arXiv Papers of Continual Learning

Paperid: 1, https://arxiv.org/pdf/2601.20870.pdf   GitHub
Authors:Matteo Gianferrari, Omayma Moussadek, Riccardo Salami, Cosimo Fiorini, Lorenzo Tartarini, Daniela Gandolfi, Simone Calderara
Title: STAER: Temporal Aligned Rehearsal for Continual Spiking Neural Network
Abstract:
Spiking Neural Networks (SNNs) are inherently suited for continuous learning due to their event-driven temporal dynamics; however, their application to Class-Incremental Learning (CIL) has been hindered by catastrophic forgetting and the temporal misalignment of spike patterns. In this work, we introduce Spiking Temporal Alignment with Experience Replay (STAER), a novel framework that explicitly preserves temporal structure to bridge the performance gap between SNNs and ANNs. Our approach integrates a differentiable Soft-DTW alignment loss to maintain spike timing fidelity and employs a temporal expansion and contraction mechanism on output logits to enforce robust representation learning. Implemented on a deep ResNet19 spiking backbone, STAER achieves state-of-the-art performance on Sequential-MNIST and Sequential-CIFAR10. Empirical results demonstrate that our method matches or outperforms strong ANN baselines (ER, DER++) while preserving biologically plausible dynamics. Ablation studies further confirm that explicit temporal alignment is critical for representational stability, positioning STAER as a scalable solution for spike-native lifelong learning. Code is available at https://github.com/matteogianferrari/staer.
Authors:Hao Sun, Da-Wei Zhou
Title: C3Box: A CLIP-based Class-Incremental Learning Toolbox
Abstract:
Traditional machine learning systems are typically designed for static data distributions, which suffer from catastrophic forgetting when learning from evolving data streams. Class-Incremental Learning (CIL) addresses this challenge by enabling learning systems to continuously learn new classes while preserving prior knowledge. With the rise of pre-trained models (PTMs) such as CLIP, leveraging their strong generalization and semantic alignment capabilities has become a promising direction in CIL. However, existing CLIP-based CIL methods are often scattered across disparate codebases, rely on inconsistent configurations, hindering fair comparisons, reproducibility, and practical adoption. Therefore, we propose C3Box (CLIP-based Class-inCremental learning toolBOX), a modular and comprehensive Python toolbox. C3Box integrates representative traditional CIL methods, ViT-based CIL methods, and state-of-the-art CLIP-based CIL methods into a unified CLIP-based framework. By inheriting the streamlined design of PyCIL, C3Box provides a JSON-based configuration and standardized execution pipeline. This design enables reproducible experimentation with low engineering overhead and makes C3Box a reliable benchmark platform for continual learning research. Designed to be user-friendly, C3Box relies only on widely used open-source libraries and supports major operating systems. The code is available at https://github.com/LAMDA-CL/C3Box.
Authors:Shiwen Zhang, Xiaoyan Yang, Bojia Zi, Haibin Huang, Chi Zhang, Xuelong Li
Title: TeleStyle: Content-Preserving Style Transfer in Images and Videos
Abstract:
Content-preserving style transfer, generating stylized outputs based on content and style references, remains a significant challenge for Diffusion Transformers (DiTs) due to the inherent entanglement of content and style features in their internal representations. In this technical report, we present TeleStyle, a lightweight yet effective model for both image and video stylization. Built upon Qwen-Image-Edit, TeleStyle leverages the base model's robust capabilities in content preservation and style customization. To facilitate effective training, we curated a high-quality dataset of distinct specific styles and further synthesized triplets using thousands of diverse, in-the-wild style categories. We introduce a Curriculum Continual Learning framework to train TeleStyle on this hybrid dataset of clean (curated) and noisy (synthetic) triplets. This approach enables the model to generalize to unseen styles without compromising precise content fidelity. Additionally, we introduce a video-to-video stylization module to enhance temporal consistency and visual quality. TeleStyle achieves state-of-the-art performance across three core evaluation metrics: style similarity, content consistency, and aesthetic quality. Code and pre-trained models are available at https://github.com/Tele-AI/TeleStyle
Authors:Mao-Lin Luo, Zi-Hao Zhou, Yi-Lin Zhang, Yuanyu Wan, Tong Wei, Min-Ling Zhang
Title: KeepLoRA: Continual Learning with Residual Gradient Adaptation
Abstract:
Continual learning for pre-trained vision-language models requires balancing three competing objectives: retaining pre-trained knowledge, preserving knowledge from a sequence of learned tasks, and maintaining the plasticity to acquire new knowledge. This paper presents a simple but effective approach called KeepLoRA to effectively balance these objectives. We first analyze the knowledge retention mechanism within the model parameter space and find that general knowledge is mainly encoded in the principal subspace, while task-specific knowledge is encoded in the residual subspace. Motivated by this finding, KeepLoRA learns new tasks by restricting LoRA parameter updates in the residual subspace to prevent interfering with previously learned capabilities. Specifically, we infuse knowledge for a new task by projecting its gradient onto a subspace orthogonal to both the principal subspace of pre-trained model and the dominant directions of previous task features. Our theoretical and empirical analyses confirm that KeepLoRA balances the three objectives and achieves state-of-the-art performance. The implementation code is available at https://github.com/MaolinLuo/KeepLoRA.
Authors:Yibo Li, Zijie Lin, Ailin Deng, Xuan Zhang, Yufei He, Shuo Ji, Tri Cao, Bryan Hooi
Title: Just-In-Time Reinforcement Learning: Continual Learning in LLM Agents Without Gradient Updates
Abstract:
While Large Language Model (LLM) agents excel at general tasks, they inherently struggle with continual adaptation due to the frozen weights after deployment. Conventional reinforcement learning (RL) offers a solution but incurs prohibitive computational costs and the risk of catastrophic forgetting. We introduce Just-In-Time Reinforcement Learning (JitRL), a training-free framework that enables test-time policy optimization without any gradient updates. JitRL maintains a dynamic, non-parametric memory of experiences and retrieves relevant trajectories to estimate action advantages on-the-fly. These estimates are then used to directly modulate the LLM's output logits. We theoretically prove that this additive update rule is the exact closed-form solution to the KL-constrained policy optimization objective. Extensive experiments on WebArena and Jericho demonstrate that JitRL establishes a new state-of-the-art among training-free methods. Crucially, JitRL outperforms the performance of computationally expensive fine-tuning methods (e.g., WebRL) while reducing monetary costs by over 30 times, offering a scalable path for continual learning agents. The code is available at https://github.com/liushiliushi/JitRL.
Authors:Mert Yuksekgonul, Daniel Koceja, Xinhao Li, Federico Bianchi, Jed McCaleb, Xiaolong Wang, Jan Kautz, Yejin Choi, James Zou, Carlos Guestrin, Yu Sun
Title: Learning to Discover at Test Time
Abstract:
How can we use AI to discover a new state of the art for a scientific problem? Prior work in test-time scaling, such as AlphaEvolve, performs search by prompting a frozen LLM. We perform reinforcement learning at test time, so the LLM can continue to train, but now with experience specific to the test problem. This form of continual learning is quite special, because its goal is to produce one great solution rather than many good ones on average, and to solve this very problem rather than generalize to other problems. Therefore, our learning objective and search subroutine are designed to prioritize the most promising solutions. We call this method Test-Time Training to Discover (TTT-Discover). Following prior work, we focus on problems with continuous rewards. We report results for every problem we attempted, across mathematics, GPU kernel engineering, algorithm design, and biology. TTT-Discover sets the new state of the art in almost all of them: (i) Erdős' minimum overlap problem and an autocorrelation inequality; (ii) a GPUMode kernel competition (up to $2\times$ faster than prior art); (iii) past AtCoder algorithm competitions; and (iv) denoising problem in single-cell analysis. Our solutions are reviewed by experts or the organizers. All our results are achieved with an open model, OpenAI gpt-oss-120b, and can be reproduced with our publicly available code, in contrast to previous best results that required closed frontier models. Our test-time training runs are performed using Tinker, an API by Thinking Machines, with a cost of only a few hundred dollars per problem.
Authors:Ishir Garg, Neel Kolhe, Andy Peng, Rohan Gopalam
Title: Fisher-Orthogonal Projected Natural Gradient Descent for Continual Learning
Abstract:
Continual learning aims to enable neural networks to acquire new knowledge on sequential tasks. However, the key challenge in such settings is to learn new tasks without catastrophically forgetting previously learned tasks. We propose the Fisher-Orthogonal Projected Natural Gradient Descent (FOPNG) optimizer, which enforces Fisher-orthogonal constraints on parameter updates to preserve old task performance while learning new tasks. Unlike existing methods that operate in Euclidean parameter space, FOPNG projects gradients onto the Fisher-orthogonal complement of previous task gradients. This approach unifies natural gradient descent with orthogonal gradient methods within an information-geometric framework. We provide theoretical analysis deriving the projected update, describe efficient and practical implementations using the diagonal Fisher, and demonstrate strong results on standard continual learning benchmarks such as Permuted-MNIST, Split-MNIST, Rotated-MNIST, Split-CIFAR10, and Split-CIFAR100. Our code is available at https://github.com/ishirgarg/FOPNG.
Authors:Ralf Römer, Yi Zhang, Angela P. Schoellig
Title: CLARE: Continual Learning for Vision-Language-Action Models via Autonomous Adapter Routing and Expansion
Abstract:
To teach robots complex manipulation tasks, it is now a common practice to fine-tune a pre-trained vision-language-action model (VLA) on task-specific data. However, since this recipe updates existing representations, it is unsuitable for long-term operation in the real world, where robots must continually adapt to new tasks and environments while retaining the knowledge they have already acquired. Existing continual learning methods for robotics commonly require storing previous data (exemplars), struggle with long task sequences, or rely on task identifiers for deployment. To address these limitations, we propose CLARE, a general, parameter-efficient framework for exemplar-free continual learning with VLAs. CLARE introduces lightweight modular adapters into selected feedforward layers and autonomously expands the model only where necessary when learning a new task, guided by layer-wise feature similarity. During deployment, an autoencoder-based routing mechanism dynamically activates the most relevant adapters without requiring task labels. Through extensive experiments on the LIBERO benchmark, we show that CLARE achieves high performance on new tasks without catastrophic forgetting of earlier tasks, significantly outperforming even exemplar-based methods. Code and data are available at https://tum-lsy.github.io/clare.
Authors:Daocheng Fu, Jianbiao Mei, Rong Wu, Xuemeng Yang, Jia Xu, Ding Wang, Pinlong Cai, Yong Liu, Licheng Wen, Botian Shi
Title: The Agent's First Day: Benchmarking Learning, Exploration, and Scheduling in the Workplace Scenarios
Abstract:
The rapid evolution of Multi-modal Large Language Models (MLLMs) has advanced workflow automation; however, existing research mainly targets performance upper bounds in static environments, overlooking robustness for stochastic real-world deployment. We identify three key challenges: dynamic task scheduling, active exploration under uncertainty, and continuous learning from experience. To bridge this gap, we introduce \method{}, a dynamic evaluation environment that simulates a "trainee" agent continuously exploring a novel setting. Unlike traditional benchmarks, \method{} evaluates agents along three dimensions: (1) context-aware scheduling for streaming tasks with varying priorities; (2) prudent information acquisition to reduce hallucination via active exploration; and (3) continuous evolution by distilling generalized strategies from rule-based, dynamically generated tasks. Experiments show that cutting-edge agents have significant deficiencies in dynamic environments, especially in active exploration and continual learning. Our work establishes a framework for assessing agent reliability, shifting evaluation from static tests to realistic, production-oriented scenarios. Our codes are available at https://github.com/KnowledgeXLab/EvoEnv
Authors:Nina Peire, Yupei Li, Björn Schuller
Title: Affect and Effect: Limitations of regularisation-based continual learning in EEG-based emotion classification
Abstract:
Generalisation to unseen subjects in EEG-based emotion classification remains a challenge due to high inter-and intra-subject variability. Continual learning (CL) poses a promising solution by learning from a sequence of tasks while mitigating catastrophic forgetting. Regularisation-based CL approaches, such as Elastic Weight Consolidation (EWC), Synaptic Intelligence (SI), and Memory Aware Synapses (MAS), are commonly used as baselines in EEG-based CL studies, yet their suitability for this problem remains underexplored. This study theoretically and empirically finds that regularisation-based CL methods show limited performance for EEG-based emotion classification on the DREAMER and SEED datasets. We identify a fundamental misalignment in the stability-plasticity trade-off, where regularisation-based methods prioritise mitigating catastrophic forgetting (backward transfer) over adapting to new subjects (forward transfer). We investigate this limitation under subject-incremental sequences and observe that: (1) the heuristics for estimating parameter importance become less reliable under noisy data and covariate shift, (2) gradients on parameters deemed important by these heuristics often interfere with gradient updates required for new subjects, moving optimisation away from the minimum, (3) importance values accumulated across tasks over-constrain the model, and (4) performance is sensitive to subject order. Forward transfer showed no statistically significant improvement over sequential fine-tuning (p > 0.05 across approaches and datasets). The high variability of EEG signals means past subjects provide limited value to future subjects. Regularisation-based continual learning approaches are therefore limited for robust generalisation to unseen subjects in EEG-based emotion classification.
Authors:Shiwen Zhang, Haibin Huang, Chi Zhang, Xuelong Li
Title: QwenStyle: Content-Preserving Style Transfer with Qwen-Image-Edit
Abstract:
Content-Preserving Style transfer, given content and style references, remains challenging for Diffusion Transformers (DiTs) due to its internal entangled content and style features. In this technical report, we propose the first content-preserving style transfer model trained on Qwen-Image-Edit, which activates Qwen-Image-Edit's strong content preservation and style customization capability. We collected and filtered high quality data of limited specific styles and synthesized triplets with thousands categories of style images in-the-wild. We introduce the Curriculum Continual Learning framework to train QwenStyle with such mixture of clean and noisy triplets, which enables QwenStyle to generalize to unseen styles without degradation of the precise content preservation capability. Our QwenStyle V1 achieves state-of-the-art performance in three core metrics: style similarity, content consistency, and aesthetic quality.
Authors:Zheng Wu, Xingyu Lou, Xinbei Ma, Yansi Li, Weiwen Liu, Weinan Zhang, Jun Wang, Zhuosheng Zhang
Title: Agent-Dice: Disentangling Knowledge Updates via Geometric Consensus for Agent Continual Learning
Abstract:
Large Language Model (LLM)-based agents significantly extend the utility of LLMs by interacting with dynamic environments. However, enabling agents to continually learn new tasks without catastrophic forgetting remains a critical challenge, known as the stability-plasticity dilemma. In this work, we argue that this dilemma fundamentally arises from the failure to explicitly distinguish between common knowledge shared across tasks and conflicting knowledge introduced by task-specific interference. To address this, we propose Agent-Dice, a parameter fusion framework based on directional consensus evaluation. Concretely, Agent-Dice disentangles knowledge updates through a two-stage process: geometric consensus filtering to prune conflicting gradients, and curvature-based importance weighting to amplify shared semantics. We provide a rigorous theoretical analysis that establishes the validity of the proposed fusion scheme and offers insight into the origins of the stability-plasticity dilemma. Extensive experiments on GUI agents and tool-use agent domains demonstrate that Agent-Dice exhibits outstanding continual learning performance with minimal computational overhead and parameter updates. The codes are available at https://github.com/Wuzheng02/Agent-Dice.
Authors:Thomas Katraouras, Dimitrios Rafailidis
Title: Memory Bank Compression for Continual Adaptation of Large Language Models
Abstract:
Large Language Models (LLMs) have become a mainstay for many everyday applications. However, as data evolve their knowledge quickly becomes outdated. Continual learning aims to update LLMs with new information without erasing previously acquired knowledge. Although methods such as full fine-tuning can incorporate new data, they are computationally expensive and prone to catastrophic forgetting, where prior knowledge is overwritten. Memory-augmented approaches address this by equipping LLMs with a memory bank, that is an external memory module which stores information for future use. However, these methods face a critical limitation, in particular, the memory bank constantly grows in the real-world scenario when large-scale data streams arrive. In this paper, we propose MBC, a model that compresses the memory bank through a codebook optimization strategy during online adaptation learning. To ensure stable learning, we also introduce an online resetting mechanism that prevents codebook collapse. In addition, we employ Key-Value Low-Rank Adaptation in the attention layers of the LLM, enabling efficient utilization of the compressed memory representations. Experiments with benchmark question-answering datasets demonstrate that MBC reduces the memory bank size to 0.3% when compared against the most competitive baseline, while maintaining high retention accuracy during online adaptation learning. Our code is publicly available at https://github.com/Thomkat/MBC.
Authors:Arnuv Tandon, Karan Dalal, Xinhao Li, Daniel Koceja, Marcel Rød, Sam Buchanan, Xiaolong Wang, Jure Leskovec, Sanmi Koyejo, Tatsunori Hashimoto, Carlos Guestrin, Jed McCaleb, Yejin Choi, Yu Sun
Title: End-to-End Test-Time Training for Long Context
Abstract:
We formulate long-context language modeling as a problem in continual learning rather than architecture design. Under this formulation, we only use a standard architecture -- a Transformer with sliding-window attention. However, our model continues learning at test time via next-token prediction on the given context, compressing the context it reads into its weights. In addition, we improve the model's initialization for learning at test time via meta-learning at training time. Overall, our method, a form of Test-Time Training (TTT), is End-to-End (E2E) both at test time (via next-token prediction) and training time (via meta-learning), in contrast to previous forms. We conduct extensive experiments with a focus on scaling properties. In particular, for 3B models trained with 164B tokens, our method (TTT-E2E) scales with context length in the same way as Transformer with full attention, while others, such as Mamba 2 and Gated DeltaNet, do not. However, similar to RNNs, TTT-E2E has constant inference latency regardless of context length, making it 2.7 times faster than full attention for 128K context. Our code is publicly available.
Authors:Shizhou Zhang, Xueqiang Lv, Yinghui Xing, Qirui Wu, Di Xu, Chen Zhao, Yanning Zhang
Title: YOLO-IOD: Towards Real Time Incremental Object Detection
Abstract:
Current methods for incremental object detection (IOD) primarily rely on Faster R-CNN or DETR series detectors; however, these approaches do not accommodate the real-time YOLO detection frameworks. In this paper, we first identify three primary types of knowledge conflicts that contribute to catastrophic forgetting in YOLO-based incremental detectors: foreground-background confusion, parameter interference, and misaligned knowledge distillation. Subsequently, we introduce YOLO-IOD, a real-time Incremental Object Detection (IOD) framework that is constructed upon the pretrained YOLO-World model, facilitating incremental learning via a stage-wise parameter-efficient fine-tuning process. Specifically, YOLO-IOD encompasses three principal components: 1) Conflict-Aware Pseudo-Label Refinement (CPR), which mitigates the foreground-background confusion by leveraging the confidence levels of pseudo labels and identifying potential objects relevant to future tasks. 2) Importancebased Kernel Selection (IKS), which identifies and updates the pivotal convolution kernels pertinent to the current task during the current learning stage. 3) Cross-Stage Asymmetric Knowledge Distillation (CAKD), which addresses the misaligned knowledge distillation conflict by transmitting the features of the student target detector through the detection heads of both the previous and current teacher detectors, thereby facilitating asymmetric distillation between existing and newly introduced categories. We further introduce LoCo COCO, a more realistic benchmark that eliminates data leakage across stages. Experiments on both conventional and LoCo COCO benchmarks show that YOLO-IOD achieves superior performance with minimal forgetting.
Authors:Wenbin Li, Shangge Liu, Borui Kang, Yiyang Chen, KaXuan Lew, Yang Chen, Yinghuan Shi, Lei Wang, Yang Gao, Jiebo Luo
Title: LibContinual: A Comprehensive Library towards Realistic Continual Learning
Abstract:
A fundamental challenge in Continual Learning (CL) is catastrophic forgetting, where adapting to new tasks degrades the performance on previous ones. While the field has evolved with diverse methods, this rapid surge in diverse methodologies has culminated in a fragmented research landscape. The lack of a unified framework, including inconsistent implementations, conflicting dependencies, and varying evaluation protocols, makes fair comparison and reproducible research increasingly difficult. To address this challenge, we propose LibContinual, a comprehensive and reproducible library designed to serve as a foundational platform for realistic CL. Built upon a high-cohesion, low-coupling modular architecture, LibContinual integrates 19 representative algorithms across five major methodological categories, providing a standardized execution environment. Meanwhile, leveraging this unified framework, we systematically identify and investigate three implicit assumptions prevalent in mainstream evaluation: (1) offline data accessibility, (2) unregulated memory resources, and (3) intra-task semantic homogeneity. We argue that these assumptions often overestimate the real-world applicability of CL methods. Through our comprehensive analysis using strict online CL settings, a novel unified memory budget protocol, and a proposed category-randomized setting, we reveal significant performance drops in many representative CL methods when subjected to these real-world constraints. Our study underscores the necessity of resource-aware and semantically robust CL strategies, and offers LibContinual as a foundational toolkit for future research in realistic continual learning. The source code is available from \href{https://github.com/RL-VIG/LibContinual}{https://github.com/RL-VIG/LibContinual}.
Authors:Chuangxin Zhang, Guangfeng Lin, Enhui Zhao, Kaiyang Liao, Yajun Chen
Title: Scalable Class-Incremental Learning Based on Parametric Neural Collapse
Abstract:
Incremental learning often encounter challenges such as overfitting to new data and catastrophic forgetting of old data. Existing methods can effectively extend the model for new tasks while freezing the parameters of the old model, but ignore the necessity of structural efficiency to lead to the feature difference between modules and the class misalignment due to evolving class distributions. To address these issues, we propose scalable class-incremental learning based on parametric neural collapse (SCL-PNC) that enables demand-driven, minimal-cost backbone expansion by adapt-layer and refines the static into a dynamic parametric Equiangular Tight Frame (ETF) framework according to incremental class. This method can efficiently handle the model expansion question with the increasing number of categories in real-world scenarios. Additionally, to counteract feature drift in serial expansion models, the parallel expansion framework is presented with a knowledge distillation algorithm to align features across expansion modules. Therefore, SCL-PNC can not only design a dynamic and extensible ETF classifier to address class misalignment due to evolving class distributions, but also ensure feature consistency by an adapt-layer with knowledge distillation between extended modules. By leveraging neural collapse, SCL-PNC induces the convergence of the incremental expansion model through a structured combination of the expandable backbone, adapt-layer, and the parametric ETF classifier. Experiments on standard benchmarks demonstrate the effectiveness and efficiency of our proposed method. Our code is available at https://github.com/zhangchuangxin71-cyber/dynamic_ ETF2. Keywords: Class incremental learning; Catastrophic forgetting; Neural collapse;Knowledge distillation; Expanded model.
Authors:Michael S. Zhang, Rishi A. Ruia, Arnav Kewalram, Saathvik Dharmapuram, Utkarsh Sharma, Kevin Zhu
Title: When Less is More: 8-bit Quantization Improves Continual Learning in Large Language Models
Abstract:
Catastrophic forgetting poses a fundamental challenge in continual learning, particularly when models are quantized for deployment efficiency. We systematically investigate the interplay between quantization precision (FP16, INT8, INT4) and replay buffer strategies in large language models, revealing unexpected dynamics. While FP16 achieves superior initial task performance (74.44% on NLU), we observe a striking inversion on subsequent tasks: quantized models outperform FP16 by 8-15% on final task forward accuracy, with INT4 achieving nearly double FP16's performance on Code generation (40% vs 20%). Critically, even minimal replay buffers (0.1%) dramatically improve retention - increasing NLU retention after Math training from 45% to 65% across all precision levels - with INT8 consistently achieving the optimal balance between learning plasticity and knowledge retention. We hypothesize that quantization-induced noise acts as implicit regularization, preventing the overfitting to new task gradients that plagues high-precision models. These findings challenge the conventional wisdom that higher precision is always preferable, suggesting instead that INT8 quantization offers both computational efficiency and superior continual learning dynamics. Our results provide practical guidelines for deploying compressed models in continual learning scenarios: small replay buffers (1-2%) suffice for NLU tasks, while Math and Code benefit from moderate buffers (5-10%), with quantized models requiring less replay than FP16 to achieve comparable retention. Code is available at https://github.com/Festyve/LessIsMore.
Authors:Xiwen Wei, Mustafa Munir, Radu Marculescu
Title: Mitigating Intra- and Inter-modal Forgetting in Continual Learning of Unified Multimodal Models
Abstract:
Unified Multimodal Generative Models (UMGMs) unify visual understanding and image generation within a single autoregressive framework. However, their ability to continually learn new tasks is severely hindered by catastrophic forgetting, both within a modality (intra-modal) and across modalities (inter-modal). While intra-modal forgetting has been studied in prior continual learning (CL) work, inter-modal forgetting remains largely unexplored. In this paper, we identify and empirically validate this phenomenon in UMGMs and provide a theoretical explanation rooted in gradient conflict between modalities. To address both intra- and inter-modal forgetting, we propose Modality-Decoupled Experts (MoDE), a lightweight and scalable architecture that isolates modality-specific updates to mitigate the gradient conflict and leverages knowledge distillation to prevent catastrophic forgetting and preserve pre-trained capabilities. Unlike previous CL methods that remain modality-coupled and suffer from modality gradient conflict, MoDE explicitly decouples modalities to prevent interference. Experiments across diverse benchmarks demonstrate that MoDE significantly mitigates both inter- and intra-modal forgetting, outperforming prior CL baselines in unified multimodal generation settings. Codes will be publicly available: https://github.com/Christina200/MoDE-official.git
Authors:Yuxuan Zhu, Cong Fu, Yabo Ni, Anxiang Zeng, Yuan Fang
Title: A Probabilistic Framework for Temporal Distribution Generalization in Industry-Scale Recommender Systems
Abstract:
Temporal distribution shift (TDS) erodes the long-term accuracy of recommender systems, yet industrial practice still relies on periodic incremental training, which struggles to capture both stable and transient patterns. Existing approaches such as invariant learning and self-supervised learning offer partial solutions but often suffer from unstable temporal generalization, representation collapse, or inefficient data utilization. To address these limitations, we propose ELBO$_\text{TDS}$, a probabilistic framework that integrates seamlessly into industry-scale incremental learning pipelines. First, we identify key shifting factors through statistical analysis of real-world production data and design a simple yet effective data augmentation strategy that resamples these time-varying factors to extend the training support. Second, to harness the benefits of this extended distribution while preventing representation collapse, we model the temporal recommendation scenario using a causal graph and derive a self-supervised variational objective, ELBO$_\text{TDS}$, grounded in the causal structure. Extensive experiments supported by both theoretical and empirical analysis demonstrate that our method achieves superior temporal generalization, yielding a 2.33\% uplift in GMV per user and has been successfully deployed in Shopee Product Search. Code is available at https://github.com/FuCongResearchSquad/ELBO4TDS.
Authors:Naoki Masuyama, Yuichiro Toda, Yusuke Nojima, Hisao Ishibuchi
Title: An Adaptive Resonance Theory-based Topological Clustering Algorithm with a Self-Adjusting Vigilance Parameter
Abstract:
Clustering in stationary and nonstationary settings, where data distributions remain static or evolve over time, requires models that can adapt to distributional shifts while preserving previously learned cluster structures. This paper proposes an Adaptive Resonance Theory (ART)-based topological clustering algorithm that autonomously adjusts its recalculation interval and vigilance threshold through a diversity-driven adaptation mechanism. This mechanism enables hyperparameter-free learning that maintains cluster stability and continuity in dynamic environments. Experiments on 24 real-world datasets demonstrate that the proposed algorithm outperforms state-of-the-art methods in both clustering performance and continual learning capability. These results highlight the effectiveness of the proposed parameter adaptation in mitigating catastrophic forgetting and maintaining consistent clustering in evolving data streams. Source code is available at https://github.com/Masuyama-lab/IDAT
Authors:Jiayi Wang, Wei Dai, Haoyu Wang, Sihan Yang, Haixia Bi, Jian Sun
Title: Continual Alignment for SAM: Rethinking Foundation Models for Medical Image Segmentation in Continual Learning
Abstract:
In medical image segmentation, heterogeneous privacy policies across institutions often make joint training on pooled datasets infeasible, motivating continual image segmentation-learning from data streams without catastrophic forgetting. While the Segment Anything Model (SAM) offers strong zero-shot priors and has been widely fine-tuned across downstream tasks, its large parameter count and computational overhead challenge practical deployment. This paper demonstrates that the SAM paradigm is highly promising once its computational efficiency and performance can be balanced. To this end, we introduce the Alignment Layer, a lightweight, plug-and-play module which aligns encoder-decoder feature distributions to efficiently adapt SAM to specific medical images, improving accuracy while reducing computation. Building on SAM and the Alignment Layer, we then propose Continual Alignment for SAM (CA-SAM), a continual learning strategy that automatically adapts the appropriate Alignment Layer to mitigate catastrophic forgetting, while leveraging SAM's zero-shot priors to preserve strong performance on unseen medical datasets. Experimented across nine medical segmentation datasets under continual-learning scenario, CA-SAM achieves state-of-the-art performance. Our code, models and datasets will be released on \mbox{https://github.com/azzzzyo/Continual-Alignment-for-SAM.}
Authors:Xufei Wang, Junqiao Zhao, Siyue Tao, Qiwen Gu, Wonbong Kim, Tiantian Feng
Title: Learning from Mistakes: Loss-Aware Memory Enhanced Continual Learning for LiDAR Place Recognition
Abstract:
LiDAR place recognition plays a crucial role in SLAM, robot navigation, and autonomous driving. However, existing LiDAR place recognition methods often struggle to adapt to new environments without forgetting previously learned knowledge, a challenge widely known as catastrophic forgetting. To address this issue, we propose KDF+, a novel continual learning framework for LiDAR place recognition that extends the KDF paradigm with a loss-aware sampling strategy and a rehearsal enhancement mechanism. The proposed sampling strategy estimates the learning difficulty of each sample via its loss value and selects samples for replay according to their estimated difficulty. Harder samples, which tend to encode more discriminative information, are sampled with higher probability while maintaining distributional coverage across the dataset. In addition, the rehearsal enhancement mechanism encourages memory samples to be further refined during new-task training by slightly reducing their loss relative to previous tasks, thereby reinforcing long-term knowledge retention. Extensive experiments across multiple benchmarks demonstrate that KDF+ consistently outperforms existing continual learning methods and can be seamlessly integrated into state-of-the-art continual learning for LiDAR place recognition frameworks to yield significant and stable performance gains. The code will be available at https://github.com/repo/KDF-plus.
Authors:Shuyi Geng, Tao Zhou, Yi Zhou
Title: Language as an Anchor: Preserving Relative Visual Geometry for Domain Incremental Learning
Abstract:
A key challenge in Domain Incremental Learning (DIL) is to continually learn under shifting distributions while preserving knowledge from previous domains. Existing methods face a fundamental dilemma. On one hand, projecting all domains into a single unified visual space leads to inter-domain interference and semantic distortion, as large shifts may vary with not only visual appearance but also underlying semantics. On the other hand, isolating domain-specific parameters causes knowledge fragmentation, creating "knowledge islands" that hamper knowledge reuse and exacerbate forgetting. To address this issue, we propose LAVA (Language-Anchored Visual Alignment), a novel DIL framework that replaces direct feature alignment with relative alignment driven by a text-based reference anchor. LAVA guides the visual representations of each incoming domain to preserve a consistent relative geometry, which is defined by mirroring the pairwise semantic similarities between the class names. This anchored geometric structure acts as a bridge across domains, enabling the retrieval of class-aware prior knowledge and facilitating robust feature aggregation. Extensive experiments on standard DIL benchmarks demonstrate that LAVA achieves significant performance improvements over state-of-the-arts. Code is available at https://github.com/ShuyiGeng/LAVA.
Authors:Huayi Zhu, Xiu Shu, Youqiang Xiong, Qiao Liu, Rui Chen, Di Yuan, Xiaojun Chang, Zhenyu He
Title: FusionFM: All-in-One Multi-Modal Image Fusion with Flow Matching
Abstract:
Current multi-modal image fusion methods typically rely on task-specific models, leading to high training costs and limited scalability. While generative methods provide a unified modeling perspective, they often suffer from slow inference due to the complex sampling trajectories from noise to image. To address this, we formulate image fusion as a direct probabilistic transport from source modalities to the fused image distribution, leveraging the flow matching paradigm to improve sampling efficiency and structural consistency. To mitigate the lack of high-quality fused images for supervision, we collect fusion results from multiple state-of-the-art models as priors, and employ a task-aware selection function to select the most reliable pseudo-labels for each task. We further introduce a Fusion Refiner module that employs a divide-and-conquer strategy to systematically identify, decompose, and enhance degraded components in selected pseudo-labels. For multi-task scenarios, we integrate elastic weight consolidation and experience replay mechanisms to preserve cross-task performance and enhance continual learning ability from both parameter stability and memory retention perspectives. Our approach achieves competitive performance across diverse fusion tasks, while significantly improving sampling efficiency and maintaining a lightweight model design. The code will be available at: https://github.com/Ist-Zhy/FusionFM.
Authors:Doanh C. Bui, Ba Hung Ngo, Hoai Luan Pham, Khang Nguyen, Maï K. Nguyen, Yasuhiko Nakashima
Title: MergeSlide: Continual Model Merging and Task-to-Class Prompt-Aligned Inference for Lifelong Learning on Whole Slide Images
Abstract:
Lifelong learning on Whole Slide Images (WSIs) aims to train or fine-tune a unified model sequentially on cancer-related tasks, reducing the resources and effort required for data transfer and processing, especially given the gigabyte-scale size of WSIs. In this paper, we introduce MergeSlide, a simple yet effective framework that treats lifelong learning as a model merging problem by leveraging a vision-language pathology foundation model. When a new task arrives, it is: 1) defined with class-aware prompts, 2) fine-tuned for a few epochs using an MLP-free backbone, and 3) merged into a unified model using an orthogonal continual merging strategy that preserves performance and mitigates catastrophic forgetting. For inference under the class-incremental learning (CLASS-IL) setting, where task identity is unknown, we introduce Task-to-Class Prompt-aligned (TCP) inference. Specifically, TCP first identifies the most relevant task using task-level prompts and then applies the corresponding class-aware prompts to generate predictions. To evaluate MergeSlide, we conduct experiments on a stream of six TCGA datasets. The results show that MergeSlide outperforms both rehearsal-based continual learning and vision-language zero-shot baselines. Code and data are available at https://github.com/caodoanh2001/MergeSlide.
Authors:Mohamed El Gorrim
Title: FSC-Net: Fast-Slow Consolidation Networks for Continual Learning
Abstract:
Continual learning remains challenging due to catastrophic forgetting, where neural networks lose previously acquired knowledge when learning new tasks. Inspired by memory consolidation in neuroscience, we propose FSC-Net (Fast-Slow Consolidation Networks), a dual-network architecture that separates rapid task learning from gradual knowledge consolidation. Our method employs a fast network (NN1) for immediate adaptation to new tasks and a slow network (NN2) that consolidates knowledge through distillation and replay. Within the family of MLP-based NN1 variants we evaluated, consolidation effectiveness is driven more by methodology than architectural embellishments -- a simple MLP outperforms more complex similarity-gated variants by 1.2pp. Through systematic hyperparameter analysis, we observed empirically that pure replay without distillation during consolidation achieves superior performance, consistent with the hypothesis that distillation from the fast network introduces recency bias. On Split-MNIST (30 seeds), FSC-Net achieves 91.71% +/- 0.62% retention accuracy, a +4.27pp gain over the fast network alone (87.43% +/- 1.27%, paired t=23.585, p < 1e-10). On Split-CIFAR-10 (5 seeds), our method achieves 33.31% +/- 0.38% retention with an +8.20pp gain over the fast network alone (25.11% +/- 1.61%, paired t=9.75, p < 1e-3), demonstrating +8.20pp gain, though absolute performance (33.31%) remains modest and below random expectation, highlighting need for stronger backbones. Our results provide empirical evidence that the dual-timescale consolidation mechanism, rather than architectural complexity, is central to mitigating catastrophic forgetting in this setting.
Authors:Xuan Rao, Simian Xu, Zheng Li, Bo Zhao, Derong Liu, Mingming Ha, Cesare Alippi
Title: Compensating Distribution Drifts in Class-incremental Learning of Pre-trained Vision Transformers
Abstract:
Recent advances have shown that sequential fine-tuning (SeqFT) of pre-trained vision transformers (ViTs), followed by classifier refinement using approximate distributions of class features, can be an effective strategy for class-incremental learning (CIL). However, this approach is susceptible to distribution drift, caused by the sequential optimization of shared backbone parameters. This results in a mismatch between the distributions of the previously learned classes and that of the updater model, ultimately degrading the effectiveness of classifier performance over time. To address this issue, we introduce a latent space transition operator and propose Sequential Learning with Drift Compensation (SLDC). SLDC aims to align feature distributions across tasks to mitigate the impact of drift. First, we present a linear variant of SLDC, which learns a linear operator by solving a regularized least-squares problem that maps features before and after fine-tuning. Next, we extend this with a weakly nonlinear SLDC variant, which assumes that the ideal transition operator lies between purely linear and fully nonlinear transformations. This is implemented using learnable, weakly nonlinear mappings that balance flexibility and generalization. To further reduce representation drift, we apply knowledge distillation (KD) in both algorithmic variants. Extensive experiments on standard CIL benchmarks demonstrate that SLDC significantly improves the performance of SeqFT. Notably, by combining KD to address representation drift with SLDC to compensate distribution drift, SeqFT achieves performance comparable to joint training across all evaluated datasets. Code: https://github.com/raoxuan98-hash/sldc.git.
Authors:Aupendu Kar, Krishnendu Ghosh, Prabir Kumar Biswas
Title: Sharing the Learned Knowledge-base to Estimate Convolutional Filter Parameters for Continual Image Restoration
Abstract:
Continual learning is an emerging topic in the field of deep learning, where a model is expected to learn continuously for new upcoming tasks without forgetting previous experiences. This field has witnessed numerous advancements, but few works have been attempted in the direction of image restoration. Handling large image sizes and the divergent nature of various degradation poses a unique challenge in the restoration domain. However, existing works require heavily engineered architectural modifications for new task adaptation, resulting in significant computational overhead. Regularization-based methods are unsuitable for restoration, as different restoration challenges require different kinds of feature processing. In this direction, we propose a simple modification of the convolution layer to adapt the knowledge from previous restoration tasks without touching the main backbone architecture. Therefore, it can be seamlessly applied to any deep architecture without any structural modifications. Unlike other approaches, we demonstrate that our model can increase the number of trainable parameters without significantly increasing computational overhead or inference time. Experimental validation demonstrates that new restoration tasks can be introduced without compromising the performance of existing tasks. We also show that performance on new restoration tasks improves by adapting the knowledge from the knowledge base created by previous restoration tasks. The code is available at https://github.com/aupendu/continual-restore.
Authors:Yana Wei, Zeen Chi, Chongyu Wang, Yu Wu, Shipeng Yan, Yongfei Liu, Xuming He
Title: Incremental Human-Object Interaction Detection with Invariant Relation Representation Learning
Abstract:
In open-world environments, human-object interactions (HOIs) evolve continuously, challenging conventional closed-world HOI detection models. Inspired by humans' ability to progressively acquire knowledge, we explore incremental HOI detection (IHOID) to develop agents capable of discerning human-object relations in such dynamic environments. This setup confronts not only the common issue of catastrophic forgetting in incremental learning but also distinct challenges posed by interaction drift and detecting zero-shot HOI combinations with sequentially arriving data. Therefore, we propose a novel exemplar-free incremental relation distillation (IRD) framework. IRD decouples the learning of objects and relations, and introduces two unique distillation losses for learning invariant relation features across different HOI combinations that share the same relation. Extensive experiments on HICO-DET and V-COCO datasets demonstrate the superiority of our method over state-of-the-art baselines in mitigating forgetting, strengthening robustness against interaction drift, and generalization on zero-shot HOIs. Code is available at \href{https://github.com/weiyana/ContinualHOI}{this HTTP URL}
Authors:David Schmotz, Sahar Abdelnabi, Maksym Andriushchenko
Title: Agent Skills Enable a New Class of Realistic and Trivially Simple Prompt Injections
Abstract:
Enabling continual learning in LLMs remains a key unresolved research challenge. In a recent announcement, a frontier LLM company made a step towards this by introducing Agent Skills, a framework that equips agents with new knowledge based on instructions stored in simple markdown files. Although Agent Skills can be a very useful tool, we show that they are fundamentally insecure, since they enable trivially simple prompt injections. We demonstrate how to hide malicious instructions in long Agent Skill files and referenced scripts to exfiltrate sensitive data, such as internal files or passwords. Importantly, we show how to bypass system-level guardrails of a popular coding agent: a benign, task-specific approval with the "Don't ask again" option can carry over to closely related but harmful actions. Overall, we conclude that despite ongoing research efforts and scaling model capabilities, frontier LLMs remain vulnerable to very simple prompt injections in realistic scenarios. Our code is available at https://github.com/aisa-group/promptinject-agent-skills.
Authors:William Hoy, Nurcin Celik
Title: STABLE: Gated Continual Learning for Large Language Models
Abstract:
Large language models (LLMs) increasingly require mechanisms for continual adaptation without full retraining. However, sequential updates can lead to catastrophic forgetting, where new edits degrade previously acquired knowledge. This work presents STABLE, a gated continual self editing framework that constrains forgetting during sequential updates using parameter efficient fine tuning via Low Rank Adaptation (LoRA; see arXiv:2106.09685). Each candidate edit is evaluated against a stability budget using one of three metrics: (i) Exact Match (EM) drop, capturing factual accuracy loss; (ii) bits increase, reflecting reduced model confidence; and (iii) KL divergence, quantifying distributional drift between the base and adapted models. If a threshold is exceeded, the LoRA update is rescaled through a clipping procedure or rejected. Experiments on the Qwen-2.5-7B model show that gating effectively mitigates forgetting while preserving adaptability. EM based gating achieved the highest cumulative performance in short continual learning sequences. Our results show that different gating strategies can achieve comparable distribution shift (measured by KL divergence) while producing different accuracy outcomes, highlighting the importance of gating design in continual adaptation. This approach offers a principled method for continual model editing, enabling LLMs to integrate new knowledge while maintaining reliability. Code: https://github.com/Bhoy1/STABLE
Authors:Shikuang Deng, Jiayuan Zhang, Yuhang Wu, Ting Chen, Shi Gu
Title: Rethinking Hebbian Principle: Low-Dimensional Structural Projection for Unsupervised Learning
Abstract:
Hebbian learning is a biological principle that intuitively describes how neurons adapt their connections through repeated stimuli. However, when applied to machine learning, it suffers serious issues due to the unconstrained updates of the connections and the lack of accounting for feedback mediation. Such shortcomings limit its effective scaling to complex network architectures and tasks. To this end, here we introduce the Structural Projection Hebbian Representation (SPHeRe), a novel unsupervised learning method that integrates orthogonality and structural information preservation through a local auxiliary nonlinear block. The loss for structural information preservation backpropagates to the input through an auxiliary lightweight projection that conceptually serves as feedback mediation while the orthogonality constraints account for the boundedness of updating magnitude. Extensive experimental results show that SPHeRe achieves SOTA performance among unsupervised synaptic plasticity approaches on standard image classification benchmarks, including CIFAR-10, CIFAR-100, and Tiny-ImageNet. Furthermore, the method exhibits strong effectiveness in continual learning and transfer learning scenarios, and image reconstruction tasks show the robustness and generalizability of the extracted features. This work demonstrates the competitiveness and potential of Hebbian unsupervised learning rules within modern deep learning frameworks, demonstrating the possibility of efficient and biologically inspired learning algorithms without the strong dependence on strict backpropagation. Our code is available at https://github.com/brain-intelligence-lab/SPHeRe.
Authors:Munsif Ali, Leonardo Rossi, Massimo Bertozzi
Title: CoLoR-GAN: Continual Few-Shot Learning with Low-Rank Adaptation in Generative Adversarial Networks
Abstract:
Continual learning (CL) in the context of Generative Adversarial Networks (GANs) remains a challenging problem, particularly when it comes to learn from a few-shot (FS) samples without catastrophic forgetting. Current most effective state-of-the-art (SOTA) methods, like LFS-GAN, introduce a non-negligible quantity of new weights at each training iteration, which would become significant when considering the long term. For this reason, this paper introduces \textcolor{red}{\textbf{\underline{c}}}ontinual few-sh\textcolor{red}{\textbf{\underline{o}}}t learning with \textcolor{red}{\textbf{\underline{lo}}}w-\textcolor{red}{\textbf{\underline{r}}}ank adaptation in GANs named CoLoR-GAN, a framework designed to handle both FS and CL together, leveraging low-rank tensors to efficiently adapt the model to target tasks while reducing even more the number of parameters required. Applying a vanilla LoRA implementation already permitted us to obtain pretty good results. In order to optimize even further the size of the adapters, we challenged LoRA limits introducing a LoRA in LoRA (LLoRA) technique for convolutional layers. Finally, aware of the criticality linked to the choice of the hyperparameters of LoRA, we provide an empirical study to easily find the best ones. We demonstrate the effectiveness of CoLoR-GAN through experiments on several benchmark CL and FS tasks and show that our model is efficient, reaching SOTA performance but with a number of resources enormously reduced. Source code is available on \href{https://github.com/munsifali11/CoLoR-GAN}{Github.
Authors:Kanglei Zhou, Qingyi Pan, Xingxing Zhang, Hubert P. H. Shum, Frederick W. B. Li, Xiaohui Liang, Liyuan Wang
Title: Continual Action Quality Assessment via Adaptive Manifold-Aligned Graph Regularization
Abstract:
Action Quality Assessment (AQA) quantifies human actions in videos, supporting applications in sports scoring, rehabilitation, and skill evaluation. A major challenge lies in the non-stationary nature of quality distributions in real-world scenarios, which limits the generalization ability of conventional methods. We introduce Continual AQA (CAQA), which equips AQA with Continual Learning (CL) capabilities to handle evolving distributions while mitigating catastrophic forgetting. Although parameter-efficient fine-tuning of pretrained models has shown promise in CL for image classification, we find it insufficient for CAQA. Our empirical and theoretical analyses reveal two insights: (i) Full-Parameter Fine-Tuning (FPFT) is necessary for effective representation learning; yet (ii) uncontrolled FPFT induces overfitting and feature manifold shift, thereby aggravating forgetting. To address this, we propose Adaptive Manifold-Aligned Graph Regularization (MAGR++), which couples backbone fine-tuning that stabilizes shallow layers while adapting deeper ones with a two-step feature rectification pipeline: a manifold projector to translate deviated historical features into the current representation space, and a graph regularizer to align local and global distributions. We construct four CAQA benchmarks from three datasets with tailored evaluation protocols and strong baselines, enabling systematic cross-dataset comparison. Extensive experiments show that MAGR++ achieves state-of-the-art performance, with average correlation gains of 3.6% offline and 12.2% online over the strongest baseline, confirming its robustness and effectiveness. Our code is available at https://github.com/ZhouKanglei/MAGRPP.
Authors:Zhixin Zhang, Zeming Wei, Meng Sun
Title: Dynamic Orthogonal Continual Fine-tuning for Mitigating Catastrophic Forgettings
Abstract:
Catastrophic forgetting remains a critical challenge in continual learning for large language models (LLMs), where models struggle to retain performance on historical tasks when fine-tuning on new sequential data without access to past datasets. In this paper, we first reveal that the drift of functional directions during the fine-tuning process is a key reason why existing regularization-based methods fail in long-term LLM continual learning. To address this, we propose Dynamic Orthogonal Continual (DOC) fine-tuning, a novel approach that tracks the drift of these functional directions and dynamically updates them during the fine-tuning process. Furthermore, by adjusting the gradients of new task parameters to be orthogonal to the tracked historical function directions, our method mitigates interference between new and old tasks. Extensive experiments on various LLM continual learning benchmarks demonstrate that this approach outperforms prior methods, effectively reducing catastrophic forgetting and providing a robust tool for continuous LLM fine-tuning. Our code is available at https://github.com/meloxxxxxx/DOC.
Authors:Danni Yang, Zhikang Chen, Sen Cui, Mengyue Yang, Ding Li, Abudukelimu Wuerkaixi, Haoxuan Li, Jinke Ren, Mingming Gong
Title: Decentralized Dynamic Cooperation of Personalized Models for Federated Continual Learning
Abstract:
Federated continual learning (FCL) has garnered increasing attention for its ability to support distributed computation in environments with evolving data distributions. However, the emergence of new tasks introduces both temporal and cross-client shifts, making catastrophic forgetting a critical challenge. Most existing works aggregate knowledge from clients into a global model, which may not enhance client performance since irrelevant knowledge could introduce interference, especially in heterogeneous scenarios. Additionally, directly applying decentralized approaches to FCL suffers from ineffective group formation caused by task changes. To address these challenges, we propose a decentralized dynamic cooperation framework for FCL, where clients establish dynamic cooperative learning coalitions to balance the acquisition of new knowledge and the retention of prior learning, thereby obtaining personalized models. To maximize model performance, each client engages in selective cooperation, dynamically allying with others who offer meaningful performance gains. This results in non-overlapping, variable coalitions at each stage of the task. Moreover, we use coalitional affinity game to simulate coalition relationships between clients. By assessing both client gradient coherence and model similarity, we quantify the client benefits derived from cooperation. We also propose a merge-blocking algorithm and a dynamic cooperative evolution algorithm to achieve cooperative and dynamic equilibrium. Comprehensive experiments demonstrate the superiority of our method compared to various baselines. Code is available at: https://github.com/ydn3229/DCFCL.
Authors:Guannan Lai, Da-Wei Zhou, Xin Yang, Han-Jia Ye
Title: The Lie of the Average: How Class Incremental Learning Evaluation Deceives You?
Abstract:
Class Incremental Learning (CIL) requires models to continuously learn new classes without forgetting previously learned ones, while maintaining stable performance across all possible class sequences. In real-world settings, the order in which classes arrive is diverse and unpredictable, and model performance can vary substantially across different sequences. Yet mainstream evaluation protocols calculate mean and variance from only a small set of randomly sampled sequences. Our theoretical analysis and empirical results demonstrate that this sampling strategy fails to capture the full performance range, resulting in biased mean estimates and a severe underestimation of the true variance in the performance distribution. We therefore contend that a robust CIL evaluation protocol should accurately characterize and estimate the entire performance distribution. To this end, we introduce the concept of extreme sequences and provide theoretical justification for their crucial role in the reliable evaluation of CIL. Moreover, we observe a consistent positive correlation between inter-task similarity and model performance, a relation that can be leveraged to guide the search for extreme sequences. Building on these insights, we propose EDGE (Extreme case-based Distribution and Generalization Evaluation), an evaluation protocol that adaptively identifies and samples extreme class sequences using inter-task similarity, offering a closer approximation of the ground-truth performance distribution. Extensive experiments demonstrate that EDGE effectively captures performance extremes and yields more accurate estimates of distributional boundaries, providing actionable insights for model selection and robustness checking. Our code is available at https://github.com/AIGNLAI/EDGE.
Authors:Kunlun Xu, Yibo Feng, Jiangmeng Li, Yongsheng Qi, Jiahuan Zhou
Title: C${}^2$Prompt: Class-aware Client Knowledge Interaction for Federated Continual Learning
Abstract:
Federated continual learning (FCL) tackles scenarios of learning from continuously emerging task data across distributed clients, where the key challenge lies in addressing both temporal forgetting over time and spatial forgetting simultaneously. Recently, prompt-based FCL methods have shown advanced performance through task-wise prompt communication.In this study, we underscore that the existing prompt-based FCL methods are prone to class-wise knowledge coherence between prompts across clients. The class-wise knowledge coherence includes two aspects: (1) intra-class distribution gap across clients, which degrades the learned semantics across prompts, (2) inter-prompt class-wise relevance, which highlights cross-class knowledge confusion. During prompt communication, insufficient class-wise coherence exacerbates knowledge conflicts among new prompts and induces interference with old prompts, intensifying both spatial and temporal forgetting. To address these issues, we propose a novel Class-aware Client Knowledge Interaction (C${}^2$Prompt) method that explicitly enhances class-wise knowledge coherence during prompt communication. Specifically, a local class distribution compensation mechanism (LCDC) is introduced to reduce intra-class distribution disparities across clients, thereby reinforcing intra-class knowledge consistency. Additionally, a class-aware prompt aggregation scheme (CPA) is designed to alleviate inter-class knowledge confusion by selectively strengthening class-relevant knowledge aggregation. Extensive experiments on multiple FCL benchmarks demonstrate that C${}^2$Prompt achieves state-of-the-art performance. Our source code is available at https://github.com/zhoujiahuan1991/NeurIPS2025-C2Prompt
Authors:Ziqing Zou, Cong Wang, Yue Hu, Xiao Liu, Bowen Xu, Rong Xiong, Changjie Fan, Yingfeng Chen, Yue Wang
Title: High-Precision and High-Efficiency Trajectory Tracking for Excavators Based on Closed-Loop Dynamics
Abstract:
The complex nonlinear dynamics of hydraulic excavators, such as time delays and control coupling, pose significant challenges to achieving high-precision trajectory tracking. Traditional control methods often fall short in such applications due to their inability to effectively handle these nonlinearities, while commonly used learning-based methods require extensive interactions with the environment, leading to inefficiency. To address these issues, we introduce EfficientTrack, a trajectory tracking method that integrates model-based learning to manage nonlinear dynamics and leverages closed-loop dynamics to improve learning efficiency, ultimately minimizing tracking errors. We validate our method through comprehensive experiments both in simulation and on a real-world excavator. Comparative experiments in simulation demonstrate that our method outperforms existing learning-based approaches, achieving the highest tracking precision and smoothness with the fewest interactions. Real-world experiments further show that our method remains effective under load conditions and possesses the ability for continual learning, highlighting its practical applicability. For implementation details and source code, please refer to https://github.com/ZiqingZou/EfficientTrack.
Authors:Rui Yang, Michael Fu, Chakkrit Tantithamthavorn, Chetan Arora, Gunel Gulmammadova, Joey Chua
Title: AdaptiveGuard: Towards Adaptive Runtime Safety for LLM-Powered Software
Abstract:
Guardrails are critical for the safe deployment of Large Language Models (LLMs)-powered software. Unlike traditional rule-based systems with limited, predefined input-output spaces that inherently constrain unsafe behavior, LLMs enable open-ended, intelligent interactions--opening the door to jailbreak attacks through user inputs. Guardrails serve as a protective layer, filtering unsafe prompts before they reach the LLM. However, prior research shows that jailbreak attacks can still succeed over 70% of the time, even against advanced models like GPT-4o. While guardrails such as LlamaGuard report up to 95% accuracy, our preliminary analysis shows their performance can drop sharply--to as low as 12%--when confronted with unseen attacks. This highlights a growing software engineering challenge: how to build a post-deployment guardrail that adapts dynamically to emerging threats? To address this, we propose AdaptiveGuard, an adaptive guardrail that detects novel jailbreak attacks as out-of-distribution (OOD) inputs and learns to defend against them through a continual learning framework. Through empirical evaluation, AdaptiveGuard achieves 96% OOD detection accuracy, adapts to new attacks in just two update steps, and retains over 85% F1-score on in-distribution data post-adaptation, outperforming other baselines. These results demonstrate that AdaptiveGuard is a guardrail capable of evolving in response to emerging jailbreak strategies post deployment. We release our AdaptiveGuard and studied datasets at https://github.com/awsm-research/AdaptiveGuard to support further research.
Authors:Kai Jiang, Zhengyan Shi, Dell Zhang, Hongyuan Zhang, Xuelong Li
Title: Mixture of Noise for Pre-Trained Model-Based Class-Incremental Learning
Abstract:
Class Incremental Learning (CIL) aims to continuously learn new categories while retaining the knowledge of old ones. Pre-trained models (PTMs) show promising capabilities in CIL. However, existing approaches that apply lightweight fine-tuning to backbones still induce parameter drift, thereby compromising the generalization capability of pre-trained models. Parameter drift can be conceptualized as a form of noise that obscures critical patterns learned for previous tasks. However, recent researches have shown that noise is not always harmful. For example, the large number of visual patterns learned from pre-training can be easily abused by a single task, and introducing appropriate noise can suppress some low-correlation features, thus leaving a margin for future tasks. To this end, we propose learning beneficial noise for CIL guided by information theory and propose Mixture of Noise (Min), aiming to mitigate the degradation of backbone generalization from adapting new tasks. Specifically, task-specific noise is learned from high-dimension features of new tasks. Then, a set of weights is adjusted dynamically for optimal mixture of different task noise. Finally, Min embeds the beneficial noise into the intermediate features to mask the response of inefficient patterns. Extensive experiments on six benchmark datasets demonstrate that Min achieves state-of-the-art performance in most incremental settings, with particularly outstanding results in 50-steps incremental settings. This shows the significant potential for beneficial noise in continual learning. Code is available at https://github.com/ASCIIJK/MiN-NeurIPS2025.
Authors:Shiyu Fang, Yiming Cui, Haoyang Liang, Chen Lv, Peng Hang, Jian Sun
Title: CoReVLA: A Dual-Stage End-to-End Autonomous Driving Framework for Long-Tail Scenarios via Collect-and-Refine
Abstract:
Autonomous Driving (AD) systems have made notable progress, but their performance in long-tail, safety-critical scenarios remains limited. These rare cases contribute a disproportionate number of accidents. Vision-Language Action (VLA) models have strong reasoning abilities and offer a potential solution, but their effectiveness is limited by the lack of high-quality data and inefficient learning in such conditions. To address these challenges, we propose CoReVLA, a continual learning end-to-end autonomous driving framework that improves the performance in long-tail scenarios through a dual-stage process of data Collection and behavior Refinement. First, the model is jointly fine-tuned on a mixture of open-source driving QA datasets, allowing it to acquire a foundational understanding of driving scenarios. Next, CoReVLA is deployed within the Cave Automatic Virtual Environment (CAVE) simulation platform, where driver takeover data is collected from real-time interactions. Each takeover indicates a long-tail scenario that CoReVLA fails to handle reliably. Finally, the model is refined via Direct Preference Optimization (DPO), allowing it to learn directly from human preferences and thereby avoid reward hacking caused by manually designed rewards. Extensive open-loop and closed-loop experiments demonstrate that the proposed CoReVLA model can accurately perceive driving scenarios and make appropriate decisions. On the Bench2Drive benchmark, CoReVLA achieves a Driving Score (DS) of 72.18 and a Success Rate (SR) of 50%, outperforming state-of-the-art methods by 7.96 DS and 15% SR under long-tail, safety-critical scenarios. Furthermore, case studies demonstrate the model's ability to continually improve its performance in similar failure-prone scenarios by leveraging past takeover experiences. All codea and preprocessed datasets are available at: https://github.com/FanGShiYuu/CoReVLA
Authors:Kerun Mi, Guoliang Kang, Guangyu Li, Lin Zhao, Tao Zhou, Chen Gong
Title: Cross-Domain Attribute Alignment with CLIP: A Rehearsal-Free Approach for Class-Incremental Unsupervised Domain Adaptation
Abstract:
Class-Incremental Unsupervised Domain Adaptation (CI-UDA) aims to adapt a model from a labeled source domain to an unlabeled target domain, where the sets of potential target classes appearing at different time steps are disjoint and are subsets of the source classes. The key to solving this problem lies in avoiding catastrophic forgetting of knowledge about previous target classes during continuously mitigating the domain shift. Most previous works cumbersomely combine two technical components. On one hand, they need to store and utilize rehearsal target sample from previous time steps to avoid catastrophic forgetting; on the other hand, they perform alignment only between classes shared across domains at each time step. Consequently, the memory will continuously increase and the asymmetric alignment may inevitably result in knowledge forgetting. In this paper, we propose to mine and preserve domain-invariant and class-agnostic knowledge to facilitate the CI-UDA task. Specifically, via using CLIP, we extract the class-agnostic properties which we name as "attribute". In our framework, we learn a "key-value" pair to represent an attribute, where the key corresponds to the visual prototype and the value is the textual prompt. We maintain two attribute dictionaries, each corresponding to a different domain. Then we perform attribute alignment across domains to mitigate the domain shift, via encouraging visual attention consistency and prediction consistency. Through attribute modeling and cross-domain alignment, we effectively reduce catastrophic knowledge forgetting while mitigating the domain shift, in a rehearsal-free way. Experiments on three CI-UDA benchmarks demonstrate that our method outperforms previous state-of-the-art methods and effectively alleviates catastrophic forgetting. Code is available at https://github.com/RyunMi/VisTA.
Authors:Matthew Ho, Chen Si, Zhaoxiang Feng, Fangxu Yu, Yichi Yang, Zhijian Liu, Zhiting Hu, Lianhui Qin
Title: ArcMemo: Abstract Reasoning Composition with Lifelong LLM Memory
Abstract:
While inference-time scaling enables LLMs to carry out increasingly long and capable reasoning traces, the patterns and insights uncovered during these traces are immediately discarded once the context window is reset for a new query. External memory is a natural way to persist these discoveries, and recent work has shown clear benefits for reasoning-intensive tasks. We see an opportunity to make such memories more broadly reusable and scalable by moving beyond instance-based memory entries (e.g. exact query/response pairs, or summaries tightly coupled with the original problem context) toward concept-level memory: reusable, modular abstractions distilled from solution traces and stored in natural language. For future queries, relevant concepts are selectively retrieved and integrated into the prompt, enabling test-time continual learning without weight updates. Our design introduces new strategies for abstracting takeaways from rollouts and retrieving entries for new queries, promoting reuse and allowing memory to expand with additional experiences. We evaluate on ARC-AGI, a benchmark that stresses compositional generalization and abstract reasoning, making it a natural fit for concept memory. Our method yields a 7.5% relative gain over a strong no-memory baseline with performance continuing to scale with inference compute. We find abstract concepts to be the most consistent memory design, outscoring the baseline at all tested inference compute scales. Moreover, dynamically updating memory during test-time outperforms fixed settings, supporting the hypothesis that accumulating and abstracting patterns enables further solutions in a form of self-improvement. Code is available at https://github.com/matt-seb-ho/arc_memo.
Authors:Yunlong Lin, Chao Lu, Tongshuai Wu, Xiaocong Zhao, Guodong Du, Yanwei Sun, Zirui Li, Jianwei Gong
Title: Escaping Stability-Plasticity Dilemma in Online Continual Learning for Motion Forecasting via Synergetic Memory Rehearsal
Abstract:
Deep neural networks (DNN) have achieved remarkable success in motion forecasting. However, most DNN-based methods suffer from catastrophic forgetting and fail to maintain their performance in previously learned scenarios after adapting to new data. Recent continual learning (CL) studies aim to mitigate this phenomenon by enhancing memory stability of DNN, i.e., the ability to retain learned knowledge. Yet, excessive emphasis on the memory stability often impairs learning plasticity, i.e., the capacity of DNN to acquire new information effectively. To address such stability-plasticity dilemma, this study proposes a novel CL method, synergetic memory rehearsal (SyReM), for DNN-based motion forecasting. SyReM maintains a compact memory buffer to represent learned knowledge. To ensure memory stability, it employs an inequality constraint that limits increments in the average loss over the memory buffer. Synergistically, a selective memory rehearsal mechanism is designed to enhance learning plasticity by selecting samples from the memory buffer that are most similar to recently observed data. This selection is based on an online-measured cosine similarity of loss gradients, ensuring targeted memory rehearsal. Since replayed samples originate from learned scenarios, this memory rehearsal mechanism avoids compromising memory stability. We validate SyReM under an online CL paradigm where training samples from diverse scenarios arrive as a one-pass stream. Experiments on 11 naturalistic driving datasets from INTERACTION demonstrate that, compared to non-CL and CL baselines, SyReM significantly mitigates catastrophic forgetting in past scenarios while improving forecasting accuracy in new ones. The implementation is publicly available at https://github.com/BIT-Jack/SyReM.
Authors:Wei Li, Hangjie Yuan, Zixiang Zhao, Yifan Zhu, Aojun Lu, Tao Feng, Yanan Sun
Title: C-Flat++: Towards a More Efficient and Powerful Framework for Continual Learning
Abstract:
Balancing sensitivity to new tasks and stability for retaining past knowledge is crucial in continual learning (CL). Recently, sharpness-aware minimization has proven effective in transfer learning and has also been adopted in continual learning (CL) to improve memory retention and learning efficiency. However, relying on zeroth-order sharpness alone may favor sharper minima over flatter ones in certain settings, leading to less robust and potentially suboptimal solutions. In this paper, we propose \textbf{C}ontinual \textbf{Flat}ness (\textbf{C-Flat}), a method that promotes flatter loss landscapes tailored for CL. C-Flat offers plug-and-play compatibility, enabling easy integration with minimal modifications to the code pipeline. Besides, we present a general framework that integrates C-Flat into all major CL paradigms and conduct comprehensive comparisons with loss-minima optimizers and flat-minima-based CL methods. Our results show that C-Flat consistently improves performance across a wide range of settings. In addition, we introduce C-Flat++, an efficient yet effective framework that leverages selective flatness-driven promotion, significantly reducing the update cost required by C-Flat. Extensive experiments across multiple CL methods, datasets, and scenarios demonstrate the effectiveness and efficiency of our proposed approaches. Code is available at https://github.com/WanNaa/C-Flat.
Authors:Yajat Yadav, Patrick Mendoza, Jathin Korrapati
Title: ONG: Orthogonal Natural Gradient Descent
Abstract:
Orthogonal Gradient Descent (OGD) has emerged as a powerful method for continual learning. However, its Euclidean projections do not leverage the underlying information-geometric structure of the problem, which can lead to suboptimal convergence in learning tasks. To address this, we propose incorporating the natural gradient into OGD and present \textbf{ONG (Orthogonal Natural Gradient Descent)}. ONG preconditions each new task-specific gradient with an efficient EKFAC approximation of the inverse Fisher information matrix, yielding updates that follow the steepest descent direction under a Riemannian metric. To preserve performance on previously learned tasks, ONG projects these natural gradients onto the orthogonal complement of prior tasks' gradients. We provide an initial theoretical justification for this procedure, introduce the Orthogonal Natural Gradient Descent (ONG) algorithm, and present preliminary results on the Permuted and Rotated MNIST benchmarks. Our preliminary results, however, indicate that a naive combination of natural gradients and orthogonal projections can have potential issues. This finding motivates continued future work focused on robustly reconciling these geometric perspectives to develop a continual learning method, establishing a more rigorous theoretical foundation with formal convergence guarantees, and extending empirical validation to large-scale continual learning benchmarks. The anonymized version of our code can be found as the zip file here: https://drive.google.com/drive/folders/11PyU6M8pNgOUB5pwdGORtbnMtD8Shiw_?usp=sharing.
Authors:Zhendong Yang, Jie Wang, Liansong Zong, Xiaorong Liu, Quan Qian, Shiqian Chen
Title: Few-shot Class-incremental Fault Diagnosis by Preserving Class-Agnostic Knowledge with Dual-Granularity Representations
Abstract:
Few-Shot Class-Incremental Fault Diagnosis (FSC-FD), which aims to continuously learn from new fault classes with only a few samples without forgetting old ones, is critical for real-world industrial systems. However, this challenging task severely amplifies the issues of catastrophic forgetting of old knowledge and overfitting on scarce new data. To address these challenges, this paper proposes a novel framework built upon Dual-Granularity Representations, termed the Dual-Granularity Guidance Network (DGGN). Our DGGN explicitly decouples feature learning into two parallel streams: 1) a fine-grained representation stream, which utilizes a novel Multi-Order Interaction Aggregation module to capture discriminative, class-specific features from the limited new samples. 2) a coarse-grained representation stream, designed to model and preserve general, class-agnostic knowledge shared across all fault types. These two representations are dynamically fused by a multi-semantic cross-attention mechanism, where the stable coarse-grained knowledge guides the learning of fine-grained features, preventing overfitting and alleviating feature conflicts. To further mitigate catastrophic forgetting, we design a Boundary-Aware Exemplar Prioritization strategy. Moreover, a decoupled Balanced Random Forest classifier is employed to counter the decision boundary bias caused by data imbalance. Extensive experiments on the TEP benchmark and a real-world MFF dataset demonstrate that our proposed DGGN achieves superior diagnostic performance and stability compared to state-of-the-art FSC-FD approaches. Our code is publicly available at https://github.com/MentaY/DGGN
Authors:Aniello Panariello, Emanuele Frascaroli, Pietro Buzzega, Lorenzo Bonicelli, Angelo Porrello, Simone Calderara
Title: Modular Embedding Recomposition for Incremental Learning
Abstract:
The advent of pre-trained Vision-Language Models (VLMs) has significantly transformed Continual Learning (CL), mainly due to their zero-shot classification abilities. Such proficiency makes VLMs well-suited for real-world applications, enabling robust performance on novel unseen classes without requiring adaptation. However, fine-tuning remains essential when downstream tasks deviate significantly from the pre-training domain. Prior CL approaches primarily focus on preserving the zero-shot capabilities of VLMs during incremental fine-tuning on a downstream task. We take a step further by devising an approach that transforms preservation into enhancement of the zero-shot capabilities of VLMs. Our approach, named MoDular Embedding Recomposition (MoDER), introduces a modular framework that trains multiple textual experts, each specialized in a single seen class, and stores them in a foundational hub. At inference time, for each unseen class, we query the hub and compose the retrieved experts to synthesize a refined prototype that improves classification. We show the effectiveness of our method across two popular zero-shot incremental protocols, Class-IL and MTIL, comprising a total of 14 datasets. The codebase is available at https://github.com/aimagelab/mammoth.
Authors:Hongyang Chen, Shaoling Pu, Lingyu Zheng, Zhongwu Sun
Title: SEDEG:Sequential Enhancement of Decoder and Encoder's Generality for Class Incremental Learning with Small Memory
Abstract:
In incremental learning, enhancing the generality of knowledge is crucial for adapting to dynamic data inputs. It can develop generalized representations or more balanced decision boundaries, preventing the degradation of long-term knowledge over time and thus mitigating catastrophic forgetting. Some emerging incremental learning methods adopt an encoder-decoder architecture and have achieved promising results. In the encoder-decoder achitecture, improving the generalization capabilities of both the encoder and decoder is critical, as it helps preserve previously learned knowledge while ensuring adaptability and robustness to new, diverse data inputs. However, many existing continual methods focus solely on enhancing one of the two components, which limits their effectiveness in mitigating catastrophic forgetting. And these methods perform even worse in small-memory scenarios, where only a limited number of historical samples can be stored. To mitigate this limitation, we introduces SEDEG, a two-stage training framework for vision transformers (ViT), focusing on sequentially improving the generality of both Decoder and Encoder. Initially, SEDEG trains an ensembled encoder through feature boosting to learn generalized representations, which subsequently enhance the decoder's generality and balance the classifier. The next stage involves using knowledge distillation (KD) strategies to compress the ensembled encoder and develop a new, more generalized encoder. This involves using a balanced KD approach and feature KD for effective knowledge transfer. Extensive experiments on three benchmark datasets show SEDEG's superior performance, and ablation studies confirm the efficacy of its components. The code is available at https://github.com/ShaolingPu/CIL.
Authors:Nikolaos-Antonios Ypsilantis, Kaifeng Chen, André Araujo, Ondřej Chum
Title: Infusing fine-grained visual knowledge to Vision-Language Models
Abstract:
Large-scale contrastive pre-training produces powerful Vision-and-Language Models (VLMs) capable of generating representations (embeddings) effective for a wide variety of visual and multimodal tasks. However, these pretrained embeddings remain suboptimal for fine-grained open-set visual retrieval, where state-of-the-art results require fine-tuning the vision encoder using annotated domain-specific samples. Naively performing such fine-tuning typically leads to catastrophic forgetting, severely diminishing the model's general-purpose visual and cross-modal capabilities. In this work, we propose a fine-tuning method explicitly designed to achieve optimal balance between fine-grained domain adaptation and retention of the pretrained VLM's broad multimodal knowledge. Drawing inspiration from continual learning literature, we systematically analyze standard regularization techniques aimed at knowledge retention and propose an efficient and effective combination strategy. Additionally, we address the commonly overlooked yet critical aspects of validation set design and hyperparameter tuning to ensure reproducibility and robust generalization across datasets and pretrained models. We extensively evaluate our method on both fine-grained and coarse-grained image-image and image-text retrieval benchmarks. Our approach consistently achieves strong results, notably retaining the visual-text alignment without utilizing any text data or the original text encoder during fine-tuning. Code and model checkpoints: https://github.com/nikosips/infusing .
Authors:Haojie Zhang, Yixiong Liang, Hulin Kuang, Lihui Cen, Zhe Qu, Yigang Cen, Min Zeng, Shichao Kan
Title: Contrastive Regularization over LoRA for Multimodal Biomedical Image Incremental Learning
Abstract:
Multimodal Biomedical Image Incremental Learning (MBIIL) is essential for handling diverse tasks and modalities in the biomedical domain, as training separate models for each modality or task significantly increases inference costs. Existing incremental learning methods focus on task expansion within a single modality, whereas MBIIL seeks to train a unified model incrementally across modalities. The MBIIL faces two challenges: I) How to preserve previously learned knowledge during incremental updates? II) How to effectively leverage knowledge acquired from existing modalities to support new modalities? To address these challenges, we propose MSLoRA-CR, a method that fine-tunes Modality-Specific LoRA modules while incorporating Contrastive Regularization to enhance intra-modality knowledge sharing and promote inter-modality knowledge differentiation. Our approach builds upon a large vision-language model (LVLM), keeping the pretrained model frozen while incrementally adapting new LoRA modules for each modality or task. Experiments on the incremental learning of biomedical images demonstrate that MSLoRA-CR outperforms both the state-of-the-art (SOTA) approach of training separate models for each modality and the general incremental learning method (incrementally fine-tuning LoRA). Specifically, MSLoRA-CR achieves a 1.88% improvement in overall performance compared to unconstrained incremental learning methods while maintaining computational efficiency. Our code is publicly available at https://github.com/VentusAislant/MSLoRA_CR.
Authors:Yang Zhao, Tao Wang, Said Elhadi
Title: Data-driven RF Tomography via Cross-modal Sensing and Continual Learning
Abstract:
Data-driven radio frequency (RF) tomography has demonstrated significant potential for underground target detection, due to the penetrative nature of RF signals through soil. However, it is still challenging to achieve accurate and robust performance in dynamic environments. In this work, we propose a data-driven radio frequency tomography (DRIFT) framework with the following key components to reconstruct cross section images of underground root tubers, even with significant changes in RF signals. First, we design a cross-modal sensing system with RF and visual sensors, and propose to train an RF tomography deep neural network (DNN) model following the cross-modal learning approach. Then we propose to apply continual learning to automatically update the DNN model, once environment changes are detected in a dynamic environment. Experimental results show that our approach achieves an average equivalent diameter error of 2.29 cm, 23.2% improvement upon the state-of-the-art approach. Our DRIFT code and dataset are publicly available on https://github.com/Data-driven-RTI/DRIFT.
Authors:Zhangyong Tang, Tianyang Xu, Xuefeng Zhu, Chunyang Cheng, Tao Zhou, Xiaojun Wu, Josef Kittler
Title: Serial Over Parallel: Learning Continual Unification for Multi-Modal Visual Object Tracking and Benchmarking
Abstract:
Unifying multiple multi-modal visual object tracking (MMVOT) tasks draws increasing attention due to the complementary nature of different modalities in building robust tracking systems. Existing practices mix all data sensor types in a single training procedure, structuring a parallel paradigm from the data-centric perspective and aiming for a global optimum on the joint distribution of the involved tasks. However, the absence of a unified benchmark where all types of data coexist forces evaluations on separated benchmarks, causing \textit{inconsistency} between training and testing, thus leading to performance \textit{degradation}. To address these issues, this work advances in two aspects: \ding{182} A unified benchmark, coined as UniBench300, is introduced to bridge the inconsistency by incorporating multiple task data, reducing inference passes from three to one and cutting time consumption by 27\%. \ding{183} The unification process is reformulated in a serial format, progressively integrating new tasks. In this way, the performance degradation can be specified as knowledge forgetting of previous tasks, which naturally aligns with the philosophy of continual learning (CL), motivating further exploration of injecting CL into the unification process. Extensive experiments conducted on two baselines and four benchmarks demonstrate the significance of UniBench300 and the superiority of CL in supporting a stable unification process. Moreover, while conducting dedicated analyses, the performance degradation is found to be negatively correlated with network capacity. Additionally, modality discrepancies contribute to varying degradation levels across tasks (RGBT > RGBD > RGBE in MMVOT), offering valuable insights for future multi-modal vision research. Source codes and the proposed benchmark is available at \textit{https://github.com/Zhangyong-Tang/UniBench300}.
Authors:Jungwoo Kim, Jong-Seok Lee
Title: Exploring Cross-Stage Adversarial Transferability in Class-Incremental Continual Learning
Abstract:
Class-incremental continual learning addresses catastrophic forgetting by enabling classification models to preserve knowledge of previously learned classes while acquiring new ones. However, the vulnerability of the models against adversarial attacks during this process has not been investigated sufficiently. In this paper, we present the first exploration of vulnerability to stage-transferred attacks, i.e., an adversarial example generated using the model in an earlier stage is used to attack the model in a later stage. Our findings reveal that continual learning methods are highly susceptible to these attacks, raising a serious security issue. We explain this phenomenon through model similarity between stages and gradual robustness degradation. Additionally, we find that existing adversarial training-based defense methods are not sufficiently effective to stage-transferred attacks. Codes are available at https://github.com/mcml-official/CSAT.
Authors:Yan Wang, Da-Wei Zhou, Han-Jia Ye
Title: Integrating Task-Specific and Universal Adapters for Pre-Trained Model-based Class-Incremental Learning
Abstract:
Class-Incremental Learning (CIL) requires a learning system to continually learn new classes without forgetting. Existing pre-trained model-based CIL methods often freeze the pre-trained network and adapt to incremental tasks using additional lightweight modules such as adapters. However, incorrect module selection during inference hurts performance, and task-specific modules often overlook shared general knowledge, leading to errors on distinguishing between similar classes across tasks. To address the aforementioned challenges, we propose integrating Task-Specific and Universal Adapters (TUNA) in this paper. Specifically, we train task-specific adapters to capture the most crucial features relevant to their respective tasks and introduce an entropy-based selection mechanism to choose the most suitable adapter. Furthermore, we leverage an adapter fusion strategy to construct a universal adapter, which encodes the most discriminative features shared across tasks. We combine task-specific and universal adapter predictions to harness both specialized and general knowledge during inference. Extensive experiments on various benchmark datasets demonstrate the state-of-the-art performance of our approach. Code is available at: https://github.com/LAMDA-CL/ICCV2025-TUNA
Authors:Haiyang Guo, Fei Zhu, Hongbo Zhao, Fanhu Zeng, Wenzhuo Liu, Shijie Ma, Da-Han Wang, Xu-Yao Zhang
Title: MCITlib: Multimodal Continual Instruction Tuning Library and Benchmark
Abstract:
Continual learning aims to equip AI systems with the ability to continuously acquire and adapt to new knowledge without forgetting previously learned information, similar to human learning. While traditional continual learning methods focusing on unimodal tasks have achieved notable success, the emergence of Multimodal Large Language Models has brought increasing attention to Multimodal Continual Learning tasks involving multiple modalities, such as vision and language. In this setting, models are expected to not only mitigate catastrophic forgetting but also handle the challenges posed by cross-modal interactions and coordination. To facilitate research in this direction, we introduce MCITlib, a comprehensive and constantly evolving code library for continual instruction tuning of Multimodal Large Language Models. In MCITlib, we have currently implemented 8 representative algorithms for Multimodal Continual Instruction Tuning and systematically evaluated them on 2 carefully selected benchmarks. MCITlib will be continuously updated to reflect advances in the Multimodal Continual Learning field. The codebase is released at https://github.com/Ghy0501/MCITlib.
Authors:Xiang Xiang, Qinhao Zhou, Zhuo Xu, Jing Ma, Jiaxin Dai, Yifan Liang, Hanlin Li
Title: OpenHAIV: A Framework Towards Practical Open-World Learning
Abstract:
Substantial progress has been made in various techniques for open-world recognition. Out-of-distribution (OOD) detection methods can effectively distinguish between known and unknown classes in the data, while incremental learning enables continuous model knowledge updates. However, in open-world scenarios, these approaches still face limitations. Relying solely on OOD detection does not facilitate knowledge updates in the model, and incremental fine-tuning typically requires supervised conditions, which significantly deviate from open-world settings. To address these challenges, this paper proposes OpenHAIV, a novel framework that integrates OOD detection, new class discovery, and incremental continual fine-tuning into a unified pipeline. This framework allows models to autonomously acquire and update knowledge in open-world environments. The proposed framework is available at https://haiv-lab.github.io/openhaiv .
Authors:Gokul Adethya T, S. Jaya Nirmala
Title: A Study on Regularization-Based Continual Learning Methods for Indic ASR
Abstract:
Indias linguistic diversity poses significant challenges for developing inclusive Automatic Speech Recognition (ASR) systems. Traditional multilingual models, which require simultaneous access to all language data, are impractical due to the sequential arrival of data and privacy constraints. Continual Learning (CL) offers a solution by enabling models to learn new languages sequentially without catastrophically forgetting previously learned knowledge. This paper investigates CL for ASR on Indian languages using a subset of the IndicSUPERB benchmark. We employ a Conformer-based hybrid RNN-T/CTC model, initially pretrained on Hindi, which is then incrementally trained on eight additional Indian languages, for a total sequence of nine languages. We evaluate three prominent regularization- and distillation-based CL strategies: Elastic Weight Consolidation (EWC), Memory Aware Synapses (MAS), and Learning without Forgetting (LwF), selected for their suitability in no-replay, privacy-conscious scenarios. Performance is analyzed using Word Error Rate (WER) for both RNN-T and CTC paths on clean and noisy data, as well as knowledge retention via Backward Transfer. We also explore the impact of varying the number of training epochs (1, 2, 5, and 10) per task. Results, compared against naive fine-tuning, demonstrate CLs effectiveness in mitigating forgetting, making it a promising approach for scalable ASR in diverse Indian languages under realistic constraints. The code is available at: https://github.com/FrozenWolf-Cyber/Indic-CL-ASR
Authors:Yue Duan, Taicai Chen, Lei Qi, Yinghuan Shi
Title: Divide-and-Conquer for Enhancing Unlabeled Learning, Stability, and Plasticity in Semi-supervised Continual Learning
Abstract:
Semi-supervised continual learning (SSCL) seeks to leverage both labeled and unlabeled data in a sequential learning setup, aiming to reduce annotation costs while managing continual data arrival. SSCL introduces complex challenges, including ensuring effective unlabeled learning (UL), while balancing memory stability (MS) and learning plasticity (LP). Previous SSCL efforts have typically focused on isolated aspects of the three, while this work presents USP, a divide-and-conquer framework designed to synergistically enhance these three aspects: (1) Feature Space Reservation (FSR) strategy for LP, which constructs reserved feature locations for future classes by shaping old classes into an equiangular tight frame; (2) Divide-and-Conquer Pseudo-labeling (DCP) approach for UL, which assigns reliable pseudo-labels across both high- and low-confidence unlabeled data; and (3) Class-mean-anchored Unlabeled Distillation (CUD) for MS, which reuses DCP's outputs to anchor unlabeled data to stable class means for distillation to prevent forgetting. Comprehensive evaluations show USP outperforms prior SSCL methods, with gains up to 5.94% in the last accuracy, validating its effectiveness. The code is available at https://github.com/NJUyued/USP4SSCL.
Authors:Yifu Guo, Yuquan Lu, Wentao Zhang, Zishan Xu, Dexia Chen, Siyu Zhang, Yizhe Zhang, Ruixuan Wang
Title: Decoupling Continual Semantic Segmentation
Abstract:
Continual Semantic Segmentation (CSS) requires learning new classes without forgetting previously acquired knowledge, addressing the fundamental challenge of catastrophic forgetting in dense prediction tasks. However, existing CSS methods typically employ single-stage encoder-decoder architectures where segmentation masks and class labels are tightly coupled, leading to interference between old and new class learning and suboptimal retention-plasticity balance. We introduce DecoupleCSS, a novel two-stage framework for CSS. By decoupling class-aware detection from class-agnostic segmentation, DecoupleCSS enables more effective continual learning, preserving past knowledge while learning new classes. The first stage leverages pre-trained text and image encoders, adapted using LoRA, to encode class-specific information and generate location-aware prompts. In the second stage, the Segment Anything Model (SAM) is employed to produce precise segmentation masks, ensuring that segmentation knowledge is shared across both new and previous classes. This approach improves the balance between retention and adaptability in CSS, achieving state-of-the-art performance across a variety of challenging tasks. Our code is publicly available at: https://github.com/euyis1019/Decoupling-Continual-Semantic-Segmentation.
Authors:Yunan Zhang, Shuoran Jiang, Mengchen Zhao, Yuefeng Li, Yang Fan, Xiangping Wu, Qingcai Chen
Title: GeRe: Towards Efficient Anti-Forgetting in Continual Learning of LLM via General Samples Replay
Abstract:
The continual learning capability of large language models (LLMs) is crucial for advancing artificial general intelligence. However, continual fine-tuning LLMs across various domains often suffers from catastrophic forgetting, characterized by: 1) significant forgetting of their general capabilities, and 2) sharp performance declines in previously learned tasks. To simultaneously address both issues in a simple yet stable manner, we propose General Sample Replay (GeRe), a framework that use usual pretraining texts for efficient anti-forgetting. Beyond revisiting the most prevalent replay-based practices under GeRe, we further leverage neural states to introduce a enhanced activation states constrained optimization method using threshold-based margin (TM) loss, which maintains activation state consistency during replay learning. We are the first to validate that a small, fixed set of pre-collected general replay samples is sufficient to resolve both concerns--retaining general capabilities while promoting overall performance across sequential tasks. Indeed, the former can inherently facilitate the latter. Through controlled experiments, we systematically compare TM with different replay strategies under the GeRe framework, including vanilla label fitting, logit imitation via KL divergence and feature imitation via L1/L2 losses. Results demonstrate that TM consistently improves performance and exhibits better robustness. Our work paves the way for efficient replay of LLMs for the future. Our code and data are available at https://github.com/Qznan/GeRe.
Authors:Yuyang Liu, Qiuhe Hong, Linlan Huang, Alexandra Gomez-Villa, Dipam Goswami, Xialei Liu, Joost van de Weijer, Yonghong Tian
Title: Continual Learning for VLMs: A Survey and Taxonomy Beyond Forgetting
Abstract:
Vision-language models (VLMs) have achieved impressive performance across diverse multimodal tasks by leveraging large-scale pre-training. However, enabling them to learn continually from non-stationary data remains a major challenge, as their cross-modal alignment and generalization capabilities are particularly vulnerable to catastrophic forgetting. Unlike traditional unimodal continual learning (CL), VLMs face unique challenges such as cross-modal feature drift, parameter interference due to shared architectures, and zero-shot capability erosion. This survey offers the first focused and systematic review of continual learning for VLMs (VLM-CL). We begin by identifying the three core failure modes that degrade performance in VLM-CL. Based on these, we propose a challenge-driven taxonomy that maps solutions to their target problems: (1) \textit{Multi-Modal Replay Strategies} address cross-modal drift through explicit or implicit memory mechanisms; (2) \textit{Cross-Modal Regularization} preserves modality alignment during updates; and (3) \textit{Parameter-Efficient Adaptation} mitigates parameter interference with modular or low-rank updates. We further analyze current evaluation protocols, datasets, and metrics, highlighting the need for better benchmarks that capture VLM-specific forgetting and compositional generalization. Finally, we outline open problems and future directions, including continual pre-training and compositional zero-shot learning. This survey aims to serve as a comprehensive and diagnostic reference for researchers developing lifelong vision-language systems. All resources are available at: https://github.com/YuyangSunshine/Awesome-Continual-learning-of-Vision-Language-Models.
