraklis Varlamis, Georgios Th. Papadopoulos
Title: Illicit object detection in X-ray imaging using deep learning techniques: A comparative evaluation
Abstract:
Automated X-ray inspection is crucial for efficient and unobtrusive security screening in various public settings. However, challenges such as object occlusion, variations in the physical properties of items, diversity in X-ray scanning devices, and limited training data hinder accurate and reliable detection of illicit items. Despite the large body of research in the field, reported experimental evaluations are often incomplete, with frequently conflicting outcomes. To shed light on the research landscape and facilitate further research, a systematic, detailed, and thorough comparative evaluation of recent Deep Learning (DL)-based methods for X-ray object detection is conducted. For this, a comprehensive evaluation framework is developed, composed of: a) Six recent, large-scale, and widely used public datasets for X-ray illicit item detection (OPIXray, CLCXray, SIXray, EDS, HiXray, and PIDray), b) Ten different state-of-the-art object detection schemes covering all main categories in the literature, including generic Convolutional Neural Network (CNN), custom CNN, generic transformer, and hybrid CNN-transformer architectures, and c) Various detection (mAP50 and mAP50:95) and time/computational-complexity (inference time (ms), parameter size (M), and computational load (GFLOPS)) metrics. A thorough analysis of the results leads to critical observations and insights, emphasizing key aspects such as: a) Overall behavior of the object detection schemes, b) Object-level detection performance, c) Dataset-specific observations, and d) Time efficiency and computational complexity analysis. To support reproducibility of the reported experimental results, the evaluation code and model weights are made publicly available at https://github.com/jgenc/xray-comparative-evaluation.

Authors:Minglong Xue, Aoxiang Ning, Shivakumara Palaiahnakote, Mingliang Zhou
Title: DFDNet: Dynamic Frequency-Guided De-Flare Network
Abstract:
Strong light sources in nighttime photography frequently produce flares in images, significantly degrading visual quality and impacting the performance of downstream tasks. While some progress has been made, existing methods continue to struggle with removing large-scale flare artifacts and repairing structural damage in regions near the light source. We observe that these challenging flare artifacts exhibit more significant discrepancies from the reference images in the frequency domain compared to the spatial domain. Therefore, this paper presents a novel dynamic frequency-guided deflare network (DFDNet) that decouples content information from flare artifacts in the frequency domain, effectively removing large-scale flare artifacts. Specifically, DFDNet consists mainly of a global dynamic frequency-domain guidance (GDFG) module and a local detail guidance module (LDGM). The GDFG module guides the network to perceive the frequency characteristics of flare artifacts by dynamically optimizing global frequency domain features, effectively separating flare information from content information. Additionally, we design an LDGM via a contrastive learning strategy that aligns the local features of the light source with the reference image, reduces local detail damage from flare removal, and improves fine-grained image restoration. The experimental results demonstrate that the proposed method outperforms existing state-of-the-art methods in terms of performance. The code is available at \href{https://github.com/AXNing/DFDNet}{https://github.com/AXNing/DFDNet}.

Authors:Francesco Tonini, Lorenzo Vaquero, Alessandro Conti, Cigdem Beyan, Elisa Ricci
Title: Dynamic Scoring with Enhanced Semantics for Training-Free Human-Object Interaction Detection
Abstract:
Human-Object Interaction (HOI) detection aims to identify humans and objects within images and interpret their interactions. Existing HOI methods rely heavily on large datasets with manual annotations to learn interactions from visual cues. These annotations are labor-intensive to create, prone to inconsistency, and limit scalability to new domains and rare interactions. We argue that recent advances in Vision-Language Models (VLMs) offer untapped potential, particularly in enhancing interaction representation. While prior work has injected such potential and even proposed training-free methods, there remain key gaps. Consequently, we propose a novel training-free HOI detection framework for Dynamic Scoring with enhanced semantics (DYSCO) that effectively utilizes textual and visual interaction representations within a multimodal registry, enabling robust and nuanced interaction understanding. This registry incorporates a small set of visual cues and uses innovative interaction signatures to improve the semantic alignment of verbs, facilitating effective generalization to rare interactions. Additionally, we propose a unique multi-head attention mechanism that adaptively weights the contributions of the visual and textual features. Experimental results demonstrate that our DYSCO surpasses training-free state-of-the-art models and is competitive with training-based approaches, particularly excelling in rare interactions. Code is available at https://github.com/francescotonini/dysco.

Authors:Sneha George Gnanakalavathy, Hairil Abdul Razak, Robert Meertens, Jonathan E. Fieldsend, Xujiong Ye, Mohammed M. Abdelsamea
Title: CAPRI-CT: Causal Analysis and Predictive Reasoning for Image Quality Optimization in Computed Tomography
Abstract:
In computed tomography (CT), achieving high image quality while minimizing radiation exposure remains a key clinical challenge. This paper presents CAPRI-CT, a novel causal-aware deep learning framework for Causal Analysis and Predictive Reasoning for Image Quality Optimization in CT imaging. CAPRI-CT integrates image data with acquisition metadata (such as tube voltage, tube current, and contrast agent types) to model the underlying causal relationships that influence image quality. An ensemble of Variational Autoencoders (VAEs) is employed to extract meaningful features and generate causal representations from observational data, including CT images and associated imaging parameters. These input features are fused to predict the Signal-to-Noise Ratio (SNR) and support counterfactual inference, enabling what-if simulations, such as changes in contrast agents (types and concentrations) or scan parameters. CAPRI-CT is trained and validated using an ensemble learning approach, achieving strong predictive performance. By facilitating both prediction and interpretability, CAPRI-CT provides actionable insights that could help radiologists and technicians design more efficient CT protocols without repeated physical scans. The source code and dataset are publicly available at https://github.com/SnehaGeorge22/capri-ct.

Authors:Jun Li, Jinpeng Wang, Chaolei Tan, Niu Lian, Long Chen, Yaowei Wang, Min Zhang, Shu-Tao Xia, Bin Chen
Title: HLFormer: Enhancing Partially Relevant Video Retrieval with Hyperbolic Learning
Abstract:
Partially Relevant Video Retrieval (PRVR) addresses the critical challenge of matching untrimmed videos with text queries describing only partial content. Existing methods suffer from geometric distortion in Euclidean space that sometimes misrepresents the intrinsic hierarchical structure of videos and overlooks certain hierarchical semantics, ultimately leading to suboptimal temporal modeling. To address this issue, we propose the first hyperbolic modeling framework for PRVR, namely HLFormer, which leverages hyperbolic space learning to compensate for the suboptimal hierarchical modeling capabilities of Euclidean space. Specifically, HLFormer integrates the Lorentz Attention Block and Euclidean Attention Block to encode video embeddings in hybrid spaces, using the Mean-Guided Adaptive Interaction Module to dynamically fuse features. Additionally, we introduce a Partial Order Preservation Loss to enforce "text < video" hierarchy through Lorentzian cone constraints. This approach further enhances cross-modal matching by reinforcing partial relevance between video content and text queries. Extensive experiments show that HLFormer outperforms state-of-the-art methods. Code is released at https://github.com/lijun2005/ICCV25-HLFormer.

Authors:Hyeongjin Nam, Donghwan Kim, Gyeongsik Moon, Kyoung Mu Lee
Title: PARTE: Part-Guided Texturing for 3D Human Reconstruction from a Single Image
Abstract:
The misaligned human texture across different human parts is one of the main limitations of existing 3D human reconstruction methods. Each human part, such as a jacket or pants, should maintain a distinct texture without blending into others. The structural coherence of human parts serves as a crucial cue to infer human textures in the invisible regions of a single image. However, most existing 3D human reconstruction methods do not explicitly exploit such part segmentation priors, leading to misaligned textures in their reconstructions. In this regard, we present PARTE, which utilizes 3D human part information as a key guide to reconstruct 3D human textures. Our framework comprises two core components. First, to infer 3D human part information from a single image, we propose a 3D part segmentation module (PartSegmenter) that initially reconstructs a textureless human surface and predicts human part labels based on the textureless surface. Second, to incorporate part information into texture reconstruction, we introduce a part-guided texturing module (PartTexturer), which acquires prior knowledge from a pre-trained image generation network on texture alignment of human parts. Extensive experiments demonstrate that our framework achieves state-of-the-art quality in 3D human reconstruction. The project page is available at https://hygenie1228.github.io/PARTE/.

Authors:Chao He, Jianqiang Ren, Jianjing Xiang, Xiejie Shen
Title: CartoonAlive: Towards Expressive Live2D Modeling from Single Portraits
Abstract:
With the rapid advancement of large foundation models, AIGC, cloud rendering, and real-time motion capture technologies, digital humans are now capable of achieving synchronized facial expressions and body movements, engaging in intelligent dialogues driven by natural language, and enabling the fast creation of personalized avatars. While current mainstream approaches to digital humans primarily focus on 3D models and 2D video-based representations, interactive 2D cartoon-style digital humans have received relatively less attention. Compared to 3D digital humans that require complex modeling and high rendering costs, and 2D video-based solutions that lack flexibility and real-time interactivity, 2D cartoon-style Live2D models offer a more efficient and expressive alternative. By simulating 3D-like motion through layered segmentation without the need for traditional 3D modeling, Live2D enables dynamic and real-time manipulation. In this technical report, we present CartoonAlive, an innovative method for generating high-quality Live2D digital humans from a single input portrait image. CartoonAlive leverages the shape basis concept commonly used in 3D face modeling to construct facial blendshapes suitable for Live2D. It then infers the corresponding blendshape weights based on facial keypoints detected from the input image. This approach allows for the rapid generation of a highly expressive and visually accurate Live2D model that closely resembles the input portrait, within less than half a minute. Our work provides a practical and scalable solution for creating interactive 2D cartoon characters, opening new possibilities in digital content creation and virtual character animation. The project homepage is https://human3daigc.github.io/CartoonAlive_webpage/.

Authors:Peiqi Chen, Lei Yu, Yi Wan, Yingying Pei, Xinyi Liu, Yongxiang Yao, Yingying Zhang, Lixiang Ru, Liheng Zhong, Jingdong Chen, Ming Yang, Yongjun Zhang
Title: CasP: Improving Semi-Dense Feature Matching Pipeline Leveraging Cascaded Correspondence Priors for Guidance
Abstract:
Semi-dense feature matching methods have shown strong performance in challenging scenarios. However, the existing pipeline relies on a global search across the entire feature map to establish coarse matches, limiting further improvements in accuracy and efficiency. Motivated by this limitation, we propose a novel pipeline, CasP, which leverages cascaded correspondence priors for guidance. Specifically, the matching stage is decomposed into two progressive phases, bridged by a region-based selective cross-attention mechanism designed to enhance feature discriminability. In the second phase, one-to-one matches are determined by restricting the search range to the one-to-many prior areas identified in the first phase. Additionally, this pipeline benefits from incorporating high-level features, which helps reduce the computational costs of low-level feature extraction. The acceleration gains of CasP increase with higher resolution, and our lite model achieves a speedup of $\sim2.2\times$ at a resolution of 1152 compared to the most efficient method, ELoFTR. Furthermore, extensive experiments demonstrate its superiority in geometric estimation, particularly with impressive cross-domain generalization. These advantages highlight its potential for latency-sensitive and high-robustness applications, such as SLAM and UAV systems. Code is available at https://github.com/pq-chen/CasP.

Authors:Ruodai Cui, Li Niu, Guosheng Hu
Title: Unsupervised Exposure Correction
Abstract:
Current exposure correction methods have three challenges, labor-intensive paired data annotation, limited generalizability, and performance degradation in low-level computer vision tasks. In this work, we introduce an innovative Unsupervised Exposure Correction (UEC) method that eliminates the need for manual annotations, offers improved generalizability, and enhances performance in low-level downstream tasks. Our model is trained using freely available paired data from an emulated Image Signal Processing (ISP) pipeline. This approach does not need expensive manual annotations, thereby minimizing individual style biases from the annotation and consequently improving its generalizability. Furthermore, we present a large-scale Radiometry Correction Dataset, specifically designed to emphasize exposure variations, to facilitate unsupervised learning. In addition, we develop a transformation function that preserves image details and outperforms state-of-the-art supervised methods [12], while utilizing only 0.01% of their parameters. Our work further investigates the broader impact of exposure correction on downstream tasks, including edge detection, demonstrating its effectiveness in mitigating the adverse effects of poor exposure on low-level features. The source code and dataset are publicly available at https://github.com/BeyondHeaven/uec_code.

Authors:Jooyeol Yun, Heng Wang, Yotaro Shimose, Jaegul Choo, Shingo Takamatsu
Title: DesignLab: Designing Slides Through Iterative Detection and Correction
Abstract:
Designing high-quality presentation slides can be challenging for non-experts due to the complexity involved in navigating various design choices. Numerous automated tools can suggest layouts and color schemes, yet often lack the ability to refine their own output, which is a key aspect in real-world workflows. We propose DesignLab, which separates the design process into two roles, the design reviewer, who identifies design-related issues, and the design contributor who corrects them. This decomposition enables an iterative loop where the reviewer continuously detects issues and the contributor corrects them, allowing a draft to be further polished with each iteration, reaching qualities that were unattainable. We fine-tune large language models for these roles and simulate intermediate drafts by introducing controlled perturbations, enabling the design reviewer learn design errors and the contributor learn how to fix them. Our experiments show that DesignLab outperforms existing design-generation methods, including a commercial tool, by embracing the iterative nature of designing which can result in polished, professional slides.

Authors:Haiyu Wu, Jaskirat Singh, Sicong Tian, Liang Zheng, Kevin W. Bowyer
Title: Vec2Face+ for Face Dataset Generation
Abstract:
When synthesizing identities as face recognition training data, it is generally believed that large inter-class separability and intra-class attribute variation are essential for synthesizing a quality dataset. % This belief is generally correct, and this is what we aim for. However, when increasing intra-class variation, existing methods overlook the necessity of maintaining intra-class identity consistency. % To address this and generate high-quality face training data, we propose Vec2Face+, a generative model that creates images directly from image features and allows for continuous and easy control of face identities and attributes. Using Vec2Face+, we obtain datasets with proper inter-class separability and intra-class variation and identity consistency using three strategies: 1) we sample vectors sufficiently different from others to generate well-separated identities; 2) we propose an AttrOP algorithm for increasing general attribute variations; 3) we propose LoRA-based pose control for generating images with profile head poses, which is more efficient and identity-preserving than AttrOP. % Our system generates VFace10K, a synthetic face dataset with 10K identities, which allows an FR model to achieve state-of-the-art accuracy on seven real-world test sets. Scaling the size to 4M and 12M images, the corresponding VFace100K and VFace300K datasets yield higher accuracy than the real-world training dataset, CASIA-WebFace, on five real-world test sets. This is the first time a synthetic dataset beats the CASIA-WebFace in average accuracy. In addition, we find that only 1 out of 11 synthetic datasets outperforms random guessing (\emph{i.e., 50\%}) in twin verification and that models trained with synthetic identities are more biased than those trained with real identities. Both are important aspects for future investigation. Code is available at https://github.com/HaiyuWu/Vec2Face_plus

Authors:Bharath Krishnamurthy, Ajita Rattani
Title: DOOMGAN:High-Fidelity Dynamic Identity Obfuscation Ocular Generative Morphing
Abstract:
Ocular biometrics in the visible spectrum have emerged as a prominent modality due to their high accuracy, resistance to spoofing, and non-invasive nature. However, morphing attacks, synthetic biometric traits created by blending features from multiple individuals, threaten biometric system integrity. While extensively studied for near-infrared iris and face biometrics, morphing in visible-spectrum ocular data remains underexplored. Simulating such attacks demands advanced generation models that handle uncontrolled conditions while preserving detailed ocular features like iris boundaries and periocular textures. To address this gap, we introduce DOOMGAN, that encompasses landmark-driven encoding of visible ocular anatomy, attention-guided generation for realistic morph synthesis, and dynamic weighting of multi-faceted losses for optimized convergence. DOOMGAN achieves over 20% higher attack success rates than baseline methods under stringent thresholds, along with 20% better elliptical iris structure generation and 30% improved gaze consistency. We also release the first comprehensive ocular morphing dataset to support further research in this domain.

Authors:Ruodai Cui, Lei Zhang
Title: UNICE: Training A Universal Image Contrast Enhancer
Abstract:
Existing image contrast enhancement methods are typically designed for specific tasks such as under-/over-exposure correction, low-light and backlit image enhancement, etc. The learned models, however, exhibit poor generalization performance across different tasks, even across different datasets of a specific task. It is important to explore whether we can learn a universal and generalized model for various contrast enhancement tasks. In this work, we observe that the common key factor of these tasks lies in the need of exposure and contrast adjustment, which can be well-addressed if high-dynamic range (HDR) inputs are available. We hence collect 46,928 HDR raw images from public sources, and render 328,496 sRGB images to build multi-exposure sequences (MES) and the corresponding pseudo sRGB ground-truths via multi-exposure fusion. Consequently, we train a network to generate an MES from a single sRGB image, followed by training another network to fuse the generated MES into an enhanced image. Our proposed method, namely UNiversal Image Contrast Enhancer (UNICE), is free of costly human labeling. However, it demonstrates significantly stronger generalization performance than existing image contrast enhancement methods across and within different tasks, even outperforming manually created ground-truths in multiple no-reference image quality metrics. The dataset, code and model are available at https://github.com/BeyondHeaven/UNICE.

Authors:Ting Jiang, Yixiao Wang, Hancheng Ye, Zishan Shao, Jingwei Sun, Jingyang Zhang, Zekai Chen, Jianyi Zhang, Yiran Chen, Hai Li
Title: SADA: Stability-guided Adaptive Diffusion Acceleration
Abstract:
Diffusion models have achieved remarkable success in generative tasks but suffer from high computational costs due to their iterative sampling process and quadratic attention costs. Existing training-free acceleration strategies that reduce per-step computation cost, while effectively reducing sampling time, demonstrate low faithfulness compared to the original baseline. We hypothesize that this fidelity gap arises because (a) different prompts correspond to varying denoising trajectory, and (b) such methods do not consider the underlying ODE formulation and its numerical solution. In this paper, we propose Stability-guided Adaptive Diffusion Acceleration (SADA), a novel paradigm that unifies step-wise and token-wise sparsity decisions via a single stability criterion to accelerate sampling of ODE-based generative models (Diffusion and Flow-matching). For (a), SADA adaptively allocates sparsity based on the sampling trajectory. For (b), SADA introduces principled approximation schemes that leverage the precise gradient information from the numerical ODE solver. Comprehensive evaluations on SD-2, SDXL, and Flux using both EDM and DPM++ solvers reveal consistent $\ge 1.8\times$ speedups with minimal fidelity degradation (LPIPS $\leq 0.10$ and FID $\leq 4.5$) compared to unmodified baselines, significantly outperforming prior methods. Moreover, SADA adapts seamlessly to other pipelines and modalities: It accelerates ControlNet without any modifications and speeds up MusicLDM by $1.8\times$ with $\sim 0.01$ spectrogram LPIPS.

Authors:Zaipeng Duan, Chenxu Dang, Xuzhong Hu, Pei An, Junfeng Ding, Jie Zhan, Yunbiao Xu, Jie Ma
Title: SDGOCC: Semantic and Depth-Guided Bird's-Eye View Transformation for 3D Multimodal Occupancy Prediction
Abstract:
Multimodal 3D occupancy prediction has garnered significant attention for its potential in autonomous driving. However, most existing approaches are single-modality: camera-based methods lack depth information, while LiDAR-based methods struggle with occlusions. Current lightweight methods primarily rely on the Lift-Splat-Shoot (LSS) pipeline, which suffers from inaccurate depth estimation and fails to fully exploit the geometric and semantic information of 3D LiDAR points. Therefore, we propose a novel multimodal occupancy prediction network called SDG-OCC, which incorporates a joint semantic and depth-guided view transformation coupled with a fusion-to-occupancy-driven active distillation. The enhanced view transformation constructs accurate depth distributions by integrating pixel semantics and co-point depth through diffusion and bilinear discretization. The fusion-to-occupancy-driven active distillation extracts rich semantic information from multimodal data and selectively transfers knowledge to image features based on LiDAR-identified regions. Finally, for optimal performance, we introduce SDG-Fusion, which uses fusion alone, and SDG-KL, which integrates both fusion and distillation for faster inference. Our method achieves state-of-the-art (SOTA) performance with real-time processing on the Occ3D-nuScenes dataset and shows comparable performance on the more challenging SurroundOcc-nuScenes dataset, demonstrating its effectiveness and robustness. The code will be released at https://github.com/DzpLab/SDGOCC.

Authors:Luchuan Song, Yang Zhou, Zhan Xu, Yi Zhou, Deepali Aneja, Chenliang Xu
Title: StreamME: Simplify 3D Gaussian Avatar within Live Stream
Abstract:
We propose StreamME, a method focuses on fast 3D avatar reconstruction. The StreamME synchronously records and reconstructs a head avatar from live video streams without any pre-cached data, enabling seamless integration of the reconstructed appearance into downstream applications. This exceptionally fast training strategy, which we refer to as on-the-fly training, is central to our approach. Our method is built upon 3D Gaussian Splatting (3DGS), eliminating the reliance on MLPs in deformable 3DGS and relying solely on geometry, which significantly improves the adaptation speed to facial expression. To further ensure high efficiency in on-the-fly training, we introduced a simplification strategy based on primary points, which distributes the point clouds more sparsely across the facial surface, optimizing points number while maintaining rendering quality. Leveraging the on-the-fly training capabilities, our method protects the facial privacy and reduces communication bandwidth in VR system or online conference. Additionally, it can be directly applied to downstream application such as animation, toonify, and relighting. Please refer to our project page for more details: https://songluchuan.github.io/StreamME/.

Authors:Yue Ma, Kunyu Feng, Zhongyuan Hu, Xinyu Wang, Yucheng Wang, Mingzhe Zheng, Xuanhua He, Chenyang Zhu, Hongyu Liu, Yingqing He, Zeyu Wang, Zhifeng Li, Xiu Li, Wei Liu, Dan Xu, Linfeng Zhang, Qifeng Chen
Title: Controllable Video Generation: A Survey
Abstract:
With the rapid development of AI-generated content (AIGC), video generation has emerged as one of its most dynamic and impactful subfields. In particular, the advancement of video generation foundation models has led to growing demand for controllable video generation methods that can more accurately reflect user intent. Most existing foundation models are designed for text-to-video generation, where text prompts alone are often insufficient to express complex, multi-modal, and fine-grained user requirements. This limitation makes it challenging for users to generate videos with precise control using current models. To address this issue, recent research has explored the integration of additional non-textual conditions, such as camera motion, depth maps, and human pose, to extend pretrained video generation models and enable more controllable video synthesis. These approaches aim to enhance the flexibility and practical applicability of AIGC-driven video generation systems. In this survey, we provide a systematic review of controllable video generation, covering both theoretical foundations and recent advances in the field. We begin by introducing the key concepts and commonly used open-source video generation models. We then focus on control mechanisms in video diffusion models, analyzing how different types of conditions can be incorporated into the denoising process to guide generation. Finally, we categorize existing methods based on the types of control signals they leverage, including single-condition generation, multi-condition generation, and universal controllable generation. For a complete list of the literature on controllable video generation reviewed, please visit our curated repository at https://github.com/mayuelala/Awesome-Controllable-Video-Generation.

Authors:Joey Spronck, Leander van Eekelen, Dominique van Midden, Joep Bogaerts, Leslie Tessier, Valerie Dechering, Muradije Demirel-Andishmand, Gabriel Silva de Souza, Roland Nemeth, Enrico Munari, Giuseppe Bogina, Ilaria Girolami, Albino Eccher, Balazs Acs, Ceren Boyaci, Natalie Klubickova, Monika Looijen-Salamon, Shoko Vos, Francesco Ciompi
Title: A tissue and cell-level annotated H&E and PD-L1 histopathology image dataset in non-small cell lung cancer
Abstract:
The tumor immune microenvironment (TIME) in non-small cell lung cancer (NSCLC) histopathology contains morphological and molecular characteristics predictive of immunotherapy response. Computational quantification of TIME characteristics, such as cell detection and tissue segmentation, can support biomarker development. However, currently available digital pathology datasets of NSCLC for the development of cell detection or tissue segmentation algorithms are limited in scope, lack annotations of clinically prevalent metastatic sites, and forgo molecular information such as PD-L1 immunohistochemistry (IHC). To fill this gap, we introduce the IGNITE data toolkit, a multi-stain, multi-centric, and multi-scanner dataset of annotated NSCLC whole-slide images. We publicly release 887 fully annotated regions of interest from 155 unique patients across three complementary tasks: (i) multi-class semantic segmentation of tissue compartments in H&E-stained slides, with 16 classes spanning primary and metastatic NSCLC, (ii) nuclei detection, and (iii) PD-L1 positive tumor cell detection in PD-L1 IHC slides. To the best of our knowledge, this is the first public NSCLC dataset with manual annotations of H&E in metastatic sites and PD-L1 IHC.

Authors:Chi-Pin Huang, Yueh-Hua Wu, Min-Hung Chen, Yu-Chiang Frank Wang, Fu-En Yang
Title: ThinkAct: Vision-Language-Action Reasoning via Reinforced Visual Latent Planning
Abstract:
Vision-language-action (VLA) reasoning tasks require agents to interpret multimodal instructions, perform long-horizon planning, and act adaptively in dynamic environments. Existing approaches typically train VLA models in an end-to-end fashion, directly mapping inputs to actions without explicit reasoning, which hinders their ability to plan over multiple steps or adapt to complex task variations. In this paper, we propose ThinkAct, a dual-system framework that bridges high-level reasoning with low-level action execution via reinforced visual latent planning. ThinkAct trains a multimodal LLM to generate embodied reasoning plans guided by reinforcing action-aligned visual rewards based on goal completion and trajectory consistency. These reasoning plans are compressed into a visual plan latent that conditions a downstream action model for robust action execution on target environments. Extensive experiments on embodied reasoning and robot manipulation benchmarks demonstrate that ThinkAct enables few-shot adaptation, long-horizon planning, and self-correction behaviors in complex embodied AI tasks.

Authors:Changhao Li, Xinrui Chen, Ji Wang, Kang Zhao, Jianfei Chen
Title: Task-Specific Zero-shot Quantization-Aware Training for Object Detection
Abstract:
Quantization is a key technique to reduce network size and computational complexity by representing the network parameters with a lower precision. Traditional quantization methods rely on access to original training data, which is often restricted due to privacy concerns or security challenges. Zero-shot Quantization (ZSQ) addresses this by using synthetic data generated from pre-trained models, eliminating the need for real training data. Recently, ZSQ has been extended to object detection. However, existing methods use unlabeled task-agnostic synthetic images that lack the specific information required for object detection, leading to suboptimal performance. In this paper, we propose a novel task-specific ZSQ framework for object detection networks, which consists of two main stages. First, we introduce a bounding box and category sampling strategy to synthesize a task-specific calibration set from the pre-trained network, reconstructing object locations, sizes, and category distributions without any prior knowledge. Second, we integrate task-specific training into the knowledge distillation process to restore the performance of quantized detection networks. Extensive experiments conducted on the MS-COCO and Pascal VOC datasets demonstrate the efficiency and state-of-the-art performance of our method. Our code is publicly available at: https://github.com/DFQ-Dojo/dfq-toolkit .

Authors:Marcel Kleinmann, Shashank Agnihotri, Margret Keuper
Title: Faithful, Interpretable Chest X-ray Diagnosis with Anti-Aliased B-cos Networks
Abstract:
Faithfulness and interpretability are essential for deploying deep neural networks (DNNs) in safety-critical domains such as medical imaging. B-cos networks offer a promising solution by replacing standard linear layers with a weight-input alignment mechanism, producing inherently interpretable, class-specific explanations without post-hoc methods. While maintaining diagnostic performance competitive with state-of-the-art DNNs, standard B-cos models suffer from severe aliasing artifacts in their explanation maps, making them unsuitable for clinical use where clarity is essential. In this work, we address these limitations by introducing anti-aliasing strategies using FLCPooling (FLC) and BlurPool (BP) to significantly improve explanation quality. Our experiments on chest X-ray datasets demonstrate that the modified $\text{B-cos}_\text{FLC}$ and $\text{B-cos}_\text{BP}$ preserve strong predictive performance while providing faithful and artifact-free explanations suitable for clinical application in multi-class and multi-label settings. Code available at: GitHub repository (url: https://github.com/mkleinma/B-cos-medical-paper).

Authors:Keneni W. Tesema, Lyndon Hill, Mark W. Jones, Gary K. L. Tam
Title: Denoising-While-Completing Network (DWCNet): Robust Point Cloud Completion Under Corruption
Abstract:
Point cloud completion is crucial for 3D computer vision tasks in autonomous driving, augmented reality, and robotics. However, obtaining clean and complete point clouds from real-world environments is challenging due to noise and occlusions. Consequently, most existing completion networks -- trained on synthetic data -- struggle with real-world degradations. In this work, we tackle the problem of completing and denoising highly corrupted partial point clouds affected by multiple simultaneous degradations. To benchmark robustness, we introduce the Corrupted Point Cloud Completion Dataset (CPCCD), which highlights the limitations of current methods under diverse corruptions. Building on these insights, we propose DWCNet (Denoising-While-Completing Network), a completion framework enhanced with a Noise Management Module (NMM) that leverages contrastive learning and self-attention to suppress noise and model structural relationships. DWCNet achieves state-of-the-art performance on both clean and corrupted, synthetic and real-world datasets. The dataset and code will be publicly available at https://github.com/keneniwt/DWCNET-Robust-Point-Cloud-Completion-against-Corruptions

Authors:Yiguo He, Junjie Zhu, Yiying Li, Xiaoyu Zhang, Chunping Qiu, Jun Wang, Qiangjuan Huang, Ke Yang
Title: Enhancing Remote Sensing Vision-Language Models Through MLLM and LLM-Based High-Quality Image-Text Dataset Generation
Abstract:
The application of Vision-language foundation models (VLFMs) to remote sensing (RS) imagery has garnered significant attention due to their superior capability in various downstream tasks. A key challenge lies in the scarcity of high-quality, large-scale, image-text paired training data. Recently, several works introduced extensive image-text datasets for RS and trained their VLFMs. However, due to the rudimentary methods used for generating captions, the quality of datasets is suboptimal, requiring larger volumes of training data, while only yielding modest performance improvements. In this paper, we propose a two-stage method named MpGI(Multi-Perspective Generation and Integration) for generating high-quality text captions for RS images. Firstly, we generate distinct and detailed descriptions from different perspectives using Rule-MLLM(Multimodal Large Language Model) Relay Generation and MLLMs generation methods. Next, we utilize Large Language Models (LLMs) to integrate these diverse descriptions into comprehensive captions, capturing details from multiple perspectives. Finally, we have created the HQRS-IT-210K dataset, including about 210,000 RS images and 1.3 million captions. We fine-tuned two VLFMs using our dataset: CLIP, a discriminative model, and CoCa, an image-to-text generative model. This process resulted in our proposed HQRS-CLIP and RS-CoCa models. Experimental results demonstrate that HQRS-CLIP surpassed the previous SOTA RS CLIP model in various downstream tasks while using only 4.2\% of the training data. RS-CoCa outperforms other advanced approaches across benchmark datasets and can generate captions for RS images that rival or even exceed manual annotations. Dataset, pre-trained models, and codes will be released at https://github.com/YiguoHe/HQRS-210K-and-HQRS-CLIP.

Authors:Meng Lou, Yunxiang Fu, Yizhou Yu
Title: A2Mamba: Attention-augmented State Space Models for Visual Recognition
Abstract:
Transformers and Mamba, initially invented for natural language processing, have inspired backbone architectures for visual recognition. Recent studies integrated Local Attention Transformers with Mamba to capture both local details and global contexts. Despite competitive performance, these methods are limited to simple stacking of Transformer and Mamba layers without any interaction mechanism between them. Thus, deep integration between Transformer and Mamba layers remains an open problem. We address this problem by proposing A2Mamba, a powerful Transformer-Mamba hybrid network architecture, featuring a new token mixer termed Multi-scale Attention-augmented State Space Model (MASS), where multi-scale attention maps are integrated into an attention-augmented SSM (A2SSM). A key step of A2SSM performs a variant of cross-attention by spatially aggregating the SSM's hidden states using the multi-scale attention maps, which enhances spatial dependencies pertaining to a two-dimensional space while improving the dynamic modeling capabilities of SSMs. Our A2Mamba outperforms all previous ConvNet-, Transformer-, and Mamba-based architectures in visual recognition tasks. For instance, A2Mamba-L achieves an impressive 86.1% top-1 accuracy on ImageNet-1K. In semantic segmentation, A2Mamba-B exceeds CAFormer-S36 by 2.5% in mIoU, while exhibiting higher efficiency. In object detection and instance segmentation with Cascade Mask R-CNN, A2Mamba-S surpasses MambaVision-B by 1.2%/0.9% in AP^b/AP^m, while having 40% less parameters. Code is publicly available at https://github.com/LMMMEng/A2Mamba.

Authors:Xueming Fu, Pei Wu, Yingtai Li, Xin Luo, Zihang Jiang, Junhao Mei, Jian Lu, Gao-Jun Teng, S. Kevin Zhou
Title: Dyna3DGR: 4D Cardiac Motion Tracking with Dynamic 3D Gaussian Representation
Abstract:
Accurate analysis of cardiac motion is crucial for evaluating cardiac function. While dynamic cardiac magnetic resonance imaging (CMR) can capture detailed tissue motion throughout the cardiac cycle, the fine-grained 4D cardiac motion tracking remains challenging due to the homogeneous nature of myocardial tissue and the lack of distinctive features. Existing approaches can be broadly categorized into image based and representation-based, each with its limitations. Image-based methods, including both raditional and deep learning-based registration approaches, either struggle with topological consistency or rely heavily on extensive training data. Representation-based methods, while promising, often suffer from loss of image-level details. To address these limitations, we propose Dynamic 3D Gaussian Representation (Dyna3DGR), a novel framework that combines explicit 3D Gaussian representation with implicit neural motion field modeling. Our method simultaneously optimizes cardiac structure and motion in a self-supervised manner, eliminating the need for extensive training data or point-to-point correspondences. Through differentiable volumetric rendering, Dyna3DGR efficiently bridges continuous motion representation with image-space alignment while preserving both topological and temporal consistency. Comprehensive evaluations on the ACDC dataset demonstrate that our approach surpasses state-of-the-art deep learning-based diffeomorphic registration methods in tracking accuracy. The code will be available in https://github.com/windrise/Dyna3DGR.

Authors:Xiaojiao Xiao, Qinmin Vivian Hu, Guanghui Wang
Title: Pyramid Hierarchical Masked Diffusion Model for Imaging Synthesis
Abstract:
Medical image synthesis plays a crucial role in clinical workflows, addressing the common issue of missing imaging modalities due to factors such as extended scan times, scan corruption, artifacts, patient motion, and intolerance to contrast agents. The paper presents a novel image synthesis network, the Pyramid Hierarchical Masked Diffusion Model (PHMDiff), which employs a multi-scale hierarchical approach for more detailed control over synthesizing high-quality images across different resolutions and layers. Specifically, this model utilizes randomly multi-scale high-proportion masks to speed up diffusion model training, and balances detail fidelity and overall structure. The integration of a Transformer-based Diffusion model process incorporates cross-granularity regularization, modeling the mutual information consistency across each granularity's latent spaces, thereby enhancing pixel-level perceptual accuracy. Comprehensive experiments on two challenging datasets demonstrate that PHMDiff achieves superior performance in both the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM), highlighting its capability to produce high-quality synthesized images with excellent structural integrity. Ablation studies further confirm the contributions of each component. Furthermore, the PHMDiff model, a multi-scale image synthesis framework across and within medical imaging modalities, shows significant advantages over other methods. The source code is available at https://github.com/xiaojiao929/PHMDiff

Authors:Shang Liu, Chenjie Cao, Chaohui Yu, Wen Qian, Jing Wang, Fan Wang
Title: EarthCrafter: Scalable 3D Earth Generation via Dual-Sparse Latent Diffusion
Abstract:
Despite the remarkable developments achieved by recent 3D generation works, scaling these methods to geographic extents, such as modeling thousands of square kilometers of Earth's surface, remains an open challenge. We address this through a dual innovation in data infrastructure and model architecture. First, we introduce Aerial-Earth3D, the largest 3D aerial dataset to date, consisting of 50k curated scenes (each measuring 600m x 600m) captured across the U.S. mainland, comprising 45M multi-view Google Earth frames. Each scene provides pose-annotated multi-view images, depth maps, normals, semantic segmentation, and camera poses, with explicit quality control to ensure terrain diversity. Building on this foundation, we propose EarthCrafter, a tailored framework for large-scale 3D Earth generation via sparse-decoupled latent diffusion. Our architecture separates structural and textural generation: 1) Dual sparse 3D-VAEs compress high-resolution geometric voxels and textural 2D Gaussian Splats (2DGS) into compact latent spaces, largely alleviating the costly computation suffering from vast geographic scales while preserving critical information. 2) We propose condition-aware flow matching models trained on mixed inputs (semantics, images, or neither) to flexibly model latent geometry and texture features independently. Extensive experiments demonstrate that EarthCrafter performs substantially better in extremely large-scale generation. The framework further supports versatile applications, from semantic-guided urban layout generation to unconditional terrain synthesis, while maintaining geographic plausibility through our rich data priors from Aerial-Earth3D. Our project page is available at https://whiteinblue.github.io/earthcrafter/

Authors:Xiaoyan Wang, Zeju Li, Yifan Xu, Jiaxing Qi, Zhifei Yang, Ruifei Ma, Xiangde Liu, Chao Zhang
Title: Spatial 3D-LLM: Exploring Spatial Awareness in 3D Vision-Language Models
Abstract:
New era has unlocked exciting possibilities for extending Large Language Models (LLMs) to tackle 3D vision-language tasks. However, most existing 3D multimodal LLMs (MLLMs) rely on compressing holistic 3D scene information or segmenting independent objects to perform these tasks, which limits their spatial awareness due to insufficient representation of the richness inherent in 3D scenes. To overcome these limitations, we propose Spatial 3D-LLM, a 3D MLLM specifically designed to enhance spatial awareness for 3D vision-language tasks by enriching the spatial embeddings of 3D scenes. Spatial 3D-LLM integrates an LLM backbone with a progressive spatial awareness scheme that progressively captures spatial information as the perception field expands, generating location-enriched 3D scene embeddings to serve as visual prompts. Furthermore, we introduce two novel tasks: 3D object distance measurement and 3D layout editing, and construct a 3D instruction dataset, MODEL, to evaluate the model's spatial awareness capabilities. Experimental results demonstrate that Spatial 3D-LLM achieves state-of-the-art performance across a wide range of 3D vision-language tasks, revealing the improvements stemmed from our progressive spatial awareness scheme of mining more profound spatial information. Our code is available at https://github.com/bjshuyuan/Spatial-3D-LLM.

Authors:Kai Deng, Zexin Ti, Jiawei Xu, Jian Yang, Jin Xie
Title: VGGT-Long: Chunk it, Loop it, Align it -- Pushing VGGT's Limits on Kilometer-scale Long RGB Sequences
Abstract:
Foundation models for 3D vision have recently demonstrated remarkable capabilities in 3D perception. However, extending these models to large-scale RGB stream 3D reconstruction remains challenging due to memory limitations. In this work, we propose VGGT-Long, a simple yet effective system that pushes the limits of monocular 3D reconstruction to kilometer-scale, unbounded outdoor environments. Our approach addresses the scalability bottlenecks of existing models through a chunk-based processing strategy combined with overlapping alignment and lightweight loop closure optimization. Without requiring camera calibration, depth supervision or model retraining, VGGT-Long achieves trajectory and reconstruction performance comparable to traditional methods. We evaluate our method on KITTI, Waymo, and Virtual KITTI datasets. VGGT-Long not only runs successfully on long RGB sequences where foundation models typically fail, but also produces accurate and consistent geometry across various conditions. Our results highlight the potential of leveraging foundation models for scalable monocular 3D scene in real-world settings, especially for autonomous driving scenarios. Code is available at https://github.com/DengKaiCQ/VGGT-Long.

Authors:Kahim Wong, Jicheng Zhou, Haiwei Wu, Yain-Whar Si, Jiantao Zhou
Title: ADCD-Net: Robust Document Image Forgery Localization via Adaptive DCT Feature and Hierarchical Content Disentanglement
Abstract:
The advancement of image editing tools has enabled malicious manipulation of sensitive document images, underscoring the need for robust document image forgery detection.Though forgery detectors for natural images have been extensively studied, they struggle with document images, as the tampered regions can be seamlessly blended into the uniform document background (BG) and structured text. On the other hand, existing document-specific methods lack sufficient robustness against various degradations, which limits their practical deployment. This paper presents ADCD-Net, a robust document forgery localization model that adaptively leverages the RGB/DCT forensic traces and integrates key characteristics of document images. Specifically, to address the DCT traces' sensitivity to block misalignment, we adaptively modulate the DCT feature contribution based on a predicted alignment score, resulting in much improved resilience to various distortions, including resizing and cropping. Also, a hierarchical content disentanglement approach is proposed to boost the localization performance via mitigating the text-BG disparities. Furthermore, noticing the predominantly pristine nature of BG regions, we construct a pristine prototype capturing traces of untampered regions, and eventually enhance both the localization accuracy and robustness. Our proposed ADCD-Net demonstrates superior forgery localization performance, consistently outperforming state-of-the-art methods by 20.79\% averaged over 5 types of distortions. The code is available at https://github.com/KAHIMWONG/ACDC-Net.

Authors:Kuo-Cheng Wu, Guohang Zhuang, Jinyang Huang, Xiang Zhang, Wanli Ouyang, Yan Lu
Title: STAR: A Benchmark for Astronomical Star Fields Super-Resolution
Abstract:
Super-resolution (SR) advances astronomical imaging by enabling cost-effective high-resolution capture, crucial for detecting faraway celestial objects and precise structural analysis. However, existing datasets for astronomical SR (ASR) exhibit three critical limitations: flux inconsistency, object-crop setting, and insufficient data diversity, significantly impeding ASR development. We propose STAR, a large-scale astronomical SR dataset containing 54,738 flux-consistent star field image pairs covering wide celestial regions. These pairs combine Hubble Space Telescope high-resolution observations with physically faithful low-resolution counterparts generated through a flux-preserving data generation pipeline, enabling systematic development of field-level ASR models. To further empower the ASR community, STAR provides a novel Flux Error (FE) to evaluate SR models in physical view. Leveraging this benchmark, we propose a Flux-Invariant Super Resolution (FISR) model that could accurately infer the flux-consistent high-resolution images from input photometry, suppressing several SR state-of-the-art methods by 24.84% on a novel designed flux consistency metric, showing the priority of our method for astrophysics. Extensive experiments demonstrate the effectiveness of our proposed method and the value of our dataset. Code and models are available at https://github.com/GuoCheng12/STAR.

Authors:Jinquan Guan, Junhong Guo, Qi Chen, Jian Chen, Yongkang Cai, Yilin He, Zhiquan Huang, Yan Wang, Yutong Xie
Title: A High Magnifications Histopathology Image Dataset for Oral Squamous Cell Carcinoma Diagnosis and Prognosis
Abstract:
Oral Squamous Cell Carcinoma (OSCC) is a prevalent and aggressive malignancy where deep learning-based computer-aided diagnosis and prognosis can enhance clinical assessments.However, existing publicly available OSCC datasets often suffer from limited patient cohorts and a restricted focus on either diagnostic or prognostic tasks, limiting the development of comprehensive and generalizable models. To bridge this gap, we introduce Multi-OSCC, a new histopathology image dataset comprising 1,325 OSCC patients, integrating both diagnostic and prognostic information to expand existing public resources. Each patient is represented by six high resolution histopathology images captured at x200, x400, and x1000 magnifications-two per magnification-covering both the core and edge tumor regions.The Multi-OSCC dataset is richly annotated for six critical clinical tasks: recurrence prediction (REC), lymph node metastasis (LNM), tumor differentiation (TD), tumor invasion (TI), cancer embolus (CE), and perineural invasion (PI). To benchmark this dataset, we systematically evaluate the impact of different visual encoders, multi-image fusion techniques, stain normalization, and multi-task learning frameworks. Our analysis yields several key insights: (1) The top-performing models achieve excellent results, with an Area Under the Curve (AUC) of 94.72% for REC and 81.23% for TD, while all tasks surpass 70% AUC; (2) Stain normalization benefits diagnostic tasks but negatively affects recurrence prediction; (3) Multi-task learning incurs a 3.34% average AUC degradation compared to single-task models in our multi-task benchmark, underscoring the challenge of balancing multiple tasks in our dataset. To accelerate future research, we publicly release the Multi-OSCC dataset and baseline models at https://github.com/guanjinquan/OSCC-PathologyImageDataset.

Authors:Joseph De Mathia, Carlos Francisco Moreno-García
Title: Scene Text Detection and Recognition "in light of" Challenging Environmental Conditions using Aria Glasses Egocentric Vision Cameras
Abstract:
In an era where wearable technology is reshaping applications, Scene Text Detection and Recognition (STDR) becomes a straightforward choice through the lens of egocentric vision. Leveraging Meta's Project Aria smart glasses, this paper investigates how environmental variables, such as lighting, distance, and resolution, affect the performance of state-of-the-art STDR algorithms in real-world scenarios. We introduce a novel, custom-built dataset captured under controlled conditions and evaluate two OCR pipelines: EAST with CRNN, and EAST with PyTesseract. Our findings reveal that resolution and distance significantly influence recognition accuracy, while lighting plays a less predictable role. Notably, image upscaling emerged as a key pre-processing technique, reducing Character Error Rate (CER) from 0.65 to 0.48. We further demonstrate the potential of integrating eye-gaze tracking to optimise processing efficiency by focusing on user attention zones. This work not only benchmarks STDR performance under realistic conditions but also lays the groundwork for adaptive, user-aware AR systems. Our contributions aim to inspire future research in robust, context-sensitive text recognition for assistive and research-oriented applications, such as asset inspection and nutrition analysis. The code is available at https://github.com/josepDe/Project_Aria_STR.

Authors:Kailai Zhou, Fuqiang Yang, Shixian Wang, Bihan Wen, Chongde Zi, Linsen Chen, Qiu Shen, Xun Cao
Title: M-SpecGene: Generalized Foundation Model for RGBT Multispectral Vision
Abstract:
RGB-Thermal (RGBT) multispectral vision is essential for robust perception in complex environments. Most RGBT tasks follow a case-by-case research paradigm, relying on manually customized models to learn task-oriented representations. Nevertheless, this paradigm is inherently constrained by artificial inductive bias, modality bias, and data bottleneck. To address these limitations, we make the initial attempt to build a Generalized RGBT MultiSpectral foundation model (M-SpecGene), which aims to learn modality-invariant representations from large-scale broad data in a self-supervised manner. M-SpecGene provides new insights into multispectral fusion and integrates prior case-by-case studies into a unified paradigm. Considering the unique characteristic of information imbalance in RGBT data, we introduce the Cross-Modality Structural Sparsity (CMSS) metric to quantify the information density across two modalities. Then we develop the GMM-CMSS progressive masking strategy to facilitate a flexible, easy-to-hard, and object-centric pre-training process. Comprehensive experiments validate M-SpecGene's generalizability across eleven datasets for four RGBT downstream tasks. The code will be available at https://github.com/CalayZhou/M-SpecGene.

Authors:Yanchen Liu, Yanan Sun, Zhening Xing, Junyao Gao, Kai Chen, Wenjie Pei
Title: MotionShot: Adaptive Motion Transfer across Arbitrary Objects for Text-to-Video Generation
Abstract:
Existing text-to-video methods struggle to transfer motion smoothly from a reference object to a target object with significant differences in appearance or structure between them. To address this challenge, we introduce MotionShot, a training-free framework capable of parsing reference-target correspondences in a fine-grained manner, thereby achieving high-fidelity motion transfer while preserving coherence in appearance. To be specific, MotionShot first performs semantic feature matching to ensure high-level alignments between the reference and target objects. It then further establishes low-level morphological alignments through reference-to-target shape retargeting. By encoding motion with temporal attention, our MotionShot can coherently transfer motion across objects, even in the presence of significant appearance and structure disparities, demonstrated by extensive experiments. The project page is available at: https://motionshot.github.io/.

Authors:Xianze Fang, Jingnan Gao, Zhe Wang, Zhuo Chen, Xingyu Ren, Jiangjing Lyu, Qiaomu Ren, Zhonglei Yang, Xiaokang Yang, Yichao Yan, Chengfei Lyu
Title: Dens3R: A Foundation Model for 3D Geometry Prediction
Abstract:
Recent advances in dense 3D reconstruction have led to significant progress, yet achieving accurate unified geometric prediction remains a major challenge. Most existing methods are limited to predicting a single geometry quantity from input images. However, geometric quantities such as depth, surface normals, and point maps are inherently correlated, and estimating them in isolation often fails to ensure consistency, thereby limiting both accuracy and practical applicability. This motivates us to explore a unified framework that explicitly models the structural coupling among different geometric properties to enable joint regression. In this paper, we present Dens3R, a 3D foundation model designed for joint geometric dense prediction and adaptable to a wide range of downstream tasks. Dens3R adopts a two-stage training framework to progressively build a pointmap representation that is both generalizable and intrinsically invariant. Specifically, we design a lightweight shared encoder-decoder backbone and introduce position-interpolated rotary positional encoding to maintain expressive power while enhancing robustness to high-resolution inputs. By integrating image-pair matching features with intrinsic invariance modeling, Dens3R accurately regresses multiple geometric quantities such as surface normals and depth, achieving consistent geometry perception from single-view to multi-view inputs. Additionally, we propose a post-processing pipeline that supports geometrically consistent multi-view inference. Extensive experiments demonstrate the superior performance of Dens3R across various dense 3D prediction tasks and highlight its potential for broader applications.

Authors:Yu Wang, Bo Dang, Wanchun Li, Wei Chen, Yansheng Li
Title: HoliTracer: Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
Abstract:
With the increasing resolution of remote sensing imagery (RSI), large-size RSI has emerged as a vital data source for high-precision vector mapping of geographic objects. Existing methods are typically constrained to processing small image patches, which often leads to the loss of contextual information and produces fragmented vector outputs. To address these, this paper introduces HoliTracer, the first framework designed to holistically extract vectorized geographic objects from large-size RSI. In HoliTracer, we enhance segmentation of large-size RSI using the Context Attention Net (CAN), which employs a local-to-global attention mechanism to capture contextual dependencies. Furthermore, we achieve holistic vectorization through a robust pipeline that leverages the Mask Contour Reformer (MCR) to reconstruct polygons and the Polygon Sequence Tracer (PST) to trace vertices. Extensive experiments on large-size RSI datasets, including buildings, water bodies, and roads, demonstrate that HoliTracer outperforms state-of-the-art methods. Our code and data are available in https://github.com/vvangfaye/HoliTracer.

Authors:Chao Zhou, Tianyi Wei, Nenghai Yu
Title: Scale Your Instructions: Enhance the Instruction-Following Fidelity of Unified Image Generation Model by Self-Adaptive Attention Scaling
Abstract:
Recent advancements in unified image generation models, such as OmniGen, have enabled the handling of diverse image generation and editing tasks within a single framework, accepting multimodal, interleaved texts and images in free form. This unified architecture eliminates the need for text encoders, greatly reducing model complexity and standardizing various image generation and editing tasks, making it more user-friendly. However, we found that it suffers from text instruction neglect, especially when the text instruction contains multiple sub-instructions. To explore this issue, we performed a perturbation analysis on the input to identify critical steps and layers. By examining the cross-attention maps of these key steps, we observed significant conflicts between neglected sub-instructions and the activations of the input image. In response, we propose Self-Adaptive Attention Scaling (SaaS), a method that leverages the consistency of cross-attention between adjacent timesteps to dynamically scale the attention activation for each sub-instruction. Our SaaS enhances instruction-following fidelity without requiring additional training or test-time optimization. Experimental results on instruction-based image editing and visual conditional image generation validate the effectiveness of our SaaS, showing superior instruction-following fidelity over existing methods. The code is available https://github.com/zhouchao-ops/SaaS.

Authors:Shreelekha Revankar, Utkarsh Mall, Cheng Perng Phoo, Kavita Bala, Bharath Hariharan
Title: MONITRS: Multimodal Observations of Natural Incidents Through Remote Sensing
Abstract:
Natural disasters cause devastating damage to communities and infrastructure every year. Effective disaster response is hampered by the difficulty of accessing affected areas during and after events. Remote sensing has allowed us to monitor natural disasters in a remote way. More recently there have been advances in computer vision and deep learning that help automate satellite imagery analysis, However, they remain limited by their narrow focus on specific disaster types, reliance on manual expert interpretation, and lack of datasets with sufficient temporal granularity or natural language annotations for tracking disaster progression. We present MONITRS, a novel multimodal dataset of more than 10,000 FEMA disaster events with temporal satellite imagery and natural language annotations from news articles, accompanied by geotagged locations, and question-answer pairs. We demonstrate that fine-tuning existing MLLMs on our dataset yields significant performance improvements for disaster monitoring tasks, establishing a new benchmark for machine learning-assisted disaster response systems. Code can be found at: https://github.com/ShreelekhaR/MONITRS

Authors:Wentao Xiang, Haoxian Tan, Cong Wei, Yujie Zhong, Dengjie Li, Yujiu Yang
Title: Advancing Visual Large Language Model for Multi-granular Versatile Perception
Abstract:
Perception is a fundamental task in the field of computer vision, encompassing a diverse set of subtasks that can be systematically categorized into four distinct groups based on two dimensions: prediction type and instruction type. Notably, existing researches often focus solely on a limited subset of these potential combinations, which constrains their applicability and versatility across various contexts. In response to this challenge, we present MVP-LM, a Multi-granular and Versatile Perception framework incorporating Visual Large Language Model. Our framework is designed to integrate both word-based and sentence-based perception tasks alongside box and mask predictions within a single architecture. MVP-LM features an innovative multi-granularity decoder in conjunction with a CoT-inspired dataset unification strategy, enabling seamless supervised fine-tuning across a wide spectrum of tasks, including but not limited to panoptic segmentation, detection, grounding, and referring expression segmentation. Furthermore, we introduce a query enhancement strategy aimed at harnessing the decoding and generative capabilities inherent in VLLMs. Extensive experiments conducted across a range of benchmarks in both word-based and sentence-based perception tasks substantiate the efficacy of our framework. The code will be available at https://github.com/xiangwentao666/MVP-LM.

Authors:Zitong Xu, Huiyu Duan, Bingnan Liu, Guangji Ma, Jiarui Wang, Liu Yang, Shiqi Gao, Xiaoyu Wang, Jia Wang, Xiongkuo Min, Guangtao Zhai, Weisi Lin
Title: LMM4Edit: Benchmarking and Evaluating Multimodal Image Editing with LMMs
Abstract:
The rapid advancement of Text-guided Image Editing (TIE) enables image modifications through text prompts. However, current TIE models still struggle to balance image quality, editing alignment, and consistency with the original image, limiting their practical applications. Existing TIE evaluation benchmarks and metrics have limitations on scale or alignment with human perception. To this end, we introduce EBench-18K, the first large-scale image Editing Benchmark including 18K edited images with fine-grained human preference annotations for evaluating TIE. Specifically, EBench-18K includes 1,080 source images with corresponding editing prompts across 21 tasks, 18K+ edited images produced by 17 state-of-the-art TIE models, 55K+ mean opinion scores (MOSs) assessed from three evaluation dimensions, and 18K+ question-answering (QA) pairs. Based on EBench-18K, we employ outstanding LMMs to assess edited images, while the evaluation results, in turn, provide insights into assessing the alignment between the LMMs' understanding ability and human preferences. Then, we propose LMM4Edit, a LMM-based metric for evaluating image Editing models from perceptual quality, editing alignment, attribute preservation, and task-specific QA accuracy in an all-in-one manner. Extensive experiments show that LMM4Edit achieves outstanding performance and aligns well with human preference. Zero-shot validation on the other datasets also shows the generalization ability of our model. The dataset and code are available at https://github.com/IntMeGroup/LMM4Edit.

Authors:Fansheng Zeng, Bineng Zhong, Haiying Xia, Yufei Tan, Xiantao Hu, Liangtao Shi, Shuxiang Song
Title: Explicit Context Reasoning with Supervision for Visual Tracking
Abstract:
Contextual reasoning with constraints is crucial for enhancing temporal consistency in cross-frame modeling for visual tracking. However, mainstream tracking algorithms typically associate context by merely stacking historical information without explicitly supervising the association process, making it difficult to effectively model the target's evolving dynamics. To alleviate this problem, we propose RSTrack, which explicitly models and supervises context reasoning via three core mechanisms. \textit{1) Context Reasoning Mechanism}: Constructs a target state reasoning pipeline, converting unconstrained contextual associations into a temporal reasoning process that predicts the current representation based on historical target states, thereby enhancing temporal consistency. \textit{2) Forward Supervision Strategy}: Utilizes true target features as anchors to constrain the reasoning pipeline, guiding the predicted output toward the true target distribution and suppressing drift in the context reasoning process. \textit{3) Efficient State Modeling}: Employs a compression-reconstruction mechanism to extract the core features of the target, removing redundant information across frames and preventing ineffective contextual associations. These three mechanisms collaborate to effectively alleviate the issue of contextual association divergence in traditional temporal modeling. Experimental results show that RSTrack achieves state-of-the-art performance on multiple benchmark datasets while maintaining real-time running speeds. Our code is available at https://github.com/GXNU-ZhongLab/RSTrack.

Authors:Nand Kumar Yadav, Rodrigue Rizk, William CW Chen, KC Santosh
Title: MLRU++: Multiscale Lightweight Residual UNETR++ with Attention for Efficient 3D Medical Image Segmentation
Abstract:
Accurate and efficient medical image segmentation is crucial but challenging due to anatomical variability and high computational demands on volumetric data. Recent hybrid CNN-Transformer architectures achieve state-of-the-art results but add significant complexity. In this paper, we propose MLRU++, a Multiscale Lightweight Residual UNETR++ architecture designed to balance segmentation accuracy and computational efficiency. It introduces two key innovations: a Lightweight Channel and Bottleneck Attention Module (LCBAM) that enhances contextual feature encoding with minimal overhead, and a Multiscale Bottleneck Block (M2B) in the decoder that captures fine-grained details via multi-resolution feature aggregation. Experiments on four publicly available benchmark datasets (Synapse, BTCV, ACDC, and Decathlon Lung) demonstrate that MLRU++ achieves state-of-the-art performance, with average Dice scores of 87.57% (Synapse), 93.00% (ACDC), and 81.12% (Lung). Compared to existing leading models, MLRU++ improves Dice scores by 5.38% and 2.12% on Synapse and ACDC, respectively, while significantly reducing parameter count and computational cost. Ablation studies evaluating LCBAM and M2B further confirm the effectiveness of the proposed architectural components. Results suggest that MLRU++ offers a practical and high-performing solution for 3D medical image segmentation tasks. Source code is available at: https://github.com/1027865/MLRUPP

Authors:Yaofang Liu, Yumeng Ren, Aitor Artola, Yuxuan Hu, Xiaodong Cun, Xiaotong Zhao, Alan Zhao, Raymond H. Chan, Suiyun Zhang, Rui Liu, Dandan Tu, Jean-Michel Morel
Title: PUSA V1.0: Surpassing Wan-I2V with $500 Training Cost by Vectorized Timestep Adaptation
Abstract:
The rapid advancement of video diffusion models has been hindered by fundamental limitations in temporal modeling, particularly the rigid synchronization of frame evolution imposed by conventional scalar timestep variables. While task-specific adaptations and autoregressive models have sought to address these challenges, they remain constrained by computational inefficiency, catastrophic forgetting, or narrow applicability. In this work, we present Pusa, a groundbreaking paradigm that leverages vectorized timestep adaptation (VTA) to enable fine-grained temporal control within a unified video diffusion framework. Besides, VTA is a non-destructive adaptation, which means it fully preserves the capabilities of the base model. By finetuning the SOTA Wan2.1-T2V-14B model with VTA, we achieve unprecedented efficiency -- surpassing the performance of Wan-I2V-14B with $\leq$ 1/200 of the training cost (\$500 vs. $\geq$ \$100,000) and $\leq$ 1/2500 of the dataset size (4K vs. $\geq$ 10M samples). Pusa not only sets a new standard for image-to-video (I2V) generation, achieving a VBench-I2V total score of 87.32\% (vs. 86.86\% of Wan-I2V-14B), but also unlocks many zero-shot multi-task capabilities such as start-end frames and video extension -- all without task-specific training. Meanwhile, Pusa can still perform text-to-video generation. Mechanistic analyses reveal that our approach preserves the foundation model's generative priors while surgically injecting temporal dynamics, avoiding the combinatorial explosion inherent to vectorized timesteps. This work establishes a scalable, efficient, and versatile paradigm for next-generation video synthesis, democratizing high-fidelity video generation for research and industry alike. Code is open-sourced at https://github.com/Yaofang-Liu/Pusa-VidGen

Authors:Rahul Venkatesh, Klemen Kotar, Lilian Naing Chen, Seungwoo Kim, Luca Thomas Wheeler, Jared Watrous, Ashley Xu, Gia Ancone, Wanhee Lee, Honglin Chen, Daniel Bear, Stefan Stojanov, Daniel Yamins
Title: Discovering and using Spelke segments
Abstract:
Segments in computer vision are often defined by semantic considerations and are highly dependent on category-specific conventions. In contrast, developmental psychology suggests that humans perceive the world in terms of Spelke objects--groupings of physical things that reliably move together when acted on by physical forces. Spelke objects thus operate on category-agnostic causal motion relationships which potentially better support tasks like manipulation and planning. In this paper, we first benchmark the Spelke object concept, introducing the SpelkeBench dataset that contains a wide variety of well-defined Spelke segments in natural images. Next, to extract Spelke segments from images algorithmically, we build SpelkeNet, a class of visual world models trained to predict distributions over future motions. SpelkeNet supports estimation of two key concepts for Spelke object discovery: (1) the motion affordance map, identifying regions likely to move under a poke, and (2) the expected-displacement map, capturing how the rest of the scene will move. These concepts are used for "statistical counterfactual probing", where diverse "virtual pokes" are applied on regions of high motion-affordance, and the resultant expected displacement maps are used define Spelke segments as statistical aggregates of correlated motion statistics. We find that SpelkeNet outperforms supervised baselines like SegmentAnything (SAM) on SpelkeBench. Finally, we show that the Spelke concept is practically useful for downstream applications, yielding superior performance on the 3DEditBench benchmark for physical object manipulation when used in a variety of off-the-shelf object manipulation models.

Authors:Shahar Zuler, Gal Lifshitz, Hadar Averbuch-Elor, Dan Raviv
Title: Systole-Conditioned Generative Cardiac Motion
Abstract:
Accurate motion estimation in cardiac computed tomography (CT) imaging is critical for assessing cardiac function and surgical planning. Data-driven methods have become the standard approach for dense motion estimation, but they rely on vast amounts of labeled data with dense ground-truth (GT) motion annotations, which are often unfeasible to obtain. To address this limitation, we present a novel approach that synthesizes realistically looking pairs of cardiac CT frames enriched with dense 3D flow field annotations. Our method leverages a conditional Variational Autoencoder (CVAE), which incorporates a novel multi-scale feature conditioning mechanism and is trained to generate 3D flow fields conditioned on a single CT frame. By applying the generated flow field to warp the given frame, we create pairs of frames that simulate realistic myocardium deformations across the cardiac cycle. These pairs serve as fully annotated data samples, providing optical flow GT annotations. Our data generation pipeline could enable the training and validation of more complex and accurate myocardium motion models, allowing for substantially reducing reliance on manual annotations. Our code, along with animated generated samples and additional material, is available on our project page: https://shaharzuler.github.io/GenerativeCardiacMotion_Page.

Authors:Jiawei Yang, Tianhong Li, Lijie Fan, Yonglong Tian, Yue Wang
Title: Latent Denoising Makes Good Visual Tokenizers
Abstract:
Despite their fundamental role, it remains unclear what properties could make visual tokenizers more effective for generative modeling. We observe that modern generative models share a conceptually similar training objective -- reconstructing clean signals from corrupted inputs such as Gaussian noise or masking -- a process we term denoising. Motivated by this insight, we propose aligning tokenizer embeddings directly with the downstream denoising objective, encouraging latent embeddings to be more easily reconstructed even when heavily corrupted. To achieve this, we introduce the Latent Denoising Tokenizer (l-DeTok), a simple yet effective tokenizer trained to reconstruct clean images from latent embeddings corrupted by interpolative noise and random masking. Extensive experiments on ImageNet 256x256 demonstrate that our tokenizer consistently outperforms standard tokenizers across six representative generative models. Our findings highlight denoising as a fundamental design principle for tokenizer development, and we hope it could motivate new perspectives for future tokenizer design.

Authors:Zhixiong Zhang, Shuangrui Ding, Xiaoyi Dong, Songxin He, Jianfan Lin, Junsong Tang, Yuhang Zang, Yuhang Cao, Dahua Lin, Jiaqi Wang
Title: SeC: Advancing Complex Video Object Segmentation via Progressive Concept Construction
Abstract:
Video Object Segmentation (VOS) is a core task in computer vision, requiring models to track and segment target objects across video frames. Despite notable advances with recent efforts, current techniques still lag behind human capabilities in handling drastic visual variations, occlusions, and complex scene changes. This limitation arises from their reliance on appearance matching, neglecting the human-like conceptual understanding of objects that enables robust identification across temporal dynamics. Motivated by this gap, we propose Segment Concept (SeC), a concept-driven segmentation framework that shifts from conventional feature matching to the progressive construction and utilization of high-level, object-centric representations. SeC employs Large Vision-Language Models (LVLMs) to integrate visual cues across diverse frames, constructing robust conceptual priors. During inference, SeC forms a comprehensive semantic representation of the target based on processed frames, realizing robust segmentation of follow-up frames. Furthermore, SeC adaptively balances LVLM-based semantic reasoning with enhanced feature matching, dynamically adjusting computational efforts based on scene complexity. To rigorously assess VOS methods in scenarios demanding high-level conceptual reasoning and robust semantic understanding, we introduce the Semantic Complex Scenarios Video Object Segmentation benchmark (SeCVOS). SeCVOS comprises 160 manually annotated multi-scenario videos designed to challenge models with substantial appearance variations and dynamic scene transformations. In particular, SeC achieves an 11.8-point improvement over SAM 2.1 on SeCVOS, establishing a new state-of-the-art in concept-aware video object segmentation.

Authors:Ian Chuang, Jinyu Zou, Andrew Lee, Dechen Gao, Iman Soltani
Title: Look, Focus, Act: Efficient and Robust Robot Learning via Human Gaze and Foveated Vision Transformers
Abstract:
Human vision is a highly active process driven by gaze, which directs attention to task-relevant regions through foveation, dramatically reducing visual processing. In contrast, robot learning systems typically rely on passive, uniform processing of raw camera images. In this work, we explore how incorporating human-like active gaze into robotic policies can enhance efficiency and robustness. We develop GIAVA (Gaze Integrated Active-Vision ALOHA), a robot vision system that emulates human head and neck movement, and gaze adjustment for foveated processing. Extending the AV-ALOHA robot platform, we introduce a framework for simultaneously collecting eye-tracking, perspective control, and robot manipulation demonstration data from a human operator. We also open-source a simulation benchmark and dataset for training robot policies that incorporate human gaze. Inspired by recent work in foveated image segmentation and given the widespread use of Vision Transformers (ViTs) in robot learning, we integrate gaze information into ViTs using a foveated patch tokenization scheme. Compared to uniform patch tokenization, this significantly reduces the number of tokens, and thus computation. Our results show that our method for foveated robot vision drastically reduces computational overhead, and enhances robustness to background distractors. Notably, on certain high-precision tasks, foveated vision also improves performance, as reflected in higher success rates. Together, these findings suggest that human-inspired foveated visual processing offers untapped potential and should be further considered as a useful inductive bias in robotic vision systems. https://ian-chuang.github.io/gaze-av-aloha/

Authors:Shuo Chen, Jianzhe Liu, Zhen Han, Yan Xia, Daniel Cremers, Philip Torr, Volker Tresp, Jindong Gu
Title: True Multimodal In-Context Learning Needs Attention to the Visual Context
Abstract:
Multimodal Large Language Models (MLLMs), built on powerful language backbones, have enabled Multimodal In-Context Learning (MICL)-adapting to new tasks from a few multimodal demonstrations consisting of images, questions, and answers. Despite showing noticeable improvement on standard vision-language datasets, current MLLMs struggle to leverage visual information in the demonstrations. Specifically, they tend to neglect visual cues and over-rely on textual patterns, leading to mere text imitation rather than genuine multimodal adaptation. This behavior makes MICL still unimodal and largely restricts its practical utility. More importantly, this limitation is often concealed by the improved performance on tasks that do not require understanding the visual context. As a result, how to effectively enhance MICL ability and reliably evaluate the MICL performance remains underexplored. To address these issues, we first introduce Dynamic Attention Reallocation (DARA), an efficient fine-tuning strategy that encourages models to attend to the visual context by rebalancing attention across visual and textual tokens. In addition, we present TrueMICL, an MICL-dedicated dataset with both support and test sets that explicitly requires the integration of multimodal information-particularly visual content-for correct task completion. Extensive experiments demonstrate the effectiveness of our holistic solution, showcasing substantial improvements in the true multimodal in-context learning capabilities. Code and datasets are available at https://chenxshuo.github.io/true-micl-colm .

Authors:Ghassen Baklouti, Julio Silva-Rodríguez, Jose Dolz, Houda Bahig, Ismail Ben Ayed
Title: Regularized Low-Rank Adaptation for Few-Shot Organ Segmentation
Abstract:
Parameter-efficient fine-tuning (PEFT) of pre-trained foundation models is increasingly attracting interest in medical imaging due to its effectiveness and computational efficiency. Among these methods, Low-Rank Adaptation (LoRA) is a notable approach based on the assumption that the adaptation inherently occurs in a low-dimensional subspace. While it has shown good performance, its implementation requires a fixed and unalterable rank, which might be challenging to select given the unique complexities and requirements of each medical imaging downstream task. Inspired by advancements in natural image processing, we introduce a novel approach for medical image segmentation that dynamically adjusts the intrinsic rank during adaptation. Viewing the low-rank representation of the trainable weight matrices as a singular value decomposition, we introduce an l_1 sparsity regularizer to the loss function, and tackle it with a proximal optimizer. The regularizer could be viewed as a penalty on the decomposition rank. Hence, its minimization enables to find task-adapted ranks automatically. Our method is evaluated in a realistic few-shot fine-tuning setting, where we compare it first to the standard LoRA and then to several other PEFT methods across two distinguishable tasks: base organs and novel organs. Our extensive experiments demonstrate the significant performance improvements driven by our method, highlighting its efficiency and robustness against suboptimal rank initialization. Our code is publicly available: https://github.com/ghassenbaklouti/ARENA

Authors:Feng-Qi Cui, Anyang Tong, Jinyang Huang, Jie Zhang, Dan Guo, Zhi Liu, Meng Wang
Title: Learning from Heterogeneity: Generalizing Dynamic Facial Expression Recognition via Distributionally Robust Optimization
Abstract:
Dynamic Facial Expression Recognition (DFER) plays a critical role in affective computing and human-computer interaction. Although existing methods achieve comparable performance, they inevitably suffer from performance degradation under sample heterogeneity caused by multi-source data and individual expression variability. To address these challenges, we propose a novel framework, called Heterogeneity-aware Distributional Framework (HDF), and design two plug-and-play modules to enhance time-frequency modeling and mitigate optimization imbalance caused by hard samples. Specifically, the Time-Frequency Distributional Attention Module (DAM) captures both temporal consistency and frequency robustness through a dual-branch attention design, improving tolerance to sequence inconsistency and visual style shifts. Then, based on gradient sensitivity and information bottleneck principles, an adaptive optimization module Distribution-aware Scaling Module (DSM) is introduced to dynamically balance classification and contrastive losses, enabling more stable and discriminative representation learning. Extensive experiments on two widely used datasets, DFEW and FERV39k, demonstrate that HDF significantly improves both recognition accuracy and robustness. Our method achieves superior weighted average recall (WAR) and unweighted average recall (UAR) while maintaining strong generalization across diverse and imbalanced scenarios. Codes are released at https://github.com/QIcita/HDF_DFER.

Authors:Wenqi Ouyang, Zeqi Xiao, Danni Yang, Yifan Zhou, Shuai Yang, Lei Yang, Jianlou Si, Xingang Pan
Title: TokensGen: Harnessing Condensed Tokens for Long Video Generation
Abstract:
Generating consistent long videos is a complex challenge: while diffusion-based generative models generate visually impressive short clips, extending them to longer durations often leads to memory bottlenecks and long-term inconsistency. In this paper, we propose TokensGen, a novel two-stage framework that leverages condensed tokens to address these issues. Our method decomposes long video generation into three core tasks: (1) inner-clip semantic control, (2) long-term consistency control, and (3) inter-clip smooth transition. First, we train To2V (Token-to-Video), a short video diffusion model guided by text and video tokens, with a Video Tokenizer that condenses short clips into semantically rich tokens. Second, we introduce T2To (Text-to-Token), a video token diffusion transformer that generates all tokens at once, ensuring global consistency across clips. Finally, during inference, an adaptive FIFO-Diffusion strategy seamlessly connects adjacent clips, reducing boundary artifacts and enhancing smooth transitions. Experimental results demonstrate that our approach significantly enhances long-term temporal and content coherence without incurring prohibitive computational overhead. By leveraging condensed tokens and pre-trained short video models, our method provides a scalable, modular solution for long video generation, opening new possibilities for storytelling, cinematic production, and immersive simulations. Please see our project page at https://vicky0522.github.io/tokensgen-webpage/ .

Authors:Wei Sun, Weixia Zhang, Linhan Cao, Jun Jia, Xiangyang Zhu, Dandan Zhu, Xiongkuo Min, Guangtao Zhai
Title: Efficient Face Image Quality Assessment via Self-training and Knowledge Distillation
Abstract:
Face image quality assessment (FIQA) is essential for various face-related applications. Although FIQA has been extensively studied and achieved significant progress, the computational complexity of FIQA algorithms remains a key concern for ensuring scalability and practical deployment in real-world systems. In this paper, we aim to develop a computationally efficient FIQA method that can be easily deployed in real-world applications. Specifically, our method consists of two stages: training a powerful teacher model and distilling a lightweight student model from it. To build a strong teacher model, we adopt a self-training strategy to improve its capacity. We first train the teacher model using labeled face images, then use it to generate pseudo-labels for a set of unlabeled images. These pseudo-labeled samples are used in two ways: (1) to distill knowledge into the student model, and (2) to combine with the original labeled images to further enhance the teacher model through self-training. The enhanced teacher model is used to further pseudo-label another set of unlabeled images for distilling the student models. The student model is trained using a combination of labeled images, pseudo-labeled images from the original teacher model, and pseudo-labeled images from the enhanced teacher model. Experimental results demonstrate that our student model achieves comparable performance to the teacher model with an extremely low computational overhead. Moreover, our method achieved first place in the ICCV 2025 VQualA FIQA Challenge. The code is available at https://github.com/sunwei925/Efficient-FIQA.git.

Authors:Wenjie Huang, Qi Yang, Shuting Xia, He Huang, Zhu Li, Yiling Xu
Title: LINR-PCGC: Lossless Implicit Neural Representations for Point Cloud Geometry Compression
Abstract:
Existing AI-based point cloud compression methods struggle with dependence on specific training data distributions, which limits their real-world deployment. Implicit Neural Representation (INR) methods solve the above problem by encoding overfitted network parameters to the bitstream, resulting in more distribution-agnostic results. However, due to the limitation of encoding time and decoder size, current INR based methods only consider lossy geometry compression. In this paper, we propose the first INR based lossless point cloud geometry compression method called Lossless Implicit Neural Representations for Point Cloud Geometry Compression (LINR-PCGC). To accelerate encoding speed, we design a group of point clouds level coding framework with an effective network initialization strategy, which can reduce around 60% encoding time. A lightweight coding network based on multiscale SparseConv, consisting of scale context extraction, child node prediction, and model compression modules, is proposed to realize fast inference and compact decoder size. Experimental results show that our method consistently outperforms traditional and AI-based methods: for example, with the convergence time in the MVUB dataset, our method reduces the bitstream by approximately 21.21% compared to G-PCC TMC13v23 and 21.95% compared to SparsePCGC. Our project can be seen on https://huangwenjie2023.github.io/LINR-PCGC/.

Authors:Zuo-Liang Zhu, Jian Yang, Beibei Wang
Title: Gaussian Splatting with Discretized SDF for Relightable Assets
Abstract:
3D Gaussian splatting (3DGS) has shown its detailed expressive ability and highly efficient rendering speed in the novel view synthesis (NVS) task. The application to inverse rendering still faces several challenges, as the discrete nature of Gaussian primitives makes it difficult to apply geometry constraints. Recent works introduce the signed distance field (SDF) as an extra continuous representation to regularize the geometry defined by Gaussian primitives. It improves the decomposition quality, at the cost of increasing memory usage and complicating training. Unlike these works, we introduce a discretized SDF to represent the continuous SDF in a discrete manner by encoding it within each Gaussian using a sampled value. This approach allows us to link the SDF with the Gaussian opacity through an SDF-to-opacity transformation, enabling rendering the SDF via splatting and avoiding the computational cost of ray marching.The key challenge is to regularize the discrete samples to be consistent with the underlying SDF, as the discrete representation can hardly apply the gradient-based constraints (\eg Eikonal loss). For this, we project Gaussians onto the zero-level set of SDF and enforce alignment with the surface from splatting, namely a projection-based consistency loss. Thanks to the discretized SDF, our method achieves higher relighting quality, while requiring no extra memory beyond GS and avoiding complex manually designed optimization. The experiments reveal that our method outperforms existing Gaussian-based inverse rendering methods. Our code is available at https://github.com/NK-CS-ZZL/DiscretizedSDF.

Authors:Zihui Gao, Jia-Wang Bian, Guosheng Lin, Hao Chen, Chunhua Shen
Title: SurfaceSplat: Connecting Surface Reconstruction and Gaussian Splatting
Abstract:
Surface reconstruction and novel view rendering from sparse-view images are challenging. Signed Distance Function (SDF)-based methods struggle with fine details, while 3D Gaussian Splatting (3DGS)-based approaches lack global geometry coherence. We propose a novel hybrid method that combines the strengths of both approaches: SDF captures coarse geometry to enhance 3DGS-based rendering, while newly rendered images from 3DGS refine the details of SDF for accurate surface reconstruction. As a result, our method surpasses state-of-the-art approaches in surface reconstruction and novel view synthesis on the DTU and MobileBrick datasets. Code will be released at https://github.com/aim-uofa/SurfaceSplat.

Authors:Hao Luo, Yicheng Feng, Wanpeng Zhang, Sipeng Zheng, Ye Wang, Haoqi Yuan, Jiazheng Liu, Chaoyi Xu, Qin Jin, Zongqing Lu
Title: Being-H0: Vision-Language-Action Pretraining from Large-Scale Human Videos
Abstract:
We introduce Being-H0, a dexterous Vision-Language-Action model (VLA) trained on large-scale human videos. Existing VLAs struggle with complex manipulation tasks requiring high dexterity and generalize poorly to novel scenarios and tasks, primarily due to their reliance on synthetic data with significant sim-to-real gaps or teleoperated demonstrations lacking scale and diversity. To address this data bottleneck, we propose leveraging human hands as a foundation manipulator, capitalizing on the rich dexterity and scalability present in web data. Our approach centers on physical instruction tuning, a novel training paradigm that combines large-scale VLA pretraining from human videos, physical space alignment for 3D reasoning, and post-training adaptation for robotic tasks. Additionally, we introduce a part-level motion tokenization method which achieves millimeter-level reconstruction accuracy to model precise hand trajectories for action learning. To support our proposed paradigm, we further develop a comprehensive data curation pipeline that integrates heterogeneous sources -- including motion capture, VR, and RGB-only videos -- into a large-scale dataset with millions of motion-based instructional instances. We empirically show the excellence of Being-H0 in hand motion generation and instruction following, and it also scales well with model and data sizes. Importantly, we observe the expected gains of Being-H0 in real-world robotic manipulation as physical instruction tuning is applied. More details are available at https://beingbeyond.github.io/Being-H0.

Authors:Salah Eddine Bekhouche, Gaby Maroun, Fadi Dornaika, Abdenour Hadid
Title: SegDT: A Diffusion Transformer-Based Segmentation Model for Medical Imaging
Abstract:
Medical image segmentation is crucial for many healthcare tasks, including disease diagnosis and treatment planning. One key area is the segmentation of skin lesions, which is vital for diagnosing skin cancer and monitoring patients. In this context, this paper introduces SegDT, a new segmentation model based on diffusion transformer (DiT). SegDT is designed to work on low-cost hardware and incorporates Rectified Flow, which improves the generation quality at reduced inference steps and maintains the flexibility of standard diffusion models. Our method is evaluated on three benchmarking datasets and compared against several existing works, achieving state-of-the-art results while maintaining fast inference speeds. This makes the proposed model appealing for real-world medical applications. This work advances the performance and capabilities of deep learning models in medical image analysis, enabling faster, more accurate diagnostic tools for healthcare professionals. The code is made publicly available at \href{https://github.com/Bekhouche/SegDT}{GitHub}.

Authors:Hugo Carlesso, Maria Eliza Patulea, Moncef Garouani, Radu Tudor Ionescu, Josiane Mothe
Title: GeMix: Conditional GAN-Based Mixup for Improved Medical Image Augmentation
Abstract:
Mixup has become a popular augmentation strategy for image classification, yet its naive pixel-wise interpolation often produces unrealistic images that can hinder learning, particularly in high-stakes medical applications. We propose GeMix, a two-stage framework that replaces heuristic blending with a learned, label-aware interpolation powered by class-conditional GANs. First, a StyleGAN2-ADA generator is trained on the target dataset. During augmentation, we sample two label vectors from Dirichlet priors biased toward different classes and blend them via a Beta-distributed coefficient. Then, we condition the generator on this soft label to synthesize visually coherent images that lie along a continuous class manifold. We benchmark GeMix on the large-scale COVIDx-CT-3 dataset using three backbones (ResNet-50, ResNet-101, EfficientNet-B0). When combined with real data, our method increases macro-F1 over traditional mixup for all backbones, reducing the false negative rate for COVID-19 detection. GeMix is thus a drop-in replacement for pixel-space mixup, delivering stronger regularization and greater semantic fidelity, without disrupting existing training pipelines. We publicly release our code at https://github.com/hugocarlesso/GeMix to foster reproducibility and further research.

Authors:Nicolas Poggi, Shashank Agnihotri, Margret Keuper
Title: Smart Eyes for Silent Threats: VLMs and In-Context Learning for THz Imaging
Abstract:
Terahertz (THz) imaging enables non-invasive analysis for applications such as security screening and material classification, but effective image classification remains challenging due to limited annotations, low resolution, and visual ambiguity. We introduce In-Context Learning (ICL) with Vision-Language Models (VLMs) as a flexible, interpretable alternative that requires no fine-tuning. Using a modality-aligned prompting framework, we adapt two open-weight VLMs to the THz domain and evaluate them under zero-shot and one-shot settings. Our results show that ICL improves classification and interpretability in low-data regimes. This is the first application of ICL-enhanced VLMs to THz imaging, offering a promising direction for resource-constrained scientific domains. Code: \href{https://github.com/Nicolas-Poggi/Project_THz_Classification/tree/main}{GitHub repository}.

Authors:Qinqian Lei, Bo Wang, Robby T. Tan
Title: HOLa: Zero-Shot HOI Detection with Low-Rank Decomposed VLM Feature Adaptation
Abstract:
Zero-shot human-object interaction (HOI) detection remains a challenging task, particularly in generalizing to unseen actions. Existing methods address this challenge by tapping Vision-Language Models (VLMs) to access knowledge beyond the training data. However, they either struggle to distinguish actions involving the same object or demonstrate limited generalization to unseen classes. In this paper, we introduce HOLa (Zero-Shot HOI Detection with Low-Rank Decomposed VLM Feature Adaptation), a novel approach that both enhances generalization to unseen classes and improves action distinction. In training, HOLa decomposes VLM text features for given HOI classes via low-rank factorization, producing class-shared basis features and adaptable weights. These features and weights form a compact HOI representation that preserves shared information across classes, enhancing generalization to unseen classes. Subsequently, we refine action distinction by adapting weights for each HOI class and introducing human-object tokens to enrich visual interaction representations. To further distinguish unseen actions, we guide the weight adaptation with LLM-derived action regularization. Experimental results show that our method sets a new state-of-the-art across zero-shot HOI settings on HICO-DET, achieving an unseen-class mAP of 27.91 in the unseen-verb setting. Our code is available at https://github.com/ChelsieLei/HOLa.

Authors:Jongmin Shin, Enki Cho, Ka Young Kim, Jung Yong Kim, Seong Tae Kim, Namkee Oh
Title: Towards Holistic Surgical Scene Graph
Abstract:
Surgical scene understanding is crucial for computer-assisted intervention systems, requiring visual comprehension of surgical scenes that involves diverse elements such as surgical tools, anatomical structures, and their interactions. To effectively represent the complex information in surgical scenes, graph-based approaches have been explored to structurally model surgical entities and their relationships. Previous surgical scene graph studies have demonstrated the feasibility of representing surgical scenes using graphs. However, certain aspects of surgical scenes-such as diverse combinations of tool-action-target and the identity of the hand operating the tool-remain underexplored in graph-based representations, despite their importance. To incorporate these aspects into graph representations, we propose Endoscapes-SG201 dataset, which includes annotations for tool-action-target combinations and hand identity. We also introduce SSG-Com, a graph-based method designed to learn and represent these critical elements. Through experiments on downstream tasks such as critical view of safety assessment and action triplet recognition, we demonstrated the importance of integrating these essential scene graph components, highlighting their significant contribution to surgical scene understanding. The code and dataset are available at https://github.com/ailab-kyunghee/SSG-Com

Authors:Simon Winther Albertsen, Hjalte Svaneborg Bjørnstrup, Mostafa Mehdipour Ghazi
Title: RARE-UNet: Resolution-Aligned Routing Entry for Adaptive Medical Image Segmentation
Abstract:
Accurate segmentation is crucial for clinical applications, but existing models often assume fixed, high-resolution inputs and degrade significantly when faced with lower-resolution data in real-world scenarios. To address this limitation, we propose RARE-UNet, a resolution-aware multi-scale segmentation architecture that dynamically adapts its inference path to the spatial resolution of the input. Central to our design are multi-scale blocks integrated at multiple encoder depths, a resolution-aware routing mechanism, and consistency-driven training that aligns multi-resolution features with full-resolution representations. We evaluate RARE-UNet on two benchmark brain imaging tasks for hippocampus and tumor segmentation. Compared to standard UNet, its multi-resolution augmented variant, and nnUNet, our model achieves the highest average Dice scores of 0.84 and 0.65 across resolution, while maintaining consistent performance and significantly reduced inference time at lower resolutions. These results highlight the effectiveness and scalability of our architecture in achieving resolution-robust segmentation. The codes are available at: https://github.com/simonsejse/RARE-UNet.

Authors:Hanting Li, Fei Zhou, Xin Sun, Yang Hua, Jungong Han, Liang-Jie Zhang
Title: SAIGFormer: A Spatially-Adaptive Illumination-Guided Network for Low-Light Image Enhancement
Abstract:
Recent Transformer-based low-light enhancement methods have made promising progress in recovering global illumination. However, they still struggle with non-uniform lighting scenarios, such as backlit and shadow, appearing as over-exposure or inadequate brightness restoration. To address this challenge, we present a Spatially-Adaptive Illumination-Guided Transformer (SAIGFormer) framework that enables accurate illumination restoration. Specifically, we propose a dynamic integral image representation to model the spatially-varying illumination, and further construct a novel Spatially-Adaptive Integral Illumination Estimator ($\text{SAI}^2\text{E}$). Moreover, we introduce an Illumination-Guided Multi-head Self-Attention (IG-MSA) mechanism, which leverages the illumination to calibrate the lightness-relevant features toward visual-pleased illumination enhancement. Extensive experiments on five standard low-light datasets and a cross-domain benchmark (LOL-Blur) demonstrate that our SAIGFormer significantly outperforms state-of-the-art methods in both quantitative and qualitative metrics. In particular, our method achieves superior performance in non-uniform illumination enhancement while exhibiting strong generalization capabilities across multiple datasets. Code is available at https://github.com/LHTcode/SAIGFormer.git.

Authors:Deyu Zhang, Tingting Long, Jinrui Zhang, Ligeng Chen, Ju Ren, Yaoxue Zhang
Title: Prompt-aware of Frame Sampling for Efficient Text-Video Retrieval
Abstract:
Enabling efficient text-video retrieval on edge-end devices is critical for real-world applications. Yet, existing methods face a critical challenge in balancing accuracy and computational efficiency: uniform frame sampling methods ensure content coverage but incur prohibitive computational costs, while salient-frame sampling methods reduce overhead but suffer from query-agnostic frame selection that biases retrieval results. To address this, we propose ProCLIP, a user-centric framework that achieves state-of-the-art accuracy with significantly improved efficiency. We design a prompt-aware frame sampling strategy that dynamically guides lightweight feature extractors using textual prompts to select semantically relevant frames, overcoming the limitations of existing salient-frame sampling methods which rely on static, query-agnostic selection criteria. Moreover, we adopt a two-stage candidate pruning strategy that combines rapid coarse filtering via a lightweight module with CLIP-powered fine-grained re-ranking, enhancing retrieval efficiency while preserving accuracy. Experiments across benchmarks show ProCLIP achieves 75.3% latency reduction versus baselines while maintaining competitive accuracy, i.e., R@1=49.0 in MSR-VTT dataset. Code is available at https://github.com/tiffylong/ProCLIP.

Authors:Liang Chen, Ghazi Shazan Ahmad, Tianjun Yao, Lingqiao Liu, Zhiqiang Shen
Title: One Last Attention for Your Vision-Language Model
Abstract:
Pretrained vision-language models (VLMs), such as CLIP, achieve remarkable zero-shot performance, yet their downstream potential hinges on effective fine-tuning. Most adaptation methods typically focus on refining representation from separate modalities (text or vision) but neglect the critical role of their fused representations in the decision-making process, \emph{\ie} rational matrix that drives the final prediction. To bridge the gap, we propose a simple yet effective \textbf{R}ational \textbf{Ada}ptaion ({RAda}) to explicitly exploit the final fused representation during fine-tuning. RAda employs a learned mask, obtained from a lightweight attention layer attached at the end of a VLM, to dynamically calibrate the contribution of each element in the rational matrix, enabling targeted adjustments to the final cross-modal interactions without incurring costly modifications to intermediate features. Experiments in different settings (i.e., updating, or freezing pretrained encoders in adaptation, and test-time training that can only access the unlabeled test data) show that RAda serves as a versatile fine-tuning technique, improving the baseline with minimal code and performing comparably against current arts in most settings. Code is available at \href{https://github.com/khufia/RAda/tree/main}{github.com/khufia/RAda}.

Authors:Ruijie Zhu, Mulin Yu, Linning Xu, Lihan Jiang, Yixuan Li, Tianzhu Zhang, Jiangmiao Pang, Bo Dai
Title: ObjectGS: Object-aware Scene Reconstruction and Scene Understanding via Gaussian Splatting
Abstract:
3D Gaussian Splatting is renowned for its high-fidelity reconstructions and real-time novel view synthesis, yet its lack of semantic understanding limits object-level perception. In this work, we propose ObjectGS, an object-aware framework that unifies 3D scene reconstruction with semantic understanding. Instead of treating the scene as a unified whole, ObjectGS models individual objects as local anchors that generate neural Gaussians and share object IDs, enabling precise object-level reconstruction. During training, we dynamically grow or prune these anchors and optimize their features, while a one-hot ID encoding with a classification loss enforces clear semantic constraints. We show through extensive experiments that ObjectGS not only outperforms state-of-the-art methods on open-vocabulary and panoptic segmentation tasks, but also integrates seamlessly with applications like mesh extraction and scene editing. Project page: https://ruijiezhu94.github.io/ObjectGS_page

Authors:Ka Young Kim, Hyeon Bae Kim, Seong Tae Kim
Title: SurgX: Neuron-Concept Association for Explainable Surgical Phase Recognition
Abstract:
Surgical phase recognition plays a crucial role in surgical workflow analysis, enabling various applications such as surgical monitoring, skill assessment, and workflow optimization. Despite significant advancements in deep learning-based surgical phase recognition, these models remain inherently opaque, making it difficult to understand how they make decisions. This lack of interpretability hinders trust and makes it challenging to debug the model. To address this challenge, we propose SurgX, a novel concept-based explanation framework that enhances the interpretability of surgical phase recognition models by associating neurons with relevant concepts. In this paper, we introduce the process of selecting representative example sequences for neurons, constructing a concept set tailored to the surgical video dataset, associating neurons with concepts and identifying neurons crucial for predictions. Through extensive experiments on two surgical phase recognition models, we validate our method and analyze the explanation for prediction. This highlights the potential of our method in explaining surgical phase recognition. The code is available at https://github.com/ailab-kyunghee/SurgX

Authors:Huiyu Zhai, Xingxing Yang, Yalan Ye, Chenyang Li, Bin Fan, Changze Li
Title: Rethinking Occlusion in FER: A Semantic-Aware Perspective and Go Beyond
Abstract:
Facial expression recognition (FER) is a challenging task due to pervasive occlusion and dataset biases. Especially when facial information is partially occluded, existing FER models struggle to extract effective facial features, leading to inaccurate classifications. In response, we present ORSANet, which introduces the following three key contributions: First, we introduce auxiliary multi-modal semantic guidance to disambiguate facial occlusion and learn high-level semantic knowledge, which is two-fold: 1) we introduce semantic segmentation maps as dense semantics prior to generate semantics-enhanced facial representations; 2) we introduce facial landmarks as sparse geometric prior to mitigate intrinsic noises in FER, such as identity and gender biases. Second, to facilitate the effective incorporation of these two multi-modal priors, we customize a Multi-scale Cross-interaction Module (MCM) to adaptively fuse the landmark feature and semantics-enhanced representations within different scales. Third, we design a Dynamic Adversarial Repulsion Enhancement Loss (DARELoss) that dynamically adjusts the margins of ambiguous classes, further enhancing the model's ability to distinguish similar expressions. We further construct the first occlusion-oriented FER dataset to facilitate specialized robustness analysis on various real-world occlusion conditions, dubbed Occlu-FER. Extensive experiments on both public benchmarks and Occlu-FER demonstrate that our proposed ORSANet achieves SOTA recognition performance. Code is publicly available at https://github.com/Wenyuzhy/ORSANet-master.

Authors:Etai Sella, Noam Atia, Ron Mokady, Hadar Averbuch-Elor
Title: Blended Point Cloud Diffusion for Localized Text-guided Shape Editing
Abstract:
Natural language offers a highly intuitive interface for enabling localized fine-grained edits of 3D shapes. However, prior works face challenges in preserving global coherence while locally modifying the input 3D shape. In this work, we introduce an inpainting-based framework for editing shapes represented as point clouds. Our approach leverages foundation 3D diffusion models for achieving localized shape edits, adding structural guidance in the form of a partial conditional shape, ensuring that other regions correctly preserve the shape's identity. Furthermore, to encourage identity preservation also within the local edited region, we propose an inference-time coordinate blending algorithm which balances reconstruction of the full shape with inpainting at a progression of noise levels during the inference process. Our coordinate blending algorithm seamlessly blends the original shape with its edited version, enabling a fine-grained editing of 3D shapes, all while circumventing the need for computationally expensive and often inaccurate inversion. Extensive experiments show that our method outperforms alternative techniques across a wide range of metrics that evaluate both fidelity to the original shape and also adherence to the textual description.

Authors:Julia Machnio, Mads Nielsen, Mostafa Mehdipour Ghazi
Title: To Label or Not to Label: PALM -- A Predictive Model for Evaluating Sample Efficiency in Active Learning Models
Abstract:
Active learning (AL) seeks to reduce annotation costs by selecting the most informative samples for labeling, making it particularly valuable in resource-constrained settings. However, traditional evaluation methods, which focus solely on final accuracy, fail to capture the full dynamics of the learning process. To address this gap, we propose PALM (Performance Analysis of Active Learning Models), a unified and interpretable mathematical model that characterizes AL trajectories through four key parameters: achievable accuracy, coverage efficiency, early-stage performance, and scalability. PALM provides a predictive description of AL behavior from partial observations, enabling the estimation of future performance and facilitating principled comparisons across different strategies. We validate PALM through extensive experiments on CIFAR-10/100 and ImageNet-50/100/200, covering a wide range of AL methods and self-supervised embeddings. Our results demonstrate that PALM generalizes effectively across datasets, budgets, and strategies, accurately predicting full learning curves from limited labeled data. Importantly, PALM reveals crucial insights into learning efficiency, data space coverage, and the scalability of AL methods. By enabling the selection of cost-effective strategies and predicting performance under tight budget constraints, PALM lays the basis for more systematic, reproducible, and data-efficient evaluation of AL in both research and real-world applications. The code is available at: https://github.com/juliamachnio/PALM.

Authors:Zhenyu Li, Haotong Lin, Jiashi Feng, Peter Wonka, Bingyi Kang
Title: BenchDepth: Are We on the Right Way to Evaluate Depth Foundation Models?
Abstract:
Depth estimation is a fundamental task in computer vision with diverse applications. Recent advancements in deep learning have led to powerful depth foundation models (DFMs), yet their evaluation remains challenging due to inconsistencies in existing protocols. Traditional benchmarks rely on alignment-based metrics that introduce biases, favor certain depth representations, and complicate fair comparisons. In this work, we propose BenchDepth, a new benchmark that evaluates DFMs through five carefully selected downstream proxy tasks: depth completion, stereo matching, monocular feed-forward 3D scene reconstruction, SLAM, and vision-language spatial understanding. Unlike conventional evaluation protocols, our approach assesses DFMs based on their practical utility in real-world applications, bypassing problematic alignment procedures. We benchmark eight state-of-the-art DFMs and provide an in-depth analysis of key findings and observations. We hope our work sparks further discussion in the community on best practices for depth model evaluation and paves the way for future research and advancements in depth estimation.