Authors:Haoquan Lu, Hanzhe Liang, Jie Zhang, Chenxi Hu, Jinbao Wang, Can Gao
Title: C3D-AD: Toward Continual 3D Anomaly Detection via Kernel Attention with Learnable Advisor
Abstract:
3D Anomaly Detection (AD) has shown great potential in detecting anomalies or defects of high-precision industrial products. However, existing methods are typically trained in a class-specific manner and also lack the capability of learning from emerging classes. In this study, we proposed a continual learning framework named Continual 3D Anomaly Detection (C3D-AD), which can not only learn generalized representations for multi-class point clouds but also handle new classes emerging over time.Specifically, in the feature extraction module, to extract generalized local features from diverse product types of different tasks efficiently, Kernel Attention with random feature Layer (KAL) is introduced, which normalizes the feature space. Then, to reconstruct data correctly and continually, an efficient Kernel Attention with learnable Advisor (KAA) mechanism is proposed, which learns the information from new categories while discarding redundant old information within both the encoder and decoder. Finally, to keep the representation consistency over tasks, a Reconstruction with Parameter Perturbation (RPP) module is proposed by designing a representation rehearsal loss function, which ensures that the model remembers previous category information and returns category-adaptive representation.Extensive experiments on three public datasets demonstrate the effectiveness of the proposed method, achieving an average performance of 66.4%, 83.1%, and 63.4% AUROC on Real3D-AD, Anomaly-ShapeNet, and MulSen-AD, respectively.
Authors:Yunlong Lin, Zirui Li, Guodong Du, Xiaocong Zhao, Cheng Gong, Xinwei Wang, Chao Lu, Jianwei Gong
Title: H2C: Hippocampal Circuit-inspired Continual Learning for Lifelong Trajectory Prediction in Autonomous Driving
Abstract:
Deep learning (DL) has shown state-of-the-art performance in trajectory prediction, which is critical to safe navigation in autonomous driving (AD). However, most DL-based methods suffer from catastrophic forgetting, where adapting to a new distribution may cause significant performance degradation in previously learned ones. Such inability to retain learned knowledge limits their applicability in the real world, where AD systems need to operate across varying scenarios with dynamic distributions. As revealed by neuroscience, the hippocampal circuit plays a crucial role in memory replay, effectively reconstructing learned knowledge based on limited resources. Inspired by this, we propose a hippocampal circuit-inspired continual learning method (H2C) for trajectory prediction across varying scenarios. H2C retains prior knowledge by selectively recalling a small subset of learned samples. First, two complementary strategies are developed to select the subset to represent learned knowledge. Specifically, one strategy maximizes inter-sample diversity to represent the distinctive knowledge, and the other estimates the overall knowledge by equiprobable sampling. Then, H2C updates via a memory replay loss function calculated by these selected samples to retain knowledge while learning new data. Experiments based on various scenarios from the INTERACTION dataset are designed to evaluate H2C. Experimental results show that H2C reduces catastrophic forgetting of DL baselines by 22.71% on average in a task-free manner, without relying on manually informed distributional shifts. The implementation is available at https://github.com/BIT-Jack/H2C-lifelong.
Authors:Jiawei Liu, Chenwang Wu, Defu Lian, Enhong Chen
Title: Efficient Machine Unlearning via Influence Approximation
Abstract:
Due to growing privacy concerns, machine unlearning, which aims at enabling machine learning models to ``forget" specific training data, has received increasing attention. Among existing methods, influence-based unlearning has emerged as a prominent approach due to its ability to estimate the impact of individual training samples on model parameters without retraining. However, this approach suffers from prohibitive computational overhead arising from the necessity to compute the Hessian matrix and its inverse across all training samples and parameters, rendering it impractical for large-scale models and scenarios involving frequent data deletion requests. This highlights the difficulty of forgetting. Inspired by cognitive science, which suggests that memorizing is easier than forgetting, this paper establishes a theoretical link between memorizing (incremental learning) and forgetting (unlearning). This connection allows machine unlearning to be addressed from the perspective of incremental learning. Unlike the time-consuming Hessian computations in unlearning (forgetting), incremental learning (memorizing) typically relies on more efficient gradient optimization, which supports the aforementioned cognitive theory. Based on this connection, we introduce the Influence Approximation Unlearning (IAU) algorithm for efficient machine unlearning from the incremental perspective. Extensive empirical evaluations demonstrate that IAU achieves a superior balance among removal guarantee, unlearning efficiency, and comparable model utility, while outperforming state-of-the-art methods across diverse datasets and model architectures. Our code is available at https://github.com/Lolo1222/IAU.
Authors:Jiong Yin, Liang Li, Jiehua Zhang, Yuhan Gao, Chenggang Yan, Xichun Sheng
Title: Progressive Homeostatic and Plastic Prompt Tuning for Audio-Visual Multi-Task Incremental Learning
Abstract:
Audio-visual multi-task incremental learning aims to continuously learn from multiple audio-visual tasks without the need for joint training on all tasks. The challenge of the problem is how to preserve the old task knowledge while facilitating the learning of new task with previous experiences. To address these challenges, we introduce a three-stage Progressive Homeostatic and Plastic audio-visual prompt (PHP) method. In the shallow phase, we design the task-shared modality aggregating adapter to foster cross-task and cross-modal audio-visual representation learning to enhance shared understanding between tasks. In the middle phase, we propose the task-specific modality-shared dynamic generating adapter, which constructs prompts that are tailored to individual tasks while remaining general across modalities, which balances the models ability to retain knowledge against forgetting with its potential for versatile multi-task transferability. In the deep phase, we introduce the task-specific modality-independent prompts to further refine the understand ability by targeting individual information for each task and modality. By incorporating these three phases, PHP retains task-specific prompts while adapting shared parameters for new tasks to effectively balance knowledge sharing and specificity. Our method achieves SOTA performance in different orders of four tasks (AVE, AVVP, AVS and AVQA). Our code can be available at https://github.com/ENJOY-Yin-jiong/PHP.
Authors:Rafał Surdej, Michał Bortkiewicz, Alex Lewandowski, Mateusz Ostaszewski, Clare Lyle
Title: Balancing Expressivity and Robustness: Constrained Rational Activations for Reinforcement Learning
Abstract:
Trainable activation functions, whose parameters are optimized alongside network weights, offer increased expressivity compared to fixed activation functions. Specifically, trainable activation functions defined as ratios of polynomials (rational functions) have been proposed to enhance plasticity in reinforcement learning. However, their impact on training stability remains unclear. In this work, we study trainable rational activations in both reinforcement and continual learning settings. We find that while their flexibility enhances adaptability, it can also introduce instability, leading to overestimation in RL and feature collapse in longer continual learning scenarios. Our main result is demonstrating a trade-off between expressivity and plasticity in rational activations. To address this, we propose a constrained variant that structurally limits excessive output scaling while preserving adaptability. Experiments across MetaWorld and DeepMind Control Suite (DMC) environments show that our approach improves training stability and performance. In continual learning benchmarks, including MNIST with reshuffled labels and Split CIFAR-100, we reveal how different constraints affect the balance between expressivity and long-term retention. While preliminary experiments in discrete action domains (e.g., Atari) did not show similar instability, this suggests that the trade-off is particularly relevant for continuous control. Together, our findings provide actionable design principles for robust and adaptable trainable activations in dynamic, non-stationary environments. Code available at: https://github.com/special114/rl_rational_plasticity.
Authors:M. Anwar Ma'sum, Mahardhika Pratama, Savitha Ramasamy, Lin Liu, Habibullah Habibullah, Ryszard Kowalczyk
Title: PROL : Rehearsal Free Continual Learning in Streaming Data via Prompt Online Learning
Abstract:
The data privacy constraint in online continual learning (OCL), where the data can be seen only once, complicates the catastrophic forgetting problem in streaming data. A common approach applied by the current SOTAs in OCL is with the use of memory saving exemplars or features from previous classes to be replayed in the current task. On the other hand, the prompt-based approach performs excellently in continual learning but with the cost of a growing number of trainable parameters. The first approach may not be applicable in practice due to data openness policy, while the second approach has the issue of throughput associated with the streaming data. In this study, we propose a novel prompt-based method for online continual learning that includes 4 main components: (1) single light-weight prompt generator as a general knowledge, (2) trainable scaler-and-shifter as specific knowledge, (3) pre-trained model (PTM) generalization preserving, and (4) hard-soft updates mechanism. Our proposed method achieves significantly higher performance than the current SOTAs in CIFAR100, ImageNet-R, ImageNet-A, and CUB dataset. Our complexity analysis shows that our method requires a relatively smaller number of parameters and achieves moderate training time, inference time, and throughput. For further study, the source code of our method is available at https://github.com/anwarmaxsum/PROL.
Authors:Xianghong Zou, Jianping Li, Zhe Chen, Zhen Cao, Zhen Dong, Qiegen Liu, Bisheng Yang
Title: LifelongPR: Lifelong point cloud place recognition based on sample replay and prompt learning
Abstract:
Point cloud place recognition (PCPR) determines the geo-location within a prebuilt map and plays a crucial role in geoscience and robotics applications such as autonomous driving, intelligent transportation, and augmented reality. In real-world large-scale deployments of a geographic positioning system, PCPR models must continuously acquire, update, and accumulate knowledge to adapt to diverse and dynamic environments, i.e., the ability known as continual learning (CL). However, existing PCPR models often suffer from catastrophic forgetting, leading to significant performance degradation in previously learned scenes when adapting to new environments or sensor types. This results in poor model scalability, increased maintenance costs, and system deployment difficulties, undermining the practicality of PCPR. To address these issues, we propose LifelongPR, a novel continual learning framework for PCPR, which effectively extracts and fuses knowledge from sequential point cloud data. First, to alleviate the knowledge loss, we propose a replay sample selection method that dynamically allocates sample sizes according to each dataset's information quantity and selects spatially diverse samples for maximal representativeness. Second, to handle domain shifts, we design a prompt learning-based CL framework with a lightweight prompt module and a two-stage training strategy, enabling domain-specific feature adaptation while minimizing forgetting. Comprehensive experiments on large-scale public and self-collected datasets are conducted to validate the effectiveness of the proposed method. Compared with state-of-the-art (SOTA) methods, our method achieves 6.50% improvement in mIR@1, 7.96% improvement in mR@1, and an 8.95% reduction in F. The code and pre-trained models are publicly available at https://github.com/zouxianghong/LifelongPR.
Authors:Yongwei Jiang, Yixiong Zou, Yuhua Li, Ruixuan Li
Title: Revisiting Pool-based Prompt Learning for Few-shot Class-incremental Learning
Abstract:
Few-Shot Class-Incremental Learning (FSCIL) faces dual challenges of data scarcity and incremental learning in real-world scenarios. While pool-based prompting methods have demonstrated success in traditional incremental learning, their effectiveness in FSCIL settings remains unexplored. This paper presents the first study of current prompt pool methods in FSCIL tasks, revealing an unanticipated performance degradation in incremental sessions. Through comprehensive analysis, we identify that this phenomenon stems from token-dimension saturation: with limited data, excessive prompts compete for task-relevant information, leading to model overfitting. Based on this finding, we propose LGSP-Prompt (Local-Global Spatial Prompting), which innovatively shifts pool-based prompt learning from the token dimension to the spatial dimension. LGSP-Prompt generates spatial prompts by synergistically combining local spatial features and global frequency-domain representations to highlight key patterns in input images. We construct two spatial prompt pools enabling dynamic prompt selection to maintain acquired knowledge while effectively learning novel sessions. Extensive experiments demonstrate that our approach achieves state-of-the-art performance across multiple FSCIL benchmarks, showing significant advantages in both base knowledge preservation and incremental learning. Our implementation is available at https://github.com/Jywsuperman/LGSP.
Authors:Linlan Huang, Xusheng Cao, Haori Lu, Yifan Meng, Fei Yang, Xialei Liu
Title: Mind the Gap: Preserving and Compensating for the Modality Gap in CLIP-Based Continual Learning
Abstract:
Continual learning aims to enable models to learn sequentially from continuously incoming data while retaining performance on previously learned tasks. With the Contrastive Language-Image Pre-trained model (CLIP) exhibiting strong capabilities across various downstream tasks, there has been growing interest in leveraging CLIP for continual learning in such scenarios. Most existing works overlook the inherent modality gap in CLIP, a key factor in its generalization and adaptability. In this paper, we analyze the variations in the modality gap during the fine-tuning of vision-language pre-trained models. Our observations reveal that the modality gap effectively reflects the extent to which pre-trained knowledge is preserved. Based on these insights, we propose a simple yet effective method, MG-CLIP, that improves CLIP's performance in class-incremental learning. Our approach leverages modality gap preservation to mitigate forgetting and modality gap compensation to enhance the capacity for new data, introducing a novel modality-gap-based perspective for continual learning. Extensive experiments on multiple benchmarks demonstrate that our method outperforms existing approaches without requiring additional replay data. Our code is available at https://github.com/linlany/MindtheGap.
Authors:Yuchen Zhu, Cheng Shi, Dingyou Wang, Jiajin Tang, Zhengxuan Wei, Yu Wu, Guanbin Li, Sibei Yang
Title: Rethinking Query-based Transformer for Continual Image Segmentation
Abstract:
Class-incremental/Continual image segmentation (CIS) aims to train an image segmenter in stages, where the set of available categories differs at each stage. To leverage the built-in objectness of query-based transformers, which mitigates catastrophic forgetting of mask proposals, current methods often decouple mask generation from the continual learning process. This study, however, identifies two key issues with decoupled frameworks: loss of plasticity and heavy reliance on input data order. To address these, we conduct an in-depth investigation of the built-in objectness and find that highly aggregated image features provide a shortcut for queries to generate masks through simple feature alignment. Based on this, we propose SimCIS, a simple yet powerful baseline for CIS. Its core idea is to directly select image features for query assignment, ensuring "perfect alignment" to preserve objectness, while simultaneously allowing queries to select new classes to promote plasticity. To further combat catastrophic forgetting of categories, we introduce cross-stage consistency in selection and an innovative "visual query"-based replay mechanism. Experiments demonstrate that SimCIS consistently outperforms state-of-the-art methods across various segmentation tasks, settings, splits, and input data orders. All models and codes will be made publicly available at https://github.com/SooLab/SimCIS.
Authors:Bing Wang, Ximing Li, Mengzhe Ye, Changchun Li, Bo Fu, Jianfeng Qu, Lin Yuanbo Wu
Title: Remember Past, Anticipate Future: Learning Continual Multimodal Misinformation Detectors
Abstract:
Nowadays, misinformation articles, especially multimodal ones, are widely spread on social media platforms and cause serious negative effects. To control their propagation, Multimodal Misinformation Detection (MMD) becomes an active topic in the community to automatically identify misinformation. Previous MMD methods focus on supervising detectors by collecting offline data. However, in real-world scenarios, new events always continually emerge, making MMD models trained on offline data consistently outdated and ineffective. To address this issue, training MMD models under online data streams is an alternative, inducing an emerging task named continual MMD. Unfortunately, it is hindered by two major challenges. First, training on new data consistently decreases the detection performance on past data, named past knowledge forgetting. Second, the social environment constantly evolves over time, affecting the generalization on future data. To alleviate these challenges, we propose to remember past knowledge by isolating interference between event-specific parameters with a Dirichlet process-based mixture-of-expert structure, and anticipate future environmental distributions by learning a continuous-time dynamics model. Accordingly, we induce a new continual MMD method DAEDCMD. Extensive experiments demonstrate that DAEDCMD can consistently and significantly outperform the compared methods, including six MMD baselines and three continual learning methods.
Authors:Tristan Kirscher, Sylvain Faisan, Xavier Coubez, Loris Barrier, Philippe Meyer
Title: PSAT: Pediatric Segmentation Approaches via Adult Augmentations and Transfer Learning
Abstract:
Pediatric medical imaging presents unique challenges due to significant anatomical and developmental differences compared to adults. Direct application of segmentation models trained on adult data often yields suboptimal performance, particularly for small or rapidly evolving structures. To address these challenges, several strategies leveraging the nnU-Net framework have been proposed, differing along four key axes: (i) the fingerprint dataset (adult, pediatric, or a combination thereof) from which the Training Plan -including the network architecture-is derived; (ii) the Learning Set (adult, pediatric, or mixed), (iii) Data Augmentation parameters, and (iv) the Transfer learning method (finetuning versus continual learning). In this work, we introduce PSAT (Pediatric Segmentation Approaches via Adult Augmentations and Transfer learning), a systematic study that investigates the impact of these axes on segmentation performance. We benchmark the derived strategies on two pediatric CT datasets and compare them with state-of-theart methods, including a commercial radiotherapy solution. PSAT highlights key pitfalls and provides actionable insights for improving pediatric segmentation. Our experiments reveal that a training plan based on an adult fingerprint dataset is misaligned with pediatric anatomy-resulting in significant performance degradation, especially when segmenting fine structures-and that continual learning strategies mitigate institutional shifts, thus enhancing generalization across diverse pediatric datasets. The code is available at https://github.com/ICANS-Strasbourg/PSAT.
Authors:Stanisław Pawlak, Bartłomiej Twardowski, Tomasz Trzciński, Joost van de Weijer
Title: Addressing The Devastating Effects Of Single-Task Data Poisoning In Exemplar-Free Continual Learning
Abstract:
Our research addresses the overlooked security concerns related to data poisoning in continual learning (CL). Data poisoning - the intentional manipulation of training data to affect the predictions of machine learning models - was recently shown to be a threat to CL training stability. While existing literature predominantly addresses scenario-dependent attacks, we propose to focus on a more simple and realistic single-task poison (STP) threats. In contrast to previously proposed poisoning settings, in STP adversaries lack knowledge and access to the model, as well as to both previous and future tasks. During an attack, they only have access to the current task within the data stream. Our study demonstrates that even within these stringent conditions, adversaries can compromise model performance using standard image corruptions. We show that STP attacks are able to strongly disrupt the whole continual training process: decreasing both the stability (its performance on past tasks) and plasticity (capacity to adapt to new tasks) of the algorithm. Finally, we propose a high-level defense framework for CL along with a poison task detection method based on task vectors. The code is available at https://github.com/stapaw/STP.git .
Authors:Jianwei Tang, Jiangxin Sun, Xiaotong Lin, Lifang Zhang, Wei-Shi Zheng, Jian-Fang Hu
Title: Temporal Continual Learning with Prior Compensation for Human Motion Prediction
Abstract:
Human Motion Prediction (HMP) aims to predict future poses at different moments according to past motion sequences. Previous approaches have treated the prediction of various moments equally, resulting in two main limitations: the learning of short-term predictions is hindered by the focus on long-term predictions, and the incorporation of prior information from past predictions into subsequent predictions is limited. In this paper, we introduce a novel multi-stage training framework called Temporal Continual Learning (TCL) to address the above challenges. To better preserve prior information, we introduce the Prior Compensation Factor (PCF). We incorporate it into the model training to compensate for the lost prior information. Furthermore, we derive a more reasonable optimization objective through theoretical derivation. It is important to note that our TCL framework can be easily integrated with different HMP backbone models and adapted to various datasets and applications. Extensive experiments on four HMP benchmark datasets demonstrate the effectiveness and flexibility of TCL. The code is available at https://github.com/hyqlat/TCL.
Authors:Zhiling Yan, Sifan Song, Dingjie Song, Yiwei Li, Rong Zhou, Weixiang Sun, Zhennong Chen, Sekeun Kim, Hui Ren, Tianming Liu, Quanzheng Li, Xiang Li, Lifang He, Lichao Sun
Title: SAMed-2: Selective Memory Enhanced Medical Segment Anything Model
Abstract:
Recent "segment anything" efforts show promise by learning from large-scale data, but adapting such models directly to medical images remains challenging due to the complexity of medical data, noisy annotations, and continual learning requirements across diverse modalities and anatomical structures. In this work, we propose SAMed-2, a new foundation model for medical image segmentation built upon the SAM-2 architecture. Specifically, we introduce a temporal adapter into the image encoder to capture image correlations and a confidence-driven memory mechanism to store high-certainty features for later retrieval. This memory-based strategy counters the pervasive noise in large-scale medical datasets and mitigates catastrophic forgetting when encountering new tasks or modalities. To train and evaluate SAMed-2, we curate MedBank-100k, a comprehensive dataset spanning seven imaging modalities and 21 medical segmentation tasks. Our experiments on both internal benchmarks and 10 external datasets demonstrate superior performance over state-of-the-art baselines in multi-task scenarios. The code is available at: https://github.com/ZhilingYan/Medical-SAM-Bench.
Authors:Chenxu Wang, Yilin Lyu, Zicheng Sun, Liping Jing
Title: Continual Gradient Low-Rank Projection Fine-Tuning for LLMs
Abstract:
Continual fine-tuning of Large Language Models (LLMs) is hampered by the trade-off between efficiency and expressiveness. Low-Rank Adaptation (LoRA) offers efficiency but constrains the model's ability to learn new tasks and transfer knowledge due to its low-rank nature and reliance on explicit parameter constraints. We propose GORP (Gradient LOw Rank Projection) for Continual Learning, a novel training strategy that overcomes these limitations by synergistically combining full and low-rank parameters and jointly updating within a unified low-rank gradient subspace. GORP expands the optimization space while preserving efficiency and mitigating catastrophic forgetting. Extensive experiments on continual learning benchmarks demonstrate GORP's superior performance compared to existing state-of-the-art approaches. Code is available at https://github.com/Wcxwcxw/GORP.
Authors:Thomas Joshi, Shayan Chowdhury, Fatih Uysal
Title: SWE-Bench-CL: Continual Learning for Coding Agents
Abstract:
Large Language Models (LLMs) have achieved impressive results on static code-generation benchmarks, but real-world software development unfolds as a continuous stream of evolving issues, fixes, and feature requests. We introduce SWE-Bench-CL, a novel continual learning benchmark built on the human-verified SWE-Bench Verified dataset introduced by OpenAI and Princeton-NLP in 2024. By organizing GitHub issues into chronologically ordered sequences that reflect natural repository evolution, SWE-Bench-CL enables direct evaluation of an agent's ability to accumulate experience, transfer knowledge across tasks, and resist catastrophic forgetting. We complement the dataset with (i) a preliminary analysis of inter-task structural similarity and contextual sensitivity, (ii) an interactive LangGraph-based evaluation framework augmented with a FAISS-backed semantic memory module, and (iii) a suite of specialized continual learning metrics -- including average accuracy, forgetting, forward/backward transfer, tool-use efficiency, and a generalized Composite Continual Learning Score and CL-F-beta score -- to capture the stability-plasticity trade-off. We outline a rigorous experimental protocol comparing memory-enabled and memory-disabled agents across diverse Python repositories. All code and data are publicly available at https://github.com/thomasjoshi/agents-never-forget, providing the community with a reproducible platform for developing more adaptive and robust AI agents in software engineering.
Authors:Jie Liu, Jiayi Shen, Pan Zhou, Jan-Jakob Sonke, Efstratios Gavves
Title: Probabilistic Prototype Calibration of Vision-Language Models for Generalized Few-shot Semantic Segmentation
Abstract:
Generalized Few-Shot Semantic Segmentation (GFSS) aims to extend a segmentation model to novel classes with only a few annotated examples while maintaining performance on base classes. Recently, pretrained vision-language models (VLMs) such as CLIP have been leveraged in GFSS to improve generalization on novel classes through multi-modal prototypes learning. However, existing prototype-based methods are inherently deterministic, limiting the adaptability of learned prototypes to diverse samples, particularly for novel classes with scarce annotations. To address this, we propose FewCLIP, a probabilistic prototype calibration framework over multi-modal prototypes from the pretrained CLIP, thus providing more adaptive prototype learning for GFSS. Specifically, FewCLIP first introduces a prototype calibration mechanism, which refines frozen textual prototypes with learnable visual calibration prototypes, leading to a more discriminative and adaptive representation. Furthermore, unlike deterministic prototype learning techniques, FewCLIP introduces distribution regularization over these calibration prototypes. This probabilistic formulation ensures structured and uncertainty-aware prototype learning, effectively mitigating overfitting to limited novel class data while enhancing generalization. Extensive experimental results on PASCAL-5$^i$ and COCO-20$^i$ datasets demonstrate that our proposed FewCLIP significantly outperforms state-of-the-art approaches across both GFSS and class-incremental setting. The code is available at https://github.com/jliu4ai/FewCLIP.
Authors:Muhammad Ahmed Mohsin, Muhammad Umer, Ahsan Bilal, Muhammad Ali Jamshed, John M. Cioffi
Title: Continual Learning for Wireless Channel Prediction
Abstract:
Modern 5G/6G deployments routinely face cross-configuration handovers--users traversing cells with different antenna layouts, carrier frequencies, and scattering statistics--which inflate channel-prediction NMSE by $37.5\%$ on average when models are naively fine-tuned. The proposed improvement frames this mismatch as a continual-learning problem and benchmarks three adaptation families: replay with loss-aware reservoirs, synaptic-importance regularization, and memory-free learning-without-forgetting. Across three representative 3GPP urban micro scenarios, the best replay and regularization schemes cut the high-SNR error floor by up to 2~dB ($\approx 35\%$), while even the lightweight distillation recovers up to $30\%$ improvement over baseline handover prediction schemes. These results show that targeted rehearsal and parameter anchoring are essential for handover-robust CSI prediction and suggest a clear migration path for embedding continual-learning hooks into current channel prediction efforts in 3GPP--NR and O-RAN. The full codebase can be found at https://github.com/ahmd-mohsin/continual-learning-channel-prediction.git.
Authors:Suyash Gaurav, Jukka Heikkonen, Jatin Chaudhary
Title: Pathway-based Progressive Inference (PaPI) for Energy-Efficient Continual Learning
Abstract:
Continual learning systems face the dual challenge of preventing catastrophic forgetting while maintaining energy efficiency, particularly in resource-constrained environments. This paper introduces Pathway-based Progressive Inference (PaPI), a novel theoretical framework that addresses these challenges through a mathematically rigorous approach to pathway selection and adaptation. We formulate continual learning as an energy-constrained optimization problem and provide formal convergence guarantees for our pathway routing mechanisms. Our theoretical analysis demonstrates that PaPI achieves an $\mathcal{O}(K)$ improvement in the stability-plasticity trade-off compared to monolithic architectures, where $K$ is the number of pathways. We derive tight bounds on forgetting rates using Fisher Information Matrix analysis and prove that PaPI's energy consumption scales with the number of active parameters rather than the total model size. Comparative theoretical analysis shows that PaPI provides stronger guarantees against catastrophic forgetting than Elastic Weight Consolidation (EWC) while maintaining better energy efficiency than both EWC and Gradient Episodic Memory (GEM). Our experimental validation confirms these theoretical advantages across multiple benchmarks, demonstrating PaPI's effectiveness for continual learning in energy-constrained settings. Our codes are available at https://github.com/zser092/PAPI_FILES.
Authors:Yao Lu, Zhaiyuan Ji, Jiawei Du, Yu Shanqing, Qi Xuan, Tianyi Zhou
Title: From LLM-anation to LLM-orchestrator: Coordinating Small Models for Data Labeling
Abstract:
Although the annotation paradigm based on Large Language Models (LLMs) has made significant breakthroughs in recent years, its actual deployment still has two core bottlenecks: first, the cost of calling commercial APIs in large-scale annotation is very expensive; second, in scenarios that require fine-grained semantic understanding, such as sentiment classification and toxicity classification, the annotation accuracy of LLMs is even lower than that of Small Language Models (SLMs) dedicated to this field. To address these problems, we propose a new paradigm of multi-model cooperative annotation and design a fully automatic annotation framework AutoAnnotator based on this. Specifically, AutoAnnotator consists of two layers. The upper-level meta-controller layer uses the generation and reasoning capabilities of LLMs to select SLMs for annotation, automatically generate annotation code and verify difficult samples; the lower-level task-specialist layer consists of multiple SLMs that perform annotation through multi-model voting. In addition, we use the difficult samples obtained by the secondary review of the meta-controller layer as the reinforcement learning set and fine-tune the SLMs in stages through a continual learning strategy, thereby improving the generalization of SLMs. Extensive experiments show that AutoAnnotator outperforms existing open-source/API LLMs in zero-shot, one-shot, CoT, and majority voting settings. Notably, AutoAnnotator reduces the annotation cost by 74.15% compared to directly annotating with GPT-3.5-turbo, while still improving the accuracy by 6.21%. Project page: https://github.com/Zhaiyuan-Ji/AutoAnnotator.
Authors:Haiyang Guo, Fanhu Zeng, Fei Zhu, Jiayi Wang, Xukai Wang, Jingang Zhou, Hongbo Zhao, Wenzhuo Liu, Shijie Ma, Da-Han Wang, Xu-Yao Zhang, Cheng-Lin Liu
Title: Continual Learning for Generative AI: From LLMs to MLLMs and Beyond
Abstract:
The rapid advancement of generative models has empowered modern AI systems to comprehend and produce highly sophisticated content, even achieving human-level performance in specific domains. However, these models are fundamentally constrained by \emph{catastrophic forgetting}, \ie~a persistent challenge where models experience performance degradation on previously learned tasks when adapting to new tasks. To address this practical limitation, numerous approaches have been proposed to enhance the adaptability and scalability of generative AI in real-world applications. In this work, we present a comprehensive survey of continual learning methods for mainstream generative AI models, encompassing large language models, multimodal large language models, vision-language-action models, and diffusion models. Drawing inspiration from the memory mechanisms of the human brain, we systematically categorize these approaches into three paradigms: architecture-based, regularization-based, and replay-based methods, while elucidating their underlying methodologies and motivations. We further analyze continual learning setups for different generative models, including training objectives, benchmarks, and core backbones, thereby providing deeper insights into the field. The project page of this paper is available at https://github.com/Ghy0501/Awesome-Continual-Learning-in-Generative-Models.
Authors:Linjie Li, Zhenyu Wu, Yang Ji
Title: MoTE: Mixture of Task-specific Experts for Pre-Trained ModelBased Class-incremental Learning
Abstract:
Class-incremental learning (CIL) requires deep learning models to continuously acquire new knowledge from streaming data while preserving previously learned information. Recently, CIL based on pre-trained models (PTMs) has achieved remarkable success. However, prompt-based approaches suffer from prompt overwriting, while adapter-based methods face challenges such as dimensional misalignment between tasks. While the idea of expert fusion in Mixture of Experts (MoE) can help address dimensional inconsistency, both expert and routing parameters are prone to being overwritten in dynamic environments, making MoE challenging to apply directly in CIL. To tackle these issues, we propose a mixture of task-specific experts (MoTE) framework that effectively mitigates the miscalibration caused by inconsistent output dimensions across tasks. Inspired by the weighted feature fusion and sparse activation mechanisms in MoE, we introduce task-aware expert filtering and reliable expert joint inference during the inference phase, mimicking the behavior of routing layers without inducing catastrophic forgetting. Extensive experiments demonstrate the superiority of our method without requiring an exemplar set. Furthermore, the number of tasks in MoTE scales linearly with the number of adapters. Building on this, we further explore the trade-off between adapter expansion and model performance and propose the Adapter-Limited MoTE. The code is available at https://github.com/Franklilinjie/MoTE.
Authors:Igor Urbanik, Paweł Gajewski
Title: Saturation Self-Organizing Map
Abstract:
Continual learning poses a fundamental challenge for neural systems, which often suffer from catastrophic forgetting when exposed to sequential tasks. Self-Organizing Maps (SOMs), despite their interpretability and efficiency, are not immune to this issue. In this paper, we introduce Saturation Self-Organizing Maps (SatSOM)-an extension of SOMs designed to improve knowledge retention in continual learning scenarios. SatSOM incorporates a novel saturation mechanism that gradually reduces the learning rate and neighborhood radius of neurons as they accumulate information. This effectively freezes well-trained neurons and redirects learning to underutilized areas of the map.
Authors:Lipei Xie, Yingxin Li, Huiping Zhuang
Title: Analytic Task Scheduler: Recursive Least Squares Based Method for Continual Learning in Embodied Foundation Models
Abstract:
Embodied foundation models are crucial for Artificial Intelligence (AI) interacting with the physical world by integrating multi-modal inputs, such as proprioception, vision and language, to understand human intentions and generate actions to control robots. While these models demonstrate strong generalization and few-shot learning capabilities, they face significant challenges in continually acquiring new skills without forgetting previously learned skills, a problem known as catastrophic forgetting. To address this issue, we propose the Analytic Task Scheduler (ATS), a novel framework for continual learning in embodied foundation models. ATS consists of a task-specific model library, where each model is fine-tuned independently on a single task, and an analytic scheduler trained using recursive least squares (RLS) to learn the mapping between language instructions and task-specific models. This architecture enables accurate task recognition and dynamic model selection while fundamentally avoiding parameter interference across tasks. The scheduler updates its parameters incrementally using only statistics (autocorrelation and cross-correlation matrices), enabling forgetting-resistant learning without the need to revisit historical data. We validate ATS on a real-world robot platform (RM65B), demonstrating superior resistance to forgetting and strong adaptability to task variations. The results highlight ATS as an effective, scalable, and deployable solution for continual learning in embodied foundation models operating in complex, dynamic environments. Our code will be available at https://github.com/MIAA-Embodied-AI/AnalyticTaskScheduler
Authors:Xuemei Cao, Hanlin Gu, Xin Yang, Bingjun Wei, Haoyang Liang, Xiangkun Wang, Tianrui Li
Title: ErrorEraser: Unlearning Data Bias for Improved Continual Learning
Abstract:
Continual Learning (CL) primarily aims to retain knowledge to prevent catastrophic forgetting and transfer knowledge to facilitate learning new tasks. Unlike traditional methods, we propose a novel perspective: CL not only needs to prevent forgetting, but also requires intentional forgetting.This arises from existing CL methods ignoring biases in real-world data, leading the model to learn spurious correlations that transfer and amplify across tasks. From feature extraction and prediction results, we find that data biases simultaneously reduce CL's ability to retain and transfer knowledge. To address this, we propose ErrorEraser, a universal plugin that removes erroneous memories caused by biases in CL, enhancing performance in both new and old tasks. ErrorEraser consists of two modules: Error Identification and Error Erasure. The former learns the probability density distribution of task data in the feature space without prior knowledge, enabling accurate identification of potentially biased samples. The latter ensures only erroneous knowledge is erased by shifting the decision space of representative outlier samples. Additionally, an incremental feature distribution learning strategy is designed to reduce the resource overhead during error identification in downstream tasks. Extensive experimental results show that ErrorEraser significantly mitigates the negative impact of data biases, achieving higher accuracy and lower forgetting rates across three types of CL methods. The code is available at https://github.com/diadai/ErrorEraser.
Authors:Yuan Yuan, Yukun Liu, Chonghua Han, Jie Feng, Yong Li
Title: Breaking Data Silos: Towards Open and Scalable Mobility Foundation Models via Generative Continual Learning
Abstract:
Foundation models have revolutionized fields such as natural language processing and computer vision by enabling general-purpose learning across diverse tasks and datasets. However, building analogous models for human mobility remains challenging due to the privacy-sensitive nature of mobility data and the resulting data silos across institutions. To bridge this gap, we propose MoveGCL, a scalable and privacy-preserving framework for training mobility foundation models via generative continual learning. Without sharing raw data, MoveGCL enables decentralized and progressive model evolution by replaying synthetic trajectories generated from a frozen teacher model, and reinforces knowledge retention through a tailored distillation strategy that mitigates catastrophic forgetting. To address the heterogeneity of mobility patterns, MoveGCL incorporates a Mixture-of-Experts Transformer with a mobility-aware expert routing mechanism, and employs a layer-wise progressive adaptation strategy to stabilize continual updates. Experiments on six real-world urban datasets demonstrate that MoveGCL achieves performance comparable to joint training and significantly outperforms federated learning baselines, while offering strong privacy protection. MoveGCL marks a crucial step toward unlocking foundation models for mobility, offering a practical blueprint for open, scalable, and privacy-preserving model development in the era of foundation models. To facilitate reproducibility and future research, we have released the code and models at https://github.com/tsinghua-fib-lab/MoveGCL.
Authors:Aojun Lu, Tao Feng, Hangjie Yuan, Chunhui Ding, Yanan Sun
Title: Adapt before Continual Learning
Abstract:
Continual Learning (CL) seeks to enable neural networks to incrementally acquire new knowledge (plasticity) while retaining existing knowledge (stability). Although pre-trained models (PTMs) have provided a strong foundation for CL, existing approaches face a fundamental challenge in balancing these two competing objectives. Current methods typically address stability by freezing the PTM backbone, which severely limits the model's plasticity, particularly when incoming data distribution diverges largely from the pre-training data. Alternatively, sequentially fine-tuning the entire PTM can adapt to new knowledge but often leads to catastrophic forgetting, highlighting the critical stability-plasticity trade-off in PTM-based CL. To address this limitation, we propose Adapting PTMs before the core CL} process (ACL), a novel framework that introduces a plug-and-play adaptation phase prior to learning each new task. During this phase, ACL refines the PTM backbone by aligning embeddings with their original class prototypes while distancing them from irrelevant classes. This mechanism theoretically and empirically demonstrates desirable balance between stability and plasticity, significantly improving CL performance across benchmarks and integrated methods. Code is available at https://github.com/byyx666/ACL_code.
Authors:Aojun Lu, Hangjie Yuan, Tao Feng, Yanan Sun
Title: Rethinking the Stability-Plasticity Trade-off in Continual Learning from an Architectural Perspective
Abstract:
The quest for Continual Learning (CL) seeks to empower neural networks with the ability to learn and adapt incrementally. Central to this pursuit is addressing the stability-plasticity dilemma, which involves striking a balance between two conflicting objectives: preserving previously learned knowledge and acquiring new knowledge. While numerous CL methods aim to achieve this trade-off, they often overlook the impact of network architecture on stability and plasticity, restricting the trade-off to the parameter level. In this paper, we delve into the conflict between stability and plasticity at the architectural level. We reveal that under an equal parameter constraint, deeper networks exhibit better plasticity, while wider networks are characterized by superior stability. To address this architectural-level dilemma, we introduce a novel framework denoted Dual-Arch, which serves as a plug-in component for CL. This framework leverages the complementary strengths of two distinct and independent networks: one dedicated to plasticity and the other to stability. Each network is designed with a specialized and lightweight architecture, tailored to its respective objective. Extensive experiments demonstrate that Dual-Arch enhances the performance of existing CL methods while being up to 87% more compact in terms of parameters. Code: https://github.com/byyx666/Dual-Arch.
Authors:Geonu Lee, Yujeong Oh, Geonhui Jang, Soyoung Lee, Jeonghyo Song, Sungmin Cha, YoungJoon Yoo
Title: Continual-MEGA: A Large-scale Benchmark for Generalizable Continual Anomaly Detection
Abstract:
In this paper, we introduce a new benchmark for continual learning in anomaly detection, aimed at better reflecting real-world deployment scenarios. Our benchmark, Continual-MEGA, includes a large and diverse dataset that significantly expands existing evaluation settings by combining carefully curated existing datasets with our newly proposed dataset, ContinualAD. In addition to standard continual learning with expanded quantity, we propose a novel scenario that measures zero-shot generalization to unseen classes, those not observed during continual adaptation. This setting poses a new problem setting that continual adaptation also enhances zero-shot performance. We also present a unified baseline algorithm that improves robustness in few-shot detection and maintains strong generalization. Through extensive evaluations, we report three key findings: (1) existing methods show substantial room for improvement, particularly in pixel-level defect localization; (2) our proposed method consistently outperforms prior approaches; and (3) the newly introduced ContinualAD dataset enhances the performance of strong anomaly detection models. We release the benchmark and code in https://github.com/Continual-Mega/Continual-Mega.
Authors:Xiang Zhang, Run He, Jiao Chen, Di Fang, Ming Li, Ziqian Zeng, Cen Chen, Huiping Zhuang
Title: L3A: Label-Augmented Analytic Adaptation for Multi-Label Class Incremental Learning
Abstract:
Class-incremental learning (CIL) enables models to learn new classes continually without forgetting previously acquired knowledge. Multi-label CIL (MLCIL) extends CIL to a real-world scenario where each sample may belong to multiple classes, introducing several challenges: label absence, which leads to incomplete historical information due to missing labels, and class imbalance, which results in the model bias toward majority classes. To address these challenges, we propose Label-Augmented Analytic Adaptation (L3A), an exemplar-free approach without storing past samples. L3A integrates two key modules. The pseudo-label (PL) module implements label augmentation by generating pseudo-labels for current phase samples, addressing the label absence problem. The weighted analytic classifier (WAC) derives a closed-form solution for neural networks. It introduces sample-specific weights to adaptively balance the class contribution and mitigate class imbalance. Experiments on MS-COCO and PASCAL VOC datasets demonstrate that L3A outperforms existing methods in MLCIL tasks. Our code is available at https://github.com/scut-zx/L3A.
Authors:Leila Mahmoodi, Peyman Moghadam, Munawar Hayat, Christian Simon, Mehrtash Harandi
Title: Flashbacks to Harmonize Stability and Plasticity in Continual Learning
Abstract:
We introduce Flashback Learning (FL), a novel method designed to harmonize the stability and plasticity of models in Continual Learning (CL). Unlike prior approaches that primarily focus on regularizing model updates to preserve old information while learning new concepts, FL explicitly balances this trade-off through a bidirectional form of regularization. This approach effectively guides the model to swiftly incorporate new knowledge while actively retaining its old knowledge. FL operates through a two-phase training process and can be seamlessly integrated into various CL methods, including replay, parameter regularization, distillation, and dynamic architecture techniques. In designing FL, we use two distinct knowledge bases: one to enhance plasticity and another to improve stability. FL ensures a more balanced model by utilizing both knowledge bases to regularize model updates. Theoretically, we analyze how the FL mechanism enhances the stability-plasticity balance. Empirically, FL demonstrates tangible improvements over baseline methods within the same training budget. By integrating FL into at least one representative baseline from each CL category, we observed an average accuracy improvement of up to 4.91% in Class-Incremental and 3.51% in Task-Incremental settings on standard image classification benchmarks. Additionally, measurements of the stability-to-plasticity ratio confirm that FL effectively enhances this balance. FL also outperforms state-of-the-art CL methods on more challenging datasets like ImageNet.
Authors:Dipam Goswami, Liying Wang, Bartłomiej Twardowski, Joost van de Weijer
Title: Query Drift Compensation: Enabling Compatibility in Continual Learning of Retrieval Embedding Models
Abstract:
Text embedding models enable semantic search, powering several NLP applications like Retrieval Augmented Generation by efficient information retrieval (IR). However, text embedding models are commonly studied in scenarios where the training data is static, thus limiting its applications to dynamic scenarios where new training data emerges over time. IR methods generally encode a huge corpus of documents to low-dimensional embeddings and store them in a database index. During retrieval, a semantic search over the corpus is performed and the document whose embedding is most similar to the query embedding is returned. When updating an embedding model with new training data, using the already indexed corpus is suboptimal due to the non-compatibility issue, since the model which was used to obtain the embeddings of the corpus has changed. While re-indexing of old corpus documents using the updated model enables compatibility, it requires much higher computation and time. Thus, it is critical to study how the already indexed corpus can still be effectively used without the need of re-indexing. In this work, we establish a continual learning benchmark with large-scale datasets and continually train dense retrieval embedding models on query-document pairs from new datasets in each task and observe forgetting on old tasks due to significant drift of embeddings. We employ embedding distillation on both query and document embeddings to maintain stability and propose a novel query drift compensation method during retrieval to project new model query embeddings to the old embedding space. This enables compatibility with previously indexed corpus embeddings extracted using the old model and thus reduces the forgetting. We show that the proposed method significantly improves performance without any re-indexing. Code is available at https://github.com/dipamgoswami/QDC.
Authors:Falih Gozi Febrinanto, Kristen Moore, Chandra Thapa, Jiangang Ma, Vidya Saikrishna, Feng Xia
Title: Rehearsal with Auxiliary-Informed Sampling for Audio Deepfake Detection
Abstract:
The performance of existing audio deepfake detection frameworks degrades when confronted with new deepfake attacks. Rehearsal-based continual learning (CL), which updates models using a limited set of old data samples, helps preserve prior knowledge while incorporating new information. However, existing rehearsal techniques don't effectively capture the diversity of audio characteristics, introducing bias and increasing the risk of forgetting. To address this challenge, we propose Rehearsal with Auxiliary-Informed Sampling (RAIS), a rehearsal-based CL approach for audio deepfake detection. RAIS employs a label generation network to produce auxiliary labels, guiding diverse sample selection for the memory buffer. Extensive experiments show RAIS outperforms state-of-the-art methods, achieving an average Equal Error Rate (EER) of 1.953 % across five experiences. The code is available at: https://github.com/falihgoz/RAIS.
Authors:Qiang Wang, Xiang Song, Yuhang He, Jizhou Han, Chenhao Ding, Xinyuan Gao, Yihong Gong
Title: Boosting Domain Incremental Learning: Selecting the Optimal Parameters is All You Need
Abstract:
Deep neural networks (DNNs) often underperform in real-world, dynamic settings where data distributions change over time. Domain Incremental Learning (DIL) offers a solution by enabling continual model adaptation, with Parameter-Isolation DIL (PIDIL) emerging as a promising paradigm to reduce knowledge conflicts. However, existing PIDIL methods struggle with parameter selection accuracy, especially as the number of domains and corresponding classes grows. To address this, we propose SOYO, a lightweight framework that improves domain selection in PIDIL. SOYO introduces a Gaussian Mixture Compressor (GMC) and Domain Feature Resampler (DFR) to store and balance prior domain data efficiently, while a Multi-level Domain Feature Fusion Network (MDFN) enhances domain feature extraction. Our framework supports multiple Parameter-Efficient Fine-Tuning (PEFT) methods and is validated across tasks such as image classification, object detection, and speech enhancement. Experimental results on six benchmarks demonstrate SOYO's consistent superiority over existing baselines, showcasing its robustness and adaptability in complex, evolving environments. The codes will be released in https://github.com/qwangcv/SOYO.
Authors:Mao-Lin Luo, Zi-Hao Zhou, Tong Wei, Min-Ling Zhang
Title: LADA: Scalable Label-Specific CLIP Adapter for Continual Learning
Abstract:
Continual learning with vision-language models like CLIP offers a pathway toward scalable machine learning systems by leveraging its transferable representations. Existing CLIP-based methods adapt the pre-trained image encoder by adding multiple sets of learnable parameters, with each task using a partial set of parameters. This requires selecting the expected parameters for input images during inference, which is prone to error that degrades performance. To address this problem, we introduce LADA (Label-specific ADApter). Instead of partitioning parameters across tasks, LADA appends lightweight, label-specific memory units to the frozen CLIP image encoder, enabling discriminative feature generation by aggregating task-agnostic knowledge. To prevent catastrophic forgetting, LADA employs feature distillation for seen classes, preventing their features from being interfered with by new classes. Positioned after the image encoder, LADA prevents gradient flow to the frozen CLIP parameters, ensuring efficient training. Extensive results show that LADA achieves state-of-the-art performance in continual learning settings. The implementation code is available at https://github.com/MaolinLuo/LADA.
Authors:Hongsong Wang, Ao Sun, Jie Gui, Liang Wang
Title: Data-Free Class-Incremental Gesture Recognition with Prototype-Guided Pseudo Feature Replay
Abstract:
Gesture recognition is an important research area in the field of computer vision. Most gesture recognition efforts focus on close-set scenarios, thereby limiting the capacity to effectively handle unseen or novel gestures. We aim to address class-incremental gesture recognition, which entails the ability to accommodate new and previously unseen gestures over time. Specifically, we introduce a Prototype-Guided Pseudo Feature Replay (PGPFR) framework for data-free class-incremental gesture recognition. This framework comprises four components: Pseudo Feature Generation with Batch Prototypes (PFGBP), Variational Prototype Replay (VPR) for old classes, Truncated Cross-Entropy (TCE) for new classes, and Continual Classifier Re-Training (CCRT). To tackle the issue of catastrophic forgetting, the PFGBP dynamically generates a diversity of pseudo features in an online manner, leveraging class prototypes of old classes along with batch class prototypes of new classes. Furthermore, the VPR enforces consistency between the classifier's weights and the prototypes of old classes, leveraging class prototypes and covariance matrices to enhance robustness and generalization capabilities. The TCE mitigates the impact of domain differences of the classifier caused by pseudo features. Finally, the CCRT training strategy is designed to prevent overfitting to new classes and ensure the stability of features extracted from old classes. Extensive experiments conducted on two widely used gesture recognition datasets, namely SHREC 2017 3D and EgoGesture 3D, demonstrate that our approach outperforms existing state-of-the-art methods by 11.8\% and 12.8\% in terms of mean global accuracy, respectively. The code is available on https://github.com/sunao-101/PGPFR-3/.
Authors:Huan Zhang, Fan Lyu, Shuyu Dong, Shenghua Fan, Yujin Zheng, Dingwen Wang
Title: Beyond Freezing: Sparse Tuning Enhances Plasticity in Continual Learning with Pre-Trained Models
Abstract:
Continual Learning with Pre-trained Models holds great promise for efficient adaptation across sequential tasks. However, most existing approaches freeze PTMs and rely on auxiliary modules like prompts or adapters, limiting model plasticity and leading to suboptimal generalization when facing significant distribution shifts. While full fine-tuning can improve adaptability, it risks disrupting crucial pre-trained knowledge. In this paper, we propose Mutual Information-guided Sparse Tuning (MIST), a plug-and-play method that selectively updates a small subset of PTM parameters, less than 5%, based on sensitivity to mutual information objectives. MIST enables effective task-specific adaptation while preserving generalization. To further reduce interference, we introduce strong sparsity regularization by randomly dropping gradients during tuning, resulting in fewer than 0.5% of parameters being updated per step. Applied before standard freeze-based methods, MIST consistently boosts performance across diverse continual learning benchmarks. Experiments show that integrating our method into multiple baselines yields significant performance gains. Our code is available at https://github.com/zhwhu/MIST.
Authors:Xinrui Wang, Shao-yuan Li, Jiaqiang Zhang, Songcan Chen
Title: Cut out and Replay: A Simple yet Versatile Strategy for Multi-Label Online Continual Learning
Abstract:
Multi-Label Online Continual Learning (MOCL) requires models to learn continuously from endless multi-label data streams, facing complex challenges including persistent catastrophic forgetting, potential missing labels, and uncontrollable imbalanced class distributions. While existing MOCL methods attempt to address these challenges through various techniques, \textit{they all overlook label-specific region identifying and feature learning} - a fundamental solution rooted in multi-label learning but challenging to achieve in the online setting with incremental and partial supervision. To this end, we first leverage the inherent structural information of input data to evaluate and verify the innate localization capability of different pre-trained models. Then, we propose CUTER (CUT-out-and-Experience-Replay), a simple yet versatile strategy that provides fine-grained supervision signals by further identifying, strengthening and cutting out label-specific regions for efficient experience replay. It not only enables models to simultaneously address catastrophic forgetting, missing labels, and class imbalance challenges, but also serves as an orthogonal solution that seamlessly integrates with existing approaches. Extensive experiments on multiple multi-label image benchmarks demonstrate the superiority of our proposed method. The code is available at \href{https://github.com/wxr99/Cut-Replay}{https://github.com/wxr99/Cut-Replay}
Authors:Ziyang Cheng, Zhixun Li, Yuhan Li, Yixin Song, Kangyi Zhao, Dawei Cheng, Jia Li, Jeffrey Xu Yu
Title: Can LLMs Alleviate Catastrophic Forgetting in Graph Continual Learning? A Systematic Study
Abstract:
Nowadays, real-world data, including graph-structure data, often arrives in a streaming manner, which means that learning systems need to continuously acquire new knowledge without forgetting previously learned information. Although substantial existing works attempt to address catastrophic forgetting in graph machine learning, they are all based on training from scratch with streaming data. With the rise of pretrained models, an increasing number of studies have leveraged their strong generalization ability for continual learning. Therefore, in this work, we attempt to answer whether large language models (LLMs) can mitigate catastrophic forgetting in Graph Continual Learning (GCL). We first point out that current experimental setups for GCL have significant flaws, as the evaluation stage may lead to task ID leakage. Then, we evaluate the performance of LLMs in more realistic scenarios and find that even minor modifications can lead to outstanding results. Finally, based on extensive experiments, we propose a simple-yet-effective method, Simple Graph Continual Learning (SimGCL), that surpasses the previous state-of-the-art GNN-based baseline by around 20% under the rehearsal-free constraint. To facilitate reproducibility, we have developed an easy-to-use benchmark LLM4GCL for training and evaluating existing GCL methods. The code is available at: https://github.com/ZhixunLEE/LLM4GCL.
Authors:Guodong Du, Xuanning Zhou, Junlin Li, Zhuo Li, Zesheng Shi, Wanyu Lin, Ho-Kin Tang, Xiucheng Li, Fangming Liu, Wenya Wang, Min Zhang, Jing Li
Title: Knowledge Grafting of Large Language Models
Abstract:
Cross-capability transfer is a key challenge in large language model (LLM) research, with applications in multi-task integration, model compression, and continual learning. Recent works like FuseLLM and FuseChat have demonstrated the potential of transferring multiple model capabilities to lightweight models, enhancing adaptability and efficiency, which motivates our investigation into more efficient cross-capability transfer methods. However, existing approaches primarily focus on small, homogeneous models, limiting their applicability. For large, heterogeneous models, knowledge distillation with full-parameter fine-tuning often overlooks the student model's intrinsic capacity and risks catastrophic forgetting, while PEFT methods struggle to effectively absorb knowledge from source LLMs. To address these issues, we introduce GraftLLM, a novel method that stores source model capabilities in a target model with SkillPack format. This approach preserves general capabilities, reduces parameter conflicts, and supports forget-free continual learning and model fusion. We employ a module-aware adaptive compression strategy to compress parameter updates, ensuring efficient storage while maintaining task-specific knowledge. The resulting SkillPack serves as a compact and transferable knowledge carrier, ideal for heterogeneous model fusion and continual learning. Experiments across various scenarios demonstrate that GraftLLM outperforms existing techniques in knowledge transfer, knowledge fusion, and forget-free learning, providing a scalable and efficient solution for cross-capability transfer. The code is publicly available at: https://github.com/duguodong7/GraftLLM.
Authors:Junze Wang, Lei Fan, Weipeng Jing, Donglin Di, Yang Song, Sidong Liu, Cong Cong
Title: Hypergraph Tversky-Aware Domain Incremental Learning for Brain Tumor Segmentation with Missing Modalities
Abstract:
Existing methods for multimodal MRI segmentation with missing modalities typically assume that all MRI modalities are available during training. However, in clinical practice, some modalities may be missing due to the sequential nature of MRI acquisition, leading to performance degradation. Furthermore, retraining models to accommodate newly available modalities can be inefficient and may cause overfitting, potentially compromising previously learned knowledge. To address these challenges, we propose Replay-based Hypergraph Domain Incremental Learning (ReHyDIL) for brain tumor segmentation with missing modalities. ReHyDIL leverages Domain Incremental Learning (DIL) to enable the segmentation model to learn from newly acquired MRI modalities without forgetting previously learned information. To enhance segmentation performance across diverse patient scenarios, we introduce the Cross-Patient Hypergraph Segmentation Network (CHSNet), which utilizes hypergraphs to capture high-order associations between patients. Additionally, we incorporate Tversky-Aware Contrastive (TAC) loss to effectively mitigate information imbalance both across and within different modalities. Extensive experiments on the BraTS2019 dataset demonstrate that ReHyDIL outperforms state-of-the-art methods, achieving an improvement of over 2% in the Dice Similarity Coefficient across various tumor regions. Our code is available at https://github.com/reeive/ReHyDIL.
Authors:Xiang He, Dongcheng Zhao, Yang Li, Qingqun Kong, Xin Yang, Yi Zeng
Title: Incorporating brain-inspired mechanisms for multimodal learning in artificial intelligence
Abstract:
Multimodal learning enhances the perceptual capabilities of cognitive systems by integrating information from different sensory modalities. However, existing multimodal fusion research typically assumes static integration, not fully incorporating key dynamic mechanisms found in the brain. Specifically, the brain exhibits an inverse effectiveness phenomenon, wherein weaker unimodal cues yield stronger multisensory integration benefits; conversely, when individual modal cues are stronger, the effect of fusion is diminished. This mechanism enables biological systems to achieve robust cognition even with scarce or noisy perceptual cues. Inspired by this biological mechanism, we explore the relationship between multimodal output and information from individual modalities, proposing an inverse effectiveness driven multimodal fusion (IEMF) strategy. By incorporating this strategy into neural networks, we achieve more efficient integration with improved model performance and computational efficiency, demonstrating up to 50% reduction in computational cost across diverse fusion methods. We conduct experiments on audio-visual classification, continual learning, and question answering tasks to validate our method. Results consistently demonstrate that our method performs excellently in these tasks. To verify universality and generalization, we also conduct experiments on Artificial Neural Networks (ANN) and Spiking Neural Networks (SNN), with results showing good adaptability to both network types. Our research emphasizes the potential of incorporating biologically inspired mechanisms into multimodal networks and provides promising directions for the future development of multimodal artificial intelligence. The code is available at https://github.com/Brain-Cog-Lab/IEMF.
Authors:Jing-Cheng Pang, Kaiyuan Li, Yidi Wang, Si-Hang Yang, Shengyi Jiang, Yang Yu
Title: ImagineBench: Evaluating Reinforcement Learning with Large Language Model Rollouts
Abstract:
A central challenge in reinforcement learning (RL) is its dependence on extensive real-world interaction data to learn task-specific policies. While recent work demonstrates that large language models (LLMs) can mitigate this limitation by generating synthetic experience (noted as imaginary rollouts) for mastering novel tasks, progress in this emerging field is hindered due to the lack of a standard benchmark. To bridge this gap, we introduce ImagineBench, the first comprehensive benchmark for evaluating offline RL algorithms that leverage both real rollouts and LLM-imaginary rollouts. The key features of ImagineBench include: (1) datasets comprising environment-collected and LLM-imaginary rollouts; (2) diverse domains of environments covering locomotion, robotic manipulation, and navigation tasks; and (3) natural language task instructions with varying complexity levels to facilitate language-conditioned policy learning. Through systematic evaluation of state-of-the-art offline RL algorithms, we observe that simply applying existing offline RL algorithms leads to suboptimal performance on unseen tasks, achieving 35.44% success rate in hard tasks in contrast to 64.37% of method training on real rollouts for hard tasks. This result highlights the need for algorithm advancements to better leverage LLM-imaginary rollouts. Additionally, we identify key opportunities for future research: including better utilization of imaginary rollouts, fast online adaptation and continual learning, and extension to multi-modal tasks. Our code is publicly available at https://github.com/LAMDA-RL/ImagineBench.
Authors:Libo Huang, Zhulin An, Chuanguang Yang, Boyu Diao, Fei Wang, Yan Zeng, Zhifeng Hao, Yongjun Xu
Title: PrePrompt: Predictive prompting for class incremental learning
Abstract:
Class Incremental Learning (CIL) based on pre-trained models offers a promising direction for open-world continual learning. Existing methods typically rely on correlation-based strategies, where an image's classification feature is used as a query to retrieve the most related key prompts and select the corresponding value prompts for training. However, these approaches face an inherent limitation: fitting the entire feature space of all tasks with only a few trainable prompts is fundamentally challenging. We propose Predictive Prompting (PrePrompt), a novel CIL framework that circumvents correlation-based limitations by leveraging pre-trained models' natural classification ability to predict task-specific prompts. Specifically, PrePrompt decomposes CIL into a two-stage prediction framework: task-specific prompt prediction followed by label prediction. While theoretically appealing, this framework risks bias toward recent classes due to missing historical data for older classifier calibration. PrePrompt then mitigates this by incorporating feature translation, dynamically balancing stability and plasticity. Experiments across multiple benchmarks demonstrate PrePrompt's superiority over state-of-the-art prompt-based CIL methods. Code available at \href{github.com/libo-huang/preprompt}{github.com/libo-huang/preprompt}.
Authors:Alexandre Cotorobai, Jorge Miguel Silva, Jose Luis Oliveira
Title: A Federated Random Forest Solution for Secure Distributed Machine Learning
Abstract:
Privacy and regulatory barriers often hinder centralized machine learning solutions, particularly in sectors like healthcare where data cannot be freely shared. Federated learning has emerged as a powerful paradigm to address these concerns; however, existing frameworks primarily support gradient-based models, leaving a gap for more interpretable, tree-based approaches. This paper introduces a federated learning framework for Random Forest classifiers that preserves data privacy and provides robust performance in distributed settings. By leveraging PySyft for secure, privacy-aware computation, our method enables multiple institutions to collaboratively train Random Forest models on locally stored data without exposing sensitive information. The framework supports weighted model averaging to account for varying data distributions, incremental learning to progressively refine models, and local evaluation to assess performance across heterogeneous datasets. Experiments on two real-world healthcare benchmarks demonstrate that the federated approach maintains competitive predictive accuracy - within a maximum 9\% margin of centralized methods - while satisfying stringent privacy requirements. These findings underscore the viability of tree-based federated learning for scenarios where data cannot be centralized due to regulatory, competitive, or technical constraints. The proposed solution addresses a notable gap in existing federated learning libraries, offering an adaptable tool for secure distributed machine learning tasks that demand both transparency and reliable performance. The tool is available at https://github.com/ieeta-pt/fed_rf.
Authors:Gabriel Gagné, Anisha Azad, Thomas Labbé, Evan Campbell, Xavier Isabel, Erik Scheme, Ulysse Côté-Allard, Benoit Gosselin
Title: Context Informed Incremental Learning Improves Myoelectric Control Performance in Virtual Reality Object Manipulation Tasks
Abstract:
Electromyography (EMG)-based gesture recognition is a promising approach for designing intuitive human-computer interfaces. However, while these systems typically perform well in controlled laboratory settings, their usability in real-world applications is compromised by declining performance during real-time control. This decline is largely due to goal-directed behaviors that are not captured in static, offline scenarios. To address this issue, we use \textit{Context Informed Incremental Learning} (CIIL) - marking its first deployment in an object-manipulation scenario - to continuously adapt the classifier using contextual cues. Nine participants without upper limb differences completed a functional task in a virtual reality (VR) environment involving transporting objects with life-like grips. We compared two scenarios: one where the classifier was adapted in real-time using contextual information, and the other using a traditional open-loop approach without adaptation. The CIIL-based approach not only enhanced task success rates and efficiency, but also reduced the perceived workload by 7.1 %, despite causing a 5.8 % reduction in offline classification accuracy. This study highlights the potential of real-time contextualized adaptation to enhance user experience and usability of EMG-based systems for practical, goal-oriented applications, crucial elements towards their long-term adoption. The source code for this study is available at: https://github.com/BiomedicalITS/ciil-emg-vr.
Authors:Vytenis Šliogeris, Povilas Daniušis, Artūras Nakvosas
Title: Full-Parameter Continual Pretraining of Gemma2: Insights into Fluency and Domain Knowledge
Abstract:
In this technical report, we empirically investigate the relationship between linguistic fluency and domain knowledge in the context of continual learning with large language models (LLMs). Specifically, we enhance the linguistic fluency of the Gemma2 LLM for the Lithuanian language by autoregressively pretraining its full parameter set on the first 10\% of the Lithuanian language component of the CulturaX dataset. To prevent catastrophic forgetting of the model's existing domain knowledge, we apply Elastic Weight Consolidation (EWC), leveraging Fisher information estimated using data from the Massive Multitask Language Understanding (MMLU) benchmark. In the post-training evaluations, we assess linguistic fluency through perplexity and evaluate domain knowledge using accuracy on a suite of language understanding benchmarks, including ARC-Easy, Belebele, GSM8K, HellaSwag, MMLU, TruthfulQA, and Winogrande, in both English and Lithuanian. The empirical results demonstrate that EWC not only mitigates catastrophic forgetting by preserving the model's performance in terms of both linguistic fluency and domain knowledge but also improves or maintains these capabilities for the newly added Lithuanian language. These findings highlight the potential for more efficient adaptation of general-purpose LLMs to under-represented languages without requiring access to the original training data. The accompanying codebase is openly accessible at https://github.com/Neurotechnology/LLM_EWC.
Authors:Kunlun Xu, Xu Zou, Gang Hua, Jiahuan Zhou
Title: Componential Prompt-Knowledge Alignment for Domain Incremental Learning
Abstract:
Domain Incremental Learning (DIL) aims to learn from non-stationary data streams across domains while retaining and utilizing past knowledge. Although prompt-based methods effectively store multi-domain knowledge in prompt parameters and obtain advanced performance through cross-domain prompt fusion, we reveal an intrinsic limitation: component-wise misalignment between domain-specific prompts leads to conflicting knowledge integration and degraded predictions. This arises from the random positioning of knowledge components within prompts, where irrelevant component fusion introduces interference.To address this, we propose Componential Prompt-Knowledge Alignment (KA-Prompt), a novel prompt-based DIL method that introduces component-aware prompt-knowledge alignment during training, significantly improving both the learning and inference capacity of the model. KA-Prompt operates in two phases: (1) Initial Componential Structure Configuring, where a set of old prompts containing knowledge relevant to the new domain are mined via greedy search, which is then exploited to initialize new prompts to achieve reusable knowledge transfer and establish intrinsic alignment between new and old prompts. (2) Online Alignment Preservation, which dynamically identifies the target old prompts and applies adaptive componential consistency constraints as new prompts evolve. Extensive experiments on DIL benchmarks demonstrate the effectiveness of our KA-Prompt. Our source code is available at https://github.com/zhoujiahuan1991/ICML2025-KA-Prompt
Authors:Zhikai Wang, Yanyan Shen, Zibin Zhang, Kangyi Lin
Title: Feature Staleness Aware Incremental Learning for CTR Prediction
Abstract:
Click-through Rate (CTR) prediction in real-world recommender systems often deals with billions of user interactions every day. To improve the training efficiency, it is common to update the CTR prediction model incrementally using the new incremental data and a subset of historical data. However, the feature embeddings of a CTR prediction model often get stale when the corresponding features do not appear in current incremental data. In the next period, the model would have a performance degradation on samples containing stale features, which we call the feature staleness problem. To mitigate this problem, we propose a Feature Staleness Aware Incremental Learning method for CTR prediction (FeSAIL) which adaptively replays samples containing stale features. We first introduce a staleness aware sampling algorithm (SAS) to sample a fixed number of stale samples with high sampling efficiency. We then introduce a staleness aware regularization mechanism (SAR) for a fine-grained control of the feature embedding updating. We instantiate FeSAIL with a general deep learning-based CTR prediction model and the experimental results demonstrate FeSAIL outperforms various state-of-the-art methods on four benchmark datasets.
Authors:Haozheng Luo, Chenghao Qiu, Maojiang Su, Zhihan Zhou, Zoe Mehta, Guo Ye, Jerry Yao-Chieh Hu, Han Liu
Title: Fast and Low-Cost Genomic Foundation Models via Outlier Removal
Abstract:
To address the challenge of scarce computational resources in genomic modeling, we introduce GERM, a genomic foundation model with strong compression performance and fast adaptability. GERM improves upon models like DNABERT-2 by eliminating outliers that hinder low-rank adaptation and post-training quantization, enhancing both efficiency and robustness. We replace the vanilla attention layer with an outlier-free mechanism inspired by associative memory models. By removing outliers during both pre-training and fine-tuning, this approach accelerates adaptation, reduces computational costs, and enhances quantization robustness within acceptable loss margins. Additionally, we propose GERM-T, a strategy that employs small-step continual learning within the outlier-free framework, leveraging original checkpoints to avoid retraining from scratch. Empirically, GERM improves fine-tuning performance by 37.98% and quantization by 64.34% over the baseline model. It also reduces average kurtosis by 92.14% and maximum infinity norm by 82.77%. Compared to leading methods, GERM consistently delivers superior performance, offering a practical solution for genomic modeling in resource-constrained settings. Code is available at https://github.com/MAGICS-LAB/GERM.
Authors:Biqing Duan, Qing Wang, Di Liu, Wei Zhou, Zhenli He, Shengfa Miao
Title: LODAP: On-Device Incremental Learning Via Lightweight Operations and Data Pruning
Abstract:
Incremental learning that learns new classes over time after the model's deployment is becoming increasingly crucial, particularly for industrial edge systems, where it is difficult to communicate with a remote server to conduct computation-intensive learning. As more classes are expected to learn after their execution for edge devices. In this paper, we propose LODAP, a new on-device incremental learning framework for edge systems. The key part of LODAP is a new module, namely Efficient Incremental Module (EIM). EIM is composed of normal convolutions and lightweight operations. During incremental learning, EIM exploits some lightweight operations, called adapters, to effectively and efficiently learn features for new classes so that it can improve the accuracy of incremental learning while reducing model complexity as well as training overhead. The efficiency of LODAP is further enhanced by a data pruning strategy that significantly reduces the training data, thereby lowering the training overhead. We conducted extensive experiments on the CIFAR-100 and Tiny- ImageNet datasets. Experimental results show that LODAP improves the accuracy by up to 4.32\% over existing methods while reducing around 50\% of model complexity. In addition, evaluations on real edge systems demonstrate its applicability for on-device machine learning. The code is available at https://github.com/duanbiqing/LODAP.
Authors:Alejandro Murillo-Gonzalez, Lantao Liu
Title: Action Flow Matching for Continual Robot Learning
Abstract:
Continual learning in robotics seeks systems that can constantly adapt to changing environments and tasks, mirroring human adaptability. A key challenge is refining dynamics models, essential for planning and control, while addressing issues such as safe adaptation, catastrophic forgetting, outlier management, data efficiency, and balancing exploration with exploitation -- all within task and onboard resource constraints. Towards this goal, we introduce a generative framework leveraging flow matching for online robot dynamics model alignment. Rather than executing actions based on a misaligned model, our approach refines planned actions to better match with those the robot would take if its model was well aligned. We find that by transforming the actions themselves rather than exploring with a misaligned model -- as is traditionally done -- the robot collects informative data more efficiently, thereby accelerating learning. Moreover, we validate that the method can handle an evolving and possibly imperfect model while reducing, if desired, the dependency on replay buffers or legacy model snapshots. We validate our approach using two platforms: an unmanned ground vehicle and a quadrotor. The results highlight the method's adaptability and efficiency, with a record 34.2\% higher task success rate, demonstrating its potential towards enabling continual robot learning. Code: https://github.com/AlejandroMllo/action_flow_matching.
Authors:Jingjin Wang
Title: PropRAG: Guiding Retrieval with Beam Search over Proposition Paths
Abstract:
Retrieval Augmented Generation (RAG) has become the standard non-parametric approach for equipping Large Language Models (LLMs) with up-to-date knowledge and mitigating catastrophic forgetting common in continual learning. However, standard RAG, relying on independent passage retrieval, fails to capture the interconnected nature of human memory crucial for complex reasoning (associativity) and contextual understanding (sense-making). While structured RAG methods like HippoRAG utilize knowledge graphs (KGs) built from triples, the inherent context loss limits fidelity. We introduce PropRAG, a framework leveraging contextually rich propositions and a novel beam search algorithm over proposition paths to explicitly discover multi-step reasoning chains. Crucially, PropRAG's online retrieval process operates entirely without invoking generative LLMs, relying instead on efficient graph traversal and pre-computed embeddings. This avoids online LLM inference costs and potential inconsistencies during evidence gathering. LLMs are used effectively offline for high-quality proposition extraction and post-retrieval for answer generation. PropRAG achieves state-of-the-art zero-shot Recall@5 results on PopQA (55.3%), 2Wiki (93.7%), HotpotQA (97.0%), and MuSiQue (77.3%), alongside top F1 scores (e.g., 52.4% on MuSiQue). By improving evidence retrieval through richer representation and explicit, LLM-free online path finding, PropRAG advances non-parametric continual learning.
Authors:Prachi Garg, Joseph K J, Vineeth N Balasubramanian, Necati Cihan Camgoz, Chengde Wan, Kenrick Kin, Weiguang Si, Shugao Ma, Fernando De La Torre
Title: POET: Prompt Offset Tuning for Continual Human Action Adaptation
Abstract:
As extended reality (XR) is redefining how users interact with computing devices, research in human action recognition is gaining prominence. Typically, models deployed on immersive computing devices are static and limited to their default set of classes. The goal of our research is to provide users and developers with the capability to personalize their experience by adding new action classes to their device models continually. Importantly, a user should be able to add new classes in a low-shot and efficient manner, while this process should not require storing or replaying any of user's sensitive training data. We formalize this problem as privacy-aware few-shot continual action recognition. Towards this end, we propose POET: Prompt-Offset Tuning. While existing prompt tuning approaches have shown great promise for continual learning of image, text, and video modalities; they demand access to extensively pretrained transformers. Breaking away from this assumption, POET demonstrates the efficacy of prompt tuning a significantly lightweight backbone, pretrained exclusively on the base class data. We propose a novel spatio-temporal learnable prompt offset tuning approach, and are the first to apply such prompt tuning to Graph Neural Networks. We contribute two new benchmarks for our new problem setting in human action recognition: (i) NTU RGB+D dataset for activity recognition, and (ii) SHREC-2017 dataset for hand gesture recognition. We find that POET consistently outperforms comprehensive benchmarks. Source code at https://github.com/humansensinglab/POET-continual-action-recognition.
Authors:Seungyoon Choi, Sein Kim, Hongseok Kang, Wonjoong Kim, Chanyoung Park
Title: Dynamic Time-aware Continual User Representation Learning
Abstract:
Traditional user modeling (UM) approaches have primarily focused on designing models for a single specific task, but they face limitations in generalization and adaptability across various tasks. Recognizing these challenges, recent studies have shifted towards continual learning (CL)-based universal user representation learning aiming to develop a single model capable of handling multiple tasks. Despite advancements, existing methods are in fact evaluated under an unrealistic scenario that does not consider the passage of time as tasks progress, which overlooks newly emerged items that may change the item distribution of previous tasks. In this paper, we introduce a practical evaluation scenario on which CL-based universal user representation learning approaches should be evaluated, which takes into account the passage of time as tasks progress. Then, we propose a novel framework Dynamic Time-aware continual user representation learner, named DITTO, designed to alleviate catastrophic forgetting despite continuous shifts in item distribution, while also allowing the knowledge acquired from previous tasks to adapt to the current shifted item distribution. Through our extensive experiments, we demonstrate the superiority of DITTO over state-of-the-art methods under a practical evaluation scenario. Our source code is available at https://github.com/seungyoon-Choi/DITTO_official.
Authors:Shimou Ling, Liang Zhang, Jiangwei Zhao, Lili Pan, Hongliang Li
Title: LoRA-Based Continual Learning with Constraints on Critical Parameter Changes
Abstract:
LoRA-based continual learning represents a promising avenue for leveraging pre-trained models in downstream continual learning tasks. Recent studies have shown that orthogonal LoRA tuning effectively mitigates forgetting. However, this work unveils that under orthogonal LoRA tuning, the critical parameters for pre-tasks still change notably after learning post-tasks. To address this problem, we directly propose freezing the most critical parameter matrices in the Vision Transformer (ViT) for pre-tasks before learning post-tasks. In addition, building on orthogonal LoRA tuning, we propose orthogonal LoRA composition (LoRAC) based on QR decomposition, which may further enhance the plasticity of our method. Elaborate ablation studies and extensive comparisons demonstrate the effectiveness of our proposed method. Our results indicate that our method achieves state-of-the-art (SOTA) performance on several well-known continual learning benchmarks. For instance, on the Split CIFAR-100 dataset, our method shows a 6.35\% improvement in accuracy and a 3.24\% reduction in forgetting compared to previous methods. Our code is available at https://github.com/learninginvision/LoRAC-IPC.
Authors:Kaira M. Samuel, Faez Ahmed
Title: Continual Learning Strategies for 3D Engineering Regression Problems: A Benchmarking Study
Abstract:
Engineering problems that apply machine learning often involve computationally intensive methods but rely on limited datasets. As engineering data evolves with new designs and constraints, models must incorporate new knowledge over time. However, high computational costs make retraining models from scratch infeasible. Continual learning (CL) offers a promising solution by enabling models to learn from sequential data while mitigating catastrophic forgetting, where a model forgets previously learned mappings. This work introduces CL to engineering design by benchmarking several CL methods on representative regression tasks. We apply these strategies to five engineering datasets and construct nine new engineering CL benchmarks to evaluate their ability to address forgetting and improve generalization. Preliminary results show that applying existing CL methods to these tasks improves performance over naive baselines. In particular, the Replay strategy achieved performance comparable to retraining in several benchmarks while reducing training time by nearly half, demonstrating its potential for real-world engineering workflows. The code and datasets used in this work will be available at: https://github.com/kmsamuel/cl-for-engineering-release.
Authors:Danielle Sullivan-Pao, Nicole Tian, Pooya Khorrami
Title: LoRAX: LoRA eXpandable Networks for Continual Synthetic Image Attribution
Abstract:
As generative AI image technologies become more widespread and advanced, there is a growing need for strong attribution models. These models are crucial for verifying the authenticity of images and identifying the architecture of their originating generative models-key to maintaining media integrity. However, attribution models struggle to generalize to unseen models, and traditional fine-tuning methods for updating these models have shown to be impractical in real-world settings. To address these challenges, we propose LoRA eXpandable Networks (LoRAX), a parameter-efficient class incremental algorithm that adapts to novel generative image models without the need for full retraining. Our approach trains an extremely parameter-efficient feature extractor per continual learning task via Low Rank Adaptation. Each task-specific feature extractor learns distinct features while only requiring a small fraction of the parameters present in the underlying feature extractor's backbone model. Our extensive experimentation shows LoRAX outperforms or remains competitive with state-of-the-art class incremental learning algorithms on the Continual Deepfake Detection benchmark across all training scenarios and memory settings, while requiring less than 3% of the number of trainable parameters per feature extractor compared to the full-rank implementation. LoRAX code is available at: https://github.com/mit-ll/lorax_cil.
Authors:Juzheng Zhang, Jiacheng You, Ashwinee Panda, Tom Goldstein
Title: LoRI: Reducing Cross-Task Interference in Multi-Task Low-Rank Adaptation
Abstract:
Low-Rank Adaptation (LoRA) has emerged as a popular parameter-efficient fine-tuning (PEFT) method for Large Language Models (LLMs), yet it still incurs notable overhead and suffers from parameter interference in multi-task scenarios. We propose LoRA with Reduced Interference (LoRI), a simple yet effective approach that freezes the projection matrices $A$ as random projections and sparsifies the matrices $B$ using task-specific masks. This design substantially reduces the number of trainable parameters while maintaining strong task performance. Moreover, LoRI minimizes cross-task interference in adapter merging by leveraging the orthogonality between adapter subspaces, and supports continual learning by using sparsity to mitigate catastrophic forgetting. Extensive experiments across natural language understanding, mathematical reasoning, code generation, and safety alignment tasks demonstrate that LoRI outperforms full fine-tuning and existing PEFT methods, while using up to 95% fewer trainable parameters than LoRA. In multi-task experiments, LoRI enables effective adapter merging and continual learning with reduced cross-task interference. Code is available at: https://github.com/juzhengz/LoRI
Authors:Dahyun Kang, Ahmet Iscen, Eunchan Jo, Sua Choi, Minsu Cho, Cordelia Schmid
Title: Memory-Modular Classification: Learning to Generalize with Memory Replacement
Abstract:
We propose a novel memory-modular learner for image classification that separates knowledge memorization from reasoning. Our model enables effective generalization to new classes by simply replacing the memory contents, without the need for model retraining. Unlike traditional models that encode both world knowledge and task-specific skills into their weights during training, our model stores knowledge in the external memory of web-crawled image and text data. At inference time, the model dynamically selects relevant content from the memory based on the input image, allowing it to adapt to arbitrary classes by simply replacing the memory contents. The key differentiator that our learner meta-learns to perform classification tasks with noisy web data from unseen classes, resulting in robust performance across various classification scenarios. Experimental results demonstrate the promising performance and versatility of our approach in handling diverse classification tasks, including zero-shot/few-shot classification of unseen classes, fine-grained classification, and class-incremental classification.
Authors:Aditya Hemant Shahane, Prathosh A. P, Sandeep Kumar
Title: GOTHAM: Graph Class Incremental Learning Framework under Weak Supervision
Abstract:
Graphs are growing rapidly, along with the number of distinct label categories associated with them. Applications like e-commerce, healthcare, recommendation systems, and various social media platforms are rapidly moving towards graph representation of data due to their ability to capture both structural and attribute information. One crucial task in graph analysis is node classification, where unlabeled nodes are categorized into predefined classes. In practice, novel classes appear incrementally sometimes with just a few labels (seen classes) or even without any labels (unseen classes), either because they are new or haven't been explored much. Traditional methods assume abundant labeled data for training, which isn't always feasible. We investigate a broader objective: \emph{Graph Class Incremental Learning under Weak Supervision (GCL)}, addressing this challenge by meta-training on base classes with limited labeled instances. During the incremental streams, novel classes can have few-shot or zero-shot representation. Our proposed framework GOTHAM efficiently accommodates these unlabeled nodes by finding the closest prototype representation, serving as class representatives in the attribute space. For Text-Attributed Graphs (TAGs), our framework additionally incorporates semantic information to enhance the representation. By employing teacher-student knowledge distillation to mitigate forgetting, GOTHAM achieves promising results across various tasks. Experiments on datasets such as Cora-ML, Amazon, and OBGN-Arxiv showcase the effectiveness of our approach in handling evolving graph data under limited supervision. The repository is available here: \href{https://github.com/adityashahane10/GOTHAM--Graph-based-Class-Incremental-Learning-Framework-under-Weak-Supervision}{\small \textcolor{blue}{Code}}
Authors:Kai Fang, Anqi Zhang, Guangyu Gao, Jianbo Jiao, Chi Harold Liu, Yunchao Wei
Title: CoMBO: Conflict Mitigation via Branched Optimization for Class Incremental Segmentation
Abstract:
Effective Class Incremental Segmentation (CIS) requires simultaneously mitigating catastrophic forgetting and ensuring sufficient plasticity to integrate new classes. The inherent conflict above often leads to a back-and-forth, which turns the objective into finding the balance between the performance of previous~(old) and incremental~(new) classes. To address this conflict, we introduce a novel approach, Conflict Mitigation via Branched Optimization~(CoMBO). Within this approach, we present the Query Conflict Reduction module, designed to explicitly refine queries for new classes through lightweight, class-specific adapters. This module provides an additional branch for the acquisition of new classes while preserving the original queries for distillation. Moreover, we develop two strategies to further mitigate the conflict following the branched structure, \textit{i.e.}, the Half-Learning Half-Distillation~(HDHL) over classification probabilities, and the Importance-Based Knowledge Distillation~(IKD) over query features. HDHL selectively engages in learning for classification probabilities of queries that match the ground truth of new classes, while aligning unmatched ones to the corresponding old probabilities, thus ensuring retention of old knowledge while absorbing new classes via learning negative samples. Meanwhile, IKD assesses the importance of queries based on their matching degree to old classes, prioritizing the distillation of important features and allowing less critical features to evolve. Extensive experiments in Class Incremental Panoptic and Semantic Segmentation settings have demonstrated the superior performance of CoMBO. Project page: https://guangyu-ryan.github.io/CoMBO.
Authors:Jeffrey Li, Mohammadreza Armandpour, Iman Mirzadeh, Sachin Mehta, Vaishaal Shankar, Raviteja Vemulapalli, Samy Bengio, Oncel Tuzel, Mehrdad Farajtabar, Hadi Pouransari, Fartash Faghri
Title: TiC-LM: A Web-Scale Benchmark for Time-Continual LLM Pretraining
Abstract:
Large Language Models (LLMs) trained on historical web data inevitably become outdated. We investigate evaluation strategies and update methods for LLMs as new data becomes available. We introduce a web-scale dataset for time-continual pretraining of LLMs derived from 114 dumps of Common Crawl (CC) - orders of magnitude larger than previous continual language modeling benchmarks. We also design time-stratified evaluations across both general CC data and specific domains (Wikipedia, StackExchange, and code documentation) to assess how well various continual learning methods adapt to new data while retaining past knowledge. Our findings demonstrate that, on general CC data, autoregressive meta-schedules combined with a fixed-ratio replay of older data can achieve comparable held-out loss to re-training from scratch, while requiring significantly less computation (2.6x). However, the optimal balance between incorporating new data and replaying old data differs as replay is crucial to avoid forgetting on generic web data but less so on specific domains.
Authors:Xiaole Xian, Zhichao Liao, Qingyu Li, Wenyu Qin, Pengfei Wan, Weicheng Xie, Long Zeng, Linlin Shen, Pingfa Feng
Title: SPF-Portrait: Towards Pure Text-to-Portrait Customization with Semantic Pollution-Free Fine-Tuning
Abstract:
Fine-tuning a pre-trained Text-to-Image (T2I) model on a tailored portrait dataset is the mainstream method for text-to-portrait customization. However, existing methods often severely impact the original model's behavior (e.g., changes in ID, layout, etc.) while customizing portrait attributes. To address this issue, we propose SPF-Portrait, a pioneering work to purely understand customized target semantics and minimize disruption to the original model. In our SPF-Portrait, we design a dual-path contrastive learning pipeline, which introduces the original model as a behavioral alignment reference for the conventional fine-tuning path. During the contrastive learning, we propose a novel Semantic-Aware Fine Control Map that indicates the intensity of response regions of the target semantics, to spatially guide the alignment process between the contrastive paths. It adaptively balances the behavioral alignment across different regions and the responsiveness of the target semantics. Furthermore, we propose a novel response enhancement mechanism to reinforce the presentation of target semantics, while mitigating representation discrepancy inherent in direct cross-modal supervision. Through the above strategies, we achieve incremental learning of customized target semantics for pure text-to-portrait customization. Extensive experiments show that SPF-Portrait achieves state-of-the-art performance. Project page: https://spf-portrait.github.io/SPF-Portrait/
Authors:Lu Yu, Haoyu Han, Zhe Tao, Hantao Yao, Changsheng Xu
Title: Language Guided Concept Bottleneck Models for Interpretable Continual Learning
Abstract:
Continual learning (CL) aims to enable learning systems to acquire new knowledge constantly without forgetting previously learned information. CL faces the challenge of mitigating catastrophic forgetting while maintaining interpretability across tasks. Most existing CL methods focus primarily on preserving learned knowledge to improve model performance. However, as new information is introduced, the interpretability of the learning process becomes crucial for understanding the evolving decision-making process, yet it is rarely explored. In this paper, we introduce a novel framework that integrates language-guided Concept Bottleneck Models (CBMs) to address both challenges. Our approach leverages the Concept Bottleneck Layer, aligning semantic consistency with CLIP models to learn human-understandable concepts that can generalize across tasks. By focusing on interpretable concepts, our method not only enhances the models ability to retain knowledge over time but also provides transparent decision-making insights. We demonstrate the effectiveness of our approach by achieving superior performance on several datasets, outperforming state-of-the-art methods with an improvement of up to 3.06% in final average accuracy on ImageNet-subset. Additionally, we offer concept visualizations for model predictions, further advancing the understanding of interpretable continual learning.
Authors:Yusong Hu, Zichen Liang, Fei Yang, Qibin Hou, Xialei Liu, Ming-Ming Cheng
Title: KAC: Kolmogorov-Arnold Classifier for Continual Learning
Abstract:
Continual learning requires models to train continuously across consecutive tasks without forgetting. Most existing methods utilize linear classifiers, which struggle to maintain a stable classification space while learning new tasks. Inspired by the success of Kolmogorov-Arnold Networks (KAN) in preserving learning stability during simple continual regression tasks, we set out to explore their potential in more complex continual learning scenarios. In this paper, we introduce the Kolmogorov-Arnold Classifier (KAC), a novel classifier developed for continual learning based on the KAN structure. We delve into the impact of KAN's spline functions and introduce Radial Basis Functions (RBF) for improved compatibility with continual learning. We replace linear classifiers with KAC in several recent approaches and conduct experiments across various continual learning benchmarks, all of which demonstrate performance improvements, highlighting the effectiveness and robustness of KAC in continual learning. The code is available at https://github.com/Ethanhuhuhu/KAC.
Authors:Xiaoming Qi, Jingyang Zhang, Huazhu Fu, Guanyu Yang, Shuo Li, Yueming Jin
Title: Dynamic Allocation Hypernetwork with Adaptive Model Recalibration for Federated Continual Learning
Abstract:
Federated continual learning (FCL) offers an emerging pattern to facilitate the applicability of federated learning (FL) in real-world scenarios, where tasks evolve dynamically and asynchronously across clients, especially in medical scenario. Existing server-side FCL methods in nature domain construct a continually learnable server model by client aggregation on all-involved tasks. However, they are challenged by: (1) Catastrophic forgetting for previously learned tasks, leading to error accumulation in server model, making it difficult to sustain comprehensive knowledge across all tasks. (2) Biased optimization due to asynchronous tasks handled across different clients, leading to the collision of optimization targets of different clients at the same time steps. In this work, we take the first step to propose a novel server-side FCL pattern in medical domain, Dynamic Allocation Hypernetwork with adaptive model recalibration (FedDAH). It is to facilitate collaborative learning under the distinct and dynamic task streams across clients. To alleviate the catastrophic forgetting, we propose a dynamic allocation hypernetwork (DAHyper) where a continually updated hypernetwork is designed to manage the mapping between task identities and their associated model parameters, enabling the dynamic allocation of the model across clients. For the biased optimization, we introduce a novel adaptive model recalibration (AMR) to incorporate the candidate changes of historical models into current server updates, and assign weights to identical tasks across different time steps based on the similarity for continual optimization. Extensive experiments on the AMOS dataset demonstrate the superiority of our FedDAH to other FCL methods on sites with different task streams. The code is available:https://github.com/jinlab-imvr/FedDAH.
Authors:Hao Fu, Hanbin Zhao, Jiahua Dong, Henghui Ding, Chao Zhang, Hui Qian
Title: IAP: Improving Continual Learning of Vision-Language Models via Instance-Aware Prompting
Abstract:
Recent pre-trained vision-language models (PT-VLMs) often face a Multi-Domain Task Incremental Learning (MTIL) scenario in practice, where several classes and domains of multi-modal tasks are incrementally arrived. Without access to previously seen tasks and unseen tasks, memory-constrained MTIL suffers from forward and backward forgetting. To alleviate the above challenges, parameter-efficient fine-tuning techniques (PEFT), such as prompt tuning, are employed to adapt the PT-VLM to the diverse incrementally learned tasks. To achieve effective new task adaptation, existing methods only consider the effect of PEFT strategy selection, but neglect the influence of PEFT parameter setting (e.g., prompting). In this paper, we tackle the challenge of optimizing prompt designs for diverse tasks in MTIL and propose an Instance-Aware Prompting (IAP) framework. Specifically, our Instance-Aware Gated Prompting (IA-GP) strategy enhances adaptation to new tasks while mitigating forgetting by adaptively assigning prompts across transformer layers at the instance level. Our Instance-Aware Class-Distribution-Driven Prompting (IA-CDDP) improves the task adaptation process by determining an accurate task-label-related confidence score for each instance. Experimental evaluations across 11 datasets, using three performance metrics, demonstrate the effectiveness of our proposed method. The source codes are available at https://github.com/FerdinandZJU/IAP.
Authors:Hankyul Kang, Gregor Seifer, Donghyun Lee, Jongbin Ryu
Title: Do Your Best and Get Enough Rest for Continual Learning
Abstract:
According to the forgetting curve theory, we can enhance memory retention by learning extensive data and taking adequate rest. This means that in order to effectively retain new knowledge, it is essential to learn it thoroughly and ensure sufficient rest so that our brain can memorize without forgetting. The main takeaway from this theory is that learning extensive data at once necessitates sufficient rest before learning the same data again. This aspect of human long-term memory retention can be effectively utilized to address the continual learning of neural networks. Retaining new knowledge for a long period of time without catastrophic forgetting is the critical problem of continual learning. Therefore, based on Ebbinghaus' theory, we introduce the view-batch model that adjusts the learning schedules to optimize the recall interval between retraining the same samples. The proposed view-batch model allows the network to get enough rest to learn extensive knowledge from the same samples with a recall interval of sufficient length. To this end, we specifically present two approaches: 1) a replay method that guarantees the optimal recall interval, and 2) a self-supervised learning that acquires extensive knowledge from a single training sample at a time. We empirically show that these approaches of our method are aligned with the forgetting curve theory, which can enhance long-term memory. In our experiments, we also demonstrate that our method significantly improves many state-of-the-art continual learning methods in various protocols and scenarios. We open-source this project at https://github.com/hankyul2/ViewBatchModel.
Authors:Xiaoming Qi, Jingyang Zhang, Huazhu Fu, Guanyu Yang, Shuo Li, Yueming Jin
Title: Dynamic Allocation Hypernetwork with Adaptive Model Recalibration for FCL
Abstract:
Federated continual learning (FCL) offers an emerging pattern to facilitate the applicability of federated learning (FL) in real-world scenarios, where tasks evolve dynamically and asynchronously across clients, especially in medical scenario. Existing server-side FCL methods in nature domain construct a continually learnable server model by client aggregation on all-involved tasks. However, they are challenged by: (1) Catastrophic forgetting for previously learned tasks, leading to error accumulation in server model, making it difficult to sustain comprehensive knowledge across all tasks. (2) Biased optimization due to asynchronous tasks handled across different clients, leading to the collision of optimization targets of different clients at the same time steps. In this work, we take the first step to propose a novel server-side FCL pattern in medical domain, Dynamic Allocation Hypernetwork with adaptive model recalibration (\textbf{FedDAH}). It is to facilitate collaborative learning under the distinct and dynamic task streams across clients. To alleviate the catastrophic forgetting, we propose a dynamic allocation hypernetwork (DAHyper) where a continually updated hypernetwork is designed to manage the mapping between task identities and their associated model parameters, enabling the dynamic allocation of the model across clients. For the biased optimization, we introduce a novel adaptive model recalibration (AMR) to incorporate the candidate changes of historical models into current server updates, and assign weights to identical tasks across different time steps based on the similarity for continual optimization. Extensive experiments on the AMOS dataset demonstrate the superiority of our FedDAH to other FCL methods on sites with different task streams. The code is available:https://github.com/jinlab-imvr/FedDAH.
Authors:Panagiota Moraiti, Efstathios Karypidis
Title: Technical Report for the 5th CLVision Challenge at CVPR: Addressing the Class-Incremental with Repetition using Unlabeled Data -- 4th Place Solution
Abstract:
This paper outlines our approach to the 5th CLVision challenge at CVPR, which addresses the Class-Incremental with Repetition (CIR) scenario. In contrast to traditional class incremental learning, this novel setting introduces unique challenges and research opportunities, particularly through the integration of unlabeled data into the training process. In the CIR scenario, encountered classes may reappear in later learning experiences, and each experience may involve only a subset of the overall class distribution. Additionally, the unlabeled data provided during training may include instances of unseen classes, or irrelevant classes which should be ignored. Our approach focuses on retaining previously learned knowledge by utilizing knowledge distillation and pseudo-labeling techniques. The key characteristic of our method is the exploitation of unlabeled data during training, in order to maintain optimal performance on instances of previously encountered categories and reduce the detrimental effects of catastrophic forgetting. Our method achieves an average accuracy of 16.68\% during the pre-selection phase and 21.19% during the final evaluation phase, outperforming the baseline accuracy of 9.39%. We provide the implementation code at https://github.com/panagiotamoraiti/continual-learning-challenge-2024 .
Authors:Xiaohao Liu, Xiaobo Xia, See-Kiong Ng, Tat-Seng Chua
Title: Continual Multimodal Contrastive Learning
Abstract:
Multimodal Contrastive Learning (MCL) advances in aligning different modalities and generating multimodal representations in a joint space. By leveraging contrastive learning across diverse modalities, large-scale multimodal data enhances representational quality. However, a critical yet often overlooked challenge remains: multimodal data is rarely collected in a single process, and training from scratch is computationally expensive. Instead, emergent multimodal data can be used to optimize existing models gradually, i.e., models are trained on a sequence of modality pair data. We define this problem as Continual Multimodal Contrastive Learning (CMCL), an underexplored yet crucial research direction at the intersection of multimodal and continual learning. In this paper, we formulate CMCL through two specialized principles of stability and plasticity. We theoretically derive a novel optimization-based method, which projects updated gradients from dual sides onto subspaces where any gradient is prevented from interfering with the previously learned knowledge. Two upper bounds provide theoretical insights on both stability and plasticity in our solution. Beyond our theoretical contributions, we conduct experiments on multiple datasets by comparing our method against advanced continual learning baselines. The empirical results further support our claims and demonstrate the efficacy of our method. Our codes are available at https://github.com/Xiaohao-Liu/CMCL.
Authors:Yuhang Liu, Wenjie Zhao, Yunhui Guo
Title: H2ST: Hierarchical Two-Sample Tests for Continual Out-of-Distribution Detection
Abstract:
Task Incremental Learning (TIL) is a specialized form of Continual Learning (CL) in which a model incrementally learns from non-stationary data streams. Existing TIL methodologies operate under the closed-world assumption, presuming that incoming data remains in-distribution (ID). However, in an open-world setting, incoming samples may originate from out-of-distribution (OOD) sources, with their task identities inherently unknown. Continually detecting OOD samples presents several challenges for current OOD detection methods: reliance on model outputs leads to excessive dependence on model performance, selecting suitable thresholds is difficult, hindering real-world deployment, and binary ID/OOD classification fails to provide task-level identification. To address these issues, we propose a novel continual OOD detection method called the Hierarchical Two-sample Tests (H2ST). H2ST eliminates the need for threshold selection through hypothesis testing and utilizes feature maps to better exploit model capabilities without excessive dependence on model performance. The proposed hierarchical architecture enables task-level detection with superior performance and lower overhead compared to non-hierarchical classifier two-sample tests. Extensive experiments and analysis validate the effectiveness of H2ST in open-world TIL scenarios and its superiority to the existing methods. Code is available at \href{https://github.com/YuhangLiuu/H2ST}{https://github.com/YuhangLiuu/H2ST}.
Authors:Josip Josifovski, Shangding Gu, Mohammadhossein Malmir, Haoliang Huang, Sayantan Auddy, Nicolás Navarro-Guerrero, Costas Spanos, Alois Knoll
Title: Safe Continual Domain Adaptation after Sim2Real Transfer of Reinforcement Learning Policies in Robotics
Abstract:
Domain randomization has emerged as a fundamental technique in reinforcement learning (RL) to facilitate the transfer of policies from simulation to real-world robotic applications. Many existing domain randomization approaches have been proposed to improve robustness and sim2real transfer. These approaches rely on wide randomization ranges to compensate for the unknown actual system parameters, leading to robust but inefficient real-world policies. In addition, the policies pretrained in the domain-randomized simulation are fixed after deployment due to the inherent instability of the optimization processes based on RL and the necessity of sampling exploitative but potentially unsafe actions on the real system. This limits the adaptability of the deployed policy to the inevitably changing system parameters or environment dynamics over time. We leverage safe RL and continual learning under domain-randomized simulation to address these limitations and enable safe deployment-time policy adaptation in real-world robot control. The experiments show that our method enables the policy to adapt and fit to the current domain distribution and environment dynamics of the real system while minimizing safety risks and avoiding issues like catastrophic forgetting of the general policy found in randomized simulation during the pretraining phase. Videos and supplementary material are available at https://safe-cda.github.io/.
Authors:Zecheng Zhao, Zhi Chen, Zi Huang, Shazia Sadiq, Tong Chen
Title: Continual Text-to-Video Retrieval with Frame Fusion and Task-Aware Routing
Abstract:
Text-to-Video Retrieval (TVR) aims to retrieve relevant videos based on textual queries. However, as video content evolves continuously, adapting TVR systems to new data remains a critical yet under-explored challenge. In this paper, we introduce the first benchmark for Continual Text-to-Video Retrieval (CTVR) to address the limitations of existing approaches. Current Pre-Trained Model (PTM)-based TVR methods struggle with maintaining model plasticity when adapting to new tasks, while existing Continual Learning (CL) methods suffer from catastrophic forgetting, leading to semantic misalignment between historical queries and stored video features. To address these two challenges, we propose FrameFusionMoE, a novel CTVR framework that comprises two key components: (1) the Frame Fusion Adapter (FFA), which captures temporal video dynamics while preserving model plasticity, and (2) the Task-Aware Mixture-of-Experts (TAME), which ensures consistent semantic alignment between queries across tasks and the stored video features. Thus, FrameFusionMoE enables effective adaptation to new video content while preserving historical text-video relevance to mitigate catastrophic forgetting. We comprehensively evaluate FrameFusionMoE on two benchmark datasets under various task settings. Results demonstrate that FrameFusionMoE outperforms existing CL and TVR methods, achieving superior retrieval performance with minimal degradation on earlier tasks when handling continuous video streams. Our code is available at: https://github.com/JasonCodeMaker/CTVR.
Authors:Shiwon Kim, Dongjun Hwang, Sungwon Woo, Rita Singh
Title: Does Prior Data Matter? Exploring Joint Training in the Context of Few-Shot Class-Incremental Learning
Abstract:
Class-incremental learning (CIL) aims to adapt to continuously emerging new classes while preserving knowledge of previously learned ones. Few-shot class-incremental learning (FSCIL) presents a greater challenge that requires the model to learn new classes from only a limited number of samples per class. While incremental learning typically assumes restricted access to past data, it often remains available in many real-world scenarios. This raises a practical question: should one retrain the model on the full dataset (i.e., joint training), or continue updating it solely with new data? In CIL, joint training is considered an ideal benchmark that provides a reference for evaluating the trade-offs between performance and computational cost. However, in FSCIL, joint training becomes less reliable due to severe imbalance between base and incremental classes. This results in the absence of a practical baseline, making it unclear which strategy is preferable for practitioners. To this end, we revisit joint training in the context of FSCIL by incorporating imbalance mitigation techniques, and suggest a new imbalance-aware joint training benchmark for FSCIL. We then conduct extensive comparisons between this benchmark and FSCIL methods to analyze which approach is most suitable when prior data is accessible. Our analysis offers realistic insights and guidance for selecting training strategies in real-world FSCIL scenarios. Code is available at: https://github.com/shiwonkim/Joint_FSCIL
Authors:Da-Wei Zhou, Kai-Wen Li, Jingyi Ning, Han-Jia Ye, Lijun Zhang, De-Chuan Zhan
Title: External Knowledge Injection for CLIP-Based Class-Incremental Learning
Abstract:
Class-Incremental Learning (CIL) enables learning systems to continuously adapt to evolving data streams. With the advancement of pre-training, leveraging pre-trained vision-language models (e.g., CLIP) offers a promising starting point for CIL. However, CLIP makes decisions by matching visual embeddings to class names, overlooking the rich contextual information conveyed through language. For instance, the concept of ``cat'' can be decomposed into features like tail, fur, and face for recognition. Besides, since the model is continually updated, these detailed features are overwritten in CIL, requiring external knowledge for compensation. In this paper, we introduce ExterNal knowledGe INjEction (ENGINE) for CLIP-based CIL. To enhance knowledge transfer from outside the dataset, we propose a dual-branch injection tuning framework that encodes informative knowledge from both visual and textual modalities. The visual branch is enhanced with data augmentation to enrich the visual features, while the textual branch leverages GPT-4 to rewrite discriminative descriptors. In addition to this on-the-fly knowledge injection, we also implement post-tuning knowledge by re-ranking the prediction results during inference. With the injected knowledge, the model can better capture informative features for downstream tasks as data evolves. Extensive experiments demonstrate the state-of-the-art performance of ENGINE. Code is available at: https://github.com/LAMDA-CL/ICCV25-ENGINE
Authors:Sheng Luo, Yi Zhou, Tao Zhou
Title: Universal Incremental Learning: Mitigating Confusion from Inter- and Intra-task Distribution Randomness
Abstract:
Incremental learning (IL) aims to overcome catastrophic forgetting of previous tasks while learning new ones. Existing IL methods make strong assumptions that the incoming task type will either only increases new classes or domains (i.e. Class IL, Domain IL), or increase by a static scale in a class- and domain-agnostic manner (i.e. Versatile IL (VIL)), which greatly limit their applicability in the unpredictable and dynamic wild. In this work, we investigate $\textbf{Universal Incremental Learning (UIL)}$, where a model neither knows which new classes or domains will increase along sequential tasks, nor the scale of the increments within each task. This uncertainty prevents the model from confidently learning knowledge from all task distributions and symmetrically focusing on the diverse knowledge within each task distribution. Consequently, UIL presents a more general and realistic IL scenario, making the model face confusion arising from inter-task and intra-task distribution randomness. To $\textbf{Mi}$tigate both $\textbf{Co}$nfusion, we propose a simple yet effective framework for UIL, named $\textbf{MiCo}$. At the inter-task distribution level, we employ a multi-objective learning scheme to enforce accurate and deterministic predictions, and its effectiveness is further enhanced by a direction recalibration module that reduces conflicting gradients. Moreover, at the intra-task distribution level, we introduce a magnitude recalibration module to alleviate asymmetrical optimization towards imbalanced class distribution. Extensive experiments on three benchmarks demonstrate the effectiveness of our method, outperforming existing state-of-the-art methods in both the UIL scenario and the VIL scenario. Our code will be available at $\href{https://github.com/rolsheng/UIL}{here}$.
Authors:Run He, Di Fang, Yicheng Xu, Yawen Cui, Ming Li, Cen Chen, Ziqian Zeng, Huiping Zhuang
Title: Semantic Shift Estimation via Dual-Projection and Classifier Reconstruction for Exemplar-Free Class-Incremental Learning
Abstract:
Exemplar-Free Class-Incremental Learning (EFCIL) aims to sequentially learn from distinct categories without retaining exemplars but easily suffers from catastrophic forgetting of learned knowledge. While existing EFCIL methods leverage knowledge distillation to alleviate forgetting, they still face two critical challenges: semantic shift and decision bias. Specifically, the embeddings of old tasks shift in the embedding space after learning new tasks, and the classifier becomes biased towards new tasks due to training solely with new data, hindering the balance between old and new knowledge. To address these issues, we propose the Dual-Projection Shift Estimation and Classifier Reconstruction (DPCR) approach for EFCIL. DPCR effectively estimates semantic shift through a dual-projection, which combines a learnable transformation with a row-space projection to capture both task-wise and category-wise shifts. Furthermore, to mitigate decision bias, DPCR employs ridge regression to reformulate a classifier reconstruction process. This reconstruction exploits previous in covariance and prototype of each class after calibration with estimated shift, thereby reducing decision bias. Extensive experiments demonstrate that, on various datasets, DPCR effectively balances old and new tasks, outperforming state-of-the-art EFCIL methods. Our codes are available at https://github.com/RHe502/ICML25-DPCR.
Authors:Shengzhuang Chen, Yikai Liao, Xiaoxiao Sun, Kede Ma, Ying Wei
Title: CLDyB: Towards Dynamic Benchmarking for Continual Learning with Pre-trained Models
Abstract:
The advent of the foundation model era has sparked significant research interest in leveraging pre-trained representations for continual learning (CL), yielding a series of top-performing CL methods on standard evaluation benchmarks. Nonetheless, there are growing concerns regarding potential data contamination during the pre-training stage. Furthermore, standard evaluation benchmarks, which are typically static, fail to capture the complexities of real-world CL scenarios, resulting in saturated performance. To address these issues, we describe CL on dynamic benchmarks (CLDyB), a general computational framework based on Markov decision processes for evaluating CL methods reliably. CLDyB dynamically identifies inherently difficult and algorithm-dependent tasks for the given CL methods, and determines challenging task orders using Monte Carlo tree search. Leveraging CLDyB, we first conduct a joint evaluation of multiple state-of-the-art CL methods, leading to a set of commonly challenging and generalizable task sequences where existing CL methods tend to perform poorly. We then conduct separate evaluations of individual CL methods using CLDyB, discovering their respective strengths and weaknesses. The source code and generated task sequences are publicly accessible at https://github.com/szc12153/CLDyB.
Authors:Bowen Zheng, Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan
Title: Task-Agnostic Guided Feature Expansion for Class-Incremental Learning
Abstract:
The ability to learn new concepts while preserve the learned knowledge is desirable for learning systems in Class-Incremental Learning (CIL). Recently, feature expansion of the model become a prevalent solution for CIL, where the old features are fixed during the training of the new task while new features are expanded for the new tasks. However, such task-specific features learned from the new task may collide with the old features, leading to misclassification between tasks. Therefore, the expanded model is often encouraged to capture diverse features from the new task, aiming to avoid such collision. However, the existing solution is largely restricted to the samples from the current task, because of the poor accessibility to previous samples. To promote the learning and transferring of diverse features across tasks, we propose a framework called Task-Agnostic Guided Feature Expansion (TagFex). Firstly, it captures task-agnostic features continually with a separate model, providing extra task-agnostic features for subsequent tasks. Secondly, to obtain useful features from the task-agnostic model for the current task, it aggregates the task-agnostic features with the task-specific feature using a merge attention. Then the aggregated feature is transferred back into the task-specific feature for inference, helping the task-specific model capture diverse features. Extensive experiments show the effectiveness and superiority of TagFex on various CIL settings. Code is available at https://github.com/bwnzheng/TagFex_CVPR2025.
Authors:Zhiqi Kang, Liyuan Wang, Xingxing Zhang, Karteek Alahari
Title: Advancing Prompt-Based Methods for Replay-Independent General Continual Learning
Abstract:
General continual learning (GCL) is a broad concept to describe real-world continual learning (CL) problems, which are often characterized by online data streams without distinct transitions between tasks, i.e., blurry task boundaries. Such requirements result in poor initial performance, limited generalizability, and severe catastrophic forgetting, heavily impacting the effectiveness of mainstream GCL models trained from scratch. While the use of a frozen pretrained backbone with appropriate prompt tuning can partially address these challenges, such prompt-based methods remain suboptimal for CL of remaining tunable parameters on the fly. In this regard, we propose an innovative approach named MISA (Mask and Initial Session Adaption) to advance prompt-based methods in GCL. It includes a forgetting-aware initial session adaption that employs pretraining data to initialize prompt parameters and improve generalizability, as well as a non-parametric logit mask of the output layers to mitigate catastrophic forgetting. Empirical results demonstrate substantial performance gains of our approach compared to recent competitors, especially without a replay buffer (e.g., up to 18.39%, 22.06%, and 11.96% performance lead on CIFAR-100, Tiny-ImageNet, and ImageNet-R, respectively). Moreover, our approach features the plug-in nature for prompt-based methods, independence of replay, ease of implementation, and avoidance of CL-relevant hyperparameters, serving as a strong baseline for GCL research. Our source code is publicly available at https://github.com/kangzhiq/MISA
Authors:Yujie Li, Xiangkun Wang, Xin Yang, Marcello Bonsangue, Junbo Zhang, Tianrui Li
Title: Improving Open-world Continual Learning under the Constraints of Scarce Labeled Data
Abstract:
Open-world continual learning (OWCL) adapts to sequential tasks with open samples, learning knowledge incrementally while preventing forgetting. However, existing OWCL still requires a large amount of labeled data for training, which is often impractical in real-world applications. Given that new categories/entities typically come with limited annotations and are in small quantities, a more realistic situation is OWCL with scarce labeled data, i.e., few-shot training samples. Hence, this paper investigates the problem of open-world few-shot continual learning (OFCL), challenging in (i) learning unbounded tasks without forgetting previous knowledge and avoiding overfitting, (ii) constructing compact decision boundaries for open detection with limited labeled data, and (iii) transferring knowledge about knowns and unknowns and even update the unknowns to knowns once the labels of open samples are learned. In response, we propose a novel OFCL framework that integrates three key components: (1) an instance-wise token augmentation (ITA) that represents and enriches sample representations with additional knowledge, (2) a margin-based open boundary (MOB) that supports open detection with new tasks emerge over time, and (3) an adaptive knowledge space (AKS) that endows unknowns with knowledge for the updating from unknowns to knowns. Finally, extensive experiments show that the proposed OFCL framework outperforms all baselines remarkably with practical importance and reproducibility. The source code is released at https://github.com/liyj1201/OFCL.
Authors:Guannan Lai, Yujie Li, Xiangkun Wang, Junbo Zhang, Tianrui Li, Xin Yang
Title: Order-Robust Class Incremental Learning: Graph-Driven Dynamic Similarity Grouping
Abstract:
Class Incremental Learning (CIL) aims to enable models to learn new classes sequentially while retaining knowledge of previous ones. Although current methods have alleviated catastrophic forgetting (CF), recent studies highlight that the performance of CIL models is highly sensitive to the order of class arrival, particularly when sequentially introduced classes exhibit high inter-class similarity. To address this critical yet understudied challenge of class order sensitivity, we first extend existing CIL frameworks through theoretical analysis, proving that grouping classes with lower pairwise similarity during incremental phases significantly improves model robustness to order variations. Building on this insight, we propose Graph-Driven Dynamic Similarity Grouping (GDDSG), a novel method that employs graph coloring algorithms to dynamically partition classes into similarity-constrained groups. Each group trains an isolated CIL sub-model and constructs meta-features for class group identification. Experimental results demonstrate that our method effectively addresses the issue of class order sensitivity while achieving optimal performance in both model accuracy and anti-forgetting capability. Our code is available at https://github.com/AIGNLAI/GDDSG.
Authors:Xiaofan Li, Xin Tan, Zhuo Chen, Zhizhong Zhang, Ruixin Zhang, Rizen Guo, Guannan Jiang, Yulong Chen, Yanyun Qu, Lizhuang Ma, Yuan Xie
Title: One-for-More: Continual Diffusion Model for Anomaly Detection
Abstract:
With the rise of generative models, there is a growing interest in unifying all tasks within a generative framework. Anomaly detection methods also fall into this scope and utilize diffusion models to generate or reconstruct normal samples when given arbitrary anomaly images. However, our study found that the diffusion model suffers from severe ``faithfulness hallucination'' and ``catastrophic forgetting'', which can't meet the unpredictable pattern increments. To mitigate the above problems, we propose a continual diffusion model that uses gradient projection to achieve stable continual learning. Gradient projection deploys a regularization on the model updating by modifying the gradient towards the direction protecting the learned knowledge. But as a double-edged sword, it also requires huge memory costs brought by the Markov process. Hence, we propose an iterative singular value decomposition method based on the transitive property of linear representation, which consumes tiny memory and incurs almost no performance loss. Finally, considering the risk of ``over-fitting'' to normal images of the diffusion model, we propose an anomaly-masked network to enhance the condition mechanism of the diffusion model. For continual anomaly detection, ours achieves first place in 17/18 settings on MVTec and VisA. Code is available at https://github.com/FuNz-0/One-for-More
Authors:Vishal Thengane, Jean Lahoud, Hisham Cholakkal, Rao Muhammad Anwer, Lu Yin, Xiatian Zhu, Salman Khan
Title: CLIMB-3D: Continual Learning for Imbalanced 3D Instance Segmentation
Abstract:
While 3D instance segmentation (3DIS) has advanced significantly, existing methods typically assume that all object classes are known in advance and are uniformly distributed. However, this assumption is unrealistic in dynamic, real-world environments where new classes emerge gradually and exhibit natural imbalance. Although some approaches have addressed class emergence, they often overlook class imbalance, resulting in suboptimal performance -- particularly on rare categories. To tackle this challenge, we propose CLIMB-3D, a unified framework for \textbf{CL}ass-incremental \textbf{Imb}alance-aware \textbf{3D}IS. Building upon established exemplar replay (ER) strategies, we show that ER alone is insufficient to achieve robust performance under constrained memory conditions. To mitigate this, we introduce a novel pseudo-label generator (PLG) that extends supervision to previously learned categories by leveraging predictions from a frozen prior model. Despite its promise, PLG tends to bias towards frequent classes. Therefore, we propose a class-balanced re-weighting (CBR) scheme, that estimates object frequencies from pseudo-labels and dynamically adjusts training bias -- without requiring access to past data. We design and evaluate three incremental scenarios for 3DIS on the challenging ScanNet200 dataset, and additionally on semantic segmentation on ScanNetV2. Our approach achieves state-of-the-art results, surpassing prior work by up to 16.76\% mAP for instance segmentation and approximately 30\% mIoU for semantic segmentation, demonstrating strong generalization across both frequent and rare classes.
Authors:Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi, Sizhe Zhou, Yu Su
Title: From RAG to Memory: Non-Parametric Continual Learning for Large Language Models
Abstract:
Our ability to continuously acquire, organize, and leverage knowledge is a key feature of human intelligence that AI systems must approximate to unlock their full potential. Given the challenges in continual learning with large language models (LLMs), retrieval-augmented generation (RAG) has become the dominant way to introduce new information. However, its reliance on vector retrieval hinders its ability to mimic the dynamic and interconnected nature of human long-term memory. Recent RAG approaches augment vector embeddings with various structures like knowledge graphs to address some of these gaps, namely sense-making and associativity. However, their performance on more basic factual memory tasks drops considerably below standard RAG. We address this unintended deterioration and propose HippoRAG 2, a framework that outperforms standard RAG comprehensively on factual, sense-making, and associative memory tasks. HippoRAG 2 builds upon the Personalized PageRank algorithm used in HippoRAG and enhances it with deeper passage integration and more effective online use of an LLM. This combination pushes this RAG system closer to the effectiveness of human long-term memory, achieving a 7% improvement in associative memory tasks over the state-of-the-art embedding model while also exhibiting superior factual knowledge and sense-making memory capabilities. This work paves the way for non-parametric continual learning for LLMs. Code and data are available at https://github.com/OSU-NLP-Group/HippoRAG.
Authors:Adriana Valentina Costache, Silviu Florin Gheorghe, Eduard Gabriel Poesina, Paul Irofti, Radu Tudor Ionescu
Title: A Survey of Text Classification Under Class Distribution Shift
Abstract:
The basic underlying assumption of machine learning (ML) models is that the training and test data are sampled from the same distribution. However, in daily practice, this assumption is often broken, i.e.~the distribution of the test data changes over time, which hinders the application of conventional ML models. One domain where the distribution shift naturally occurs is text classification, since people always find new topics to discuss. To this end, we survey research articles studying open-set text classification and related tasks. We divide the methods in this area based on the constraints that define the kind of distribution shift and the corresponding problem formulation, i.e.~learning with the Universum, zero-shot learning, and open-set learning. We next discuss the predominant mitigation approaches for each problem setup. Finally, we identify several future work directions, aiming to push the boundaries beyond the state of the art. Interestingly, we find that continual learning can solve many of the issues caused by the shifting class distribution. We maintain a list of relevant papers at https://github.com/Eduard6421/Open-Set-Survey.
Authors:Andrii Krutsylo
Title: Non-Uniform Memory Sampling in Experience Replay
Abstract:
Continual learning is the process of training machine learning models on a sequence of tasks where data distributions change over time. A well-known obstacle in this setting is catastrophic forgetting, a phenomenon in which a model drastically loses performance on previously learned tasks when learning new ones. A popular strategy to alleviate this problem is experience replay, in which a subset of old samples is stored in a memory buffer and replayed with new data. Despite continual learning advances focusing on which examples to store and how to incorporate them into the training loss, most approaches assume that sampling from this buffer is uniform by default. We challenge the assumption that uniform sampling is necessarily optimal. We conduct an experiment in which the memory buffer updates the same way in every trial, but the replay probability of each stored sample changes between trials based on different random weight distributions. Specifically, we generate 50 different non-uniform sampling probability weights for each trial and compare their final accuracy to the uniform sampling baseline. We find that there is always at least one distribution that significantly outperforms the baseline across multiple buffer sizes, models, and datasets. These results suggest that more principled adaptive replay policies could yield further gains. We discuss how exploiting this insight could inspire new research on non-uniform memory sampling in continual learning to better mitigate catastrophic forgetting. The code supporting this study is available at $\href{https://github.com/DentonJC/memory-sampling}{https://github.com/DentonJC/memory-sampling}$.
Authors:Mingyu Xing, Lechao Cheng, Shengeng Tang, Yaxiong Wang, Zhun Zhong, Meng Wang
Title: Knowledge Swapping via Learning and Unlearning
Abstract:
We introduce \textbf{Knowledge Swapping}, a novel task designed to selectively regulate knowledge of a pretrained model by enabling the forgetting of user\-specified information, retaining essential knowledge, and acquiring new knowledge simultaneously. By delving into the analysis of knock-on feature hierarchy, we find that incremental learning typically progresses from low\-level representations to higher\-level semantics, whereas forgetting tends to occur in the opposite direction\-starting from high-level semantics and moving down to low-level features. Building upon this, we propose to benchmark the knowledge swapping task with the strategy of \textit{Learning Before Forgetting}. Comprehensive experiments on various tasks like image classification, object detection, and semantic segmentation validate the effectiveness of the proposed strategy. The source code is available at \href{https://github.com/xingmingyu123456/KnowledgeSwapping}{https://github.com/xingmingyu123456/KnowledgeSwapping}.
Authors:Fangwen Wu, Lechao Cheng, Shengeng Tang, Xiaofeng Zhu, Chaowei Fang, Dingwen Zhang, Meng Wang
Title: Navigating Semantic Drift in Task-Agnostic Class-Incremental Learning
Abstract:
Class-incremental learning (CIL) seeks to enable a model to sequentially learn new classes while retaining knowledge of previously learned ones. Balancing flexibility and stability remains a significant challenge, particularly when the task ID is unknown. To address this, our study reveals that the gap in feature distribution between novel and existing tasks is primarily driven by differences in mean and covariance moments. Building on this insight, we propose a novel semantic drift calibration method that incorporates mean shift compensation and covariance calibration. Specifically, we calculate each class's mean by averaging its sample embeddings and estimate task shifts using weighted embedding changes based on their proximity to the previous mean, effectively capturing mean shifts for all learned classes with each new task. We also apply Mahalanobis distance constraint for covariance calibration, aligning class-specific embedding covariances between old and current networks to mitigate the covariance shift. Additionally, we integrate a feature-level self-distillation approach to enhance generalization. Comprehensive experiments on commonly used datasets demonstrate the effectiveness of our approach. The source code is available at \href{https://github.com/fwu11/MACIL.git}{https://github.com/fwu11/MACIL.git}.
Authors:Qi Wang, Tianfei Zhou, Ye Yuan, Rui Mao
Title: Prompt-Driven Continual Graph Learning
Abstract:
Continual Graph Learning (CGL), which aims to accommodate new tasks over evolving graph data without forgetting prior knowledge, is garnering significant research interest. Mainstream solutions adopt the memory replay-based idea, ie, caching representative data from earlier tasks for retraining the graph model. However, this strategy struggles with scalability issues for constantly evolving graphs and raises concerns regarding data privacy. Inspired by recent advancements in the prompt-based learning paradigm, this paper introduces a novel prompt-driven continual graph learning (PROMPTCGL) framework, which learns a separate prompt for each incoming task and maintains the underlying graph neural network model fixed. In this way, PROMPTCGL naturally avoids catastrophic forgetting of knowledge from previous tasks. More specifically, we propose hierarchical prompting to instruct the model from both feature- and topology-level to fully address the variability of task graphs in dynamic continual learning. Additionally, we develop a personalized prompt generator to generate tailored prompts for each graph node while minimizing the number of prompts needed, leading to constant memory consumption regardless of the graph scale. Extensive experiments on four benchmarks show that PROMPTCGL achieves superior performance against existing CGL approaches while significantly reducing memory consumption. Our code is available at https://github.com/QiWang98/PromptCGL.
Authors:Qirui Wu, Shizhou Zhang, De Cheng, Yinghui Xing, Di Xu, Peng Wang, Yanning Zhang
Title: Demystifying Catastrophic Forgetting in Two-Stage Incremental Object Detector
Abstract:
Catastrophic forgetting is a critical chanllenge for incremental object detection (IOD). Most existing methods treat the detector monolithically, relying on instance replay or knowledge distillation without analyzing component-specific forgetting. Through dissection of Faster R-CNN, we reveal a key insight: Catastrophic forgetting is predominantly localized to the RoI Head classifier, while regressors retain robustness across incremental stages. This finding challenges conventional assumptions, motivating us to develop a framework termed NSGP-RePRE. Regional Prototype Replay (RePRE) mitigates classifier forgetting via replay of two types of prototypes: coarse prototypes represent class-wise semantic centers of RoI features, while fine-grained prototypes model intra-class variations. Null Space Gradient Projection (NSGP) is further introduced to eliminate prototype-feature misalignment by updating the feature extractor in directions orthogonal to subspace of old inputs via gradient projection, aligning RePRE with incremental learning dynamics. Our simple yet effective design allows NSGP-RePRE to achieve state-of-the-art performance on the Pascal VOC and MS COCO datasets under various settings. Our work not only advances IOD methodology but also provide pivotal insights for catastrophic forgetting mitigation in IOD. Code is available at \href{https://github.com/fanrena/NSGP-RePRE}{https://github.com/fanrena/NSGP-RePRE} .
Authors:Imad Eddine Marouf, Enzo Tartaglione, Stephane Lathuiliere, Joost van de Weijer
Title: Ask and Remember: A Questions-Only Replay Strategy for Continual Visual Question Answering
Abstract:
Continual Learning in Visual Question Answering (VQACL) requires models to acquire new visual-linguistic skills (plasticity) while preserving previously learned knowledge (stability). The inherent multimodality of VQACL exacerbates this challenge, as models must balance stability across visual and textual domains while adapting to novel objects and reasoning tasks. Existing methods, primarily designed for unimodal settings, often fall short in addressing this dual requirement. In this work, we present QUestion-only replay with Attention Distillation (QUAD), a novel approach for VQACL that leverages only past task questions for regularization. By eliminating the need to store visual data, QUAD not only reduces memory overhead, but also alleviates privacy concerns. Our method introduces a Question-only Replay mechanism that selectively reuses prior task questions to counteract overfitting to the answer space of the current task, addressing the problem out of answer set. Complementing this, we propose Attention Consistency Distillation to enforce both intra-modal and inter-modal attention consistency across tasks, preserving essential visual-linguistic associations. Extensive experiments on VQAv2 and NExT-QA demonstrate that QUAD significantly outperforms state-of-the-art methods, achieving robust performance in continual VQA. Code is available at: https://github.com/IemProg/QUAD.
Authors:Zhengqin Lai, Xiaopeng Hong, Yabin Wang, Xiaobai Li
Title: A Benchmark for Incremental Micro-expression Recognition
Abstract:
Micro-expression recognition plays a pivotal role in understanding hidden emotions and has applications across various fields. Traditional recognition methods assume access to all training data at once, but real-world scenarios involve continuously evolving data streams. To respond to the requirement of adapting to new data while retaining previously learned knowledge, we introduce the first benchmark specifically designed for incremental micro-expression recognition. Our contributions include: Firstly, we formulate the incremental learning setting tailored for micro-expression recognition. Secondly, we organize sequential datasets with carefully curated learning orders to reflect real-world scenarios. Thirdly, we define two cross-evaluation-based testing protocols, each targeting distinct evaluation objectives. Finally, we provide six baseline methods and their corresponding evaluation results. This benchmark lays the groundwork for advancing incremental micro-expression recognition research. All source code used in this study will be publicly available at https://github.com/ZhengQinLai/IMER-benchmark.
Authors:Weicai Yan, Ye Wang, Wang Lin, Zirun Guo, Zhou Zhao, Tao Jin
Title: Low-rank Prompt Interaction for Continual Vision-Language Retrieval
Abstract:
Research on continual learning in multi-modal tasks has been receiving increasing attention. However, most existing work overlooks the explicit cross-modal and cross-task interactions. In this paper, we innovatively propose the Low-rank Prompt Interaction (LPI) to address this general problem of multi-modal understanding, which considers both cross-modal and cross-task interactions. Specifically, as for the former, we employ multi-modal correlation modules for corresponding Transformer layers. Considering that the training parameters scale to the number of layers and tasks, we propose low-rank interaction-augmented decomposition to avoid memory explosion while enhancing the cross-modal association through sharing and separating common-specific low-rank factors. In addition, due to the multi-modal semantic differences carried by the low-rank initialization, we adopt hierarchical low-rank contrastive learning to ensure training robustness. As for the latter, we initially employ a visual analysis and identify that different tasks have clear distinctions in proximity. Therefore, we introduce explicit task contrastive constraints in the prompt learning process based on task semantic distances. Experiments on two retrieval tasks show performance improvements with the introduction of a minimal number of parameters, demonstrating the effectiveness of our method. Code is available at https://github.com/Kelvin-ywc/LPI.
Authors:Yichen Wu, Hongming Piao, Long-Kai Huang, Renzhen Wang, Wanhua Li, Hanspeter Pfister, Deyu Meng, Kede Ma, Ying Wei
Title: SD-LoRA: Scalable Decoupled Low-Rank Adaptation for Class Incremental Learning
Abstract:
Continual Learning (CL) with foundation models has recently emerged as a promising paradigm to exploit abundant knowledge acquired during pre-training for tackling sequential tasks. However, existing prompt-based and Low-Rank Adaptation-based (LoRA-based) methods often require expanding a prompt/LoRA pool or retaining samples of previous tasks, which poses significant scalability challenges as the number of tasks grows. To address these limitations, we propose Scalable Decoupled LoRA (SD-LoRA) for class incremental learning, which continually separates the learning of the magnitude and direction of LoRA components without rehearsal. Our empirical and theoretical analysis reveals that SD-LoRA tends to follow a low-loss trajectory and converges to an overlapping low-loss region for all learned tasks, resulting in an excellent stability-plasticity trade-off. Building upon these insights, we introduce two variants of SD-LoRA with further improved parameter efficiency. All parameters of SD-LoRAs can be end-to-end optimized for CL objectives. Meanwhile, they support efficient inference by allowing direct evaluation with the finally trained model, obviating the need for component selection. Extensive experiments across multiple CL benchmarks and foundation models consistently validate the effectiveness of SD-LoRA. The code is available at https://github.com/WuYichen-97/SD-Lora-CL.
Authors:William Doherty, Anton Lee, Heitor Murilo Gomes
Title: CLOFAI: A Dataset of Real And Fake Image Classification Tasks for Continual Learning
Abstract:
The rapid advancement of generative AI models capable of creating realistic media has led to a need for classifiers that can accurately distinguish between genuine and artificially-generated images. A significant challenge for these classifiers emerges when they encounter images from generative models that are not represented in their training data, usually resulting in diminished performance. A typical approach is to periodically update the classifier's training data with images from the new generative models then retrain the classifier on the updated dataset. However, in some real-life scenarios, storage, computational, or privacy constraints render this approach impractical. Additionally, models used in security applications may be required to rapidly adapt. In these circumstances, continual learning provides a promising alternative, as the classifier can be updated without retraining on the entire dataset. In this paper, we introduce a new dataset called CLOFAI (Continual Learning On Fake and Authentic Images), which takes the form of a domain-incremental image classification problem. Moreover, we showcase the applicability of this dataset as a benchmark for evaluating continual learning methodologies. In doing this, we set a baseline on our novel dataset using three foundational continual learning methods -- EWC, GEM, and Experience Replay -- and find that EWC performs poorly, while GEM and Experience Replay show promise, performing significantly better than a Naive baseline. The dataset and code to run the experiments can be accessed from the following GitHub repository: https://github.com/Will-Doherty/CLOFAI.
Authors:Hanrong Zhang, Yifei Yao, Zixuan Wang, Jiayuan Su, Mengxuan Li, Peng Peng, Hongwei Wang
Title: Class Incremental Fault Diagnosis under Limited Fault Data via Supervised Contrastive Knowledge Distillation
Abstract:
Class-incremental fault diagnosis requires a model to adapt to new fault classes while retaining previous knowledge. However, limited research exists for imbalanced and long-tailed data. Extracting discriminative features from few-shot fault data is challenging, and adding new fault classes often demands costly model retraining. Moreover, incremental training of existing methods risks catastrophic forgetting, and severe class imbalance can bias the model's decisions toward normal classes. To tackle these issues, we introduce a Supervised Contrastive knowledge distiLlation for class Incremental Fault Diagnosis (SCLIFD) framework proposing supervised contrastive knowledge distillation for improved representation learning capability and less forgetting, a novel prioritized exemplar selection method for sample replay to alleviate catastrophic forgetting, and the Random Forest Classifier to address the class imbalance. Extensive experimentation on simulated and real-world industrial datasets across various imbalance ratios demonstrates the superiority of SCLIFD over existing approaches. Our code can be found at https://github.com/Zhang-Henry/SCLIFD_TII.
Authors:Rui Daniel, M. Rita Verdelho, Catarina Barata, Carlos Santiago
Title: Continual Deep Active Learning for Medical Imaging: Replay-Base Architecture for Context Adaptation
Abstract:
Deep Learning for medical imaging faces challenges in adapting and generalizing to new contexts. Additionally, it often lacks sufficient labeled data for specific tasks requiring significant annotation effort. Continual Learning (CL) tackles adaptability and generalizability by enabling lifelong learning from a data stream while mitigating forgetting of previously learned knowledge. Active Learning (AL) reduces the number of required annotations for effective training. This work explores both approaches (CAL) to develop a novel framework for robust medical image analysis. Based on the automatic recognition of shifts in image characteristics, Replay-Base Architecture for Context Adaptation (RBACA) employs a CL rehearsal method to continually learn from diverse contexts, and an AL component to select the most informative instances for annotation. A novel approach to evaluate CAL methods is established using a defined metric denominated IL-Score, which allows for the simultaneous assessment of transfer learning, forgetting, and final model performance. We show that RBACA works in domain and class-incremental learning scenarios, by assessing its IL-Score on the segmentation and diagnosis of cardiac images. The results show that RBACA outperforms a baseline framework without CAL, and a state-of-the-art CAL method across various memory sizes and annotation budgets. Our code is available in https://github.com/RuiDaniel/RBACA .
Authors:Junhao Zheng, Chengming Shi, Xidi Cai, Qiuke Li, Duzhen Zhang, Chenxing Li, Dong Yu, Qianli Ma
Title: Lifelong Learning of Large Language Model based Agents: A Roadmap
Abstract:
Lifelong learning, also known as continual or incremental learning, is a crucial component for advancing Artificial General Intelligence (AGI) by enabling systems to continuously adapt in dynamic environments. While large language models (LLMs) have demonstrated impressive capabilities in natural language processing, existing LLM agents are typically designed for static systems and lack the ability to adapt over time in response to new challenges. This survey is the first to systematically summarize the potential techniques for incorporating lifelong learning into LLM-based agents. We categorize the core components of these agents into three modules: the perception module for multimodal input integration, the memory module for storing and retrieving evolving knowledge, and the action module for grounded interactions with the dynamic environment. We highlight how these pillars collectively enable continuous adaptation, mitigate catastrophic forgetting, and improve long-term performance. This survey provides a roadmap for researchers and practitioners working to develop lifelong learning capabilities in LLM agents, offering insights into emerging trends, evaluation metrics, and application scenarios. Relevant literature and resources are available at \href{this url}{https://github.com/qianlima-lab/awesome-lifelong-llm-agent}.
Authors:Xiaojie Li, Jianlong Wu, Yue Yu, Liqiang Nie, Min Zhang
Title: Continuous Knowledge-Preserving Decomposition with Adaptive Layer Selection for Few-Shot Class-Incremental Learning
Abstract:
Few-Shot Class-Incremental Learning (FSCIL) faces a critical challenge: balancing the retention of prior knowledge with the acquisition of new classes. Existing methods either freeze the backbone to prevent catastrophic forgetting, sacrificing plasticity, or add new modules, incurring high costs. These approaches treat pretrained models as black boxes, overlooking two key opportunities to exploit their internal capacity: reusing redundant representational space within layers and selectively adapting layers based on their sensitivity to forgetting. We propose CKPD-FSCIL, a unified framework that unlocks the underutilized capacity of pretrained weights, achieving a superior stability-plasticity balance with zero inference overhead. Our design integrates two continuously adapting mechanisms: At the weight level, a Continuous Knowledge-Preserving Decomposition mechanism uses feature covariance to split each weight matrix into a frozen subspace that safeguards prior knowledge and a learnable, redundant subspace for new tasks. At the layer level, a Continuous Adaptive Layer Selection mechanism leverages an Adapter Sensitivity Ratio to automatically select layers with the highest redundant capacity and lowest forgetting risk for adaptation. By targeting only safe, high-potential subspaces and layers, CKPD-FSCIL enables efficient adaptation. After each session, the learned adapters are merged back into the original weights, ensuring zero additional parameters or FLOPs during inference. Extensive experiments on multiple FSCIL benchmarks demonstrate that our method consistently outperforms state-of-the-art approaches in both adaptability and knowledge retention. The code is available at https://github.com/xiaojieli0903/CKPD-FSCIL.
Authors:Seyed Amir Bidaki, Amir Mohammadkhah, Kiyan Rezaee, Faeze Hassani, Sadegh Eskandari, Maziar Salahi, Mohammad M. Ghassemi
Title: Online Continual Learning: A Systematic Literature Review of Approaches, Challenges, and Benchmarks
Abstract:
Online Continual Learning (OCL) is a critical area in machine learning, focusing on enabling models to adapt to evolving data streams in real-time while addressing challenges such as catastrophic forgetting and the stability-plasticity trade-off. This study conducts the first comprehensive Systematic Literature Review (SLR) on OCL, analyzing 81 approaches, extracting over 1,000 features (specific tasks addressed by these approaches), and identifying more than 500 components (sub-models within approaches, including algorithms and tools). We also review 83 datasets spanning applications like image classification, object detection, and multimodal vision-language tasks. Our findings highlight key challenges, including reducing computational overhead, developing domain-agnostic solutions, and improving scalability in resource-constrained environments. Furthermore, we identify promising directions for future research, such as leveraging self-supervised learning for multimodal and sequential data, designing adaptive memory mechanisms that integrate sparse retrieval and generative replay, and creating efficient frameworks for real-world applications with noisy or evolving task boundaries. By providing a rigorous and structured synthesis of the current state of OCL, this review offers a valuable resource for advancing this field and addressing its critical challenges and opportunities. The complete SLR methodology steps and extracted data are publicly available through the provided link: https://github.com/kiyan-rezaee/ Systematic-Literature-Review-on-Online-Continual-Learning
Authors:Jimin Park, AHyun Ji, Minji Park, Mohammad Saidur Rahman, Se Eun Oh
Title: MalCL: Leveraging GAN-Based Generative Replay to Combat Catastrophic Forgetting in Malware Classification
Abstract:
Continual Learning (CL) for malware classification tackles the rapidly evolving nature of malware threats and the frequent emergence of new types. Generative Replay (GR)-based CL systems utilize a generative model to produce synthetic versions of past data, which are then combined with new data to retrain the primary model. Traditional machine learning techniques in this domain often struggle with catastrophic forgetting, where a model's performance on old data degrades over time. In this paper, we introduce a GR-based CL system that employs Generative Adversarial Networks (GANs) with feature matching loss to generate high-quality malware samples. Additionally, we implement innovative selection schemes for replay samples based on the model's hidden representations. Our comprehensive evaluation across Windows and Android malware datasets in a class-incremental learning scenario -- where new classes are introduced continuously over multiple tasks -- demonstrates substantial performance improvements over previous methods. For example, our system achieves an average accuracy of 55% on Windows malware samples, significantly outperforming other GR-based models by 28%. This study provides practical insights for advancing GR-based malware classification systems. The implementation is available at \url {https://github.com/MalwareReplayGAN/MalCL}\footnote{The code will be made public upon the presentation of the paper}.
Authors:Lihao Liu, Juexiao Feng, Hui Chen, Ao Wang, Lin Song, Jungong Han, Guiguang Ding
Title: YOLO-UniOW: Efficient Universal Open-World Object Detection
Abstract:
Traditional object detection models are constrained by the limitations of closed-set datasets, detecting only categories encountered during training. While multimodal models have extended category recognition by aligning text and image modalities, they introduce significant inference overhead due to cross-modality fusion and still remain restricted by predefined vocabulary, leaving them ineffective at handling unknown objects in open-world scenarios. In this work, we introduce Universal Open-World Object Detection (Uni-OWD), a new paradigm that unifies open-vocabulary and open-world object detection tasks. To address the challenges of this setting, we propose YOLO-UniOW, a novel model that advances the boundaries of efficiency, versatility, and performance. YOLO-UniOW incorporates Adaptive Decision Learning to replace computationally expensive cross-modality fusion with lightweight alignment in the CLIP latent space, achieving efficient detection without compromising generalization. Additionally, we design a Wildcard Learning strategy that detects out-of-distribution objects as "unknown" while enabling dynamic vocabulary expansion without the need for incremental learning. This design empowers YOLO-UniOW to seamlessly adapt to new categories in open-world environments. Extensive experiments validate the superiority of YOLO-UniOW, achieving achieving 34.6 AP and 30.0 APr on LVIS with an inference speed of 69.6 FPS. The model also sets benchmarks on M-OWODB, S-OWODB, and nuScenes datasets, showcasing its unmatched performance in open-world object detection. Code and models are available at https://github.com/THU-MIG/YOLO-UniOW.
Authors:Viviane Clay, Niels Leadholm, Jeff Hawkins
Title: The Thousand Brains Project: A New Paradigm for Sensorimotor Intelligence
Abstract:
Artificial intelligence has advanced rapidly in the last decade, driven primarily by progress in the scale of deep-learning systems. Despite these advances, the creation of intelligent systems that can operate effectively in diverse, real-world environments remains a significant challenge. In this white paper, we outline the Thousand Brains Project, an ongoing research effort to develop an alternative, complementary form of AI, derived from the operating principles of the neocortex. We present an early version of a thousand-brains system, a sensorimotor agent that is uniquely suited to quickly learn a wide range of tasks and eventually implement any capabilities the human neocortex has. Core to its design is the use of a repeating computational unit, the learning module, modeled on the cortical columns found in mammalian brains. Each learning module operates as a semi-independent unit that can model entire objects, represents information through spatially structured reference frames, and both estimates and is able to effect movement in the world. Learning is a quick, associative process, similar to Hebbian learning in the brain, and leverages inductive biases around the spatial structure of the world to enable rapid and continual learning. Multiple learning modules can interact with one another both hierarchically and non-hierarchically via a "cortical messaging protocol" (CMP), creating more abstract representations and supporting multimodal integration. We outline the key principles motivating the design of thousand-brains systems and provide details about the implementation of Monty, our first instantiation of such a system. Code can be found at https://github.com/thousandbrainsproject/tbp.monty, along with more detailed documentation at https://thousandbrainsproject.readme.io/.
Authors:Yan Zhang, Guoqiang Wu, Bingzheng Wang, Teng Pang, Haoliang Sun, Yilong Yin
Title: Towards Macro-AUC oriented Imbalanced Multi-Label Continual Learning
Abstract:
In Continual Learning (CL), while existing work primarily focuses on the multi-class classification task, there has been limited research on Multi-Label Learning (MLL). In practice, MLL datasets are often class-imbalanced, making it inherently challenging, a problem that is even more acute in CL. Due to its sensitivity to imbalance, Macro-AUC is an appropriate and widely used measure in MLL. However, there is no research to optimize Macro-AUC in MLCL specifically. To fill this gap, in this paper, we propose a new memory replay-based method to tackle the imbalance issue for Macro-AUC-oriented MLCL. Specifically, inspired by recent theory work, we propose a new Reweighted Label-Distribution-Aware Margin (RLDAM) loss. Furthermore, to be compatible with the RLDAM loss, a new memory-updating strategy named Weight Retain Updating (WRU) is proposed to maintain the numbers of positive and negative instances of the original dataset in memory. Theoretically, we provide superior generalization analyses of the RLDAM-based algorithm in terms of Macro-AUC, separately in batch MLL and MLCL settings. This is the first work to offer theoretical generalization analyses in MLCL to our knowledge. Finally, a series of experimental results illustrate the effectiveness of our method over several baselines. Our codes are available at https://github.com/ML-Group-SDU/Macro-AUC-CL.
Authors:Takuma Fukuda, Hiroshi Kera, Kazuhiko Kawamoto
Title: Adapter Merging with Centroid Prototype Mapping for Scalable Class-Incremental Learning
Abstract:
We propose Adapter Merging with Centroid Prototype Mapping (ACMap), an exemplar-free framework for class-incremental learning (CIL) that addresses both catastrophic forgetting and scalability. While existing methods involve a trade-off between inference time and accuracy, ACMap consolidates task-specific adapters into a single adapter, thus achieving constant inference time across tasks without sacrificing accuracy. The framework employs adapter merging to build a shared subspace that aligns task representations and mitigates forgetting, while centroid prototype mapping maintains high accuracy by consistently adapting representations within the shared subspace. To further improve scalability, an early stopping strategy limits adapter merging as tasks increase. Extensive experiments on five benchmark datasets demonstrate that ACMap matches state-of-the-art accuracy while maintaining inference time comparable to the fastest existing methods. The code is available at https://github.com/tf63/ACMap.
Authors:Xinchen Zhang, Running Zhao, Zhihan Jiang, Handi Chen, Yulong Ding, Edith C. H. Ngai, Shuang-Hua Yang
Title: Continual Learning with Strategic Selection and Forgetting for Network Intrusion Detection
Abstract:
Intrusion Detection Systems (IDS) are crucial for safeguarding digital infrastructure. In dynamic network environments, both threat landscapes and normal operational behaviors are constantly changing, resulting in concept drift. While continuous learning mitigates the adverse effects of concept drift, insufficient attention to drift patterns and excessive preservation of outdated knowledge can still hinder the IDS's adaptability. In this paper, we propose SSF (Strategic Selection and Forgetting), a novel continual learning method for IDS, providing continuous model updates with a constantly refreshed memory buffer. Our approach features a strategic sample selection algorithm to select representative new samples and a strategic forgetting mechanism to drop outdated samples. The proposed strategic sample selection algorithm prioritizes new samples that cause the `drifted' pattern, enabling the model to better understand the evolving landscape. Additionally, we introduce strategic forgetting upon detecting significant drift by discarding outdated samples to free up memory, allowing the incorporation of more recent data. SSF captures evolving patterns effectively and ensures the model is aligned with the change of data patterns, significantly enhancing the IDS's adaptability to concept drift. The state-of-the-art performance of SSF on NSL-KDD and UNSW-NB15 datasets demonstrates its superior adaptability to concept drift for network intrusion detection. The code is released at https://github.com/xinchen930/SSF-Strategic-Selection-and-Forgetting.
Authors:Bowen Dong, Zitong Huang, Guanglei Yang, Lei Zhang, Wangmeng Zuo
Title: MR-GDINO: Efficient Open-World Continual Object Detection
Abstract:
Open-world (OW) recognition and detection models show strong zero- and few-shot adaptation abilities, inspiring their use as initializations in continual learning methods to improve performance. Despite promising results on seen classes, such OW abilities on unseen classes are largely degenerated due to catastrophic forgetting. To tackle this challenge, we propose an open-world continual object detection task, requiring detectors to generalize to old, new, and unseen categories in continual learning scenarios. Based on this task, we present a challenging yet practical OW-COD benchmark to assess detection abilities. The goal is to motivate OW detectors to simultaneously preserve learned classes, adapt to new classes, and maintain open-world capabilities under few-shot adaptations. To mitigate forgetting in unseen categories, we propose MR-GDINO, a strong, efficient and scalable baseline via memory and retrieval mechanisms within a highly scalable memory pool. Experimental results show that existing continual detectors suffer from severe forgetting for both seen and unseen categories. In contrast, MR-GDINO largely mitigates forgetting with only 0.1% activated extra parameters, achieving state-of-the-art performance for old, new, and unseen categories.
Authors:Saleh Momeni, Sahisnu Mazumder, Bing Liu
Title: Continual Learning Using a Kernel-Based Method Over Foundation Models
Abstract:
Continual learning (CL) learns a sequence of tasks incrementally. This paper studies the challenging CL setting of class-incremental learning (CIL). CIL has two key challenges: catastrophic forgetting (CF) and inter-task class separation (ICS). Despite numerous proposed methods, these issues remain persistent obstacles. This paper proposes a novel CIL method, called Kernel Linear Discriminant Analysis (KLDA), that can effectively avoid CF and ICS problems. It leverages only the powerful features learned in a foundation model (FM). However, directly using these features proves suboptimal. To address this, KLDA incorporates the Radial Basis Function (RBF) kernel and its Random Fourier Features (RFF) to enhance the feature representations from the FM, leading to improved performance. When a new task arrives, KLDA computes only the mean for each class in the task and updates a shared covariance matrix for all learned classes based on the kernelized features. Classification is performed using Linear Discriminant Analysis. Our empirical evaluation using text and image classification datasets demonstrates that KLDA significantly outperforms baselines. Remarkably, without relying on replay data, KLDA achieves accuracy comparable to joint training of all classes, which is considered the upper bound for CIL performance. The KLDA code is available at https://github.com/salehmomeni/klda.
Authors:Guilin Zhu, Dongyue Wu, Changxin Gao, Runmin Wang, Weidong Yang, Nong Sang
Title: Adaptive Prototype Replay for Class Incremental Semantic Segmentation
Abstract:
Class incremental semantic segmentation (CISS) aims to segment new classes during continual steps while preventing the forgetting of old knowledge. Existing methods alleviate catastrophic forgetting by replaying distributions of previously learned classes using stored prototypes or features. However, they overlook a critical issue: in CISS, the representation of class knowledge is updated continuously through incremental learning, whereas prototype replay methods maintain fixed prototypes. This mismatch between updated representation and fixed prototypes limits the effectiveness of the prototype replay strategy. To address this issue, we propose the Adaptive prototype replay (Adapter) for CISS in this paper. Adapter comprises an adaptive deviation compen sation (ADC) strategy and an uncertainty-aware constraint (UAC) loss. Specifically, the ADC strategy dynamically updates the stored prototypes based on the estimated representation shift distance to match the updated representation of old class. The UAC loss reduces prediction uncertainty, aggregating discriminative features to aid in generating compact prototypes. Additionally, we introduce a compensation-based prototype similarity discriminative (CPD) loss to ensure adequate differentiation between similar prototypes, thereby enhancing the efficiency of the adaptive prototype replay strategy. Extensive experiments on Pascal VOC and ADE20K datasets demonstrate that Adapter achieves state-of-the-art results and proves effective across various CISS tasks, particularly in challenging multi-step scenarios. The code and model is available at https://github.com/zhu-gl-ux/Adapter.
Authors:Qisheng Xu, Yulin Sun, Yi Su, Qian Zhu, Xiaoyi Tan, Hongyu Wen, Zijian Gao, Kele Xu, Yong Dou, Dawei Feng
Title: AudioCIL: A Python Toolbox for Audio Class-Incremental Learning with Multiple Scenes
Abstract:
Deep learning, with its robust aotomatic feature extraction capabilities, has demonstrated significant success in audio signal processing. Typically, these methods rely on static, pre-collected large-scale datasets for training, performing well on a fixed number of classes. However, the real world is characterized by constant change, with new audio classes emerging from streaming or temporary availability due to privacy. This dynamic nature of audio environments necessitates models that can incrementally learn new knowledge for new classes without discarding existing information. Introducing incremental learning to the field of audio signal processing, i.e., Audio Class-Incremental Learning (AuCIL), is a meaningful endeavor. We propose such a toolbox named AudioCIL to align audio signal processing algorithms with real-world scenarios and strengthen research in audio class-incremental learning. Code is available at https://github.com/colaudiolab/AudioCIL.
Authors:Yujie Chen, Jiangyan Yi, Cunhang Fan, Jianhua Tao, Yong Ren, Siding Zeng, Chu Yuan Zhang, Xinrui Yan, Hao Gu, Jun Xue, Chenglong Wang, Zhao Lv, Xiaohui Zhang
Title: Region-Based Optimization in Continual Learning for Audio Deepfake Detection
Abstract:
Rapid advancements in speech synthesis and voice conversion bring convenience but also new security risks, creating an urgent need for effective audio deepfake detection. Although current models perform well, their effectiveness diminishes when confronted with the diverse and evolving nature of real-world deepfakes. To address this issue, we propose a continual learning method named Region-Based Optimization (RegO) for audio deepfake detection. Specifically, we use the Fisher information matrix to measure important neuron regions for real and fake audio detection, dividing them into four regions. First, we directly fine-tune the less important regions to quickly adapt to new tasks. Next, we apply gradient optimization in parallel for regions important only to real audio detection, and in orthogonal directions for regions important only to fake audio detection. For regions that are important to both, we use sample proportion-based adaptive gradient optimization. This region-adaptive optimization ensures an appropriate trade-off between memory stability and learning plasticity. Additionally, to address the increase of redundant neurons from old tasks, we further introduce the Ebbinghaus forgetting mechanism to release them, thereby promoting the capability of the model to learn more generalized discriminative features. Experimental results show our method achieves a 21.3% improvement in EER over the state-of-the-art continual learning approach RWM for audio deepfake detection. Moreover, the effectiveness of RegO extends beyond the audio deepfake detection domain, showing potential significance in other tasks, such as image recognition. The code is available at https://github.com/cyjie429/RegO
Authors:Yingping Liang, Ying Fu
Title: Relation-Guided Adversarial Learning for Data-free Knowledge Transfer
Abstract:
Data-free knowledge distillation transfers knowledge by recovering training data from a pre-trained model. Despite the recent success of seeking global data diversity, the diversity within each class and the similarity among different classes are largely overlooked, resulting in data homogeneity and limited performance. In this paper, we introduce a novel Relation-Guided Adversarial Learning method with triplet losses, which solves the homogeneity problem from two aspects. To be specific, our method aims to promote both intra-class diversity and inter-class confusion of the generated samples. To this end, we design two phases, an image synthesis phase and a student training phase. In the image synthesis phase, we construct an optimization process to push away samples with the same labels and pull close samples with different labels, leading to intra-class diversity and inter-class confusion, respectively. Then, in the student training phase, we perform an opposite optimization, which adversarially attempts to reduce the distance of samples of the same classes and enlarge the distance of samples of different classes. To mitigate the conflict of seeking high global diversity and keeping inter-class confusing, we propose a focal weighted sampling strategy by selecting the negative in the triplets unevenly within a finite range of distance. RGAL shows significant improvement over previous state-of-the-art methods in accuracy and data efficiency. Besides, RGAL can be inserted into state-of-the-art methods on various data-free knowledge transfer applications. Experiments on various benchmarks demonstrate the effectiveness and generalizability of our proposed method on various tasks, specially data-free knowledge distillation, data-free quantization, and non-exemplar incremental learning. Our code is available at https://github.com/Sharpiless/RGAL.
Authors:Yongchun Qin, Pengfei Fang, Hui Xue
Title: PEARL: Input-Agnostic Prompt Enhancement with Negative Feedback Regulation for Class-Incremental Learning
Abstract:
Class-incremental learning (CIL) aims to continuously introduce novel categories into a classification system without forgetting previously learned ones, thus adapting to evolving data distributions. Researchers are currently focusing on leveraging the rich semantic information of pre-trained models (PTMs) in CIL tasks. Prompt learning has been adopted in CIL for its ability to adjust data distribution to better align with pre-trained knowledge. This paper critically examines the limitations of existing methods from the perspective of prompt learning, which heavily rely on input information. To address this issue, we propose a novel PTM-based CIL method called Input-Agnostic Prompt Enhancement with Negative Feedback Regulation (PEARL). In PEARL, we implement an input-agnostic global prompt coupled with an adaptive momentum update strategy to reduce the model's dependency on data distribution, thereby effectively mitigating catastrophic forgetting. Guided by negative feedback regulation, this adaptive momentum update addresses the parameter sensitivity inherent in fixed-weight momentum updates. Furthermore, it fosters the continuous enhancement of the prompt for new tasks by harnessing correlations between different tasks in CIL. Experiments on six benchmarks demonstrate that our method achieves state-of-the-art performance. The code is available at: https://github.com/qinyongchun/PEARL.
Authors:Marcin Pietroń, Kamil Faber, Dominik Żurek, Roberto Corizzo
Title: TinySubNets: An efficient and low capacity continual learning strategy
Abstract:
Continual Learning (CL) is a highly relevant setting gaining traction in recent machine learning research. Among CL works, architectural and hybrid strategies are particularly effective due to their potential to adapt the model architecture as new tasks are presented. However, many existing solutions do not efficiently exploit model sparsity, and are prone to capacity saturation due to their inefficient use of available weights, which limits the number of learnable tasks. In this paper, we propose TinySubNets (TSN), a novel architectural CL strategy that addresses the issues through the unique combination of pruning with different sparsity levels, adaptive quantization, and weight sharing. Pruning identifies a subset of weights that preserve model performance, making less relevant weights available for future tasks. Adaptive quantization allows a single weight to be separated into multiple parts which can be assigned to different tasks. Weight sharing between tasks boosts the exploitation of capacity and task similarity, allowing for the identification of a better trade-off between model accuracy and capacity. These features allow TSN to efficiently leverage the available capacity, enhance knowledge transfer, and reduce computational resource consumption. Experimental results involving common benchmark CL datasets and scenarios show that our proposed strategy achieves better results in terms of accuracy than existing state-of-the-art CL strategies. Moreover, our strategy is shown to provide a significantly improved model capacity exploitation. Code released at: https://github.com/lifelonglab/tinysubnets.
Authors:Yi-Lun Lee, Chen-Yu Lee, Wei-Chen Chiu, Yi-Hsuan Tsai
Title: Exemplar Masking for Multimodal Incremental Learning
Abstract:
Multimodal incremental learning needs to digest the information from multiple modalities while concurrently learning new knowledge without forgetting the previously learned information. There are numerous challenges for this task, mainly including the larger storage size of multimodal data in exemplar-based methods and the computational requirement of finetuning on huge multimodal models. In this paper, we leverage the parameter-efficient tuning scheme to reduce the burden of fine-tuning and propose the exemplar masking framework to efficiently replay old knowledge. Specifically, the non-important tokens are masked based on the attention weights and the correlation across different modalities, significantly reducing the storage size of an exemplar and consequently saving more exemplars under the same memory buffer. Moreover, we design a multimodal data augmentation technique to diversify exemplars for replaying prior knowledge. In experiments, we not only evaluate our method in existing multimodal datasets but also extend the ImageNet-R dataset to a multimodal dataset as a real-world application, where captions are generated by querying multimodal large language models (e.g., InstructBLIP). Extensive experiments show that our exemplar masking framework is more efficient and robust to catastrophic forgetting under the same limited memory buffer. Code is available at https://github.com/YiLunLee/Exemplar_Masking_MCIL.
Authors:Hai-Long Sun, Da-Wei Zhou, Hanbin Zhao, Le Gan, De-Chuan Zhan, Han-Jia Ye
Title: MOS: Model Surgery for Pre-Trained Model-Based Class-Incremental Learning
Abstract:
Class-Incremental Learning (CIL) requires models to continually acquire knowledge of new classes without forgetting old ones. Despite Pre-trained Models (PTMs) have shown excellent performance in CIL, catastrophic forgetting still occurs as the model learns new concepts. Existing work seeks to utilize lightweight components to adjust the PTM, while the forgetting phenomenon still comes from {\em parameter and retrieval} levels. Specifically, iterative updates of the model result in parameter drift, while mistakenly retrieving irrelevant modules leads to the mismatch during inference. To this end, we propose MOdel Surgery (MOS) to rescue the model from forgetting previous knowledge. By training task-specific adapters, we continually adjust the PTM to downstream tasks. To mitigate parameter-level forgetting, we present an adapter merging approach to learn task-specific adapters, which aims to bridge the gap between different components while reserve task-specific information. Besides, to address retrieval-level forgetting, we introduce a training-free self-refined adapter retrieval mechanism during inference, which leverages the model's inherent ability for better adapter retrieval. By jointly rectifying the model with those steps, MOS can robustly resist catastrophic forgetting in the learning process. Extensive experiments on seven benchmark datasets validate MOS's state-of-the-art performance. Code is available at: https://github.com/sun-hailong/AAAI25-MOS
Authors:Qiwei Li, Jiahuan Zhou
Title: CAPrompt: Cyclic Prompt Aggregation for Pre-Trained Model Based Class Incremental Learning
Abstract:
Recently, prompt tuning methods for pre-trained models have demonstrated promising performance in Class Incremental Learning (CIL). These methods typically involve learning task-specific prompts and predicting the task ID to select the appropriate prompts for inference. However, inaccurate task ID predictions can cause severe inconsistencies between the prompts used during training and inference, leading to knowledge forgetting and performance degradation. Additionally, existing prompt tuning methods rely solely on the pre-trained model to predict task IDs, without fully leveraging the knowledge embedded in the learned prompt parameters, resulting in inferior prediction performance. To address these issues, we propose a novel Cyclic Prompt Aggregation (CAPrompt) method that eliminates the dependency on task ID prediction by cyclically aggregating the knowledge from different prompts. Specifically, rather than predicting task IDs, we introduce an innovative prompt aggregation strategy during both training and inference to overcome prompt inconsistency by utilizing a weighted sum of different prompts. Thorough theoretical analysis demonstrates that under concave conditions, the aggregated prompt achieves lower error compared to selecting a single task-specific prompt. Consequently, we incorporate a concave constraint and a linear constraint to guide prompt learning, ensuring compliance with the concave condition requirement. Furthermore, to fully exploit the prompts and achieve more accurate prompt weights, we develop a cyclic weight prediction strategy. This strategy begins with equal weights for each task and automatically adjusts them to more appropriate values in a cyclical manner. Experiments on various datasets demonstrate that our proposed CAPrompt outperforms state-of-the-art methods by 2%-3%. Our code is available at https://github.com/zhoujiahuan1991/AAAI2025-CAPrompt.
Authors:Zitong Huang, Ze Chen, Yuanze Li, Bowen Dong, Erjin Zhou, Yong Liu, Rick Siow Mong Goh, Chun-Mei Feng, Wangmeng Zuo
Title: Class Balance Matters to Active Class-Incremental Learning
Abstract:
Few-Shot Class-Incremental Learning has shown remarkable efficacy in efficient learning new concepts with limited annotations. Nevertheless, the heuristic few-shot annotations may not always cover the most informative samples, which largely restricts the capability of incremental learner. We aim to start from a pool of large-scale unlabeled data and then annotate the most informative samples for incremental learning. Based on this premise, this paper introduces the Active Class-Incremental Learning (ACIL). The objective of ACIL is to select the most informative samples from the unlabeled pool to effectively train an incremental learner, aiming to maximize the performance of the resulting model. Note that vanilla active learning algorithms suffer from class-imbalanced distribution among annotated samples, which restricts the ability of incremental learning. To achieve both class balance and informativeness in chosen samples, we propose Class-Balanced Selection (CBS) strategy. Specifically, we first cluster the features of all unlabeled images into multiple groups. Then for each cluster, we employ greedy selection strategy to ensure that the Gaussian distribution of the sampled features closely matches the Gaussian distribution of all unlabeled features within the cluster. Our CBS can be plugged and played into those CIL methods which are based on pretrained models with prompts tunning technique. Extensive experiments under ACIL protocol across five diverse datasets demonstrate that CBS outperforms both random selection and other SOTA active learning approaches. Code is publicly available at https://github.com/1170300714/CBS.
Authors:Jinglong Yang, Yichen Wu, Jun Cen, Wenjian Huang, Hong Wang, Jianguo Zhang
Title: Continual Learning for Segment Anything Model Adaptation
Abstract:
Although the current different types of SAM adaptation methods have achieved promising performance for various downstream tasks, such as prompt-based ones and adapter-based ones, most of them belong to the one-step adaptation paradigm. In real-world scenarios, we are generally confronted with the dynamic scenario where the data comes in a streaming manner. Driven by the practical need, in this paper, we first propose a novel Continual SAM adaptation (CoSAM) benchmark with 8 different task domains and carefully analyze the limitations of the existing SAM one-step adaptation methods in the continual segmentation scenario. Then we propose a novel simple-yet-effective Mixture of Domain Adapters (MoDA) algorithm which utilizes the Global Feature Tokens (GFT) and Global Assistant Tokens (GAT) modules to help the SAM encoder extract well-separated features for different task domains, and then provide the accurate task-specific information for continual learning. Extensive experiments demonstrate that our proposed MoDA obviously surpasses the existing classic continual learning methods, as well as prompt-based and adapter-based approaches for continual segmentation. Moreover, after sequential learning on the CoSAM benchmark with diverse data distributions, our MoDA maintains highly competitive results in the natural image domain, approaching the zero-shot performance of the original SAM, demonstrating its superior capability in knowledge preservation. Notably, the proposed MoDA can be seamlessly integrated into various one-step adaptation methods of SAM, which can consistently bring obvious performance gains. Code is available at \url{https://github.com/yangjl1215/CoSAM}
Authors:Ye Wang, Yaxiong Wang, Guoshuai Zhao, Xueming Qian
Title: Neighborhood Commonality-aware Evolution Network for Continuous Generalized Category Discovery
Abstract:
Continuous Generalized Category Discovery (C-GCD) aims to continually discover novel classes from unlabelled image sets while maintaining performance on old classes. In this paper, we propose a novel learning framework, dubbed Neighborhood Commonality-aware Evolution Network (NCENet) that conquers this task from the perspective of representation learning. Concretely, to learn discriminative representations for novel classes, a Neighborhood Commonality-aware Representation Learning (NCRL) is designed, which exploits local commonalities derived neighborhoods to guide the learning of representational differences between instances of different classes. To maintain the representation ability for old classes, a Bi-level Contrastive Knowledge Distillation (BCKD) module is designed, which leverages contrastive learning to perceive the learning and learned knowledge and conducts knowledge distillation. Extensive experiments conducted on CIFAR10, CIFAR100, and Tiny-ImageNet demonstrate the superior performance of NCENet compared to the previous state-of-the-art method. Particularly, in the last incremental learning session on CIFAR100, the clustering accuracy of NCENet outperforms the second-best method by a margin of 3.09\% on old classes and by a margin of 6.32\% on new classes. Our code will be publicly available at \href{https://github.com/xjtuYW/NCENet.git}{https://github.com/xjtuYW/NCENet.git}. \end{abstract}
Authors:Annie N. Wang, Luchao Qi, Roni Sengupta
Title: Continual Learning of Personalized Generative Face Models with Experience Replay
Abstract:
We introduce a novel continual learning problem: how to sequentially update the weights of a personalized 2D and 3D generative face model as new batches of photos in different appearances, styles, poses, and lighting are captured regularly. We observe that naive sequential fine-tuning of the model leads to catastrophic forgetting of past representations of the individual's face. We then demonstrate that a simple random sampling-based experience replay method is effective at mitigating catastrophic forgetting when a relatively large number of images can be stored and replayed. However, for long-term deployment of these models with relatively smaller storage, this simple random sampling-based replay technique also forgets past representations. Thus, we introduce a novel experience replay algorithm that combines random sampling with StyleGAN's latent space to represent the buffer as an optimal convex hull. We observe that our proposed convex hull-based experience replay is more effective in preventing forgetting than a random sampling baseline and the lower bound.
Authors:Zhiming Xu, Suorong Yang, Baile Xu, Furao Shen, Jian Zhao
Title: Integrating Dual Prototypes for Task-Wise Adaption in Pre-Trained Model-Based Class-Incremental Learning
Abstract:
Class-incremental learning (CIL) aims to acquire new classes while conserving historical knowledge incrementally. Despite existing pre-trained model (PTM) based methods performing excellently in CIL, it is better to fine-tune them on downstream incremental tasks with massive patterns unknown to PTMs. However, using task streams for fine-tuning could lead to \textit{catastrophic forgetting} that will erase the knowledge in PTMs. This paper proposes the Dual Prototype network for Task-wise Adaption (DPTA) of PTM-based CIL. For each incremental learning task, an adapter module is built to fine-tune the PTM, where the center-adapt loss forces the representation to be more centrally clustered and class separable. The dual prototype network improves the prediction process by enabling test-time adapter selection, where the raw prototypes deduce several possible task indexes of test samples to select suitable adapter modules for PTM, and the augmented prototypes that could separate highly correlated classes are utilized to determine the final result. Experiments on several benchmark datasets demonstrate the excellent performance of DPTA. Code is available in https://github.com/Yorkxzm/DPTA
Authors:Muhammad Burhan Hafez, Kerim Erekmen
Title: Continual Deep Reinforcement Learning with Task-Agnostic Policy Distillation
Abstract:
Central to the development of universal learning systems is the ability to solve multiple tasks without retraining from scratch when new data arrives. This is crucial because each task requires significant training time. Addressing the problem of continual learning necessitates various methods due to the complexity of the problem space. This problem space includes: (1) addressing catastrophic forgetting to retain previously learned tasks, (2) demonstrating positive forward transfer for faster learning, (3) ensuring scalability across numerous tasks, and (4) facilitating learning without requiring task labels, even in the absence of clear task boundaries. In this paper, the Task-Agnostic Policy Distillation (TAPD) framework is introduced. This framework alleviates problems (1)-(4) by incorporating a task-agnostic phase, where an agent explores its environment without any external goal and maximizes only its intrinsic motivation. The knowledge gained during this phase is later distilled for further exploration. Therefore, the agent acts in a self-supervised manner by systematically seeking novel states. By utilizing task-agnostic distilled knowledge, the agent can solve downstream tasks more efficiently, leading to improved sample efficiency. Our code is available at the repository: https://github.com/wabbajack1/TAPD.
Authors:Peihua Deng, Jiehua Zhang, Xichun Sheng, Chenggang Yan, Yaoqi Sun, Ying Fu, Liang Li
Title: Multi-Granularity Class Prototype Topology Distillation for Class-Incremental Source-Free Unsupervised Domain Adaptation
Abstract:
This paper explores the Class-Incremental Source-Free Unsupervised Domain Adaptation (CI-SFUDA) problem, where the unlabeled target data come incrementally without access to labeled source instances. This problem poses two challenges, the interference of similar source-class knowledge in target-class representation learning and the shocks of new target knowledge to old ones. To address them, we propose the Multi-Granularity Class Prototype Topology Distillation (GROTO) algorithm, which effectively transfers the source knowledge to the class-incremental target domain. Concretely, we design the multi-granularity class prototype self-organization module and the prototype topology distillation module. First, we mine the positive classes by modeling accumulation distributions. Next, we introduce multi-granularity class prototypes to generate reliable pseudo-labels, and exploit them to promote the positive-class target feature self-organization. Second, the positive-class prototypes are leveraged to construct the topological structures of source and target feature spaces. Then, we perform the topology distillation to continually mitigate the shocks of new target knowledge to old ones. Extensive experiments demonstrate that our proposed method achieves state-of-the-art performance on three public datasets. Code is available at https://github.com/dengpeihua/GROTO.
Authors:Gautham Vasan, Mohamed Elsayed, Alireza Azimi, Jiamin He, Fahim Shariar, Colin Bellinger, Martha White, A. Rupam Mahmood
Title: Deep Policy Gradient Methods Without Batch Updates, Target Networks, or Replay Buffers
Abstract:
Modern deep policy gradient methods achieve effective performance on simulated robotic tasks, but they all require large replay buffers or expensive batch updates, or both, making them incompatible for real systems with resource-limited computers. We show that these methods fail catastrophically when limited to small replay buffers or during incremental learning, where updates only use the most recent sample without batch updates or a replay buffer. We propose a novel incremental deep policy gradient method -- Action Value Gradient (AVG) and a set of normalization and scaling techniques to address the challenges of instability in incremental learning. On robotic simulation benchmarks, we show that AVG is the only incremental method that learns effectively, often achieving final performance comparable to batch policy gradient methods. This advancement enabled us to show for the first time effective deep reinforcement learning with real robots using only incremental updates, employing a robotic manipulator and a mobile robot.
Authors:Ziqi Wang, Chang Che, Qi Wang, Yangyang Li, Zenglin Shi, Meng Wang
Title: SMoLoRA: Exploring and Defying Dual Catastrophic Forgetting in Continual Visual Instruction Tuning
Abstract:
Visual instruction tuning (VIT) enables multimodal large language models (MLLMs) to effectively handle a wide range of vision tasks by framing them as language-based instructions. Building on this, continual visual instruction tuning (CVIT) extends the capability of MLLMs to incrementally learn new tasks, accommodating evolving functionalities. While prior work has advanced CVIT through the development of new benchmarks and approaches to mitigate catastrophic forgetting, these efforts largely follow traditional continual learning paradigms, neglecting the unique challenges specific to CVIT. We identify a dual form of catastrophic forgetting in CVIT, where MLLMs not only forget previously learned visual understanding but also experience a decline in instruction following abilities as they acquire new tasks. To address this, we introduce the Separable Mixture of Low-Rank Adaptation (SMoLoRA) framework, which employs separable routing through two distinct modules-one for visual understanding and another for instruction following. This dual-routing design enables specialized adaptation in both domains, preventing forgetting while improving performance. Furthermore, we propose a new CVIT benchmark that goes beyond existing benchmarks by additionally evaluating a model's ability to generalize to unseen tasks and handle diverse instructions across various tasks. Extensive experiments demonstrate that SMoLoRA outperforms existing methods in mitigating dual forgetting, improving generalization to unseen tasks, and ensuring robustness in following diverse instructions. Code is available at https://github.com/Minato-Zackie/SMoLoRA.
Authors:Maorong Wang, Nicolas Michel, Jiafeng Mao, Toshihiko Yamasaki
Title: Dealing with Synthetic Data Contamination in Online Continual Learning
Abstract:
Image generation has shown remarkable results in generating high-fidelity realistic images, in particular with the advancement of diffusion-based models. However, the prevalence of AI-generated images may have side effects for the machine learning community that are not clearly identified. Meanwhile, the success of deep learning in computer vision is driven by the massive dataset collected on the Internet. The extensive quantity of synthetic data being added to the Internet would become an obstacle for future researchers to collect "clean" datasets without AI-generated content. Prior research has shown that using datasets contaminated by synthetic images may result in performance degradation when used for training. In this paper, we investigate the potential impact of contaminated datasets on Online Continual Learning (CL) research. We experimentally show that contaminated datasets might hinder the training of existing online CL methods. Also, we propose Entropy Selection with Real-synthetic similarity Maximization (ESRM), a method to alleviate the performance deterioration caused by synthetic images when training online CL models. Experiments show that our method can significantly alleviate performance deterioration, especially when the contamination is severe. For reproducibility, the source code of our work is available at https://github.com/maorong-wang/ESRM.
Authors:Futoon M. Abushaqra, Hao Xue, Yongli Ren, Flora D. Salim
Title: ODEStream: A Buffer-Free Online Learning Framework with ODE-based Adaptor for Streaming Time Series Forecasting
Abstract:
Addressing the challenges of irregularity and concept drift in streaming time series is crucial for real-world predictive modelling. Previous studies in time series continual learning often propose models that require buffering long sequences, potentially restricting the responsiveness of the inference system. Moreover, these models are typically designed for regularly sampled data, an unrealistic assumption in real-world scenarios. This paper introduces ODEStream, a novel buffer-free continual learning framework that incorporates a temporal isolation layer to capture temporal dependencies within the data. Simultaneously, it leverages the capability of neural ordinary differential equations to process irregular sequences and generate a continuous data representation, enabling seamless adaptation to changing dynamics in a data streaming scenario. Our approach focuses on learning how the dynamics and distribution of historical data change over time, facilitating direct processing of streaming sequences. Evaluations on benchmark real-world datasets demonstrate that ODEStream outperforms the state-of-the-art online learning and streaming analysis baseline models, providing accurate predictions over extended periods while minimising performance degradation over time by learning how the sequence dynamics change. The implementation of ODEStream is available at: https://github.com/FtoonAbushaqra/ODEStream.git.