Authors:Zhiyu Pan, Xiongjun Guan, Yongjie Duan, Jianjiang Feng, Jie Zhou
Title: Minutiae-Anchored Local Dense Representation for Fingerprint Matching
Abstract:
Fingerprint matching under diverse capture conditions remains a fundamental challenge in biometric recognition. To achieve robust and accurate performance in such scenarios, we propose DMD, a minutiae-anchored local dense representation which captures both fine-grained ridge textures and discriminative minutiae features in a spatially structured manner. Specifically, descriptors are extracted from local patches centered and oriented on each detected minutia, forming a three-dimensional tensor, where two dimensions represent spatial locations on the fingerprint plane and the third encodes semantic features. This representation explicitly captures abstract features of local image patches, enabling a multi-level, fine-grained description that aggregates information from multiple minutiae and their surrounding ridge structures. Furthermore, thanks to its strong spatial correspondence with the patch image, DMD allows for the use of foreground segmentation masks to identify valid descriptor regions. During matching, comparisons are then restricted to overlapping foreground areas, improving efficiency and robustness. Extensive experiments on rolled, plain, parital, contactless, and latent fingerprint datasets demonstrate the effectiveness and generalizability of the proposed method. It achieves state-of-the-art accuracy across multiple benchmarks while maintaining high computational efficiency, showing strong potential for large-scale fingerprint recognition. Corresponding code is available at https://github.com/Yu-Yy/DMD.

Authors:An Wang, Rulin Zhou, Mengya Xu, Yiru Ye, Longfei Gou, Yiting Chang, Hao Chen, Chwee Ming Lim, Jiankun Wang, Hongliang Ren
Title: EndoControlMag: Robust Endoscopic Vascular Motion Magnification with Periodic Reference Resetting and Hierarchical Tissue-aware Dual-Mask Control
Abstract:
Visualizing subtle vascular motions in endoscopic surgery is crucial for surgical precision and decision-making, yet remains challenging due to the complex and dynamic nature of surgical scenes. To address this, we introduce EndoControlMag, a training-free, Lagrangian-based framework with mask-conditioned vascular motion magnification tailored to endoscopic environments. Our approach features two key modules: a Periodic Reference Resetting (PRR) scheme that divides videos into short overlapping clips with dynamically updated reference frames to prevent error accumulation while maintaining temporal coherence, and a Hierarchical Tissue-aware Magnification (HTM) framework with dual-mode mask dilation. HTM first tracks vessel cores using a pretrained visual tracking model to maintain accurate localization despite occlusions and view changes. It then applies one of two adaptive softening strategies to surrounding tissues: motion-based softening that modulates magnification strength proportional to observed tissue displacement, or distance-based exponential decay that simulates biomechanical force attenuation. This dual-mode approach accommodates diverse surgical scenarios-motion-based softening excels with complex tissue deformations while distance-based softening provides stability during unreliable optical flow conditions. We evaluate EndoControlMag on our EndoVMM24 dataset spanning four different surgery types and various challenging scenarios, including occlusions, instrument disturbance, view changes, and vessel deformations. Quantitative metrics, visual assessments, and expert surgeon evaluations demonstrate that EndoControlMag significantly outperforms existing methods in both magnification accuracy and visual quality while maintaining robustness across challenging surgical conditions. The code, dataset, and video results are available at https://szupc.github.io/EndoControlMag/.

Authors:Yanbing Zhang, Zhe Wang, Qin Zhou, Mengping Yang
Title: FreeCus: Free Lunch Subject-driven Customization in Diffusion Transformers
Abstract:
In light of recent breakthroughs in text-to-image (T2I) generation, particularly with diffusion transformers (DiT), subject-driven technologies are increasingly being employed for high-fidelity customized production that preserves subject identity from reference inputs, enabling thrilling design workflows and engaging entertainment. Existing alternatives typically require either per-subject optimization via trainable text embeddings or training specialized encoders for subject feature extraction on large-scale datasets. Such dependencies on training procedures fundamentally constrain their practical applications. More importantly, current methodologies fail to fully leverage the inherent zero-shot potential of modern diffusion transformers (e.g., the Flux series) for authentic subject-driven synthesis. To bridge this gap, we propose FreeCus, a genuinely training-free framework that activates DiT's capabilities through three key innovations: 1) We introduce a pivotal attention sharing mechanism that captures the subject's layout integrity while preserving crucial editing flexibility. 2) Through a straightforward analysis of DiT's dynamic shifting, we propose an upgraded variant that significantly improves fine-grained feature extraction. 3) We further integrate advanced Multimodal Large Language Models (MLLMs) to enrich cross-modal semantic representations. Extensive experiments reflect that our method successfully unlocks DiT's zero-shot ability for consistent subject synthesis across diverse contexts, achieving state-of-the-art or comparable results compared to approaches that require additional training. Notably, our framework demonstrates seamless compatibility with existing inpainting pipelines and control modules, facilitating more compelling experiences. Our code is available at: https://github.com/Monalissaa/FreeCus.

Authors:Naeem Paeedeh, Mahardhika Pratama, Wolfgang Mayer, Jimmy Cao, Ryszard Kowlczyk
Title: Cross-Domain Few-Shot Learning with Coalescent Projections and Latent Space Reservation
Abstract:
Despite the progress in Cross-Domain Few-Shot Learning (CD-FSL), a model pre-trained with DINO combined with a prototypical classifier outperforms the latest SOTA methods. A crucial limitation that needs to be overcome is that updating too many parameters of the transformers leads to overfitting due to the scarcity of labeled samples. To address this challenge, we propose a new concept, Coalescent Projection (CP), as an effective successor to soft prompts. Additionally, we propose a novel pseudo-class generation method combined with Self-Supervised Transformations (SSTs) that relies solely on the base domain to prepare the network for encountering unseen samples from different domains. The proposed method exhibits its effectiveness in comprehensive experiments on the extreme domain shift scenario of the BSCD-FSL benchmark. Our code is published at https://github.com/Naeem-Paeedeh/CPLSR.

Authors:Krishna Kanth Nakka
Title: Mammo-SAE: Interpreting Breast Cancer Concept Learning with Sparse Autoencoders
Abstract:
Interpretability is critical in high-stakes domains such as medical imaging, where understanding model decisions is essential for clinical adoption. In this work, we introduce Sparse Autoencoder (SAE)-based interpretability to breast imaging by analyzing {Mammo-CLIP}, a vision--language foundation model pretrained on large-scale mammogram image--report pairs. We train a patch-level \texttt{Mammo-SAE} on Mammo-CLIP to identify and probe latent features associated with clinically relevant breast concepts such as \textit{mass} and \textit{suspicious calcification}. Our findings reveal that top activated class level latent neurons in the SAE latent space often tend to align with ground truth regions, and also uncover several confounding factors influencing the model's decision-making process. Additionally, we analyze which latent neurons the model relies on during downstream finetuning for improving the breast concept prediction. This study highlights the promise of interpretable SAE latent representations in providing deeper insight into the internal workings of foundation models at every layer for breast imaging. The code will be released at https://krishnakanthnakka.github.io/MammoSAE/

Authors:Siqi Chen, Guoqing Zhang, Jiahao Lai, Bingzhi Shen, Sihong Zhang, Caixia Dong, Xuejin Chen, Yang Li
Title: Hierarchical Part-based Generative Model for Realistic 3D Blood Vessel
Abstract:
Advancements in 3D vision have increased the impact of blood vessel modeling on medical applications. However, accurately representing the complex geometry and topology of blood vessels remains a challenge due to their intricate branching patterns, curvatures, and irregular shapes. In this study, we propose a hierarchical part-based frame work for 3D vessel generation that separates the global binary tree-like topology from local geometric details. Our approach proceeds in three stages: (1) key graph generation to model the overall hierarchical struc ture, (2) vessel segment generation conditioned on geometric properties, and (3) hierarchical vessel assembly by integrating the local segments according to the global key graph. We validate our framework on real world datasets, demonstrating superior performance over existing methods in modeling complex vascular networks. This work marks the first successful application of a part-based generative approach for 3D vessel modeling, setting a new benchmark for vascular data generation. The code is available at: https://github.com/CybercatChen/PartVessel.git.

Authors:Mohammad-Maher Nakshbandi, Ziad Sharawy, Sorin Grigorescu
Title: LoopNet: A Multitasking Few-Shot Learning Approach for Loop Closure in Large Scale SLAM
Abstract:
One of the main challenges in the Simultaneous Localization and Mapping (SLAM) loop closure problem is the recognition of previously visited places. In this work, we tackle the two main problems of real-time SLAM systems: 1) loop closure detection accuracy and 2) real-time computation constraints on the embedded hardware. Our LoopNet method is based on a multitasking variant of the classical ResNet architecture, adapted for online retraining on a dynamic visual dataset and optimized for embedded devices. The online retraining is designed using a few-shot learning approach. The architecture provides both an index into the queried visual dataset, and a measurement of the prediction quality. Moreover, by leveraging DISK (DIStinctive Keypoints) descriptors, LoopNet surpasses the limitations of handcrafted features and traditional deep learning methods, offering better performance under varying conditions. Code is available at https://github.com/RovisLab/LoopNet. Additinally, we introduce a new loop closure benchmarking dataset, coined LoopDB, which is available at https://github.com/RovisLab/LoopDB.

Authors:Ran Zhang, Xuanhua He, Li Xueheng, Ke Cao, Liu Liu, Wenbo Xu, Fang Jiabin, Yang Qize, Jie Zhang
Title: Rethinking Pan-sharpening: Principled Design, Unified Training, and a Universal Loss Surpass Brute-Force Scaling
Abstract:
The field of pan-sharpening has recently seen a trend towards increasingly large and complex models, often trained on single, specific satellite datasets. This approach, however, leads to high computational overhead and poor generalization on full resolution data, a paradigm we challenge in this paper. In response to this issue, we propose PanTiny, a lightweight, single-step pan-sharpening framework designed for both efficiency and robust performance. More critically, we introduce multiple-in-one training paradigm, where a single, compact model is trained simultaneously on three distinct satellite datasets (WV2, WV3, and GF2) with different resolution and spectral information. Our experiments show that this unified training strategy not only simplifies deployment but also significantly boosts generalization on full-resolution data. Further, we introduce a universally powerful composite loss function that elevates the performance of almost all of models for pan-sharpening, pushing state-of-the-art metrics into a new era. Our PanTiny model, benefiting from these innovations, achieves a superior performance-to-efficiency balance, outperforming most larger, specialized models. Through extensive ablation studies, we validate that principled engineering in model design, training paradigms, and loss functions can surpass brute-force scaling. Our work advocates for a community-wide shift towards creating efficient, generalizable, and data-conscious models for pan-sharpening. The code is available at https://github.com/Zirconium233/PanTiny .

Authors:Zhaotong Yang, Yuhui Li, Shengfeng He, Xinzhe Li, Yangyang Xu, Junyu Dong, Yong Du
Title: OmniVTON: Training-Free Universal Virtual Try-On
Abstract:
Image-based Virtual Try-On (VTON) techniques rely on either supervised in-shop approaches, which ensure high fidelity but struggle with cross-domain generalization, or unsupervised in-the-wild methods, which improve adaptability but remain constrained by data biases and limited universality. A unified, training-free solution that works across both scenarios remains an open challenge. We propose OmniVTON, the first training-free universal VTON framework that decouples garment and pose conditioning to achieve both texture fidelity and pose consistency across diverse settings. To preserve garment details, we introduce a garment prior generation mechanism that aligns clothing with the body, followed by continuous boundary stitching technique to achieve fine-grained texture retention. For precise pose alignment, we utilize DDIM inversion to capture structural cues while suppressing texture interference, ensuring accurate body alignment independent of the original image textures. By disentangling garment and pose constraints, OmniVTON eliminates the bias inherent in diffusion models when handling multiple conditions simultaneously. Experimental results demonstrate that OmniVTON achieves superior performance across diverse datasets, garment types, and application scenarios. Notably, it is the first framework capable of multi-human VTON, enabling realistic garment transfer across multiple individuals in a single scene. Code is available at https://github.com/Jerome-Young/OmniVTON

Authors:Lyes Saad Saoud, Irfan Hussain
Title: EBA-AI: Ethics-Guided Bias-Aware AI for Efficient Underwater Image Enhancement and Coral Reef Monitoring
Abstract:
Underwater image enhancement is vital for marine conservation, particularly coral reef monitoring. However, AI-based enhancement models often face dataset bias, high computational costs, and lack of transparency, leading to potential misinterpretations. This paper introduces EBA-AI, an ethics-guided bias-aware AI framework to address these challenges. EBA-AI leverages CLIP embeddings to detect and mitigate dataset bias, ensuring balanced representation across varied underwater environments. It also integrates adaptive processing to optimize energy efficiency, significantly reducing GPU usage while maintaining competitive enhancement quality. Experiments on LSUI400, Oceanex, and UIEB100 show that while PSNR drops by a controlled 1.0 dB, computational savings enable real-time feasibility for large-scale marine monitoring. Additionally, uncertainty estimation and explainability techniques enhance trust in AI-driven environmental decisions. Comparisons with CycleGAN, FunIEGAN, RAUNENet, WaterNet, UGAN, PUGAN, and UTUIE validate EBA-AI's effectiveness in balancing efficiency, fairness, and interpretability in underwater image processing. By addressing key limitations of AI-driven enhancement, this work contributes to sustainable, bias-aware, and computationally efficient marine conservation efforts. For interactive visualizations, animations, source code, and access to the preprint, visit: https://lyessaadsaoud.github.io/EBA-AI/

Authors:Yuanhan Zhang, Yunice Chew, Yuhao Dong, Aria Leo, Bo Hu, Ziwei Liu
Title: Towards Video Thinking Test: A Holistic Benchmark for Advanced Video Reasoning and Understanding
Abstract:
Human intelligence requires correctness and robustness, with the former being foundational for the latter. In video understanding, correctness ensures the accurate interpretation of visual content, and robustness maintains consistent performance in challenging conditions. Despite advances in video large language models (video LLMs), existing benchmarks inadequately reflect the gap between these models and human intelligence in maintaining correctness and robustness in video interpretation. We introduce the Video Thinking Test (Video-TT), to assess if video LLMs can interpret real-world videos as effectively as humans. Video-TT reflects genuine gaps in understanding complex visual narratives, and evaluates robustness against natural adversarial questions. Video-TT comprises 1,000 YouTube Shorts videos, each with one open-ended question and four adversarial questions that probe visual and narrative complexity. Our evaluation shows a significant gap between video LLMs and human performance.

Authors:Hao Zheng, Shunzhi Yang, Zhuoxin He, Jinfeng Yang, Zhenhua Huang
Title: Hierarchical Cross-modal Prompt Learning for Vision-Language Models
Abstract:
Pre-trained Vision-Language Models (VLMs) such as CLIP have shown excellent generalization abilities. However, adapting these large-scale models to downstream tasks while preserving their generalization capabilities remains challenging. Although prompt learning methods have shown promise, they suffer from two fundamental bottlenecks that limit generalization: (a) modality isolation, and (b) hierarchical semantic decay. To address these limitations, we propose HiCroPL, a Hierarchical Cross-modal Prompt Learning framework that establishes bidirectional knowledge flow between text and vision modalities, enabling them to refine their semantics mutually. HiCroPL routes knowledge flows by leveraging the complementary strengths of text and vision. In early layers, text prompts inject relatively clear semantics into visual prompts through a hierarchical knowledge mapper, enhancing the representation of low-level visual semantics. In later layers, visual prompts encoding specific task-relevant objects flow back to refine text prompts, enabling deeper alignment. Crucially, our hierarchical knowledge mapper allows representations at multi-scales to be fused, ensuring that deeper representations retain transferable shallow semantics thereby enhancing generalization. We further introduce a lightweight layer-specific knowledge proxy to enable efficient cross-modal interactions. Extensive evaluations across four tasks demonstrate HiCroPL's superior performance, achieving state-of-the-art results on 11 benchmarks with significant improvements. Code is available at: https://github.com/zzeoZheng/HiCroPL.

Authors:Saeid Ghafouri, Mohsen Fayyaz, Xiangchen Li, Deepu John, Bo Ji, Dimitrios Nikolopoulos, Hans Vandierendonck
Title: Polymorph: Energy-Efficient Multi-Label Classification for Video Streams on Embedded Devices
Abstract:
Real-time multi-label video classification on embedded devices is constrained by limited compute and energy budgets. Yet, video streams exhibit structural properties such as label sparsity, temporal continuity, and label co-occurrence that can be leveraged for more efficient inference. We introduce Polymorph, a context-aware framework that activates a minimal set of lightweight Low Rank Adapters (LoRA) per frame. Each adapter specializes in a subset of classes derived from co-occurrence patterns and is implemented as a LoRA weight over a shared backbone. At runtime, Polymorph dynamically selects and composes only the adapters needed to cover the active labels, avoiding full-model switching and weight merging. This modular strategy improves scalability while reducing latency and energy overhead. Polymorph achieves 40% lower energy consumption and improves mAP by 9 points over strong baselines on the TAO dataset. Polymorph is open source at https://github.com/inference-serving/polymorph/.

Authors:Hai Huang, Yan Xia, Shulei Wang, Hanting Wang, Minghui Fang, Shengpeng Ji, Sashuai Zhou, Tao Jin, Zhou Zhao
Title: Open-set Cross Modal Generalization via Multimodal Unified Representation
Abstract:
This paper extends Cross Modal Generalization (CMG) to open-set environments by proposing the more challenging Open-set Cross Modal Generalization (OSCMG) task. This task evaluates multimodal unified representations in open-set conditions, addressing the limitations of prior closed-set cross-modal evaluations. OSCMG requires not only cross-modal knowledge transfer but also robust generalization to unseen classes within new modalities, a scenario frequently encountered in real-world applications. Existing multimodal unified representation work lacks consideration for open-set environments. To tackle this, we propose MICU, comprising two key components: Fine-Coarse Masked multimodal InfoNCE (FCMI) and Cross modal Unified Jigsaw Puzzles (CUJP). FCMI enhances multimodal alignment by applying contrastive learning at both holistic semantic and temporal levels, incorporating masking to enhance generalization. CUJP enhances feature diversity and model uncertainty by integrating modality-agnostic feature selection with self-supervised learning, thereby strengthening the model's ability to handle unknown categories in open-set tasks. Extensive experiments on CMG and the newly proposed OSCMG validate the effectiveness of our approach. The code is available at https://github.com/haihuangcode/CMG.

Authors:Xiaojie Li, Chu Li, Shi-Zhe Chen, Xi Chen
Title: U-MARVEL: Unveiling Key Factors for Universal Multimodal Retrieval via Embedding Learning with MLLMs
Abstract:
Universal multimodal retrieval (UMR), which aims to address complex retrieval tasks where both queries and candidates span diverse modalities, has been significantly advanced by the emergence of MLLMs. While state-of-the-art MLLM-based methods in the literature predominantly adopt contrastive learning principles, they often differ in their specific training recipes. Despite their success, the mechanisms underlying their retrieval capabilities remain largely unexplored, potentially resulting in suboptimal performance and limited generalization ability. To address these issues, we present a comprehensive study aimed at uncovering the key factors that drive effective embedding learning for UMR using MLLMs. We begin by implementing a general MLLM-based embedding learning pipeline, and systematically analyze the primary contributors to high-performing universal retrieval systems. Based on this, we explore various aspects of the details in embedding generation and training strategies, including progressive transition, hard negative mining and re-ranker distillation. Notably, our findings reveal that often-overlooked factors can have a substantial impact on model performance. Building on these discoveries, we introduce a unified framework termed U-MARVEL (\textbf{U}niversal \textbf{M}ultimod\textbf{A}l \textbf{R}etrie\textbf{V}al via \textbf{E}mbedding \textbf{L}earning), which outperforms state-of-the-art competitors on the M-BEIR benchmark by a large margin in supervised settings, and also exihibits strong zero-shot performance on several tasks such as composed image retrieval and text-to-video retrieval. These results underscore the generalization potential of our framework across various embedding-based retrieval tasks. Code is available at https://github.com/chaxjli/U-MARVEL

Authors:Xingshu Chen, Sicheng Yu, Chong Cheng, Hao Wang, Ting Tian
Title: An Uncertainty-aware DETR Enhancement Framework for Object Detection
Abstract:
This paper investigates the problem of object detection with a focus on improving both the localization accuracy of bounding boxes and explicitly modeling prediction uncertainty. Conventional detectors rely on deterministic bounding box regression, ignoring uncertainty in predictions and limiting model robustness. In this paper, we propose an uncertainty-aware enhancement framework for DETR-based object detectors. We model bounding boxes as multivariate Gaussian distributions and incorporate the Gromov-Wasserstein distance into the loss function to better align the predicted and ground-truth distributions. Building on this, we derive a Bayes Risk formulation to filter high-risk information and improve detection reliability. We also propose a simple algorithm to quantify localization uncertainty via confidence intervals. Experiments on the COCO benchmark show that our method can be effectively integrated into existing DETR variants, enhancing their performance. We further extend our framework to leukocyte detection tasks, achieving state-of-the-art results on the LISC and WBCDD datasets. These results confirm the scalability of our framework across both general and domain-specific detection tasks. Code page: https://github.com/ParadiseforAndaChen/An-Uncertainty-aware-DETR-Enhancement-Framework-for-Object-Detection.

Authors:Xiang Tang, Ruotong Li, Xiaopeng Fan
Title: Towards Geometric and Textural Consistency 3D Scene Generation via Single Image-guided Model Generation and Layout Optimization
Abstract:
In recent years, 3D generation has made great strides in both academia and industry. However, generating 3D scenes from a single RGB image remains a significant challenge, as current approaches often struggle to ensure both object generation quality and scene coherence in multi-object scenarios. To overcome these limitations, we propose a novel three-stage framework for 3D scene generation with explicit geometric representations and high-quality textural details via single image-guided model generation and spatial layout optimization. Our method begins with an image instance segmentation and inpainting phase, which recovers missing details of occluded objects in the input images, thereby achieving complete generation of foreground 3D assets. Subsequently, our approach captures the spatial geometry of reference image by constructing pseudo-stereo viewpoint for camera parameter estimation and scene depth inference, while employing a model selection strategy to ensure optimal alignment between the 3D assets generated in the previous step and the input. Finally, through model parameterization and minimization of the Chamfer distance between point clouds in 3D and 2D space, our approach optimizes layout parameters to produce an explicit 3D scene representation that maintains precise alignment with input guidance image. Extensive experiments on multi-object scene image sets have demonstrated that our approach not only outperforms state-of-the-art methods in terms of geometric accuracy and texture fidelity of individual generated 3D models, but also has significant advantages in scene layout synthesis.

Authors:Beier Zhu, Ruoyu Wang, Tong Zhao, Hanwang Zhang, Chi Zhang
Title: Distilling Parallel Gradients for Fast ODE Solvers of Diffusion Models
Abstract:
Diffusion models (DMs) have achieved state-of-the-art generative performance but suffer from high sampling latency due to their sequential denoising nature. Existing solver-based acceleration methods often face image quality degradation under a low-latency budget. In this paper, we propose the Ensemble Parallel Direction solver (dubbed as \ours), a novel ODE solver that mitigates truncation errors by incorporating multiple parallel gradient evaluations in each ODE step. Importantly, since the additional gradient computations are independent, they can be fully parallelized, preserving low-latency sampling. Our method optimizes a small set of learnable parameters in a distillation fashion, ensuring minimal training overhead. In addition, our method can serve as a plugin to improve existing ODE samplers. Extensive experiments on various image synthesis benchmarks demonstrate the effectiveness of our \ours~in achieving high-quality and low-latency sampling. For example, at the same latency level of 5 NFE, EPD achieves an FID of 4.47 on CIFAR-10, 7.97 on FFHQ, 8.17 on ImageNet, and 8.26 on LSUN Bedroom, surpassing existing learning-based solvers by a significant margin. Codes are available in https://github.com/BeierZhu/EPD.

Authors:Joseph Raj Vishal, Divesh Basina, Rutuja Patil, Manas Srinivas Gowda, Katha Naik, Yezhou Yang, Bharatesh Chakravarthi
Title: InterAct-Video: Reasoning-Rich Video QA for Urban Traffic
Abstract:
Traffic monitoring is crucial for urban mobility, road safety, and intelligent transportation systems (ITS). Deep learning has advanced video-based traffic monitoring through video question answering (VideoQA) models, enabling structured insight extraction from traffic videos. However, existing VideoQA models struggle with the complexity of real-world traffic scenes, where multiple concurrent events unfold across spatiotemporal dimensions. To address these challenges, this paper introduces \textbf{InterAct VideoQA}, a curated dataset designed to benchmark and enhance VideoQA models for traffic monitoring tasks. The InterAct VideoQA dataset comprises 8 hours of real-world traffic footage collected from diverse intersections, segmented into 10-second video clips, with over 25,000 question-answer (QA) pairs covering spatiotemporal dynamics, vehicle interactions, incident detection, and other critical traffic attributes. State-of-the-art VideoQA models are evaluated on InterAct VideoQA, exposing challenges in reasoning over fine-grained spatiotemporal dependencies within complex traffic scenarios. Additionally, fine-tuning these models on InterAct VideoQA yields notable performance improvements, demonstrating the necessity of domain-specific datasets for VideoQA. InterAct VideoQA is publicly available as a benchmark dataset to facilitate future research in real-world deployable VideoQA models for intelligent transportation systems. GitHub Repo: https://github.com/joe-rabbit/InterAct_VideoQA

Authors:Yuchen Duan, Zhe Chen, Yusong Hu, Weiyun Wang, Shenglong Ye, Botian Shi, Lewei Lu, Qibin Hou, Tong Lu, Hongsheng Li, Jifeng Dai, Wenhai Wang
Title: Docopilot: Improving Multimodal Models for Document-Level Understanding
Abstract:
Despite significant progress in multimodal large language models (MLLMs), their performance on complex, multi-page document comprehension remains inadequate, largely due to the lack of high-quality, document-level datasets. While current retrieval-augmented generation (RAG) methods offer partial solutions, they suffer from issues, such as fragmented retrieval contexts, multi-stage error accumulation, and extra time costs of retrieval. In this work, we present a high-quality document-level dataset, Doc-750K, designed to support in-depth understanding of multimodal documents. This dataset includes diverse document structures, extensive cross-page dependencies, and real question-answer pairs derived from the original documents. Building on the dataset, we develop a native multimodal model, Docopilot, which can accurately handle document-level dependencies without relying on RAG. Experiments demonstrate that Docopilot achieves superior coherence, accuracy, and efficiency in document understanding tasks and multi-turn interactions, setting a new baseline for document-level multimodal understanding. Data, code, and models are released at https://github.com/OpenGVLab/Docopilot

Authors:Jifeng Shen, Haibo Zhan, Shaohua Dong, Xin Zuo, Wankou Yang, Haibin Ling
Title: Multispectral State-Space Feature Fusion: Bridging Shared and Cross-Parametric Interactions for Object Detection
Abstract:
Modern multispectral feature fusion for object detection faces two critical limitations: (1) Excessive preference for local complementary features over cross-modal shared semantics adversely affects generalization performance; and (2) The trade-off between the receptive field size and computational complexity present critical bottlenecks for scalable feature modeling. Addressing these issues, a novel Multispectral State-Space Feature Fusion framework, dubbed MS2Fusion, is proposed based on the state space model (SSM), achieving efficient and effective fusion through a dual-path parametric interaction mechanism. More specifically, the first cross-parameter interaction branch inherits the advantage of cross-attention in mining complementary information with cross-modal hidden state decoding in SSM. The second shared-parameter branch explores cross-modal alignment with joint embedding to obtain cross-modal similar semantic features and structures through parameter sharing in SSM. Finally, these two paths are jointly optimized with SSM for fusing multispectral features in a unified framework, allowing our MS2Fusion to enjoy both functional complementarity and shared semantic space. In our extensive experiments on mainstream benchmarks including FLIR, M3FD and LLVIP, our MS2Fusion significantly outperforms other state-of-the-art multispectral object detection methods, evidencing its superiority. Moreover, MS2Fusion is general and applicable to other multispectral perception tasks. We show that, even without specific design, MS2Fusion achieves state-of-the-art results on RGB-T semantic segmentation and RGBT salient object detection, showing its generality. The source code will be available at https://github.com/61s61min/MS2Fusion.git.

Authors:Guoping Xu, Christopher Kabat, You Zhang
Title: Depthwise-Dilated Convolutional Adapters for Medical Object Tracking and Segmentation Using the Segment Anything Model 2
Abstract:
Recent advances in medical image segmentation have been driven by deep learning; however, most existing methods remain limited by modality-specific designs and exhibit poor adaptability to dynamic medical imaging scenarios. The Segment Anything Model 2 (SAM2) and its related variants, which introduce a streaming memory mechanism for real-time video segmentation, present new opportunities for prompt-based, generalizable solutions. Nevertheless, adapting these models to medical video scenarios typically requires large-scale datasets for retraining or transfer learning, leading to high computational costs and the risk of catastrophic forgetting. To address these challenges, we propose DD-SAM2, an efficient adaptation framework for SAM2 that incorporates a Depthwise-Dilated Adapter (DD-Adapter) to enhance multi-scale feature extraction with minimal parameter overhead. This design enables effective fine-tuning of SAM2 on medical videos with limited training data. Unlike existing adapter-based methods focused solely on static images, DD-SAM2 fully exploits SAM2's streaming memory for medical video object tracking and segmentation. Comprehensive evaluations on TrackRad2025 (tumor segmentation) and EchoNet-Dynamic (left ventricle tracking) datasets demonstrate superior performance, achieving Dice scores of 0.93 and 0.97, respectively. To the best of our knowledge, this work provides an initial attempt at systematically exploring adapter-based SAM2 fine-tuning for medical video segmentation and tracking. Code, datasets, and models will be publicly available at https://github.com/apple1986/DD-SAM2.

Authors:Andrea Moschetto, Lemuel Puglisi, Alec Sargood, Pierluigi Dell'Acqua, Francesco Guarnera, Sebastiano Battiato, Daniele Ravì
Title: Benchmarking GANs, Diffusion Models, and Flow Matching for T1w-to-T2w MRI Translation
Abstract:
Magnetic Resonance Imaging (MRI) enables the acquisition of multiple image contrasts, such as T1-weighted (T1w) and T2-weighted (T2w) scans, each offering distinct diagnostic insights. However, acquiring all desired modalities increases scan time and cost, motivating research into computational methods for cross-modal synthesis. To address this, recent approaches aim to synthesize missing MRI contrasts from those already acquired, reducing acquisition time while preserving diagnostic quality. Image-to-image (I2I) translation provides a promising framework for this task. In this paper, we present a comprehensive benchmark of generative models$\unicode{x2013}$specifically, Generative Adversarial Networks (GANs), diffusion models, and flow matching (FM) techniques$\unicode{x2013}$for T1w-to-T2w 2D MRI I2I translation. All frameworks are implemented with comparable settings and evaluated on three publicly available MRI datasets of healthy adults. Our quantitative and qualitative analyses show that the GAN-based Pix2Pix model outperforms diffusion and FM-based methods in terms of structural fidelity, image quality, and computational efficiency. Consistent with existing literature, these results suggest that flow-based models are prone to overfitting on small datasets and simpler tasks, and may require more data to match or surpass GAN performance. These findings offer practical guidance for deploying I2I translation techniques in real-world MRI workflows and highlight promising directions for future research in cross-modal medical image synthesis. Code and models are publicly available at https://github.com/AndreaMoschetto/medical-I2I-benchmark.

Authors:Sujata Gaihre, Amir Thapa Magar, Prasuna Pokharel, Laxmi Tiwari
Title: Multimodal AI for Gastrointestinal Diagnostics: Tackling VQA in MEDVQA-GI 2025
Abstract:
This paper describes our approach to Subtask 1 of the ImageCLEFmed MEDVQA 2025 Challenge, which targets visual question answering (VQA) for gastrointestinal endoscopy. We adopt the Florence model-a large-scale multimodal foundation model-as the backbone of our VQA pipeline, pairing a powerful vision encoder with a text encoder to interpret endoscopic images and produce clinically relevant answers. To improve generalization, we apply domain-specific augmentations that preserve medical features while increasing training diversity. Experiments on the KASVIR dataset show that fine-tuning Florence yields accurate responses on the official challenge metrics. Our results highlight the potential of large multimodal models in medical VQA and provide a strong baseline for future work on explainability, robustness, and clinical integration. The code is publicly available at: https://github.com/TiwariLaxuu/VQA-Florence.git

Authors:Jiahao Ma, Tianyu Wang, Miaomiao Liu, David Ahmedt-Aristizabal, Chuong Nguyen
Title: DCHM: Depth-Consistent Human Modeling for Multiview Detection
Abstract:
Multiview pedestrian detection typically involves two stages: human modeling and pedestrian localization. Human modeling represents pedestrians in 3D space by fusing multiview information, making its quality crucial for detection accuracy. However, existing methods often introduce noise and have low precision. While some approaches reduce noise by fitting on costly multiview 3D annotations, they often struggle to generalize across diverse scenes. To eliminate reliance on human-labeled annotations and accurately model humans, we propose Depth-Consistent Human Modeling (DCHM), a framework designed for consistent depth estimation and multiview fusion in global coordinates. Specifically, our proposed pipeline with superpixel-wise Gaussian Splatting achieves multiview depth consistency in sparse-view, large-scaled, and crowded scenarios, producing precise point clouds for pedestrian localization. Extensive validations demonstrate that our method significantly reduces noise during human modeling, outperforming previous state-of-the-art baselines. Additionally, to our knowledge, DCHM is the first to reconstruct pedestrians and perform multiview segmentation in such a challenging setting. Code is available on the \href{https://jiahao-ma.github.io/DCHM/}{project page}.

Authors:Chi Wan, Yixin Cui, Jiatong Du, Shuo Yang, Yulong Bai, Peng Yi, Nan Li, Yanjun Huang
Title: GEMINUS: Dual-aware Global and Scene-Adaptive Mixture-of-Experts for End-to-End Autonomous Driving
Abstract:
End-to-end autonomous driving requires adaptive and robust handling of complex and diverse traffic environments. However, prevalent single-mode planning methods attempt to learn an overall policy while struggling to acquire diversified driving skills to handle diverse scenarios. Therefore, this paper proposes GEMINUS, a Mixture-of-Experts end-to-end autonomous driving framework featuring a Global Expert and a Scene-Adaptive Experts Group, equipped with a Dual-aware Router. Specifically, the Global Expert is trained on the overall dataset, possessing robust performance. The Scene-Adaptive Experts are trained on corresponding scene subsets, achieving adaptive performance. The Dual-aware Router simultaneously considers scenario-level features and routing uncertainty to dynamically activate expert modules. Through the effective coupling of the Global Expert and the Scene-Adaptive Experts Group via the Dual-aware Router, GEMINUS achieves both adaptability and robustness across diverse scenarios. GEMINUS outperforms existing methods in the Bench2Drive closed-loop benchmark and achieves state-of-the-art performance in Driving Score and Success Rate, even with only monocular vision input. The code is available at https://github.com/newbrains1/GEMINUS.

Authors:Weikang Gu, Mingyue Han, Li Xue, Heng Dong, Changcai Yang, Riqing Chen, Lifang Wei
Title: GPI-Net: Gestalt-Guided Parallel Interaction Network via Orthogonal Geometric Consistency for Robust Point Cloud Registration
Abstract:
The accurate identification of high-quality correspondences is a prerequisite task in feature-based point cloud registration. However, it is extremely challenging to handle the fusion of local and global features due to feature redundancy and complex spatial relationships. Given that Gestalt principles provide key advantages in analyzing local and global relationships, we propose a novel Gestalt-guided Parallel Interaction Network via orthogonal geometric consistency (GPI-Net) in this paper. It utilizes Gestalt principles to facilitate complementary communication between local and global information. Specifically, we introduce an orthogonal integration strategy to optimally reduce redundant information and generate a more compact global structure for high-quality correspondences. To capture geometric features in correspondences, we leverage a Gestalt Feature Attention (GFA) block through a hybrid utilization of self-attention and cross-attention mechanisms. Furthermore, to facilitate the integration of local detail information into the global structure, we design an innovative Dual-path Multi-Granularity parallel interaction aggregation (DMG) block to promote information exchange across different granularities. Extensive experiments on various challenging tasks demonstrate the superior performance of our proposed GPI-Net in comparison to existing methods. The code will be released at https://github.com/gwk429/GPI-Net.

Authors:Praneeth Namburi, Roger Pallarès-López, Jessica Rosendorf, Duarte Folgado, Brian W. Anthony
Title: DUSTrack: Semi-automated point tracking in ultrasound videos
Abstract:
Ultrasound technology enables safe, non-invasive imaging of dynamic tissue behavior, making it a valuable tool in medicine, biomechanics, and sports science. However, accurately tracking tissue motion in B-mode ultrasound remains challenging due to speckle noise, low edge contrast, and out-of-plane movement. These challenges complicate the task of tracking anatomical landmarks over time, which is essential for quantifying tissue dynamics in many clinical and research applications. This manuscript introduces DUSTrack (Deep learning and optical flow-based toolkit for UltraSound Tracking), a semi-automated framework for tracking arbitrary points in B-mode ultrasound videos. We combine deep learning with optical flow to deliver high-quality and robust tracking across diverse anatomical structures and motion patterns. The toolkit includes a graphical user interface that streamlines the generation of high-quality training data and supports iterative model refinement. It also implements a novel optical-flow-based filtering technique that reduces high-frequency frame-to-frame noise while preserving rapid tissue motion. DUSTrack demonstrates superior accuracy compared to contemporary zero-shot point trackers and performs on par with specialized methods, establishing its potential as a general and foundational tool for clinical and biomechanical research. We demonstrate DUSTrack's versatility through three use cases: cardiac wall motion tracking in echocardiograms, muscle deformation analysis during reaching tasks, and fascicle tracking during ankle plantarflexion. As an open-source solution, DUSTrack offers a powerful, flexible framework for point tracking to quantify tissue motion from ultrasound videos. DUSTrack is available at https://github.com/praneethnamburi/DUSTrack.

Authors:Qiyu Xu, Zhanxuan Hu, Yu Duan, Ercheng Pei, Yonghang Tai
Title: A Hidden Stumbling Block in Generalized Category Discovery: Distracted Attention
Abstract:
Generalized Category Discovery (GCD) aims to classify unlabeled data from both known and unknown categories by leveraging knowledge from labeled known categories. While existing methods have made notable progress, they often overlook a hidden stumbling block in GCD: distracted attention. Specifically, when processing unlabeled data, models tend to focus not only on key objects in the image but also on task-irrelevant background regions, leading to suboptimal feature extraction. To remove this stumbling block, we propose Attention Focusing (AF), an adaptive mechanism designed to sharpen the model's focus by pruning non-informative tokens. AF consists of two simple yet effective components: Token Importance Measurement (TIME) and Token Adaptive Pruning (TAP), working in a cascade. TIME quantifies token importance across multiple scales, while TAP prunes non-informative tokens by utilizing the multi-scale importance scores provided by TIME. AF is a lightweight, plug-and-play module that integrates seamlessly into existing GCD methods with minimal computational overhead. When incorporated into one prominent GCD method, SimGCD, AF achieves up to 15.4% performance improvement over the baseline with minimal computational overhead. The implementation code is provided in https://github.com/Afleve/AFGCD.

Authors:Wan-Cyuan Fan, Yen-Chun Chen, Mengchen Liu, Alexander Jacobson, Lu Yuan, Leonid Sigal
Title: In-Depth and In-Breadth: Pre-training Multimodal Language Models Customized for Comprehensive Chart Understanding
Abstract:
Recent methods for customizing Large Vision Language Models (LVLMs) for domain-specific tasks have shown promising results in scientific chart comprehension. However, existing approaches face two major limitations: First, they rely on paired data from only a few chart types, limiting generalization to wide range of chart types. Secondly, they lack targeted pre-training for chart-data alignment, which hampers the model's understanding of underlying data. In this paper, we introduce ChartScope, an LVLM optimized for in-depth chart comprehension across diverse chart types. We propose an efficient data generation pipeline that synthesizes paired data for a wide range of chart types, along with a novel Dual-Path training strategy that enabling the model to succinctly capture essential data details while preserving robust reasoning capabilities by incorporating reasoning over the underlying data. Lastly, we establish ChartDQA, a new benchmark for evaluating not only question-answering at different levels but also underlying data understanding. Experimental results demonstrate that ChartScope significantly enhances comprehension on a wide range of chart types. The code and data are available at https://davidhalladay.github.io/chartscope_demo.

Authors:Boyuan Zheng, Zeyi Liao, Scott Salisbury, Zeyuan Liu, Michael Lin, Qinyuan Zheng, Zifan Wang, Xiang Deng, Dawn Song, Huan Sun, Yu Su
Title: WebGuard: Building a Generalizable Guardrail for Web Agents
Abstract:
The rapid development of autonomous web agents powered by Large Language Models (LLMs), while greatly elevating efficiency, exposes the frontier risk of taking unintended or harmful actions. This situation underscores an urgent need for effective safety measures, akin to access controls for human users. To address this critical challenge, we introduce WebGuard, the first comprehensive dataset designed to support the assessment of web agent action risks and facilitate the development of guardrails for real-world online environments. In doing so, WebGuard specifically focuses on predicting the outcome of state-changing actions and contains 4,939 human-annotated actions from 193 websites across 22 diverse domains, including often-overlooked long-tail websites. These actions are categorized using a novel three-tier risk schema: SAFE, LOW, and HIGH. The dataset includes designated training and test splits to support evaluation under diverse generalization settings. Our initial evaluations reveal a concerning deficiency: even frontier LLMs achieve less than 60% accuracy in predicting action outcomes and less than 60% recall in lagging HIGH-risk actions, highlighting the risks of deploying current-generation agents without dedicated safeguards. We therefore investigate fine-tuning specialized guardrail models using WebGuard. We conduct comprehensive evaluations across multiple generalization settings and find that a fine-tuned Qwen2.5VL-7B model yields a substantial improvement in performance, boosting accuracy from 37% to 80% and HIGH-risk action recall from 20% to 76%. Despite these improvements, the performance still falls short of the reliability required for high-stakes deployment, where guardrails must approach near-perfect accuracy and recall.

Authors:Shashanka Venkataramanan, Valentinos Pariza, Mohammadreza Salehi, Lukas Knobel, Spyros Gidaris, Elias Ramzi, Andrei Bursuc, Yuki M. Asano
Title: Franca: Nested Matryoshka Clustering for Scalable Visual Representation Learning
Abstract:
We present Franca (pronounced Fran-ka): free one; the first fully open-source (data, code, weights) vision foundation model that matches and in many cases surpasses the performance of state-of-the-art proprietary models, e.g., DINOv2, CLIP, SigLIPv2, etc. Our approach is grounded in a transparent training pipeline inspired by Web-SSL and uses publicly available data: ImageNet-21K and a subset of ReLAION-2B. Beyond model release, we tackle critical limitations in SSL clustering methods. While modern models rely on assigning image features to large codebooks via clustering algorithms like Sinkhorn-Knopp, they fail to account for the inherent ambiguity in clustering semantics. To address this, we introduce a parameter-efficient, multi-head clustering projector based on nested Matryoshka representations. This design progressively refines features into increasingly fine-grained clusters without increasing the model size, enabling both performance and memory efficiency. Additionally, we propose a novel positional disentanglement strategy that explicitly removes positional biases from dense representations, thereby improving the encoding of semantic content. This leads to consistent gains on several downstream benchmarks, demonstrating the utility of cleaner feature spaces. Our contributions establish a new standard for transparent, high-performance vision models and open a path toward more reproducible and generalizable foundation models for the broader AI community. The code and model checkpoints are available at https://github.com/valeoai/Franca.

Authors:Shravan Venkatraman, Pavan Kumar S, Rakesh Raj Madavan, Chandrakala S
Title: UGPL: Uncertainty-Guided Progressive Learning for Evidence-Based Classification in Computed Tomography
Abstract:
Accurate classification of computed tomography (CT) images is essential for diagnosis and treatment planning, but existing methods often struggle with the subtle and spatially diverse nature of pathological features. Current approaches typically process images uniformly, limiting their ability to detect localized abnormalities that require focused analysis. We introduce UGPL, an uncertainty-guided progressive learning framework that performs a global-to-local analysis by first identifying regions of diagnostic ambiguity and then conducting detailed examination of these critical areas. Our approach employs evidential deep learning to quantify predictive uncertainty, guiding the extraction of informative patches through a non-maximum suppression mechanism that maintains spatial diversity. This progressive refinement strategy, combined with an adaptive fusion mechanism, enables UGPL to integrate both contextual information and fine-grained details. Experiments across three CT datasets demonstrate that UGPL consistently outperforms state-of-the-art methods, achieving improvements of 3.29%, 2.46%, and 8.08% in accuracy for kidney abnormality, lung cancer, and COVID-19 detection, respectively. Our analysis shows that the uncertainty-guided component provides substantial benefits, with performance dramatically increasing when the full progressive learning pipeline is implemented. Our code is available at: https://github.com/shravan-18/UGPL

Authors:Haoran Li, Yuli Tian, Kun Lan, Yong Liao, Lin Wang, Pan Hui, Peng Yuan Zhou
Title: DreamScene: 3D Gaussian-based End-to-end Text-to-3D Scene Generation
Abstract:
Generating 3D scenes from natural language holds great promise for applications in gaming, film, and design. However, existing methods struggle with automation, 3D consistency, and fine-grained control. We present DreamScene, an end-to-end framework for high-quality and editable 3D scene generation from text or dialogue. DreamScene begins with a scene planning module, where a GPT-4 agent infers object semantics and spatial constraints to construct a hybrid graph. A graph-based placement algorithm then produces a structured, collision-free layout. Based on this layout, Formation Pattern Sampling (FPS) generates object geometry using multi-timestep sampling and reconstructive optimization, enabling fast and realistic synthesis. To ensure global consistent, DreamScene employs a progressive camera sampling strategy tailored to both indoor and outdoor settings. Finally, the system supports fine-grained scene editing, including object movement, appearance changes, and 4D dynamic motion. Experiments demonstrate that DreamScene surpasses prior methods in quality, consistency, and flexibility, offering a practical solution for open-domain 3D content creation. Code and demos are available at https://jahnsonblack.github.io/DreamScene-Full/.

Authors:Pablo Marcos-Manchón, Lluís Fuentemilla
Title: Convergent transformations of visual representation in brains and models
Abstract:
A fundamental question in cognitive neuroscience is what shapes visual perception: the external world's structure or the brain's internal architecture. Although some perceptual variability can be traced to individual differences, brain responses to naturalistic stimuli evoke similar activity patterns across individuals, suggesting a convergent representational principle. Here, we test if this stimulus-driven convergence follows a common trajectory across people and deep neural networks (DNNs) during its transformation from sensory to high-level internal representations. We introduce a unified framework that traces representational flow by combining inter-subject similarity with alignment to model hierarchies. Applying this framework to three independent fMRI datasets of visual scene perception, we reveal a cortex-wide network, conserved across individuals, organized into two pathways: a medial-ventral stream for scene structure and a lateral-dorsal stream tuned for social and biological content. This functional organization is captured by the hierarchies of vision DNNs but not language models, reinforcing the specificity of the visual-to-semantic transformation. These findings show a convergent computational solution for visual encoding in both human and artificial vision, driven by the structure of the external world.

Authors:Lei Xu, Torkel B Brismar
Title: Software architecture and manual for novel versatile CT image analysis toolbox -- AnatomyArchive
Abstract:
We have developed a novel CT image analysis package named AnatomyArchive, built on top of the recent full body segmentation model TotalSegmentator. It provides automatic target volume selection and deselection capabilities according to user-configured anatomies for volumetric upper- and lower-bounds. It has a knowledge graph-based and time efficient tool for anatomy segmentation mask management and medical image database maintenance. AnatomyArchive enables automatic body volume cropping, as well as automatic arm-detection and exclusion, for more precise body composition analysis in both 2D and 3D formats. It provides robust voxel-based radiomic feature extraction, feature visualization, and an integrated toolchain for statistical tests and analysis. A python-based GPU-accelerated nearly photo-realistic segmentation-integrated composite cinematic rendering is also included. We present here its software architecture design, illustrate its workflow and working principle of algorithms as well provide a few examples on how the software can be used to assist development of modern machine learning models. Open-source codes will be released at https://github.com/lxu-medai/AnatomyArchive for only research and educational purposes.

Authors:Huu-Phu Do, Yu-Wei Chen, Yi-Cheng Liao, Chi-Wei Hsiao, Han-Yang Wang, Wei-Chen Chiu, Ching-Chun Huang
Title: DynFaceRestore: Balancing Fidelity and Quality in Diffusion-Guided Blind Face Restoration with Dynamic Blur-Level Mapping and Guidance
Abstract:
Blind Face Restoration aims to recover high-fidelity, detail-rich facial images from unknown degraded inputs, presenting significant challenges in preserving both identity and detail. Pre-trained diffusion models have been increasingly used as image priors to generate fine details. Still, existing methods often use fixed diffusion sampling timesteps and a global guidance scale, assuming uniform degradation. This limitation and potentially imperfect degradation kernel estimation frequently lead to under- or over-diffusion, resulting in an imbalance between fidelity and quality. We propose DynFaceRestore, a novel blind face restoration approach that learns to map any blindly degraded input to Gaussian blurry images. By leveraging these blurry images and their respective Gaussian kernels, we dynamically select the starting timesteps for each blurry image and apply closed-form guidance during the diffusion sampling process to maintain fidelity. Additionally, we introduce a dynamic guidance scaling adjuster that modulates the guidance strength across local regions, enhancing detail generation in complex areas while preserving structural fidelity in contours. This strategy effectively balances the trade-off between fidelity and quality. DynFaceRestore achieves state-of-the-art performance in both quantitative and qualitative evaluations, demonstrating robustness and effectiveness in blind face restoration. Project page at https://nycu-acm.github.io/DynFaceRestore/

Authors:Tongtong Su, Chengyu Wang, Bingyan Liu, Jun Huang, Dongming Lu
Title: Encapsulated Composition of Text-to-Image and Text-to-Video Models for High-Quality Video Synthesis
Abstract:
In recent years, large text-to-video (T2V) synthesis models have garnered considerable attention for their abilities to generate videos from textual descriptions. However, achieving both high imaging quality and effective motion representation remains a significant challenge for these T2V models. Existing approaches often adapt pre-trained text-to-image (T2I) models to refine video frames, leading to issues such as flickering and artifacts due to inconsistencies across frames. In this paper, we introduce EVS, a training-free Encapsulated Video Synthesizer that composes T2I and T2V models to enhance both visual fidelity and motion smoothness of generated videos. Our approach utilizes a well-trained diffusion-based T2I model to refine low-quality video frames by treating them as out-of-distribution samples, effectively optimizing them with noising and denoising steps. Meanwhile, we employ T2V backbones to ensure consistent motion dynamics. By encapsulating the T2V temporal-only prior into the T2I generation process, EVS successfully leverages the strengths of both types of models, resulting in videos of improved imaging and motion quality. Experimental results validate the effectiveness of our approach compared to previous approaches. Our composition process also leads to a significant improvement of 1.6x-4.5x speedup in inference time. Source codes: https://github.com/Tonniia/EVS.

Authors:Xiao Wang, Qian Zhu, Shujuan Wu, Bo Jiang, Shiliang Zhang, Yaowei Wang, Yonghong Tian, Bin Luo
Title: When Person Re-Identification Meets Event Camera: A Benchmark Dataset and An Attribute-guided Re-Identification Framework
Abstract:
Recent researchers have proposed using event cameras for person re-identification (ReID) due to their promising performance and better balance in terms of privacy protection, event camera-based person ReID has attracted significant attention. Currently, mainstream event-based person ReID algorithms primarily focus on fusing visible light and event stream, as well as preserving privacy. Although significant progress has been made, these methods are typically trained and evaluated on small-scale or simulated event camera datasets, making it difficult to assess their real identification performance and generalization ability. To address the issue of data scarcity, this paper introduces a large-scale RGB-event based person ReID dataset, called EvReID. The dataset contains 118,988 image pairs and covers 1200 pedestrian identities, with data collected across multiple seasons, scenes, and lighting conditions. We also evaluate 15 state-of-the-art person ReID algorithms, laying a solid foundation for future research in terms of both data and benchmarking. Based on our newly constructed dataset, this paper further proposes a pedestrian attribute-guided contrastive learning framework to enhance feature learning for person re-identification, termed TriPro-ReID. This framework not only effectively explores the visual features from both RGB frames and event streams, but also fully utilizes pedestrian attributes as mid-level semantic features. Extensive experiments on the EvReID dataset and MARS datasets fully validated the effectiveness of our proposed RGB-Event person ReID framework. The benchmark dataset and source code will be released on https://github.com/Event-AHU/Neuromorphic_ReID

Authors:Seungjun Moon, Sangjoon Yu, Gyeong-Moon Park
Title: EPSilon: Efficient Point Sampling for Lightening of Hybrid-based 3D Avatar Generation
Abstract:
The rapid advancement of neural radiance fields (NeRF) has paved the way to generate animatable human avatars from a monocular video. However, the sole usage of NeRF suffers from a lack of details, which results in the emergence of hybrid representation that utilizes SMPL-based mesh together with NeRF representation. While hybrid-based models show photo-realistic human avatar generation qualities, they suffer from extremely slow inference due to their deformation scheme: to be aligned with the mesh, hybrid-based models use the deformation based on SMPL skinning weights, which needs high computational costs on each sampled point. We observe that since most of the sampled points are located in empty space, they do not affect the generation quality but result in inference latency with deformation. In light of this observation, we propose EPSilon, a hybrid-based 3D avatar generation scheme with novel efficient point sampling strategies that boost both training and inference. In EPSilon, we propose two methods to omit empty points at rendering; empty ray omission (ERO) and empty interval omission (EIO). In ERO, we wipe out rays that progress through the empty space. Then, EIO narrows down the sampling interval on the ray, which wipes out the region not occupied by either clothes or mesh. The delicate sampling scheme of EPSilon enables not only great computational cost reduction during deformation but also the designation of the important regions to be sampled, which enables a single-stage NeRF structure without hierarchical sampling. Compared to existing methods, EPSilon maintains the generation quality while using only 3.9% of sampled points and achieves around 20 times faster inference, together with 4 times faster training convergence. We provide video results on https://github.com/seungjun-moon/epsilon.

Authors:Dmitrii Mikhailov, Aleksey Letunovskiy, Maria Kovaleva, Vladimir Arkhipkin, Vladimir Korviakov, Vladimir Polovnikov, Viacheslav Vasilev, Evelina Sidorova, Denis Dimitrov
Title: $\nabla$NABLA: Neighborhood Adaptive Block-Level Attention
Abstract:
Recent progress in transformer-based architectures has demonstrated remarkable success in video generation tasks. However, the quadratic complexity of full attention mechanisms remains a critical bottleneck, particularly for high-resolution and long-duration video sequences. In this paper, we propose NABLA, a novel Neighborhood Adaptive Block-Level Attention mechanism that dynamically adapts to sparsity patterns in video diffusion transformers (DiTs). By leveraging block-wise attention with adaptive sparsity-driven threshold, NABLA reduces computational overhead while preserving generative quality. Our method does not require custom low-level operator design and can be seamlessly integrated with PyTorch's Flex Attention operator. Experiments demonstrate that NABLA achieves up to 2.7x faster training and inference compared to baseline almost without compromising quantitative metrics (CLIP score, VBench score, human evaluation score) and visual quality drop. The code and model weights are available here: https://github.com/gen-ai-team/Wan2.1-NABLA

Authors:Seyyed Saeid Cheshmi, Buyao Lyu, Thomas Lisko, Rajesh Rajamani, Robert A. McGovern, Yogatheesan Varatharajah
Title: Improving Out-of-distribution Human Activity Recognition via IMU-Video Cross-modal Representation Learning
Abstract:
Human Activity Recognition (HAR) based on wearable inertial sensors plays a critical role in remote health monitoring. In patients with movement disorders, the ability to detect abnormal patient movements in their home environments can enable continuous optimization of treatments and help alert caretakers as needed. Machine learning approaches have been proposed for HAR tasks using Inertial Measurement Unit (IMU) data; however, most rely on application-specific labels and lack generalizability to data collected in different environments or populations. To address this limitation, we propose a new cross-modal self-supervised pretraining approach to learn representations from large-sale unlabeled IMU-video data and demonstrate improved generalizability in HAR tasks on out of distribution (OOD) IMU datasets, including a dataset collected from patients with Parkinson's disease. Specifically, our results indicate that the proposed cross-modal pretraining approach outperforms the current state-of-the-art IMU-video pretraining approach and IMU-only pretraining under zero-shot and few-shot evaluations. Broadly, our study provides evidence that in highly dynamic data modalities, such as IMU signals, cross-modal pretraining may be a useful tool to learn generalizable data representations. Our software is available at https://github.com/scheshmi/IMU-Video-OOD-HAR.

Authors:Chihiro Noguchi, Takaki Yamamoto
Title: From Binary to Semantic: Utilizing Large-Scale Binary Occupancy Data for 3D Semantic Occupancy Prediction
Abstract:
Accurate perception of the surrounding environment is essential for safe autonomous driving. 3D occupancy prediction, which estimates detailed 3D structures of roads, buildings, and other objects, is particularly important for vision-centric autonomous driving systems that do not rely on LiDAR sensors. However, in 3D semantic occupancy prediction -- where each voxel is assigned a semantic label -- annotated LiDAR point clouds are required, making data acquisition costly. In contrast, large-scale binary occupancy data, which only indicate occupied or free space without semantic labels, can be collected at a lower cost. Despite their availability, the potential of leveraging such data remains unexplored. In this study, we investigate the utilization of large-scale binary occupancy data from two perspectives: (1) pre-training and (2) learning-based auto-labeling. We propose a novel binary occupancy-based framework that decomposes the prediction process into binary and semantic occupancy modules, enabling effective use of binary occupancy data. Our experimental results demonstrate that the proposed framework outperforms existing methods in both pre-training and auto-labeling tasks, highlighting its effectiveness in enhancing 3D semantic occupancy prediction. The code is available at https://github.com/ToyotaInfoTech/b2s-occupancy

Authors:Xiaojian Lin, Wenxin Zhang, Yuchu Jiang, Wangyu Wu, Yiran Guo, Kangxu Wang, Zongzheng Zhang, Guijin Wang, Lei Jin, Hao Zhao
Title: Butter: Frequency Consistency and Hierarchical Fusion for Autonomous Driving Object Detection
Abstract:
Hierarchical feature representations play a pivotal role in computer vision, particularly in object detection for autonomous driving. Multi-level semantic understanding is crucial for accurately identifying pedestrians, vehicles, and traffic signs in dynamic environments. However, existing architectures, such as YOLO and DETR, struggle to maintain feature consistency across different scales while balancing detection precision and computational efficiency. To address these challenges, we propose Butter, a novel object detection framework designed to enhance hierarchical feature representations for improving detection robustness. Specifically, Butter introduces two key innovations: Frequency-Adaptive Feature Consistency Enhancement (FAFCE) Component, which refines multi-scale feature consistency by leveraging adaptive frequency filtering to enhance structural and boundary precision, and Progressive Hierarchical Feature Fusion Network (PHFFNet) Module, which progressively integrates multi-level features to mitigate semantic gaps and strengthen hierarchical feature learning. Through extensive experiments on BDD100K, KITTI, and Cityscapes, Butter demonstrates superior feature representation capabilities, leading to notable improvements in detection accuracy while reducing model complexity. By focusing on hierarchical feature refinement and integration, Butter provides an advanced approach to object detection that achieves a balance between accuracy, deployability, and computational efficiency in real-time autonomous driving scenarios. Our model and implementation are publicly available at https://github.com/Aveiro-Lin/Butter, facilitating further research and validation within the autonomous driving community.

Authors:Atharv Goel, Mehar Khurana
Title: Just Add Geometry: Gradient-Free Open-Vocabulary 3D Detection Without Human-in-the-Loop
Abstract:
Modern 3D object detection datasets are constrained by narrow class taxonomies and costly manual annotations, limiting their ability to scale to open-world settings. In contrast, 2D vision-language models trained on web-scale image-text pairs exhibit rich semantic understanding and support open-vocabulary detection via natural language prompts. In this work, we leverage the maturity and category diversity of 2D foundation models to perform open-vocabulary 3D object detection without any human-annotated 3D labels. Our pipeline uses a 2D vision-language detector to generate text-conditioned proposals, which are segmented with SAM and back-projected into 3D using camera geometry and either LiDAR or monocular pseudo-depth. We introduce a geometric inflation strategy based on DBSCAN clustering and Rotating Calipers to infer 3D bounding boxes without training. To simulate adverse real-world conditions, we construct Pseudo-nuScenes, a fog-augmented, RGB-only variant of the nuScenes dataset. Experiments demonstrate that our method achieves competitive localization performance across multiple settings, including LiDAR-based and purely RGB-D inputs, all while remaining training-free and open-vocabulary. Our results highlight the untapped potential of 2D foundation models for scalable 3D perception. We open-source our code and resources at https://github.com/atharv0goel/open-world-3D-det.

Authors:Binbin Ji, Siddharth Agrawal, Qiance Tang, Yvonne Wu
Title: Enhancing Spatial Reasoning in Vision-Language Models via Chain-of-Thought Prompting and Reinforcement Learning
Abstract:
This study investigates the spatial reasoning capabilities of vision-language models (VLMs) through Chain-of-Thought (CoT) prompting and reinforcement learning. We begin by evaluating the impact of different prompting strategies and find that simple CoT formats, where the model generates a reasoning step before the answer, not only fail to help, but can even harm the model's original performance. In contrast, structured multi-stage prompting based on scene graphs (SceneGraph CoT) significantly improves spatial reasoning accuracy. Furthermore, to improve spatial reasoning ability, we fine-tune models using Group Relative Policy Optimization (GRPO) on the SAT dataset and evaluate their performance on CVBench. Compared to supervised fine-tuning (SFT), GRPO achieves higher accuracy on Pass@1 evaluations and demonstrates superior robustness under out-of-distribution (OOD) conditions. In particular, we find that SFT overfits to surface-level linguistic patterns and may degrade performance when test-time phrasing changes (e.g., from "closer to" to "farther from"). GRPO, on the other hand, generalizes more reliably and maintains stable performance under such shifts. Our findings provide insights into how reinforcement learning and structured prompting improve the spatial reasoning capabilities and generalization behavior of modern VLMs. All code is open source at: https://github.com/Yvonne511/spatial-vlm-investigator

Authors:Le-Anh Tran, Chung Nguyen Tran, Ngoc-Luu Nguyen, Nhan Cach Dang, Jordi Carrabina, David Castells-Rufas, Minh Son Nguyen
Title: Low-Light Enhancement via Encoder-Decoder Network with Illumination Guidance
Abstract:
This paper introduces a novel deep learning framework for low-light image enhancement, named the Encoder-Decoder Network with Illumination Guidance (EDNIG). Building upon the U-Net architecture, EDNIG integrates an illumination map, derived from Bright Channel Prior (BCP), as a guidance input. This illumination guidance helps the network focus on underexposed regions, effectively steering the enhancement process. To further improve the model's representational power, a Spatial Pyramid Pooling (SPP) module is incorporated to extract multi-scale contextual features, enabling better handling of diverse lighting conditions. Additionally, the Swish activation function is employed to ensure smoother gradient propagation during training. EDNIG is optimized within a Generative Adversarial Network (GAN) framework using a composite loss function that combines adversarial loss, pixel-wise mean squared error (MSE), and perceptual loss. Experimental results show that EDNIG achieves competitive performance compared to state-of-the-art methods in quantitative metrics and visual quality, while maintaining lower model complexity, demonstrating its suitability for real-world applications. The source code for this work is available at https://github.com/tranleanh/ednig.

Authors:Yang Zhou, Junjie Li, CongYang Ou, Dawei Yan, Haokui Zhang, Xizhe Xue
Title: Open-Vocabulary Object Detection in UAV Imagery: A Review and Future Perspectives
Abstract:
Due to its extensive applications, aerial image object detection has long been a hot topic in computer vision. In recent years, advancements in Unmanned Aerial Vehicles (UAV) technology have further propelled this field to new heights, giving rise to a broader range of application requirements. However, traditional UAV aerial object detection methods primarily focus on detecting predefined categories, which significantly limits their applicability. The advent of cross-modal text-image alignment (e.g., CLIP) has overcome this limitation, enabling open-vocabulary object detection (OVOD), which can identify previously unseen objects through natural language descriptions. This breakthrough significantly enhances the intelligence and autonomy of UAVs in aerial scene understanding. This paper presents a comprehensive survey of OVOD in the context of UAV aerial scenes. We begin by aligning the core principles of OVOD with the unique characteristics of UAV vision, setting the stage for a specialized discussion. Building on this foundation, we construct a systematic taxonomy that categorizes existing OVOD methods for aerial imagery and provides a comprehensive overview of the relevant datasets. This structured review enables us to critically dissect the key challenges and open problems at the intersection of these fields. Finally, based on this analysis, we outline promising future research directions and application prospects. This survey aims to provide a clear road map and a valuable reference for both newcomers and seasoned researchers, fostering innovation in this rapidly evolving domain. We keep tracing related works at https://github.com/zhouyang2002/OVOD-in-UVA-imagery

Authors:Yichi Zhang, Yici Yan, Alex Schwing, Zhizhen Zhao
Title: Hierarchical Rectified Flow Matching with Mini-Batch Couplings
Abstract:
Flow matching has emerged as a compelling generative modeling approach that is widely used across domains. To generate data via a flow matching model, an ordinary differential equation (ODE) is numerically solved via forward integration of the modeled velocity field. To better capture the multi-modality that is inherent in typical velocity fields, hierarchical flow matching was recently introduced. It uses a hierarchy of ODEs that are numerically integrated when generating data. This hierarchy of ODEs captures the multi-modal velocity distribution just like vanilla flow matching is capable of modeling a multi-modal data distribution. While this hierarchy enables to model multi-modal velocity distributions, the complexity of the modeled distribution remains identical across levels of the hierarchy. In this paper, we study how to gradually adjust the complexity of the distributions across different levels of the hierarchy via mini-batch couplings. We show the benefits of mini-batch couplings in hierarchical rectified flow matching via compelling results on synthetic and imaging data. Code is available at https://riccizz.github.io/HRF_coupling.

Authors:Senqiao Yang, Junyi Li, Xin Lai, Bei Yu, Hengshuang Zhao, Jiaya Jia
Title: VisionThink: Smart and Efficient Vision Language Model via Reinforcement Learning
Abstract:
Recent advancements in vision-language models (VLMs) have improved performance by increasing the number of visual tokens, which are often significantly longer than text tokens. However, we observe that most real-world scenarios do not require such an extensive number of visual tokens. While the performance drops significantly in a small subset of OCR-related tasks, models still perform accurately in most other general VQA tasks with only 1/4 resolution. Therefore, we propose to dynamically process distinct samples with different resolutions, and present a new paradigm for visual token compression, namely, VisionThink. It starts with a downsampled image and smartly decides whether it is sufficient for problem solving. Otherwise, the model could output a special token to request the higher-resolution image. Compared to existing Efficient VLM methods that compress tokens using fixed pruning ratios or thresholds, VisionThink autonomously decides whether to compress tokens case by case. As a result, it demonstrates strong fine-grained visual understanding capability on OCR-related tasks, and meanwhile saves substantial visual tokens on simpler tasks. We adopt reinforcement learning and propose the LLM-as-Judge strategy to successfully apply RL to general VQA tasks. Moreover, we carefully design a reward function and penalty mechanism to achieve a stable and reasonable image resize call ratio. Extensive experiments demonstrate the superiority, efficiency, and effectiveness of our method. Our code is available at https://github.com/dvlab-research/VisionThink.

Authors:Yifan Wang, Jianjun Zhou, Haoyi Zhu, Wenzheng Chang, Yang Zhou, Zizun Li, Junyi Chen, Jiangmiao Pang, Chunhua Shen, Tong He
Title: $π^3$: Permutation-Equivariant Visual Geometry Learning
Abstract:
We introduce $π^3$, a feed-forward neural network that offers a novel approach to visual geometry reconstruction, breaking the reliance on a conventional fixed reference view. Previous methods often anchor their reconstructions to a designated viewpoint, an inductive bias that can lead to instability and failures if the reference is suboptimal. In contrast, $π^3$ employs a fully permutation-equivariant architecture to predict affine-invariant camera poses and scale-invariant local point maps without any reference frames. This design not only makes our model inherently robust to input ordering, but also leads to higher accuracy and performance. These advantages enable our simple and bias-free approach to achieve state-of-the-art performance on a wide range of tasks, including camera pose estimation, monocular/video depth estimation, and dense point map reconstruction. Code and models are publicly available.

Authors:Minghao Chen, Jianyuan Wang, Roman Shapovalov, Tom Monnier, Hyunyoung Jung, Dilin Wang, Rakesh Ranjan, Iro Laina, Andrea Vedaldi
Title: AutoPartGen: Autogressive 3D Part Generation and Discovery
Abstract:
We introduce AutoPartGen, a model that generates objects composed of 3D parts in an autoregressive manner. This model can take as input an image of an object, 2D masks of the object's parts, or an existing 3D object, and generate a corresponding compositional 3D reconstruction. Our approach builds upon 3DShape2VecSet, a recent latent 3D representation with powerful geometric expressiveness. We observe that this latent space exhibits strong compositional properties, making it particularly well-suited for part-based generation tasks. Specifically, AutoPartGen generates object parts autoregressively, predicting one part at a time while conditioning on previously generated parts and additional inputs, such as 2D images, masks, or 3D objects. This process continues until the model decides that all parts have been generated, thus determining automatically the type and number of parts. The resulting parts can be seamlessly assembled into coherent objects or scenes without requiring additional optimization. We evaluate both the overall 3D generation capabilities and the part-level generation quality of AutoPartGen, demonstrating that it achieves state-of-the-art performance in 3D part generation.

Authors:Dechen Gao, Boqi Zhao, Andrew Lee, Ian Chuang, Hanchu Zhou, Hang Wang, Zhe Zhao, Junshan Zhang, Iman Soltani
Title: VITA: Vision-to-Action Flow Matching Policy
Abstract:
We present VITA, a Vision-To-Action flow matching policy that evolves latent visual representations into latent actions for visuomotor control. Traditional flow matching and diffusion policies sample from standard source distributions (e.g., Gaussian noise) and require additional conditioning mechanisms like cross-attention to condition action generation on visual information, creating time and space overheads. VITA proposes a novel paradigm that treats latent images as the flow source, learning an inherent mapping from vision to action while eliminating separate conditioning modules and preserving generative modeling capabilities. Learning flows between fundamentally different modalities like vision and action is challenging due to sparse action data lacking semantic structures and dimensional mismatches between high-dimensional visual representations and raw actions. We address this by creating a structured action latent space via an autoencoder as the flow matching target, up-sampling raw actions to match visual representation shapes. Crucially, we supervise flow matching with both encoder targets and final action outputs through flow latent decoding, which backpropagates action reconstruction loss through sequential flow matching ODE solving steps for effective end-to-end learning. Implemented as simple MLP layers, VITA is evaluated on challenging bi-manual manipulation tasks on the ALOHA platform, including 5 simulation and 2 real-world tasks. Despite its simplicity, MLP-only VITA outperforms or matches state-of-the-art generative policies while reducing inference latency by 50-130% compared to conventional flow matching policies requiring different conditioning mechanisms or complex architectures. To our knowledge, VITA is the first MLP-only flow matching policy capable of solving complex bi-manual manipulation tasks like those in ALOHA benchmarks.

Authors:Arian Mousakhan, Sudhanshu Mittal, Silvio Galesso, Karim Farid, Thomas Brox
Title: Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models
Abstract:
Existing world models for autonomous driving struggle with long-horizon generation and generalization to challenging scenarios. In this work, we develop a model using simple design choices, and without additional supervision or sensors, such as maps, depth, or multiple cameras. We show that our model yields state-of-the-art performance, despite having only 469M parameters and being trained on 280h of video data. It particularly stands out in difficult scenarios like turning maneuvers and urban traffic. We test whether discrete token models possibly have advantages over continuous models based on flow matching. To this end, we set up a hybrid tokenizer that is compatible with both approaches and allows for a side-by-side comparison. Our study concludes in favor of the continuous autoregressive model, which is less brittle on individual design choices and more powerful than the model built on discrete tokens. Code, models and qualitative results are publicly available at https://lmb-freiburg.github.io/orbis.github.io/.

Authors:Alicia Durrer, Florentin Bieder, Paul Friedrich, Bjoern Menze, Philippe C. Cattin, Florian Kofler
Title: fastWDM3D: Fast and Accurate 3D Healthy Tissue Inpainting
Abstract:
Healthy tissue inpainting has significant applications, including the generation of pseudo-healthy baselines for tumor growth models and the facilitation of image registration. In previous editions of the BraTS Local Synthesis of Healthy Brain Tissue via Inpainting Challenge, denoising diffusion probabilistic models (DDPMs) demonstrated qualitatively convincing results but suffered from low sampling speed. To mitigate this limitation, we adapted a 2D image generation approach, combining DDPMs with generative adversarial networks (GANs) and employing a variance-preserving noise schedule, for the task of 3D inpainting. Our experiments showed that the variance-preserving noise schedule and the selected reconstruction losses can be effectively utilized for high-quality 3D inpainting in a few time steps without requiring adversarial training. We applied our findings to a different architecture, a 3D wavelet diffusion model (WDM3D) that does not include a GAN component. The resulting model, denoted as fastWDM3D, obtained a SSIM of 0.8571, a MSE of 0.0079, and a PSNR of 22.26 on the BraTS inpainting test set. Remarkably, it achieved these scores using only two time steps, completing the 3D inpainting process in 1.81 s per image. When compared to other DDPMs used for healthy brain tissue inpainting, our model is up to 800 x faster while still achieving superior performance metrics. Our proposed method, fastWDM3D, represents a promising approach for fast and accurate healthy tissue inpainting. Our code is available at https://github.com/AliciaDurrer/fastWDM3D.

Authors:Xiaohan Guo, Yusong Cai, Zejia Liu, Zhengning Wang, Lili Pan, Hongliang Li
Title: R^2MoE: Redundancy-Removal Mixture of Experts for Lifelong Concept Learning
Abstract:
Enabling large-scale generative models to continuously learn new visual concepts is essential for personalizing pre-trained models to meet individual user preferences. Existing approaches for continual visual concept learning are constrained by two fundamental challenges: catastrophic forgetting and parameter expansion. In this paper, we propose Redundancy-Removal Mixture of Experts (R^2MoE), a parameter-efficient framework for lifelong visual concept learning that effectively learns new concepts while incurring minimal parameter overhead. Our framework includes three key innovative contributions: First, we propose a mixture-of-experts framework with a routing distillation mechanism that enables experts to acquire concept-specific knowledge while preserving the gating network's routing capability, thereby effectively mitigating catastrophic forgetting. Second, we propose a strategy for eliminating redundant layer-wise experts that reduces the number of expert parameters by fully utilizing previously learned experts. Third, we employ a hierarchical local attention-guided inference approach to mitigate interference between generated visual concepts. Extensive experiments have demonstrated that our method generates images with superior conceptual fidelity compared to the state-of-the-art (SOTA) method, achieving an impressive 87.8\% reduction in forgetting rates and 63.3\% fewer parameters on the CustomConcept 101 dataset. Our code is available at {https://github.com/learninginvision/R2MoE}

Authors:Han Zhang, Xiangde Luo, Yong Chen, Kang Li
Title: DiffOSeg: Omni Medical Image Segmentation via Multi-Expert Collaboration Diffusion Model
Abstract:
Annotation variability remains a substantial challenge in medical image segmentation, stemming from ambiguous imaging boundaries and diverse clinical expertise. Traditional deep learning methods producing single deterministic segmentation predictions often fail to capture these annotator biases. Although recent studies have explored multi-rater segmentation, existing methods typically focus on a single perspective -- either generating a probabilistic ``gold standard'' consensus or preserving expert-specific preferences -- thus struggling to provide a more omni view. In this study, we propose DiffOSeg, a two-stage diffusion-based framework, which aims to simultaneously achieve both consensus-driven (combining all experts' opinions) and preference-driven (reflecting experts' individual assessments) segmentation. Stage I establishes population consensus through a probabilistic consensus strategy, while Stage II captures expert-specific preference via adaptive prompts. Demonstrated on two public datasets (LIDC-IDRI and NPC-170), our model outperforms existing state-of-the-art methods across all evaluated metrics. Source code is available at https://github.com/string-ellipses/DiffOSeg .

Authors:Yi Xin, Le Zhuo, Qi Qin, Siqi Luo, Yuewen Cao, Bin Fu, Yangfan He, Hongsheng Li, Guangtao Zhai, Xiaohong Liu, Peng Gao
Title: Resurrect Mask AutoRegressive Modeling for Efficient and Scalable Image Generation
Abstract:
AutoRegressive (AR) models have made notable progress in image generation, with Masked AutoRegressive (MAR) models gaining attention for their efficient parallel decoding. However, MAR models have traditionally underperformed when compared to standard AR models. This study refines the MAR architecture to improve image generation quality. We begin by evaluating various image tokenizers to identify the most effective one. Subsequently, we introduce an improved Bidirectional LLaMA architecture by replacing causal attention with bidirectional attention and incorporating 2D RoPE, which together form our advanced model, MaskGIL. Scaled from 111M to 1.4B parameters, MaskGIL achieves a FID score of 3.71, matching state-of-the-art AR models in the ImageNet 256x256 benchmark, while requiring only 8 inference steps compared to the 256 steps of AR models. Furthermore, we develop a text-driven MaskGIL model with 775M parameters for generating images from text at various resolutions. Beyond image generation, MaskGIL extends to accelerate AR-based generation and enable real-time speech-to-image conversion. Our codes and models are available at https://github.com/synbol/MaskGIL.

Authors:Liuyi Wang, Xinyuan Xia, Hui Zhao, Hanqing Wang, Tai Wang, Yilun Chen, Chengju Liu, Qijun Chen, Jiangmiao Pang
Title: Rethinking the Embodied Gap in Vision-and-Language Navigation: A Holistic Study of Physical and Visual Disparities
Abstract:
Recent Vision-and-Language Navigation (VLN) advancements are promising, but their idealized assumptions about robot movement and control fail to reflect physically embodied deployment challenges. To bridge this gap, we introduce VLN-PE, a physically realistic VLN platform supporting humanoid, quadruped, and wheeled robots. For the first time, we systematically evaluate several ego-centric VLN methods in physical robotic settings across different technical pipelines, including classification models for single-step discrete action prediction, a diffusion model for dense waypoint prediction, and a train-free, map-based large language model (LLM) integrated with path planning. Our results reveal significant performance degradation due to limited robot observation space, environmental lighting variations, and physical challenges like collisions and falls. This also exposes locomotion constraints for legged robots in complex environments. VLN-PE is highly extensible, allowing seamless integration of new scenes beyond MP3D, thereby enabling more comprehensive VLN evaluation. Despite the weak generalization of current models in physical deployment, VLN-PE provides a new pathway for improving cross-embodiment's overall adaptability. We hope our findings and tools inspire the community to rethink VLN limitations and advance robust, practical VLN models. The code is available at https://crystalsixone.github.io/vln_pe.github.io/.

Authors:Zihua Zhao, Feng Hong, Mengxi Chen, Pengyi Chen, Benyuan Liu, Jiangchao Yao, Ya Zhang, Yanfeng Wang
Title: Differential-informed Sample Selection Accelerates Multimodal Contrastive Learning
Abstract:
The remarkable success of contrastive-learning-based multimodal models has been greatly driven by training on ever-larger datasets with expensive compute consumption. Sample selection as an alternative efficient paradigm plays an important direction to accelerate the training process. However, recent advances on sample selection either mostly rely on an oracle model to offline select a high-quality coreset, which is limited in the cold-start scenarios, or focus on online selection based on real-time model predictions, which has not sufficiently or efficiently considered the noisy correspondence. To address this dilemma, we propose a novel Differential-Informed Sample Selection (DISSect) method, which accurately and efficiently discriminates the noisy correspondence for training acceleration. Specifically, we rethink the impact of noisy correspondence on contrastive learning and propose that the differential between the predicted correlation of the current model and that of a historical model is more informative to characterize sample quality. Based on this, we construct a robust differential-based sample selection and analyze its theoretical insights. Extensive experiments on three benchmark datasets and various downstream tasks demonstrate the consistent superiority of DISSect over current state-of-the-art methods. Source code is available at: https://github.com/MediaBrain-SJTU/DISSect.

Authors:Qiang Wang, Mengchao Wang, Fan Jiang, Yaqi Fan, Yonggang Qi, Mu Xu
Title: FantasyPortrait: Enhancing Multi-Character Portrait Animation with Expression-Augmented Diffusion Transformers
Abstract:
Producing expressive facial animations from static images is a challenging task. Prior methods relying on explicit geometric priors (e.g., facial landmarks or 3DMM) often suffer from artifacts in cross reenactment and struggle to capture subtle emotions. Furthermore, existing approaches lack support for multi-character animation, as driving features from different individuals frequently interfere with one another, complicating the task. To address these challenges, we propose FantasyPortrait, a diffusion transformer based framework capable of generating high-fidelity and emotion-rich animations for both single- and multi-character scenarios. Our method introduces an expression-augmented learning strategy that utilizes implicit representations to capture identity-agnostic facial dynamics, enhancing the model's ability to render fine-grained emotions. For multi-character control, we design a masked cross-attention mechanism that ensures independent yet coordinated expression generation, effectively preventing feature interference. To advance research in this area, we propose the Multi-Expr dataset and ExprBench, which are specifically designed datasets and benchmarks for training and evaluating multi-character portrait animations. Extensive experiments demonstrate that FantasyPortrait significantly outperforms state-of-the-art methods in both quantitative metrics and qualitative evaluations, excelling particularly in challenging cross reenactment and multi-character contexts. Our project page is https://fantasy-amap.github.io/fantasy-portrait/.

Authors:Jiaxiu Jiang, Wenbo Li, Jingjing Ren, Yuping Qiu, Yong Guo, Xiaogang Xu, Han Wu, Wangmeng Zuo
Title: LoViC: Efficient Long Video Generation with Context Compression
Abstract:
Despite recent advances in diffusion transformers (DiTs) for text-to-video generation, scaling to long-duration content remains challenging due to the quadratic complexity of self-attention. While prior efforts -- such as sparse attention and temporally autoregressive models -- offer partial relief, they often compromise temporal coherence or scalability. We introduce LoViC, a DiT-based framework trained on million-scale open-domain videos, designed to produce long, coherent videos through a segment-wise generation process. At the core of our approach is FlexFormer, an expressive autoencoder that jointly compresses video and text into unified latent representations. It supports variable-length inputs with linearly adjustable compression rates, enabled by a single query token design based on the Q-Former architecture. Additionally, by encoding temporal context through position-aware mechanisms, our model seamlessly supports prediction, retradiction, interpolation, and multi-shot generation within a unified paradigm. Extensive experiments across diverse tasks validate the effectiveness and versatility of our approach.

Authors:Yucheng Tang, Yunguan Fu, Weixi Yi, Yipei Wang, Daniel C. Alexander, Rhodri Davies, Yipeng Hu
Title: Analysis of Image-and-Text Uncertainty Propagation in Multimodal Large Language Models with Cardiac MR-Based Applications
Abstract:
Multimodal large language models (MLLMs) can process and integrate information from multimodality sources, such as text and images. However, interrelationship among input modalities, uncertainties due to individual uni-modal data and potential clinical applications following such an uncertainty decomposition are yet fully understood in the context of large-scale MLLMs. In this work, we propose a multimodal uncertainty propagation model (MUPM) based on uncertainty propagation, to characterise the relationship among the uncertainties arising from image-only, text-only, and joint image-text variations in MLLM inputs. Using real clinical data consisting of cardiac MR scans and digital health records, we describe that MUPMs can be optimised robustly with a few samples. We then show that the fitted MUPMs are generalisable across different input data distributions and, perhaps surprisingly, across different downstream tasks. Such a transferability may be explained by the shared pretraining, comparatively light MLLM fine-tuning, along with the low-dimensional nature of the MUPMs. More importantly, this learned transferability, quantifying the relationship between these uncertainties, led to direct clinical applications in which uncertainties may be estimated and thus analysed robustly for varying data or even a novel set of cardiac disease prediction tasks. In addition, we show experimentally the efficiency in multimodal data required for estimating the overall uncertainty and its ability to identify redundant factors, both of which are considered practical yet clinically useful applications with the proposed MUPMs. Codes are available at https://github.com/yucheng722/MUPM.

Authors:Caixia Dong, Duwei Dai, Xinyi Han, Fan Liu, Xu Yang, Zongfang Li, Songhua Xu
Title: Unleashing Vision Foundation Models for Coronary Artery Segmentation: Parallel ViT-CNN Encoding and Variational Fusion
Abstract:
Accurate coronary artery segmentation is critical for computeraided diagnosis of coronary artery disease (CAD), yet it remains challenging due to the small size, complex morphology, and low contrast with surrounding tissues. To address these challenges, we propose a novel segmentation framework that leverages the power of vision foundation models (VFMs) through a parallel encoding architecture. Specifically, a vision transformer (ViT) encoder within the VFM captures global structural features, enhanced by the activation of the final two ViT blocks and the integration of an attention-guided enhancement (AGE) module, while a convolutional neural network (CNN) encoder extracts local details. These complementary features are adaptively fused using a cross-branch variational fusion (CVF) module, which models latent distributions and applies variational attention to assign modality-specific weights. Additionally, we introduce an evidential-learning uncertainty refinement (EUR) module, which quantifies uncertainty using evidence theory and refines uncertain regions by incorporating multi-scale feature aggregation and attention mechanisms, further enhancing segmentation accuracy. Extensive evaluations on one in-house and two public datasets demonstrate that the proposed framework significantly outperforms state-of-the-art methods, achieving superior performance in accurate coronary artery segmentation and showcasing strong generalization across multiple datasets. The code is available at https://github.com/d1c2x3/CAseg.

Authors:Dongyeun Lee, Jiwan Hur, Hyounguk Shon, Jae Young Lee, Junmo Kim
Title: DMQ: Dissecting Outliers of Diffusion Models for Post-Training Quantization
Abstract:
Diffusion models have achieved remarkable success in image generation but come with significant computational costs, posing challenges for deployment in resource-constrained environments. Recent post-training quantization (PTQ) methods have attempted to mitigate this issue by focusing on the iterative nature of diffusion models. However, these approaches often overlook outliers, leading to degraded performance at low bit-widths. In this paper, we propose a DMQ which combines Learned Equivalent Scaling (LES) and channel-wise Power-of-Two Scaling (PTS) to effectively address these challenges. Learned Equivalent Scaling optimizes channel-wise scaling factors to redistribute quantization difficulty between weights and activations, reducing overall quantization error. Recognizing that early denoising steps, despite having small quantization errors, crucially impact the final output due to error accumulation, we incorporate an adaptive timestep weighting scheme to prioritize these critical steps during learning. Furthermore, identifying that layers such as skip connections exhibit high inter-channel variance, we introduce channel-wise Power-of-Two Scaling for activations. To ensure robust selection of PTS factors even with small calibration set, we introduce a voting algorithm that enhances reliability. Extensive experiments demonstrate that our method significantly outperforms existing works, especially at low bit-widths such as W4A6 (4-bit weight, 6-bit activation) and W4A8, maintaining high image generation quality and model stability. The code is available at https://github.com/LeeDongYeun/dmq.

Authors:Tomohiro Suzuki, Ryota Tanaka, Calvin Yeung, Keisuke Fujii
Title: AthleticsPose: Authentic Sports Motion Dataset on Athletic Field and Evaluation of Monocular 3D Pose Estimation Ability
Abstract:
Monocular 3D pose estimation is a promising, flexible alternative to costly motion capture systems for sports analysis. However, its practical application is hindered by two factors: a lack of realistic sports datasets and unclear reliability for sports tasks. To address these challenges, we introduce the AthleticsPose dataset, a new public dataset featuring ``real'' motions captured from 23 athletes performing various athletics events on an athletic field. Using this dataset, we trained a representative 3D pose estimation model and performed a comprehensive evaluation. Our results show that the model trained on AthleticsPose significantly outperforms a baseline model trained on an imitated sports motion dataset, reducing MPJPE by approximately 75 %. These results show the importance of training on authentic sports motion data, as models based on imitated motions do not effectively transfer to real-world motions. Further analysis reveals that estimation accuracy is sensitive to camera view and subject scale. In case studies of kinematic indicators, the model demonstrated the potential to capture individual differences in knee angles but struggled with higher-speed metrics, such as knee-drive velocity, due to prediction biases. This work provides the research community with a valuable dataset and clarifies the potential and practical limitations of using monocular 3D pose estimation for sports motion analysis. Our dataset, code, and checkpoints are available at https://github.com/SZucchini/AthleticsPose.

Authors:Shiqi Huang, Shuting He, Huaiyuan Qin, Bihan Wen
Title: SCORE: Scene Context Matters in Open-Vocabulary Remote Sensing Instance Segmentation
Abstract:
Most existing remote sensing instance segmentation approaches are designed for close-vocabulary prediction, limiting their ability to recognize novel categories or generalize across datasets. This restricts their applicability in diverse Earth observation scenarios. To address this, we introduce open-vocabulary (OV) learning for remote sensing instance segmentation. While current OV segmentation models perform well on natural image datasets, their direct application to remote sensing faces challenges such as diverse landscapes, seasonal variations, and the presence of small or ambiguous objects in aerial imagery. To overcome these challenges, we propose $\textbf{SCORE}$ ($\textbf{S}$cene $\textbf{C}$ontext matters in $\textbf{O}$pen-vocabulary $\textbf{RE}$mote sensing instance segmentation), a framework that integrates multi-granularity scene context, i.e., regional context and global context, to enhance both visual and textual representations. Specifically, we introduce Region-Aware Integration, which refines class embeddings with regional context to improve object distinguishability. Additionally, we propose Global Context Adaptation, which enriches naive text embeddings with remote sensing global context, creating a more adaptable and expressive linguistic latent space for the classifier. We establish new benchmarks for OV remote sensing instance segmentation across diverse datasets. Experimental results demonstrate that, our proposed method achieves SOTA performance, which provides a robust solution for large-scale, real-world geospatial analysis. Our code is available at https://github.com/HuangShiqi128/SCORE.

Authors:Ziyi Wang, Zhi Gao, Jin Chen, Qingjie Zhao, Xinxiao Wu, Jiebo Luo
Title: Simulate, Refocus and Ensemble: An Attention-Refocusing Scheme for Domain Generalization
Abstract:
Domain generalization (DG) aims to learn a model from source domains and apply it to unseen target domains with out-of-distribution data. Owing to CLIP's strong ability to encode semantic concepts, it has attracted increasing interest in domain generalization. However, CLIP often struggles to focus on task-relevant regions across domains, i.e., domain-invariant regions, resulting in suboptimal performance on unseen target domains. To address this challenge, we propose an attention-refocusing scheme, called Simulate, Refocus and Ensemble (SRE), which learns to reduce the domain shift by aligning the attention maps in CLIP via attention refocusing. SRE first simulates domain shifts by performing augmentation on the source data to generate simulated target domains. SRE then learns to reduce the domain shifts by refocusing the attention in CLIP between the source and simulated target domains. Finally, SRE utilizes ensemble learning to enhance the ability to capture domain-invariant attention maps between the source data and the simulated target data. Extensive experimental results on several datasets demonstrate that SRE generally achieves better results than state-of-the-art methods. The code is available at: https://github.com/bitPrincy/SRE-DG.

Authors:Hoang-Son Vo, Quang-Vinh Nguyen, Seungwon Kim, Hyung-Jeong Yang, Soonja Yeom, Soo-Hyung Kim
Title: ATL-Diff: Audio-Driven Talking Head Generation with Early Landmarks-Guide Noise Diffusion
Abstract:
Audio-driven talking head generation requires precise synchronization between facial animations and audio signals. This paper introduces ATL-Diff, a novel approach addressing synchronization limitations while reducing noise and computational costs. Our framework features three key components: a Landmark Generation Module converting audio to facial landmarks, a Landmarks-Guide Noise approach that decouples audio by distributing noise according to landmarks, and a 3D Identity Diffusion network preserving identity characteristics. Experiments on MEAD and CREMA-D datasets demonstrate that ATL-Diff outperforms state-of-the-art methods across all metrics. Our approach achieves near real-time processing with high-quality animations, computational efficiency, and exceptional preservation of facial nuances. This advancement offers promising applications for virtual assistants, education, medical communication, and digital platforms. The source code is available at: \href{https://github.com/sonvth/ATL-Diff}{https://github.com/sonvth/ATL-Diff}

Authors:Junjie Gao, Runze Liu, Yingzhe Peng, Shujian Yang, Jin Zhang, Kai Yang, Zhiyuan You
Title: DeQA-Doc: Adapting DeQA-Score to Document Image Quality Assessment
Abstract:
Document quality assessment is critical for a wide range of applications including document digitization, OCR, and archival. However, existing approaches often struggle to provide accurate and robust quality scores, limiting their applicability in practical scenarios. With the rapid progress in Multi-modal Large Language Models (MLLMs), recent MLLM-based methods have achieved remarkable performance in image quality assessment. In this work, we extend this success to the document domain by adapting DeQA-Score, a state-of-the-art MLLM-based image quality scorer, for document quality assessment. We propose DeQA-Doc, a framework that leverages the visual language capabilities of MLLMs and a soft label strategy to regress continuous document quality scores. To adapt DeQA-Score to DeQA-Doc, we adopt two complementary solutions to construct soft labels without the variance information. Also, we relax the resolution constrains to support the large resolution of document images. Finally, we introduce ensemble methods to further enhance the performance. Extensive experiments demonstrate that DeQA-Doc significantly outperforms existing baselines, offering accurate and generalizable document quality assessment across diverse degradation types. Codes and model weights are available in https://github.com/Junjie-Gao19/DeQA-Doc.

Authors:Hengkai Tan, Yao Feng, Xinyi Mao, Shuhe Huang, Guodong Liu, Zhongkai Hao, Hang Su, Jun Zhu
Title: AnyPos: Automated Task-Agnostic Actions for Bimanual Manipulation
Abstract:
Vision-language-action (VLA) models have shown promise on task-conditioned control in complex settings such as bimanual manipulation. However, the heavy reliance on task-specific human demonstrations limits their generalization and incurs high data acquisition costs. In this work, we present a new notion of task-agnostic action paradigm that decouples action execution from task-specific conditioning, enhancing scalability, efficiency, and cost-effectiveness. To address the data collection challenges posed by this paradigm -- such as low coverage density, behavioral redundancy, and safety risks -- we introduce ATARA (Automated Task-Agnostic Random Actions), a scalable self-supervised framework that accelerates collection by over $ 30\times $ compared to human teleoperation. To further enable effective learning from task-agnostic data, which often suffers from distribution mismatch and irrelevant trajectories, we propose AnyPos, an inverse dynamics model equipped with Arm-Decoupled Estimation and a Direction-Aware Decoder (DAD). We additionally integrate a video-conditioned action validation module to verify the feasibility of learned policies across diverse manipulation tasks. Extensive experiments show that the AnyPos-ATARA pipeline yields a 51% improvement in test accuracy and achieves 30-40% higher success rates in downstream tasks such as lifting, pick-and-place, and clicking, using replay-based video validation. Project Page: https://embodiedfoundation.github.io/vidar_anypos

Authors:Peijun Wang, Jinhua Zhao
Title: SOD-YOLO: Enhancing YOLO-Based Detection of Small Objects in UAV Imagery
Abstract:
Small object detection remains a challenging problem in the field of object detection. To address this challenge, we propose an enhanced YOLOv8-based model, SOD-YOLO. This model integrates an ASF mechanism in the neck to enhance multi-scale feature fusion, adds a Small Object Detection Layer (named P2) to provide higher-resolution feature maps for better small object detection, and employs Soft-NMS to refine confidence scores and retain true positives. Experimental results demonstrate that SOD-YOLO significantly improves detection performance, achieving a 36.1% increase in mAP$_{50:95}$ and 20.6% increase in mAP$_{50}$ on the VisDrone2019-DET dataset compared to the baseline model. These enhancements make SOD-YOLO a practical and efficient solution for small object detection in UAV imagery. Our source code, hyper-parameters, and model weights are available at https://github.com/iamwangxiaobai/SOD-YOLO.

Authors:Yang Yang, Dongni Mao, Hiroaki Santo, Yasuyuki Matsushita, Fumio Okura
Title: NeuraLeaf: Neural Parametric Leaf Models with Shape and Deformation Disentanglement
Abstract:
We develop a neural parametric model for 3D leaves for plant modeling and reconstruction that are essential for agriculture and computer graphics. While neural parametric models are actively studied for humans and animals, plant leaves present unique challenges due to their diverse shapes and flexible deformation. To this problem, we introduce a neural parametric model for leaves, NeuraLeaf. Capitalizing on the fact that flattened leaf shapes can be approximated as a 2D plane, NeuraLeaf disentangles the leaves' geometry into their 2D base shapes and 3D deformations. This representation allows learning from rich sources of 2D leaf image datasets for the base shapes, and also has the advantage of simultaneously learning textures aligned with the geometry. To model the 3D deformation, we propose a novel skeleton-free skinning model and create a newly captured 3D leaf dataset called DeformLeaf. We show that NeuraLeaf successfully generates a wide range of leaf shapes with deformation, resulting in accurate model fitting to 3D observations like depth maps and point clouds. Our implementation and dataset are available at https://neuraleaf-yang.github.io/.

Authors:Zahra TehraniNasab, Hujun Ni, Amar Kumar, Tal Arbel
Title: Pixel Perfect MegaMed: A Megapixel-Scale Vision-Language Foundation Model for Generating High Resolution Medical Images
Abstract:
Medical image synthesis presents unique challenges due to the inherent complexity and high-resolution details required in clinical contexts. Traditional generative architectures such as Generative Adversarial Networks (GANs) or Variational Auto Encoder (VAEs) have shown great promise for high-resolution image generation but struggle with preserving fine-grained details that are key for accurate diagnosis. To address this issue, we introduce Pixel Perfect MegaMed, the first vision-language foundation model to synthesize images at resolutions of 1024x1024. Our method deploys a multi-scale transformer architecture designed specifically for ultra-high resolution medical image generation, enabling the preservation of both global anatomical context and local image-level details. By leveraging vision-language alignment techniques tailored to medical terminology and imaging modalities, Pixel Perfect MegaMed bridges the gap between textual descriptions and visual representations at unprecedented resolution levels. We apply our model to the CheXpert dataset and demonstrate its ability to generate clinically faithful chest X-rays from text prompts. Beyond visual quality, these high-resolution synthetic images prove valuable for downstream tasks such as classification, showing measurable performance gains when used for data augmentation, particularly in low-data regimes. Our code is accessible through the project website - https://tehraninasab.github.io/pixelperfect-megamed.