Authors:Dong Li, Aijia Zhang, Junqi Gao, Biqing Qi
Title: An Efficient Memory Module for Graph Few-Shot Class-Incremental Learning
Abstract:
Incremental graph learning has gained significant attention for its ability to address the catastrophic forgetting problem in graph representation learning. However, traditional methods often rely on a large number of labels for node classification, which is impractical in real-world applications. This makes few-shot incremental learning on graphs a pressing need. Current methods typically require extensive training samples from meta-learning to build memory and perform intensive fine-tuning of GNN parameters, leading to high memory consumption and potential loss of previously learned knowledge. To tackle these challenges, we introduce Mecoin, an efficient method for building and maintaining memory. Mecoin employs Structured Memory Units to cache prototypes of learned categories, as well as Memory Construction Modules to update these prototypes for new categories through interactions between the nodes and the cached prototypes. Additionally, we have designed a Memory Representation Adaptation Module to store probabilities associated with each class prototype, reducing the need for parameter fine-tuning and lowering the forgetting rate. When a sample matches its corresponding class prototype, the relevant probabilities are retrieved from the MRaM. Knowledge is then distilled back into the GNN through a Graph Knowledge Distillation Module, preserving the model's memory. We analyze the effectiveness of Mecoin in terms of generalization error and explore the impact of different distillation strategies on model performance through experiments and VC-dimension analysis. Compared to other related works, Mecoin shows superior performance in accuracy and forgetting rate. Our code is publicly available on the https://github.com/Arvin0313/Mecoin-GFSCIL.git .
Authors:Xiwen Wei, Guihong Li, Radu Marculescu
Title: Online-LoRA: Task-free Online Continual Learning via Low Rank Adaptation
Abstract:
Catastrophic forgetting is a significant challenge in online continual learning (OCL), especially for non-stationary data streams that do not have well-defined task boundaries. This challenge is exacerbated by the memory constraints and privacy concerns inherent in rehearsal buffers. To tackle catastrophic forgetting, in this paper, we introduce Online-LoRA, a novel framework for task-free OCL. Online-LoRA allows to finetune pre-trained Vision Transformer (ViT) models in real-time to address the limitations of rehearsal buffers and leverage pre-trained models' performance benefits. As the main contribution, our approach features a novel online weight regularization strategy to identify and consolidate important model parameters. Moreover, Online-LoRA leverages the training dynamics of loss values to enable the automatic recognition of the data distribution shifts. Extensive experiments across many task-free OCL scenarios and benchmark datasets (including CIFAR-100, ImageNet-R, ImageNet-S, CUB-200 and CORe50) demonstrate that Online-LoRA can be robustly adapted to various ViT architectures, while achieving better performance compared to SOTA methods. Our code will be publicly available at: https://github.com/Christina200/Online-LoRA-official.git.
Authors:Weiguo Pian, Yiyang Nan, Shijian Deng, Shentong Mo, Yunhui Guo, Yapeng Tian
Title: Continual Audio-Visual Sound Separation
Abstract:
In this paper, we introduce a novel continual audio-visual sound separation task, aiming to continuously separate sound sources for new classes while preserving performance on previously learned classes, with the aid of visual guidance. This problem is crucial for practical visually guided auditory perception as it can significantly enhance the adaptability and robustness of audio-visual sound separation models, making them more applicable for real-world scenarios where encountering new sound sources is commonplace. The task is inherently challenging as our models must not only effectively utilize information from both modalities in current tasks but also preserve their cross-modal association in old tasks to mitigate catastrophic forgetting during audio-visual continual learning. To address these challenges, we propose a novel approach named ContAV-Sep (\textbf{Cont}inual \textbf{A}udio-\textbf{V}isual Sound \textbf{Sep}aration). ContAV-Sep presents a novel Cross-modal Similarity Distillation Constraint (CrossSDC) to uphold the cross-modal semantic similarity through incremental tasks and retain previously acquired knowledge of semantic similarity in old models, mitigating the risk of catastrophic forgetting. The CrossSDC can seamlessly integrate into the training process of different audio-visual sound separation frameworks. Experiments demonstrate that ContAV-Sep can effectively mitigate catastrophic forgetting and achieve significantly better performance compared to other continual learning baselines for audio-visual sound separation. Code is available at: \url{https://github.com/weiguoPian/ContAV-Sep_NeurIPS2024}.
Authors:Yuchen He, Xiangfeng Wang
Title: Masked Autoencoders are Parameter-Efficient Federated Continual Learners
Abstract:
Federated learning is a specific distributed learning paradigm in which a central server aggregates updates from multiple clients' local models, thereby enabling the server to learn without requiring clients to upload their private data, maintaining data privacy. While existing federated learning methods are primarily designed for static data, real-world applications often require clients to learn new categories over time. This challenge necessitates the integration of continual learning techniques, leading to federated continual learning (FCL). To address both catastrophic forgetting and non-IID issues, we propose to use masked autoencoders (MAEs) as parameter-efficient federated continual learners, called pMAE. pMAE learns reconstructive prompt on the client side through image reconstruction using MAE. On the server side, it reconstructs the uploaded restore information to capture the data distribution across previous tasks and different clients, using these reconstructed images to fine-tune discriminative prompt and classifier parameters tailored for classification, thereby alleviating catastrophic forgetting and non-IID issues on a global scale. Experimental results demonstrate that pMAE achieves performance comparable to existing prompt-based methods and can enhance their effectiveness, particularly when using self-supervised pre-trained transformers as the backbone. Code is available at: https://github.com/ycheoo/pMAE.
Authors:Yuchen He, Chuyun Shen, Xiangfeng Wang, Bo Jin
Title: FPPL: An Efficient and Non-IID Robust Federated Continual Learning Framework
Abstract:
Federated continual learning (FCL) aims to learn from sequential data stream in the decentralized federated learning setting, while simultaneously mitigating the catastrophic forgetting issue in classical continual learning. Existing FCL methods usually employ typical rehearsal mechanisms, which could result in privacy violations or additional onerous storage and computational burdens. In this work, an efficient and non-IID robust federated continual learning framework, called Federated Prototype-Augmented Prompt Learning (FPPL), is proposed. The FPPL can collaboratively learn lightweight prompts augmented by prototypes without rehearsal. On the client side, a fusion function is employed to fully leverage the knowledge contained in task-specific prompts for alleviating catastrophic forgetting. Additionally, global prototypes aggregated from the server are used to obtain unified representation through contrastive learning, mitigating the impact of non-IID-derived data heterogeneity. On the server side, locally uploaded prototypes are utilized to perform debiasing on the classifier, further alleviating the performance degradation caused by both non-IID and catastrophic forgetting. Empirical evaluations demonstrate the effectiveness of FPPL, achieving notable performance with an efficient design while remaining robust to diverse non-IID degrees. Code is available at: https://github.com/ycheoo/FPPL.
Authors:Deepak Sridhar, Abhishek Peri, Rohith Rachala, Nuno Vasconcelos
Title: Adapting Diffusion Models for Improved Prompt Compliance and Controllable Image Synthesis
Abstract:
Recent advances in generative modeling with diffusion processes (DPs) enabled breakthroughs in image synthesis. Despite impressive image quality, these models have various prompt compliance problems, including low recall in generating multiple objects, difficulty in generating text in images, and meeting constraints like object locations and pose. For fine-grained editing and manipulation, they also require fine-grained semantic or instance maps that are tedious to produce manually. While prompt compliance can be enhanced by addition of loss functions at inference, this is time consuming and does not scale to complex scenes. To overcome these limitations, this work introduces a new family of \textit{Factor Graph Diffusion Models} (FG-DMs) that models the joint distribution of images and conditioning variables, such as semantic, sketch, depth or normal maps via a factor graph decomposition. This joint structure has several advantages, including support for efficient sampling based prompt compliance schemes, which produce images of high object recall, semi-automated fine-grained editing, text-based editing of conditions with noise inversion, explainability at intermediate levels, ability to produce labeled datasets for the training of downstream models such as segmentation or depth, training with missing data, and continual learning where new conditioning variables can be added with minimal or no modifications to the existing structure. We propose an implementation of FG-DMs by adapting a pre-trained Stable Diffusion (SD) model to implement all FG-DM factors, using only COCO dataset, and show that it is effective in generating images with 15\% higher recall than SD while retaining its generalization ability. We introduce an attention distillation loss that encourages consistency among the attention maps of all factors, improving the fidelity of the generated conditions and image.
Authors:Jaedong Hwang, Brian Cheung, Zhang-Wei Hong, Akhilan Boopathy, Pulkit Agrawal, Ila Fiete
Title: ImageNet-RIB Benchmark: Large Pre-Training Datasets Don't Always Guarantee Robustness after Fine-Tuning
Abstract:
Highly performant large-scale pre-trained models promise to also provide a valuable foundation for learning specialized tasks, by fine-tuning the model to the desired task. By starting from a good general-purpose model, the goal is to achieve both specialization in the target task and maintain robustness. To assess the robustness of models on out-of-distribution samples after fine-tuning on downstream datasets, we introduce a new robust fine-tuning benchmark, ImageNet-RIB (Robustness Inheritance Benchmark). The benchmark consists of a set of related but distinct specialized (downstream) datasets; pre-trained models are fine-tuned on one dataset in the set and their robustness is assessed on the rest, iterating across all tasks for fine-tuning and assessment. The distance between the pre-training and downstream datasets, measured by optimal transport, predicts this performance degradation on the pre-training dataset. Though continual learning methods help maintain robustness, fine-tuning generally reduces generalization performance on related downstream tasks across models. Counterintuitively, model robustness after fine-tuning on related downstream tasks is the worst when the pre-training dataset is the richest and the most diverse. This suggests that starting with the strongest foundation model is not necessarily the best approach for performance on specialist tasks. ImageNet-RIB thus offers key insights for developing more resilient fine-tuning strategies and building robust machine learning models. https://jd730.github.io/projects/ImageNet-RIB
Authors:Li Jiao, Qiuxia Lai, Yu Li, Qiang Xu
Title: Vector Quantization Prompting for Continual Learning
Abstract:
Continual learning requires to overcome catastrophic forgetting when training a single model on a sequence of tasks. Recent top-performing approaches are prompt-based methods that utilize a set of learnable parameters (i.e., prompts) to encode task knowledge, from which appropriate ones are selected to guide the fixed pre-trained model in generating features tailored to a certain task. However, existing methods rely on predicting prompt identities for prompt selection, where the identity prediction process cannot be optimized with task loss. This limitation leads to sub-optimal prompt selection and inadequate adaptation of pre-trained features for a specific task. Previous efforts have tried to address this by directly generating prompts from input queries instead of selecting from a set of candidates. However, these prompts are continuous, which lack sufficient abstraction for task knowledge representation, making them less effective for continual learning. To address these challenges, we propose VQ-Prompt, a prompt-based continual learning method that incorporates Vector Quantization (VQ) into end-to-end training of a set of discrete prompts. In this way, VQ-Prompt can optimize the prompt selection process with task loss and meanwhile achieve effective abstraction of task knowledge for continual learning. Extensive experiments show that VQ-Prompt outperforms state-of-the-art continual learning methods across a variety of benchmarks under the challenging class-incremental setting. The code is available at \href{https://github.com/jiaolifengmi/VQ-Prompt}{this https URL}.
Authors:Jiazuo Yu, Haomiao Xiong, Lu Zhang, Haiwen Diao, Yunzhi Zhuge, Lanqing Hong, Dong Wang, Huchuan Lu, You He, Long Chen
Title: LLMs Can Evolve Continually on Modality for X-Modal Reasoning
Abstract:
Multimodal Large Language Models (MLLMs) have gained significant attention due to their impressive capabilities in multimodal understanding. However, existing methods rely heavily on extensive modal-specific pretraining and joint-modal tuning, leading to significant computational burdens when expanding to new modalities. In this paper, we propose PathWeave, a flexible and scalable framework with modal-Path sWitching and ExpAnsion abilities that enables MLLMs to continually EVolve on modalities for $\mathbb{X}$-modal reasoning. We leverage the concept of Continual Learning and develop an incremental training strategy atop pre-trained MLLMs, enabling their expansion to new modalities using uni-modal data, without executing joint-modal pretraining. In detail, a novel Adapter-in-Adapter (AnA) framework is introduced, in which uni-modal and cross-modal adapters are seamlessly integrated to facilitate efficient modality alignment and collaboration. Additionally, an MoE-based gating module is applied between two types of adapters to further enhance the multimodal interaction. To investigate the proposed method, we establish a challenging benchmark called Continual Learning of Modality (MCL), which consists of high-quality QA data from five distinct modalities: image, video, audio, depth and point cloud. Extensive experiments demonstrate the effectiveness of the proposed AnA framework on learning plasticity and memory stability during continual learning. Furthermore, PathWeave performs comparably to state-of-the-art MLLMs while concurrently reducing parameter training burdens by 98.73%. Our code locates at https://github.com/JiazuoYu/PathWeave
Authors:Shikhar Srivastava, Md Yousuf Harun, Robik Shrestha, Christopher Kanan
Title: Improving Multimodal Large Language Models Using Continual Learning
Abstract:
Generative large language models (LLMs) exhibit impressive capabilities, which can be further augmented by integrating a pre-trained vision model into the original LLM to create a multimodal LLM (MLLM). However, this integration often significantly decreases performance on natural language understanding and generation tasks, compared to the original LLM. This study investigates this issue using the LLaVA MLLM, treating the integration as a continual learning problem. We evaluate five continual learning methods to mitigate forgetting and identify a technique that enhances visual understanding while minimizing linguistic performance loss. Our approach reduces linguistic performance degradation by up to 15% over the LLaVA recipe, while maintaining high multimodal accuracy. We also demonstrate the robustness of our method through continual learning on a sequence of vision-language tasks, effectively preserving linguistic skills while acquiring new multimodal capabilities. Project webpage: https://shikhar-srivastava.github.io/cl-for-improving-mllms
Authors:Pengcheng Zhang, Xiaohan Yu, Xiao Bai, Jin Zheng, Xin Ning
Title: Prompting Continual Person Search
Abstract:
The development of person search techniques has been greatly promoted in recent years for its superior practicality and challenging goals. Despite their significant progress, existing person search models still lack the ability to continually learn from increaseing real-world data and adaptively process input from different domains. To this end, this work introduces the continual person search task that sequentially learns on multiple domains and then performs person search on all seen domains. This requires balancing the stability and plasticity of the model to continually learn new knowledge without catastrophic forgetting. For this, we propose a Prompt-based Continual Person Search (PoPS) model in this paper. First, we design a compositional person search transformer to construct an effective pre-trained transformer without exhaustive pre-training from scratch on large-scale person search data. This serves as the fundamental for prompt-based continual learning. On top of that, we design a domain incremental prompt pool with a diverse attribute matching module. For each domain, we independently learn a set of prompts to encode the domain-oriented knowledge. Meanwhile, we jointly learn a group of diverse attribute projections and prototype embeddings to capture discriminative domain attributes. By matching an input image with the learned attributes across domains, the learned prompts can be properly selected for model inference. Extensive experiments are conducted to validate the proposed method for continual person search. The source code is available at https://github.com/PatrickZad/PoPS.
Authors:Amr Gomaa, Michael Sargious, Antonio Krüger
Title: AdaptoML-UX: An Adaptive User-centered GUI-based AutoML Toolkit for Non-AI Experts and HCI Researchers
Abstract:
The increasing integration of machine learning across various domains has underscored the necessity for accessible systems that non-experts can utilize effectively. To address this need, the field of automated machine learning (AutoML) has developed tools to simplify the construction and optimization of ML pipelines. However, existing AutoML solutions often lack efficiency in creating online pipelines and ease of use for Human-Computer Interaction (HCI) applications. Therefore, in this paper, we introduce AdaptoML-UX, an adaptive framework that incorporates automated feature engineering, machine learning, and incremental learning to assist non-AI experts in developing robust, user-centered ML models. Our toolkit demonstrates the capability to adapt efficiently to diverse problem domains and datasets, particularly in HCI, thereby reducing the necessity for manual experimentation and conserving time and resources. Furthermore, it supports model personalization through incremental learning, customizing models to individual user behaviors. HCI researchers can employ AdaptoML-UX (\url{https://github.com/MichaelSargious/AdaptoML_UX}) without requiring specialized expertise, as it automates the selection of algorithms, feature engineering, and hyperparameter tuning based on the unique characteristics of the data.
Authors:Danny Falero, Muhammad Ashad Kabir, Nusrat Homaira
Title: From Lab to Pocket: A Novel Continual Learning-based Mobile Application for Screening COVID-19
Abstract:
Artificial intelligence (AI) has emerged as a promising tool for predicting COVID-19 from medical images. In this paper, we propose a novel continual learning-based approach and present the design and implementation of a mobile application for screening COVID-19. Our approach demonstrates the ability to adapt to evolving datasets, including data collected from different locations or hospitals, varying virus strains, and diverse clinical presentations, without retraining from scratch. We have evaluated state-of-the-art continual learning methods for detecting COVID-19 from chest X-rays and selected the best-performing model for our mobile app. We evaluated various deep learning architectures to select the best-performing one as a foundation model for continual learning. Both regularization and memory-based methods for continual learning were tested, using different memory sizes to develop the optimal continual learning model for our app. DenseNet161 emerged as the best foundation model with 96.87\% accuracy, and Learning without Forgetting (LwF) was the top continual learning method with an overall performance of 71.99\%. The mobile app design considers both patient and doctor perspectives. It incorporates the continual learning DenseNet161 LwF model on a cloud server, enabling the model to learn from new instances of chest X-rays and their classifications as they are submitted. The app is designed, implemented, and evaluated to ensure it provides an efficient tool for COVID-19 screening. The app is available to download from https://github.com/DannyFGitHub/COVID-19PneumoCheckApp.
Authors:Linfeng Xu, Fanman Meng, Qingbo Wu, Lili Pan, Heqian Qiu, Lanxiao Wang, Kailong Chen, Kanglei Geng, Yilei Qian, Haojie Wang, Shuchang Zhou, Shimou Ling, Zejia Liu, Nanlin Chen, Yingjie Xu, Shaoxu Cheng, Bowen Tan, Ziyong Xu, Hongliang Li
Title: ARIC: An Activity Recognition Dataset in Classroom Surveillance Images
Abstract:
The application of activity recognition in the ``AI + Education" field is gaining increasing attention. However, current work mainly focuses on the recognition of activities in manually captured videos and a limited number of activity types, with little attention given to recognizing activities in surveillance images from real classrooms. Activity recognition in classroom surveillance images faces multiple challenges, such as class imbalance and high activity similarity. To address this gap, we constructed a novel multimodal dataset focused on classroom surveillance image activity recognition called ARIC (Activity Recognition In Classroom). The ARIC dataset has advantages of multiple perspectives, 32 activity categories, three modalities, and real-world classroom scenarios. In addition to the general activity recognition tasks, we also provide settings for continual learning and few-shot continual learning. We hope that the ARIC dataset can act as a facilitator for future analysis and research for open teaching scenarios. You can download preliminary data from https://ivipclab.github.io/publication_ARIC/ARIC.
Authors:Yiming Li, Yi Wang, Wenqian Wang, Dan Lin, Bingbing Li, Kim-Hui Yap
Title: Open World Object Detection: A Survey
Abstract:
Exploring new knowledge is a fundamental human ability that can be mirrored in the development of deep neural networks, especially in the field of object detection. Open world object detection (OWOD) is an emerging area of research that adapts this principle to explore new knowledge. It focuses on recognizing and learning from objects absent from initial training sets, thereby incrementally expanding its knowledge base when new class labels are introduced. This survey paper offers a thorough review of the OWOD domain, covering essential aspects, including problem definitions, benchmark datasets, source codes, evaluation metrics, and a comparative study of existing methods. Additionally, we investigate related areas like open set recognition (OSR) and incremental learning (IL), underlining their relevance to OWOD. Finally, the paper concludes by addressing the limitations and challenges faced by current OWOD algorithms and proposes directions for future research. To our knowledge, this is the first comprehensive survey of the emerging OWOD field with over one hundred references, marking a significant step forward for object detection technology. A comprehensive source code and benchmarks are archived and concluded at https://github.com/ArminLee/OWOD Review.
Authors:Hong Li, Zhiquan Tan, Xingyu Li, Weiran Huang
Title: ATLAS: Adapter-Based Multi-Modal Continual Learning with a Two-Stage Learning Strategy
Abstract:
While vision-and-language models significantly advance in many fields, the challenge of continual learning is unsolved. Parameter-efficient modules like adapters and prompts present a promising way to alleviate catastrophic forgetting. However, existing works usually learn individual adapters for each task, which may result in redundant knowledge among adapters. Moreover, they continue to use the original pre-trained model to initialize the downstream model, leading to negligible changes in the model's generalization compared to the original model. In addition, there is still a lack of research investigating the consequences of integrating a multi-modal model into the updating procedure for both uni-modal and multi-modal tasks and the subsequent impacts it has on downstream tasks. In this paper, we propose an adapter-based two-stage learning paradigm, a multi-modal continual learning scheme that consists of experience-based learning and novel knowledge expansion, which helps the model fully use experience knowledge and compensate for novel knowledge. Extensive experiments demonstrate that our method is proficient for continual learning. It expands the distribution of representation upstream while also minimizing the negative impact of forgetting previous tasks. Additionally, it enhances the generalization capability for downstream tasks. Furthermore, we incorporate both multi-modal and uni-modal tasks into upstream continual learning. We observe that learning from upstream tasks can help with downstream tasks. Our code will be available at: https://github.com/lihong2303/ATLAS.
Authors:Sahar Ahmadi, Ali Cheraghian, Morteza Saberi, Md. Towsif Abir, Hamidreza Dastmalchi, Farookh Hussain, Shafin Rahman
Title: Foundation Model-Powered 3D Few-Shot Class Incremental Learning via Training-free Adaptor
Abstract:
Recent advances in deep learning for processing point clouds hold increased interest in Few-Shot Class Incremental Learning (FSCIL) for 3D computer vision. This paper introduces a new method to tackle the Few-Shot Continual Incremental Learning (FSCIL) problem in 3D point cloud environments. We leverage a foundational 3D model trained extensively on point cloud data. Drawing from recent improvements in foundation models, known for their ability to work well across different tasks, we propose a novel strategy that does not require additional training to adapt to new tasks. Our approach uses a dual cache system: first, it uses previous test samples based on how confident the model was in its predictions to prevent forgetting, and second, it includes a small number of new task samples to prevent overfitting. This dynamic adaptation ensures strong performance across different learning tasks without needing lots of fine-tuning. We tested our approach on datasets like ModelNet, ShapeNet, ScanObjectNN, and CO3D, showing that it outperforms other FSCIL methods and demonstrating its effectiveness and versatility. The code is available at \url{https://github.com/ahmadisahar/ACCV_FCIL3D}.
Authors:Mohamamd Zavid Parvez, Rafiqul Islam, Md Zahidul Islam
Title: CL3: A Collaborative Learning Framework for the Medical Data Ensuring Data Privacy in the Hyperconnected Environment
Abstract:
In a hyperconnected environment, medical institutions are particularly concerned with data privacy when sharing and transmitting sensitive patient information due to the risk of data breaches, where malicious actors could intercept sensitive information. A collaborative learning framework, including transfer, federated, and incremental learning, can generate efficient, secure, and scalable models while requiring less computation, maintaining patient data privacy, and ensuring an up-to-date model. This study aims to address the detection of COVID-19 using chest X-ray images through a proposed collaborative learning framework called CL3. Initially, transfer learning is employed, leveraging knowledge from a pre-trained model as the starting global model. Local models from different medical institutes are then integrated, and a new global model is constructed to adapt to any data drift observed in the local models. Additionally, incremental learning is considered, allowing continuous adaptation to new medical data without forgetting previously learned information. Experimental results demonstrate that the CL3 framework achieved a global accuracy of 89.99% when using Xception with a batch size of 16 after being trained for six federated communication rounds. A demo of the CL3 framework is available at https://github.com/zavidparvez/CL3-Collaborative-Approach to ensure reproducibility.
Authors:Yiran Tao, Guixiu Qiao, Dan Ding, Zackory Erickson
Title: Incremental Learning for Robot Shared Autonomy
Abstract:
Shared autonomy holds promise for improving the usability and accessibility of assistive robotic arms, but current methods often rely on costly expert demonstrations and remain static after pretraining, limiting their ability to handle real-world variations. Even with extensive training data, unforeseen challenges--especially those that fundamentally alter task dynamics, such as unexpected obstacles or spatial constraints--can cause assistive policies to break down, leading to ineffective or unreliable assistance. To address this, we propose ILSA, an Incrementally Learned Shared Autonomy framework that continuously refines its assistive policy through user interactions, adapting to real-world challenges beyond the scope of pre-collected data. At the core of ILSA is a structured fine-tuning mechanism that enables continual improvement with each interaction by effectively integrating limited new interaction data while preserving prior knowledge, ensuring a balance between adaptation and generalization. A user study with 20 participants demonstrates ILSA's effectiveness, showing faster task completion and improved user experience compared to static alternatives. Code and videos are available at https://ilsa-robo.github.io/.
Authors:George Karantaidis, Athanasios Pantsios, Ioannis Kompatsiaris, Symeon Papadopoulos
Title: IncSAR: A Dual Fusion Incremental Learning Framework for SAR Target Recognition
Abstract:
Deep learning techniques have achieved significant success in Synthetic Aperture Radar (SAR) target recognition using predefined datasets in static scenarios. However, real-world applications demand that models incrementally learn new information without forgetting previously acquired knowledge. The challenge of catastrophic forgetting, where models lose past knowledge when adapting to new tasks, remains a critical issue. In this paper, we introduce IncSAR, an incremental learning framework designed to tackle catastrophic forgetting in SAR target recognition. IncSAR combines the power of a Vision Transformer (ViT) and a custom-designed Convolutional Neural Network (CNN) in a dual-branch architecture, integrated via a late-fusion strategy. Additionally, we explore the use of TinyViT to reduce computational complexity and propose an attention mechanism to dynamically enhance feature representation. To mitigate the speckle noise inherent in SAR images, we employ a denoising module based on a neural network approximation of Robust Principal Component Analysis (RPCA), leveraging a simple neural network for efficient noise reduction in SAR imagery. Moreover, a random projection layer improves the linear separability of features, and a variant of Linear Discriminant Analysis (LDA) decorrelates extracted class prototypes for better generalization. Extensive experiments on the MSTAR, SAR-AIRcraft-1.0, and OpenSARShip benchmark datasets demonstrate that IncSAR significantly outperforms state-of-the-art approaches, achieving a 99.63\% average accuracy and a 0.33\% performance drop, representing an 89\% improvement in retention compared to existing techniques. The source code is available at https://github.com/geokarant/IncSAR.
Authors:Junghun Oh, Sungyong Baik, Kyoung Mu Lee
Title: CLOSER: Towards Better Representation Learning for Few-Shot Class-Incremental Learning
Abstract:
Aiming to incrementally learn new classes with only few samples while preserving the knowledge of base (old) classes, few-shot class-incremental learning (FSCIL) faces several challenges, such as overfitting and catastrophic forgetting. Such a challenging problem is often tackled by fixing a feature extractor trained on base classes to reduce the adverse effects of overfitting and forgetting. Under such formulation, our primary focus is representation learning on base classes to tackle the unique challenge of FSCIL: simultaneously achieving the transferability and the discriminability of the learned representation. Building upon the recent efforts for enhancing transferability, such as promoting the spread of features, we find that trying to secure the spread of features within a more confined feature space enables the learned representation to strike a better balance between transferability and discriminability. Thus, in stark contrast to prior beliefs that the inter-class distance should be maximized, we claim that the closer different classes are, the better for FSCIL. The empirical results and analysis from the perspective of information bottleneck theory justify our simple yet seemingly counter-intuitive representation learning method, raising research questions and suggesting alternative research directions. The code is available at https://github.com/JungHunOh/CLOSER_ECCV2024.
Authors:Dianzhi Yu, Xinni Zhang, Yankai Chen, Aiwei Liu, Yifei Zhang, Philip S. Yu, Irwin King
Title: Recent Advances of Multimodal Continual Learning: A Comprehensive Survey
Abstract:
Continual learning (CL) aims to empower machine learning models to learn continually from new data, while building upon previously acquired knowledge without forgetting. As machine learning models have evolved from small to large pre-trained architectures, and from supporting unimodal to multimodal data, multimodal continual learning (MMCL) methods have recently emerged. The primary challenge of MMCL is that it goes beyond a simple stacking of unimodal CL methods, as such straightforward approaches often yield unsatisfactory performance. In this work, we present the first comprehensive survey on MMCL. We provide essential background knowledge and MMCL settings, as well as a structured taxonomy of MMCL methods. We categorize existing MMCL methods into four categories, i.e., regularization-based, architecture-based, replay-based, and prompt-based methods, explaining their methodologies and highlighting their key innovations. Additionally, to prompt further research in this field, we summarize open MMCL datasets and benchmarks, and discuss several promising future directions for investigation and development. We have also created a GitHub repository for indexing relevant MMCL papers and open resources available at https://github.com/LucyDYu/Awesome-Multimodal-Continual-Learning.
Authors:Da-Wei Zhou, Zi-Wen Cai, Han-Jia Ye, Lijun Zhang, De-Chuan Zhan
Title: Dual Consolidation for Pre-Trained Model-Based Domain-Incremental Learning
Abstract:
Domain-Incremental Learning (DIL) involves the progressive adaptation of a model to new concepts across different domains. While recent advances in pre-trained models provide a solid foundation for DIL, learning new concepts often results in the catastrophic forgetting of pre-trained knowledge. Specifically, sequential model updates can overwrite both the representation and the classifier with knowledge from the latest domain. Thus, it is crucial to develop a representation and corresponding classifier that accommodate all seen domains throughout the learning process. To this end, we propose DUal ConsolidaTion (Duct) to unify and consolidate historical knowledge at both the representation and classifier levels. By merging the backbone of different stages, we create a representation space suitable for multiple domains incrementally. The merged representation serves as a balanced intermediary that captures task-specific features from all seen domains. Additionally, to address the mismatch between consolidated embeddings and the classifier, we introduce an extra classifier consolidation process. Leveraging class-wise semantic information, we estimate the classifier weights of old domains within the latest embedding space. By merging historical and estimated classifiers, we align them with the consolidated embedding space, facilitating incremental classification. Extensive experimental results on four benchmark datasets demonstrate Duct's state-of-the-art performance. Code is available at https://github.com/Estrella-fugaz/CVPR25-Duct
Authors:Saurav Jha, Shiqi Yang, Masato Ishii, Mengjie Zhao, Christian Simon, Muhammad Jehanzeb Mirza, Dong Gong, Lina Yao, Shusuke Takahashi, Yuki Mitsufuji
Title: Mining Your Own Secrets: Diffusion Classifier Scores for Continual Personalization of Text-to-Image Diffusion Models
Abstract:
Personalized text-to-image diffusion models have grown popular for their ability to efficiently acquire a new concept from user-defined text descriptions and a few images. However, in the real world, a user may wish to personalize a model on multiple concepts but one at a time, with no access to the data from previous concepts due to storage/privacy concerns. When faced with this continual learning (CL) setup, most personalization methods fail to find a balance between acquiring new concepts and retaining previous ones -- a challenge that continual personalization (CP) aims to solve. Inspired by the successful CL methods that rely on class-specific information for regularization, we resort to the inherent class-conditioned density estimates, also known as diffusion classifier (DC) scores, for continual personalization of text-to-image diffusion models. Namely, we propose using DC scores for regularizing the parameter-space and function-space of text-to-image diffusion models, to achieve continual personalization. Using several diverse evaluation setups, datasets, and metrics, we show that our proposed regularization-based CP methods outperform the state-of-the-art C-LoRA, and other baselines. Finally, by operating in the replay-free CL setup and on low-rank adapters, our method incurs zero storage and parameter overhead, respectively, over the state-of-the-art. Our project page: https://srvcodes.github.io/continual_personalization/
Authors:Liangzu Peng, Juan Elenter, Joshua Agterberg, Alejandro Ribeiro, René Vidal
Title: LoRanPAC: Low-rank Random Features and Pre-trained Models for Bridging Theory and Practice in Continual Learning
Abstract:
The goal of continual learning (CL) is to train a model that can solve multiple tasks presented sequentially. Recent CL approaches have achieved strong performance by leveraging large pre-trained models that generalize well to downstream tasks. However, such methods lack theoretical guarantees, making them prone to unexpected failures. Conversely, principled CL approaches often fail to achieve competitive performance. In this work, we aim to bridge this gap between theory and practice by designing a simple CL method that is theoretically sound and highly performant. Specifically, we lift pre-trained features into a higher dimensional space and formulate an over-parametrized minimum-norm least-squares problem. We find that the lifted features are highly ill-conditioned, potentially leading to large training errors (numerical instability) and increased generalization errors. We address these challenges by continually truncating the singular value decomposition of the lifted features. Our approach, termed LoRanPAC, is stable with respect to the choice of hyperparameters, can handle hundreds of tasks, and outperforms state-of-the-art CL methods on multiple datasets. Importantly, our method satisfies a recurrence relation throughout its continual learning process, which allows us to prove it maintains small training and test errors by appropriately truncating a fraction of SVD factors. This results in a stable continual learning method with strong empirical performance and theoretical guarantees. Code available: https://github.com/liangzu/loranpac.
Authors:Qian Feng, Da-wei Zhou, Hanbin Zhao, Chao Zhang, Jiahua Dong, Dengxin Dai, Hui Qian
Title: LW2G: Learning Whether to Grow for Prompt-based Continual Learning
Abstract:
Recent Prompt-based Continual learning (PCL) has achieved remarkable performance with pre-trained models. These approaches expand a prompt pool by adding a new set of prompts while learning and select the correct set during inference. Previous studies have revealed that learning task-wised prompt sets individually and low selection accuracy pose challenges to the performance of PCL. In this paper, we propose a plug-in method, $\textbf{L}$earning $\textbf{W}$hether $\textbf{t}$o $\textbf{G}$row $\textbf{(LW2G)}$, which leverages the disparities between tasks to form an effective and efficient prompt sets pool, thereby achieving intra-task knowledge sharing and cooperation and avoiding the unbounded increase in the cost of the prompt pool. Specifically, a shared set is utilized when several tasks share certain commonalities, and a new set is added when there are significant differences between the new and previous tasks. To achieve this, we develop a metric called Hinder Forward Capability (HFC) to measure the hindrance imposed on learning new tasks by surgically modifying the original gradient onto the orthogonal complement of the old feature space. With HFC, an automated scheme, Dynamic Growing Approach, adaptively learns whether to grow with a dynamic threshold. Furthermore, we design a gradient-based constraint to ensure consistency between the updating prompts and pre-trained knowledge. Extensive experiments show the effectiveness of our method. Code is available at https://github.com/RAIAN08/LW2G.
Authors:Grzegorz Rypeść, Sebastian Cygert, Tomasz Trzciński, Bartłomiej Twardowski
Title: Task-recency bias strikes back: Adapting covariances in Exemplar-Free Class Incremental Learning
Abstract:
Exemplar-Free Class Incremental Learning (EFCIL) tackles the problem of training a model on a sequence of tasks without access to past data. Existing state-of-the-art methods represent classes as Gaussian distributions in the feature extractor's latent space, enabling Bayes classification or training the classifier by replaying pseudo features. However, we identify two critical issues that compromise their efficacy when the feature extractor is updated on incremental tasks. First, they do not consider that classes' covariance matrices change and must be adapted after each task. Second, they are susceptible to a task-recency bias caused by dimensionality collapse occurring during training. In this work, we propose AdaGauss -- a novel method that adapts covariance matrices from task to task and mitigates the task-recency bias owing to the additional anti-collapse loss function. AdaGauss yields state-of-the-art results on popular EFCIL benchmarks and datasets when training from scratch or starting from a pre-trained backbone. The code is available at: https://github.com/grypesc/AdaGauss.
Authors:Alessandro Cacciatore, Valerio Morelli, Federica Paganica, Emanuele Frontoni, Lucia Migliorelli, Daniele Berardini
Title: A preliminary study on continual learning in computer vision using Kolmogorov-Arnold Networks
Abstract:
Deep learning has long been dominated by multi-layer perceptrons (MLPs), which have demonstrated superiority over other optimizable models in various domains. Recently, a new alternative to MLPs has emerged - Kolmogorov-Arnold Networks (KAN)- which are based on a fundamentally different mathematical framework. According to their authors, KANs address several major issues in MLPs, such as catastrophic forgetting in continual learning scenarios. However, this claim has only been supported by results from a regression task on a toy 1D dataset. In this paper, we extend the investigation by evaluating the performance of KANs in continual learning tasks within computer vision, specifically using the MNIST datasets. To this end, we conduct a structured analysis of the behavior of MLPs and two KAN-based models in a class-incremental learning scenario, ensuring that the architectures involved have the same number of trainable parameters. Our results demonstrate that an efficient version of KAN outperforms both traditional MLPs and the original KAN implementation. We further analyze the influence of hyperparameters in MLPs and KANs, as well as the impact of certain trainable parameters in KANs, such as bias and scale weights. Additionally, we provide a preliminary investigation of recent KAN-based convolutional networks and compare their performance with that of traditional convolutional neural networks. Our codes can be found at https://github.com/MrPio/KAN-Continual_Learning_tests.
Authors:Min-Yeong Park, Jae-Ho Lee, Gyeong-Moon Park
Title: Versatile Incremental Learning: Towards Class and Domain-Agnostic Incremental Learning
Abstract:
Incremental Learning (IL) aims to accumulate knowledge from sequential input tasks while overcoming catastrophic forgetting. Existing IL methods typically assume that an incoming task has only increments of classes or domains, referred to as Class IL (CIL) or Domain IL (DIL), respectively. In this work, we consider a more challenging and realistic but under-explored IL scenario, named Versatile Incremental Learning (VIL), in which a model has no prior of which of the classes or domains will increase in the next task. In the proposed VIL scenario, the model faces intra-class domain confusion and inter-domain class confusion, which makes the model fail to accumulate new knowledge without interference with learned knowledge. To address these issues, we propose a simple yet effective IL framework, named Incremental Classifier with Adaptation Shift cONtrol (ICON). Based on shifts of learnable modules, we design a novel regularization method called Cluster-based Adaptation Shift conTrol (CAST) to control the model to avoid confusion with the previously learned knowledge and thereby accumulate the new knowledge more effectively. Moreover, we introduce an Incremental Classifier (IC) which expands its output nodes to address the overwriting issue from different domains corresponding to a single class while maintaining the previous knowledge. We conducted extensive experiments on three benchmarks, showcasing the effectiveness of our method across all the scenarios, particularly in cases where the next task can be randomly altered. Our implementation code is available at https://github.com/KHU-AGI/VIL.
Authors:Hwihun Jeong, Se Young Chun, Jongho Lee
Title: MOST: MR reconstruction Optimization for multiple downStream Tasks via continual learning
Abstract:
Deep learning-based Magnetic Resonance (MR) reconstruction methods have focused on generating high-quality images but often overlook the impact on downstream tasks (e.g., segmentation) that utilize the reconstructed images. Cascading separately trained reconstruction network and downstream task network has been shown to introduce performance degradation due to error propagation and domain gaps between training datasets. To mitigate this issue, downstream task-oriented reconstruction optimization has been proposed for a single downstream task. Expanding this optimization to multi-task scenarios is not straightforward. In this work, we extended this optimization to sequentially introduced multiple downstream tasks and demonstrated that a single MR reconstruction network can be optimized for multiple downstream tasks by deploying continual learning (MOST). MOST integrated techniques from replay-based continual learning and image-guided loss to overcome catastrophic forgetting. Comparative experiments demonstrated that MOST outperformed a reconstruction network without finetuning, a reconstruction network with naïve finetuning, and conventional continual learning methods. The source code is available at: https://github.com/SNU-LIST/MOST.
Authors:Kodjo Mawuena Amekoe, Mustapha Lebbah, Gregoire Jaffre, Hanene Azzag, Zaineb Chelly Dagdia
Title: Evaluating the Efficacy of Instance Incremental vs. Batch Learning in Delayed Label Environments: An Empirical Study on Tabular Data Streaming for Fraud Detection
Abstract:
Real-world tabular learning production scenarios typically involve evolving data streams, where data arrives continuously and its distribution may change over time. In such a setting, most studies in the literature regarding supervised learning favor the use of instance incremental algorithms due to their ability to adapt to changes in the data distribution. Another significant reason for choosing these algorithms is \textit{avoid storing observations in memory} as commonly done in batch incremental settings. However, the design of instance incremental algorithms often assumes immediate availability of labels, which is an optimistic assumption. In many real-world scenarios, such as fraud detection or credit scoring, labels may be delayed. Consequently, batch incremental algorithms are widely used in many real-world tasks. This raises an important question: "In delayed settings, is instance incremental learning the best option regarding predictive performance and computational efficiency?" Unfortunately, this question has not been studied in depth, probably due to the scarcity of real datasets containing delayed information. In this study, we conduct a comprehensive empirical evaluation and analysis of this question using a real-world fraud detection problem and commonly used generated datasets. Our findings indicate that instance incremental learning is not the superior option, considering on one side state-of-the-art models such as Adaptive Random Forest (ARF) and other side batch learning models such as XGBoost. Additionally, when considering the interpretability of the learning systems, batch incremental solutions tend to be favored. Code: \url{https://github.com/anselmeamekoe/DelayedLabelStream}
Authors:Zhen Zhu, Yiming Gong, Derek Hoiem
Title: Anytime Continual Learning for Open Vocabulary Classification
Abstract:
We propose an approach for anytime continual learning (AnytimeCL) for open vocabulary image classification. The AnytimeCL problem aims to break away from batch training and rigid models by requiring that a system can predict any set of labels at any time and efficiently update and improve when receiving one or more training samples at any time. Despite the challenging goal, we achieve substantial improvements over recent methods. We propose a dynamic weighting between predictions of a partially fine-tuned model and a fixed open vocabulary model that enables continual improvement when training samples are available for a subset of a task's labels. We also propose an attention-weighted PCA compression of training features that reduces storage and computation with little impact to model accuracy. Our methods are validated with experiments that test flexibility of learning and inference. Code is available at https://github.com/jessemelpolio/AnytimeCL.
Authors:Zhi-Hong Qi, Da-Wei Zhou, Yiran Yao, Han-Jia Ye, De-Chuan Zhan
Title: Adaptive Adapter Routing for Long-Tailed Class-Incremental Learning
Abstract:
In our ever-evolving world, new data exhibits a long-tailed distribution, such as e-commerce platform reviews. This necessitates continuous model learning imbalanced data without forgetting, addressing the challenge of long-tailed class-incremental learning (LTCIL). Existing methods often rely on retraining linear classifiers with former data, which is impractical in real-world settings. In this paper, we harness the potent representation capabilities of pre-trained models and introduce AdaPtive Adapter RouTing (APART) as an exemplar-free solution for LTCIL. To counteract forgetting, we train inserted adapters with frozen pre-trained weights for deeper adaptation and maintain a pool of adapters for selection during sequential model updates. Additionally, we present an auxiliary adapter pool designed for effective generalization, especially on minority classes. Adaptive instance routing across these pools captures crucial correlations, facilitating a comprehensive representation of all classes. Consequently, APART tackles the imbalance problem as well as catastrophic forgetting in a unified framework. Extensive benchmark experiments validate the effectiveness of APART. Code is available at: https://github.com/vita-qzh/APART
Authors:Markus Knauer, Alin Albu-Schäffer, Freek Stulp, João Silvério
Title: Interactive incremental learning of generalizable skills with local trajectory modulation
Abstract:
The problem of generalization in learning from demonstration (LfD) has received considerable attention over the years, particularly within the context of movement primitives, where a number of approaches have emerged. Recently, two important approaches have gained recognition. While one leverages via-points to adapt skills locally by modulating demonstrated trajectories, another relies on so-called task-parameterized models that encode movements with respect to different coordinate systems, using a product of probabilities for generalization. While the former are well-suited to precise, local modulations, the latter aim at generalizing over large regions of the workspace and often involve multiple objects. Addressing the quality of generalization by leveraging both approaches simultaneously has received little attention. In this work, we propose an interactive imitation learning framework that simultaneously leverages local and global modulations of trajectory distributions. Building on the kernelized movement primitives (KMP) framework, we introduce novel mechanisms for skill modulation from direct human corrective feedback. Our approach particularly exploits the concept of via-points to incrementally and interactively 1) improve the model accuracy locally, 2) add new objects to the task during execution and 3) extend the skill into regions where demonstrations were not provided. We evaluate our method on a bearing ring-loading task using a torque-controlled, 7-DoF, DLR SARA robot.
Authors:Shenghong Dai, Jy-yong Sohn, Yicong Chen, S M Iftekharul Alam, Ravikumar Balakrishnan, Suman Banerjee, Nageen Himayat, Kangwook Lee
Title: Buffer-based Gradient Projection for Continual Federated Learning
Abstract:
Continual Federated Learning (CFL) is essential for enabling real-world applications where multiple decentralized clients adaptively learn from continuous data streams. A significant challenge in CFL is mitigating catastrophic forgetting, where models lose previously acquired knowledge when learning new information. Existing approaches often face difficulties due to the constraints of device storage capacities and the heterogeneous nature of data distributions among clients. While some CFL algorithms have addressed these challenges, they frequently rely on unrealistic assumptions about the availability of task boundaries (i.e., knowing when new tasks begin). To address these limitations, we introduce Fed-A-GEM, a federated adaptation of the A-GEM method (Chaudhry et al., 2019), which employs a buffer-based gradient projection approach. Fed-A-GEM alleviates catastrophic forgetting by leveraging local buffer samples and aggregated buffer gradients, thus preserving knowledge across multiple clients. Our method is combined with existing CFL techniques, enhancing their performance in the CFL context. Our experiments on standard benchmarks show consistent performance improvements across diverse scenarios. For example, in a task-incremental learning scenario using the CIFAR-100 dataset, our method can increase the accuracy by up to 27%. Our code is available at https://github.com/shenghongdai/Fed-A-GEM.
Authors:Jinglin Liang, Jin Zhong, Hanlin Gu, Zhongqi Lu, Xingxing Tang, Gang Dai, Shuangping Huang, Lixin Fan, Qiang Yang
Title: Diffusion-Driven Data Replay: A Novel Approach to Combat Forgetting in Federated Class Continual Learning
Abstract:
Federated Class Continual Learning (FCCL) merges the challenges of distributed client learning with the need for seamless adaptation to new classes without forgetting old ones. The key challenge in FCCL is catastrophic forgetting, an issue that has been explored to some extent in Continual Learning (CL). However, due to privacy preservation requirements, some conventional methods, such as experience replay, are not directly applicable to FCCL. Existing FCCL methods mitigate forgetting by generating historical data through federated training of GANs or data-free knowledge distillation. However, these approaches often suffer from unstable training of generators or low-quality generated data, limiting their guidance for the model. To address this challenge, we propose a novel method of data replay based on diffusion models. Instead of training a diffusion model, we employ a pre-trained conditional diffusion model to reverse-engineer each class, searching the corresponding input conditions for each class within the model's input space, significantly reducing computational resources and time consumption while ensuring effective generation. Furthermore, we enhance the classifier's domain generalization ability on generated and real data through contrastive learning, indirectly improving the representational capability of generated data for real data. Comprehensive experiments demonstrate that our method significantly outperforms existing baselines. Code is available at https://github.com/jinglin-liang/DDDR.
Authors:Zhihao Zhang, Qiaole Dong, Qi Zhang, Jun Zhao, Enyu Zhou, Zhiheng Xi, Senjie Jin, Xiaoran Fan, Yuhao Zhou, Yanwei Fu, Tao Ji, Tao Gui, Xuanjing Huang
Title: Reinforcement Fine-Tuning Enables MLLMs Learning Novel Tasks Stably
Abstract:
Post-training algorithms such as Supervised Fine-Tuning (SFT) and Reinforcement Fine-Tuning (RFT) are widely used to adapt multimodal large language models to downstream tasks. While effective at task adaptation, their impact on prior knowledge remains unclear. In this paper, we introduce jigsaw puzzles as a novel task absent from existing pretraining corpora and systematically study the behavior of SFT and RFT on an open-source multimodal model, Qwen2.5-VL. Our experiments reveal a sharp trade-off: SFT enables rapid task acquisition but leads to catastrophic forgetting, whereas RFT learns more slowly on novel tasks but maintains prior knowledge. We analyze this phenomenon through the lens of learning dynamics, showing that RFT reinforces correct samples that are naturally aligned with the base model's probability landscape, mitigating interference with prior knowledge. Moreover, supervised training on correct RFT-simulated rollouts allows SFT to preserve knowledge while rapidly learning new tasks. These findings suggest that data distribution, rather than algorithmic differences, plays a central role in forgetting, and highlight RFT's potential for stable continual learning in multimodal large language models.
Authors:Zhiyu Li, Shichao Song, Chenyang Xi, Hanyu Wang, Chen Tang, Simin Niu, Ding Chen, Jiawei Yang, Chunyu Li, Qingchen Yu, Jihao Zhao, Yezhaohui Wang, Peng Liu, Zehao Lin, Pengyuan Wang, Jiahao Huo, Tianyi Chen, Kai Chen, Kehang Li, Zhen Tao, Huayi Lai, Hao Wu, Bo Tang, Zhenren Wang, Zhaoxin Fan, Ningyu Zhang, Linfeng Zhang, Junchi Yan, Mingchuan Yang, Tong Xu, Wei Xu, Huajun Chen, Haofen Wang, Hongkang Yang, Wentao Zhang, Zhi-Qin John Xu, Siheng Chen, Feiyu Xiong
Title: MemOS: A Memory OS for AI System
Abstract:
Large Language Models (LLMs) have become an essential infrastructure for Artificial General Intelligence (AGI), yet their lack of well-defined memory management systems hinders the development of long-context reasoning, continual personalization, and knowledge consistency.Existing models mainly rely on static parameters and short-lived contextual states, limiting their ability to track user preferences or update knowledge over extended periods.While Retrieval-Augmented Generation (RAG) introduces external knowledge in plain text, it remains a stateless workaround without lifecycle control or integration with persistent representations.Recent work has modeled the training and inference cost of LLMs from a memory hierarchy perspective, showing that introducing an explicit memory layer between parameter memory and external retrieval can substantially reduce these costs by externalizing specific knowledge. Beyond computational efficiency, LLMs face broader challenges arising from how information is distributed over time and context, requiring systems capable of managing heterogeneous knowledge spanning different temporal scales and sources. To address this challenge, we propose MemOS, a memory operating system that treats memory as a manageable system resource. It unifies the representation, scheduling, and evolution of plaintext, activation-based, and parameter-level memories, enabling cost-efficient storage and retrieval. As the basic unit, a MemCube encapsulates both memory content and metadata such as provenance and versioning. MemCubes can be composed, migrated, and fused over time, enabling flexible transitions between memory types and bridging retrieval with parameter-based learning. MemOS establishes a memory-centric system framework that brings controllability, plasticity, and evolvability to LLMs, laying the foundation for continual learning and personalized modeling.
Authors:Shengchao Hu, Yuhang Zhou, Ziqing Fan, Jifeng Hu, Li Shen, Ya Zhang, Dacheng Tao
Title: Continual Task Learning through Adaptive Policy Self-Composition
Abstract:
Training a generalizable agent to continually learn a sequence of tasks from offline trajectories is a natural requirement for long-lived agents, yet remains a significant challenge for current offline reinforcement learning (RL) algorithms. Specifically, an agent must be able to rapidly adapt to new tasks using newly collected trajectories (plasticity), while retaining knowledge from previously learned tasks (stability). However, systematic analyses of this setting are scarce, and it remains unclear whether conventional continual learning (CL) methods are effective in continual offline RL (CORL) scenarios. In this study, we develop the Offline Continual World benchmark and demonstrate that traditional CL methods struggle with catastrophic forgetting, primarily due to the unique distribution shifts inherent to CORL scenarios. To address this challenge, we introduce CompoFormer, a structure-based continual transformer model that adaptively composes previous policies via a meta-policy network. Upon encountering a new task, CompoFormer leverages semantic correlations to selectively integrate relevant prior policies alongside newly trained parameters, thereby enhancing knowledge sharing and accelerating the learning process. Our experiments reveal that CompoFormer outperforms conventional CL methods, particularly in longer task sequences, showcasing a promising balance between plasticity and stability.
Authors:Jifeng Hu, Sili Huang, Li Shen, Zhejian Yang, Shengchao Hu, Shisong Tang, Hechang Chen, Yi Chang, Dacheng Tao, Lichao Sun
Title: Solving Continual Offline RL through Selective Weights Activation on Aligned Spaces
Abstract:
Continual offline reinforcement learning (CORL) has shown impressive ability in diffusion-based lifelong learning systems by modeling the joint distributions of trajectories. However, most research only focuses on limited continual task settings where the tasks have the same observation and action space, which deviates from the realistic demands of training agents in various environments. In view of this, we propose Vector-Quantized Continual Diffuser, named VQ-CD, to break the barrier of different spaces between various tasks. Specifically, our method contains two complementary sections, where the quantization spaces alignment provides a unified basis for the selective weights activation. In the quantized spaces alignment, we leverage vector quantization to align the different state and action spaces of various tasks, facilitating continual training in the same space. Then, we propose to leverage a unified diffusion model attached by the inverse dynamic model to master all tasks by selectively activating different weights according to the task-related sparse masks. Finally, we conduct extensive experiments on 15 continual learning (CL) tasks, including conventional CL task settings (identical state and action spaces) and general CL task settings (various state and action spaces). Compared with 16 baselines, our method reaches the SOTA performance.
Authors:Huanxuan Liao, Shizhu He, Yupu Hao, Jun Zhao, Kang Liu
Title: DATA: Decomposed Attention-based Task Adaptation for Rehearsal-Free Continual Learning
Abstract:
Continual learning (CL) is essential for Large Language Models (LLMs) to adapt to evolving real-world demands, yet they are susceptible to catastrophic forgetting (CF). While traditional CF solutions rely on expensive data rehearsal, recent rehearsal-free methods employ model-based and regularization-based strategies to address this issue. However, these approaches often neglect the model's plasticity, which is crucial to achieving optimal performance on newly learned tasks. Consequently, a key challenge in CL is striking a balance between preserving plasticity and mitigating CF. To tackle this challenge, we propose the $\textbf{D}$ecomposed $\textbf{A}$ttention-based $\textbf{T}$ask $\textbf{A}$daptation (DATA), which explicitly decouples and learns both task-specific and task-shared knowledge using high-rank and low-rank task adapters (e.g., LoRAs). For new tasks, DATA dynamically adjusts the weights of adapters of different ranks based on their relevance and distinction from previous tasks, allowing the model to acquire new task-specific skills while effectively retaining previously learned knowledge. Specifically, we implement a decomposed component weighting strategy comprising learnable components that collectively generate attention-based weights, allowing the model to integrate and utilize diverse knowledge from each DATA. Extensive experiments on three widely used benchmarks demonstrate that our proposed method achieves state-of-the-art performance. Notably, our approach significantly enhances model plasticity and mitigates CF by extending learnable components and employing stochastic restoration during training iterations.
Authors:Matthias Neuwirth-Trapp, Maarten Bieshaar, Danda Pani Paudel, Luc Van Gool
Title: Incremental Object Detection with Prompt-based Methods
Abstract:
Visual prompt-based methods have seen growing interest in incremental learning (IL) for image classification. These approaches learn additional embedding vectors while keeping the model frozen, making them efficient to train. However, no prior work has applied such methods to incremental object detection (IOD), leaving their generalizability unclear. In this paper, we analyze three different prompt-based methods under a complex domain-incremental learning setting. We additionally provide a wide range of reference baselines for comparison. Empirically, we show that the prompt-based approaches we tested underperform in this setting. However, a strong yet practical method, combining visual prompts with replaying a small portion of previous data, achieves the best results. Together with additional experiments on prompt length and initialization, our findings offer valuable insights for advancing prompt-based IL in IOD.
Authors:Matthias Neuwirth-Trapp, Maarten Bieshaar, Danda Pani Paudel, Luc Van Gool
Title: RICO: Two Realistic Benchmarks and an In-Depth Analysis for Incremental Learning in Object Detection
Abstract:
Incremental Learning (IL) trains models sequentially on new data without full retraining, offering privacy, efficiency, and scalability. IL must balance adaptability to new data with retention of old knowledge. However, evaluations often rely on synthetic, simplified benchmarks, obscuring real-world IL performance. To address this, we introduce two Realistic Incremental Object Detection Benchmarks (RICO): Domain RICO (D-RICO) features domain shifts with a fixed class set, and Expanding-Classes RICO (EC-RICO) integrates new domains and classes per IL step. Built from 14 diverse datasets covering real and synthetic domains, varying conditions (e.g., weather, time of day), camera sensors, perspectives, and labeling policies, both benchmarks capture challenges absent in existing evaluations. Our experiments show that all IL methods underperform in adaptability and retention, while replaying a small amount of previous data already outperforms all methods. However, individual training on the data remains superior. We heuristically attribute this gap to weak teachers in distillation, single models' inability to manage diverse tasks, and insufficient plasticity. Our code will be made publicly available.
Authors:Qingyao Ai, Yichen Tang, Changyue Wang, Jianming Long, Weihang Su, Yiqun Liu
Title: MemoryBench: A Benchmark for Memory and Continual Learning in LLM Systems
Abstract:
Scaling up data, parameters, and test-time computation has been the mainstream methods to improve LLM systems (LLMsys), but their upper bounds are almost reached due to the gradual depletion of high-quality data and marginal gains obtained from larger computational resource consumption. Inspired by the abilities of human and traditional AI systems in learning from practice, constructing memory and continual learning frameworks for LLMsys has become an important and popular research direction in recent literature. Yet, existing benchmarks for LLM memory often focus on evaluating the system on homogeneous reading comprehension tasks with long-form inputs rather than testing their abilities to learn from accumulated user feedback in service time. Therefore, we propose a user feedback simulation framework and a comprehensive benchmark covering multiple domains, languages, and types of tasks to evaluate the continual learning abilities of LLMsys. Experiments show that the effectiveness and efficiency of state-of-the-art baselines are far from satisfying, and we hope this benchmark could pave the way for future studies on LLM memory and optimization algorithms.
Authors:Xudong Wang, Lei Feng, Ruichen Zhang, Fanqin Zhou, Hongyang Du, Wenjing Li, Dusit Niyato, Abbas Jamalipour, Ping Zhang
Title: LLM-Empowered Agentic AI for QoE-Aware Network Slicing Management in Industrial IoT
Abstract:
The Industrial Internet of Things (IIoT) requires networks that deliver ultra-low latency, high reliability, and cost efficiency, which traditional optimization methods and deep reinforcement learning (DRL)-based approaches struggle to provide under dynamic and heterogeneous workloads. To address this gap, large language model (LLM)-empowered agentic AI has emerged as a promising paradigm, integrating reasoning, planning, and adaptation to enable QoE-aware network management. In this paper, we explore the integration of agentic AI into QoE-aware network slicing for IIoT. We first review the network slicing management architecture, QoE metrics for IIoT applications, and the challenges of dynamically managing heterogeneous network slices, while highlighting the motivations and advantages of adopting agentic AI. We then present the workflow of agentic AI-based slicing management, illustrating the full lifecycle of AI agents from processing slice requests to constructing slice instances and performing dynamic adjustments. Furthermore, we propose an LLM-empowered agentic AI approach for slicing management, which integrates a retrieval-augmented generation (RAG) module for semantic intent inference, a DRL-based orchestrator for slicing configuration, and an incremental memory mechanism for continual learning and adaptation. Through a case study on heterogeneous slice management, we demonstrate that the proposed approach significantly outperforms other baselines in balancing latency, reliability, and cost, and achieves up to a 19% improvement in slice availability ratio.
Authors:Haoran Chen, Ping Wang, Zihan Zhou, Xu Zhang, Zuxuan Wu, Yu-Gang Jiang
Title: Achieving More with Less: Additive Prompt Tuning for Rehearsal-Free Class-Incremental Learning
Abstract:
Class-incremental learning (CIL) enables models to learn new classes progressively while preserving knowledge of previously learned ones. Recent advances in this field have shifted towards parameter-efficient fine-tuning techniques, with many approaches building upon the framework that maintains a pool of learnable prompts. Although effective, these methods introduce substantial computational overhead, primarily due to prompt pool querying and increased input sequence lengths from prompt concatenation. In this work, we present a novel prompt-based approach that addresses this limitation. Our method trains a single set of shared prompts across all tasks and, rather than concatenating prompts to the input, directly modifies the CLS token's attention computation by adding the prompts to it. This simple and lightweight design not only significantly reduces computational complexity-both in terms of inference costs and the number of trainable parameters-but also eliminates the need to optimize prompt lengths for different downstream tasks, offering a more efficient yet powerful solution for rehearsal-free class-incremental learning. Extensive experiments across a diverse range of CIL benchmarks demonstrate the effectiveness of our approach, highlighting its potential to establish a new prompt-based CIL paradigm. Furthermore, experiments on general recognition benchmarks beyond the CIL setting also show strong performance, positioning our method as a promising candidate for a general parameter-efficient fine-tuning approach.
Authors:Hongbin Lin, Chenyang Ren, Juangui Xu, Zhengyu Hu, Cheng-Long Wang, Yao Shu, Hui Xiong, Jingfeng Zhang, Di Wang, Lijie Hu
Title: Controllable Concept Bottleneck Models
Abstract:
Concept Bottleneck Models (CBMs) have garnered much attention for their ability to elucidate the prediction process through a human-understandable concept layer. However, most previous studies focused on static scenarios where the data and concepts are assumed to be fixed and clean. In real-world applications, deployed models require continuous maintenance: we often need to remove erroneous or sensitive data (unlearning), correct mislabeled concepts, or incorporate newly acquired samples (incremental learning) to adapt to evolving environments. Thus, deriving efficient editable CBMs without retraining from scratch remains a significant challenge, particularly in large-scale applications. To address these challenges, we propose Controllable Concept Bottleneck Models (CCBMs). Specifically, CCBMs support three granularities of model editing: concept-label-level, concept-level, and data-level, the latter of which encompasses both data removal and data addition. CCBMs enjoy mathematically rigorous closed-form approximations derived from influence functions that obviate the need for retraining. Experimental results demonstrate the efficiency and adaptability of our CCBMs, affirming their practical value in enabling dynamic and trustworthy CBMs.
Authors:Zhilin Wang, Yafu Li, Xiaoye Qu, Yu Cheng
Title: SEE: Continual Fine-tuning with Sequential Ensemble of Experts
Abstract:
Continual fine-tuning of large language models (LLMs) suffers from catastrophic forgetting. Rehearsal-based methods mitigate this problem by retaining a small set of old data. Nevertheless, they still suffer inevitable performance loss. Although training separate experts for each task can help prevent forgetting, effectively assembling them remains a challenge. Some approaches use routers to assign tasks to experts, but in continual learning, they often require retraining for optimal performance. To address these challenges, we introduce the Sequential Ensemble of Experts (SEE) framework. SEE removes the need for an additional router, allowing each expert to independently decide whether a query should be handled. The framework employs distributed routing, and during continual fine-tuning, SEE only requires the training of new experts for incoming tasks rather than retraining the entire system. Experiments reveal that the SEE outperforms prior approaches, including multi-task learning, in continual fine-tuning. It also demonstrates remarkable generalization ability, as the expert can effectively identify out-of-distribution queries, which can then be directed to a more generalized model for resolution. This work highlights the promising potential of integrating routing and response mechanisms within each expert, paving the way for the future of distributed model ensembling.
Authors:Xinyuan Wang, Yanchi Liu, Wei Cheng, Xujiang Zhao, Zhengzhang Chen, Wenchao Yu, Yanjie Fu, Haifeng Chen
Title: MixLLM: Dynamic Routing in Mixed Large Language Models
Abstract:
Large Language Models (LLMs) exhibit potential artificial generic intelligence recently, however, their usage is costly with high response latency. Given mixed LLMs with their own strengths and weaknesses, LLM routing aims to identify the most suitable model for each query in the stream to maximize response quality and minimize cost and latency. However, the challenges involve: (1) dynamic trade-offs among quality, cost, and latency; (2) enabling continual learning in deployed systems; and (3) navigating a varying (e.g., new LLM addition or old LLM removal) set of LLM candidates over time. To bridge these gaps, we develop MixLLM, a dynamic contextual-bandit-based routing system for query-LLM assignment. Specifically, we first leverage query tags to enhance query embeddings for the routing task. Next, we design lightweight prediction models to estimate the response qualities and costs of queries over LLMs. We then devise a meta-decision maker to choose the query-LLM assignments to best tradeoff response quality, cost, and latency. Finally, the system benefits from continual training, allowing it to adapt to evolving queries and user feedback over time. Our extensive experiments show that MixLLM achieves the best trade-offs in response quality, cost, and latency (97.25% of GPT-4's quality at 24.18% of the cost under the time constraint).
Authors:Lingfeng He, De Cheng, Zhiheng Ma, Huaijie Wang, Dingwen Zhang, Nannan Wang, Xinbo Gao
Title: CKAA: Cross-subspace Knowledge Alignment and Aggregation for Robust Continual Learning
Abstract:
Continual Learning (CL) empowers AI models to continuously learn from sequential task streams. Recently, parameter-efficient fine-tuning (PEFT)-based CL methods have garnered increasing attention due to their superior performance. They typically allocate a unique sub-module for learning each task, with a task recognizer to select the appropriate sub-modules for testing images. However, due to the feature subspace misalignment from independently trained sub-modules, these methods tend to produce ambiguous decisions under misleading task-ids. To address this, we propose Cross-subspace Knowledge Alignment and Aggregation (CKAA), a novel framework that enhances model robustness against misleading task-ids through two key innovations: (1) Dual-level Knowledge Alignment (DKA): By aligning intra-class feature distributions across different subspaces and learning a robust global classifier through a feature simulation process, DKA enables the model to distinguish features from both correct and incorrect subspaces during training. (2) Task-Confidence-guided Mixture of Adapters (TC-MoA): A robust inference scheme that adaptively aggregates task-specific knowledge from relevant sub-modules based on task-confidence scores, avoiding overconfidence in misleading task-id predictions. Extensive experiments demonstrate that CKAA outperforms existing PEFT-based CL methods.
Authors:Huaijie Wang, De Cheng, Lingfeng He, Yan Li, Jie Li, Nannan Wang, Xinbo Gao
Title: EKPC: Elastic Knowledge Preservation and Compensation for Class-Incremental Learning
Abstract:
Class-Incremental Learning (CIL) aims to enable AI models to continuously learn from sequentially arriving data of different classes over time while retaining previously acquired knowledge. Recently, Parameter-Efficient Fine-Tuning (PEFT) methods, like prompt pool-based approaches and adapter tuning, have shown great attraction in CIL. However, these methods either introduce additional parameters that increase memory usage, or rely on rigid regularization techniques which reduce forgetting but compromise model flexibility. To overcome these limitations, we propose the Elastic Knowledge Preservation and Compensation (EKPC) method, integrating Importance-aware Parameter Regularization (IPR) and Trainable Semantic Drift Compensation (TSDC) for CIL. Specifically, the IPR method assesses the sensitivity of network parameters to prior tasks using a novel parameter-importance algorithm. It then selectively constrains updates within the shared adapter according to these importance values, thereby preserving previously acquired knowledge while maintaining the model's flexibility. However, it still exhibits slight semantic differences in previous knowledge to accommodate new incremental tasks, leading to decision boundaries confusion in classifier. To eliminate this confusion, TSDC trains a unified classifier by compensating prototypes with trainable semantic drift. Extensive experiments on five CIL benchmarks demonstrate the effectiveness of the proposed method, showing superior performances to existing state-of-the-art methods.
Authors:Huaijie Wang, De Cheng, Guozhang Li, Zhipeng Xu, Lingfeng He, Jie Li, Nannan Wang, Xinbo Gao
Title: StPR: Spatiotemporal Preservation and Routing for Exemplar-Free Video Class-Incremental Learning
Abstract:
Video Class-Incremental Learning (VCIL) seeks to develop models that continuously learn new action categories over time without forgetting previously acquired knowledge. Unlike traditional Class-Incremental Learning (CIL), VCIL introduces the added complexity of spatiotemporal structures, making it particularly challenging to mitigate catastrophic forgetting while effectively capturing both frame-shared semantics and temporal dynamics. Existing approaches either rely on exemplar rehearsal, raising concerns over memory and privacy, or adapt static image-based methods that neglect temporal modeling. To address these limitations, we propose Spatiotemporal Preservation and Routing (StPR), a unified and exemplar-free VCIL framework that explicitly disentangles and preserves spatiotemporal information. First, we introduce Frame-Shared Semantics Distillation (FSSD), which identifies semantically stable and meaningful channels by jointly considering semantic sensitivity and classification contribution. These important semantic channels are selectively regularized to maintain prior knowledge while allowing for adaptation. Second, we design a Temporal Decomposition-based Mixture-of-Experts (TD-MoE), which dynamically routes task-specific experts based on their temporal dynamics, enabling inference without task ID or stored exemplars. Together, StPR effectively leverages spatial semantics and temporal dynamics, achieving a unified, exemplar-free VCIL framework. Extensive experiments on UCF101, HMDB51, and Kinetics400 show that our method outperforms existing baselines while offering improved interpretability and efficiency in VCIL. Code is available in the supplementary materials.
Authors:Xiao Yu, Yan Fang, Yao Zhao, Yunchao Wei
Title: IPSeg: Image Posterior Mitigates Semantic Drift in Class-Incremental Segmentation
Abstract:
Class incremental learning aims to enable models to learn from sequential, non-stationary data streams across different tasks without catastrophic forgetting. In class incremental semantic segmentation (CISS), the semantic content of image pixels evolves over incremental phases, known as semantic drift. In this work, we identify two critical challenges in CISS that contribute to semantic drift and degrade performance. First, we highlight the issue of separate optimization, where different parts of the model are optimized in distinct incremental stages, leading to misaligned probability scales. Second, we identify noisy semantics arising from inappropriate pseudo-labeling, which results in sub-optimal results. To address these challenges, we propose a novel and effective approach, Image Posterior and Semantics Decoupling for Segmentation (IPSeg). IPSeg introduces two key mechanisms: (1) leveraging image posterior probabilities to align optimization across stages and mitigate the effects of separate optimization, and (2) employing semantics decoupling to handle noisy semantics and tailor learning strategies for different semantics. Extensive experiments on the Pascal VOC 2012 and ADE20K datasets demonstrate that IPSeg achieves superior performance compared to state-of-the-art methods, particularly in challenging long-term incremental scenarios.
Authors:De Cheng, Yue Lu, Lingfeng He, Shizhou Zhang, Xi Yang, Nannan Wang, Xinbo Gao
Title: Mamba-CL: Optimizing Selective State Space Model in Null Space for Continual Learning
Abstract:
Continual Learning (CL) aims to equip AI models with the ability to learn a sequence of tasks over time, without forgetting previously learned knowledge. Recently, State Space Models (SSMs), particularly the Mamba model, have achieved notable success in computer vision. Building on the strengths of SSMs, this study explores leveraging the Mamba model for CL. Therefore, we introduce Mamba-CL, a framework that continuously fine-tunes the core SSMs of the large-scale Mamba foundation model by updating parameters orthogonal to the feature subspace of previous tasks. This approach theoretically guarantees the consistency objective aiming to preserves consistent output for each SSM module across both previous and current tasks, so as to overcome catastrophic forgetting issue. Specifically, we achieve this goal by deducing the overall consistency constraints on four key time-invariant parameters in the Mamba model, streamlining its recurrent state-space structure and non-linear discretization process in SSM. In practice, we apply the null-space projection to efficiently implement the orthogonality within Mamba model. Extensive experiments on four class-incremental benchmarks demonstrate the effectiveness of Mamba-CL for anti-forgetting, achieving superior performances to state-of-the-art methods. Code is available in the supplementary materials.
Authors:Ruining Deng, Junchao Zhu, Juming Xiong, Can Cui, Tianyuan Yao, Junlin Guo, Siqi Lu, Marilyn Lionts, Mengmeng Yin, Yu Wang, Shilin Zhao, Yucheng Tang, Yihe Yang, Paul Dennis Simonson, Mert R. Sabuncu, Haichun Yang, Yuankai Huo
Title: IRS: Incremental Relationship-guided Segmentation for Digital Pathology
Abstract:
Continual learning is rapidly emerging as a key focus in computer vision, aiming to develop AI systems capable of continuous improvement, thereby enhancing their value and practicality in diverse real-world applications. In healthcare, continual learning holds great promise for continuously acquired digital pathology data, which is collected in hospitals on a daily basis. However, panoramic segmentation on digital whole slide images (WSIs) presents significant challenges, as it is often infeasible to obtain comprehensive annotations for all potential objects, spanning from coarse structures (e.g., regions and unit objects) to fine structures (e.g., cells). This results in temporally and partially annotated data, posing a major challenge in developing a holistic segmentation framework. Moreover, an ideal segmentation model should incorporate new phenotypes, unseen diseases, and diverse populations, making this task even more complex. In this paper, we introduce a novel and unified Incremental Relationship-guided Segmentation (IRS) learning scheme to address temporally acquired, partially annotated data while maintaining out-of-distribution (OOD) continual learning capacity in digital pathology. The key innovation of IRS lies in its ability to realize a new spatial-temporal OOD continual learning paradigm by mathematically modeling anatomical relationships between existing and newly introduced classes through a simple incremental universal proposition matrix. Experimental results demonstrate that the IRS method effectively handles the multi-scale nature of pathological segmentation, enabling precise kidney segmentation across various structures (regions, units, and cells) as well as OOD disease lesions at multiple magnifications. This capability significantly enhances domain generalization, making IRS a robust approach for real-world digital pathology applications.
Authors:Bihao Zhan, Jie Zhou, Junsong Li, Yutao Yang, Shilian Chen, Qianjun Pan, Xin Li, Wen Wu, Xingjiao Wu, Qin Chen, Hang Yan, Liang He
Title: Forget What's Sensitive, Remember What Matters: Token-Level Differential Privacy in Memory Sculpting for Continual Learning
Abstract:
Continual Learning (CL) models, while adept at sequential knowledge acquisition, face significant and often overlooked privacy challenges due to accumulating diverse information. Traditional privacy methods, like a uniform Differential Privacy (DP) budget, indiscriminately protect all data, leading to substantial model utility degradation and hindering CL deployment in privacy-sensitive areas. To overcome this, we propose a privacy-enhanced continual learning (PeCL) framework that forgets what's sensitive and remembers what matters. Our approach first introduces a token-level dynamic Differential Privacy strategy that adaptively allocates privacy budgets based on the semantic sensitivity of individual tokens. This ensures robust protection for private entities while minimizing noise injection for non-sensitive, general knowledge. Second, we integrate a privacy-guided memory sculpting module. This module leverages the sensitivity analysis from our dynamic DP mechanism to intelligently forget sensitive information from the model's memory and parameters, while explicitly preserving the task-invariant historical knowledge crucial for mitigating catastrophic forgetting. Extensive experiments show that PeCL achieves a superior balance between privacy preserving and model utility, outperforming baseline models by maintaining high accuracy on previous tasks while ensuring robust privacy.
Authors:Tianyu Huai, Jie Zhou, Yuxuan Cai, Qin Chen, Wen Wu, Xingjiao Wu, Xipeng Qiu, Liang He
Title: Task-Core Memory Management and Consolidation for Long-term Continual Learning
Abstract:
In this paper, we focus on a long-term continual learning (CL) task, where a model learns sequentially from a stream of vast tasks over time, acquiring new knowledge while retaining previously learned information in a manner akin to human learning. Unlike traditional CL settings, long-term CL involves handling a significantly larger number of tasks, which exacerbates the issue of catastrophic forgetting. Our work seeks to address two critical questions: 1) How do existing CL methods perform in the context of long-term CL? and 2) How can we mitigate the catastrophic forgetting that arises from prolonged sequential updates? To tackle these challenges, we propose a novel framework inspired by human memory mechanisms for long-term continual learning (Long-CL). Specifically, we introduce a task-core memory management strategy to efficiently index crucial memories and adaptively update them as learning progresses. Additionally, we develop a long-term memory consolidation mechanism that selectively retains hard and discriminative samples, ensuring robust knowledge retention. To facilitate research in this area, we construct and release two multi-modal and textual benchmarks, MMLongCL-Bench and TextLongCL-Bench, providing a valuable resource for evaluating long-term CL approaches. Experimental results show that Long-CL outperforms the previous state-of-the-art by 7.4\% and 6.5\% AP on the two benchmarks, respectively, demonstrating the effectiveness of our approach.
Authors:Yutao Yang, Jie Zhou, Junsong Li, Qianjun Pan, Bihao Zhan, Qin Chen, Xipeng Qiu, Liang He
Title: Reinforced Interactive Continual Learning via Real-time Noisy Human Feedback
Abstract:
This paper introduces an interactive continual learning paradigm where AI models dynamically learn new skills from real-time human feedback while retaining prior knowledge. This paradigm distinctively addresses two major limitations of traditional continual learning: (1) dynamic model updates using streaming, real-time human-annotated data, rather than static datasets with fixed labels, and (2) the assumption of clean labels, by explicitly handling the noisy feedback common in real-world interactions. To tackle these problems, we propose RiCL, a Reinforced interactive Continual Learning framework leveraging Large Language Models (LLMs) to learn new skills effectively from dynamic feedback. RiCL incorporates three key components: a temporal consistency-aware purifier to automatically discern clean from noisy samples in data streams; an interaction-aware direct preference optimization strategy to align model behavior with human intent by reconciling AI-generated and human-provided feedback; and a noise-resistant contrastive learning module that captures robust representations by exploiting inherent data relationships, thus avoiding reliance on potentially unreliable labels. Extensive experiments on two benchmark datasets (FewRel and TACRED), contaminated with realistic noise patterns, demonstrate that our RiCL approach substantially outperforms existing combinations of state-of-the-art online continual learning and noisy-label learning methods.
Authors:Tianyu Huai, Jie Zhou, Xingjiao Wu, Qin Chen, Qingchun Bai, Ze Zhou, Liang He
Title: CL-MoE: Enhancing Multimodal Large Language Model with Dual Momentum Mixture-of-Experts for Continual Visual Question Answering
Abstract:
Multimodal large language models (MLLMs) have garnered widespread attention from researchers due to their remarkable understanding and generation capabilities in visual language tasks (e.g., visual question answering). However, the rapid pace of knowledge updates in the real world makes offline training of MLLMs costly, and when faced with non-stationary data streams, MLLMs suffer from catastrophic forgetting during learning. In this paper, we propose an MLLMs-based dual momentum Mixture-of-Experts (CL-MoE) framework for continual visual question answering (VQA). We integrate MLLMs with continual learning to utilize the rich commonsense knowledge in LLMs. We introduce a Dual-Router MoE (RMoE) strategy to select the global and local experts using task-level and instance-level routers, to robustly assign weights to the experts most appropriate for the task. Then, we design a dynamic Momentum MoE (MMoE) to update the parameters of experts dynamically based on the relationships between the experts and tasks/instances, so that the model can absorb new knowledge while maintaining existing knowledge. The extensive experimental results indicate that our method achieves state-of-the-art performance on 10 VQA tasks, proving the effectiveness of our approach.
Authors:Junda Wu, Yuxin Xiong, Xintong Li, Yu Xia, Ruoyu Wang, Yu Wang, Tong Yu, Sungchul Kim, Ryan A. Rossi, Lina Yao, Jingbo Shang, Julian McAuley
Title: Mitigating Visual Knowledge Forgetting in MLLM Instruction-tuning via Modality-decoupled Gradient Descent
Abstract:
Recent MLLMs have shown emerging visual understanding and reasoning abilities after being pre-trained on large-scale multimodal datasets. Unlike pre-training, where MLLMs receive rich visual-text alignment, instruction-tuning is often text-driven with weaker visual supervision, leading to the degradation of pre-trained visual understanding and causing visual forgetting. Existing approaches, such as direct fine-tuning and continual learning methods, fail to explicitly address this issue, often compressing visual representations and prioritizing task alignment over visual retention, which further worsens visual forgetting. To overcome this limitation, we introduce a novel perspective leveraging effective rank to quantify the degradation of visual representation richness, interpreting this degradation through the information bottleneck principle as excessive compression that leads to the degradation of crucial pre-trained visual knowledge. Building on this view, we propose a modality-decoupled gradient descent (MDGD) method that regulates gradient updates to maintain the effective rank of visual representations while mitigating the over-compression effects described by the information bottleneck. By explicitly disentangling the optimization of visual understanding from task-specific alignment, MDGD preserves pre-trained visual knowledge while enabling efficient task adaptation. To enable lightweight instruction-tuning, we further develop a memory-efficient fine-tuning approach using gradient masking, which selectively updates a subset of model parameters to enable parameter-efficient fine-tuning (PEFT), reducing computational overhead while preserving rich visual representations. Extensive experiments across various downstream tasks and backbone MLLMs demonstrate that MDGD effectively mitigates visual forgetting from pre-trained tasks while enabling strong adaptation to new tasks.
Authors:Dongfang Li, Zetian Sun, Xinshuo Hu, Baotian Hu, Min Zhang
Title: CMT: A Memory Compression Method for Continual Knowledge Learning of Large Language Models
Abstract:
Large Language Models (LLMs) need to adapt to the continuous changes in data, tasks, and user preferences. Due to their massive size and the high costs associated with training, LLMs are not suitable for frequent retraining. However, updates are necessary to keep them in sync with rapidly evolving human knowledge. To address these challenges, this paper proposes the Compression Memory Training (CMT) method, an efficient and effective online adaptation framework for LLMs that features robust knowledge retention capabilities. Inspired by human memory mechanisms, CMT compresses and extracts information from new documents to be stored in a memory bank. When answering to queries related to these new documents, the model aggregates these document memories from the memory bank to better answer user questions. The parameters of the LLM itself do not change during training and inference, reducing the risk of catastrophic forgetting. To enhance the encoding, retrieval, and aggregation of memory, we further propose three new general and flexible techniques, including memory-aware objective, self-matching and top-aggregation. Extensive experiments conducted on three continual learning datasets (i.e., StreamingQA, SQuAD and ArchivalQA) demonstrate that the proposed method improves model adaptability and robustness across multiple base LLMs (e.g., +4.07 EM & +4.19 F1 in StreamingQA with Llama-2-7b).
Authors:Yu Wang, Xinshuang Liu, Xiusi Chen, Sean O'Brien, Junda Wu, Julian McAuley
Title: Self-Updatable Large Language Models by Integrating Context into Model Parameters
Abstract:
Despite significant advancements in large language models (LLMs), the rapid and frequent integration of small-scale experiences, such as interactions with surrounding objects, remains a substantial challenge. Two critical factors in assimilating these experiences are (1) Efficacy: the ability to accurately remember recent events; (2) Retention: the capacity to recall long-past experiences. Current methods either embed experiences within model parameters using continual learning, model editing, or knowledge distillation techniques, which often struggle with rapid updates and complex interactions, or rely on external storage to achieve long-term retention, thereby increasing storage requirements. In this paper, we propose SELF-PARAM (Self-Updatable Large Language Models with Parameter Integration). SELF-PARAM requires no extra parameters while ensuring near-optimal efficacy and long-term retention. Our method employs a training objective that minimizes the Kullback-Leibler (KL) divergence between the predictions of an original model (with access to contextual information) and a target model (without such access). By generating diverse question-answer pairs related to the knowledge and minimizing the KL divergence across this dataset, we update the target model to internalize the knowledge seamlessly within its parameters. Evaluations on question-answering and conversational recommendation tasks demonstrate that SELF-PARAM significantly outperforms existing methods, even when accounting for non-zero storage requirements. This advancement paves the way for more efficient and scalable integration of experiences in large language models by embedding knowledge directly into model parameters.
Authors:Chendi Ge, Xin Wang, Zeyang Zhang, Hong Chen, Jiapei Fan, Longtao Huang, Hui Xue, Wenwu Zhu
Title: Dynamic Mixture of Curriculum LoRA Experts for Continual Multimodal Instruction Tuning
Abstract:
Continual multimodal instruction tuning is crucial for adapting Multimodal Large Language Models (MLLMs) to evolving tasks. However, most existing methods adopt a fixed architecture, struggling with adapting to new tasks due to static model capacity. We propose to evolve the architecture under parameter budgets for dynamic task adaptation, which remains unexplored and imposes two challenges: 1) task architecture conflict, where different tasks require varying layer-wise adaptations, and 2) modality imbalance, where different tasks rely unevenly on modalities, leading to unbalanced updates. To address these challenges, we propose a novel Dynamic Mixture of Curriculum LoRA Experts (D-MoLE) method, which automatically evolves MLLM's architecture with controlled parameter budgets to continually adapt to new tasks while retaining previously learned knowledge. Specifically, we propose a dynamic layer-wise expert allocator, which automatically allocates LoRA experts across layers to resolve architecture conflicts, and routes instructions layer-wisely to facilitate knowledge sharing among experts. Then, we propose a gradient-based inter-modal continual curriculum, which adjusts the update ratio of each module in MLLM based on the difficulty of each modality within the task to alleviate the modality imbalance problem. Extensive experiments show that D-MoLE significantly outperforms state-of-the-art baselines, achieving a 15% average improvement over the best baseline. To the best of our knowledge, this is the first study of continual learning for MLLMs from an architectural perspective.
Authors:Tianshuo Zhang, Li Gao, Siran Peng, Xiangyu Zhu, Zhen Lei
Title: DevFD: Developmental Face Forgery Detection by Learning Shared and Orthogonal LoRA Subspaces
Abstract:
The rise of realistic digital face generation and manipulation poses significant social risks. The primary challenge lies in the rapid and diverse evolution of generation techniques, which often outstrip the detection capabilities of existing models. To defend against the ever-evolving new types of forgery, we need to enable our model to quickly adapt to new domains with limited computation and data while avoiding forgetting previously learned forgery types. In this work, we posit that genuine facial samples are abundant and relatively stable in acquisition methods, while forgery faces continuously evolve with the iteration of manipulation techniques. Given the practical infeasibility of exhaustively collecting all forgery variants, we frame face forgery detection as a continual learning problem and allow the model to develop as new forgery types emerge. Specifically, we employ a Developmental Mixture of Experts (MoE) architecture that uses LoRA models as its individual experts. These experts are organized into two groups: a Real-LoRA to learn and refine knowledge of real faces, and multiple Fake-LoRAs to capture incremental information from different forgery types. To prevent catastrophic forgetting, we ensure that the learning direction of Fake-LoRAs is orthogonal to the established subspace. Moreover, we integrate orthogonal gradients into the orthogonal loss of Fake-LoRAs, preventing gradient interference throughout the training process of each task. Experimental results under both the datasets and manipulation types incremental protocols demonstrate the effectiveness of our method.
Authors:Tianshuo Zhang, Siran Peng, Li Gao, Haoyuan Zhang, Xiangyu Zhu, Zhen Lei
Title: Unifying Locality of KANs and Feature Drift Compensation Projection for Data-free Replay based Continual Face Forgery Detection
Abstract:
The rapid advancements in face forgery techniques necessitate that detectors continuously adapt to new forgery methods, thus situating face forgery detection within a continual learning paradigm. However, when detectors learn new forgery types, their performance on previous types often degrades rapidly, a phenomenon known as catastrophic forgetting. Kolmogorov-Arnold Networks (KANs) utilize locally plastic splines as their activation functions, enabling them to learn new tasks by modifying only local regions of the functions while leaving other areas unaffected. Therefore, they are naturally suitable for addressing catastrophic forgetting. However, KANs have two significant limitations: 1) the splines are ineffective for modeling high-dimensional images, while alternative activation functions that are suitable for images lack the essential property of locality; 2) in continual learning, when features from different domains overlap, the mapping of different domains to distinct curve regions always collapses due to repeated modifications of the same regions. In this paper, we propose a KAN-based Continual Face Forgery Detection (KAN-CFD) framework, which includes a Domain-Group KAN Detector (DG-KD) and a data-free replay Feature Separation strategy via KAN Drift Compensation Projection (FS-KDCP). DG-KD enables KANs to fit high-dimensional image inputs while preserving locality and local plasticity. FS-KDCP avoids the overlap of the KAN input spaces without using data from prior tasks. Experimental results demonstrate that the proposed method achieves superior performance while notably reducing forgetting.