Authors:Rajesh Sureddi, Saman Zadtootaghaj, Nabajeet Barman, Alan C. Bovik
Title: TRIQA: Image Quality Assessment by Contrastive Pretraining on Ordered Distortion Triplets
Abstract:
Image Quality Assessment (IQA) models aim to predict perceptual image quality in alignment with human judgments. No-Reference (NR) IQA remains particularly challenging due to the absence of a reference image. While deep learning has significantly advanced this field, a major hurdle in developing NR-IQA models is the limited availability of subjectively labeled data. Most existing deep learning-based NR-IQA approaches rely on pre-training on large-scale datasets before fine-tuning for IQA tasks. To further advance progress in this area, we propose a novel approach that constructs a custom dataset using a limited number of reference content images and introduces a no-reference IQA model that incorporates both content and quality features for perceptual quality prediction. Specifically, we train a quality-aware model using contrastive triplet-based learning, enabling efficient training with fewer samples while achieving strong generalization performance across publicly available datasets. Our repository is available at https://github.com/rajeshsureddi/triqa.

Authors:Christina Thrainer, Md Meftahul Ferdaus, Mahdi Abdelguerfi, Christian Guetl, Steven Sloan, Kendall N. Niles, Ken Pathak
Title: FORTRESS: Function-composition Optimized Real-Time Resilient Structural Segmentation via Kolmogorov-Arnold Enhanced Spatial Attention Networks
Abstract:
Automated structural defect segmentation in civil infrastructure faces a critical challenge: achieving high accuracy while maintaining computational efficiency for real-time deployment. This paper presents FORTRESS (Function-composition Optimized Real-Time Resilient Structural Segmentation), a new architecture that balances accuracy and speed by using a special method that combines depthwise separable convolutions with adaptive Kolmogorov-Arnold Network integration. FORTRESS incorporates three key innovations: a systematic depthwise separable convolution framework achieving a 3.6x parameter reduction per layer, adaptive TiKAN integration that selectively applies function composition transformations only when computationally beneficial, and multi-scale attention fusion combining spatial, channel, and KAN-enhanced features across decoder levels. The architecture achieves remarkable efficiency gains with 91% parameter reduction (31M to 2.9M), 91% computational complexity reduction (13.7 to 1.17 GFLOPs), and 3x inference speed improvement while delivering superior segmentation performance. Evaluation on benchmark infrastructure datasets demonstrates state-of-the-art results with an F1- score of 0.771 and a mean IoU of 0.677, significantly outperforming existing methods including U-Net, SA-UNet, and U- KAN. The dual optimization strategy proves essential for optimal performance, establishing FORTRESS as a robust solution for practical structural defect segmentation in resource-constrained environments where both accuracy and computational efficiency are paramount. Comprehensive architectural specifications are provided in the Supplemental Material. Source code is available at URL: https://github.com/faeyelab/fortress-paper-code.

Authors:Said Ohamouddou, Abdellatif El Afia, Hanaa El Afia, Raddouane Chiheb
Title: MS-DGCNN++: A Multi-Scale Fusion Dynamic Graph Neural Network with Biological Knowledge Integration for LiDAR Tree Species Classification
Abstract:
Tree species classification from terrestrial LiDAR point clouds is challenging because of the complex multi-scale geometric structures in forest environments. Existing approaches using multi-scale dynamic graph convolutional neural networks (MS-DGCNN) employ parallel multi-scale processing, which fails to capture the semantic relationships between the hierarchical levels of the tree architecture. We present MS-DGCNN++, a hierarchical multiscale fusion dynamic graph convolutional network that uses semantically meaningful feature extraction at local, branch, and canopy scales with cross-scale information propagation. Our method employs scale-specific feature engineering, including standard geometric features for the local scale, normalized relative vectors for the branch scale, and distance information for the canopy scale. This hierarchical approach replaces uniform parallel processing with semantically differentiated representations that are aligned with the natural tree structure. Under the same proposed tree species data augmentation strategy for all experiments, MS-DGCNN++ achieved an accuracy of 94.96 \% on STPCTLS, outperforming DGCNN, MS-DGCNN, and the state-of-the-art model PPT. On FOR-species20K, it achieves 67.25\% accuracy (6.1\% improvement compared to MS-DGCNN). For standard 3D object recognition, our method outperformed DGCNN and MS-DGCNN with overall accuracies of 93.15\% on ModelNet40 and 94.05\% on ModelNet10. With lower parameters and reduced complexity compared to state-of-the-art transformer approaches, our method is suitable for resource-constrained applications while maintaining a competitive accuracy. Beyond tree classification, the method generalizes to standard 3D object recognition, establishing it as a versatile solution for diverse point cloud processing applications. The implementation code is publicly available at https://github.com/said-ohamouddou/MS-DGCNN2.

Authors:Gen Luo, Wenhan Dou, Wenhao Li, Zhaokai Wang, Xue Yang, Changyao Tian, Hao Li, Weiyun Wang, Wenhai Wang, Xizhou Zhu, Yu Qiao, Jifeng Dai
Title: Mono-InternVL-1.5: Towards Cheaper and Faster Monolithic Multimodal Large Language Models
Abstract:
This paper focuses on monolithic Multimodal Large Language Models (MLLMs), which integrate visual encoding and language decoding into a single model. Existing structures and pre-training strategies for monolithic MLLMs often suffer from unstable optimization and catastrophic forgetting. To address these challenges, our key idea is to embed a new visual parameter space into a pre-trained LLM, enabling stable learning of visual knowledge from noisy data via delta tuning. Based on this principle, we first introduce Mono-InternVL, an advanced monolithic MLLM that incorporates a set of visual experts through a multimodal mixture-of-experts architecture. In addition, we design an innovative Endogenous Visual Pre-training (EViP) for Mono-InternVL to maximize its visual capabilities via progressive learning. Mono-InternVL achieves competitive performance against existing MLLMs but also leads to relatively expensive data cost. Therefore, we further present Mono-InternVL-1.5, a cheaper and stronger monolithic MLLM equipped with an improved EViP (EViP++). EViP++ introduces additional visual attention experts to Mono-InternVL-1.5 and re-organizes the pre-training process in an efficient manner. During inference, it includes a fused CUDA kernel to speed up its MoE operations. With these designs, Mono-InternVL-1.5 significantly reduces training and inference costs, while still maintaining competitive performance with Mono-InternVL. To evaluate our approach, we conduct extensive experiments across 15 benchmarks. Results demonstrate that Mono-InternVL outperforms existing monolithic MLLMs on 12 out of 15 benchmarks, e.g., +114-point improvement over Emu3 on OCRBench. Compared to its modular counterpart, i.e., InternVL-1.5, Mono-InternVL-1.5 achieves similar multimodal performance while reducing first-token latency by up to 69%. Code and models are released at https://github.com/OpenGVLab/Mono-InternVL.

Authors:Yuncong Yang, Jiageng Liu, Zheyuan Zhang, Siyuan Zhou, Reuben Tan, Jianwei Yang, Yilun Du, Chuang Gan
Title: MindJourney: Test-Time Scaling with World Models for Spatial Reasoning
Abstract:
Spatial reasoning in 3D space is central to human cognition and indispensable for embodied tasks such as navigation and manipulation. However, state-of-the-art vision-language models (VLMs) struggle frequently with tasks as simple as anticipating how a scene will look after an egocentric motion: they perceive 2D images but lack an internal model of 3D dynamics. We therefore propose MindJourney, a test-time scaling framework that grants a VLM with this missing capability by coupling it to a controllable world model based on video diffusion. The VLM iteratively sketches a concise camera trajectory, while the world model synthesizes the corresponding view at each step. The VLM then reasons over this multi-view evidence gathered during the interactive exploration. Without any fine-tuning, our MindJourney achieves over an average 8% performance boost on the representative spatial reasoning benchmark SAT, showing that pairing VLMs with world models for test-time scaling offers a simple, plug-and-play route to robust 3D reasoning. Meanwhile, our method also improves upon the test-time inference VLMs trained through reinforcement learning, which demonstrates the potential of our method that utilizes world models for test-time scaling.

Authors:Richard Marcus, Marc Stamminger
Title: Physically Based Neural LiDAR Resimulation
Abstract:
Methods for Novel View Synthesis (NVS) have recently found traction in the field of LiDAR simulation and large-scale 3D scene reconstruction. While solutions for faster rendering or handling dynamic scenes have been proposed, LiDAR specific effects remain insufficiently addressed. By explicitly modeling sensor characteristics such as rolling shutter, laser power variations, and intensity falloff, our method achieves more accurate LiDAR simulation compared to existing techniques. We demonstrate the effectiveness of our approach through quantitative and qualitative comparisons with state-of-the-art methods, as well as ablation studies that highlight the importance of each sensor model component. Beyond that, we show that our approach exhibits advanced resimulation capabilities, such as generating high resolution LiDAR scans in the camera perspective. Our code and the resulting dataset are available at https://github.com/richardmarcus/PBNLiDAR.

Authors:Muhammed Furkan Dasdelen, Hyesu Lim, Michele Buck, Katharina S. Götze, Carsten Marr, Steffen Schneider
Title: CytoSAE: Interpretable Cell Embeddings for Hematology
Abstract:
Sparse autoencoders (SAEs) emerged as a promising tool for mechanistic interpretability of transformer-based foundation models. Very recently, SAEs were also adopted for the visual domain, enabling the discovery of visual concepts and their patch-wise attribution to tokens in the transformer model. While a growing number of foundation models emerged for medical imaging, tools for explaining their inferences are still lacking. In this work, we show the applicability of SAEs for hematology. We propose CytoSAE, a sparse autoencoder which is trained on over 40,000 peripheral blood single-cell images. CytoSAE generalizes to diverse and out-of-domain datasets, including bone marrow cytology, where it identifies morphologically relevant concepts which we validated with medical experts. Furthermore, we demonstrate scenarios in which CytoSAE can generate patient-specific and disease-specific concepts, enabling the detection of pathognomonic cells and localized cellular abnormalities at the patch level. We quantified the effect of concepts on a patient-level AML subtype classification task and show that CytoSAE concepts reach performance comparable to the state-of-the-art, while offering explainability on the sub-cellular level. Source code and model weights are available at https://github.com/dynamical-inference/cytosae.

Authors:Yuxi Xiao, Jianyuan Wang, Nan Xue, Nikita Karaev, Yuri Makarov, Bingyi Kang, Xing Zhu, Hujun Bao, Yujun Shen, Xiaowei Zhou
Title: SpatialTrackerV2: 3D Point Tracking Made Easy
Abstract:
We present SpatialTrackerV2, a feed-forward 3D point tracking method for monocular videos. Going beyond modular pipelines built on off-the-shelf components for 3D tracking, our approach unifies the intrinsic connections between point tracking, monocular depth, and camera pose estimation into a high-performing and feedforward 3D point tracker. It decomposes world-space 3D motion into scene geometry, camera ego-motion, and pixel-wise object motion, with a fully differentiable and end-to-end architecture, allowing scalable training across a wide range of datasets, including synthetic sequences, posed RGB-D videos, and unlabeled in-the-wild footage. By learning geometry and motion jointly from such heterogeneous data, SpatialTrackerV2 outperforms existing 3D tracking methods by 30%, and matches the accuracy of leading dynamic 3D reconstruction approaches while running 50$\times$ faster.

Authors:Shangpin Peng, Senqiao Yang, Li Jiang, Zhuotao Tian
Title: Mitigating Object Hallucinations via Sentence-Level Early Intervention
Abstract:
Multimodal large language models (MLLMs) have revolutionized cross-modal understanding but continue to struggle with hallucinations - fabricated content contradicting visual inputs. Existing hallucination mitigation methods either incur prohibitive computational costs or introduce distribution mismatches between training data and model outputs. We identify a critical insight: hallucinations predominantly emerge at the early stages of text generation and propagate through subsequent outputs. To address this, we propose SENTINEL (Sentence-level Early iNtervention Through IN-domain prEference Learning), a framework that eliminates dependency on human annotations. Specifically, we first bootstrap high-quality in-domain preference pairs by iteratively sampling model outputs, validating object existence through cross-checking with two open-vocabulary detectors, and classifying sentences into hallucinated/non-hallucinated categories. Subsequently, we use context-coherent positive samples and hallucinated negative samples to build context-aware preference data iteratively. Finally, we train models using a context-aware preference loss (C-DPO) that emphasizes discriminative learning at the sentence level where hallucinations initially manifest. Experimental results show that SENTINEL can reduce hallucinations by over 90% compared to the original model and outperforms the previous state-of-the-art method on both hallucination benchmarks and general capabilities benchmarks, demonstrating its superiority and generalization ability. The models, datasets, and code are available at https://github.com/pspdada/SENTINEL.

Authors:Yen-Linh Vu, Dinh-Thang Duong, Truong-Binh Duong, Anh-Khoi Nguyen, Thanh-Huy Nguyen, Le Thien Phuc Nguyen, Jianhua Xing, Xingjian Li, Tianyang Wang, Ulas Bagci, Min Xu
Title: Describe Anything Model for Visual Question Answering on Text-rich Images
Abstract:
Recent progress has been made in region-aware vision-language modeling, particularly with the emergence of the Describe Anything Model (DAM). DAM is capable of generating detailed descriptions of any specific image areas or objects without the need for additional localized image-text alignment supervision. We hypothesize that such region-level descriptive capability is beneficial for the task of Visual Question Answering (VQA), especially in challenging scenarios involving images with dense text. In such settings, the fine-grained extraction of textual information is crucial to producing correct answers. Motivated by this, we introduce DAM-QA, a framework with a tailored evaluation protocol, developed to investigate and harness the region-aware capabilities from DAM for the text-rich VQA problem that requires reasoning over text-based information within images. DAM-QA incorporates a mechanism that aggregates answers from multiple regional views of image content, enabling more effective identification of evidence that may be tied to text-related elements. Experiments on six VQA benchmarks show that our approach consistently outperforms the baseline DAM, with a notable 7+ point gain on DocVQA. DAM-QA also achieves the best overall performance among region-aware models with fewer parameters, significantly narrowing the gap with strong generalist VLMs. These results highlight the potential of DAM-like models for text-rich and broader VQA tasks when paired with efficient usage and integration strategies. Our code is publicly available at https://github.com/Linvyl/DAM-QA.git.

Authors:Ruihan Yang, Qinxi Yu, Yecheng Wu, Rui Yan, Borui Li, An-Chieh Cheng, Xueyan Zou, Yunhao Fang, Xuxin Cheng, Ri-Zhao Qiu, Hongxu Yin, Sifei Liu, Song Han, Yao Lu, Xiaolong Wang
Title: EgoVLA: Learning Vision-Language-Action Models from Egocentric Human Videos
Abstract:
Real robot data collection for imitation learning has led to significant advancements in robotic manipulation. However, the requirement for robot hardware in the process fundamentally constrains the scale of the data. In this paper, we explore training Vision-Language-Action (VLA) models using egocentric human videos. The benefit of using human videos is not only for their scale but more importantly for the richness of scenes and tasks. With a VLA trained on human video that predicts human wrist and hand actions, we can perform Inverse Kinematics and retargeting to convert the human actions to robot actions. We fine-tune the model using a few robot manipulation demonstrations to obtain the robot policy, namely EgoVLA. We propose a simulation benchmark called Ego Humanoid Manipulation Benchmark, where we design diverse bimanual manipulation tasks with demonstrations. We fine-tune and evaluate EgoVLA with Ego Humanoid Manipulation Benchmark and show significant improvements over baselines and ablate the importance of human data. Videos can be found on our website: https://rchalyang.github.io/EgoVLA

Authors:Jaehyun Kwak, Ramahdani Muhammad Izaaz Inhar, Se-Young Yun, Sung-Ju Lee
Title: QuRe: Query-Relevant Retrieval through Hard Negative Sampling in Composed Image Retrieval
Abstract:
Composed Image Retrieval (CIR) retrieves relevant images based on a reference image and accompanying text describing desired modifications. However, existing CIR methods only focus on retrieving the target image and disregard the relevance of other images. This limitation arises because most methods employing contrastive learning-which treats the target image as positive and all other images in the batch as negatives-can inadvertently include false negatives. This may result in retrieving irrelevant images, reducing user satisfaction even when the target image is retrieved. To address this issue, we propose Query-Relevant Retrieval through Hard Negative Sampling (QuRe), which optimizes a reward model objective to reduce false negatives. Additionally, we introduce a hard negative sampling strategy that selects images positioned between two steep drops in relevance scores following the target image, to effectively filter false negatives. In order to evaluate CIR models on their alignment with human satisfaction, we create Human-Preference FashionIQ (HP-FashionIQ), a new dataset that explicitly captures user preferences beyond target retrieval. Extensive experiments demonstrate that QuRe achieves state-of-the-art performance on FashionIQ and CIRR datasets while exhibiting the strongest alignment with human preferences on the HP-FashionIQ dataset. The source code is available at https://github.com/jackwaky/QuRe.

Authors:Kaiwen Huang, Yi Zhou, Huazhu Fu, Yizhe Zhang, Chen Gong, Tao Zhou
Title: Text-driven Multiplanar Visual Interaction for Semi-supervised Medical Image Segmentation
Abstract:
Semi-supervised medical image segmentation is a crucial technique for alleviating the high cost of data annotation. When labeled data is limited, textual information can provide additional context to enhance visual semantic understanding. However, research exploring the use of textual data to enhance visual semantic embeddings in 3D medical imaging tasks remains scarce. In this paper, we propose a novel text-driven multiplanar visual interaction framework for semi-supervised medical image segmentation (termed Text-SemiSeg), which consists of three main modules: Text-enhanced Multiplanar Representation (TMR), Category-aware Semantic Alignment (CSA), and Dynamic Cognitive Augmentation (DCA). Specifically, TMR facilitates text-visual interaction through planar mapping, thereby enhancing the category awareness of visual features. CSA performs cross-modal semantic alignment between the text features with introduced learnable variables and the intermediate layer of visual features. DCA reduces the distribution discrepancy between labeled and unlabeled data through their interaction, thus improving the model's robustness. Finally, experiments on three public datasets demonstrate that our model effectively enhances visual features with textual information and outperforms other methods. Our code is available at https://github.com/taozh2017/Text-SemiSeg.

Authors:M. Anwar Ma'sum, Mahardhika Pratama, Savitha Ramasamy, Lin Liu, Habibullah Habibullah, Ryszard Kowalczyk
Title: PROL : Rehearsal Free Continual Learning in Streaming Data via Prompt Online Learning
Abstract:
The data privacy constraint in online continual learning (OCL), where the data can be seen only once, complicates the catastrophic forgetting problem in streaming data. A common approach applied by the current SOTAs in OCL is with the use of memory saving exemplars or features from previous classes to be replayed in the current task. On the other hand, the prompt-based approach performs excellently in continual learning but with the cost of a growing number of trainable parameters. The first approach may not be applicable in practice due to data openness policy, while the second approach has the issue of throughput associated with the streaming data. In this study, we propose a novel prompt-based method for online continual learning that includes 4 main components: (1) single light-weight prompt generator as a general knowledge, (2) trainable scaler-and-shifter as specific knowledge, (3) pre-trained model (PTM) generalization preserving, and (4) hard-soft updates mechanism. Our proposed method achieves significantly higher performance than the current SOTAs in CIFAR100, ImageNet-R, ImageNet-A, and CUB dataset. Our complexity analysis shows that our method requires a relatively smaller number of parameters and achieves moderate training time, inference time, and throughput. For further study, the source code of our method is available at https://github.com/anwarmaxsum/PROL.

Authors:Felix Nützel, Mischa Dombrowski, Bernhard Kainz
Title: Generate to Ground: Multimodal Text Conditioning Boosts Phrase Grounding in Medical Vision-Language Models
Abstract:
Phrase grounding, i.e., mapping natural language phrases to specific image regions, holds significant potential for disease localization in medical imaging through clinical reports. While current state-of-the-art methods rely on discriminative, self-supervised contrastive models, we demonstrate that generative text-to-image diffusion models, leveraging cross-attention maps, can achieve superior zero-shot phrase grounding performance. Contrary to prior assumptions, we show that fine-tuning diffusion models with a frozen, domain-specific language model, such as CXR-BERT, substantially outperforms domain-agnostic counterparts. This setup achieves remarkable improvements, with mIoU scores doubling those of current discriminative methods. These findings highlight the underexplored potential of generative models for phrase grounding tasks. To further enhance performance, we introduce Bimodal Bias Merging (BBM), a novel post-processing technique that aligns text and image biases to identify regions of high certainty. BBM refines cross-attention maps, achieving even greater localization accuracy. Our results establish generative approaches as a more effective paradigm for phrase grounding in the medical imaging domain, paving the way for more robust and interpretable applications in clinical practice. The source code and model weights are available at https://github.com/Felix-012/generate_to_ground.

Authors:Shuangli Du, Siming Yan, Zhenghao Shi, Zhenzhen You, Lu Sun
Title: Wavelet-based Decoupling Framework for low-light Stereo Image Enhancement
Abstract:
Low-light images suffer from complex degradation, and existing enhancement methods often encode all degradation factors within a single latent space. This leads to highly entangled features and strong black-box characteristics, making the model prone to shortcut learning. To mitigate the above issues, this paper proposes a wavelet-based low-light stereo image enhancement method with feature space decoupling. Our insight comes from the following findings: (1) Wavelet transform enables the independent processing of low-frequency and high-frequency information. (2) Illumination adjustment can be achieved by adjusting the low-frequency component of a low-light image, extracted through multi-level wavelet decomposition. Thus, by using wavelet transform the feature space is decomposed into a low-frequency branch for illumination adjustment and multiple high-frequency branches for texture enhancement. Additionally, stereo low-light image enhancement can extract useful cues from another view to improve enhancement. To this end, we propose a novel high-frequency guided cross-view interaction module (HF-CIM) that operates within high-frequency branches rather than across the entire feature space, effectively extracting valuable image details from the other view. Furthermore, to enhance the high-frequency information, a detail and texture enhancement module (DTEM) is proposed based on cross-attention mechanism. The model is trained on a dataset consisting of images with uniform illumination and images with non-uniform illumination. Experimental results on both real and synthetic images indicate that our algorithm offers significant advantages in light adjustment while effectively recovering high-frequency information. The code and dataset are publicly available at: https://github.com/Cherisherr/WDCI-Net.git.

Authors:Sergey Linok, Gleb Naumov
Title: Open-Vocabulary Indoor Object Grounding with 3D Hierarchical Scene Graph
Abstract:
We propose OVIGo-3DHSG method - Open-Vocabulary Indoor Grounding of objects using 3D Hierarchical Scene Graph. OVIGo-3DHSG represents an extensive indoor environment over a Hierarchical Scene Graph derived from sequences of RGB-D frames utilizing a set of open-vocabulary foundation models and sensor data processing. The hierarchical representation explicitly models spatial relations across floors, rooms, locations, and objects. To effectively address complex queries involving spatial reference to other objects, we integrate the hierarchical scene graph with a Large Language Model for multistep reasoning. This integration leverages inter-layer (e.g., room-to-object) and intra-layer (e.g., object-to-object) connections, enhancing spatial contextual understanding. We investigate the semantic and geometry accuracy of hierarchical representation on Habitat Matterport 3D Semantic multi-floor scenes. Our approach demonstrates efficient scene comprehension and robust object grounding compared to existing methods. Overall OVIGo-3DHSG demonstrates strong potential for applications requiring spatial reasoning and understanding of indoor environments. Related materials can be found at https://github.com/linukc/OVIGo-3DHSG.

Authors:Yiquan Gao, Duohui Xu
Title: Out-of-distribution data supervision towards biomedical semantic segmentation
Abstract:
Biomedical segmentation networks easily suffer from the unexpected misclassification between foreground and background objects when learning on limited and imperfect medical datasets. Inspired by the strong power of Out-of-Distribution (OoD) data on other visual tasks, we propose a data-centric framework, Med-OoD to address this issue by introducing OoD data supervision into fully-supervised biomedical segmentation with none of the following needs: (i) external data sources, (ii) feature regularization objectives, (iii) additional annotations. Our method can be seamlessly integrated into segmentation networks without any modification on the architectures. Extensive experiments show that Med-OoD largely prevents various segmentation networks from the pixel misclassification on medical images and achieves considerable performance improvements on Lizard dataset. We also present an emerging learning paradigm of training a medical segmentation network completely using OoD data devoid of foreground class labels, surprisingly turning out 76.1% mIoU as test result. We hope this learning paradigm will attract people to rethink the roles of OoD data. Code is made available at https://github.com/StudioYG/Med-OoD.

Authors:Nataliia Molchanova, Alessandro Cagol, Mario Ocampo-Pineda, Po-Jui Lu, Matthias Weigel, Xinjie Chen, Erin Beck, Charidimos Tsagkas, Daniel Reich, Colin Vanden Bulcke, Anna Stolting, Serena Borrelli, Pietro Maggi, Adrien Depeursinge, Cristina Granziera, Henning Mueller, Pedro M. Gordaliza, Meritxell Bach Cuadra
Title: Benchmarking and Explaining Deep Learning Cortical Lesion MRI Segmentation in Multiple Sclerosis
Abstract:
Cortical lesions (CLs) have emerged as valuable biomarkers in multiple sclerosis (MS), offering high diagnostic specificity and prognostic relevance. However, their routine clinical integration remains limited due to subtle magnetic resonance imaging (MRI) appearance, challenges in expert annotation, and a lack of standardized automated methods. We propose a comprehensive multi-centric benchmark of CL detection and segmentation in MRI. A total of 656 MRI scans, including clinical trial and research data from four institutions, were acquired at 3T and 7T using MP2RAGE and MPRAGE sequences with expert-consensus annotations. We rely on the self-configuring nnU-Net framework, designed for medical imaging segmentation, and propose adaptations tailored to the improved CL detection. We evaluated model generalization through out-of-distribution testing, demonstrating strong lesion detection capabilities with an F1-score of 0.64 and 0.5 in and out of the domain, respectively. We also analyze internal model features and model errors for a better understanding of AI decision-making. Our study examines how data variability, lesion ambiguity, and protocol differences impact model performance, offering future recommendations to address these barriers to clinical adoption. To reinforce the reproducibility, the implementation and models will be publicly accessible and ready to use at https://github.com/Medical-Image-Analysis-Laboratory/ and https://doi.org/10.5281/zenodo.15911797.

Authors:Xiang Yu, Xinyao Liu, Guang Liang
Title: YOLOv8-SMOT: An Efficient and Robust Framework for Real-Time Small Object Tracking via Slice-Assisted Training and Adaptive Association
Abstract:
Tracking small, agile multi-objects (SMOT), such as birds, from an Unmanned Aerial Vehicle (UAV) perspective is a highly challenging computer vision task. The difficulty stems from three main sources: the extreme scarcity of target appearance features, the complex motion entanglement caused by the combined dynamics of the camera and the targets themselves, and the frequent occlusions and identity ambiguity arising from dense flocking behavior. This paper details our championship-winning solution in the MVA 2025 "Finding Birds" Small Multi-Object Tracking Challenge (SMOT4SB), which adopts the tracking-by-detection paradigm with targeted innovations at both the detection and association levels. On the detection side, we propose a systematic training enhancement framework named \textbf{SliceTrain}. This framework, through the synergy of 'deterministic full-coverage slicing' and 'slice-level stochastic augmentation, effectively addresses the problem of insufficient learning for small objects in high-resolution image training. On the tracking side, we designed a robust tracker that is completely independent of appearance information. By integrating a \textbf{motion direction maintenance (EMA)} mechanism and an \textbf{adaptive similarity metric} combining \textbf{bounding box expansion and distance penalty} into the OC-SORT framework, our tracker can stably handle irregular motion and maintain target identities. Our method achieves state-of-the-art performance on the SMOT4SB public test set, reaching an SO-HOTA score of \textbf{55.205}, which fully validates the effectiveness and advancement of our framework in solving complex real-world SMOT problems. The source code will be made available at https://github.com/Salvatore-Love/YOLOv8-SMOT.

Authors:Hongxu Ma, Guanshuo Wang, Fufu Yu, Qiong Jia, Shouhong Ding
Title: MS-DETR: Towards Effective Video Moment Retrieval and Highlight Detection by Joint Motion-Semantic Learning
Abstract:
Video Moment Retrieval (MR) and Highlight Detection (HD) aim to pinpoint specific moments and assess clip-wise relevance based on the text query. While DETR-based joint frameworks have made significant strides, there remains untapped potential in harnessing the intricate relationships between temporal motion and spatial semantics within video content. In this paper, we propose the Motion-Semantics DETR (MS-DETR), a framework that captures rich motion-semantics features through unified learning for MR/HD tasks. The encoder first explicitly models disentangled intra-modal correlations within motion and semantics dimensions, guided by the given text queries. Subsequently, the decoder utilizes the task-wise correlation across temporal motion and spatial semantics dimensions to enable precise query-guided localization for MR and refined highlight boundary delineation for HD. Furthermore, we observe the inherent sparsity dilemma within the motion and semantics dimensions of MR/HD datasets. To address this issue, we enrich the corpus from both dimensions by generation strategies and propose contrastive denoising learning to ensure the above components learn robustly and effectively. Extensive experiments on four MR/HD benchmarks demonstrate that our method outperforms existing state-of-the-art models by a margin. Our code is available at https://github.com/snailma0229/MS-DETR.git.

Authors:Kun-Hsiang Lin, Yu-Wen Tseng, Kang-Yang Huang, Jhih-Ciang Wu, Wen-Huang Cheng
Title: InstructFLIP: Exploring Unified Vision-Language Model for Face Anti-spoofing
Abstract:
Face anti-spoofing (FAS) aims to construct a robust system that can withstand diverse attacks. While recent efforts have concentrated mainly on cross-domain generalization, two significant challenges persist: limited semantic understanding of attack types and training redundancy across domains. We address the first by integrating vision-language models (VLMs) to enhance the perception of visual input. For the second challenge, we employ a meta-domain strategy to learn a unified model that generalizes well across multiple domains. Our proposed InstructFLIP is a novel instruction-tuned framework that leverages VLMs to enhance generalization via textual guidance trained solely on a single domain. At its core, InstructFLIP explicitly decouples instructions into content and style components, where content-based instructions focus on the essential semantics of spoofing, and style-based instructions consider variations related to the environment and camera characteristics. Extensive experiments demonstrate the effectiveness of InstructFLIP by outperforming SOTA models in accuracy and substantially reducing training redundancy across diverse domains in FAS. Project website is available at https://kunkunlin1221.github.io/InstructFLIP.

Authors:Beining Xu, Siting Zhu, Hesheng Wang
Title: SGLoc: Semantic Localization System for Camera Pose Estimation from 3D Gaussian Splatting Representation
Abstract:
We propose SGLoc, a novel localization system that directly regresses camera poses from 3D Gaussian Splatting (3DGS) representation by leveraging semantic information. Our method utilizes the semantic relationship between 2D image and 3D scene representation to estimate the 6DoF pose without prior pose information. In this system, we introduce a multi-level pose regression strategy that progressively estimates and refines the pose of query image from the global 3DGS map, without requiring initial pose priors. Moreover, we introduce a semantic-based global retrieval algorithm that establishes correspondences between 2D (image) and 3D (3DGS map). By matching the extracted scene semantic descriptors of 2D query image and 3DGS semantic representation, we align the image with the local region of the global 3DGS map, thereby obtaining a coarse pose estimation. Subsequently, we refine the coarse pose by iteratively optimizing the difference between the query image and the rendered image from 3DGS. Our SGLoc demonstrates superior performance over baselines on 12scenes and 7scenes datasets, showing excellent capabilities in global localization without initial pose prior. Code will be available at https://github.com/IRMVLab/SGLoc.

Authors:Yuechen Xie, Jie Song, Yicheng Shan, Xiaoyan Zhang, Yuanyu Wan, Shengxuming Zhang, Jiarui Duan, Mingli Song
Title: Dataset Ownership Verification for Pre-trained Masked Models
Abstract:
High-quality open-source datasets have emerged as a pivotal catalyst driving the swift advancement of deep learning, while facing the looming threat of potential exploitation. Protecting these datasets is of paramount importance for the interests of their owners. The verification of dataset ownership has evolved into a crucial approach in this domain; however, existing verification techniques are predominantly tailored to supervised models and contrastive pre-trained models, rendering them ill-suited for direct application to the increasingly prevalent masked models. In this work, we introduce the inaugural methodology addressing this critical, yet unresolved challenge, termed Dataset Ownership Verification for Masked Modeling (DOV4MM). The central objective is to ascertain whether a suspicious black-box model has been pre-trained on a particular unlabeled dataset, thereby assisting dataset owners in safeguarding their rights. DOV4MM is grounded in our empirical observation that when a model is pre-trained on the target dataset, the difficulty of reconstructing masked information within the embedding space exhibits a marked contrast to models not pre-trained on that dataset. We validated the efficacy of DOV4MM through ten masked image models on ImageNet-1K and four masked language models on WikiText-103. The results demonstrate that DOV4MM rejects the null hypothesis, with a $p$-value considerably below 0.05, surpassing all prior approaches. Code is available at https://github.com/xieyc99/DOV4MM.

Authors:Linwei Chen, Lin Gu, Ying Fu
Title: Frequency-Dynamic Attention Modulation for Dense Prediction
Abstract:
Vision Transformers (ViTs) have significantly advanced computer vision, demonstrating strong performance across various tasks. However, the attention mechanism in ViTs makes each layer function as a low-pass filter, and the stacked-layer architecture in existing transformers suffers from frequency vanishing. This leads to the loss of critical details and textures. We propose a novel, circuit-theory-inspired strategy called Frequency-Dynamic Attention Modulation (FDAM), which can be easily plugged into ViTs. FDAM directly modulates the overall frequency response of ViTs and consists of two techniques: Attention Inversion (AttInv) and Frequency Dynamic Scaling (FreqScale). Since circuit theory uses low-pass filters as fundamental elements, we introduce AttInv, a method that generates complementary high-pass filtering by inverting the low-pass filter in the attention matrix, and dynamically combining the two. We further design FreqScale to weight different frequency components for fine-grained adjustments to the target response function. Through feature similarity analysis and effective rank evaluation, we demonstrate that our approach avoids representation collapse, leading to consistent performance improvements across various models, including SegFormer, DeiT, and MaskDINO. These improvements are evident in tasks such as semantic segmentation, object detection, and instance segmentation. Additionally, we apply our method to remote sensing detection, achieving state-of-the-art results in single-scale settings. The code is available at https://github.com/Linwei-Chen/FDAM.

Authors:Hao Li, Ju Dai, Feng Zhou, Kaida Ning, Lei Li, Junjun Pan
Title: AU-Blendshape for Fine-grained Stylized 3D Facial Expression Manipulation
Abstract:
While 3D facial animation has made impressive progress, challenges still exist in realizing fine-grained stylized 3D facial expression manipulation due to the lack of appropriate datasets. In this paper, we introduce the AUBlendSet, a 3D facial dataset based on AU-Blendshape representation for fine-grained facial expression manipulation across identities. AUBlendSet is a blendshape data collection based on 32 standard facial action units (AUs) across 500 identities, along with an additional set of facial postures annotated with detailed AUs. Based on AUBlendSet, we propose AUBlendNet to learn AU-Blendshape basis vectors for different character styles. AUBlendNet predicts, in parallel, the AU-Blendshape basis vectors of the corresponding style for a given identity mesh, thereby achieving stylized 3D emotional facial manipulation. We comprehensively validate the effectiveness of AUBlendSet and AUBlendNet through tasks such as stylized facial expression manipulation, speech-driven emotional facial animation, and emotion recognition data augmentation. Through a series of qualitative and quantitative experiments, we demonstrate the potential and importance of AUBlendSet and AUBlendNet in 3D facial animation tasks. To the best of our knowledge, AUBlendSet is the first dataset, and AUBlendNet is the first network for continuous 3D facial expression manipulation for any identity through facial AUs. Our source code is available at https://github.com/wslh852/AUBlendNet.git.

Authors:Jiahao Xia, Yike Wu, Wenjian Huang, Jianguo Zhang, Jian Zhang
Title: Unsupervised Part Discovery via Descriptor-Based Masked Image Restoration with Optimized Constraints
Abstract:
Part-level features are crucial for image understanding, but few studies focus on them because of the lack of fine-grained labels. Although unsupervised part discovery can eliminate the reliance on labels, most of them cannot maintain robustness across various categories and scenarios, which restricts their application range. To overcome this limitation, we present a more effective paradigm for unsupervised part discovery, named Masked Part Autoencoder (MPAE). It first learns part descriptors as well as a feature map from the inputs and produces patch features from a masked version of the original images. Then, the masked regions are filled with the learned part descriptors based on the similarity between the local features and descriptors. By restoring these masked patches using the part descriptors, they become better aligned with their part shapes, guided by appearance features from unmasked patches. Finally, MPAE robustly discovers meaningful parts that closely match the actual object shapes, even in complex scenarios. Moreover, several looser yet more effective constraints are proposed to enable MPAE to identify the presence of parts across various scenarios and categories in an unsupervised manner. This provides the foundation for addressing challenges posed by occlusion and for exploring part similarity across multiple categories. Extensive experiments demonstrate that our method robustly discovers meaningful parts across various categories and scenarios. The code is available at the project https://github.com/Jiahao-UTS/MPAE.

Authors:Jiajian Xie, Shengyu Zhang, Zhou Zhao, Fan Wu, Fei Wu
Title: EC-Diff: Fast and High-Quality Edge-Cloud Collaborative Inference for Diffusion Models
Abstract:
Diffusion Models have shown remarkable proficiency in image and video synthesis. As model size and latency increase limit user experience, hybrid edge-cloud collaborative framework was recently proposed to realize fast inference and high-quality generation, where the cloud model initiates high-quality semantic planning and the edge model expedites later-stage refinement. However, excessive cloud denoising prolongs inference time, while insufficient steps cause semantic ambiguity, leading to inconsistency in edge model output. To address these challenges, we propose EC-Diff that accelerates cloud inference through gradient-based noise estimation while identifying the optimal point for cloud-edge handoff to maintain generation quality. Specifically, we design a K-step noise approximation strategy to reduce cloud inference frequency by using noise gradients between steps and applying cloud inference periodically to adjust errors. Then we design a two-stage greedy search algorithm to efficiently find the optimal parameters for noise approximation and edge model switching. Extensive experiments demonstrate that our method significantly enhances generation quality compared to edge inference, while achieving up to an average $2\times$ speedup in inference compared to cloud inference. Video samples and source code are available at https://ec-diff.github.io/.

Authors:Jianzhe Ma, Wenxuan Wang, Qin Jin
Title: A Survey of Deep Learning for Geometry Problem Solving
Abstract:
Geometry problem solving, a crucial aspect of mathematical reasoning, is vital across various domains, including education, the assessment of AI's mathematical abilities, and multimodal capability evaluation. The recent surge in deep learning technologies, particularly the emergence of multimodal large language models, has significantly accelerated research in this area. This paper provides a survey of the applications of deep learning in geometry problem solving, including (i) a comprehensive summary of the relevant tasks in geometry problem solving; (ii) a thorough review of related deep learning methods; (iii) a detailed analysis of evaluation metrics and methods; and (iv) a critical discussion of the current challenges and future directions that can be explored. Our objective is to offer a comprehensive and practical reference of deep learning for geometry problem solving, thereby fostering further advancements in this field. We create a continuously updated list of papers on GitHub: https://github.com/majianz/dl4gps.

Authors:Wei Sun, Linhan Cao, Kang Fu, Dandan Zhu, Jun Jia, Menghan Hu, Xiongkuo Min, Guangtao Zhai
Title: CompressedVQA-HDR: Generalized Full-reference and No-reference Quality Assessment Models for Compressed High Dynamic Range Videos
Abstract:
Video compression is a standard procedure applied to all videos to minimize storage and transmission demands while preserving visual quality as much as possible. Therefore, evaluating the visual quality of compressed videos is crucial for guiding the practical usage and further development of video compression algorithms. Although numerous compressed video quality assessment (VQA) methods have been proposed, they often lack the generalization capability needed to handle the increasing diversity of video types, particularly high dynamic range (HDR) content. In this paper, we introduce CompressedVQA-HDR, an effective VQA framework designed to address the challenges of HDR video quality assessment. Specifically, we adopt the Swin Transformer and SigLip 2 as the backbone networks for the proposed full-reference (FR) and no-reference (NR) VQA models, respectively. For the FR model, we compute deep structural and textural similarities between reference and distorted frames using intermediate-layer features extracted from the Swin Transformer as its quality-aware feature representation. For the NR model, we extract the global mean of the final-layer feature maps from SigLip 2 as its quality-aware representation. To mitigate the issue of limited HDR training data, we pre-train the FR model on a large-scale standard dynamic range (SDR) VQA dataset and fine-tune it on the HDRSDR-VQA dataset. For the NR model, we employ an iterative mixed-dataset training strategy across multiple compressed VQA datasets, followed by fine-tuning on the HDRSDR-VQA dataset. Experimental results show that our models achieve state-of-the-art performance compared to existing FR and NR VQA models. Moreover, CompressedVQA-HDR-FR won first place in the FR track of the Generalizable HDR & SDR Video Quality Measurement Grand Challenge at IEEE ICME 2025. The code is available at https://github.com/sunwei925/CompressedVQA-HDR.

Authors:Linwei Chen, Ying Fu, Lin Gu, Dezhi Zheng, Jifeng Dai
Title: Spatial Frequency Modulation for Semantic Segmentation
Abstract:
High spatial frequency information, including fine details like textures, significantly contributes to the accuracy of semantic segmentation. However, according to the Nyquist-Shannon Sampling Theorem, high-frequency components are vulnerable to aliasing or distortion when propagating through downsampling layers such as strided-convolution. Here, we propose a novel Spatial Frequency Modulation (SFM) that modulates high-frequency features to a lower frequency before downsampling and then demodulates them back during upsampling. Specifically, we implement modulation through adaptive resampling (ARS) and design a lightweight add-on that can densely sample the high-frequency areas to scale up the signal, thereby lowering its frequency in accordance with the Frequency Scaling Property. We also propose Multi-Scale Adaptive Upsampling (MSAU) to demodulate the modulated feature and recover high-frequency information through non-uniform upsampling This module further improves segmentation by explicitly exploiting information interaction between densely and sparsely resampled areas at multiple scales. Both modules can seamlessly integrate with various architectures, extending from convolutional neural networks to transformers. Feature visualization and analysis confirm that our method effectively alleviates aliasing while successfully retaining details after demodulation. Finally, we validate the broad applicability and effectiveness of SFM by extending it to image classification, adversarial robustness, instance segmentation, and panoptic segmentation tasks. The code is available at https://github.com/Linwei-Chen/SFM.

Authors:Peiwen Xia, Tangfei Liao, Wei Zhu, Danhuai Zhao, Jianjun Ke, Kaihao Zhang, Tong Lu, Tao Wang
Title: CorrMoE: Mixture of Experts with De-stylization Learning for Cross-Scene and Cross-Domain Correspondence Pruning
Abstract:
Establishing reliable correspondences between image pairs is a fundamental task in computer vision, underpinning applications such as 3D reconstruction and visual localization. Although recent methods have made progress in pruning outliers from dense correspondence sets, they often hypothesize consistent visual domains and overlook the challenges posed by diverse scene structures. In this paper, we propose CorrMoE, a novel correspondence pruning framework that enhances robustness under cross-domain and cross-scene variations. To address domain shift, we introduce a De-stylization Dual Branch, performing style mixing on both implicit and explicit graph features to mitigate the adverse influence of domain-specific representations. For scene diversity, we design a Bi-Fusion Mixture of Experts module that adaptively integrates multi-perspective features through linear-complexity attention and dynamic expert routing. Extensive experiments on benchmark datasets demonstrate that CorrMoE achieves superior accuracy and generalization compared to state-of-the-art methods. The code and pre-trained models are available at https://github.com/peiwenxia/CorrMoE.

Authors:Benjamin Keel, Aaron Quyn, David Jayne, Maryam Mohsin, Samuel D. Relton
Title: Interpretable Prediction of Lymph Node Metastasis in Rectal Cancer MRI Using Variational Autoencoders
Abstract:
Effective treatment for rectal cancer relies on accurate lymph node metastasis (LNM) staging. However, radiological criteria based on lymph node (LN) size, shape and texture morphology have limited diagnostic accuracy. In this work, we investigate applying a Variational Autoencoder (VAE) as a feature encoder model to replace the large pre-trained Convolutional Neural Network (CNN) used in existing approaches. The motivation for using a VAE is that the generative model aims to reconstruct the images, so it directly encodes visual features and meaningful patterns across the data. This leads to a disentangled and structured latent space which can be more interpretable than a CNN. Models are deployed on an in-house MRI dataset with 168 patients who did not undergo neo-adjuvant treatment. The post-operative pathological N stage was used as the ground truth to evaluate model predictions. Our proposed model 'VAE-MLP' achieved state-of-the-art performance on the MRI dataset, with cross-validated metrics of AUC 0.86 +/- 0.05, Sensitivity 0.79 +/- 0.06, and Specificity 0.85 +/- 0.05. Code is available at: https://github.com/benkeel/Lymph_Node_Classification_MIUA.

Authors:Hanxue Gu, Yaqian Chen, Nicholas Konz, Qihang Li, Maciej A. Mazurowski
Title: Are Vision Foundation Models Ready for Out-of-the-Box Medical Image Registration?
Abstract:
Foundation models, pre-trained on large image datasets and capable of capturing rich feature representations, have recently shown potential for zero-shot image registration. However, their performance has mostly been tested in the context of rigid or less complex structures, such as the brain or abdominal organs, and it remains unclear whether these models can handle more challenging, deformable anatomy. Breast MRI registration is particularly difficult due to significant anatomical variation between patients, deformation caused by patient positioning, and the presence of thin and complex internal structure of fibroglandular tissue, where accurate alignment is crucial. Whether foundation model-based registration algorithms can address this level of complexity remains an open question. In this study, we provide a comprehensive evaluation of foundation model-based registration algorithms for breast MRI. We assess five pre-trained encoders, including DINO-v2, SAM, MedSAM, SSLSAM, and MedCLIP, across four key breast registration tasks that capture variations in different years and dates, sequences, modalities, and patient disease status (lesion versus no lesion). Our results show that foundation model-based algorithms such as SAM outperform traditional registration baselines for overall breast alignment, especially under large domain shifts, but struggle with capturing fine details of fibroglandular tissue. Interestingly, additional pre-training or fine-tuning on medical or breast-specific images in MedSAM and SSLSAM, does not improve registration performance and may even decrease it in some cases. Further work is needed to understand how domain-specific training influences registration and to explore targeted strategies that improve both global alignment and fine structure accuracy. We also publicly release our code at \href{https://github.com/mazurowski-lab/Foundation-based-reg}{Github}.

Authors:Zejian Li, Yize Li, Chenye Meng, Zhongni Liu, Yang Ling, Shengyuan Zhang, Guang Yang, Changyuan Yang, Zhiyuan Yang, Lingyun Sun
Title: Inversion-DPO: Precise and Efficient Post-Training for Diffusion Models
Abstract:
Recent advancements in diffusion models (DMs) have been propelled by alignment methods that post-train models to better conform to human preferences. However, these approaches typically require computation-intensive training of a base model and a reward model, which not only incurs substantial computational overhead but may also compromise model accuracy and training efficiency. To address these limitations, we propose Inversion-DPO, a novel alignment framework that circumvents reward modeling by reformulating Direct Preference Optimization (DPO) with DDIM inversion for DMs. Our method conducts intractable posterior sampling in Diffusion-DPO with the deterministic inversion from winning and losing samples to noise and thus derive a new post-training paradigm. This paradigm eliminates the need for auxiliary reward models or inaccurate appromixation, significantly enhancing both precision and efficiency of training. We apply Inversion-DPO to a basic task of text-to-image generation and a challenging task of compositional image generation. Extensive experiments show substantial performance improvements achieved by Inversion-DPO compared to existing post-training methods and highlight the ability of the trained generative models to generate high-fidelity compositionally coherent images. For the post-training of compostitional image geneation, we curate a paired dataset consisting of 11,140 images with complex structural annotations and comprehensive scores, designed to enhance the compositional capabilities of generative models. Inversion-DPO explores a new avenue for efficient, high-precision alignment in diffusion models, advancing their applicability to complex realistic generation tasks. Our code is available at https://github.com/MIGHTYEZ/Inversion-DPO

Authors:Dong Zhuo, Wenzhao Zheng, Jiahe Guo, Yuqi Wu, Jie Zhou, Jiwen Lu
Title: Streaming 4D Visual Geometry Transformer
Abstract:
Perceiving and reconstructing 4D spatial-temporal geometry from videos is a fundamental yet challenging computer vision task. To facilitate interactive and real-time applications, we propose a streaming 4D visual geometry transformer that shares a similar philosophy with autoregressive large language models. We explore a simple and efficient design and employ a causal transformer architecture to process the input sequence in an online manner. We use temporal causal attention and cache the historical keys and values as implicit memory to enable efficient streaming long-term 4D reconstruction. This design can handle real-time 4D reconstruction by incrementally integrating historical information while maintaining high-quality spatial consistency. For efficient training, we propose to distill knowledge from the dense bidirectional visual geometry grounded transformer (VGGT) to our causal model. For inference, our model supports the migration of optimized efficient attention operator (e.g., FlashAttention) from the field of large language models. Extensive experiments on various 4D geometry perception benchmarks demonstrate that our model increases the inference speed in online scenarios while maintaining competitive performance, paving the way for scalable and interactive 4D vision systems. Code is available at: https://github.com/wzzheng/StreamVGGT.

Authors:Mengyu Wang, Henghui Ding, Jianing Peng, Yao Zhao, Yunpeng Chen, Yunchao Wei
Title: CharaConsist: Fine-Grained Consistent Character Generation
Abstract:
In text-to-image generation, producing a series of consistent contents that preserve the same identity is highly valuable for real-world applications. Although a few works have explored training-free methods to enhance the consistency of generated subjects, we observe that they suffer from the following problems. First, they fail to maintain consistent background details, which limits their applicability. Furthermore, when the foreground character undergoes large motion variations, inconsistencies in identity and clothing details become evident. To address these problems, we propose CharaConsist, which employs point-tracking attention and adaptive token merge along with decoupled control of the foreground and background. CharaConsist enables fine-grained consistency for both foreground and background, supporting the generation of one character in continuous shots within a fixed scene or in discrete shots across different scenes. Moreover, CharaConsist is the first consistent generation method tailored for text-to-image DiT model. Its ability to maintain fine-grained consistency, combined with the larger capacity of latest base model, enables it to produce high-quality visual outputs, broadening its applicability to a wider range of real-world scenarios. The source code has been released at https://github.com/Murray-Wang/CharaConsist

Authors:Christian Daniele, Silvia Villa, Samuel Vaiter, Luca Calatroni
Title: Deep Equilibrium models for Poisson Imaging Inverse problems via Mirror Descent
Abstract:
Deep Equilibrium Models (DEQs) are implicit neural networks with fixed points, which have recently gained attention for learning image regularization functionals, particularly in settings involving Gaussian fidelities, where assumptions on the forward operator ensure contractiveness of standard (proximal) Gradient Descent operators. In this work, we extend the application of DEQs to Poisson inverse problems, where the data fidelity term is more appropriately modeled by the Kullback-Leibler divergence. To this end, we introduce a novel DEQ formulation based on Mirror Descent defined in terms of a tailored non-Euclidean geometry that naturally adapts with the structure of the data term. This enables the learning of neural regularizers within a principled training framework. We derive sufficient conditions to guarantee the convergence of the learned reconstruction scheme and propose computational strategies that enable both efficient training and fully parameter-free inference. Numerical experiments show that our method outperforms traditional model-based approaches and it is comparable to the performance of Bregman Plug-and-Play methods, while mitigating their typical drawbacks - namely, sensitivity to initialization and careful tuning of hyperparameters. The code is publicly available at https://github.com/christiandaniele/DEQ-MD.

Authors:Kaif Shaikh, Franziska Boenisch, Adam Dziedzic
Title: Implementing Adaptations for Vision AutoRegressive Model
Abstract:
Vision AutoRegressive model (VAR) was recently introduced as an alternative to Diffusion Models (DMs) in image generation domain. In this work we focus on its adaptations, which aim to fine-tune pre-trained models to perform specific downstream tasks, like medical data generation. While for DMs there exist many techniques, adaptations for VAR remain underexplored. Similarly, differentially private (DP) adaptations-ones that aim to preserve privacy of the adaptation data-have been extensively studied for DMs, while VAR lacks such solutions. In our work, we implement and benchmark many strategies for VAR, and compare them to state-of-the-art DM adaptation strategies. We observe that VAR outperforms DMs for non-DP adaptations, however, the performance of DP suffers, which necessitates further research in private adaptations for VAR. Code is available at https://github.com/sprintml/finetuning_var_dp.

Authors:Hongbo Ye, Fenghe Tang, Peiang Zhao, Zhen Huang, Dexin Zhao, Minghao Bian, S. Kevin Zhou
Title: U-RWKV: Lightweight medical image segmentation with direction-adaptive RWKV
Abstract:
Achieving equity in healthcare accessibility requires lightweight yet high-performance solutions for medical image segmentation, particularly in resource-limited settings. Existing methods like U-Net and its variants often suffer from limited global Effective Receptive Fields (ERFs), hindering their ability to capture long-range dependencies. To address this, we propose U-RWKV, a novel framework leveraging the Recurrent Weighted Key-Value(RWKV) architecture, which achieves efficient long-range modeling at O(N) computational cost. The framework introduces two key innovations: the Direction-Adaptive RWKV Module(DARM) and the Stage-Adaptive Squeeze-and-Excitation Module(SASE). DARM employs Dual-RWKV and QuadScan mechanisms to aggregate contextual cues across images, mitigating directional bias while preserving global context and maintaining high computational efficiency. SASE dynamically adapts its architecture to different feature extraction stages, balancing high-resolution detail preservation and semantic relationship capture. Experiments demonstrate that U-RWKV achieves state-of-the-art segmentation performance with high computational efficiency, offering a practical solution for democratizing advanced medical imaging technologies in resource-constrained environments. The code is available at https://github.com/hbyecoding/U-RWKV.

Authors:Pierrick Leroy, Antonio Mastropietro, Marco Nurisso, Francesco Vaccarino
Title: Attributes Shape the Embedding Space of Face Recognition Models
Abstract:
Face Recognition (FR) tasks have made significant progress with the advent of Deep Neural Networks, particularly through margin-based triplet losses that embed facial images into high-dimensional feature spaces. During training, these contrastive losses focus exclusively on identity information as labels. However, we observe a multiscale geometric structure emerging in the embedding space, influenced by interpretable facial (e.g., hair color) and image attributes (e.g., contrast). We propose a geometric approach to describe the dependence or invariance of FR models to these attributes and introduce a physics-inspired alignment metric. We evaluate the proposed metric on controlled, simplified models and widely used FR models fine-tuned with synthetic data for targeted attribute augmentation. Our findings reveal that the models exhibit varying degrees of invariance across different attributes, providing insight into their strengths and weaknesses and enabling deeper interpretability. Code available here: https://github.com/mantonios107/attrs-fr-embs}{https://github.com/mantonios107/attrs-fr-embs

Authors:Jianfei Jiang, Qiankun Liu, Haochen Yu, Hongyuan Liu, Liyong Wang, Jiansheng Chen, Huimin Ma
Title: MonoMVSNet: Monocular Priors Guided Multi-View Stereo Network
Abstract:
Learning-based Multi-View Stereo (MVS) methods aim to predict depth maps for a sequence of calibrated images to recover dense point clouds. However, existing MVS methods often struggle with challenging regions, such as textureless regions and reflective surfaces, where feature matching fails. In contrast, monocular depth estimation inherently does not require feature matching, allowing it to achieve robust relative depth estimation in these regions. To bridge this gap, we propose MonoMVSNet, a novel monocular feature and depth guided MVS network that integrates powerful priors from a monocular foundation model into multi-view geometry. Firstly, the monocular feature of the reference view is integrated into source view features by the attention mechanism with a newly designed cross-view position encoding. Then, the monocular depth of the reference view is aligned to dynamically update the depth candidates for edge regions during the sampling procedure. Finally, a relative consistency loss is further designed based on the monocular depth to supervise the depth prediction. Extensive experiments demonstrate that MonoMVSNet achieves state-of-the-art performance on the DTU and Tanks-and-Temples datasets, ranking first on the Tanks-and-Temples Intermediate and Advanced benchmarks. The source code is available at https://github.com/JianfeiJ/MonoMVSNet.

Authors:An-Lun Liu, Yu-Wei Chao, Yi-Ting Chen
Title: Task-Oriented Human Grasp Synthesis via Context- and Task-Aware Diffusers
Abstract:
In this paper, we study task-oriented human grasp synthesis, a new grasp synthesis task that demands both task and context awareness. At the core of our method is the task-aware contact maps. Unlike traditional contact maps that only reason about the manipulated object and its relation with the hand, our enhanced maps take into account scene and task information. This comprehensive map is critical for hand-object interaction, enabling accurate grasping poses that align with the task. We propose a two-stage pipeline that first constructs a task-aware contact map informed by the scene and task. In the subsequent stage, we use this contact map to synthesize task-oriented human grasps. We introduce a new dataset and a metric for the proposed task to evaluate our approach. Our experiments validate the importance of modeling both scene and task, demonstrating significant improvements over existing methods in both grasp quality and task performance. See our project page for more details: https://hcis-lab.github.io/TOHGS/

Authors:Ronggang Huang, Haoxin Yang, Yan Cai, Xuemiao Xu, Huaidong Zhang, Shengfeng He
Title: ViewSRD: 3D Visual Grounding via Structured Multi-View Decomposition
Abstract:
3D visual grounding aims to identify and localize objects in a 3D space based on textual descriptions. However, existing methods struggle with disentangling targets from anchors in complex multi-anchor queries and resolving inconsistencies in spatial descriptions caused by perspective variations. To tackle these challenges, we propose ViewSRD, a framework that formulates 3D visual grounding as a structured multi-view decomposition process. First, the Simple Relation Decoupling (SRD) module restructures complex multi-anchor queries into a set of targeted single-anchor statements, generating a structured set of perspective-aware descriptions that clarify positional relationships. These decomposed representations serve as the foundation for the Multi-view Textual-Scene Interaction (Multi-TSI) module, which integrates textual and scene features across multiple viewpoints using shared, Cross-modal Consistent View Tokens (CCVTs) to preserve spatial correlations. Finally, a Textual-Scene Reasoning module synthesizes multi-view predictions into a unified and robust 3D visual grounding. Experiments on 3D visual grounding datasets show that ViewSRD significantly outperforms state-of-the-art methods, particularly in complex queries requiring precise spatial differentiation. Code is available at https://github.com/visualjason/ViewSRD.

Authors:Guanghao Wu, Chen Xu, Hai Song, Chong Wang, Qixing Zhang
Title: MFGDiffusion: Mask-Guided Smoke Synthesis for Enhanced Forest Fire Detection
Abstract:
Smoke is the first visible indicator of a wildfire.With the advancement of deep learning, image-based smoke detection has become a crucial method for detecting and preventing forest fires. However, the scarcity of smoke image data from forest fires is one of the significant factors hindering the detection of forest fire smoke. Image generation models offer a promising solution for synthesizing realistic smoke images. However, current inpainting models exhibit limitations in generating high-quality smoke representations, particularly manifesting as inconsistencies between synthesized smoke and background contexts. To solve these problems, we proposed a comprehensive framework for generating forest fire smoke images. Firstly, we employed the pre-trained segmentation model and the multimodal model to obtain smoke masks and image captions.Then, to address the insufficient utilization of masks and masked images by inpainting models, we introduced a network architecture guided by mask and masked image features. We also proposed a new loss function, the mask random difference loss, which enhances the consistency of the generated effects around the mask by randomly expanding and eroding the mask edges.Finally, to generate a smoke image dataset using random masks for subsequent detection tasks, we incorporated smoke characteristics and use a multimodal large language model as a filtering tool to select diverse and reasonable smoke images, thereby improving the quality of the synthetic dataset. Experiments showed that our generated smoke images are realistic and diverse, and effectively enhance the performance of forest fire smoke detection models. Code is available at https://github.com/wghr123/MFGDiffusion.

Authors:X. Feng, H. Yu, M. Wu, S. Hu, J. Chen, C. Zhu, J. Wu, X. Chu, K. Huang
Title: NarrLV: Towards a Comprehensive Narrative-Centric Evaluation for Long Video Generation Models
Abstract:
With the rapid development of foundation video generation technologies, long video generation models have exhibited promising research potential thanks to expanded content creation space. Recent studies reveal that the goal of long video generation tasks is not only to extend video duration but also to accurately express richer narrative content within longer videos. However, due to the lack of evaluation benchmarks specifically designed for long video generation models, the current assessment of these models primarily relies on benchmarks with simple narrative prompts (e.g., VBench). To the best of our knowledge, our proposed NarrLV is the first benchmark to comprehensively evaluate the Narrative expression capabilities of Long Video generation models. Inspired by film narrative theory, (i) we first introduce the basic narrative unit maintaining continuous visual presentation in videos as Temporal Narrative Atom (TNA), and use its count to quantitatively measure narrative richness. Guided by three key film narrative elements influencing TNA changes, we construct an automatic prompt generation pipeline capable of producing evaluation prompts with a flexibly expandable number of TNAs. (ii) Then, based on the three progressive levels of narrative content expression, we design an effective evaluation metric using the MLLM-based question generation and answering framework. (iii) Finally, we conduct extensive evaluations on existing long video generation models and the foundation generation models. Experimental results demonstrate that our metric aligns closely with human judgments. The derived evaluation outcomes reveal the detailed capability boundaries of current video generation models in narrative content expression.

Authors:Zhifeng Gu, Bing Wang
Title: MMOne: Representing Multiple Modalities in One Scene
Abstract:
Humans perceive the world through multimodal cues to understand and interact with the environment. Learning a scene representation for multiple modalities enhances comprehension of the physical world. However, modality conflicts, arising from inherent distinctions among different modalities, present two critical challenges: property disparity and granularity disparity. To address these challenges, we propose a general framework, MMOne, to represent multiple modalities in one scene, which can be readily extended to additional modalities. Specifically, a modality modeling module with a novel modality indicator is proposed to capture the unique properties of each modality. Additionally, we design a multimodal decomposition mechanism to separate multi-modal Gaussians into single-modal Gaussians based on modality differences. We address the essential distinctions among modalities by disentangling multimodal information into shared and modality-specific components, resulting in a more compact and efficient multimodal scene representation. Extensive experiments demonstrate that our method consistently enhances the representation capability for each modality and is scalable to additional modalities. The code is available at https://github.com/Neal2020GitHub/MMOne.

Authors:Hankun Liu, Yujian Zhao, Guanglin Niu
Title: Try Harder: Hard Sample Generation and Learning for Clothes-Changing Person Re-ID
Abstract:
Hard samples pose a significant challenge in person re-identification (ReID) tasks, particularly in clothing-changing person Re-ID (CC-ReID). Their inherent ambiguity or similarity, coupled with the lack of explicit definitions, makes them a fundamental bottleneck. These issues not only limit the design of targeted learning strategies but also diminish the model's robustness under clothing or viewpoint changes. In this paper, we propose a novel multimodal-guided Hard Sample Generation and Learning (HSGL) framework, which is the first effort to unify textual and visual modalities to explicitly define, generate, and optimize hard samples within a unified paradigm. HSGL comprises two core components: (1) Dual-Granularity Hard Sample Generation (DGHSG), which leverages multimodal cues to synthesize semantically consistent samples, including both coarse- and fine-grained hard positives and negatives for effectively increasing the hardness and diversity of the training data. (2) Hard Sample Adaptive Learning (HSAL), which introduces a hardness-aware optimization strategy that adjusts feature distances based on textual semantic labels, encouraging the separation of hard positives and drawing hard negatives closer in the embedding space to enhance the model's discriminative capability and robustness to hard samples. Extensive experiments on multiple CC-ReID benchmarks demonstrate the effectiveness of our approach and highlight the potential of multimodal-guided hard sample generation and learning for robust CC-ReID. Notably, HSAL significantly accelerates the convergence of the targeted learning procedure and achieves state-of-the-art performance on both PRCC and LTCC datasets. The code is available at https://github.com/undooo/TryHarder-ACMMM25.

Authors:Weizhao Ma, Dong Zhou, Yuhui Hu, Zipeng He
Title: GKNet: Graph-based Keypoints Network for Monocular Pose Estimation of Non-cooperative Spacecraft
Abstract:
Monocular pose estimation of non-cooperative spacecraft is significant for on-orbit service (OOS) tasks, such as satellite maintenance, space debris removal, and station assembly. Considering the high demands on pose estimation accuracy, mainstream monocular pose estimation methods typically consist of keypoint detectors and PnP solver. However, current keypoint detectors remain vulnerable to structural symmetry and partial occlusion of non-cooperative spacecraft. To this end, we propose a graph-based keypoints network for the monocular pose estimation of non-cooperative spacecraft, GKNet, which leverages the geometric constraint of keypoints graph. In order to better validate keypoint detectors, we present a moderate-scale dataset for the spacecraft keypoint detection, named SKD, which consists of 3 spacecraft targets, 90,000 simulated images, and corresponding high-precise keypoint annotations. Extensive experiments and an ablation study have demonstrated the high accuracy and effectiveness of our GKNet, compared to the state-of-the-art spacecraft keypoint detectors. The code for GKNet and the SKD dataset is available at https://github.com/Dongzhou-1996/GKNet.

Authors:Jeongyun Kim, Seunghoon Jeong, Giseop Kim, Myung-Hwan Jeon, Eunji Jun, Ayoung Kim
Title: TRAN-D: 2D Gaussian Splatting-based Sparse-view Transparent Object Depth Reconstruction via Physics Simulation for Scene Update
Abstract:
Understanding the 3D geometry of transparent objects from RGB images is challenging due to their inherent physical properties, such as reflection and refraction. To address these difficulties, especially in scenarios with sparse views and dynamic environments, we introduce TRAN-D, a novel 2D Gaussian Splatting-based depth reconstruction method for transparent objects. Our key insight lies in separating transparent objects from the background, enabling focused optimization of Gaussians corresponding to the object. We mitigate artifacts with an object-aware loss that places Gaussians in obscured regions, ensuring coverage of invisible surfaces while reducing overfitting. Furthermore, we incorporate a physics-based simulation that refines the reconstruction in just a few seconds, effectively handling object removal and chain-reaction movement of remaining objects without the need for rescanning. TRAN-D is evaluated on both synthetic and real-world sequences, and it consistently demonstrated robust improvements over existing GS-based state-of-the-art methods. In comparison with baselines, TRAN-D reduces the mean absolute error by over 39% for the synthetic TRansPose sequences. Furthermore, despite being updated using only one image, TRAN-D reaches a δ < 2.5 cm accuracy of 48.46%, over 1.5 times that of baselines, which uses six images. Code and more results are available at https://jeongyun0609.github.io/TRAN-D/.

Authors:Hayeon Kim, Ji Ha Jang, Se Young Chun
Title: Robust 3D-Masked Part-level Editing in 3D Gaussian Splatting with Regularized Score Distillation Sampling
Abstract:
Recent advances in 3D neural representations and instance-level editing models have enabled the efficient creation of high-quality 3D content. However, achieving precise local 3D edits remains challenging, especially for Gaussian Splatting, due to inconsistent multi-view 2D part segmentations and inherently ambiguous nature of Score Distillation Sampling (SDS) loss. To address these limitations, we propose RoMaP, a novel local 3D Gaussian editing framework that enables precise and drastic part-level modifications. First, we introduce a robust 3D mask generation module with our 3D-Geometry Aware Label Prediction (3D-GALP), which uses spherical harmonics (SH) coefficients to model view-dependent label variations and soft-label property, yielding accurate and consistent part segmentations across viewpoints. Second, we propose a regularized SDS loss that combines the standard SDS loss with additional regularizers. In particular, an L1 anchor loss is introduced via our Scheduled Latent Mixing and Part (SLaMP) editing method, which generates high-quality part-edited 2D images and confines modifications only to the target region while preserving contextual coherence. Additional regularizers, such as Gaussian prior removal, further improve flexibility by allowing changes beyond the existing context, and robust 3D masking prevents unintended edits. Experimental results demonstrate that our RoMaP achieves state-of-the-art local 3D editing on both reconstructed and generated Gaussian scenes and objects qualitatively and quantitatively, making it possible for more robust and flexible part-level 3D Gaussian editing. Code is available at https://janeyeon.github.io/romap.

Authors:Lirong Zheng, Yanshan Li, Rui Yu, Kaihao Zhang
Title: Efficient Dual-domain Image Dehazing with Haze Prior Perception
Abstract:
Transformer-based models exhibit strong global modeling capabilities in single-image dehazing, but their high computational cost limits real-time applicability. Existing methods predominantly rely on spatial-domain features to capture long-range dependencies, which are computationally expensive and often inadequate under complex haze conditions. While some approaches introduce frequency-domain cues, the weak coupling between spatial and frequency branches limits the overall performance. To overcome these limitations, we propose the Dark Channel Guided Frequency-aware Dehazing Network (DGFDNet), a novel dual-domain framework that performs physically guided degradation alignment across spatial and frequency domains. At its core, the DGFDBlock comprises two key modules: 1) the Haze-Aware Frequency Modulator (HAFM), which generates a pixel-level haze confidence map from dark channel priors to adaptively enhance haze-relevant frequency components, thereby achieving global degradation-aware spectral modulation; 2) the Multi-level Gating Aggregation Module (MGAM), which fuses multi-scale features through diverse convolutional kernels and hybrid gating mechanisms to recover fine structural details. Additionally, a Prior Correction Guidance Branch (PCGB) incorporates a closed-loop feedback mechanism, enabling iterative refinement of the prior by intermediate dehazed features and significantly improving haze localization accuracy, especially in challenging outdoor scenes. Extensive experiments on four benchmark haze datasets demonstrate that DGFDNet achieves state-of-the-art performance with superior robustness and real-time efficiency. Code is available at: https://github.com/Dilizlr/DGFDNet.

Authors:Xingyu Zheng, Haotong Qin, Yuye Li, Jiakai Wang, Jinyang Guo, Michele Magno, Xianglong Liu
Title: First-Order Error Matters: Accurate Compensation for Quantized Large Language Models
Abstract:
Post-training quantization (PTQ) offers an efficient approach to compressing large language models (LLMs), significantly reducing memory access and computational costs. Existing compensation-based weight calibration methods often rely on a second-order Taylor expansion to model quantization error, under the assumption that the first-order term is negligible in well-trained full-precision models. However, we reveal that the progressive compensation process introduces accumulated first-order deviations between latent weights and their full-precision counterparts, making this assumption fundamentally flawed. To address this, we propose FOEM, a novel PTQ method that explicitly incorporates first-order gradient terms to improve quantization error compensation. FOEM approximates gradients by directly computing the difference between latent and full-precision weights, avoiding the high cost and limited generalization of backpropagation-based gradient computation. This approach introduces minimal additional computational overhead. Moreover, FOEM leverages precomputed Cholesky factors to efficiently recover the inverse of Hessian submatrices in real time. Extensive experiments across a wide range of models and benchmarks demonstrate that FOEM consistently outperforms the classical GPTQ method. In 3-bit weight-only quantization, FOEM reduces the perplexity of Llama3-8B by 89.6%, and improves the 5-shot MMLU accuracy of Llama3-70B from 51.7% to 74.9%, approaching the full-precision performance of 78.6%. Furthermore, FOEM can be seamlessly integrated with advanced techniques such as GPTAQ and SpinQuant, yielding additional improvements under the challenging W4A4KV4 setting, and further narrowing the accuracy gap with full-precision baselines beyond what current state-of-the-art methods achieve. The code is available at https://github.com/Xingyu-Zheng/FOEM.

Authors:Yanbo Wang, Zipeng Fang, Lei Zhao, Weidong Chen
Title: Learning to Tune Like an Expert: Interpretable and Scene-Aware Navigation via MLLM Reasoning and CVAE-Based Adaptation
Abstract:
Service robots are increasingly deployed in diverse and dynamic environments, where both physical layouts and social contexts change over time and across locations. In these unstructured settings, conventional navigation systems that rely on fixed parameters often fail to generalize across scenarios, resulting in degraded performance and reduced social acceptance. Although recent approaches have leveraged reinforcement learning to enhance traditional planners, these methods often fail in real-world deployments due to poor generalization and limited simulation diversity, which hampers effective sim-to-real transfer. To tackle these issues, we present LE-Nav, an interpretable and scene-aware navigation framework that leverages multi-modal large language model reasoning and conditional variational autoencoders to adaptively tune planner hyperparameters. To achieve zero-shot scene understanding, we utilize one-shot exemplars and chain-of-thought prompting strategies. Additionally, a conditional variational autoencoder captures the mapping between natural language instructions and navigation hyperparameters, enabling expert-level tuning. Experiments show that LE-Nav can generate hyperparameters achieving human-level tuning across diverse planners and scenarios. Real-world navigation trials and a user study on a smart wheelchair platform demonstrate that it outperforms state-of-the-art methods on quantitative metrics such as success rate, efficiency, safety, and comfort, while receiving higher subjective scores for perceived safety and social acceptance. Code is available at https://github.com/Cavendish518/LE-Nav.

Authors:Quan Bi Pay, Vishnu Monn Baskaran, Junn Yong Loo, KokSheik Wong, Simon See
Title: SpaRTAN: Spatial Reinforcement Token-based Aggregation Network for Visual Recognition
Abstract:
The resurgence of convolutional neural networks (CNNs) in visual recognition tasks, exemplified by ConvNeXt, has demonstrated their capability to rival transformer-based architectures through advanced training methodologies and ViT-inspired design principles. However, both CNNs and transformers exhibit a simplicity bias, favoring straightforward features over complex structural representations. Furthermore, modern CNNs often integrate MLP-like blocks akin to those in transformers, but these blocks suffer from significant information redundancies, necessitating high expansion ratios to sustain competitive performance. To address these limitations, we propose SpaRTAN, a lightweight architectural design that enhances spatial and channel-wise information processing. SpaRTAN employs kernels with varying receptive fields, controlled by kernel size and dilation factor, to capture discriminative multi-order spatial features effectively. A wave-based channel aggregation module further modulates and reinforces pixel interactions, mitigating channel-wise redundancies. Combining the two modules, the proposed network can efficiently gather and dynamically contextualize discriminative features. Experimental results in ImageNet and COCO demonstrate that SpaRTAN achieves remarkable parameter efficiency while maintaining competitive performance. In particular, on the ImageNet-1k benchmark, SpaRTAN achieves 77. 7% accuracy with only 3.8M parameters and approximately 1.0 GFLOPs, demonstrating its ability to deliver strong performance through an efficient design. On the COCO benchmark, it achieves 50.0% AP, surpassing the previous benchmark by 1.2% with only 21.5M parameters. The code is publicly available at [https://github.com/henry-pay/SpaRTAN].

Authors:Ayush Gupta, Siyuan Huang, Rama Chellappa
Title: Mind the Gap: Bridging Occlusion in Gait Recognition via Residual Gap Correction
Abstract:
Gait is becoming popular as a method of person re-identification because of its ability to identify people at a distance. However, most current works in gait recognition do not address the practical problem of occlusions. Among those which do, some require paired tuples of occluded and holistic sequences, which are impractical to collect in the real world. Further, these approaches work on occlusions but fail to retain performance on holistic inputs. To address these challenges, we propose RG-Gait, a method for residual correction for occluded gait recognition with holistic retention. We model the problem as a residual learning task, conceptualizing the occluded gait signature as a residual deviation from the holistic gait representation. Our proposed network adaptively integrates the learned residual, significantly improving performance on occluded gait sequences without compromising the holistic recognition accuracy. We evaluate our approach on the challenging Gait3D, GREW and BRIAR datasets and show that learning the residual can be an effective technique to tackle occluded gait recognition with holistic retention. We release our code publicly at https://github.com/Ayush-00/rg-gait.

Authors:Quan Bi Pay, Vishnu Monn Baskaran, Junn Yong Loo, KokSheik Wong, Simon See
Title: Conceptualizing Multi-scale Wavelet Attention and Ray-based Encoding for Human-Object Interaction Detection
Abstract:
Human-object interaction (HOI) detection is essential for accurately localizing and characterizing interactions between humans and objects, providing a comprehensive understanding of complex visual scenes across various domains. However, existing HOI detectors often struggle to deliver reliable predictions efficiently, relying on resource-intensive training methods and inefficient architectures. To address these challenges, we conceptualize a wavelet attention-like backbone and a novel ray-based encoder architecture tailored for HOI detection. Our wavelet backbone addresses the limitations of expressing middle-order interactions by aggregating discriminative features from the low- and high-order interactions extracted from diverse convolutional filters. Concurrently, the ray-based encoder facilitates multi-scale attention by optimizing the focus of the decoder on relevant regions of interest and mitigating computational overhead. As a result of harnessing the attenuated intensity of learnable ray origins, our decoder aligns query embeddings with emphasized regions of interest for accurate predictions. Experimental results on benchmark datasets, including ImageNet and HICO-DET, showcase the potential of our proposed architecture. The code is publicly available at [https://github.com/henry-pay/RayEncoder].

Authors:Shaowen Tong, Zimin Xia, Alexandre Alahi, Xuming He, Yujiao Shi
Title: GeoDistill: Geometry-Guided Self-Distillation for Weakly Supervised Cross-View Localization
Abstract:
Cross-view localization, the task of estimating a camera's 3-degrees-of-freedom (3-DoF) pose by aligning ground-level images with satellite images, is crucial for large-scale outdoor applications like autonomous navigation and augmented reality. Existing methods often rely on fully supervised learning, which requires costly ground-truth pose annotations. In this work, we propose GeoDistill, a Geometry guided weakly supervised self distillation framework that uses teacher-student learning with Field-of-View (FoV)-based masking to enhance local feature learning for robust cross-view localization. In GeoDistill, the teacher model localizes a panoramic image, while the student model predicts locations from a limited FoV counterpart created by FoV-based masking. By aligning the student's predictions with those of the teacher, the student focuses on key features like lane lines and ignores textureless regions, such as roads. This results in more accurate predictions and reduced uncertainty, regardless of whether the query images are panoramas or limited FoV images. Our experiments show that GeoDistill significantly improves localization performance across different frameworks. Additionally, we introduce a novel orientation estimation network that predicts relative orientation without requiring precise planar position ground truth. GeoDistill provides a scalable and efficient solution for real-world cross-view localization challenges. Code and model can be found at https://github.com/tongshw/GeoDistill.

Authors:Roman Naeem, David Hagerman, Jennifer Alvén, Lennart Svensson, Fredrik Kahl
Title: Trexplorer Super: Topologically Correct Centerline Tree Tracking of Tubular Objects in CT Volumes
Abstract:
Tubular tree structures, such as blood vessels and airways, are essential in human anatomy and accurately tracking them while preserving their topology is crucial for various downstream tasks. Trexplorer is a recurrent model designed for centerline tracking in 3D medical images but it struggles with predicting duplicate branches and terminating tracking prematurely. To address these issues, we present Trexplorer Super, an enhanced version that notably improves performance through novel advancements. However, evaluating centerline tracking models is challenging due to the lack of public datasets. To enable thorough evaluation, we develop three centerline datasets, one synthetic and two real, each with increasing difficulty. Using these datasets, we conduct a comprehensive evaluation of existing state-of-the-art (SOTA) models and compare them with our approach. Trexplorer Super outperforms previous SOTA models on every dataset. Our results also highlight that strong performance on synthetic data does not necessarily translate to real datasets. The code and datasets are available at https://github.com/RomStriker/Trexplorer-Super.

Authors:Chetan Madan, Aarjav Satia, Soumen Basu, Pankaj Gupta, Usha Dutta, Chetan Arora
Title: Focus on Texture: Rethinking Pre-training in Masked Autoencoders for Medical Image Classification
Abstract:
Masked Autoencoders (MAEs) have emerged as a dominant strategy for self-supervised representation learning in natural images, where models are pre-trained to reconstruct masked patches with a pixel-wise mean squared error (MSE) between original and reconstructed RGB values as the loss. We observe that MSE encourages blurred image re-construction, but still works for natural images as it preserves dominant edges. However, in medical imaging, when the texture cues are more important for classification of a visual abnormality, the strategy fails. Taking inspiration from Gray Level Co-occurrence Matrix (GLCM) feature in Radiomics studies, we propose a novel MAE based pre-training framework, GLCM-MAE, using reconstruction loss based on matching GLCM. GLCM captures intensity and spatial relationships in an image, hence proposed loss helps preserve morphological features. Further, we propose a novel formulation to convert matching GLCM matrices into a differentiable loss function. We demonstrate that unsupervised pre-training on medical images with the proposed GLCM loss improves representations for downstream tasks. GLCM-MAE outperforms the current state-of-the-art across four tasks - gallbladder cancer detection from ultrasound images by 2.1%, breast cancer detection from ultrasound by 3.1%, pneumonia detection from x-rays by 0.5%, and COVID detection from CT by 0.6%. Source code and pre-trained models are available at: https://github.com/ChetanMadan/GLCM-MAE.

Authors:Ali Hojjat, Janek Haberer, Soren Pirk, Olaf Landsiedel
Title: ThinkingViT: Matryoshka Thinking Vision Transformer for Elastic Inference
Abstract:
Vision Transformers deliver state-of-the-art performance, yet their fixed computational budget prevents scalable deployment across heterogeneous hardware. Recent nested Transformer architectures mitigate this by embedding nested subnetworks within a single model to enable scalable inference. However, these models allocate the same amount of compute to all inputs, regardless of their complexity, which leads to inefficiencies. To address this, we introduce ThinkingViT, a nested ViT architecture that employs progressive thinking stages to dynamically adjust inference computation based on input difficulty. ThinkingViT initiates inference by activating a small subset of the most important attention heads and terminates early if predictions reach sufficient certainty. Otherwise, it activates additional attention heads and re-evaluates the input. At the core of ThinkingViT is our Token Recycling mechanism, which conditions each subsequent inference stage on the embeddings from the previous stage, enabling progressive improvement. Due to its backbone-preserving design, ThinkingViT also serves as a plugin upgrade for vanilla ViT. Experiments show that ThinkingViT surpasses nested baselines by up to 2.0 percentage points (p.p.) in accuracy at the same throughput and by up to 2.9 p.p. at equal GMACs on ImageNet-1K. The source code is available at https://github.com/ds-kiel/ThinkingViT.

Authors:Hsiang-Wei Huang, Jen-Hao Cheng, Kuang-Ming Chen, Cheng-Yen Yang, Bahaa Alattar, Yi-Ru Lin, Pyongkun Kim, Sangwon Kim, Kwangju Kim, Chung-I Huang, Jenq-Neng Hwang
Title: Warehouse Spatial Question Answering with LLM Agent
Abstract:
Spatial understanding has been a challenging task for existing Multi-modal Large Language Models~(MLLMs). Previous methods leverage large-scale MLLM finetuning to enhance MLLM's spatial understanding ability. In this paper, we present a data-efficient approach. We propose a LLM agent system with strong and advanced spatial reasoning ability, which can be used to solve the challenging spatial question answering task in complex indoor warehouse scenarios. Our system integrates multiple tools that allow the LLM agent to conduct spatial reasoning and API tools interaction to answer the given complicated spatial question. Extensive evaluations on the 2025 AI City Challenge Physical AI Spatial Intelligence Warehouse dataset demonstrate that our system achieves high accuracy and efficiency in tasks such as object retrieval, counting, and distance estimation. The code is available at: https://github.com/hsiangwei0903/SpatialAgent

Authors:Jeffrey Joan Sam, Janhavi Sathe, Nikhil Chigali, Naman Gupta, Radhey Ruparel, Yicheng Jiang, Janmajay Singh, James W. Berck, Arko Barman
Title: A New Dataset and Performance Benchmark for Real-time Spacecraft Segmentation in Onboard Flight Computers
Abstract:
Spacecraft deployed in outer space are routinely subjected to various forms of damage due to exposure to hazardous environments. In addition, there are significant risks to the subsequent process of in-space repairs through human extravehicular activity or robotic manipulation, incurring substantial operational costs. Recent developments in image segmentation could enable the development of reliable and cost-effective autonomous inspection systems. While these models often require large amounts of training data to achieve satisfactory results, publicly available annotated spacecraft segmentation data are very scarce. Here, we present a new dataset of nearly 64k annotated spacecraft images that was created using real spacecraft models, superimposed on a mixture of real and synthetic backgrounds generated using NASA's TTALOS pipeline. To mimic camera distortions and noise in real-world image acquisition, we also added different types of noise and distortion to the images. Finally, we finetuned YOLOv8 and YOLOv11 segmentation models to generate performance benchmarks for the dataset under well-defined hardware and inference time constraints to mimic real-world image segmentation challenges for real-time onboard applications in space on NASA's inspector spacecraft. The resulting models, when tested under these constraints, achieved a Dice score of 0.92, Hausdorff distance of 0.69, and an inference time of about 0.5 second. The dataset and models for performance benchmark are available at https://github.com/RiceD2KLab/SWiM.

Authors:Tongshun Zhang, Pingping Liu, Yubing Lu, Mengen Cai, Zijian Zhang, Zhe Zhang, Qiuzhan Zhou
Title: CWNet: Causal Wavelet Network for Low-Light Image Enhancement
Abstract:
Traditional Low-Light Image Enhancement (LLIE) methods primarily focus on uniform brightness adjustment, often neglecting instance-level semantic information and the inherent characteristics of different features. To address these limitations, we propose CWNet (Causal Wavelet Network), a novel architecture that leverages wavelet transforms for causal reasoning. Specifically, our approach comprises two key components: 1) Inspired by the concept of intervention in causality, we adopt a causal reasoning perspective to reveal the underlying causal relationships in low-light enhancement. From a global perspective, we employ a metric learning strategy to ensure causal embeddings adhere to causal principles, separating them from non-causal confounding factors while focusing on the invariance of causal factors. At the local level, we introduce an instance-level CLIP semantic loss to precisely maintain causal factor consistency. 2) Based on our causal analysis, we present a wavelet transform-based backbone network that effectively optimizes the recovery of frequency information, ensuring precise enhancement tailored to the specific attributes of wavelet transforms. Extensive experiments demonstrate that CWNet significantly outperforms current state-of-the-art methods across multiple datasets, showcasing its robust performance across diverse scenes. Code is available at https://github.com/bywlzts/CWNet-Causal-Wavelet-Network.

Authors:Ruixi Zheng, Wei Zhang, Yijie Li, Xi Zhu, Zhou Lan, Jarrett Rushmore, Yogesh Rathi, Nikos Makris, Lauren J. O'Donnell, Fan Zhang
Title: AGFS-Tractometry: A Novel Atlas-Guided Fine-Scale Tractometry Approach for Enhanced Along-Tract Group Statistical Comparison Using Diffusion MRI Tractography
Abstract:
Diffusion MRI (dMRI) tractography is currently the only method for in vivo mapping of the brain's white matter (WM) connections. Tractometry is an advanced tractography analysis technique for along-tract profiling to investigate the morphology and microstructural properties along the fiber tracts. Tractometry has become an essential tool for studying local along-tract differences between different populations (e.g., health vs disease). In this study, we propose a novel atlas-guided fine-scale tractometry method, namely AGFS-Tractometry, that leverages tract spatial information and permutation testing to enhance the along-tract statistical analysis between populations. There are two major contributions in AGFS-Tractometry. First, we create a novel atlas-guided tract profiling template that enables consistent, fine-scale, along-tract parcellation of subject-specific fiber tracts. Second, we propose a novel nonparametric permutation testing group comparison method to enable simultaneous analysis across all along-tract parcels while correcting for multiple comparisons. We perform experimental evaluations on synthetic datasets with known group differences and in vivo real data. We compare AGFS-Tractometry with two state-of-the-art tractometry methods, including Automated Fiber-tract Quantification (AFQ) and BUndle ANalytics (BUAN). Our results show that the proposed AGFS-Tractometry obtains enhanced sensitivity and specificity in detecting local WM differences. In the real data analysis experiments, AGFS-Tractometry can identify more regions with significant differences, which are anatomically consistent with the existing literature. Overall, these demonstrate the ability of AGFS-Tractometry to detect subtle or spatially localized WM group-level differences. The created tract profiling template and related code are available at: https://github.com/ZhengRuixi/AGFS-Tractometry.git.

Authors:Mingxian Lin, Wei Huang, Yitang Li, Chengjie Jiang, Kui Wu, Fangwei Zhong, Shengju Qian, Xin Wang, Xiaojuan Qi
Title: EmbRACE-3K: Embodied Reasoning and Action in Complex Environments
Abstract:
Recent advanced vision-language models(VLMs) have demonstrated strong performance on passive, offline image and video understanding tasks. However, their effectiveness in embodied settings, which require online interaction and active scene understanding remains limited. In such scenarios, an agent perceives the environment from a first-person perspective, with each action dynamically shaping subsequent observations. Even state-of-the-art models such as GPT-4o, Claude 3.5 Sonnet, and Gemini 2.5 Pro struggle in open-environment interactions, exhibiting clear limitations in spatial reasoning and long-horizon planning. To address this gap, we introduce EmRACE-3K, a dataset of over 3,000 language-guided tasks situated in diverse, photorealistic environments constructed using Unreal Engine and the UnrealCV-Zoo framework. The tasks encompass a wide range of embodied challenges, including navigation, object manipulation, and multi-stage goal execution. Each task unfolds as a multi-step trajectory, pairing first-person visual observations with high-level instructions, grounded actions, and natural language rationales that express the agent's intent at every step. Using EmRACE-3K, we establish a benchmark to evaluate the embodied reasoning capabilities of VLMs across three key dimensions: Exploration, Dynamic Spatial-Semantic Reasoning, and Multi-stage Goal Execution. In zero-shot settings, all models achieve success rates below 20%, underscoring the challenge posed by our benchmark and the current limitations of VLMs in interactive environments. To demonstrate the utility of EmRACE-3K, we further fine-tune Qwen2.5-VL-7B using supervised learning followed by reinforcement learning. This approach yields substantial improvements across all three challenge categories, highlighting the dataset's effectiveness in enabling the development of embodied reasoning capabilities.

Authors:Shivangi Aneja, Sebastian Weiss, Irene Baeza, Prashanth Chandran, Gaspard Zoss, Matthias Nießner, Derek Bradley
Title: ScaffoldAvatar: High-Fidelity Gaussian Avatars with Patch Expressions
Abstract:
Generating high-fidelity real-time animated sequences of photorealistic 3D head avatars is important for many graphics applications, including immersive telepresence and movies. This is a challenging problem particularly when rendering digital avatar close-ups for showing character's facial microfeatures and expressions. To capture the expressive, detailed nature of human heads, including skin furrowing and finer-scale facial movements, we propose to couple locally-defined facial expressions with 3D Gaussian splatting to enable creating ultra-high fidelity, expressive and photorealistic 3D head avatars. In contrast to previous works that operate on a global expression space, we condition our avatar's dynamics on patch-based local expression features and synthesize 3D Gaussians at a patch level. In particular, we leverage a patch-based geometric 3D face model to extract patch expressions and learn how to translate these into local dynamic skin appearance and motion by coupling the patches with anchor points of Scaffold-GS, a recent hierarchical scene representation. These anchors are then used to synthesize 3D Gaussians on-the-fly, conditioned by patch-expressions and viewing direction. We employ color-based densification and progressive training to obtain high-quality results and faster convergence for high resolution 3K training images. By leveraging patch-level expressions, ScaffoldAvatar consistently achieves state-of-the-art performance with visually natural motion, while encompassing diverse facial expressions and styles in real time.

Authors:Chenyu Lian, Hong-Yu Zhou, Zhanli Hu, Jing Qin
Title: BenchReAD: A systematic benchmark for retinal anomaly detection
Abstract:
Retinal anomaly detection plays a pivotal role in screening ocular and systemic diseases. Despite its significance, progress in the field has been hindered by the absence of a comprehensive and publicly available benchmark, which is essential for the fair evaluation and advancement of methodologies. Due to this limitation, previous anomaly detection work related to retinal images has been constrained by (1) a limited and overly simplistic set of anomaly types, (2) test sets that are nearly saturated, and (3) a lack of generalization evaluation, resulting in less convincing experimental setups. Furthermore, existing benchmarks in medical anomaly detection predominantly focus on one-class supervised approaches (training only with negative samples), overlooking the vast amounts of labeled abnormal data and unlabeled data that are commonly available in clinical practice. To bridge these gaps, we introduce a benchmark for retinal anomaly detection, which is comprehensive and systematic in terms of data and algorithm. Through categorizing and benchmarking previous methods, we find that a fully supervised approach leveraging disentangled representations of abnormalities (DRA) achieves the best performance but suffers from significant drops in performance when encountering certain unseen anomalies. Inspired by the memory bank mechanisms in one-class supervised learning, we propose NFM-DRA, which integrates DRA with a Normal Feature Memory to mitigate the performance degradation, establishing a new SOTA. The benchmark is publicly available at https://github.com/DopamineLcy/BenchReAD.

Authors:Zhicun Yin, Junjie Chen, Ming Liu, Zhixin Wang, Fan Li, Renjing Pei, Xiaoming Li, Rynson W. H. Lau, Wangmeng Zuo
Title: RefSTAR: Blind Facial Image Restoration with Reference Selection, Transfer, and Reconstruction
Abstract:
Blind facial image restoration is highly challenging due to unknown complex degradations and the sensitivity of humans to faces. Although existing methods introduce auxiliary information from generative priors or high-quality reference images, they still struggle with identity preservation problems, mainly due to improper feature introduction on detailed textures. In this paper, we focus on effectively incorporating appropriate features from high-quality reference images, presenting a novel blind facial image restoration method that considers reference selection, transfer, and reconstruction (RefSTAR). In terms of selection, we construct a reference selection (RefSel) module. For training the RefSel module, we construct a RefSel-HQ dataset through a mask generation pipeline, which contains annotating masks for 10,000 ground truth-reference pairs. As for the transfer, due to the trivial solution in vanilla cross-attention operations, a feature fusion paradigm is designed to force the features from the reference to be integrated. Finally, we propose a reference image reconstruction mechanism that further ensures the presence of reference image features in the output image. The cycle consistency loss is also redesigned in conjunction with the mask. Extensive experiments on various backbone models demonstrate superior performance, showing better identity preservation ability and reference feature transfer quality. Source code, dataset, and pre-trained models are available at https://github.com/yinzhicun/RefSTAR.

Authors:Shanshan Zhong, Jiawei Peng, Zehan Zheng, Zhongzhan Huang, Wufei Ma, Guofeng Zhang, Qihao Liu, Alan Yuille, Jieneng Chen
Title: 4D-Animal: Freely Reconstructing Animatable 3D Animals from Videos
Abstract:
Existing methods for reconstructing animatable 3D animals from videos typically rely on sparse semantic keypoints to fit parametric models. However, obtaining such keypoints is labor-intensive, and keypoint detectors trained on limited animal data are often unreliable. To address this, we propose 4D-Animal, a novel framework that reconstructs animatable 3D animals from videos without requiring sparse keypoint annotations. Our approach introduces a dense feature network that maps 2D representations to SMAL parameters, enhancing both the efficiency and stability of the fitting process. Furthermore, we develop a hierarchical alignment strategy that integrates silhouette, part-level, pixel-level, and temporal cues from pre-trained 2D visual models to produce accurate and temporally coherent reconstructions across frames. Extensive experiments demonstrate that 4D-Animal outperforms both model-based and model-free baselines. Moreover, the high-quality 3D assets generated by our method can benefit other 3D tasks, underscoring its potential for large-scale applications. The code is released at https://github.com/zhongshsh/4D-Animal.

Authors:Qiang Li, Qingsen Yan, Haojian Huang, Peng Wu, Haokui Zhang, Yanning Zhang
Title: Text-Visual Semantic Constrained AI-Generated Image Quality Assessment
Abstract:
With the rapid advancements in Artificial Intelligence Generated Image (AGI) technology, the accurate assessment of their quality has become an increasingly vital requirement. Prevailing methods typically rely on cross-modal models like CLIP or BLIP to evaluate text-image alignment and visual quality. However, when applied to AGIs, these methods encounter two primary challenges: semantic misalignment and details perception missing. To address these limitations, we propose Text-Visual Semantic Constrained AI-Generated Image Quality Assessment (SC-AGIQA), a unified framework that leverages text-visual semantic constraints to significantly enhance the comprehensive evaluation of both text-image consistency and perceptual distortion in AI-generated images. Our approach integrates key capabilities from multiple models and tackles the aforementioned challenges by introducing two core modules: the Text-assisted Semantic Alignment Module (TSAM), which leverages Multimodal Large Language Models (MLLMs) to bridge the semantic gap by generating an image description and comparing it against the original prompt for a refined consistency check, and the Frequency-domain Fine-Grained Degradation Perception Module (FFDPM), which draws inspiration from Human Visual System (HVS) properties by employing frequency domain analysis combined with perceptual sensitivity weighting to better quantify subtle visual distortions and enhance the capture of fine-grained visual quality details in images. Extensive experiments conducted on multiple benchmark datasets demonstrate that SC-AGIQA outperforms existing state-of-the-art methods. The code is publicly available at https://github.com/mozhu1/SC-AGIQA.

Authors:Utkarsh Singhal, Ryan Feng, Stella X. Yu, Atul Prakash
Title: Test-Time Canonicalization by Foundation Models for Robust Perception
Abstract:
Perception in the real world requires robustness to diverse viewing conditions. Existing approaches often rely on specialized architectures or training with predefined data augmentations, limiting adaptability. Taking inspiration from mental rotation in human vision, we propose FOCAL, a test-time robustness framework that transforms the input into the most typical view. At inference time, FOCAL explores a set of transformed images and chooses the one with the highest likelihood under foundation model priors. This test-time optimization boosts robustness while requiring no retraining or architectural changes. Applied to models like CLIP and SAM, it significantly boosts robustness across a wide range of transformations, including 2D and 3D rotations, contrast and lighting shifts, and day-night changes. We also explore potential applications in active vision. By reframing invariance as a test-time optimization problem, FOCAL offers a general and scalable approach to robustness. Our code is available at: https://github.com/sutkarsh/focal.

Authors:Jiahe Zhao, Rongkun Zheng, Yi Wang, Helin Wang, Hengshuang Zhao
Title: DisCo: Towards Distinct and Coherent Visual Encapsulation in Video MLLMs
Abstract:
In video Multimodal Large Language Models (video MLLMs), the visual encapsulation process plays a pivotal role in converting video contents into representative tokens for LLM input. While linear projectors are widely employed for encapsulation, they introduce semantic indistinctness and temporal incoherence when applied to videos. Conversely, the structure of resamplers shows promise in tackling these challenges, but an effective solution remains unexplored. Drawing inspiration from resampler structures, we introduce DisCo, a novel visual encapsulation method designed to yield semantically distinct and temporally coherent visual tokens for video MLLMs. DisCo integrates two key components: (1) A Visual Concept Discriminator (VCD) module, assigning unique semantics for visual tokens by associating them in pair with discriminative concepts in the video. (2) A Temporal Focus Calibrator (TFC) module, ensuring consistent temporal focus of visual tokens to video elements across every video frame. Through extensive experiments on multiple video MLLM frameworks, we demonstrate that DisCo remarkably outperforms previous state-of-the-art methods across a variety of video understanding benchmarks, while also achieving higher token efficiency thanks to the reduction of semantic indistinctness. The code: https://github.com/ZJHTerry18/DisCo.

Authors:Muyi Bao, Changyu Zeng, Yifan Wang, Zhengni Yang, Zimu Wang, Guangliang Cheng, Jun Qi, Wei Wang
Title: FTCFormer: Fuzzy Token Clustering Transformer for Image Classification
Abstract:
Transformer-based deep neural networks have achieved remarkable success across various computer vision tasks, largely attributed to their long-range self-attention mechanism and scalability. However, most transformer architectures embed images into uniform, grid-based vision tokens, neglecting the underlying semantic meanings of image regions, resulting in suboptimal feature representations. To address this issue, we propose Fuzzy Token Clustering Transformer (FTCFormer), which incorporates a novel clustering-based downsampling module to dynamically generate vision tokens based on the semantic meanings instead of spatial positions. It allocates fewer tokens to less informative regions and more to represent semantically important regions, regardless of their spatial adjacency or shape irregularity. To further enhance feature extraction and representation, we propose a Density Peak Clustering-Fuzzy K-Nearest Neighbor (DPC-FKNN) mechanism for clustering center determination, a Spatial Connectivity Score (SCS) for token assignment, and a channel-wise merging (Cmerge) strategy for token merging. Extensive experiments on 32 datasets across diverse domains validate the effectiveness of FTCFormer on image classification, showing consistent improvements over the TCFormer baseline, achieving gains of improving 1.43% on five fine-grained datasets, 1.09% on six natural image datasets, 0.97% on three medical datasets and 0.55% on four remote sensing datasets. The code is available at: https://github.com/BaoBao0926/FTCFormer/tree/main.

Authors:Xinlong Ding, Hongwei Yu, Jiawei Li, Feifan Li, Yu Shang, Bochao Zou, Huimin Ma, Jiansheng Chen
Title: Kaleidoscopic Background Attack: Disrupting Pose Estimation with Multi-Fold Radial Symmetry Textures
Abstract:
Camera pose estimation is a fundamental computer vision task that is essential for applications like visual localization and multi-view stereo reconstruction. In the object-centric scenarios with sparse inputs, the accuracy of pose estimation can be significantly influenced by background textures that occupy major portions of the images across different viewpoints. In light of this, we introduce the Kaleidoscopic Background Attack (KBA), which uses identical segments to form discs with multi-fold radial symmetry. These discs maintain high similarity across different viewpoints, enabling effective attacks on pose estimation models even with natural texture segments. Additionally, a projected orientation consistency loss is proposed to optimize the kaleidoscopic segments, leading to significant enhancement in the attack effectiveness. Experimental results show that optimized adversarial kaleidoscopic backgrounds can effectively attack various camera pose estimation models.

Authors:Jinglun Li, Kaixun Jiang, Zhaoyu Chen, Bo Lin, Yao Tang, Weifeng Ge, Wenqiang Zhang
Title: Synthesizing Near-Boundary OOD Samples for Out-of-Distribution Detection
Abstract:
Pre-trained vision-language models have exhibited remarkable abilities in detecting out-of-distribution (OOD) samples. However, some challenging OOD samples, which lie close to in-distribution (InD) data in image feature space, can still lead to misclassification. The emergence of foundation models like diffusion models and multimodal large language models (MLLMs) offers a potential solution to this issue. In this work, we propose SynOOD, a novel approach that harnesses foundation models to generate synthetic, challenging OOD data for fine-tuning CLIP models, thereby enhancing boundary-level discrimination between InD and OOD samples. Our method uses an iterative in-painting process guided by contextual prompts from MLLMs to produce nuanced, boundary-aligned OOD samples. These samples are refined through noise adjustments based on gradients from OOD scores like the energy score, effectively sampling from the InD/OOD boundary. With these carefully synthesized images, we fine-tune the CLIP image encoder and negative label features derived from the text encoder to strengthen connections between near-boundary OOD samples and a set of negative labels. Finally, SynOOD achieves state-of-the-art performance on the large-scale ImageNet benchmark, with minimal increases in parameters and runtime. Our approach significantly surpasses existing methods, and the code is available at https://github.com/Jarvisgivemeasuit/SynOOD.

Authors:Xiangyu Yin, Boyuan Yang, Weichen Liu, Qiyao Xue, Abrar Alamri, Goeran Fiedler, Wei Gao
Title: ProGait: A Multi-Purpose Video Dataset and Benchmark for Transfemoral Prosthesis Users
Abstract:
Prosthetic legs play a pivotal role in clinical rehabilitation, allowing individuals with lower-limb amputations the ability to regain mobility and improve their quality of life. Gait analysis is fundamental for optimizing prosthesis design and alignment, directly impacting the mobility and life quality of individuals with lower-limb amputations. Vision-based machine learning (ML) methods offer a scalable and non-invasive solution to gait analysis, but face challenges in correctly detecting and analyzing prosthesis, due to their unique appearances and new movement patterns. In this paper, we aim to bridge this gap by introducing a multi-purpose dataset, namely ProGait, to support multiple vision tasks including Video Object Segmentation, 2D Human Pose Estimation, and Gait Analysis (GA). ProGait provides 412 video clips from four above-knee amputees when testing multiple newly-fitted prosthetic legs through walking trials, and depicts the presence, contours, poses, and gait patterns of human subjects with transfemoral prosthetic legs. Alongside the dataset itself, we also present benchmark tasks and fine-tuned baseline models to illustrate the practical application and performance of the ProGait dataset. We compared our baseline models against pre-trained vision models, demonstrating improved generalizability when applying the ProGait dataset for prosthesis-specific tasks. Our code is available at https://github.com/pittisl/ProGait and dataset at https://huggingface.co/datasets/ericyxy98/ProGait.

Authors:Shicai Wei, Chunbo Luo, Yang Luo
Title: Boosting Multimodal Learning via Disentangled Gradient Learning
Abstract:
Multimodal learning often encounters the under-optimized problem and may have worse performance than unimodal learning. Existing methods attribute this problem to the imbalanced learning between modalities and rebalance them through gradient modulation. However, they fail to explain why the dominant modality in multimodal models also underperforms that in unimodal learning. In this work, we reveal the optimization conflict between the modality encoder and modality fusion module in multimodal models. Specifically, we prove that the cross-modal fusion in multimodal models decreases the gradient passed back to each modality encoder compared with unimodal models. Consequently, the performance of each modality in the multimodal model is inferior to that in the unimodal model. To this end, we propose a disentangled gradient learning (DGL) framework to decouple the optimization of the modality encoder and modality fusion module in the multimodal model. DGL truncates the gradient back-propagated from the multimodal loss to the modality encoder and replaces it with the gradient from unimodal loss. Besides, DGL removes the gradient back-propagated from the unimodal loss to the modality fusion module. This helps eliminate the gradient interference between the modality encoder and modality fusion module while ensuring their respective optimization processes. Finally, extensive experiments on multiple types of modalities, tasks, and frameworks with dense cross-modal interaction demonstrate the effectiveness and versatility of the proposed DGL. Code is available at \href{https://github.com/shicaiwei123/ICCV2025-GDL}{https://github.com/shicaiwei123/ICCV2025-GDL}

Authors:Huai-Qian Khor, Yante Li, Xingxun Jiang, Guoying Zhao
Title: Is Micro-expression Ethnic Leaning?
Abstract:
How much does ethnicity play its part in emotional expression? Emotional expression and micro-expression research probe into understanding human psychological responses to emotional stimuli, thereby revealing substantial hidden yet authentic emotions that can be useful in the event of diagnosis and interviews. While increased attention had been provided to micro-expression analysis, the studies were done under Ekman's assumption of emotion universality, where emotional expressions are identical across cultures and social contexts. Our computational study uncovers some of the influences of ethnic background in expression analysis, leading to an argument that the emotional universality hypothesis is an overgeneralization from the perspective of manual psychological analysis. In this research, we propose to investigate the level of influence of ethnicity in a simulated micro-expression scenario. We construct a cross-cultural micro-expression database and algorithmically annotate the ethnic labels to facilitate the investigation. With the ethnically annotated dataset, we perform a prima facie study to compare mono-ethnicity and stereo-ethnicity in a controlled environment, which uncovers a certain influence of ethnic bias via an experimental way. Building on this finding, we propose a framework that integrates ethnic context into the emotional feature learning process, yielding an ethnically aware framework that recognises ethnicity differences in micro-expression recognition. For improved understanding, qualitative analyses have been done to solidify the preliminary investigation into this new realm of research. Code is publicly available at https://github.com/IcedDoggie/ICMEW2025_EthnicMER

Authors:Shicai Wei, Chunbo Luo, Yang Luo
Title: Improving Multimodal Learning via Imbalanced Learning
Abstract:
Multimodal learning often encounters the under-optimized problem and may perform worse than unimodal learning. Existing approaches attribute this issue to imbalanced learning across modalities and tend to address it through gradient balancing. However, this paper argues that balanced learning is not the optimal setting for multimodal learning. With bias-variance analysis, we prove that imbalanced dependency on each modality obeying the inverse ratio of their variances contributes to optimal performance. To this end, we propose the Asymmetric Representation Learning(ARL) strategy to assist multimodal learning via imbalanced optimization. ARL introduces auxiliary regularizers for each modality encoder to calculate their prediction variance. ARL then calculates coefficients via the unimodal variance to re-weight the optimization of each modality, forcing the modality dependence ratio to be inversely proportional to the modality variance ratio. Moreover, to minimize the generalization error, ARL further introduces the prediction bias of each modality and jointly optimizes them with multimodal loss. Notably, all auxiliary regularizers share parameters with the multimodal model and rely only on the modality representation. Thus the proposed ARL strategy introduces no extra parameters and is independent of the structures and fusion methods of the multimodal model. Finally, extensive experiments on various datasets validate the effectiveness and versatility of ARL. Code is available at \href{https://github.com/shicaiwei123/ICCV2025-ARL}{https://github.com/shicaiwei123/ICCV2025-ARL}

Authors:Jaeseong Lee, Yeeun Choi, Heechan Choi, Hanjung Kim, Seonjoo Kim
Title: A Training-Free, Task-Agnostic Framework for Enhancing MLLM Performance on High-Resolution Images
Abstract:
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in vision-language understanding, reasoning, and generation. However, they struggle with tasks requiring fine-grained localization and reasoning in high-resolution images. This constraint stems from the fact that MLLMs are fine-tuned with fixed image resolution to align with the pre-trained image encoder used in MLLM. Consequently, feeding high-resolution images directly into MLLMs leads to poor generalization due to a train-test resolution discrepancy, while downsampling these images-although ensuring consistency-compromises fine-grained visual details and ultimately degrades performance. To address this challenge, we propose Extract Candidate then Predict (ECP), a novel training-free, task-agnostic two-stage framework designed to enhance MLLM performance on high-resolution images. The key intuition behind ECP is that while MLLMs struggle with high-resolution images, their predictions on downsampled images still contain implicit localization cues. By first identifying candidate region using the coarse prediction and then predicting the final output based on candidate region, ECP effectively preserves fine-grained details while mitigating the challenges posed by high-resolution data. We validate our framework on 4K GUI grounding and 4K, 8K MLLM perception, achieving +21.3%, +5.8%, +5.2% absolute improvement compared to baseline respectively, demonstrating its effectiveness. Code is available at https://github.com/yenncye/ECP.

Authors:Shuyu Yang, Yaxiong Wang, Yongrui Li, Li Zhu, Zhedong Zheng
Title: Minimizing the Pretraining Gap: Domain-aligned Text-Based Person Retrieval
Abstract:
In this work, we focus on text-based person retrieval, which aims to identify individuals based on textual descriptions. Given the significant privacy issues and the high cost associated with manual annotation, synthetic data has become a popular choice for pretraining models, leading to notable advancements. However, the considerable domain gap between synthetic pretraining datasets and real-world target datasets, characterized by differences in lighting, color, and viewpoint, remains a critical obstacle that hinders the effectiveness of the pretrain-finetune paradigm. To bridge this gap, we introduce a unified text-based person retrieval pipeline considering domain adaptation at both image and region levels. In particular, it contains two primary components, i.e., Domain-aware Diffusion (DaD) for image-level adaptation and Multi-granularity Relation Alignment (MRA) for region-level adaptation. As the name implies, Domain-aware Diffusion is to migrate the distribution of images from the pretraining dataset domain to the target real-world dataset domain, e.g., CUHK-PEDES. Subsequently, MRA performs a meticulous region-level alignment by establishing correspondences between visual regions and their descriptive sentences, thereby addressing disparities at a finer granularity. Extensive experiments show that our dual-level adaptation method has achieved state-of-the-art results on the CUHK-PEDES, ICFG-PEDES, and RSTPReid datasets, outperforming existing methodologies. The dataset, model, and code are available at https://github.com/Shuyu-XJTU/MRA.

Authors:Ivan Martinović, Josip Šarić, Marin Oršić, Matej Kristan, Siniša Šegvić
Title: DEARLi: Decoupled Enhancement of Recognition and Localization for Semi-supervised Panoptic Segmentation
Abstract:
Pixel-level annotation is expensive and time-consuming. Semi-supervised segmentation methods address this challenge by learning models on few labeled images alongside a large corpus of unlabeled images. Although foundation models could further account for label scarcity, effective mechanisms for their exploitation remain underexplored. We address this by devising a novel semi-supervised panoptic approach fueled by two dedicated foundation models. We enhance recognition by complementing unsupervised mask-transformer consistency with zero-shot classification of CLIP features. We enhance localization by class-agnostic decoder warm-up with respect to SAM pseudo-labels. The resulting decoupled enhancement of recognition and localization (DEARLi) particularly excels in the most challenging semi-supervised scenarios with large taxonomies and limited labeled data. Moreover, DEARLi outperforms the state of the art in semi-supervised semantic segmentation by a large margin while requiring 8x less GPU memory, in spite of being trained only for the panoptic objective. We observe 29.9 PQ and 38.9 mIoU on ADE20K with only 158 labeled images. The source code is available at https://github.com/helen1c/DEARLi.

Authors:Bingchao Wang, Zhiwei Ning, Jianyu Ding, Xuanang Gao, Yin Li, Dongsheng Jiang, Jie Yang, Wei Liu
Title: FIX-CLIP: Dual-Branch Hierarchical Contrastive Learning via Synthetic Captions for Better Understanding of Long Text
Abstract:
CLIP has shown promising performance across many short-text tasks in a zero-shot manner. However, limited by the input length of the text encoder, CLIP struggles on under-stream tasks with long-text inputs ($>77$ tokens). To remedy this issue, we propose FIX-CLIP, which includes three novel modules: (1) A dual-branch training pipeline that aligns short and long texts with masked and raw images, respectively, which boosts the long-text representation while preserving the short-text ability. (2) Multiple learnable regional prompts with unidirectional masks in Transformer layers for regional information extraction. (3) A hierarchical feature alignment module in the intermediate encoder layers to promote the consistency of multi-scale features. Furthermore, we collect 30M images and utilize existing MLLMs to synthesize long-text captions for training. Extensive experiments show that FIX-CLIP achieves state-of-the-art performance on both long-text and short-text retrieval benchmarks. For downstream applications, we reveal that FIX-CLIP's text encoder delivers promising performance in a plug-and-play manner for diffusion models with long-text input. The code is available at https://github.com/bcwang-sjtu/Fix-CLIP.

Authors:Meng Yu, Kun Zhan
Title: Frequency Regulation for Exposure Bias Mitigation in Diffusion Models
Abstract:
Diffusion models exhibit impressive generative capabilities but are significantly impacted by exposure bias. In this paper, we make a key observation: the energy of predicted noisy samples in the reverse process continuously declines compared to perturbed samples in the forward process. Building on this, we identify two important findings: 1) The reduction in energy follows distinct patterns in the low-frequency and high-frequency subbands; 2) The subband energy of reverse-process reconstructed samples is consistently lower than that of forward-process ones, and both are lower than the original data samples. Based on the first finding, we introduce a dynamic frequency regulation mechanism utilizing wavelet transforms, which separately adjusts the low- and high-frequency subbands. Leveraging the second insight, we derive the rigorous mathematical form of exposure bias. It is worth noting that, our method is training-free and plug-and-play, significantly improving the generative quality of various diffusion models and frameworks with negligible computational cost. The source code is available at https://github.com/kunzhan/wpp.

Authors:Chenguo Lin, Yuchen Lin, Panwang Pan, Yifan Yu, Honglei Yan, Katerina Fragkiadaki, Yadong Mu
Title: MoVieS: Motion-Aware 4D Dynamic View Synthesis in One Second
Abstract:
We present MoVieS, a novel feed-forward model that synthesizes 4D dynamic novel views from monocular videos in one second. MoVieS represents dynamic 3D scenes using pixel-aligned grids of Gaussian primitives, explicitly supervising their time-varying motion. This allows, for the first time, the unified modeling of appearance, geometry and motion, and enables view synthesis, reconstruction and 3D point tracking within a single learning-based framework. By bridging novel view synthesis with dynamic geometry reconstruction, MoVieS enables large-scale training on diverse datasets with minimal dependence on task-specific supervision. As a result, it also naturally supports a wide range of zero-shot applications, such as scene flow estimation and moving object segmentation. Extensive experiments validate the effectiveness and efficiency of MoVieS across multiple tasks, achieving competitive performance while offering several orders of magnitude speedups.

Authors:Xianghong Zou, Jianping Li, Zhe Chen, Zhen Cao, Zhen Dong, Qiegen Liu, Bisheng Yang
Title: LifelongPR: Lifelong point cloud place recognition based on sample replay and prompt learning
Abstract:
Point cloud place recognition (PCPR) determines the geo-location within a prebuilt map and plays a crucial role in geoscience and robotics applications such as autonomous driving, intelligent transportation, and augmented reality. In real-world large-scale deployments of a geographic positioning system, PCPR models must continuously acquire, update, and accumulate knowledge to adapt to diverse and dynamic environments, i.e., the ability known as continual learning (CL). However, existing PCPR models often suffer from catastrophic forgetting, leading to significant performance degradation in previously learned scenes when adapting to new environments or sensor types. This results in poor model scalability, increased maintenance costs, and system deployment difficulties, undermining the practicality of PCPR. To address these issues, we propose LifelongPR, a novel continual learning framework for PCPR, which effectively extracts and fuses knowledge from sequential point cloud data. First, to alleviate the knowledge loss, we propose a replay sample selection method that dynamically allocates sample sizes according to each dataset's information quantity and selects spatially diverse samples for maximal representativeness. Second, to handle domain shifts, we design a prompt learning-based CL framework with a lightweight prompt module and a two-stage training strategy, enabling domain-specific feature adaptation while minimizing forgetting. Comprehensive experiments on large-scale public and self-collected datasets are conducted to validate the effectiveness of the proposed method. Compared with state-of-the-art (SOTA) methods, our method achieves 6.50% improvement in mIR@1, 7.96% improvement in mR@1, and an 8.95% reduction in F. The code and pre-trained models are publicly available at https://github.com/zouxianghong/LifelongPR.

Authors:Shubham Shukla, Kunal Sonalkar
Title: Can GPT-4o mini and Gemini 2.0 Flash Predict Fine-Grained Fashion Product Attributes? A Zero-Shot Analysis
Abstract:
The fashion retail business is centered around the capacity to comprehend products. Product attribution helps in comprehending products depending on the business process. Quality attribution improves the customer experience as they navigate through millions of products offered by a retail website. It leads to well-organized product catalogs. In the end, product attribution directly impacts the 'discovery experience' of the customer. Although large language models (LLMs) have shown remarkable capabilities in understanding multimodal data, their performance on fine-grained fashion attribute recognition remains under-explored. This paper presents a zero-shot evaluation of state-of-the-art LLMs that balance performance with speed and cost efficiency, mainly GPT-4o-mini and Gemini 2.0 Flash. We have used the dataset DeepFashion-MultiModal (https://github.com/yumingj/DeepFashion-MultiModal) to evaluate these models in the attribution tasks of fashion products. Our study evaluates these models across 18 categories of fashion attributes, offering insight into where these models excel. We only use images as the sole input for product information to create a constrained environment. Our analysis shows that Gemini 2.0 Flash demonstrates the strongest overall performance with a macro F1 score of 56.79% across all attributes, while GPT-4o-mini scored a macro F1 score of 43.28%. Through detailed error analysis, our findings provide practical insights for deploying these LLMs in production e-commerce product attribution-related tasks and highlight the need for domain-specific fine-tuning approaches. This work also lays the groundwork for future research in fashion AI and multimodal attribute extraction.

Authors:Huilai Li, Yonghao Dang, Ying Xing, Yiming Wang, Jianqin Yin
Title: ESG-Net: Event-Aware Semantic Guided Network for Dense Audio-Visual Event Localization
Abstract:
Dense audio-visual event localization (DAVE) aims to identify event categories and locate the temporal boundaries in untrimmed videos. Most studies only employ event-related semantic constraints on the final outputs, lacking cross-modal semantic bridging in intermediate layers. This causes modality semantic gap for further fusion, making it difficult to distinguish between event-related content and irrelevant background content. Moreover, they rarely consider the correlations between events, which limits the model to infer concurrent events among complex scenarios. In this paper, we incorporate multi-stage semantic guidance and multi-event relationship modeling, which respectively enable hierarchical semantic understanding of audio-visual events and adaptive extraction of event dependencies, thereby better focusing on event-related information. Specifically, our eventaware semantic guided network (ESG-Net) includes a early semantics interaction (ESI) module and a mixture of dependency experts (MoDE) module. ESI applys multi-stage semantic guidance to explicitly constrain the model in learning semantic information through multi-modal early fusion and several classification loss functions, ensuring hierarchical understanding of event-related content. MoDE promotes the extraction of multi-event dependencies through multiple serial mixture of experts with adaptive weight allocation. Extensive experiments demonstrate that our method significantly surpasses the state-of-the-art methods, while greatly reducing parameters and computational load. Our code will be released on https://github.com/uchiha99999/ESG-Net.

Authors:Zhanjiang Yang, Lijun Sun, Jiawei Dong, Xiaoxin An, Yang Liu, Meng Li
Title: MCGA: Mixture of Codebooks Hyperspectral Reconstruction via Grayscale-Aware Attention
Abstract:
Reconstructing hyperspectral images (HSIs) from RGB inputs provides a cost-effective alternative to hyperspectral cameras, but reconstructing high-dimensional spectra from three channels is inherently ill-posed. Existing methods typically directly regress RGB-to-HSI mappings using large attention networks, which are computationally expensive and handle ill-posedness only implicitly. We propose MCGA, a Mixture-of-Codebooks with Grayscale-aware Attention framework that explicitly addresses these challenges using spectral priors and photometric consistency. MCGA first learns transferable spectral priors via a mixture-of-codebooks (MoC) from heterogeneous HSI datasets, then aligns RGB features with these priors through grayscale-aware photometric attention (GANet). Efficiency and robustness are further improved via top-K attention design and test-time adaptation (TTA). Experiments on benchmarks and real-world data demonstrate the state-of-the-art accuracy, strong cross-dataset generalization, and 4-5x faster inference. Codes will be available once acceptance at https://github.com/Fibonaccirabbit/MCGA.

Authors:Youliang Zhang, Zhaoyang Li, Duomin Wang, Jiahe Zhang, Deyu Zhou, Zixin Yin, Xili Dai, Gang Yu, Xiu Li
Title: SpeakerVid-5M: A Large-Scale High-Quality Dataset for Audio-Visual Dyadic Interactive Human Generation
Abstract:
The rapid development of large-scale models has catalyzed significant breakthroughs in the digital human domain. These advanced methodologies offer high-fidelity solutions for avatar driving and rendering, leading academia to focus on the next major challenge: audio-visual dyadic interactive virtual human. To facilitate research in this emerging area, we present SpeakerVid-5M dataset, the first large-scale, high-quality dataset designed for audio-visual dyadic interactive virtual human generation. Totaling over 8,743 hours, SpeakerVid-5M contains more than 5.2 million video clips of human portraits. It covers diverse scales and interaction types, including monadic talking, listening, and dyadic conversations. Crucially, the dataset is structured along two key dimensions: interaction type and data quality. First, it is categorized into four types (dialogue branch, single branch, listening branch and multi-turn branch) based on the interaction scenario. Second, it is stratified into a large-scale pre-training subset and a curated, high-quality subset for Supervised Fine-Tuning (SFT). This dual structure accommodates a wide array of 2D virtual human tasks. In addition, we provide an autoregressive (AR)-based video chat baseline trained on this data, accompanied by a dedicated set of metrics and test data to serve as a benchmark VidChatBench for future work. Both the dataset and the corresponding data processing code will be publicly released. Project page: https://dorniwang.github.io/SpeakerVid-5M/

Authors:Amirhossein Ansari, Ke Wang, Pulei Xiong
Title: NegRefine: Refining Negative Label-Based Zero-Shot OOD Detection
Abstract:
Recent advancements in Vision-Language Models like CLIP have enabled zero-shot OOD detection by leveraging both image and textual label information. Among these, negative label-based methods such as NegLabel and CSP have shown promising results by utilizing a lexicon of words to define negative labels for distinguishing OOD samples. However, these methods suffer from detecting in-distribution samples as OOD due to negative labels that are subcategories of in-distribution labels or proper nouns. They also face limitations in handling images that match multiple in-distribution and negative labels. We propose NegRefine, a novel negative label refinement framework for zero-shot OOD detection. By introducing a filtering mechanism to exclude subcategory labels and proper nouns from the negative label set and incorporating a multi-matching-aware scoring function that dynamically adjusts the contributions of multiple labels matching an image, NegRefine ensures a more robust separation between in-distribution and OOD samples. We evaluate NegRefine on large-scale benchmarks, including ImageNet-1K. The code is available at https://github.com/ah-ansari/NegRefine.

Authors:Abdul Manaf, Nimra Mughal
Title: AI-Enhanced Pediatric Pneumonia Detection: A CNN-Based Approach Using Data Augmentation and Generative Adversarial Networks (GANs)
Abstract:
Pneumonia is a leading cause of mortality in children under five, requiring accurate chest X-ray diagnosis. This study presents a machine learning-based Pediatric Chest Pneumonia Classification System to assist healthcare professionals in diagnosing pneumonia from chest X-ray images. The CNN-based model was trained on 5,863 labeled chest X-ray images from children aged 0-5 years from the Guangzhou Women and Children's Medical Center. To address limited data, we applied augmentation techniques (rotation, zooming, shear, horizontal flipping) and employed GANs to generate synthetic images, addressing class imbalance. The system achieved optimal performance using combined original, augmented, and GAN-generated data, evaluated through accuracy and F1 score metrics. The final model was deployed via a Flask web application, enabling real-time classification with probability estimates. Results demonstrate the potential of deep learning and GANs in improving diagnostic accuracy and efficiency for pediatric pneumonia classification, particularly valuable in resource-limited clinical settings https://github.com/AbdulManaf12/Pediatric-Chest-Pneumonia-Classification

Authors:Osher Rafaeli, Tal Svoray, Ariel Nahlieli
Title: Prompt2DEM: High-Resolution DEMs for Urban and Open Environments from Global Prompts Using a Monocular Foundation Model
Abstract:
High-resolution elevation estimations are essential to understand catchment and hillslope hydrology, study urban morphology and dynamics, and monitor the growth, decline, and mortality of terrestrial ecosystems. Various deep learning approaches (e.g., super-resolution techniques, monocular depth estimation) have been developed to create high-resolution Digital Elevation Models (DEMs). However, super-resolution techniques are limited by the upscaling factor, and monocular depth estimation lacks global elevation context, making its conversion to a seamless DEM restricted. The recently introduced technique of prompt-based monocular depth estimation has opened new opportunities to extract estimates of absolute elevation in a global context. We present here a framework for the estimation of high-resolution DEMs as a new paradigm for absolute global elevation mapping. It is exemplified using low-resolution Shuttle Radar Topography Mission (SRTM) elevation data as prompts and high-resolution RGB imagery from the National Agriculture Imagery Program (NAIP). The approach fine-tunes a vision transformer encoder with LiDAR-derived DEMs and employs a versatile prompting strategy, enabling tasks such as DEM estimation, void filling, and updating. Our framework achieves a 100x resolution gain (from 30-m to 30-cm), surpassing prior methods by an order of magnitude. Evaluations across three diverse U.S. landscapes show robust generalization, capturing urban structures and fine-scale terrain features with < 5 m MAE relative to LiDAR, improving over SRTM by up to 18%. Hydrological analysis confirms suitability for hazard and environmental studies. We demonstrate scalability by applying the framework to large regions in the U.S. and Israel. All code and pretrained models are publicly available at: https://osherr1996.github.io/prompt2dem_propage/.

Authors:Xinyu Zhang, Zhonghao Ye, Jingwei Zhang, Xiang Tian, Zhisheng Liang, Shipeng Yu
Title: VST-Pose: A Velocity-Integrated Spatiotem-poral Attention Network for Human WiFi Pose Estimation
Abstract:
WiFi-based human pose estimation has emerged as a promising non-visual alternative approaches due to its pene-trability and privacy advantages. This paper presents VST-Pose, a novel deep learning framework for accurate and continuous pose estimation using WiFi channel state information. The proposed method introduces ViSTA-Former, a spatiotemporal attention backbone with dual-stream architecture that adopts a dual-stream architecture to separately capture temporal dependencies and structural relationships among body joints. To enhance sensitivity to subtle human motions, a velocity modeling branch is integrated into the framework, which learns short-term keypoint dis-placement patterns and improves fine-grained motion representation. We construct a 2D pose dataset specifically designed for smart home care scenarios and demonstrate that our method achieves 92.2% accuracy on the PCK@50 metric, outperforming existing methods by 8.3% in PCK@50 on the self-collected dataset. Further evaluation on the public MMFi dataset confirms the model's robustness and effectiveness in 3D pose estimation tasks. The proposed system provides a reliable and privacy-aware solution for continuous human motion analysis in indoor environments. Our codes are available in https://github.com/CarmenQing/VST-Pose.

Authors:Zhengyuan Peng, Jianqing Xu, Shen Li, Jiazhen Ji, Yuge Huang, Jingyun Zhang, Jinmin Li, Shouhong Ding, Rizen Guo, Xin Tan, Lizhuang Ma
Title: EyeSeg: An Uncertainty-Aware Eye Segmentation Framework for AR/VR
Abstract:
Human-machine interaction through augmented reality (AR) and virtual reality (VR) is increasingly prevalent, requiring accurate and efficient gaze estimation which hinges on the accuracy of eye segmentation to enable smooth user experiences. We introduce EyeSeg, a novel eye segmentation framework designed to overcome key challenges that existing approaches struggle with: motion blur, eyelid occlusion, and train-test domain gaps. In these situations, existing models struggle to extract robust features, leading to suboptimal performance. Noting that these challenges can be generally quantified by uncertainty, we design EyeSeg as an uncertainty-aware eye segmentation framework for AR/VR wherein we explicitly model the uncertainties by performing Bayesian uncertainty learning of a posterior under the closed set prior. Theoretically, we prove that a statistic of the learned posterior indicates segmentation uncertainty levels and empirically outperforms existing methods in downstream tasks, such as gaze estimation. EyeSeg outputs an uncertainty score and the segmentation result, weighting and fusing multiple gaze estimates for robustness, which proves to be effective especially under motion blur, eyelid occlusion and cross-domain challenges. Moreover, empirical results suggest that EyeSeg achieves segmentation improvements of MIoU, E1, F1, and ACC surpassing previous approaches. The code is publicly available at https://github.com/JethroPeng/EyeSeg.

Authors:Haozhe Zhao, Zefan Cai, Shuzheng Si, Liang Chen, Jiuxiang Gu, Wen Xiao, Junjie Hu
Title: MENTOR: Efficient Multimodal-Conditioned Tuning for Autoregressive Vision Generation Models
Abstract:
Recent text-to-image models produce high-quality results but still struggle with precise visual control, balancing multimodal inputs, and requiring extensive training for complex multimodal image generation. To address these limitations, we propose MENTOR, a novel autoregressive (AR) framework for efficient Multimodal-conditioned Tuning for Autoregressive multimodal image generation. MENTOR combines an AR image generator with a two-stage training paradigm, enabling fine-grained, token-level alignment between multimodal inputs and image outputs without relying on auxiliary adapters or cross-attention modules. The two-stage training consists of: (1) a multimodal alignment stage that establishes robust pixel- and semantic-level alignment, followed by (2) a multimodal instruction tuning stage that balances the integration of multimodal inputs and enhances generation controllability. Despite modest model size, suboptimal base components, and limited training resources, MENTOR achieves strong performance on the DreamBench++ benchmark, outperforming competitive baselines in concept preservation and prompt following. Additionally, our method delivers superior image reconstruction fidelity, broad task adaptability, and improved training efficiency compared to diffusion-based methods. Dataset, code, and models are available at: https://github.com/HaozheZhao/MENTOR

Authors:Bolun Zheng, Xinjie Liu, Qianyu Zhang, Canjin Wang, Fangni Chen, Mingen Xu
Title: EHPE: A Segmented Architecture for Enhanced Hand Pose Estimation
Abstract:
3D hand pose estimation has garnered great attention in recent years due to its critical applications in human-computer interaction, virtual reality, and related fields. The accurate estimation of hand joints is essential for high-quality hand pose estimation. However, existing methods neglect the importance of Distal Phalanx Tip (TIP) and Wrist in predicting hand joints overall and often fail to account for the phenomenon of error accumulation for distal joints in gesture estimation, which can cause certain joints to incur larger errors, resulting in misalignments and artifacts in the pose estimation and degrading the overall reconstruction quality. To address this challenge, we propose a novel segmented architecture for enhanced hand pose estimation (EHPE). We perform local extraction of TIP and wrist, thus alleviating the effect of error accumulation on TIP prediction and further reduce the predictive errors for all joints on this basis. EHPE consists of two key stages: In the TIP and Wrist Joints Extraction stage (TW-stage), the positions of the TIP and wrist joints are estimated to provide an initial accurate joint configuration; In the Prior Guided Joints Estimation stage (PG-stage), a dual-branch interaction network is employed to refine the positions of the remaining joints. Extensive experiments on two widely used benchmarks demonstrate that EHPE achieves state-of-the-arts performance. Code is available at https://github.com/SereinNout/EHPE.

Authors:Ximeng Zhai, Bohan Xu, Yaohong Chen, Hao Wang, Kehua Guo, Yimian Dai
Title: SeqCSIST: Sequential Closely-Spaced Infrared Small Target Unmixing
Abstract:
Due to the limitation of the optical lens focal length and the resolution of the infrared detector, distant Closely-Spaced Infrared Small Target (CSIST) groups typically appear as mixing spots in the infrared image. In this paper, we propose a novel task, Sequential CSIST Unmixing, namely detecting all targets in the form of sub-pixel localization from a highly dense CSIST group. However, achieving such precise detection is an extremely difficult challenge. In addition, the lack of high-quality public datasets has also restricted the research progress. To this end, firstly, we contribute an open-source ecosystem, including SeqCSIST, a sequential benchmark dataset, and a toolkit that provides objective evaluation metrics for this special task, along with the implementation of 23 relevant methods. Furthermore, we propose the Deformable Refinement Network (DeRefNet), a model-driven deep learning framework that introduces a Temporal Deformable Feature Alignment (TDFA) module enabling adaptive inter-frame information aggregation. To the best of our knowledge, this work is the first endeavor to address the CSIST Unmixing task within a multi-frame paradigm. Experiments on the SeqCSIST dataset demonstrate that our method outperforms the state-of-the-art approaches with mean Average Precision (mAP) metric improved by 5.3\%. Our dataset and toolkit are available from https://github.com/GrokCV/SeqCSIST.

Authors:Zihao Xiong, Fei Zhou, Fengyi Wu, Shuai Yuan, Maixia Fu, Zhenming Peng, Jian Yang, Yimian Dai
Title: DRPCA-Net: Make Robust PCA Great Again for Infrared Small Target Detection
Abstract:
Infrared small target detection plays a vital role in remote sensing, industrial monitoring, and various civilian applications. Despite recent progress powered by deep learning, many end-to-end convolutional models tend to pursue performance by stacking increasingly complex architectures, often at the expense of interpretability, parameter efficiency, and generalization. These models typically overlook the intrinsic sparsity prior of infrared small targets--an essential cue that can be explicitly modeled for both performance and efficiency gains. To address this, we revisit the model-based paradigm of Robust Principal Component Analysis (RPCA) and propose Dynamic RPCA Network (DRPCA-Net), a novel deep unfolding network that integrates the sparsity-aware prior into a learnable architecture. Unlike conventional deep unfolding methods that rely on static, globally learned parameters, DRPCA-Net introduces a dynamic unfolding mechanism via a lightweight hypernetwork. This design enables the model to adaptively generate iteration-wise parameters conditioned on the input scene, thereby enhancing its robustness and generalization across diverse backgrounds. Furthermore, we design a Dynamic Residual Group (DRG) module to better capture contextual variations within the background, leading to more accurate low-rank estimation and improved separation of small targets. Extensive experiments on multiple public infrared datasets demonstrate that DRPCA-Net significantly outperforms existing state-of-the-art methods in detection accuracy. Code is available at https://github.com/GrokCV/DRPCA-Net.

Authors:Yunwei Lan, Zhigao Cui, Xin Luo, Chang Liu, Nian Wang, Menglin Zhang, Yanzhao Su, Dong Liu
Title: When Schrödinger Bridge Meets Real-World Image Dehazing with Unpaired Training
Abstract:
Recent advancements in unpaired dehazing, particularly those using GANs, show promising performance in processing real-world hazy images. However, these methods tend to face limitations due to the generator's limited transport mapping capability, which hinders the full exploitation of their effectiveness in unpaired training paradigms. To address these challenges, we propose DehazeSB, a novel unpaired dehazing framework based on the Schrödinger Bridge. By leveraging optimal transport (OT) theory, DehazeSB directly bridges the distributions between hazy and clear images. This enables optimal transport mappings from hazy to clear images in fewer steps, thereby generating high-quality results. To ensure the consistency of structural information and details in the restored images, we introduce detail-preserving regularization, which enforces pixel-level alignment between hazy inputs and dehazed outputs. Furthermore, we propose a novel prompt learning to leverage pre-trained CLIP models in distinguishing hazy images and clear ones, by learning a haze-aware vision-language alignment. Extensive experiments on multiple real-world datasets demonstrate our method's superiority. Code: https://github.com/ywxjm/DehazeSB.

Authors:Yiwen Liang, Hui Chen, Yizhe Xiong, Zihan Zhou, Mengyao Lyu, Zijia Lin, Shuaicheng Niu, Sicheng Zhao, Jungong Han, Guiguang Ding
Title: Advancing Reliable Test-Time Adaptation of Vision-Language Models under Visual Variations
Abstract:
Vision-language models (VLMs) exhibit remarkable zero-shot capabilities but struggle with distribution shifts in downstream tasks when labeled data is unavailable, which has motivated the development of Test-Time Adaptation (TTA) to improve VLMs' performance during inference without annotations. Among various TTA approaches, cache-based methods show promise by preserving historical knowledge from low-entropy samples in a dynamic cache and fostering efficient adaptation. However, these methods face two critical reliability challenges: (1) entropy often becomes unreliable under distribution shifts, causing error accumulation in the cache and degradation in adaptation performance; (2) the final predictions may be unreliable due to inflexible decision boundaries that fail to accommodate large downstream shifts. To address these challenges, we propose a Reliable Test-time Adaptation (ReTA) method that integrates two complementary strategies to enhance reliability from two perspectives. First, to mitigate the unreliability of entropy as a sample selection criterion for cache construction, we introduce Consistency-aware Entropy Reweighting (CER), which incorporates consistency constraints to weight entropy during cache updating. While conventional approaches rely solely on low entropy for cache prioritization and risk introducing noise, our method leverages predictive consistency to maintain a high-quality cache and facilitate more robust adaptation. Second, we present Diversity-driven Distribution Calibration (DDC), which models class-wise text embeddings as multivariate Gaussian distributions, enabling adaptive decision boundaries for more accurate predictions across visually diverse content. Extensive experiments demonstrate that ReTA consistently outperforms state-of-the-art methods, particularly under real-world distribution shifts. Code: https://github.com/Evelyn1ywliang/ReTA.

Authors:Yuanhong Zheng, Ruixuan Yu, Jian Sun
Title: Efficient Multi-Person Motion Prediction by Lightweight Spatial and Temporal Interactions
Abstract:
3D multi-person motion prediction is a highly complex task, primarily due to the dependencies on both individual past movements and the interactions between agents. Moreover, effectively modeling these interactions often incurs substantial computational costs. In this work, we propose a computationally efficient model for multi-person motion prediction by simplifying spatial and temporal interactions. Our approach begins with the design of lightweight dual branches that learn local and global representations for individual and multiple persons separately. Additionally, we introduce a novel cross-level interaction block to integrate the spatial and temporal representations from both branches. To further enhance interaction modeling, we explicitly incorporate the spatial inter-person distance embedding. With above efficient temporal and spatial design, we achieve state-of-the-art performance for multiple metrics on standard datasets of CMU-Mocap, MuPoTS-3D, and 3DPW, while significantly reducing the computational cost. Code is available at https://github.com/Yuanhong-Zheng/EMPMP.

Authors:Ankit Sanjyal
Title: RectifiedHR: High-Resolution Diffusion via Energy Profiling and Adaptive Guidance Scheduling
Abstract:
High-resolution image synthesis with diffusion models often suffers from energy instabilities and guidance artifacts that degrade visual quality. We analyze the latent energy landscape during sampling and propose adaptive classifier-free guidance (CFG) schedules that maintain stable energy trajectories. Our approach introduces energy-aware scheduling strategies that modulate guidance strength over time, achieving superior stability scores (0.9998) and consistency metrics (0.9873) compared to fixed-guidance approaches. We demonstrate that DPM++ 2M with linear-decreasing CFG scheduling yields optimal performance, providing sharper, more faithful images while reducing artifacts. Our energy profiling framework serves as a powerful diagnostic tool for understanding and improving diffusion model behavior.

Authors:Timothy Chase, Karthik Dantu
Title: Domain Adaptation and Multi-view Attention for Learnable Landmark Tracking with Sparse Data
Abstract:
The detection and tracking of celestial surface terrain features are crucial for autonomous spaceflight applications, including Terrain Relative Navigation (TRN), Entry, Descent, and Landing (EDL), hazard analysis, and scientific data collection. Traditional photoclinometry-based pipelines often rely on extensive a priori imaging and offline processing, constrained by the computational limitations of radiation-hardened systems. While historically effective, these approaches typically increase mission costs and duration, operate at low processing rates, and have limited generalization. Recently, learning-based computer vision has gained popularity to enhance spacecraft autonomy and overcome these limitations. While promising, emerging techniques frequently impose computational demands exceeding the capabilities of typical spacecraft hardware for real-time operation and are further challenged by the scarcity of labeled training data for diverse extraterrestrial environments. In this work, we present novel formulations for in-situ landmark tracking via detection and description. We utilize lightweight, computationally efficient neural network architectures designed for real-time execution on current-generation spacecraft flight processors. For landmark detection, we propose improved domain adaptation methods that enable the identification of celestial terrain features with distinct, cheaply acquired training data. Concurrently, for landmark description, we introduce a novel attention alignment formulation that learns robust feature representations that maintain correspondence despite significant landmark viewpoint variations. Together, these contributions form a unified system for landmark tracking that demonstrates superior performance compared to existing state-of-the-art techniques.

Authors:Sourish Suri, Yifei Shao
Title: Automated Multi-Class Crop Pathology Classification via Convolutional Neural Networks: A Deep Learning Approach for Real-Time Precision Agriculture
Abstract:
Crop diseases present a significant barrier to agricultural productivity and global food security, especially in large-scale farming where early identification is often delayed or inaccurate. This research introduces a Convolutional Neural Network (CNN)-based image classification system designed to automate the detection and classification of eight common crop diseases using leaf imagery. The methodology involves a complete deep learning pipeline: image acquisition from a large, labeled dataset, preprocessing via resizing, normalization, and augmentation, and model training using TensorFlow with Keras' Sequential API. The CNN architecture comprises three convolutional layers with increasing filter sizes and ReLU activations, followed by max pooling, flattening, and fully connected layers, concluding with a softmax output for multi-class classification. The system achieves high training accuracy (~90%) and demonstrates reliable performance on unseen data, although a validation accuracy of ~60% suggests minor overfitting. Notably, the model integrates a treatment recommendation module, providing actionable guidance by mapping each detected disease to suitable pesticide or fungicide interventions. Furthermore, the solution is deployed on an open-source, mobile-compatible platform, enabling real-time image-based diagnostics for farmers in remote areas. This research contributes a scalable and accessible tool to the field of precision agriculture, reducing reliance on manual inspection and promoting sustainable disease management practices. By merging deep learning with practical agronomic support, this work underscores the potential of CNNs to transform crop health monitoring and enhance food production resilience on a global scale.

Authors:Svetlana Orlova, Tommie Kerssies, Brunó B. Englert, Gijs Dubbelman
Title: Simplifying Traffic Anomaly Detection with Video Foundation Models
Abstract:
Recent methods for ego-centric Traffic Anomaly Detection (TAD) often rely on complex multi-stage or multi-representation fusion architectures, yet it remains unclear whether such complexity is necessary. Recent findings in visual perception suggest that foundation models, enabled by advanced pre-training, allow simple yet flexible architectures to outperform specialized designs. Therefore, in this work, we investigate an architecturally simple encoder-only approach using plain Video Vision Transformers (Video ViTs) and study how pre-training enables strong TAD performance. We find that: (i) advanced pre-training enables simple encoder-only models to match or even surpass the performance of specialized state-of-the-art TAD methods, while also being significantly more efficient; (ii) although weakly- and fully-supervised pre-training are advantageous on standard benchmarks, we find them less effective for TAD. Instead, self-supervised Masked Video Modeling (MVM) provides the strongest signal; and (iii) Domain-Adaptive Pre-Training (DAPT) on unlabeled driving videos further improves downstream performance, without requiring anomalous examples. Our findings highlight the importance of pre-training and show that effective, efficient, and scalable TAD models can be built with minimal architectural complexity. We release our code, domain-adapted encoders, and fine-tuned models to support future work: https://github.com/tue-mps/simple-tad.

Authors:Wencan Huang, Daizong Liu, Wei Hu
Title: Fast3D: Accelerating 3D Multi-modal Large Language Models for Efficient 3D Scene Understanding
Abstract:
While 3D Multi-modal Large Language Models (MLLMs) demonstrate remarkable scene understanding capabilities, their practical deployment faces critical challenges due to computational inefficiency. The key bottleneck stems from processing excessive object-centric visual tokens required for comprehensive 3D scene representation. Although visual token pruning has shown promise in accelerating 2D MLLMs, its applicability to 3D domains remains largely unexplored due to fundamental disparities in token structures. In this paper, we reveal two critical insights: (1) Significant redundancy exists in object-level 3D token representations, analogous to patch-level redundancy in 2D systems; (2) Global attention patterns exhibit strong predictive power for identifying non-essential tokens in 3D contexts. Building on these observations, we propose Fast3D, a plug-and-play visual token pruning framework for 3D MLLMs featuring two technical innovations: (1) Global Attention Prediction (GAP), where a lightweight neural network learns to predict the global attention distributions of the target model, enabling efficient token importance estimation for precise pruning guidance; (2) Sample-Adaptive visual token Pruning (SAP), which introduces dynamic token budgets through attention-based complexity assessment, automatically adjusting layer-wise pruning ratios based on input characteristics. Both of these two techniques operate without modifying the parameters of the target model. Extensive evaluations across five benchmarks validate the effectiveness of Fast3D, particularly under high visual token pruning ratios. Code is available at https://github.com/wencan25/Fast3D

Authors:Yueqian Wang, Xiaojun Meng, Yifan Wang, Huishuai Zhang, Dongyan Zhao
Title: ProactiveVideoQA: A Comprehensive Benchmark Evaluating Proactive Interactions in Video Large Language Models
Abstract:
With the growing research focus on multimodal dialogue systems, the capability for proactive interaction is gradually gaining recognition. As an alternative to conventional turn-by-turn dialogue, users increasingly expect multimodal systems to be more initiative, for example, by autonomously determining the timing of multi-turn responses in real time during video playback. To facilitate progress in this emerging area, we introduce ProactiveVideoQA, the first comprehensive benchmark to evaluate a system's ability to engage in proactive interaction. Since model responses are generated at varying timestamps, we further propose PAUC, the first metric that accounts for the temporal dynamics of model responses. This enables a more accurate evaluation of systems operating in proactive settings. Through extensive benchmarking of various baseline systems on ProactiveVideoQA and a user study of human preferences, we show that PAUC is in better agreement with human preferences than traditional evaluation metrics, which typically only consider the textual content of responses. These findings demonstrate that PAUC provides a more faithful assessment of user experience in proactive interaction scenarios. Project homepage: https://github.com/yellow-binary-tree/ProactiveVideoQA

Authors:Zile Wang, Hao Yu, Jiabo Zhan, Chun Yuan
Title: AlphaVAE: Unified End-to-End RGBA Image Reconstruction and Generation with Alpha-Aware Representation Learning
Abstract:
Recent advances in latent diffusion models have achieved remarkable results in high-fidelity RGB image synthesis by leveraging pretrained VAEs to compress and reconstruct pixel data at low computational cost. However, the generation of transparent or layered content (RGBA image) remains largely unexplored, due to the lack of large-scale benchmarks. In this work, we propose ALPHA, the first comprehensive RGBA benchmark that adapts standard RGB metrics to four-channel images via alpha blending over canonical backgrounds. We further introduce ALPHAVAE, a unified end-to-end RGBA VAE that extends a pretrained RGB VAE by incorporating a dedicated alpha channel. The model is trained with a composite objective that combines alpha-blended pixel reconstruction, patch-level fidelity, perceptual consistency, and dual KL divergence constraints to ensure latent fidelity across both RGB and alpha representations. Our RGBA VAE, trained on only 8K images in contrast to 1M used by prior methods, achieves a +4.9 dB improvement in PSNR and a +3.2% increase in SSIM over LayerDiffuse in reconstruction. It also enables superior transparent image generation when fine-tuned within a latent diffusion framework. Our code, data, and models are released on https://github.com/o0o0o00o0/AlphaVAE for reproducibility.

Authors:Zhiwei Xu
Title: DAA*: Deep Angular A Star for Image-based Path Planning
Abstract:
Path smoothness is often overlooked in path imitation learning from expert demonstrations. In this paper, we introduce a novel learning method, termed deep angular A* (DAA*), by incorporating the proposed path angular freedom (PAF) into A* to improve path similarity through adaptive path smoothness. The PAF aims to explore the effect of move angles on path node expansion by finding the trade-off between their minimum and maximum values, allowing for high adaptiveness for imitation learning. DAA* improves path optimality by closely aligning with the reference path through joint optimization of path shortening and smoothing, which correspond to heuristic distance and PAF, respectively. Throughout comprehensive evaluations on 7 datasets, including 4 maze datasets, 2 video-game datasets, and a real-world drone-view dataset containing 2 scenarios, we demonstrate remarkable improvements of our DAA* over neural A* in path similarity between the predicted and reference paths with a shorter path length when the shortest path is plausible, improving by 9.0% SPR, 6.9% ASIM, and 3.9% PSIM. Furthermore, when jointly learning pathfinding with both path loss and path probability map loss, DAA* significantly outperforms the state-of-the-art TransPath by 6.3% SPR, 6.0% PSIM, and 3.7% ASIM. We also discuss the minor trade-off between path optimality and search efficiency where applicable. Our code and model weights are available at https://github.com/zwxu064/DAAStar.git.

Authors:Abdulvahap Mutlu, Şengül Doğan, Türker Tuncer
Title: ViT-ProtoNet for Few-Shot Image Classification: A Multi-Benchmark Evaluation
Abstract:
The remarkable representational power of Vision Transformers (ViTs) remains underutilized in few-shot image classification. In this work, we introduce ViT-ProtoNet, which integrates a ViT-Small backbone into the Prototypical Network framework. By averaging class conditional token embeddings from a handful of support examples, ViT-ProtoNet constructs robust prototypes that generalize to novel categories under 5-shot settings. We conduct an extensive empirical evaluation on four standard benchmarks: Mini-ImageNet, FC100, CUB-200, and CIFAR-FS, including overlapped support variants to assess robustness. Across all splits, ViT-ProtoNet consistently outperforms CNN-based prototypical counterparts, achieving up to a 3.2\% improvement in 5-shot accuracy and demonstrating superior feature separability in latent space. Furthermore, it outperforms or is competitive with transformer-based competitors using a more lightweight backbone. Comprehensive ablations examine the impact of transformer depth, patch size, and fine-tuning strategy. To foster reproducibility, we release code and pretrained weights. Our results establish ViT-ProtoNet as a powerful, flexible approach for few-shot classification and set a new baseline for transformer-based meta-learners.

Authors:Yuval Grader, Hadar Averbuch-Elor
Title: Supercharging Floorplan Localization with Semantic Rays
Abstract:
Floorplans provide a compact representation of the building's structure, revealing not only layout information but also detailed semantics such as the locations of windows and doors. However, contemporary floorplan localization techniques mostly focus on matching depth-based structural cues, ignoring the rich semantics communicated within floorplans. In this work, we introduce a semantic-aware localization framework that jointly estimates depth and semantic rays, consolidating over both for predicting a structural-semantic probability volume. Our probability volume is constructed in a coarse-to-fine manner: We first sample a small set of rays to obtain an initial low-resolution probability volume. We then refine these probabilities by performing a denser sampling only in high-probability regions and process the refined values for predicting a 2D location and orientation angle. We conduct an evaluation on two standard floorplan localization benchmarks. Our experiments demonstrate that our approach substantially outperforms state-of-the-art methods, achieving significant improvements in recall metrics compared to prior works. Moreover, we show that our framework can easily incorporate additional metadata such as room labels, enabling additional gains in both accuracy and efficiency.

Authors:Chenhao Ding, Jiangtao Zhang, Zongsheng Yue, Hui Wang, Qian Zhao, Deyu Meng
Title: Generative Latent Kernel Modeling for Blind Motion Deblurring
Abstract:
Deep prior-based approaches have demonstrated remarkable success in blind motion deblurring (BMD) recently. These methods, however, are often limited by the high non-convexity of the underlying optimization process in BMD, which leads to extreme sensitivity to the initial blur kernel. To address this issue, we propose a novel framework for BMD that leverages a deep generative model to encode the kernel prior and induce a better initialization for the blur kernel. Specifically, we pre-train a kernel generator based on a generative adversarial network (GAN) to aptly characterize the kernel's prior distribution, as well as a kernel initializer to provide a well-informed and high-quality starting point for kernel estimation. By combining these two components, we constrain the BMD solution within a compact latent kernel manifold, thus alleviating the aforementioned sensitivity for kernel initialization. Notably, the kernel generator and initializer are designed to be easily integrated with existing BMD methods in a plug-and-play manner, enhancing their overall performance. Furthermore, we extend our approach to tackle blind non-uniform motion deblurring without the need for additional priors, achieving state-of-the-art performance on challenging benchmark datasets. The source code is available at https://github.com/dch0319/GLKM-Deblur.

Authors:Anita Kriz, Elizabeth Laura Janes, Xing Shen, Tal Arbel
Title: Prompt4Trust: A Reinforcement Learning Prompt Augmentation Framework for Clinically-Aligned Confidence Calibration in Multimodal Large Language Models
Abstract:
Multimodal large language models (MLLMs) hold considerable promise for applications in healthcare. However, their deployment in safety-critical settings is hindered by two key limitations: (i) sensitivity to prompt design, and (ii) a tendency to generate incorrect responses with high confidence. As clinicians may rely on a model's stated confidence to gauge the reliability of its predictions, it is especially important that when a model expresses high confidence, it is also highly accurate. We introduce Prompt4Trust, the first reinforcement learning (RL) framework for prompt augmentation targeting confidence calibration in MLLMs. A lightweight LLM is trained to produce context-aware auxiliary prompts that guide a downstream task MLLM to generate responses in which the expressed confidence more accurately reflects predictive accuracy. Unlike conventional calibration techniques, Prompt4Trust specifically prioritizes aspects of calibration most critical for safe and trustworthy clinical decision-making. Beyond improvements driven by this clinically motivated calibration objective, our proposed method also improves task accuracy, achieving state-of-the-art medical visual question answering (VQA) performance on the PMC-VQA benchmark, which is composed of multiple-choice questions spanning diverse medical imaging modalities. Moreover, our framework trained with a small downstream task MLLM showed promising zero-shot generalization to larger MLLMs in our experiments, suggesting the potential for scalable calibration without the associated computational costs. This work demonstrates the potential of automated yet human-aligned prompt engineering for improving the the trustworthiness of MLLMs in safety critical settings. Our codebase can be found at https://github.com/xingbpshen/prompt4trust.

Authors:Shuhan Ye, Yuanbin Qian, Chong Wang, Sunqi Lin, Jiazhen Xu, Jiangbo Qian, Yuqi Li
Title: Cross Knowledge Distillation between Artificial and Spiking Neural Networks
Abstract:
Recently, Spiking Neural Networks (SNNs) have demonstrated rich potential in computer vision domain due to their high biological plausibility, event-driven characteristic and energy-saving efficiency. Still, limited annotated event-based datasets and immature SNN architectures result in their performance inferior to that of Artificial Neural Networks (ANNs). To enhance the performance of SNNs on their optimal data format, DVS data, we explore using RGB data and well-performing ANNs to implement knowledge distillation. In this case, solving cross-modality and cross-architecture challenges is necessary. In this paper, we propose cross knowledge distillation (CKD), which not only leverages semantic similarity and sliding replacement to mitigate the cross-modality challenge, but also uses an indirect phased knowledge distillation to mitigate the cross-architecture challenge. We validated our method on main-stream neuromorphic datasets, including N-Caltech101 and CEP-DVS. The experimental results show that our method outperforms current State-of-the-Art methods. The code will be available at https://github.com/ShawnYE618/CKD

Authors:Junyu Chen, Yihua Gao, Mingyuan Ge, Mingyong Li
Title: Ambiguity-Aware and High-Order Relation Learning for Multi-Grained Image-Text Matching
Abstract:
Image-text matching is crucial for bridging the semantic gap between computer vision and natural language processing. However, existing methods still face challenges in handling high-order associations and semantic ambiguities among similar instances. These ambiguities arise from subtle differences between soft positive samples (semantically similar but incorrectly labeled) and soft negative samples (locally matched but globally inconsistent), creating matching uncertainties. Furthermore, current methods fail to fully utilize the neighborhood relationships among semantically similar instances within training batches, limiting the model's ability to learn high-order shared knowledge. This paper proposes the Ambiguity-Aware and High-order Relation learning framework (AAHR) to address these issues. AAHR constructs a unified representation space through dynamic clustering prototype contrastive learning, effectively mitigating the soft positive sample problem. The framework introduces global and local feature extraction mechanisms and an adaptive aggregation network, significantly enhancing full-grained semantic understanding capabilities. Additionally, AAHR employs intra-modal and inter-modal correlation matrices to investigate neighborhood relationships among sample instances thoroughly. It incorporates GNN to enhance semantic interactions between instances. Furthermore, AAHR integrates momentum contrastive learning to expand the negative sample set. These combined strategies significantly improve the model's ability to discriminate between features. Experimental results demonstrate that AAHR outperforms existing state-of-the-art methods on Flickr30K, MSCOCO, and ECCV Caption datasets, considerably improving the accuracy and efficiency of image-text matching. The code and model checkpoints for this research are available at https://github.com/Image-Text-Matching/AAHR .

Authors:Behraj Khan, Tahir Qasim Syed, Nouman M. Durrani, Bilal Naseem, Shabir Ahmad, Rizwan Qureshi
Title: Calibrated and Robust Foundation Models for Vision-Language and Medical Image Tasks Under Distribution Shift
Abstract:
Foundation models like CLIP and SAM have advanced computer vision and medical imaging via low-shot transfer learning, aiding CADD with limited data. However, their deployment faces two key challenges. \textit{distribution shift} where pre-training and post-training data distributions differ (e.g., due to inter-center image acquisition) and \textit{confidence misalignment}, which leads to overconfident errors. These issues surface differently, vision-language models (e.g., CLIP) suffer from 2D embedding shift (image-text misalignment), while medical models (e.g., SAM) encounter 3D domain shifts (e.g., scanner variation) and voxel-wise calibration need. Existing solutions are domain-specific. We propose \textbf{StaRFM}, a fusion of Fisher information penalty (FIP) and confidence misalignment penalty (CMP) tackling both challenges. It applies FIP, extended to 3D via patch-wise regularization, to reduce embedding shift, and CMP, reformulated for voxel-level predictions, to calibrate segmentation uncertainty. We derive PAC-Bayes bounds. FIP controls generalization via the Fisher-Rao norm, and CMP reduces calibration error via Brier score minimization. StaRFM surpasses baselines by \texttt{+}3.5\% accuracy and 28\% lower ECE on 19 vision datasets (e.g., ImageNet, Office-Home), achieves +4.2\% DSC over SAM-FT and 4.8mm HD95 on medical benchmarks (e.g., BraTS, ATLAS), and reduces cross-domain gaps by up to 20\%. The framework is plug-and-play, requiring minimal architectural changes. Code and models are available at: \href{https://anonymous.4open.science/r/StaRFM-C0CD/}{\textcolor{blue}{\underline{StaRFM}}}

Authors:Shiyi Mu, Zichong Gu, Hanqi Lyu, Yilin Gao, Shugong Xu
Title: Stereo-based 3D Anomaly Object Detection for Autonomous Driving: A New Dataset and Baseline
Abstract:
3D detection technology is widely used in the field of autonomous driving, with its application scenarios gradually expanding from enclosed highways to open conventional roads. For rare anomaly categories that appear on the road, 3D detection models trained on closed sets often misdetect or fail to detect anomaly objects. To address this risk, it is necessary to enhance the generalization ability of 3D detection models for targets of arbitrary shapes and to possess the capability to filter out anomalies. The generalization of 3D detection is limited by two factors: the coupled training of 2D and 3D, and the insufficient diversity in the scale distribution of training samples. This paper proposes a Stereo-based 3D Anomaly object Detection (S3AD) algorithm, which decouples the training strategy of 3D and 2D to release the generalization ability for arbitrary 3D foreground detection, and proposes an anomaly scoring algorithm based on foreground confidence prediction, achieving target-level anomaly scoring. In order to further verify and enhance the generalization of anomaly detection, we use a 3D rendering method to synthesize two augmented reality binocular stereo 3D detection datasets which named KITTI-AR. KITTI-AR extends upon KITTI by adding 97 new categories, totaling 6k pairs of stereo images. The KITTI-AR-ExD subset includes 39 common categories as extra training data to address the sparse sample distribution issue. Additionally, 58 rare categories form the KITTI-AR-OoD subset, which are not used in training to simulate zero-shot scenarios in real-world settings, solely for evaluating 3D anomaly detection. Finally, the performance of the algorithm and the dataset is verified in the experiments. (Code and dataset can be obtained at https://github.com/shiyi-mu/S3AD-Code).

Authors:Jonas Scholz, Richard E. Turner
Title: Warm Starts Accelerate Generative Modelling
Abstract:
Iterative generative models, like diffusion and flow-matching, create high-fidelity samples by progressively refining a noise vector into data. However, this process is notoriously slow, often requiring hundreds of function evaluations. We introduce the warm-start model, a simple, deterministic model that dramatically accelerates conditional generation by providing a better starting point. Instead of starting generation from an uninformed N(0, I) prior, our warm-start model predicts an informed prior N(mu, sigma), whose moments are conditioned on the input context. This "warm start" substantially reduces the distance the generative process must traverse, particularly when the conditioning information is strongly informative. On tasks like image inpainting, our method achieves results competitive with a 1000-step DDPM baseline using only 11 total function evaluations (1 for the warm start, 10 for generation). A simple conditional normalization trick makes our method compatible with any standard generative model and sampler without modification, allowing it to be combined with other efficient sampling techniques for further acceleration. Our implementation is available at https://github.com/jonas-scholz123/warm-start-model.

Authors:Qiyan Zhao, Xiaofeng Zhang, Yiheng Li, Yun Xing, Xiaosong Yuan, Feilong Tang, Sinan Fan, Xuhang Chen, Xuyao Zhang, Dahan Wang
Title: MCA-LLaVA: Manhattan Causal Attention for Reducing Hallucination in Large Vision-Language Models
Abstract:
Hallucinations pose a significant challenge in Large Vision Language Models (LVLMs), with misalignment between multimodal features identified as a key contributing factor. This paper reveals the negative impact of the long-term decay in Rotary Position Encoding (RoPE), used for positional modeling in LVLMs, on multimodal alignment. Concretely, under long-term decay, instruction tokens exhibit uneven perception of image tokens located at different positions within the two-dimensional space: prioritizing image tokens from the bottom-right region since in the one-dimensional sequence, these tokens are positionally closer to the instruction tokens. This biased perception leads to insufficient image-instruction interaction and suboptimal multimodal alignment. We refer to this phenomenon as image alignment bias. To enhance instruction's perception of image tokens at different spatial locations, we propose MCA-LLaVA, based on Manhattan distance, which extends the long-term decay to a two-dimensional, multi-directional spatial decay. MCA-LLaVA integrates the one-dimensional sequence order and two-dimensional spatial position of image tokens for positional modeling, mitigating hallucinations by alleviating image alignment bias. Experimental results of MCA-LLaVA across various hallucination and general benchmarks demonstrate its effectiveness and generality. The code can be accessed in https://github.com/ErikZ719/MCA-LLaVA.

Authors:Yongwei Jiang, Yixiong Zou, Yuhua Li, Ruixuan Li
Title: Revisiting Pool-based Prompt Learning for Few-shot Class-incremental Learning
Abstract:
Few-Shot Class-Incremental Learning (FSCIL) faces dual challenges of data scarcity and incremental learning in real-world scenarios. While pool-based prompting methods have demonstrated success in traditional incremental learning, their effectiveness in FSCIL settings remains unexplored. This paper presents the first study of current prompt pool methods in FSCIL tasks, revealing an unanticipated performance degradation in incremental sessions. Through comprehensive analysis, we identify that this phenomenon stems from token-dimension saturation: with limited data, excessive prompts compete for task-relevant information, leading to model overfitting. Based on this finding, we propose LGSP-Prompt (Local-Global Spatial Prompting), which innovatively shifts pool-based prompt learning from the token dimension to the spatial dimension. LGSP-Prompt generates spatial prompts by synergistically combining local spatial features and global frequency-domain representations to highlight key patterns in input images. We construct two spatial prompt pools enabling dynamic prompt selection to maintain acquired knowledge while effectively learning novel sessions. Extensive experiments demonstrate that our approach achieves state-of-the-art performance across multiple FSCIL benchmarks, showing significant advantages in both base knowledge preservation and incremental learning. Our implementation is available at https://github.com/Jywsuperman/LGSP.

Authors:Zhimin Liao, Ping Wei, Ruijie Zhang, Shuaijia Chen, Haoxuan Wang, Ziyang Ren
Title: $I^{2}$-World: Intra-Inter Tokenization for Efficient Dynamic 4D Scene Forecasting
Abstract:
Forecasting the evolution of 3D scenes and generating unseen scenarios via occupancy-based world models offers substantial potential for addressing corner cases in autonomous driving systems. While tokenization has revolutionized image and video generation, efficiently tokenizing complex 3D scenes remains a critical challenge for 3D world models. To address this, we propose $I^{2}$-World, an efficient framework for 4D occupancy forecasting. Our method decouples scene tokenization into intra-scene and inter-scene tokenizers. The intra-scene tokenizer employs a multi-scale residual quantization strategy to hierarchically compress 3D scenes while preserving spatial details. The inter-scene tokenizer residually aggregates temporal dependencies across timesteps. This dual design preserves the compactness of 3D tokenizers while retaining the dynamic expressiveness of 4D tokenizers. Unlike decoder-only GPT-style autoregressive models, $I^{2}$-World adopts an encoder-decoder architecture. The encoder aggregates spatial context from the current scene and predicts a transformation matrix to enable high-level control over scene generation. The decoder, conditioned on this matrix and historical tokens, ensures temporal consistency during generation. Experiments demonstrate that $I^{2}$-World achieves state-of-the-art performance, outperforming existing methods by 25.1\% in mIoU and 36.9\% in IoU for 4D occupancy forecasting while exhibiting exceptional computational efficiency: it requires merely 2.9 GB of training memory and achieves real-time inference at 37.0 FPS. Our code is available on https://github.com/lzzzzzm/II-World.

Authors:Dewen Zhang, Tahir Hussain, Wangpeng An, Hayaru Shouno
Title: PoseLLM: Enhancing Language-Guided Human Pose Estimation with MLP Alignment
Abstract:
Human pose estimation traditionally relies on architectures that encode keypoint priors, limiting their generalization to novel poses or unseen keypoints. Recent language-guided approaches like LocLLM reformulate keypoint localization as a vision-language task, enabling zero-shot generalization through textual descriptions. However, LocLLM's linear projector fails to capture complex spatial-textual interactions critical for high-precision localization. To address this, we propose PoseLLM, the first Large Language Model (LLM)-based pose estimation framework that replaces the linear projector with a nonlinear MLP vision-language connector. This lightweight two-layer MLP with GELU activation enables hierarchical cross-modal feature transformation, enhancing the fusion of visual patches and textual keypoint descriptions. Trained exclusively on COCO data, PoseLLM achieves 77.8 AP on the COCO validation set, outperforming LocLLM by +0.4 AP, while maintaining strong zero-shot generalization on Human-Art and MPII. Our work demonstrates that a simple yet powerful nonlinear connector significantly boosts localization accuracy without sacrificing generalization, advancing the state-of-the-art in language-guided pose estimation. Code is available at https://github.com/Ody-trek/PoseLLM.

Authors:Chuan Guo, Inwoo Hwang, Jian Wang, Bing Zhou
Title: SnapMoGen: Human Motion Generation from Expressive Texts
Abstract:
Text-to-motion generation has experienced remarkable progress in recent years. However, current approaches remain limited to synthesizing motion from short or general text prompts, primarily due to dataset constraints. This limitation undermines fine-grained controllability and generalization to unseen prompts. In this paper, we introduce SnapMoGen, a new text-motion dataset featuring high-quality motion capture data paired with accurate, expressive textual annotations. The dataset comprises 20K motion clips totaling 44 hours, accompanied by 122K detailed textual descriptions averaging 48 words per description (vs. 12 words of HumanML3D). Importantly, these motion clips preserve original temporal continuity as they were in long sequences, facilitating research in long-term motion generation and blending. We also improve upon previous generative masked modeling approaches. Our model, MoMask++, transforms motion into multi-scale token sequences that better exploit the token capacity, and learns to generate all tokens using a single generative masked transformer. MoMask++ achieves state-of-the-art performance on both HumanML3D and SnapMoGen benchmarks. Additionally, we demonstrate the ability to process casual user prompts by employing an LLM to reformat inputs to align with the expressivity and narration style of SnapMoGen. Project webpage: https://snap-research.github.io/SnapMoGen/

Authors:Linlan Huang, Xusheng Cao, Haori Lu, Yifan Meng, Fei Yang, Xialei Liu
Title: Mind the Gap: Preserving and Compensating for the Modality Gap in CLIP-Based Continual Learning
Abstract:
Continual learning aims to enable models to learn sequentially from continuously incoming data while retaining performance on previously learned tasks. With the Contrastive Language-Image Pre-trained model (CLIP) exhibiting strong capabilities across various downstream tasks, there has been growing interest in leveraging CLIP for continual learning in such scenarios. Most existing works overlook the inherent modality gap in CLIP, a key factor in its generalization and adaptability. In this paper, we analyze the variations in the modality gap during the fine-tuning of vision-language pre-trained models. Our observations reveal that the modality gap effectively reflects the extent to which pre-trained knowledge is preserved. Based on these insights, we propose a simple yet effective method, MG-CLIP, that improves CLIP's performance in class-incremental learning. Our approach leverages modality gap preservation to mitigate forgetting and modality gap compensation to enhance the capacity for new data, introducing a novel modality-gap-based perspective for continual learning. Extensive experiments on multiple benchmarks demonstrate that our method outperforms existing approaches without requiring additional replay data. Our code is available at https://github.com/linlany/MindtheGap.

Authors:Di Wen, Kunyu Peng, Kailun Yang, Yufan Chen, Ruiping Liu, Junwei Zheng, Alina Roitberg, Danda Pani Paudel, Luc Van Gool, Rainer Stiefelhagen
Title: RoHOI: Robustness Benchmark for Human-Object Interaction Detection
Abstract:
Human-Object Interaction (HOI) detection is crucial for robot-human assistance, enabling context-aware support. However, models trained on clean datasets degrade in real-world conditions due to unforeseen corruptions, leading to inaccurate prediction. To address this, we introduce the first robustness benchmark for HOI detection, evaluating model resilience under diverse challenges. Despite advances, current models struggle with environmental variability, occlusions, and noise. Our benchmark, RoHOI, includes 20 corruption types based on the HICO-DET and V-COCO datasets and a new robustness-focused metric. We systematically analyze existing models in the HOI field, revealing significant performance drops under corruptions. To improve robustness, we propose a Semantic-Aware Masking-based Progressive Learning (SAMPL) strategy to guide the model to be optimized based on holistic and partial cues, thus dynamically adjusting the model's optimization to enhance robust feature learning. Extensive experiments show that our approach outperforms state-of-the-art methods, setting a new standard for robust HOI detection. Benchmarks, datasets, and code will be made publicly available at https://github.com/Kratos-Wen/RoHOI.

Authors:Yiyang Chen, Shanshan Zhao, Lunhao Duan, Changxing Ding, Dacheng Tao
Title: Harnessing Text-to-Image Diffusion Models for Point Cloud Self-Supervised Learning
Abstract:
Diffusion-based models, widely used in text-to-image generation, have proven effective in 2D representation learning. Recently, this framework has been extended to 3D self-supervised learning by constructing a conditional point generator for enhancing 3D representations. However, its performance remains constrained by the 3D diffusion model, which is trained on the available 3D datasets with limited size. We hypothesize that the robust capabilities of text-to-image diffusion models, particularly Stable Diffusion (SD), which is trained on large-scale datasets, can help overcome these limitations. To investigate this hypothesis, we propose PointSD, a framework that leverages the SD model for 3D self-supervised learning. By replacing the SD model's text encoder with a 3D encoder, we train a point-to-image diffusion model that allows point clouds to guide the denoising of rendered noisy images. With the trained point-to-image diffusion model, we use noise-free images as the input and point clouds as the condition to extract SD features. Next, we train a 3D backbone by aligning its features with these SD features, thereby facilitating direct semantic learning. Comprehensive experiments on downstream point cloud tasks and ablation studies demonstrate that the SD model can enhance point cloud self-supervised learning. Code is publicly available at https://github.com/wdttt/PointSD.

Authors:Seungwoo Kim, Khai Loong Aw, Klemen Kotar, Cristobal Eyzaguirre, Wanhee Lee, Yunong Liu, Jared Watrous, Stefan Stojanov, Juan Carlos Niebles, Jiajun Wu, Daniel L. K. Yamins
Title: Taming generative video models for zero-shot optical flow extraction
Abstract:
Extracting optical flow from videos remains a core computer vision problem. Motivated by the success of large general-purpose models, we ask whether frozen self-supervised video models trained only for future frame prediction can be prompted, without fine-tuning, to output flow. Prior work reading out depth or illumination from video generators required fine-tuning, which is impractical for flow where labels are scarce and synthetic datasets suffer from a sim-to-real gap. Inspired by the Counterfactual World Model (CWM) paradigm, which can obtain point-wise correspondences by injecting a small tracer perturbation into a next-frame predictor and tracking its propagation, we extend this idea to generative video models. We explore several popular architectures and find that successful zero-shot flow extraction in this manner is aided by three model properties: (1) distributional prediction of future frames (avoiding blurry or noisy outputs); (2) factorized latents that treat each spatio-temporal patch independently; and (3) random-access decoding that can condition on any subset of future pixels. These properties are uniquely present in the recent Local Random Access Sequence (LRAS) architecture. Building on LRAS, we propose KL-tracing: a novel test-time procedure that injects a localized perturbation into the first frame, rolls out the model one step, and computes the Kullback-Leibler divergence between perturbed and unperturbed predictive distributions. Without any flow-specific fine-tuning, our method outperforms state-of-the-art models on real-world TAP-Vid DAVIS dataset (16.6% relative improvement for endpoint error) and synthetic TAP-Vid Kubric (4.7% relative improvement). Our results indicate that counterfactual prompting of controllable generative video models is a scalable and effective alternative to supervised or photometric-loss approaches for high-quality flow.

Authors:Hanene F. Z. Brachemi Meftah, Wassim Hamidouche, Sid Ahmed Fezza, Olivier Déforges
Title: VIP: Visual Information Protection through Adversarial Attacks on Vision-Language Models
Abstract:
Recent years have witnessed remarkable progress in developing Vision-Language Models (VLMs) capable of processing both textual and visual inputs. These models have demonstrated impressive performance, leading to their widespread adoption in various applications. However, this widespread raises serious concerns regarding user privacy, particularly when models inadvertently process or expose private visual information. In this work, we frame the preservation of privacy in VLMs as an adversarial attack problem. We propose a novel attack strategy that selectively conceals information within designated Region Of Interests (ROIs) in an image, effectively preventing VLMs from accessing sensitive content while preserving the semantic integrity of the remaining image. Unlike conventional adversarial attacks that often disrupt the entire image, our method maintains high coherence in unmasked areas. Experimental results across three state-of-the-art VLMs namely LLaVA, Instruct-BLIP, and BLIP2-T5 demonstrate up to 98% reduction in detecting targeted ROIs, while maintaining global image semantics intact, as confirmed by high similarity scores between clean and adversarial outputs. We believe that this work contributes to a more privacy conscious use of multimodal models and offers a practical tool for further research, with the source code publicly available at: https://github.com/hbrachemi/Vlm_defense-attack.

Authors:Chenyu Wang, Cai Zhou, Sharut Gupta, Zongyu Lin, Stefanie Jegelka, Stephen Bates, Tommi Jaakkola
Title: Learning Diffusion Models with Flexible Representation Guidance
Abstract:
Diffusion models can be improved with additional guidance towards more effective representations of input. Indeed, prior empirical work has already shown that aligning internal representations of the diffusion model with those of pre-trained models improves generation quality. In this paper, we present a systematic framework for incorporating representation guidance into diffusion models. We provide alternative decompositions of denoising models along with their associated training criteria, where the decompositions determine when and how the auxiliary representations are incorporated. Guided by our theoretical insights, we introduce two new strategies for enhancing representation alignment in diffusion models. First, we pair examples with target representations either derived from themselves or arisen from different synthetic modalities, and subsequently learn a joint model over the multimodal pairs. Second, we design an optimal training curriculum that balances representation learning and data generation. Our experiments across image, protein sequence, and molecule generation tasks demonstrate superior performance as well as accelerated training. In particular, on the class-conditional ImageNet $256\times 256$ benchmark, our guidance results in $23.3$ times faster training than the original SiT-XL as well as four times speedup over the state-of-the-art method REPA. The code is available at https://github.com/ChenyuWang-Monica/REED.

Authors:Mahdiyar Molahasani, Azadeh Motamedi, Michael Greenspan, Il-Min Kim, Ali Etemad
Title: PRISM: Reducing Spurious Implicit Biases in Vision-Language Models with LLM-Guided Embedding Projection
Abstract:
We introduce Projection-based Reduction of Implicit Spurious bias in vision-language Models (PRISM), a new data-free and task-agnostic solution for bias mitigation in VLMs like CLIP. VLMs often inherit and amplify biases in their training data, leading to skewed predictions. PRISM is designed to debias VLMs without relying on predefined bias categories or additional external data. It operates in two stages: first, an LLM is prompted with simple class prompts to generate scene descriptions that contain spurious correlations. Next, PRISM uses our novel contrastive-style debiasing loss to learn a projection that maps the embeddings onto a latent space that minimizes spurious correlations while preserving the alignment between image and text embeddings.Extensive experiments demonstrate that PRISM outperforms current debiasing methods on the commonly used Waterbirds and CelebA datasets We make our code public at: https://github.com/MahdiyarMM/PRISM.

Authors:Kun Jing, Luoyu Chen, Jungang Xu, Jianwei Tai, Yiyu Wang, Shuaimin Li
Title: Zero-Shot Neural Architecture Search with Weighted Response Correlation
Abstract:
Neural architecture search (NAS) is a promising approach for automatically designing neural network architectures. However, the architecture estimation of NAS is computationally expensive and time-consuming because of training multiple architectures from scratch. Although existing zero-shot NAS methods use training-free proxies to accelerate the architecture estimation, their effectiveness, stability, and generality are still lacking. We present a novel training-free estimation proxy called weighted response correlation (WRCor). WRCor utilizes correlation coefficient matrices of responses across different input samples to calculate the proxy scores of estimated architectures, which can measure their expressivity and generalizability. Experimental results on proxy evaluation demonstrate that WRCor and its voting proxies are more efficient estimation strategies than existing proxies. We also apply them with different search strategies in architecture search. Experimental results on architecture search show that our zero-shot NAS algorithm outperforms most existing NAS algorithms in different search spaces. Our NAS algorithm can discover an architecture with a 22.1% test error on the ImageNet-1k dataset within 4 GPU hours. All codes are publicly available at https://github.com/kunjing96/ZSNAS-WRCor.git.

Authors:Hangjie Yuan, Weihua Chen, Jun Cen, Hu Yu, Jingyun Liang, Shuning Chang, Zhihui Lin, Tao Feng, Pengwei Liu, Jiazheng Xing, Hao Luo, Jiasheng Tang, Fan Wang, Yi Yang
Title: Lumos-1: On Autoregressive Video Generation from a Unified Model Perspective
Abstract:
Autoregressive large language models (LLMs) have unified a vast range of language tasks, inspiring preliminary efforts in autoregressive video generation. Existing autoregressive video generators either diverge from standard LLM architectures, depend on bulky external text encoders, or incur prohibitive latency due to next-token decoding. In this paper, we introduce Lumos-1, an autoregressive video generator that retains the LLM architecture with minimal architectural modifications. To inject spatiotemporal correlations in LLMs, we identify the efficacy of incorporating 3D RoPE and diagnose its imbalanced frequency spectrum ranges. Therefore, we propose MM-RoPE, a RoPE scheme that preserves the original textual RoPE while providing comprehensive frequency spectra and scaled 3D positions for modeling multimodal spatiotemporal data. Moreover, Lumos-1 resorts to a token dependency strategy that obeys intra-frame bidirectionality and inter-frame temporal causality. Based on this dependency strategy, we identify the issue of frame-wise loss imbalance caused by spatial information redundancy and solve it by proposing Autoregressive Discrete Diffusion Forcing (AR-DF). AR-DF introduces temporal tube masking during training with a compatible inference-time masking policy to avoid quality degradation. By using memory-efficient training techniques, we pre-train Lumos-1 on only 48 GPUs, achieving performance comparable to EMU3 on GenEval, COSMOS-Video2World on VBench-I2V, and OpenSoraPlan on VBench-T2V. Code and models are available at https://github.com/alibaba-damo-academy/Lumos.

Authors:Shaocong Dong, Lihe Ding, Xiao Chen, Yaokun Li, Yuxin Wang, Yucheng Wang, Qi Wang, Jaehyeok Kim, Chenjian Gao, Zhanpeng Huang, Zibin Wang, Tianfan Xue, Dan Xu
Title: From One to More: Contextual Part Latents for 3D Generation
Abstract:
Recent advances in 3D generation have transitioned from multi-view 2D rendering approaches to 3D-native latent diffusion frameworks that exploit geometric priors in ground truth data. Despite progress, three key limitations persist: (1) Single-latent representations fail to capture complex multi-part geometries, causing detail degradation; (2) Holistic latent coding neglects part independence and interrelationships critical for compositional design; (3) Global conditioning mechanisms lack fine-grained controllability. Inspired by human 3D design workflows, we propose CoPart - a part-aware diffusion framework that decomposes 3D objects into contextual part latents for coherent multi-part generation. This paradigm offers three advantages: i) Reduces encoding complexity through part decomposition; ii) Enables explicit part relationship modeling; iii) Supports part-level conditioning. We further develop a mutual guidance strategy to fine-tune pre-trained diffusion models for joint part latent denoising, ensuring both geometric coherence and foundation model priors. To enable large-scale training, we construct Partverse - a novel 3D part dataset derived from Objaverse through automated mesh segmentation and human-verified annotations. Extensive experiments demonstrate CoPart's superior capabilities in part-level editing, articulated object generation, and scene composition with unprecedented controllability.

Authors:Rei Tamaru, Pei Li, Bin Ran
Title: Geo-ORBIT: A Federated Digital Twin Framework for Scene-Adaptive Lane Geometry Detection
Abstract:
Digital Twins (DT) have the potential to transform traffic management and operations by creating dynamic, virtual representations of transportation systems that sense conditions, analyze operations, and support decision-making. A key component for DT of the transportation system is dynamic roadway geometry sensing. However, existing approaches often rely on static maps or costly sensors, limiting scalability and adaptability. Additionally, large-scale DTs that collect and analyze data from multiple sources face challenges in privacy, communication, and computational efficiency. To address these challenges, we introduce Geo-ORBIT (Geometrical Operational Roadway Blueprint with Integrated Twin), a unified framework that combines real-time lane detection, DT synchronization, and federated meta-learning. At the core of Geo-ORBIT is GeoLane, a lightweight lane detection model that learns lane geometries from vehicle trajectory data using roadside cameras. We extend this model through Meta-GeoLane, which learns to personalize detection parameters for local entities, and FedMeta-GeoLane, a federated learning strategy that ensures scalable and privacy-preserving adaptation across roadside deployments. Our system is integrated with CARLA and SUMO to create a high-fidelity DT that renders highway scenarios and captures traffic flows in real-time. Extensive experiments across diverse urban scenes show that FedMeta-GeoLane consistently outperforms baseline and meta-learning approaches, achieving lower geometric error and stronger generalization to unseen locations while drastically reducing communication overhead. This work lays the foundation for flexible, context-aware infrastructure modeling in DTs. The framework is publicly available at https://github.com/raynbowy23/FedMeta-GeoLane.git.

Authors:Tianlong Ai, Tianzhu Liu, Haochen Jiang, Yanfeng Gu
Title: HieraRS: A Hierarchical Segmentation Paradigm for Remote Sensing Enabling Multi-Granularity Interpretation and Cross-Domain Transfer
Abstract:
Hierarchical land cover and land use (LCLU) classification aims to assign pixel-wise labels with multiple levels of semantic granularity to remote sensing (RS) imagery. However, existing deep learning-based methods face two major challenges: 1) They predominantly adopt a flat classification paradigm, which limits their ability to generate end-to-end multi-granularity hierarchical predictions aligned with tree-structured hierarchies used in practice. 2) Most cross-domain studies focus on performance degradation caused by sensor or scene variations, with limited attention to transferring LCLU models to cross-domain tasks with heterogeneous hierarchies (e.g., LCLU to crop classification). These limitations hinder the flexibility and generalization of LCLU models in practical applications. To address these challenges, we propose HieraRS, a novel hierarchical interpretation paradigm that enables multi-granularity predictions and supports the efficient transfer of LCLU models to cross-domain tasks with heterogeneous tree-structured hierarchies. We introduce the Bidirectional Hierarchical Consistency Constraint Mechanism (BHCCM), which can be seamlessly integrated into mainstream flat classification models to generate hierarchical predictions, while improving both semantic consistency and classification accuracy. Furthermore, we present TransLU, a dual-branch cross-domain transfer framework comprising two key components: Cross-Domain Knowledge Sharing (CDKS) and Cross-Domain Semantic Alignment (CDSA). TransLU supports dynamic category expansion and facilitates the effective adaptation of LCLU models to heterogeneous hierarchies. In addition, we construct MM-5B, a large-scale multi-modal hierarchical land use dataset featuring pixel-wise annotations. The code and MM-5B dataset will be released at: https://github.com/AI-Tianlong/HieraRS.

Authors:Yuqiang Lin, Sam Lockyer, Mingxuan Sui, Li Gan, Florian Stanek, Markus Zarbock, Wenbin Li, Adrian Evans, Nic Zhang
Title: RoundaboutHD: High-Resolution Real-World Urban Environment Benchmark for Multi-Camera Vehicle Tracking
Abstract:
The multi-camera vehicle tracking (MCVT) framework holds significant potential for smart city applications, including anomaly detection, traffic density estimation, and suspect vehicle tracking. However, current publicly available datasets exhibit limitations, such as overly simplistic scenarios, low-resolution footage, and insufficiently diverse conditions, creating a considerable gap between academic research and real-world scenario. To fill this gap, we introduce RoundaboutHD, a comprehensive, high-resolution multi-camera vehicle tracking benchmark dataset specifically designed to represent real-world roundabout scenarios. RoundaboutHD provides a total of 40 minutes of labelled video footage captured by four non-overlapping, high-resolution (4K resolution, 15 fps) cameras. In total, 512 unique vehicle identities are annotated across different camera views, offering rich cross-camera association data. RoundaboutHD offers temporal consistency video footage and enhanced challenges, including increased occlusions and nonlinear movement inside the roundabout. In addition to the full MCVT dataset, several subsets are also available for object detection, single camera tracking, and image-based vehicle re-identification (ReID) tasks. Vehicle model information and camera modelling/ geometry information are also included to support further analysis. We provide baseline results for vehicle detection, single-camera tracking, image-based vehicle re-identification, and multi-camera tracking. The dataset and the evaluation code are publicly available at: https://github.com/siri-rouser/RoundaboutHD.git

Authors:Kongwu Huang, Shiyi Mu, Jun Jiang, Yuan Gao, Shugong Xu
Title: Unreal is all you need: Multimodal ISAC Data Simulation with Only One Engine
Abstract:
Scaling laws have achieved success in LLM and foundation models. To explore their potential in ISAC research, we propose Great-X. This single-engine multimodal data twin platform reconstructs the ray-tracing computation of Sionna within Unreal Engine and is deeply integrated with autonomous driving tools. This enables efficient and synchronized simulation of multimodal data, including CSI, RGB, Radar, and LiDAR. Based on this platform, we construct an open-source, large-scale, low-altitude UAV multimodal synaesthesia dataset named Great-MSD, and propose a baseline CSI-based UAV 3D localization algorithm, demonstrating its feasibility and generalizability across different CSI simulation engines. The related code and dataset will be made available at: https://github.com/hkw-xg/Great-MCD.

Authors:Shuang Cui, Jinglin Xu, Yi Li, Xiongxin Tang, Jiangmeng Li, Jiahuan Zhou, Fanjiang Xu, Fuchun Sun, Hui Xiong
Title: BayesTTA: Continual-Temporal Test-Time Adaptation for Vision-Language Models via Gaussian Discriminant Analysis
Abstract:
Vision-language models (VLMs) such as CLIP achieve strong zero-shot recognition but degrade significantly under \textit{temporally evolving distribution shifts} common in real-world scenarios (e.g., gradual illumination or seasonal changes). Existing continual test-time adaptation (CTTA) methods are typically built around sudden and severe distribution shifts and neglect temporal continuity, leading to three core defects: limited memory cache restricts long-range distribution modeling, causing catastrophic forgetting; entropy-based confidence becomes unreliable under temporal drift, worsening error accumulation; and static visual representations misalign with evolving inputs. We formalize this practical problem as \textit{Continual-Temporal Test-Time Adaptation (CT-TTA)}, where test distributions evolve gradually over time. To address it, we propose \textit{BayesTTA}, a Bayesian adaptation framework that enforces temporally consistent predictions and dynamically aligns visual representations. Specifically, BayesTTA incrementally estimates class-conditional Gaussian mixture distributions without storing raw data, adaptively selects covariance structures through statistical hypothesis testing, and performs calibrated inference using Gaussian discriminant analysis (GDA). These calibrated predictions supervise self-paced adaptation of normalization layers, ensuring efficient and stable representation alignment. We establish a comprehensive CT-TTA benchmark across four temporally evolving datasets and further evaluate generalization on ten standard TTA datasets. Extensive experiments show that BayesTTA consistently outperforms state-of-the-art methods, achieving significant gains while maintaining efficiency. Code is available at \href{https://github.com/cuishuang99/BayesTTA}{https://github.com/cuishuang99/BayesTTA}.

Authors:Junyu Chen, Yihua Gao, Mingyong Li
Title: Visual Semantic Description Generation with MLLMs for Image-Text Matching
Abstract:
Image-text matching (ITM) aims to address the fundamental challenge of aligning visual and textual modalities, which inherently differ in their representations, continuous, high-dimensional image features vs. discrete, structured text. We propose a novel framework that bridges the modality gap by leveraging multimodal large language models (MLLMs) as visual semantic parsers. By generating rich Visual Semantic Descriptions (VSD), MLLMs provide semantic anchor that facilitate cross-modal alignment. Our approach combines: (1) Instance-level alignment by fusing visual features with VSD to enhance the linguistic expressiveness of image representations, and (2) Prototype-level alignment through VSD clustering to ensure category-level consistency. These modules can be seamlessly integrated into existing ITM models. Extensive experiments on Flickr30K and MSCOCO demonstrate substantial performance improvements. The approach also exhibits remarkable zero-shot generalization to cross-domain tasks, including news and remote sensing ITM. The code and model checkpoints are available at https://github.com/Image-Text-Matching/VSD.

Authors:Enyu Liu, En Yu, Sijia Chen, Wenbing Tao
Title: Disentangling Instance and Scene Contexts for 3D Semantic Scene Completion
Abstract:
3D Semantic Scene Completion (SSC) has gained increasing attention due to its pivotal role in 3D perception. Recent advancements have primarily focused on refining voxel-level features to construct 3D scenes. However, treating voxels as the basic interaction units inherently limits the utilization of class-level information, which is proven critical for enhancing the granularity of completion results. To address this, we propose \textbf{D}isentangling Instance and Scene Contexts (DISC), a novel dual-stream paradigm that enhances learning for both instance and scene categories through separated optimization. Specifically, we replace voxel queries with discriminative class queries, which incorporate class-specific geometric and semantic priors. Additionally, we exploit the intrinsic properties of classes to design specialized decoding modules, facilitating targeted interactions and efficient class-level information flow. Experimental results demonstrate that DISC achieves state-of-the-art (SOTA) performance on both SemanticKITTI and SSCBench-KITTI-360 benchmarks, with mIoU scores of 17.35 and 20.55, respectively. Remarkably, DISC even outperforms multi-frame SOTA methods using only single-frame input and significantly improves instance category performance, surpassing both single-frame and multi-frame SOTA instance mIoU by 17.9\% and 11.9\%, respectively, on the SemanticKITTI hidden test. The code is available at https://github.com/Enyu-Liu/DISC.

Authors:Inye Na, Nejung Rue, Jiwon Chung, Hyunjin Park
Title: RadiomicsRetrieval: A Customizable Framework for Medical Image Retrieval Using Radiomics Features
Abstract:
Medical image retrieval is a valuable field for supporting clinical decision-making, yet current methods primarily support 2D images and require fully annotated queries, limiting clinical flexibility. To address this, we propose RadiomicsRetrieval, a 3D content-based retrieval framework bridging handcrafted radiomics descriptors with deep learning-based embeddings at the tumor level. Unlike existing 2D approaches, RadiomicsRetrieval fully exploits volumetric data to leverage richer spatial context in medical images. We employ a promptable segmentation model (e.g., SAM) to derive tumor-specific image embeddings, which are aligned with radiomics features extracted from the same tumor via contrastive learning. These representations are further enriched by anatomical positional embedding (APE). As a result, RadiomicsRetrieval enables flexible querying based on shape, location, or partial feature sets. Extensive experiments on both lung CT and brain MRI public datasets demonstrate that radiomics features significantly enhance retrieval specificity, while APE provides global anatomical context essential for location-based searches. Notably, our framework requires only minimal user prompts (e.g., a single point), minimizing segmentation overhead and supporting diverse clinical scenarios. The capability to query using either image embeddings or selected radiomics attributes highlights its adaptability, potentially benefiting diagnosis, treatment planning, and research on large-scale medical imaging repositories. Our code is available at https://github.com/nainye/RadiomicsRetrieval.

Authors:Heng Li, Qingcai Chen, Xiangping Wu
Title: Dual Dimensions Geometric Representation Learning Based Document Dewarping
Abstract:
Document image dewarping remains a challenging task in the deep learning era. While existing methods have improved by leveraging text line awareness, they typically focus only on a single horizontal dimension. In this paper, we propose a fine-grained deformation perception model that focuses on Dual Dimensions of document horizontal-vertical-lines to improve document Dewarping called D2Dewarp. It can perceive distortion trends in different directions across document details. To combine the horizontal and vertical granularity features, an effective fusion module based on X and Y coordinate is designed to facilitate interaction and constraint between the two dimensions for feature complementarity. Due to the lack of annotated line features in current public dewarping datasets, we also propose an automatic fine-grained annotation method using public document texture images and an automatic rendering engine to build a new large-scale distortion training dataset. The code and dataset will be publicly released. On public Chinese and English benchmarks, both quantitative and qualitative results show that our method achieves better rectification results compared with the state-of-the-art methods. The dataset will be publicly available at https://github.com/xiaomore/DocDewarpHV

Authors:Zesong Yang, Bangbang Yang, Wenqi Dong, Chenxuan Cao, Liyuan Cui, Yuewen Ma, Zhaopeng Cui, Hujun Bao
Title: InstaScene: Towards Complete 3D Instance Decomposition and Reconstruction from Cluttered Scenes
Abstract:
Humans can naturally identify and mentally complete occluded objects in cluttered environments. However, imparting similar cognitive ability to robotics remains challenging even with advanced reconstruction techniques, which models scenes as undifferentiated wholes and fails to recognize complete object from partial observations. In this paper, we propose InstaScene, a new paradigm towards holistic 3D perception of complex scenes with a primary goal: decomposing arbitrary instances while ensuring complete reconstruction. To achieve precise decomposition, we develop a novel spatial contrastive learning by tracing rasterization of each instance across views, significantly enhancing semantic supervision in cluttered scenes. To overcome incompleteness from limited observations, we introduce in-situ generation that harnesses valuable observations and geometric cues, effectively guiding 3D generative models to reconstruct complete instances that seamlessly align with the real world. Experiments on scene decomposition and object completion across complex real-world and synthetic scenes demonstrate that our method achieves superior decomposition accuracy while producing geometrically faithful and visually intact objects.