Authors:Quyen Tran, Hoang Phan, Minh Le, Tuan Truong, Dinh Phung, Linh Ngo, Thien Nguyen, Nhat Ho, Trung Le
Title: Leveraging Hierarchical Taxonomies in Prompt-based Continual Learning
Abstract:
Humans perceive the world as a series of sequential events, which can be hierarchically organized with different levels of abstraction based on conceptual knowledge. Drawing inspiration from human learning behaviors, this work proposes a novel approach to mitigate catastrophic forgetting in Prompt-based Continual Learning models by exploiting the relationships between continuously emerging class data. We find that applying human habits of organizing and connecting information can serve as an efficient strategy when training deep learning models. Specifically, by building a hierarchical tree structure based on the expanding set of labels, we gain fresh insights into the data, identifying groups of similar classes could easily cause confusion. Additionally, we delve deeper into the hidden connections between classes by exploring the original pretrained model's behavior through an optimal transport-based approach. From these insights, we propose a novel regularization loss function that encourages models to focus more on challenging knowledge areas, thereby enhancing overall performance. Experimentally, our method demonstrated significant superiority over the most robust state-of-the-art models on various benchmarks.
Authors:Yue Tan, Xiaoqian Hu, Hao Xue, Celso De Melo, Flora D. Salim
Title: Bisecle: Binding and Separation in Continual Learning for Video Language Understanding
Abstract:
Frontier vision-language models (VLMs) have made remarkable improvements in video understanding tasks. However, real-world videos typically exist as continuously evolving data streams (e.g., dynamic scenes captured by wearable glasses), necessitating models to continually adapt to shifting data distributions and novel scenarios. Considering the prohibitive computational costs of fine-tuning models on new tasks, usually, a small subset of parameters is updated while the bulk of the model remains frozen. This poses new challenges to existing continual learning frameworks in the context of large multimodal foundation models, i.e., catastrophic forgetting and update conflict. While the foundation models struggle with parameter-efficient continual learning, the hippocampus in the human brain has evolved highly efficient mechanisms for memory formation and consolidation. Inspired by the rapid Binding and pattern separation mechanisms in the hippocampus, in this work, we propose Bisecle for video-language continual learning, where a multi-directional supervision module is used to capture more cross-modal relationships and a contrastive prompt learning scheme is designed to isolate task-specific knowledge to facilitate efficient memory storage. Binding and separation processes further strengthen the ability of VLMs to retain complex experiences, enabling robust and efficient continual learning in video understanding tasks. We perform a thorough evaluation of the proposed Bisecle, demonstrating its ability to mitigate forgetting and enhance cross-task generalization on several VideoQA benchmarks.
Authors:Bang Liu, Xinfeng Li, Jiayi Zhang, Jinlin Wang, Tanjin He, Sirui Hong, Hongzhang Liu, Shaokun Zhang, Kaitao Song, Kunlun Zhu, Yuheng Cheng, Suyuchen Wang, Xiaoqiang Wang, Yuyu Luo, Haibo Jin, Peiyan Zhang, Ollie Liu, Jiaqi Chen, Huan Zhang, Zhaoyang Yu, Haochen Shi, Boyan Li, Dekun Wu, Fengwei Teng, Xiaojun Jia, Jiawei Xu, Jinyu Xiang, Yizhang Lin, Tianming Liu, Tongliang Liu, Yu Su, Huan Sun, Glen Berseth, Jianyun Nie, Ian Foster, Logan Ward, Qingyun Wu, Yu Gu, Mingchen Zhuge, Xinbing Liang, Xiangru Tang, Haohan Wang, Jiaxuan You, Chi Wang, Jian Pei, Qiang Yang, Xiaoliang Qi, Chenglin Wu
Title: Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems
Abstract:
The advent of large language models (LLMs) has catalyzed a transformative shift in artificial intelligence, paving the way for advanced intelligent agents capable of sophisticated reasoning, robust perception, and versatile action across diverse domains. As these agents increasingly drive AI research and practical applications, their design, evaluation, and continuous improvement present intricate, multifaceted challenges. This book provides a comprehensive overview, framing intelligent agents within modular, brain-inspired architectures that integrate principles from cognitive science, neuroscience, and computational research. We structure our exploration into four interconnected parts. First, we systematically investigate the modular foundation of intelligent agents, systematically mapping their cognitive, perceptual, and operational modules onto analogous human brain functionalities and elucidating core components such as memory, world modeling, reward processing, goal, and emotion. Second, we discuss self-enhancement and adaptive evolution mechanisms, exploring how agents autonomously refine their capabilities, adapt to dynamic environments, and achieve continual learning through automated optimization paradigms. Third, we examine multi-agent systems, investigating the collective intelligence emerging from agent interactions, cooperation, and societal structures. Finally, we address the critical imperative of building safe and beneficial AI systems, emphasizing intrinsic and extrinsic security threats, ethical alignment, robustness, and practical mitigation strategies necessary for trustworthy real-world deployment. By synthesizing modular AI architectures with insights from different disciplines, this survey identifies key research challenges and opportunities, encouraging innovations that harmonize technological advancement with meaningful societal benefit.
Authors:Ruiqi Liu, Boyu Diao, Zijia An, Runjie Shao, Zhulin An, Fei Wang, Yongjun Xu
Title: Semantic-Guided Dynamic Sparsification for Pre-Trained Model-based Class-Incremental Learning
Abstract:
Class-Incremental Learning (CIL) requires a model to continually learn new classes without forgetting old ones. A common and efficient solution freezes a pre-trained model and employs lightweight adapters, whose parameters are often forced to be orthogonal to prevent inter-task interference. However, we argue that this parameter-constraining method is detrimental to plasticity. To this end, we propose Semantic-Guided Dynamic Sparsification (SGDS), a novel method that proactively guides the activation space by governing the orientation and rank of its subspaces through targeted sparsification. Specifically, SGDS promotes knowledge transfer by encouraging similar classes to share a compact activation subspace, while simultaneously preventing interference by assigning non-overlapping activation subspaces to dissimilar classes. By sculpting class-specific sparse subspaces in the activation space, SGDS effectively mitigates interference without imposing rigid constraints on the parameter space. Extensive experiments on various benchmark datasets demonstrate the state-of-the-art performance of SGDS.
Authors:Ruiqi Liu, Boyu Diao, Zijia An, Zhulin An, Fei Wang, Yongjun Xu
Title: Dynamical Adapter Fusion: Constructing A Global Adapter for Pre-Trained Model-based Class-Incremental Learning
Abstract:
Class-Incremental Learning (CIL) requires models to continuously acquire new classes without forgetting previously learned ones. A dominant paradigm involves freezing a pre-trained model and training lightweight, task-specific adapters. However, maintaining task-specific parameters hinders knowledge transfer and incurs high retrieval costs, while naive parameter fusion often leads to destructive interference and catastrophic forgetting. To address these challenges, we propose Dynamical Adapter Fusion (DAF) to construct a single robust global adapter. Grounded in the PAC-Bayes theorem, we derive a fusion mechanism that explicitly integrates three components: the optimized task-specific adapter parameters, the previous global adapter parameters, and the initialization parameters. We utilize the Taylor expansion of the loss function to derive the optimal fusion coefficients, dynamically achieving the best balance between stability and plasticity. Furthermore, we propose a Robust Initialization strategy to effectively capture global knowledge patterns. Experiments on multiple CIL benchmarks demonstrate that DAF achieves state-of-the-art (SOTA) performance.
Authors:Zijia An, Boyu Diao, Ruiqi Liu, Libo Huang, Chuanguang Yang, Fei Wang, Zhulin An, Yongjun Xu
Title: Parameterized Prompt for Incremental Object Detection
Abstract:
Recent studies have demonstrated that incorporating trainable prompts into pretrained models enables effective incremental learning. However, the application of prompts in incremental object detection (IOD) remains underexplored. Existing prompts pool based approaches assume disjoint class sets across incremental tasks, which are unsuitable for IOD as they overlook the inherent co-occurrence phenomenon in detection images. In co-occurring scenarios, unlabeled objects from previous tasks may appear in current task images, leading to confusion in prompts pool. In this paper, we hold that prompt structures should exhibit adaptive consolidation properties across tasks, with constrained updates to prevent catastrophic forgetting. Motivated by this, we introduce Parameterized Prompts for Incremental Object Detection (P$^2$IOD). Leveraging neural networks global evolution properties, P$^2$IOD employs networks as the parameterized prompts to adaptively consolidate knowledge across tasks. To constrain prompts structure updates, P$^2$IOD further engages a parameterized prompts fusion strategy. Extensive experiments on PASCAL VOC2007 and MS COCO datasets demonstrate that P$^2$IOD's effectiveness in IOD and achieves the state-of-the-art performance among existing baselines.
Authors:Ruiqi Liu, Boyu Diao, Libo Huang, Hangda Liu, Chuanguang Yang, Zhulin An, Yongjun Xu
Title: Efficient Continual Learning through Frequency Decomposition and Integration
Abstract:
Continual learning (CL) aims to learn new tasks while retaining past knowledge, addressing the challenge of forgetting during task adaptation. Rehearsal-based methods, which replay previous samples, effectively mitigate forgetting. However, research on enhancing the efficiency of these methods, especially in resource-constrained environments, remains limited, hindering their application in real-world systems with dynamic data streams. The human perceptual system processes visual scenes through complementary frequency channels: low-frequency signals capture holistic cues, while high-frequency components convey structural details vital for fine-grained discrimination. Inspired by this, we propose the Frequency Decomposition and Integration Network (FDINet), a novel framework that decomposes and integrates information across frequencies. FDINet designs two lightweight networks to independently process low- and high-frequency components of images. When integrated with rehearsal-based methods, this frequency-aware design effectively enhances cross-task generalization through low-frequency information, preserves class-specific details using high-frequency information, and facilitates efficient training due to its lightweight architecture. Experiments demonstrate that FDINet reduces backbone parameters by 78%, improves accuracy by up to 7.49% over state-of-the-art (SOTA) methods, and decreases peak memory usage by up to 80%. Additionally, on edge devices, FDINet accelerates training by up to 5$\times$.
Authors:Ruiqi Liu, Boyu Diao, Libo Huang, Zijia An, Zhulin An, Yongjun Xu
Title: Continual Learning in the Frequency Domain
Abstract:
Continual learning (CL) is designed to learn new tasks while preserving existing knowledge. Replaying samples from earlier tasks has proven to be an effective method to mitigate the forgetting of previously acquired knowledge. However, the current research on the training efficiency of rehearsal-based methods is insufficient, which limits the practical application of CL systems in resource-limited scenarios. The human visual system (HVS) exhibits varying sensitivities to different frequency components, enabling the efficient elimination of visually redundant information. Inspired by HVS, we propose a novel framework called Continual Learning in the Frequency Domain (CLFD). To our knowledge, this is the first study to utilize frequency domain features to enhance the performance and efficiency of CL training on edge devices. For the input features of the feature extractor, CLFD employs wavelet transform to map the original input image into the frequency domain, thereby effectively reducing the size of input feature maps. Regarding the output features of the feature extractor, CLFD selectively utilizes output features for distinct classes for classification, thereby balancing the reusability and interference of output features based on the frequency domain similarity of the classes across various tasks. Optimizing only the input and output features of the feature extractor allows for seamless integration of CLFD with various rehearsal-based methods. Extensive experiments conducted in both cloud and edge environments demonstrate that CLFD consistently improves the performance of state-of-the-art (SOTA) methods in both precision and training efficiency. Specifically, CLFD can increase the accuracy of the SOTA CL method by up to 6.83% and reduce the training time by 2.6$\times$.
Authors:Song Lai, Zhe Zhao, Fei Zhu, Xi Lin, Qingfu Zhang, Gaofeng Meng
Title: Pareto Continual Learning: Preference-Conditioned Learning and Adaption for Dynamic Stability-Plasticity Trade-off
Abstract:
Continual learning aims to learn multiple tasks sequentially. A key challenge in continual learning is balancing between two objectives: retaining knowledge from old tasks (stability) and adapting to new tasks (plasticity). Experience replay methods, which store and replay past data alongside new data, have become a widely adopted approach to mitigate catastrophic forgetting. However, these methods neglect the dynamic nature of the stability-plasticity trade-off and aim to find a fixed and unchanging balance, resulting in suboptimal adaptation during training and inference. In this paper, we propose Pareto Continual Learning (ParetoCL), a novel framework that reformulates the stability-plasticity trade-off in continual learning as a multi-objective optimization (MOO) problem. ParetoCL introduces a preference-conditioned model to efficiently learn a set of Pareto optimal solutions representing different trade-offs and enables dynamic adaptation during inference. From a generalization perspective, ParetoCL can be seen as an objective augmentation approach that learns from different objective combinations of stability and plasticity. Extensive experiments across multiple datasets and settings demonstrate that ParetoCL outperforms state-of-the-art methods and adapts to diverse continual learning scenarios.
Authors:Chao-Hong Tan, Qian Chen, Wen Wang, Yukun Ma, Chong Zhang, Chong Deng, Qinglin Zhang, Xiangang Li, Jieping Ye
Title: FGGM: Fisher-Guided Gradient Masking for Continual Learning
Abstract:
Catastrophic forgetting impairs the continuous learning of large language models. We propose Fisher-Guided Gradient Masking (FGGM), a framework that mitigates this by strategically selecting parameters for updates using diagonal Fisher Information. FGGM dynamically generates binary masks with adaptive thresholds, preserving critical parameters to balance stability and plasticity without requiring historical data. Unlike magnitude-based methods such as MIGU, our approach offers a mathematically principled parameter importance estimation. On the TRACE benchmark, FGGM shows a 9.6% relative improvement in retaining general capabilities over supervised fine-tuning (SFT) and a 4.4% improvement over MIGU on TRACE tasks. Additional analysis on code generation tasks confirms FGGM's superior performance and reduced forgetting, establishing it as an effective solution.
Authors:Junming Liu, Yifei Sun, Weihua Cheng, Haodong Lei, Yirong Chen, Licheng Wen, Xuemeng Yang, Daocheng Fu, Pinlong Cai, Nianchen Deng, Yi Yu, Shuyue Hu, Botian Shi, Ding Wang
Title: MemVerse: Multimodal Memory for Lifelong Learning Agents
Abstract:
Despite rapid progress in large-scale language and vision models, AI agents still suffer from a fundamental limitation: they cannot remember. Without reliable memory, agents catastrophically forget past experiences, struggle with long-horizon reasoning, and fail to operate coherently in multimodal or interactive environments. We introduce MemVerse, a model-agnostic, plug-and-play memory framework that bridges fast parametric recall with hierarchical retrieval-based memory, enabling scalable and adaptive multimodal intelligence. MemVerse maintains short-term memory for recent context while transforming raw multimodal experiences into structured long-term memories organized as hierarchical knowledge graphs. This design supports continual consolidation, adaptive forgetting, and bounded memory growth. To handle real-time demands, MemVerse introduces a periodic distillation mechanism that compresses essential knowledge from long-term memory into the parametric model, allowing fast, differentiable recall while preserving interpretability. Extensive experiments demonstrate that MemVerse significantly improves multimodal reasoning and continual learning efficiency, empowering agents to remember, adapt, and reason coherently across extended interactions.
Authors:Zhen Li, Yuwei Wu, Chenchen Jing, Che Sun, Chuanhao Li, Yunde Jia
Title: Composition-Incremental Learning for Compositional Generalization
Abstract:
Compositional generalization has achieved substantial progress in computer vision on pre-collected training data. Nonetheless, real-world data continually emerges, with possible compositions being nearly infinite, long-tailed, and not entirely visible. Thus, an ideal model is supposed to gradually improve the capability of compositional generalization in an incremental manner. In this paper, we explore Composition-Incremental Learning for Compositional Generalization (CompIL) in the context of the compositional zero-shot learning (CZSL) task, where models need to continually learn new compositions, intending to improve their compositional generalization capability progressively. To quantitatively evaluate CompIL, we develop a benchmark construction pipeline leveraging existing datasets, yielding MIT-States-CompIL and C-GQA-CompIL. Furthermore, we propose a pseudo-replay framework utilizing a visual synthesizer to synthesize visual representations of learned compositions and a linguistic primitive distillation mechanism to maintain aligned primitive representations across the learning process. Extensive experiments demonstrate the effectiveness of the proposed framework.
Authors:Yuchuan Mao, Zhi Gao, Xiaomeng Fan, Yuwei Wu, Yunde Jia, Chenchen Jing
Title: Adaptive Model Ensemble for Continual Learning
Abstract:
Model ensemble is an effective strategy in continual learning, which alleviates catastrophic forgetting by interpolating model parameters, achieving knowledge fusion learned from different tasks. However, existing model ensemble methods usually encounter the knowledge conflict issue at task and layer levels, causing compromised learning performance in both old and new tasks. To solve this issue, we propose meta-weight-ensembler that adaptively fuses knowledge of different tasks for continual learning. Concretely, we employ a mixing coefficient generator trained via meta-learning to generate appropriate mixing coefficients for model ensemble to address the task-level knowledge conflict. The mixing coefficient is individually generated for each layer to address the layer-level knowledge conflict. In this way, we learn the prior knowledge about adaptively accumulating knowledge of different tasks in a fused model, achieving efficient learning in both old and new tasks. Meta-weight-ensembler can be flexibly combined with existing continual learning methods to boost their ability of alleviating catastrophic forgetting. Experiments on multiple continual learning datasets show that meta-weight-ensembler effectively alleviates catastrophic forgetting and achieves state-of-the-art performance.
Authors:Shang Qin, Jingheng Ye, Yinghui Li, Hai-Tao Zheng, Qi Li, Jinxiao Shan, Zhixing Li, Hong-Gee Kim
Title: CL$^2$GEC: A Multi-Discipline Benchmark for Continual Learning in Chinese Literature Grammatical Error Correction
Abstract:
The growing demand for automated writing assistance in diverse academic domains highlights the need for robust Chinese Grammatical Error Correction (CGEC) systems that can adapt across disciplines. However, existing CGEC research largely lacks dedicated benchmarks for multi-disciplinary academic writing, overlooking continual learning (CL) as a promising solution to handle domain-specific linguistic variation and prevent catastrophic forgetting. To fill this crucial gap, we introduce CL$^2$GEC, the first Continual Learning benchmark for Chinese Literature Grammatical Error Correction, designed to evaluate adaptive CGEC across multiple academic fields. Our benchmark includes 10,000 human-annotated sentences spanning 10 disciplines, each exhibiting distinct linguistic styles and error patterns. CL$^2$GEC focuses on evaluating grammatical error correction in a continual learning setting, simulating sequential exposure to diverse academic disciplines to reflect real-world editorial dynamics. We evaluate large language models under sequential tuning, parameter-efficient adaptation, and four representative CL algorithms, using both standard GEC metrics and continual learning metrics adapted to task-level variation. Experimental results reveal that regularization-based methods mitigate forgetting more effectively than replay-based or naive sequential approaches. Our benchmark provides a rigorous foundation for future research in adaptive grammatical error correction across diverse academic domains.
Authors:Zichen Liu, Guoji Fu, Chao Du, Wee Sun Lee, Min Lin
Title: Continual Reinforcement Learning by Planning with Online World Models
Abstract:
Continual reinforcement learning (CRL) refers to a naturalistic setting where an agent needs to endlessly evolve, by trial and error, to solve multiple tasks that are presented sequentially. One of the largest obstacles to CRL is that the agent may forget how to solve previous tasks when learning a new task, known as catastrophic forgetting. In this paper, we propose to address this challenge by planning with online world models. Specifically, we learn a Follow-The-Leader shallow model online to capture the world dynamics, in which we plan using model predictive control to solve a set of tasks specified by any reward functions. The online world model is immune to forgetting by construction with a proven regret bound of $\mathcal{O}(\sqrt{K^2D\log(T)})$ under mild assumptions. The planner searches actions solely based on the latest online model, thus forming a FTL Online Agent (OA) that updates incrementally. To assess OA, we further design Continual Bench, a dedicated environment for CRL, and compare with several strong baselines under the same model-planning algorithmic framework. The empirical results show that OA learns continuously to solve new tasks while not forgetting old skills, outperforming agents built on deep world models with various continual learning techniques.
Authors:Peilin Yu, Yuwei Wu, Zhi Gao, Xiaomeng Fan, Shuo Yang, Yunde Jia
Title: Hyperbolic Dual Feature Augmentation for Open-Environment
Abstract:
Feature augmentation generates novel samples in the feature space, providing an effective way to enhance the generalization ability of learning algorithms with hyperbolic geometry. Most hyperbolic feature augmentation is confined to closed-environment, assuming the number of classes is fixed (\emph{i.e.}, seen classes) and generating features only for these classes. In this paper, we propose a hyperbolic dual feature augmentation method for open-environment, which augments features for both seen and unseen classes in the hyperbolic space. To obtain a more precise approximation of the real data distribution for efficient training, (1) we adopt a neural ordinary differential equation module, enhanced by meta-learning, estimating the feature distributions of both seen and unseen classes; (2) we then introduce a regularizer to preserve the latent hierarchical structures of data in the hyperbolic space; (3) we also derive an upper bound for the hyperbolic dual augmentation loss, allowing us to train a hyperbolic model using infinite augmentations for seen and unseen classes. Extensive experiments on five open-environment tasks: class-incremental learning, few-shot open-set recognition, few-shot learning, zero-shot learning, and general image classification, demonstrate that our method effectively enhances the performance of hyperbolic algorithms in open-environment.
Authors:Kasra Borazjani, Payam Abdisarabshali, Fardis Nadimi, Naji Khosravan, Minghui Liwang, Xianbin Wang, Yiguang Hong, Seyyedali Hosseinalipour
Title: Multi-Modal Multi-Task (M3T) Federated Foundation Models for Embodied AI: Potentials and Challenges for Edge Integration
Abstract:
As embodied AI systems become increasingly multi-modal, personalized, and interactive, they must learn effectively from diverse sensory inputs, adapt continually to user preferences, and operate safely under resource and privacy constraints. These challenges expose a pressing need for machine learning models capable of swift, context-aware adaptation while balancing model generalization and personalization. Here, two methods emerge as suitable candidates, each offering parts of these capabilities: multi-modal multi-task foundation models (M3T-FMs) provide a pathway toward generalization across tasks and modalities, whereas federated learning (FL) offers the infrastructure for distributed, privacy-preserving model updates and user-level model personalization. However, when used in isolation, each of these approaches falls short of meeting the complex and diverse capability requirements of real-world embodied AI environments. In this vision paper, we introduce multi-modal multi-task federated foundation models (M3T-FFMs) for embodied AI, a new paradigm that unifies the strengths of M3T-FMs with the privacy-preserving distributed training nature of FL, enabling intelligent systems at the wireless edge. We collect critical deployment dimensions of M3T-FFMs in embodied AI ecosystems under a unified framework, which we name "EMBODY": Embodiment heterogeneity, Modality richness and imbalance, Bandwidth and compute constraints, On-device continual learning, Distributed control and autonomy, and Yielding safety, privacy, and personalization. For each, we identify concrete challenges and envision actionable research directions. We also present an evaluation framework for deploying M3T-FFMs in embodied AI systems, along with the associated trade-offs. Finally, we present a prototype implementation of M3T-FFMs and evaluate their energy and latency performance.
Authors:Zizhi Chen, Yizhen Gao, Minghao Han, Yizhou Liu, Zhaoyu Chen, Dingkang Yang, Lihua Zhang
Title: Forging a Dynamic Memory: Retrieval-Guided Continual Learning for Generalist Medical Foundation Models
Abstract:
Multimodal biomedical Vision-Language Models (VLMs) exhibit immense potential in the field of Continual Learning (CL). However, they confront a core dilemma: how to preserve fine-grained intra-modality features while bridging the significant domain gap across different modalities. To address this challenge, we propose a comprehensive framework. Leveraging our 18-million multimodal and comprehensive medical retrieval database derived from PubMed scientific papers, we pioneer the integration of Retrieval-Augmented Generation (RAG) into CL. Specifically, we employ a multi-modal, multi-layer RAG system that provides real-time guidance for model fine-tuning through dynamic, on-demand knowledge retrieval. Building upon this, we introduce a dynamic knowledge distillation framework. This framework precisely resolves the aforementioned core dilemma by dynamically modulating the importance of the parameter space, the granularity of the distilled knowledge, and the data distribution of the reference dataset in accordance with the required level of detail. To thoroughly validate the clinical value of our strategy, we have designed a more rigorous \textbf{M}edical Generalist Task Incremental Learning (MGTIL) benchmark. This benchmark is engineered to simultaneously evaluate the model's capacity for adaptation to significant domain shifts, retention of subtle intra-domain features, and real-time learning of novel and complex medical tasks. Extensive experimental results demonstrate that our proposed method achieves state-of-the-art (SOTA) performance across all metrics. The code is provided in the supplementary materials.
Authors:Naveen George, Naoki Murata, Yuhta Takida, Konda Reddy Mopuri, Yuki Mitsufuji
Title: Distill, Forget, Repeat: A Framework for Continual Unlearning in Text-to-Image Diffusion Models
Abstract:
The recent rapid growth of visual generative models trained on vast web-scale datasets has created significant tension with data privacy regulations and copyright laws, such as GDPR's ``Right to be Forgotten.'' This necessitates machine unlearning (MU) to remove specific concepts without the prohibitive cost of retraining. However, existing MU techniques are fundamentally ill-equipped for real-world scenarios where deletion requests arrive sequentially, a setting known as continual unlearning (CUL). Naively applying one-shot methods in a continual setting triggers a stability crisis, leading to a cascade of degradation characterized by retention collapse, compounding collateral damage to related concepts, and a sharp decline in generative quality. To address this critical challenge, we introduce a novel generative distillation based continual unlearning framework that ensures targeted and stable unlearning under sequences of deletion requests. By reframing each unlearning step as a multi-objective, teacher-student distillation process, the framework leverages principles from continual learning to maintain model integrity. Experiments on a 10-step sequential benchmark demonstrate that our method unlearns forget concepts with better fidelity and achieves this without significant interference to the performance on retain concepts or the overall image quality, substantially outperforming baselines. This framework provides a viable pathway for the responsible deployment and maintenance of large-scale generative models, enabling industries to comply with ongoing data removal requests in a practical and effective manner.
Authors:Ze Peng, Jian Zhang, Jintao Guo, Lei Qi, Yang Gao, Yinghuan Shi
Title: On the Implicit Adversariality of Catastrophic Forgetting in Deep Continual Learning
Abstract:
Continual learning seeks the human-like ability to accumulate new skills in machine intelligence. Its central challenge is catastrophic forgetting, whose underlying cause has not been fully understood for deep networks. In this paper, we demystify catastrophic forgetting by revealing that the new-task training is implicitly an adversarial attack against the old-task knowledge. Specifically, the new-task gradients automatically and accurately align with the sharp directions of the old-task loss landscape, rapidly increasing the old-task loss. This adversarial alignment is intriguingly counter-intuitive because the sharp directions are too sparsely distributed to align with by chance. To understand it, we theoretically show that it arises from training's low-rank bias, which, through forward and backward propagation, confines the two directions into the same low-dimensional subspace, facilitating alignment. Gradient projection (GP) methods, a representative family of forgetting-mitigating methods, reduce adversarial alignment caused by forward propagation, but cannot address the alignment due to backward propagation. We propose backGP to address it, which reduces forgetting by 10.8% and improves accuracy by 12.7% on average over GP methods.
Authors:Jiayi Luo, Qingyun Sun, Yuecen Wei, Haonan Yuan, Xingcheng Fu, Jianxin Li
Title: Privacy Auditing of Multi-domain Graph Pre-trained Model under Membership Inference Attacks
Abstract:
Multi-domain graph pre-training has emerged as a pivotal technique in developing graph foundation models. While it greatly improves the generalization of graph neural networks, its privacy risks under membership inference attacks (MIAs), which aim to identify whether a specific instance was used in training (member), remain largely unexplored. However, effectively conducting MIAs against multi-domain graph pre-trained models is a significant challenge due to: (i) Enhanced Generalization Capability: Multi-domain pre-training reduces the overfitting characteristics commonly exploited by MIAs. (ii) Unrepresentative Shadow Datasets: Diverse training graphs hinder the obtaining of reliable shadow graphs. (iii) Weakened Membership Signals: Embedding-based outputs offer less informative cues than logits for MIAs. To tackle these challenges, we propose MGP-MIA, a novel framework for Membership Inference Attacks against Multi-domain Graph Pre-trained models. Specifically, we first propose a membership signal amplification mechanism that amplifies the overfitting characteristics of target models via machine unlearning. We then design an incremental shadow model construction mechanism that builds a reliable shadow model with limited shadow graphs via incremental learning. Finally, we introduce a similarity-based inference mechanism that identifies members based on their similarity to positive and negative samples. Extensive experiments demonstrate the effectiveness of our proposed MGP-MIA and reveal the privacy risks of multi-domain graph pre-training.
Authors:Lan Li, Tao Hu, Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan
Title: BOFA: Bridge-Layer Orthogonal Low-Rank Fusion for CLIP-Based Class-Incremental Learning
Abstract:
Class-Incremental Learning (CIL) aims to continually learn new categories without forgetting previously acquired knowledge. Vision-language models such as CLIP offer strong transferable representations via multi-modal supervision, making them promising for CIL. However, applying CLIP to CIL poses two major challenges: (1) adapting to downstream tasks often requires additional learnable modules, increasing model complexity and susceptibility to forgetting; and (2) while multi-modal representations offer complementary strengths, existing methods have yet to fully realize their potential in effectively integrating visual and textual modalities. To address these issues, we propose BOFA (Bridge-layer Orthogonal Fusion for Adaptation), a novel framework for CIL. BOFA confines all model adaptation exclusively to CLIP's existing cross-modal bridge-layer, thereby adding no extra parameters or inference cost. To prevent forgetting within this layer, it leverages Orthogonal Low-Rank Fusion, a mechanism that constrains parameter updates to a low-rank ``safe subspace" mathematically constructed to be orthogonal to past task features. This ensures stable knowledge accumulation without data replay. Furthermore, BOFA employs a cross-modal hybrid prototype that synergizes stable textual prototypes with visual counterparts derived from our stably adapted bridge-layer, enhancing classification performance. Extensive experiments on standard benchmarks show that BOFA achieves superior accuracy and efficiency compared to existing methods.
Authors:Zihao Guo, Qingyun Sun, Ziwei Zhang, Haonan Yuan, Huiping Zhuang, Xingcheng Fu, Jianxin Li
Title: GraphKeeper: Graph Domain-Incremental Learning via Knowledge Disentanglement and Preservation
Abstract:
Graph incremental learning (GIL), which continuously updates graph models by sequential knowledge acquisition, has garnered significant interest recently. However, existing GIL approaches focus on task-incremental and class-incremental scenarios within a single domain. Graph domain-incremental learning (Domain-IL), aiming at updating models across multiple graph domains, has become critical with the development of graph foundation models (GFMs), but remains unexplored in the literature. In this paper, we propose Graph Domain-Incremental Learning via Knowledge Dientanglement and Preservation (GraphKeeper), to address catastrophic forgetting in Domain-IL scenario from the perspectives of embedding shifts and decision boundary deviations. Specifically, to prevent embedding shifts and confusion across incremental graph domains, we first propose the domain-specific parameter-efficient fine-tuning together with intra- and inter-domain disentanglement objectives. Consequently, to maintain a stable decision boundary, we introduce deviation-free knowledge preservation to continuously fit incremental domains. Additionally, for graphs with unobservable domains, we perform domain-aware distribution discrimination to obtain precise embeddings. Extensive experiments demonstrate the proposed GraphKeeper achieves state-of-the-art results with 6.5%~16.6% improvement over the runner-up with negligible forgetting. Moreover, we show GraphKeeper can be seamlessly integrated with various representative GFMs, highlighting its broad applicative potential.
Authors:Zhen-Hao Wen, Yan Wang, Ji Feng, Han-Jia Ye, De-Chuan Zhan, Da-Wei Zhou
Title: Hierarchical Representation Matching for CLIP-based Class-Incremental Learning
Abstract:
Class-Incremental Learning (CIL) aims to endow models with the ability to continuously adapt to evolving data streams. Recent advances in pre-trained vision-language models (e.g., CLIP) provide a powerful foundation for this task. However, existing approaches often rely on simplistic templates, such as "a photo of a [CLASS]", which overlook the hierarchical nature of visual concepts. For example, recognizing "cat" versus "car" depends on coarse-grained cues, while distinguishing "cat" from "lion" requires fine-grained details. Similarly, the current feature mapping in CLIP relies solely on the representation from the last layer, neglecting the hierarchical information contained in earlier layers. In this work, we introduce HiErarchical Representation MAtchiNg (HERMAN) for CLIP-based CIL. Our approach leverages LLMs to recursively generate discriminative textual descriptors, thereby augmenting the semantic space with explicit hierarchical cues. These descriptors are matched to different levels of the semantic hierarchy and adaptively routed based on task-specific requirements, enabling precise discrimination while alleviating catastrophic forgetting in incremental tasks. Extensive experiments on multiple benchmarks demonstrate that our method consistently achieves state-of-the-art performance.
Authors:Huan-ang Gao, Jiayi Geng, Wenyue Hua, Mengkang Hu, Xinzhe Juan, Hongzhang Liu, Shilong Liu, Jiahao Qiu, Xuan Qi, Yiran Wu, Hongru Wang, Han Xiao, Yuhang Zhou, Shaokun Zhang, Jiayi Zhang, Jinyu Xiang, Yixiong Fang, Qiwen Zhao, Dongrui Liu, Qihan Ren, Cheng Qian, Zhenhailong Wang, Minda Hu, Huazheng Wang, Qingyun Wu, Heng Ji, Mengdi Wang
Title: A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence
Abstract:
Large Language Models (LLMs) have demonstrated strong capabilities but remain fundamentally static, unable to adapt their internal parameters to novel tasks, evolving knowledge domains, or dynamic interaction contexts. As LLMs are increasingly deployed in open-ended, interactive environments, this static nature has become a critical bottleneck, necessitating agents that can adaptively reason, act, and evolve in real time. This paradigm shift -- from scaling static models to developing self-evolving agents -- has sparked growing interest in architectures and methods enabling continual learning and adaptation from data, interactions, and experiences. This survey provides the first systematic and comprehensive review of self-evolving agents, organized around three foundational dimensions -- what to evolve, when to evolve, and how to evolve. We examine evolutionary mechanisms across agent components (e.g., models, memory, tools, architecture), categorize adaptation methods by stages (e.g., intra-test-time, inter-test-time), and analyze the algorithmic and architectural designs that guide evolutionary adaptation (e.g., scalar rewards, textual feedback, single-agent and multi-agent systems). Additionally, we analyze evaluation metrics and benchmarks tailored for self-evolving agents, highlight applications in domains such as coding, education, and healthcare, and identify critical challenges and research directions in safety, scalability, and co-evolutionary dynamics. By providing a structured framework for understanding and designing self-evolving agents, this survey establishes a roadmap for advancing adaptive agentic systems in both research and real-world deployments, ultimately shedding lights to pave the way for the realization of Artificial Super Intelligence (ASI), where agents evolve autonomously, performing at or beyond human-level intelligence across a wide array of tasks.
Authors:Lan Li, Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan
Title: Addressing Imbalanced Domain-Incremental Learning through Dual-Balance Collaborative Experts
Abstract:
Domain-Incremental Learning (DIL) focuses on continual learning in non-stationary environments, requiring models to adjust to evolving domains while preserving historical knowledge. DIL faces two critical challenges in the context of imbalanced data: intra-domain class imbalance and cross-domain class distribution shifts. These challenges significantly hinder model performance, as intra-domain imbalance leads to underfitting of few-shot classes, while cross-domain shifts require maintaining well-learned many-shot classes and transferring knowledge to improve few-shot class performance in old domains. To overcome these challenges, we introduce the Dual-Balance Collaborative Experts (DCE) framework. DCE employs a frequency-aware expert group, where each expert is guided by specialized loss functions to learn features for specific frequency groups, effectively addressing intra-domain class imbalance. Subsequently, a dynamic expert selector is learned by synthesizing pseudo-features through balanced Gaussian sampling from historical class statistics. This mechanism navigates the trade-off between preserving many-shot knowledge of previous domains and leveraging new data to improve few-shot class performance in earlier tasks. Extensive experimental results on four benchmark datasets demonstrate DCE's state-of-the-art performance.
Authors:Hao Xu, Tengfei Xue, Dongnan Liu, Yuqian Chen, Fan Zhang, Carl-Fredrik Westin, Ron Kikinis, Lauren J. O'Donnell, Weidong Cai
Title: MultiCo3D: Multi-Label Voxel Contrast for One-Shot Incremental Segmentation of 3D Neuroimages
Abstract:
3D neuroimages provide a comprehensive view of brain structure and function, aiding in precise localization and functional connectivity analysis. Segmentation of white matter (WM) tracts using 3D neuroimages is vital for understanding the brain's structural connectivity in both healthy and diseased states. One-shot Class Incremental Semantic Segmentation (OCIS) refers to effectively segmenting new (novel) classes using only a single sample while retaining knowledge of old (base) classes without forgetting. Voxel-contrastive OCIS methods adjust the feature space to alleviate the feature overlap problem between the base and novel classes. However, since WM tract segmentation is a multi-label segmentation task, existing single-label voxel contrastive-based methods may cause inherent contradictions. To address this, we propose a new multi-label voxel contrast framework called MultiCo3D for one-shot class incremental tract segmentation. Our method utilizes uncertainty distillation to preserve base tract segmentation knowledge while adjusting the feature space with multi-label voxel contrast to alleviate feature overlap when learning novel tracts and dynamically weighting multi losses to balance overall loss. We compare our method against several state-of-the-art (SOTA) approaches. The experimental results show that our method significantly enhances one-shot class incremental tract segmentation accuracy across five different experimental setups on HCP and Preto datasets.
Authors:Abudukelimu Wuerkaixi, Sen Cui, Jingfeng Zhang, Kunda Yan, Bo Han, Gang Niu, Lei Fang, Changshui Zhang, Masashi Sugiyama
Title: Accurate Forgetting for Heterogeneous Federated Continual Learning
Abstract:
Recent years have witnessed a burgeoning interest in federated learning (FL). However, the contexts in which clients engage in sequential learning remain under-explored. Bridging FL and continual learning (CL) gives rise to a challenging practical problem: federated continual learning (FCL). Existing research in FCL primarily focuses on mitigating the catastrophic forgetting issue of continual learning while collaborating with other clients. We argue that the forgetting phenomena are not invariably detrimental. In this paper, we consider a more practical and challenging FCL setting characterized by potentially unrelated or even antagonistic data/tasks across different clients. In the FL scenario, statistical heterogeneity and data noise among clients may exhibit spurious correlations which result in biased feature learning. While existing CL strategies focus on a complete utilization of previous knowledge, we found that forgetting biased information is beneficial in our study. Therefore, we propose a new concept accurate forgetting (AF) and develop a novel generative-replay method~\method~which selectively utilizes previous knowledge in federated networks. We employ a probabilistic framework based on a normalizing flow model to quantify the credibility of previous knowledge. Comprehensive experiments affirm the superiority of our method over baselines.
Authors:Jiawei Zhan, Jun Liu, Jinlong Peng, Xiaochen Chen, Bin-Bin Gao, Yong Liu, Chengjie Wang
Title: DRL: Discriminative Representation Learning with Parallel Adapters for Class Incremental Learning
Abstract:
With the excellent representation capabilities of Pre-Trained Models (PTMs), remarkable progress has been made in non-rehearsal Class-Incremental Learning (CIL) research. However, it remains an extremely challenging task due to three conundrums: increasingly large model complexity, non-smooth representation shift during incremental learning and inconsistency between stage-wise sub-problem optimization and global inference. In this work, we propose the Discriminative Representation Learning (DRL) framework to specifically address these challenges. To conduct incremental learning effectively and yet efficiently, the DRL's network, called Incremental Parallel Adapter (IPA) network, is built upon a PTM and increasingly augments the model by learning a lightweight adapter with a small amount of parameter learning overhead in each incremental stage. The adapter is responsible for adapting the model to new classes, it can inherit and propagate the representation capability from the current model through parallel connection between them by a transfer gate. As a result, this design guarantees a smooth representation shift between different incremental stages. Furthermore, to alleviate inconsistency and enable comparable feature representations across incremental stages, we design the Decoupled Anchor Supervision (DAS). It decouples constraints of positive and negative samples by respectively comparing them with the virtual anchor. This decoupling promotes discriminative representation learning and aligns the feature spaces learned at different stages, thereby narrowing the gap between stage-wise local optimization over a subset of data and global inference across all classes. Extensive experiments on six benchmarks reveal that our DRL consistently outperforms other state-of-the-art methods throughout the entire CIL period while maintaining high efficiency in both training and inference phases.
Authors:Jinghan He, Haiyun Guo, Kuan Zhu, Zihan Zhao, Ming Tang, Jinqiao Wang
Title: SEEKR: Selective Attention-Guided Knowledge Retention for Continual Learning of Large Language Models
Abstract:
Continual learning (CL) is crucial for language models to dynamically adapt to the evolving real-world demands. To mitigate the catastrophic forgetting problem in CL, data replay has been proven a simple and effective strategy, and the subsequent data-replay-based distillation can further enhance the performance. However, existing methods fail to fully exploit the knowledge embedded in models from previous tasks, resulting in the need for a relatively large number of replay samples to achieve good results. In this work, we first explore and emphasize the importance of attention weights in knowledge retention, and then propose a SElective attEntion-guided Knowledge Retention method (SEEKR) for data-efficient replay-based continual learning of large language models (LLMs). Specifically, SEEKR performs attention distillation on the selected attention heads for finer-grained knowledge retention, where the proposed forgettability-based and task-sensitivity-based measures are used to identify the most valuable attention heads. Experimental results on two continual learning benchmarks for LLMs demonstrate the superiority of SEEKR over the existing methods on both performance and efficiency. Explicitly, SEEKR achieves comparable or even better performance with only 1/10 of the replayed data used by other methods, and reduces the proportion of replayed data to 1%.
Authors:Chen Gong, Zhenzhe Zheng, Fan Wu, Xiaofeng Jia, Guihai Chen
Title: Delta: A Cloud-assisted Data Enrichment Framework for On-Device Continual Learning
Abstract:
In modern mobile applications, users frequently encounter various new contexts, necessitating on-device continual learning (CL) to ensure consistent model performance. While existing research predominantly focused on developing lightweight CL frameworks, we identify that data scarcity is a critical bottleneck for on-device CL. In this work, we explore the potential of leveraging abundant cloud-side data to enrich scarce on-device data, and propose a private, efficient and effective data enrichment framework Delta. Specifically, Delta first introduces a directory dataset to decompose the data enrichment problem into device-side and cloud-side sub-problems without sharing sensitive data. Next, Delta proposes a soft data matching strategy to effectively solve the device-side sub-problem with sparse user data, and an optimal data sampling scheme for cloud server to retrieve the most suitable dataset for enrichment with low computational complexity. Further, Delta refines the data sampling scheme by jointly considering the impact of enriched data on both new and past contexts, mitigating the catastrophic forgetting issue from a new aspect. Comprehensive experiments across four typical mobile computing tasks with varied data modalities demonstrate that Delta could enhance the overall model accuracy by an average of 15.1%, 12.4%, 1.1% and 5.6% for visual, IMU, audio and textual tasks compared with few-shot CL, and consistently reduce the communication costs by over 90% compared to federated CL.
Authors:Jian Yang, Dacheng Yin, Xiaoxuan He, Yong Li, Fengyun Rao, Jing Lyu, Wei Zhai, Yang Cao, Zheng-Jun Zha
Title: WeMMU: Enhanced Bridging of Vision-Language Models and Diffusion Models via Noisy Query Tokens
Abstract:
Recent progress in multimodal large language models (MLLMs) has highlighted the challenge of efficiently bridging pre-trained Vision-Language Models (VLMs) with Diffusion Models. While methods using a fixed number of learnable query tokens offer computational efficiency, they suffer from task generalization collapse, failing to adapt to new tasks that are distant from their pre-training tasks. To overcome this, we propose Noisy Query Tokens, which learn a distributed representation space between the VLM and Diffusion Model via end-to-end optimization, enhancing continual learning. Additionally, we introduce a VAE branch with linear projection to recover fine-grained image details. Experimental results confirm our approach mitigates generalization collapse and enables stable continual learning across diverse tasks.
Authors:Fan Lyu, Linglan Zhao, Chengyan Liu, Yinying Mei, Zhang Zhang, Jian Zhang, Fuyuan Hu, Liang Wang
Title: Ambiguity-Guided Learnable Distribution Calibration for Semi-Supervised Few-Shot Class-Incremental Learning
Abstract:
Few-Shot Class-Incremental Learning (FSCIL) focuses on models learning new concepts from limited data while retaining knowledge of previous classes. Recently, many studies have started to leverage unlabeled samples to assist models in learning from few-shot samples, giving rise to the field of Semi-supervised Few-shot Class-Incremental Learning (Semi-FSCIL). However, these studies often assume that the source of unlabeled data is only confined to novel classes of the current session, which presents a narrow perspective and cannot align well with practical scenarios. To better reflect real-world scenarios, we redefine Semi-FSCIL as Generalized Semi-FSCIL (GSemi-FSCIL) by incorporating both base and all the ever-seen novel classes in the unlabeled set. This change in the composition of unlabeled samples poses a new challenge for existing methods, as they struggle to distinguish between unlabeled samples from base and novel classes. To address this issue, we propose an Ambiguity-guided Learnable Distribution Calibration (ALDC) strategy. ALDC dynamically uses abundant base samples to correct biased feature distributions for few-shot novel classes. Experiments on three benchmark datasets show that our method outperforms existing works, setting new state-of-the-art results.
Authors:Jack Foster, Kirill Paramonov, Mete Ozay, Umberto Michieli
Title: Feature-Space Generative Models for One-Shot Class-Incremental Learning
Abstract:
Few-shot class-incremental learning (FSCIL) is a paradigm where a model, initially trained on a dataset of base classes, must adapt to an expanding problem space by recognizing novel classes with limited data. We focus on the challenging FSCIL setup where a model receives only a single sample (1-shot) for each novel class and no further training or model alterations are allowed after the base training phase. This makes generalization to novel classes particularly difficult. We propose a novel approach predicated on the hypothesis that base and novel class embeddings have structural similarity. We map the original embedding space into a residual space by subtracting the class prototype (i.e., the average class embedding) of input samples. Then, we leverage generative modeling with VAE or diffusion models to learn the multi-modal distribution of residuals over the base classes, and we use this as a valuable structural prior to improve recognition of novel classes. Our approach, Gen1S, consistently improves novel class recognition over the state of the art across multiple benchmarks and backbone architectures.
Authors:Srishti Gupta, Riccardo Balia, Daniele Angioni, Fabio Brau, Maura Pintor, Ambra Demontis, Alessandro Sebastian, Salvatore Mario Carta, Fabio Roli, Battista Biggio
Title: Out-of-Distribution Detection for Continual Learning: Design Principles and Benchmarking
Abstract:
Recent years have witnessed significant progress in the development of machine learning models across a wide range of fields, fueled by increased computational resources, large-scale datasets, and the rise of deep learning architectures. From malware detection to enabling autonomous navigation, modern machine learning systems have demonstrated remarkable capabilities. However, as these models are deployed in ever-changing real-world scenarios, their ability to remain reliable and adaptive over time becomes increasingly important. For example, in the real world, new malware families are continuously developed, whereas autonomous driving cars are employed in many different cities and weather conditions. Models trained in fixed settings can not respond effectively to novel conditions encountered post-deployment. In fact, most machine learning models are still developed under the assumption that training and test data are independent and identically distributed (i.i.d.), i.e., sampled from the same underlying (unknown) distribution. While this assumption simplifies model development and evaluation, it does not hold in many real-world applications, where data changes over time and unexpected inputs frequently occur. Retraining models from scratch whenever new data appears is computationally expensive, time-consuming, and impractical in resource-constrained environments. These limitations underscore the need for Continual Learning (CL), which enables models to incrementally learn from evolving data streams without forgetting past knowledge, and Out-of-Distribution (OOD) detection, which allows systems to identify and respond to novel or anomalous inputs. Jointly addressing both challenges is critical to developing robust, efficient, and adaptive AI systems.
Authors:Daniele Ghiani, Daniele Angioni, Giorgio Piras, Angelo Sotgiu, Luca Minnei, Srishti Gupta, Maura Pintor, Fabio Roli, Battista Biggio
Title: Regression-aware Continual Learning for Android Malware Detection
Abstract:
Malware evolves rapidly, forcing machine learning (ML)-based detectors to adapt continuously. With antivirus vendors processing hundreds of thousands of new samples daily, datasets can grow to billions of examples, making full retraining impractical. Continual learning (CL) has emerged as a scalable alternative, enabling incremental updates without full data access while mitigating catastrophic forgetting. In this work, we analyze a critical yet overlooked issue in this context: security regression. Unlike forgetting, which manifests as a general performance drop on previously seen data, security regression captures harmful prediction changes at the sample level, such as a malware sample that was once correctly detected but evades detection after a model update. Although often overlooked, regressions pose serious risks in security-critical applications, as the silent reintroduction of previously detected threats in the system may undermine users' trust in the whole updating process. To address this issue, we formalize and quantify security regression in CL-based malware detectors and propose a regression-aware penalty to mitigate it. Specifically, we adapt Positive Congruent Training (PCT) to the CL setting, preserving prior predictive behavior in a model-agnostic manner. Experiments on the ELSA, Tesseract, and AZ-Class datasets show that our method effectively reduces regression across different CL scenarios while maintaining strong detection performance over time.
Authors:Srishti Gupta, Daniele Angioni, Maura Pintor, Ambra Demontis, Lea Schönherr, Battista Biggio, Fabio Roli
Title: Buffer-free Class-Incremental Learning with Out-of-Distribution Detection
Abstract:
Class-incremental learning (CIL) poses significant challenges in open-world scenarios, where models must not only learn new classes over time without forgetting previous ones but also handle inputs from unknown classes that a closed-set model would misclassify. Recent works address both issues by (i)~training multi-head models using the task-incremental learning framework, and (ii) predicting the task identity employing out-of-distribution (OOD) detectors. While effective, the latter mainly relies on joint training with a memory buffer of past data, raising concerns around privacy, scalability, and increased training time. In this paper, we present an in-depth analysis of post-hoc OOD detection methods and investigate their potential to eliminate the need for a memory buffer. We uncover that these methods, when applied appropriately at inference time, can serve as a strong substitute for buffer-based OOD detection. We show that this buffer-free approach achieves comparable or superior performance to buffer-based methods both in terms of class-incremental learning and the rejection of unknown samples. Experimental results on CIFAR-10, CIFAR-100 and Tiny ImageNet datasets support our findings, offering new insights into the design of efficient and privacy-preserving CIL systems for open-world settings.
Authors:Kirill Paramonov, Mete Ozay, Eunju Yang, Jijoong Moon, Umberto Michieli
Title: Controllable Forgetting Mechanism for Few-Shot Class-Incremental Learning
Abstract:
Class-incremental learning in the context of limited personal labeled samples (few-shot) is critical for numerous real-world applications, such as smart home devices. A key challenge in these scenarios is balancing the trade-off between adapting to new, personalized classes and maintaining the performance of the model on the original, base classes. Fine-tuning the model on novel classes often leads to the phenomenon of catastrophic forgetting, where the accuracy of base classes declines unpredictably and significantly. In this paper, we propose a simple yet effective mechanism to address this challenge by controlling the trade-off between novel and base class accuracy. We specifically target the ultra-low-shot scenario, where only a single example is available per novel class. Our approach introduces a Novel Class Detection (NCD) rule, which adjusts the degree of forgetting a priori while simultaneously enhancing performance on novel classes. We demonstrate the versatility of our solution by applying it to state-of-the-art Few-Shot Class-Incremental Learning (FSCIL) methods, showing consistent improvements across different settings. To better quantify the trade-off between novel and base class performance, we introduce new metrics: NCR@2FOR and NCR@5FOR. Our approach achieves up to a 30% improvement in novel class accuracy on the CIFAR100 dataset (1-shot, 1 novel class) while maintaining a controlled base class forgetting rate of 2%.
Authors:Yichen Li, Yuying Wang, Jiahua Dong, Haozhao Wang, Yining Qi, Rui Zhang, Ruixuan Li
Title: Resource-Constrained Federated Continual Learning: What Does Matter?
Abstract:
Federated Continual Learning (FCL) aims to enable sequentially privacy-preserving model training on streams of incoming data that vary in edge devices by preserving previous knowledge while adapting to new data. Current FCL literature focuses on restricted data privacy and access to previously seen data while imposing no constraints on the training overhead. This is unreasonable for FCL applications in real-world scenarios, where edge devices are primarily constrained by resources such as storage, computational budget, and label rate. We revisit this problem with a large-scale benchmark and analyze the performance of state-of-the-art FCL approaches under different resource-constrained settings. Various typical FCL techniques and six datasets in two incremental learning scenarios (Class-IL and Domain-IL) are involved in our experiments. Through extensive experiments amounting to a total of over 1,000+ GPU hours, we find that, under limited resource-constrained settings, existing FCL approaches, with no exception, fail to achieve the expected performance. Our conclusions are consistent in the sensitivity analysis. This suggests that most existing FCL methods are particularly too resource-dependent for real-world deployment. Moreover, we study the performance of typical FCL techniques with resource constraints and shed light on future research directions in FCL.
Authors:Yichen Li, Haozhao Wang, Wenchao Xu, Tianzhe Xiao, Hong Liu, Minzhu Tu, Yuying Wang, Xin Yang, Rui Zhang, Shui Yu, Song Guo, Ruixuan Li
Title: Unleashing the Power of Continual Learning on Non-Centralized Devices: A Survey
Abstract:
Non-Centralized Continual Learning (NCCL) has become an emerging paradigm for enabling distributed devices such as vehicles and servers to handle streaming data from a joint non-stationary environment. To achieve high reliability and scalability in deploying this paradigm in distributed systems, it is essential to conquer challenges stemming from both spatial and temporal dimensions, manifesting as distribution shifts, catastrophic forgetting, heterogeneity, and privacy issues. This survey focuses on a comprehensive examination of the development of the non-centralized continual learning algorithms and the real-world deployment across distributed devices. We begin with an introduction to the background and fundamentals of non-centralized learning and continual learning. Then, we review existing solutions from three levels to represent how existing techniques alleviate the catastrophic forgetting and distribution shift. Additionally, we delve into the various types of heterogeneity issues, security, and privacy attributes, as well as real-world applications across three prevalent scenarios. Furthermore, we establish a large-scale benchmark to revisit this problem and analyze the performance of the state-of-the-art NCCL approaches. Finally, we discuss the important challenges and future research directions in NCCL.
Authors:Haoze Li, Jie Zhang, Guoying Zhao, Stephen Lin, Shiguang Shan
Title: Steering Vision-Language Pre-trained Models for Incremental Face Presentation Attack Detection
Abstract:
Face Presentation Attack Detection (PAD) demands incremental learning (IL) to combat evolving spoofing tactics and domains. Privacy regulations, however, forbid retaining past data, necessitating rehearsal-free IL (RF-IL). Vision-Language Pre-trained (VLP) models, with their prompt-tunable cross-modal representations, enable efficient adaptation to new spoofing styles and domains. Capitalizing on this strength, we propose \textbf{SVLP-IL}, a VLP-based RF-IL framework that balances stability and plasticity via \textit{Multi-Aspect Prompting} (MAP) and \textit{Selective Elastic Weight Consolidation} (SEWC). MAP isolates domain dependencies, enhances distribution-shift sensitivity, and mitigates forgetting by jointly exploiting universal and domain-specific cues. SEWC selectively preserves critical weights from previous tasks, retaining essential knowledge while allowing flexibility for new adaptations. Comprehensive experiments across multiple PAD benchmarks show that SVLP-IL significantly reduces catastrophic forgetting and enhances performance on unseen domains. SVLP-IL offers a privacy-compliant, practical solution for robust lifelong PAD deployment in RF-IL settings.
Authors:Di Yu, Changze Lv, Xin Du, Linshan Jiang, Wentao Tong, Zhenyu Liao, Xiaoqing Zheng, Shuiguang Deng
Title: ECC-SNN: Cost-Effective Edge-Cloud Collaboration for Spiking Neural Networks
Abstract:
Most edge-cloud collaboration frameworks rely on the substantial computational and storage capabilities of cloud-based artificial neural networks (ANNs). However, this reliance results in significant communication overhead between edge devices and the cloud and high computational energy consumption, especially when applied to resource-constrained edge devices. To address these challenges, we propose ECC-SNN, a novel edge-cloud collaboration framework incorporating energy-efficient spiking neural networks (SNNs) to offload more computational workload from the cloud to the edge, thereby improving cost-effectiveness and reducing reliance on the cloud. ECC-SNN employs a joint training approach that integrates ANN and SNN models, enabling edge devices to leverage knowledge from cloud models for enhanced performance while reducing energy consumption and processing latency. Furthermore, ECC-SNN features an on-device incremental learning algorithm that enables edge models to continuously adapt to dynamic environments, reducing the communication overhead and resource consumption associated with frequent cloud update requests. Extensive experimental results on four datasets demonstrate that ECC-SNN improves accuracy by 4.15%, reduces average energy consumption by 79.4%, and lowers average processing latency by 39.1%.
Authors:Alberto Marchisio, Muhammad Shafique
Title: Neuromorphic Computing for Embodied Intelligence in Autonomous Systems: Current Trends, Challenges, and Future Directions
Abstract:
The growing need for intelligent, adaptive, and energy-efficient autonomous systems across fields such as robotics, mobile agents (e.g., UAVs), and self-driving vehicles is driving interest in neuromorphic computing. By drawing inspiration from biological neural systems, neuromorphic approaches offer promising pathways to enhance the perception, decision-making, and responsiveness of autonomous platforms. This paper surveys recent progress in neuromorphic algorithms, specialized hardware, and cross-layer optimization strategies, with a focus on their deployment in real-world autonomous scenarios. Special attention is given to event-based dynamic vision sensors and their role in enabling fast, efficient perception. The discussion highlights new methods that improve energy efficiency, robustness, adaptability, and reliability through the integration of spiking neural networks into autonomous system architectures. We integrate perspectives from machine learning, robotics, neuroscience, and neuromorphic engineering to offer a comprehensive view of the state of the field. Finally, emerging trends and open challenges are explored, particularly in the areas of real-time decision-making, continual learning, and the development of secure, resilient autonomous systems.
Authors:Ziqi Jia, Anmin Wang, Xiaoyang Qu, Xiaowen Yang, Jianzong Wang
Title: Hierarchical-Task-Aware Multi-modal Mixture of Incremental LoRA Experts for Embodied Continual Learning
Abstract:
Previous continual learning setups for embodied intelligence focused on executing low-level actions based on human commands, neglecting the ability to learn high-level planning and multi-level knowledge. To address these issues, we propose the Hierarchical Embodied Continual Learning Setups (HEC) that divide the agent's continual learning process into two layers: high-level instructions and low-level actions, and define five embodied continual learning sub-setups. Building on these setups, we introduce the Task-aware Mixture of Incremental LoRA Experts (Task-aware MoILE) method. This approach achieves task recognition by clustering visual-text embeddings and uses both a task-level router and a token-level router to select the appropriate LoRA experts. To effectively address the issue of catastrophic forgetting, we apply Singular Value Decomposition (SVD) to the LoRA parameters obtained from prior tasks, preserving key components while orthogonally training the remaining parts. The experimental results show that our method stands out in reducing the forgetting of old tasks compared to other methods, effectively supporting agents in retaining prior knowledge while continuously learning new tasks.
Authors:Jiaxu Li, Rui Li, Jianyu Qi, Songning Lai, Linpu Lv, Kejia Fan, Jianheng Tang, Yutao Yue, Dongzhan Zhou, Yuanhuai Liu, Huiping Zhuang
Title: CFSSeg: Closed-Form Solution for Class-Incremental Semantic Segmentation of 2D Images and 3D Point Clouds
Abstract:
2D images and 3D point clouds are foundational data types for multimedia applications, including real-time video analysis, augmented reality (AR), and 3D scene understanding. Class-incremental semantic segmentation (CSS) requires incrementally learning new semantic categories while retaining prior knowledge. Existing methods typically rely on computationally expensive training based on stochastic gradient descent, employing complex regularization or exemplar replay. However, stochastic gradient descent-based approaches inevitably update the model's weights for past knowledge, leading to catastrophic forgetting, a problem exacerbated by pixel/point-level granularity. To address these challenges, we propose CFSSeg, a novel exemplar-free approach that leverages a closed-form solution, offering a practical and theoretically grounded solution for continual semantic segmentation tasks. This eliminates the need for iterative gradient-based optimization and storage of past data, requiring only a single pass through new samples per step. It not only enhances computational efficiency but also provides a practical solution for dynamic, privacy-sensitive multimedia environments. Extensive experiments on 2D and 3D benchmark datasets such as Pascal VOC2012, S3DIS, and ScanNet demonstrate CFSSeg's superior performance.
Authors:Songning Lai, Mingqian Liao, Zhangyi Hu, Jiayu Yang, Wenshuo Chen, Hongru Xiao, Jianheng Tang, Haicheng Liao, Yutao Yue
Title: Learning New Concepts, Remembering the Old: Continual Learning for Multimodal Concept Bottleneck Models
Abstract:
Concept Bottleneck Models (CBMs) enhance the interpretability of AI systems, particularly by bridging visual input with human-understandable concepts, effectively acting as a form of multimodal interpretability model. However, existing CBMs typically assume static datasets, which fundamentally limits their adaptability to real-world, continuously evolving multimodal data streams. To address this, we define a novel continual learning task for CBMs: simultaneously handling concept-incremental and class-incremental learning. This task requires models to continuously acquire new concepts (often representing cross-modal attributes) and classes while robustly preserving previously learned knowledge. To tackle this challenging problem, we propose CONceptual Continual Incremental Learning (CONCIL), a novel framework that fundamentally re-imagines concept and decision layer updates as linear regression problems. This reformulation eliminates the need for gradient-based optimization, thereby effectively preventing catastrophic forgetting. Crucially, CONCIL relies solely on recursive matrix operations, rendering it highly computationally efficient and well-suited for real-time and large-scale multimodal data applications. Experimental results compellingly demonstrate that CONCIL achieves "absolute knowledge memory" and significantly surpasses the performance of traditional CBM methods in both concept- and class-incremental settings, thus establishing a new paradigm for continual learning in CBMs, particularly valuable for dynamic multimodal understanding.
Authors:Jiaxu Li, Kejia Fan, Songning Lai, Linpu Lv, Jinfeng Xu, Jianheng Tang, Anfeng Liu, Houbing Herbert Song, Yutao Yue, Yunhuai Liu, Huiping Zhuang
Title: TS-ACL: Closed-Form Solution for Time Series-oriented Continual Learning
Abstract:
Time series classification underpins critical applications such as healthcare diagnostics and gesture-driven interactive systems in multimedia scenarios. However, time series class-incremental learning (TSCIL) faces two major challenges: catastrophic forgetting and intra-class variations. Catastrophic forgetting occurs because gradient-based parameter update strategies inevitably erase past knowledge. And unlike images, time series data exhibits subject-specific patterns, also known as intra-class variations, which refer to differences in patterns observed within the same class. While exemplar-based methods fail to cover diverse variation with limited samples, existing exemplar-free methods lack explicit mechanisms to handle intra-class variations. To address these two challenges, we propose TS-ACL, which leverages a gradient-free closed-form solution to avoid the catastrophic forgetting problem inherent in gradient-based optimization methods while simultaneously learning global distributions to resolve intra-class variations. Additionally, it provides privacy protection and efficiency. Extensive experiments on five benchmark datasets covering various sensor modalities and tasks demonstrate that TS-ACL achieves performance close to joint training on four datasets, outperforming existing methods and establishing a new state-of-the-art (SOTA) for TSCIL.
Authors:Yanding Yang, Weitao Zhou, Jinhai Wang, Xiaomin Guo, Junze Wen, Xiaolong Liu, Lang Ding, Zheng Fu, Jinyu Miao, Kun Jiang, Diange Yang
Title: DTCCL: Disengagement-Triggered Contrastive Continual Learning for Autonomous Bus Planners
Abstract:
Autonomous buses run on fixed routes but must operate in open, dynamic urban environments. Disengagement events on these routes are often geographically concentrated and typically arise from planner failures in highly interactive regions. Such policy-level failures are difficult to correct using conventional imitation learning, which easily overfits to sparse disengagement data. To address this issue, this paper presents a Disengagement-Triggered Contrastive Continual Learning (DTCCL) framework that enables autonomous buses to improve planning policies through real-world operation. Each disengagement triggers cloud-based data augmentation that generates positive and negative samples by perturbing surrounding agents while preserving route context. Contrastive learning refines policy representations to better distinguish safe and unsafe behaviors, and continual updates are applied in a cloud-edge loop without human supervision. Experiments on urban bus routes demonstrate that DTCCL improves overall planning performance by 48.6 percent compared with direct retraining, validating its effectiveness for scalable, closed-loop policy improvement in autonomous public transport.
Authors:Lama Alssum, Hani Itani, Hasan Abed Al Kader Hammoud, Philip Torr, Adel Bibi, Bernard Ghanem
Title: Unforgotten Safety: Preserving Safety Alignment of Large Language Models with Continual Learning
Abstract:
The safety alignment of large language models (LLMs) is becoming increasingly important with their democratization. In this paper, we study the safety degradation that comes with adapting LLMs to new tasks. We attribute this safety compromise to catastrophic forgetting and frame the problem of preserving safety when fine-tuning as a continual learning (CL) problem. We consider the fine-tuning-as-a-service setup where the user uploads their data to a service provider to get a customized model that excels on the user's selected task. We adapt several CL approaches from the literature and systematically evaluate their ability to mitigate safety degradation. These include regularization-based, memory-based, and model merging approaches. We consider two scenarios, (1) benign user data and (2) poisoned user data. Our results demonstrate that CL approaches consistently achieve lower attack success rates than standard fine-tuning. Among these, DER outperforms both other CL methods and existing safety-preserving baselines while maintaining task utility. These findings generalize across three downstream tasks (GSM8K, SST2, Code) and three model families (LLaMA2-7B, Mistral-7B, Gemma-2B), establishing CL as a practical solution to preserve safety.
Authors:Janvijay Singh, Austin Xu, Yilun Zhou, Yefan Zhou, Dilek Hakkani-Tur, Shafiq Joty
Title: On the Shelf Life of Fine-Tuned LLM Judges: Future Proofing, Backward Compatibility, and Question Generalization
Abstract:
The LLM-as-a-judge paradigm is widely used in both evaluating free-text model responses and reward modeling for model alignment and finetuning. Recently, finetuning judges with judge-specific data has emerged as an often preferred choice over directly prompting frontier models as judges, as the former achieves better performance with smaller model sizes while being more robust to common biases. However, the standard evaluation ignores several practical concerns of finetuned judges regarding their real world deployment. In this paper, we identify and formalize three aspects that affect the shelf life of these judges: future proofing and backward compatibility -- how well judges finetuned on responses by today's generator models perform on responses by future models or past models, as well as question generalization -- how well judges generalize to unseen questions at test time. We study these three aspects in the math domain under a unified framework with varying train and test distributions, three SFT- and DPO-based finetuning algorithms and three different base models. Experiments suggest that future-proofing is challenging for most models, while backward compatibility is relatively easy, with DPO-trained models consistently improving performance. We further find that continual learning provides a more balanced adaptation to shifts between older and newer response distributions than training solely on stronger or weaker responses. Moreover, all models observe certain degrees of performance degradation when moving from questions seen during training to unseen ones, showing that current judges do not fully generalize to unseen questions. These findings provide insights into practical considerations for developing and deploying judge models in the face of ever-changing generators.
Authors:Bing Han, Feifei Zhao, Yinqian Sun, Wenxuan Pan, Yi Zeng
Title: Continual Learning of Multiple Cognitive Functions with Brain-inspired Temporal Development Mechanism
Abstract:
Cognitive functions in current artificial intelligence networks are tied to the exponential increase in network scale, whereas the human brain can continuously learn hundreds of cognitive functions with remarkably low energy consumption. This advantage is in part due to the brain cross-regional temporal development mechanisms, where the progressive formation, reorganization, and pruning of connections from basic to advanced regions, facilitate knowledge transfer and prevent network redundancy. Inspired by these, we propose the Continual Learning of Multiple Cognitive Functions with Brain-inspired Temporal Development Mechanism(TD-MCL), enabling cognitive enhancement from simple to complex in Perception-Motor-Interaction(PMI) multiple cognitive task scenarios. The TD-MCL model proposes the sequential evolution of long-range connections between different cognitive modules to promote positive knowledge transfer, while using feedback-guided local connection inhibition and pruning to effectively eliminate redundancies in previous tasks, reducing energy consumption while preserving acquired knowledge. Experiments show that the proposed method can achieve continual learning capabilities while reducing network scale, without introducing regularization, replay, or freezing strategies, and achieving superior accuracy on new tasks compared to direct learning. The proposed method shows that the brain's developmental mechanisms offer a valuable reference for exploring biologically plausible, low-energy enhancements of general cognitive abilities.
Authors:Bing Han, Feifei Zhao, Yang Li, Qingqun Kong, Xianqi Li, Yi Zeng
Title: Similarity-based context aware continual learning for spiking neural networks
Abstract:
Biological brains have the capability to adaptively coordinate relevant neuronal populations based on the task context to learn continuously changing tasks in real-world environments. However, existing spiking neural network-based continual learning algorithms treat each task equally, ignoring the guiding role of different task similarity associations for network learning, which limits knowledge utilization efficiency. Inspired by the context-dependent plasticity mechanism of the brain, we propose a Similarity-based Context Aware Spiking Neural Network (SCA-SNN) continual learning algorithm to efficiently accomplish task incremental learning and class incremental learning. Based on contextual similarity across tasks, the SCA-SNN model can adaptively reuse neurons from previous tasks that are beneficial for new tasks (the more similar, the more neurons are reused) and flexibly expand new neurons for the new task (the more similar, the fewer neurons are expanded). Selective reuse and discriminative expansion significantly improve the utilization of previous knowledge and reduce energy consumption. Extensive experimental results on CIFAR100, ImageNet generalized datasets, and FMNIST-MNIST, SVHN-CIFAR100 mixed datasets show that our SCA-SNN model achieves superior performance compared to both SNN-based and DNN-based continual learning algorithms. Additionally, our algorithm has the capability to adaptively select similar groups of neurons for related tasks, offering a promising approach to enhancing the biological interpretability of efficient continual learning.
Authors:Zhaorui Tan, Yijie Hu, Xi Yang, Qiufeng Wang, Anh Nguyen, Kaizhu Huang
Title: Saving for the future: Enhancing generalization via partial logic regularization
Abstract:
Generalization remains a significant challenge in visual classification tasks, particularly in handling unknown classes in real-world applications. Existing research focuses on the class discovery paradigm, which tends to favor known classes, and the incremental learning paradigm, which suffers from catastrophic forgetting. Recent approaches such as the L-Reg technique employ logic-based regularization to enhance generalization but are bound by the necessity of fully defined logical formulas, limiting flexibility for unknown classes. This paper introduces PL-Reg, a novel partial-logic regularization term that allows models to reserve space for undefined logic formulas, improving adaptability to unknown classes. Specifically, we formally demonstrate that tasks involving unknown classes can be effectively explained using partial logic. We also prove that methods based on partial logic lead to improved generalization. We validate PL-Reg through extensive experiments on Generalized Category Discovery, Multi-Domain Generalized Category Discovery, and long-tailed Class Incremental Learning tasks, demonstrating consistent performance improvements. Our results highlight the effectiveness of partial logic in tackling challenges related to unknown classes.
Authors:Mrityunjoy Gain, Kitae Kim, Avi Deb Raha, Apurba Adhikary, Walid Saad, Zhu Han, Choong Seon Hong
Title: AI-Driven Framework for Multi-Service Multi-Modal Devices in NextG ORAN Systems
Abstract:
In this paper, an artificial intelligence (AI)-driven efficient RAN management framework is proposed. This framework introduces the concept of the multi-service-modal UE (MSMU) system, which allows a single UE to handle both eMBB and uRLLC services. The proposed framework integrates traffic demand prediction, route optimization, RAN slicing, service identification, and radio resource management under uncertainty. The challenge of dynamic environments in such a system is addressed by decomposing the optimization problem into long-term (L-SP) and short-term (S-SP) subproblems. Using a long short-term memory (LSTM) model, the proposed approach allows the prediction of eMBB and uRLLC traffic demands and optimal routes for RAN slicing in the L-SP. For the S-SP, another LSTM model is employed to handle real-time service type identification and resource management based on long-term predictions. To support continuous adaptation, continual learning is incorporated into the S-SP framework, allowing the model to learn new service types while retaining prior knowledge. Experimental results show that the proposed framework efficiently manages dual-mode UEs, achieving low mean square error for traffic demand (0.003), resource block prediction (0.003), and power prediction (0.002), with 99\% accuracy in service type and route selection and over 95\% average accuracy for continual service adaptation across seven tasks.
Authors:Yawen Yang, Fukun Ma, Shiao Meng, Aiwei Liu, Lijie Wen
Title: GenCNER: A Generative Framework for Continual Named Entity Recognition
Abstract:
Traditional named entity recognition (NER) aims to identify text mentions into pre-defined entity types. Continual Named Entity Recognition (CNER) is introduced since entity categories are continuously increasing in various real-world scenarios. However, existing continual learning (CL) methods for NER face challenges of catastrophic forgetting and semantic shift of non-entity type. In this paper, we propose GenCNER, a simple but effective Generative framework for CNER to mitigate the above drawbacks. Specifically, we skillfully convert the CNER task into sustained entity triplet sequence generation problem and utilize a powerful pre-trained seq2seq model to solve it. Additionally, we design a type-specific confidence-based pseudo labeling strategy along with knowledge distillation (KD) to preserve learned knowledge and alleviate the impact of label noise at the triplet level. Experimental results on two benchmark datasets show that our framework outperforms previous state-of-the-art methods in multiple CNER settings, and achieves the smallest gap compared with non-CL results.
Authors:Meng Cui, Xianghu Yue, Xinyuan Qian, Jinzheng Zhao, Haohe Liu, Xubo Liu, Daoliang Li, Wenwu Wang
Title: Audio-Visual Class-Incremental Learning for Fish Feeding intensity Assessment in Aquaculture
Abstract:
Fish Feeding Intensity Assessment (FFIA) is crucial in industrial aquaculture management. Recent multi-modal approaches have shown promise in improving FFIA robustness and efficiency. However, these methods face significant challenges when adapting to new fish species or environments due to catastrophic forgetting and the lack of suitable datasets. To address these limitations, we first introduce AV-CIL-FFIA, a new dataset comprising 81,932 labelled audio-visual clips capturing feeding intensities across six different fish species in real aquaculture environments. Then, we pioneer audio-visual class incremental learning (CIL) for FFIA and demonstrate through benchmarking on AV-CIL-FFIA that it significantly outperforms single-modality methods. Existing CIL methods rely heavily on historical data. Exemplar-based approaches store raw samples, creating storage challenges, while exemplar-free methods avoid data storage but struggle to distinguish subtle feeding intensity variations across different fish species. To overcome these limitations, we introduce HAIL-FFIA, a novel audio-visual class-incremental learning framework that bridges this gap with a prototype-based approach that achieves exemplar-free efficiency while preserving essential knowledge through compact feature representations. Specifically, HAIL-FFIA employs hierarchical representation learning with a dual-path knowledge preservation mechanism that separates general intensity knowledge from fish-specific characteristics. Additionally, it features a dynamic modality balancing system that adaptively adjusts the importance of audio versus visual information based on feeding behaviour stages. Experimental results show that HAIL-FFIA is superior to SOTA methods on AV-CIL-FFIA, achieving higher accuracy with lower storage needs while effectively mitigating catastrophic forgetting in incremental fish species learning.
Authors:Dong Liu, Juan S. Giraldo, Peter Palensky, Pedro P. Vergara
Title: Model-Free Privacy Preserving Power Flow Analysis in Distribution Networks
Abstract:
Model-free power flow calculation, driven by the rise of smart meter (SM) data and the lack of network topology, often relies on artificial intelligence neural networks (ANNs). However, training ANNs require vast amounts of SM data, posing privacy risks for households in distribution networks. To ensure customers' privacy during the SM data gathering and online sharing, we introduce a privacy preserving PF calculation framework, composed of two local strategies: a local randomisation strategy (LRS) and a local zero-knowledge proof (ZKP)-based data collection strategy. First, the LRS is used to achieve irreversible transformation and robust privacy protection for active and reactive power data, thereby ensuring that personal data remains confidential. Subsequently, the ZKP-based data collecting strategy is adopted to securely gather the training dataset for the ANN, enabling SMs to interact with the distribution system operator without revealing the actual voltage magnitude. Moreover, to mitigate the accuracy loss induced by the seasonal variations in load profiles, an incremental learning strategy is incorporated into the online application. The results across three datasets with varying measurement errors demonstrate that the proposed framework efficiently collects one month of SM data within one hour. Furthermore, it robustly maintains mean errors of 0.005 p.u. and 0.014 p.u. under multiple measurement errors and seasonal variations in load profiles, respectively.
Authors:Yujie Feng, Hao Wang, Jian Li, Xu Chu, Zhaolu Kang, Yiran Liu, Yasha Wang, Philip S. Yu, Xiao-Ming Wu
Title: FOREVER: Forgetting Curve-Inspired Memory Replay for Language Model Continual Learning
Abstract:
Continual learning (CL) for large language models (LLMs) aims to enable sequential knowledge acquisition without catastrophic forgetting. Memory replay methods are widely used for their practicality and effectiveness, but most rely on fixed, step-based heuristics that often misalign with the model's actual learning progress, since identical training steps can result in varying degrees of parameter change. Motivated by recent findings that LLM forgetting mirrors the Ebbinghaus human forgetting curve, we propose FOREVER (FORgEtting curVe-inspired mEmory Replay), a novel CL framework that aligns replay schedules with a model-centric notion of time. FOREVER defines model time using the magnitude of optimizer updates, allowing forgetting curve-inspired replay intervals to align with the model's internal evolution rather than raw training steps. Building on this approach, FOREVER incorporates a forgetting curve-based replay scheduler to determine when to replay and an intensity-aware regularization mechanism to adaptively control how to replay. Extensive experiments on three CL benchmarks and models ranging from 0.6B to 13B parameters demonstrate that FOREVER consistently mitigates catastrophic forgetting.
Authors:Xinquan Yang, Jinheng Xie, Yawen Huang, Yuexiang Li, Huimin Huang, Hao Zheng, Xian Wu, Yefeng Zheng, Linlin Shen
Title: X-ray Insights Unleashed: Pioneering the Enhancement of Multi-Label Long-Tail Data
Abstract:
Long-tailed pulmonary anomalies in chest radiography present formidable diagnostic challenges. Despite the recent strides in diffusion-based methods for enhancing the representation of tailed lesions, the paucity of rare lesion exemplars curtails the generative capabilities of these approaches, thereby leaving the diagnostic precision less than optimal. In this paper, we propose a novel data synthesis pipeline designed to augment tail lesions utilizing a copious supply of conventional normal X-rays. Specifically, a sufficient quantity of normal samples is amassed to train a diffusion model capable of generating normal X-ray images. This pre-trained diffusion model is subsequently utilized to inpaint the head lesions present in the diseased X-rays, thereby preserving the tail classes as augmented training data. Additionally, we propose the integration of a Large Language Model Knowledge Guidance (LKG) module alongside a Progressive Incremental Learning (PIL) strategy to stabilize the inpainting fine-tuning process. Comprehensive evaluations conducted on the public lung datasets MIMIC and CheXpert demonstrate that the proposed method sets a new benchmark in performance.
Authors:Zhiming Xu, Baile Xu, Jian Zhao, Furao Shen, Suorong Yang
Title: Parameter-Efficient Augment Plugin for Class-Incremental Learning
Abstract:
Existing class-incremental learning (CIL) approaches based on replay or knowledge distillation are often constrained by forgetting or the stability-plasticity dilemma. Some expansion-based approaches could achieve higher accuracy. However, they always require significant parameter increases. In this paper, we propose a plugin extension paradigm termed the Deployment of extra LoRA Components (DLC) for non-pre-trained CIL scenarios.We treat the feature extractor trained through replay or distillation as a base model with rich knowledge. For each task, we use Low-Rank Adaptation (LoRA) to inject task-specific residuals into the base model's deep layers. During inference, representations with task-specific residuals are aggregated to produce classification predictions. To mitigate interference from non-target LoRA plugins, we introduce a lightweight weighting unit. This unit learns to assign importance scores to different LoRA-tuned representations. Like downloadable contents in software, our method serves as a plug-and-play enhancement that efficiently extends the base methods. Remarkably, on the large-scale ImageNet-100, with merely 4 % of the parameters of a standard ResNet-18, our DLC model achieves a significant 8 % improvement in accuracy, demonstrating exceptional efficiency. Moreover, it could surpass state-of-the-art methods under the fixed memory budget.
Authors:Yiling He, Junchi Lei, Hongyu She, Shuo Shao, Xinran Zheng, Yiping Liu, Zhan Qin, Lorenzo Cavallaro
Title: Retrofit: Continual Learning with Bounded Forgetting for Security Applications
Abstract:
Modern security analytics are increasingly powered by deep learning models, but their performance often degrades as threat landscapes evolve and data representations shift. While continual learning (CL) offers a promising paradigm to maintain model effectiveness, many approaches rely on full retraining or data replay, which are infeasible in data-sensitive environments. Moreover, existing methods remain inadequate for security-critical scenarios, facing two coupled challenges in knowledge transfer: preserving prior knowledge without old data and integrating new knowledge with minimal interference. We propose RETROFIT, a data retrospective-free continual learning method that achieves bounded forgetting for effective knowledge transfer. Our key idea is to consolidate previously trained and newly fine-tuned models, serving as teachers of old and new knowledge, through parameter-level merging that eliminates the need for historical data. To mitigate interference, we apply low-rank and sparse updates that confine parameter changes to independent subspaces, while a knowledge arbitration dynamically balances the teacher contributions guided by model confidence. Our evaluation on two representative applications demonstrates that RETROFIT consistently mitigates forgetting while maintaining adaptability. In malware detection under temporal drift, it substantially improves the retention score, from 20.2% to 38.6% over CL baselines, and exceeds the oracle upper bound on new data. In binary summarization across decompilation levels, where analyzing stripped binaries is especially challenging, RETROFIT achieves around twice the BLEU score of transfer learning used in prior work and surpasses all baselines in cross-representation generalization.
Authors:Yujie Feng, Jian Li, Xiaoyu Dong, Pengfei Xu, Xiaohui Zhou, Yujia Zhang, Zexin LU, Yasha Wang, Alan Zhao, Xu Chu, Xiao-Ming Wu
Title: AIMMerging: Adaptive Iterative Model Merging Using Training Trajectories for Language Model Continual Learning
Abstract:
Continual learning (CL) is essential for deploying large language models (LLMs) in dynamic real-world environments without the need for costly retraining. Recent model merging-based methods have attracted significant attention, but they still struggle to effectively manage the trade-off between learning new knowledge and preventing forgetting, a challenge largely stemming from suboptimal number of merges and merging frequency. In this paper, we introduce Adaptive Iterative Model Merging (AimMerging), a novel CL framework that utilizes learning and forgetting signals from the training trajectory to dynamically monitor the model's training status. Guided by dynamic monitoring, the training trajectory-guided merge controller adaptively determines the timing and frequency of iterative fusion, while the rehearsal-based knowledge fusion module computes the merging weights and executes the fusion. Comprehensive experiments on three CL benchmarks with various model sizes (from 770M to 13B) demonstrate that AimMerging achieves significant performance improvements over existing state-of-the-art methods, with an average relative improvement of 80% and 59% on FWT and BWT, respectively. The source code is provided for reproducibility.
Authors:Mohammad Areeb Qazi, Munachiso S Nwadike, Ibrahim Almakky, Mohammad Yaqub, Numan Saeed
Title: UNICON: UNIfied CONtinual Learning for Medical Foundational Models
Abstract:
Foundational models are trained on extensive datasets to capture the general trends of a domain. However, in medical imaging, the scarcity of data makes pre-training for every domain, modality, or task challenging. Continual learning offers a solution by fine-tuning a model sequentially on different domains or tasks, enabling it to integrate new knowledge without requiring large datasets for each training phase. In this paper, we propose UNIfied CONtinual Learning for Medical Foundational Models (UNICON), a framework that enables the seamless adaptation of foundation models to diverse domains, tasks, and modalities. Unlike conventional adaptation methods that treat these changes in isolation, UNICON provides a unified, perpetually expandable framework. Through careful integration, we show that foundation models can dynamically expand across imaging modalities, anatomical regions, and clinical objectives without catastrophic forgetting or task interference. Empirically, we validate our approach by adapting a chest CT foundation model initially trained for classification to a prognosis and segmentation task. Our results show improved performance across both additional tasks. Furthermore, we continually incorporated PET scans and achieved a 5\% improvement in Dice score compared to respective baselines. These findings establish that foundation models are not inherently constrained to their initial training scope but can evolve, paving the way toward generalist AI models for medical imaging.
Authors:Hao Yu, Xin Yang, Boyang Fan, Xuemei Cao, Hanlin Gu, Lixin Fan, Qiang Yang
Title: Large-Small Model Collaborative Framework for Federated Continual Learning
Abstract:
Continual learning (CL) for Foundation Models (FMs) is an essential yet underexplored challenge, especially in Federated Continual Learning (FCL), where each client learns from a private, evolving task stream under strict data and communication constraints. Despite their powerful generalization abilities, FMs often exhibit suboptimal performance on local downstream tasks, as they are unable to utilize private local data. Furthermore, enabling FMs to learn new tasks without forgetting prior knowledge is inherently a challenging problem, primarily due to their immense parameter count and high model complexity. In contrast, small models can be trained locally under resource-constrained conditions and benefit from more mature CL techniques. To bridge the gap between small models and FMs, we propose the first collaborative framework in FCL, where lightweight local models act as a dynamic bridge, continually adapting to new tasks while enhancing the utility of the large model. Two novel components are also included: Small Model Continual Fine-tuning is for preventing small models from temporal forgetting; One-by-One Distillation performs personalized fusion of heterogeneous local knowledge on the server. Experimental results demonstrate its superior performance, even when clients utilize heterogeneous small models.
Authors:Yujie Feng, Xujia Wang, Zexin Lu, Shenghong Fu, Guangyuan Shi, Yongxin Xu, Yasha Wang, Philip S. Yu, Xu Chu, Xiao-Ming Wu
Title: Recurrent Knowledge Identification and Fusion for Language Model Continual Learning
Abstract:
Continual learning (CL) is crucial for deploying large language models (LLMs) in dynamic real-world environments without costly retraining. While recent model ensemble and model merging methods guided by parameter importance have gained popularity, they often struggle to balance knowledge transfer and forgetting, mainly due to the reliance on static importance estimates during sequential training. In this paper, we present Recurrent-KIF, a novel CL framework for Recurrent Knowledge Identification and Fusion, which enables dynamic estimation of parameter importance distributions to enhance knowledge transfer. Inspired by human continual learning, Recurrent-KIF employs an inner loop that rapidly adapts to new tasks while identifying important parameters, coupled with an outer loop that globally manages the fusion of new and historical knowledge through redundant knowledge pruning and key knowledge merging. These inner-outer loops iteratively perform multiple rounds of fusion, allowing Recurrent-KIF to leverage intermediate training information and adaptively adjust fusion strategies based on evolving importance distributions. Extensive experiments on two CL benchmarks with various model sizes (from 770M to 13B) demonstrate that Recurrent-KIF effectively mitigates catastrophic forgetting and enhances knowledge transfer.