Authors:Zhanxin Gao, Beier Zhu, Liang Yao, Jian Yang, Ying Tai
Title: Subject-Consistent and Pose-Diverse Text-to-Image Generation
Abstract:
Subject-consistent generation (SCG)-aiming to maintain a consistent subject identity across diverse scenes-remains a challenge for text-to-image (T2I) models. Existing training-free SCG methods often achieve consistency at the cost of layout and pose diversity, hindering expressive visual storytelling. To address the limitation, we propose subject-Consistent and pose-Diverse T2I framework, dubbed as CoDi, that enables consistent subject generation with diverse pose and layout. Motivated by the progressive nature of diffusion, where coarse structures emerge early and fine details are refined later, CoDi adopts a two-stage strategy: Identity Transport (IT) and Identity Refinement (IR). IT operates in the early denoising steps, using optimal transport to transfer identity features to each target image in a pose-aware manner. This promotes subject consistency while preserving pose diversity. IR is applied in the later denoising steps, selecting the most salient identity features to further refine subject details. Extensive qualitative and quantitative results on subject consistency, pose diversity, and prompt fidelity demonstrate that CoDi achieves both better visual perception and stronger performance across all metrics. The code is provided in https://github.com/NJU-PCALab/CoDi.

Authors:Shishuai Hu, Zehui Liao, Liangli Zhen, Huazhu Fu, Yong Xia
Title: Cycle Context Verification for In-Context Medical Image Segmentation
Abstract:
In-context learning (ICL) is emerging as a promising technique for achieving universal medical image segmentation, where a variety of objects of interest across imaging modalities can be segmented using a single model. Nevertheless, its performance is highly sensitive to the alignment between the query image and in-context image-mask pairs. In a clinical scenario, the scarcity of annotated medical images makes it challenging to select optimal in-context pairs, and fine-tuning foundation ICL models on contextual data is infeasible due to computational costs and the risk of catastrophic forgetting. To address this challenge, we propose Cycle Context Verification (CCV), a novel framework that enhances ICL-based medical image segmentation by enabling self-verification of predictions and accordingly enhancing contextual alignment. Specifically, CCV employs a cyclic pipeline in which the model initially generates a segmentation mask for the query image. Subsequently, the roles of the query and an in-context pair are swapped, allowing the model to validate its prediction by predicting the mask of the original in-context image. The accuracy of this secondary prediction serves as an implicit measure of the initial query segmentation. A query-specific prompt is introduced to alter the query image and updated to improve the measure, thereby enhancing the alignment between the query and in-context pairs. We evaluated CCV on seven medical image segmentation datasets using two ICL foundation models, demonstrating its superiority over existing methods. Our results highlight CCV's ability to enhance ICL-based segmentation, making it a robust solution for universal medical image segmentation. The code will be available at https://github.com/ShishuaiHu/CCV.

Authors:Jihao Gu, Fei Wang, Kun Li, Yanyan Wei, Zhiliang Wu, Dan Guo
Title: MM-Gesture: Towards Precise Micro-Gesture Recognition through Multimodal Fusion
Abstract:
In this paper, we present MM-Gesture, the solution developed by our team HFUT-VUT, which ranked 1st in the micro-gesture classification track of the 3rd MiGA Challenge at IJCAI 2025, achieving superior performance compared to previous state-of-the-art methods. MM-Gesture is a multimodal fusion framework designed specifically for recognizing subtle and short-duration micro-gestures (MGs), integrating complementary cues from joint, limb, RGB video, Taylor-series video, optical-flow video, and depth video modalities. Utilizing PoseConv3D and Video Swin Transformer architectures with a novel modality-weighted ensemble strategy, our method further enhances RGB modality performance through transfer learning pre-trained on the larger MA-52 dataset. Extensive experiments on the iMiGUE benchmark, including ablation studies across different modalities, validate the effectiveness of our proposed approach, achieving a top-1 accuracy of 73.213%. Code is available at: https://github.com/momiji-bit/MM-Gesture.

Authors:Jia-Xuan Jiang, Jiashuai Liu, Hongtao Wu, Yifeng Wu, Zhong Wang, Qi Bi, Yefeng Zheng
Title: Single Domain Generalization for Multimodal Cross-Cancer Prognosis via Dirac Rebalancer and Distribution Entanglement
Abstract:
Deep learning has shown remarkable performance in integrating multimodal data for survival prediction. However, existing multimodal methods mainly focus on single cancer types and overlook the challenge of generalization across cancers. In this work, we are the first to reveal that multimodal prognosis models often generalize worse than unimodal ones in cross-cancer scenarios, despite the critical need for such robustness in clinical practice. To address this, we propose a new task: Cross-Cancer Single Domain Generalization for Multimodal Prognosis, which evaluates whether models trained on a single cancer type can generalize to unseen cancers. We identify two key challenges: degraded features from weaker modalities and ineffective multimodal integration. To tackle these, we introduce two plug-and-play modules: Sparse Dirac Information Rebalancer (SDIR) and Cancer-aware Distribution Entanglement (CADE). SDIR mitigates the dominance of strong features by applying Bernoulli-based sparsification and Dirac-inspired stabilization to enhance weaker modality signals. CADE, designed to synthesize the target domain distribution, fuses local morphological cues and global gene expression in latent space. Experiments on a four-cancer-type benchmark demonstrate superior generalization, laying the foundation for practical, robust cross-cancer multimodal prognosis. Code is available at https://github.com/HopkinsKwong/MCCSDG

Authors:Kui Jiang, Shiyu Liu, Junjun Jiang, Hongxun Yao, Xiaopeng Fan
Title: M2DAO-Talker: Harmonizing Multi-granular Motion Decoupling and Alternating Optimization for Talking-head Generation
Abstract:
Audio-driven talking head generation holds significant potential for film production. While existing 3D methods have advanced motion modeling and content synthesis, they often produce rendering artifacts, such as motion blur, temporal jitter, and local penetration, due to limitations in representing stable, fine-grained motion fields. Through systematic analysis, we reformulate talking head generation into a unified framework comprising three steps: video preprocessing, motion representation, and rendering reconstruction. This framework underpins our proposed M2DAO-Talker, which addresses current limitations via multi-granular motion decoupling and alternating optimization. Specifically, we devise a novel 2D portrait preprocessing pipeline to extract frame-wise deformation control conditions (motion region segmentation masks, and camera parameters) to facilitate motion representation. To ameliorate motion modeling, we elaborate a multi-granular motion decoupling strategy, which independently models non-rigid (oral and facial) and rigid (head) motions for improved reconstruction accuracy. Meanwhile, a motion consistency constraint is developed to ensure head-torso kinematic consistency, thereby mitigating penetration artifacts caused by motion aliasing. In addition, an alternating optimization strategy is designed to iteratively refine facial and oral motion parameters, enabling more realistic video generation. Experiments across multiple datasets show that M2DAO-Talker achieves state-of-the-art performance, with the 2.43 dB PSNR improvement in generation quality and 0.64 gain in user-evaluated video realness versus TalkingGaussian while with 150 FPS inference speed. Our project homepage is https://m2dao-talker.github.io/M2DAO-Talk.github.io.

Authors:J. D. Peiffer, Kunal Shah, Irina Djuraskovic, Shawana Anarwala, Kayan Abdou, Rujvee Patel, Prakash Jayabalan, Brenton Pennicooke, R. James Cotton
Title: Portable Biomechanics Laboratory: Clinically Accessible Movement Analysis from a Handheld Smartphone
Abstract:
The way a person moves is a direct reflection of their neurological and musculoskeletal health, yet it remains one of the most underutilized vital signs in clinical practice. Although clinicians visually observe movement impairments, they lack accessible and validated methods to objectively measure movement in routine care. This gap prevents wider use of biomechanical measurements in practice, which could enable more sensitive outcome measures or earlier identification of impairment. We present our Portable Biomechanics Laboratory (PBL), which includes a secure, cloud-enabled smartphone app for data collection and a novel algorithm for fitting biomechanical models to this data. We extensively validated PBL's biomechanical measures using a large, clinically representative dataset. Next, we tested the usability and utility of our system in neurosurgery and sports medicine clinics. We found joint angle errors within 3 degrees across participants with neurological injury, lower-limb prosthesis users, pediatric inpatients, and controls. In addition to being easy to use, gait metrics computed from the PBL showed high reliability and were sensitive to clinical differences. For example, in individuals undergoing decompression surgery for cervical myelopathy, the mJOA score is a common patient-reported outcome measure; we found that PBL gait metrics correlated with mJOA scores and demonstrated greater responsiveness to surgical intervention than the patient-reported outcomes. These findings support the use of handheld smartphone video as a scalable, low-burden tool for capturing clinically meaningful biomechanical data, offering a promising path toward accessible monitoring of mobility impairments. We release the first clinically validated method for measuring whole-body kinematics from handheld smartphone video at https://intelligentsensingandrehabilitation.github.io/MonocularBiomechanics/ .

Authors:Jason Kahei Tam, Murilo Gustineli, Anthony Miyaguchi
Title: Transfer Learning and Mixup for Fine-Grained Few-Shot Fungi Classification
Abstract:
Accurate identification of fungi species presents a unique challenge in computer vision due to fine-grained inter-species variation and high intra-species variation. This paper presents our approach for the FungiCLEF 2025 competition, which focuses on few-shot fine-grained visual categorization (FGVC) using the FungiTastic Few-Shot dataset. Our team (DS@GT) experimented with multiple vision transformer models, data augmentation, weighted sampling, and incorporating textual information. We also explored generative AI models for zero-shot classification using structured prompting but found them to significantly underperform relative to vision-based models. Our final model outperformed both competition baselines and highlighted the effectiveness of domain specific pretraining and balanced sampling strategies. Our approach ranked 35/74 on the private test set in post-completion evaluation, this suggests additional work can be done on metadata selection and domain-adapted multi-modal learning. Our code is available at https://github.com/dsgt-arc/fungiclef-2025.

Authors:Xiwen Chen, Peijie Qiu, Wenhui Zhu, Hao Wang, Huayu Li, Xuanzhao Dong, Xiaotong Sun, Xiaobing Yu, Yalin Wang, Abolfazl Razi, Aristeidis Sotiras
Title: Cracking Instance Jigsaw Puzzles: An Alternative to Multiple Instance Learning for Whole Slide Image Analysis
Abstract:
While multiple instance learning (MIL) has shown to be a promising approach for histopathological whole slide image (WSI) analysis, its reliance on permutation invariance significantly limits its capacity to effectively uncover semantic correlations between instances within WSIs. Based on our empirical and theoretical investigations, we argue that approaches that are not permutation-invariant but better capture spatial correlations between instances can offer more effective solutions. In light of these findings, we propose a novel alternative to existing MIL for WSI analysis by learning to restore the order of instances from their randomly shuffled arrangement. We term this task as cracking an instance jigsaw puzzle problem, where semantic correlations between instances are uncovered. To tackle the instance jigsaw puzzles, we propose a novel Siamese network solution, which is theoretically justified by optimal transport theory. We validate the proposed method on WSI classification and survival prediction tasks, where the proposed method outperforms the recent state-of-the-art MIL competitors. The code is available at https://github.com/xiwenc1/MIL-JigsawPuzzles.

Authors:Chong Cheng, Yu Hu, Sicheng Yu, Beizhen Zhao, Zijian Wang, Hao Wang
Title: RegGS: Unposed Sparse Views Gaussian Splatting with 3DGS Registration
Abstract:
3D Gaussian Splatting (3DGS) has demonstrated its potential in reconstructing scenes from unposed images. However, optimization-based 3DGS methods struggle with sparse views due to limited prior knowledge. Meanwhile, feed-forward Gaussian approaches are constrained by input formats, making it challenging to incorporate more input views. To address these challenges, we propose RegGS, a 3D Gaussian registration-based framework for reconstructing unposed sparse views. RegGS aligns local 3D Gaussians generated by a feed-forward network into a globally consistent 3D Gaussian representation. Technically, we implement an entropy-regularized Sinkhorn algorithm to efficiently solve the optimal transport Mixture 2-Wasserstein $(\text{MW}_2)$ distance, which serves as an alignment metric for Gaussian mixture models (GMMs) in $\mathrm{Sim}(3)$ space. Furthermore, we design a joint 3DGS registration module that integrates the $\text{MW}_2$ distance, photometric consistency, and depth geometry. This enables a coarse-to-fine registration process while accurately estimating camera poses and aligning the scene. Experiments on the RE10K and ACID datasets demonstrate that RegGS effectively registers local Gaussians with high fidelity, achieving precise pose estimation and high-quality novel-view synthesis. Project page: https://3dagentworld.github.io/reggs/.

Authors:Evgenii Rudakov, Jonathan Shock, Otto Lappi, Benjamin Ultan Cowley
Title: SSSUMO: Real-Time Semi-Supervised Submovement Decomposition
Abstract:
This paper introduces a SSSUMO, semi-supervised deep learning approach for submovement decomposition that achieves state-of-the-art accuracy and speed. While submovement analysis offers valuable insights into motor control, existing methods struggle with reconstruction accuracy, computational cost, and validation, due to the difficulty of obtaining hand-labeled data. We address these challenges using a semi-supervised learning framework. This framework learns from synthetic data, initially generated from minimum-jerk principles and then iteratively refined through adaptation to unlabeled human movement data. Our fully convolutional architecture with differentiable reconstruction significantly surpasses existing methods on both synthetic and diverse human motion datasets, demonstrating robustness even in high-noise conditions. Crucially, the model operates in real-time (less than a millisecond per input second), a substantial improvement over optimization-based techniques. This enhanced performance facilitates new applications in human-computer interaction, rehabilitation medicine, and motor control studies. We demonstrate the model's effectiveness across diverse human-performed tasks such as steering, rotation, pointing, object moving, handwriting, and mouse-controlled gaming, showing notable improvements particularly on challenging datasets where traditional methods largely fail. Training and benchmarking source code, along with pre-trained model weights, are made publicly available at https://github.com/dolphin-in-a-coma/sssumo.

Authors:Helen Qu, Sang Michael Xie
Title: Impact of Pretraining Word Co-occurrence on Compositional Generalization in Multimodal Models
Abstract:
CLIP and large multimodal models (LMMs) have better accuracy on examples involving concepts that are highly represented in the training data. However, the role of concept combinations in the training data on compositional generalization is largely unclear -- for instance, how does accuracy vary when a common object appears in an uncommon pairing with another object? In this paper, we investigate how word co-occurrence statistics in the pretraining dataset (a proxy for co-occurrence of visual concepts) impacts CLIP/LMM performance. To disentangle the effects of word co-occurrence frequencies from single-word frequencies, we measure co-occurrence with pointwise mutual information (PMI), which normalizes the joint probability of two words co-occurring by the probability of co-occurring independently. Using synthetically generated images with a variety of concept pairs, we show a strong correlation between PMI in the CLIP pretraining data and zero-shot accuracy in CLIP models trained on LAION-400M (r=0.97 and 14% accuracy gap between images in the top and bottom 5% of PMI values), demonstrating that even accuracy on common concepts is affected by the combination of concepts in the image. Leveraging this finding, we reproduce this effect in natural images by editing them to contain pairs with varying PMI, resulting in a correlation of r=0.75. Finally, we demonstrate that this behavior in CLIP transfers to LMMs built on top of CLIP (r=0.70 for TextVQA, r=0.62 for VQAv2). Our findings highlight the need for algorithms and architectures that improve compositional generalization in multimodal models without scaling the training data combinatorially. Our code is available at https://github.com/helenqu/multimodal-pretraining-pmi.

Authors:Haochen Wang, Xiangtai Li, Zilong Huang, Anran Wang, Jiacong Wang, Tao Zhang, Jiani Zheng, Sule Bai, Zijian Kang, Jiashi Feng, Zhuochen Wang, Zhaoxiang Zhang
Title: Traceable Evidence Enhanced Visual Grounded Reasoning: Evaluation and Methodology
Abstract:
Models like OpenAI-o3 pioneer visual grounded reasoning by dynamically referencing visual regions, just like human "thinking with images". However, no benchmark exists to evaluate these capabilities holistically. To bridge this gap, we propose TreeBench (Traceable Evidence Evaluation Benchmark), a diagnostic benchmark built on three principles: (1) focused visual perception of subtle targets in complex scenes, (2) traceable evidence via bounding box evaluation, and (3) second-order reasoning to test object interactions and spatial hierarchies beyond simple object localization. Prioritizing images with dense objects, we initially sample 1K high-quality images from SA-1B, and incorporate eight LMM experts to manually annotate questions, candidate options, and answers for each image. After three stages of quality control, TreeBench consists of 405 challenging visual question-answering pairs, even the most advanced models struggle with this benchmark, where none of them reach 60% accuracy, e.g., OpenAI-o3 scores only 54.87. Furthermore, we introduce TreeVGR (Traceable Evidence Enhanced Visual Grounded Reasoning), a training paradigm to supervise localization and reasoning jointly with reinforcement learning, enabling accurate localizations and explainable reasoning pathways. Initialized from Qwen2.5-VL-7B, it improves V* Bench (+16.8), MME-RealWorld (+12.6), and TreeBench (+13.4), proving traceability is key to advancing vision-grounded reasoning. The code is available at https://github.com/Haochen-Wang409/TreeVGR.

Authors:Mingkai Jia, Wei Yin, Xiaotao Hu, Jiaxin Guo, Xiaoyang Guo, Qian Zhang, Xiao-Xiao Long, Ping Tan
Title: MGVQ: Could VQ-VAE Beat VAE? A Generalizable Tokenizer with Multi-group Quantization
Abstract:
Vector Quantized Variational Autoencoders (VQ-VAEs) are fundamental models that compress continuous visual data into discrete tokens. Existing methods have tried to improve the quantization strategy for better reconstruction quality, however, there still exists a large gap between VQ-VAEs and VAEs. To narrow this gap, we propose MGVQ, a novel method to augment the representation capability of discrete codebooks, facilitating easier optimization for codebooks and minimizing information loss, thereby enhancing reconstruction quality. Specifically, we propose to retain the latent dimension to preserve encoded features and incorporate a set of sub-codebooks for quantization. Furthermore, we construct comprehensive zero-shot benchmarks featuring resolutions of 512p and 2k to evaluate the reconstruction performance of existing methods rigorously. MGVQ achieves the state-of-the-art performance on both ImageNet and 8 zero-shot benchmarks across all VQ-VAEs. Notably, compared with SD-VAE, we outperform them on ImageNet significantly, with rFID 0.49 v.s. 0.91, and achieve superior PSNR on all zero-shot benchmarks. These results highlight the superiority of MGVQ in reconstruction and pave the way for preserving fidelity in HD image processing tasks. Code will be publicly available at https://github.com/MKJia/MGVQ.

Authors:Shivam Duggal, Sanghyun Byun, William T. Freeman, Antonio Torralba, Phillip Isola
Title: Single-pass Adaptive Image Tokenization for Minimum Program Search
Abstract:
According to Algorithmic Information Theory (AIT) -- Intelligent representations compress data into the shortest possible program that can reconstruct its content, exhibiting low Kolmogorov Complexity (KC). In contrast, most visual representation learning systems use fixed-length representations for all inputs, ignoring variations in complexity or familiarity. Recent adaptive tokenization methods address this by allocating variable-length representations but typically require test-time search over multiple encodings to find the most predictive one. Inspired by Kolmogorov Complexity principles, we propose a single-pass adaptive tokenizer, KARL, which predicts the appropriate number of tokens for an image in a single forward pass, halting once its approximate KC is reached. The token count serves as a proxy for the minimum description length. KARL's training procedure closely resembles the Upside-Down Reinforcement Learning paradigm, as it learns to conditionally predict token halting based on a desired reconstruction quality. KARL matches the performance of recent adaptive tokenizers while operating in a single pass. We present scaling laws for KARL, analyzing the role of encoder/decoder size, continuous vs. discrete tokenization and more. Additionally, we offer a conceptual study drawing an analogy between Adaptive Image Tokenization and Algorithmic Information Theory, examining the predicted image complexity (KC) across axes such as structure vs. noise and in- vs. out-of-distribution familiarity -- revealing alignment with human intuition.

Authors:Weihao Xia, Cengiz Oztireli
Title: Multigranular Evaluation for Brain Visual Decoding
Abstract:
Existing evaluation protocols for brain visual decoding predominantly rely on coarse metrics that obscure inter-model differences, lack neuroscientific foundation, and fail to capture fine-grained visual distinctions. To address these limitations, we introduce BASIC, a unified, multigranular evaluation framework that jointly quantifies structural fidelity, inferential alignment, and contextual coherence between decoded and ground truth images. For the structural level, we introduce a hierarchical suite of segmentation-based metrics, including foreground, semantic, instance, and component masks, anchored in granularity-aware correspondence across mask structures. For the semantic level, we extract structured scene representations encompassing objects, attributes, and relationships using multimodal large language models, enabling detailed, scalable, and context-rich comparisons with ground-truth stimuli. We benchmark a diverse set of visual decoding methods across multiple stimulus-neuroimaging datasets within this unified evaluation framework. Together, these criteria provide a more discriminative, interpretable, and comprehensive foundation for measuring brain visual decoding methods.

Authors:JingLi Lin, Chenming Zhu, Runsen Xu, Xiaohan Mao, Xihui Liu, Tai Wang, Jiangmiao Pang
Title: OST-Bench: Evaluating the Capabilities of MLLMs in Online Spatio-temporal Scene Understanding
Abstract:
Recent advances in multimodal large language models (MLLMs) have shown remarkable capabilities in integrating vision and language for complex reasoning. While most existing benchmarks evaluate models under offline settings with a fixed set of pre-recorded inputs, we introduce OST-Bench, a benchmark designed to evaluate Online Spatio-Temporal understanding from the perspective of an agent actively exploring a scene. The Online aspect emphasizes the need to process and reason over incrementally acquired observations, while the Spatio-Temporal component requires integrating current visual inputs with historical memory to support dynamic spatial reasoning. OST-Bench better reflects the challenges of real-world embodied perception. Built on an efficient data collection pipeline, OST-Bench consists of 1.4k scenes and 10k question-answer pairs collected from ScanNet, Matterport3D, and ARKitScenes. We evaluate several leading MLLMs on OST-Bench and observe that they fall short on tasks requiring complex spatio-temporal reasoning. Under the online setting, their accuracy declines as the exploration horizon extends and the memory grows. Through further experimental analysis, we identify common error patterns across models and find that both complex clue-based spatial reasoning demands and long-term memory retrieval requirements significantly drop model performance along two separate axes, highlighting the core challenges that must be addressed to improve online embodied reasoning. To foster further research and development in the field, our codes, dataset, and benchmark are available. Our project page is: https://rbler1234.github.io/OSTBench.github.io/

Authors:Yukang Chen, Wei Huang, Baifeng Shi, Qinghao Hu, Hanrong Ye, Ligeng Zhu, Zhijian Liu, Pavlo Molchanov, Jan Kautz, Xiaojuan Qi, Sifei Liu, Hongxu Yin, Yao Lu, Song Han
Title: Scaling RL to Long Videos
Abstract:
We introduce a full-stack framework that scales up reasoning in vision-language models (VLMs) to long videos, leveraging reinforcement learning. We address the unique challenges of long video reasoning by integrating three critical components: (1) a large-scale dataset, LongVideo-Reason, comprising 104K long video QA pairs with high-quality reasoning annotations across diverse domains such as sports, games, and vlogs; (2) a two-stage training pipeline that extends VLMs with chain-of-thought supervised fine-tuning (CoT-SFT) and reinforcement learning (RL); and (3) a training infrastructure for long video RL, named Multi-modal Reinforcement Sequence Parallelism (MR-SP), which incorporates sequence parallelism and a vLLM-based engine tailored for long video, using cached video embeddings for efficient rollout and prefilling. In our experiments, LongVILA-R1-7B achieves strong performance on video benchmarks, reaching 65.1% and 71.1% accuracy on VideoMME without and with subtitles, respectively, and consistently outperforming LongVILA-7B across multiple benchmarks. Moreover, LongVILA-R1-7B supports processing up to 8,192 video frames per video, and configurable FPS settings. Notably, our MR-SP system achieves up to 2.1x speedup on long video RL training. In addition, we release our training system for public availability that supports RL training on various modalities (video, text, and audio), various models (VILA and Qwen series), and even image and video generation models. On a single A100 node (8 GPUs), it supports RL training on hour-long videos (e.g., 3,600 frames).

Authors:Sizhen Bian, Mengxi Liu, Vitor Fortes Rey, Daniel Geissler, Paul Lukowicz
Title: TinierHAR: Towards Ultra-Lightweight Deep Learning Models for Efficient Human Activity Recognition on Edge Devices
Abstract:
Human Activity Recognition (HAR) on resource-constrained wearable devices demands inference models that harmonize accuracy with computational efficiency. This paper introduces TinierHAR, an ultra-lightweight deep learning architecture that synergizes residual depthwise separable convolutions, gated recurrent units (GRUs), and temporal aggregation to achieve SOTA efficiency without compromising performance. Evaluated across 14 public HAR datasets, TinierHAR reduces Parameters by 2.7x (vs. TinyHAR) and 43.3x (vs. DeepConvLSTM), and MACs by 6.4x and 58.6x, respectively, while maintaining the averaged F1-scores. Beyond quantitative gains, this work provides the first systematic ablation study dissecting the contributions of spatial-temporal components across proposed TinierHAR, prior SOTA TinyHAR, and the classical DeepConvLSTM, offering actionable insights for designing efficient HAR systems. We finally discussed the findings and suggested principled design guidelines for future efficient HAR. To catalyze edge-HAR research, we open-source all materials in this work for future benchmarking\footnote{https://github.com/zhaxidele/TinierHAR}

Authors:Jinhong Wang, Tajamul Ashraf, Zongyan Han, Jorma Laaksonen, Rao Mohammad Anwer
Title: MIRA: A Novel Framework for Fusing Modalities in Medical RAG
Abstract:
Multimodal Large Language Models (MLLMs) have significantly advanced AI-assisted medical diagnosis, but they often generate factually inconsistent responses that deviate from established medical knowledge. Retrieval-Augmented Generation (RAG) enhances factual accuracy by integrating external sources, but it presents two key challenges. First, insufficient retrieval can miss critical information, whereas excessive retrieval can introduce irrelevant or misleading content, disrupting model output. Second, even when the model initially provides correct answers, over-reliance on retrieved data can lead to factual errors. To address these issues, we introduce the Multimodal Intelligent Retrieval and Augmentation (MIRA) framework, designed to optimize factual accuracy in MLLM. MIRA consists of two key components: (1) a calibrated Rethinking and Rearrangement module that dynamically adjusts the number of retrieved contexts to manage factual risk, and (2) A medical RAG framework integrating image embeddings and a medical knowledge base with a query-rewrite module for efficient multimodal reasoning. This enables the model to effectively integrate both its inherent knowledge and external references. Our evaluation of publicly available medical VQA and report generation benchmarks demonstrates that MIRA substantially enhances factual accuracy and overall performance, achieving new state-of-the-art results. Code is released at https://github.com/mbzuai-oryx/MIRA.

Authors:Jiayi Wu, Tianfu Wang, Md Abu Bakr Siddique, Md Jahidul Islam, Cornelia Fermuller, Yiannis Aloimonos, Christopher A. Metzler
Title: Single-Step Latent Diffusion for Underwater Image Restoration
Abstract:
Underwater image restoration algorithms seek to restore the color, contrast, and appearance of a scene that is imaged underwater. They are a critical tool in applications ranging from marine ecology and aquaculture to underwater construction and archaeology. While existing pixel-domain diffusion-based image restoration approaches are effective at restoring simple scenes with limited depth variation, they are computationally intensive and often generate unrealistic artifacts when applied to scenes with complex geometry and significant depth variation. In this work we overcome these limitations by combining a novel network architecture (SLURPP) with an accurate synthetic data generation pipeline. SLURPP combines pretrained latent diffusion models -- which encode strong priors on the geometry and depth of scenes -- with an explicit scene decomposition -- which allows one to model and account for the effects of light attenuation and backscattering. To train SLURPP we design a physics-based underwater image synthesis pipeline that applies varied and realistic underwater degradation effects to existing terrestrial image datasets. This approach enables the generation of diverse training data with dense medium/degradation annotations. We evaluate our method extensively on both synthetic and real-world benchmarks and demonstrate state-of-the-art performance. Notably, SLURPP is over 200X faster than existing diffusion-based methods while offering ~ 3 dB improvement in PSNR on synthetic benchmarks. It also offers compelling qualitative improvements on real-world data. Project website https://tianfwang.github.io/slurpp/.

Authors:Pierre Marza, Leo Fillioux, Sofiène Boutaj, Kunal Mahatha, Christian Desrosiers, Pablo Piantanida, Jose Dolz, Stergios Christodoulidis, Maria Vakalopoulou
Title: THUNDER: Tile-level Histopathology image UNDERstanding benchmark
Abstract:
Progress in a research field can be hard to assess, in particular when many concurrent methods are proposed in a short period of time. This is the case in digital pathology, where many foundation models have been released recently to serve as feature extractors for tile-level images, being used in a variety of downstream tasks, both for tile- and slide-level problems. Benchmarking available methods then becomes paramount to get a clearer view of the research landscape. In particular, in critical domains such as healthcare, a benchmark should not only focus on evaluating downstream performance, but also provide insights about the main differences between methods, and importantly, further consider uncertainty and robustness to ensure a reliable usage of proposed models. For these reasons, we introduce THUNDER, a tile-level benchmark for digital pathology foundation models, allowing for efficient comparison of many models on diverse datasets with a series of downstream tasks, studying their feature spaces and assessing the robustness and uncertainty of predictions informed by their embeddings. THUNDER is a fast, easy-to-use, dynamic benchmark that can already support a large variety of state-of-the-art foundation, as well as local user-defined models for direct tile-based comparison. In this paper, we provide a comprehensive comparison of 23 foundation models on 16 different datasets covering diverse tasks, feature analysis, and robustness. The code for THUNDER is publicly available at https://github.com/MICS-Lab/thunder.

Authors:Yuchen Zhu, Cheng Shi, Dingyou Wang, Jiajin Tang, Zhengxuan Wei, Yu Wu, Guanbin Li, Sibei Yang
Title: Rethinking Query-based Transformer for Continual Image Segmentation
Abstract:
Class-incremental/Continual image segmentation (CIS) aims to train an image segmenter in stages, where the set of available categories differs at each stage. To leverage the built-in objectness of query-based transformers, which mitigates catastrophic forgetting of mask proposals, current methods often decouple mask generation from the continual learning process. This study, however, identifies two key issues with decoupled frameworks: loss of plasticity and heavy reliance on input data order. To address these, we conduct an in-depth investigation of the built-in objectness and find that highly aggregated image features provide a shortcut for queries to generate masks through simple feature alignment. Based on this, we propose SimCIS, a simple yet powerful baseline for CIS. Its core idea is to directly select image features for query assignment, ensuring "perfect alignment" to preserve objectness, while simultaneously allowing queries to select new classes to promote plasticity. To further combat catastrophic forgetting of categories, we introduce cross-stage consistency in selection and an innovative "visual query"-based replay mechanism. Experiments demonstrate that SimCIS consistently outperforms state-of-the-art methods across various segmentation tasks, settings, splits, and input data orders. All models and codes will be made publicly available at https://github.com/SooLab/SimCIS.

Authors:Jiaxin Huang, Ziwen Li, Hanlve Zhang, Runnan Chen, Xiao He, Yandong Guo, Wenping Wang, Tongliang Liu, Mingming Gong
Title: SURPRISE3D: A Dataset for Spatial Understanding and Reasoning in Complex 3D Scenes
Abstract:
The integration of language and 3D perception is critical for embodied AI and robotic systems to perceive, understand, and interact with the physical world. Spatial reasoning, a key capability for understanding spatial relationships between objects, remains underexplored in current 3D vision-language research. Existing datasets often mix semantic cues (e.g., object name) with spatial context, leading models to rely on superficial shortcuts rather than genuinely interpreting spatial relationships. To address this gap, we introduce S\textsc{urprise}3D, a novel dataset designed to evaluate language-guided spatial reasoning segmentation in complex 3D scenes. S\textsc{urprise}3D consists of more than 200k vision language pairs across 900+ detailed indoor scenes from ScanNet++ v2, including more than 2.8k unique object classes. The dataset contains 89k+ human-annotated spatial queries deliberately crafted without object name, thereby mitigating shortcut biases in spatial understanding. These queries comprehensively cover various spatial reasoning skills, such as relative position, narrative perspective, parametric perspective, and absolute distance reasoning. Initial benchmarks demonstrate significant challenges for current state-of-the-art expert 3D visual grounding methods and 3D-LLMs, underscoring the necessity of our dataset and the accompanying 3D Spatial Reasoning Segmentation (3D-SRS) benchmark suite. S\textsc{urprise}3D and 3D-SRS aim to facilitate advancements in spatially aware AI, paving the way for effective embodied interaction and robotic planning. The code and datasets can be found in https://github.com/liziwennba/SUPRISE.

Authors:Mélanie Roschewitz, Raghav Mehta, Fabio de Sousa Ribeiro, Ben Glocker
Title: Where are we with calibration under dataset shift in image classification?
Abstract:
We conduct an extensive study on the state of calibration under real-world dataset shift for image classification. Our work provides important insights on the choice of post-hoc and in-training calibration techniques, and yields practical guidelines for all practitioners interested in robust calibration under shift. We compare various post-hoc calibration methods, and their interactions with common in-training calibration strategies (e.g., label smoothing), across a wide range of natural shifts, on eight different classification tasks across several imaging domains. We find that: (i) simultaneously applying entropy regularisation and label smoothing yield the best calibrated raw probabilities under dataset shift, (ii) post-hoc calibrators exposed to a small amount of semantic out-of-distribution data (unrelated to the task) are most robust under shift, (iii) recent calibration methods specifically aimed at increasing calibration under shifts do not necessarily offer significant improvements over simpler post-hoc calibration methods, (iv) improving calibration under shifts often comes at the cost of worsening in-distribution calibration. Importantly, these findings hold for randomly initialised classifiers, as well as for those finetuned from foundation models, the latter being consistently better calibrated compared to models trained from scratch. Finally, we conduct an in-depth analysis of ensembling effects, finding that (i) applying calibration prior to ensembling (instead of after) is more effective for calibration under shifts, (ii) for ensembles, OOD exposure deteriorates the ID-shifted calibration trade-off, (iii) ensembling remains one of the most effective methods to improve calibration robustness and, combined with finetuning from foundation models, yields best calibration results overall.

Authors:Dren Fazlija, Monty-Maximilian Zühlke, Johanna Schrader, Arkadij Orlov, Clara Stein, Iyiola E. Olatunji, Daniel Kudenko
Title: SCOOTER: A Human Evaluation Framework for Unrestricted Adversarial Examples
Abstract:
Unrestricted adversarial attacks aim to fool computer vision models without being constrained by $\ell_p$-norm bounds to remain imperceptible to humans, for example, by changing an object's color. This allows attackers to circumvent traditional, norm-bounded defense strategies such as adversarial training or certified defense strategies. However, due to their unrestricted nature, there are also no guarantees of norm-based imperceptibility, necessitating human evaluations to verify just how authentic these adversarial examples look. While some related work assesses this vital quality of adversarial attacks, none provide statistically significant insights. This issue necessitates a unified framework that supports and streamlines such an assessment for evaluating and comparing unrestricted attacks. To close this gap, we introduce SCOOTER - an open-source, statistically powered framework for evaluating unrestricted adversarial examples. Our contributions are: $(i)$ best-practice guidelines for crowd-study power, compensation, and Likert equivalence bounds to measure imperceptibility; $(ii)$ the first large-scale human vs. model comparison across 346 human participants showing that three color-space attacks and three diffusion-based attacks fail to produce imperceptible images. Furthermore, we found that GPT-4o can serve as a preliminary test for imperceptibility, but it only consistently detects adversarial examples for four out of six tested attacks; $(iii)$ open-source software tools, including a browser-based task template to collect annotations and analysis scripts in Python and R; $(iv)$ an ImageNet-derived benchmark dataset containing 3K real images, 7K adversarial examples, and over 34K human ratings. Our findings demonstrate that automated vision systems do not align with human perception, reinforcing the need for a ground-truth SCOOTER benchmark.

Authors:David Pujol-Perich, Sergio Escalera, Albert Clapés
Title: Sparse-Dense Side-Tuner for efficient Video Temporal Grounding
Abstract:
Video Temporal Grounding (VTG) involves Moment Retrieval (MR) and Highlight Detection (HD) based on textual queries. For this, most methods rely solely on final-layer features of frozen large pre-trained backbones, limiting their adaptability to new domains. While full fine-tuning is often impractical, parameter-efficient fine-tuning -- and particularly side-tuning (ST) -- has emerged as an effective alternative. However, prior ST approaches this problem from a frame-level refinement perspective, overlooking the inherent sparse nature of MR. To address this, we propose the Sparse-Dense Side-Tuner (SDST), the first anchor-free ST architecture for VTG. We also introduce the Reference-based Deformable Self-Attention, a novel mechanism that enhances the context modeling of the deformable attention -- a key limitation of existing anchor-free methods. Additionally, we present the first effective integration of InternVideo2 backbone into an ST framework, showing its profound implications in performance. Overall, our method significantly improves existing ST methods, achieving highly competitive or SOTA results on QVHighlights, TACoS, and Charades-STA, while reducing up to a 73% the parameter count w.r.t. the existing SOTA methods. The code is publicly accessible at https://github.com/davidpujol/SDST.

Authors:Ethan Dack, Chengliang Dai
Title: Understanding Dataset Bias in Medical Imaging: A Case Study on Chest X-rays
Abstract:
Recent works have revisited the infamous task ``Name That Dataset'', demonstrating that non-medical datasets contain underlying biases and that the dataset origin task can be solved with high accuracy. In this work, we revisit the same task applied to popular open-source chest X-ray datasets. Medical images are naturally more difficult to release for open-source due to their sensitive nature, which has led to certain open-source datasets being extremely popular for research purposes. By performing the same task, we wish to explore whether dataset bias also exists in these datasets. To extend our work, we apply simple transformations to the datasets, repeat the same task, and perform an analysis to identify and explain any detected biases. Given the importance of AI applications in medical imaging, it's vital to establish whether modern methods are taking shortcuts or are focused on the relevant pathology. We implement a range of different network architectures on the datasets: NIH, CheXpert, MIMIC-CXR and PadChest. We hope this work will encourage more explainable research being performed in medical imaging and the creation of more open-source datasets in the medical domain. Our code can be found here: https://github.com/eedack01/x_ray_ds_bias.

Authors:Wei Shang, Dongwei Ren, Wanying Zhang, Pengfei Zhu, Qinghua Hu, Wangmeng Zuo
Title: Motion-Aware Adaptive Pixel Pruning for Efficient Local Motion Deblurring
Abstract:
Local motion blur in digital images originates from the relative motion between dynamic objects and static imaging systems during exposure. Existing deblurring methods face significant challenges in addressing this problem due to their inefficient allocation of computational resources and inadequate handling of spatially varying blur patterns. To overcome these limitations, we first propose a trainable mask predictor that identifies blurred regions in the image. During training, we employ blur masks to exclude sharp regions. For inference optimization, we implement structural reparameterization by converting $3\times 3$ convolutions to computationally efficient $1\times 1$ convolutions, enabling pixel-level pruning of sharp areas to reduce computation. Second, we develop an intra-frame motion analyzer that translates relative pixel displacements into motion trajectories, establishing adaptive guidance for region-specific blur restoration. Our method is trained end-to-end using a combination of reconstruction loss, reblur loss, and mask loss guided by annotated blur masks. Extensive experiments demonstrate superior performance over state-of-the-art methods on both local and global blur datasets while reducing FLOPs by 49\% compared to SOTA models (e.g., LMD-ViT). The source code is available at https://github.com/shangwei5/M2AENet.

Authors:Peixian Zhuang, Yijian Wang, Zhenqi Fu, Hongliang Zhang, Sam Kwong, Chongyi Li
Title: Tree-Mamba: A Tree-Aware Mamba for Underwater Monocular Depth Estimation
Abstract:
Underwater Monocular Depth Estimation (UMDE) is a critical task that aims to estimate high-precision depth maps from underwater degraded images caused by light absorption and scattering effects in marine environments. Recently, Mamba-based methods have achieved promising performance across various vision tasks; however, they struggle with the UMDE task because their inflexible state scanning strategies fail to model the structural features of underwater images effectively. Meanwhile, existing UMDE datasets usually contain unreliable depth labels, leading to incorrect object-depth relationships between underwater images and their corresponding depth maps. To overcome these limitations, we develop a novel tree-aware Mamba method, dubbed Tree-Mamba, for estimating accurate monocular depth maps from underwater degraded images. Specifically, we propose a tree-aware scanning strategy that adaptively constructs a minimum spanning tree based on feature similarity. The spatial topological features among the tree nodes are then flexibly aggregated through bottom-up and top-down traversals, enabling stronger multi-scale feature representation capabilities. Moreover, we construct an underwater depth estimation benchmark (called BlueDepth), which consists of 38,162 underwater image pairs with reliable depth labels. This benchmark serves as a foundational dataset for training existing deep learning-based UMDE methods to learn accurate object-depth relationships. Extensive experiments demonstrate the superiority of the proposed Tree-Mamba over several leading methods in both qualitative results and quantitative evaluations with competitive computational efficiency. Code and dataset will be available at https://wyjgr.github.io/Tree-Mamba.html.

Authors:Feng Liu, Lingna Gu, Chen Shi, Xiaolan Fu
Title: Action Unit Enhance Dynamic Facial Expression Recognition
Abstract:
Dynamic Facial Expression Recognition(DFER) is a rapidly evolving field of research that focuses on the recognition of time-series facial expressions. While previous research on DFER has concentrated on feature learning from a deep learning perspective, we put forward an AU-enhanced Dynamic Facial Expression Recognition architecture, namely AU-DFER, that incorporates AU-expression knowledge to enhance the effectiveness of deep learning modeling. In particular, the contribution of the Action Units(AUs) to different expressions is quantified, and a weight matrix is designed to incorporate a priori knowledge. Subsequently, the knowledge is integrated with the learning outcomes of a conventional deep learning network through the introduction of AU loss. The design is incorporated into the existing optimal model for dynamic expression recognition for the purpose of validation. Experiments are conducted on three recent mainstream open-source approaches to DFER on the principal datasets in this field. The results demonstrate that the proposed architecture outperforms the state-of-the-art(SOTA) methods without the need for additional arithmetic and generally produces improved results. Furthermore, we investigate the potential of AU loss function redesign to address data label imbalance issues in established dynamic expression datasets. To the best of our knowledge, this is the first attempt to integrate quantified AU-expression knowledge into various DFER models. We also devise strategies to tackle label imbalance, or minor class problems. Our findings suggest that employing a diverse strategy of loss function design can enhance the effectiveness of DFER. This underscores the criticality of addressing data imbalance challenges in mainstream datasets within this domain. The source code is available at https://github.com/Cross-Innovation-Lab/AU-DFER.

Authors:Marc Lafon, Yannis Karmim, Julio Silva-Rodríguez, Paul Couairon, Clément Rambour, Raphaël Fournier-Sniehotta, Ismail Ben Ayed, Jose Dolz, Nicolas Thome
Title: ViLU: Learning Vision-Language Uncertainties for Failure Prediction
Abstract:
Reliable Uncertainty Quantification (UQ) and failure prediction remain open challenges for Vision-Language Models (VLMs). We introduce ViLU, a new Vision-Language Uncertainty quantification framework that contextualizes uncertainty estimates by leveraging all task-relevant textual representations. ViLU constructs an uncertainty-aware multi-modal representation by integrating the visual embedding, the predicted textual embedding, and an image-conditioned textual representation via cross-attention. Unlike traditional UQ methods based on loss prediction, ViLU trains an uncertainty predictor as a binary classifier to distinguish correct from incorrect predictions using a weighted binary cross-entropy loss, making it loss-agnostic. In particular, our proposed approach is well-suited for post-hoc settings, where only vision and text embeddings are available without direct access to the model itself. Extensive experiments on diverse datasets show the significant gains of our method compared to state-of-the-art failure prediction methods. We apply our method to standard classification datasets, such as ImageNet-1k, as well as large-scale image-caption datasets like CC12M and LAION-400M. Ablation studies highlight the critical role of our architecture and training in achieving effective uncertainty quantification. Our code is publicly available and can be found here: https://github.com/ykrmm/ViLU.

Authors:Ruixiang Chen, Guolei Sun, Yawei Li, Jie Qin, Luca Benini
Title: HiM2SAM: Enhancing SAM2 with Hierarchical Motion Estimation and Memory Optimization towards Long-term Tracking
Abstract:
This paper presents enhancements to the SAM2 framework for video object tracking task, addressing challenges such as occlusions, background clutter, and target reappearance. We introduce a hierarchical motion estimation strategy, combining lightweight linear prediction with selective non-linear refinement to improve tracking accuracy without requiring additional training. In addition, we optimize the memory bank by distinguishing long-term and short-term memory frames, enabling more reliable tracking under long-term occlusions and appearance changes. Experimental results show consistent improvements across different model scales. Our method achieves state-of-the-art performance on LaSOT and LaSOText with the large model, achieving 9.6% and 7.2% relative improvements in AUC over the original SAM2, and demonstrates even larger relative gains on smaller models, highlighting the effectiveness of our trainless, low-overhead improvements for boosting long-term tracking performance. The code is available at https://github.com/LouisFinner/HiM2SAM.

Authors:Kuiyuan Sun, Yuxuan Zhang, Jichao Zhang, Jiaming Liu, Wei Wang, Niculae Sebe, Yao Zhao
Title: Stable-Hair v2: Real-World Hair Transfer via Multiple-View Diffusion Model
Abstract:
While diffusion-based methods have shown impressive capabilities in capturing diverse and complex hairstyles, their ability to generate consistent and high-quality multi-view outputs -- crucial for real-world applications such as digital humans and virtual avatars -- remains underexplored. In this paper, we propose Stable-Hair v2, a novel diffusion-based multi-view hair transfer framework. To the best of our knowledge, this is the first work to leverage multi-view diffusion models for robust, high-fidelity, and view-consistent hair transfer across multiple perspectives. We introduce a comprehensive multi-view training data generation pipeline comprising a diffusion-based Bald Converter, a data-augment inpainting model, and a face-finetuned multi-view diffusion model to generate high-quality triplet data, including bald images, reference hairstyles, and view-aligned source-bald pairs. Our multi-view hair transfer model integrates polar-azimuth embeddings for pose conditioning and temporal attention layers to ensure smooth transitions between views. To optimize this model, we design a novel multi-stage training strategy consisting of pose-controllable latent IdentityNet training, hair extractor training, and temporal attention training. Extensive experiments demonstrate that our method accurately transfers detailed and realistic hairstyles to source subjects while achieving seamless and consistent results across views, significantly outperforming existing methods and establishing a new benchmark in multi-view hair transfer. Code is publicly available at https://github.com/sunkymepro/StableHairV2.

Authors:Chunyan Wang, Dong Zhang, Jinhui Tang
Title: Diffusion-Guided Knowledge Distillation for Weakly-Supervised Low-Light Semantic Segmentation
Abstract:
Weakly-supervised semantic segmentation aims to assign category labels to each pixel using weak annotations, significantly reducing manual annotation costs. Although existing methods have achieved remarkable progress in well-lit scenarios, their performance significantly degrades in low-light environments due to two fundamental limitations: severe image quality degradation (e.g., low contrast, noise, and color distortion) and the inherent constraints of weak supervision. These factors collectively lead to unreliable class activation maps and semantically ambiguous pseudo-labels, ultimately compromising the model's ability to learn discriminative feature representations. To address these problems, we propose Diffusion-Guided Knowledge Distillation for Weakly-Supervised Low-light Semantic Segmentation (DGKD-WLSS), a novel framework that synergistically combines Diffusion-Guided Knowledge Distillation (DGKD) with Depth-Guided Feature Fusion (DGF2). DGKD aligns normal-light and low-light features via diffusion-based denoising and knowledge distillation, while DGF2 integrates depth maps as illumination-invariant geometric priors to enhance structural feature learning. Extensive experiments demonstrate the effectiveness of DGKD-WLSS, which achieves state-of-the-art performance in weakly supervised semantic segmentation tasks under low-light conditions. The source codes have been released at:https://github.com/ChunyanWang1/DGKD-WLSS.

Authors:Joelle Hanna, Linus Scheibenreif, Damian Borth
Title: MAPEX: Modality-Aware Pruning of Experts for Remote Sensing Foundation Models
Abstract:
Remote sensing data is commonly used for tasks such as flood mapping, wildfire detection, or land-use studies. For each task, scientists carefully choose appropriate modalities or leverage data from purpose-built instruments. Recent work on remote sensing foundation models pre-trains computer vision models on large amounts of remote sensing data. These large-scale models tend to focus on specific modalities, often optical RGB or multispectral data. For many important applications, this introduces a mismatch between the application modalities and the pre-training data. Moreover, the large size of foundation models makes them expensive and difficult to fine-tune on typically small datasets for each task. We address this mismatch with MAPEX, a remote sensing foundation model based on mixture-of-modality experts. MAPEX is pre-trained on multi-modal remote sensing data with a novel modality-conditioned token routing mechanism that elicits modality-specific experts. To apply the model on a specific task, we propose a modality aware pruning technique, which only retains experts specialized for the task modalities. This yields efficient modality-specific models while simplifying fine-tuning and deployment for the modalities of interest. We experimentally validate MAPEX on diverse remote sensing datasets and show strong performance compared to fully supervised training and state-of-the-art remote sensing foundation models. Code is available at https://github.com/HSG-AIML/MAPEX.

Authors:Shuaijin Wan
Title: GGMotion: Group Graph Dynamics-Kinematics Networks for Human Motion Prediction
Abstract:
Human motion is a continuous physical process in 3D space, governed by complex dynamic and kinematic constraints. Existing methods typically represent the human pose as an abstract graph structure, neglecting the intrinsic physical dependencies between joints, which increases learning difficulty and makes the model prone to generating unrealistic motions. In this paper, we propose GGMotion, a group graph dynamics-kinematics network that models human topology in groups to better leverage dynamics and kinematics priors. To preserve the geometric equivariance in 3D space, we propose a novel radial field for the graph network that captures more comprehensive spatio-temporal dependencies by aggregating joint features through spatial and temporal edges. Inter-group and intra-group interaction modules are employed to capture the dependencies of joints at different scales. Combined with equivariant multilayer perceptrons (MLP), joint position features are updated in each group through parallelized dynamics-kinematics propagation to improve physical plausibility. Meanwhile, we introduce an auxiliary loss to supervise motion priors during training. Extensive experiments on three standard benchmarks, including Human3.6M, CMU-Mocap, and 3DPW, demonstrate the effectiveness and superiority of our approach, achieving a significant performance margin in short-term motion prediction. The code is available at https://github.com/inkcat520/GGMotion.git.

Authors:Jiaxu Wan, Xu Wang, Mengwei Xie, Xinyuan Chang, Xinran Liu, Zheng Pan, Mu Xu, Ding Yuan
Title: Driving by Hybrid Navigation: An Online HD-SD Map Association Framework and Benchmark for Autonomous Vehicles
Abstract:
Autonomous vehicles rely on global standard-definition (SD) maps for road-level route planning and online local high-definition (HD) maps for lane-level navigation. However, recent work concentrates on construct online HD maps, often overlooking the association of global SD maps with online HD maps for hybrid navigation, making challenges in utilizing online HD maps in the real world. Observing the lack of the capability of autonomous vehicles in navigation, we introduce \textbf{O}nline \textbf{M}ap \textbf{A}ssociation, the first benchmark for the association of hybrid navigation-oriented online maps, which enhances the planning capabilities of autonomous vehicles. Based on existing datasets, the OMA contains 480k of roads and 260k of lane paths and provides the corresponding metrics to evaluate the performance of the model. Additionally, we propose a novel framework, named Map Association Transformer, as the baseline method, using path-aware attention and spatial attention mechanisms to enable the understanding of geometric and topological correspondences. The code and dataset can be accessed at https://github.com/WallelWan/OMA-MAT.

Authors:Ling Zhou, Runtian Yuan, Yi Liu, Yuejie Zhang, Rui Feng, Shang Gao
Title: Dual Semantic-Aware Network for Noise Suppressed Ultrasound Video Segmentation
Abstract:
Ultrasound imaging is a prevalent diagnostic tool known for its simplicity and non-invasiveness. However, its inherent characteristics often introduce substantial noise, posing considerable challenges for automated lesion or organ segmentation in ultrasound video sequences. To address these limitations, we propose the Dual Semantic-Aware Network (DSANet), a novel framework designed to enhance noise robustness in ultrasound video segmentation by fostering mutual semantic awareness between local and global features. Specifically, we introduce an Adjacent-Frame Semantic-Aware (AFSA) module, which constructs a channel-wise similarity matrix to guide feature fusion across adjacent frames, effectively mitigating the impact of random noise without relying on pixel-level relationships. Additionally, we propose a Local-and-Global Semantic-Aware (LGSA) module that reorganizes and fuses temporal unconditional local features, which capture spatial details independently at each frame, with conditional global features that incorporate temporal context from adjacent frames. This integration facilitates multi-level semantic representation, significantly improving the model's resilience to noise interference. Extensive evaluations on four benchmark datasets demonstrate that DSANet substantially outperforms state-of-the-art methods in segmentation accuracy. Moreover, since our model avoids pixel-level feature dependencies, it achieves significantly higher inference FPS than video-based methods, and even surpasses some image-based models. Code can be found in \href{https://github.com/ZhouL2001/DSANet}{DSANet}

Authors:Jingjing Jiang, Chao Ma, Xurui Song, Hanwang Zhang, Jun Luo
Title: Corvid: Improving Multimodal Large Language Models Towards Chain-of-Thought Reasoning
Abstract:
Recent advancements in multimodal large language models (MLLMs) have demonstrated exceptional performance in multimodal perception and understanding. However, leading open-source MLLMs exhibit significant limitations in complex and structured reasoning, particularly in tasks requiring deep reasoning for decision-making and problem-solving. In this work, we present Corvid, an MLLM with enhanced chain-of-thought (CoT) reasoning capabilities. Architecturally, Corvid incorporates a hybrid vision encoder for informative visual representation and a meticulously designed connector (GateMixer) to facilitate cross-modal alignment. To enhance Corvid's CoT reasoning capabilities, we introduce MCoT-Instruct-287K, a high-quality multimodal CoT instruction-following dataset, refined and standardized from diverse public reasoning sources. Leveraging this dataset, we fine-tune Corvid with a two-stage CoT-formatted training approach to progressively enhance its step-by-step reasoning abilities. Furthermore, we propose an effective inference-time scaling strategy that enables Corvid to mitigate over-reasoning and under-reasoning through self-verification. Extensive experiments demonstrate that Corvid outperforms existing o1-like MLLMs and state-of-the-art MLLMs with similar parameter scales, with notable strengths in mathematical reasoning and science problem-solving. Project page: https://mm-vl.github.io/corvid.

Authors:Yongtang Bao, Chengjie Tang, Yuze Wang, Haojie Li
Title: Seg-Wild: Interactive Segmentation based on 3D Gaussian Splatting for Unconstrained Image Collections
Abstract:
Reconstructing and segmenting scenes from unconstrained photo collections obtained from the Internet is a novel but challenging task. Unconstrained photo collections are easier to get than well-captured photo collections. These unconstrained images suffer from inconsistent lighting and transient occlusions, which makes segmentation challenging. Previous segmentation methods cannot address transient occlusions or accurately restore the scene's lighting conditions. Therefore, we propose Seg-Wild, an interactive segmentation method based on 3D Gaussian Splatting for unconstrained image collections, suitable for in-the-wild scenes. We integrate multi-dimensional feature embeddings for each 3D Gaussian and calculate the feature similarity between the feature embeddings and the segmentation target to achieve interactive segmentation in the 3D scene. Additionally, we introduce the Spiky 3D Gaussian Cutter (SGC) to smooth abnormal 3D Gaussians. We project the 3D Gaussians onto a 2D plane and calculate the ratio of 3D Gaussians that need to be cut using the SAM mask. We also designed a benchmark to evaluate segmentation quality in in-the-wild scenes. Experimental results demonstrate that compared to previous methods, Seg-Wild achieves better segmentation results and reconstruction quality. Our code will be available at https://github.com/Sugar0725/Seg-Wild.

Authors:Haotian Wang, Aoran Xiao, Xiaoqin Zhang, Meng Yang, Shijian Lu
Title: PacGDC: Label-Efficient Generalizable Depth Completion with Projection Ambiguity and Consistency
Abstract:
Generalizable depth completion enables the acquisition of dense metric depth maps for unseen environments, offering robust perception capabilities for various downstream tasks. However, training such models typically requires large-scale datasets with metric depth labels, which are often labor-intensive to collect. This paper presents PacGDC, a label-efficient technique that enhances data diversity with minimal annotation effort for generalizable depth completion. PacGDC builds on novel insights into inherent ambiguities and consistencies in object shapes and positions during 2D-to-3D projection, allowing the synthesis of numerous pseudo geometries for the same visual scene. This process greatly broadens available geometries by manipulating scene scales of the corresponding depth maps. To leverage this property, we propose a new data synthesis pipeline that uses multiple depth foundation models as scale manipulators. These models robustly provide pseudo depth labels with varied scene scales, affecting both local objects and global layouts, while ensuring projection consistency that supports generalization. To further diversify geometries, we incorporate interpolation and relocation strategies, as well as unlabeled images, extending the data coverage beyond the individual use of foundation models. Extensive experiments show that PacGDC achieves remarkable generalizability across multiple benchmarks, excelling in diverse scene semantics/scales and depth sparsity/patterns under both zero-shot and few-shot settings. Code: https://github.com/Wang-xjtu/PacGDC.

Authors:Sherry X. Chen, Yi Wei, Luowei Zhou, Suren Kumar
Title: ADIEE: Automatic Dataset Creation and Scorer for Instruction-Guided Image Editing Evaluation
Abstract:
Recent advances in instruction-guided image editing underscore the need for effective automated evaluation. While Vision-Language Models (VLMs) have been explored as judges, open-source models struggle with alignment, and proprietary models lack transparency and cost efficiency. Additionally, no public training datasets exist to fine-tune open-source VLMs, only small benchmarks with diverse evaluation schemes. To address this, we introduce ADIEE, an automated dataset creation approach which is then used to train a scoring model for instruction-guided image editing evaluation. We generate a large-scale dataset with over 100K samples and use it to fine-tune a LLaVA-NeXT-8B model modified to decode a numeric score from a custom token. The resulting scorer outperforms all open-source VLMs and Gemini-Pro 1.5 across all benchmarks, achieving a 0.0696 (+17.24%) gain in score correlation with human ratings on AURORA-Bench, and improving pair-wise comparison accuracy by 4.03% (+7.21%) on GenAI-Bench and 4.75% (+9.35%) on AURORA-Bench, respectively, compared to the state-of-the-art. The scorer can act as a reward model, enabling automated best edit selection and model fine-tuning. Notably, the proposed scorer can boost MagicBrush model's average evaluation score on ImagenHub from 5.90 to 6.43 (+8.98%). Our code and models are available at https://github.com/SherryXTChen/ADIEE.git.

Authors:Heet Nitinkumar Dalsania
Title: Label-Efficient Chest X-ray Diagnosis via Partial CLIP Adaptation
Abstract:
Modern deep learning implementations for medical imaging usually rely on large labeled datasets. These datasets are often difficult to obtain due to privacy concerns, high costs, and even scarcity of cases. In this paper, a label-efficient strategy is proposed for chest X-ray diagnosis that seeks to reflect real-world hospital scenarios. The experiments use the NIH Chest X-ray14 dataset and a pre-trained CLIP ViT-B/32 model. The model is adapted via partial fine-tuning of its visual encoder and then evaluated using zero-shot and few-shot learning with 1-16 labeled examples per disease class. The tests demonstrate that CLIP's pre-trained vision-language features can be effectively adapted to few-shot medical imaging tasks, achieving over 20\% improvement in mean AUC score as compared to the zero-shot baseline. The key aspect of this work is to attempt to simulate internal hospital workflows, where image archives exist but annotations are sparse. This work evaluates a practical and scalable solution for both common and rare disease diagnosis. Additionally this research is intended for academic and experimental purposes only and has not been peer reviewed yet. All code is found at https://github.com/heet007-code/CLIP-disease-xray.

Authors:Priyank Pathak, Yogesh S. Rawat
Title: Colors See Colors Ignore: Clothes Changing ReID with Color Disentanglement
Abstract:
Clothes-Changing Re-Identification (CC-ReID) aims to recognize individuals across different locations and times, irrespective of clothing. Existing methods often rely on additional models or annotations to learn robust, clothing-invariant features, making them resource-intensive. In contrast, we explore the use of color - specifically foreground and background colors - as a lightweight, annotation-free proxy for mitigating appearance bias in ReID models. We propose Colors See, Colors Ignore (CSCI), an RGB-only method that leverages color information directly from raw images or video frames. CSCI efficiently captures color-related appearance bias ('Color See') while disentangling it from identity-relevant ReID features ('Color Ignore'). To achieve this, we introduce S2A self-attention, a novel self-attention to prevent information leak between color and identity cues within the feature space. Our analysis shows a strong correspondence between learned color embeddings and clothing attributes, validating color as an effective proxy when explicit clothing labels are unavailable. We demonstrate the effectiveness of CSCI on both image and video ReID with extensive experiments on four CC-ReID datasets. We improve the baseline by Top-1 2.9% on LTCC and 5.0% on PRCC for image-based ReID, and 1.0% on CCVID and 2.5% on MeVID for video-based ReID without relying on additional supervision. Our results highlight the potential of color as a cost-effective solution for addressing appearance bias in CC-ReID. Github: https://github.com/ppriyank/ICCV-CSCI-Person-ReID.

Authors:Renyang Liu, Guanlin Li, Tianwei Zhang, See-Kiong Ng
Title: Image Can Bring Your Memory Back: A Novel Multi-Modal Guided Attack against Image Generation Model Unlearning
Abstract:
Recent advances in image generation models (IGMs), particularly diffusion-based architectures such as Stable Diffusion (SD), have markedly enhanced the quality and diversity of AI-generated visual content. However, their generative capability has also raised significant ethical, legal, and societal concerns, including the potential to produce harmful, misleading, or copyright-infringing content. To mitigate these concerns, machine unlearning (MU) emerges as a promising solution by selectively removing undesirable concepts from pretrained models. Nevertheless, the robustness and effectiveness of existing unlearning techniques remain largely unexplored, particularly in the presence of multi-modal adversarial inputs. To bridge this gap, we propose Recall, a novel adversarial framework explicitly designed to compromise the robustness of unlearned IGMs. Unlike existing approaches that predominantly rely on adversarial text prompts, Recall exploits the intrinsic multi-modal conditioning capabilities of diffusion models by efficiently optimizing adversarial image prompts with guidance from a single semantically relevant reference image. Extensive experiments across ten state-of-the-art unlearning methods and diverse tasks show that Recall consistently outperforms existing baselines in terms of adversarial effectiveness, computational efficiency, and semantic fidelity with the original textual prompt. These findings reveal critical vulnerabilities in current unlearning mechanisms and underscore the need for more robust solutions to ensure the safety and reliability of generative models. Code and data are publicly available at \textcolor{blue}{https://github.com/ryliu68/RECALL}.

Authors:Cristina Mata, Kanchana Ranasinghe, Michael S. Ryoo
Title: CoPT: Unsupervised Domain Adaptive Segmentation using Domain-Agnostic Text Embeddings
Abstract:
Unsupervised domain adaptation (UDA) involves learning class semantics from labeled data within a source domain that generalize to an unseen target domain. UDA methods are particularly impactful for semantic segmentation, where annotations are more difficult to collect than in image classification. Despite recent advances in large-scale vision-language representation learning, UDA methods for segmentation have not taken advantage of the domain-agnostic properties of text. To address this, we present a novel Covariance-based Pixel-Text loss, CoPT, that uses domain-agnostic text embeddings to learn domain-invariant features in an image segmentation encoder. The text embeddings are generated through our LLM Domain Template process, where an LLM is used to generate source and target domain descriptions that are fed to a frozen CLIP model and combined. In experiments on four benchmarks we show that a model trained using CoPT achieves the new state of the art performance on UDA for segmentation. The code can be found at https://github.com/cfmata/CoPT.

Authors:Zhiwei Hu, Víctor Gutiérrez-Basulto, Zhiliang Xiang, Ru Li, Jeff Z. Pan
Title: Multi-level Mixture of Experts for Multimodal Entity Linking
Abstract:
Multimodal Entity Linking (MEL) aims to link ambiguous mentions within multimodal contexts to associated entities in a multimodal knowledge base. Existing approaches to MEL introduce multimodal interaction and fusion mechanisms to bridge the modality gap and enable multi-grained semantic matching. However, they do not address two important problems: (i) mention ambiguity, i.e., the lack of semantic content caused by the brevity and omission of key information in the mention's textual context; (ii) dynamic selection of modal content, i.e., to dynamically distinguish the importance of different parts of modal information. To mitigate these issues, we propose a Multi-level Mixture of Experts (MMoE) model for MEL. MMoE has four components: (i) the description-aware mention enhancement module leverages large language models to identify the WikiData descriptions that best match a mention, considering the mention's textual context; (ii) the multimodal feature extraction module adopts multimodal feature encoders to obtain textual and visual embeddings for both mentions and entities; (iii)-(iv) the intra-level mixture of experts and inter-level mixture of experts modules apply a switch mixture of experts mechanism to dynamically and adaptively select features from relevant regions of information. Extensive experiments demonstrate the outstanding performance of MMoE compared to the state-of-the-art. MMoE's code is available at: https://github.com/zhiweihu1103/MEL-MMoE.

Authors:Vatsal Agarwal, Matthew Gwilliam, Gefen Kohavi, Eshan Verma, Daniel Ulbricht, Abhinav Shrivastava
Title: Towards Multimodal Understanding via Stable Diffusion as a Task-Aware Feature Extractor
Abstract:
Recent advances in multimodal large language models (MLLMs) have enabled image-based question-answering capabilities. However, a key limitation is the use of CLIP as the visual encoder; while it can capture coarse global information, it often can miss fine-grained details that are relevant to the input query. To address these shortcomings, this work studies whether pre-trained text-to-image diffusion models can serve as instruction-aware visual encoders. Through an analysis of their internal representations, we find diffusion features are both rich in semantics and can encode strong image-text alignment. Moreover, we find that we can leverage text conditioning to focus the model on regions relevant to the input question. We then investigate how to align these features with large language models and uncover a leakage phenomenon, where the LLM can inadvertently recover information from the original diffusion prompt. We analyze the causes of this leakage and propose a mitigation strategy. Based on these insights, we explore a simple fusion strategy that utilizes both CLIP and conditional diffusion features. We evaluate our approach on both general VQA and specialized MLLM benchmarks, demonstrating the promise of diffusion models for visual understanding, particularly in vision-centric tasks that require spatial and compositional reasoning. Our project page can be found https://vatsalag99.github.io/mustafar/.

Authors:Tiezheng Zhang, Yitong Li, Yu-cheng Chou, Jieneng Chen, Alan Yuille, Chen Wei, Junfei Xiao
Title: Vision-Language-Vision Auto-Encoder: Scalable Knowledge Distillation from Diffusion Models
Abstract:
Building state-of-the-art Vision-Language Models (VLMs) with strong captioning capabilities typically necessitates training on billions of high-quality image-text pairs, requiring millions of GPU hours. This paper introduces the Vision-Language-Vision (VLV) auto-encoder framework, which strategically leverages key pretrained components: a vision encoder, the decoder of a Text-to-Image (T2I) diffusion model, and subsequently, a Large Language Model (LLM). Specifically, we establish an information bottleneck by regularizing the language representation space, achieved through freezing the pretrained T2I diffusion decoder. Our VLV pipeline effectively distills knowledge from the text-conditioned diffusion model using continuous embeddings, demonstrating comprehensive semantic understanding via high-quality reconstructions. Furthermore, by fine-tuning a pretrained LLM to decode the intermediate language representations into detailed descriptions, we construct a state-of-the-art (SoTA) captioner comparable to leading models like GPT-4o and Gemini 2.0 Flash. Our method demonstrates exceptional cost-efficiency and significantly reduces data requirements; by primarily utilizing single-modal images for training and maximizing the utility of existing pretrained models (image encoder, T2I diffusion model, and LLM), it circumvents the need for massive paired image-text datasets, keeping the total training expenditure under $1,000 USD.

Authors:Ke Fan, Shunlin Lu, Minyue Dai, Runyi Yu, Lixing Xiao, Zhiyang Dou, Junting Dong, Lizhuang Ma, Jingbo Wang
Title: Go to Zero: Towards Zero-shot Motion Generation with Million-scale Data
Abstract:
Generating diverse and natural human motion sequences based on textual descriptions constitutes a fundamental and challenging research area within the domains of computer vision, graphics, and robotics. Despite significant advancements in this field, current methodologies often face challenges regarding zero-shot generalization capabilities, largely attributable to the limited size of training datasets. Moreover, the lack of a comprehensive evaluation framework impedes the advancement of this task by failing to identify directions for improvement. In this work, we aim to push text-to-motion into a new era, that is, to achieve the generalization ability of zero-shot. To this end, firstly, we develop an efficient annotation pipeline and introduce MotionMillion-the largest human motion dataset to date, featuring over 2,000 hours and 2 million high-quality motion sequences. Additionally, we propose MotionMillion-Eval, the most comprehensive benchmark for evaluating zero-shot motion generation. Leveraging a scalable architecture, we scale our model to 7B parameters and validate its performance on MotionMillion-Eval. Our results demonstrate strong generalization to out-of-domain and complex compositional motions, marking a significant step toward zero-shot human motion generation. The code is available at https://github.com/VankouF/MotionMillion-Codes.

Authors:Ziyue Liu, Federico Girella, Yiming Wang, Davide Talon
Title: Evaluating Attribute Confusion in Fashion Text-to-Image Generation
Abstract:
Despite the rapid advances in Text-to-Image (T2I) generation models, their evaluation remains challenging in domains like fashion, involving complex compositional generation. Recent automated T2I evaluation methods leverage pre-trained vision-language models to measure cross-modal alignment. However, our preliminary study reveals that they are still limited in assessing rich entity-attribute semantics, facing challenges in attribute confusion, i.e., when attributes are correctly depicted but associated to the wrong entities. To address this, we build on a Visual Question Answering (VQA) localization strategy targeting one single entity at a time across both visual and textual modalities. We propose a localized human evaluation protocol and introduce a novel automatic metric, Localized VQAScore (L-VQAScore), that combines visual localization with VQA probing both correct (reflection) and miss-localized (leakage) attribute generation. On a newly curated dataset featuring challenging compositional alignment scenarios, L-VQAScore outperforms state-of-the-art T2I evaluation methods in terms of correlation with human judgments, demonstrating its strength in capturing fine-grained entity-attribute associations. We believe L-VQAScore can be a reliable and scalable alternative to subjective evaluations.

Authors:Hui Li, Pengfei Yang, Juanyang Chen, Le Dong, Yanxin Chen, Quan Wang
Title: MST-Distill: Mixture of Specialized Teachers for Cross-Modal Knowledge Distillation
Abstract:
Knowledge distillation as an efficient knowledge transfer technique, has achieved remarkable success in unimodal scenarios. However, in cross-modal settings, conventional distillation methods encounter significant challenges due to data and statistical heterogeneities, failing to leverage the complementary prior knowledge embedded in cross-modal teacher models. This paper empirically reveals two critical issues in existing approaches: distillation path selection and knowledge drift. To address these limitations, we propose MST-Distill, a novel cross-modal knowledge distillation framework featuring a mixture of specialized teachers. Our approach employs a diverse ensemble of teacher models across both cross-modal and multimodal configurations, integrated with an instance-level routing network that facilitates adaptive and dynamic distillation. This architecture effectively transcends the constraints of traditional methods that rely on monotonous and static teacher models. Additionally, we introduce a plug-in masking module, independently trained to suppress modality-specific discrepancies and reconstruct teacher representations, thereby mitigating knowledge drift and enhancing transfer effectiveness. Extensive experiments across five diverse multimodal datasets, spanning visual, audio, and text, demonstrate that our method significantly outperforms existing state-of-the-art knowledge distillation methods in cross-modal distillation tasks. The source code is available at https://github.com/Gray-OREO/MST-Distill.

Authors:Fei Teng, Kai Luo, Sheng Wu, Siyu Li, Pujun Guo, Jiale Wei, Kunyu Peng, Jiaming Zhang, Kailun Yang
Title: Hallucinating 360°: Panoramic Street-View Generation via Local Scenes Diffusion and Probabilistic Prompting
Abstract:
Panoramic perception holds significant potential for autonomous driving, enabling vehicles to acquire a comprehensive 360° surround view in a single shot. However, autonomous driving is a data-driven task. Complete panoramic data acquisition requires complex sampling systems and annotation pipelines, which are time-consuming and labor-intensive. Although existing street view generation models have demonstrated strong data regeneration capabilities, they can only learn from the fixed data distribution of existing datasets and cannot achieve high-quality, controllable panoramic generation. In this paper, we propose the first panoramic generation method Percep360 for autonomous driving. Percep360 enables coherent generation of panoramic data with control signals based on the stitched panoramic data. Percep360 focuses on two key aspects: coherence and controllability. Specifically, to overcome the inherent information loss caused by the pinhole sampling process, we propose the Local Scenes Diffusion Method (LSDM). LSDM reformulates the panorama generation as a spatially continuous diffusion process, bridging the gaps between different data distributions. Additionally, to achieve the controllable generation of panoramic images, we propose a Probabilistic Prompting Method (PPM). PPM dynamically selects the most relevant control cues, enabling controllable panoramic image generation. We evaluate the effectiveness of the generated images from three perspectives: image quality assessment (i.e., no-reference and with reference), controllability, and their utility in real-world Bird's Eye View (BEV) segmentation. Notably, the generated data consistently outperforms the original stitched images in no-reference quality metrics and enhances downstream perception models. The source code will be publicly available at https://github.com/Bryant-Teng/Percep360.

Authors:Yixin Zhao, Yuyi Zhang, Lianwen Jin
Title: MCCD: A Multi-Attribute Chinese Calligraphy Character Dataset Annotated with Script Styles, Dynasties, and Calligraphers
Abstract:
Research on the attribute information of calligraphy, such as styles, dynasties, and calligraphers, holds significant cultural and historical value. However, the styles of Chinese calligraphy characters have evolved dramatically through different dynasties and the unique touches of calligraphers, making it highly challenging to accurately recognize these different characters and their attributes. Furthermore, existing calligraphic datasets are extremely scarce, and most provide only character-level annotations without additional attribute information. This limitation has significantly hindered the in-depth study of Chinese calligraphy. To fill this gap, we present a novel Multi-Attribute Chinese Calligraphy Character Dataset (MCCD). The dataset encompasses 7,765 categories with a total of 329,715 isolated image samples of Chinese calligraphy characters, and three additional subsets were extracted based on the attribute labeling of the three types of script styles (10 types), dynasties (15 periods) and calligraphers (142 individuals). The rich multi-attribute annotations render MCCD well-suited diverse research tasks, including calligraphic character recognition, writer identification, and evolutionary studies of Chinese characters. We establish benchmark performance through single-task and multi-task recognition experiments across MCCD and all of its subsets. The experimental results demonstrate that the complexity of the stroke structure of the calligraphic characters, and the interplay between their different attributes, leading to a substantial increase in the difficulty of accurate recognition. MCCD not only fills a void in the availability of detailed calligraphy datasets but also provides valuable resources for advancing research in Chinese calligraphy and fostering advancements in multiple fields. The dataset is available at https://github.com/SCUT-DLVCLab/MCCD.

Authors:Xuesong Li, Nassir Navab, Zhongliang Jiang
Title: Speckle2Self: Self-Supervised Ultrasound Speckle Reduction Without Clean Data
Abstract:
Image denoising is a fundamental task in computer vision, particularly in medical ultrasound (US) imaging, where speckle noise significantly degrades image quality. Although recent advancements in deep neural networks have led to substantial improvements in denoising for natural images, these methods cannot be directly applied to US speckle noise, as it is not purely random. Instead, US speckle arises from complex wave interference within the body microstructure, making it tissue-dependent. This dependency means that obtaining two independent noisy observations of the same scene, as required by pioneering Noise2Noise, is not feasible. Additionally, blind-spot networks also cannot handle US speckle noise due to its high spatial dependency. To address this challenge, we introduce Speckle2Self, a novel self-supervised algorithm for speckle reduction using only single noisy observations. The key insight is that applying a multi-scale perturbation (MSP) operation introduces tissue-dependent variations in the speckle pattern across different scales, while preserving the shared anatomical structure. This enables effective speckle suppression by modeling the clean image as a low-rank signal and isolating the sparse noise component. To demonstrate its effectiveness, Speckle2Self is comprehensively compared with conventional filter-based denoising algorithms and SOTA learning-based methods, using both realistic simulated US images and human carotid US images. Additionally, data from multiple US machines are employed to evaluate model generalization and adaptability to images from unseen domains. Project page: https://noseefood.github.io/us-speckle2self/

Authors:Xu Yang, Shaoli Huang, Shenbo Xie, Xuelin Chen, Yifei Liu, Changxing Ding
Title: Democratizing High-Fidelity Co-Speech Gesture Video Generation
Abstract:
Co-speech gesture video generation aims to synthesize realistic, audio-aligned videos of speakers, complete with synchronized facial expressions and body gestures. This task presents challenges due to the significant one-to-many mapping between audio and visual content, further complicated by the scarcity of large-scale public datasets and high computational demands. We propose a lightweight framework that utilizes 2D full-body skeletons as an efficient auxiliary condition to bridge audio signals with visual outputs. Our approach introduces a diffusion model conditioned on fine-grained audio segments and a skeleton extracted from the speaker's reference image, predicting skeletal motions through skeleton-audio feature fusion to ensure strict audio coordination and body shape consistency. The generated skeletons are then fed into an off-the-shelf human video generation model with the speaker's reference image to synthesize high-fidelity videos. To democratize research, we present CSG-405-the first public dataset with 405 hours of high-resolution videos across 71 speech types, annotated with 2D skeletons and diverse speaker demographics. Experiments show that our method exceeds state-of-the-art approaches in visual quality and synchronization while generalizing across speakers and contexts. Code, models, and CSG-405 are publicly released at https://mpi-lab.github.io/Democratizing-CSG/

Authors:Eya Cherif, Arthur Ouaknine, Luke A. Brown, Phuong D. Dao, Kyle R. Kovach, Bing Lu, Daniel Mederer, Hannes Feilhauer, Teja Kattenborn, David Rolnick
Title: GreenHyperSpectra: A multi-source hyperspectral dataset for global vegetation trait prediction
Abstract:
Plant traits such as leaf carbon content and leaf mass are essential variables in the study of biodiversity and climate change. However, conventional field sampling cannot feasibly cover trait variation at ecologically meaningful spatial scales. Machine learning represents a valuable solution for plant trait prediction across ecosystems, leveraging hyperspectral data from remote sensing. Nevertheless, trait prediction from hyperspectral data is challenged by label scarcity and substantial domain shifts (\eg across sensors, ecological distributions), requiring robust cross-domain methods. Here, we present GreenHyperSpectra, a pretraining dataset encompassing real-world cross-sensor and cross-ecosystem samples designed to benchmark trait prediction with semi- and self-supervised methods. We adopt an evaluation framework encompassing in-distribution and out-of-distribution scenarios. We successfully leverage GreenHyperSpectra to pretrain label-efficient multi-output regression models that outperform the state-of-the-art supervised baseline. Our empirical analyses demonstrate substantial improvements in learning spectral representations for trait prediction, establishing a comprehensive methodological framework to catalyze research at the intersection of representation learning and plant functional traits assessment. All code and data are available at: https://github.com/echerif18/HyspectraSSL.

Authors:Antonella Barisic Kulas, Andreja Jurasovic, Stjepan Bogdan
Title: Unlocking Thermal Aerial Imaging: Synthetic Enhancement of UAV Datasets
Abstract:
Thermal imaging from unmanned aerial vehicles (UAVs) holds significant potential for applications in search and rescue, wildlife monitoring, and emergency response, especially under low-light or obscured conditions. However, the scarcity of large-scale, diverse thermal aerial datasets limits the advancement of deep learning models in this domain, primarily due to the high cost and logistical challenges of collecting thermal data. In this work, we introduce a novel procedural pipeline for generating synthetic thermal images from an aerial perspective. Our method integrates arbitrary object classes into existing thermal backgrounds by providing control over the position, scale, and orientation of the new objects, while aligning them with the viewpoints of the background. We enhance existing thermal datasets by introducing new object categories, specifically adding a drone class in urban environments to the HIT-UAV dataset and an animal category to the MONET dataset. In evaluating these datasets for object detection task, we showcase strong performance across both new and existing classes, validating the successful expansion into new applications. Through comparative analysis, we show that thermal detectors outperform their visible-light-trained counterparts and highlight the importance of replicating aerial viewing angles. Project page: https://github.com/larics/thermal_aerial_synthetic.

Authors:Yan Hon Michael Chung, Donghyeok Choi
Title: Finetuning Vision-Language Models as OCR Systems for Low-Resource Languages: A Case Study of Manchu
Abstract:
Manchu, a critically endangered language essential for understanding early modern Eastern Eurasian history, lacks effective OCR systems that can handle real-world historical documents. This study develops high-performing OCR systems by fine-tuning three open-source vision-language models (LLaMA-3.2-11B, Qwen2.5-VL-7B, Qwen2.5-VL-3B) on 60,000 synthetic Manchu word images using parameter-efficient training. LLaMA-3.2-11B achieved exceptional performance with 98.3\% word accuracy and 0.0024 character error rate on synthetic data, while crucially maintaining 93.1\% accuracy on real-world handwritten documents. Comparative evaluation reveals substantial advantages over traditional approaches: while a CRNN baseline achieved 99.8\% synthetic accuracy, it suffered severe degradation to 72.5\% on real documents. Our approach demonstrates effective synthetic-to-real domain transfer, providing a cost-effective solution deployable on accessible infrastructure. This work establishes a transferable framework for endangered language OCR that removes technical and financial barriers in digital humanities, enabling historians and linguists to process historical archives without specialized computing resources. Code and model weights are available at https://github.com/mic7ch1/ManchuAI-OCR.

Authors:Daojie Peng, Jiahang Cao, Qiang Zhang, Jun Ma
Title: LOVON: Legged Open-Vocabulary Object Navigator
Abstract:
Object navigation in open-world environments remains a formidable and pervasive challenge for robotic systems, particularly when it comes to executing long-horizon tasks that require both open-world object detection and high-level task planning. Traditional methods often struggle to integrate these components effectively, and this limits their capability to deal with complex, long-range navigation missions. In this paper, we propose LOVON, a novel framework that integrates large language models (LLMs) for hierarchical task planning with open-vocabulary visual detection models, tailored for effective long-range object navigation in dynamic, unstructured environments. To tackle real-world challenges including visual jittering, blind zones, and temporary target loss, we design dedicated solutions such as Laplacian Variance Filtering for visual stabilization. We also develop a functional execution logic for the robot that guarantees LOVON's capabilities in autonomous navigation, task adaptation, and robust task completion. Extensive evaluations demonstrate the successful completion of long-sequence tasks involving real-time detection, search, and navigation toward open-vocabulary dynamic targets. Furthermore, real-world experiments across different legged robots (Unitree Go2, B2, and H1-2) showcase the compatibility and appealing plug-and-play feature of LOVON.

Authors:Mahshid Shiri, Cigdem Beyan, Vittorio Murino
Title: MADPOT: Medical Anomaly Detection with CLIP Adaptation and Partial Optimal Transport
Abstract:
Medical anomaly detection (AD) is challenging due to diverse imaging modalities, anatomical variations, and limited labeled data. We propose a novel approach combining visual adapters and prompt learning with Partial Optimal Transport (POT) and contrastive learning (CL) to improve CLIP's adaptability to medical images, particularly for AD. Unlike standard prompt learning, which often yields a single representation, our method employs multiple prompts aligned with local features via POT to capture subtle abnormalities. CL further enforces intra-class cohesion and inter-class separation. Our method achieves state-of-the-art results in few-shot, zero-shot, and cross-dataset scenarios without synthetic data or memory banks. The code is available at https://github.com/mahshid1998/MADPOT.

Authors:Miaojing Shi, Xiaowen Zhang, Zijie Yue, Yong Luo, Cairong Zhao, Li Li
Title: Text-promptable Object Counting via Quantity Awareness Enhancement
Abstract:
Recent advances in large vision-language models (VLMs) have shown remarkable progress in solving the text-promptable object counting problem. Representative methods typically specify text prompts with object category information in images. This however is insufficient for training the model to accurately distinguish the number of objects in the counting task. To this end, we propose QUANet, which introduces novel quantity-oriented text prompts with a vision-text quantity alignment loss to enhance the model's quantity awareness. Moreover, we propose a dual-stream adaptive counting decoder consisting of a Transformer stream, a CNN stream, and a number of Transformer-to-CNN enhancement adapters (T2C-adapters) for density map prediction. The T2C-adapters facilitate the effective knowledge communication and aggregation between the Transformer and CNN streams. A cross-stream quantity ranking loss is proposed in the end to optimize the ranking orders of predictions from the two streams. Extensive experiments on standard benchmarks such as FSC-147, CARPK, PUCPR+, and ShanghaiTech demonstrate our model's strong generalizability for zero-shot class-agnostic counting. Code is available at https://github.com/viscom-tongji/QUANet

Authors:Boyuan Tian, Qizhe Gao, Siran Xianyu, Xiaotong Cui, Minjia Zhang
Title: FlexGaussian: Flexible and Cost-Effective Training-Free Compression for 3D Gaussian Splatting
Abstract:
3D Gaussian splatting has become a prominent technique for representing and rendering complex 3D scenes, due to its high fidelity and speed advantages. However, the growing demand for large-scale models calls for effective compression to reduce memory and computation costs, especially on mobile and edge devices with limited resources. Existing compression methods effectively reduce 3D Gaussian parameters but often require extensive retraining or fine-tuning, lacking flexibility under varying compression constraints. In this paper, we introduce FlexGaussian, a flexible and cost-effective method that combines mixed-precision quantization with attribute-discriminative pruning for training-free 3D Gaussian compression. FlexGaussian eliminates the need for retraining and adapts easily to diverse compression targets. Evaluation results show that FlexGaussian achieves up to 96.4% compression while maintaining high rendering quality (<1 dB drop in PSNR), and is deployable on mobile devices. FlexGaussian delivers high compression ratios within seconds, being 1.7-2.1x faster than state-of-the-art training-free methods and 10-100x faster than training-involved approaches. The code is being prepared and will be released soon at: https://github.com/Supercomputing-System-AI-Lab/FlexGaussian

Authors:Yifan Yang, Peili Song, Enfan Lan, Dong Liu, Jingtai Liu
Title: MK-Pose: Category-Level Object Pose Estimation via Multimodal-Based Keypoint Learning
Abstract:
Category-level object pose estimation, which predicts the pose of objects within a known category without prior knowledge of individual instances, is essential in applications like warehouse automation and manufacturing. Existing methods relying on RGB images or point cloud data often struggle with object occlusion and generalization across different instances and categories. This paper proposes a multimodal-based keypoint learning framework (MK-Pose) that integrates RGB images, point clouds, and category-level textual descriptions. The model uses a self-supervised keypoint detection module enhanced with attention-based query generation, soft heatmap matching and graph-based relational modeling. Additionally, a graph-enhanced feature fusion module is designed to integrate local geometric information and global context. MK-Pose is evaluated on CAMERA25 and REAL275 dataset, and is further tested for cross-dataset capability on HouseCat6D dataset. The results demonstrate that MK-Pose outperforms existing state-of-the-art methods in both IoU and average precision without shape priors. Codes will be released at \href{https://github.com/yangyifanYYF/MK-Pose}{https://github.com/yangyifanYYF/MK-Pose}.

Authors:Hongjie Wu, Mingqin Zhang, Linchao He, Ji-Zhe Zhou, Jiancheng Lv
Title: Enhancing Diffusion Model Stability for Image Restoration via Gradient Management
Abstract:
Diffusion models have shown remarkable promise for image restoration by leveraging powerful priors. Prominent methods typically frame the restoration problem within a Bayesian inference framework, which iteratively combines a denoising step with a likelihood guidance step. However, the interactions between these two components in the generation process remain underexplored. In this paper, we analyze the underlying gradient dynamics of these components and identify significant instabilities. Specifically, we demonstrate conflicts between the prior and likelihood gradient directions, alongside temporal fluctuations in the likelihood gradient itself. We show that these instabilities disrupt the generative process and compromise restoration performance. To address these issues, we propose Stabilized Progressive Gradient Diffusion (SPGD), a novel gradient management technique. SPGD integrates two synergistic components: (1) a progressive likelihood warm-up strategy to mitigate gradient conflicts; and (2) adaptive directional momentum (ADM) smoothing to reduce fluctuations in the likelihood gradient. Extensive experiments across diverse restoration tasks demonstrate that SPGD significantly enhances generation stability, leading to state-of-the-art performance in quantitative metrics and visually superior results. Code is available at https://github.com/74587887/SPGD.

Authors:Naoya Sogi, Takashi Shibata, Makoto Terao, Masanori Suganuma, Takayuki Okatani
Title: MS-DPPs: Multi-Source Determinantal Point Processes for Contextual Diversity Refinement of Composite Attributes in Text to Image Retrieval
Abstract:
Result diversification (RD) is a crucial technique in Text-to-Image Retrieval for enhancing the efficiency of a practical application. Conventional methods focus solely on increasing the diversity metric of image appearances. However, the diversity metric and its desired value vary depending on the application, which limits the applications of RD. This paper proposes a novel task called CDR-CA (Contextual Diversity Refinement of Composite Attributes). CDR-CA aims to refine the diversities of multiple attributes, according to the application's context. To address this task, we propose Multi-Source DPPs, a simple yet strong baseline that extends the Determinantal Point Process (DPP) to multi-sources. We model MS-DPP as a single DPP model with a unified similarity matrix based on a manifold representation. We also introduce Tangent Normalization to reflect contexts. Extensive experiments demonstrate the effectiveness of the proposed method. Our code is publicly available at https://github.com/NEC-N-SOGI/msdpp.

Authors:Chengkun Li, Yuqi Tong, Kai Chen, Zhenya Yang, Ruiyang Li, Shi Qiu, Jason Ying-Kuen Chan, Pheng-Ann Heng, Qi Dou
Title: ClipGS: Clippable Gaussian Splatting for Interactive Cinematic Visualization of Volumetric Medical Data
Abstract:
The visualization of volumetric medical data is crucial for enhancing diagnostic accuracy and improving surgical planning and education. Cinematic rendering techniques significantly enrich this process by providing high-quality visualizations that convey intricate anatomical details, thereby facilitating better understanding and decision-making in medical contexts. However, the high computing cost and low rendering speed limit the requirement of interactive visualization in practical applications. In this paper, we introduce ClipGS, an innovative Gaussian splatting framework with the clipping plane supported, for interactive cinematic visualization of volumetric medical data. To address the challenges posed by dynamic interactions, we propose a learnable truncation scheme that automatically adjusts the visibility of Gaussian primitives in response to the clipping plane. Besides, we also design an adaptive adjustment model to dynamically adjust the deformation of Gaussians and refine the rendering performance. We validate our method on five volumetric medical data (including CT and anatomical slice data), and reach an average 36.635 PSNR rendering quality with 156 FPS and 16.1 MB model size, outperforming state-of-the-art methods in rendering quality and efficiency.

Authors:Qing Zhang, Guoquan Pei, Yan Wang
Title: Omni-Fusion of Spatial and Spectral for Hyperspectral Image Segmentation
Abstract:
Medical Hyperspectral Imaging (MHSI) has emerged as a promising tool for enhanced disease diagnosis, particularly in computational pathology, offering rich spectral information that aids in identifying subtle biochemical properties of tissues. Despite these advantages, effectively fusing both spatial-dimensional and spectral-dimensional information from MHSIs remains challenging due to its high dimensionality and spectral redundancy inherent characteristics. To solve the above challenges, we propose a novel spatial-spectral omni-fusion network for hyperspectral image segmentation, named as Omni-Fuse. Here, we introduce abundant cross-dimensional feature fusion operations, including a cross-dimensional enhancement module that refines both spatial and spectral features through bidirectional attention mechanisms, a spectral-guided spatial query selection to select the most spectral-related spatial feature as the query, and a two-stage cross-dimensional decoder which dynamically guide the model to focus on the selected spatial query. Despite of numerous attention blocks, Omni-Fuse remains efficient in execution. Experiments on two microscopic hyperspectral image datasets show that our approach can significantly improve the segmentation performance compared with the state-of-the-art methods, with over 5.73 percent improvement in DSC. Code available at: https://github.com/DeepMed-Lab-ECNU/Omni-Fuse.

Authors:Xu Shaowu, Jia Xibin, Gao Junyu, Sun Qianmei, Chang Jing, Fan Chao
Title: Cross-Modal Dual-Causal Learning for Long-Term Action Recognition
Abstract:
Long-term action recognition (LTAR) is challenging due to extended temporal spans with complex atomic action correlations and visual confounders. Although vision-language models (VLMs) have shown promise, they often rely on statistical correlations instead of causal mechanisms. Moreover, existing causality-based methods address modal-specific biases but lack cross-modal causal modeling, limiting their utility in VLM-based LTAR. This paper proposes \textbf{C}ross-\textbf{M}odal \textbf{D}ual-\textbf{C}ausal \textbf{L}earning (CMDCL), which introduces a structural causal model to uncover causal relationships between videos and label texts. CMDCL addresses cross-modal biases in text embeddings via textual causal intervention and removes confounders inherent in the visual modality through visual causal intervention guided by the debiased text. These dual-causal interventions enable robust action representations to address LTAR challenges. Experimental results on three benchmarks including Charades, Breakfast and COIN, demonstrate the effectiveness of the proposed model. Our code is available at https://github.com/xushaowu/CMDCL.

Authors:Qianyu Zhang, Bolun Zheng, Lingyu Zhu, Hangjia Pan, Zunjie Zhu, Zongpeng Li, Shiqi Wang
Title: Capturing Stable HDR Videos Using a Dual-Camera System
Abstract:
High Dynamic Range (HDR) video acquisition using the alternating exposure (AE) paradigm has garnered significant attention due to its cost-effectiveness with a single consumer camera. However, despite progress driven by deep neural networks, these methods remain prone to temporal flicker in real-world applications due to inter-frame exposure inconsistencies. To address this challenge while maintaining the cost-effectiveness of the AE paradigm, we propose a novel learning-based HDR video generation solution. Specifically, we propose a dual-stream HDR video generation paradigm that decouples temporal luminance anchoring from exposure-variant detail reconstruction, overcoming the inherent limitations of the AE paradigm. To support this, we design an asynchronous dual-camera system (DCS), which enables independent exposure control across two cameras, eliminating the need for synchronization typically required in traditional multi-camera setups. Furthermore, an exposure-adaptive fusion network (EAFNet) is formulated for the DCS system. EAFNet integrates a pre-alignment subnetwork that aligns features across varying exposures, ensuring robust feature extraction for subsequent fusion, an asymmetric cross-feature fusion subnetwork that emphasizes reference-based attention to effectively merge these features across exposures, and a reconstruction subnetwork to mitigate ghosting artifacts and preserve fine details. Extensive experimental evaluations demonstrate that the proposed method achieves state-of-the-art performance across various datasets, showing the remarkable potential of our solution in HDR video reconstruction. The codes and data captured by DCS will be available at https://zqqqyu.github.io/DCS-HDR/.

Authors:Yang Chen, Yueqi Duan, Haowen Sun, Jiwen Lu, Yap-Peng Tan
Title: Ambiguity-aware Point Cloud Segmentation by Adaptive Margin Contrastive Learning
Abstract:
This paper proposes an adaptive margin contrastive learning method for 3D semantic segmentation on point clouds. Most existing methods use equally penalized objectives, which ignore the per-point ambiguities and less discriminated features stemming from transition regions. However, as highly ambiguous points may be indistinguishable even for humans, their manually annotated labels are less reliable, and hard constraints over these points would lead to sub-optimal models. To address this, we first design AMContrast3D, a method comprising contrastive learning into an ambiguity estimation framework, tailored to adaptive objectives for individual points based on ambiguity levels. As a result, our method promotes model training, which ensures the correctness of low-ambiguity points while allowing mistakes for high-ambiguity points. As ambiguities are formulated based on position discrepancies across labels, optimization during inference is constrained by the assumption that all unlabeled points are uniformly unambiguous, lacking ambiguity awareness. Inspired by the insight of joint training, we further propose AMContrast3D++ integrating with two branches trained in parallel, where a novel ambiguity prediction module concurrently learns point ambiguities from generated embeddings. To this end, we design a masked refinement mechanism that leverages predicted ambiguities to enable the ambiguous embeddings to be more reliable, thereby boosting segmentation performance and enhancing robustness. Experimental results on 3D indoor scene datasets, S3DIS and ScanNet, demonstrate the effectiveness of the proposed method. Code is available at https://github.com/YangChenApril/AMContrast3D.

Authors:Qibiao Wu, Yagang Wang, Qian Zhang
Title: Airway Segmentation Network for Enhanced Tubular Feature Extraction
Abstract:
Manual annotation of airway regions in computed tomography images is a time-consuming and expertise-dependent task. Automatic airway segmentation is therefore a prerequisite for enabling rapid bronchoscopic navigation and the clinical deployment of bronchoscopic robotic systems. Although convolutional neural network methods have gained considerable attention in airway segmentation, the unique tree-like structure of airways poses challenges for conventional and deformable convolutions, which often fail to focus on fine airway structures, leading to missed segments and discontinuities. To address this issue, this study proposes a novel tubular feature extraction network, named TfeNet. TfeNet introduces a novel direction-aware convolution operation that first applies spatial rotation transformations to adjust the sampling positions of linear convolution kernels. The deformed kernels are then represented as line segments or polylines in 3D space. Furthermore, a tubular feature fusion module (TFFM) is designed based on asymmetric convolution and residual connection strategies, enhancing the network's focus on subtle airway structures. Extensive experiments conducted on one public dataset and two datasets used in airway segmentation challenges demonstrate that the proposed TfeNet achieves more accuracy and continuous airway structure predictions compared with existing methods. In particular, TfeNet achieves the highest overall score of 94.95% on the current largest airway segmentation dataset, Airway Tree Modeling(ATM22), and demonstrates advanced performance on the lung fibrosis dataset(AIIB23). The code is available at https://github.com/QibiaoWu/TfeNet.

Authors:Taekyung Kim, Dongyoon Han, Byeongho Heo, Jeongeun Park, Sangdoo Yun
Title: Token Bottleneck: One Token to Remember Dynamics
Abstract:
Deriving compact and temporally aware visual representations from dynamic scenes is essential for successful execution of sequential scene understanding tasks such as visual tracking and robotic manipulation. In this paper, we introduce Token Bottleneck (ToBo), a simple yet intuitive self-supervised learning pipeline that squeezes a scene into a bottleneck token and predicts the subsequent scene using minimal patches as hints. The ToBo pipeline facilitates the learning of sequential scene representations by conservatively encoding the reference scene into a compact bottleneck token during the squeeze step. In the expansion step, we guide the model to capture temporal dynamics by predicting the target scene using the bottleneck token along with few target patches as hints. This design encourages the vision backbone to embed temporal dependencies, thereby enabling understanding of dynamic transitions across scenes. Extensive experiments in diverse sequential tasks, including video label propagation and robot manipulation in simulated environments demonstrate the superiority of ToBo over baselines. Moreover, deploying our pre-trained model on physical robots confirms its robustness and effectiveness in real-world environments. We further validate the scalability of ToBo across different model scales.

Authors:Mingjin Zeng, Nan Ouyang, Wenkang Wan, Lei Ao, Qing Cai, Kai Sheng
Title: ILNet: Trajectory Prediction with Inverse Learning Attention for Enhancing Intention Capture
Abstract:
Trajectory prediction for multi-agent interaction scenarios is a crucial challenge. Most advanced methods model agent interactions by efficiently factorized attention based on the temporal and agent axes. However, this static and foward modeling lacks explicit interactive spatio-temporal coordination, capturing only obvious and immediate behavioral intentions. Alternatively, the modern trajectory prediction framework refines the successive predictions by a fixed-anchor selection strategy, which is difficult to adapt in different future environments. It is acknowledged that human drivers dynamically adjust initial driving decisions based on further assumptions about the intentions of surrounding vehicles. Motivated by human driving behaviors, this paper proposes ILNet, a multi-agent trajectory prediction method with Inverse Learning (IL) attention and Dynamic Anchor Selection (DAS) module. IL Attention employs an inverse learning paradigm to model interactions at neighboring moments, introducing proposed intentions to dynamically encode the spatio-temporal coordination of interactions, thereby enhancing the model's ability to capture complex interaction patterns. Then, the learnable DAS module is proposed to extract multiple trajectory change keypoints as anchors in parallel with almost no increase in parameters. Experimental results show that the ILNet achieves state-of-the-art performance on the INTERACTION and Argoverse motion forecasting datasets. Particularly, in challenged interaction scenarios, ILNet achieves higher accuracy and more multimodal distributions of trajectories over fewer parameters. Our codes are available at https://github.com/mjZeng11/ILNet.

Authors:Weiran Li, Yeqiang Liu, Qiannan Guo, Yijie Wei, Hwa Liang Leo, Zhenbo Li
Title: When Trackers Date Fish: A Benchmark and Framework for Underwater Multiple Fish Tracking
Abstract:
Multiple object tracking (MOT) technology has made significant progress in terrestrial applications, but underwater tracking scenarios remain underexplored despite their importance to marine ecology and aquaculture. In this paper, we present Multiple Fish Tracking Dataset 2025 (MFT25), a comprehensive dataset specifically designed for underwater multiple fish tracking, featuring 15 diverse video sequences with 408,578 meticulously annotated bounding boxes across 48,066 frames. Our dataset captures various underwater environments, fish species, and challenging conditions including occlusions, similar appearances, and erratic motion patterns. Additionally, we introduce Scale-aware and Unscented Tracker (SU-T), a specialized tracking framework featuring an Unscented Kalman Filter (UKF) optimized for non-linear swimming patterns of fish and a novel Fish-Intersection-over-Union (FishIoU) matching that accounts for the unique morphological characteristics of aquatic species. Extensive experiments demonstrate that our SU-T baseline achieves state-of-the-art performance on MFT25, with 34.1 HOTA and 44.6 IDF1, while revealing fundamental differences between fish tracking and terrestrial object tracking scenarios. The dataset and codes are released at https://vranlee.github.io/SU-T/.

Authors:Emerson P. Grabke, Babak Taati, Masoom A. Haider
Title: Mitigating Multi-Sequence 3D Prostate MRI Data Scarcity through Domain Adaptation using Locally-Trained Latent Diffusion Models for Prostate Cancer Detection
Abstract:
Objective: Latent diffusion models (LDMs) could mitigate data scarcity challenges affecting machine learning development for medical image interpretation. The recent CCELLA LDM improved prostate cancer detection performance using synthetic MRI for classifier training but was limited to the axial T2-weighted (AxT2) sequence, did not investigate inter-institutional domain shift, and prioritized radiology over histopathology outcomes. We propose CCELLA++ to address these limitations and improve clinical utility. Methods: CCELLA++ expands CCELLA for simultaneous biparametric prostate MRI (bpMRI) generation, including the AxT2, high b-value diffusion series (HighB) and apparent diffusion coefficient map (ADC). Domain adaptation was investigated by pretraining classifiers on real or LDM-generated synthetic data from an internal institution, followed with fine-tuning on progressively smaller fractions of an out-of-distribution, external dataset. Results: CCELLA++ improved 3D FID for HighB and ADC but not AxT2 (0.013, 0.012, 0.063 respectively) sequences compared to CCELLA (0.060). Classifier pretraining with CCELLA++ bpMRI outperformed real bpMRI in AP and AUC for all domain adaptation scenarios. CCELLA++ pretraining achieved highest classifier performance below 50% (n=665) external dataset volume. Conclusion: Synthetic bpMRI generated by our method can improve downstream classifier generalization and performance beyond real bpMRI or CCELLA-generated AxT2-only images. Future work should seek to quantify medical image sample quality, balance multi-sequence LDM training, and condition the LDM with additional information. Significance: The proposed CCELLA++ LDM can generate synthetic bpMRI that outperforms real data for domain adaptation with a limited target institution dataset. Our code is available at https://github.com/grabkeem/CCELLA-plus-plus

Authors:Zhang Li, Biao Yang, Qiang Liu, Shuo Zhang, Zhiyin Ma, Liang Yin, Linger Deng, Yabo Sun, Yuliang Liu, Xiang Bai
Title: LIRA: Inferring Segmentation in Large Multi-modal Models with Local Interleaved Region Assistance
Abstract:
While large multi-modal models (LMMs) demonstrate promising capabilities in segmentation and comprehension, they still struggle with two limitations: inaccurate segmentation and hallucinated comprehension. These challenges stem primarily from constraints in weak visual comprehension and a lack of fine-grained perception. To alleviate these limitations, we propose LIRA, a framework that capitalizes on the complementary relationship between visual comprehension and segmentation via two key components: (1) Semantic-Enhanced Feature Extractor (SEFE) improves object attribute inference by fusing semantic and pixel-level features, leading to more accurate segmentation; (2) Interleaved Local Visual Coupling (ILVC) autoregressively generates local descriptions after extracting local features based on segmentation masks, offering fine-grained supervision to mitigate hallucinations. Furthermore, we find that the precision of object segmentation is positively correlated with the latent related semantics of the token. To quantify this relationship and the model's potential semantic inferring ability, we introduce the Attributes Evaluation (AttrEval) dataset. Our experiments show that LIRA achieves state-of-the-art performance in both segmentation and comprehension tasks. Code will be available at https://github.com/echo840/LIRA.

Authors:Ali Nasiri-Sarvi, Hassan Rivaz, Mahdi S. Hosseini
Title: SPARC: Concept-Aligned Sparse Autoencoders for Cross-Model and Cross-Modal Interpretability
Abstract:
Understanding how different AI models encode the same high-level concepts, such as objects or attributes, remains challenging because each model typically produces its own isolated representation. Existing interpretability methods like Sparse Autoencoders (SAEs) produce latent concepts individually for each model, resulting in incompatible concept spaces and limiting cross-model interpretability. To address this, we introduce SPARC (Sparse Autoencoders for Aligned Representation of Concepts), a new framework that learns a single, unified latent space shared across diverse architectures and modalities (e.g., vision models like DINO, and multimodal models like CLIP). SPARC's alignment is enforced through two key innovations: (1) a Global TopK sparsity mechanism, ensuring all input streams activate identical latent dimensions for a given concept; and (2) a Cross-Reconstruction Loss, which explicitly encourages semantic consistency between models. On Open Images, SPARC dramatically improves concept alignment, achieving a Jaccard similarity of 0.80, more than tripling the alignment compared to previous methods. SPARC creates a shared sparse latent space where individual dimensions often correspond to similar high-level concepts across models and modalities, enabling direct comparison of how different architectures represent identical concepts without requiring manual alignment or model-specific analysis. As a consequence of this aligned representation, SPARC also enables practical applications such as text-guided spatial localization in vision-only models and cross-model/cross-modal retrieval. Code and models are available at https://github.com/AtlasAnalyticsLab/SPARC.

Authors:Jiangzhong Cao, Zekai Zeng, Xu Zhang, Huan Zhang, Chunling Fan, Gangyi Jiang, Weisi Lin
Title: Unveiling the Underwater World: CLIP Perception Model-Guided Underwater Image Enhancement
Abstract:
High-quality underwater images are essential for both machine vision tasks and viewers with their aesthetic appeal.However, the quality of underwater images is severely affected by light absorption and scattering. Deep learning-based methods for Underwater Image Enhancement (UIE) have achieved good performance. However, these methods often overlook considering human perception and lack sufficient constraints within the solution space. Consequently, the enhanced images often suffer from diminished perceptual quality or poor content restoration.To address these issues, we propose a UIE method with a Contrastive Language-Image Pre-Training (CLIP) perception loss module and curriculum contrastive regularization. Above all, to develop a perception model for underwater images that more aligns with human visual perception, the visual semantic feature extraction capability of the CLIP model is leveraged to learn an appropriate prompt pair to map and evaluate the quality of underwater images. This CLIP perception model is then incorporated as a perception loss module into the enhancement network to improve the perceptual quality of enhanced images. Furthermore, the CLIP perception model is integrated with the curriculum contrastive regularization to enhance the constraints imposed on the enhanced images within the CLIP perceptual space, mitigating the risk of both under-enhancement and over-enhancement. Specifically, the CLIP perception model is employed to assess and categorize the learning difficulty level of negatives in the regularization process, ensuring comprehensive and nuanced utilization of distorted images and negatives with varied quality levels. Extensive experiments demonstrate that our method outperforms state-of-the-art methods in terms of visual quality and generalization ability.

Authors:Inès Hyeonsu Kim, Seokju Cho, Jahyeok Koo, Junghyun Park, Jiahui Huang, Joon-Young Lee, Seungryong Kim
Title: Learning to Track Any Points from Human Motion
Abstract:
Human motion, with its inherent complexities, such as non-rigid deformations, articulated movements, clothing distortions, and frequent occlusions caused by limbs or other individuals, provides a rich and challenging source of supervision that is crucial for training robust and generalizable point trackers. Despite the suitability of human motion, acquiring extensive training data for point tracking remains difficult due to laborious manual annotation. Our proposed pipeline, AnthroTAP, addresses this by proposing an automated pipeline to generate pseudo-labeled training data, leveraging the Skinned Multi-Person Linear (SMPL) model. We first fit the SMPL model to detected humans in video frames, project the resulting 3D mesh vertices onto 2D image planes to generate pseudo-trajectories, handle occlusions using ray-casting, and filter out unreliable tracks based on optical flow consistency. A point tracking model trained on AnthroTAP annotated dataset achieves state-of-the-art performance on the TAP-Vid benchmark, surpassing other models trained on real videos while using 10,000 times less data and only 1 day in 4 GPUs, compared to 256 GPUs used in recent state-of-the-art.

Authors:Keyan Chen, Chenyang Liu, Bowen Chen, Jiafan Zhang, Zhengxia Zou, Zhenwei Shi
Title: RSRefSeg 2: Decoupling Referring Remote Sensing Image Segmentation with Foundation Models
Abstract:
Referring Remote Sensing Image Segmentation provides a flexible and fine-grained framework for remote sensing scene analysis via vision-language collaborative interpretation. Current approaches predominantly utilize a three-stage pipeline encompassing dual-modal encoding, cross-modal interaction, and pixel decoding. These methods demonstrate significant limitations in managing complex semantic relationships and achieving precise cross-modal alignment, largely due to their coupled processing mechanism that conflates target localization with boundary delineation. This architectural coupling amplifies error propagation under semantic ambiguity while restricting model generalizability and interpretability. To address these issues, we propose RSRefSeg 2, a decoupling paradigm that reformulates the conventional workflow into a collaborative dual-stage framework: coarse localization followed by fine segmentation. RSRefSeg 2 integrates CLIP's cross-modal alignment strength with SAM's segmentation generalizability through strategic foundation model collaboration. Specifically, CLIP is employed as the dual-modal encoder to activate target features within its pre-aligned semantic space and generate localization prompts. To mitigate CLIP's misactivation challenges in multi-entity scenarios described by referring texts, a cascaded second-order prompter is devised, which enhances precision through implicit reasoning via decomposition of text embeddings into complementary semantic subspaces. These optimized semantic prompts subsequently direct the SAM to generate pixel-level refined masks, thereby completing the semantic transmission pipeline. Extensive experiments (RefSegRS, RRSIS-D, and RISBench) demonstrate that RSRefSeg 2 surpasses contemporary methods in segmentation accuracy (+~3% gIoU) and complex semantic interpretation. Code is available at: https://github.com/KyanChen/RSRefSeg2.

Authors:Aleksandar Jevtić, Christoph Reich, Felix Wimbauer, Oliver Hahn, Christian Rupprecht, Stefan Roth, Daniel Cremers
Title: Feed-Forward SceneDINO for Unsupervised Semantic Scene Completion
Abstract:
Semantic scene completion (SSC) aims to infer both the 3D geometry and semantics of a scene from single images. In contrast to prior work on SSC that heavily relies on expensive ground-truth annotations, we approach SSC in an unsupervised setting. Our novel method, SceneDINO, adapts techniques from self-supervised representation learning and 2D unsupervised scene understanding to SSC. Our training exclusively utilizes multi-view consistency self-supervision without any form of semantic or geometric ground truth. Given a single input image, SceneDINO infers the 3D geometry and expressive 3D DINO features in a feed-forward manner. Through a novel 3D feature distillation approach, we obtain unsupervised 3D semantics. In both 3D and 2D unsupervised scene understanding, SceneDINO reaches state-of-the-art segmentation accuracy. Linear probing our 3D features matches the segmentation accuracy of a current supervised SSC approach. Additionally, we showcase the domain generalization and multi-view consistency of SceneDINO, taking the first steps towards a strong foundation for single image 3D scene understanding.

Authors:Haoyu Wang, Lei Zhang, Wei Wei, Chen Ding, Yanning Zhang
Title: Prompt-Free Conditional Diffusion for Multi-object Image Augmentation
Abstract:
Diffusion models has underpinned much recent advances of dataset augmentation in various computer vision tasks. However, when involving generating multi-object images as real scenarios, most existing methods either rely entirely on text condition, resulting in a deviation between the generated objects and the original data, or rely too much on the original images, resulting in a lack of diversity in the generated images, which is of limited help to downstream tasks. To mitigate both problems with one stone, we propose a prompt-free conditional diffusion framework for multi-object image augmentation. Specifically, we introduce a local-global semantic fusion strategy to extract semantics from images to replace text, and inject knowledge into the diffusion model through LoRA to alleviate the category deviation between the original model and the target dataset. In addition, we design a reward model based counting loss to assist the traditional reconstruction loss for model training. By constraining the object counts of each category instead of pixel-by-pixel constraints, bridging the quantity deviation between the generated data and the original data while improving the diversity of the generated data. Experimental results demonstrate the superiority of the proposed method over several representative state-of-the-art baselines and showcase strong downstream task gain and out-of-domain generalization capabilities. Code is available at \href{https://github.com/00why00/PFCD}{here}.

Authors:Zhihao Chen, Tao Chen, Chenhui Wang, Qi Gao, Huidong Xie, Chuang Niu, Ge Wang, Hongming Shan
Title: LangMamba: A Language-driven Mamba Framework for Low-dose CT Denoising with Vision-language Models
Abstract:
Low-dose computed tomography (LDCT) reduces radiation exposure but often degrades image quality, potentially compromising diagnostic accuracy. Existing deep learning-based denoising methods focus primarily on pixel-level mappings, overlooking the potential benefits of high-level semantic guidance. Recent advances in vision-language models (VLMs) suggest that language can serve as a powerful tool for capturing structured semantic information, offering new opportunities to improve LDCT reconstruction. In this paper, we introduce LangMamba, a Language-driven Mamba framework for LDCT denoising that leverages VLM-derived representations to enhance supervision from normal-dose CT (NDCT). LangMamba follows a two-stage learning strategy. First, we pre-train a Language-guided AutoEncoder (LangAE) that leverages frozen VLMs to map NDCT images into a semantic space enriched with anatomical information. Second, we synergize LangAE with two key components to guide LDCT denoising: Semantic-Enhanced Efficient Denoiser (SEED), which enhances NDCT-relevant local semantic while capturing global features with efficient Mamba mechanism, and Language-engaged Dual-space Alignment (LangDA) Loss, which ensures that denoised images align with NDCT in both perceptual and semantic spaces. Extensive experiments on two public datasets demonstrate that LangMamba outperforms conventional state-of-the-art methods, significantly improving detail preservation and visual fidelity. Remarkably, LangAE exhibits strong generalizability to unseen datasets, thereby reducing training costs. Furthermore, LangDA loss improves explainability by integrating language-guided insights into image reconstruction and offers a plug-and-play fashion. Our findings shed new light on the potential of language as a supervisory signal to advance LDCT denoising. The code is publicly available on https://github.com/hao1635/LangMamba.

Authors:Zhiyu Tan, Hao Yang, Luozheng Qin, Jia Gong, Mengping Yang, Hao Li
Title: Omni-Video: Democratizing Unified Video Understanding and Generation
Abstract:
Notable breakthroughs in unified understanding and generation modeling have led to remarkable advancements in image understanding, reasoning, production and editing, yet current foundational models predominantly focus on processing images, creating a gap in the development of unified models for video understanding and generation. This report presents Omni-Video, an efficient and effective unified framework for video understanding, generation, as well as instruction-based editing. Our key insight is to teach existing multimodal large language models (MLLMs) to produce continuous visual clues that are used as the input of diffusion decoders, which produce high-quality videos conditioned on these visual clues. To fully unlock the potential of our system for unified video modeling, we integrate several technical improvements: 1) a lightweight architectural design that respectively attaches a vision head on the top of MLLMs and a adapter before the input of diffusion decoders, the former produce visual tokens for the latter, which adapts these visual tokens to the conditional space of diffusion decoders; and 2) an efficient multi-stage training scheme that facilitates a fast connection between MLLMs and diffusion decoders with limited data and computational resources. We empirically demonstrate that our model exhibits satisfactory generalization abilities across video generation, editing and understanding tasks.

Authors:Jiayi Song, Zihan Ye, Qingyuan Zhou, Weidong Yang, Ben Fei, Jingyi Xu, Ying He, Wanli Ouyang
Title: Reflections Unlock: Geometry-Aware Reflection Disentanglement in 3D Gaussian Splatting for Photorealistic Scenes Rendering
Abstract:
Accurately rendering scenes with reflective surfaces remains a significant challenge in novel view synthesis, as existing methods like Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) often misinterpret reflections as physical geometry, resulting in degraded reconstructions. Previous methods rely on incomplete and non-generalizable geometric constraints, leading to misalignment between the positions of Gaussian splats and the actual scene geometry. When dealing with real-world scenes containing complex geometry, the accumulation of Gaussians further exacerbates surface artifacts and results in blurred reconstructions. To address these limitations, in this work, we propose Ref-Unlock, a novel geometry-aware reflection modeling framework based on 3D Gaussian Splatting, which explicitly disentangles transmitted and reflected components to better capture complex reflections and enhance geometric consistency in real-world scenes. Our approach employs a dual-branch representation with high-order spherical harmonics to capture high-frequency reflective details, alongside a reflection removal module providing pseudo reflection-free supervision to guide clean decomposition. Additionally, we incorporate pseudo-depth maps and a geometry-aware bilateral smoothness constraint to enhance 3D geometric consistency and stability in decomposition. Extensive experiments demonstrate that Ref-Unlock significantly outperforms classical GS-based reflection methods and achieves competitive results with NeRF-based models, while enabling flexible vision foundation models (VFMs) driven reflection editing. Our method thus offers an efficient and generalizable solution for realistic rendering of reflective scenes. Our code is available at https://ref-unlock.github.io/.

Authors:Murilo Gustineli, Anthony Miyaguchi, Adrian Cheung, Divyansh Khattak
Title: Tile-Based ViT Inference with Visual-Cluster Priors for Zero-Shot Multi-Species Plant Identification
Abstract:
We describe DS@GT's second-place solution to the PlantCLEF 2025 challenge on multi-species plant identification in vegetation quadrat images. Our pipeline combines (i) a fine-tuned Vision Transformer ViTD2PC24All for patch-level inference, (ii) a 4x4 tiling strategy that aligns patch size with the network's 518x518 receptive field, and (iii) domain-prior adaptation through PaCMAP + K-Means visual clustering and geolocation filtering. Tile predictions are aggregated by majority vote and re-weighted with cluster-specific Bayesian priors, yielding a macro-averaged F1 of 0.348 (private leaderboard) while requiring no additional training. All code, configuration files, and reproducibility scripts are publicly available at https://github.com/dsgt-arc/plantclef-2025.

Authors:Tongtong Cheng, Rongzhen Li, Yixin Xiong, Tao Zhang, Jing Wang, Kai Liu
Title: MCAM: Multimodal Causal Analysis Model for Ego-Vehicle-Level Driving Video Understanding
Abstract:
Accurate driving behavior recognition and reasoning are critical for autonomous driving video understanding. However, existing methods often tend to dig out the shallow causal, fail to address spurious correlations across modalities, and ignore the ego-vehicle level causality modeling. To overcome these limitations, we propose a novel Multimodal Causal Analysis Model (MCAM) that constructs latent causal structures between visual and language modalities. Firstly, we design a multi-level feature extractor to capture long-range dependencies. Secondly, we design a causal analysis module that dynamically models driving scenarios using a directed acyclic graph (DAG) of driving states. Thirdly, we utilize a vision-language transformer to align critical visual features with their corresponding linguistic expressions. Extensive experiments on the BDD-X, and CoVLA datasets demonstrate that MCAM achieves SOTA performance in visual-language causal relationship learning. Furthermore, the model exhibits superior capability in capturing causal characteristics within video sequences, showcasing its effectiveness for autonomous driving applications. The code is available at https://github.com/SixCorePeach/MCAM.

Authors:Chang Liu, Ye Pan, Chenyang Ding, Susanto Rahardja, Xiaokang Yang
Title: MEDTalk: Multimodal Controlled 3D Facial Animation with Dynamic Emotions by Disentangled Embedding
Abstract:
Audio-driven emotional 3D facial animation aims to generate synchronized lip movements and vivid facial expressions. However, most existing approaches focus on static and predefined emotion labels, limiting their diversity and naturalness. To address these challenges, we propose MEDTalk, a novel framework for fine-grained and dynamic emotional talking head generation. Our approach first disentangles content and emotion embedding spaces from motion sequences using a carefully designed cross-reconstruction process, enabling independent control over lip movements and facial expressions. Beyond conventional audio-driven lip synchronization, we integrate audio and speech text, predicting frame-wise intensity variations and dynamically adjusting static emotion features to generate realistic emotional expressions. Furthermore, to enhance control and personalization, we incorporate multimodal inputs-including text descriptions and reference expression images-to guide the generation of user-specified facial expressions. With MetaHuman as the priority, our generated results can be conveniently integrated into the industrial production pipeline. The code is available at: https://github.com/SJTU-Lucy/MEDTalk.

Authors:Vera Soboleva, Aibek Alanov, Andrey Kuznetsov, Konstantin Sobolev
Title: T-LoRA: Single Image Diffusion Model Customization Without Overfitting
Abstract:
While diffusion model fine-tuning offers a powerful approach for customizing pre-trained models to generate specific objects, it frequently suffers from overfitting when training samples are limited, compromising both generalization capability and output diversity. This paper tackles the challenging yet most impactful task of adapting a diffusion model using just a single concept image, as single-image customization holds the greatest practical potential. We introduce T-LoRA, a Timestep-Dependent Low-Rank Adaptation framework specifically designed for diffusion model personalization. In our work we show that higher diffusion timesteps are more prone to overfitting than lower ones, necessitating a timestep-sensitive fine-tuning strategy. T-LoRA incorporates two key innovations: (1) a dynamic fine-tuning strategy that adjusts rank-constrained updates based on diffusion timesteps, and (2) a weight parametrization technique that ensures independence between adapter components through orthogonal initialization. Extensive experiments show that T-LoRA and its individual components outperform standard LoRA and other diffusion model personalization techniques. They achieve a superior balance between concept fidelity and text alignment, highlighting the potential of T-LoRA in data-limited and resource-constrained scenarios. Code is available at https://github.com/ControlGenAI/T-LoRA.

Authors:Zhenghao Zhang, Junchao Liao, Xiangyu Meng, Long Qin, Weizhi Wang
Title: Tora2: Motion and Appearance Customized Diffusion Transformer for Multi-Entity Video Generation
Abstract:
Recent advances in diffusion transformer models for motion-guided video generation, such as Tora, have shown significant progress. In this paper, we present Tora2, an enhanced version of Tora, which introduces several design improvements to expand its capabilities in both appearance and motion customization. Specifically, we introduce a decoupled personalization extractor that generates comprehensive personalization embeddings for multiple open-set entities, better preserving fine-grained visual details compared to previous methods. Building on this, we design a gated self-attention mechanism to integrate trajectory, textual description, and visual information for each entity. This innovation significantly reduces misalignment in multimodal conditioning during training. Moreover, we introduce a contrastive loss that jointly optimizes trajectory dynamics and entity consistency through explicit mapping between motion and personalization embeddings. Tora2 is, to our best knowledge, the first method to achieve simultaneous multi-entity customization of appearance and motion for video generation. Experimental results demonstrate that Tora2 achieves competitive performance with state-of-the-art customization methods while providing advanced motion control capabilities, which marks a critical advancement in multi-condition video generation. Project page: https://ali-videoai.github.io/Tora2_page/.

Authors:Xinyu Huang, Yuhao Dong, Weiwei Tian, Bo Li, Rui Feng, Ziwei Liu
Title: High-Resolution Visual Reasoning via Multi-Turn Grounding-Based Reinforcement Learning
Abstract:
State-of-the-art large multi-modal models (LMMs) face challenges when processing high-resolution images, as these inputs are converted into enormous visual tokens, many of which are irrelevant to the downstream task. In this paper, we propose Multi-turn Grounding-based Policy Optimization (MGPO), an end-to-end reinforcement learning (RL) framework that enables LMMs to iteratively focus on key visual regions by automatically cropping sub-images, based on model-predicted grounding coordinates within a multi-turn conversation framework. Compared to supervised fine-tuning (SFT), which requires costly additional grounding annotations, our approach highlights that LMMs can emerge robust grounding abilities during the RL training process, leveraging only a binary reward function derived from the correctness of the final answer. Additionally, we observe that LMMs struggle to autonomously trigger visual grounding during the rollout process. To address this cold start problem, we design a multi-turn conversational template and restrict policy loss computation to model outputs generated across multiple dialogue rounds, thereby promoting stable optimization. Extensive experiments demonstrate that, when trained on standard visual-question-short answering data without grounding annotations, MGPO effectively elicits stronger grounding capabilities compared to GRPO, leading to 5.4\% improvement on in-distribution MME-Realworld and 5.2\% improvement on the challenging out-of-distribution (OOD) V* Bench. Notably, MGPO post-training on Qwen2.5-VL-7B with 21K samples surpasses OpenAI's o1 and GPT-4o models on the OOD V* Bench. Codes are available at https://github.com/EvolvingLMMs-Lab/MGPO.

Authors:Yuedong Tan, Jiawei Shao, Eduard Zamfir, Ruanjun Li, Zhaochong An, Chao Ma, Danda Paudel, Luc Van Gool, Radu Timofte, Zongwei Wu
Title: What You Have is What You Track: Adaptive and Robust Multimodal Tracking
Abstract:
Multimodal data is known to be helpful for visual tracking by improving robustness to appearance variations. However, sensor synchronization challenges often compromise data availability, particularly in video settings where shortages can be temporal. Despite its importance, this area remains underexplored. In this paper, we present the first comprehensive study on tracker performance with temporally incomplete multimodal data. Unsurprisingly, under such a circumstance, existing trackers exhibit significant performance degradation, as their rigid architectures lack the adaptability needed to effectively handle missing modalities. To address these limitations, we propose a flexible framework for robust multimodal tracking. We venture that a tracker should dynamically activate computational units based on missing data rates. This is achieved through a novel Heterogeneous Mixture-of-Experts fusion mechanism with adaptive complexity, coupled with a video-level masking strategy that ensures both temporal consistency and spatial completeness which is critical for effective video tracking. Surprisingly, our model not only adapts to varying missing rates but also adjusts to scene complexity. Extensive experiments show that our model achieves SOTA performance across 9 benchmarks, excelling in both conventional complete and missing modality settings. The code and benchmark will be publicly available at https://github.com/supertyd/FlexTrack/tree/main.

Authors:Ruijie Lu, Yu Liu, Jiaxiang Tang, Junfeng Ni, Yuxiang Wang, Diwen Wan, Gang Zeng, Yixin Chen, Siyuan Huang
Title: DreamArt: Generating Interactable Articulated Objects from a Single Image
Abstract:
Generating articulated objects, such as laptops and microwaves, is a crucial yet challenging task with extensive applications in Embodied AI and AR/VR. Current image-to-3D methods primarily focus on surface geometry and texture, neglecting part decomposition and articulation modeling. Meanwhile, neural reconstruction approaches (e.g., NeRF or Gaussian Splatting) rely on dense multi-view or interaction data, limiting their scalability. In this paper, we introduce DreamArt, a novel framework for generating high-fidelity, interactable articulated assets from single-view images. DreamArt employs a three-stage pipeline: firstly, it reconstructs part-segmented and complete 3D object meshes through a combination of image-to-3D generation, mask-prompted 3D segmentation, and part amodal completion. Second, we fine-tune a video diffusion model to capture part-level articulation priors, leveraging movable part masks as prompt and amodal images to mitigate ambiguities caused by occlusion. Finally, DreamArt optimizes the articulation motion, represented by a dual quaternion, and conducts global texture refinement and repainting to ensure coherent, high-quality textures across all parts. Experimental results demonstrate that DreamArt effectively generates high-quality articulated objects, possessing accurate part shape, high appearance fidelity, and plausible articulation, thereby providing a scalable solution for articulated asset generation. Our project page is available at https://dream-art-0.github.io/DreamArt/.

Authors:Yisu Zhang, Chenjie Cao, Chaohui Yu, Jianke Zhu
Title: LiON-LoRA: Rethinking LoRA Fusion to Unify Controllable Spatial and Temporal Generation for Video Diffusion
Abstract:
Video Diffusion Models (VDMs) have demonstrated remarkable capabilities in synthesizing realistic videos by learning from large-scale data. Although vanilla Low-Rank Adaptation (LoRA) can learn specific spatial or temporal movement to driven VDMs with constrained data, achieving precise control over both camera trajectories and object motion remains challenging due to the unstable fusion and non-linear scalability. To address these issues, we propose LiON-LoRA, a novel framework that rethinks LoRA fusion through three core principles: Linear scalability, Orthogonality, and Norm consistency. First, we analyze the orthogonality of LoRA features in shallow VDM layers, enabling decoupled low-level controllability. Second, norm consistency is enforced across layers to stabilize fusion during complex camera motion combinations. Third, a controllable token is integrated into the diffusion transformer (DiT) to linearly adjust motion amplitudes for both cameras and objects with a modified self-attention mechanism to ensure decoupled control. Additionally, we extend LiON-LoRA to temporal generation by leveraging static-camera videos, unifying spatial and temporal controllability. Experiments demonstrate that LiON-LoRA outperforms state-of-the-art methods in trajectory control accuracy and motion strength adjustment, achieving superior generalization with minimal training data. Project Page: https://fuchengsu.github.io/lionlora.github.io/

Authors:Rongsheng Wang, Junying Chen, Ke Ji, Zhenyang Cai, Shunian Chen, Yunjin Yang, Benyou Wang
Title: MedGen: Unlocking Medical Video Generation by Scaling Granularly-annotated Medical Videos
Abstract:
Recent advances in video generation have shown remarkable progress in open-domain settings, yet medical video generation remains largely underexplored. Medical videos are critical for applications such as clinical training, education, and simulation, requiring not only high visual fidelity but also strict medical accuracy. However, current models often produce unrealistic or erroneous content when applied to medical prompts, largely due to the lack of large-scale, high-quality datasets tailored to the medical domain. To address this gap, we introduce MedVideoCap-55K, the first large-scale, diverse, and caption-rich dataset for medical video generation. It comprises over 55,000 curated clips spanning real-world medical scenarios, providing a strong foundation for training generalist medical video generation models. Built upon this dataset, we develop MedGen, which achieves leading performance among open-source models and rivals commercial systems across multiple benchmarks in both visual quality and medical accuracy. We hope our dataset and model can serve as a valuable resource and help catalyze further research in medical video generation. Our code and data is available at https://github.com/FreedomIntelligence/MedGen

Authors:Zhiwei Chen, Yupeng Hu, Zixu Li, Zhiheng Fu, Xuemeng Song, Liqiang Nie
Title: OFFSET: Segmentation-based Focus Shift Revision for Composed Image Retrieval
Abstract:
Composed Image Retrieval (CIR) represents a novel retrieval paradigm that is capable of expressing users' intricate retrieval requirements flexibly. It enables the user to give a multimodal query, comprising a reference image and a modification text, and subsequently retrieve the target image. Notwithstanding the considerable advances made by prevailing methodologies, CIR remains in its nascent stages due to two limitations: 1) inhomogeneity between dominant and noisy portions in visual data is ignored, leading to query feature degradation, and 2) the priority of textual data in the image modification process is overlooked, which leads to a visual focus bias. To address these two limitations, this work presents a focus mapping-based feature extractor, which consists of two modules: dominant portion segmentation and dual focus mapping. It is designed to identify significant dominant portions in images and guide the extraction of visual and textual data features, thereby reducing the impact of noise interference. Subsequently, we propose a textually guided focus revision module, which can utilize the modification requirements implied in the text to perform adaptive focus revision on the reference image, thereby enhancing the perception of the modification focus on the composed features. The aforementioned modules collectively constitute the segmentatiOn-based Focus shiFt reviSion nETwork (\mbox{OFFSET}), and comprehensive experiments on four benchmark datasets substantiate the superiority of our proposed method. The codes and data are available on https://zivchen-ty.github.io/OFFSET.github.io/

Authors:Shuai Li, Shihan Chen, Wanru Geng, Zhaohua Xu, Xiaolu Liu, Can Dong, Zhen Tian, Changlin Chen
Title: Semi-Supervised Defect Detection via Conditional Diffusion and CLIP-Guided Noise Filtering
Abstract:
In the realm of industrial quality inspection, defect detection stands as a critical component, particularly in high-precision, safety-critical sectors such as automotive components aerospace, and medical devices. Traditional methods, reliant on manual inspection or early image processing algorithms, suffer from inefficiencies, high costs, and limited robustness. This paper introduces a semi-supervised defect detection framework based on conditional diffusion (DSYM), leveraging a two-stage collaborative training mechanism and a staged joint optimization strategy. The framework utilizes labeled data for initial training and subsequently incorporates unlabeled data through the generation of pseudo-labels. A conditional diffusion model synthesizes multi-scale pseudo-defect samples, while a CLIP cross-modal feature-based noise filtering mechanism mitigates label contamination. Experimental results on the NEU-DET dataset demonstrate a 78.4% mAP@0.5 with the same amount of labeled data as traditional supervised methods, and 75.1% mAP@0.5 with only 40% of the labeled data required by the original supervised model, showcasing significant advantages in data efficiency. This research provides a high-precision, low-labeling-dependent solution for defect detection in industrial quality inspection scenarios. The work of this article has been open-sourced at https://github.com/cLin-c/Semisupervised-DSYM.

Authors:Pedro R. A. S. Bassi, Wenxuan Li, Jieneng Chen, Zheren Zhu, Tianyu Lin, Sergio Decherchi, Andrea Cavalli, Kang Wang, Yang Yang, Alan L. Yuille, Zongwei Zhou
Title: Learning Segmentation from Radiology Reports
Abstract:
Tumor segmentation in CT scans is key for diagnosis, surgery, and prognosis, yet segmentation masks are scarce because their creation requires time and expertise. Public abdominal CT datasets have from dozens to a couple thousand tumor masks, but hospitals have hundreds of thousands of tumor CTs with radiology reports. Thus, leveraging reports to improve segmentation is key for scaling. In this paper, we propose a report-supervision loss (R-Super) that converts radiology reports into voxel-wise supervision for tumor segmentation AI. We created a dataset with 6,718 CT-Report pairs (from the UCSF Hospital), and merged it with public CT-Mask datasets (from AbdomenAtlas 2.0). We used our R-Super to train with these masks and reports, and strongly improved tumor segmentation in internal and external validation--F1 Score increased by up to 16% with respect to training with masks only. By leveraging readily available radiology reports to supplement scarce segmentation masks, R-Super strongly improves AI performance both when very few training masks are available (e.g., 50), and when many masks were available (e.g., 1.7K). Project: https://github.com/MrGiovanni/R-Super

Authors:Andrew Randono
Title: Cloud Diffusion Part 1: Theory and Motivation
Abstract:
Diffusion models for image generation function by progressively adding noise to an image set and training a model to separate out the signal from the noise. The noise profile used by these models is white noise -- that is, noise based on independent normal distributions at each point whose mean and variance is independent of the scale. By contrast, most natural image sets exhibit a type of scale invariance in their low-order statistical properties characterized by a power-law scaling. Consequently, natural images are closer (in a quantifiable sense) to a different probability distribution that emphasizes large scale correlations and de-emphasizes small scale correlations. These scale invariant noise profiles can be incorporated into diffusion models in place of white noise to form what we will call a ``Cloud Diffusion Model". We argue that these models can lead to faster inference, improved high-frequency details, and greater controllability. In a follow-up paper, we will build and train a Cloud Diffusion Model that uses scale invariance at a fundamental level and compare it to classic, white noise diffusion models.

Authors:Sajjad Ghiasvand, Mahnoosh Alizadeh, Ramtin Pedarsani
Title: pFedMMA: Personalized Federated Fine-Tuning with Multi-Modal Adapter for Vision-Language Models
Abstract:
Vision-Language Models (VLMs) like CLIP have demonstrated remarkable generalization in zero- and few-shot settings, but adapting them efficiently to decentralized, heterogeneous data remains a challenge. While prompt tuning has emerged as a popular parameter-efficient approach in personalized federated learning, existing methods often sacrifice generalization in favor of personalization, struggling particularly on unseen classes or domains. In this work, we propose pFedMMA, the first personalized federated learning framework that leverages multi-modal adapters for vision-language tasks. Each adapter contains modality-specific up- and down-projection layers alongside a globally shared projection that aligns cross-modal features. Our asymmetric optimization strategy allows clients to locally adapt to personalized data distributions while collaboratively training the shared projection to improve global generalization. This design is also communication-efficient, as only the shared component is exchanged during rounds. Through extensive experiments across eleven datasets, including domain- and label-shift scenarios, we show that pFedMMA achieves state-of-the-art trade-offs between personalization and generalization, outperforming recent federated prompt tuning methods. The code is available at https://github.com/sajjad-ucsb/pFedMMA.

Authors:Xiang Xu, Lingdong Kong, Song Wang, Chuanwei Zhou, Qingshan Liu
Title: Beyond One Shot, Beyond One Perspective: Cross-View and Long-Horizon Distillation for Better LiDAR Representations
Abstract:
LiDAR representation learning aims to extract rich structural and semantic information from large-scale, readily available datasets, reducing reliance on costly human annotations. However, existing LiDAR representation strategies often overlook the inherent spatiotemporal cues in LiDAR sequences, limiting their effectiveness. In this work, we propose LiMA, a novel long-term image-to-LiDAR Memory Aggregation framework that explicitly captures longer range temporal correlations to enhance LiDAR representation learning. LiMA comprises three key components: 1) a Cross-View Aggregation module that aligns and fuses overlapping regions across neighboring camera views, constructing a more unified and redundancy-free memory bank; 2) a Long-Term Feature Propagation mechanism that efficiently aligns and integrates multi-frame image features, reinforcing temporal coherence during LiDAR representation learning; and 3) a Cross-Sequence Memory Alignment strategy that enforces consistency across driving sequences, improving generalization to unseen environments. LiMA maintains high pretraining efficiency and incurs no additional computational overhead during downstream tasks. Extensive experiments on mainstream LiDAR-based perception benchmarks demonstrate that LiMA significantly improves both LiDAR semantic segmentation and 3D object detection. We hope this work inspires more effective pretraining paradigms for autonomous driving. The code has be made publicly accessible for future research.

Authors:Chun-Hsiao Yeh, Yilin Wang, Nanxuan Zhao, Richard Zhang, Yuheng Li, Yi Ma, Krishna Kumar Singh
Title: Beyond Simple Edits: X-Planner for Complex Instruction-Based Image Editing
Abstract:
Recent diffusion-based image editing methods have significantly advanced text-guided tasks but often struggle to interpret complex, indirect instructions. Moreover, current models frequently suffer from poor identity preservation, unintended edits, or rely heavily on manual masks. To address these challenges, we introduce X-Planner, a Multimodal Large Language Model (MLLM)-based planning system that effectively bridges user intent with editing model capabilities. X-Planner employs chain-of-thought reasoning to systematically decompose complex instructions into simpler, clear sub-instructions. For each sub-instruction, X-Planner automatically generates precise edit types and segmentation masks, eliminating manual intervention and ensuring localized, identity-preserving edits. Additionally, we propose a novel automated pipeline for generating large-scale data to train X-Planner which achieves state-of-the-art results on both existing benchmarks and our newly introduced complex editing benchmark.

Authors:Haozhen Zheng, Beitong Tian, Mingyuan Wu, Zhenggang Tang, Klara Nahrstedt, Alex Schwing
Title: Spatio-Temporal LLM: Reasoning about Environments and Actions
Abstract:
Despite the significant recent progress of Multimodal Large Language Models (MLLMs), MLLMs still struggle to correctly answer prompts that require a holistic spatio-temporal understanding. Specifically, it is challenging to address prompts that refer to 1) the entirety of an environment that an agent equipped with an MLLM can operate in; and simultaneously also refer to 2) recent actions that just happened and are encoded in a video clip. However, such a holistic spatio-temporal understanding is important for agents operating in the real world. To address this issue, we first develop a framework to collect a large-scale dataset. Using the collected "Reasoning about Environments and Actions" (REA) dataset, we show that recent methods indeed struggle to correctly answer the prompts. To improve, we develop a "spatio-temporal LLM" (ST-LLM), a model equipped with projectors to improve both spatial understanding of an environment and temporal understanding of recent observations. On the collected REA data, we show that the proposed method significantly improves results compared to prior work. Code and data are available at https://zoezheng126.github.io/STLLM-website/.

Authors:Jiahao Zhu, Zixuan Chen, Guangcong Wang, Xiaohua Xie, Yi Zhou
Title: SegmentDreamer: Towards High-fidelity Text-to-3D Synthesis with Segmented Consistency Trajectory Distillation
Abstract:
Recent advancements in text-to-3D generation improve the visual quality of Score Distillation Sampling (SDS) and its variants by directly connecting Consistency Distillation (CD) to score distillation. However, due to the imbalance between self-consistency and cross-consistency, these CD-based methods inherently suffer from improper conditional guidance, leading to sub-optimal generation results. To address this issue, we present SegmentDreamer, a novel framework designed to fully unleash the potential of consistency models for high-fidelity text-to-3D generation. Specifically, we reformulate SDS through the proposed Segmented Consistency Trajectory Distillation (SCTD), effectively mitigating the imbalance issues by explicitly defining the relationship between self- and cross-consistency. Moreover, SCTD partitions the Probability Flow Ordinary Differential Equation (PF-ODE) trajectory into multiple sub-trajectories and ensures consistency within each segment, which can theoretically provide a significantly tighter upper bound on distillation error. Additionally, we propose a distillation pipeline for a more swift and stable generation. Extensive experiments demonstrate that our SegmentDreamer outperforms state-of-the-art methods in visual quality, enabling high-fidelity 3D asset creation through 3D Gaussian Splatting (3DGS).

Authors:Fabian Konstantinidis, Ariel Dallari Guerreiro, Raphael Trumpp, Moritz Sackmann, Ulrich Hofmann, Marco Caccamo, Christoph Stiller
Title: From Marginal to Joint Predictions: Evaluating Scene-Consistent Trajectory Prediction Approaches for Automated Driving
Abstract:
Accurate motion prediction of surrounding traffic participants is crucial for the safe and efficient operation of automated vehicles in dynamic environments. Marginal prediction models commonly forecast each agent's future trajectories independently, often leading to sub-optimal planning decisions for an automated vehicle. In contrast, joint prediction models explicitly account for the interactions between agents, yielding socially and physically consistent predictions on a scene level. However, existing approaches differ not only in their problem formulation but also in the model architectures and implementation details used, making it difficult to compare them. In this work, we systematically investigate different approaches to joint motion prediction, including post-processing of the marginal predictions, explicitly training the model for joint predictions, and framing the problem as a generative task. We evaluate each approach in terms of prediction accuracy, multi-modality, and inference efficiency, offering a comprehensive analysis of the strengths and limitations of each approach. Several prediction examples are available at https://frommarginaltojointpred.github.io/.

Authors:Meng Wei, Chenyang Wan, Xiqian Yu, Tai Wang, Yuqiang Yang, Xiaohan Mao, Chenming Zhu, Wenzhe Cai, Hanqing Wang, Yilun Chen, Xihui Liu, Jiangmiao Pang
Title: StreamVLN: Streaming Vision-and-Language Navigation via SlowFast Context Modeling
Abstract:
Vision-and-Language Navigation (VLN) in real-world settings requires agents to process continuous visual streams and generate actions with low latency grounded in language instructions. While Video-based Large Language Models (Video-LLMs) have driven recent progress, current VLN methods based on Video-LLM often face trade-offs among fine-grained visual understanding, long-term context modeling and computational efficiency. We introduce StreamVLN, a streaming VLN framework that employs a hybrid slow-fast context modeling strategy to support multi-modal reasoning over interleaved vision, language and action inputs. The fast-streaming dialogue context facilitates responsive action generation through a sliding-window of active dialogues, while the slow-updating memory context compresses historical visual states using a 3D-aware token pruning strategy. With this slow-fast design, StreamVLN achieves coherent multi-turn dialogue through efficient KV cache reuse, supporting long video streams with bounded context size and inference cost. Experiments on VLN-CE benchmarks demonstrate state-of-the-art performance with stable low latency, ensuring robustness and efficiency in real-world deployment. The project page is: \href{https://streamvln.github.io/}{https://streamvln.github.io/}.

Authors:Zongyan Han, Mohamed El Amine Boudjoghra, Jiahua Dong, Jinhong Wang, Rao Muhammad Anwer
Title: All in One: Visual-Description-Guided Unified Point Cloud Segmentation
Abstract:
Unified segmentation of 3D point clouds is crucial for scene understanding, but is hindered by its sparse structure, limited annotations, and the challenge of distinguishing fine-grained object classes in complex environments. Existing methods often struggle to capture rich semantic and contextual information due to limited supervision and a lack of diverse multimodal cues, leading to suboptimal differentiation of classes and instances. To address these challenges, we propose VDG-Uni3DSeg, a novel framework that integrates pre-trained vision-language models (e.g., CLIP) and large language models (LLMs) to enhance 3D segmentation. By leveraging LLM-generated textual descriptions and reference images from the internet, our method incorporates rich multimodal cues, facilitating fine-grained class and instance separation. We further design a Semantic-Visual Contrastive Loss to align point features with multimodal queries and a Spatial Enhanced Module to model scene-wide relationships efficiently. Operating within a closed-set paradigm that utilizes multimodal knowledge generated offline, VDG-Uni3DSeg achieves state-of-the-art results in semantic, instance, and panoptic segmentation, offering a scalable and practical solution for 3D understanding. Our code is available at https://github.com/Hanzy1996/VDG-Uni3DSeg.

Authors:Yijia Hong, Jiangning Zhang, Ran Yi, Yuji Wang, Weijian Cao, Xiaobin Hu, Zhucun Xue, Yabiao Wang, Chengjie Wang, Lizhuang Ma
Title: Semantic Frame Interpolation
Abstract:
Generating intermediate video content of varying lengths based on given first and last frames, along with text prompt information, offers significant research and application potential. However, traditional frame interpolation tasks primarily focus on scenarios with a small number of frames, no text control, and minimal differences between the first and last frames. Recent community developers have utilized large video models represented by Wan to endow frame-to-frame capabilities. However, these models can only generate a fixed number of frames and often fail to produce satisfactory results for certain frame lengths, while this setting lacks a clear official definition and a well-established benchmark. In this paper, we first propose a new practical Semantic Frame Interpolation (SFI) task from the perspective of academic definition, which covers the above two settings and supports inference at multiple frame rates. To achieve this goal, we propose a novel SemFi model building upon Wan2.1, which incorporates a Mixture-of-LoRA module to ensure the generation of high-consistency content that aligns with control conditions across various frame length limitations. Furthermore, we propose SFI-300K, the first general-purpose dataset and benchmark specifically designed for SFI. To support this, we collect and process data from the perspective of SFI, carefully designing evaluation metrics and methods to assess the model's performance across multiple dimensions, encompassing image and video, and various aspects, including consistency and diversity. Through extensive experiments on SFI-300K, we demonstrate that our method is particularly well-suited to meet the requirements of the SFI task.

Authors:Nusrat Munia, Junfeng Zhu, Olfa Nasraoui, Abdullah-Al-Zubaer Imran
Title: Differential Attention for Multimodal Crisis Event Analysis
Abstract:
Social networks can be a valuable source of information during crisis events. In particular, users can post a stream of multimodal data that can be critical for real-time humanitarian response. However, effectively extracting meaningful information from this large and noisy data stream and effectively integrating heterogeneous data remains a formidable challenge. In this work, we explore vision language models (VLMs) and advanced fusion strategies to enhance the classification of crisis data in three different tasks. We incorporate LLaVA-generated text to improve text-image alignment. Additionally, we leverage Contrastive Language-Image Pretraining (CLIP)-based vision and text embeddings, which, without task-specific fine-tuning, outperform traditional models. To further refine multimodal fusion, we employ Guided Cross Attention (Guided CA) and combine it with the Differential Attention mechanism to enhance feature alignment by emphasizing critical information while filtering out irrelevant content. Our results show that while Differential Attention improves classification performance, Guided CA remains highly effective in aligning multimodal features. Extensive experiments on the CrisisMMD benchmark data set demonstrate that the combination of pretrained VLMs, enriched textual descriptions, and adaptive fusion strategies consistently outperforms state-of-the-art models in classification accuracy, contributing to more reliable and interpretable models for three different tasks that are crucial for disaster response. Our code is available at https://github.com/Munia03/Multimodal_Crisis_Event.

Authors:Yutian Chen, Shi Guo, Tianshuo Yang, Lihe Ding, Xiuyuan Yu, Jinwei Gu, Tianfan Xue
Title: 4DSloMo: 4D Reconstruction for High Speed Scene with Asynchronous Capture
Abstract:
Reconstructing fast-dynamic scenes from multi-view videos is crucial for high-speed motion analysis and realistic 4D reconstruction. However, the majority of 4D capture systems are limited to frame rates below 30 FPS (frames per second), and a direct 4D reconstruction of high-speed motion from low FPS input may lead to undesirable results. In this work, we propose a high-speed 4D capturing system only using low FPS cameras, through novel capturing and processing modules. On the capturing side, we propose an asynchronous capture scheme that increases the effective frame rate by staggering the start times of cameras. By grouping cameras and leveraging a base frame rate of 25 FPS, our method achieves an equivalent frame rate of 100-200 FPS without requiring specialized high-speed cameras. On processing side, we also propose a novel generative model to fix artifacts caused by 4D sparse-view reconstruction, as asynchrony reduces the number of viewpoints at each timestamp. Specifically, we propose to train a video-diffusion-based artifact-fix model for sparse 4D reconstruction, which refines missing details, maintains temporal consistency, and improves overall reconstruction quality. Experimental results demonstrate that our method significantly enhances high-speed 4D reconstruction compared to synchronous capture.

Authors:Nicholas Chivaran, Jianbing Ni
Title: LAID: Lightweight AI-Generated Image Detection in Spatial and Spectral Domains
Abstract:
The recent proliferation of photorealistic AI-generated images (AIGI) has raised urgent concerns about their potential misuse, particularly on social media platforms. Current state-of-the-art AIGI detection methods typically rely on large, deep neural architectures, creating significant computational barriers to real-time, large-scale deployment on platforms like social media. To challenge this reliance on computationally intensive models, we introduce LAID, the first framework -- to our knowledge -- that benchmarks and evaluates the detection performance and efficiency of off-the-shelf lightweight neural networks. In this framework, we comprehensively train and evaluate selected models on a representative subset of the GenImage dataset across spatial, spectral, and fusion image domains. Our results demonstrate that lightweight models can achieve competitive accuracy, even under adversarial conditions, while incurring substantially lower memory and computation costs compared to current state-of-the-art methods. This study offers valuable insight into the trade-off between efficiency and performance in AIGI detection and lays a foundation for the development of practical, scalable, and trustworthy detection systems. The source code of LAID can be found at: https://github.com/nchivar/LAID.

Authors:Yingyu Yang, Qianye Yang, Kangning Cui, Can Peng, Elena D'Alberti, Netzahualcoyotl Hernandez-Cruz, Olga Patey, Aris T. Papageorghiou, J. Alison Noble
Title: Latent Motion Profiling for Annotation-free Cardiac Phase Detection in Adult and Fetal Echocardiography Videos
Abstract:
The identification of cardiac phase is an essential step for analysis and diagnosis of cardiac function. Automatic methods, especially data-driven methods for cardiac phase detection, typically require extensive annotations, which is time-consuming and labor-intensive. In this paper, we present an unsupervised framework for end-diastole (ED) and end-systole (ES) detection through self-supervised learning of latent cardiac motion trajectories from 4-chamber-view echocardiography videos. Our method eliminates the need for manual annotations, including ED and ES indices, segmentation, or volumetric measurements, by training a reconstruction model to encode interpretable spatiotemporal motion patterns. Evaluated on the EchoNet-Dynamic benchmark, the approach achieves mean absolute error (MAE) of 3 frames (58.3 ms) for ED and 2 frames (38.8 ms) for ES detection, matching state-of-the-art supervised methods. Extended to fetal echocardiography, the model demonstrates robust performance with MAE 1.46 frames (20.7 ms) for ED and 1.74 frames (25.3 ms) for ES, despite the fact that the fetal heart model is built using non-standardized heart views due to fetal heart positioning variability. Our results demonstrate the potential of the proposed latent motion trajectory strategy for cardiac phase detection in adult and fetal echocardiography. This work advances unsupervised cardiac motion analysis, offering a scalable solution for clinical populations lacking annotated data. Code will be released at https://github.com/YingyuYyy/CardiacPhase.

Authors:Aadi Srivastava, Vignesh Natarajkumar, Utkarsh Bheemanaboyna, Devisree Akashapu, Nagraj Gaonkar, Archit Joshi
Title: VERITAS: Verification and Explanation of Realness in Images for Transparency in AI Systems
Abstract:
The widespread and rapid adoption of AI-generated content, created by models such as Generative Adversarial Networks (GANs) and Diffusion Models, has revolutionized the digital media landscape by allowing efficient and creative content generation. However, these models also blur the difference between real images and AI-generated synthetic images, raising concerns regarding content authenticity and integrity. While many existing solutions to detect fake images focus solely on classification and higher-resolution images, they often lack transparency in their decision-making, making it difficult for users to understand why an image is classified as fake. In this paper, we present VERITAS, a comprehensive framework that not only accurately detects whether a small (32x32) image is AI-generated but also explains why it was classified that way through artifact localization and semantic reasoning. VERITAS produces human-readable explanations that describe key artifacts in synthetic images. We show that this architecture offers clear explanations of the basis of zero-shot synthetic image detection tasks. Code and relevant prompts can be found at https://github.com/V-i-g-n-e-s-h-N/VERITAS .

Authors:Juyi Lin, Amir Taherin, Arash Akbari, Arman Akbari, Lei Lu, Guangyu Chen, Taskin Padir, Xiaomeng Yang, Weiwei Chen, Yiqian Li, Xue Lin, David Kaeli, Pu Zhao, Yanzhi Wang
Title: VOTE: Vision-Language-Action Optimization with Trajectory Ensemble Voting
Abstract:
Recent large-scale Vision Language Action (VLA) models have shown superior performance in robotic manipulation tasks guided by natural language. However, current VLA models suffer from two drawbacks: (i) generation of massive tokens leading to high inference latency and increased training cost, and (ii) insufficient utilization of generated actions resulting in potential performance loss. To address these issues, we develop a training framework to finetune VLA models for generating significantly fewer action tokens with high parallelism, effectively reducing inference latency and training cost. Furthermore, we introduce an inference optimization technique with a novel voting-based ensemble strategy to combine current and previous action predictions, improving the utilization of generated actions and overall performance. Our results demonstrate that we achieve superior performance compared with state-of-the-art VLA models, achieving significantly higher success rates and 39$\times$ faster inference than OpenVLA with 46 Hz throughput on edge platforms, demonstrating practical deployability. The code is available at https://github.com/LukeLIN-web/VOTE.

Authors:Yuyi Zhang, Peirong Zhang, Zhenhua Yang, Pengyu Yan, Yongxin Shi, Pengwei Liu, Fengjun Guo, Lianwen Jin
Title: Reviving Cultural Heritage: A Novel Approach for Comprehensive Historical Document Restoration
Abstract:
Historical documents represent an invaluable cultural heritage, yet have undergone significant degradation over time through tears, water erosion, and oxidation. Existing Historical Document Restoration (HDR) methods primarily focus on single modality or limited-size restoration, failing to meet practical needs. To fill this gap, we present a full-page HDR dataset (FPHDR) and a novel automated HDR solution (AutoHDR). Specifically, FPHDR comprises 1,633 real and 6,543 synthetic images with character-level and line-level locations, as well as character annotations in different damage grades. AutoHDR mimics historians' restoration workflows through a three-stage approach: OCR-assisted damage localization, vision-language context text prediction, and patch autoregressive appearance restoration. The modular architecture of AutoHDR enables seamless human-machine collaboration, allowing for flexible intervention and optimization at each restoration stage. Experiments demonstrate AutoHDR's remarkable performance in HDR. When processing severely damaged documents, our method improves OCR accuracy from 46.83% to 84.05%, with further enhancement to 94.25% through human-machine collaboration. We believe this work represents a significant advancement in automated historical document restoration and contributes substantially to cultural heritage preservation. The model and dataset are available at https://github.com/SCUT-DLVCLab/AutoHDR.

Authors:Hongyao Yu, Yixiang Qiu, Yiheng Yang, Hao Fang, Tianqu Zhuang, Jiaxin Hong, Bin Chen, Hao Wu, Shu-Tao Xia
Title: ICAS: Detecting Training Data from Autoregressive Image Generative Models
Abstract:
Autoregressive image generation has witnessed rapid advancements, with prominent models such as scale-wise visual auto-regression pushing the boundaries of visual synthesis. However, these developments also raise significant concerns regarding data privacy and copyright. In response, training data detection has emerged as a critical task for identifying unauthorized data usage in model training. To better understand the vulnerability of autoregressive image generative models to such detection, we conduct the first study applying membership inference to this domain. Our approach comprises two key components: implicit classification and an adaptive score aggregation strategy. First, we compute the implicit token-wise classification score within the query image. Then we propose an adaptive score aggregation strategy to acquire a final score, which places greater emphasis on the tokens with lower scores. A higher final score indicates that the sample is more likely to be involved in the training set. To validate the effectiveness of our method, we adapt existing detection algorithms originally designed for LLMs to visual autoregressive models. Extensive experiments demonstrate the superiority of our method in both class-conditional and text-to-image scenarios. Moreover, our approach exhibits strong robustness and generalization under various data transformations. Furthermore, sufficient experiments suggest two novel key findings: (1) A linear scaling law on membership inference, exposing the vulnerability of large foundation models. (2) Training data from scale-wise visual autoregressive models is easier to detect than other autoregressive paradigms.Our code is available at https://github.com/Chrisqcwx/ImageAR-MIA.

Authors:Jan Carreras Boada, Rao Muhammad Umer, Carsten Marr
Title: CytoDiff: AI-Driven Cytomorphology Image Synthesis for Medical Diagnostics
Abstract:
Biomedical datasets are often constrained by stringent privacy requirements and frequently suffer from severe class imbalance. These two aspects hinder the development of accurate machine learning models. While generative AI offers a promising solution, producing synthetic images of sufficient quality for training robust classifiers remains challenging. This work addresses the classification of individual white blood cells, a critical task in diagnosing hematological malignancies such as acute myeloid leukemia (AML). We introduce CytoDiff, a stable diffusion model fine-tuned with LoRA weights and guided by few-shot samples that generates high-fidelity synthetic white blood cell images. Our approach demonstrates substantial improvements in classifier performance when training data is limited. Using a small, highly imbalanced real dataset, the addition of 5,000 synthetic images per class improved ResNet classifier accuracy from 27\% to 78\% (+51\%). Similarly, CLIP-based classification accuracy increased from 62\% to 77\% (+15\%). These results establish synthetic image generation as a valuable tool for biomedical machine learning, enhancing data coverage and facilitating secure data sharing while preserving patient privacy. Paper code is publicly available at https://github.com/JanCarreras24/CytoDiff.

Authors:Ricardo Cardoso, Plinio Moreno
Title: Estimating Object Physical Properties from RGB-D Vision and Depth Robot Sensors Using Deep Learning
Abstract:
Inertial mass plays a crucial role in robotic applications such as object grasping, manipulation, and simulation, providing a strong prior for planning and control. Accurately estimating an object's mass before interaction can significantly enhance the performance of various robotic tasks. However, mass estimation using only vision sensors is a relatively underexplored area. This paper proposes a novel approach combining sparse point-cloud data from depth images with RGB images to estimate the mass of objects. We evaluate a range of point-cloud processing architectures, alongside RGB-only methods. To overcome the limited availability of training data, we create a synthetic dataset using ShapeNetSem 3D models, simulating RGBD images via a Kinect camera. This synthetic data is used to train an image generation model for estimating dense depth maps, which we then use to augment an existing dataset of images paired with mass values. Our approach significantly outperforms existing benchmarks across all evaluated metrics. The data generation (https://github.com/RavineWindteer/ShapenetSem-to-RGBD) as well as the training of the depth estimator (https://github.com/RavineWindteer/GLPDepth-Edited) and the mass estimator (https://github.com/RavineWindteer/Depth-mass-estimator) are available online.

Authors:Soham Walimbe, Britty Baby, Vinkle Srivastav, Nicolas Padoy
Title: Adaptation of Multi-modal Representation Models for Multi-task Surgical Computer Vision
Abstract:
Surgical AI often involves multiple tasks within a single procedure, like phase recognition or assessing the Critical View of Safety in laparoscopic cholecystectomy. Traditional models, built for one task at a time, lack flexibility, requiring a separate model for each. To address this, we introduce MML-SurgAdapt, a unified multi-task framework with Vision-Language Models (VLMs), specifically CLIP, to handle diverse surgical tasks through natural language supervision. A key challenge in multi-task learning is the presence of partial annotations when integrating different tasks. To overcome this, we employ Single Positive Multi-Label (SPML) learning, which traditionally reduces annotation burden by training models with only one positive label per instance. Our framework extends this approach to integrate data from multiple surgical tasks within a single procedure, enabling effective learning despite incomplete or noisy annotations. We demonstrate the effectiveness of our model on a combined dataset consisting of Cholec80, Endoscapes2023, and CholecT50, utilizing custom prompts. Extensive evaluation shows that MML-SurgAdapt performs comparably to task-specific benchmarks, with the added advantage of handling noisy annotations. It also outperforms the existing SPML frameworks for the task. By reducing the required labels by 23%, our approach proposes a more scalable and efficient labeling process, significantly easing the annotation burden on clinicians. To our knowledge, this is the first application of SPML to integrate data from multiple surgical tasks, presenting a novel and generalizable solution for multi-task learning in surgical computer vision. Implementation is available at: https://github.com/CAMMA-public/MML-SurgAdapt

Authors:Britty Baby, Vinkle Srivastav, Pooja P. Jain, Kun Yuan, Pietro Mascagni, Nicolas Padoy
Title: Multi-modal Representations for Fine-grained Multi-label Critical View of Safety Recognition
Abstract:
The Critical View of Safety (CVS) is crucial for safe laparoscopic cholecystectomy, yet assessing CVS criteria remains a complex and challenging task, even for experts. Traditional models for CVS recognition depend on vision-only models learning with costly, labor-intensive spatial annotations. This study investigates how text can be harnessed as a powerful tool for both training and inference in multi-modal surgical foundation models to automate CVS recognition. Unlike many existing multi-modal models, which are primarily adapted for multi-class classification, CVS recognition requires a multi-label framework. Zero-shot evaluation of existing multi-modal surgical models shows a significant performance gap for this task. To address this, we propose CVS-AdaptNet, a multi-label adaptation strategy that enhances fine-grained, binary classification across multiple labels by aligning image embeddings with textual descriptions of each CVS criterion using positive and negative prompts. By adapting PeskaVLP, a state-of-the-art surgical foundation model, on the Endoscapes-CVS201 dataset, CVS-AdaptNet achieves 57.6 mAP, improving over the ResNet50 image-only baseline (51.5 mAP) by 6 points. Our results show that CVS-AdaptNet's multi-label, multi-modal framework, enhanced by textual prompts, boosts CVS recognition over image-only methods. We also propose text-specific inference methods, that helps in analysing the image-text alignment. While further work is needed to match state-of-the-art spatial annotation-based methods, this approach highlights the potential of adapting generalist models to specialized surgical tasks. Code: https://github.com/CAMMA-public/CVS-AdaptNet

Authors:Qinkai Yu, Jianyang Xie, Yitian Zhao, Cheng Chen, Lijun Zhang, Liming Chen, Jun Cheng, Lu Liu, Yalin Zheng, Yanda Meng
Title: Robust Incomplete-Modality Alignment for Ophthalmic Disease Grading and Diagnosis via Labeled Optimal Transport
Abstract:
Multimodal ophthalmic imaging-based diagnosis integrates color fundus image with optical coherence tomography (OCT) to provide a comprehensive view of ocular pathologies. However, the uneven global distribution of healthcare resources often results in real-world clinical scenarios encountering incomplete multimodal data, which significantly compromises diagnostic accuracy. Existing commonly used pipelines, such as modality imputation and distillation methods, face notable limitations: 1)Imputation methods struggle with accurately reconstructing key lesion features, since OCT lesions are localized, while fundus images vary in style. 2)distillation methods rely heavily on fully paired multimodal training data. To address these challenges, we propose a novel multimodal alignment and fusion framework capable of robustly handling missing modalities in the task of ophthalmic diagnostics. By considering the distinctive feature characteristics of OCT and fundus images, we emphasize the alignment of semantic features within the same category and explicitly learn soft matching between modalities, allowing the missing modality to utilize existing modality information, achieving robust cross-modal feature alignment under the missing modality. Specifically, we leverage the Optimal Transport for multi-scale modality feature alignment: class-wise alignment through predicted class prototypes and feature-wise alignment via cross-modal shared feature transport. Furthermore, we propose an asymmetric fusion strategy that effectively exploits the distinct characteristics of OCT and fundus modalities. Extensive evaluations on three large ophthalmic multimodal datasets demonstrate our model's superior performance under various modality-incomplete scenarios, achieving Sota performance in both complete modality and inter-modality incompleteness conditions. Code is available at https://github.com/Qinkaiyu/RIMA

Authors:Zonglin Lyu, Chen Chen
Title: TLB-VFI: Temporal-Aware Latent Brownian Bridge Diffusion for Video Frame Interpolation
Abstract:
Video Frame Interpolation (VFI) aims to predict the intermediate frame $I_n$ (we use n to denote time in videos to avoid notation overload with the timestep $t$ in diffusion models) based on two consecutive neighboring frames $I_0$ and $I_1$. Recent approaches apply diffusion models (both image-based and video-based) in this task and achieve strong performance. However, image-based diffusion models are unable to extract temporal information and are relatively inefficient compared to non-diffusion methods. Video-based diffusion models can extract temporal information, but they are too large in terms of training scale, model size, and inference time. To mitigate the above issues, we propose Temporal-Aware Latent Brownian Bridge Diffusion for Video Frame Interpolation (TLB-VFI), an efficient video-based diffusion model. By extracting rich temporal information from video inputs through our proposed 3D-wavelet gating and temporal-aware autoencoder, our method achieves 20% improvement in FID on the most challenging datasets over recent SOTA of image-based diffusion models. Meanwhile, due to the existence of rich temporal information, our method achieves strong performance while having 3times fewer parameters. Such a parameter reduction results in 2.3x speed up. By incorporating optical flow guidance, our method requires 9000x less training data and achieves over 20x fewer parameters than video-based diffusion models. Codes and results are available at our project page: https://zonglinl.github.io/tlbvfi_page.

Authors:Qinkai Yu, Wei Zhou, Hantao Liu, Yanyu Xu, Meng Wang, Yitian Zhao, Huazhu Fu, Xujiong Ye, Yalin Zheng, Yanda Meng
Title: Parameterized Diffusion Optimization enabled Autoregressive Ordinal Regression for Diabetic Retinopathy Grading
Abstract:
As a long-term complication of diabetes, diabetic retinopathy (DR) progresses slowly, potentially taking years to threaten vision. An accurate and robust evaluation of its severity is vital to ensure prompt management and care. Ordinal regression leverages the underlying inherent order between categories to achieve superior performance beyond traditional classification. However, there exist challenges leading to lower DR classification performance: 1) The uneven distribution of DR severity levels, characterized by a long-tailed pattern, adds complexity to the grading process. 2)The ambiguity in defining category boundaries introduces additional challenges, making the classification process more complex and prone to inconsistencies. This work proposes a novel autoregressive ordinal regression method called AOR-DR to address the above challenges by leveraging the clinical knowledge of inherent ordinal information in DR grading dataset settings. Specifically, we decompose the DR grading task into a series of ordered steps by fusing the prediction of the previous steps with extracted image features as conditions for the current prediction step. Additionally, we exploit the diffusion process to facilitate conditional probability modeling, enabling the direct use of continuous global image features for autoregression without relearning contextual information from patch-level features. This ensures the effectiveness of the autoregressive process and leverages the capabilities of pre-trained large-scale foundation models. Extensive experiments were conducted on four large-scale publicly available color fundus datasets, demonstrating our model's effectiveness and superior performance over six recent state-of-the-art ordinal regression methods. The implementation code is available at https://github.com/Qinkaiyu/AOR-DR.

Authors:Yingshan Liang, Keyu Fan, Zhicheng Du, Yiran Wang, Qingyang Shi, Xinyu Zhang, Jiasheng Lu, Peiwu Qin
Title: Hear-Your-Click: Interactive Object-Specific Video-to-Audio Generation
Abstract:
Video-to-audio (V2A) generation shows great potential in fields such as film production. Despite significant advances, current V2A methods relying on global video information struggle with complex scenes and generating audio tailored to specific objects. To address these limitations, we introduce Hear-Your-Click, an interactive V2A framework enabling users to generate sounds for specific objects by clicking on the frame. To achieve this, we propose Object-aware Contrastive Audio-Visual Fine-tuning (OCAV) with a Mask-guided Visual Encoder (MVE) to obtain object-level visual features aligned with audio. Furthermore, we tailor two data augmentation strategies, Random Video Stitching (RVS) and Mask-guided Loudness Modulation (MLM), to enhance the model's sensitivity to segmented objects. To measure audio-visual correspondence, we designed a new evaluation metric, the CAV score. Extensive experiments demonstrate that our framework offers more precise control and improves generation performance across various metrics. Project Page: https://github.com/SynapGrid/Hear-Your-Click

Authors:Kefan Tang, Lihuo He, Jisheng Dang, Xinbo Gao
Title: Boosting Temporal Sentence Grounding via Causal Inference
Abstract:
Temporal Sentence Grounding (TSG) aims to identify relevant moments in an untrimmed video that semantically correspond to a given textual query. Despite existing studies having made substantial progress, they often overlook the issue of spurious correlations between video and textual queries. These spurious correlations arise from two primary factors: (1) inherent biases in the textual data, such as frequent co-occurrences of specific verbs or phrases, and (2) the model's tendency to overfit to salient or repetitive patterns in video content. Such biases mislead the model into associating textual cues with incorrect visual moments, resulting in unreliable predictions and poor generalization to out-of-distribution examples. To overcome these limitations, we propose a novel TSG framework, causal intervention and counterfactual reasoning that utilizes causal inference to eliminate spurious correlations and enhance the model's robustness. Specifically, we first formulate the TSG task from a causal perspective with a structural causal model. Then, to address unobserved confounders reflecting textual biases toward specific verbs or phrases, a textual causal intervention is proposed, utilizing do-calculus to estimate the causal effects. Furthermore, visual counterfactual reasoning is performed by constructing a counterfactual scenario that focuses solely on video features, excluding the query and fused multi-modal features. This allows us to debias the model by isolating and removing the influence of the video from the overall effect. Experiments on public datasets demonstrate the superiority of the proposed method. The code is available at https://github.com/Tangkfan/CICR.

Authors:Johannes Künzel, Anna Hilsmann, Peter Eisert
Title: RIPE: Reinforcement Learning on Unlabeled Image Pairs for Robust Keypoint Extraction
Abstract:
We introduce RIPE, an innovative reinforcement learning-based framework for weakly-supervised training of a keypoint extractor that excels in both detection and description tasks. In contrast to conventional training regimes that depend heavily on artificial transformations, pre-generated models, or 3D data, RIPE requires only a binary label indicating whether paired images represent the same scene. This minimal supervision significantly expands the pool of training data, enabling the creation of a highly generalized and robust keypoint extractor. RIPE utilizes the encoder's intermediate layers for the description of the keypoints with a hyper-column approach to integrate information from different scales. Additionally, we propose an auxiliary loss to enhance the discriminative capability of the learned descriptors. Comprehensive evaluations on standard benchmarks demonstrate that RIPE simplifies data preparation while achieving competitive performance compared to state-of-the-art techniques, marking a significant advancement in robust keypoint extraction and description. To support further research, we have made our code publicly available at https://github.com/fraunhoferhhi/RIPE.

Authors:Abiao Li, Chenlei Lv, Yuming Fang, Yifan Zuo, Jian Zhang, Guofeng Mei
Title: PointGAC: Geometric-Aware Codebook for Masked Point Cloud Modeling
Abstract:
Most masked point cloud modeling (MPM) methods follow a regression paradigm to reconstruct the coordinate or feature of masked regions. However, they tend to over-constrain the model to learn the details of the masked region, resulting in failure to capture generalized features. To address this limitation, we propose \textbf{\textit{PointGAC}}, a novel clustering-based MPM method that aims to align the feature distribution of masked regions. Specially, it features an online codebook-guided teacher-student framework. Firstly, it presents a geometry-aware partitioning strategy to extract initial patches. Then, the teacher model updates a codebook via online k-means based on features extracted from the complete patches. This procedure facilitates codebook vectors to become cluster centers. Afterward, we assigns the unmasked features to their corresponding cluster centers, and the student model aligns the assignment for the reconstructed masked features. This strategy focuses on identifying the cluster centers to which the masked features belong, enabling the model to learn more generalized feature representations. Benefiting from a proposed codebook maintenance mechanism, codebook vectors are actively updated, which further increases the efficiency of semantic feature learning. Experiments validate the effectiveness of the proposed method on various downstream tasks. Code is available at https://github.com/LAB123-tech/PointGAC

Authors:Anbang Wang, Marawan Elbatel, Keyuan Liu, Lizhuo Lin, Meng Lan, Yanqi Yang, Xiaomeng Li
Title: Geometric-Guided Few-Shot Dental Landmark Detection with Human-Centric Foundation Model
Abstract:
Accurate detection of anatomic landmarks is essential for assessing alveolar bone and root conditions, thereby optimizing clinical outcomes in orthodontics, periodontics, and implant dentistry. Manual annotation of landmarks on cone-beam computed tomography (CBCT) by dentists is time-consuming, labor-intensive, and subject to inter-observer variability. Deep learning-based automated methods present a promising approach to streamline this process efficiently. However, the scarcity of training data and the high cost of expert annotations hinder the adoption of conventional deep learning techniques. To overcome these challenges, we introduce GeoSapiens, a novel few-shot learning framework designed for robust dental landmark detection using limited annotated CBCT of anterior teeth. Our GeoSapiens framework comprises two key components: (1) a robust baseline adapted from Sapiens, a foundational model that has achieved state-of-the-art performance in human-centric vision tasks, and (2) a novel geometric loss function that improves the model's capacity to capture critical geometric relationships among anatomical structures. Experiments conducted on our collected dataset of anterior teeth landmarks revealed that GeoSapiens surpassed existing landmark detection methods, outperforming the leading approach by an 8.18% higher success detection rate at a strict 0.5 mm threshold-a standard widely recognized in dental diagnostics. Code is available at: https://github.com/xmed-lab/GeoSapiens.

Authors:Wanchang Yu, Qing Zhang, Rongjia Zheng, Wei-Shi Zheng
Title: Structure-Guided Diffusion Models for High-Fidelity Portrait Shadow Removal
Abstract:
We present a diffusion-based portrait shadow removal approach that can robustly produce high-fidelity results. Unlike previous methods, we cast shadow removal as diffusion-based inpainting. To this end, we first train a shadow-independent structure extraction network on a real-world portrait dataset with various synthetic lighting conditions, which allows to generate a shadow-independent structure map including facial details while excluding the unwanted shadow boundaries. The structure map is then used as condition to train a structure-guided inpainting diffusion model for removing shadows in a generative manner. Finally, to restore the fine-scale details (e.g., eyelashes, moles and spots) that may not be captured by the structure map, we take the gradients inside the shadow regions as guidance and train a detail restoration diffusion model to refine the shadow removal result. Extensive experiments on the benchmark datasets show that our method clearly outperforms existing methods, and is effective to avoid previously common issues such as facial identity tampering, shadow residual, color distortion, structure blurring, and loss of details. Our code is available at https://github.com/wanchang-yu/Structure-Guided-Diffusion-for-Portrait-Shadow-Removal.

Authors:Changsong Lei, Yaqian Liang, Shaofeng Wang, Jiajia Dai, Yong-Jin Liu
Title: TeethGenerator: A two-stage framework for paired pre- and post-orthodontic 3D dental data generation
Abstract:
Digital orthodontics represents a prominent and critical application of computer vision technology in the medical field. So far, the labor-intensive process of collecting clinical data, particularly in acquiring paired 3D orthodontic teeth models, constitutes a crucial bottleneck for developing tooth arrangement neural networks. Although numerous general 3D shape generation methods have been proposed, most of them focus on single-object generation and are insufficient for generating anatomically structured teeth models, each comprising 24-32 segmented teeth. In this paper, we propose TeethGenerator, a novel two-stage framework designed to synthesize paired 3D teeth models pre- and post-orthodontic, aiming to facilitate the training of downstream tooth arrangement networks. Specifically, our approach consists of two key modules: (1) a teeth shape generation module that leverages a diffusion model to learn the distribution of morphological characteristics of teeth, enabling the generation of diverse post-orthodontic teeth models; and (2) a teeth style generation module that synthesizes corresponding pre-orthodontic teeth models by incorporating desired styles as conditional inputs. Extensive qualitative and quantitative experiments demonstrate that our synthetic dataset aligns closely with the distribution of real orthodontic data, and promotes tooth alignment performance significantly when combined with real data for training. The code and dataset are available at https://github.com/lcshhh/teeth_generator.

Authors:Maolin Wang, Tianshuo Wei, Sheng Zhang, Ruocheng Guo, Wanyu Wang, Shanshan Ye, Lixin Zou, Xuetao Wei, Xiangyu Zhao
Title: DANCE: Resource-Efficient Neural Architecture Search with Data-Aware and Continuous Adaptation
Abstract:
Neural Architecture Search (NAS) has emerged as a powerful approach for automating neural network design. However, existing NAS methods face critical limitations in real-world deployments: architectures lack adaptability across scenarios, each deployment context requires costly separate searches, and performance consistency across diverse platforms remains challenging. We propose DANCE (Dynamic Architectures with Neural Continuous Evolution), which reformulates architecture search as a continuous evolution problem through learning distributions over architectural components. DANCE introduces three key innovations: a continuous architecture distribution enabling smooth adaptation, a unified architecture space with learned selection gates for efficient sampling, and a multi-stage training strategy for effective deployment optimization. Extensive experiments across five datasets demonstrate DANCE's effectiveness. Our method consistently outperforms state-of-the-art NAS approaches in terms of accuracy while significantly reducing search costs. Under varying computational constraints, DANCE maintains robust performance while smoothly adapting architectures to different hardware requirements. The code and appendix can be found at https://github.com/Applied-Machine-Learning-Lab/DANCE.

Authors:Hahyeon Choi, Junhoo Lee, Nojun Kwak
Title: What's Making That Sound Right Now? Video-centric Audio-Visual Localization
Abstract:
Audio-Visual Localization (AVL) aims to identify sound-emitting sources within a visual scene. However, existing studies focus on image-level audio-visual associations, failing to capture temporal dynamics. Moreover, they assume simplified scenarios where sound sources are always visible and involve only a single object. To address these limitations, we propose AVATAR, a video-centric AVL benchmark that incorporates high-resolution temporal information. AVATAR introduces four distinct scenarios -- Single-sound, Mixed-sound, Multi-entity, and Off-screen -- enabling a more comprehensive evaluation of AVL models. Additionally, we present TAVLO, a novel video-centric AVL model that explicitly integrates temporal information. Experimental results show that conventional methods struggle to track temporal variations due to their reliance on global audio features and frame-level mappings. In contrast, TAVLO achieves robust and precise audio-visual alignment by leveraging high-resolution temporal modeling. Our work empirically demonstrates the importance of temporal dynamics in AVL and establishes a new standard for video-centric audio-visual localization.

Authors:Yun Wang, Longguang Wang, Chenghao Zhang, Yongjian Zhang, Zhanjie Zhang, Ao Ma, Chenyou Fan, Tin Lun Lam, Junjie Hu
Title: Learning Robust Stereo Matching in the Wild with Selective Mixture-of-Experts
Abstract:
Recently, learning-based stereo matching networks have advanced significantly. However, they often lack robustness and struggle to achieve impressive cross-domain performance due to domain shifts and imbalanced disparity distributions among diverse datasets. Leveraging Vision Foundation Models (VFMs) can intuitively enhance the model's robustness, but integrating such a model into stereo matching cost-effectively to fully realize their robustness remains a key challenge. To address this, we propose SMoEStereo, a novel framework that adapts VFMs for stereo matching through a tailored, scene-specific fusion of Low-Rank Adaptation (LoRA) and Mixture-of-Experts (MoE) modules. SMoEStereo introduces MoE-LoRA with adaptive ranks and MoE-Adapter with adaptive kernel sizes. The former dynamically selects optimal experts within MoE to adapt varying scenes across domains, while the latter injects inductive bias into frozen VFMs to improve geometric feature extraction. Importantly, to mitigate computational overhead, we further propose a lightweight decision network that selectively activates MoE modules based on input complexity, balancing efficiency with accuracy. Extensive experiments demonstrate that our method exhibits state-of-the-art cross-domain and joint generalization across multiple benchmarks without dataset-specific adaptation. The code is available at \textcolor{red}{https://github.com/cocowy1/SMoE-Stereo}.

Authors:Shengli Zhou, Yang Liu, Feng Zheng
Title: Learn 3D VQA Better with Active Selection and Reannotation
Abstract:
3D Visual Question Answering (3D VQA) is crucial for enabling models to perceive the physical world and perform spatial reasoning. In 3D VQA, the free-form nature of answers often leads to improper annotations that can confuse or mislead models when training on the entire dataset. While other text generation tasks can mitigate this issue by learning on large-scale datasets, the scarcity of 3D scene data enlarges the negative effect of misleading annotations. Although active learning strategies can select valuable instances for training, they fail to identify and resolve misleading labels, which the oracle inevitably provides in practice. To address this issue, we propose a multi-turn interactive active learning strategy. This strategy selects data based on models' semantic uncertainty to form a solid knowledge foundation more effectively and actively requests reannotation from an oracle to resolve potentially misleading labels. For uncertainty assessment, we utilize a variance-based metric that takes semantic relationships between terms into consideration, thus avoiding the uniform inter-class similarity assumption of previous assessment metrics. Extensive experiments exhibit better model performance and a substantial reduction in training costs, with a halving of training costs for achieving relatively high accuracy. The code is available at https://github.com/fz-zsl/AQuA.

Authors:Jiahui Yang, Yongjia Ma, Donglin Di, Hao Li, Wei Chen, Yan Xie, Jianxun Cui, Xun Yang, Wangmeng Zuo
Title: QR-LoRA: Efficient and Disentangled Fine-tuning via QR Decomposition for Customized Generation
Abstract:
Existing text-to-image models often rely on parameter fine-tuning techniques such as Low-Rank Adaptation (LoRA) to customize visual attributes. However, when combining multiple LoRA models for content-style fusion tasks, unstructured modifications of weight matrices often lead to undesired feature entanglement between content and style attributes. We propose QR-LoRA, a novel fine-tuning framework leveraging QR decomposition for structured parameter updates that effectively separate visual attributes. Our key insight is that the orthogonal Q matrix naturally minimizes interference between different visual features, while the upper triangular R matrix efficiently encodes attribute-specific transformations. Our approach fixes both Q and R matrices while only training an additional task-specific $ΔR$ matrix. This structured design reduces trainable parameters to half of conventional LoRA methods and supports effective merging of multiple adaptations without cross-contamination due to the strong disentanglement properties between $ΔR$ matrices. Experiments demonstrate that QR-LoRA achieves superior disentanglement in content-style fusion tasks, establishing a new paradigm for parameter-efficient, disentangled fine-tuning in generative models. The project page is available at: https://luna-ai-lab.github.io/QR-LoRA/.

Authors:Xinhua Lu, Runhe Lai, Yanqi Wu, Kanghao Chen, Wei-Shi Zheng, Ruixuan Wang
Title: FA: Forced Prompt Learning of Vision-Language Models for Out-of-Distribution Detection
Abstract:
Pre-trained vision-language models (VLMs) have advanced out-of-distribution (OOD) detection recently. However, existing CLIP-based methods often focus on learning OOD-related knowledge to improve OOD detection, showing limited generalization or reliance on external large-scale auxiliary datasets. In this study, instead of delving into the intricate OOD-related knowledge, we propose an innovative CLIP-based framework based on Forced prompt leArning (FA), designed to make full use of the In-Distribution (ID) knowledge and ultimately boost the effectiveness of OOD detection. Our key insight is to learn a prompt (i.e., forced prompt) that contains more diversified and richer descriptions of the ID classes beyond the textual semantics of class labels. Specifically, it promotes better discernment for ID images, by forcing more notable semantic similarity between ID images and the learnable forced prompt. Moreover, we introduce a forced coefficient, encouraging the forced prompt to learn more comprehensive and nuanced descriptions of the ID classes. In this way, FA is capable of achieving notable improvements in OOD detection, even when trained without any external auxiliary datasets, while maintaining an identical number of trainable parameters as CoOp. Extensive empirical evaluations confirm our method consistently outperforms current state-of-the-art methods. Code is available at https://github.com/0xFAFA/FA.

Authors:Yikang Zhao, Feng Gao, Xuepeng Jin, Junyu Dong, Qian Du
Title: Dynamic Frequency Feature Fusion Network for Multi-Source Remote Sensing Data Classification
Abstract:
Multi-source data classification is a critical yet challenging task for remote sensing image interpretation. Existing methods lack adaptability to diverse land cover types when modeling frequency domain features. To this end, we propose a Dynamic Frequency Feature Fusion Network (DFFNet) for hyperspectral image (HSI) and Synthetic Aperture Radar (SAR) / Light Detection and Ranging (LiDAR) data joint classification. Specifically, we design a dynamic filter block to dynamically learn the filter kernels in the frequency domain by aggregating the input features. The frequency contextual knowledge is injected into frequency filter kernels. Additionally, we propose spectral-spatial adaptive fusion block for cross-modal feature fusion. It enhances the spectral and spatial attention weight interactions via channel shuffle operation, thereby providing comprehensive cross-modal feature fusion. Experiments on two benchmark datasets show that our DFFNet outperforms state-of-the-art methods in multi-source data classification. The codes will be made publicly available at https://github.com/oucailab/DFFNet.

Authors:You Zhou, Lijiang Chen, Guangxia Cui, Wenpei Bai, Yu Guo, Shuchang Lyu, Guangliang Cheng, Qi Zhao
Title: ViTaL: A Multimodality Dataset and Benchmark for Multi-pathological Ovarian Tumor Recognition
Abstract:
Ovarian tumor, as a common gynecological disease, can rapidly deteriorate into serious health crises when undetected early, thus posing significant threats to the health of women. Deep neural networks have the potential to identify ovarian tumors, thereby reducing mortality rates, but limited public datasets hinder its progress. To address this gap, we introduce a vital ovarian tumor pathological recognition dataset called \textbf{ViTaL} that contains \textbf{V}isual, \textbf{T}abular and \textbf{L}inguistic modality data of 496 patients across six pathological categories. The ViTaL dataset comprises three subsets corresponding to different patient data modalities: visual data from 2216 two-dimensional ultrasound images, tabular data from medical examinations of 496 patients, and linguistic data from ultrasound reports of 496 patients. It is insufficient to merely distinguish between benign and malignant ovarian tumors in clinical practice. To enable multi-pathology classification of ovarian tumor, we propose a ViTaL-Net based on the Triplet Hierarchical Offset Attention Mechanism (THOAM) to minimize the loss incurred during feature fusion of multi-modal data. This mechanism could effectively enhance the relevance and complementarity between information from different modalities. ViTaL-Net serves as a benchmark for the task of multi-pathology, multi-modality classification of ovarian tumors. In our comprehensive experiments, the proposed method exhibited satisfactory performance, achieving accuracies exceeding 90\% on the two most common pathological types of ovarian tumor and an overall performance of 85\%. Our dataset and code are available at https://github.com/GGbond-study/vitalnet.

Authors:Zhipeng Li, Kegang Wang, Hanguang Xiao, Xingyue Liu, Feizhong Zhou, Jiaxin Jiang, Tianqi Liu
Title: Exploring Remote Physiological Signal Measurement under Dynamic Lighting Conditions at Night: Dataset, Experiment, and Analysis
Abstract:
Remote photoplethysmography (rPPG) is a non-contact technique for measuring human physiological signals. Due to its convenience and non-invasiveness, it has demonstrated broad application potential in areas such as health monitoring and emotion recognition. In recent years, the release of numerous public datasets has significantly advanced the performance of rPPG algorithms under ideal lighting conditions. However, the effectiveness of current rPPG methods in realistic nighttime scenarios with dynamic lighting variations remains largely unknown. Moreover, there is a severe lack of datasets specifically designed for such challenging environments, which has substantially hindered progress in this area of research. To address this gap, we present and release a large-scale rPPG dataset collected under dynamic lighting conditions at night, named DLCN. The dataset comprises approximately 13 hours of video data and corresponding synchronized physiological signals from 98 participants, covering four representative nighttime lighting scenarios. DLCN offers high diversity and realism, making it a valuable resource for evaluating algorithm robustness in complex conditions. Built upon the proposed Happy-rPPG Toolkit, we conduct extensive experiments and provide a comprehensive analysis of the challenges faced by state-of-the-art rPPG methods when applied to DLCN. The dataset and code are publicly available at https://github.com/dalaoplan/Happp-rPPG-Toolkit.

Authors:Roy Uziel, Irit Chelly, Oren Freifeld, Ari Pakman
Title: Clustering via Self-Supervised Diffusion
Abstract:
Diffusion models, widely recognized for their success in generative tasks, have not yet been applied to clustering. We introduce Clustering via Diffusion (CLUDI), a self-supervised framework that combines the generative power of diffusion models with pre-trained Vision Transformer features to achieve robust and accurate clustering. CLUDI is trained via a teacher-student paradigm: the teacher uses stochastic diffusion-based sampling to produce diverse cluster assignments, which the student refines into stable predictions. This stochasticity acts as a novel data augmentation strategy, enabling CLUDI to uncover intricate structures in high-dimensional data. Extensive evaluations on challenging datasets demonstrate that CLUDI achieves state-of-the-art performance in unsupervised classification, setting new benchmarks in clustering robustness and adaptability to complex data distributions. Our code is available at https://github.com/BGU-CS-VIL/CLUDI.

Authors:Mohammadreza Sharifi, Ahad Harati
Title: Efficient Training of Deep Networks using Guided Spectral Data Selection: A Step Toward Learning What You Need
Abstract:
Effective data curation is essential for optimizing neural network training. In this paper, we present the Guided Spectrally Tuned Data Selection (GSTDS) algorithm, which dynamically adjusts the subset of data points used for training using an off-the-shelf pre-trained reference model. Based on a pre-scheduled filtering ratio, GSTDS effectively reduces the number of data points processed per batch. The proposed method ensures an efficient selection of the most informative data points for training while avoiding redundant or less beneficial computations. Preserving data points in each batch is performed based on spectral analysis. A Fiedler vector-based scoring mechanism removes the filtered portion of the batch, lightening the resource requirements of the learning. The proposed data selection approach not only streamlines the training process but also promotes improved generalization and accuracy. Extensive experiments on standard image classification benchmarks, including CIFAR-10, Oxford-IIIT Pet, and Oxford-Flowers, demonstrate that GSTDS outperforms standard training scenarios and JEST, a recent state-of-the-art data curation method, on several key factors. It is shown that GSTDS achieves notable reductions in computational requirements, up to four times, without compromising performance. GSTDS exhibits a considerable growth in terms of accuracy under the limited computational resource usage, in contrast to other methodologies. These promising results underscore the potential of spectral-based data selection as a scalable solution for resource-efficient deep learning and motivate further exploration into adaptive data curation strategies. You can find the code at https://github.com/rezasharifi82/GSTDS.

Authors:Yuan Zhong, Jingxiang Sun, Liang An, Yebin Liu
Title: MoReMouse: Monocular Reconstruction of Laboratory Mouse
Abstract:
Laboratory mice play a crucial role in biomedical research, yet accurate 3D mouse surface motion reconstruction remains challenging due to their complex non-rigid geometric deformations and textureless appearance. Moreover, the absence of structured 3D datasets severely hinders the progress beyond sparse keypoint tracking. To narrow the gap, we present MoReMouse, the first monocular dense 3D reconstruction network tailored for laboratory mice. To achieve this goal, we highlight three key designs. First, we construct the first high-fidelity dense-view synthetic dataset for mice, by rendering our self-designed realistic Gaussian mouse avatar. Second, MoReMouse adopts a transformer-based feedforward architecture with triplane representation, achieving high-quality 3D surface generation from a single image. Third, we create geodesic-based continuous correspondence embeddings on mouse surface, which serve as strong semantic priors to improve reconstruction stability and surface consistency. Extensive quantitative and qualitative experiments demonstrate that MoReMouse significantly outperforms existing open-source methods in accuracy and robustness. Video results are available at https://zyyw-eric.github.io/MoreMouse-webpage/.

Authors:Xinbo Wang, Wenju Xu, Qing Zhang, Wei-Shi Zheng
Title: Domain Generalizable Portrait Style Transfer
Abstract:
This paper presents a portrait style transfer method that generalizes well to various different domains while enabling high-quality semantic-aligned stylization on regions including hair, eyes, eyelashes, skins, lips, and background. To this end, we propose to establish dense semantic correspondence between the given input and reference portraits based on a pre-trained model and a semantic adapter, with which we obtain a warped reference semantically aligned with the input. To ensure effective yet controllable style transfer, we devise an AdaIN-Wavelet transform to balance content preservation and stylization by blending low-frequency information of the warped reference with high-frequency information of the input in the latent space. A style adapter is also designed to provide style guidance from the warped reference. With the stylized latent from AdaIN-Wavelet transform, we employ a dual-conditional diffusion model that integrates a ControlNet recording high-frequency information and the style guidance to generate the final result. Extensive experiments demonstrate the superiority of our method. Our code and trained model are available at https://github.com/wangxb29/DGPST.

Authors:Fengrui Tian, Tianjiao Ding, Jinqi Luo, Hancheng Min, René Vidal
Title: Voyaging into Perpetual Dynamic Scenes from a Single View
Abstract:
The problem of generating a perpetual dynamic scene from a single view is an important problem with widespread applications in augmented and virtual reality, and robotics. However, since dynamic scenes regularly change over time, a key challenge is to ensure that different generated views be consistent with the underlying 3D motions. Prior work learns such consistency by training on multiple views, but the generated scene regions often interpolate between training views and fail to generate perpetual views. To address this issue, we propose DynamicVoyager, which reformulates dynamic scene generation as a scene outpainting problem with new dynamic content. As 2D outpainting models struggle at generating 3D consistent motions from a single 2D view, we enrich 2D pixels with information from their 3D rays that facilitates learning of 3D motion consistency. More specifically, we first map the single-view video input to a dynamic point cloud using the estimated video depths. We then render a partial video of the point cloud from a novel view and outpaint the missing regions using ray information (e.g., the distance from a ray to the point cloud) to generate 3D consistent motions. Next, we use the outpainted video to update the point cloud, which is used for outpainting the scene from future novel views. Moreover, we can control the generated content with the input text prompt. Experiments show that our model can generate perpetual scenes with consistent motions along fly-through cameras. Project page: https://tianfr.github.io/DynamicVoyager.

Authors:Linshen Liu, Boyan Su, Junyue Jiang, Guanlin Wu, Cong Guo, Ceyu Xu, Hao Frank Yang
Title: Towards Accurate and Efficient 3D Object Detection for Autonomous Driving: A Mixture of Experts Computing System on Edge
Abstract:
This paper presents Edge-based Mixture of Experts (MoE) Collaborative Computing (EMC2), an optimal computing system designed for autonomous vehicles (AVs) that simultaneously achieves low-latency and high-accuracy 3D object detection. Unlike conventional approaches, EMC2 incorporates a scenario-aware MoE architecture specifically optimized for edge platforms. By effectively fusing LiDAR and camera data, the system leverages the complementary strengths of sparse 3D point clouds and dense 2D images to generate robust multimodal representations. To enable this, EMC2 employs an adaptive multimodal data bridge that performs multi-scale preprocessing on sensor inputs, followed by a scenario-aware routing mechanism that dynamically dispatches features to dedicated expert models based on object visibility and distance. In addition, EMC2 integrates joint hardware-software optimizations, including hardware resource utilization optimization and computational graph simplification, to ensure efficient and real-time inference on resource-constrained edge devices. Experiments on open-source benchmarks clearly show the EMC2 advancements as an end-to-end system. On the KITTI dataset, it achieves an average accuracy improvement of 3.58% and a 159.06% inference speedup compared to 15 baseline methods on Jetson platforms, with similar performance gains on the nuScenes dataset, highlighting its capability to advance reliable, real-time 3D object detection tasks for AVs. The official implementation is available at https://github.com/LinshenLiu622/EMC2.