Authors:Tao Fan, Hanlin Gu, Xuemei Cao, Chee Seng Chan, Qian Chen, Yiqiang Chen, Yihui Feng, Yang Gu, Jiaxiang Geng, Bing Luo, Shuoling Liu, Win Kent Ong, Chao Ren, Jiaqi Shao, Chuan Sun, Xiaoli Tang, Hong Xi Tae, Yongxin Tong, Shuyue Wei, Fan Wu, Wei Xi, Mingcong Xu, He Yang, Xin Yang, Jiangpeng Yan, Hao Yu, Han Yu, Teng Zhang, Yifei Zhang, Xiaojin Zhang, Zhenzhe Zheng, Lixin Fan, Qiang Yang
Title: Ten Challenging Problems in Federated Foundation Models
Abstract:
Federated Foundation Models (FedFMs) represent a distributed learning paradigm that fuses general competences of foundation models as well as privacy-preserving capabilities of federated learning. This combination allows the large foundation models and the small local domain models at the remote clients to learn from each other in a teacher-student learning setting. This paper provides a comprehensive summary of the ten challenging problems inherent in FedFMs, encompassing foundational theory, utilization of private data, continual learning, unlearning, Non-IID and graph data, bidirectional knowledge transfer, incentive mechanism design, game mechanism design, model watermarking, and efficiency. The ten challenging problems manifest in five pivotal aspects: ``Foundational Theory," which aims to establish a coherent and unifying theoretical framework for FedFMs. ``Data," addressing the difficulties in leveraging domain-specific knowledge from private data while maintaining privacy; ``Heterogeneity," examining variations in data, model, and computational resources across clients; ``Security and Privacy," focusing on defenses against malicious attacks and model theft; and ``Efficiency," highlighting the need for improvements in training, communication, and parameter efficiency. For each problem, we offer a clear mathematical definition on the objective function, analyze existing methods, and discuss the key challenges and potential solutions. This in-depth exploration aims to advance the theoretical foundations of FedFMs, guide practical implementations, and inspire future research to overcome these obstacles, thereby enabling the robust, efficient, and privacy-preserving FedFMs in various real-world applications.
Authors:Dunwei Tu, Huiyu Yi, Yuchi Wang, Baile Xu, Jian Zhao, Furao Shen
Title: Multiple Queries with Multiple Keys: A Precise Prompt Matching Paradigm for Prompt-based Continual Learning
Abstract:
Continual learning requires machine learning models to continuously acquire new knowledge in dynamic environments while avoiding the forgetting of previous knowledge. Prompt-based continual learning methods effectively address the issue of catastrophic forgetting through prompt expansion and selection. However, existing approaches often suffer from low accuracy in prompt selection, which can result in the model receiving biased knowledge and making biased predictions. To address this issue, we propose the Multiple Queries with Multiple Keys (MQMK) prompt matching paradigm for precise prompt selection. The goal of MQMK is to select the prompts whose training data distribution most closely matches that of the test sample. Specifically, Multiple Queries enable precise breadth search by introducing task-specific knowledge, while Multiple Keys perform deep search by representing the feature distribution of training samples at a fine-grained level. Experiments show that MQMK enhances the prompt matching rate by over 30% in challenging scenarios and achieves state-of-the-art performance on three widely adopted continual learning benchmarks. Once this paper is accepted, we will release the code.
Authors:Hao Yu, Xin Yang, Le Zhang, Hanlin Gu, Tianrui Li, Lixin Fan, Qiang Yang
Title: Handling Spatial-Temporal Data Heterogeneity for Federated Continual Learning via Tail Anchor
Abstract:
Federated continual learning (FCL) allows each client to continually update its knowledge from task streams, enhancing the applicability of federated learning in real-world scenarios. However, FCL needs to address not only spatial data heterogeneity between clients but also temporal data heterogeneity between tasks. In this paper, empirical experiments demonstrate that such input-level heterogeneity significantly affects the model's internal parameters and outputs, leading to severe spatial-temporal catastrophic forgetting of local and previous knowledge. To this end, we propose Federated Tail Anchor (FedTA) to mix trainable Tail Anchor with the frozen output features to adjust their position in the feature space, thereby overcoming parameter-forgetting and output-forgetting. Three novel components are also included: Input Enhancement for improving the performance of pre-trained models on downstream tasks; Selective Input Knowledge Fusion for fusion of heterogeneous local knowledge on the server; and Best Global Prototype Selection for finding the best anchor point for each class in the feature space. Extensive experiments demonstrate that FedTA not only outperforms existing FCL methods but also effectively preserves the relative positions of features.
Authors:Dunwei Tu, Huiyu Yi, Tieyi Zhang, Ruotong Li, Furao Shen, Jian Zhao
Title: Embedding Space Allocation with Angle-Norm Joint Classifiers for Few-Shot Class-Incremental Learning
Abstract:
Few-shot class-incremental learning (FSCIL) aims to continually learn new classes from only a few samples without forgetting previous ones, requiring intelligent agents to adapt to dynamic environments. FSCIL combines the characteristics and challenges of class-incremental learning and few-shot learning: (i) Current classes occupy the entire feature space, which is detrimental to learning new classes. (ii) The small number of samples in incremental rounds is insufficient for fully training. In existing mainstream virtual class methods, for addressing the challenge (i), they attempt to use virtual classes as placeholders. However, new classes may not necessarily align with the virtual classes. For the challenge (ii), they replace trainable fully connected layers with Nearest Class Mean (NCM) classifiers based on cosine similarity, but NCM classifiers do not account for sample imbalance issues. To address these issues in previous methods, we propose the class-center guided embedding Space Allocation with Angle-Norm joint classifiers (SAAN) learning framework, which provides balanced space for all classes and leverages norm differences caused by sample imbalance to enhance classification criteria. Specifically, for challenge (i), SAAN divides the feature space into multiple subspaces and allocates a dedicated subspace for each session by guiding samples with the pre-set category centers. For challenge (ii), SAAN establishes a norm distribution for each class and generates angle-norm joint logits. Experiments demonstrate that SAAN can achieve state-of-the-art performance and it can be directly embedded into other SOTA methods as a plug-in, further enhancing their performance.
Authors:Zihuan Qiu, Yi Xu, Fanman Meng, Runtong Zhang, Linfeng Xu, Qingbo Wu, Hongliang Li
Title: Closing the Oracle Gap: Increment Vector Transformation for Class Incremental Learning
Abstract:
Class Incremental Learning (CIL) aims to sequentially acquire knowledge of new classes without forgetting previously learned ones. Despite recent progress, current CIL methods still exhibit significant performance gaps compared to their oracle counterparts-models trained with full access to historical data. Inspired by recent insights on Linear Mode Connectivity (LMC), we revisit the geometric properties of oracle solutions in CIL and uncover a fundamental observation: these oracle solutions typically maintain low-loss linear connections to the optimum of previous tasks. Motivated by this finding, we propose Increment Vector Transformation (IVT), a novel plug-and-play framework designed to mitigate catastrophic forgetting during training. Rather than directly following CIL updates, IVT periodically teleports the model parameters to transformed solutions that preserve linear connectivity to previous task optimum. By maintaining low-loss along these connecting paths, IVT effectively ensures stable performance on previously learned tasks. The transformation is efficiently approximated using diagonal Fisher Information Matrices, making IVT suitable for both exemplar-free and exemplar-based scenarios, and compatible with various initialization strategies. Extensive experiments on CIFAR-100, FGVCAircraft, ImageNet-Subset, and ImageNet-Full demonstrate that IVT consistently enhances the performance of strong CIL baselines. Specifically, on CIFAR-100, IVT improves the last accuracy of the PASS baseline by +5.12% and reduces forgetting by 2.54%. For the CLIP-pre-trained SLCA baseline on FGVCAircraft, IVT yields gains of +14.93% in average accuracy and +21.95% in last accuracy. The code will be released.
Authors:Yukun Chen, Zihuan Qiu, Fanman Meng, Hongliang Li, Linfeng Xu, Qingbo Wu
Title: Leveraging Pre-Trained Models for Multimodal Class-Incremental Learning under Adaptive Fusion
Abstract:
Unlike traditional Multimodal Class-Incremental Learning (MCIL) methods that focus only on vision and text, this paper explores MCIL across vision, audio and text modalities, addressing challenges in integrating complementary information and mitigating catastrophic forgetting. To tackle these issues, we propose an MCIL method based on multimodal pre-trained models. Firstly, a Multimodal Incremental Feature Extractor (MIFE) based on Mixture-of-Experts (MoE) structure is introduced to achieve effective incremental fine-tuning for AudioCLIP. Secondly, to enhance feature discriminability and generalization, we propose an Adaptive Audio-Visual Fusion Module (AAVFM) that includes a masking threshold mechanism and a dynamic feature fusion mechanism, along with a strategy to enhance text diversity. Thirdly, a novel multimodal class-incremental contrastive training loss is proposed to optimize cross-modal alignment in MCIL. Finally, two MCIL-specific evaluation metrics are introduced for comprehensive assessment. Extensive experiments on three multimodal datasets validate the effectiveness of our method.
Authors:Zihuan Qiu, Yi Xu, Chiyuan He, Fanman Meng, Linfeng Xu, Qingbo Wu, Hongliang Li
Title: MINGLE: Mixtures of Null-Space Gated Low-Rank Experts for Test-Time Continual Model Merging
Abstract:
Continual model merging integrates independently fine-tuned models sequentially without access to original training data, providing a scalable and efficient solution to continual learning. However, current methods still face critical challenges, notably parameter interference among tasks and limited adaptability to evolving test distributions. The former causes catastrophic forgetting of integrated tasks, while the latter hinders effective adaptation to new tasks. To address these, we propose MINGLE, a novel framework for test-time continual model merging, which leverages test-time adaptation using a small set of unlabeled test samples from the current task to dynamically guide the merging process. MINGLE employs a mixture-of-experts architecture composed of parameter-efficient, low-rank experts, enabling efficient adaptation and improving robustness to distribution shifts. To mitigate catastrophic forgetting, we propose Null-Space Constrained Gating, which restricts gating updates to subspaces orthogonal to prior task representations. This suppresses activations on old task inputs and preserves model behavior on past tasks. To further balance stability and adaptability, we design an Adaptive Relaxation Strategy, which dynamically adjusts the constraint strength based on interference signals captured during test-time adaptation. Extensive experiments on standard continual merging benchmarks demonstrate that MINGLE achieves robust generalization, reduces forgetting significantly, and consistently surpasses previous state-of-the-art methods by 7-9\% on average across diverse task orders.
Authors:Yuxin Lin, Mengshi Qi, Liang Liu, Huadong Ma
Title: VLM-Assisted Continual learning for Visual Question Answering in Self-Driving
Abstract:
In this paper, we propose a novel approach for solving the Visual Question Answering (VQA) task in autonomous driving by integrating Vision-Language Models (VLMs) with continual learning. In autonomous driving, VQA plays a vital role in enabling the system to understand and reason about its surroundings. However, traditional models often struggle with catastrophic forgetting when sequentially exposed to new driving tasks, such as perception, prediction, and planning, each requiring different forms of knowledge. To address this challenge, we present a novel continual learning framework that combines VLMs with selective memory replay and knowledge distillation, reinforced by task-specific projection layer regularization. The knowledge distillation allows a previously trained model to act as a "teacher" to guide the model through subsequent tasks, minimizing forgetting. Meanwhile, task-specific projection layers calculate the loss based on the divergence of feature representations, ensuring continuity in learning and reducing the shift between tasks. Evaluated on the DriveLM dataset, our framework shows substantial performance improvements, with gains ranging from 21.40% to 32.28% across various metrics. These results highlight the effectiveness of combining continual learning with VLMs in enhancing the resilience and reliability of VQA systems in autonomous driving. We will release our source code.
Authors:Chiyuan He, Zihuan Qiu, Fanman Meng, Linfeng Xu, Qingbo Wu, Hongliang Li
Title: DesCLIP: Robust Continual Learning via General Attribute Descriptions for VLM-Based Visual Recognition
Abstract:
Continual learning of vision-language models (VLMs) focuses on leveraging cross-modal pretrained knowledge to incrementally adapt to expanding downstream tasks and datasets, while tackling the challenge of knowledge forgetting. Existing research often focuses on connecting visual features with specific class text in downstream tasks, overlooking the latent relationships between general and specialized knowledge. Our findings reveal that forcing models to optimize inappropriate visual-text matches exacerbates forgetting of VLM's recognition ability. To tackle this issue, we propose DesCLIP, which leverages general attribute (GA) descriptions to guide the understanding of specific class objects, enabling VLMs to establish robust vision-GA-class trilateral associations rather than relying solely on vision-class connections. Specifically, we introduce a language assistant to generate concrete GA description candidates via proper request prompts. Then, an anchor-based embedding filter is designed to obtain highly relevant GA description embeddings, which are leveraged as the paired text embeddings for visual-textual instance matching, thereby tuning the visual encoder. Correspondingly, the class text embeddings are gradually calibrated to align with these shared GA description embeddings. Extensive experiments demonstrate the advancements and efficacy of our proposed method, with comprehensive empirical evaluations highlighting its superior performance in VLM-based recognition compared to existing continual learning methods.
Authors:Rui Wang, Mingxuan Xia, Chang Yao, Lei Feng, Junbo Zhao, Gang Chen, Haobo Wang
Title: Towards Robust Incremental Learning under Ambiguous Supervision
Abstract:
Traditional Incremental Learning (IL) targets to handle sequential fully-supervised learning problems where novel classes emerge from time to time. However, due to inherent annotation uncertainty and ambiguity, collecting high-quality annotated data in a dynamic learning system can be extremely expensive. To mitigate this problem, we propose a novel weakly-supervised learning paradigm called Incremental Partial Label Learning (IPLL), where the sequentially arrived data relate to a set of candidate labels rather than the ground truth. Technically, we develop the Prototype-Guided Disambiguation and Replay Algorithm (PGDR) which leverages the class prototypes as a proxy to mitigate two intertwined challenges in IPLL, i.e., label ambiguity and catastrophic forgetting. To handle the former, PGDR encapsulates a momentum-based pseudo-labeling algorithm along with prototype-guided initialization, resulting in a balanced perception of classes. To alleviate forgetting, we develop a memory replay technique that collects well-disambiguated samples while maintaining representativeness and diversity. By jointly distilling knowledge from curated memory data, our framework exhibits a great disambiguation ability for samples of new tasks and achieves less forgetting of knowledge. Extensive experiments demonstrate that PGDR achieves superior
Authors:Jiaxuan Peng, Mengshi Qi, Dong Zhao, Huadong Ma
Title: Towards Balanced Continual Multi-Modal Learning in Human Pose Estimation
Abstract:
3D human pose estimation (3D HPE) has emerged as a prominent research topic, particularly in the realm of RGB-based methods. However, RGB images are susceptible to limitations such as sensitivity to lighting conditions and potential user discomfort. Consequently, multi-modal sensing, which leverages non-intrusive sensors, is gaining increasing attention. Nevertheless, multi-modal 3D HPE still faces challenges, including modality imbalance and the imperative for continual learning. In this work, we introduce a novel balanced continual multi-modal learning method for 3D HPE, which harnesses the power of RGB, LiDAR, mmWave, and WiFi. Specifically, we propose a Shapley value-based contribution algorithm to quantify the contribution of each modality and identify modality imbalance. To address this imbalance, we employ a re-learning strategy. Furthermore, recognizing that raw data is prone to noise contamination, we develop a novel denoising continual learning approach. This approach incorporates a noise identification and separation module to mitigate the adverse effects of noise and collaborates with the balanced learning strategy to enhance optimization. Additionally, an adaptive EWC mechanism is employed to alleviate catastrophic forgetting. We conduct extensive experiments on the widely-adopted multi-modal dataset, MM-Fi, which demonstrate the superiority of our approach in boosting 3D pose estimation and mitigating catastrophic forgetting in complex scenarios. We will release our codes.
Authors:Shuai Wang, Yibing Zhan, Yong Luo, Han Hu, Wei Yu, Yonggang Wen, Dacheng Tao
Title: Joint Input and Output Coordination for Class-Incremental Learning
Abstract:
Incremental learning is nontrivial due to severe catastrophic forgetting. Although storing a small amount of data on old tasks during incremental learning is a feasible solution, current strategies still do not 1) adequately address the class bias problem, and 2) alleviate the mutual interference between new and old tasks, and 3) consider the problem of class bias within tasks. This motivates us to propose a joint input and output coordination (JIOC) mechanism to address these issues. This mechanism assigns different weights to different categories of data according to the gradient of the output score, and uses knowledge distillation (KD) to reduce the mutual interference between the outputs of old and new tasks. The proposed mechanism is general and flexible, and can be incorporated into different incremental learning approaches that use memory storage. Extensive experiments show that our mechanism can significantly improve their performance.
Authors:Yilei Qian, Kanglei Geng, Kailong Chen, Shaoxu Cheng, Linfeng Xu, Hongliang Li, Fanman Meng, Qingbo Wu
Title: Few-Shot Continual Learning for Activity Recognition in Classroom Surveillance Images
Abstract:
The application of activity recognition in the "AI + Education" field is gaining increasing attention. However, current work mainly focuses on the recognition of activities in manually captured videos and a limited number of activity types, with little attention given to recognizing activities in surveillance images from real classrooms. In real classroom settings, normal teaching activities such as reading, account for a large proportion of samples, while rare non-teaching activities such as eating, continue to appear. This requires a model that can learn non-teaching activities from few samples without forgetting the normal teaching activities, which necessitates fewshot continual learning (FSCL) capability. To address this gap, we constructed a continual learning dataset focused on classroom surveillance image activity recognition called ARIC (Activity Recognition in Classroom). The dataset has advantages such as multiple perspectives, a wide variety of activities, and real-world scenarios, but it also presents challenges like similar activities and imbalanced sample distribution. To overcome these challenges, we designed a few-shot continual learning method that combines supervised contrastive learning (SCL) and an adaptive covariance classifier (ACC). During the base phase, we proposed a SCL approach based on feature augmentation to enhance the model's generalization ability. In the incremental phase, we employed an ACC to more accurately describe the distribution of new classes. Experimental results demonstrate that our method outperforms other existing methods on the ARIC dataset.
Authors:Kai Jiang, Siqi Huang, Xiangyu Chen, Jiawei Shao, Hongyuan Zhang, Xuelong Li
Title: Multimodal Continual Learning with MLLMs from Multi-scenario Perspectives
Abstract:
Continual learning in visual understanding aims to deal with catastrophic forgetting in Multimodal Large Language Models (MLLMs). MLLMs deployed on devices have to continuously adapt to dynamic scenarios in downstream tasks, such as variations in background and perspective, to effectively perform complex visual tasks. To this end, we construct a multimodal visual understanding dataset (MSVQA) encompassing four different scenarios and perspectives including high altitude, underwater, low altitude and indoor, to investigate the catastrophic forgetting in MLLMs under the dynamics of scenario shifts in real-world data streams. Furthermore, we propose mUltimodal coNtInual learning with MLLMs From multi-scenarIo pERspectives (UNIFIER) to address visual discrepancies while learning different scenarios. Specifically, it decouples the visual information from different scenarios into distinct branches within each vision block and projects them into the same feature space. A consistency constraint is imposed on the features of each branch to maintain the stability of visual representations across scenarios. Extensive experiments on the MSVQA dataset demonstrate that UNIFIER effectively alleviates forgetting of cross-scenario tasks and achieves knowledge accumulation within the same scenario.
Authors:Minh Le, Bao-Ngoc Dao, Huy Nguyen, Quyen Tran, Anh Nguyen, Nhat Ho
Title: One-Prompt Strikes Back: Sparse Mixture of Experts for Prompt-based Continual Learning
Abstract:
Prompt-based methods have recently gained prominence in Continual Learning (CL) due to their strong performance and memory efficiency. A prevalent strategy in this paradigm assigns a dedicated subset of prompts to each task, which, while effective, incurs substantial computational overhead and causes memory requirements to scale linearly with the number of tasks. Conversely, approaches employing a single shared prompt across tasks offer greater efficiency but often suffer from degraded performance due to knowledge interference. To reconcile this trade-off, we propose SMoPE, a novel framework that integrates the benefits of both task-specific and shared prompt strategies. Inspired by recent findings on the relationship between Prefix Tuning and Mixture of Experts (MoE), SMoPE organizes a shared prompt into multiple "prompt experts" within a sparse MoE architecture. For each input, only a select subset of relevant experts is activated, effectively mitigating interference. To facilitate expert selection, we introduce a prompt-attention score aggregation mechanism that computes a unified proxy score for each expert, enabling dynamic and sparse activation. Additionally, we propose an adaptive noise mechanism to encourage balanced expert utilization while preserving knowledge from prior tasks. To further enhance expert specialization, we design a prototype-based loss function that leverages prefix keys as implicit memory representations. Extensive experiments across multiple CL benchmarks demonstrate that SMoPE consistently outperforms task-specific prompt methods and achieves performance competitive with state-of-the-art approaches, all while significantly reducing parameter counts and computational costs.
Authors:Jan Ackermann, Jonas Kulhanek, Shengqu Cai, Haofei Xu, Marc Pollefeys, Gordon Wetzstein, Leonidas Guibas, Songyou Peng
Title: CL-Splats: Continual Learning of Gaussian Splatting with Local Optimization
Abstract:
In dynamic 3D environments, accurately updating scene representations over time is crucial for applications in robotics, mixed reality, and embodied AI. As scenes evolve, efficient methods to incorporate changes are needed to maintain up-to-date, high-quality reconstructions without the computational overhead of re-optimizing the entire scene. This paper introduces CL-Splats, which incrementally updates Gaussian splatting-based 3D representations from sparse scene captures. CL-Splats integrates a robust change-detection module that segments updated and static components within the scene, enabling focused, local optimization that avoids unnecessary re-computation. Moreover, CL-Splats supports storing and recovering previous scene states, facilitating temporal segmentation and new scene-analysis applications. Our extensive experiments demonstrate that CL-Splats achieves efficient updates with improved reconstruction quality over the state-of-the-art. This establishes a robust foundation for future real-time adaptation in 3D scene reconstruction tasks.
Authors:Zhiyu Zhang, Wei Chen, Youfang Lin, Huaiyu Wan
Title: A Generative Adaptive Replay Continual Learning Model for Temporal Knowledge Graph Reasoning
Abstract:
Recent Continual Learning (CL)-based Temporal Knowledge Graph Reasoning (TKGR) methods focus on significantly reducing computational cost and mitigating catastrophic forgetting caused by fine-tuning models with new data. However, existing CL-based TKGR methods still face two key limitations: (1) They usually one-sidedly reorganize individual historical facts, while overlooking the historical context essential for accurately understanding the historical semantics of these facts; (2) They preserve historical knowledge by simply replaying historical facts, while ignoring the potential conflicts between historical and emerging facts. In this paper, we propose a Deep Generative Adaptive Replay (DGAR) method, which can generate and adaptively replay historical entity distribution representations from the whole historical context. To address the first challenge, historical context prompts as sampling units are built to preserve the whole historical context information. To overcome the second challenge, a pre-trained diffusion model is adopted to generate the historical distribution. During the generation process, the common features between the historical and current distributions are enhanced under the guidance of the TKGR model. In addition, a layer-by-layer adaptive replay mechanism is designed to effectively integrate historical and current distributions. Experimental results demonstrate that DGAR significantly outperforms baselines in reasoning and mitigating forgetting.
Authors:Hanyi Wang, Jun Lan, Yaoyu Kang, Huijia Zhu, Weiqiang Wang, Zhuosheng Zhang, Shilin Wang
Title: Generalizable and Adaptive Continual Learning Framework for AI-generated Image Detection
Abstract:
The malicious misuse and widespread dissemination of AI-generated images pose a significant threat to the authenticity of online information. Current detection methods often struggle to generalize to unseen generative models, and the rapid evolution of generative techniques continuously exacerbates this challenge. Without adaptability, detection models risk becoming ineffective in real-world applications. To address this critical issue, we propose a novel three-stage domain continual learning framework designed for continuous adaptation to evolving generative models. In the first stage, we employ a strategic parameter-efficient fine-tuning approach to develop a transferable offline detection model with strong generalization capabilities. Building upon this foundation, the second stage integrates unseen data streams into a continual learning process. To efficiently learn from limited samples of novel generated models and mitigate overfitting, we design a data augmentation chain with progressively increasing complexity. Furthermore, we leverage the Kronecker-Factored Approximate Curvature (K-FAC) method to approximate the Hessian and alleviate catastrophic forgetting. Finally, the third stage utilizes a linear interpolation strategy based on Linear Mode Connectivity, effectively capturing commonalities across diverse generative models and further enhancing overall performance. We establish a comprehensive benchmark of 27 generative models, including GANs, deepfakes, and diffusion models, chronologically structured up to August 2024 to simulate real-world scenarios. Extensive experiments demonstrate that our initial offline detectors surpass the leading baseline by +5.51% in terms of mean average precision. Our continual learning strategy achieves an average accuracy of 92.20%, outperforming state-of-the-art methods.
Authors:Mishal Fatima Minhas, Rachmad Vidya Wicaksana Putra, Falah Awwad, Osman Hasan, Muhammad Shafique
Title: Replay4NCL: An Efficient Memory Replay-based Methodology for Neuromorphic Continual Learning in Embedded AI Systems
Abstract:
Neuromorphic Continual Learning (NCL) paradigm leverages Spiking Neural Networks (SNNs) to enable continual learning (CL) capabilities for AI systems to adapt to dynamically changing environments. Currently, the state-of-the-art employ a memory replay-based method to maintain the old knowledge. However, this technique relies on long timesteps and compression-decompression steps, thereby incurring significant latency and energy overheads, which are not suitable for tightly-constrained embedded AI systems (e.g., mobile agents/robotics). To address this, we propose Replay4NCL, a novel efficient memory replay-based methodology for enabling NCL in embedded AI systems. Specifically, Replay4NCL compresses the latent data (old knowledge), then replays them during the NCL training phase with small timesteps, to minimize the processing latency and energy consumption. To compensate the information loss from reduced spikes, we adjust the neuron threshold potential and learning rate settings. Experimental results on the class-incremental scenario with the Spiking Heidelberg Digits (SHD) dataset show that Replay4NCL can preserve old knowledge with Top-1 accuracy of 90.43% compared to 86.22% from the state-of-the-art, while effectively learning new tasks, achieving 4.88x latency speed-up, 20% latent memory saving, and 36.43% energy saving. These results highlight the potential of our Replay4NCL methodology to further advances NCL capabilities for embedded AI systems.
Authors:Yunbo Long, Liming Xu, Stefan Schoepf, Alexandra Brintrup
Title: Random Walk Guided Hyperbolic Graph Distillation
Abstract:
Graph distillation (GD) is an effective approach to extract useful information from large-scale network structures. However, existing methods, which operate in Euclidean space to generate condensed graphs, struggle to capture the inherent tree-like geometry of real-world networks, resulting in distilled graphs with limited task-specific information for downstream tasks. Furthermore, these methods often fail to extract dynamic properties from graphs, which are crucial for understanding information flow and facilitating graph continual learning. This paper presents the Hyperbolic Graph Distillation with Random Walks Optimization (HyDRO), a novel graph distillation approach that leverages hyperbolic embeddings to capture complex geometric patterns and optimize the spectral gap in hyperbolic space. Experiments show that HyDRO demonstrates strong task generalization, consistently outperforming state-of-the-art methods in both node classification and link prediction tasks. HyDRO also effectively preserves graph random walk properties, producing condensed graphs that achieve enhanced performance in continual graph learning. Additionally, HyDRO achieves competitive results on mainstream graph distillation benchmarks, while maintaining a strong balance between privacy and utility, and exhibiting robust resistance to noises.
Authors:Tao Feng, Wei Li, Didi Zhu, Hangjie Yuan, Wendi Zheng, Dan Zhang, Jie Tang
Title: ZeroFlow: Overcoming Catastrophic Forgetting is Easier than You Think
Abstract:
Backpropagation provides a generalized configuration for overcoming catastrophic forgetting. Optimizers such as SGD and Adam are commonly used for weight updates in continual learning and continual pre-training. However, access to gradient information is not always feasible in practice due to black-box APIs, hardware constraints, or non-differentiable systems, a challenge we refer to as the gradient bans. To bridge this gap, we introduce ZeroFlow, the first benchmark designed to evaluate gradient-free optimization algorithms for overcoming forgetting. ZeroFlow examines a suite of forward pass-based methods across various algorithms, forgetting scenarios, and datasets. Our results show that forward passes alone can be sufficient to mitigate forgetting. We uncover novel optimization principles that highlight the potential of forward pass-based methods in mitigating forgetting, managing task conflicts, and reducing memory demands. Additionally, we propose new enhancements that further improve forgetting resistance using only forward passes. This work provides essential tools and insights to advance the development of forward-pass-based methods for continual learning.
Authors:Mishal Fatima Minhas, Rachmad Vidya Wicaksana Putra, Falah Awwad, Osman Hasan, Muhammad Shafique
Title: Continual Learning with Neuromorphic Computing: Foundations, Methods, and Emerging Applications
Abstract:
The challenging deployment of compute- and memory-intensive methods from Deep Neural Network (DNN)-based Continual Learning (CL) underscores the critical need for a paradigm shift towards more efficient approaches. Neuromorphic Continual Learning (NCL) appears as an emerging solution, by leveraging the principles of Spiking Neural Networks (SNNs) which enable efficient CL algorithms executed in dynamically-changed environments with resource-constrained computing systems. Motivated by the need for a holistic study of NCL, in this survey, we first provide a detailed background on CL, encompassing the desiderata, settings, metrics, scenario taxonomy, Online Continual Learning (OCL) paradigm, recent DNN-based methods to address catastrophic forgetting (CF). Then, we analyze these methods considering CL desiderata, computational and memory costs, as well as network complexity, hence emphasizing the need for energy-efficient CL. Afterward, we provide background of low-power neuromorphic systems including encoding techniques, neuronal dynamics, network architectures, learning rules, hardware processors, software and hardware frameworks, datasets, benchmarks, and evaluation metrics. Then, this survey comprehensively reviews and analyzes state-of-the-art in NCL. The key ideas, implementation frameworks, and performance assessments are also provided. This survey covers several hybrid approaches that combine supervised and unsupervised learning paradigms. It also covers optimization techniques including SNN operations reduction, weight quantization, and knowledge distillation. Then, this survey discusses the progress of real-world NCL applications. Finally, this paper provides a future perspective on the open research challenges for NCL, since the purpose of this study is to be useful for the wider neuromorphic AI research community and to inspire future research in bio-plausible OCL.
Authors:Lan Mei, Thorir Mar Ingolfsson, Cristian Cioflan, Victor Kartsch, Andrea Cossettini, Xiaying Wang, Luca Benini
Title: An Ultra-Low Power Wearable BMI System with Continual Learning Capabilities
Abstract:
Driven by the progress in efficient embedded processing, there is an accelerating trend toward running machine learning models directly on wearable Brain-Machine Interfaces (BMIs) to improve portability and privacy and maximize battery life. However, achieving low latency and high classification performance remains challenging due to the inherent variability of electroencephalographic (EEG) signals across sessions and the limited onboard resources. This work proposes a comprehensive BMI workflow based on a CNN-based Continual Learning (CL) framework, allowing the system to adapt to inter-session changes. The workflow is deployed on a wearable, parallel ultra-low power BMI platform (BioGAP). Our results based on two in-house datasets, Dataset A and Dataset B, show that the CL workflow improves average accuracy by up to 30.36% and 10.17%, respectively. Furthermore, when implementing the continual learning on a Parallel Ultra-Low Power (PULP) microcontroller (GAP9), it achieves an energy consumption as low as 0.45mJ per inference and an adaptation time of only 21.5ms, yielding around 25h of battery life with a small 100mAh, 3.7V battery on BioGAP. Our setup, coupled with the compact CNN model and on-device CL capabilities, meets users' needs for improved privacy, reduced latency, and enhanced inter-session performance, offering good promise for smart embedded real-world BMIs.
Authors:Lan Mei, Cristian Cioflan, Thorir Mar Ingolfsson, Victor Kartsch, Andrea Cossettini, Xiaying Wang, Luca Benini
Title: Train-On-Request: An On-Device Continual Learning Workflow for Adaptive Real-World Brain Machine Interfaces
Abstract:
Brain-machine interfaces (BMIs) are expanding beyond clinical settings thanks to advances in hardware and algorithms. However, they still face challenges in user-friendliness and signal variability. Classification models need periodic adaptation for real-life use, making an optimal re-training strategy essential to maximize user acceptance and maintain high performance. We propose TOR, a train-on-request workflow that enables user-specific model adaptation to novel conditions, addressing signal variability over time. Using continual learning, TOR preserves knowledge across sessions and mitigates inter-session variability. With TOR, users can refine, on demand, the model through on-device learning (ODL) to enhance accuracy adapting to changing conditions. We evaluate the proposed methodology on a motor-movement dataset recorded with a non-stigmatizing wearable BMI headband, achieving up to 92% accuracy and a re-calibration time as low as 1.6 minutes, a 46% reduction compared to a naive transfer learning workflow. We additionally demonstrate that TOR is suitable for ODL in extreme edge settings by deploying the training procedure on a RISC-V ultra-low-power SoC (GAP9), resulting in 21.6 ms of latency and 1 mJ of energy consumption per training step. To the best of our knowledge, this work is the first demonstration of an online, energy-efficient, dynamic adaptation of a BMI model to the intrinsic variability of EEG signals in real-time settings.
Authors:Lama Alssum, Hasan Abed Al Kader Hammoud, Motasem Alfarra, Juan C Leon Alcazar, Bernard Ghanem
Title: Forget Less, Retain More: A Lightweight Regularizer for Rehearsal-Based Continual Learning
Abstract:
Deep neural networks suffer from catastrophic forgetting, where performance on previous tasks degrades after training on a new task. This issue arises due to the model's tendency to overwrite previously acquired knowledge with new information. We present a novel approach to address this challenge, focusing on the intersection of memory-based methods and regularization approaches. We formulate a regularization strategy, termed Information Maximization (IM) regularizer, for memory-based continual learning methods, which is based exclusively on the expected label distribution, thus making it class-agnostic. As a consequence, IM regularizer can be directly integrated into various rehearsal-based continual learning methods, reducing forgetting and favoring faster convergence. Our empirical validation shows that, across datasets and regardless of the number of tasks, our proposed regularization strategy consistently improves baseline performance at the expense of a minimal computational overhead. The lightweight nature of IM ensures that it remains a practical and scalable solution, making it applicable to real-world continual learning scenarios where efficiency is paramount. Finally, we demonstrate the data-agnostic nature of our regularizer by applying it to video data, which presents additional challenges due to its temporal structure and higher memory requirements. Despite the significant domain gap, our experiments show that IM regularizer also improves the performance of video continual learning methods.
Authors:Wangjie Li, Lin Li, Qingyang Hong
Title: Continual Audio Deepfake Detection via Universal Adversarial Perturbation
Abstract:
The rapid advancement of speech synthesis and voice conversion technologies has raised significant security concerns in multimedia forensics. Although current detection models demonstrate impressive performance, they struggle to maintain effectiveness against constantly evolving deepfake attacks. Additionally, continually fine-tuning these models using historical training data incurs substantial computational and storage costs. To address these limitations, we propose a novel framework that incorporates Universal Adversarial Perturbation (UAP) into audio deepfake detection, enabling models to retain knowledge of historical spoofing distribution without direct access to past data. Our method integrates UAP seamlessly with pre-trained self-supervised audio models during fine-tuning. Extensive experiments validate the effectiveness of our approach, showcasing its potential as an efficient solution for continual learning in audio deepfake detection.
Authors:Haibo Hu, Jiacheng Zuo, Yang Lou, Yufei Cui, Jianping Wang, Nan Guan, Jin Wang, Yung-Hui Li, Chun Jason Xue
Title: VLM-C4L: Continual Core Dataset Learning with Corner Case Optimization via Vision-Language Models for Autonomous Driving
Abstract:
With the widespread adoption and deployment of autonomous driving, handling complex environments has become an unavoidable challenge. Due to the scarcity and diversity of extreme scenario datasets, current autonomous driving models struggle to effectively manage corner cases. This limitation poses a significant safety risk, according to the National Highway Traffic Safety Administration (NHTSA), autonomous vehicle systems have been involved in hundreds of reported crashes annually in the United States, occurred in corner cases like sun glare and fog, which caused a few fatal accident. Furthermore, in order to consistently maintain a robust and reliable autonomous driving system, it is essential for models not only to perform well on routine scenarios but also to adapt to newly emerging scenarios, especially those corner cases that deviate from the norm. This requires a learning mechanism that incrementally integrates new knowledge without degrading previously acquired capabilities. However, to the best of our knowledge, no existing continual learning methods have been proposed to ensure consistent and scalable corner case learning in autonomous driving. To address these limitations, we propose VLM-C4L, a continual learning framework that introduces Vision-Language Models (VLMs) to dynamically optimize and enhance corner case datasets, and VLM-C4L combines VLM-guided high-quality data extraction with a core data replay strategy, enabling the model to incrementally learn from diverse corner cases while preserving performance on previously routine scenarios, thus ensuring long-term stability and adaptability in real-world autonomous driving. We evaluate VLM-C4L on large-scale real-world autonomous driving datasets, including Waymo and the corner case dataset CODA.
Authors:Huancheng Chen, Jingtao Li, Weiming Zhuang, Chen Chen, Lingjuan Lyu
Title: Replay-Free Continual Low-Rank Adaptation with Dynamic Memory
Abstract:
We revisit continual learning~(CL), which enables pre-trained vision transformers (ViTs) to sequentially fine-tune on new downstream tasks over time. However, as the scale of these models increases, catastrophic forgetting remains a more serious challenge. Recent studies highlight a crossover between CL techniques and parameter-efficient fine-tuning (PEFT), which focuses on fine-tuning only a small set of trainable parameters to adapt to downstream tasks, such as low-rank adaptation (LoRA). While LoRA achieves faster convergence and requires fewer trainable parameters, it has seldom been explored in the context of continual learning. To address this gap, we propose a novel PEFT-CL method called Dual Low-Rank Adaptation (DualLoRA), which introduces both an orthogonal LoRA adapter and a residual LoRA adapter parallel to pre-trained weights in each layer. These components are orchestrated by a dynamic memory mechanism to strike a balance between stability and plasticity. Additionally, we propose a scheme to predict task identity with confidence and calibrate the model's outputs accordingly. On ViT-based models, we demonstrate that DualLoRA offers significant advantages in accuracy, inference speed, and computation efficiency in training over existing CL methods across multiple benchmarks.
Authors:Muhammad Ahmed Mohsin, Muhammad Umer, Ahsan Bilal, Muhammad Ibtsaam Qadir, Muhammad Ali Jamshed, Dean F. Hougen, John M. Cioffi
Title: Channel Prediction under Network Distribution Shift Using Continual Learning-based Loss Regularization
Abstract:
Modern wireless networks face critical challenges when mobile users traverse heterogeneous network configurations with varying antenna layouts, carrier frequencies, and scattering statistics. Traditional predictors degrade under distribution shift, with NMSE rising by 37.5\% during cross-configuration handovers. This work addresses catastrophic forgetting in channel prediction by proposing a continual learning framework based on loss regularization. The approach augments standard training objectives with penalty terms that selectively preserve network parameters essential for previous configurations while enabling adaptation to new environments. Two prominent regularization strategies are investigated: Elastic Weight Consolidation (EWC) and Synaptic Intelligence (SI). Across 3GPP scenarios and multiple architectures, SI lowers the high-SNR NMSE floor by up to 1.8 dB ($\approx$32--34\%), while EWC achieves up to 1.4 dB ($\approx$17--28\%). Notably, standard EWC incurs $\mathcal{O}(MK)$ complexity (storing $M$ Fisher diagonal entries and corresponding parameter snapshots across $K$ tasks) unless consolidated, whereas SI maintains $\mathcal{O}(M)$ memory complexity (storing $M$ model parameters), independent of task sequence length, making it suitable for resource-constrained wireless infrastructure
Authors:Yanru Wu, Jianning Wang, Xiangyu Chen, Enming Zhang, Yang Tan, Hanbing Liu, Yang Li
Title: Exploiting Task Relationships for Continual Learning Using Transferability-Aware Task Embeddings
Abstract:
Continual learning (CL) has been a critical topic in contemporary deep neural network applications, where higher levels of both forward and backward transfer are desirable for an effective CL performance. Existing CL strategies primarily focus on task models, either by regularizing model updates or by separating task-specific and shared components, while often overlooking the potential of leveraging inter-task relationships to enhance transfer. To address this gap, we propose a transferability-aware task embedding, termed H-embedding, and construct a hypernet framework under its guidance to learn task-conditioned model weights for CL tasks. Specifically, H-embedding is derived from an information theoretic measure of transferability and is designed to be online and easy to compute. Our method is also characterized by notable practicality, requiring only the storage of a low-dimensional task embedding per task and supporting efficient end-to-end training. Extensive evaluations on benchmarks including CIFAR-100, ImageNet-R, and DomainNet show that our framework performs prominently compared to various baseline and SOTA approaches, demonstrating strong potential in capturing and utilizing intrinsic task relationships. Our code is publicly available at https://anonymous.4open.science/r/H-embedding_guided_hypernet/.
Authors:Wenxuan Wang, Chenglei Wang, Huihui Qi, Menghao Ye, Xuelin Qian, Peng Wang, Yanning Zhang
Title: Sustainable Self-evolution Adversarial Training
Abstract:
With the wide application of deep neural network models in various computer vision tasks, there has been a proliferation of adversarial example generation strategies aimed at deeply exploring model security. However, existing adversarial training defense models, which rely on single or limited types of attacks under a one-time learning process, struggle to adapt to the dynamic and evolving nature of attack methods. Therefore, to achieve defense performance improvements for models in long-term applications, we propose a novel Sustainable Self-Evolution Adversarial Training (SSEAT) framework. Specifically, we introduce a continual adversarial defense pipeline to realize learning from various kinds of adversarial examples across multiple stages. Additionally, to address the issue of model catastrophic forgetting caused by continual learning from ongoing novel attacks, we propose an adversarial data replay module to better select more diverse and key relearning data. Furthermore, we design a consistency regularization strategy to encourage current defense models to learn more from previously trained ones, guiding them to retain more past knowledge and maintain accuracy on clean samples. Extensive experiments have been conducted to verify the efficacy of the proposed SSEAT defense method, which demonstrates superior defense performance and classification accuracy compared to competitors.
Authors:Yu Wang, Chi Han, Tongtong Wu, Xiaoxin He, Wangchunshu Zhou, Nafis Sadeq, Xiusi Chen, Zexue He, Wei Wang, Gholamreza Haffari, Heng Ji, Julian McAuley
Title: Towards LifeSpan Cognitive Systems
Abstract:
Building a human-like system that continuously interacts with complex environments -- whether simulated digital worlds or human society -- presents several key challenges. Central to this is enabling continuous, high-frequency interactions, where the interactions are termed experiences. We refer to this envisioned system as the LifeSpan Cognitive System (LSCS). A critical feature of LSCS is its ability to engage in incremental and rapid updates while retaining and accurately recalling past experiences. In this paper we focus on the domain of Large Language Models (LLMs), where we identify two major challenges: (1) Abstraction and Experience Merging, and (2) Long-term Retention with Accurate Recall. These properties are essential for storing new experiences, organizing past experiences, and responding to the environment in ways that leverage relevant historical data. Unlike language models with continual learning, which typically rely on large corpora for fine-tuning and focus on improving performance within specific domains or tasks, LSCS must rapidly and incrementally update with new information from its environment at a high frequency. Existing technologies with the potential of solving the above two major challenges can be classified into four classes based on a conceptual metric called Storage Complexity, which measures the relative space required to store past experiences. Each of these four classes of technologies has its own strengths and limitations while we argue none of them alone can achieve LSCS alone. To this end, we propose a potential instantiation for LSCS that can integrate all four classes of technologies. The new instantiation, serving as a conjecture, operates through two core processes: Absorbing Experiences and Generating Responses.
Authors:Yongrui Chen, Yi Huang, Yunchang Liu, Shenyu Zhang, Junhao He, Tongtong Wu, Guilin Qi, Tianxing Wu
Title: K-DeCore: Facilitating Knowledge Transfer in Continual Structured Knowledge Reasoning via Knowledge Decoupling
Abstract:
Continual Structured Knowledge Reasoning (CSKR) focuses on training models to handle sequential tasks, where each task involves translating natural language questions into structured queries grounded in structured knowledge. Existing general continual learning approaches face significant challenges when applied to this task, including poor generalization to heterogeneous structured knowledge and inefficient reasoning due to parameter growth as tasks increase. To address these limitations, we propose a novel CSKR framework, \textsc{K-DeCore}, which operates with a fixed number of tunable parameters. Unlike prior methods, \textsc{K-DeCore} introduces a knowledge decoupling mechanism that disentangles the reasoning process into task-specific and task-agnostic stages, effectively bridging the gaps across diverse tasks. Building on this foundation, \textsc{K-DeCore} integrates a dual-perspective memory consolidation mechanism for distinct stages and introduces a structure-guided pseudo-data synthesis strategy to further enhance the model's generalization capabilities. Extensive experiments on four benchmark datasets demonstrate the superiority of \textsc{K-DeCore} over existing continual learning methods across multiple metrics, leveraging various backbone large language models.
Authors:Lingfeng He, De Cheng, Huaijie Wang, Nannan Wang
Title: Harnessing Textual Semantic Priors for Knowledge Transfer and Refinement in CLIP-Driven Continual Learning
Abstract:
Continual learning (CL) aims to equip models with the ability to learn from a stream of tasks without forgetting previous knowledge. With the progress of vision-language models like Contrastive Language-Image Pre-training (CLIP), their promise for CL has attracted increasing attention due to their strong generalizability. However, the potential of rich textual semantic priors in CLIP in addressing the stability-plasticity dilemma remains underexplored. During backbone training, most approaches transfer past knowledge without considering semantic relevance, leading to interference from unrelated tasks that disrupt the balance between stability and plasticity. Besides, while text-based classifiers provide strong generalization, they suffer from limited plasticity due to the inherent modality gap in CLIP. Visual classifiers help bridge this gap, but their prototypes lack rich and precise semantics. To address these challenges, we propose Semantic-Enriched Continual Adaptation (SECA), a unified framework that harnesses the anti-forgetting and structured nature of textual priors to guide semantic-aware knowledge transfer in the backbone and reinforce the semantic structure of the visual classifier. Specifically, a Semantic-Guided Adaptive Knowledge Transfer (SG-AKT) module is proposed to assess new images' relevance to diverse historical visual knowledge via textual cues, and aggregate relevant knowledge in an instance-adaptive manner as distillation signals. Moreover, a Semantic-Enhanced Visual Prototype Refinement (SE-VPR) module is introduced to refine visual prototypes using inter-class semantic relations captured in class-wise textual embeddings. Extensive experiments on multiple benchmarks validate the effectiveness of our approach.
Authors:Prashant Bhat, Laurens Niesten, Elahe Arani, Bahram Zonooz
Title: Continual Learning Beyond Experience Rehearsal and Full Model Surrogates
Abstract:
Continual learning (CL) has remained a significant challenge for deep neural networks as learning new tasks erases previously acquired knowledge, either partially or completely. Existing solutions often rely on experience rehearsal or full model surrogates to mitigate CF. While effective, these approaches introduce substantial memory and computational overhead, limiting their scalability and applicability in real-world scenarios. To address this, we propose SPARC, a scalable CL approach that eliminates the need for experience rehearsal and full-model surrogates. By effectively combining task-specific working memories and task-agnostic semantic memory for cross-task knowledge consolidation, SPARC results in a remarkable parameter efficiency, using only 6% of the parameters required by full-model surrogates. Despite its lightweight design, SPARC achieves superior performance on Seq-TinyImageNet and matches rehearsal-based methods on various CL benchmarks. Additionally, weight re-normalization in the classification layer mitigates task-specific biases, establishing SPARC as a practical and scalable solution for CL under stringent efficiency constraints.
Authors:Prashant Shivaram Bhat, Shakib Yazdani, Elahe Arani, Bahram Zonooz
Title: Parameter Efficient Continual Learning with Dynamic Low-Rank Adaptation
Abstract:
Catastrophic forgetting has remained a critical challenge for deep neural networks in Continual Learning (CL) as it undermines consolidated knowledge when learning new tasks. Parameter efficient fine tuning CL techniques are gaining traction for their effectiveness in addressing catastrophic forgetting with a lightweight training schedule while avoiding degradation of consolidated knowledge in pre-trained models. However, low rank adapters (LoRA) in these approaches are highly sensitive to rank selection which can lead to sub-optimal resource allocation and performance. To this end, we introduce PEARL, a rehearsal-free CL framework that entails dynamic rank allocation for LoRA components during CL training. Specifically, PEARL leverages reference task weights and adaptively determines the rank of task-specific LoRA components based on the current tasks' proximity to reference task weights in parameter space. To demonstrate the versatility of PEARL, we evaluate it across three vision architectures (ResNet, Separable Convolutional Network and Vision Transformer) and a multitude of CL scenarios, and show that PEARL outperforms all considered baselines by a large margin.
Authors:Jianqiao Chen, Nan Ma, Wenkai Liu, Xiaodong Xu, Ping Zhang
Title: Continual Learning-Aided Super-Resolution Scheme for Channel Reconstruction and Generalization in OFDM Systems
Abstract:
Channel reconstruction and generalization capability are of equal importance for developing channel estimation schemes within deep learning (DL) framework. In this paper, we exploit a novel DL-based scheme for efficient OFDM channel estimation where the neural networks for channel reconstruction and generalization are respectively designed. For the former, we propose a dual-attention-aided super-resolution neural network (DA-SRNN) to map the channels at pilot positions to the whole time-frequency channels. Specifically, the channel-spatial attention mechanism is first introduced to sequentially infer attention maps along two separate dimensions corresponding to two types of underlying channel correlations, and then the lightweight SR module is developed for efficient channel reconstruction. For the latter, we introduce continual learning (CL)-aided training strategies to make the neural network adapt to different channel distributions. Specifically, the elastic weight consolidation (EWC) is introduced as the regularization term in regard to loss function of channel reconstruction, which can constrain the direction and space of updating the important weights of neural networks among different channel distributions. Meanwhile, the corresponding training process is provided in detail. By evaluating under 3rd Generation Partnership Project (3GPP) channel models, numerical results verify the superiority of the proposed channel estimation scheme with significantly improved channel reconstruction and generalization performance over counterparts.
Authors:Wei Zhang, Yi Zhang, Li Zhu, Qianghuai Jia, Feijun Jiang, Hongcheng Guo, Zhoujun Li, Mengping Zhou
Title: ADC: Enhancing Function Calling Via Adversarial Datasets and Code Line-Level Feedback
Abstract:
Large Language Models (LLMs) have made significant strides in Natural Language Processing and coding, yet they struggle with robustness and accuracy in complex function calls. To tackle these challenges, this paper introduces ADC, an innovative approach that enhances LLMs' ability to follow function formats and match complex parameters. ADC utilizes a high-quality code fine-tuning dataset with line-level execution feedback, providing granular process supervision that fosters strong logical reasoning and adherence to function formats. It also employs an adversarial dataset generation process to improve parameter matching. The staged training methodology capitalizes on both enriched code datasets and refined adversarial datasets, leading to marked improvements in function calling capabilities on the Berkeley Function-Calling Leaderboard (BFCL) Benchmark. The innovation of ADC lies in its strategic combination of process supervision, adversarial refinement, and incremental learning, setting a new standard for LLM proficiency in complex function calling.
Authors:Guangyu Zhao, Kewei Lian, Haowei Lin, Haobo Fu, Qiang Fu, Shaofei Cai, Zihao Wang, Yitao Liang
Title: Optimizing Latent Goal by Learning from Trajectory Preference
Abstract:
A glowing body of work has emerged focusing on instruction-following policies for open-world agents, aiming to better align the agent's behavior with human intentions. However, the performance of these policies is highly susceptible to the initial prompt, which leads to extra efforts in selecting the best instructions. We propose a framework named Preference Goal Tuning (PGT). PGT allows an instruction following policy to interact with the environment to collect several trajectories, which will be categorized into positive and negative samples based on preference. Then we use preference learning to fine-tune the initial goal latent representation with the categorized trajectories while keeping the policy backbone frozen. The experiment result shows that with minimal data and training, PGT achieves an average relative improvement of 72.0% and 81.6% over 17 tasks in 2 different foundation policies respectively, and outperforms the best human-selected instructions. Moreover, PGT surpasses full fine-tuning in the out-of-distribution (OOD) task-execution environments by 13.4%, indicating that our approach retains strong generalization capabilities. Since our approach stores a single latent representation for each task independently, it can be viewed as an efficient method for continual learning, without the risk of catastrophic forgetting or task interference. In short, PGT enhances the performance of agents across nearly all tasks in the Minecraft Skillforge benchmark and demonstrates robustness to the execution environment.
Authors:Lingxiang Wang, Hainan Zhang, Zhiming Zheng
Title: Parameter Importance-Driven Continual Learning for Foundation Models
Abstract:
Domain-specific post-training often causes catastrophic forgetting, making foundation models lose their general reasoning ability and limiting their adaptability to dynamic real-world environments. Preserving general capabilities while acquiring downstream domain knowledge is a central challenge for large language and multimodal models. Traditional continual learning methods, such as regularization, replay and architectural isolation, suffer from poor downstream performance, reliance on inaccessible historical data, or additional parameter overhead. While recent parameter-efficient tuning (PET) methods can alleviate forgetting, their effectiveness strongly depends on the choice of parameters and update strategies. In this paper, we introduce PIECE, a Parameter Importance Estimation-based Continual Enhancement method that preserves general ability while efficiently learning domain knowledge without accessing prior training data or increasing model parameters. PIECE selectively updates only 0.1% of core parameters most relevant to new tasks, guided by two importance estimators: PIECE-F based on Fisher Information, and PIECE-S based on a second-order normalization that combines gradient and curvature information. Experiments across three language models and two multimodal models show that PIECE maintains general capabilities and achieves state-of-the-art continual learning performance across diverse downstream tasks. Our results highlight a practical path to scalable, domain-adaptive foundation models without catastrophic forgetting.
Authors:Hyunsik Yoo, Ting-Wei Li, SeongKu Kang, Zhining Liu, Charlie Xu, Qilin Qi, Hanghang Tong
Title: Continual Low-Rank Adapters for LLM-based Generative Recommender Systems
Abstract:
While large language models (LLMs) achieve strong performance in recommendation, they face challenges in continual learning as users, items, and user preferences evolve over time. Existing LoRA-based continual methods primarily focus on preserving performance on previous tasks, but this overlooks the unique nature of recommendation: the goal is not to predict past preferences, and outdated preferences can even harm performance when current interests shift significantly. To address this, we propose PESO (Proximally rEgularized Single evolving lOra, a continual adaptation method for LoRA in recommendation. PESO introduces a proximal regularizer that anchors the current adapter to its most recent frozen state, enabling the model to flexibly balance adaptation and preservation, and to better capture recent user behaviors. Theoretically, we show that this proximal design provides data-aware, direction-wise guidance in the LoRA subspace. Empirically, PESO consistently outperforms existing LoRA-based continual learning methods.
Authors:Xiao Zhang, Zengzhe Chen, Yuan Yuan, Yifei Zou, Fuzhen Zhuang, Wenyu Jiao, Yuke Wang, Dongxiao Yu
Title: Data-Free Continual Learning of Server Models in Model-Heterogeneous Federated learning
Abstract:
Federated learning (FL) is a distributed learning paradigm across multiple entities while preserving data privacy. However, with the continuous emergence of new data and increasing model diversity, traditional federated learning faces significant challenges, including inherent issues of data heterogeneity, model heterogeneity and catastrophic forgetting, along with new challenge of knowledge misalignment. In this study, we introduce FedDCL, a novel framework designed to enable data-free continual learning of the server model in a model-heterogeneous federated setting. We leverage pre-trained diffusion models to extract lightweight class-specific prototypes, which confer a threefold data-free advantage, enabling: (1) generation of synthetic data for the current task to augment training and counteract non-IID data distributions; (2) exemplar-free generative replay for retaining knowledge from previous tasks; and (3) data-free dynamic knowledge transfer from heterogeneous clients to the server. Experimental results on various datasets demonstrate the effectiveness of FedDCL, showcasing its potential to enhance the generalizability and practical applicability of federated learning in dynamic settings.
Authors:Kailin Jiang, Yuntao Du, Yukai Ding, Yuchen Ren, Ning Jiang, Zhi Gao, Zilong Zheng, Lei Liu, Bin Li, Qing Li
Title: When Large Multimodal Models Confront Evolving Knowledge:Challenges and Pathways
Abstract:
Large language/multimodal models (LLMs/LMMs) store extensive pre-trained knowledge but struggle to maintain consistency with real-world updates, making it difficult to avoid catastrophic forgetting while acquiring evolving knowledge. Previous work focused on constructing textual knowledge datasets and exploring knowledge injection in LLMs, lacking exploration of multimodal evolving knowledge injection in LMMs. To address this, we propose the EVOKE benchmark to evaluate LMMs' ability to inject multimodal evolving knowledge in real-world scenarios. Meanwhile, a comprehensive evaluation of multimodal evolving knowledge injection revealed two challenges: (1) Existing knowledge injection methods perform terribly on evolving knowledge. (2) Supervised fine-tuning causes catastrophic forgetting, particularly instruction following ability is severely compromised. Additionally, we provide pathways and find that: (1) Text knowledge augmentation during the training phase improves performance, while image augmentation cannot achieve it. (2) Continual learning methods, especially Replay and MoELoRA, effectively mitigate forgetting. Our findings indicate that current knowledge injection methods have many limitations on evolving knowledge, which motivates further research on more efficient and stable knowledge injection methods.
Authors:Zehua Chen, Yuyang Miao, Liyuan Wang, Luyun Fan, Danilo P. Mandic, Jun Zhu
Title: Versatile Cardiovascular Signal Generation with a Unified Diffusion Transformer
Abstract:
Cardiovascular signals such as photoplethysmography (PPG), electrocardiography (ECG), and blood pressure (BP) are inherently correlated and complementary, together reflecting the health of cardiovascular system. However, their joint utilization in real-time monitoring is severely limited by diverse acquisition challenges from noisy wearable recordings to burdened invasive procedures. Here we propose UniCardio, a multi-modal diffusion transformer that reconstructs low-quality signals and synthesizes unrecorded signals in a unified generative framework. Its key innovations include a specialized model architecture to manage the signal modalities involved in generation tasks and a continual learning paradigm to incorporate varying modality combinations. By exploiting the complementary nature of cardiovascular signals, UniCardio clearly outperforms recent task-specific baselines in signal denoising, imputation, and translation. The generated signals match the performance of ground-truth signals in detecting abnormal health conditions and estimating vital signs, even in unseen domains, while ensuring interpretability for human experts. These advantages position UniCardio as a promising avenue for advancing AI-assisted healthcare.
Authors:Qingyu Chen, Tiarnan D L Keenan, Elvira Agron, Alexis Allot, Emily Guan, Bryant Duong, Amr Elsawy, Benjamin Hou, Cancan Xue, Sanjeeb Bhandari, Geoffrey Broadhead, Chantal Cousineau-Krieger, Ellen Davis, William G Gensheimer, David Grasic, Seema Gupta, Luis Haddock, Eleni Konstantinou, Tania Lamba, Michele Maiberger, Dimosthenis Mantopoulos, Mitul C Mehta, Ayman G Nahri, Mutaz AL-Nawaflh, Arnold Oshinsky, Brittany E Powell, Boonkit Purt, Soo Shin, Hillary Stiefel, Alisa T Thavikulwat, Keith James Wroblewski, Tham Yih Chung, Chui Ming Gemmy Cheung, Ching-Yu Cheng, Emily Y Chew, Michelle R. Hribar, Michael F. Chiang, Zhiyong Lu
Title: AI Workflow, External Validation, and Development in Eye Disease Diagnosis
Abstract:
Timely disease diagnosis is challenging due to increasing disease burdens and limited clinician availability. AI shows promise in diagnosis accuracy but faces real-world application issues due to insufficient validation in clinical workflows and diverse populations. This study addresses gaps in medical AI downstream accountability through a case study on age-related macular degeneration (AMD) diagnosis and severity classification. We designed and implemented an AI-assisted diagnostic workflow for AMD, comparing diagnostic performance with and without AI assistance among 24 clinicians from 12 institutions with real patient data sampled from the Age-Related Eye Disease Study (AREDS). Additionally, we demonstrated continual enhancement of an existing AI model by incorporating approximately 40,000 additional medical images (named AREDS2 dataset). The improved model was then systematically evaluated using both AREDS and AREDS2 test sets, as well as an external test set from Singapore. AI assistance markedly enhanced diagnostic accuracy and classification for 23 out of 24 clinicians, with the average F1-score increasing by 20% from 37.71 (Manual) to 45.52 (Manual + AI) (P-value < 0.0001), achieving an improvement of over 50% in some cases. In terms of efficiency, AI assistance reduced diagnostic times for 17 out of the 19 clinicians tracked, with time savings of up to 40%. Furthermore, a model equipped with continual learning showed robust performance across three independent datasets, recording a 29% increase in accuracy, and elevating the F1-score from 42 to 54 in the Singapore population.
Authors:Shaokun Wang, Weili Guan, Jizhou Han, Jianlong Wu, Yupeng Hu, Liqiang Nie
Title: StructAlign: Structured Cross-Modal Alignment for Continual Text-to-Video Retrieval
Abstract:
Continual Text-to-Video Retrieval (CTVR) is a challenging multimodal continual learning setting, where models must incrementally learn new semantic categories while maintaining accurate text-video alignment for previously learned ones, thus making it particularly prone to catastrophic forgetting. A key challenge in CTVR is feature drift, which manifests in two forms: intra-modal feature drift caused by continual learning within each modality, and non-cooperative feature drift across modalities that leads to modality misalignment. To mitigate these issues, we propose StructAlign, a structured cross-modal alignment method for CTVR. First, StructAlign introduces a simplex Equiangular Tight Frame (ETF) geometry as a unified geometric prior to mitigate modality misalignment. Building upon this geometric prior, we design a cross-modal ETF alignment loss that aligns text and video features with category-level ETF prototypes, encouraging the learned representations to form an approximate simplex ETF geometry. In addition, to suppress intra-modal feature drift, we design a Cross-modal Relation Preserving loss, which leverages complementary modalities to preserve cross-modal similarity relations, providing stable relational supervision for feature updates. By jointly addressing non-cooperative feature drift across modalities and intra-modal feature drift, StructAlign effectively alleviates catastrophic forgetting in CTVR. Extensive experiments on benchmark datasets demonstrate that our method consistently outperforms state-of-the-art continual retrieval approaches.
Authors:Siddeshwar Raghavan, Jiangpeng He, Fengqing Zhu
Title: PANDA - Patch And Distribution-Aware Augmentation for Long-Tailed Exemplar-Free Continual Learning
Abstract:
Exemplar-Free Continual Learning (EFCL) restricts the storage of previous task data and is highly susceptible to catastrophic forgetting. While pre-trained models (PTMs) are increasingly leveraged for EFCL, existing methods often overlook the inherent imbalance of real-world data distributions. We discovered that real-world data streams commonly exhibit dual-level imbalances, dataset-level distributions combined with extreme or reversed skews within individual tasks, creating both intra-task and inter-task disparities that hinder effective learning and generalization. To address these challenges, we propose PANDA, a Patch-and-Distribution-Aware Augmentation framework that integrates seamlessly with existing PTM-based EFCL methods. PANDA amplifies low-frequency classes by using a CLIP encoder to identify representative regions and transplanting those into frequent-class samples within each task. Furthermore, PANDA incorporates an adaptive balancing strategy that leverages prior task distributions to smooth inter-task imbalances, reducing the overall gap between average samples across tasks and enabling fairer learning with frozen PTMs. Extensive experiments and ablation studies demonstrate PANDA's capability to work with existing PTM-based CL methods, improving accuracy and reducing catastrophic forgetting.
Authors:Yuyang Hong, Qi Yang, Tao Zhang, Zili Wang, Zhaojin Fu, Kun Ding, Bin Fan, Shiming Xiang
Title: Taming Modality Entanglement in Continual Audio-Visual Segmentation
Abstract:
Recently, significant progress has been made in multi-modal continual learning, aiming to learn new tasks sequentially in multi-modal settings while preserving performance on previously learned ones. However, existing methods mainly focus on coarse-grained tasks, with limitations in addressing modality entanglement in fine-grained continual learning settings. To bridge this gap, we introduce a novel Continual Audio-Visual Segmentation (CAVS) task, aiming to continuously segment new classes guided by audio. Through comprehensive analysis, two critical challenges are identified: 1) multi-modal semantic drift, where a sounding objects is labeled as background in sequential tasks; 2) co-occurrence confusion, where frequent co-occurring classes tend to be confused. In this work, a Collision-based Multi-modal Rehearsal (CMR) framework is designed to address these challenges. Specifically, for multi-modal semantic drift, a Multi-modal Sample Selection (MSS) strategy is proposed to select samples with high modal consistency for rehearsal. Meanwhile, for co-occurence confusion, a Collision-based Sample Rehearsal (CSR) mechanism is designed, allowing for the increase of rehearsal sample frequency of those confusable classes during training process. Moreover, we construct three audio-visual incremental scenarios to verify effectiveness of our method. Comprehensive experiments demonstrate that our method significantly outperforms single-modal continual learning methods.
Authors:Zhuang Qi, Ying-Peng Tang, Lei Meng, Han Yu, Xiaoxiao Li, Xiangxu Meng
Title: Class-wise Balancing Data Replay for Federated Class-Incremental Learning
Abstract:
Federated Class Incremental Learning (FCIL) aims to collaboratively process continuously increasing incoming tasks across multiple clients. Among various approaches, data replay has become a promising solution, which can alleviate forgetting by reintroducing representative samples from previous tasks. However, their performance is typically limited by class imbalance, both within the replay buffer due to limited global awareness and between replayed and newly arrived classes. To address this issue, we propose a class wise balancing data replay method for FCIL (FedCBDR), which employs a global coordination mechanism for class-level memory construction and reweights the learning objective to alleviate the aforementioned imbalances. Specifically, FedCBDR has two key components: 1) the global-perspective data replay module reconstructs global representations of prior task in a privacy-preserving manner, which then guides a class-aware and importance-sensitive sampling strategy to achieve balanced replay; 2) Subsequently, to handle class imbalance across tasks, the task aware temperature scaling module adaptively adjusts the temperature of logits at both class and instance levels based on task dynamics, which reduces the model's overconfidence in majority classes while enhancing its sensitivity to minority classes. Experimental results verified that FedCBDR achieves balanced class-wise sampling under heterogeneous data distributions and improves generalization under task imbalance between earlier and recent tasks, yielding a 2%-15% Top-1 accuracy improvement over six state-of-the-art methods.
Authors:Jiangpeng He, Zhihao Duan, Fengqing Zhu
Title: CL-LoRA: Continual Low-Rank Adaptation for Rehearsal-Free Class-Incremental Learning
Abstract:
Class-Incremental Learning (CIL) aims to learn new classes sequentially while retaining the knowledge of previously learned classes. Recently, pre-trained models (PTMs) combined with parameter-efficient fine-tuning (PEFT) have shown remarkable performance in rehearsal-free CIL without requiring exemplars from previous tasks. However, existing adapter-based methods, which incorporate lightweight learnable modules into PTMs for CIL, create new adapters for each new task, leading to both parameter redundancy and failure to leverage shared knowledge across tasks. In this work, we propose ContinuaL Low-Rank Adaptation (CL-LoRA), which introduces a novel dual-adapter architecture combining \textbf{task-shared adapters} to learn cross-task knowledge and \textbf{task-specific adapters} to capture unique features of each new task. Specifically, the shared adapters utilize random orthogonal matrices and leverage knowledge distillation with gradient reassignment to preserve essential shared knowledge. In addition, we introduce learnable block-wise weights for task-specific adapters, which mitigate inter-task interference while maintaining the model's plasticity. We demonstrate CL-LoRA consistently achieves promising performance under multiple benchmarks with reduced training and inference computation, establishing a more efficient and scalable paradigm for continual learning with pre-trained models.
Authors:Haomiao Qiu, Miao Zhang, Ziyue Qiao, Weili Guan, Min Zhang, Liqiang Nie
Title: SplitLoRA: Balancing Stability and Plasticity in Continual Learning Through Gradient Space Splitting
Abstract:
Continual Learning requires a model to learn multiple tasks in sequence while maintaining both stability:preserving knowledge from previously learned tasks, and plasticity:effectively learning new tasks. Gradient projection has emerged as an effective and popular paradigm in CL, where it partitions the gradient space of previously learned tasks into two orthogonal subspaces: a primary subspace and a minor subspace. New tasks are learned effectively within the minor subspace, thereby reducing interference with previously acquired knowledge. However, existing Gradient Projection methods struggle to achieve an optimal balance between plasticity and stability, as it is hard to appropriately partition the gradient space. In this work, we consider a continual learning paradigm based on Low-Rank Adaptation, which has gained considerable attention due to its efficiency and wide applicability, and propose a novel approach for continual learning, called SplitLoRA. We first provide a theoretical analysis of how subspace partitioning affects model stability and plasticity. Informed by this analysis, we then introduce an effective method that derives the optimal partition of the gradient space for previously learned tasks. This approach effectively balances stability and plasticity in continual learning. Experimental results on multiple datasets demonstrate that the proposed method achieves state-of-the-art performance.
Authors:Jinge Ma, Jiangpeng He, Fengqing Zhu
Title: Robust3D-CIL: Robust Class-Incremental Learning for 3D Perception
Abstract:
3D perception plays a crucial role in real-world applications such as autonomous driving, robotics, and AR/VR. In practical scenarios, 3D perception models must continuously adapt to new data and emerging object categories, but retraining from scratch incurs prohibitive costs. Therefore, adopting class-incremental learning (CIL) becomes particularly essential. However, real-world 3D point cloud data often include corrupted samples, which poses significant challenges for existing CIL methods and leads to more severe forgetting on corrupted data. To address these challenges, we consider the scenario in which a CIL model can be updated using point clouds with unknown corruption to better simulate real-world conditions. Inspired by Farthest Point Sampling, we propose a novel exemplar selection strategy that effectively preserves intra-class diversity when selecting replay exemplars, mitigating forgetting induced by data corruption. Furthermore, we introduce a point cloud downsampling-based replay method to utilize the limited replay buffer memory more efficiently, thereby further enhancing the model's continual learning ability. Extensive experiments demonstrate that our method improves the performance of replay-based CIL baselines by 2% to 11%, proving its effectiveness and promising potential for real-world 3D applications.
Authors:Paulina Stevia Nouwou Mindom, Leuson Da Silva, Amin Nikanjam, Foutse Khomh
Title: Continuously Learning Bug Locations
Abstract:
Automatically locating buggy changesets associated with bug reports is crucial in the software development process. Deep Learning (DL)-based techniques show promising results by leveraging structural information from the code and learning links between changesets and bug reports. However, since source code associated with changesets evolves, the performance of such models tends to degrade over time due to concept drift. Aiming to address this challenge, in this paper, we evaluate the potential of using Continual Learning (CL) techniques in multiple sub-tasks setting for bug localization (each of which operates on either stationary or non-stationary data), comparing it against a bug localization technique that leverages the BERT model, a deep reinforcement learning-based technique that leverages the A2C algorithm, and a DL-based function-level interaction model for semantic bug localization. Additionally, we enhanced the CL techniques by using logistic regression to identify and integrate the most significant bug-inducing factors. Our empirical evaluation across seven widely used software projects shows that CL techniques perform better than DL-based techniques by up to 61% in terms of Mean Reciprocal Rank (MRR), 44% in terms of Mean Average Precision (MAP), 83% in terms of top@1, 56% in terms of top@5, and 66% in terms of top@10 metrics in non-stationary setting. Further, we show that the CL techniques we studied are effective at localizing changesets relevant to a bug report while being able to mitigate catastrophic forgetting across the studied tasks and require up to 5x less computational effort during training. Our findings demonstrate the potential of adopting CL for bug localization in non-stationary settings, and we hope it helps to improve bug localization activities in Software Engineering using CL techniques.
Authors:Sarthak Jain, Orchid Chetia Phukan, Swarup Ranjan Behera, Arun Balaji Buduru, Rajesh Sharma
Title: SeQuiFi: Mitigating Catastrophic Forgetting in Speech Emotion Recognition with Sequential Class-Finetuning
Abstract:
In this work, we introduce SeQuiFi, a novel approach for mitigating catastrophic forgetting (CF) in speech emotion recognition (SER). SeQuiFi adopts a sequential class-finetuning strategy, where the model is fine-tuned incrementally on one emotion class at a time, preserving and enhancing retention for each class. While various state-of-the-art (SOTA) methods, such as regularization-based, memory-based, and weight-averaging techniques, have been proposed to address CF, it still remains a challenge, particularly with diverse and multilingual datasets. Through extensive experiments, we demonstrate that SeQuiFi significantly outperforms both vanilla fine-tuning and SOTA continual learning techniques in terms of accuracy and F1 scores on multiple benchmark SER datasets, including CREMA-D, RAVDESS, Emo-DB, MESD, and SHEMO, covering different languages.
Authors:Davide Salvi, Viola Negroni, Luca Bondi, Paolo Bestagini, Stefano Tubaro
Title: Freeze and Learn: Continual Learning with Selective Freezing for Speech Deepfake Detection
Abstract:
In speech deepfake detection, one of the critical aspects is developing detectors able to generalize on unseen data and distinguish fake signals across different datasets. Common approaches to this challenge involve incorporating diverse data into the training process or fine-tuning models on unseen datasets. However, these solutions can be computationally demanding and may lead to the loss of knowledge acquired from previously learned data. Continual learning techniques offer a potential solution to this problem, allowing the models to learn from unseen data without losing what they have already learned. Still, the optimal way to apply these algorithms for speech deepfake detection remains unclear, and we do not know which is the best way to apply these algorithms to the developed models. In this paper we address this aspect and investigate whether, when retraining a speech deepfake detector, it is more effective to apply continual learning across the entire model or to update only some of its layers while freezing others. Our findings, validated across multiple models, indicate that the most effective approach among the analyzed ones is to update only the weights of the initial layers, which are responsible for processing the input features of the detector.
Authors:Zixia Jia, Jiaqi Li, Yipeng Kang, Yuxuan Wang, Tong Wu, Quansen Wang, Xiaobo Wang, Shuyi Zhang, Junzhe Shen, Qing Li, Siyuan Qi, Yitao Liang, Di He, Zilong Zheng, Song-Chun Zhu
Title: The AI Hippocampus: How Far are We From Human Memory?
Abstract:
Memory plays a foundational role in augmenting the reasoning, adaptability, and contextual fidelity of modern Large Language Models and Multi-Modal LLMs. As these models transition from static predictors to interactive systems capable of continual learning and personalized inference, the incorporation of memory mechanisms has emerged as a central theme in their architectural and functional evolution. This survey presents a comprehensive and structured synthesis of memory in LLMs and MLLMs, organizing the literature into a cohesive taxonomy comprising implicit, explicit, and agentic memory paradigms. Specifically, the survey delineates three primary memory frameworks. Implicit memory refers to the knowledge embedded within the internal parameters of pre-trained transformers, encompassing their capacity for memorization, associative retrieval, and contextual reasoning. Recent work has explored methods to interpret, manipulate, and reconfigure this latent memory. Explicit memory involves external storage and retrieval components designed to augment model outputs with dynamic, queryable knowledge representations, such as textual corpora, dense vectors, and graph-based structures, thereby enabling scalable and updatable interaction with information sources. Agentic memory introduces persistent, temporally extended memory structures within autonomous agents, facilitating long-term planning, self-consistency, and collaborative behavior in multi-agent systems, with relevance to embodied and interactive AI. Extending beyond text, the survey examines the integration of memory within multi-modal settings, where coherence across vision, language, audio, and action modalities is essential. Key architectural advances, benchmark tasks, and open challenges are discussed, including issues related to memory capacity, alignment, factual consistency, and cross-system interoperability.
Authors:Jaehyung Lim, Wonbin Kweon, Woojoo Kim, Junyoung Kim, Seongjin Choi, Dongha Kim, Hwanjo Yu
Title: Federated Continual Recommendation
Abstract:
The increasing emphasis on privacy in recommendation systems has led to the adoption of Federated Learning (FL) as a privacy-preserving solution, enabling collaborative training without sharing user data. While Federated Recommendation (FedRec) effectively protects privacy, existing methods struggle with non-stationary data streams, failing to maintain consistent recommendation quality over time. On the other hand, Continual Learning Recommendation (CLRec) methods address evolving user preferences but typically assume centralized data access, making them incompatible with FL constraints. To bridge this gap, we introduce Federated Continual Recommendation (FCRec), a novel task that integrates FedRec and CLRec, requiring models to learn from streaming data while preserving privacy. As a solution, we propose F3CRec, a framework designed to balance knowledge retention and adaptation under the strict constraints of FCRec. F3CRec introduces two key components: Adaptive Replay Memory on the client side, which selectively retains past preferences based on user-specific shifts, and Item-wise Temporal Mean on the server side, which integrates new knowledge while preserving prior information. Extensive experiments demonstrate that F3CRec outperforms existing approaches in maintaining recommendation quality over time in a federated environment.
Authors:Yuan-Chen Shu, Zhiwei Lin, Yongtao Wang
Title: RegCL: Continual Adaptation of Segment Anything Model via Model Merging
Abstract:
To address the performance limitations of the Segment Anything Model (SAM) in specific domains, existing works primarily adopt adapter-based one-step adaptation paradigms. However, some of these methods are specific developed for specific domains. If used on other domains may lead to performance degradation. This issue of catastrophic forgetting severely limits the model's scalability. To address this issue, this paper proposes RegCL, a novel non-replay continual learning (CL) framework designed for efficient multi-domain knowledge integration through model merging. Specifically, RegCL incorporates the model merging algorithm into the continual learning paradigm by merging the parameters of SAM's adaptation modules (e.g., LoRA modules) trained on different domains. The merging process is guided by weight optimization, which minimizes prediction discrepancies between the merged model and each of the domain-specific models. RegCL effectively consolidates multi-domain knowledge while maintaining parameter efficiency, i.e., the model size remains constant regardless of the number of tasks, and no historical data storage is required. Experimental results demonstrate that RegCL achieves favorable continual learning performance across multiple downstream datasets, validating its effectiveness in dynamic scenarios.
Authors:Renzo J. Scholman, Tanja Alderliesten, Peter A. N. Bosman
Title: More Efficient Real-Valued Gray-Box Optimization through Incremental Distribution Estimation in RV-GOMEA
Abstract:
The Gene-pool Optimal Mixing EA (GOMEA) family of EAs offers a specific means to exploit problem-specific knowledge through linkage learning, i.e., inter-variable dependency detection, expressed using subsets of variables, that should undergo joint variation. Such knowledge can be exploited if faster fitness evaluations are possible when only a few variables are changed in a solution, enabling large speed-ups. The recent-most version of Real-Valued GOMEA (RV-GOMEA) can learn a conditional linkage model during optimization using fitness-based linkage learning, enabling fine-grained dependency exploitation in learning and sampling a Gaussian distribution. However, while the most efficient Gaussian-based EAs, like NES and CMA-ES, employ incremental learning of the Gaussian distribution rather than performing full re-estimation every generation, the recent-most RV-GOMEA version does not employ such incremental learning. In this paper, we therefore study whether incremental distribution estimation can lead to efficiency enhancements of RV-GOMEA. We consider various benchmark problems with varying degrees of overlapping dependencies. We find that, compared to RV-GOMEA and VKD-CMA-ES, the required number of evaluations to reach high-quality solutions can be reduced by a factor of up to 1.5 if population sizes are tuned problem-specifically, while a reduction by a factor of 2-3 can be achieved with generic population-sizing guidelines.
Authors:Wenzhuo Liu, Fei Zhu, Haiyang Guo, Longhui Wei, Cheng-Lin Liu
Title: LLaVA-c: Continual Improved Visual Instruction Tuning
Abstract:
Multimodal models like LLaVA-1.5 achieve state-of-the-art visual understanding through visual instruction tuning on multitask datasets, enabling strong instruction-following and multimodal performance. However, multitask learning faces challenges such as task balancing, requiring careful adjustment of data proportions, and expansion costs, where new tasks risk catastrophic forgetting and need costly retraining. Continual learning provides a promising alternative to acquiring new knowledge incrementally while preserving existing capabilities. However, current methods prioritize task-specific performance, neglecting base model degradation from overfitting to specific instructions, which undermines general capabilities. In this work, we propose a simple but effective method with two modifications on LLaVA-1.5: spectral-aware consolidation for improved task balance and unsupervised inquiry regularization to prevent base model degradation. We evaluate both general and task-specific performance across continual pretraining and fine-tuning. Experiments demonstrate that LLaVA-c consistently enhances standard benchmark performance and preserves general capabilities. For the first time, we show that task-by-task continual learning can achieve results that match or surpass multitask joint learning. The code will be publicly released.
Authors:Congren Dai, Huichi Zhou, Jiahao Huang, Zhenxuan Zhang, Fanwen Wang, Guang Yang, Fei Ye
Title: Dynamic Dual Buffer with Divide-and-Conquer Strategy for Online Continual Learning
Abstract:
Online Continual Learning (OCL) presents a complex learning environment in which new data arrives in a batch-to-batch online format, and the risk of catastrophic forgetting can significantly impair model efficacy. In this study, we address OCL by introducing an innovative memory framework that incorporates a short-term memory system to retain dynamic information and a long-term memory system to archive enduring knowledge. Specifically, the long-term memory system comprises a collection of sub-memory buffers, each linked to a cluster prototype and designed to retain data samples from distinct categories. We propose a novel $K$-means-based sample selection method to identify cluster prototypes for each encountered category. To safeguard essential and critical samples, we introduce a novel memory optimisation strategy that selectively retains samples in the appropriate sub-memory buffer by evaluating each cluster prototype against incoming samples through an optimal transportation mechanism. This approach specifically promotes each sub-memory buffer to retain data samples that exhibit significant discrepancies from the corresponding cluster prototype, thereby ensuring the preservation of semantically rich information. In addition, we propose a novel Divide-and-Conquer (DAC) approach that formulates the memory updating as an optimisation problem and divides it into several subproblems. As a result, the proposed DAC approach can solve these subproblems separately and thus can significantly reduce computations of the proposed memory updating process. We conduct a series of experiments across standard and imbalanced learning settings, and the empirical findings indicate that the proposed memory framework achieves state-of-the-art performance in both learning contexts.
Authors:Chi-Yuan Hsiao, Ke-Han Lu, Kai-Wei Chang, Chih-Kai Yang, Wei-Chih Chen, Hung-yi Lee
Title: Analyzing Mitigation Strategies for Catastrophic Forgetting in End-to-End Training of Spoken Language Models
Abstract:
End-to-end training of Spoken Language Models (SLMs) commonly involves adapting pre-trained text-based Large Language Models (LLMs) to the speech modality through multi-stage training on diverse tasks such as ASR, TTS and spoken question answering (SQA). Although this multi-stage continual learning equips LLMs with both speech understanding and generation capabilities, the substantial differences in task and data distributions across stages can lead to catastrophic forgetting, where previously acquired knowledge is lost. This paper investigates catastrophic forgetting and evaluates three mitigation strategies-model merging, discounting the LoRA scaling factor, and experience replay to balance knowledge retention with new learning. Results show that experience replay is the most effective, with further gains achieved by combining it with other methods. These findings provide insights for developing more robust and efficient SLM training pipelines.
Authors:Dazhou Guo, Zhanghexuan Ji, Yanzhou Su, Dandan Zheng, Heng Guo, Puyang Wang, Ke Yan, Yirui Wang, Qinji Yu, Zi Li, Minfeng Xu, Jianfeng Zhang, Haoshen Li, Jia Ge, Tsung-Ying Ho, Bing-Shen Huang, Tashan Ai, Kuaile Zhao, Na Shen, Qifeng Wang, Yun Bian, Tingyu Wu, Peng Du, Hua Zhang, Feng-Ming Kong, Alan L. Yuille, Cher Heng Tan, Chunyan Miao, Perry J. Pickhardt, Senxiang Yan, Ronald M. Summers, Le Lu, Dakai Jin, Xianghua Ye
Title: A Continual Learning-driven Model for Accurate and Generalizable Segmentation of Clinically Comprehensive and Fine-grained Whole-body Anatomies in CT
Abstract:
Precision medicine in the quantitative management of chronic diseases and oncology would be greatly improved if the Computed Tomography (CT) scan of any patient could be segmented, parsed and analyzed in a precise and detailed way. However, there is no such fully annotated CT dataset with all anatomies delineated for training because of the exceptionally high manual cost, the need for specialized clinical expertise, and the time required to finish the task. To this end, we proposed a novel continual learning-driven CT model that can segment complete anatomies presented using dozens of previously partially labeled datasets, dynamically expanding its capacity to segment new ones without compromising previously learned organ knowledge. Existing multi-dataset approaches are not able to dynamically segment new anatomies without catastrophic forgetting and would encounter optimization difficulty or infeasibility when segmenting hundreds of anatomies across the whole range of body regions. Our single unified CT segmentation model, CL-Net, can highly accurately segment a clinically comprehensive set of 235 fine-grained whole-body anatomies. Composed of a universal encoder, multiple optimized and pruned decoders, CL-Net is developed using 13,952 CT scans from 20 public and 16 private high-quality partially labeled CT datasets of various vendors, different contrast phases, and pathologies. Extensive evaluation demonstrates that CL-Net consistently outperforms the upper limit of an ensemble of 36 specialist nnUNets trained per dataset with the complexity of 5% model size and significantly surpasses the segmentation accuracy of recent leading Segment Anything-style medical image foundation models by large margins. Our continual learning-driven CL-Net model would lay a solid foundation to facilitate many downstream tasks of oncology and chronic diseases using the most widely adopted CT imaging.
Authors:Haiyang Guo, Fei Zhu, Fanhu Zeng, Bing Liu, Xu-Yao Zhang
Title: DESIRE: Dynamic Knowledge Consolidation for Rehearsal-Free Continual Learning
Abstract:
Continual learning aims to equip models with the ability to retain previously learned knowledge like a human. Recent work incorporating Parameter-Efficient Fine-Tuning has revitalized the field by introducing lightweight extension modules. However, existing methods usually overlook the issue of information leakage caused by the fact that the experiment data have been used in pre-trained models. Once these duplicate data are removed in the pre-training phase, their performance can be severely affected. In this paper, we propose a new LoRA-based rehearsal-free method named DESIRE. Our method avoids imposing additional constraints during training to mitigate catastrophic forgetting, thereby maximizing the learning of new classes. To integrate knowledge from old and new tasks, we propose two efficient post-processing modules. On the one hand, we retain only two sets of LoRA parameters for merging and propose dynamic representation consolidation to calibrate the merged feature representation. On the other hand, we propose decision boundary refinement to address classifier bias when training solely on new class data. Extensive experiments demonstrate that our method achieves state-of-the-art performance on multiple datasets and strikes an effective balance between stability and plasticity. Our code will be publicly available.