Authors:Ziming Hong, Runnan Chen, Zengmao Wang, Bo Han, Bo Du, Tongliang Liu
Title: When Data-Free Knowledge Distillation Meets Non-Transferable Teacher: Escaping Out-of-Distribution Trap is All You Need
Abstract:
Data-free knowledge distillation (DFKD) transfers knowledge from a teacher to a student without access the real in-distribution (ID) data. Its common solution is to use a generator to synthesize fake data and use them as a substitute for real ID data. However, existing works typically assume teachers are trustworthy, leaving the robustness and security of DFKD from untrusted teachers largely unexplored. In this work, we conduct the first investigation into distilling non-transferable learning (NTL) teachers using DFKD, where the transferability from an ID domain to an out-of-distribution (OOD) domain is prohibited. We find that NTL teachers fool DFKD through divert the generator's attention from the useful ID knowledge to the misleading OOD knowledge. This hinders ID knowledge transfer but prioritizes OOD knowledge transfer. To mitigate this issue, we propose Adversarial Trap Escaping (ATEsc) to benefit DFKD by identifying and filtering out OOD-like synthetic samples. Specifically, inspired by the evidence that NTL teachers show stronger adversarial robustness on OOD samples than ID samples, we split synthetic samples into two groups according to their robustness. The fragile group is treated as ID-like data and used for normal knowledge distillation, while the robust group is seen as OOD-like data and utilized for forgetting OOD knowledge. Extensive experiments demonstrate the effectiveness of ATEsc for improving DFKD against NTL teachers. Code is released at https://github.com/tmllab/2025_ICML_ATEsc.

Authors:Wenyang Liu, Chen Cai, Jianjun Gao, Kejun Wu, Yi Wang, Kim-Hui Yap, Lap-Pui Chau
Title: PromptSR: Cascade Prompting for Lightweight Image Super-Resolution
Abstract:
Although the lightweight Vision Transformer has significantly advanced image super-resolution (SR), it faces the inherent challenge of a limited receptive field due to the window-based self-attention modeling. The quadratic computational complexity relative to window size restricts its ability to use a large window size for expanding the receptive field while maintaining low computational costs. To address this challenge, we propose PromptSR, a novel prompt-empowered lightweight image SR method. The core component is the proposed cascade prompting block (CPB), which enhances global information access and local refinement via three cascaded prompting layers: a global anchor prompting layer (GAPL) and two local prompting layers (LPLs). The GAPL leverages downscaled features as anchors to construct low-dimensional anchor prompts (APs) through cross-scale attention, significantly reducing computational costs. These APs, with enhanced global perception, are then used to provide global prompts, efficiently facilitating long-range token connections. The two LPLs subsequently combine category-based self-attention and window-based self-attention to refine the representation in a coarse-to-fine manner. They leverage attention maps from the GAPL as additional global prompts, enabling them to perceive features globally at different granularities for adaptive local refinement. In this way, the proposed CPB effectively combines global priors and local details, significantly enlarging the receptive field while maintaining the low computational costs of our PromptSR. The experimental results demonstrate the superiority of our method, which outperforms state-of-the-art lightweight SR methods in quantitative, qualitative, and complexity evaluations. Our code will be released at https://github.com/wenyang001/PromptSR.

Authors:Xiaohan Zhang, Tavis Shore, Chen Chen, Oscar Mendez, Simon Hadfield, Safwan Wshah
Title: VICI: VLM-Instructed Cross-view Image-localisation
Abstract:
In this paper, we present a high-performing solution to the UAVM 2025 Challenge, which focuses on matching narrow FOV street-level images to corresponding satellite imagery using the University-1652 dataset. As panoramic Cross-View Geo-Localisation nears peak performance, it becomes increasingly important to explore more practical problem formulations. Real-world scenarios rarely offer panoramic street-level queries; instead, queries typically consist of limited-FOV images captured with unknown camera parameters. Our work prioritises discovering the highest achievable performance under these constraints, pushing the limits of existing architectures. Our method begins by retrieving candidate satellite image embeddings for a given query, followed by a re-ranking stage that selectively enhances retrieval accuracy within the top candidates. This two-stage approach enables more precise matching, even under the significant viewpoint and scale variations inherent in the task. Through experimentation, we demonstrate that our approach achieves competitive results -specifically attaining R@1 and R@10 retrieval rates of \topone\% and \topten\% respectively. This underscores the potential of optimised retrieval and re-ranking strategies in advancing practical geo-localisation performance. Code is available at https://github.com/tavisshore/VICI.

Authors:Jianwei Tang, Hong Yang, Tengyue Chen, Jian-Fang Hu
Title: Stochastic Human Motion Prediction with Memory of Action Transition and Action Characteristic
Abstract:
Action-driven stochastic human motion prediction aims to generate future motion sequences of a pre-defined target action based on given past observed sequences performing non-target actions. This task primarily presents two challenges. Firstly, generating smooth transition motions is hard due to the varying transition speeds of different actions. Secondly, the action characteristic is difficult to be learned because of the similarity of some actions. These issues cause the predicted results to be unreasonable and inconsistent. As a result, we propose two memory banks, the Soft-transition Action Bank (STAB) and Action Characteristic Bank (ACB), to tackle the problems above. The STAB stores the action transition information. It is equipped with the novel soft searching approach, which encourages the model to focus on multiple possible action categories of observed motions. The ACB records action characteristic, which produces more prior information for predicting certain actions. To fuse the features retrieved from the two banks better, we further propose the Adaptive Attention Adjustment (AAA) strategy. Extensive experiments on four motion prediction datasets demonstrate that our approach consistently outperforms the previous state-of-the-art. The demo and code are available at https://hyqlat.github.io/STABACB.github.io/.

Authors:Hanghui Guo, Weijie Shi, Mengze Li, Juncheng Li, Hao Chen, Yue Cui, Jiajie Xu, Jia Zhu, Jiawei Shen, Zhangze Chen, Sirui Han
Title: Consistent and Invariant Generalization Learning for Short-video Misinformation Detection
Abstract:
Short-video misinformation detection has attracted wide attention in the multi-modal domain, aiming to accurately identify the misinformation in the video format accompanied by the corresponding audio. Despite significant advancements, current models in this field, trained on particular domains (source domains), often exhibit unsatisfactory performance on unseen domains (target domains) due to domain gaps. To effectively realize such domain generalization on the short-video misinformation detection task, we propose deep insights into the characteristics of different domains: (1) The detection on various domains may mainly rely on different modalities (i.e., mainly focusing on videos or audios). To enhance domain generalization, it is crucial to achieve optimal model performance on all modalities simultaneously. (2) For some domains focusing on cross-modal joint fraud, a comprehensive analysis relying on cross-modal fusion is necessary. However, domain biases located in each modality (especially in each frame of videos) will be accumulated in this fusion process, which may seriously damage the final identification of misinformation. To address these issues, we propose a new DOmain generalization model via ConsisTency and invariance learning for shORt-video misinformation detection (named DOCTOR), which contains two characteristic modules: (1) We involve the cross-modal feature interpolation to map multiple modalities into a shared space and the interpolation distillation to synchronize multi-modal learning; (2) We design the diffusion model to add noise to retain core features of multi modal and enhance domain invariant features through cross-modal guided denoising. Extensive experiments demonstrate the effectiveness of our proposed DOCTOR model. Our code is public available at https://github.com/ghh1125/DOCTOR.

Authors:Jianwei Tang, Jiangxin Sun, Xiaotong Lin, Lifang Zhang, Wei-Shi Zheng, Jian-Fang Hu
Title: Temporal Continual Learning with Prior Compensation for Human Motion Prediction
Abstract:
Human Motion Prediction (HMP) aims to predict future poses at different moments according to past motion sequences. Previous approaches have treated the prediction of various moments equally, resulting in two main limitations: the learning of short-term predictions is hindered by the focus on long-term predictions, and the incorporation of prior information from past predictions into subsequent predictions is limited. In this paper, we introduce a novel multi-stage training framework called Temporal Continual Learning (TCL) to address the above challenges. To better preserve prior information, we introduce the Prior Compensation Factor (PCF). We incorporate it into the model training to compensate for the lost prior information. Furthermore, we derive a more reasonable optimization objective through theoretical derivation. It is important to note that our TCL framework can be easily integrated with different HMP backbone models and adapted to various datasets and applications. Extensive experiments on four HMP benchmark datasets demonstrate the effectiveness and flexibility of TCL. The code is available at https://github.com/hyqlat/TCL.

Authors:Christopher Wiedeman, Anastasiia Sarmakeeva, Elena Sizikova, Daniil Filienko, Miguel Lago, Jana G. Delfino, Aldo Badano
Title: T-SYNTH: A Knowledge-Based Dataset of Synthetic Breast Images
Abstract:
One of the key impediments for developing and assessing robust medical imaging algorithms is limited access to large-scale datasets with suitable annotations. Synthetic data generated with plausible physical and biological constraints may address some of these data limitations. We propose the use of physics simulations to generate synthetic images with pixel-level segmentation annotations, which are notoriously difficult to obtain. Specifically, we apply this approach to breast imaging analysis and release T-SYNTH, a large-scale open-source dataset of paired 2D digital mammography (DM) and 3D digital breast tomosynthesis (DBT) images. Our initial experimental results indicate that T-SYNTH images show promise for augmenting limited real patient datasets for detection tasks in DM and DBT. Our data and code are publicly available at https://github.com/DIDSR/tsynth-release.

Authors:Jingwei Shi, Zeyu Zhang, Biao Wu, Yanjie Liang, Meng Fang, Ling Chen, Yang Zhao
Title: PresentAgent: Multimodal Agent for Presentation Video Generation
Abstract:
We present PresentAgent, a multimodal agent that transforms long-form documents into narrated presentation videos. While existing approaches are limited to generating static slides or text summaries, our method advances beyond these limitations by producing fully synchronized visual and spoken content that closely mimics human-style presentations. To achieve this integration, PresentAgent employs a modular pipeline that systematically segments the input document, plans and renders slide-style visual frames, generates contextual spoken narration with large language models and Text-to-Speech models, and seamlessly composes the final video with precise audio-visual alignment. Given the complexity of evaluating such multimodal outputs, we introduce PresentEval, a unified assessment framework powered by Vision-Language Models that comprehensively scores videos across three critical dimensions: content fidelity, visual clarity, and audience comprehension through prompt-based evaluation. Our experimental validation on a curated dataset of 30 document-presentation pairs demonstrates that PresentAgent approaches human-level quality across all evaluation metrics. These results highlight the significant potential of controllable multimodal agents in transforming static textual materials into dynamic, effective, and accessible presentation formats. Code will be available at https://github.com/AIGeeksGroup/PresentAgent.

Authors:Seungjin Jung, Kanghee Lee, Yonghyun Jeong, Haeun Noh, Jungmin Lee, Jongwon Choi
Title: Group-wise Scaling and Orthogonal Decomposition for Domain-Invariant Feature Extraction in Face Anti-Spoofing
Abstract:
Domain Generalizable Face Anti-Spoofing (DGFAS) methods effectively capture domain-invariant features by aligning the directions (weights) of local decision boundaries across domains. However, the bias terms associated with these boundaries remain misaligned, leading to inconsistent classification thresholds and degraded performance on unseen target domains. To address this issue, we propose a novel DGFAS framework that jointly aligns weights and biases through Feature Orthogonal Decomposition (FOD) and Group-wise Scaling Risk Minimization (GS-RM). Specifically, GS-RM facilitates bias alignment by balancing group-wise losses across multiple domains. FOD employs the Gram-Schmidt orthogonalization process to decompose the feature space explicitly into domain-invariant and domain-specific subspaces. By enforcing orthogonality between domain-specific and domain-invariant features during training using domain labels, FOD ensures effective weight alignment across domains without negatively impacting bias alignment. Additionally, we introduce Expected Calibration Error (ECE) as a novel evaluation metric for quantitatively assessing the effectiveness of our method in aligning bias terms across domains. Extensive experiments on benchmark datasets demonstrate that our approach achieves state-of-the-art performance, consistently improving accuracy, reducing bias misalignment, and enhancing generalization stability on unseen target domains.

Authors:Siyu Li, Fei Teng, Yihong Cao, Kailun Yang, Zhiyong Li, Yaonan Wang
Title: NRSeg: Noise-Resilient Learning for BEV Semantic Segmentation via Driving World Models
Abstract:
Birds' Eye View (BEV) semantic segmentation is an indispensable perception task in end-to-end autonomous driving systems. Unsupervised and semi-supervised learning for BEV tasks, as pivotal for real-world applications, underperform due to the homogeneous distribution of the labeled data. In this work, we explore the potential of synthetic data from driving world models to enhance the diversity of labeled data for robustifying BEV segmentation. Yet, our preliminary findings reveal that generation noise in synthetic data compromises efficient BEV model learning. To fully harness the potential of synthetic data from world models, this paper proposes NRSeg, a noise-resilient learning framework for BEV semantic segmentation. Specifically, a Perspective-Geometry Consistency Metric (PGCM) is proposed to quantitatively evaluate the guidance capability of generated data for model learning. This metric originates from the alignment measure between the perspective road mask of generated data and the mask projected from the BEV labels. Moreover, a Bi-Distribution Parallel Prediction (BiDPP) is designed to enhance the inherent robustness of the model, where the learning process is constrained through parallel prediction of multinomial and Dirichlet distributions. The former efficiently predicts semantic probabilities, whereas the latter adopts evidential deep learning to realize uncertainty quantification. Furthermore, a Hierarchical Local Semantic Exclusion (HLSE) module is designed to address the non-mutual exclusivity inherent in BEV semantic segmentation tasks. Experimental results demonstrate that NRSeg achieves state-of-the-art performance, yielding the highest improvements in mIoU of 13.8% and 11.4% in unsupervised and semi-supervised BEV segmentation tasks, respectively. The source code will be made publicly available at https://github.com/lynn-yu/NRSeg.

Authors:Aleksandr Gushchin, Maksim Smirnov, Dmitriy Vatolin, Anastasia Antsiferova
Title: LEHA-CVQAD: Dataset To Enable Generalized Video Quality Assessment of Compression Artifacts
Abstract:
We propose the LEHA-CVQAD (Large-scale Enriched Human-Annotated Compressed Video Quality Assessment) dataset, which comprises 6,240 clips for compression-oriented video quality assessment. 59 source videos are encoded with 186 codec-preset variants, 1.8M pairwise, and 1.5k MOS ratings are fused into a single quality scale; part of the videos remains hidden for blind evaluation. We also propose Rate-Distortion Alignment Error (RDAE), a novel evaluation metric that quantifies how well VQA models preserve bitrate-quality ordering, directly supporting codec parameter tuning. Testing IQA/VQA methods reveals that popular VQA metrics exhibit high RDAE and lower correlations, underscoring the dataset challenges and utility. The open part and the results of LEHA-CVQAD are available at https://aleksandrgushchin.github.io/lcvqad/

Authors:Tianyao He, Runqi Wang, Yang Chen, Dejia Song, Nemo Chen, Xu Tang, Yao Hu
Title: Flux-Sculptor: Text-Driven Rich-Attribute Portrait Editing through Decomposed Spatial Flow Control
Abstract:
Text-driven portrait editing holds significant potential for various applications but also presents considerable challenges. An ideal text-driven portrait editing approach should achieve precise localization and appropriate content modification, yet existing methods struggle to balance reconstruction fidelity and editing flexibility. To address this issue, we propose Flux-Sculptor, a flux-based framework designed for precise text-driven portrait editing. Our framework introduces a Prompt-Aligned Spatial Locator (PASL) to accurately identify relevant editing regions and a Structure-to-Detail Edit Control (S2D-EC) strategy to spatially guide the denoising process through sequential mask-guided fusion of latent representations and attention values. Extensive experiments demonstrate that Flux-Sculptor surpasses existing methods in rich-attribute editing and facial information preservation, making it a strong candidate for practical portrait editing applications. Project page is available at https://flux-sculptor.github.io/.

Authors:Ze Li, Feng Zhang, Xiatian Zhu, Meng Zhang, Yanghong Zhou, P. Y. Mok
Title: Robust Low-light Scene Restoration via Illumination Transition
Abstract:
Synthesizing normal-light novel views from low-light multiview images is an important yet challenging task, given the low visibility and high ISO noise present in the input images. Existing low-light enhancement methods often struggle to effectively preprocess such low-light inputs, as they fail to consider correlations among multiple views. Although other state-of-the-art methods have introduced illumination-related components offering alternative solutions to the problem, they often result in drawbacks such as color distortions and artifacts, and they provide limited denoising effectiveness. In this paper, we propose a novel Robust Low-light Scene Restoration framework (RoSe), which enables effective synthesis of novel views in normal lighting conditions from low-light multiview image inputs, by formulating the task as an illuminance transition estimation problem in 3D space, conceptualizing it as a specialized rendering task. This multiview-consistent illuminance transition field establishes a robust connection between low-light and normal-light conditions. By further exploiting the inherent low-rank property of illumination to constrain the transition representation, we achieve more effective denoising without complex 2D techniques or explicit noise modeling. To implement RoSe, we design a concise dual-branch architecture and introduce a low-rank denoising module. Experiments demonstrate that RoSe significantly outperforms state-of-the-art models in both rendering quality and multiview consistency on standard benchmarks. The codes and data are available at https://pegasus2004.github.io/RoSe.

Authors:Kai Ye, Tianyi Chen, Zhen Wang
Title: Evaluating Adversarial Protections for Diffusion Personalization: A Comprehensive Study
Abstract:
With the increasing adoption of diffusion models for image generation and personalization, concerns regarding privacy breaches and content misuse have become more pressing. In this study, we conduct a comprehensive comparison of eight perturbation based protection methods: AdvDM, ASPL, FSGM, MetaCloak, Mist, PhotoGuard, SDS, and SimAC--across both portrait and artwork domains. These methods are evaluated under varying perturbation budgets, using a range of metrics to assess visual imperceptibility and protective efficacy. Our results offer practical guidance for method selection. Code is available at: https://github.com/vkeilo/DiffAdvPerturbationBench.

Authors:Ha-Hieu Pham, Nguyen Lan Vi Vu, Thanh-Huy Nguyen, Ulas Bagci, Min Xu, Trung-Nghia Le, Huy-Hieu Pham
Title: Learning Disentangled Stain and Structural Representations for Semi-Supervised Histopathology Segmentation
Abstract:
Accurate gland segmentation in histopathology images is essential for cancer diagnosis and prognosis. However, significant variability in Hematoxylin and Eosin (H&E) staining and tissue morphology, combined with limited annotated data, poses major challenges for automated segmentation. To address this, we propose Color-Structure Dual-Student (CSDS), a novel semi-supervised segmentation framework designed to learn disentangled representations of stain appearance and tissue structure. CSDS comprises two specialized student networks: one trained on stain-augmented inputs to model chromatic variation, and the other on structure-augmented inputs to capture morphological cues. A shared teacher network, updated via Exponential Moving Average (EMA), supervises both students through pseudo-labels. To further improve label reliability, we introduce stain-aware and structure-aware uncertainty estimation modules that adaptively modulate the contribution of each student during training. Experiments on the GlaS and CRAG datasets show that CSDS achieves state-of-the-art performance in low-label settings, with Dice score improvements of up to 1.2% on GlaS and 0.7% on CRAG at 5% labeled data, and 0.7% and 1.4% at 10%. Our code and pre-trained models are available at https://github.com/hieuphamha19/CSDS.

Authors:Shubin Ma, Liang Zhao, Mingdong Lu, Yifan Guo, Bo Xu
Title: Consistency-Aware Padding for Incomplete Multi-Modal Alignment Clustering Based on Self-Repellent Greedy Anchor Search
Abstract:
Multimodal representation is faithful and highly effective in describing real-world data samples' characteristics by describing their complementary information. However, the collected data often exhibits incomplete and misaligned characteristics due to factors such as inconsistent sensor frequencies and device malfunctions. Existing research has not effectively addressed the issue of filling missing data in scenarios where multiview data are both imbalanced and misaligned. Instead, it relies on class-level alignment of the available data. Thus, it results in some data samples not being well-matched, thereby affecting the quality of data fusion. In this paper, we propose the Consistency-Aware Padding for Incomplete Multimodal Alignment Clustering Based on Self-Repellent Greedy Anchor Search(CAPIMAC) to tackle the problem of filling imbalanced and misaligned data in multimodal datasets. Specifically, we propose a self-repellent greedy anchor search module(SRGASM), which employs a self-repellent random walk combined with a greedy algorithm to identify anchor points for re-representing incomplete and misaligned multimodal data. Subsequently, based on noise-contrastive learning, we design a consistency-aware padding module (CAPM) to effectively interpolate and align imbalanced and misaligned data, thereby improving the quality of multimodal data fusion. Experimental results demonstrate the superiority of our method over benchmark datasets. The code will be publicly released at https://github.com/Autism-mm/CAPIMAC.git.

Authors:Yifan Jiang, Yibo Xue, Yukun Kang, Pin Zheng, Jian Peng, Feiran Wu, Changliang Xu
Title: Animation Needs Attention: A Holistic Approach to Slides Animation Comprehension with Visual-Language Models
Abstract:
Slide animations, such as fade-in, fly-in, and wipe, are critical for audience engagement, efficient information delivery, and vivid visual expression. However, most AI-driven slide-generation tools still lack native animation support, and existing vision-language models (VLMs) struggle with animation tasks due to the absence of public datasets and limited temporal-reasoning capabilities. To address this gap, we release the first public dataset for slide-animation modeling: 12,000 triplets of natural-language descriptions, animation JSON files, and rendered videos, collectively covering every built-in PowerPoint effect. Using this resource, we fine-tune Qwen-2.5-VL-7B with Low-Rank Adaptation (LoRA) and achieve consistent improvements over GPT-4.1 and Gemini-2.5-Pro in BLEU-4, ROUGE-L, SPICE, and our Coverage-Order-Detail Assessment (CODA) metric, which evaluates action coverage, temporal order, and detail fidelity. On a manually created test set of slides, the LoRA model increases BLEU-4 by around 60%, ROUGE-L by 30%, and shows significant improvements in CODA-detail. This demonstrates that low-rank adaptation enables reliable temporal reasoning and generalization beyond synthetic data. Overall, our dataset, LoRA-enhanced model, and CODA metric provide a rigorous benchmark and foundation for future research on VLM-based dynamic slide generation.

Authors:Jiaqi Zhang, Juntuo Wang, Zhixin Sun, John Zou, Randall Balestriero
Title: FastDINOv2: Frequency Based Curriculum Learning Improves Robustness and Training Speed
Abstract:
Large-scale vision foundation models such as DINOv2 boast impressive performances by leveraging massive architectures and training datasets. But numerous scenarios require practitioners to reproduce those pre-training solutions, such as on private data, new modalities, or simply for scientific questioning--which is currently extremely demanding computation-wise. We thus propose a novel pre-training strategy for DINOv2 that simultaneously accelerates convergence--and strengthens robustness to common corruptions as a by-product. Our approach involves a frequency filtering curriculum--low-frequency being seen first--and the Gaussian noise patching augmentation. Applied to a ViT-B/16 backbone trained on ImageNet-1K, while pre-training time and FLOPs are reduced by 1.6x and 2.25x, our method still achieves matching robustness in corruption benchmarks (ImageNet-C) and maintains competitive linear probing performance compared with baseline. This dual benefit of efficiency and robustness makes large-scale self-supervised foundation modeling more attainable, while opening the door to novel exploration around data curriculum and augmentation as means to improve self-supervised learning models robustness. The code is available at https://github.com/KevinZ0217/fast_dinov2

Authors:Akio Kodaira, Tingbo Hou, Ji Hou, Masayoshi Tomizuka, Yue Zhao
Title: StreamDiT: Real-Time Streaming Text-to-Video Generation
Abstract:
Recently, great progress has been achieved in text-to-video (T2V) generation by scaling transformer-based diffusion models to billions of parameters, which can generate high-quality videos. However, existing models typically produce only short clips offline, restricting their use cases in interactive and real-time applications. This paper addresses these challenges by proposing StreamDiT, a streaming video generation model. StreamDiT training is based on flow matching by adding a moving buffer. We design mixed training with different partitioning schemes of buffered frames to boost both content consistency and visual quality. StreamDiT modeling is based on adaLN DiT with varying time embedding and window attention. To practice the proposed method, we train a StreamDiT model with 4B parameters. In addition, we propose a multistep distillation method tailored for StreamDiT. Sampling distillation is performed in each segment of a chosen partitioning scheme. After distillation, the total number of function evaluations (NFEs) is reduced to the number of chunks in a buffer. Finally, our distilled model reaches real-time performance at 16 FPS on one GPU, which can generate video streams at 512p resolution. We evaluate our method through both quantitative metrics and human evaluation. Our model enables real-time applications, e.g. streaming generation, interactive generation, and video-to-video. We provide video results and more examples in our project website: https://cumulo-autumn.github.io/StreamDiT/

Authors:Yansong Peng, Kai Zhu, Yu Liu, Pingyu Wu, Hebei Li, Xiaoyan Sun, Feng Wu
Title: Flow-Anchored Consistency Models
Abstract:
Continuous-time Consistency Models (CMs) promise efficient few-step generation but face significant challenges with training instability. We argue this instability stems from a fundamental conflict: by training a network to learn only a shortcut across a probability flow, the model loses its grasp on the instantaneous velocity field that defines the flow. Our solution is to explicitly anchor the model in the underlying flow during training. We introduce the Flow-Anchored Consistency Model (FACM), a simple but effective training strategy that uses a Flow Matching (FM) task as an anchor for the primary CM shortcut objective. This Flow-Anchoring approach requires no architectural modifications and is broadly compatible with standard model architectures. By distilling a pre-trained LightningDiT model, our method achieves a state-of-the-art FID of 1.32 with two steps (NFE=2) and 1.76 with just one step (NFE=1) on ImageNet 256x256, significantly outperforming previous methods. This provides a general and effective recipe for building high-performance, few-step generative models. Our code and pretrained models: https://github.com/ali-vilab/FACM.

Authors:Chong Cheng, Sicheng Yu, Zijian Wang, Yifan Zhou, Hao Wang
Title: Outdoor Monocular SLAM with Global Scale-Consistent 3D Gaussian Pointmaps
Abstract:
3D Gaussian Splatting (3DGS) has become a popular solution in SLAM due to its high-fidelity and real-time novel view synthesis performance. However, some previous 3DGS SLAM methods employ a differentiable rendering pipeline for tracking, lack geometric priors in outdoor scenes. Other approaches introduce separate tracking modules, but they accumulate errors with significant camera movement, leading to scale drift. To address these challenges, we propose a robust RGB-only outdoor 3DGS SLAM method: S3PO-GS. Technically, we establish a self-consistent tracking module anchored in the 3DGS pointmap, which avoids cumulative scale drift and achieves more precise and robust tracking with fewer iterations. Additionally, we design a patch-based pointmap dynamic mapping module, which introduces geometric priors while avoiding scale ambiguity. This significantly enhances tracking accuracy and the quality of scene reconstruction, making it particularly suitable for complex outdoor environments. Our experiments on the Waymo, KITTI, and DL3DV datasets demonstrate that S3PO-GS achieves state-of-the-art results in novel view synthesis and outperforms other 3DGS SLAM methods in tracking accuracy. Project page: https://3dagentworld.github.io/S3PO-GS/.

Authors:Zhiling Yan, Sifan Song, Dingjie Song, Yiwei Li, Rong Zhou, Weixiang Sun, Zhennong Chen, Sekeun Kim, Hui Ren, Tianming Liu, Quanzheng Li, Xiang Li, Lifang He, Lichao Sun
Title: SAMed-2: Selective Memory Enhanced Medical Segment Anything Model
Abstract:
Recent "segment anything" efforts show promise by learning from large-scale data, but adapting such models directly to medical images remains challenging due to the complexity of medical data, noisy annotations, and continual learning requirements across diverse modalities and anatomical structures. In this work, we propose SAMed-2, a new foundation model for medical image segmentation built upon the SAM-2 architecture. Specifically, we introduce a temporal adapter into the image encoder to capture image correlations and a confidence-driven memory mechanism to store high-certainty features for later retrieval. This memory-based strategy counters the pervasive noise in large-scale medical datasets and mitigates catastrophic forgetting when encountering new tasks or modalities. To train and evaluate SAMed-2, we curate MedBank-100k, a comprehensive dataset spanning seven imaging modalities and 21 medical segmentation tasks. Our experiments on both internal benchmarks and 10 external datasets demonstrate superior performance over state-of-the-art baselines in multi-task scenarios. The code is available at: https://github.com/ZhilingYan/Medical-SAM-Bench.

Authors:Ankit Sonthalia, Arnas Uselis, Seong Joon Oh
Title: On the rankability of visual embeddings
Abstract:
We study whether visual embedding models capture continuous, ordinal attributes along linear directions, which we term _rank axes_. We define a model as _rankable_ for an attribute if projecting embeddings onto such an axis preserves the attribute's order. Across 7 popular encoders and 9 datasets with attributes like age, crowd count, head pose, aesthetics, and recency, we find that many embeddings are inherently rankable. Surprisingly, a small number of samples, or even just two extreme examples, often suffice to recover meaningful rank axes, without full-scale supervision. These findings open up new use cases for image ranking in vector databases and motivate further study into the structure and learning of rankable embeddings. Our code is available at https://github.com/aktsonthalia/rankable-vision-embeddings.

Authors:Yana Hasson, Pauline Luc, Liliane Momeni, Maks Ovsjanikov, Guillaume Le Moing, Alina Kuznetsova, Ira Ktena, Jennifer J. Sun, Skanda Koppula, Dilara Gokay, Joseph Heyward, Etienne Pot, Andrew Zisserman
Title: SciVid: Cross-Domain Evaluation of Video Models in Scientific Applications
Abstract:
In recent years, there has been a proliferation of spatiotemporal foundation models in different scientific disciplines. While promising, these models are often domain-specific and are only assessed within the particular applications for which they are designed. Given that many tasks can be represented as video modeling problems, video foundation models (ViFMs) hold considerable promise as general-purpose domain-agnostic approaches. However, it is not known whether the knowledge acquired on large-scale but potentially out-of-domain data can be effectively transferred across diverse scientific disciplines, and if a single, pretrained ViFM can be competitive with domain-specific baselines. To address this, we introduce SciVid, a comprehensive benchmark comprising five *Sci*entific *Vid*eo tasks, across medical computer vision, animal behavior, and weather forecasting. We adapt six leading ViFMs to SciVid using simple trainable readout modules, establishing strong baselines and demonstrating the potential for effective transfer learning. Specifically, we show that state-of-the-art results can be obtained in several applications by leveraging the general-purpose representations from ViFM backbones. Furthermore, our results reveal the limitations of existing ViFMs, and highlight opportunities for the development of generalizable models for high-impact scientific applications. We release our code at https://github.com/google-deepmind/scivid to facilitate further research in the development of ViFMs.

Authors:Zetian Feng, Juan Fu, Xuebin Zou, Hongsheng Ye, Hong Wu, Jianhua Zhou, Yi Wang
Title: Hybrid-View Attention Network for Clinically Significant Prostate Cancer Classification in Transrectal Ultrasound
Abstract:
Prostate cancer (PCa) is a leading cause of cancer-related mortality in men, and accurate identification of clinically significant PCa (csPCa) is critical for timely intervention. Transrectal ultrasound (TRUS) is widely used for prostate biopsy; however, its low contrast and anisotropic spatial resolution pose diagnostic challenges. To address these limitations, we propose a novel hybrid-view attention (HVA) network for csPCa classification in 3D TRUS that leverages complementary information from transverse and sagittal views. Our approach integrates a CNN-transformer hybrid architecture, where convolutional layers extract fine-grained local features and transformer-based HVA models global dependencies. Specifically, the HVA comprises intra-view attention to refine features within a single view and cross-view attention to incorporate complementary information across views. Furthermore, a hybrid-view adaptive fusion module dynamically aggregates features along both channel and spatial dimensions, enhancing the overall representation. Experiments are conducted on an in-house dataset containing 590 subjects who underwent prostate biopsy. Comparative and ablation results prove the efficacy of our method. The code is available at https://github.com/mock1ngbrd/HVAN.

Authors:Qing Li, Huifang Feng, Xun Gong, Yu-Shen Liu
Title: Learning Normals of Noisy Points by Local Gradient-Aware Surface Filtering
Abstract:
Estimating normals for noisy point clouds is a persistent challenge in 3D geometry processing, particularly for end-to-end oriented normal estimation. Existing methods generally address relatively clean data and rely on supervised priors to fit local surfaces within specific neighborhoods. In this paper, we propose a novel approach for learning normals from noisy point clouds through local gradient-aware surface filtering. Our method projects noisy points onto the underlying surface by utilizing normals and distances derived from an implicit function constrained by local gradients. We start by introducing a distance measurement operator for global surface fitting on noisy data, which integrates projected distances along normals. Following this, we develop an implicit field-based filtering approach for surface point construction, adding projection constraints on these points during filtering. To address issues of over-smoothing and gradient degradation, we further incorporate local gradient consistency constraints, as well as local gradient orientation and aggregation. Comprehensive experiments on normal estimation, surface reconstruction, and point cloud denoising demonstrate the state-of-the-art performance of our method. The source code and trained models are available at https://github.com/LeoQLi/LGSF.

Authors:Yufan Zhou, Zhaobo Qi, Lingshuai Lin, Junqi Jing, Tingting Chai, Beichen Zhang, Shuhui Wang, Weigang Zhang
Title: Masked Temporal Interpolation Diffusion for Procedure Planning in Instructional Videos
Abstract:
In this paper, we address the challenge of procedure planning in instructional videos, aiming to generate coherent and task-aligned action sequences from start and end visual observations. Previous work has mainly relied on text-level supervision to bridge the gap between observed states and unobserved actions, but it struggles with capturing intricate temporal relationships among actions. Building on these efforts, we propose the Masked Temporal Interpolation Diffusion (MTID) model that introduces a latent space temporal interpolation module within the diffusion model. This module leverages a learnable interpolation matrix to generate intermediate latent features, thereby augmenting visual supervision with richer mid-state details. By integrating this enriched supervision into the model, we enable end-to-end training tailored to task-specific requirements, significantly enhancing the model's capacity to predict temporally coherent action sequences. Additionally, we introduce an action-aware mask projection mechanism to restrict the action generation space, combined with a task-adaptive masked proximity loss to prioritize more accurate reasoning results close to the given start and end states over those in intermediate steps. Simultaneously, it filters out task-irrelevant action predictions, leading to contextually aware action sequences. Experimental results across three widely used benchmark datasets demonstrate that our MTID achieves promising action planning performance on most metrics. The code is available at https://github.com/WiserZhou/MTID.

Authors:Blaž Rolih, Matic Fučka, Filip Wolf, Luka Čehovin Zajc
Title: Be the Change You Want to See: Revisiting Remote Sensing Change Detection Practices
Abstract:
Remote sensing change detection aims to localize semantic changes between images of the same location captured at different times. In the past few years, newer methods have attributed enhanced performance to the additions of new and complex components to existing architectures. Most fail to measure the performance contribution of fundamental design choices such as backbone selection, pre-training strategies, and training configurations. We claim that such fundamental design choices often improve performance even more significantly than the addition of new architectural components. Due to that, we systematically revisit the design space of change detection models and analyse the full potential of a well-optimised baseline. We identify a set of fundamental design choices that benefit both new and existing architectures. Leveraging this insight, we demonstrate that when carefully designed, even an architecturally simple model can match or surpass state-of-the-art performance on six challenging change detection datasets. Our best practices generalise beyond our architecture and also offer performance improvements when applied to related methods, indicating that the space of fundamental design choices has been underexplored. Our guidelines and architecture provide a strong foundation for future methods, emphasizing that optimizing core components is just as important as architectural novelty in advancing change detection performance. Code: https://github.com/blaz-r/BTC-change-detection

Authors:Mingzhuo Li, Guang Li, Jiafeng Mao, Linfeng Ye, Takahiro Ogawa, Miki Haseyama
Title: Task-Specific Generative Dataset Distillation with Difficulty-Guided Sampling
Abstract:
To alleviate the reliance of deep neural networks on large-scale datasets, dataset distillation aims to generate compact, high-quality synthetic datasets that can achieve comparable performance to the original dataset. The integration of generative models has significantly advanced this field. However, existing approaches primarily focus on aligning the distilled dataset with the original one, often overlooking task-specific information that can be critical for optimal downstream performance. In this paper, focusing on the downstream task of classification, we propose a task-specific sampling strategy for generative dataset distillation that incorporates the concept of difficulty to consider the requirements of the target task better. The final dataset is sampled from a larger image pool with a sampling distribution obtained by matching the difficulty distribution of the original dataset. A logarithmic transformation is applied as a pre-processing step to correct for distributional bias. The results of extensive experiments demonstrate the effectiveness of our method and suggest its potential for enhancing performance on other downstream tasks. The code is available at https://github.com/SumomoTaku/DiffGuideSamp.

Authors:Peilin Tao, Hainan Cui, Diantao Tu, Shuhan Shen
Title: MGSfM: Multi-Camera Geometry Driven Global Structure-from-Motion
Abstract:
Multi-camera systems are increasingly vital in the environmental perception of autonomous vehicles and robotics. Their physical configuration offers inherent fixed relative pose constraints that benefit Structure-from-Motion (SfM). However, traditional global SfM systems struggle with robustness due to their optimization framework. We propose a novel global motion averaging framework for multi-camera systems, featuring two core components: a decoupled rotation averaging module and a hybrid translation averaging module. Our rotation averaging employs a hierarchical strategy by first estimating relative rotations within rigid camera units and then computing global rigid unit rotations. To enhance the robustness of translation averaging, we incorporate both camera-to-camera and camera-to-point constraints to initialize camera positions and 3D points with a convex distance-based objective function and refine them with an unbiased non-bilinear angle-based objective function. Experiments on large-scale datasets show that our system matches or exceeds incremental SfM accuracy while significantly improving efficiency. Our framework outperforms existing global SfM methods, establishing itself as a robust solution for real-world multi-camera SfM applications. The code is available at https://github.com/3dv-casia/MGSfM/.

Authors:Wooseok Shin, Jisu Kang, Hyeonki Jeong, Jin Sob Kim, Sung Won Han
Title: Leveraging Out-of-Distribution Unlabeled Images: Semi-Supervised Semantic Segmentation with an Open-Vocabulary Model
Abstract:
In semi-supervised semantic segmentation, existing studies have shown promising results in academic settings with controlled splits of benchmark datasets. However, the potential benefits of leveraging significantly larger sets of unlabeled images remain unexplored. In real-world scenarios, abundant unlabeled images are often available from online sources (web-scraped images) or large-scale datasets. However, these images may have different distributions from those of the target dataset, a situation known as out-of-distribution (OOD). Using these images as unlabeled data in semi-supervised learning can lead to inaccurate pseudo-labels, potentially misguiding network training. In this paper, we propose a new semi-supervised semantic segmentation framework with an open-vocabulary segmentation model (SemiOVS) to effectively utilize unlabeled OOD images. Extensive experiments on Pascal VOC and Context datasets demonstrate two key findings: (1) using additional unlabeled images improves the performance of semi-supervised learners in scenarios with few labels, and (2) using the open-vocabulary segmentation (OVS) model to pseudo-label OOD images leads to substantial performance gains. In particular, SemiOVS outperforms existing PrevMatch and SemiVL methods by +3.5 and +3.0 mIoU, respectively, on Pascal VOC with a 92-label setting, achieving state-of-the-art performance. These findings demonstrate that our approach effectively utilizes abundant unlabeled OOD images for semantic segmentation tasks. We hope this work can inspire future research and real-world applications. The code is available at https://github.com/wooseok-shin/SemiOVS

Authors:Deepan Adak, Yogesh Singh Rawat, Shruti Vyas
Title: MolVision: Molecular Property Prediction with Vision Language Models
Abstract:
Molecular property prediction is a fundamental task in computational chemistry with critical applications in drug discovery and materials science. While recent works have explored Large Language Models (LLMs) for this task, they primarily rely on textual molecular representations such as SMILES/SELFIES, which can be ambiguous and structurally less informative. In this work, we introduce MolVision, a novel approach that leverages Vision-Language Models (VLMs) by integrating both molecular structure as images and textual descriptions to enhance property prediction. We construct a benchmark spanning ten diverse datasets, covering classification, regression and description tasks. Evaluating nine different VLMs in zero-shot, few-shot, and fine-tuned settings, we find that visual information improves prediction performance, particularly when combined with efficient fine-tuning strategies such as LoRA. Our results reveal that while visual information alone is insufficient, multimodal fusion significantly enhances generalization across molecular properties. Adaptation of vision encoder for molecular images in conjunction with LoRA further improves the performance. The code and data is available at : $\href{https://molvision.github.io/MolVision/}{https://molvision.github.io/MolVision/}$.

Authors:Xinyang Li, Gen Li, Zhihui Lin, Yichen Qian, GongXin Yao, Weinan Jia, Aowen Wang, Weihua Chen, Fan Wang
Title: MoDA: Multi-modal Diffusion Architecture for Talking Head Generation
Abstract:
Talking head generation with arbitrary identities and speech audio remains a crucial problem in the realm of the virtual metaverse. Recently, diffusion models have become a popular generative technique in this field with their strong generation capabilities. However, several challenges remain for diffusion-based methods: 1) inefficient inference and visual artifacts caused by the implicit latent space of Variational Auto-Encoders (VAE), which complicates the diffusion process; 2) a lack of authentic facial expressions and head movements due to inadequate multi-modal information fusion. In this paper, MoDA handles these challenges by: 1) defining a joint parameter space that bridges motion generation and neural rendering, and leveraging flow matching to simplify diffusion learning; 2) introducing a multi-modal diffusion architecture to model the interaction among noisy motion, audio, and auxiliary conditions, enhancing overall facial expressiveness. In addition, a coarse-to-fine fusion strategy is employed to progressively integrate different modalities, ensuring effective feature fusion. Experimental results demonstrate that MoDA improves video diversity, realism, and efficiency, making it suitable for real-world applications. Project Page: https://lixinyyang.github.io/MoDA.github.io/

Authors:Xiangrui Liu, Man Luo, Agneet Chatterjee, Hua Wei, Yezhou Yang
Title: Towards a Psychoanalytic Perspective on VLM Behaviour: A First-step Interpretation with Intriguing Observations
Abstract:
Hallucination is a long-standing problem that has been actively investigated in Vision-Language Models (VLMs). Existing research commonly attributes hallucinations to technical limitations or sycophancy bias, where the latter means the models tend to generate incorrect answers to align with user expectations. However, these explanations primarily focus on technical or externally driven factors, may have neglected the possibility that hallucination behaviours might mirror cognitive biases observed in human psychology. In this work, we introduce a psychological taxonomy, categorizing VLMs' hallucination behaviours, including sycophancy, logical inconsistency, and a newly identified VLMs behaviour: authority bias. To systematically analyze these behaviours, we design AIpsych, a scalable benchmark that reveals psychological tendencies in model response patterns. Leveraging this benchmark, we investigate how variations in model architecture and parameter size influence model behaviour when responding to strategically manipulated questions. Our experiments reveal that as model size increases, VLMs exhibit stronger sycophantic tendencies but reduced authority bias, suggesting increasing competence but a potential erosion of response integrity. A human subject study further validates our hypotheses and highlights key behavioural differences between VLMs and human respondents. This work suggests a new perspective for understanding hallucination in VLMs and highlights the importance of integrating psychological principles into model evaluation.The benchmark is available at https://github.com/lxrswdd/AIpsych.

Authors:Ana Vasilcoiu, Ivona Najdenkoska, Zeno Geradts, Marcel Worring
Title: LATTE: Latent Trajectory Embedding for Diffusion-Generated Image Detection
Abstract:
The rapid advancement of diffusion-based image generators has made it increasingly difficult to distinguish generated from real images. This can erode trust in digital media, making it critical to develop generalizable detectors for generated images. Recent methods leverage diffusion denoising cues, but mainly focus on single-step reconstruction errors, ignoring the inherent sequential nature of the denoising process. In this work, we propose LATTE - Latent Trajectory Embedding - a novel approach that models the evolution of latent embeddings across several denoising timesteps. By modeling the trajectory of such embeddings rather than single-step errors, LATTE captures subtle, discriminative patterns that distinguish real from generated images. Each latent is refined by employing our latent-visual feature refinement module and aggregated into a unified representation. Afterwards, it is fused with the visual features and finally passed into a lightweight classifier. Our experiments demonstrate that LATTE surpasses the baselines on several established benchmarks, such as GenImage and DiffusionFake. Moreover, it demonstrates strong performance in cross-generator and cross-datasets settings, highlighting the potential of using the trajectory of latent embeddings for generated image detection. The code is available on the following link: https://github.com/AnaMVasilcoiu/LATTE-Diffusion-Detector.

Authors:Haiqing Li, Yuzhi Guo, Feng Jiang, Thao M. Dang, Hehuan Ma, Qifeng Zhou, Jean Gao, Junzhou Huang
Title: Text-Guided Multi-Instance Learning for Scoliosis Screening via Gait Video Analysis
Abstract:
Early-stage scoliosis is often difficult to detect, particularly in adolescents, where delayed diagnosis can lead to serious health issues. Traditional X-ray-based methods carry radiation risks and rely heavily on clinical expertise, limiting their use in large-scale screenings. To overcome these challenges, we propose a Text-Guided Multi-Instance Learning Network (TG-MILNet) for non-invasive scoliosis detection using gait videos. To handle temporal misalignment in gait sequences, we employ Dynamic Time Warping (DTW) clustering to segment videos into key gait phases. To focus on the most relevant diagnostic features, we introduce an Inter-Bag Temporal Attention (IBTA) mechanism that highlights critical gait phases. Recognizing the difficulty in identifying borderline cases, we design a Boundary-Aware Model (BAM) to improve sensitivity to subtle spinal deviations. Additionally, we incorporate textual guidance from domain experts and large language models (LLM) to enhance feature representation and improve model interpretability. Experiments on the large-scale Scoliosis1K gait dataset show that TG-MILNet achieves state-of-the-art performance, particularly excelling in handling class imbalance and accurately detecting challenging borderline cases. The code is available at https://github.com/lhqqq/TG-MILNet

Authors:Huihui Xu, Yuanpeng Nie, Hualiang Wang, Ying Chen, Wei Li, Junzhi Ning, Lihao Liu, Hongqiu Wang, Lei Zhu, Jiyao Liu, Xiaomeng Li, Junjun He
Title: MedGround-R1: Advancing Medical Image Grounding via Spatial-Semantic Rewarded Group Relative Policy Optimization
Abstract:
Medical Image Grounding (MIG), which involves localizing specific regions in medical images based on textual descriptions, requires models to not only perceive regions but also deduce spatial relationships of these regions. Existing Vision-Language Models (VLMs) for MIG often rely on Supervised Fine-Tuning (SFT) with large amounts of Chain-of-Thought (CoT) reasoning annotations, which are expensive and time-consuming to acquire. Recently, DeepSeek-R1 demonstrated that Large Language Models (LLMs) can acquire reasoning abilities through Group Relative Policy Optimization (GRPO) without requiring CoT annotations. In this paper, we adapt the GRPO reinforcement learning framework to VLMs for Medical Image Grounding. We propose the Spatial-Semantic Rewarded Group Relative Policy Optimization to train the model without CoT reasoning annotations. Specifically, we introduce Spatial-Semantic Rewards, which combine spatial accuracy reward and semantic consistency reward to provide nuanced feedback for both spatially positive and negative completions. Additionally, we propose to use the Chain-of-Box template, which integrates visual information of referring bounding boxes into the reasoning process, enabling the model to explicitly reason about spatial regions during intermediate steps. Experiments on three datasets MS-CXR, ChestX-ray8, and M3D-RefSeg demonstrate that our method achieves state-of-the-art performance in Medical Image Grounding. Ablation studies further validate the effectiveness of each component in our approach. Code, checkpoints, and datasets are available at https://github.com/bio-mlhui/MedGround-R1

Authors:Zhiyi Hou, Enhui Ma, Fang Li, Zhiyi Lai, Kalok Ho, Zhanqian Wu, Lijun Zhou, Long Chen, Chitian Sun, Haiyang Sun, Bing Wang, Guang Chen, Hangjun Ye, Kaicheng Yu
Title: DriveMRP: Enhancing Vision-Language Models with Synthetic Motion Data for Motion Risk Prediction
Abstract:
Autonomous driving has seen significant progress, driven by extensive real-world data. However, in long-tail scenarios, accurately predicting the safety of the ego vehicle's future motion remains a major challenge due to uncertainties in dynamic environments and limitations in data coverage. In this work, we aim to explore whether it is possible to enhance the motion risk prediction capabilities of Vision-Language Models (VLM) by synthesizing high-risk motion data. Specifically, we introduce a Bird's-Eye View (BEV) based motion simulation method to model risks from three aspects: the ego-vehicle, other vehicles, and the environment. This allows us to synthesize plug-and-play, high-risk motion data suitable for VLM training, which we call DriveMRP-10K. Furthermore, we design a VLM-agnostic motion risk estimation framework, named DriveMRP-Agent. This framework incorporates a novel information injection strategy for global context, ego-vehicle perspective, and trajectory projection, enabling VLMs to effectively reason about the spatial relationships between motion waypoints and the environment. Extensive experiments demonstrate that by fine-tuning with DriveMRP-10K, our DriveMRP-Agent framework can significantly improve the motion risk prediction performance of multiple VLM baselines, with the accident recognition accuracy soaring from 27.13% to 88.03%. Moreover, when tested via zero-shot evaluation on an in-house real-world high-risk motion dataset, DriveMRP-Agent achieves a significant performance leap, boosting the accuracy from base_model's 29.42% to 68.50%, which showcases the strong generalization capabilities of our method in real-world scenarios.

Authors:Yuqi Li, Chuanguang Yang, Hansheng Zeng, Zeyu Dong, Zhulin An, Yongjun Xu, Yingli Tian, Hao Wu
Title: Frequency-Aligned Knowledge Distillation for Lightweight Spatiotemporal Forecasting
Abstract:
Spatiotemporal forecasting tasks, such as traffic flow, combustion dynamics, and weather forecasting, often require complex models that suffer from low training efficiency and high memory consumption. This paper proposes a lightweight framework, Spectral Decoupled Knowledge Distillation (termed SDKD), which transfers the multi-scale spatiotemporal representations from a complex teacher model to a more efficient lightweight student network. The teacher model follows an encoder-latent evolution-decoder architecture, where its latent evolution module decouples high-frequency details and low-frequency trends using convolution and Transformer (global low-frequency modeler). However, the multi-layer convolution and deconvolution structures result in slow training and high memory usage. To address these issues, we propose a frequency-aligned knowledge distillation strategy, which extracts multi-scale spectral features from the teacher's latent space, including both high and low frequency components, to guide the lightweight student model in capturing both local fine-grained variations and global evolution patterns. Experimental results show that SDKD significantly improves performance, achieving reductions of up to 81.3% in MSE and in MAE 52.3% on the Navier-Stokes equation dataset. The framework effectively captures both high-frequency variations and long-term trends while reducing computational complexity. Our codes are available at https://github.com/itsnotacie/SDKD

Authors:Vineet Kumar Rakesh, Soumya Mazumdar, Research Pratim Maity, Sarbajit Pal, Amitabha Das, Tapas Samanta
Title: Advancing Talking Head Generation: A Comprehensive Survey of Multi-Modal Methodologies, Datasets, Evaluation Metrics, and Loss Functions
Abstract:
Talking Head Generation (THG) has emerged as a transformative technology in computer vision, enabling the synthesis of realistic human faces synchronized with image, audio, text, or video inputs. This paper provides a comprehensive review of methodologies and frameworks for talking head generation, categorizing approaches into 2D--based, 3D--based, Neural Radiance Fields (NeRF)--based, diffusion--based, parameter-driven techniques and many other techniques. It evaluates algorithms, datasets, and evaluation metrics while highlighting advancements in perceptual realism and technical efficiency critical for applications such as digital avatars, video dubbing, ultra-low bitrate video conferencing, and online education. The study identifies challenges such as reliance on pre--trained models, extreme pose handling, multilingual synthesis, and temporal consistency. Future directions include modular architectures, multilingual datasets, hybrid models blending pre--trained and task-specific layers, and innovative loss functions. By synthesizing existing research and exploring emerging trends, this paper aims to provide actionable insights for researchers and practitioners in the field of talking head generation. For the complete survey, code, and curated resource list, visit our GitHub repository: https://github.com/VineetKumarRakesh/thg.

Authors:John Gideon, Kimimasa Tamura, Emily Sumner, Laporsha Dees, Patricio Reyes Gomez, Bassamul Haq, Todd Rowell, Avinash Balachandran, Simon Stent, Guy Rosman
Title: A Simulator Dataset to Support the Study of Impaired Driving
Abstract:
Despite recent advances in automated driving technology, impaired driving continues to incur a high cost to society. In this paper, we present a driving dataset designed to support the study of two common forms of driver impairment: alcohol intoxication and cognitive distraction. Our dataset spans 23.7 hours of simulated urban driving, with 52 human subjects under normal and impaired conditions, and includes both vehicle data (ground truth perception, vehicle pose, controls) and driver-facing data (gaze, audio, surveys). It supports analysis of changes in driver behavior due to alcohol intoxication (0.10\% blood alcohol content), two forms of cognitive distraction (audio n-back and sentence parsing tasks), and combinations thereof, as well as responses to a set of eight controlled road hazards, such as vehicle cut-ins. The dataset will be made available at https://toyotaresearchinstitute.github.io/IDD/.

Authors:Yuqi Wu, Wenzhao Zheng, Jie Zhou, Jiwen Lu
Title: Point3R: Streaming 3D Reconstruction with Explicit Spatial Pointer Memory
Abstract:
Dense 3D scene reconstruction from an ordered sequence or unordered image collections is a critical step when bringing research in computer vision into practical scenarios. Following the paradigm introduced by DUSt3R, which unifies an image pair densely into a shared coordinate system, subsequent methods maintain an implicit memory to achieve dense 3D reconstruction from more images. However, such implicit memory is limited in capacity and may suffer from information loss of earlier frames. We propose Point3R, an online framework targeting dense streaming 3D reconstruction. To be specific, we maintain an explicit spatial pointer memory directly associated with the 3D structure of the current scene. Each pointer in this memory is assigned a specific 3D position and aggregates scene information nearby in the global coordinate system into a changing spatial feature. Information extracted from the latest frame interacts explicitly with this pointer memory, enabling dense integration of the current observation into the global coordinate system. We design a 3D hierarchical position embedding to promote this interaction and design a simple yet effective fusion mechanism to ensure that our pointer memory is uniform and efficient. Our method achieves competitive or state-of-the-art performance on various tasks with low training costs. Code is available at: https://github.com/YkiWu/Point3R.

Authors:Xin Zhou, Dingkang Liang, Kaijin Chen, Tianrui Feng, Xiwu Chen, Hongkai Lin, Yikang Ding, Feiyang Tan, Hengshuang Zhao, Xiang Bai
Title: Less is Enough: Training-Free Video Diffusion Acceleration via Runtime-Adaptive Caching
Abstract:
Video generation models have demonstrated remarkable performance, yet their broader adoption remains constrained by slow inference speeds and substantial computational costs, primarily due to the iterative nature of the denoising process. Addressing this bottleneck is essential for democratizing advanced video synthesis technologies and enabling their integration into real-world applications. This work proposes EasyCache, a training-free acceleration framework for video diffusion models. EasyCache introduces a lightweight, runtime-adaptive caching mechanism that dynamically reuses previously computed transformation vectors, avoiding redundant computations during inference. Unlike prior approaches, EasyCache requires no offline profiling, pre-computation, or extensive parameter tuning. We conduct comprehensive studies on various large-scale video generation models, including OpenSora, Wan2.1, and HunyuanVideo. Our method achieves leading acceleration performance, reducing inference time by up to 2.1-3.3$\times$ compared to the original baselines while maintaining high visual fidelity with a significant up to 36% PSNR improvement compared to the previous SOTA method. This improvement makes our EasyCache a efficient and highly accessible solution for high-quality video generation in both research and practical applications. The code is available at https://github.com/H-EmbodVis/EasyCache.

Authors:Ziqi Miao, Yi Ding, Lijun Li, Jing Shao
Title: Visual Contextual Attack: Jailbreaking MLLMs with Image-Driven Context Injection
Abstract:
With the emergence of strong vision language capabilities, multimodal large language models (MLLMs) have demonstrated tremendous potential for real-world applications. However, the security vulnerabilities exhibited by the visual modality pose significant challenges to deploying such models in open-world environments. Recent studies have successfully induced harmful responses from target MLLMs by encoding harmful textual semantics directly into visual inputs. However, in these approaches, the visual modality primarily serves as a trigger for unsafe behavior, often exhibiting semantic ambiguity and lacking grounding in realistic scenarios. In this work, we define a novel setting: vision-centric jailbreak, where visual information serves as a necessary component in constructing a complete and realistic jailbreak context. Building on this setting, we propose the VisCo (Visual Contextual) Attack. VisCo fabricates contextual dialogue using four distinct vision-focused strategies, dynamically generating auxiliary images when necessary to construct a vision-centric jailbreak scenario. To maximize attack effectiveness, it incorporates automatic toxicity obfuscation and semantic refinement to produce a final attack prompt that reliably triggers harmful responses from the target black-box MLLMs. Specifically, VisCo achieves a toxicity score of 4.78 and an Attack Success Rate (ASR) of 85% on MM-SafetyBench against GPT-4o, significantly outperforming the baseline, which achieves a toxicity score of 2.48 and an ASR of 22.2%. Code: https://github.com/Dtc7w3PQ/Visco-Attack.

Authors:Fangfu Liu, Hao Li, Jiawei Chi, Hanyang Wang, Minghui Yang, Fudong Wang, Yueqi Duan
Title: LangScene-X: Reconstruct Generalizable 3D Language-Embedded Scenes with TriMap Video Diffusion
Abstract:
Recovering 3D structures with open-vocabulary scene understanding from 2D images is a fundamental but daunting task. Recent developments have achieved this by performing per-scene optimization with embedded language information. However, they heavily rely on the calibrated dense-view reconstruction paradigm, thereby suffering from severe rendering artifacts and implausible semantic synthesis when limited views are available. In this paper, we introduce a novel generative framework, coined LangScene-X, to unify and generate 3D consistent multi-modality information for reconstruction and understanding. Powered by the generative capability of creating more consistent novel observations, we can build generalizable 3D language-embedded scenes from only sparse views. Specifically, we first train a TriMap video diffusion model that can generate appearance (RGBs), geometry (normals), and semantics (segmentation maps) from sparse inputs through progressive knowledge integration. Furthermore, we propose a Language Quantized Compressor (LQC), trained on large-scale image datasets, to efficiently encode language embeddings, enabling cross-scene generalization without per-scene retraining. Finally, we reconstruct the language surface fields by aligning language information onto the surface of 3D scenes, enabling open-ended language queries. Extensive experiments on real-world data demonstrate the superiority of our LangScene-X over state-of-the-art methods in terms of quality and generalizability. Project Page: https://liuff19.github.io/LangScene-X.

Authors:Gent Serifi, Marcel C. Bühler
Title: HyperGaussians: High-Dimensional Gaussian Splatting for High-Fidelity Animatable Face Avatars
Abstract:
We introduce HyperGaussians, a novel extension of 3D Gaussian Splatting for high-quality animatable face avatars. Creating such detailed face avatars from videos is a challenging problem and has numerous applications in augmented and virtual reality. While tremendous successes have been achieved for static faces, animatable avatars from monocular videos still fall in the uncanny valley. The de facto standard, 3D Gaussian Splatting (3DGS), represents a face through a collection of 3D Gaussian primitives. 3DGS excels at rendering static faces, but the state-of-the-art still struggles with nonlinear deformations, complex lighting effects, and fine details. While most related works focus on predicting better Gaussian parameters from expression codes, we rethink the 3D Gaussian representation itself and how to make it more expressive. Our insights lead to a novel extension of 3D Gaussians to high-dimensional multivariate Gaussians, dubbed 'HyperGaussians'. The higher dimensionality increases expressivity through conditioning on a learnable local embedding. However, splatting HyperGaussians is computationally expensive because it requires inverting a high-dimensional covariance matrix. We solve this by reparameterizing the covariance matrix, dubbed the 'inverse covariance trick'. This trick boosts the efficiency so that HyperGaussians can be seamlessly integrated into existing models. To demonstrate this, we plug in HyperGaussians into the state-of-the-art in fast monocular face avatars: FlashAvatar. Our evaluation on 19 subjects from 4 face datasets shows that HyperGaussians outperform 3DGS numerically and visually, particularly for high-frequency details like eyeglass frames, teeth, complex facial movements, and specular reflections.

Authors:Mingxin Liu, Peiyuan Zhang, Yuan Liu, Wei Zhang, Yue Zhou, Ning Liao, Ziyang Gong, Junwei Luo, Zhirui Wang, Yi Yu, Xue Yang
Title: Partial Weakly-Supervised Oriented Object Detection
Abstract:
The growing demand for oriented object detection (OOD) across various domains has driven significant research in this area. However, the high cost of dataset annotation remains a major concern. Current mainstream OOD algorithms can be mainly categorized into three types: (1) fully supervised methods using complete oriented bounding box (OBB) annotations, (2) semi-supervised methods using partial OBB annotations, and (3) weakly supervised methods using weak annotations such as horizontal boxes or points. However, these algorithms inevitably increase the cost of models in terms of annotation speed or annotation cost. To address this issue, we propose:(1) the first Partial Weakly-Supervised Oriented Object Detection (PWOOD) framework based on partially weak annotations (horizontal boxes or single points), which can efficiently leverage large amounts of unlabeled data, significantly outperforming weakly supervised algorithms trained with partially weak annotations, also offers a lower cost solution; (2) Orientation-and-Scale-aware Student (OS-Student) model capable of learning orientation and scale information with only a small amount of orientation-agnostic or scale-agnostic weak annotations; and (3) Class-Agnostic Pseudo-Label Filtering strategy (CPF) to reduce the model's sensitivity to static filtering thresholds. Comprehensive experiments on DOTA-v1.0/v1.5/v2.0 and DIOR datasets demonstrate that our PWOOD framework performs comparably to, or even surpasses, traditional semi-supervised algorithms.

Authors:Alex Colagrande, Paul Caillon, Eva Feillet, Alexandre Allauzen
Title: Linear Attention with Global Context: A Multipole Attention Mechanism for Vision and Physics
Abstract:
Transformers have become the de facto standard for a wide range of tasks, from image classification to physics simulations. Despite their impressive performance, the quadratic complexity of standard Transformers in both memory and time with respect to the input length makes them impractical for processing high-resolution inputs. Therefore, several variants have been proposed, the most successful relying on patchification, downsampling, or coarsening techniques, often at the cost of losing the finest-scale details. In this work, we take a different approach. Inspired by state-of-the-art techniques in $n$-body numerical simulations, we cast attention as an interaction problem between grid points. We introduce the Multipole Attention Neural Operator (MANO), which computes attention in a distance-based multiscale fashion. MANO maintains, in each attention head, a global receptive field and achieves linear time and memory complexity with respect to the number of grid points. Empirical results on image classification and Darcy flows demonstrate that MANO rivals state-of-the-art models such as ViT and Swin Transformer, while reducing runtime and peak memory usage by orders of magnitude. We open source our code for reproducibility at https://github.com/AlexColagrande/MANO.

Authors:Mélanie Gaillochet, Mehrdad Noori, Sahar Dastani, Christian Desrosiers, Hervé Lombaert
Title: Prompt learning with bounding box constraints for medical image segmentation
Abstract:
Pixel-wise annotations are notoriously labourious and costly to obtain in the medical domain. To mitigate this burden, weakly supervised approaches based on bounding box annotations-much easier to acquire-offer a practical alternative. Vision foundation models have recently shown noteworthy segmentation performance when provided with prompts such as points or bounding boxes. Prompt learning exploits these models by adapting them to downstream tasks and automating segmentation, thereby reducing user intervention. However, existing prompt learning approaches depend on fully annotated segmentation masks. This paper proposes a novel framework that combines the representational power of foundation models with the annotation efficiency of weakly supervised segmentation. More specifically, our approach automates prompt generation for foundation models using only bounding box annotations. Our proposed optimization scheme integrates multiple constraints derived from box annotations with pseudo-labels generated by the prompted foundation model. Extensive experiments across multimodal datasets reveal that our weakly supervised method achieves an average Dice score of 84.90% in a limited data setting, outperforming existing fully-supervised and weakly-supervised approaches. The code is available at https://github.com/Minimel/box-prompt-learning-VFM.git

Authors:Xiangyang Luo, Ye Zhu, Yunfei Liu, Lijian Lin, Cong Wan, Zijian Cai, Shao-Lun Huang, Yu Li
Title: CanonSwap: High-Fidelity and Consistent Video Face Swapping via Canonical Space Modulation
Abstract:
Video face swapping aims to address two primary challenges: effectively transferring the source identity to the target video and accurately preserving the dynamic attributes of the target face, such as head poses, facial expressions, lip-sync, \etc. Existing methods mainly focus on achieving high-quality identity transfer but often fall short in maintaining the dynamic attributes of the target face, leading to inconsistent results. We attribute this issue to the inherent coupling of facial appearance and motion in videos. To address this, we propose CanonSwap, a novel video face-swapping framework that decouples motion information from appearance information. Specifically, CanonSwap first eliminates motion-related information, enabling identity modification within a unified canonical space. Subsequently, the swapped feature is reintegrated into the original video space, ensuring the preservation of the target face's dynamic attributes. To further achieve precise identity transfer with minimal artifacts and enhanced realism, we design a Partial Identity Modulation module that adaptively integrates source identity features using a spatial mask to restrict modifications to facial regions. Additionally, we introduce several fine-grained synchronization metrics to comprehensively evaluate the performance of video face swapping methods. Extensive experiments demonstrate that our method significantly outperforms existing approaches in terms of visual quality, temporal consistency, and identity preservation. Our project page are publicly available at https://luoxyhappy.github.io/CanonSwap/.

Authors:JungWoo Chae, Jiyoon Kim, JaeWoong Choi, Kyungyul Kim, Sangheum Hwang
Title: APT: Adaptive Personalized Training for Diffusion Models with Limited Data
Abstract:
Personalizing diffusion models using limited data presents significant challenges, including overfitting, loss of prior knowledge, and degradation of text alignment. Overfitting leads to shifts in the noise prediction distribution, disrupting the denoising trajectory and causing the model to lose semantic coherence. In this paper, we propose Adaptive Personalized Training (APT), a novel framework that mitigates overfitting by employing adaptive training strategies and regularizing the model's internal representations during fine-tuning. APT consists of three key components: (1) Adaptive Training Adjustment, which introduces an overfitting indicator to detect the degree of overfitting at each time step bin and applies adaptive data augmentation and adaptive loss weighting based on this indicator; (2)Representation Stabilization, which regularizes the mean and variance of intermediate feature maps to prevent excessive shifts in noise prediction; and (3) Attention Alignment for Prior Knowledge Preservation, which aligns the cross-attention maps of the fine-tuned model with those of the pretrained model to maintain prior knowledge and semantic coherence. Through extensive experiments, we demonstrate that APT effectively mitigates overfitting, preserves prior knowledge, and outperforms existing methods in generating high-quality, diverse images with limited reference data.

Authors:Qingyu Fan, Yinghao Cai, Chao Li, Chunting Jiao, Xudong Zheng, Tao Lu, Bin Liang, Shuo Wang
Title: MISCGrasp: Leveraging Multiple Integrated Scales and Contrastive Learning for Enhanced Volumetric Grasping
Abstract:
Robotic grasping faces challenges in adapting to objects with varying shapes and sizes. In this paper, we introduce MISCGrasp, a volumetric grasping method that integrates multi-scale feature extraction with contrastive feature enhancement for self-adaptive grasping. We propose a query-based interaction between high-level and low-level features through the Insight Transformer, while the Empower Transformer selectively attends to the highest-level features, which synergistically strikes a balance between focusing on fine geometric details and overall geometric structures. Furthermore, MISCGrasp utilizes multi-scale contrastive learning to exploit similarities among positive grasp samples, ensuring consistency across multi-scale features. Extensive experiments in both simulated and real-world environments demonstrate that MISCGrasp outperforms baseline and variant methods in tabletop decluttering tasks. More details are available at https://miscgrasp.github.io/.

Authors:Abiam Remache González, Meriem Chagour, Timon Bijan Rüth, Raúl Trapiella Cañedo, Marina Martínez Soler, Álvaro Lorenzo Felipe, Hyun-Suk Shin, María-Jesús Zamorano Serrano, Ricardo Torres, Juan-Antonio Castillo Parra, Eduardo Reyes Abad, Miguel-Ángel Ferrer Ballester, Juan-Manuel Afonso López, Francisco-Mario Hernández Tejera, Adrian Penate-Sanchez
Title: IMASHRIMP: Automatic White Shrimp (Penaeus vannamei) Biometrical Analysis from Laboratory Images Using Computer Vision and Deep Learning
Abstract:
This paper introduces IMASHRIMP, an adapted system for the automated morphological analysis of white shrimp (Penaeus vannamei}, aimed at optimizing genetic selection tasks in aquaculture. Existing deep learning and computer vision techniques were modified to address the specific challenges of shrimp morphology analysis from RGBD images. IMASHRIMP incorporates two discrimination modules, based on a modified ResNet-50 architecture, to classify images by the point of view and determine rostrum integrity. It is proposed a "two-factor authentication (human and IA)" system, it reduces human error in view classification from 0.97% to 0% and in rostrum detection from 12.46% to 3.64%. Additionally, a pose estimation module was adapted from VitPose to predict 23 key points on the shrimp's skeleton, with separate networks for lateral and dorsal views. A morphological regression module, using a Support Vector Machine (SVM) model, was integrated to convert pixel measurements to centimeter units. Experimental results show that the system effectively reduces human error, achieving a mean average precision (mAP) of 97.94% for pose estimation and a pixel-to-centimeter conversion error of 0.07 (+/- 0.1) cm. IMASHRIMP demonstrates the potential to automate and accelerate shrimp morphological analysis, enhancing the efficiency of genetic selection and contributing to more sustainable aquaculture practices.The code are available at https://github.com/AbiamRemacheGonzalez/ImaShrimp-public

Authors:Dimitrios Bouzoulas, Eerik Alamikkotervo, Risto Ojala
Title: Automatic Labelling for Low-Light Pedestrian Detection
Abstract:
Pedestrian detection in RGB images is a key task in pedestrian safety, as the most common sensor in autonomous vehicles and advanced driver assistance systems is the RGB camera. A challenge in RGB pedestrian detection, that does not appear to have large public datasets, is low-light conditions. As a solution, in this research, we propose an automated infrared-RGB labeling pipeline. The proposed pipeline consists of 1) Infrared detection, where a fine-tuned model for infrared pedestrian detection is used 2) Label transfer process from the infrared detections to their RGB counterparts 3) Training object detection models using the generated labels for low-light RGB pedestrian detection. The research was performed using the KAIST dataset. For the evaluation, object detection models were trained on the generated autolabels and ground truth labels. When compared on a previously unseen image sequence, the results showed that the models trained on generated labels outperformed the ones trained on ground-truth labels in 6 out of 9 cases for the mAP@50 and mAP@50-95 metrics. The source code for this research is available at https://github.com/BouzoulasDimitrios/IR-RGB-Automated-LowLight-Pedestrian-Labeling

Authors:Luca Parolari, Andrea Cherubini, Lamberto Ballan, Carlo Biffi
Title: Temporally-Aware Supervised Contrastive Learning for Polyp Counting in Colonoscopy
Abstract:
Automated polyp counting in colonoscopy is a crucial step toward automated procedure reporting and quality control, aiming to enhance the cost-effectiveness of colonoscopy screening. Counting polyps in a procedure involves detecting and tracking polyps, and then clustering tracklets that belong to the same polyp entity. Existing methods for polyp counting rely on self-supervised learning and primarily leverage visual appearance, neglecting temporal relationships in both tracklet feature learning and clustering stages. In this work, we introduce a paradigm shift by proposing a supervised contrastive loss that incorporates temporally-aware soft targets. Our approach captures intra-polyp variability while preserving inter-polyp discriminability, leading to more robust clustering. Additionally, we improve tracklet clustering by integrating a temporal adjacency constraint, reducing false positive re-associations between visually similar but temporally distant tracklets. We train and validate our method on publicly available datasets and evaluate its performance with a leave-one-out cross-validation strategy. Results demonstrate a 2.2x reduction in fragmentation rate compared to prior approaches. Our results highlight the importance of temporal awareness in polyp counting, establishing a new state-of-the-art. Code is available at https://github.com/lparolari/temporally-aware-polyp-counting.

Authors:Zunhui Xia, Hongxing Li, Libin Lan
Title: MedFormer: Hierarchical Medical Vision Transformer with Content-Aware Dual Sparse Selection Attention
Abstract:
Medical image recognition serves as a key way to aid in clinical diagnosis, enabling more accurate and timely identification of diseases and abnormalities. Vision transformer-based approaches have proven effective in handling various medical recognition tasks. However, these methods encounter two primary challenges. First, they are often task-specific and architecture-tailored, limiting their general applicability. Second, they usually either adopt full attention to model long-range dependencies, resulting in high computational costs, or rely on handcrafted sparse attention, potentially leading to suboptimal performance. To tackle these issues, we present MedFormer, an efficient medical vision transformer with two key ideas. First, it employs a pyramid scaling structure as a versatile backbone for various medical image recognition tasks, including image classification and dense prediction tasks such as semantic segmentation and lesion detection. This structure facilitates hierarchical feature representation while reducing the computation load of feature maps, highly beneficial for boosting performance. Second, it introduces a novel Dual Sparse Selection Attention (DSSA) with content awareness to improve computational efficiency and robustness against noise while maintaining high performance. As the core building technique of MedFormer, DSSA is designed to explicitly attend to the most relevant content. Theoretical analysis demonstrates that MedFormer outperforms existing medical vision transformers in terms of generality and efficiency. Extensive experiments across various imaging modality datasets show that MedFormer consistently enhances performance in all three medical image recognition tasks mentioned above. MedFormer provides an efficient and versatile solution for medical image recognition, with strong potential for clinical application.

Authors:Teng Fu, Yuwen Chen, Zhuofan Chen, Mengyang Zhao, Bin Li, Xiangyang Xue
Title: CrowdTrack: A Benchmark for Difficult Multiple Pedestrian Tracking in Real Scenarios
Abstract:
Multi-object tracking is a classic field in computer vision. Among them, pedestrian tracking has extremely high application value and has become the most popular research category. Existing methods mainly use motion or appearance information for tracking, which is often difficult in complex scenarios. For the motion information, mutual occlusions between objects often prevent updating of the motion state; for the appearance information, non-robust results are often obtained due to reasons such as only partial visibility of the object or blurred images. Although learning how to perform tracking in these situations from the annotated data is the simplest solution, the existing MOT dataset fails to satisfy this solution. Existing methods mainly have two drawbacks: relatively simple scene composition and non-realistic scenarios. Although some of the video sequences in existing dataset do not have the above-mentioned drawbacks, the number is far from adequate for research purposes. To this end, we propose a difficult large-scale dataset for multi-pedestrian tracking, shot mainly from the first-person view and all from real-life complex scenarios. We name it ``CrowdTrack'' because there are numerous objects in most of the sequences. Our dataset consists of 33 videos, containing a total of 5,185 trajectories. Each object is annotated with a complete bounding box and a unique object ID. The dataset will provide a platform to facilitate the development of algorithms that remain effective in complex situations. We analyzed the dataset comprehensively and tested multiple SOTA models on our dataset. Besides, we analyzed the performance of the foundation models on our dataset. The dataset and project code is released at: https://github.com/loseevaya/CrowdTrack .

Authors:Wei Li, Jingyang Zhang, Lihao Liu, Guoan Wang, Junjun He, Yang Chen, Lixu Gu
Title: F^2TTA: Free-Form Test-Time Adaptation on Cross-Domain Medical Image Classification via Image-Level Disentangled Prompt Tuning
Abstract:
Test-Time Adaptation (TTA) has emerged as a promising solution for adapting a source model to unseen medical sites using unlabeled test data, due to the high cost of data annotation. Existing TTA methods consider scenarios where data from one or multiple domains arrives in complete domain units. However, in clinical practice, data usually arrives in domain fragments of arbitrary lengths and in random arrival orders, due to resource constraints and patient variability. This paper investigates a practical Free-Form Test-Time Adaptation (F$^{2}$TTA) task, where a source model is adapted to such free-form domain fragments, with shifts occurring between fragments unpredictably. In this setting, these shifts could distort the adaptation process. To address this problem, we propose a novel Image-level Disentangled Prompt Tuning (I-DiPT) framework. I-DiPT employs an image-invariant prompt to explore domain-invariant representations for mitigating the unpredictable shifts, and an image-specific prompt to adapt the source model to each test image from the incoming fragments. The prompts may suffer from insufficient knowledge representation since only one image is available for training. To overcome this limitation, we first introduce Uncertainty-oriented Masking (UoM), which encourages the prompts to extract sufficient information from the incoming image via masked consistency learning driven by the uncertainty of the source model representations. Then, we further propose a Parallel Graph Distillation (PGD) method that reuses knowledge from historical image-specific and image-invariant prompts through parallel graph networks. Experiments on breast cancer and glaucoma classification demonstrate the superiority of our method over existing TTA approaches in F$^{2}$TTA. Code is available at https://github.com/mar-cry/F2TTA.

Authors:Mufhumudzi Muthivhi, Terence L. van Zyl
Title: Wildlife Target Re-Identification Using Self-supervised Learning in Non-Urban Settings
Abstract:
Wildlife re-identification aims to match individuals of the same species across different observations. Current state-of-the-art (SOTA) models rely on class labels to train supervised models for individual classification. This dependence on annotated data has driven the curation of numerous large-scale wildlife datasets. This study investigates self-supervised learning Self-Supervised Learning (SSL) for wildlife re-identification. We automatically extract two distinct views of an individual using temporal image pairs from camera trap data without supervision. The image pairs train a self-supervised model from a potentially endless stream of video data. We evaluate the learnt representations against supervised features on open-world scenarios and transfer learning in various wildlife downstream tasks. The analysis of the experimental results shows that self-supervised models are more robust even with limited data. Moreover, self-supervised features outperform supervision across all downstream tasks. The code is available here https://github.com/pxpana/SSLWildlife.

Authors:Taehoon Kim, Jongwook Choi, Yonghyun Jeong, Haeun Noh, Jaejun Yoo, Seungryul Baek, Jongwon Choi
Title: Beyond Spatial Frequency: Pixel-wise Temporal Frequency-based Deepfake Video Detection
Abstract:
We introduce a deepfake video detection approach that exploits pixel-wise temporal inconsistencies, which traditional spatial frequency-based detectors often overlook. Traditional detectors represent temporal information merely by stacking spatial frequency spectra across frames, resulting in the failure to detect temporal artifacts in the pixel plane. Our approach performs a 1D Fourier transform on the time axis for each pixel, extracting features highly sensitive to temporal inconsistencies, especially in areas prone to unnatural movements. To precisely locate regions containing the temporal artifacts, we introduce an attention proposal module trained in an end-to-end manner. Additionally, our joint transformer module effectively integrates pixel-wise temporal frequency features with spatio-temporal context features, expanding the range of detectable forgery artifacts. Our framework represents a significant advancement in deepfake video detection, providing robust performance across diverse and challenging detection scenarios.

Authors:Jiahao Wu, Rui Peng, Jianbo Jiao, Jiayu Yang, Luyang Tang, Kaiqiang Xiong, Jie Liang, Jinbo Yan, Runling Liu, Ronggang Wang
Title: LocalDyGS: Multi-view Global Dynamic Scene Modeling via Adaptive Local Implicit Feature Decoupling
Abstract:
Due to the complex and highly dynamic motions in the real world, synthesizing dynamic videos from multi-view inputs for arbitrary viewpoints is challenging. Previous works based on neural radiance field or 3D Gaussian splatting are limited to modeling fine-scale motion, greatly restricting their application. In this paper, we introduce LocalDyGS, which consists of two parts to adapt our method to both large-scale and fine-scale motion scenes: 1) We decompose a complex dynamic scene into streamlined local spaces defined by seeds, enabling global modeling by capturing motion within each local space. 2) We decouple static and dynamic features for local space motion modeling. A static feature shared across time steps captures static information, while a dynamic residual field provides time-specific features. These are combined and decoded to generate Temporal Gaussians, modeling motion within each local space. As a result, we propose a novel dynamic scene reconstruction framework to model highly dynamic real-world scenes more realistically. Our method not only demonstrates competitive performance on various fine-scale datasets compared to state-of-the-art (SOTA) methods, but also represents the first attempt to model larger and more complex highly dynamic scenes. Project page: https://wujh2001.github.io/LocalDyGS/.

Authors:Anlin Zheng, Haochen Wang, Yucheng Zhao, Weipeng Deng, Tiancai Wang, Xiangyu Zhang, Xiaojuan Qi
Title: Hita: Holistic Tokenizer for Autoregressive Image Generation
Abstract:
Vanilla autoregressive image generation models generate visual tokens step-by-step, limiting their ability to capture holistic relationships among token sequences. Moreover, because most visual tokenizers map local image patches into latent tokens, global information is limited. To address this, we introduce \textit{Hita}, a novel image tokenizer for autoregressive (AR) image generation. It introduces a holistic-to-local tokenization scheme with learnable holistic queries and local patch tokens. Hita incorporates two key strategies to better align with the AR generation process: 1) {arranging} a sequential structure with holistic tokens at the beginning, followed by patch-level tokens, and using causal attention to maintain awareness of previous tokens; and 2) adopting a lightweight fusion module before feeding the de-quantized tokens into the decoder to control information flow and prioritize holistic tokens. Extensive experiments show that Hita accelerates the training speed of AR generators and outperforms those trained with vanilla tokenizers, achieving \textbf{2.59 FID} and \textbf{281.9 IS} on the ImageNet benchmark. Detailed analysis of the holistic representation highlights its ability to capture global image properties, such as textures, materials, and shapes. Additionally, Hita also demonstrates effectiveness in zero-shot style transfer and image in-painting. The code is available at \href{https://github.com/CVMI-Lab/Hita}{https://github.com/CVMI-Lab/Hita}.

Authors:Nina Konovalova, Maxim Nikolaev, Andrey Kuznetsov, Aibek Alanov
Title: Heeding the Inner Voice: Aligning ControlNet Training via Intermediate Features Feedback
Abstract:
Despite significant progress in text-to-image diffusion models, achieving precise spatial control over generated outputs remains challenging. ControlNet addresses this by introducing an auxiliary conditioning module, while ControlNet++ further refines alignment through a cycle consistency loss applied only to the final denoising steps. However, this approach neglects intermediate generation stages, limiting its effectiveness. We propose InnerControl, a training strategy that enforces spatial consistency across all diffusion steps. Our method trains lightweight convolutional probes to reconstruct input control signals (e.g., edges, depth) from intermediate UNet features at every denoising step. These probes efficiently extract signals even from highly noisy latents, enabling pseudo ground truth controls for training. By minimizing the discrepancy between predicted and target conditions throughout the entire diffusion process, our alignment loss improves both control fidelity and generation quality. Combined with established techniques like ControlNet++, InnerControl achieves state-of-the-art performance across diverse conditioning methods (e.g., edges, depth).

Authors:Zecheng Zhao, Selena Song, Tong Chen, Zhi Chen, Shazia Sadiq, Yadan Luo
Title: Are Synthetic Videos Useful? A Benchmark for Retrieval-Centric Evaluation of Synthetic Videos
Abstract:
Text-to-video (T2V) synthesis has advanced rapidly, yet current evaluation metrics primarily capture visual quality and temporal consistency, offering limited insight into how synthetic videos perform in downstream tasks such as text-to-video retrieval (TVR). In this work, we introduce SynTVA, a new dataset and benchmark designed to evaluate the utility of synthetic videos for building retrieval models. Based on 800 diverse user queries derived from MSRVTT training split, we generate synthetic videos using state-of-the-art T2V models and annotate each video-text pair along four key semantic alignment dimensions: Object \& Scene, Action, Attribute, and Prompt Fidelity. Our evaluation framework correlates general video quality assessment (VQA) metrics with these alignment scores, and examines their predictive power for downstream TVR performance. To explore pathways of scaling up, we further develop an Auto-Evaluator to estimate alignment quality from existing metrics. Beyond benchmarking, our results show that SynTVA is a valuable asset for dataset augmentation, enabling the selection of high-utility synthetic samples that measurably improve TVR outcomes. Project page and dataset can be found at https://jasoncodemaker.github.io/SynTVA/.

Authors:JaeHyuck Choi, MinJun Kim, JeHyeong Hong
Title: MAGIC: Mask-Guided Diffusion Inpainting with Multi-Level Perturbations and Context-Aware Alignment for Few-Shot Anomaly Generation
Abstract:
Few-shot anomaly generation is emerging as a practical solution for augmenting the scarce anomaly data in industrial quality control settings. An ideal generator would meet three demands at once, namely (i) keep the normal background intact, (ii) inpaint anomalous regions to tightly overlap with the corresponding anomaly masks, and (iii) generate anomalous regions in a semantically valid location, while still producing realistic, diverse appearances from only a handful of real examples. Existing diffusion-based methods usually satisfy at most two of these requirements: global anomaly generators corrupt the background, whereas mask-guided ones often falter when the mask is imprecise or misplaced. We propose MAGIC--Mask-guided inpainting with multi-level perturbations and Context-aware alignment--to resolve all three issues. At its core, MAGIC fine-tunes a Stable Diffusion inpainting backbone that preserves normal regions and ensures strict adherence of the synthesized anomaly to the supplied mask, directly addressing background corruption and misalignment. To offset the diversity loss that fine-tuning can cause, MAGIC adds two complementary perturbation strategies: (i) Gaussian prompt-level perturbation applied during fine-tuning and inference that broadens the global appearance of anomalies while avoiding low-fidelity textual appearances, and (ii) mask-guided spatial noise injection that enriches local texture variations. Additionally, the context-aware mask alignment module forms semantic correspondences and relocates masks so that every anomaly remains plausibly contained within the host object, eliminating out-of-boundary artifacts. Under a consistent identical evaluation protocol on the MVTec-AD dataset, MAGIC outperforms previous state-of-the-arts in downstream anomaly tasks.

Authors:Dohoon Kim, Donghun Kang, Taesup Moon
Title: DoMIX: An Efficient Framework for Exploiting Domain Knowledge in Fine-Tuning
Abstract:
Domain-Adaptive Pre-training (DAP) has recently gained attention for its effectiveness in fine-tuning pre-trained models. Building on this, continual DAP has been explored to develop pre-trained models capable of incrementally incorporating different domain datasets. However, existing continual DAP methods face several limitations: (1) high computational cost and GPU memory usage during training; (2) sensitivity to incremental data order; and (3) providing a single, generalized model for all end tasks, which contradicts the essence of DAP. In this paper, we propose DoMIX, a novel approach that addresses these challenges by leveraging LoRA modules, a representative parameter-efficient fine-tuning (PEFT) method. Our approach enables efficient and parallel domain-adaptive pre-training that is robust to domain order and effectively utilizes accumulated knowledge to provide tailored pre-trained models for specific tasks. We also demonstrate that our method can be extended beyond the DAP setting to standard LLM fine-tuning scenarios. Code is available at https://github.com/dohoonkim-ai/DoMIX.

Authors:Fanghai Yi, Zehong Zheng, Zexiao Liang, Yihang Dong, Xiyang Fang, Wangyu Wu, Xuhang Chen
Title: MAC-Lookup: Multi-Axis Conditional Lookup Model for Underwater Image Enhancement
Abstract:
Enhancing underwater images is crucial for exploration. These images face visibility and color issues due to light changes, water turbidity, and bubbles. Traditional prior-based methods and pixel-based methods often fail, while deep learning lacks sufficient high-quality datasets. We introduce the Multi-Axis Conditional Lookup (MAC-Lookup) model, which enhances visual quality by improving color accuracy, sharpness, and contrast. It includes Conditional 3D Lookup Table Color Correction (CLTCC) for preliminary color and quality correction and Multi-Axis Adaptive Enhancement (MAAE) for detail refinement. This model prevents over-enhancement and saturation while handling underwater challenges. Extensive experiments show that MAC-Lookup excels in enhancing underwater images by restoring details and colors better than existing methods. The code is https://github.com/onlycatdoraemon/MAC-Lookup.

Authors:Yuxiang Zhang, Wei Li, Wen Jia, Mengmeng Zhang, Ran Tao, Shunlin Liang
Title: Cross-domain Hyperspectral Image Classification based on Bi-directional Domain Adaptation
Abstract:
Utilizing hyperspectral remote sensing technology enables the extraction of fine-grained land cover classes. Typically, satellite or airborne images used for training and testing are acquired from different regions or times, where the same class has significant spectral shifts in different scenes. In this paper, we propose a Bi-directional Domain Adaptation (BiDA) framework for cross-domain hyperspectral image (HSI) classification, which focuses on extracting both domain-invariant features and domain-specific information in the independent adaptive space, thereby enhancing the adaptability and separability to the target scene. In the proposed BiDA, a triple-branch transformer architecture (the source branch, target branch, and coupled branch) with semantic tokenizer is designed as the backbone. Specifically, the source branch and target branch independently learn the adaptive space of source and target domains, a Coupled Multi-head Cross-attention (CMCA) mechanism is developed in coupled branch for feature interaction and inter-domain correlation mining. Furthermore, a bi-directional distillation loss is designed to guide adaptive space learning using inter-domain correlation. Finally, we propose an Adaptive Reinforcement Strategy (ARS) to encourage the model to focus on specific generalized feature extraction within both source and target scenes in noise condition. Experimental results on cross-temporal/scene airborne and satellite datasets demonstrate that the proposed BiDA performs significantly better than some state-of-the-art domain adaptation approaches. In the cross-temporal tree species classification task, the proposed BiDA is more than 3\%$\sim$5\% higher than the most advanced method. The codes will be available from the website: https://github.com/YuxiangZhang-BIT/IEEE_TCSVT_BiDA.

Authors:Takuro Kawada, Shunsuke Kitada, Sota Nemoto, Hitoshi Iyatomi
Title: SciGA: A Comprehensive Dataset for Designing Graphical Abstracts in Academic Papers
Abstract:
Graphical Abstracts (GAs) play a crucial role in visually conveying the key findings of scientific papers. While recent research has increasingly incorporated visual materials such as Figure 1 as de facto GAs, their potential to enhance scientific communication remains largely unexplored. Moreover, designing effective GAs requires advanced visualization skills, creating a barrier to their widespread adoption. To tackle these challenges, we introduce SciGA-145k, a large-scale dataset comprising approximately 145,000 scientific papers and 1.14 million figures, explicitly designed for supporting GA selection and recommendation as well as facilitating research in automated GA generation. As a preliminary step toward GA design support, we define two tasks: 1) Intra-GA recommendation, which identifies figures within a given paper that are well-suited to serve as GAs, and 2) Inter-GA recommendation, which retrieves GAs from other papers to inspire the creation of new GAs. We provide reasonable baseline models for these tasks. Furthermore, we propose Confidence Adjusted top-1 ground truth Ratio (CAR), a novel recommendation metric that offers a fine-grained analysis of model behavior. CAR addresses limitations in traditional ranking-based metrics by considering cases where multiple figures within a paper, beyond the explicitly labeled GA, may also serve as GAs. By unifying these tasks and metrics, our SciGA-145k establishes a foundation for advancing visual scientific communication while contributing to the development of AI for Science.

Authors:Xiao Wang, Jingtao Jiang, Qiang Chen, Lan Chen, Lin Zhu, Yaowei Wang, Yonghong Tian, Jin Tang
Title: ESTR-CoT: Towards Explainable and Accurate Event Stream based Scene Text Recognition with Chain-of-Thought Reasoning
Abstract:
Event stream based scene text recognition is a newly arising research topic in recent years which performs better than the widely used RGB cameras in extremely challenging scenarios, especially the low illumination, fast motion. Existing works either adopt end-to-end encoder-decoder framework or large language models for enhanced recognition, however, they are still limited by the challenges of insufficient interpretability and weak contextual logical reasoning. In this work, we propose a novel chain-of-thought reasoning based event stream scene text recognition framework, termed ESTR-CoT. Specifically, we first adopt the vision encoder EVA-CLIP (ViT-G/14) to transform the input event stream into tokens and utilize a Llama tokenizer to encode the given generation prompt. A Q-former is used to align the vision token to the pre-trained large language model Vicuna-7B and output both the answer and chain-of-thought (CoT) reasoning process simultaneously. Our framework can be optimized using supervised fine-tuning in an end-to-end manner. In addition, we also propose a large-scale CoT dataset to train our framework via a three stage processing (i.e., generation, polish, and expert verification). This dataset provides a solid data foundation for the development of subsequent reasoning-based large models. Extensive experiments on three event stream STR benchmark datasets (i.e., EventSTR, WordArt*, IC15*) fully validated the effectiveness and interpretability of our proposed framework. The source code and pre-trained models will be released on https://github.com/Event-AHU/ESTR-CoT.

Authors:Yukang Cao, Chenyang Si, Jinghao Wang, Ziwei Liu
Title: FreeMorph: Tuning-Free Generalized Image Morphing with Diffusion Model
Abstract:
We present FreeMorph, the first tuning-free method for image morphing that accommodates inputs with different semantics or layouts. Unlike existing methods that rely on finetuning pre-trained diffusion models and are limited by time constraints and semantic/layout discrepancies, FreeMorph delivers high-fidelity image morphing without requiring per-instance training. Despite their efficiency and potential, tuning-free methods face challenges in maintaining high-quality results due to the non-linear nature of the multi-step denoising process and biases inherited from the pre-trained diffusion model. In this paper, we introduce FreeMorph to address these challenges by integrating two key innovations. 1) We first propose a guidance-aware spherical interpolation design that incorporates explicit guidance from the input images by modifying the self-attention modules, thereby addressing identity loss and ensuring directional transitions throughout the generated sequence. 2) We further introduce a step-oriented variation trend that blends self-attention modules derived from each input image to achieve controlled and consistent transitions that respect both inputs. Our extensive evaluations demonstrate that FreeMorph outperforms existing methods, being 10x ~ 50x faster and establishing a new state-of-the-art for image morphing.

Authors:Kwai Keye Team, Biao Yang, Bin Wen, Changyi Liu, Chenglong Chu, Chengru Song, Chongling Rao, Chuan Yi, Da Li, Dunju Zang, Fan Yang, Guorui Zhou, Hao Peng, Haojie Ding, Jiaming Huang, Jiangxia Cao, Jiankang Chen, Jingyun Hua, Jin Ouyang, Kaibing Chen, Kaiyu Jiang, Kaiyu Tang, Kun Gai, Shengnan Zhang, Siyang Mao, Sui Huang, Tianke Zhang, Tingting Gao, Wei Chen, Wei Yuan, Xiangyu Wu, Xiao Hu, Xingyu Lu, Yang Zhou, Yi-Fan Zhang, Yiping Yang, Yulong Chen, Zhenhua Wu, Zhenyu Li, Zhixin Ling, Ziming Li, Dehua Ma, Di Xu, Haixuan Gao, Hang Li, Jiawei Guo, Jing Wang, Lejian Ren, Muhao Wei, Qianqian Wang, Qigen Hu, Shiyao Wang, Tao Yu, Xinchen Luo, Yan Li, Yiming Liang, Yuhang Hu, Zeyi Lu, Zhuoran Yang, Zixing Zhang
Title: Kwai Keye-VL Technical Report
Abstract:
While Multimodal Large Language Models (MLLMs) demonstrate remarkable capabilities on static images, they often fall short in comprehending dynamic, information-dense short-form videos, a dominant medium in today's digital landscape. To bridge this gap, we introduce \textbf{Kwai Keye-VL}, an 8-billion-parameter multimodal foundation model engineered for leading-edge performance in short-video understanding while maintaining robust general-purpose vision-language abilities. The development of Keye-VL rests on two core pillars: a massive, high-quality dataset exceeding 600 billion tokens with a strong emphasis on video, and an innovative training recipe. This recipe features a four-stage pre-training process for solid vision-language alignment, followed by a meticulous two-phase post-training process. The first post-training stage enhances foundational capabilities like instruction following, while the second phase focuses on stimulating advanced reasoning. In this second phase, a key innovation is our five-mode ``cold-start'' data mixture, which includes ``thinking'', ``non-thinking'', ``auto-think'', ``think with image'', and high-quality video data. This mixture teaches the model to decide when and how to reason. Subsequent reinforcement learning (RL) and alignment steps further enhance these reasoning capabilities and correct abnormal model behaviors, such as repetitive outputs. To validate our approach, we conduct extensive evaluations, showing that Keye-VL achieves state-of-the-art results on public video benchmarks and remains highly competitive on general image-based tasks (Figure 1). Furthermore, we develop and release the \textbf{KC-MMBench}, a new benchmark tailored for real-world short-video scenarios, where Keye-VL shows a significant advantage.

Authors:Nan Chen, Mengqi Huang, Yihao Meng, Zhendong Mao
Title: LongAnimation: Long Animation Generation with Dynamic Global-Local Memory
Abstract:
Animation colorization is a crucial part of real animation industry production. Long animation colorization has high labor costs. Therefore, automated long animation colorization based on the video generation model has significant research value. Existing studies are limited to short-term colorization. These studies adopt a local paradigm, fusing overlapping features to achieve smooth transitions between local segments. However, the local paradigm neglects global information, failing to maintain long-term color consistency. In this study, we argue that ideal long-term color consistency can be achieved through a dynamic global-local paradigm, i.e., dynamically extracting global color-consistent features relevant to the current generation. Specifically, we propose LongAnimation, a novel framework, which mainly includes a SketchDiT, a Dynamic Global-Local Memory (DGLM), and a Color Consistency Reward. The SketchDiT captures hybrid reference features to support the DGLM module. The DGLM module employs a long video understanding model to dynamically compress global historical features and adaptively fuse them with the current generation features. To refine the color consistency, we introduce a Color Consistency Reward. During inference, we propose a color consistency fusion to smooth the video segment transition. Extensive experiments on both short-term (14 frames) and long-term (average 500 frames) animations show the effectiveness of LongAnimation in maintaining short-term and long-term color consistency for open-domain animation colorization task. The code can be found at https://cn-makers.github.io/long_animation_web/.

Authors:Yiming Ju, Jijin Hu, Zhengxiong Luo, Haoge Deng, hanyu Zhao, Li Du, Chengwei Wu, Donglin Hao, Xinlong Wang, Tengfei Pan
Title: CI-VID: A Coherent Interleaved Text-Video Dataset
Abstract:
Text-to-video (T2V) generation has recently attracted considerable attention, resulting in the development of numerous high-quality datasets that have propelled progress in this area. However, existing public datasets are primarily composed of isolated text-video (T-V) pairs and thus fail to support the modeling of coherent multi-clip video sequences. To address this limitation, we introduce CI-VID, a dataset that moves beyond isolated text-to-video (T2V) generation toward text-and-video-to-video (TV2V) generation, enabling models to produce coherent, multi-scene video sequences. CI-VID contains over 340,000 samples, each featuring a coherent sequence of video clips with text captions that capture both the individual content of each clip and the transitions between them, enabling visually and textually grounded generation. To further validate the effectiveness of CI-VID, we design a comprehensive, multi-dimensional benchmark incorporating human evaluation, VLM-based assessment, and similarity-based metrics. Experimental results demonstrate that models trained on CI-VID exhibit significant improvements in both accuracy and content consistency when generating video sequences. This facilitates the creation of story-driven content with smooth visual transitions and strong temporal coherence, underscoring the quality and practical utility of the CI-VID dataset We release the CI-VID dataset and the accompanying code for data construction and evaluation at: https://github.com/ymju-BAAI/CI-VID

Authors:Zhentan Zheng
Title: evMLP: An Efficient Event-Driven MLP Architecture for Vision
Abstract:
Deep neural networks have achieved remarkable results in computer vision tasks. In the early days, Convolutional Neural Networks (CNNs) were the mainstream architecture. In recent years, Vision Transformers (ViTs) have become increasingly popular. In addition, exploring applications of multi-layer perceptrons (MLPs) has provided new perspectives for research into vision model architectures. In this paper, we present evMLP accompanied by a simple event-driven local update mechanism. The proposed evMLP can independently process patches on images or feature maps via MLPs. We define changes between consecutive frames as "events". Under the event-driven local update mechanism, evMLP selectively processes patches where events occur. For sequential image data (e.g., video processing), this approach improves computational performance by avoiding redundant computations. Through ImageNet image classification experiments, evMLP attains accuracy competitive with state-of-the-art models. More significantly, experimental results on multiple video datasets demonstrate that evMLP reduces computational cost via its event-driven local update mechanism while maintaining output consistency with its non-event-driven baseline. The code and trained models are available at https://github.com/i-evi/evMLP.

Authors:Yaowei Li, Xiaoyu Li, Zhaoyang Zhang, Yuxuan Bian, Gan Liu, Xinyuan Li, Jiale Xu, Wenbo Hu, Yating Liu, Lingen Li, Jing Cai, Yuexian Zou, Yancheng He, Ying Shan
Title: IC-Custom: Diverse Image Customization via In-Context Learning
Abstract:
Image customization, a crucial technique for industrial media production, aims to generate content that is consistent with reference images. However, current approaches conventionally separate image customization into position-aware and position-free customization paradigms and lack a universal framework for diverse customization, limiting their applications across various scenarios. To overcome these limitations, we propose IC-Custom, a unified framework that seamlessly integrates position-aware and position-free image customization through in-context learning. IC-Custom concatenates reference images with target images to a polyptych, leveraging DiT's multi-modal attention mechanism for fine-grained token-level interactions. We propose the In-context Multi-Modal Attention (ICMA) mechanism, which employs learnable task-oriented register tokens and boundary-aware positional embeddings to enable the model to effectively handle diverse tasks and distinguish between inputs in polyptych configurations. To address the data gap, we curated a 12K identity-consistent dataset with 8K real-world and 4K high-quality synthetic samples, avoiding the overly glossy, oversaturated look typical of synthetic data. IC-Custom supports various industrial applications, including try-on, image insertion, and creative IP customization. Extensive evaluations on our proposed ProductBench and the publicly available DreamBench demonstrate that IC-Custom significantly outperforms community workflows, closed-source models, and state-of-the-art open-source approaches. IC-Custom achieves about 73\% higher human preference across identity consistency, harmony, and text alignment metrics, while training only 0.4\% of the original model parameters. Project page: https://liyaowei-stu.github.io/project/IC_Custom

Authors:Kunlun Xu, Fan Zhuo, Jiangmeng Li, Xu Zou, Jiahuan Zhou
Title: Self-Reinforcing Prototype Evolution with Dual-Knowledge Cooperation for Semi-Supervised Lifelong Person Re-Identification
Abstract:
Current lifelong person re-identification (LReID) methods predominantly rely on fully labeled data streams. However, in real-world scenarios where annotation resources are limited, a vast amount of unlabeled data coexists with scarce labeled samples, leading to the Semi-Supervised LReID (Semi-LReID) problem where LReID methods suffer severe performance degradation. Existing LReID methods, even when combined with semi-supervised strategies, suffer from limited long-term adaptation performance due to struggling with the noisy knowledge occurring during unlabeled data utilization. In this paper, we pioneer the investigation of Semi-LReID, introducing a novel Self-Reinforcing Prototype Evolution with Dual-Knowledge Cooperation framework (SPRED). Our key innovation lies in establishing a self-reinforcing cycle between dynamic prototype-guided pseudo-label generation and new-old knowledge collaborative purification to enhance the utilization of unlabeled data. Specifically, learnable identity prototypes are introduced to dynamically capture the identity distributions and generate high-quality pseudo-labels. Then, the dual-knowledge cooperation scheme integrates current model specialization and historical model generalization, refining noisy pseudo-labels. Through this cyclic design, reliable pseudo-labels are progressively mined to improve current-stage learning and ensure positive knowledge propagation over long-term learning. Experiments on the established Semi-LReID benchmarks show that our SPRED achieves state-of-the-art performance. Our source code is available at https://github.com/zhoujiahuan1991/ICCV2025-SPRED

Authors:Hailong Yan, Ao Li, Xiangtao Zhang, Zhe Liu, Zenglin Shi, Ce Zhu, Le Zhang
Title: MobileIE: An Extremely Lightweight and Effective ConvNet for Real-Time Image Enhancement on Mobile Devices
Abstract:
Recent advancements in deep neural networks have driven significant progress in image enhancement (IE). However, deploying deep learning models on resource-constrained platforms, such as mobile devices, remains challenging due to high computation and memory demands. To address these challenges and facilitate real-time IE on mobile, we introduce an extremely lightweight Convolutional Neural Network (CNN) framework with around 4K parameters. Our approach integrates reparameterization with an Incremental Weight Optimization strategy to ensure efficiency. Additionally, we enhance performance with a Feature Self-Transform module and a Hierarchical Dual-Path Attention mechanism, optimized with a Local Variance-Weighted loss. With this efficient framework, we are the first to achieve real-time IE inference at up to 1,100 frames per second (FPS) while delivering competitive image quality, achieving the best trade-off between speed and performance across multiple IE tasks. The code will be available at https://github.com/AVC2-UESTC/MobileIE.git.

Authors:Tyler Ward, Meredith K. Owen, O'Kira Coleman, Brian Noehren, Abdullah-Al-Zubaer Imran
Title: Autoadaptive Medical Segment Anything Model
Abstract:
Medical image segmentation is a key task in the imaging workflow, influencing many image-based decisions. Traditional, fully-supervised segmentation models rely on large amounts of labeled training data, typically obtained through manual annotation, which can be an expensive, time-consuming, and error-prone process. This signals a need for accurate, automatic, and annotation-efficient methods of training these models. We propose ADA-SAM (automated, domain-specific, and adaptive segment anything model), a novel multitask learning framework for medical image segmentation that leverages class activation maps from an auxiliary classifier to guide the predictions of the semi-supervised segmentation branch, which is based on the Segment Anything (SAM) framework. Additionally, our ADA-SAM model employs a novel gradient feedback mechanism to create a learnable connection between the segmentation and classification branches by using the segmentation gradients to guide and improve the classification predictions. We validate ADA-SAM on real-world clinical data collected during rehabilitation trials, and demonstrate that our proposed method outperforms both fully-supervised and semi-supervised baselines by double digits in limited label settings. Our code is available at: https://github.com/tbwa233/ADA-SAM.

Authors:Shengli Zhou, Jianuo Zhu, Qilin Huang, Fangjing Wang, Yanfu Zhang, Feng Zheng
Title: HCNQA: Enhancing 3D VQA with Hierarchical Concentration Narrowing Supervision
Abstract:
3D Visual Question-Answering (3D VQA) is pivotal for models to perceive the physical world and perform spatial reasoning. Answer-centric supervision is a commonly used training method for 3D VQA models. Many models that utilize this strategy have achieved promising results in 3D VQA tasks. However, the answer-centric approach only supervises the final output of models and allows models to develop reasoning pathways freely. The absence of supervision on the reasoning pathway enables the potential for developing superficial shortcuts through common patterns in question-answer pairs. Moreover, although slow-thinking methods advance large language models, they suffer from underthinking. To address these issues, we propose \textbf{HCNQA}, a 3D VQA model leveraging a hierarchical concentration narrowing supervision method. By mimicking the human process of gradually focusing from a broad area to specific objects while searching for answers, our method guides the model to perform three phases of concentration narrowing through hierarchical supervision. By supervising key checkpoints on a general reasoning pathway, our method can ensure the development of a rational and effective reasoning pathway. Extensive experimental results demonstrate that our method can effectively ensure that the model develops a rational reasoning pathway and performs better. The code is available at https://github.com/JianuoZhu/HCNQA.

Authors:Tianze Hua, Tian Yun, Ellie Pavlick
Title: How Do Vision-Language Models Process Conflicting Information Across Modalities?
Abstract:
AI models are increasingly required to be multimodal, integrating disparate input streams into a coherent state representation on which subsequent behaviors and actions can be based. This paper seeks to understand how such models behave when input streams present conflicting information. Focusing specifically on vision-language models, we provide inconsistent inputs (e.g., an image of a dog paired with the caption "A photo of a cat") and ask the model to report the information present in one of the specific modalities (e.g., "What does the caption say / What is in the image?"). We find that models often favor one modality over the other, e.g., reporting the image regardless of what the caption says, but that different models differ in which modality they favor. We find evidence that the behaviorally preferred modality is evident in the internal representational structure of the model, and that specific attention heads can restructure the representations to favor one modality over the other. Moreover, we find modality-agnostic "router heads" which appear to promote answers about the modality requested in the instruction, and which can be manipulated or transferred in order to improve performance across datasets and modalities. Together, the work provides essential steps towards identifying and controlling if and how models detect and resolve conflicting signals within complex multimodal environments.

Authors:Peng Zheng, Junke Wang, Yi Chang, Yizhou Yu, Rui Ma, Zuxuan Wu
Title: Rethinking Discrete Tokens: Treating Them as Conditions for Continuous Autoregressive Image Synthesis
Abstract:
Recent advances in large language models (LLMs) have spurred interests in encoding images as discrete tokens and leveraging autoregressive (AR) frameworks for visual generation. However, the quantization process in AR-based visual generation models inherently introduces information loss that degrades image fidelity. To mitigate this limitation, recent studies have explored to autoregressively predict continuous tokens. Unlike discrete tokens that reside in a structured and bounded space, continuous representations exist in an unbounded, high-dimensional space, making density estimation more challenging and increasing the risk of generating out-of-distribution artifacts. Based on the above findings, this work introduces DisCon (Discrete-Conditioned Continuous Autoregressive Model), a novel framework that reinterprets discrete tokens as conditional signals rather than generation targets. By modeling the conditional probability of continuous representations conditioned on discrete tokens, DisCon circumvents the optimization challenges of continuous token modeling while avoiding the information loss caused by quantization. DisCon achieves a gFID score of 1.38 on ImageNet 256$\times$256 generation, outperforming state-of-the-art autoregressive approaches by a clear margin. Project page: https://pengzheng0707.github.io/DisCon.

Authors:Ming Dai, Wenxuan Cheng, Jiang-jiang Liu, Sen Yang, Wenxiao Cai, Yanpeng Sun, Wankou Yang
Title: DeRIS: Decoupling Perception and Cognition for Enhanced Referring Image Segmentation through Loopback Synergy
Abstract:
Referring Image Segmentation (RIS) is a challenging task that aims to segment objects in an image based on natural language expressions. While prior studies have predominantly concentrated on improving vision-language interactions and achieving fine-grained localization, a systematic analysis of the fundamental bottlenecks in existing RIS frameworks remains underexplored. To bridge this gap, we propose DeRIS, a novel framework that decomposes RIS into two key components: perception and cognition. This modular decomposition facilitates a systematic analysis of the primary bottlenecks impeding RIS performance. Our findings reveal that the predominant limitation lies not in perceptual deficiencies, but in the insufficient multi-modal cognitive capacity of current models. To mitigate this, we propose a Loopback Synergy mechanism, which enhances the synergy between the perception and cognition modules, thereby enabling precise segmentation while simultaneously improving robust image-text comprehension. Additionally, we analyze and introduce a simple non-referent sample conversion data augmentation to address the long-tail distribution issue related to target existence judgement in general scenarios. Notably, DeRIS demonstrates inherent adaptability to both non- and multi-referents scenarios without requiring specialized architectural modifications, enhancing its general applicability. The codes and models are available at https://github.com/Dmmm1997/DeRIS.

Authors:Kai Chen, Ruiyuan Gao, Lanqing Hong, Hang Xu, Xu Jia, Holger Caesar, Dengxin Dai, Bingbing Liu, Dzmitry Tsishkou, Songcen Xu, Chunjing Xu, Qiang Xu, Huchuan Lu, Dit-Yan Yeung
Title: ECCV 2024 W-CODA: 1st Workshop on Multimodal Perception and Comprehension of Corner Cases in Autonomous Driving
Abstract:
In this paper, we present details of the 1st W-CODA workshop, held in conjunction with the ECCV 2024. W-CODA aims to explore next-generation solutions for autonomous driving corner cases, empowered by state-of-the-art multimodal perception and comprehension techniques. 5 Speakers from both academia and industry are invited to share their latest progress and opinions. We collect research papers and hold a dual-track challenge, including both corner case scene understanding and generation. As the pioneering effort, we will continuously bridge the gap between frontier autonomous driving techniques and fully intelligent, reliable self-driving agents robust towards corner cases.

Authors:Martine Hjelkrem-Tan, Marius Aasan, Gabriel Y. Arteaga, Adín Ramírez Rivera
Title: SPoT: Subpixel Placement of Tokens in Vision Transformers
Abstract:
Vision Transformers naturally accommodate sparsity, yet standard tokenization methods confine features to discrete patch grids. This constraint prevents models from fully exploiting sparse regimes, forcing awkward compromises. We propose Subpixel Placement of Tokens (SPoT), a novel tokenization strategy that positions tokens continuously within images, effectively sidestepping grid-based limitations. With our proposed oracle-guided search, we uncover substantial performance gains achievable with ideal subpixel token positioning, drastically reducing the number of tokens necessary for accurate predictions during inference. SPoT provides a new direction for flexible, efficient, and interpretable ViT architectures, redefining sparsity as a strategic advantage rather than an imposed limitation.

Authors:Boyuan Sun, Modi Jin, Bowen Yin, Qibin Hou
Title: Depth Anything at Any Condition
Abstract:
We present Depth Anything at Any Condition (DepthAnything-AC), a foundation monocular depth estimation (MDE) model capable of handling diverse environmental conditions. Previous foundation MDE models achieve impressive performance across general scenes but not perform well in complex open-world environments that involve challenging conditions, such as illumination variations, adverse weather, and sensor-induced distortions. To overcome the challenges of data scarcity and the inability of generating high-quality pseudo-labels from corrupted images, we propose an unsupervised consistency regularization finetuning paradigm that requires only a relatively small amount of unlabeled data. Furthermore, we propose the Spatial Distance Constraint to explicitly enforce the model to learn patch-level relative relationships, resulting in clearer semantic boundaries and more accurate details. Experimental results demonstrate the zero-shot capabilities of DepthAnything-AC across diverse benchmarks, including real-world adverse weather benchmarks, synthetic corruption benchmarks, and general benchmarks. Project Page: https://ghost233lism.github.io/depthanything-AC-page Code: https://github.com/HVision-NKU/DepthAnythingAC

Authors:Camille Billouard, Dawa Derksen, Alexandre Constantin, Bruno Vallet
Title: Tile and Slide : A New Framework for Scaling NeRF from Local to Global 3D Earth Observation
Abstract:
Neural Radiance Fields (NeRF) have recently emerged as a paradigm for 3D reconstruction from multiview satellite imagery. However, state-of-the-art NeRF methods are typically constrained to small scenes due to the memory footprint during training, which we study in this paper. Previous work on large-scale NeRFs palliate this by dividing the scene into NeRFs. This paper introduces Snake-NeRF, a framework that scales to large scenes. Our out-of-core method eliminates the need to load all images and networks simultaneously, and operates on a single device. We achieve this by dividing the region of interest into NeRFs that 3D tile without overlap. Importantly, we crop the images with overlap to ensure each NeRFs is trained with all the necessary pixels. We introduce a novel $2\times 2$ 3D tile progression strategy and segmented sampler, which together prevent 3D reconstruction errors along the tile edges. Our experiments conclude that large satellite images can effectively be processed with linear time complexity, on a single GPU, and without compromise in quality.

Authors:Yuxiao Wang, Yu Lei, Zhenao Wei, Weiying Xue, Xinyu Jiang, Nan Zhuang, Qi Liu
Title: Prompt Guidance and Human Proximal Perception for HOT Prediction with Regional Joint Loss
Abstract:
The task of Human-Object conTact (HOT) detection involves identifying the specific areas of the human body that are touching objects. Nevertheless, current models are restricted to just one type of image, often leading to too much segmentation in areas with little interaction, and struggling to maintain category consistency within specific regions. To tackle this issue, a HOT framework, termed \textbf{P3HOT}, is proposed, which blends \textbf{P}rompt guidance and human \textbf{P}roximal \textbf{P}erception. To begin with, we utilize a semantic-driven prompt mechanism to direct the network's attention towards the relevant regions based on the correlation between image and text. Then a human proximal perception mechanism is employed to dynamically perceive key depth range around the human, using learnable parameters to effectively eliminate regions where interactions are not expected. Calculating depth resolves the uncertainty of the overlap between humans and objects in a 2D perspective, providing a quasi-3D viewpoint. Moreover, a Regional Joint Loss (RJLoss) has been created as a new loss to inhibit abnormal categories in the same area. A new evaluation metric called ``AD-Acc.'' is introduced to address the shortcomings of existing methods in addressing negative samples. Comprehensive experimental results demonstrate that our approach achieves state-of-the-art performance in four metrics across two benchmark datasets. Specifically, our model achieves an improvement of \textbf{0.7}$\uparrow$, \textbf{2.0}$\uparrow$, \textbf{1.6}$\uparrow$, and \textbf{11.0}$\uparrow$ in SC-Acc., mIoU, wIoU, and AD-Acc. metrics, respectively, on the HOT-Annotated dataset. The sources code are available at https://github.com/YuxiaoWang-AI/P3HOT.

Authors:Xu Zhang, Ming Lu, Yan Chen, Zhan Ma
Title: Perception-Oriented Latent Coding for High-Performance Compressed Domain Semantic Inference
Abstract:
In recent years, compressed domain semantic inference has primarily relied on learned image coding models optimized for mean squared error (MSE). However, MSE-oriented optimization tends to yield latent spaces with limited semantic richness, which hinders effective semantic inference in downstream tasks. Moreover, achieving high performance with these models often requires fine-tuning the entire vision model, which is computationally intensive, especially for large models. To address these problems, we introduce Perception-Oriented Latent Coding (POLC), an approach that enriches the semantic content of latent features for high-performance compressed domain semantic inference. With the semantically rich latent space, POLC requires only a plug-and-play adapter for fine-tuning, significantly reducing the parameter count compared to previous MSE-oriented methods. Experimental results demonstrate that POLC achieves rate-perception performance comparable to state-of-the-art generative image coding methods while markedly enhancing performance in vision tasks, with minimal fine-tuning overhead. Code is available at https://github.com/NJUVISION/POLC.

Authors:Yue-Jiang Dong, Wang Zhao, Jiale Xu, Ying Shan, Song-Hai Zhang
Title: DepthSync: Diffusion Guidance-Based Depth Synchronization for Scale- and Geometry-Consistent Video Depth Estimation
Abstract:
Diffusion-based video depth estimation methods have achieved remarkable success with strong generalization ability. However, predicting depth for long videos remains challenging. Existing methods typically split videos into overlapping sliding windows, leading to accumulated scale discrepancies across different windows, particularly as the number of windows increases. Additionally, these methods rely solely on 2D diffusion priors, overlooking the inherent 3D geometric structure of video depths, which results in geometrically inconsistent predictions. In this paper, we propose DepthSync, a novel, training-free framework using diffusion guidance to achieve scale- and geometry-consistent depth predictions for long videos. Specifically, we introduce scale guidance to synchronize the depth scale across windows and geometry guidance to enforce geometric alignment within windows based on the inherent 3D constraints in video depths. These two terms work synergistically, steering the denoising process toward consistent depth predictions. Experiments on various datasets validate the effectiveness of our method in producing depth estimates with improved scale and geometry consistency, particularly for long videos.

Authors:Youngjin Oh, Junhyeong Kwon, Keuntek Lee, Nam Ik Cho
Title: Towards Controllable Real Image Denoising with Camera Parameters
Abstract:
Recent deep learning-based image denoising methods have shown impressive performance; however, many lack the flexibility to adjust the denoising strength based on the noise levels, camera settings, and user preferences. In this paper, we introduce a new controllable denoising framework that adaptively removes noise from images by utilizing information from camera parameters. Specifically, we focus on ISO, shutter speed, and F-number, which are closely related to noise levels. We convert these selected parameters into a vector to control and enhance the performance of the denoising network. Experimental results show that our method seamlessly adds controllability to standard denoising neural networks and improves their performance. Code is available at https://github.com/OBAKSA/CPADNet.

Authors:Bryan Constantine Sadihin, Michael Hua Wang, Shei Pern Chua, Hang Su
Title: SketchColour: Channel Concat Guided DiT-based Sketch-to-Colour Pipeline for 2D Animation
Abstract:
The production of high-quality 2D animation is highly labor-intensive process, as animators are currently required to draw and color a large number of frames by hand. We present SketchColour, the first sketch-to-colour pipeline for 2D animation built on a diffusion transformer (DiT) backbone. By replacing the conventional U-Net denoiser with a DiT-style architecture and injecting sketch information via lightweight channel-concatenation adapters accompanied with LoRA finetuning, our method natively integrates conditioning without the parameter and memory bloat of a duplicated ControlNet, greatly reducing parameter count and GPU memory usage. Evaluated on the SAKUGA dataset, SketchColour outperforms previous state-of-the-art video colourization methods across all metrics, despite using only half the training data of competing models. Our approach produces temporally coherent animations with minimal artifacts such as colour bleeding or object deformation. Our code is available at: https://bconstantine.github.io/SketchColour .

Authors:Hao Wang, Keyan Hu, Xin Guo, Haifeng Li, Chao Tao
Title: A Gift from the Integration of Discriminative and Diffusion-based Generative Learning: Boundary Refinement Remote Sensing Semantic Segmentation
Abstract:
Remote sensing semantic segmentation must address both what the ground objects are within an image and where they are located. Consequently, segmentation models must ensure not only the semantic correctness of large-scale patches (low-frequency information) but also the precise localization of boundaries between patches (high-frequency information). However, most existing approaches rely heavily on discriminative learning, which excels at capturing low-frequency features, while overlooking its inherent limitations in learning high-frequency features for semantic segmentation. Recent studies have revealed that diffusion generative models excel at generating high-frequency details. Our theoretical analysis confirms that the diffusion denoising process significantly enhances the model's ability to learn high-frequency features; however, we also observe that these models exhibit insufficient semantic inference for low-frequency features when guided solely by the original image. Therefore, we integrate the strengths of both discriminative and generative learning, proposing the Integration of Discriminative and diffusion-based Generative learning for Boundary Refinement (IDGBR) framework. The framework first generates a coarse segmentation map using a discriminative backbone model. This map and the original image are fed into a conditioning guidance network to jointly learn a guidance representation subsequently leveraged by an iterative denoising diffusion process refining the coarse segmentation. Extensive experiments across five remote sensing semantic segmentation datasets (binary and multi-class segmentation) confirm our framework's capability of consistent boundary refinement for coarse results from diverse discriminative architectures. The source code will be available at https://github.com/KeyanHu-git/IDGBR.

Authors:Robert Aufschläger, Youssef Shoeb, Azarm Nowzad, Michael Heigl, Fabian Bally, Martin Schramm
Title: Following the Clues: Experiments on Person Re-ID using Cross-Modal Intelligence
Abstract:
The collection and release of street-level recordings as Open Data play a vital role in advancing autonomous driving systems and AI research. However, these datasets pose significant privacy risks, particularly for pedestrians, due to the presence of Personally Identifiable Information (PII) that extends beyond biometric traits such as faces. In this paper, we present cRID, a novel cross-modal framework combining Large Vision-Language Models, Graph Attention Networks, and representation learning to detect textual describable clues of PII and enhance person re-identification (Re-ID). Our approach focuses on identifying and leveraging interpretable features, enabling the detection of semantically meaningful PII beyond low-level appearance cues. We conduct a systematic evaluation of PII presence in person image datasets. Our experiments show improved performance in practical cross-dataset Re-ID scenarios, notably from Market-1501 to CUHK03-np (detected), highlighting the framework's practical utility. Code is available at https://github.com/RAufschlaeger/cRID.

Authors:Jimyeong Kim, Jungwon Park, Yeji Song, Nojun Kwak, Wonjong Rhee
Title: ReFlex: Text-Guided Editing of Real Images in Rectified Flow via Mid-Step Feature Extraction and Attention Adaptation
Abstract:
Rectified Flow text-to-image models surpass diffusion models in image quality and text alignment, but adapting ReFlow for real-image editing remains challenging. We propose a new real-image editing method for ReFlow by analyzing the intermediate representations of multimodal transformer blocks and identifying three key features. To extract these features from real images with sufficient structural preservation, we leverage mid-step latent, which is inverted only up to the mid-step. We then adapt attention during injection to improve editability and enhance alignment to the target text. Our method is training-free, requires no user-provided mask, and can be applied even without a source prompt. Extensive experiments on two benchmarks with nine baselines demonstrate its superior performance over prior methods, further validated by human evaluations confirming a strong user preference for our approach.

Authors:Chentao Shen, Ding Pan, Mingyu Mei, Zaixing He, Xinyue Zhao
Title: Active Control Points-based 6DoF Pose Tracking for Industrial Metal Objects
Abstract:
Visual pose tracking is playing an increasingly vital role in industrial contexts in recent years. However, the pose tracking for industrial metal objects remains a challenging task especially in the real world-environments, due to the reflection characteristic of metal objects. To address this issue, we propose a novel 6DoF pose tracking method based on active control points. The method uses image control points to generate edge feature for optimization actively instead of 6DoF pose-based rendering, and serve them as optimization variables. We also introduce an optimal control point regression method to improve robustness. The proposed tracking method performs effectively in both dataset evaluation and real world tasks, providing a viable solution for real-time tracking of industrial metal objects. Our source code is made publicly available at: https://github.com/tomatoma00/ACPTracking.

Authors:Jonáš Herec, Vít Růžička, Rado Pitoňák
Title: Optimizing Methane Detection On Board Satellites: Speed, Accuracy, and Low-Power Solutions for Resource-Constrained Hardware
Abstract:
Methane is a potent greenhouse gas, and detecting its leaks early via hyperspectral satellite imagery can help mitigate climate change. Meanwhile, many existing missions operate in manual tasking regimes only, thus missing potential events of interest. To overcome slow downlink rates cost-effectively, onboard detection is a viable solution. However, traditional methane enhancement methods are too computationally demanding for resource-limited onboard hardware. This work accelerates methane detection by focusing on efficient, low-power algorithms. We test fast target detection methods (ACE, CEM) that have not been previously used for methane detection and propose a Mag1c-SAS - a significantly faster variant of the current state-of-the-art algorithm for methane detection: Mag1c. To explore their true detection potential, we integrate them with a machine learning model (U-Net, LinkNet). Our results identify two promising candidates (Mag1c-SAS and CEM), both acceptably accurate for the detection of strong plumes and computationally efficient enough for onboard deployment: one optimized more for accuracy, the other more for speed, achieving up to ~100x and ~230x faster computation than original Mag1c on resource-limited hardware. Additionally, we propose and evaluate three band selection strategies. One of them can outperform the method traditionally used in the field while using fewer channels, leading to even faster processing without compromising accuracy. This research lays the foundation for future advancements in onboard methane detection with minimal hardware requirements, improving timely data delivery. The produced code, data, and models are open-sourced and can be accessed from https://github.com/zaitra/methane-filters-benchmark.

Authors:Ge Wu, Shen Zhang, Ruijing Shi, Shanghua Gao, Zhenyuan Chen, Lei Wang, Zhaowei Chen, Hongcheng Gao, Yao Tang, Jian Yang, Ming-Ming Cheng, Xiang Li
Title: Representation Entanglement for Generation:Training Diffusion Transformers Is Much Easier Than You Think
Abstract:
REPA and its variants effectively mitigate training challenges in diffusion models by incorporating external visual representations from pretrained models, through alignment between the noisy hidden projections of denoising networks and foundational clean image representations. We argue that the external alignment, which is absent during the entire denoising inference process, falls short of fully harnessing the potential of discriminative representations. In this work, we propose a straightforward method called Representation Entanglement for Generation (REG), which entangles low-level image latents with a single high-level class token from pretrained foundation models for denoising. REG acquires the capability to produce coherent image-class pairs directly from pure noise, substantially improving both generation quality and training efficiency. This is accomplished with negligible additional inference overhead, requiring only one single additional token for denoising (<0.5\% increase in FLOPs and latency). The inference process concurrently reconstructs both image latents and their corresponding global semantics, where the acquired semantic knowledge actively guides and enhances the image generation process. On ImageNet 256$\times$256, SiT-XL/2 + REG demonstrates remarkable convergence acceleration, achieving $\textbf{63}\times$ and $\textbf{23}\times$ faster training than SiT-XL/2 and SiT-XL/2 + REPA, respectively. More impressively, SiT-L/2 + REG trained for merely 400K iterations outperforms SiT-XL/2 + REPA trained for 4M iterations ($\textbf{10}\times$ longer). Code is available at: https://github.com/Martinser/REG.

Authors:Shaocheng Yan, Pengcheng Shi, Zhenjun Zhao, Kaixin Wang, Kuang Cao, Ji Wu, Jiayuan Li
Title: TurboReg: TurboClique for Robust and Efficient Point Cloud Registration
Abstract:
Robust estimation is essential in correspondence-based Point Cloud Registration (PCR). Existing methods using maximal clique search in compatibility graphs achieve high recall but suffer from exponential time complexity, limiting their use in time-sensitive applications. To address this challenge, we propose a fast and robust estimator, TurboReg, built upon a novel lightweight clique, TurboClique, and a highly parallelizable Pivot-Guided Search (PGS) algorithm. First, we define the TurboClique as a 3-clique within a highly-constrained compatibility graph. The lightweight nature of the 3-clique allows for efficient parallel searching, and the highly-constrained compatibility graph ensures robust spatial consistency for stable transformation estimation. Next, PGS selects matching pairs with high SC$^2$ scores as pivots, effectively guiding the search toward TurboCliques with higher inlier ratios. Moreover, the PGS algorithm has linear time complexity and is significantly more efficient than the maximal clique search with exponential time complexity. Extensive experiments show that TurboReg achieves state-of-the-art performance across multiple real-world datasets, with substantial speed improvements. For example, on the 3DMatch+FCGF dataset, TurboReg (1K) operates $208.22\times$ faster than 3DMAC while also achieving higher recall. Our code is accessible at \href{https://github.com/Laka-3DV/TurboReg}{\texttt{TurboReg}}.

Authors:Chen Sun, Haiyang Sun, Zhiqing Guo, Yunfeng Diao, Liejun Wang, Dan Ma, Gaobo Yang, Keqin Li
Title: DiffMark: Diffusion-based Robust Watermark Against Deepfakes
Abstract:
Deepfakes pose significant security and privacy threats through malicious facial manipulations. While robust watermarking can aid in authenticity verification and source tracking, existing methods often lack the sufficient robustness against Deepfake manipulations. Diffusion models have demonstrated remarkable performance in image generation, enabling the seamless fusion of watermark with image during generation. In this study, we propose a novel robust watermarking framework based on diffusion model, called DiffMark. By modifying the training and sampling scheme, we take the facial image and watermark as conditions to guide the diffusion model to progressively denoise and generate corresponding watermarked image. In the construction of facial condition, we weight the facial image by a timestep-dependent factor that gradually reduces the guidance intensity with the decrease of noise, thus better adapting to the sampling process of diffusion model. To achieve the fusion of watermark condition, we introduce a cross information fusion (CIF) module that leverages a learnable embedding table to adaptively extract watermark features and integrates them with image features via cross-attention. To enhance the robustness of the watermark against Deepfake manipulations, we integrate a frozen autoencoder during training phase to simulate Deepfake manipulations. Additionally, we introduce Deepfake-resistant guidance that employs specific Deepfake model to adversarially guide the diffusion sampling process to generate more robust watermarked images. Experimental results demonstrate the effectiveness of the proposed DiffMark on typical Deepfakes. Our code will be available at https://github.com/vpsg-research/DiffMark.

Authors:Kuniaki Saito, Donghyun Kim, Kwanyong Park, Atsushi Hashimoto, Yoshitaka Ushiku
Title: CaptionSmiths: Flexibly Controlling Language Pattern in Image Captioning
Abstract:
An image captioning model flexibly switching its language pattern, e.g., descriptiveness and length, should be useful since it can be applied to diverse applications. However, despite the dramatic improvement in generative vision-language models, fine-grained control over the properties of generated captions is not easy due to two reasons: (i) existing models are not given the properties as a condition during training and (ii) existing models cannot smoothly transition its language pattern from one state to the other. Given this challenge, we propose a new approach, CaptionSmiths, to acquire a single captioning model that can handle diverse language patterns. First, our approach quantifies three properties of each caption, length, descriptiveness, and uniqueness of a word, as continuous scalar values, without human annotation. Given the values, we represent the conditioning via interpolation between two endpoint vectors corresponding to the extreme states, e.g., one for a very short caption and one for a very long caption. Empirical results demonstrate that the resulting model can smoothly change the properties of the output captions and show higher lexical alignment than baselines. For instance, CaptionSmiths reduces the error in controlling caption length by 506\% despite better lexical alignment. Code will be available on https://github.com/omron-sinicx/captionsmiths.

Authors:Huanwen Liang, Jingxian Xu, Yuanji Zhang, Yuhao Huang, Yuhan Zhang, Xin Yang, Ran Li, Xuedong Deng, Yanjun Liu, Guowei Tao, Yun Wu, Sheng Zhao, Xinru Gao, Dong Ni
Title: Medical-Knowledge Driven Multiple Instance Learning for Classifying Severe Abdominal Anomalies on Prenatal Ultrasound
Abstract:
Fetal abdominal malformations are serious congenital anomalies that require accurate diagnosis to guide pregnancy management and reduce mortality. Although AI has demonstrated significant potential in medical diagnosis, its application to prenatal abdominal anomalies remains limited. Most existing studies focus on image-level classification and rely on standard plane localization, placing less emphasis on case-level diagnosis. In this paper, we develop a case-level multiple instance learning (MIL)-based method, free of standard plane localization, for classifying fetal abdominal anomalies in prenatal ultrasound. Our contribution is three-fold. First, we adopt a mixture-of-attention-experts module (MoAE) to weight different attention heads for various planes. Secondly, we propose a medical-knowledge-driven feature selection module (MFS) to align image features with medical knowledge, performing self-supervised image token selection at the case-level. Finally, we propose a prompt-based prototype learning (PPL) to enhance the MFS. Extensively validated on a large prenatal abdominal ultrasound dataset containing 2,419 cases, with a total of 24,748 images and 6 categories, our proposed method outperforms the state-of-the-art competitors. Codes are available at:https://github.com/LL-AC/AAcls.

Authors:Langyu Wang, Bingke Zhu, Yingying Chen, Yiyuan Zhang, Ming Tang, Jinqiao Wang
Title: MUG: Pseudo Labeling Augmented Audio-Visual Mamba Network for Audio-Visual Video Parsing
Abstract:
The weakly-supervised audio-visual video parsing (AVVP) aims to predict all modality-specific events and locate their temporal boundaries. Despite significant progress, due to the limitations of the weakly-supervised and the deficiencies of the model architecture, existing methods are lacking in simultaneously improving both the segment-level prediction and the event-level prediction. In this work, we propose a audio-visual Mamba network with pseudo labeling aUGmentation (MUG) for emphasising the uniqueness of each segment and excluding the noise interference from the alternate modalities. Specifically, we annotate some of the pseudo-labels based on previous work. Using unimodal pseudo-labels, we perform cross-modal random combinations to generate new data, which can enhance the model's ability to parse various segment-level event combinations. For feature processing and interaction, we employ a audio-visual mamba network. The AV-Mamba enhances the ability to perceive different segments and excludes additional modal noise while sharing similar modal information. Our extensive experiments demonstrate that MUG improves state-of-the-art results on LLP dataset in all metrics (e.g,, gains of 2.1% and 1.2% in terms of visual Segment-level and audio Segment-level metrics). Our code is available at https://github.com/WangLY136/MUG.

Authors:Tianrui Lou, Xiaojun Jia, Siyuan Liang, Jiawei Liang, Ming Zhang, Yanjun Xiao, Xiaochun Cao
Title: 3D Gaussian Splatting Driven Multi-View Robust Physical Adversarial Camouflage Generation
Abstract:
Physical adversarial attack methods expose the vulnerabilities of deep neural networks and pose a significant threat to safety-critical scenarios such as autonomous driving. Camouflage-based physical attack is a more promising approach compared to the patch-based attack, offering stronger adversarial effectiveness in complex physical environments. However, most prior work relies on mesh priors of the target object and virtual environments constructed by simulators, which are time-consuming to obtain and inevitably differ from the real world. Moreover, due to the limitations of the backgrounds in training images, previous methods often fail to produce multi-view robust adversarial camouflage and tend to fall into sub-optimal solutions. Due to these reasons, prior work lacks adversarial effectiveness and robustness across diverse viewpoints and physical environments. We propose a physical attack framework based on 3D Gaussian Splatting (3DGS), named PGA, which provides rapid and precise reconstruction with few images, along with photo-realistic rendering capabilities. Our framework further enhances cross-view robustness and adversarial effectiveness by preventing mutual and self-occlusion among Gaussians and employing a min-max optimization approach that adjusts the imaging background of each viewpoint, helping the algorithm filter out non-robust adversarial features. Extensive experiments validate the effectiveness and superiority of PGA. Our code is available at:https://github.com/TRLou/PGA.

Authors:Cuong Le, Huy-Phuong Le, Duc Le, Minh-Thien Duong, Van-Binh Nguyen, My-Ha Le
Title: Physics-informed Ground Reaction Dynamics from Human Motion Capture
Abstract:
Body dynamics are crucial information for the analysis of human motions in important research fields, ranging from biomechanics, sports science to computer vision and graphics. Modern approaches collect the body dynamics, external reactive force specifically, via force plates, synchronizing with human motion capture data, and learn to estimate the dynamics from a black-box deep learning model. Being specialized devices, force plates can only be installed in laboratory setups, imposing a significant limitation on the learning of human dynamics. To this end, we propose a novel method for estimating human ground reaction dynamics directly from the more reliable motion capture data with physics laws and computational simulation as constrains. We introduce a highly accurate and robust method for computing ground reaction forces from motion capture data using Euler's integration scheme and PD algorithm. The physics-based reactive forces are used to inform the learning model about the physics-informed motion dynamics thus improving the estimation accuracy. The proposed approach was tested on the GroundLink dataset, outperforming the baseline model on: 1) the ground reaction force estimation accuracy compared to the force plates measurement; and 2) our simulated root trajectory precision. The implementation code is available at https://github.com/cuongle1206/Phys-GRD

Authors:Dong Liang, Xingyu Qiu, Yuzhen Li, Wei Wang, Kuanquan Wang, Suyu Dong, Gongning Luo
Title: Structure and Smoothness Constrained Dual Networks for MR Bias Field Correction
Abstract:
MR imaging techniques are of great benefit to disease diagnosis. However, due to the limitation of MR devices, significant intensity inhomogeneity often exists in imaging results, which impedes both qualitative and quantitative medical analysis. Recently, several unsupervised deep learning-based models have been proposed for MR image improvement. However, these models merely concentrate on global appearance learning, and neglect constraints from image structures and smoothness of bias field, leading to distorted corrected results. In this paper, novel structure and smoothness constrained dual networks, named S2DNets, are proposed aiming to self-supervised bias field correction. S2DNets introduce piece-wise structural constraints and smoothness of bias field for network training to effectively remove non-uniform intensity and retain much more structural details. Extensive experiments executed on both clinical and simulated MR datasets show that the proposed model outperforms other conventional and deep learning-based models. In addition to comparison on visual metrics, downstream MR image segmentation tasks are also used to evaluate the impact of the proposed model. The source code is available at: https://github.com/LeongDong/S2DNets}{https://github.com/LeongDong/S2DNets.

Authors:Worameth Chinchuthakun, Pakkapon Phongthawee, Amit Raj, Varun Jampani, Pramook Khungurn, Supasorn Suwajanakorn
Title: DiffusionLight-Turbo: Accelerated Light Probes for Free via Single-Pass Chrome Ball Inpainting
Abstract:
We introduce a simple yet effective technique for estimating lighting from a single low-dynamic-range (LDR) image by reframing the task as a chrome ball inpainting problem. This approach leverages a pre-trained diffusion model, Stable Diffusion XL, to overcome the generalization failures of existing methods that rely on limited HDR panorama datasets. While conceptually simple, the task remains challenging because diffusion models often insert incorrect or inconsistent content and cannot readily generate chrome balls in HDR format. Our analysis reveals that the inpainting process is highly sensitive to the initial noise in the diffusion process, occasionally resulting in unrealistic outputs. To address this, we first introduce DiffusionLight, which uses iterative inpainting to compute a median chrome ball from multiple outputs to serve as a stable, low-frequency lighting prior that guides the generation of a high-quality final result. To generate high-dynamic-range (HDR) light probes, an Exposure LoRA is fine-tuned to create LDR images at multiple exposure values, which are then merged. While effective, DiffusionLight is time-intensive, requiring approximately 30 minutes per estimation. To reduce this overhead, we introduce DiffusionLight-Turbo, which reduces the runtime to about 30 seconds with minimal quality loss. This 60x speedup is achieved by training a Turbo LoRA to directly predict the averaged chrome balls from the iterative process. Inference is further streamlined into a single denoising pass using a LoRA swapping technique. Experimental results that show our method produces convincing light estimates across diverse settings and demonstrates superior generalization to in-the-wild scenarios. Our code is available at https://diffusionlight.github.io/turbo

Authors:Ahmad Chaddad, Jihao Peng, Yihang Wu
Title: Classification based deep learning models for lung cancer and disease using medical images
Abstract:
The use of deep learning (DL) in medical image analysis has significantly improved the ability to predict lung cancer. In this study, we introduce a novel deep convolutional neural network (CNN) model, named ResNet+, which is based on the established ResNet framework. This model is specifically designed to improve the prediction of lung cancer and diseases using the images. To address the challenge of missing feature information that occurs during the downsampling process in CNNs, we integrate the ResNet-D module, a variant designed to enhance feature extraction capabilities by modifying the downsampling layers, into the traditional ResNet model. Furthermore, a convolutional attention module was incorporated into the bottleneck layers to enhance model generalization by allowing the network to focus on relevant regions of the input images. We evaluated the proposed model using five public datasets, comprising lung cancer (LC2500 $n$=3183, IQ-OTH/NCCD $n$=1336, and LCC $n$=25000 images) and lung disease (ChestXray $n$=5856, and COVIDx-CT $n$=425024 images). To address class imbalance, we used data augmentation techniques to artificially increase the representation of underrepresented classes in the training dataset. The experimental results show that ResNet+ model demonstrated remarkable accuracy/F1, reaching 98.14/98.14\% on the LC25000 dataset and 99.25/99.13\% on the IQ-OTH/NCCD dataset. Furthermore, the ResNet+ model saved computational cost compared to the original ResNet series in predicting lung cancer images. The proposed model outperformed the baseline models on publicly available datasets, achieving better performance metrics. Our codes are publicly available at https://github.com/AIPMLab/Graduation-2024/tree/main/Peng.

Authors:Zhuo Su, Li Liu, Matthias Müller, Jiehua Zhang, Diana Wofk, Ming-Ming Cheng, Matti Pietikäinen
Title: Rapid Salient Object Detection with Difference Convolutional Neural Networks
Abstract:
This paper addresses the challenge of deploying salient object detection (SOD) on resource-constrained devices with real-time performance. While recent advances in deep neural networks have improved SOD, existing top-leading models are computationally expensive. We propose an efficient network design that combines traditional wisdom on SOD and the representation power of modern CNNs. Like biologically-inspired classical SOD methods relying on computing contrast cues to determine saliency of image regions, our model leverages Pixel Difference Convolutions (PDCs) to encode the feature contrasts. Differently, PDCs are incorporated in a CNN architecture so that the valuable contrast cues are extracted from rich feature maps. For efficiency, we introduce a difference convolution reparameterization (DCR) strategy that embeds PDCs into standard convolutions, eliminating computation and parameters at inference. Additionally, we introduce SpatioTemporal Difference Convolution (STDC) for video SOD, enhancing the standard 3D convolution with spatiotemporal contrast capture. Our models, SDNet for image SOD and STDNet for video SOD, achieve significant improvements in efficiency-accuracy trade-offs. On a Jetson Orin device, our models with $<$ 1M parameters operate at 46 FPS and 150 FPS on streamed images and videos, surpassing the second-best lightweight models in our experiments by more than $2\times$ and $3\times$ in speed with superior accuracy. Code will be available at https://github.com/hellozhuo/stdnet.git.

Authors:Yating Wang, Haoyi Zhu, Mingyu Liu, Jiange Yang, Hao-Shu Fang, Tong He
Title: VQ-VLA: Improving Vision-Language-Action Models via Scaling Vector-Quantized Action Tokenizers
Abstract:
In this paper, we introduce an innovative vector quantization based action tokenizer built upon the largest-scale action trajectory dataset to date, leveraging over 100 times more data than previous approaches. This extensive dataset enables our tokenizer to capture rich spatiotemporal dynamics, resulting in a model that not only accelerates inference but also generates smoother and more coherent action outputs. Once trained, the tokenizer can be seamlessly adapted to a wide range of downstream tasks in a zero-shot manner, from short-horizon reactive behaviors to long-horizon planning. A key finding of our work is that the domain gap between synthetic and real action trajectories is marginal, allowing us to effectively utilize a vast amount of synthetic data during training without compromising real-world performance. To validate our approach, we conducted extensive experiments in both simulated environments and on real robotic platforms. The results demonstrate that as the volume of synthetic trajectory data increases, the performance of our tokenizer on downstream tasks improves significantly-most notably, achieving up to a 30% higher success rate on two real-world tasks in long-horizon scenarios. These findings highlight the potential of our action tokenizer as a robust and scalable solution for real-time embodied intelligence systems, paving the way for more efficient and reliable robotic control in diverse application domains.Project website: https://xiaoxiao0406.github.io/vqvla.github.io

Authors:Zhe Kong, Le Li, Yong Zhang, Feng Gao, Shaoshu Yang, Tao Wang, Kaihao Zhang, Zhuoliang Kang, Xiaoming Wei, Guanying Chen, Wenhan Luo
Title: DAM-VSR: Disentanglement of Appearance and Motion for Video Super-Resolution
Abstract:
Real-world video super-resolution (VSR) presents significant challenges due to complex and unpredictable degradations. Although some recent methods utilize image diffusion models for VSR and have shown improved detail generation capabilities, they still struggle to produce temporally consistent frames. We attempt to use Stable Video Diffusion (SVD) combined with ControlNet to address this issue. However, due to the intrinsic image-animation characteristics of SVD, it is challenging to generate fine details using only low-quality videos. To tackle this problem, we propose DAM-VSR, an appearance and motion disentanglement framework for VSR. This framework disentangles VSR into appearance enhancement and motion control problems. Specifically, appearance enhancement is achieved through reference image super-resolution, while motion control is achieved through video ControlNet. This disentanglement fully leverages the generative prior of video diffusion models and the detail generation capabilities of image super-resolution models. Furthermore, equipped with the proposed motion-aligned bidirectional sampling strategy, DAM-VSR can conduct VSR on longer input videos. DAM-VSR achieves state-of-the-art performance on real-world data and AIGC data, demonstrating its powerful detail generation capabilities.

Authors:V Team, Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng, Ji Qi, Junhui Ji, Lihang Pan, Shuaiqi Duan, Weihan Wang, Yan Wang, Yean Cheng, Zehai He, Zhe Su, Zhen Yang, Ziyang Pan, Aohan Zeng, Baoxu Wang, Bin Chen, Boyan Shi, Changyu Pang, Chenhui Zhang, Da Yin, Fan Yang, Guoqing Chen, Jiazheng Xu, Jiale Zhu, Jiali Chen, Jing Chen, Jinhao Chen, Jinghao Lin, Jinjiang Wang, Junjie Chen, Leqi Lei, Letian Gong, Leyi Pan, Mingdao Liu, Mingde Xu, Mingzhi Zhang, Qinkai Zheng, Sheng Yang, Shi Zhong, Shiyu Huang, Shuyuan Zhao, Siyan Xue, Shangqin Tu, Shengbiao Meng, Tianshu Zhang, Tianwei Luo, Tianxiang Hao, Tianyu Tong, Wenkai Li, Wei Jia, Xiao Liu, Xiaohan Zhang, Xin Lyu, Xinyue Fan, Xuancheng Huang, Yanling Wang, Yadong Xue, Yanfeng Wang, Yanzi Wang, Yifan An, Yifan Du, Yiming Shi, Yiheng Huang, Yilin Niu, Yuan Wang, Yuanchang Yue, Yuchen Li, Yutao Zhang, Yuting Wang, Yu Wang, Yuxuan Zhang, Zhao Xue, Zhenyu Hou, Zhengxiao Du, Zihan Wang, Peng Zhang, Debing Liu, Bin Xu, Juanzi Li, Minlie Huang, Yuxiao Dong, Jie Tang
Title: GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
Abstract:
We present GLM-4.1V-Thinking and GLM-4.5V, a family of vision-language models (VLMs) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document interpretation. In a comprehensive evaluation across 42 public benchmarks, GLM-4.5V achieves state-of-the-art performance on nearly all tasks among open-source models of similar size, and demonstrates competitive or even superior results compared to closed-source models such as Gemini-2.5-Flash on challenging tasks including Coding and GUI Agents. Meanwhile, the smaller GLM-4.1V-9B-Thinking remains highly competitive-achieving superior results to the much larger Qwen2.5-VL-72B on 29 benchmarks. We open-source both GLM-4.1V-9B-Thinking and GLM-4.5V. Code, models and more information are released at https://github.com/zai-org/GLM-V.

Authors:Jack Nugent, Siyang Wu, Zeyu Ma, Beining Han, Meenal Parakh, Abhishek Joshi, Lingjie Mei, Alexander Raistrick, Xinyuan Li, Jia Deng
Title: Evaluating Robustness of Monocular Depth Estimation with Procedural Scene Perturbations
Abstract:
Recent years have witnessed substantial progress on monocular depth estimation, particularly as measured by the success of large models on standard benchmarks. However, performance on standard benchmarks does not offer a complete assessment, because most evaluate accuracy but not robustness. In this work, we introduce PDE (Procedural Depth Evaluation), a new benchmark which enables systematic robustness evaluation. PDE uses procedural generation to create 3D scenes that test robustness to various controlled perturbations, including object, camera, material and lighting changes. Our analysis yields interesting findings on what perturbations are challenging for state-of-the-art depth models, which we hope will inform further research. Code and data are available at https://github.com/princeton-vl/proc-depth-eval.

Authors:Yuheng Du, Sheng Yang, Lingxuan Wang, Zhenghua Hou, Chengying Cai, Zhitao Tan, Mingxia Chen, Shi-Sheng Huang, Qiang Li
Title: RTMap: Real-Time Recursive Mapping with Change Detection and Localization
Abstract:
While recent online HD mapping methods relieve burdened offline pipelines and solve map freshness, they remain limited by perceptual inaccuracies, occlusion in dense traffic, and an inability to fuse multi-agent observations. We propose RTMap to enhance these single-traversal methods by persistently crowdsourcing a multi-traversal HD map as a self-evolutional memory. On onboard agents, RTMap simultaneously addresses three core challenges in an end-to-end fashion: (1) Uncertainty-aware positional modeling for HD map elements, (2) probabilistic-aware localization w.r.t. the crowdsourced prior-map, and (3) real-time detection for possible road structural changes. Experiments on several public autonomous driving datasets demonstrate our solid performance on both the prior-aided map quality and the localization accuracy, demonstrating our effectiveness of robustly serving downstream prediction and planning modules while gradually improving the accuracy and freshness of the crowdsourced prior-map asynchronously. Our source-code will be made publicly available at https://github.com/CN-ADLab/RTMap.

Authors:Zifu Wan, Ce Zhang, Silong Yong, Martin Q. Ma, Simon Stepputtis, Louis-Philippe Morency, Deva Ramanan, Katia Sycara, Yaqi Xie
Title: ONLY: One-Layer Intervention Sufficiently Mitigates Hallucinations in Large Vision-Language Models
Abstract:
Recent Large Vision-Language Models (LVLMs) have introduced a new paradigm for understanding and reasoning about image input through textual responses. Although they have achieved remarkable performance across a range of multi-modal tasks, they face the persistent challenge of hallucination, which introduces practical weaknesses and raises concerns about their reliable deployment in real-world applications. Existing work has explored contrastive decoding approaches to mitigate this issue, where the output of the original LVLM is compared and contrasted with that of a perturbed version. However, these methods require two or more queries that slow down LVLM response generation, making them less suitable for real-time applications. To overcome this limitation, we propose ONLY, a training-free decoding approach that requires only a single query and a one-layer intervention during decoding, enabling efficient real-time deployment. Specifically, we enhance textual outputs by selectively amplifying crucial textual information using a text-to-visual entropy ratio for each token. Extensive experimental results demonstrate that our proposed ONLY consistently outperforms state-of-the-art methods across various benchmarks while requiring minimal implementation effort and computational cost. Code is available at https://github.com/zifuwan/ONLY.

Authors:Wei Li, Jiaman Tang, Yang Li, Beihao Xia, Ligang Tan, Hongmao Qin
Title: UAVD-Mamba: Deformable Token Fusion Vision Mamba for Multimodal UAV Detection
Abstract:
Unmanned Aerial Vehicle (UAV) object detection has been widely used in traffic management, agriculture, emergency rescue, etc. However, it faces significant challenges, including occlusions, small object sizes, and irregular shapes. These challenges highlight the necessity for a robust and efficient multimodal UAV object detection method. Mamba has demonstrated considerable potential in multimodal image fusion. Leveraging this, we propose UAVD-Mamba, a multimodal UAV object detection framework based on Mamba architectures. To improve geometric adaptability, we propose the Deformable Token Mamba Block (DTMB) to generate deformable tokens by incorporating adaptive patches from deformable convolutions alongside normal patches from normal convolutions, which serve as the inputs to the Mamba Block. To optimize the multimodal feature complementarity, we design two separate DTMBs for the RGB and infrared (IR) modalities, with the outputs from both DTMBs integrated into the Mamba Block for feature extraction and into the Fusion Mamba Block for feature fusion. Additionally, to improve multiscale object detection, especially for small objects, we stack four DTMBs at different scales to produce multiscale feature representations, which are then sent to the Detection Neck for Mamba (DNM). The DNM module, inspired by the YOLO series, includes modifications to the SPPF and C3K2 of YOLOv11 to better handle the multiscale features. In particular, we employ cross-enhanced spatial attention before the DTMB and cross-channel attention after the Fusion Mamba Block to extract more discriminative features. Experimental results on the DroneVehicle dataset show that our method outperforms the baseline OAFA method by 3.6% in the mAP metric. Codes will be released at https://github.com/GreatPlum-hnu/UAVD-Mamba.git.

Authors:Yasser El Jarida, Youssef Iraqi, Loubna Mekouar
Title: Instant Particle Size Distribution Measurement Using CNNs Trained on Synthetic Data
Abstract:
Accurate particle size distribution (PSD) measurement is important in industries such as mining, pharmaceuticals, and fertilizer manufacturing, significantly influencing product quality and operational efficiency. Traditional PSD methods like sieve analysis and laser diffraction are manual, time-consuming, and limited by particle overlap. Recent developments in convolutional neural networks (CNNs) enable automated, real-time PSD estimation directly from particle images. In this work, we present a CNN-based methodology trained on realistic synthetic particle imagery generated using Blender's advanced rendering capabilities. Synthetic data sets using this method can replicate various industrial scenarios by systematically varying particle shapes, textures, lighting, and spatial arrangements that closely resemble the actual configurations. We evaluated three CNN-based architectures, ResNet-50, InceptionV3, and EfficientNet-B0, for predicting critical PSD parameters (d10, d50, d90). Results demonstrated comparable accuracy across models, with EfficientNet-B0 achieving the best computational efficiency suitable for real-time industrial deployment. This approach shows the effectiveness of realistic synthetic data for robust CNN training, which offers significant potential for automated industrial PSD monitoring. The code is released at : https://github.com/YasserElj/Synthetic-Granular-Gen

Authors:Minye Shao, Xingyu Miao, Haoran Duan, Zeyu Wang, Jingkun Chen, Yawen Huang, Xian Wu, Jingjing Deng, Yang Long, Yefeng Zheng
Title: TRACE: Temporally Reliable Anatomically-Conditioned 3D CT Generation with Enhanced Efficiency
Abstract:
3D medical image generation is essential for data augmentation and patient privacy, calling for reliable and efficient models suited for clinical practice. However, current methods suffer from limited anatomical fidelity, restricted axial length, and substantial computational cost, placing them beyond reach for regions with limited resources and infrastructure. We introduce TRACE, a framework that generates 3D medical images with spatiotemporal alignment using a 2D multimodal-conditioned diffusion approach. TRACE models sequential 2D slices as video frame pairs, combining segmentation priors and radiology reports for anatomical alignment, incorporating optical flow to sustain temporal coherence. During inference, an overlapping-frame strategy links frame pairs into a flexible length sequence, reconstructed into a spatiotemporally and anatomically aligned 3D volume. Experimental results demonstrate that TRACE effectively balances computational efficiency with preserving anatomical fidelity and spatiotemporal consistency. Code is available at: https://github.com/VinyehShaw/TRACE.

Authors:Hendric Voss, Stefan Kopp
Title: JAX-IK: Real-Time Inverse Kinematics for Generating Multi-Constrained Movements of Virtual Human Characters
Abstract:
Generating accurate and realistic virtual human movements in real-time is of high importance for a variety of applications in computer graphics, interactive virtual environments, robotics, and biomechanics. This paper introduces a novel real-time inverse kinematics (IK) solver specifically designed for realistic human-like movement generation. Leveraging the automatic differentiation and just-in-time compilation of TensorFlow, the proposed solver efficiently handles complex articulated human skeletons with high degrees of freedom. By treating forward and inverse kinematics as differentiable operations, our method effectively addresses common challenges such as error accumulation and complicated joint limits in multi-constrained problems, which are critical for realistic human motion modeling. We demonstrate the solver's effectiveness on the SMPLX human skeleton model, evaluating its performance against widely used iterative-based IK algorithms, like Cyclic Coordinate Descent (CCD), FABRIK, and the nonlinear optimization algorithm IPOPT. Our experiments cover both simple end-effector tasks and sophisticated, multi-constrained problems with realistic joint limits. Results indicate that our IK solver achieves real-time performance, exhibiting rapid convergence, minimal computational overhead per iteration, and improved success rates compared to existing methods. The project code is available at https://github.com/hvoss-techfak/JAX-IK

Authors:Huaqiu Li, Yong Wang, Tongwen Huang, Hailang Huang, Haoqian Wang, Xiangxiang Chu
Title: LD-RPS: Zero-Shot Unified Image Restoration via Latent Diffusion Recurrent Posterior Sampling
Abstract:
Unified image restoration is a significantly challenging task in low-level vision. Existing methods either make tailored designs for specific tasks, limiting their generalizability across various types of degradation, or rely on training with paired datasets, thereby suffering from closed-set constraints. To address these issues, we propose a novel, dataset-free, and unified approach through recurrent posterior sampling utilizing a pretrained latent diffusion model. Our method incorporates the multimodal understanding model to provide sematic priors for the generative model under a task-blind condition. Furthermore, it utilizes a lightweight module to align the degraded input with the generated preference of the diffusion model, and employs recurrent refinement for posterior sampling. Extensive experiments demonstrate that our method outperforms state-of-the-art methods, validating its effectiveness and robustness. Our code and data are available at https://github.com/AMAP-ML/LD-RPS.

Authors:Xiao Zhang, Fei Wei, Yong Wang, Wenda Zhao, Feiyi Li, Xiangxiang Chu
Title: UPRE: Zero-Shot Domain Adaptation for Object Detection via Unified Prompt and Representation Enhancement
Abstract:
Zero-shot domain adaptation (ZSDA) presents substantial challenges due to the lack of images in the target domain. Previous approaches leverage Vision-Language Models (VLMs) to tackle this challenge, exploiting their zero-shot learning capabilities. However, these methods primarily address domain distribution shifts and overlook the misalignment between the detection task and VLMs, which rely on manually crafted prompts. To overcome these limitations, we propose the unified prompt and representation enhancement (UPRE) framework, which jointly optimizes both textual prompts and visual representations. Specifically, our approach introduces a multi-view domain prompt that combines linguistic domain priors with detection-specific knowledge, and a visual representation enhancement module that produces domain style variations. Furthermore, we introduce multi-level enhancement strategies, including relative domain distance and positive-negative separation, which align multi-modal representations at the image level and capture diverse visual representations at the instance level, respectively. Extensive experiments conducted on nine benchmark datasets demonstrate the superior performance of our framework in ZSDA detection scenarios. Code is available at https://github.com/AMAP-ML/UPRE.

Authors:Zeming Chen, Hang Zhao
Title: BEV-VAE: Multi-view Image Generation with Spatial Consistency for Autonomous Driving
Abstract:
Multi-view image generation in autonomous driving demands consistent 3D scene understanding across camera views. Most existing methods treat this problem as a 2D image set generation task, lacking explicit 3D modeling. However, we argue that a structured representation is crucial for scene generation, especially for autonomous driving applications. This paper proposes BEV-VAE for consistent and controllable view synthesis. BEV-VAE first trains a multi-view image variational autoencoder for a compact and unified BEV latent space and then generates the scene with a latent diffusion transformer. BEV-VAE supports arbitrary view generation given camera configurations, and optionally 3D layouts. Experiments on nuScenes and Argoverse 2 (AV2) show strong performance in both 3D consistent reconstruction and generation. The code is available at: https://github.com/Czm369/bev-vae.

Authors:Qihang Fan, Huaibo Huang, Yuang Ai, Ran He
Title: Rectifying Magnitude Neglect in Linear Attention
Abstract:
As the core operator of Transformers, Softmax Attention exhibits excellent global modeling capabilities. However, its quadratic complexity limits its applicability to vision tasks. In contrast, Linear Attention shares a similar formulation with Softmax Attention while achieving linear complexity, enabling efficient global information modeling. Nevertheless, Linear Attention suffers from a significant performance degradation compared to standard Softmax Attention. In this paper, we analyze the underlying causes of this issue based on the formulation of Linear Attention. We find that, unlike Softmax Attention, Linear Attention entirely disregards the magnitude information of the Query. This prevents the attention score distribution from dynamically adapting as the Query scales. As a result, despite its structural similarity to Softmax Attention, Linear Attention exhibits a significantly different attention score distribution. Based on this observation, we propose Magnitude-Aware Linear Attention (MALA), which modifies the computation of Linear Attention to fully incorporate the Query's magnitude. This adjustment allows MALA to generate an attention score distribution that closely resembles Softmax Attention while exhibiting a more well-balanced structure. We evaluate the effectiveness of MALA on multiple tasks, including image classification, object detection, instance segmentation, semantic segmentation, natural language processing, speech recognition, and image generation. Our MALA achieves strong results on all of these tasks. Code will be available at https://github.com/qhfan/MALA

Authors:Jan Nikolas Morshuis, Christian Schlarmann, Thomas Küstner, Christian F. Baumgartner, Matthias Hein
Title: Mind the Detail: Uncovering Clinically Relevant Image Details in Accelerated MRI with Semantically Diverse Reconstructions
Abstract:
In recent years, accelerated MRI reconstruction based on deep learning has led to significant improvements in image quality with impressive results for high acceleration factors. However, from a clinical perspective image quality is only secondary; much more important is that all clinically relevant information is preserved in the reconstruction from heavily undersampled data. In this paper, we show that existing techniques, even when considering resampling for diffusion-based reconstruction, can fail to reconstruct small and rare pathologies, thus leading to potentially wrong diagnosis decisions (false negatives). To uncover the potentially missing clinical information we propose ``Semantically Diverse Reconstructions'' (\SDR), a method which, given an original reconstruction, generates novel reconstructions with enhanced semantic variability while all of them are fully consistent with the measured data. To evaluate \SDR automatically we train an object detector on the fastMRI+ dataset. We show that \SDR significantly reduces the chance of false-negative diagnoses (higher recall) and improves mean average precision compared to the original reconstructions. The code is available on https://github.com/NikolasMorshuis/SDR

Authors:Rusi Chen, Yuanting Yang, Jiezhi Yao, Hongning Song, Ji Zhang, Yongsong Zhou, Yuhao Huang, Ronghao Yang, Dan Jia, Yuhan Zhang, Xing Tao, Haoran Dou, Qing Zhou, Xin Yang, Dong Ni
Title: MTCNet: Motion and Topology Consistency Guided Learning for Mitral Valve Segmentationin 4D Ultrasound
Abstract:
Mitral regurgitation is one of the most prevalent cardiac disorders. Four-dimensional (4D) ultrasound has emerged as the primary imaging modality for assessing dynamic valvular morphology. However, 4D mitral valve (MV) analysis remains challenging due to limited phase annotations, severe motion artifacts, and poor imaging quality. Yet, the absence of inter-phase dependency in existing methods hinders 4D MV analysis. To bridge this gap, we propose a Motion-Topology guided consistency network (MTCNet) for accurate 4D MV ultrasound segmentation in semi-supervised learning (SSL). MTCNet requires only sparse end-diastolic and end-systolic annotations. First, we design a cross-phase motion-guided consistency learning strategy, utilizing a bi-directional attention memory bank to propagate spatio-temporal features. This enables MTCNet to achieve excellent performance both per- and inter-phase. Second, we devise a novel topology-guided correlation regularization that explores physical prior knowledge to maintain anatomically plausible. Therefore, MTCNet can effectively leverage structural correspondence between labeled and unlabeled phases. Extensive evaluations on the first largest 4D MV dataset, with 1408 phases from 160 patients, show that MTCNet performs superior cross-phase consistency compared to other advanced methods (Dice: 87.30%, HD: 1.75mm). Both the code and the dataset are available at https://github.com/crs524/MTCNet.

Authors:Siyuan Yao, Rui Zhu, Ziqi Wang, Wenqi Ren, Yanyang Yan, Xiaochun Cao
Title: UMDATrack: Unified Multi-Domain Adaptive Tracking Under Adverse Weather Conditions
Abstract:
Visual object tracking has gained promising progress in past decades. Most of the existing approaches focus on learning target representation in well-conditioned daytime data, while for the unconstrained real-world scenarios with adverse weather conditions, e.g. nighttime or foggy environment, the tremendous domain shift leads to significant performance degradation. In this paper, we propose UMDATrack, which is capable of maintaining high-quality target state prediction under various adverse weather conditions within a unified domain adaptation framework. Specifically, we first use a controllable scenario generator to synthesize a small amount of unlabeled videos (less than 2% frames in source daytime datasets) in multiple weather conditions under the guidance of different text prompts. Afterwards, we design a simple yet effective domain-customized adapter (DCA), allowing the target objects' representation to rapidly adapt to various weather conditions without redundant model updating. Furthermore, to enhance the localization consistency between source and target domains, we propose a target-aware confidence alignment module (TCA) following optimal transport theorem. Extensive experiments demonstrate that UMDATrack can surpass existing advanced visual trackers and lead new state-of-the-art performance by a significant margin. Our code is available at https://github.com/Z-Z188/UMDATrack.

Authors:Yupeng Zheng, Pengxuan Yang, Zebin Xing, Qichao Zhang, Yuhang Zheng, Yinfeng Gao, Pengfei Li, Teng Zhang, Zhongpu Xia, Peng Jia, Dongbin Zhao
Title: World4Drive: End-to-End Autonomous Driving via Intention-aware Physical Latent World Model
Abstract:
End-to-end autonomous driving directly generates planning trajectories from raw sensor data, yet it typically relies on costly perception supervision to extract scene information. A critical research challenge arises: constructing an informative driving world model to enable perception annotation-free, end-to-end planning via self-supervised learning. In this paper, we present World4Drive, an end-to-end autonomous driving framework that employs vision foundation models to build latent world models for generating and evaluating multi-modal planning trajectories. Specifically, World4Drive first extracts scene features, including driving intention and world latent representations enriched with spatial-semantic priors provided by vision foundation models. It then generates multi-modal planning trajectories based on current scene features and driving intentions and predicts multiple intention-driven future states within the latent space. Finally, it introduces a world model selector module to evaluate and select the best trajectory. We achieve perception annotation-free, end-to-end planning through self-supervised alignment between actual future observations and predicted observations reconstructed from the latent space. World4Drive achieves state-of-the-art performance without manual perception annotations on both the open-loop nuScenes and closed-loop NavSim benchmarks, demonstrating an 18.1\% relative reduction in L2 error, 46.7% lower collision rate, and 3.75 faster training convergence. Codes will be accessed at https://github.com/ucaszyp/World4Drive.

Authors:Luming Zhao, Jingwen Xuan, Jiamin Lou, Yonghui Yu, Wenwu Yang
Title: Context-Aware Academic Emotion Dataset and Benchmark
Abstract:
Academic emotion analysis plays a crucial role in evaluating students' engagement and cognitive states during the learning process. This paper addresses the challenge of automatically recognizing academic emotions through facial expressions in real-world learning environments. While significant progress has been made in facial expression recognition for basic emotions, academic emotion recognition remains underexplored, largely due to the scarcity of publicly available datasets. To bridge this gap, we introduce RAER, a novel dataset comprising approximately 2,700 video clips collected from around 140 students in diverse, natural learning contexts such as classrooms, libraries, laboratories, and dormitories, covering both classroom sessions and individual study. Each clip was annotated independently by approximately ten annotators using two distinct sets of academic emotion labels with varying granularity, enhancing annotation consistency and reliability. To our knowledge, RAER is the first dataset capturing diverse natural learning scenarios. Observing that annotators naturally consider context cues-such as whether a student is looking at a phone or reading a book-alongside facial expressions, we propose CLIP-CAER (CLIP-based Context-aware Academic Emotion Recognition). Our method utilizes learnable text prompts within the vision-language model CLIP to effectively integrate facial expression and context cues from videos. Experimental results demonstrate that CLIP-CAER substantially outperforms state-of-the-art video-based facial expression recognition methods, which are primarily designed for basic emotions, emphasizing the crucial role of context in accurately recognizing academic emotions. Project page: https://zgsfer.github.io/CAER

Authors:Hao Tang, Zhiqing Guo, Liejun Wang, Chao Liu
Title: Similarity Memory Prior is All You Need for Medical Image Segmentation
Abstract:
In recent years, it has been found that "grandmother cells" in the primary visual cortex (V1) of macaques can directly recognize visual input with complex shapes. This inspires us to examine the value of these cells in promoting the research of medical image segmentation. In this paper, we design a Similarity Memory Prior Network (Sim-MPNet) for medical image segmentation. Specifically, we propose a Dynamic Memory Weights-Loss Attention (DMW-LA), which matches and remembers the category features of specific lesions or organs in medical images through the similarity memory prior in the prototype memory bank, thus helping the network to learn subtle texture changes between categories. DMW-LA also dynamically updates the similarity memory prior in reverse through Weight-Loss Dynamic (W-LD) update strategy, effectively assisting the network directly extract category features. In addition, we propose the Double-Similarity Global Internal Enhancement Module (DS-GIM) to deeply explore the internal differences in the feature distribution of input data through cosine similarity and euclidean distance. Extensive experiments on four public datasets show that Sim-MPNet has better segmentation performance than other state-of-the-art methods. Our code is available on https://github.com/vpsg-research/Sim-MPNet.

Authors:Kai Zhou, Shuhai Zhang, Zeng You, Jinwu Hu, Mingkui Tan, Fei Liu
Title: Zero-Shot Skeleton-Based Action Recognition With Prototype-Guided Feature Alignment
Abstract:
Zero-shot skeleton-based action recognition aims to classify unseen skeleton-based human actions without prior exposure to such categories during training. This task is extremely challenging due to the difficulty in generalizing from known to unknown actions. Previous studies typically use two-stage training: pre-training skeleton encoders on seen action categories using cross-entropy loss and then aligning pre-extracted skeleton and text features, enabling knowledge transfer to unseen classes through skeleton-text alignment and language models' generalization. However, their efficacy is hindered by 1) insufficient discrimination for skeleton features, as the fixed skeleton encoder fails to capture necessary alignment information for effective skeleton-text alignment; 2) the neglect of alignment bias between skeleton and unseen text features during testing. To this end, we propose a prototype-guided feature alignment paradigm for zero-shot skeleton-based action recognition, termed PGFA. Specifically, we develop an end-to-end cross-modal contrastive training framework to improve skeleton-text alignment, ensuring sufficient discrimination for skeleton features. Additionally, we introduce a prototype-guided text feature alignment strategy to mitigate the adverse impact of the distribution discrepancy during testing. We provide a theoretical analysis to support our prototype-guided text feature alignment strategy and empirically evaluate our overall PGFA on three well-known datasets. Compared with the top competitor SMIE method, our PGFA achieves absolute accuracy improvements of 22.96%, 12.53%, and 18.54% on the NTU-60, NTU-120, and PKU-MMD datasets, respectively.

Authors:Djamahl Etchegaray, Yuxia Fu, Zi Huang, Yadan Luo
Title: Box-QAymo: Box-Referring VQA Dataset for Autonomous Driving
Abstract:
Interpretable communication is essential for safe and trustworthy autonomous driving, yet current vision-language models (VLMs) often operate under idealized assumptions and struggle to capture user intent in real-world scenarios. Existing driving-oriented VQA datasets are limited to full-scene descriptions or waypoint prediction, preventing the assessment of whether VLMs can respond to localized user-driven queries. We introduce Box-QAymo, a box-referring dataset and benchmark designed to both evaluate and finetune VLMs on spatial and temporal reasoning over user-specified objects. Users express intent by drawing bounding boxes, offering a fast and intuitive interface for focused queries in complex scenes. Specifically, we propose a hierarchical evaluation protocol that begins with binary sanity-check questions to assess basic model capacities, and progresses to (1) attribute prediction for box-referred objects, (2) motion understanding of target instances, and (3) spatiotemporal motion reasoning over inter-object dynamics across frames. To support this, we crowd-sourced fine-grained object classes and visual attributes that reflect the complexity drivers encounter, and extract object trajectories to construct temporally grounded QA pairs. Rigorous quality control through negative sampling, temporal consistency checks, and difficulty-aware balancing guarantee dataset robustness and diversity. Our comprehensive evaluation reveals significant limitations in current VLMs when queried about perception questions, highlighting the gap in achieving real-world performance. This work provides a foundation for developing more robust and interpretable autonomous driving systems that can communicate effectively with users under real-world conditions. Project page and dataset are available at https://djamahl99.github.io/qaymo-pages/.

Authors:Ruize Cui, Jiaan Zhang, Jialun Pei, Kai Wang, Pheng-Ann Heng, Jing Qin
Title: Topology-Constrained Learning for Efficient Laparoscopic Liver Landmark Detection
Abstract:
Liver landmarks provide crucial anatomical guidance to the surgeon during laparoscopic liver surgery to minimize surgical risk. However, the tubular structural properties of landmarks and dynamic intraoperative deformations pose significant challenges for automatic landmark detection. In this study, we introduce TopoNet, a novel topology-constrained learning framework for laparoscopic liver landmark detection. Our framework adopts a snake-CNN dual-path encoder to simultaneously capture detailed RGB texture information and depth-informed topological structures. Meanwhile, we propose a boundary-aware topology fusion (BTF) module, which adaptively merges RGB-D features to enhance edge perception while preserving global topology. Additionally, a topological constraint loss function is embedded, which contains a center-line constraint loss and a topological persistence loss to ensure homotopy equivalence between predictions and labels. Extensive experiments on L3D and P2ILF datasets demonstrate that TopoNet achieves outstanding accuracy and computational complexity, highlighting the potential for clinical applications in laparoscopic liver surgery. Our code will be available at https://github.com/cuiruize/TopoNet.

Authors:Haoran Lou, Chunxiao Fan, Ziyan Liu, Yuexin Wu, Xinliang Wang
Title: LLaVA-SP: Enhancing Visual Representation with Visual Spatial Tokens for MLLMs
Abstract:
The architecture of multimodal large language models (MLLMs) commonly connects a vision encoder, often based on CLIP-ViT, to a large language model. While CLIP-ViT works well for capturing global image features, it struggles to model local relationships between adjacent patches, leading to weaker visual representation, which in turn affects the detailed understanding ability of MLLMs. To solve this, we propose LLaVA-SP, which only adds six spatial visual tokens to the original visual tokens to enhance the visual representation. Our approach offers three key advantages: 1) We propose a novel Projector, which uses convolutional kernels to derive visual spatial tokens from ViT patch features, simulating two visual spatial ordering approaches: "from central region to global" and "from abstract to specific". Then, a cross-attention mechanism is applied to fuse fine-grained visual information, enriching the overall visual representation. 2) We present two model variants: LLaVA-SP-Cropping, which focuses on detail features through progressive cropping, and LLaVA-SP-Pooling, which captures global semantics through adaptive pooling, enabling the model to handle diverse visual understanding tasks. 3) Extensive experiments show that LLaVA-SP, fine-tuned with LoRA, achieves significant performance improvements across various multimodal benchmarks, outperforming the state-of-the-art LLaVA-1.5 model in multiple tasks with nearly identical inference latency. The code and models are available at https://github.com/CnFaker/LLaVA-SP.

Authors:Yongzhen Wang, Liangliang Chen, Bingwen Hu, Heng Liu, Xiao-Ping Zhang, Mingqiang Wei
Title: Laplace-Mamba: Laplace Frequency Prior-Guided Mamba-CNN Fusion Network for Image Dehazing
Abstract:
Recent progress in image restoration has underscored Spatial State Models (SSMs) as powerful tools for modeling long-range dependencies, owing to their appealing linear complexity and computational efficiency. However, SSM-based approaches exhibit limitations in reconstructing localized structures and tend to be less effective when handling high-dimensional data, frequently resulting in suboptimal recovery of fine image features. To tackle these challenges, we introduce Laplace-Mamba, a novel framework that integrates Laplace frequency prior with a hybrid Mamba-CNN architecture for efficient image dehazing. Leveraging the Laplace decomposition, the image is disentangled into low-frequency components capturing global texture and high-frequency components representing edges and fine details. This decomposition enables specialized processing via dual parallel pathways: the low-frequency branch employs SSMs for global context modeling, while the high-frequency branch utilizes CNNs to refine local structural details, effectively addressing diverse haze scenarios. Notably, the Laplace transformation facilitates information-preserving downsampling of low-frequency components in accordance with the Nyquist theory, thereby significantly improving computational efficiency. Extensive evaluations across multiple benchmarks demonstrate that our method outperforms state-of-the-art approaches in both restoration quality and efficiency. The source code and pretrained models are available at https://github.com/yz-wang/Laplace-Mamba.

Authors:Zijian Chen, Yuan Tian, Yuze Sun, Wei Sun, Zicheng Zhang, Weisi Lin, Guangtao Zhai, Wenjun Zhang
Title: Just Noticeable Difference for Large Multimodal Models
Abstract:
Just noticeable difference (JND), the minimum change that the human visual system (HVS) can perceive, has been studied for decades. Although recent work has extended this line of research into machine vision, there has been a scarcity of studies systematically exploring its perceptual boundaries across multiple tasks and stimulus types, particularly in the current era of rapidly advancing large multimodal models (LMMs), where studying the multifaceted capabilities of models has become a mainstream focus. Moreover, the perceptual defects of LMMs are not investigated thoroughly, resulting in potential security issues and suboptimal response efficiency. In this paper, we take an initial attempt and demonstrate that there exist significant visual blind spots in current LMMs. To systemically quantify this characteristic, we propose a new concept, {\bf LMM-JND}, together with its determination pipeline. Targeting uncovering the behavior commonalities in HVS-aligned visual perception tasks, we delve into several LMM families and construct a large-scale dataset, named VPA-JND, which contains 21.5k reference images with over 489k stimuli across 12 distortion types, to facilitate LMM-JND studies. VPA-JND exposes areas where state-of-the-art LMMs, including GPT-4o and the InternVL2.5 series, struggle with basic comparison queries and fall significantly short of human-level visual performance. We further explore the effects of vision and language backbones and find a notable correlation between their design philosophy that may instruct the future refinement of LMMs for their visual acuity. Together, our research underscores the significance of LMM-JND as a unique perspective for studying LMMs, and predictable LMM-JND is crucial for security concerns. This work will be available at https://github.com/zijianchen98/LMM-JND.

Authors:Yaofei Duan, Yuhao Huang, Xin Yang, Luyi Han, Xinyu Xie, Zhiyuan Zhu, Ping He, Ka-Hou Chan, Ligang Cui, Sio-Kei Im, Dong Ni, Tao Tan
Title: ADAptation: Reconstruction-based Unsupervised Active Learning for Breast Ultrasound Diagnosis
Abstract:
Deep learning-based diagnostic models often suffer performance drops due to distribution shifts between training (source) and test (target) domains. Collecting and labeling sufficient target domain data for model retraining represents an optimal solution, yet is limited by time and scarce resources. Active learning (AL) offers an efficient approach to reduce annotation costs while maintaining performance, but struggles to handle the challenge posed by distribution variations across different datasets. In this study, we propose a novel unsupervised Active learning framework for Domain Adaptation, named ADAptation, which efficiently selects informative samples from multi-domain data pools under limited annotation budget. As a fundamental step, our method first utilizes the distribution homogenization capabilities of diffusion models to bridge cross-dataset gaps by translating target images into source-domain style. We then introduce two key innovations: (a) a hypersphere-constrained contrastive learning network for compact feature clustering, and (b) a dual-scoring mechanism that quantifies and balances sample uncertainty and representativeness. Extensive experiments on four breast ultrasound datasets (three public and one in-house/multi-center) across five common deep classifiers demonstrate that our method surpasses existing strong AL-based competitors, validating its effectiveness and generalization for clinical domain adaptation. The code is available at the anonymized link: https://github.com/miccai25-966/ADAptation.

Authors:Ying Guo, Xi Liu, Cheng Zhen, Pengfei Yan, Xiaoming Wei
Title: ARIG: Autoregressive Interactive Head Generation for Real-time Conversations
Abstract:
Face-to-face communication, as a common human activity, motivates the research on interactive head generation. A virtual agent can generate motion responses with both listening and speaking capabilities based on the audio or motion signals of the other user and itself. However, previous clip-wise generation paradigm or explicit listener/speaker generator-switching methods have limitations in future signal acquisition, contextual behavioral understanding, and switching smoothness, making it challenging to be real-time and realistic. In this paper, we propose an autoregressive (AR) based frame-wise framework called ARIG to realize the real-time generation with better interaction realism. To achieve real-time generation, we model motion prediction as a non-vector-quantized AR process. Unlike discrete codebook-index prediction, we represent motion distribution using diffusion procedure, achieving more accurate predictions in continuous space. To improve interaction realism, we emphasize interactive behavior understanding (IBU) and detailed conversational state understanding (CSU). In IBU, based on dual-track dual-modal signals, we summarize short-range behaviors through bidirectional-integrated learning and perform contextual understanding over long ranges. In CSU, we use voice activity signals and context features of IBU to understand the various states (interruption, feedback, pause, etc.) that exist in actual conversations. These serve as conditions for the final progressive motion prediction. Extensive experiments have verified the effectiveness of our model.

Authors:Xin Luo, Menglin Zhang, Yunwei Lan, Tianyu Zhang, Rui Li, Chang Liu, Dong Liu
Title: Latent Posterior-Mean Rectified Flow for Higher-Fidelity Perceptual Face Restoration
Abstract:
The Perception-Distortion tradeoff (PD-tradeoff) theory suggests that face restoration algorithms must balance perceptual quality and fidelity. To achieve minimal distortion while maintaining perfect perceptual quality, Posterior-Mean Rectified Flow (PMRF) proposes a flow based approach where source distribution is minimum distortion estimations. Although PMRF is shown to be effective, its pixel-space modeling approach limits its ability to align with human perception, where human perception is defined as how humans distinguish between two image distributions. In this work, we propose Latent-PMRF, which reformulates PMRF in the latent space of a variational autoencoder (VAE), facilitating better alignment with human perception during optimization. By defining the source distribution on latent representations of minimum distortion estimation, we bound the minimum distortion by the VAE's reconstruction error. Moreover, we reveal the design of VAE is crucial, and our proposed VAE significantly outperforms existing VAEs in both reconstruction and restoration. Extensive experiments on blind face restoration demonstrate the superiority of Latent-PMRF, offering an improved PD-tradeoff compared to existing methods, along with remarkable convergence efficiency, achieving a 5.79X speedup over PMRF in terms of FID. Our code will be available as open-source.

Authors:Huanxin Yang, Qiwen Wang
Title: MFH: Marrying Frequency Domain with Handwritten Mathematical Expression Recognition
Abstract:
Handwritten mathematical expression recognition (HMER) suffers from complex formula structures and character layouts in sequence prediction. In this paper, we incorporate frequency domain analysis into HMER and propose a method that marries frequency domain with HMER (MFH), leveraging the discrete cosine transform (DCT). We emphasize the structural analysis assistance of frequency information for recognizing mathematical formulas. When implemented on various baseline models, our network exhibits a consistent performance enhancement, demonstrating the efficacy of frequency domain information. Experiments show that our MFH-CoMER achieves noteworthy accuracyrates of 61.66%/62.07%/63.72% on the CROHME 2014/2016/2019 test sets. The source code is available at https://github.com/Hryxyhe/MFH.

Authors:Jingyi Pan, Dan Xu, Qiong Luo
Title: DiGA3D: Coarse-to-Fine Diffusional Propagation of Geometry and Appearance for Versatile 3D Inpainting
Abstract:
Developing a unified pipeline that enables users to remove, re-texture, or replace objects in a versatile manner is crucial for text-guided 3D inpainting. However, there are still challenges in performing multiple 3D inpainting tasks within a unified framework: 1) Single reference inpainting methods lack robustness when dealing with views that are far from the reference view. 2) Appearance inconsistency arises when independently inpainting multi-view images with 2D diffusion priors; 3) Geometry inconsistency limits performance when there are significant geometric changes in the inpainting regions. To tackle these challenges, we introduce DiGA3D, a novel and versatile 3D inpainting pipeline that leverages diffusion models to propagate consistent appearance and geometry in a coarse-to-fine manner. First, DiGA3D develops a robust strategy for selecting multiple reference views to reduce errors during propagation. Next, DiGA3D designs an Attention Feature Propagation (AFP) mechanism that propagates attention features from the selected reference views to other views via diffusion models to maintain appearance consistency. Furthermore, DiGA3D introduces a Texture-Geometry Score Distillation Sampling (TG-SDS) loss to further improve the geometric consistency of inpainted 3D scenes. Extensive experiments on multiple 3D inpainting tasks demonstrate the effectiveness of our method. The project page is available at https://rorisis.github.io/DiGA3D/.

Authors:Xin Xu, Eibe Frank, Geoffrey Holmes
Title: Few-shot Classification as Multi-instance Verification: Effective Backbone-agnostic Transfer across Domains
Abstract:
We investigate cross-domain few-shot learning under the constraint that fine-tuning of backbones (i.e., feature extractors) is impossible or infeasible -- a scenario that is increasingly common in practical use cases. Handling the low-quality and static embeddings produced by frozen, "black-box" backbones leads to a problem representation of few-shot classification as a series of multiple instance verification (MIV) tasks. Inspired by this representation, we introduce a novel approach to few-shot domain adaptation, named the "MIV-head", akin to a classification head that is agnostic to any pretrained backbone and computationally efficient. The core components designed for the MIV-head, when trained on few-shot data from a target domain, collectively yield strong performance on test data from that domain. Importantly, it does so without fine-tuning the backbone, and within the "meta-testing" phase. Experimenting under various settings and on an extension of the Meta-dataset benchmark for cross-domain few-shot image classification, using representative off-the-shelf convolutional neural network and vision transformer backbones pretrained on ImageNet1K, we show that the MIV-head achieves highly competitive accuracy when compared to state-of-the-art "adapter" (or partially fine-tuning) methods applied to the same backbones, while incurring substantially lower adaptation cost. We also find well-known "classification head" approaches lag far behind in terms of accuracy. Ablation study empirically justifies the core components of our approach. We share our code at https://github.com/xxweka/MIV-head.

Authors:Jian Wang, Qiongying Ni, Hongkui Yu, Ruixuan Yao, Jinqiao Ying, Bin Zhang, Xingyi Yang, Jin Peng, Jiongquan Chen, Junxuan Yu, Wenlong Shi, Chaoyu Chen, Zhongnuo Yan, Mingyuan Luo, Gaocheng Cai, Dong Ni, Jing Lu, Xin Yang
Title: Accurate and Efficient Fetal Birth Weight Estimation from 3D Ultrasound
Abstract:
Accurate fetal birth weight (FBW) estimation is essential for optimizing delivery decisions and reducing perinatal mortality. However, clinical methods for FBW estimation are inefficient, operator-dependent, and challenging to apply in cases of complex fetal anatomy. Existing deep learning methods are based on 2D standard ultrasound (US) images or videos that lack spatial information, limiting their prediction accuracy. In this study, we propose the first method for directly estimating FBW from 3D fetal US volumes. Our approach integrates a multi-scale feature fusion network (MFFN) and a synthetic sample-based learning framework (SSLF). The MFFN effectively extracts and fuses multi-scale features under sparse supervision by incorporating channel attention, spatial attention, and a ranking-based loss function. SSLF generates synthetic samples by simply combining fetal head and abdomen data from different fetuses, utilizing semi-supervised learning to improve prediction performance. Experimental results demonstrate that our method achieves superior performance, with a mean absolute error of $166.4\pm155.9$ $g$ and a mean absolute percentage error of $5.1\pm4.6$%, outperforming existing methods and approaching the accuracy of a senior doctor. Code is available at: https://github.com/Qioy-i/EFW.

Authors:Yingping Liang, Yutao Hu, Wenqi Shao, Ying Fu
Title: Learning Dense Feature Matching via Lifting Single 2D Image to 3D Space
Abstract:
Feature matching plays a fundamental role in many computer vision tasks, yet existing methods heavily rely on scarce and clean multi-view image collections, which constrains their generalization to diverse and challenging scenarios. Moreover, conventional feature encoders are typically trained on single-view 2D images, limiting their capacity to capture 3D-aware correspondences. In this paper, we propose a novel two-stage framework that lifts 2D images to 3D space, named as \textbf{Lift to Match (L2M)}, taking full advantage of large-scale and diverse single-view images. To be specific, in the first stage, we learn a 3D-aware feature encoder using a combination of multi-view image synthesis and 3D feature Gaussian representation, which injects 3D geometry knowledge into the encoder. In the second stage, a novel-view rendering strategy, combined with large-scale synthetic data generation from single-view images, is employed to learn a feature decoder for robust feature matching, thus achieving generalization across diverse domains. Extensive experiments demonstrate that our method achieves superior generalization across zero-shot evaluation benchmarks, highlighting the effectiveness of the proposed framework for robust feature matching.

Authors:Jianhao Xie, Ziang Zhang, Zhenyu Weng, Yuesheng Zhu, Guibo Luo
Title: MedDiff-FT: Data-Efficient Diffusion Model Fine-tuning with Structural Guidance for Controllable Medical Image Synthesis
Abstract:
Recent advancements in deep learning for medical image segmentation are often limited by the scarcity of high-quality training data.While diffusion models provide a potential solution by generating synthetic images, their effectiveness in medical imaging remains constrained due to their reliance on large-scale medical datasets and the need for higher image quality. To address these challenges, we present MedDiff-FT, a controllable medical image generation method that fine-tunes a diffusion foundation model to produce medical images with structural dependency and domain specificity in a data-efficient manner. During inference, a dynamic adaptive guiding mask enforces spatial constraints to ensure anatomically coherent synthesis, while a lightweight stochastic mask generator enhances diversity through hierarchical randomness injection. Additionally, an automated quality assessment protocol filters suboptimal outputs using feature-space metrics, followed by mask corrosion to refine fidelity. Evaluated on five medical segmentation datasets,MedDiff-FT's synthetic image-mask pairs improve SOTA method's segmentation performance by an average of 1% in Dice score. The framework effectively balances generation quality, diversity, and computational efficiency, offering a practical solution for medical data augmentation. The code is available at https://github.com/JianhaoXie1/MedDiff-FT.

Authors:Mengyi Shan, Zecheng He, Haoyu Ma, Felix Juefei-Xu, Peizhao Zhang, Tingbo Hou, Ching-Yao Chuang
Title: Populate-A-Scene: Affordance-Aware Human Video Generation
Abstract:
Can a video generation model be repurposed as an interactive world simulator? We explore the affordance perception potential of text-to-video models by teaching them to predict human-environment interaction. Given a scene image and a prompt describing human actions, we fine-tune the model to insert a person into the scene, while ensuring coherent behavior, appearance, harmonization, and scene affordance. Unlike prior work, we infer human affordance for video generation (i.e., where to insert a person and how they should behave) from a single scene image, without explicit conditions like bounding boxes or body poses. An in-depth study of cross-attention heatmaps demonstrates that we can uncover the inherent affordance perception of a pre-trained video model without labeled affordance datasets.

Authors:Chuyan Zhang, Kefan Wang, Yun Gu
Title: Beyond Low-Rank Tuning: Model Prior-Guided Rank Allocation for Effective Transfer in Low-Data and Large-Gap Regimes
Abstract:
Low-Rank Adaptation (LoRA) has proven effective in reducing computational costs while maintaining performance comparable to fully fine-tuned foundation models across various tasks. However, its fixed low-rank structure restricts its adaptability in scenarios with substantial domain gaps, where higher ranks are often required to capture domain-specific complexities. Current adaptive LoRA methods attempt to overcome this limitation by dynamically expanding or selectively allocating ranks, but these approaches frequently depend on computationally intensive techniques such as iterative pruning, rank searches, or additional regularization. To address these challenges, we introduce Stable Rank-Guided Low-Rank Adaptation (SR-LoRA), a novel framework that utilizes the stable rank of pre-trained weight matrices as a natural prior for layer-wise rank allocation. By leveraging the stable rank, which reflects the intrinsic dimensionality of the weights, SR-LoRA enables a principled and efficient redistribution of ranks across layers, enhancing adaptability without incurring additional search costs. Empirical evaluations on few-shot tasks with significant domain gaps show that SR-LoRA consistently outperforms recent adaptive LoRA variants, achieving a superior trade-off between performance and efficiency. Our code is available at https://github.com/EndoluminalSurgicalVision-IMR/SR-LoRA.

Authors:Zhuangzhuang Dai, Vincent Gbouna Zakka, Luis J. Manso, Chen Li
Title: GazeTarget360: Towards Gaze Target Estimation in 360-Degree for Robot Perception
Abstract:
Enabling robots to understand human gaze target is a crucial step to allow capabilities in downstream tasks, for example, attention estimation and movement anticipation in real-world human-robot interactions. Prior works have addressed the in-frame target localization problem with data-driven approaches by carefully removing out-of-frame samples. Vision-based gaze estimation methods, such as OpenFace, do not effectively absorb background information in images and cannot predict gaze target in situations where subjects look away from the camera. In this work, we propose a system to address the problem of 360-degree gaze target estimation from an image in generalized visual scenes. The system, named GazeTarget360, integrates conditional inference engines of an eye-contact detector, a pre-trained vision encoder, and a multi-scale-fusion decoder. Cross validation results show that GazeTarget360 can produce accurate and reliable gaze target predictions in unseen scenarios. This makes a first-of-its-kind system to predict gaze targets from realistic camera footage which is highly efficient and deployable. Our source code is made publicly available at: https://github.com/zdai257/DisengageNet.

Authors:Mehmet Yigit Avci, Pedro Borges, Paul Wright, Mehmet Yigitsoy, Sebastien Ourselin, Jorge Cardoso
Title: MR-CLIP: Efficient Metadata-Guided Learning of MRI Contrast Representations
Abstract:
Accurate interpretation of Magnetic Resonance Imaging scans in clinical systems is based on a precise understanding of image contrast. This contrast is primarily governed by acquisition parameters, such as echo time and repetition time, which are stored in the DICOM metadata. To simplify contrast identification, broad labels such as T1-weighted or T2-weighted are commonly used, but these offer only a coarse approximation of the underlying acquisition settings. In many real-world datasets, such labels are entirely missing, leaving raw acquisition parameters as the only indicators of contrast. Adding to this challenge, the available metadata is often incomplete, noisy, or inconsistent. The lack of reliable and standardized metadata complicates tasks such as image interpretation, retrieval, and integration into clinical workflows. Furthermore, robust contrast-aware representations are essential to enable more advanced clinical applications, such as achieving modality-invariant representations and data harmonization. To address these challenges, we propose MR-CLIP, a multimodal contrastive learning framework that aligns MR images with their DICOM metadata to learn contrast-aware representations, without relying on manual labels. Trained on a diverse clinical dataset that spans various scanners and protocols, MR-CLIP captures contrast variations across acquisitions and within scans, enabling anatomy-invariant representations. We demonstrate its effectiveness in cross-modal retrieval and contrast classification, highlighting its scalability and potential for further clinical applications. The code and weights are publicly available at https://github.com/myigitavci/MR-CLIP.