Authors:Ruitao Wu, Yifan Zhao, Guangyao Chen, Jia Li
Title: Diffusion-Classifier Synergy: Reward-Aligned Learning via Mutual Boosting Loop for FSCIL
Abstract:
Few-Shot Class-Incremental Learning (FSCIL) challenges models to sequentially learn new classes from minimal examples without forgetting prior knowledge, a task complicated by the stability-plasticity dilemma and data scarcity. Current FSCIL methods often struggle with generalization due to their reliance on limited datasets. While diffusion models offer a path for data augmentation, their direct application can lead to semantic misalignment or ineffective guidance. This paper introduces Diffusion-Classifier Synergy (DCS), a novel framework that establishes a mutual boosting loop between diffusion model and FSCIL classifier. DCS utilizes a reward-aligned learning strategy, where a dynamic, multi-faceted reward function derived from the classifier's state directs the diffusion model. This reward system operates at two levels: the feature level ensures semantic coherence and diversity using prototype-anchored maximum mean discrepancy and dimension-wise variance matching, while the logits level promotes exploratory image generation and enhances inter-class discriminability through confidence recalibration and cross-session confusion-aware mechanisms. This co-evolutionary process, where generated images refine the classifier and an improved classifier state yields better reward signals, demonstrably achieves state-of-the-art performance on FSCIL benchmarks, significantly enhancing both knowledge retention and new class learning.
Authors:Tuo Xiang, Xuemiao Xu, Bangzhen Liu, Jinyi Li, Yong Li, Shengfeng He
Title: Seeing 3D Through 2D Lenses: 3D Few-Shot Class-Incremental Learning via Cross-Modal Geometric Rectification
Abstract:
The rapid growth of 3D digital content necessitates expandable recognition systems for open-world scenarios. However, existing 3D class-incremental learning methods struggle under extreme data scarcity due to geometric misalignment and texture bias. While recent approaches integrate 3D data with 2D foundation models (e.g., CLIP), they suffer from semantic blurring caused by texture-biased projections and indiscriminate fusion of geometric-textural cues, leading to unstable decision prototypes and catastrophic forgetting. To address these issues, we propose Cross-Modal Geometric Rectification (CMGR), a framework that enhances 3D geometric fidelity by leveraging CLIP's hierarchical spatial semantics. Specifically, we introduce a Structure-Aware Geometric Rectification module that hierarchically aligns 3D part structures with CLIP's intermediate spatial priors through attention-driven geometric fusion. Additionally, a Texture Amplification Module synthesizes minimal yet discriminative textures to suppress noise and reinforce cross-modal consistency. To further stabilize incremental prototypes, we employ a Base-Novel Discriminator that isolates geometric variations. Extensive experiments demonstrate that our method significantly improves 3D few-shot class-incremental learning, achieving superior geometric coherence and robustness to texture bias across cross-domain and within-domain settings.
Authors:Ruitao Wu, Yifan Zhao, Jia Li
Title: Learning Yourself: Class-Incremental Semantic Segmentation with Language-Inspired Bootstrapped Disentanglement
Abstract:
Class-Incremental Semantic Segmentation (CISS) requires continuous learning of newly introduced classes while retaining knowledge of past classes. By abstracting mainstream methods into two stages (visual feature extraction and prototype-feature matching), we identify a more fundamental challenge termed catastrophic semantic entanglement. This phenomenon involves Prototype-Feature Entanglement caused by semantic misalignment during the incremental process, and Background-Increment Entanglement due to dynamic data evolution. Existing techniques, which rely on visual feature learning without sufficient cues to distinguish targets, introduce significant noise and errors. To address these issues, we introduce a Language-inspired Bootstrapped Disentanglement framework (LBD). We leverage the prior class semantics of pre-trained visual-language models (e.g., CLIP) to guide the model in autonomously disentangling features through Language-guided Prototypical Disentanglement and Manifold Mutual Background Disentanglement. The former guides the disentangling of new prototypes by treating hand-crafted text features as topological templates, while the latter employs multiple learnable prototypes and mask-pooling-based supervision for background-incremental class disentanglement. By incorporating soft prompt tuning and encoder adaptation modifications, we further bridge the capability gap of CLIP between dense and sparse tasks, achieving state-of-the-art performance on both Pascal VOC and ADE20k, particularly in multi-step scenarios.
Authors:Tristan Tomilin, Luka van den Boogaard, Samuel Garcin, Bram Grooten, Meng Fang, Yali Du, Mykola Pechenizkiy
Title: MEAL: A Benchmark for Continual Multi-Agent Reinforcement Learning
Abstract:
Benchmarks play a crucial role in the development and analysis of reinforcement learning (RL) algorithms, with environment availability strongly impacting research. One particularly underexplored intersection is continual learning (CL) in cooperative multi-agent settings. To remedy this, we introduce MEAL (Multi-agent Environments for Adaptive Learning), the first benchmark tailored for continual multi-agent reinforcement learning (CMARL). Existing CL benchmarks run environments on the CPU, leading to computational bottlenecks and limiting the length of task sequences. MEAL leverages JAX for GPU acceleration, enabling continual learning across sequences of 100 tasks on a standard desktop PC in a few hours. We show that naively combining popular CL and MARL methods yields strong performance on simple environments, but fails to scale to more complex settings requiring sustained coordination and adaptation. Our ablation study identifies architectural and algorithmic features critical for CMARL on MEAL.
Authors:Mei Li, Yuxiang Lu, Qinyan Dai, Suizhi Huang, Yue Ding, Hongtao Lu
Title: BECAME: BayEsian Continual Learning with Adaptive Model MErging
Abstract:
Continual Learning (CL) strives to learn incrementally across tasks while mitigating catastrophic forgetting. A key challenge in CL is balancing stability (retaining prior knowledge) and plasticity (learning new tasks). While representative gradient projection methods ensure stability, they often limit plasticity. Model merging techniques offer promising solutions, but prior methods typically rely on empirical assumptions and carefully selected hyperparameters. In this paper, we explore the potential of model merging to enhance the stability-plasticity trade-off, providing theoretical insights that underscore its benefits. Specifically, we reformulate the merging mechanism using Bayesian continual learning principles and derive a closed-form solution for the optimal merging coefficient that adapts to the diverse characteristics of tasks. To validate our approach, we introduce a two-stage framework named BECAME, which synergizes the expertise of gradient projection and adaptive merging. Extensive experiments show that our approach outperforms state-of-the-art CL methods and existing merging strategies.
Authors:Jiuqi Wang, Rohan Chandra, Shangtong Zhang
Title: Experience Replay Addresses Loss of Plasticity in Continual Learning
Abstract:
Loss of plasticity is one of the main challenges in continual learning with deep neural networks, where neural networks trained via backpropagation gradually lose their ability to adapt to new tasks and perform significantly worse than their freshly initialized counterparts. The main contribution of this paper is to propose a new hypothesis that experience replay addresses the loss of plasticity in continual learning. Here, experience replay is a form of memory. We provide supporting evidence for this hypothesis. In particular, we demonstrate in multiple different tasks, including regression, classification, and policy evaluation, that by simply adding an experience replay and processing the data in the experience replay with Transformers, the loss of plasticity disappears. Notably, we do not alter any standard components of deep learning. For example, we do not change backpropagation. We do not modify the activation functions. And we do not use any regularization. We conjecture that experience replay and Transformers can address the loss of plasticity because of the in-context learning phenomenon.
Authors:Tieyuan Chen, Huabin Liu, Chern Hong Lim, John See, Xing Gao, Junhui Hou, Weiyao Lin
Title: CSTA: Spatial-Temporal Causal Adaptive Learning for Exemplar-Free Video Class-Incremental Learning
Abstract:
Continual learning aims to acquire new knowledge while retaining past information. Class-incremental learning (CIL) presents a challenging scenario where classes are introduced sequentially. For video data, the task becomes more complex than image data because it requires learning and preserving both spatial appearance and temporal action involvement. To address this challenge, we propose a novel exemplar-free framework that equips separate spatiotemporal adapters to learn new class patterns, accommodating the incremental information representation requirements unique to each class. While separate adapters are proven to mitigate forgetting and fit unique requirements, naively applying them hinders the intrinsic connection between spatial and temporal information increments, affecting the efficiency of representing newly learned class information. Motivated by this, we introduce two key innovations from a causal perspective. First, a causal distillation module is devised to maintain the relation between spatial-temporal knowledge for a more efficient representation. Second, a causal compensation mechanism is proposed to reduce the conflicts during increment and memorization between different types of information. Extensive experiments conducted on benchmark datasets demonstrate that our framework can achieve new state-of-the-art results, surpassing current example-based methods by 4.2% in accuracy on average.
Authors:Yifan Zhao, Jia Li, Zeyin Song, Yonghong Tian
Title: Language-Inspired Relation Transfer for Few-shot Class-Incremental Learning
Abstract:
Depicting novel classes with language descriptions by observing few-shot samples is inherent in human-learning systems. This lifelong learning capability helps to distinguish new knowledge from old ones through the increase of open-world learning, namely Few-Shot Class-Incremental Learning (FSCIL). Existing works to solve this problem mainly rely on the careful tuning of visual encoders, which shows an evident trade-off between the base knowledge and incremental ones. Motivated by human learning systems, we propose a new Language-inspired Relation Transfer (LRT) paradigm to understand objects by joint visual clues and text depictions, composed of two major steps. We first transfer the pretrained text knowledge to the visual domains by proposing a graph relation transformation module and then fuse the visual and language embedding by a text-vision prototypical fusion module. Second, to mitigate the domain gap caused by visual finetuning, we propose context prompt learning for fast domain alignment and imagined contrastive learning to alleviate the insufficient text data during alignment. With collaborative learning of domain alignments and text-image transfer, our proposed LRT outperforms the state-of-the-art models by over $13\%$ and $7\%$ on the final session of mini-ImageNet and CIFAR-100 FSCIL benchmarks.
Authors:Lecheng Zheng, Dongqi Fu, Zihao Li, Jingrui He
Title: OWLEYE: Zero-Shot Learner for Cross-Domain Graph Data Anomaly Detection
Abstract:
Graph data is informative to represent complex relationships such as transactions between accounts, communications between devices, and dependencies among machines or processes. Correspondingly, graph anomaly detection (GAD) plays a critical role in identifying anomalies across various domains, including finance, cybersecurity, manufacturing, etc. Facing the large-volume and multi-domain graph data, nascent efforts attempt to develop foundational generalist models capable of detecting anomalies in unseen graphs without retraining. To the best of our knowledge, the different feature semantics and dimensions of cross-domain graph data heavily hinder the development of the graph foundation model, leaving further in-depth continual learning and inference capabilities a quite open problem. Hence, we propose OWLEYE, a novel zero-shot GAD framework that learns transferable patterns of normal behavior from multiple graphs, with a threefold contribution. First, OWLEYE proposes a cross-domain feature alignment module to harmonize feature distributions, which preserves domain-specific semantics during alignment. Second, with aligned features, to enable continuous learning capabilities, OWLEYE designs the multi-domain multi-pattern dictionary learning to encode shared structural and attribute-based patterns. Third, for achieving the in-context learning ability, OWLEYE develops a truncated attention-based reconstruction module to robustly detect anomalies without requiring labeled data for unseen graph-structured data. Extensive experiments on real-world datasets demonstrate that OWLEYE achieves superior performance and generalizability compared to state-of-the-art baselines, establishing a strong foundation for scalable and label-efficient anomaly detection.
Authors:Ali Behrouz, Meisam Razaviyayn, Peilin Zhong, Vahab Mirrokni
Title: Nested Learning: The Illusion of Deep Learning Architectures
Abstract:
Despite the recent progresses, particularly in developing Language Models, there are fundamental challenges and unanswered questions about how such models can continually learn/memorize, self-improve, and find effective solutions. In this paper, we present a new learning paradigm, called Nested Learning (NL), that coherently represents a machine learning model with a set of nested, multi-level, and/or parallel optimization problems, each of which with its own context flow. Through the lenses of NL, existing deep learning methods learns from data through compressing their own context flow, and in-context learning naturally emerges in large models. NL suggests a philosophy to design more expressive learning algorithms with more levels, resulting in higher-order in-context learning and potentially unlocking effective continual learning capabilities. We advocate for NL by presenting three core contributions: (1) Expressive Optimizers: We show that known gradient-based optimizers, such as Adam, SGD with Momentum, etc., are in fact associative memory modules that aim to compress the gradients' information (by gradient descent). Building on this insight, we present other more expressive optimizers with deep memory and/or more powerful learning rules; (2) Self-Modifying Learning Module: Taking advantage of NL's insights on learning algorithms, we present a sequence model that learns how to modify itself by learning its own update algorithm; and (3) Continuum Memory System: We present a new formulation for memory system that generalizes the traditional viewpoint of long/short-term memory. Combining our self-modifying sequence model with the continuum memory system, we present a continual learning module, called Hope, showing promising results in language modeling, knowledge incorporation, and few-shot generalization tasks, continual learning, and long-context reasoning tasks.
Authors:Shengqian Zhu, Chengrong Yu, Qiang Wang, Ying Song, Guangjun Li, Jiafei Wu, Xiaogang Xu, Zhang Yi, Junjie Hu
Title: Class Incremental Medical Image Segmentation via Prototype-Guided Calibration and Dual-Aligned Distillation
Abstract:
Class incremental medical image segmentation (CIMIS) aims to preserve knowledge of previously learned classes while learning new ones without relying on old-class labels. However, existing methods 1) either adopt one-size-fits-all strategies that treat all spatial regions and feature channels equally, which may hinder the preservation of accurate old knowledge, 2) or focus solely on aligning local prototypes with global ones for old classes while overlooking their local representations in new data, leading to knowledge degradation. To mitigate the above issues, we propose Prototype-Guided Calibration Distillation (PGCD) and Dual-Aligned Prototype Distillation (DAPD) for CIMIS in this paper. Specifically, PGCD exploits prototype-to-feature similarity to calibrate class-specific distillation intensity in different spatial regions, effectively reinforcing reliable old knowledge and suppressing misleading information from old classes. Complementarily, DAPD aligns the local prototypes of old classes extracted from the current model with both global prototypes and local prototypes, further enhancing segmentation performance on old categories. Comprehensive evaluations on two widely used multi-organ segmentation benchmarks demonstrate that our method outperforms state-of-the-art methods, highlighting its robustness and generalization capabilities.
Authors:Xiwei Liu, Yulong Li, Yichen Li, Xinlin Zhuang, Haolin Yang, Huifa Li, Imran Razzak
Title: Towards Robust Visual Continual Learning with Multi-Prototype Supervision
Abstract:
Language-guided supervision, which utilizes a frozen semantic target from a Pretrained Language Model (PLM), has emerged as a promising paradigm for visual Continual Learning (CL). However, relying on a single target introduces two critical limitations: 1) semantic ambiguity, where a polysemous category name results in conflicting visual representations, and 2) intra-class visual diversity, where a single prototype fails to capture the rich variety of visual appearances within a class. To this end, we propose MuproCL, a novel framework that replaces the single target with multiple, context-aware prototypes. Specifically, we employ a lightweight LLM agent to perform category disambiguation and visual-modal expansion to generate a robust set of semantic prototypes. A LogSumExp aggregation mechanism allows the vision model to adaptively align with the most relevant prototype for a given image. Extensive experiments across various CL baselines demonstrate that MuproCL consistently enhances performance and robustness, establishing a more effective path for language-guided continual learning.
Authors:Lin Zeng, Boming Zhao, Jiarui Hu, Xujie Shen, Ziqiang Dang, Hujun Bao, Zhaopeng Cui
Title: GaussianUpdate: Continual 3D Gaussian Splatting Update for Changing Environments
Abstract:
Novel view synthesis with neural models has advanced rapidly in recent years, yet adapting these models to scene changes remains an open problem. Existing methods are either labor-intensive, requiring extensive model retraining, or fail to capture detailed types of changes over time. In this paper, we present GaussianUpdate, a novel approach that combines 3D Gaussian representation with continual learning to address these challenges. Our method effectively updates the Gaussian radiance fields with current data while preserving information from past scenes. Unlike existing methods, GaussianUpdate explicitly models different types of changes through a novel multi-stage update strategy. Additionally, we introduce a visibility-aware continual learning approach with generative replay, enabling self-aware updating without the need to store images. The experiments on the benchmark dataset demonstrate our method achieves superior and real-time rendering with the capability of visualizing changes over different times
Authors:Gyuseok Lee, Hyunsik Yoo, Junyoung Hwang, SeongKu Kang, Hwanjo Yu
Title: Capturing User Interests from Data Streams for Continual Sequential Recommendation
Abstract:
Transformer-based sequential recommendation (SR) models excel at modeling long-range dependencies in user behavior via self-attention. However, updating them with continuously arriving behavior sequences incurs high computational costs or leads to catastrophic forgetting. Although continual learning, a standard approach for non-stationary data streams, has recently been applied to recommendation, existing methods gradually forget long-term user preferences and remain underexplored in SR. In this paper, we introduce Continual Sequential Transformer for Recommendation (CSTRec). CSTRec is designed to effectively adapt to current interests by leveraging well-preserved historical ones, thus capturing the trajectory of user interests over time. The core of CSTRec is Continual Sequential Attention (CSA), a linear attention tailored for continual SR, which enables CSTRec to partially retain historical knowledge without direct access to prior data. CSA has two key components: (1) Cauchy-Schwarz Normalization that stabilizes learning over time under uneven user interaction frequencies; (2) Collaborative Interest Enrichment that alleviates forgetting through shared, learnable interest pools. In addition, we introduce a new technique to facilitate the adaptation of new users by transferring historical knowledge from existing users with similar interests. Extensive experiments on three real-world datasets show that CSTRec outperforms state-of-the-art models in both knowledge retention and acquisition.
Authors:Fei Zhu, Yujing Liu, Wenzhuo Liu, Zhaoxiang Zhang
Title: Global Convergence of Continual Learning on Non-IID Data
Abstract:
Continual learning, which aims to learn multiple tasks sequentially, has gained extensive attention. However, most existing work focuses on empirical studies, and the theoretical aspect remains under-explored. Recently, a few investigations have considered the theory of continual learning only for linear regressions, establishes the results based on the strict independent and identically distributed (i.i.d.) assumption and the persistent excitation on the feature data that may be difficult to verify or guarantee in practice. To overcome this fundamental limitation, in this paper, we provide a general and comprehensive theoretical analysis for continual learning of regression models. By utilizing the stochastic Lyapunov function and martingale estimation techniques, we establish the almost sure convergence results of continual learning under a general data condition for the first time. Additionally, without any excitation condition imposed on the data, the convergence rates for the forgetting and regret metrics are provided.
Authors:Achmad Ginanjar, Xue Li, Priyanka Singh, Wen Hua
Title: Continual Contrastive Learning on Tabular Data with Out of Distribution
Abstract:
Out-of-distribution (OOD) prediction remains a significant challenge in machine learning, particularly for tabular data where traditional methods often fail to generalize beyond their training distribution. This paper introduces Tabular Continual Contrastive Learning (TCCL), a novel framework designed to address OOD challenges in tabular data processing. TCCL integrates contrastive learning principles with continual learning mechanisms, featuring a three-component architecture: an Encoder for data transformation, a Decoder for representation learning, and a Learner Head. We evaluate TCCL against 14 baseline models, including state-of-the-art deep learning approaches and gradient-boosted decision trees (GBDT), across eight diverse tabular datasets. Our experimental results demonstrate that TCCL consistently outperforms existing methods in both classification and regression tasks on OOD data, with particular strength in handling distribution shifts. These findings suggest that TCCL represents a significant advancement in handling OOD scenarios for tabular data.
Authors:Md Tanvirul Alam, Dipkamal Bhusal, Nidhi Rastogi
Title: Revisiting Static Feature-Based Android Malware Detection
Abstract:
The increasing reliance on machine learning (ML) in computer security, particularly for malware classification, has driven significant advancements. However, the replicability and reproducibility of these results are often overlooked, leading to challenges in verifying research findings. This paper highlights critical pitfalls that undermine the validity of ML research in Android malware detection, focusing on dataset and methodological issues. We comprehensively analyze Android malware detection using two datasets and assess offline and continual learning settings with six widely used ML models. Our study reveals that when properly tuned, simpler baseline methods can often outperform more complex models. To address reproducibility challenges, we propose solutions for improving datasets and methodological practices, enabling fairer model comparisons. Additionally, we open-source our code to facilitate malware analysis, making it extensible for new models and datasets. Our paper aims to support future research in Android malware detection and other security domains, enhancing the reliability and reproducibility of published results.
Authors:Ghazal Alinezhad Noghre, Armin Danesh Pazho, Hamed Tabkhi
Title: A Survey on Video Anomaly Detection via Deep Learning: Human, Vehicle, and Environment
Abstract:
Video Anomaly Detection (VAD) has emerged as a pivotal task in computer vision, with broad relevance across multiple fields. Recent advances in deep learning have driven significant progress in this area, yet the field remains fragmented across domains and learning paradigms. This survey offers a comprehensive perspective on VAD, systematically organizing the literature across various supervision levels, as well as adaptive learning methods such as online, active, and continual learning. We examine the state of VAD across three major application categories: human-centric, vehicle-centric, and environment-centric scenarios, each with distinct challenges and design considerations. In doing so, we identify fundamental contributions and limitations of current methodologies. By consolidating insights from subfields, we aim to provide the community with a structured foundation for advancing both theoretical understanding and real-world applicability of VAD systems. This survey aims to support researchers by providing a useful reference, while also drawing attention to the broader set of open challenges in anomaly detection, including both fundamental research questions and practical obstacles to real-world deployment.
Authors:Siyi Wu, Zeyu Wang, Xinyuan Song, Zhengpeng Zhou, Lifan Sun, Tianyu Shi
Title: GoalfyMax: A Protocol-Driven Multi-Agent System for Intelligent Experience Entities
Abstract:
Modern enterprise environments demand intelligent systems capable of handling complex, dynamic, and multi-faceted tasks with high levels of autonomy and adaptability. However, traditional single-purpose AI systems often lack sufficient coordination, memory reuse, and task decomposition capabilities, limiting their scalability in realistic settings. To address these challenges, we present \textbf{GoalfyMax}, a protocol-driven framework for end-to-end multi-agent collaboration. GoalfyMax introduces a standardized Agent-to-Agent (A2A) communication layer built on the Model Context Protocol (MCP), allowing independent agents to coordinate through asynchronous, protocol-compliant interactions. It incorporates the Experience Pack (XP) architecture, a layered memory system that preserves both task rationales and execution traces, enabling structured knowledge retention and continual learning. Moreover, our system integrates advanced features including multi-turn contextual dialogue, long-short term memory modules, and dynamic safety validation, supporting robust, real-time strategy adaptation. Empirical results on complex task orchestration benchmarks and case study demonstrate that GoalfyMax achieves superior adaptability, coordination, and experience reuse compared to baseline frameworks. These findings highlight its potential as a scalable, future-ready foundation for multi-agent intelligent systems.
Authors:Jonathan Jordan, Sherzod Hakimov, David Schlangen
Title: Plant in Cupboard, Orange on Rably, Inat Aphone. Benchmarking Incremental Learning of Situation and Language Model using a Text-Simulated Situated Environment
Abstract:
Large Language Models (LLMs) serve not only as chatbots but as key components in agent systems, where their common-sense knowledge significantly impacts performance as language-based planners for situated or embodied action. We assess LLMs' incremental learning (based on feedback from the environment), and controlled in-context learning abilities using a text-based environment. We introduce challenging yet interesting set of experiments to test i) how agents can incrementally solve tasks related to every day objects in typical rooms in a house where each of them are discovered by interacting within the environment, ii) controlled in-context learning abilities and efficiency of agents by providing short info about locations of objects and rooms to check how faster the task can be solved, and finally iii) using synthetic pseudo-English words to gauge how well LLMs are at inferring meaning of unknown words from environmental feedback. Results show that larger commercial models have a substantial gap in performance compared to open-weight but almost all models struggle with the synthetic words experiments.
Authors:Deepayan Das, Davide Talon, Massimiliano Mancini, Yiming Wang, Elisa Ricci
Title: One VLM to Keep it Learning: Generation and Balancing for Data-free Continual Visual Question Answering
Abstract:
Vision-Language Models (VLMs) have shown significant promise in Visual Question Answering (VQA) tasks by leveraging web-scale multimodal datasets. However, these models often struggle with continual learning due to catastrophic forgetting when adapting to new tasks. As an effective remedy to mitigate catastrophic forgetting, rehearsal strategy uses the data of past tasks upon learning new task. However, such strategy incurs the need of storing past data, which might not be feasible due to hardware constraints or privacy concerns. In this work, we propose the first data-free method that leverages the language generation capability of a VLM, instead of relying on external models, to produce pseudo-rehearsal data for addressing continual VQA. Our proposal, named as GaB, generates pseudo-rehearsal data by posing previous task questions on new task data. Yet, despite being effective, the distribution of generated questions skews towards the most frequently posed questions due to the limited and task-specific training data. To mitigate this issue, we introduce a pseudo-rehearsal balancing module that aligns the generated data towards the ground-truth data distribution using either the question meta-statistics or an unsupervised clustering method. We evaluate our proposed method on two recent benchmarks, \ie VQACL-VQAv2 and CLOVE-function benchmarks. GaB outperforms all the data-free baselines with substantial improvement in maintaining VQA performance across evolving tasks, while being on-par with methods with access to the past data.
Authors:Duc Kieu, Tung Kieu, Peng Han, Bin Yang, Christian S. Jensen, Bac Le
Title: TEAM: Topological Evolution-aware Framework for Traffic Forecasting--Extended Version
Abstract:
Due to the global trend towards urbanization, people increasingly move to and live in cities that then continue to grow. Traffic forecasting plays an important role in the intelligent transportation systems of cities as well as in spatio-temporal data mining. State-of-the-art forecasting is achieved by deep-learning approaches due to their ability to contend with complex spatio-temporal dynamics. However, existing methods assume the input is fixed-topology road networks and static traffic time series. These assumptions fail to align with urbanization, where time series are collected continuously and road networks evolve over time. In such settings, deep-learning models require frequent re-initialization and re-training, imposing high computational costs. To enable much more efficient training without jeopardizing model accuracy, we propose the Topological Evolution-aware Framework (TEAM) for traffic forecasting that incorporates convolution and attention. This combination of mechanisms enables better adaptation to newly collected time series, while being able to maintain learned knowledge from old time series. TEAM features a continual learning module based on the Wasserstein metric that acts as a buffer that can identify the most stable and the most changing network nodes. Then, only data related to stable nodes is employed for re-training when consolidating a model. Further, only data of new nodes and their adjacent nodes as well as data pertaining to changing nodes are used to re-train the model. Empirical studies with two real-world traffic datasets offer evidence that TEAM is capable of much lower re-training costs than existing methods are, without jeopardizing forecasting accuracy.
Authors:Yohan Jung, Hyungi Lee, Wenlong Chen, Thomas Möllenhoff, Yingzhen Li, Juho Lee, Mohammad Emtiyaz Khan
Title: Compact Memory for Continual Logistic Regression
Abstract:
Despite recent progress, continual learning still does not match the performance of batch training. To avoid catastrophic forgetting, we need to build compact memory of essential past knowledge, but no clear solution has yet emerged, even for shallow neural networks with just one or two layers. In this paper, we present a new method to build compact memory for logistic regression. Our method is based on a result by Khan and Swaroop [2021] who show the existence of optimal memory for such models. We formulate the search for the optimal memory as Hessian-matching and propose a probabilistic PCA method to estimate them. Our approach can drastically improve accuracy compared to Experience Replay. For instance, on Split-ImageNet, we get 60% accuracy compared to 30% obtained by replay with memory-size equivalent to 0.3% of the data size. Increasing the memory size to 2% further boosts the accuracy to 74%, closing the gap to the batch accuracy of 77.6% on this task. Our work opens a new direction for building compact memory that can also be useful in the future for continual deep learning.
Authors:Runjie Shao, Boyu Diao, Zijia An, Ruiqi Liu, Yongjun Xu
Title: CBPNet: A Continual Backpropagation Prompt Network for Alleviating Plasticity Loss on Edge Devices
Abstract:
To meet the demands of applications like robotics and autonomous driving that require real-time responses to dynamic environments, efficient continual learning methods suitable for edge devices have attracted increasing attention. In this transition, using frozen pretrained models with prompts has become a mainstream strategy to combat catastrophic forgetting. However, this approach introduces a new critical bottleneck: plasticity loss, where the model's ability to learn new knowledge diminishes due to the frozen backbone and the limited capacity of prompt parameters. We argue that the reduction in plasticity stems from a lack of update vitality in underutilized parameters during the training process. To this end, we propose the Continual Backpropagation Prompt Network (CBPNet), an effective and parameter efficient framework designed to restore the model's learning vitality. We innovatively integrate an Efficient CBP Block that counteracts plasticity decay by adaptively reinitializing these underutilized parameters. Experimental results on edge devices demonstrate CBPNet's effectiveness across multiple benchmarks. On Split CIFAR-100, it improves average accuracy by over 1% against a strong baseline, and on the more challenging Split ImageNet-R, it achieves a state of the art accuracy of 69.41%. This is accomplished by training additional parameters that constitute less than 0.2% of the backbone's size, validating our approach.
Authors:Wenlong Chen, Naoki Kiyohara, Harrison Bo Hua Zhu, Jacob Curran-Sebastian, Samir Bhatt, Yingzhen Li
Title: Recurrent Memory for Online Interdomain Gaussian Processes
Abstract:
We propose a novel online Gaussian process (GP) model that is capable of capturing long-term memory in sequential data in an online learning setting. Our model, Online HiPPO Sparse Variational Gaussian Process (OHSVGP), leverages the HiPPO (High-order Polynomial Projection Operators) framework, which is popularized in the RNN domain due to its long-range memory modeling capabilities. We interpret the HiPPO time-varying orthogonal projections as inducing variables with time-dependent orthogonal polynomial basis functions, which allows the SVGP inducing variables to memorize the process history. We show that the HiPPO framework fits naturally into the interdomain GP framework and demonstrate that the kernel matrices can also be updated online in a recurrence form based on the ODE evolution of HiPPO. We evaluate OHSVGP with online prediction for 1D time series, continual learning in discriminative GP model for data with multidimensional inputs, and deep generative modeling with sparse Gaussian process variational autoencoder, showing that it outperforms existing online GP methods in terms of predictive performance, long-term memory preservation, and computational efficiency.
Authors:Luca Palazzo, Matteo Pennisi, Federica Proietto Salanitri, Giovanni Bellitto, Simone Palazzo, Concetto Spampinato
Title: FedRewind: Rewinding Continual Model Exchange for Decentralized Federated Learning
Abstract:
In this paper, we present FedRewind, a novel approach to decentralized federated learning that leverages model exchange among nodes to address the issue of data distribution shift. Drawing inspiration from continual learning (CL) principles and cognitive neuroscience theories for memory retention, FedRewind implements a decentralized routing mechanism where nodes send/receive models to/from other nodes in the federation to address spatial distribution challenges inherent in distributed learning (FL). During local training, federation nodes periodically send their models back (i.e., rewind) to the nodes they received them from for a limited number of iterations. This strategy reduces the distribution shift between nodes' data, leading to enhanced learning and generalization performance. We evaluate our method on multiple benchmarks, demonstrating its superiority over standard decentralized federated learning methods and those enforcing specific routing schemes within the federation. Furthermore, the combination of federated and continual learning concepts enables our method to tackle the more challenging federated continual learning task, with data shifts over both space and time, surpassing existing baselines.
Authors:Chengyuan Zhang, Yilin Zhang, Lei Zhu, Deyin Liu, Lin Wu, Bo Li, Shichao Zhang, Mohammed Bennamoun, Farid Boussaid
Title: UIFormer: A Unified Transformer-based Framework for Incremental Few-Shot Object Detection and Instance Segmentation
Abstract:
This paper introduces a novel framework for unified incremental few-shot object detection (iFSOD) and instance segmentation (iFSIS) using the Transformer architecture. Our goal is to create an optimal solution for situations where only a few examples of novel object classes are available, with no access to training data for base or old classes, while maintaining high performance across both base and novel classes. To achieve this, We extend Mask-DINO into a two-stage incremental learning framework. Stage 1 focuses on optimizing the model using the base dataset, while Stage 2 involves fine-tuning the model on novel classes. Besides, we incorporate a classifier selection strategy that assigns appropriate classifiers to the encoder and decoder according to their distinct functions. Empirical evidence indicates that this approach effectively mitigates the over-fitting on novel classes learning. Furthermore, we implement knowledge distillation to prevent catastrophic forgetting of base classes. Comprehensive evaluations on the COCO and LVIS datasets for both iFSIS and iFSOD tasks demonstrate that our method significantly outperforms state-of-the-art approaches.
Authors:Jiangyang Li, Chenhao Ding, Songlin Dong, Qiang Wang, Jianchao Zhao, Yuhang He, Yihong Gong
Title: Is Parameter Isolation Better for Prompt-Based Continual Learning?
Abstract:
Prompt-based continual learning methods effectively mitigate catastrophic forgetting. However, most existing methods assign a fixed set of prompts to each task, completely isolating knowledge across tasks and resulting in suboptimal parameter utilization. To address this, we consider the practical needs of continual learning and propose a prompt-sharing framework. This framework constructs a global prompt pool and introduces a task-aware gated routing mechanism that sparsely activates a subset of prompts to achieve dynamic decoupling and collaborative optimization of task-specific feature representations. Furthermore, we introduce a history-aware modulator that leverages cumulative prompt activation statistics to protect frequently used prompts from excessive updates, thereby mitigating inefficient parameter usage and knowledge forgetting. Extensive analysis and empirical results demonstrate that our approach consistently outperforms existing static allocation strategies in effectiveness and efficiency.
Authors:Songlin Dong, Jiangyang Li, Chenhao Ding, Zhiheng Ma, Haoyu Luo, Yuhang He, Yihong Gong
Title: P2L-CA: An Effective Parameter Tuning Framework for Rehearsal-Free Multi-Label Class-Incremental Learning
Abstract:
Multi-label Class-Incremental Learning aims to continuously recognize novel categories in complex scenes where multiple objects co-occur. However, existing approaches often incur high computational costs due to full-parameter fine-tuning and substantial storage overhead from memory buffers, or they struggle to address feature confusion and domain discrepancies adequately. To overcome these limitations, we introduce P2L-CA, a parameter-efficient framework that integrates a Prompt-to-Label module with a Continuous Adapter module. The P2L module leverages class-specific prompts to disentangle multi-label representations while incorporating linguistic priors to enforce stable semantic-visual alignment. Meanwhile, the CA module employs lightweight adapters to mitigate domain gaps between pre-trained models and downstream tasks, thereby enhancing model plasticity. Extensive experiments across standard and challenging MLCIL settings on MS-COCO and PASCAL VOC show that P2L-CA not only achieves substantial improvements over state-of-the-art methods but also demonstrates strong generalization in CIL scenarios, all while requiring minimal trainable parameters and eliminating the need for memory buffers.
Authors:Jingwen Li, Zhiguang Cao, Yaoxin Wu, Tang Liu
Title: Enhancing the Cross-Size Generalization for Solving Vehicle Routing Problems via Continual Learning
Abstract:
Exploring machine learning techniques for addressing vehicle routing problems has attracted considerable research attention. To achieve decent and efficient solutions, existing deep models for vehicle routing problems are typically trained and evaluated using instances of a single size. This substantially limits their ability to generalize across different problem sizes and thus hampers their practical applicability. To address the issue, we propose a continual learning based framework that sequentially trains a deep model with instances of ascending problem sizes. Specifically, on the one hand, we design an inter-task regularization scheme to retain the knowledge acquired from smaller problem sizes in the model training on a larger size. On the other hand, we introduce an intra-task regularization scheme to consolidate the model by imitating the latest desirable behaviors during training on each size. Additionally, we exploit the experience replay to revisit instances of formerly trained sizes for mitigating the catastrophic forgetting. Experimental results show that our approach achieves predominantly superior performance across various problem sizes (either seen or unseen in the training), as compared to state-of-the-art deep models including the ones specialized for generalizability enhancement. Meanwhile, the ablation studies on the key designs manifest their synergistic effect in the proposed framework.
Authors:Yi Xie, Ziyuan Yang, Yongqiang Huang, Yinyu Chen, Lei Zhang, Liang Liu, Yi Zhang
Title: Uncertainty-Driven Hierarchical Sampling for Unbalanced Continual Malware Detection with Time-Series Update-Based Retrieval
Abstract:
Android malware detection continues to face persistent challenges stemming from long-term concept drift and class imbalance, as evolving malicious behaviors and shifting usage patterns dynamically reshape feature distributions. Although continual learning (CL) mitigates drift, existing replay-based methods suffer from inherent bias. Specifically, their reliance on classifier uncertainty for sample selection disproportionately prioritizes the dominant benign class, causing overfitting and reduced generalization to evolving malware. To address these limitations, we propose a novel uncertainty-guided CL framework. First, we introduce a hierarchical balanced sampler that employs a dual-phase uncertainty strategy to dynamically balance benign and malicious samples while simultaneously selecting high-information, high-uncertainty instances within each class. This mechanism ensures class equilibrium across both replay and incremental data, thereby enhancing adaptability to emerging threats. Second, we augment the framework with a vector retrieval mechanism that exploits historical malware embeddings to identify evolved variants via similarity-based retrieval, thereby complementing classifier updates. Extensive experiments demonstrate that our framework significantly outperforms state-of-the-art methods under strict low-label conditions (50 labels per phase). It achieves a true positive rate (TPR) of 92.95\% and a mean accuracy (mACC) of 94.26\%, which validates its efficacy for sustainable Android malware detection.
Authors:Elvin Li, Onat Gungor, Zhengli Shang, Tajana Rosing
Title: CITADEL: Continual Anomaly Detection for Enhanced Learning in IoT Intrusion Detection
Abstract:
The Internet of Things (IoT), with its high degree of interconnectivity and limited computational resources, is particularly vulnerable to a wide range of cyber threats. Intrusion detection systems (IDS) have been extensively studied to enhance IoT security, and machine learning-based IDS (ML-IDS) show considerable promise for detecting malicious activity. However, their effectiveness is often constrained by poor adaptability to emerging threats and the issue of catastrophic forgetting during continuous learning. To address these challenges, we propose CITADEL, a self-supervised continual learning framework designed to extract robust representations from benign data while preserving long-term knowledge through optimized memory consolidation mechanisms. CITADEL integrates a tabular-to-image transformation module, a memory-aware masked autoencoder for self-supervised representation learning, and a novelty detection component capable of identifying anomalies without dependence on labeled attack data. Our design enables the system to incrementally adapt to emerging behaviors while retaining its ability to detect previously observed threats. Experiments on multiple intrusion datasets demonstrate that CITADEL achieves up to a 72.9% improvement over the VAE-based lifelong anomaly detector (VLAD) in key detection and retention metrics, highlighting its effectiveness in dynamic IoT environments.
Authors:Songlin Dong, Chenhao Ding, Jiangyang Li, Jizhou Han, Qiang Wang, Yuhang He, Yihong Gong
Title: Beyond CLIP Generalization: Against Forward&Backward Forgetting Adapter for Continual Learning of Vision-Language Models
Abstract:
This study aims to address the problem of multi-domain task incremental learning~(MTIL), which requires that vision-language models~(VLMs) continuously acquire new knowledge while maintaining their inherent zero-shot recognition capability. Existing paradigms delegate the testing of unseen-domain samples to the original CLIP, which only prevents the degradation of the model's zero-shot capability but fails to enhance the generalization of the VLM further. To this end, we propose a novel MTIL framework, named AFA, which comprises two core modules: (1) an against forward-forgetting adapter that learns task-invariant information for each dataset in the incremental tasks to enhance the zero-shot recognition ability of VLMs; (2) an against backward-forgetting adapter that strengthens the few-shot learning capability of VLMs while supporting incremental learning. Extensive experiments demonstrate that the AFA method significantly outperforms existing state-of-the-art approaches, especially in few-shot MTIL tasks, and surpasses the inherent zero-shot performance of CLIP in terms of transferability. The code is provided in the Supplementary Material.
Authors:Jizhou Han, Chenhao Ding, Yuhang He, Songlin Dong, Qiang Wang, Xinyuan Gao, Yihong Gong
Title: Learn by Reasoning: Analogical Weight Generation for Few-Shot Class-Incremental Learning
Abstract:
Few-shot class-incremental Learning (FSCIL) enables models to learn new classes from limited data while retaining performance on previously learned classes. Traditional FSCIL methods often require fine-tuning parameters with limited new class data and suffer from a separation between learning new classes and utilizing old knowledge. Inspired by the analogical learning mechanisms of the human brain, we propose a novel analogical generative method. Our approach includes the Brain-Inspired Analogical Generator (BiAG), which derives new class weights from existing classes without parameter fine-tuning during incremental stages. BiAG consists of three components: Weight Self-Attention Module (WSA), Weight & Prototype Analogical Attention Module (WPAA), and Semantic Conversion Module (SCM). SCM uses Neural Collapse theory for semantic conversion, WSA supplements new class weights, and WPAA computes analogies to generate new class weights. Experiments on miniImageNet, CUB-200, and CIFAR-100 datasets demonstrate that our method achieves higher final and average accuracy compared to SOTA methods.
Authors:Qiang Wang, Yuhang He, SongLin Dong, Xiang Song, Jizhou Han, Haoyu Luo, Yihong Gong
Title: DualCP: Rehearsal-Free Domain-Incremental Learning via Dual-Level Concept Prototype
Abstract:
Domain-Incremental Learning (DIL) enables vision models to adapt to changing conditions in real-world environments while maintaining the knowledge acquired from previous domains. Given privacy concerns and training time, Rehearsal-Free DIL (RFDIL) is more practical. Inspired by the incremental cognitive process of the human brain, we design Dual-level Concept Prototypes (DualCP) for each class to address the conflict between learning new knowledge and retaining old knowledge in RFDIL. To construct DualCP, we propose a Concept Prototype Generator (CPG) that generates both coarse-grained and fine-grained prototypes for each class. Additionally, we introduce a Coarse-to-Fine calibrator (C2F) to align image features with DualCP. Finally, we propose a Dual Dot-Regression (DDR) loss function to optimize our C2F module. Extensive experiments on the DomainNet, CDDB, and CORe50 datasets demonstrate the effectiveness of our method.
Authors:Haoyuan Gao, Zicong Zhang, Yuqi Wei, Linglan Zhao, Guilin Li, Yexin Li, Linghe Kong, Weiran Huang
Title: Enhanced Continual Learning of Vision-Language Models with Model Fusion
Abstract:
Vision-Language Models (VLMs) represent a breakthrough in artificial intelligence by integrating visual and textual modalities to achieve impressive zero-shot capabilities. However, VLMs are susceptible to catastrophic forgetting when sequentially fine-tuned on multiple downstream tasks. Existing continual learning methods for VLMs often rely heavily on additional reference datasets, compromise zero-shot performance, or are limited to parameter-efficient fine-tuning scenarios. In this paper, we propose Continual Decoupling-Unifying (ConDU), a novel approach, by introducing model fusion into continual learning for VLMs. ConDU maintains a unified model along with task triggers and prototype sets, employing an iterative process of decoupling task-specific models for previous tasks and unifying them with the model for the newly learned task. Additionally, we introduce an inference strategy for zero-shot scenarios by aggregating predictions from multiple decoupled task-specific models. Extensive experiments across various settings show that ConDU achieves up to a 2\% improvement in average performance across all seen tasks compared to state-of-the-art baselines, while also enhancing zero-shot capabilities relative to the original VLM.
Authors:Songlin Dong, Yuhang He, Zhengdong Zhou, Haoyu Luo, Xing Wei, Alex C. Kot, Yihong Gong
Title: Class-Independent Increment: An Efficient Approach for Multi-label Class-Incremental Learning
Abstract:
Current research on class-incremental learning primarily focuses on single-label classification tasks. However, real-world applications often involve multi-label scenarios, such as image retrieval and medical imaging. Therefore, this paper focuses on the challenging yet practical multi-label class-incremental learning (MLCIL) problem. In addition to the challenge of catastrophic forgetting, MLCIL encounters issues related to feature confusion, encompassing inter-session and intra-feature confusion. To address these problems, we propose a novel MLCIL approach called class-independent increment (CLIN). Specifically, in contrast to existing methods that extract image-level features, we propose a class-independent incremental network (CINet) to extract multiple class-level embeddings for multi-label samples. It learns and preserves the knowledge of different classes by constructing class-specific tokens. On this basis, we develop two novel loss functions, optimizing the learning of class-specific tokens and class-level embeddings, respectively. These losses aim to distinguish between new and old classes, further alleviating the problem of feature confusion. Extensive experiments on MS-COCO and PASCAL VOC datasets demonstrate the effectiveness of our method for improving recognition performance and mitigating forgetting on various MLCIL tasks.
Authors:Sean Fuhrman, Onat Gungor, Tajana Rosing
Title: CND-IDS: Continual Novelty Detection for Intrusion Detection Systems
Abstract:
Intrusion detection systems (IDS) play a crucial role in IoT and network security by monitoring system data and alerting to suspicious activities. Machine learning (ML) has emerged as a promising solution for IDS, offering highly accurate intrusion detection. However, ML-IDS solutions often overlook two critical aspects needed to build reliable systems: continually changing data streams and a lack of attack labels. Streaming network traffic and associated cyber attacks are continually changing, which can degrade the performance of deployed ML models. Labeling attack data, such as zero-day attacks, in real-world intrusion scenarios may not be feasible, making the use of ML solutions that do not rely on attack labels necessary. To address both these challenges, we propose CND-IDS, a continual novelty detection IDS framework which consists of (i) a learning-based feature extractor that continuously updates new feature representations of the system data, and (ii) a novelty detector that identifies new cyber attacks by leveraging principal component analysis (PCA) reconstruction. Our results on realistic intrusion datasets show that CND-IDS achieves up to 6.1x F-score improvement, and up to 6.5x improved forward transfer over the SOTA unsupervised continual learning algorithm. Our code will be released upon acceptance.
Authors:Shuo Wang, Keke Gai, Jing Yu, Liehuang Zhu, Qi Wu
Title: Vertical Federated Continual Learning via Evolving Prototype Knowledge
Abstract:
Vertical Federated Learning (VFL) has garnered significant attention as a privacy-preserving machine learning framework for sample-aligned feature federation. However, traditional VFL approaches do not address the challenges of class and feature continual learning, resulting in catastrophic forgetting of knowledge from previous tasks. To address the above challenge, we propose a novel vertical federated continual learning method, named Vertical Federated Continual Learning via Evolving Prototype Knowledge (V-LETO), which primarily facilitates the transfer of knowledge from previous tasks through the evolution of prototypes. Specifically, we propose an evolving prototype knowledge method, enabling the global model to retain both previous and current task knowledge. Furthermore, we introduce a model optimization technique that mitigates the forgetting of previous task knowledge by restricting updates to specific parameters of the local model, thereby enhancing overall performance. Extensive experiments conducted in both CIL and FIL settings demonstrate that our method, V-LETO, outperforms the other state-of-the-art methods. For example, our method outperforms the state-of-the-art method by 10.39% and 35.15% for CIL and FIL tasks, respectively. Our code is available at https://anonymous.4open.science/r/V-LETO-0108/README.md.
Authors:Jiashuo Li, Shaokun Wang, Bo Qian, Yuhang He, Xing Wei, Qiang Wang, Yihong Gong
Title: Dynamic Integration of Task-Specific Adapters for Class Incremental Learning
Abstract:
Non-exemplar class Incremental Learning (NECIL) enables models to continuously acquire new classes without retraining from scratch and storing old task exemplars, addressing privacy and storage issues. However, the absence of data from earlier tasks exacerbates the challenge of catastrophic forgetting in NECIL. In this paper, we propose a novel framework called Dynamic Integration of task-specific Adapters (DIA), which comprises two key components: Task-Specific Adapter Integration (TSAI) and Patch-Level Model Alignment. TSAI boosts compositionality through a patch-level adapter integration strategy, which provides a more flexible compositional solution while maintaining low computation costs. Patch-Level Model Alignment maintains feature consistency and accurate decision boundaries via two specialized mechanisms: Patch-Level Distillation Loss (PDL) and Patch-Level Feature Reconstruction method (PFR). Specifically, the PDL preserves feature-level consistency between successive models by implementing a distillation loss based on the contributions of patch tokens to new class learning. The PFR facilitates accurate classifier alignment by reconstructing old class features from previous tasks that adapt to new task knowledge. Extensive experiments validate the effectiveness of our DIA, revealing significant improvements on benchmark datasets in the NECIL setting, maintaining an optimal balance between computational complexity and accuracy.
Authors:Hugo Hazard, Zafeirios Fountas, Martin A. Benfeghoul, Adnan Oomerjee, Jun Wang, Haitham Bou-Ammar
Title: SuRe: Surprise-Driven Prioritised Replay for Continual LLM Learning
Abstract:
Continual learning, one's ability to adapt to a sequence of tasks without forgetting previously acquired knowledge, remains a major challenge in machine learning and a key gap between artificial and human intelligence. While regularisation and replay perform well in vision, they lag behind multi-task learning for large language models (LLMs), especially at scale with many tasks. We revisit replay and argue that two failure modes drive this gap: selection (what to rehearse) and integration (how to consolidate new knowledge). To address selection, we propose Surprise-prioritised Replay (SuRe), a simple, architecture-agnostic rule that ranks and stores the most surprising (high Negative Log-Likelihood) sequences. SuRe achieves state-of-the-art performance in the Large Number of Tasks (LNT) setting and delivers the best overall average across both Standard CL and LNT benchmarks. To address integration, we add a dual-learner design with fast and slow LoRA adapters merged via an exponential moving average (EMA), enabling rapid adaptation while stabilising long-term knowledge. Combining SuRe with the dual learner yields further gains, including improvements of up to +5 accuracy points on LNT over prior SOTA. Ablation studies confirm that our proposed method remains robust under reduced replay frequency and small buffer size, demonstrating both effectiveness and sample efficiency. Taken together, our results establish replay as a strong baseline for continual LLM fine-tuning and demonstrate that surprise-based selection and slow-weight consolidation are complementary components for mitigating catastrophic forgetting.
Authors:Junqi Gao, Zhichang Guo, Dazhi Zhang, Yao Li, Yi Ran, Biqing Qi
Title: PDAC: Efficient Coreset Selection for Continual Learning via Probability Density Awareness
Abstract:
Rehearsal-based Continual Learning (CL) maintains a limited memory buffer to store replay samples for knowledge retention, making these approaches heavily reliant on the quality of the stored samples. Current Rehearsal-based CL methods typically construct the memory buffer by selecting a representative subset (referred to as coresets), aiming to approximate the training efficacy of the full dataset with minimal storage overhead. However, mainstream Coreset Selection (CS) methods generally formulate the CS problem as a bi-level optimization problem that relies on numerous inner and outer iterations to solve, leading to substantial computational cost thus limiting their practical efficiency. In this paper, we aim to provide a more efficient selection logic and scheme for coreset construction. To this end, we first analyze the Mean Squared Error (MSE) between the buffer-trained model and the Bayes-optimal model through the perspective of localized error decomposition to investigate the contribution of samples from different regions to MSE suppression. Further theoretical and experimental analyses demonstrate that samples with high probability density play a dominant role in error suppression. Inspired by this, we propose the Probability Density-Aware Coreset (PDAC) method. PDAC leverages the Projected Gaussian Mixture (PGM) model to estimate each sample's joint density, enabling efficient density-prioritized buffer selection. Finally, we introduce the streaming Expectation Maximization (EM) algorithm to enhance the adaptability of PGM parameters to streaming data, yielding Streaming PDAC (SPDAC) for streaming scenarios. Extensive comparative experiments show that our methods outperforms other baselines across various CL settings while ensuring favorable efficiency.
Authors:Yu-Yang Qian, Yuan-Ze Xu, Zhen-Yu Zhang, Peng Zhao, Zhi-Hua Zhou
Title: TreeLoRA: Efficient Continual Learning via Layer-Wise LoRAs Guided by a Hierarchical Gradient-Similarity Tree
Abstract:
Many real-world applications collect data in a streaming environment, where learning tasks are encountered sequentially. This necessitates continual learning (CL) to update models online, enabling adaptation to new tasks while preserving past knowledge to prevent catastrophic forgetting. Nowadays, with the flourish of large pre-trained models (LPMs), efficiency has become increasingly critical for CL, due to their substantial computational demands and growing parameter sizes. In this paper, we introduce TreeLoRA (K-D Tree of Low-Rank Adapters), a novel approach that constructs layer-wise adapters by leveraging hierarchical gradient similarity to enable efficient CL, particularly for LPMs. To reduce the computational burden of task similarity estimation, we employ bandit techniques to develop an algorithm based on lower confidence bounds to efficiently explore the task structure. Furthermore, we use sparse gradient updates to facilitate parameter optimization, making the approach better suited for LPMs. Theoretical analysis is provided to justify the rationale behind our approach, and experiments on both vision transformers (ViTs) and large language models (LLMs) demonstrate the effectiveness and efficiency of our approach across various domains, including vision and natural language processing tasks.
Authors:Hongyao Tang, Johan Obando-Ceron, Pablo Samuel Castro, Aaron Courville, Glen Berseth
Title: Mitigating Plasticity Loss in Continual Reinforcement Learning by Reducing Churn
Abstract:
Plasticity, or the ability of an agent to adapt to new tasks, environments, or distributions, is crucial for continual learning. In this paper, we study the loss of plasticity in deep continual RL from the lens of churn: network output variability for out-of-batch data induced by mini-batch training. We demonstrate that (1) the loss of plasticity is accompanied by the exacerbation of churn due to the gradual rank decrease of the Neural Tangent Kernel (NTK) matrix; (2) reducing churn helps prevent rank collapse and adjusts the step size of regular RL gradients adaptively. Moreover, we introduce Continual Churn Approximated Reduction (C-CHAIN) and demonstrate it improves learning performance and outperforms baselines in a diverse range of continual learning environments on OpenAI Gym Control, ProcGen, DeepMind Control Suite, and MinAtar benchmarks.
Authors:Yuxiang Guo, Zhonghao Hu, Yuren Mao, Baihua Zheng, Yunjun Gao, Mingwei Zhou
Title: Birdie: Natural Language-Driven Table Discovery Using Differentiable Search Index
Abstract:
Natural language (NL)-driven table discovery identifies relevant tables from large table repositories based on NL queries. While current deep-learning-based methods using the traditional dense vector search pipeline, i.e., representation-index-search, achieve remarkable accuracy, they face several limitations that impede further performance improvements: (i) the errors accumulated during the table representation and indexing phases affect the subsequent search accuracy; and (ii) insufficient query-table interaction hinders effective semantic alignment, impeding accuracy improvements. In this paper, we propose a novel framework Birdie, using a differentiable search index. It unifies the indexing and search into a single encoder-decoder language model, thus getting rid of error accumulations. Birdie first assigns each table a prefix-aware identifier and leverages a large language model-based query generator to create synthetic queries for each table. It then encodes the mapping between synthetic queries/tables and their corresponding table identifiers into the parameters of an encoder-decoder language model, enabling deep query-table interactions. During search, the trained model directly generates table identifiers for a given query. To accommodate the continual indexing of dynamic tables, we introduce an index update strategy via parameter isolation, which mitigates the issue of catastrophic forgetting. Extensive experiments demonstrate that Birdie outperforms state-of-the-art dense methods by 16.8% in accuracy, and reduces forgetting by over 90% compared to other continual learning approaches.
Authors:Can Peng, Qianhui Men, Pramit Saha, Qianye Yang, Cheng Ouyang, J. Alison Noble
Title: Federated Continual 3D Segmentation With Single-round Communication
Abstract:
Federated learning seeks to foster collaboration among distributed clients while preserving the privacy of their local data. Traditionally, federated learning methods assume a fixed setting in which client data and learning objectives remain constant. However, in real-world scenarios, new clients may join, and existing clients may expand the segmentation label set as task requirements evolve. In such a dynamic federated analysis setup, the conventional federated communication strategy of model aggregation per communication round is suboptimal. As new clients join, this strategy requires retraining, linearly increasing communication and computation overhead. It also imposes requirements for synchronized communication, which is difficult to achieve among distributed clients. In this paper, we propose a federated continual learning strategy that employs a one-time model aggregation at the server through multi-model distillation. This approach builds and updates the global model while eliminating the need for frequent server communication. When integrating new data streams or onboarding new clients, this approach efficiently reuses previous client models, avoiding the need to retrain the global model across the entire federation. By minimizing communication load and bypassing the need to put unchanged clients online, our approach relaxes synchronization requirements among clients, providing an efficient and scalable federated analysis framework suited for real-world applications. Using multi-class 3D abdominal CT segmentation as an application task, we demonstrate the effectiveness of the proposed approach.
Authors:Hao Li, Xiang Chen, Jiangxin Dong, Jinhui Tang, Jinshan Pan
Title: FoundIR: Unleashing Million-scale Training Data to Advance Foundation Models for Image Restoration
Abstract:
Despite the significant progress made by all-in-one models in universal image restoration, existing methods suffer from a generalization bottleneck in real-world scenarios, as they are mostly trained on small-scale synthetic datasets with limited degradations. Therefore, large-scale high-quality real-world training data is urgently needed to facilitate the emergence of foundational models for image restoration. To advance this field, we spare no effort in contributing a million-scale dataset with two notable advantages over existing training data: real-world samples with larger-scale, and degradation types with higher diversity. By adjusting internal camera settings and external imaging conditions, we can capture aligned image pairs using our well-designed data acquisition system over multiple rounds and our data alignment criterion. Moreover, we propose a robust model, FoundIR, to better address a broader range of restoration tasks in real-world scenarios, taking a further step toward foundation models. Specifically, we first utilize a diffusion-based generalist model to remove degradations by learning the degradation-agnostic common representations from diverse inputs, where incremental learning strategy is adopted to better guide model training. To refine the model's restoration capability in complex scenarios, we introduce degradation-aware specialist models for achieving final high-quality results. Extensive experiments show the value of our dataset and the effectiveness of our method.
Authors:Wenzhao Jiang, Jindong Han, Ruiqian Han, Hao Liu
Title: MixTTE: Multi-Level Mixture-of-Experts for Scalable and Adaptive Travel Time Estimation
Abstract:
Accurate Travel Time Estimation (TTE) is critical for ride-hailing platforms, where errors directly impact user experience and operational efficiency. While existing production systems excel at holistic route-level dependency modeling, they struggle to capture city-scale traffic dynamics and long-tail scenarios, leading to unreliable predictions in large urban networks. In this paper, we propose \model, a scalable and adaptive framework that synergistically integrates link-level modeling with industrial route-level TTE systems. Specifically, we propose a spatio-temporal external attention module to capture global traffic dynamic dependencies across million-scale road networks efficiently. Moreover, we construct a stabilized graph mixture-of-experts network to handle heterogeneous traffic patterns while maintaining inference efficiency. Furthermore, an asynchronous incremental learning strategy is tailored to enable real-time and stable adaptation to dynamic traffic distribution shifts. Experiments on real-world datasets validate MixTTE significantly reduces prediction errors compared to seven baselines. MixTTE has been deployed in DiDi, substantially improving the accuracy and stability of the TTE service.
Authors:Han Zhang, Yiqing Shen, Roger D. Soberanis-Mukul, Ankita Ghosh, Hao Ding, Lalithkumar Seenivasan, Jose L. Porras, Zhekai Mao, Chenjia Li, Wenjie Xiao, Lonny Yarmus, Angela Christine Argento, Masaru Ishii, Mathias Unberath
Title: TwinOR: Photorealistic Digital Twins of Dynamic Operating Rooms for Embodied AI Research
Abstract:
Developing embodied AI for intelligent surgical systems requires safe, controllable environments for continual learning and evaluation. However, safety regulations and operational constraints in operating rooms (ORs) limit embodied agents from freely perceiving and interacting in realistic settings. Digital twins provide high-fidelity, risk-free environments for exploration and training. How we may create photorealistic and dynamic digital representations of ORs that capture relevant spatial, visual, and behavioral complexity remains unclear. We introduce TwinOR, a framework for constructing photorealistic, dynamic digital twins of ORs for embodied AI research. The system reconstructs static geometry from pre-scan videos and continuously models human and equipment motion through multi-view perception of OR activities. The static and dynamic components are fused into an immersive 3D environment that supports controllable simulation and embodied exploration. The proposed framework reconstructs complete OR geometry with centimeter level accuracy while preserving dynamic interaction across surgical workflows, enabling realistic renderings and a virtual playground for embodied AI systems. In our experiments, TwinOR simulates stereo and monocular sensor streams for geometry understanding and visual localization tasks. Models such as FoundationStereo and ORB-SLAM3 on TwinOR-synthesized data achieve performance within their reported accuracy on real indoor datasets, demonstrating that TwinOR provides sensor-level realism sufficient for perception and localization challenges. By establishing a real-to-sim pipeline for constructing dynamic, photorealistic digital twins of OR environments, TwinOR enables the safe, scalable, and data-efficient development and benchmarking of embodied AI, ultimately accelerating the deployment of embodied AI from sim-to-real.
Authors:KC Santosh, Rodrigue Rizk, Longwei Wang
Title: Toward Carbon-Neutral Human AI: Rethinking Data, Computation, and Learning Paradigms for Sustainable Intelligence
Abstract:
The rapid advancement of Artificial Intelligence (AI) has led to unprecedented computational demands, raising significant environmental and ethical concerns. This paper critiques the prevailing reliance on large-scale, static datasets and monolithic training paradigms, advocating for a shift toward human-inspired, sustainable AI solutions. We introduce a novel framework, Human AI (HAI), which emphasizes incremental learning, carbon-aware optimization, and human-in-the-loop collaboration to enhance adaptability, efficiency, and accountability. By drawing parallels with biological cognition and leveraging dynamic architectures, HAI seeks to balance performance with ecological responsibility. We detail the theoretical foundations, system design, and operational principles that enable AI to learn continuously and contextually while minimizing carbon footprints and human annotation costs. Our approach addresses pressing challenges in active learning, continual adaptation, and energy-efficient model deployment, offering a pathway toward responsible, human-centered artificial intelligence.
Authors:Charu Karakkaparambil James, Waleed Mustafa, Marius Kloft, Sophie Fellenz
Title: Continual Neural Topic Model
Abstract:
In continual learning, our aim is to learn a new task without forgetting what was learned previously. In topic models, this translates to learning new topic models without forgetting previously learned topics. Previous work either considered Dynamic Topic Models (DTMs), which learn the evolution of topics based on the entire training corpus at once, or Online Topic Models, which are updated continuously based on new data but do not have long-term memory. To fill this gap, we propose the Continual Neural Topic Model (CoNTM), which continuously learns topic models at subsequent time steps without forgetting what was previously learned. This is achieved using a global prior distribution that is continuously updated. In our experiments, CoNTM consistently outperformed the dynamic topic model in terms of topic quality and predictive perplexity while being able to capture topic changes online. The analysis reveals that CoNTM can learn more diverse topics and better capture temporal changes than existing methods.
Authors:Xinkui Zhao, Haode Li, Yifan Zhang, Guanjie Cheng, Yueshen Xu
Title: TRAIL: Joint Inference and Refinement of Knowledge Graphs with Large Language Models
Abstract:
Recent advances in large language models (LLMs) have unlocked powerful reasoning and decision-making capabilities. However, their inherent dependence on static parametric memory fundamentally limits their adaptability, factual accuracy, and interpretability in knowledge-intensive scenarios. Knowledge graphs (KGs), as structured repositories of explicit relational knowledge, offer a promising approach for augmenting LLMs with external, interpretable memory. Nevertheless, most existing methods that combine LLMs with KGs treat reasoning and knowledge updating as separate processes, resulting in suboptimal utilization of new information and hindering real-time updates. In this work, we propose TRAIL: a novel, unified framework for Thinking, Reasoning, And Incremental Learning that couples joint inference and dynamic KG refinement with large language models. TRAIL enables LLM agents to iteratively explore, update, and refine knowledge graphs during the reasoning process, employing a confidence-driven mechanism for the generation, validation, and pruning of new facts. This plug-and-play architecture facilitates seamless integration with various LLMs, supporting continual adaptation without the need for retraining. Extensive experiments on multiple benchmarks demonstrate that TRAIL outperforms existing KG-augmented and retrieval-augmented LLM baselines by 3% to 13%. More importantly, these results represent a significant step toward developing adaptive, memory-augmented language models capable of continual learning and reliable, transparent reasoning.
Authors:Hongbo Zhao, Fei Zhu, Rundong Wang, Gaofeng Meng, Zhaoxiang Zhang
Title: MLLM-CL: Continual Learning for Multimodal Large Language Models
Abstract:
Recent Multimodal Large Language Models (MLLMs) excel in vision-language understanding but face challenges in adapting to dynamic real-world scenarios that require continuous integration of new knowledge and skills. While continual learning (CL) offers a potential solution, existing benchmarks and methods suffer from critical limitations. In this paper, we introduce MLLM-CL, a novel benchmark encompassing domain and ability continual learning, where the former focuses on independently and identically distributed (IID) evaluation across evolving mainstream domains, whereas the latter evaluates on non-IID scenarios with emerging model ability. Methodologically, we propose preventing catastrophic interference through parameter isolation, along with an MLLM-based routing mechanism. Extensive experiments demonstrate that our approach can integrate domain-specific knowledge and functional abilities with minimal forgetting, significantly outperforming existing methods.
Authors:Geng Liu, Fei Zhu, Rong Feng, Zhiqiang Yi, Shiqi Wang, Gaofeng Meng, Zhaoxiang Zhang
Title: Semi-parametric Memory Consolidation: Towards Brain-like Deep Continual Learning
Abstract:
Humans and most animals inherently possess a distinctive capacity to continually acquire novel experiences and accumulate worldly knowledge over time. This ability, termed continual learning, is also critical for deep neural networks (DNNs) to adapt to the dynamically evolving world in open environments. However, DNNs notoriously suffer from catastrophic forgetting of previously learned knowledge when trained on sequential tasks. In this work, inspired by the interactive human memory and learning system, we propose a novel biomimetic continual learning framework that integrates semi-parametric memory and the wake-sleep consolidation mechanism. For the first time, our method enables deep neural networks to retain high performance on novel tasks while maintaining prior knowledge in real-world challenging continual learning scenarios, e.g., class-incremental learning on ImageNet. This study demonstrates that emulating biological intelligence provides a promising path to enable deep neural networks with continual learning capabilities.
Authors:Yan Xia, Hai Huang, Minghui Fang, Zhou Zhao
Title: Continual Cross-Modal Generalization
Abstract:
Cross-modal generalization aims to learn a shared discrete representation space from multimodal pairs, enabling knowledge transfer across unannotated modalities. However, achieving a unified representation for all modality pairs requires extensive paired data, which is often impractical. Inspired by the availability of abundant bimodal data (e.g., in ImageBind), we explore a continual learning approach that incrementally maps new modalities into a shared discrete codebook via a mediator modality. We propose the Continual Mixture of Experts Adapter (CMoE-Adapter) to project diverse modalities into a unified space while preserving prior knowledge. To align semantics across stages, we introduce a Pseudo-Modality Replay (PMR) mechanism with a dynamically expanding codebook, enabling the model to adaptively incorporate new modalities using learned ones as guidance. Extensive experiments on image-text, audio-text, video-text, and speech-text show that our method achieves strong performance on various cross-modal generalization tasks. Code is provided in the supplementary material.
Authors:Lars Kröger, Cristian Cioflan, Victor Kartsch, Luca Benini
Title: On-Device Federated Continual Learning on RISC-V-based Ultra-Low-Power SoC for Intelligent Nano-Drone Swarms
Abstract:
RISC-V-based architectures are paving the way for efficient On-Device Learning (ODL) in smart edge devices. When applied across multiple nodes, ODL enables the creation of intelligent sensor networks that preserve data privacy. However, developing ODL-capable, battery-operated embedded platforms presents significant challenges due to constrained computational resources and limited device lifetime, besides intrinsic learning issues such as catastrophic forgetting. We face these challenges by proposing a regularization-based On-Device Federated Continual Learning algorithm tailored for multiple nano-drones performing face recognition tasks. We demonstrate our approach on a RISC-V-based 10-core ultra-low-power SoC, optimizing the ODL computational requirements. We improve the classification accuracy by 24% over naive fine-tuning, requiring 178 ms per local epoch and 10.5 s per global epoch, demonstrating the effectiveness of the architecture for this task.
Authors:Aoting Zhang, Dongbao Yang, Chang Liu, Xiaopeng Hong, Yu Zhou
Title: Specifying What You Know or Not for Multi-Label Class-Incremental Learning
Abstract:
Existing class incremental learning is mainly designed for single-label classification task, which is ill-equipped for multi-label scenarios due to the inherent contradiction of learning objectives for samples with incomplete labels. We argue that the main challenge to overcome this contradiction in multi-label class-incremental learning (MLCIL) lies in the model's inability to clearly distinguish between known and unknown knowledge. This ambiguity hinders the model's ability to retain historical knowledge, master current classes, and prepare for future learning simultaneously. In this paper, we target at specifying what is known or not to accommodate Historical, Current, and Prospective knowledge for MLCIL and propose a novel framework termed as HCP. Specifically, (i) we clarify the known classes by dynamic feature purification and recall enhancement with distribution prior, enhancing the precision and retention of known information. (ii) We design prospective knowledge mining to probe the unknown, preparing the model for future learning. Extensive experiments validate that our method effectively alleviates catastrophic forgetting in MLCIL, surpassing the previous state-of-the-art by 3.3% on average accuracy for MS-COCO B0-C10 setting without replay buffers.
Authors:Bo Liu, Mao Ye, Peter Stone, Qiang Liu
Title: Fine-Grained Gradient Restriction: A Simple Approach for Mitigating Catastrophic Forgetting
Abstract:
A fundamental challenge in continual learning is to balance the trade-off between learning new tasks and remembering the previously acquired knowledge. Gradient Episodic Memory (GEM) achieves this balance by utilizing a subset of past training samples to restrict the update direction of the model parameters. In this work, we start by analyzing an often overlooked hyper-parameter in GEM, the memory strength, which boosts the empirical performance by further constraining the update direction. We show that memory strength is effective mainly because it improves GEM's generalization ability and therefore leads to a more favorable trade-off. By this finding, we propose two approaches that more flexibly constrain the update direction. Our methods are able to achieve uniformly better Pareto Frontiers of remembering old and learning new knowledge than using memory strength. We further propose a computationally efficient method to approximately solve the optimization problem with more constraints.
Authors:Yunxiao Shi, Shuo Yang, Haimin Zhang, Li Wang, Yongze Wang, Qiang Wu, Min Xu
Title: MEGG: Replay via Maximally Extreme GGscore in Incremental Learning for Neural Recommendation Models
Abstract:
Neural Collaborative Filtering models are widely used in recommender systems but are typically trained under static settings, assuming fixed data distributions. This limits their applicability in dynamic environments where user preferences evolve. Incremental learning offers a promising solution, yet conventional methods from computer vision or NLP face challenges in recommendation tasks due to data sparsity and distinct task paradigms. Existing approaches for neural recommenders remain limited and often lack generalizability. To address this, we propose MEGG, Replay Samples with Maximally Extreme GGscore, an experience replay based incremental learning framework. MEGG introduces GGscore, a novel metric that quantifies sample influence, enabling the selective replay of highly influential samples to mitigate catastrophic forgetting. Being model-agnostic, MEGG integrates seamlessly across architectures and frameworks. Experiments on three neural models and four benchmark datasets show superior performance over state-of-the-art baselines, with strong scalability, efficiency, and robustness. Implementation will be released publicly upon acceptance.
Authors:Junze Deng, Qinhang Wu, Peizhong Ju, Sen Lin, Yingbin Liang, Ness Shroff
Title: Unlocking the Power of Rehearsal in Continual Learning: A Theoretical Perspective
Abstract:
Rehearsal-based methods have shown superior performance in addressing catastrophic forgetting in continual learning (CL) by storing and training on a subset of past data alongside new data in current task. While such a concurrent rehearsal strategy is widely used, it remains unclear if this approach is always optimal. Inspired by human learning, where sequentially revisiting tasks helps mitigate forgetting, we explore whether sequential rehearsal can offer greater benefits for CL compared to standard concurrent rehearsal. To address this question, we conduct a theoretical analysis of rehearsal-based CL in overparameterized linear models, comparing two strategies: 1) Concurrent Rehearsal, where past and new data are trained together, and 2) Sequential Rehearsal, where new data is trained first, followed by revisiting past data sequentially. By explicitly characterizing forgetting and generalization error, we show that sequential rehearsal performs better when tasks are less similar. These insights further motivate a novel Hybrid Rehearsal method, which trains similar tasks concurrently and revisits dissimilar tasks sequentially. We characterize its forgetting and generalization performance, and our experiments with deep neural networks further confirm that the hybrid approach outperforms standard concurrent rehearsal. This work provides the first comprehensive theoretical analysis of rehearsal-based CL.
Authors:Yang Xiao, Rohan Kumar Das
Title: Listen, Analyze, and Adapt to Learn New Attacks: An Exemplar-Free Class Incremental Learning Method for Audio Deepfake Source Tracing
Abstract:
As deepfake speech becomes common and hard to detect, it is vital to trace its source. Recent work on audio deepfake source tracing (ST) aims to find the origins of synthetic or manipulated speech. However, ST models must adapt to learn new deepfake attacks while retaining knowledge of the previous ones. A major challenge is catastrophic forgetting, where models lose the ability to recognize previously learned attacks. Some continual learning methods help with deepfake detection, but multi-class tasks such as ST introduce additional challenges as the number of classes grows. To address this, we propose an analytic class incremental learning method called AnaST. When new attacks appear, the feature extractor remains fixed, and the classifier is updated with a closed-form analytical solution in one epoch. This approach ensures data privacy, optimizes memory usage, and is suitable for online training. The experiments carried out in this work show that our method outperforms the baselines.
Authors:Yang Xiao, Tianyi Peng, Rohan Kumar Das, Yuchen Hu, Huiping Zhuang
Title: AnalyticKWS: Towards Exemplar-Free Analytic Class Incremental Learning for Small-footprint Keyword Spotting
Abstract:
Keyword spotting (KWS) offers a vital mechanism to identify spoken commands in voice-enabled systems, where user demands often shift, requiring models to learn new keywords continually over time. However, a major problem is catastrophic forgetting, where models lose their ability to recognize earlier keywords. Although several continual learning methods have proven their usefulness for reducing forgetting, most existing approaches depend on storing and revisiting old data to combat catastrophic forgetting. Though effective, these methods face two practical challenges: 1) privacy risks from keeping user data and 2) large memory and time consumption that limit deployment on small devices. To address these issues, we propose an exemplar-free Analytic Continual Learning (AnalyticKWS) method that updates model parameters without revisiting earlier data. Inspired by efficient learning principles, AnalyticKWS computes a closed-form analytical solution for model updates and requires only a single epoch of adaptation for incoming keywords. AnalyticKWS demands fewer computational resources by avoiding gradient-based updates and does not store old data. By eliminating the need for back-propagation during incremental learning, the model remains lightweight and efficient. As a result, AnalyticKWS meets the challenges mentioned earlier and suits resource-limited settings well. Extensive experiments on various datasets and settings show that AnalyticKWS consistently outperforms existing continual learning methods.
Authors:Sihao Liu, Yibo Yang, Xiaojie Li, David A. Clifton, Bernard Ghanem
Title: Enhancing Online Continual Learning with Plug-and-Play State Space Model and Class-Conditional Mixture of Discretization
Abstract:
Online continual learning (OCL) seeks to learn new tasks from data streams that appear only once, while retaining knowledge of previously learned tasks. Most existing methods rely on replay, focusing on enhancing memory retention through regularization or distillation. However, they often overlook the adaptability of the model, limiting the ability to learn generalizable and discriminative features incrementally from online training data. To address this, we introduce a plug-and-play module, S6MOD, which can be integrated into most existing methods and directly improve adaptability. Specifically, S6MOD introduces an extra branch after the backbone, where a mixture of discretization selectively adjusts parameters in a selective state space model, enriching selective scan patterns such that the model can adaptively select the most sensitive discretization method for current dynamics. We further design a class-conditional routing algorithm for dynamic, uncertainty-based adjustment and implement a contrastive discretization loss to optimize it. Extensive experiments combining our module with various models demonstrate that S6MOD significantly enhances model adaptability, leading to substantial performance gains and achieving the state-of-the-art results.
Authors:Yuheng Lu, Bingshuo Qian, Caixia Yuan, Huixing Jiang, Xiaojie Wang
Title: Controlled Low-Rank Adaptation with Subspace Regularization for Continued Training on Large Language Models
Abstract:
Large language models (LLMs) exhibit remarkable capabilities in natural language processing but face catastrophic forgetting when learning new tasks, where adaptation to a new domain leads to a substantial decline in performance on previous tasks. In this paper, we propose Controlled LoRA (CLoRA), a sub-space regularization method on LoRA structure. Aiming to reduce the scale of output change while introduce minimal constraint on model capacity, CLoRA imposes constraint on the direction of updating matrix's null space. Experimental results on one-stage LLM finetuning tasks and continual learning settings highlight the superority of CLoRA as a effective parameter efficient finetuning method with catastrophic forgetting mitigating.Further investigation for model parameters indicates that CLoRA effectively balances the trade-off between model capacity and degree of forgetting.
Authors:Muhammad Saif Ullah Khan, Muhammad Ahmed Ullah Khan, Muhammad Zeshan Afzal, Didier Stricker
Title: Continual Human Pose Estimation for Incremental Integration of Keypoints and Pose Variations
Abstract:
This paper reformulates cross-dataset human pose estimation as a continual learning task, aiming to integrate new keypoints and pose variations into existing models without losing accuracy on previously learned datasets. We benchmark this formulation against established regularization-based methods for mitigating catastrophic forgetting, including EWC, LFL, and LwF. Moreover, we propose a novel regularization method called Importance-Weighted Distillation (IWD), which enhances conventional LwF by introducing a layer-wise distillation penalty and dynamic temperature adjustment based on layer importance for previously learned knowledge. This allows for a controlled adaptation to new tasks that respects the stability-plasticity balance critical in continual learning. Through extensive experiments across three datasets, we demonstrate that our approach outperforms existing regularization-based continual learning strategies. IWD shows an average improvement of 3.60\% over the state-of-the-art LwF method. The results highlight the potential of our method to serve as a robust framework for real-world applications where models must evolve with new data without forgetting past knowledge.
Authors:Ziwei Liu, Borui Kang, Hangjie Yuan, Zixiang Zhao, Wei Li, Yifan Zhu, Tao Feng
Title: Continual GUI Agents
Abstract:
As digital environments (data distribution) are in flux, with new GUI data arriving over time-introducing new domains or resolutions-agents trained on static environments deteriorate in performance. In this work, we introduce Continual GUI Agents, a new task that requires GUI agents to perform continual learning under shifted domains and resolutions. We find existing methods fail to maintain stable grounding as GUI distributions shift over time, due to the diversity of UI interaction points and regions in fluxing scenarios. To address this, we introduce GUI-Anchoring in Flux (GUI-AiF), a new reinforcement fine-tuning framework that stabilizes continual learning through two novel rewards: Anchoring Point Reward in Flux (APR-iF) and Anchoring Region Reward in Flux (ARR-iF). These rewards guide the agents to align with shifting interaction points and regions, mitigating the tendency of existing reward strategies to over-adapt to static grounding cues (e.g., fixed coordinates or element scales). Extensive experiments show GUI-AiF surpasses state-of-the-art baselines. Our work establishes the first continual learning framework for GUI agents, revealing the untapped potential of reinforcement fine-tuning for continual GUI Agents.
Authors:Xinlan Wu, Bin Zhu, Feng Han, Pengkun Jiao, Jingjing Chen
Title: Dual-LoRA and Quality-Enhanced Pseudo Replay for Multimodal Continual Food Learning
Abstract:
Food analysis has become increasingly critical for health-related tasks such as personalized nutrition and chronic disease prevention. However, existing large multimodal models (LMMs) in food analysis suffer from catastrophic forgetting when learning new tasks, requiring costly retraining from scratch. To address this, we propose a novel continual learning framework for multimodal food learning, integrating a Dual-LoRA architecture with Quality-Enhanced Pseudo Replay. We introduce two complementary low-rank adapters for each task: a specialized LoRA that learns task-specific knowledge with orthogonal constraints to previous tasks' subspaces, and a cooperative LoRA that consolidates shared knowledge across tasks via pseudo replay. To improve the reliability of replay data, our Quality-Enhanced Pseudo Replay strategy leverages self-consistency and semantic similarity to reduce hallucinations in generated samples. Experiments on the comprehensive Uni-Food dataset show superior performance in mitigating forgetting, representing the first effective continual learning approach for complex food tasks.
Authors:Emad Efatinasab, Nahal Azadi, Davide Dalle Pezze, Gian Antonio Susto, Chuadhry Mujeeb Ahmed, Mirco Rampazzo
Title: ProDER: A Continual Learning Approach for Fault Prediction in Evolving Smart Grids
Abstract:
As smart grids evolve to meet growing energy demands and modern operational challenges, the ability to accurately predict faults becomes increasingly critical. However, existing AI-based fault prediction models struggle to ensure reliability in evolving environments where they are required to adapt to new fault types and operational zones. In this paper, we propose a continual learning (CL) framework in the smart grid context to evolve the model together with the environment. We design four realistic evaluation scenarios grounded in class-incremental and domain-incremental learning to emulate evolving grid conditions. We further introduce Prototype-based Dark Experience Replay (ProDER), a unified replay-based approach that integrates prototype-based feature regularization, logit distillation, and a prototype-guided replay memory. ProDER achieves the best performance among tested CL techniques, with only a 0.045 accuracy drop for fault type prediction and 0.015 for fault zone prediction. These results demonstrate the practicality of CL for scalable, real-world fault prediction in smart grids.
Authors:Manuel Barusco, Francesco Borsatti, Nicola Beda, Davide Dalle Pezze, Gian Antonio Susto
Title: Towards Continual Visual Anomaly Detection in the Medical Domain
Abstract:
Visual Anomaly Detection (VAD) seeks to identify abnormal images and precisely localize the corresponding anomalous regions, relying solely on normal data during training. This approach has proven essential in domains such as manufacturing and, more recently, in the medical field, where accurate and explainable detection is critical. Despite its importance, the impact of evolving input data distributions over time has received limited attention, even though such changes can significantly degrade model performance. In particular, given the dynamic and evolving nature of medical imaging data, Continual Learning (CL) provides a natural and effective framework to incrementally adapt models while preserving previously acquired knowledge. This study explores for the first time the application of VAD models in a CL scenario for the medical field. In this work, we utilize a CL version of the well-established PatchCore model, called PatchCoreCL, and evaluate its performance using BMAD, a real-world medical imaging dataset with both image-level and pixel-level annotations. Our results demonstrate that PatchCoreCL is an effective solution, achieving performance comparable to the task-specific models, with a forgetting value less than a 1%, highlighting the feasibility and potential of CL for adaptive VAD in medical imaging.
Authors:Ziwei Liu, Borui Kang, Wei Li, Hangjie Yuan, Yanbing Yang, Wenbin Li, Jun Luo, Yifan Zhu, Tao Feng
Title: Branch, or Layer? Zeroth-Order Optimization for Continual Learning of Vision-Language Models
Abstract:
Continual learning in vision-language models (VLMs) faces critical challenges in balancing parameter efficiency, memory consumption, and optimization stability. While First-Order (FO) optimization (e.g., SGD) dominate current approaches, their deterministic gradients often trap models in suboptimal local minima and incur substantial memory overhead. This paper pioneers a systematic exploration of Zeroth-Order (ZO) optimization for vision-language continual learning (VLCL). We first identify the incompatibility of naive full-ZO adoption in VLCL due to modality-specific instability. To resolve this, we selectively applying ZO to either vision or language modalities while retaining FO in the complementary branch. Furthermore, we develop a layer-wise optimization paradigm that interleaves ZO and FO across network layers, capitalizing on the heterogeneous learning dynamics of shallow versus deep representations. A key theoretical insight reveals that ZO perturbations in vision branches exhibit higher variance than language counterparts, prompting a gradient sign normalization mechanism with modality-specific perturbation constraints. Extensive experiments on four benchmarks demonstrate that our method achieves state-of-the-art performance, reducing memory consumption by 89.1% compared to baselines. Code will be available upon publication.
Authors:En Yu, Jie Lu, Guangquan Zhang
Title: Generalized Incremental Learning under Concept Drift across Evolving Data Streams
Abstract:
Real-world data streams exhibit inherent non-stationarity characterized by concept drift, posing significant challenges for adaptive learning systems. While existing methods address isolated distribution shifts, they overlook the critical co-evolution of label spaces and distributions under limited supervision and persistent uncertainty. To address this, we formalize Generalized Incremental Learning under Concept Drift (GILCD), characterizing the joint evolution of distributions and label spaces in open-environment streaming contexts, and propose a novel framework called Calibrated Source-Free Adaptation (CSFA). First, CSFA introduces a training-free prototype calibration mechanism that dynamically fuses emerging prototypes with base representations, enabling stable new-class identification without optimization overhead. Second, we design a novel source-free adaptation algorithm, i.e., Reliable Surrogate Gap Sharpness-aware (RSGS) minimization. It integrates sharpness-aware perturbation loss optimization with surrogate gap minimization, while employing entropy-based uncertainty filtering to discard unreliable samples. This mechanism ensures robust distribution alignment and mitigates generalization degradation caused by uncertainties. Therefore, CSFA establishes a unified framework for stable adaptation to evolving semantics and distributions in open-world streaming scenarios. Extensive experiments validate the superior performance and effectiveness of CSFA compared to state-of-the-art approaches.
Authors:Saizhuo Wang, Hao Kong, Jiadong Guo, Fengrui Hua, Yiyan Qi, Wanyun Zhou, Jiahao Zheng, Xinyu Wang, Lionel M. Ni, Jian Guo
Title: QuantBench: Benchmarking AI Methods for Quantitative Investment
Abstract:
The field of artificial intelligence (AI) in quantitative investment has seen significant advancements, yet it lacks a standardized benchmark aligned with industry practices. This gap hinders research progress and limits the practical application of academic innovations. We present QuantBench, an industrial-grade benchmark platform designed to address this critical need. QuantBench offers three key strengths: (1) standardization that aligns with quantitative investment industry practices, (2) flexibility to integrate various AI algorithms, and (3) full-pipeline coverage of the entire quantitative investment process. Our empirical studies using QuantBench reveal some critical research directions, including the need for continual learning to address distribution shifts, improved methods for modeling relational financial data, and more robust approaches to mitigate overfitting in low signal-to-noise environments. By providing a common ground for evaluation and fostering collaboration between researchers and practitioners, QuantBench aims to accelerate progress in AI for quantitative investment, similar to the impact of benchmark platforms in computer vision and natural language processing.
Authors:Ming Yang, Gang Li, Quanqi Hu, Qihang Lin, Tianbao Yang
Title: Single-loop Algorithms for Stochastic Non-convex Optimization with Weakly-Convex Constraints
Abstract:
Constrained optimization with multiple functional inequality constraints has significant applications in machine learning. This paper examines a crucial subset of such problems where both the objective and constraint functions are weakly convex. Existing methods often face limitations, including slow convergence rates or reliance on double-loop algorithmic designs. To overcome these challenges, we introduce a novel single-loop penalty-based stochastic algorithm. Following the classical exact penalty method, our approach employs a {\bf hinge-based penalty}, which permits the use of a constant penalty parameter, enabling us to achieve a {\bf state-of-the-art complexity} for finding an approximate Karush-Kuhn-Tucker (KKT) solution. We further extend our algorithm to address finite-sum coupled compositional objectives, which are prevalent in artificial intelligence applications, establishing improved complexity over existing approaches. Finally, we validate our method through experiments on fair learning with receiver operating characteristic (ROC) fairness constraints and continual learning with non-forgetting constraints.
Authors:Juncen Guo, Xiaoguang Zhu, Liangyu Teng, Hao Yang, Jing Liu, Yang Liu, Liang Song
Title: Adaptive Weighted Parameter Fusion with CLIP for Class-Incremental Learning
Abstract:
Class-incremental Learning (CIL) enables the model to incrementally absorb knowledge from new classes and build a generic classifier across all previously encountered classes. When the model optimizes with new classes, the knowledge of previous classes is inevitably erased, leading to catastrophic forgetting. Addressing this challenge requires making a trade-off between retaining old knowledge and accommodating new information. However, this balancing process often requires sacrificing some information, which can lead to a partial loss in the model's ability to discriminate between classes. To tackle this issue, we design the adaptive weighted parameter fusion with Contrastive Language-Image Pre-training (CLIP), which not only takes into account the variability of the data distribution of different tasks, but also retains all the effective information of the parameter matrix to the greatest extent. In addition, we introduce a balance factor that can balance the data distribution alignment and distinguishability of adjacent tasks. Experimental results on several traditional benchmarks validate the superiority of the proposed method.
Authors:Simone Magistri, Tomaso Trinci, Albin Soutif-Cormerais, Joost van de Weijer, Andrew D. Bagdanov
Title: EFC++: Elastic Feature Consolidation with Prototype Re-balancing for Cold Start Exemplar-free Incremental Learning
Abstract:
Exemplar-Free Class Incremental Learning (EFCIL) aims to learn from a sequence of tasks without having access to previous task data. In this paper, we consider the challenging Cold Start scenario in which insufficient data is available in the first task to learn a high-quality backbone. This is especially challenging for EFCIL since it requires high plasticity, resulting in feature drift which is difficult to compensate for in the exemplar-free setting. To address this problem, we propose an effective approach to consolidate feature representations by regularizing drift in directions highly relevant to previous tasks and employs prototypes to reduce task-recency bias. Our approach, which we call Elastic Feature Consolidation++ (EFC++) exploits a tractable second-order approximation of feature drift based on a proposed Empirical Feature Matrix (EFM). The EFM induces a pseudo-metric in feature space which we use to regularize feature drift in important directions and to update Gaussian prototypes. In addition, we introduce a post-training prototype re-balancing phase that updates classifiers to compensate for feature drift. Experimental results on CIFAR-100, Tiny-ImageNet, ImageNet-Subset, ImageNet-1K and DomainNet demonstrate that EFC++ is better able to learn new tasks by maintaining model plasticity and significantly outperform the state-of-the-art.
Authors:Riccardo De Monte, Davide Dalle Pezze, Gian Antonio Susto
Title: Teach YOLO to Remember: A Self-Distillation Approach for Continual Object Detection
Abstract:
Real-time object detectors like YOLO achieve exceptional performance when trained on large datasets for multiple epochs. However, in real-world scenarios where data arrives incrementally, neural networks suffer from catastrophic forgetting, leading to a loss of previously learned knowledge. To address this, prior research has explored strategies for Class Incremental Learning (CIL) in Continual Learning for Object Detection (CLOD), with most approaches focusing on two-stage object detectors. However, existing work suggests that Learning without Forgetting (LwF) may be ineffective for one-stage anchor-free detectors like YOLO due to noisy regression outputs, which risk transferring corrupted knowledge. In this work, we introduce YOLO LwF, a self-distillation approach tailored for YOLO-based continual object detection. We demonstrate that when coupled with a replay memory, YOLO LwF significantly mitigates forgetting. Compared to previous approaches, it achieves state-of-the-art performance, improving mAP by +2.1% and +2.9% on the VOC and COCO benchmarks, respectively.
Authors:Manuel Barusco, Lorenzo D'Antoni, Davide Dalle Pezze, Francesco Borsatti, Gian Antonio Susto
Title: Memory Efficient Continual Learning for Edge-Based Visual Anomaly Detection
Abstract:
Visual Anomaly Detection (VAD) is a critical task in computer vision with numerous real-world applications. However, deploying these models on edge devices presents significant challenges, such as constrained computational and memory resources. Additionally, dynamic data distributions in real-world settings necessitate continuous model adaptation, further complicating deployment under limited resources. To address these challenges, we present a novel investigation into the problem of Continual Learning for Visual Anomaly Detection (CLAD) on edge devices. We evaluate the STFPM approach, given its low memory footprint on edge devices, which demonstrates good performance when combined with the Replay approach. Furthermore, we propose to study the behavior of a recently proposed approach, PaSTe, specifically designed for the edge but not yet explored in the Continual Learning context. Our results show that PaSTe is not only a lighter version of STPFM, but it also achieves superior anomaly detection performance, improving the f1 pixel performance by 10% with the Replay technique. In particular, the structure of PaSTe allows us to test it using a series of Compressed Replay techniques, reducing memory overhead by a maximum of 91.5% compared to the traditional Replay for STFPM. Our study proves the feasibility of deploying VAD models that adapt and learn incrementally on CLAD scenarios on resource-constrained edge devices.
Authors:Mattia Fanan, Davide Dalle Pezze, Emad Efatinasab, Ruggero Carli, Mirco Rampazzo, Gian Antonio Susto
Title: Continual Learning for Behavior-based Driver Identification
Abstract:
Behavior-based Driver Identification is an emerging technology that recognizes drivers based on their unique driving behaviors, offering important applications such as vehicle theft prevention and personalized driving experiences. However, most studies fail to account for the real-world challenges of deploying Deep Learning models within vehicles. These challenges include operating under limited computational resources, adapting to new drivers, and changes in driving behavior over time. The objective of this study is to evaluate if Continual Learning (CL) is well-suited to address these challenges, as it enables models to retain previously learned knowledge while continually adapting with minimal computational overhead and resource requirements. We tested several CL techniques across three scenarios of increasing complexity based on the well-known OCSLab dataset. This work provides an important step forward in scalable driver identification solutions, demonstrating that CL approaches, such as DER, can obtain strong performance, with only an 11% reduction in accuracy compared to the static scenario. Furthermore, to enhance the performance, we propose two new methods, SmooER and SmooDER, that leverage the temporal continuity of driver identity over time to enhance classification accuracy. Our novel method, SmooDER, achieves optimal results with only a 2% reduction compared to the 11\% of the DER approach. In conclusion, this study proves the feasibility of CL approaches to address the challenges of Driver Identification in dynamic environments, making them suitable for deployment on cloud infrastructure or directly within vehicles.
Authors:Feihan Li, Abulikemu Abuduweili, Yifan Sun, Rui Chen, Weiye Zhao, Changliu Liu
Title: Continual Learning and Lifting of Koopman Dynamics for Linear Control of Legged Robots
Abstract:
The control of legged robots, particularly humanoid and quadruped robots, presents significant challenges due to their high-dimensional and nonlinear dynamics. While linear systems can be effectively controlled using methods like Model Predictive Control (MPC), the control of nonlinear systems remains complex. One promising solution is the Koopman Operator, which approximates nonlinear dynamics with a linear model, enabling the use of proven linear control techniques. However, achieving accurate linearization through data-driven methods is difficult due to issues like approximation error, domain shifts, and the limitations of fixed linear state-space representations. These challenges restrict the scalability of Koopman-based approaches. This paper addresses these challenges by proposing a continual learning algorithm designed to iteratively refine Koopman dynamics for high-dimensional legged robots. The key idea is to progressively expand the dataset and latent space dimension, enabling the learned Koopman dynamics to converge towards accurate approximations of the true system dynamics. Theoretical analysis shows that the linear approximation error of our method converges monotonically. Experimental results demonstrate that our method achieves high control performance on robots like Unitree G1/H1/A1/Go2 and ANYmal D, across various terrains using simple linear MPC controllers. This work is the first to successfully apply linearized Koopman dynamics for locomotion control of high-dimensional legged robots, enabling a scalable model-based control solution.
Authors:Gang Li, Wendi Yu, Yao Yao, Wei Tong, Yingbin Liang, Qihang Lin, Tianbao Yang
Title: A Retention-Centric Framework for Continual Learning with Guaranteed Model Developmental Safety
Abstract:
In real-world applications, learning-enabled systems often undergo iterative model development to address challenging or emerging tasks, which involve collecting new data, training a new model and validating the model. This continual model development process raises a significant issue that acquiring new or improving existing capabilities may inadvertently lose good capabilities of the old model, also known as catastrophic forgetting. While existing continual learning aims to mitigate catastrophic forgetting by trading off performance on previous tasks and new tasks to ensure good average performance, it often falls short in cost-sensitive applications, where failing to preserve essential established capabilities introduces unforeseen costs and risks and substantial expenses for re-improving these capabilities. To address this issue, we impose a requirement on learning systems to ensure that a new model strictly retains important capabilities of the old model while improving target-task performance, which we term model developmental safety. To ensure model developmental safety, we propose a retention-centric framework with data-dependent constraints, and study how to continually develop a pretrained CLIP model for acquiring new or improving existing capabilities of image classification. We propose an efficient constrained optimization algorithm with theoretical guarantees and use its insights to finetune the CLIP model with task-dependent heads for promoting the model developmental safety. Experiments on autonomous driving and scene recognition datasets validate the efficacy of our method.
Authors:Francesco Pasti, Riccardo De Monte, Davide Dalle Pezze, Gian Antonio Susto, Nicola Bellotto
Title: Tiny Robotics Dataset and Benchmark for Continual Object Detection
Abstract:
Detecting objects in mobile robotics is crucial for numerous applications, from autonomous navigation to inspection. However, robots often need to operate in different domains from those they were trained in, requiring them to adjust to these changes. Tiny mobile robots, subject to size, power, and computational constraints, encounter even more difficulties in running and adapting these algorithms. Such adaptability, though, is crucial for real-world deployment, where robots must operate effectively in dynamic and unpredictable settings. In this work, we introduce a novel benchmark to evaluate the continual learning capabilities of object detection systems in tiny robotic platforms. Our contributions include: (i) Tiny Robotics Object Detection~(TiROD), a comprehensive dataset collected using the onboard camera of a small mobile robot, designed to test object detectors across various domains and classes; (ii) a benchmark of different continual learning strategies on this dataset using NanoDet, a lightweight object detector. Our results highlight key challenges in developing robust and efficient continual learning strategies for object detectors in tiny robotics.
Authors:Riccardo De Monte, Davide Dalle Pezze, Marina Ceccon, Francesco Pasti, Francesco Paissan, Elisabetta Farella, Gian Antonio Susto, Nicola Bellotto
Title: Replay Consolidation with Label Propagation for Continual Object Detection
Abstract:
Continual Learning (CL) aims to learn new data while remembering previously acquired knowledge. In contrast to CL for image classification, CL for Object Detection faces additional challenges such as the missing annotations problem. In this scenario, images from previous tasks may contain instances of unknown classes that could reappear as labeled in future tasks, leading to task interference in replay-based approaches. Consequently, most approaches in the literature have focused on distillation-based techniques, which are effective when there is a significant class overlap between tasks. In our work, we propose an alternative to distillation-based approaches with a novel approach called Replay Consolidation with Label Propagation for Object Detection (RCLPOD). RCLPOD enhances the replay memory by improving the quality of the stored samples through a technique that promotes class balance while also improving the quality of the ground truth associated with these samples through a technique called label propagation. RCLPOD outperforms existing techniques on well-established benchmarks such as VOC and COC. Moreover, our approach is developed to work with modern architectures like YOLOv8, making it suitable for dynamic, real-world applications such as autonomous driving and robotics, where continuous learning and resource efficiency are essential.
Authors:Francesco Pasti, Marina Ceccon, Davide Dalle Pezze, Francesco Paissan, Elisabetta Farella, Gian Antonio Susto, Nicola Bellotto
Title: Latent Distillation for Continual Object Detection at the Edge
Abstract:
While numerous methods achieving remarkable performance exist in the Object Detection literature, addressing data distribution shifts remains challenging. Continual Learning (CL) offers solutions to this issue, enabling models to adapt to new data while maintaining performance on previous data. This is particularly pertinent for edge devices, common in dynamic environments like automotive and robotics. In this work, we address the memory and computation constraints of edge devices in the Continual Learning for Object Detection (CLOD) scenario. Specifically, (i) we investigate the suitability of an open-source, lightweight, and fast detector, namely NanoDet, for CLOD on edge devices, improving upon larger architectures used in the literature. Moreover, (ii) we propose a novel CL method, called Latent Distillation~(LD), that reduces the number of operations and the memory required by state-of-the-art CL approaches without significantly compromising detection performance. Our approach is validated using the well-known VOC and COCO benchmarks, reducing the distillation parameter overhead by 74\% and the Floating Points Operations~(FLOPs) by 56\% per model update compared to other distillation methods.
Authors:Michele Caprio, Siu Lun Chau, Krikamol Muandet
Title: When Do Credal Sets Stabilize? Fixed-Point Theorems for Credal Set Updates
Abstract:
Many machine learning algorithms rely on iterative updates of uncertainty representations, ranging from variational inference and expectation-maximization, to reinforcement learning, continual learning, and multi-agent learning. In the presence of imprecision and ambiguity, credal sets -- closed, convex sets of probability distributions -- have emerged as a popular framework for representing imprecise probabilistic beliefs. Under such imprecision, many learning problems in imprecise probabilistic machine learning (IPML) may be viewed as processes involving successive applications of update rules on credal sets. This naturally raises the question of whether this iterative process converges to stable fixed points -- or, more generally, under what conditions on the updating mechanism such fixed points exist, and whether they can be attained. We provide the first analysis of this problem and illustrate our findings using Credal Bayesian Deep Learning as a concrete example. Our work demonstrates that incorporating imprecision into the learning process not only enriches the representation of uncertainty, but also reveals structural conditions under which stability emerges, thereby offering new insights into the dynamics of iterative learning under imprecision.
Authors:Taeheon Kim, San Kim, Minhyuk Seo, Dongjae Jeon, Wonje Jeung, Jonghyun Choi
Title: Multi-Level Knowledge Distillation and Dynamic Self-Supervised Learning for Continual Learning
Abstract:
Class-incremental with repetition (CIR), where previously trained classes repeatedly introduced in future tasks, is a more realistic scenario than the traditional class incremental setup, which assumes that each task contains unseen classes. CIR assumes that we can easily access abundant unlabeled data from external sources, such as the Internet. Therefore, we propose two components that efficiently use the unlabeled data to ensure the high stability and the plasticity of models trained in CIR setup. First, we introduce multi-level knowledge distillation (MLKD) that distills knowledge from multiple previous models across multiple perspectives, including features and logits, so the model can maintain much various previous knowledge. Moreover, we implement dynamic self-supervised loss (SSL) to utilize the unlabeled data that accelerates the learning of new classes, while dynamic weighting of SSL keeps the focus of training to the primary task. Both of our proposed components significantly improve the performance in CIR setup, achieving 2nd place in the CVPR 5th CLVISION Challenge.
Authors:Feng Yichao, Haoran Luo, Lang Feng, Shuai Zhao, Anh Tuan Luu
Title: From Stimuli to Minds: Enhancing Psychological Reasoning in LLMs via Bilateral Reinforcement Learning
Abstract:
Large Language Models show promise in emotion understanding, social reasoning, and empathy, yet they struggle with psychologically grounded tasks that require inferring implicit mental states in context-rich, ambiguous settings. These limitations arise from the absence of theory-aligned supervision and the difficulty of capturing nuanced mental processes in real-world narratives. To address this gap, we leverage expert-labeled, psychologically rich scenarios and propose a trajectory-aware reinforcement learning framework that explicitly imitates expert psychological thought patterns. By integrating real-world stimuli with structured reasoning guidance, our approach enables compact models to internalize social-cognitive principles, perform nuanced psychological inference, and support continual self-improvement. Comprehensive experiments across multiple benchmarks further demonstrate that our models achieve expert-level interpretive capabilities, exhibiting strong out-of-distribution generalization and robust continual learning across diverse, challenging, and psychologically grounded tasks.
Authors:Linyu Li, Zhi Jin, Yuanpeng He, Dongming Jin, Yichi Zhang, Haoran Duan, Nyima Tash
Title: Learning to Evolve: Bayesian-Guided Continual Knowledge Graph Embedding
Abstract:
Since knowledge graphs (KG) will continue to evolve in real scenarios, traditional KGE models are only suitable for static knowledge graphs. Therefore, continual knowledge graph embedding (CKGE) has attracted the attention of researchers. Currently, a key challenge facing CKGE is that the model is prone to "catastrophic forgetting", resulting in the loss of previously learned knowledge. In order to effectively alleviate this problem, we propose a new CKGE model BAKE. First, we note that the Bayesian posterior update principle provides a natural continual learning strategy that is insensitive to data order and can theoretically effectively resist the forgetting of previous knowledge during data evolution. Different from the existing CKGE method, BAKE regards each batch of new data as a Bayesian update of the model prior. Under this framework, as long as the posterior distribution of the model is maintained, the model can better preserve the knowledge of early snapshots even after evolving through multiple time snapshots. Secondly, we propose a continual clustering method for CKGE, which further directly combats knowledge forgetting by constraining the evolution difference (or change amplitude) between new and old knowledge between different snapshots. We conduct extensive experiments on BAKE on multiple datasets, and the results show that BAKE significantly outperforms existing baseline models.
Authors:Christiaan Lamers, Ahmed Nabil Belbachir, Thomas Bäck, Niki van Stein
Title: Leveraging Lightweight Generators for Memory Efficient Continual Learning
Abstract:
Catastrophic forgetting can be trivially alleviated by keeping all data from previous tasks in memory. Therefore, minimizing the memory footprint while maximizing the amount of relevant information is crucial to the challenge of continual learning. This paper aims to decrease required memory for memory-based continuous learning algorithms. We explore the options of extracting a minimal amount of information, while maximally alleviating forgetting. We propose the usage of lightweight generators based on Singular Value Decomposition to enhance existing continual learning methods, such as A-GEM and Experience Replay. These generators need a minimal amount of memory while being maximally effective. They require no training time, just a single linear-time fitting step, and can capture a distribution effectively from a small number of data samples. Depending on the dataset and network architecture, our results show a significant increase in average accuracy compared to the original methods. Our method shows great potential in minimizing the memory footprint of memory-based continual learning algorithms.
Authors:Zeyun Deng, Jasorsi Ghosh, Fiona Xie, Yuzhe Lu, Katia Sycara, Joseph Campbell
Title: Energy-Based Transfer for Reinforcement Learning
Abstract:
Reinforcement learning algorithms often suffer from poor sample efficiency, making them challenging to apply in multi-task or continual learning settings. Efficiency can be improved by transferring knowledge from a previously trained teacher policy to guide exploration in new but related tasks. However, if the new task sufficiently differs from the teacher's training task, the transferred guidance may be sub-optimal and bias exploration toward low-reward behaviors. We propose an energy-based transfer learning method that uses out-of-distribution detection to selectively issue guidance, enabling the teacher to intervene only in states within its training distribution. We theoretically show that energy scores reflect the teacher's state-visitation density and empirically demonstrate improved sample efficiency and performance across both single-task and multi-task settings.
Authors:Feng Yu, Jia Hu, Geyong Min
Title: Efficient Federated Class-Incremental Learning of Pre-Trained Models via Task-agnostic Low-rank Residual Adaptation
Abstract:
Federated Parameter-Efficient Fine-Tuning (FedPEFT) reduces communication and computation costs in federated fine-tuning of pre-trained models by updating only a small subset of model parameters. However, existing approaches assume static data distributions, failing to adequately address real-world scenarios where new classes continually emerge, particularly in Federated Class Incremental Learning (FCIL). FCIL faces two key challenges: catastrophic forgetting and performance degradation caused by non-IID data across clients. Unlike current methods that maintain separate task-specific components or suffer from aggregation noise during parameter aggregation, we propose Federated Task-agnostic Low-rank Residual Adaptation (Fed-TaLoRA), a novel parameter-efficient approach for fine-tuning in resource-constrained FCIL scenarios. Specifically, we fine-tune only shared task-agnostic LoRA parameters across sequential tasks, effectively mitigating catastrophic forgetting while enabling efficient knowledge transfer among clients. Based on a theoretical analysis of aggregation, we develop a novel residual weight update mechanism that ensures accurate knowledge consolidation with minimal overhead. Our methodological innovations are attributed to three key strategies: task-agnostic adaptation, post-aggregation model calibration, and strategic placement of LoRA modules. Extensive experiments on multiple benchmark datasets demonstrate that Fed-TaLoRA consistently outperforms state-of-the-art methods in diverse data heterogeneity scenarios while substantially reducing resource requirements.
Authors:Nikhil Shivakumar Nayak, Krishnateja Killamsetty, Ligong Han, Abhishek Bhandwaldar, Prateek Chanda, Kai Xu, Hao Wang, Aldo Pareja, Oleg Silkin, Mustafa Eyceoz, Akash Srivastava
Title: Sculpting Subspaces: Constrained Full Fine-Tuning in LLMs for Continual Learning
Abstract:
Continual learning in large language models (LLMs) is prone to catastrophic forgetting, where adapting to new tasks significantly degrades performance on previously learned ones. Existing methods typically rely on low-rank, parameter-efficient updates that limit the model's expressivity and introduce additional parameters per task, leading to scalability issues. To address these limitations, we propose a novel continual full fine-tuning approach leveraging adaptive singular value decomposition (SVD). Our method dynamically identifies task-specific low-rank parameter subspaces and constrains updates to be orthogonal to critical directions associated with prior tasks, thus effectively minimizing interference without additional parameter overhead or storing previous task gradients. We evaluate our approach extensively on standard continual learning benchmarks using both encoder-decoder (T5-Large) and decoder-only (LLaMA-2 7B) models, spanning diverse tasks including classification, generation, and reasoning. Empirically, our method achieves state-of-the-art results, up to 7% higher average accuracy than recent baselines like O-LoRA, and notably maintains the model's general linguistic capabilities, instruction-following accuracy, and safety throughout the continual learning process by reducing forgetting to near-negligible levels. Our adaptive SVD framework effectively balances model plasticity and knowledge retention, providing a practical, theoretically grounded, and computationally scalable solution for continual learning scenarios in large language models.
Authors:Hanmo Liu, Shimin Di, Haoyang Li, Xun Jian, Yue Wang, Lei Chen
Title: A Selective Learning Method for Temporal Graph Continual Learning
Abstract:
Node classification is a key task in temporal graph learning (TGL). Real-life temporal graphs often introduce new node classes over time, but existing TGL methods assume a fixed set of classes. This assumption brings limitations, as updating models with full data is costly, while focusing only on new classes results in forgetting old ones. Graph continual learning (GCL) methods mitigate forgetting using old-class subsets but fail to account for their evolution. We define this novel problem as temporal graph continual learning (TGCL), which focuses on efficiently maintaining up-to-date knowledge of old classes. To tackle TGCL, we propose a selective learning framework that substitutes the old-class data with its subsets, Learning Towards the Future (LTF). We derive an upper bound on the error caused by such replacement and transform it into objectives for selecting and learning subsets that minimize classification error while preserving the distribution of the full old-class data. Experiments on three real-world datasets validate the effectiveness of LTF on TGCL.
Authors:Qingyao Ai, Zhicheng Dou, Min Zhang
Title: Improving GenIR Systems Based on User Feedback
Abstract:
In this chapter, we discuss how to improve the GenIR systems based on user feedback. Before describing the approaches, it is necessary to be aware that the concept of "user" has been extended in the interactions with the GenIR systems. Different types of feedback information and strategies are also provided. Then the alignment techniques are highlighted in terms of objectives and methods. Following this, various ways of learning from user feedback in GenIR are presented, including continual learning, learning and ranking in the conversational context, and prompt learning. Through this comprehensive exploration, it becomes evident that innovative techniques are being proposed beyond traditional methods of utilizing user feedback, and contribute significantly to the evolution of GenIR in the new era. We also summarize some challenging topics and future directions that require further investigation.
Authors:Zi Wang, Fei Wu, Feng Yu, Yurui Zhou, Jia Hu, Geyong Min
Title: Federated Continual Learning for Edge-AI: A Comprehensive Survey
Abstract:
Edge-AI, the convergence of edge computing and artificial intelligence (AI), has become a promising paradigm that enables the deployment of advanced AI models at the network edge, close to users. In Edge-AI, federated continual learning (FCL) has emerged as an imperative framework, which fuses knowledge from different clients while preserving data privacy and retaining knowledge from previous tasks as it learns new ones. By so doing, FCL aims to ensure stable and reliable performance of learning models in dynamic and distributed environments. In this survey, we thoroughly review the state-of-the-art research and present the first comprehensive survey of FCL for Edge-AI. We categorize FCL methods based on three task characteristics: federated class continual learning, federated domain continual learning, and federated task continual learning. For each category, an in-depth investigation and review of the representative methods are provided, covering background, challenges, problem formalisation, solutions, and limitations. Besides, existing real-world applications empowered by FCL are reviewed, indicating the current progress and potential of FCL in diverse application domains. Furthermore, we discuss and highlight several prospective research directions of FCL such as algorithm-hardware co-design for FCL and FCL with foundation models, which could provide insights into the future development and practical deployment of FCL in the era of Edge-AI.
Authors:Daehee Lee, Minjong Yoo, Woo Kyung Kim, Wonje Choi, Honguk Woo
Title: Incremental Learning of Retrievable Skills For Efficient Continual Task Adaptation
Abstract:
Continual Imitation Learning (CiL) involves extracting and accumulating task knowledge from demonstrations across multiple stages and tasks to achieve a multi-task policy. With recent advancements in foundation models, there has been a growing interest in adapter-based CiL approaches, where adapters are established parameter-efficiently for tasks newly demonstrated. While these approaches isolate parameters for specific tasks and tend to mitigate catastrophic forgetting, they limit knowledge sharing among different demonstrations. We introduce IsCiL, an adapter-based CiL framework that addresses this limitation of knowledge sharing by incrementally learning shareable skills from different demonstrations, thus enabling sample-efficient task adaptation using the skills particularly in non-stationary CiL environments. In IsCiL, demonstrations are mapped into the state embedding space, where proper skills can be retrieved upon input states through prototype-based memory. These retrievable skills are incrementally learned on their corresponding adapters. Our CiL experiments with complex tasks in Franka-Kitchen and Meta-World demonstrate robust performance of IsCiL in both task adaptation and sample-efficiency. We also show a simple extension of IsCiL for task unlearning scenarios.
Authors:Minhyuk Seo, Hyunseo Koh, Jonghyun Choi
Title: Budgeted Online Continual Learning by Adaptive Layer Freezing and Frequency-based Sampling
Abstract:
The majority of online continual learning (CL) advocates single-epoch training and imposes restrictions on the size of replay memory. However, single-epoch training would incur a different amount of computations per CL algorithm, and the additional storage cost to store logit or model in addition to replay memory is largely ignored in calculating the storage budget. Arguing different computational and storage budgets hinder fair comparison among CL algorithms in practice, we propose to use floating point operations (FLOPs) and total memory size in Byte as a metric for computational and memory budgets, respectively, to compare and develop CL algorithms in the same 'total resource budget.' To improve a CL method in a limited total budget, we propose adaptive layer freezing that does not update the layers for less informative batches to reduce computational costs with a negligible loss of accuracy. In addition, we propose a memory retrieval method that allows the model to learn the same amount of knowledge as using random retrieval in fewer iterations. Empirical validations on the CIFAR-10/100, CLEAR-10/100, and ImageNet-1K datasets demonstrate that the proposed approach outperforms the state-of-the-art methods within the same total budget
Authors:Ye Wang, Yaxiong Wang, Guoshuai Zhao, Xueming Qian
Title: Knowledge Adaptation Network for Few-Shot Class-Incremental Learning
Abstract:
Few-shot class-incremental learning (FSCIL) aims to incrementally recognize new classes using a few samples while maintaining the performance on previously learned classes. One of the effective methods to solve this challenge is to construct prototypical evolution classifiers. Despite the advancement achieved by most existing methods, the classifier weights are simply initialized using mean features. Because representations for new classes are weak and biased, we argue such a strategy is suboptimal. In this paper, we tackle this issue from two aspects. Firstly, thanks to the development of foundation models, we employ a foundation model, the CLIP, as the network pedestal to provide a general representation for each class. Secondly, to generate a more reliable and comprehensive instance representation, we propose a Knowledge Adapter (KA) module that summarizes the data-specific knowledge from training data and fuses it into the general representation. Additionally, to tune the knowledge learned from the base classes to the upcoming classes, we propose a mechanism of Incremental Pseudo Episode Learning (IPEL) by simulating the actual FSCIL. Taken together, our proposed method, dubbed as Knowledge Adaptation Network (KANet), achieves competitive performance on a wide range of datasets, including CIFAR100, CUB200, and ImageNet-R.
Authors:Yuxuan Wu, Guangming Wang, Zhiheng Yang, Maoqing Yao, Brian Sheil, Hesheng Wang
Title: Continually Evolving Skill Knowledge in Vision Language Action Model
Abstract:
Developing general robot intelligence in open environments requires continual skill learning. Recent Vision-Language-Action (VLA) models leverage massive pretraining data to support diverse manipulation tasks, but they still depend heavily on task-specific fine-tuning, revealing a lack of continual learning capability. Existing continual learning methods are also resource-intensive to scale to VLA models. We propose Stellar VLA, a knowledge-driven continual learning framework with two variants: T-Stellar, modeling task-centric knowledge space, and TS-Stellar, capturing hierarchical task-skill structure. Stellar VLA enables self-supervised knowledge evolution through joint learning of task latent representation and the knowledge space, reducing annotation needs. Knowledge-guided expert routing provide task specialization without extra network parameters, lowering training overhead. Experiments on the LIBERO benchmark and real-world tasks show over 50 percentage average improvement in final success rates relative to baselines. TS-Stellar further excels in complex action inference, and in-depth analyses verify effective knowledge retention and discovery. Our code will be released soon.
Authors:Evelyn Chee, Wynne Hsu, Mong Li Lee
Title: Multi-Modal Continual Learning via Cross-Modality Adapters and Representation Alignment with Knowledge Preservation
Abstract:
Continual learning is essential for adapting models to new tasks while retaining previously acquired knowledge. While existing approaches predominantly focus on uni-modal data, multi-modal learning offers substantial benefits by utilizing diverse sensory inputs, akin to human perception. However, multi-modal continual learning presents additional challenges, as the model must effectively integrate new information from various modalities while preventing catastrophic forgetting. In this work, we propose a pre-trained model-based framework for multi-modal continual learning. Our framework includes a novel cross-modality adapter with a mixture-of-experts structure to facilitate effective integration of multi-modal information across tasks. We also introduce a representation alignment loss that fosters learning of robust multi-modal representations, and regularize relationships between learned representations to preserve knowledge from previous tasks. Experiments on several multi-modal datasets demonstrate that our approach consistently outperforms baselines in both class-incremental and domain-incremental learning, achieving higher accuracy and reduced forgetting.
Authors:Jessy Lin, Luke Zettlemoyer, Gargi Ghosh, Wen-Tau Yih, Aram Markosyan, Vincent-Pierre Berges, Barlas Oğuz
Title: Continual Learning via Sparse Memory Finetuning
Abstract:
Modern language models are powerful, but typically static after deployment. A major obstacle to building models that continually learn over time is catastrophic forgetting, where updating on new data erases previously acquired capabilities. Motivated by the intuition that mitigating forgetting is challenging because trainable parameters are shared across all tasks, we investigate whether sparse parameter updates can enable learning without catastrophic forgetting. We introduce sparse memory finetuning, leveraging memory layer models (Berges et al., 2024), which are sparsely updated by design. By updating only the memory slots that are highly activated by a new piece of knowledge relative to usage on pretraining data, we reduce interference between new knowledge and the model's existing capabilities. We evaluate learning and forgetting compared to full finetuning and parameter-efficient finetuning with LoRA on two question answering tasks. We find that sparse memory finetuning learns new knowledge while exhibiting substantially less forgetting: while NaturalQuestions F1 drops by 89% after full finetuning on new facts and 71% with LoRA, sparse memory finetuning yields only an 11% drop with the same level of new knowledge acquisition. Our results suggest sparsity in memory layers offers a promising path toward continual learning in large language models.
Authors:Amirhossein Shahbazinia, Jonathan Dan, Jose A. Miranda, Giovanni Ansaloni, David Atienza
Title: Personalization on a Budget: Minimally-Labeled Continual Learning for Resource-Efficient Seizure Detection
Abstract:
Objective: Epilepsy, a prevalent neurological disease, demands careful diagnosis and continuous care. Seizure detection remains challenging, as current clinical practice relies on expert analysis of electroencephalography, which is a time-consuming process and requires specialized knowledge. Addressing this challenge, this paper explores automated epileptic seizure detection using deep learning, focusing on personalized continual learning models that adapt to each patient's unique electroencephalography signal features, which evolve over time. Methods: In this context, our approach addresses the challenge of integrating new data into existing models without catastrophic forgetting, a common issue in static deep learning models. We propose EpiSMART, a continual learning framework for seizure detection that uses a size-constrained replay buffer and an informed sample selection strategy to incrementally adapt to patient-specific electroencephalography signals. By selectively retaining high-entropy and seizure-predicted samples, our method preserves critical past information while maintaining high performance with minimal memory and computational requirements. Results: Validation on the CHB-MIT dataset, shows that EpiSMART achieves a 21% improvement in the F1 score over a trained baseline without updates in all other patients. On average, EpiSMART requires only 6.46 minutes of labeled data and 6.28 updates per day, making it suitable for real-time deployment in wearable systems. Conclusion:EpiSMART enables robust and personalized seizure detection under realistic and resource-constrained conditions by effectively integrating new data into existing models without degrading past knowledge. Significance: This framework advances automated seizure detection by providing a continual learning approach that supports patient-specific adaptation and practical deployment in wearable healthcare systems.
Authors:Giovanni Donghi, Luca Pasa, Daniele Zambon, Cesare Alippi, Nicolò Navarin
Title: Online Continual Graph Learning
Abstract:
The aim of Continual Learning (CL) is to learn new tasks incrementally while avoiding catastrophic forgetting. Online Continual Learning (OCL) specifically focuses on learning efficiently from a continuous stream of data with shifting distribution. While recent studies explore Continual Learning on graphs exploiting Graph Neural Networks (GNNs), only few of them focus on a streaming setting. Yet, many real-world graphs evolve over time, often requiring timely and online predictions. Current approaches, however, are not well aligned with the standard OCL setting, partly due to the lack of a clear definition of online Continual Learning on graphs. In this work, we propose a general formulation for online Continual Learning on graphs, emphasizing the efficiency requirements on batch processing over the graph topology, and providing a well-defined setting for systematic model evaluation. Finally, we introduce a set of benchmarks and report the performance of several methods in the CL literature, adapted to our setting.
Authors:Julia Hindel, Ema Mekic, Enamundram Naga Karthik, Rohit Mohan, Daniele Cattaneo, Maria Kalweit, Abhinav Valada
Title: Dynamic Robot-Assisted Surgery with Hierarchical Class-Incremental Semantic Segmentation
Abstract:
Robot-assisted surgeries rely on accurate and real-time scene understanding to safely guide surgical instruments. However, segmentation models trained on static datasets face key limitations when deployed in these dynamic and evolving surgical environments. Class-incremental semantic segmentation (CISS) allows models to continually adapt to new classes while avoiding catastrophic forgetting of prior knowledge, without training on previous data. In this work, we build upon the recently introduced Taxonomy-Oriented Poincaré-regularized Incremental Class Segmentation (TOPICS) approach and propose an enhanced variant, termed TOPICS+, specifically tailored for robust segmentation of surgical scenes. Concretely, we incorporate the Dice loss into the hierarchical loss formulation to handle strong class imbalances, introduce hierarchical pseudo-labeling, and design tailored label taxonomies for robotic surgery environments. We also propose six novel CISS benchmarks designed for robotic surgery environments including multiple incremental steps and several semantic categories to emulate realistic class-incremental settings in surgical environments. In addition, we introduce a refined set of labels with more than 144 classes on the Syn-Mediverse synthetic dataset, hosted online as an evaluation benchmark. We make the code and trained models publicly available at http://topics.cs.uni-freiburg.de.
Authors:Zhehao Huang, Xinwen Cheng, Jie Zhang, Jinghao Zheng, Haoran Wang, Zhengbao He, Tao Li, Xiaolin Huang
Title: A Unified Gradient-based Framework for Task-agnostic Continual Learning-Unlearning
Abstract:
Recent advancements in deep models have highlighted the need for intelligent systems that combine continual learning (CL) for knowledge acquisition with machine unlearning (MU) for data removal, forming the Continual Learning-Unlearning (CLU) paradigm. While existing work treats CL and MU as separate processes, we reveal their intrinsic connection through a unified optimization framework based on Kullback-Leibler divergence minimization. This framework decomposes gradient updates for approximate CLU into four components: learning new knowledge, unlearning targeted data, preserving existing knowledge, and modulation via weight saliency. A critical challenge lies in balancing knowledge update and retention during sequential learning-unlearning cycles. To resolve this stability-plasticity dilemma, we introduce a remain-preserved manifold constraint to induce a remaining Hessian compensation for CLU iterations. A fast-slow weight adaptation mechanism is designed to efficiently approximate the second-order optimization direction, combined with adaptive weighting coefficients and a balanced weight saliency mask, proposing a unified implementation framework for gradient-based CLU. Furthermore, we pioneer task-agnostic CLU scenarios that support fine-grained unlearning at the cross-task category and random sample levels beyond the traditional task-aware setups. Experiments demonstrate that the proposed UG-CLU framework effectively coordinates incremental learning, precise unlearning, and knowledge stability across multiple datasets and model architectures, providing a theoretical foundation and methodological support for dynamic, compliant intelligent systems.
Authors:Vivian Lin, Ramneet Kaur, Yahan Yang, Souradeep Dutta, Yiannis Kantaros, Anirban Roy, Susmit Jha, Oleg Sokolsky, Insup Lee
Title: Safety Monitoring for Learning-Enabled Cyber-Physical Systems in Out-of-Distribution Scenarios
Abstract:
The safety of learning-enabled cyber-physical systems is compromised by the well-known vulnerabilities of deep neural networks to out-of-distribution (OOD) inputs. Existing literature has sought to monitor the safety of such systems by detecting OOD data. However, such approaches have limited utility, as the presence of an OOD input does not necessarily imply the violation of a desired safety property. We instead propose to directly monitor safety in a manner that is itself robust to OOD data. To this end, we predict violations of signal temporal logic safety specifications based on predicted future trajectories. Our safety monitor additionally uses a novel combination of adaptive conformal prediction and incremental learning. The former obtains probabilistic prediction guarantees even on OOD data, and the latter prevents overly conservative predictions. We evaluate the efficacy of the proposed approach in two case studies on safety monitoring: 1) predicting collisions of an F1Tenth car with static obstacles, and 2) predicting collisions of a race car with multiple dynamic obstacles. We find that adaptive conformal prediction obtains theoretical guarantees where other uncertainty quantification methods fail to do so. Additionally, combining adaptive conformal prediction and incremental learning for safety monitoring achieves high recall and timeliness while reducing loss in precision. We achieve these results even in OOD settings and outperform alternative methods.
Authors:Patrick Rim, Hyoungseob Park, S. Gangopadhyay, Ziyao Zeng, Younjoon Chung, Alex Wong
Title: ProtoDepth: Unsupervised Continual Depth Completion with Prototypes
Abstract:
We present ProtoDepth, a novel prototype-based approach for continual learning of unsupervised depth completion, the multimodal 3D reconstruction task of predicting dense depth maps from RGB images and sparse point clouds. The unsupervised learning paradigm is well-suited for continual learning, as ground truth is not needed. However, when training on new non-stationary distributions, depth completion models will catastrophically forget previously learned information. We address forgetting by learning prototype sets that adapt the latent features of a frozen pretrained model to new domains. Since the original weights are not modified, ProtoDepth does not forget when test-time domain identity is known. To extend ProtoDepth to the challenging setting where the test-time domain identity is withheld, we propose to learn domain descriptors that enable the model to select the appropriate prototype set for inference. We evaluate ProtoDepth on benchmark dataset sequences, where we reduce forgetting compared to baselines by 52.2% for indoor and 53.2% for outdoor to achieve the state of the art.
Authors:Dongkyu Cho, Taesup Moon, Rumi Chunara, Kyunghyun Cho, Sungmin Cha
Title: Memory Is Not the Bottleneck: Cost-Efficient Continual Learning via Weight Space Consolidation
Abstract:
Continual learning (CL) has traditionally emphasized minimizing exemplar memory usage, assuming that memory is the primary bottleneck. However, in modern computing environments-particularly those involving large foundation models-memory is inexpensive and abundant, while GPU time constitutes the main cost. This paper re-examines CL under a more realistic setting with sufficient exemplar memory, where the system can retain a representative portion of past data. We find that, under this regime, stability improves due to reduced forgetting, but plasticity diminishes as the model becomes biased toward prior tasks and struggles to adapt to new ones. Notably, even simple baselines like naive replay can match or exceed the performance of state-of-the-art methods at a fraction of the computational cost. Building on this insight, we propose a lightweight yet effective method called Weight Space Consolidation, which directly operates in the model's weight space via two core mechanisms: (1) rank-based parameter resets to recover plasticity, and (2) weight averaging to enhance stability. Our approach outperforms strong baselines across class-incremental learning with image classifiers and continual instruction tuning with large language models, while requiring only one-third to one-fourth of the training cost. These findings challenge long-standing CL assumptions and establish a new, cost-efficient baseline for real-world continual learning systems where exemplar memory is no longer the limiting factor.
Authors:Yifan Huang, Wei Fang, Zhengyu Ma, Guoqi Li, Yonghong Tian
Title: Scalable Dendritic Modeling Advances Expressive and Robust Deep Spiking Neural Networks
Abstract:
Dendritic computation endows biological neurons with rich nonlinear integration and high representational capacity, yet it is largely missing in existing deep spiking neural networks (SNNs). Although detailed multi-compartment models can capture dendritic computations, their high computational cost and limited flexibility make them impractical for deep learning. To combine the advantages of dendritic computation and deep network architectures for a powerful, flexible and efficient computational model, we propose the dendritic spiking neuron (DendSN). DendSN explicitly models dendritic morphology and nonlinear integration in a streamlined design, leading to substantially higher expressivity than point neurons and wide compatibility with modern deep SNN architectures. Leveraging the efficient formulation and high-performance Triton kernels, dendritic SNNs (DendSNNs) can be efficiently trained and easily scaled to deeper networks. Experiments show that DendSNNs consistently outperform conventional SNNs on classification tasks. Furthermore, inspired by dendritic modulation and synaptic clustering, we introduce the dendritic branch gating (DBG) algorithm for task-incremental learning, which effectively reduces inter-task interference. Additional evaluations show that DendSNNs exhibit superior robustness to noise and adversarial attacks, along with improved generalization in few-shot learning scenarios. Our work firstly demonstrates the possibility of training deep SNNs with multiple nonlinear dendritic branches, and comprehensively analyzes the impact of dendrite computation on representation learning across various machine learning settings, thereby offering a fresh perspective on advancing SNN design.
Authors:Xien Chen, Rit Gangopadhyay, Michael Chu, Patrick Rim, Hyoungseob Park, Alex Wong
Title: UnCLe: Benchmarking Unsupervised Continual Learning for Depth Completion
Abstract:
We propose UnCLe, the first standardized benchmark for Unsupervised Continual Learning of a multimodal 3D reconstruction task: Depth completion aims to infer a dense depth map from a pair of synchronized RGB image and sparse depth map. We benchmark depth completion models under the practical scenario of unsupervised learning over continuous streams of data. While unsupervised learning of depth boasts the possibility continual learning of novel data distributions over time, existing methods are typically trained on a static, or stationary, dataset. However, when adapting to novel nonstationary distributions, they ``catastrophically forget'' previously learned information. UnCLe simulates these non-stationary distributions by adapting depth completion models to sequences of datasets containing diverse scenes captured from distinct domains using different visual and range sensors. We adopt representative methods from continual learning paradigms and translate them to enable unsupervised continual learning of depth completion. We benchmark these models across indoor and outdoor environments, and investigate the degree of catastrophic forgetting through standard quantitative metrics. We find that unsupervised continual learning of depth completion is an open problem, and we invite researchers to leverage UnCLe as a development platform.
Authors:Tomaso Trinci, Simone Magistri, Roberto Verdecchia, Andrew D. Bagdanov
Title: How green is continual learning, really? Analyzing the energy consumption in continual training of vision foundation models
Abstract:
With the ever-growing adoption of AI, its impact on the environment is no longer negligible. Despite the potential that continual learning could have towards Green AI, its environmental sustainability remains relatively uncharted. In this work we aim to gain a systematic understanding of the energy efficiency of continual learning algorithms. To that end, we conducted an extensive set of empirical experiments comparing the energy consumption of recent representation-, prompt-, and exemplar-based continual learning algorithms and two standard baseline (fine tuning and joint training) when used to continually adapt a pre-trained ViT-B/16 foundation model. We performed our experiments on three standard datasets: CIFAR-100, ImageNet-R, and DomainNet. Additionally, we propose a novel metric, the Energy NetScore, which we use measure the algorithm efficiency in terms of energy-accuracy trade-off. Through numerous evaluations varying the number and size of the incremental learning steps, our experiments demonstrate that different types of continual learning algorithms have very different impacts on energy consumption during both training and inference. Although often overlooked in the continual learning literature, we found that the energy consumed during the inference phase is crucial for evaluating the environmental sustainability of continual learning models.
Authors:Immanuel Abdi, Akshat Gupta, Micah Mok, Alexander Lu, Nicholas Lee, Gopala Anumanchipalli
Title: Evolutionary Strategies lead to Catastrophic Forgetting in LLMs
Abstract:
One of the biggest missing capabilities in current AI systems is the ability to learn continuously after deployment. Implementing such continually learning systems have several challenges, one of which is the large memory requirement of gradient-based algorithms that are used to train state-of-the-art LLMs. Evolutionary Strategies (ES) have recently re-emerged as a gradient-free alternative to traditional learning algorithms and have shown encouraging performance on specific tasks in LLMs. In this paper, we perform a comprehensive analysis of ES and specifically evaluate its forgetting curves when training for an increasing number of update steps. We first find that ES is able to reach performance numbers close to GRPO for math and reasoning tasks with a comparable compute budget. However, and most importantly for continual learning, the performance gains in ES is accompanied by significant forgetting of prior abilities, limiting its applicability for training models online. We also explore the reason behind this behavior and show that the updates made using ES are much less sparse and have orders of magnitude larger $\ell_2$ norm compared to corresponding GRPO updates, explaining the contrasting forgetting curves between the two algorithms. With this study, we aim to highlight the issue of forgetting in gradient-free algorithms like ES and hope to inspire future work to mitigate these issues.
Authors:Ning Lin, Jichang Yang, Yangu He, Zijian Ye, Kwun Hang Wong, Xinyuan Zhang, Songqi Wang, Yi Li, Kemi Xu, Leo Yu Zhang, Xiaoming Chen, Dashan Shang, Han Wang, Xiaojuan Qi, Zhongrui Wang
Title: Resistive Memory based Efficient Machine Unlearning and Continual Learning
Abstract:
Resistive memory (RM) based neuromorphic systems can emulate synaptic plasticity and thus support continual learning, but they generally lack biologically inspired mechanisms for active forgetting, which are critical for meeting modern data privacy requirements. Algorithmic forgetting, or machine unlearning, seeks to remove the influence of specific data from trained models to prevent memorization of sensitive information and the generation of harmful content, yet existing exact and approximate unlearning schemes incur prohibitive programming overheads on RM hardware owing to device variability and iterative write-verify cycles. Analogue implementations of continual learning face similar barriers. Here we present a hardware-software co-design that enables an efficient training, deployment and inference pipeline for machine unlearning and continual learning on RM accelerators. At the software level, we introduce a low-rank adaptation (LoRA) framework that confines updates to compact parameter branches, substantially reducing the number of trainable parameters and therefore the training cost. At the hardware level, we develop a hybrid analogue-digital compute-in-memory system in which well-trained weights are stored in analogue RM arrays, whereas dynamic LoRA updates are implemented in a digital computing unit with SRAM buffer. This hybrid architecture avoids costly reprogramming of analogue weights and maintains high energy efficiency during inference. Fabricated in a 180 nm CMOS process, the prototype achieves up to a 147.76-fold reduction in training cost, a 387.95-fold reduction in deployment overhead and a 48.44-fold reduction in inference energy across privacy-sensitive tasks including face recognition, speaker authentication and stylized image generation, paving the way for secure and efficient neuromorphic intelligence at the edge.
Authors:Anoushka Harit, William Prew, Zhongtian Sun, Florian Markowetz
Title: EWC-Guided Diffusion Replay for Exemplar-Free Continual Learning in Medical Imaging
Abstract:
Medical imaging foundation models must adapt over time, yet full retraining is often blocked by privacy constraints and cost. We present a continual learning framework that avoids storing patient exemplars by pairing class conditional diffusion replay with Elastic Weight Consolidation. Using a compact Vision Transformer backbone, we evaluate across eight MedMNIST v2 tasks and CheXpert. On CheXpert our approach attains 0.851 AUROC, reduces forgetting by more than 30\% relative to DER\texttt{++}, and approaches joint training at 0.869 AUROC, while remaining efficient and privacy preserving. Analyses connect forgetting to two measurable factors: fidelity of replay and Fisher weighted parameter drift, highlighting the complementary roles of replay diffusion and synaptic stability. The results indicate a practical route for scalable, privacy aware continual adaptation of clinical imaging models.
Authors:Liuwang Kang, Fan Wang, Shaoshan Liu, Hung-Chyun Chou, Chuan Lin, Ning Ding
Title: In-Context Learning can Perform Continual Learning Like Humans
Abstract:
Large language models (LLMs) can adapt to new tasks via in-context learning (ICL) without parameter updates, making them powerful learning engines for fast adaptation. While extensive research has examined ICL as a few-shot learner, whether it can achieve long-term retention and cross-task knowledge accumulation when multitasks arrive sequentially remains underexplored. Motivated by human memory studies, we investigate the retention characteristics of ICL in multitask settings and extend it to in-context continual learning (ICCL), where continual learning ability emerges through task scheduling and prompt rearrangement. Experiments on Markov-Chain benchmarks demonstrate that, for specific large-language models, ICCL benefits from distributed practice (DP) in a manner analogous to humans, consistently revealing a spacing "sweet spot" for retention. Beyond retention performance, we propose a human-retention similarity metric to quantify how closely a continual-learning (CL) method aligns with human retention dynamics. Using this metric, we show that linear-attention models such as MAMBA and RWKV exhibit particularly human-like retention patterns, despite their retention performance lagging behind that of Transformer-based LLMs. Overall, our results establish ICCL as both cognitively plausible and practically effective, providing an inference-only CL paradigm that mitigates catastrophic forgetting and addresses the stability-plasticity dilemma in conventional CL methods.
Authors:Xuan-Bac Nguyen, Thanh-Dat Truong, Pawan Sinha, Khoa Luu
Title: BRAIN: Bias-Mitigation Continual Learning Approach to Vision-Brain Understanding
Abstract:
Memory decay makes it harder for the human brain to recognize visual objects and retain details. Consequently, recorded brain signals become weaker, uncertain, and contain poor visual context over time. This paper presents one of the first vision-learning approaches to address this problem. First, we statistically and experimentally demonstrate the existence of inconsistency in brain signals and its impact on the Vision-Brain Understanding (VBU) model. Our findings show that brain signal representations shift over recording sessions, leading to compounding bias, which poses challenges for model learning and degrades performance. Then, we propose a new Bias-Mitigation Continual Learning (BRAIN) approach to address these limitations. In this approach, the model is trained in a continual learning setup and mitigates the growing bias from each learning step. A new loss function named De-bias Contrastive Learning is also introduced to address the bias problem. In addition, to prevent catastrophic forgetting, where the model loses knowledge from previous sessions, the new Angular-based Forgetting Mitigation approach is introduced to preserve learned knowledge in the model. Finally, the empirical experiments demonstrate that our approach achieves State-of-the-Art (SOTA) performance across various benchmarks, surpassing prior and non-continual learning methods.
Authors:Chih-Fan Hsu, Ming-Ching Chang, Wei-Chao Chen
Title: Continual Learning with Synthetic Boundary Experience Blending
Abstract:
Continual learning (CL) aims to address catastrophic forgetting in models trained sequentially on multiple tasks. While experience replay has shown promise, its effectiveness is often limited by the sparse distribution of stored key samples, leading to overly simplified decision boundaries. We hypothesize that introducing synthetic data near the decision boundary (Synthetic Boundary Data, or SBD) during training serves as an implicit regularizer, improving boundary stability and mitigating forgetting. To validate this hypothesis, we propose a novel training framework, {\bf Experience Blending}, which integrates knowledge from both stored key samples and synthetic, boundary-adjacent data. Experience blending consists of two core components: (1) a multivariate Differential Privacy (DP) noise mechanism that injects batch-wise noise into low-dimensional feature representations, generating SBD; and (2) an end-to-end training strategy that jointly leverages both stored key samples and SBD. Extensive experiments on CIFAR-10, CIFAR-100, and Tiny ImageNet demonstrate that our method outperforms nine CL baselines, achieving accuracy improvements of 10%, 6%, and 13%, respectively.
Authors:Zhiyuan Wang, Bokui Chen
Title: ChordPrompt: Orchestrating Cross-Modal Prompt Synergy for Multi-Domain Incremental Learning in CLIP
Abstract:
Continual learning (CL) empowers pre-trained vision-language models to adapt effectively to novel or previously underrepresented data distributions without comprehensive retraining, enhancing their adaptability and efficiency. While vision-language models like CLIP show great promise, they struggle to maintain performance across domains in incremental learning scenarios. Existing prompt learning methods face two main limitations: 1) they primarily focus on class-incremental learning scenarios, lacking specific strategies for multi-domain task incremental learning; 2) most current approaches employ single-modal prompts, neglecting the potential benefits of cross-modal information exchange. To address these challenges, we propose the \ChordPrompt framework, which facilitates a harmonious interplay between visual and textual prompts. \ChordPrompt introduces cross-modal prompts to leverage interactions between visual and textual information. Our approach also employs domain-adaptive text prompts to select appropriate prompts for continual adaptation across multiple domains. Comprehensive experiments on multi-domain incremental learning benchmarks demonstrate that \ChordPrompt outperforms state-of-the-art methods in zero-shot generalization and downstream task performance.
Authors:Ghada Sokar, Gintare Karolina Dziugaite, Anurag Arnab, Ahmet Iscen, Pablo Samuel Castro, Cordelia Schmid
Title: Continual Learning in Vision-Language Models via Aligned Model Merging
Abstract:
Continual learning is conventionally tackled through sequential fine-tuning, a process that, while enabling adaptation, inherently favors plasticity over the stability needed to retain prior knowledge. While existing approaches attempt to mitigate catastrophic forgetting, a bias towards recent tasks persists as they build upon this sequential nature. In this work we present a new perspective based on model merging to maintain stability while still retaining plasticity. Rather than just sequentially updating the model weights, we propose merging newly trained task parameters with previously learned ones, promoting a better balance. To maximize the effectiveness of the merging process, we propose a simple mechanism that promotes learning aligned weights with previous ones, thereby avoiding interference when merging. We evaluate this approach on large Vision-Language Models (VLMs), and demonstrate its effectiveness in reducing forgetting, increasing robustness to various task orders and similarities, and improving generalization.
Authors:Nisha Lakshmana Raichur, Lucas Heublein, Christopher Mutschler, Felix Ott
Title: 5G-DIL: Domain Incremental Learning with Similarity-Aware Sampling for Dynamic 5G Indoor Localization
Abstract:
Indoor positioning based on 5G data has achieved high accuracy through the adoption of recent machine learning (ML) techniques. However, the performance of learning-based methods degrades significantly when environmental conditions change, thereby hindering their applicability to new scenarios. Acquiring new training data for each environmental change and fine-tuning ML models is both time-consuming and resource-intensive. This paper introduces a domain incremental learning (DIL) approach for dynamic 5G indoor localization, called 5G-DIL, enabling rapid adaptation to environmental changes. We present a novel similarity-aware sampling technique based on the Chebyshev distance, designed to efficiently select specific exemplars from the previous environment while training only on the modified regions of the new environment. This avoids the need to train on the entire region, significantly reducing the time and resources required for adaptation without compromising localization accuracy. This approach requires as few as 50 exemplars from adaptation domains, significantly reducing training time while maintaining high positioning accuracy in previous environments. Comparative evaluations against state-of-the-art DIL techniques on a challenging real-world indoor dataset demonstrate the effectiveness of the proposed sample selection method. Our approach is adaptable to real-world non-line-of-sight propagation scenarios and achieves an MAE positioning error of 0.261 meters, even under dynamic environmental conditions. Code: https://gitlab.cc-asp.fraunhofer.de/5g-pos/5g-dil
Authors:Jiayuan Mao, Joshua B. Tenenbaum, Jiajun Wu
Title: Neuro-Symbolic Concepts
Abstract:
This article presents a concept-centric paradigm for building agents that can learn continually and reason flexibly. The concept-centric agent utilizes a vocabulary of neuro-symbolic concepts. These concepts, such as object, relation, and action concepts, are grounded on sensory inputs and actuation outputs. They are also compositional, allowing for the creation of novel concepts through their structural combination. To facilitate learning and reasoning, the concepts are typed and represented using a combination of symbolic programs and neural network representations. Leveraging such neuro-symbolic concepts, the agent can efficiently learn and recombine them to solve various tasks across different domains, ranging from 2D images, videos, 3D scenes, and robotic manipulation tasks. This concept-centric framework offers several advantages, including data efficiency, compositional generalization, continual learning, and zero-shot transfer.
Authors:Bruno Deprez, Wei Wei, Wouter Verbeke, Bart Baesens, Kevin Mets, Tim Verdonck
Title: Advances in Continual Graph Learning for Anti-Money Laundering Systems: A Comprehensive Review
Abstract:
Financial institutions are required by regulation to report suspicious financial transactions related to money laundering. Therefore, they need to constantly monitor vast amounts of incoming and outgoing transactions. A particular challenge in detecting money laundering is that money launderers continuously adapt their tactics to evade detection. Hence, detection methods need constant fine-tuning. Traditional machine learning models suffer from catastrophic forgetting when fine-tuning the model on new data, thereby limiting their effectiveness in dynamic environments. Continual learning methods may address this issue and enhance current anti-money laundering (AML) practices, by allowing models to incorporate new information while retaining prior knowledge. Research on continual graph learning for AML, however, is still scarce. In this review, we critically evaluate state-of-the-art continual graph learning approaches for AML applications. We categorise methods into replay-based, regularization-based, and architecture-based strategies within the graph neural network (GNN) framework, and we provide in-depth experimental evaluations on both synthetic and real-world AML data sets that showcase the effect of the different hyperparameters. Our analysis demonstrates that continual learning improves model adaptability and robustness in the face of extreme class imbalances and evolving fraud patterns. Finally, we outline key challenges and propose directions for future research.
Authors:Fei Wang, Tingting Zhang, Wei Xi, Han Ding, Ge Wang, Di Zhang, Yuanhao Cui, Fan Liu, Jinsong Han, Jie Xu, Tony Xiao Han
Title: A Survey on Wi-Fi Sensing Generalizability: Taxonomy, Techniques, Datasets, and Future Research Prospects
Abstract:
Wi-Fi sensing has emerged as a powerful non-intrusive technology for recognizing human activities, monitoring vital signs, and enabling context-aware applications using commercial wireless devices. However, the performance of Wi-Fi sensing often degrades when applied to new users, devices, or environments due to significant domain shifts. To address this challenge, researchers have proposed a wide range of generalization techniques aimed at enhancing the robustness and adaptability of Wi-Fi sensing systems. In this survey, we provide a comprehensive and structured review of over 200 papers published since 2015, categorizing them according to the Wi-Fi sensing pipeline: experimental setup, signal preprocessing, feature learning, and model deployment. We analyze key techniques, including signal preprocessing, domain adaptation, meta-learning, metric learning, data augmentation, cross-modal alignment, federated learning, and continual learning. Furthermore, we summarize publicly available datasets across various tasks,such as activity recognition, user identification, indoor localization, and pose estimation, and provide insights into their domain diversity. We also discuss emerging trends and future directions, including large-scale pretraining, integration with multimodal foundation models, and continual deployment. To foster community collaboration, we introduce the Sensing Dataset Platform (SDP) for sharing datasets and models. This survey aims to serve as a valuable reference and practical guide for researchers and practitioners dedicated to improving the generalizability of Wi-Fi sensing systems.
Authors:Mingyang Wang, Alisa Stoll, Lukas Lange, Heike Adel, Hinrich Schütze, Jannik Strötgen
Title: Bring Your Own Knowledge: A Survey of Methods for LLM Knowledge Expansion
Abstract:
Adapting large language models (LLMs) to new and diverse knowledge is essential for their lasting effectiveness in real-world applications. This survey provides an overview of state-of-the-art methods for expanding the knowledge of LLMs, focusing on integrating various knowledge types, including factual information, domain expertise, language proficiency, and user preferences. We explore techniques, such as continual learning, model editing, and retrieval-based explicit adaptation, while discussing challenges like knowledge consistency and scalability. Designed as a guide for researchers and practitioners, this survey sheds light on opportunities for advancing LLMs as adaptable and robust knowledge systems.
Authors:Dinithi Jayasuriya, Sina Tayebati, Davide Ettori, Ranganath Krishnan, Amit Ranjan Trivedi
Title: SPARC: Subspace-Aware Prompt Adaptation for Robust Continual Learning in LLMs
Abstract:
We propose SPARC, a lightweight continual learning framework for large language models (LLMs) that enables efficient task adaptation through prompt tuning in a lower-dimensional space. By leveraging principal component analysis (PCA), we identify a compact subspace of the training data. Optimizing prompts in this lower-dimensional space enhances training efficiency, as it focuses updates on the most relevant features while reducing computational overhead. Furthermore, since the model's internal structure remains unaltered, the extensive knowledge gained from pretraining is fully preserved, ensuring that previously learned information is not compromised during adaptation. Our method achieves high knowledge retention in both task-incremental and domain-incremental continual learning setups while fine-tuning only 0.04% of the model's parameters. Additionally, by integrating LoRA, we enhance adaptability to computational constraints, allowing for a tradeoff between accuracy and training cost. Experiments on the SuperGLUE benchmark demonstrate that our PCA-based prompt tuning combined with LoRA maintains full knowledge retention while improving accuracy, utilizing only 1% of the model's parameters. These results establish our approach as a scalable and resource-efficient solution for continual learning in LLMs.
Authors:Junhao Zheng, Xidi Cai, Shengjie Qiu, Qianli Ma
Title: Spurious Forgetting in Continual Learning of Language Models
Abstract:
Recent advancements in large language models (LLMs) reveal a perplexing phenomenon in continual learning: despite extensive training, models experience significant performance declines, raising questions about task alignment and underlying knowledge retention. This study first explores the concept of "spurious forgetting", proposing that such performance drops often reflect a decline in task alignment rather than true knowledge loss. Through controlled experiments with a synthesized dataset, we investigate the dynamics of model performance during the initial training phases of new tasks, discovering that early optimization steps can disrupt previously established task alignments. Our theoretical analysis connects these shifts to orthogonal updates in model weights, providing a robust framework for understanding this behavior. Ultimately, we introduce a Freezing strategy that fix the bottom layers of the model, leading to substantial improvements in four continual learning scenarios. Our findings underscore the critical distinction between task alignment and knowledge retention, paving the way for more effective strategies in continual learning.
Authors:Chin Yuen Kwok, Jia Qi Yip, Eng Siong Chng
Title: Continual Learning with Embedding Layer Surgery and Task-wise Beam Search using Whisper
Abstract:
Current Multilingual ASR models only support a fraction of the world's languages. Continual Learning (CL) aims to tackle this problem by adding new languages to pre-trained models while avoiding the loss of performance on existing languages, also known as Catastrophic Forgetting (CF). However, existing CL methods overlook the adaptation of the token embedding lookup table at the decoder, despite its significant contribution to CF. We propose Embedding Layer Surgery where separate copies of the token embeddings are created for each new languages, and one of the copies is selected to replace the old languages embeddings when transcribing the corresponding new language. Unfortunately, this approach means LID errors also cause incorrect ASR embedding selection. Our Task-wise Beam Search allows self-correction for such mistakes. By adapting Whisper to 10 hours of data for each of 10 unseen languages from Common Voice, results show that our method reduces the Average WER (AWER) of pre-trained languages from 14.2% to 11.9% compared with Experience Replay, without compromising the AWER of the unseen languages.
Authors:Hankun Kang, Jianhao Chen, Yongqi Li, Xin Miao, Mayi Xu, Ming Zhong, Yuanyuan Zhu, Tieyun Qian
Title: Toxicity Detection towards Adaptability to Changing Perturbations
Abstract:
Toxicity detection is crucial for maintaining the peace of the society. While existing methods perform well on normal toxic contents or those generated by specific perturbation methods, they are vulnerable to evolving perturbation patterns. However, in real-world scenarios, malicious users tend to create new perturbation patterns for fooling the detectors. For example, some users may circumvent the detector of large language models (LLMs) by adding `I am a scientist' at the beginning of the prompt. In this paper, we introduce a novel problem, i.e., continual learning jailbreak perturbation patterns, into the toxicity detection field. To tackle this problem, we first construct a new dataset generated by 9 types of perturbation patterns, 7 of them are summarized from prior work and 2 of them are developed by us. We then systematically validate the vulnerability of current methods on this new perturbation pattern-aware dataset via both the zero-shot and fine tuned cross-pattern detection. Upon this, we present the domain incremental learning paradigm and the corresponding benchmark to ensure the detector's robustness to dynamically emerging types of perturbed toxic text. Our code and dataset are provided in the appendix and will be publicly available at GitHub, by which we wish to offer new research opportunities for the security-relevant communities.
Authors:Linglan Zhao, Xuerui Zhang, Ke Yan, Shouhong Ding, Weiran Huang
Title: SAFE: Slow and Fast Parameter-Efficient Tuning for Continual Learning with Pre-Trained Models
Abstract:
Continual learning aims to incrementally acquire new concepts in data streams while resisting forgetting previous knowledge. With the rise of powerful pre-trained models (PTMs), there is a growing interest in training incremental learning systems using these foundation models, rather than learning from scratch. Existing works often view PTMs as a strong initial point and directly apply parameter-efficient tuning (PET) in the first session for adapting to downstream tasks. In the following sessions, most methods freeze model parameters for tackling forgetting issues. However, applying PET directly to downstream data cannot fully explore the inherent knowledge in PTMs. Additionally, freezing the parameters in incremental sessions hinders models' plasticity to novel concepts not covered in the first session. To solve the above issues, we propose a Slow And Fast parameter-Efficient tuning (SAFE) framework. In particular, to inherit general knowledge from foundation models, we include a transfer loss function by measuring the correlation between the PTM and the PET-applied model. After calibrating in the first session, the slow efficient tuning parameters can capture more informative features, improving generalization to incoming classes. Moreover, to further incorporate novel concepts, we strike a balance between stability and plasticity by fixing slow efficient tuning parameters and continuously updating the fast ones. Specifically, a cross-classification loss with feature alignment is proposed to circumvent catastrophic forgetting. During inference, we introduce an entropy-based aggregation strategy to dynamically utilize the complementarity in the slow and fast learners. Extensive experiments on seven benchmark datasets verify the effectiveness of our method by significantly surpassing the state-of-the-art.
Authors:Omayma Moussadek, Riccardo Salami, Simone Calderara
Title: DOLFIN: Balancing Stability and Plasticity in Federated Continual Learning
Abstract:
Federated continual learning (FCL) enables models to learn new tasks across multiple distributed clients, protecting privacy and without forgetting previously acquired knowledge. However, current methods face challenges balancing performance, privacy preservation, and communication efficiency. We introduce a Distributed Online LoRA for Federated INcremental learning method DOLFIN, a novel approach combining Vision Transformers with low-rank adapters designed to efficiently and stably learn new tasks in federated environments. Our method leverages LoRA for minimal communication overhead and incorporates DualGradient Projection Memory (DualGPM) to prevent forgetting. Evaluated on CIFAR-100, ImageNet-R, ImageNet-A, and CUB-200 under two Dirichlet heterogeneity settings, DOLFIN consistently surpasses six strong baselines in final average accuracy while matching their memory footprint. Orthogonal low-rank adapters offer an effective and scalable solution for privacy-preserving continual learning in federated settings.
Authors:Haochen You, Baojing Liu
Title: MCIGLE: Multimodal Exemplar-Free Class-Incremental Graph Learning
Abstract:
Exemplar-free class-incremental learning enables models to learn new classes over time without storing data from old ones. As multimodal graph-structured data becomes increasingly prevalent, existing methods struggle with challenges like catastrophic forgetting, distribution bias, memory limits, and weak generalization. We propose MCIGLE, a novel framework that addresses these issues by extracting and aligning multimodal graph features and applying Concatenated Recursive Least Squares for effective knowledge retention. Through multi-channel processing, MCIGLE balances accuracy and memory preservation. Experiments on public datasets validate its effectiveness and generalizability.
Authors:Fabian Raisch, Max Langtry, Felix Koch, Ruchi Choudhary, Christoph Goebel, Benjamin Tischler
Title: Adapting to Change: A Comparison of Continual and Transfer Learning for Modeling Building Thermal Dynamics under Concept Drifts
Abstract:
Transfer Learning (TL) is currently the most effective approach for modeling building thermal dynamics when only limited data are available. TL uses a pretrained model that is fine-tuned to a specific target building. However, it remains unclear how to proceed after initial fine-tuning, as more operational measurement data are collected over time. This challenge becomes even more complex when the dynamics of the building change, for example, after a retrofit or a change in occupancy. In Machine Learning literature, Continual Learning (CL) methods are used to update models of changing systems. TL approaches can also address this challenge by reusing the pretrained model at each update step and fine-tuning it with new measurement data. A comprehensive study on how to incorporate new measurement data over time to improve prediction accuracy and address the challenges of concept drifts (changes in dynamics) for building thermal dynamics is still missing. Therefore, this study compares several CL and TL strategies, as well as a model trained from scratch, for thermal dynamics modeling during building operation. The methods are evaluated using 5--7 years of simulated data representative of single-family houses in Central Europe, including scenarios with concept drifts from retrofits and changes in occupancy. We propose a CL strategy (Seasonal Memory Learning) that provides greater accuracy improvements than existing CL and TL methods, while maintaining low computational effort. SML outperformed the benchmark of initial fine-tuning by 28.1\% without concept drifts and 34.9\% with concept drifts.
Authors:Chang Eun Song, Weihong Xu, Keming Fan, Soumil Jain, Gopabandhu Hota, Haichao Yang, Leo Liu, Kerem Akarvardar, Meng-Fan Chang, Carlos H. Diaz, Gert Cauwenberghs, Tajana Rosing, Mingu Kang
Title: Clo-HDnn: A 4.66 TFLOPS/W and 3.78 TOPS/W Continual On-Device Learning Accelerator with Energy-efficient Hyperdimensional Computing via Progressive Search
Abstract:
Clo-HDnn is an on-device learning (ODL) accelerator designed for emerging continual learning (CL) tasks. Clo-HDnn integrates hyperdimensional computing (HDC) along with low-cost Kronecker HD Encoder and weight clustering feature extraction (WCFE) to optimize accuracy and efficiency. Clo-HDnn adopts gradient-free CL to efficiently update and store the learned knowledge in the form of class hypervectors. Its dual-mode operation enables bypassing costly feature extraction for simpler datasets, while progressive search reduces complexity by up to 61% by encoding and comparing only partial query hypervectors. Achieving 4.66 TFLOPS/W (FE) and 3.78 TOPS/W (classifier), Clo-HDnn delivers 7.77x and 4.85x higher energy efficiency compared to SOTA ODL accelerators.
Authors:Wen Wen, Tieliang Gong, Yunjiao Zhang, Zeyu Gao, Weizhan Zhang, Yong-Jin Liu
Title: Information-Theoretic Generalization Bounds of Replay-based Continual Learning
Abstract:
Continual learning (CL) has emerged as a dominant paradigm for acquiring knowledge from sequential tasks while avoiding catastrophic forgetting. Although many CL methods have been proposed to show impressive empirical performance, the theoretical understanding of their generalization behavior remains limited, particularly for replay-based approaches. In this paper, we establish a unified theoretical framework for replay-based CL, deriving a series of information-theoretic bounds that explicitly characterize how the memory buffer interacts with the current task to affect generalization. Specifically, our hypothesis-based bounds reveal that utilizing the limited exemplars of previous tasks alongside the current task data, rather than exhaustive replay, facilitates improved generalization while effectively mitigating catastrophic forgetting. Furthermore, our prediction-based bounds yield tighter and computationally tractable upper bounds of the generalization gap through the use of low-dimensional variables. Our analysis is general and broadly applicable to a wide range of learning algorithms, exemplified by stochastic gradient Langevin dynamics (SGLD) as a representative method. Comprehensive experimental evaluations demonstrate the effectiveness of our derived bounds in capturing the generalization dynamics in replay-based CL settings.
Authors:Haodong Lu, Chongyang Zhao, Jason Xue, Lina Yao, Kristen Moore, Dong Gong
Title: Little By Little: Continual Learning via Self-Activated Sparse Mixture-of-Rank Adaptive Learning
Abstract:
Continual learning (CL) with large pre-trained models is challenged by catastrophic forgetting and task interference. Existing LoRA-based Mixture-of-Experts (MoE) approaches mitigate forgetting by assigning and freezing task-specific adapters, but suffer from interference, redundancy, and ambiguous routing due to coarse adapter-level selection. However, this design introduces three key challenges: 1) Interference: Activating full LoRA experts per input leads to subspace interference and prevents selective reuse of useful components across tasks. 2) Redundancy: Newly added experts often duplicate or contradict existing knowledge due to unnecessary activation of unrelated ranks and insufficient reuse of relevant ones. 3) Ambiguity: Overlapping features across tasks confuse the router, resulting in unstable expert assignments. As more experts accumulate, earlier task routing degrades, accelerating forgetting. We propose MoRA, a Mixture-of-Rank Adaptive learning approach with self-activated and sparse rank activation for CL. Unlike mixing multiple low-rank matrices, MoRA decomposes each rank-r update into r rank-1 components, each treated as an independent expert, enabling fine-grained mixture of rank-1 expert utilization while mitigating interference and redundancy. To avoid ambiguous routing, we propose that each rank-1 expert can infer its own relevance via intermediate activations. Coupled with our proposed rank pruning and activation budgets, MoRA adaptively selects a sparse mixture of ranks per input. We validate MoRA on continual learning tasks with CLIP and large language models (LLMs), analyzing both in-domain learning and out-of-domain forgetting/generalization during fine-tuning. MoRA shows significant effectiveness on enhancing CL with PTMs, and improving generalization while mitigating forgetting.
Authors:Minh-Hao Van, Prateek Verma, Chen Zhao, Xintao Wu
Title: A Survey of AI for Materials Science: Foundation Models, LLM Agents, Datasets, and Tools
Abstract:
Foundation models (FMs) are catalyzing a transformative shift in materials science (MatSci) by enabling scalable, general-purpose, and multimodal AI systems for scientific discovery. Unlike traditional machine learning models, which are typically narrow in scope and require task-specific engineering, FMs offer cross-domain generalization and exhibit emergent capabilities. Their versatility is especially well-suited to materials science, where research challenges span diverse data types and scales. This survey provides a comprehensive overview of foundation models, agentic systems, datasets, and computational tools supporting this growing field. We introduce a task-driven taxonomy encompassing six broad application areas: data extraction, interpretation and Q\&A; atomistic simulation; property prediction; materials structure, design and discovery; process planning, discovery, and optimization; and multiscale modeling. We discuss recent advances in both unimodal and multimodal FMs, as well as emerging large language model (LLM) agents. Furthermore, we review standardized datasets, open-source tools, and autonomous experimental platforms that collectively fuel the development and integration of FMs into research workflows. We assess the early successes of foundation models and identify persistent limitations, including challenges in generalizability, interpretability, data imbalance, safety concerns, and limited multimodal fusion. Finally, we articulate future research directions centered on scalable pretraining, continual learning, data governance, and trustworthiness.
Authors:Haodong Lu, Xinyu Zhang, Kristen Moore, Jason Xue, Lina Yao, Anton van den Hengel, Dong Gong
Title: Continual Learning on CLIP via Incremental Prompt Tuning with Intrinsic Textual Anchors
Abstract:
Continual learning (CL) enables deep networks to acquire new knowledge while avoiding catastrophic forgetting. The powerful generalization ability of pre-trained models (PTMs), such as the Contrastive Language-Image Pre-training (CLIP) model, has inspired a range of CL methods targeting new and specialized tasks, providing rich multi-modal embeddings that support lightweight, incremental prompt tuning. Existing methods often rely on complex designs built upon specific assumptions, such as intricate regularization schemes for prompt pools, specialized routing mechanisms, or multi-stage incrementations, that introduce additional-and possibly unnecessary-complexity, underutilizing CLIP's intrinsic capabilities. In this paper, we propose a concise CL approach for CLIP based on incremental prompt tuning that fully exploits its multi-modal structure and the stability of textual representations. Our method, Textual Prototype-guided Prompt Tuning (TPPT), introduces textual prototypes not merely as static classifiers, as in existing methods, but as stable anchors to guide the learning of visual prompts, thereby shaping the embedding space (i.e., TPPT-V). We show that our bidirectional supervision strategy enables more effective learning of new knowledge while reducing forgetting. To further close the vision-language gap during CL, we jointly optimizes visual and textual prompts (i.e., TPPT-VT). We also introduce a relational diversity regularization on the textual anchors to prevent embedding space collapse and mitigate correlated forgetting. Extensive experiments and analyses demonstrate the effectiveness of our proposed approach, highlighting the benefits of leveraging CLIP's intrinsic guidance for continual adaptation.
Authors:Isaac Ning Lee, Leila Mahmoodi, Trung Le, Mehrtash Harandi
Title: Exemplar-Free Continual Learning for State Space Models
Abstract:
State-Space Models (SSMs) excel at capturing long-range dependencies with structured recurrence, making them well-suited for sequence modeling. However, their evolving internal states pose challenges in adapting them under Continual Learning (CL). This is particularly difficult in exemplar-free settings, where the absence of prior data leaves updates to the dynamic SSM states unconstrained, resulting in catastrophic forgetting. To address this, we propose Inf-SSM, a novel and simple geometry-aware regularization method that utilizes the geometry of the infinite-dimensional Grassmannian to constrain state evolution during CL. Unlike classical continual learning methods that constrain weight updates, Inf-SSM regularizes the infinite-horizon evolution of SSMs encoded in their extended observability subspace. We show that enforcing this regularization requires solving a matrix equation known as the Sylvester equation, which typically incurs $\mathcal{O}(n^3)$ complexity. We develop a $\mathcal{O}(n^2)$ solution by exploiting the structure and properties of SSMs. This leads to an efficient regularization mechanism that can be seamlessly integrated into existing CL methods. Comprehensive experiments on challenging benchmarks, including ImageNet-R and Caltech-256, demonstrate a significant reduction in forgetting while improving accuracy across sequential tasks.
Authors:Quan Cheng, Yuanyu Wan, Lingyu Wu, Chenping Hou, Lijun Zhang
Title: Continuous Subspace Optimization for Continual Learning
Abstract:
Continual learning aims to learn multiple tasks sequentially while preserving prior knowledge, but faces the challenge of catastrophic forgetting when acquiring new knowledge. Recently, approaches leveraging pre-trained models have gained increasing popularity to mitigate this issue, due to the strong generalization ability of foundation models. To adjust pre-trained models for new tasks, existing methods usually employ low-rank adaptation, which restricts parameter updates to a fixed low-rank subspace. However, constraining the optimization space inherently compromises the model's learning capacity, resulting in inferior performance. To address the limitation, we propose Continuous Subspace Optimization for Continual Learning (CoSO) to fine-tune the model in a series of subspaces rather than a single one. These sequential subspaces are dynamically determined through the singular value decomposition of gradients. CoSO updates the model by projecting gradients into these subspaces, ensuring memory-efficient optimization. To mitigate forgetting, the optimization subspaces of each task are set to be orthogonal to the historical task subspace. During task learning, CoSO maintains a task-specific component that captures the critical update directions associated with the current task. Upon completing a task, this component is used to update the historical task subspace, laying the groundwork for subsequent learning. Extensive experiments on multiple datasets demonstrate that CoSO significantly outperforms state-of-the-art methods, especially in challenging scenarios with long task sequences.
Authors:Mingchen Song, Xiang Deng, Guoqiang Zhong, Qi Lv, Jia Wan, Yinchuan Li, Jianye Hao, Weili Guan
Title: Few-Shot Vision-Language Action-Incremental Policy Learning
Abstract:
Recently, Transformer-based robotic manipulation methods utilize multi-view spatial representations and language instructions to learn robot motion trajectories by leveraging numerous robot demonstrations. However, the collection of robot data is extremely challenging, and existing methods lack the capability for continuous learning on new tasks with only a few demonstrations. In this paper, we formulate these challenges as the Few-Shot Action-Incremental Learning (FSAIL) task, and accordingly design a Task-prOmpt graPh evolutIon poliCy (TOPIC) to address these issues. Specifically, to address the data scarcity issue in robotic imitation learning, TOPIC learns Task-Specific Prompts (TSP) through the deep interaction of multi-modal information within few-shot demonstrations, thereby effectively extracting the task-specific discriminative information. On the other hand, to enhance the capability for continual learning on new tasks and mitigate the issue of catastrophic forgetting, TOPIC adopts a Continuous Evolution Strategy (CES). CES leverages the intrinsic relationships between tasks to construct a task relation graph, which effectively facilitates the adaptation of new tasks by reusing skills learned from previous tasks. TOPIC pioneers few-shot continual learning in the robotic manipulation task, and extensive experimental results demonstrate that TOPIC outperforms state-of-the-art baselines by over 26$\%$ in success rate, significantly enhancing the continual learning capabilities of existing Transformer-based policies.
Authors:Mingchuan Ma, Yuhao Zhou, Jindi Lv, Yuxin Tian, Dan Si, Shujian Li, Qing Ye, Jiancheng Lv
Title: GPS: Distilling Compact Memories via Grid-based Patch Sampling for Efficient Online Class-Incremental Learning
Abstract:
Online class-incremental learning aims to enable models to continuously adapt to new classes with limited access to past data, while mitigating catastrophic forgetting. Replay-based methods address this by maintaining a small memory buffer of previous samples, achieving competitive performance. For effective replay under constrained storage, recent approaches leverage distilled data to enhance the informativeness of memory. However, such approaches often involve significant computational overhead due to the use of bi-level optimization. Motivated by these limitations, we introduce Grid-based Patch Sampling (GPS), a lightweight and effective strategy for distilling informative memory samples without relying on a trainable model. GPS generates informative samples by sampling a subset of pixels from the original image, yielding compact low-resolution representations that preserve both semantic content and structural information. During replay, these representations are reassembled to support training and evaluation. Experiments on extensive benchmarks demonstrate that GRS can be seamlessly integrated into existing replay frameworks, leading to 3%-4% improvements in average end accuracy under memory-constrained settings, with limited computational overhead.
Authors:Sijia Li, Young D. Kwon, Lik-Hang Lee, Pan Hui
Title: MetaCLBench: Meta Continual Learning Benchmark on Resource-Constrained Edge Devices
Abstract:
Meta-Continual Learning (Meta-CL) has emerged as a promising approach to minimize manual labeling efforts and system resource requirements by enabling Continual Learning (CL) with limited labeled samples. However, while existing methods have shown success in image-based tasks, their effectiveness remains unexplored for sequential time-series data from sensor systems, particularly audio inputs. To address this gap, we conduct a comprehensive benchmark study evaluating six representative Meta-CL approaches using three network architectures on five datasets from both image and audio modalities. We develop MetaCLBench, an end-to-end Meta-CL benchmark framework for edge devices to evaluate system overheads and investigate trade-offs among performance, computational costs, and memory requirements across various Meta-CL methods. Our results reveal that while many Meta-CL methods enable to learn new classes for both image and audio modalities, they impose significant computational and memory costs on edge devices. Also, we find that pre-training and meta-training procedures based on source data before deployment improve Meta-CL performance. Finally, to facilitate further research, we provide practical guidelines for researchers and machine learning practitioners implementing Meta-CL on resource-constrained environments and make our benchmark framework and tools publicly available, enabling fair evaluation across both accuracy and system-level metrics.
Authors:Yuhao Zhou, Yuxin Tian, Jindi Lv, Mingjia Shi, Yuanxi Li, Qing Ye, Shuhao Zhang, Jiancheng Lv
Title: Ferret: An Efficient Online Continual Learning Framework under Varying Memory Constraints
Abstract:
In the realm of high-frequency data streams, achieving real-time learning within varying memory constraints is paramount. This paper presents Ferret, a comprehensive framework designed to enhance online accuracy of Online Continual Learning (OCL) algorithms while dynamically adapting to varying memory budgets. Ferret employs a fine-grained pipeline parallelism strategy combined with an iterative gradient compensation algorithm, ensuring seamless handling of high-frequency data with minimal latency, and effectively counteracting the challenge of stale gradients in parallel training. To adapt to varying memory budgets, its automated model partitioning and pipeline planning optimizes performance regardless of memory limitations. Extensive experiments across 20 benchmarks and 5 integrated OCL algorithms show Ferret's remarkable efficiency, achieving up to 3.7$\times$ lower memory overhead to reach the same online accuracy compared to competing methods. Furthermore, Ferret consistently outperforms these methods across diverse memory budgets, underscoring its superior adaptability. These findings position Ferret as a premier solution for efficient and adaptive OCL framework in real-time environments.
Authors:Zexin Zheng, Jia-Feng Cai, Xiao-Ming Wu, Yi-Lin Wei, Yu-Ming Tang, Wei-Shi Zheng
Title: iManip: Skill-Incremental Learning for Robotic Manipulation
Abstract:
The development of a generalist agent with adaptive multiple manipulation skills has been a long-standing goal in the robotics community. In this paper, we explore a crucial task, skill-incremental learning, in robotic manipulation, which is to endow the robots with the ability to learn new manipulation skills based on the previous learned knowledge without re-training. First, we build a skill-incremental environment based on the RLBench benchmark, and explore how traditional incremental methods perform in this setting. We find that they suffer from severe catastrophic forgetting due to the previous methods on classification overlooking the characteristics of temporality and action complexity in robotic manipulation tasks. Towards this end, we propose an incremental Manip}ulation framework, termed iManip, to mitigate the above issues. We firstly design a temporal replay strategy to maintain the integrity of old skills when learning new skill. Moreover, we propose the extendable PerceiverIO, consisting of an action prompt with extendable weight to adapt to new action primitives in new skill. Extensive experiments show that our framework performs well in Skill-Incremental Learning. Codes of the skill-incremental environment with our framework will be open-source.
Authors:Hamidreza Mazandarani, Masoud Shokrnezhad, Tarik Taleb
Title: A Novel Multiple Access Scheme for Heterogeneous Wireless Communications using Symmetry-aware Continual Deep Reinforcement Learning
Abstract:
The Metaverse holds the potential to revolutionize digital interactions through the establishment of a highly dynamic and immersive virtual realm over wireless communications systems, offering services such as massive twinning and telepresence. This landscape presents novel challenges, particularly efficient management of multiple access to the frequency spectrum, for which numerous adaptive Deep Reinforcement Learning (DRL) approaches have been explored. However, challenges persist in adapting agents to heterogeneous and non-stationary wireless environments. In this paper, we present a novel approach that leverages Continual Learning (CL) to enhance intelligent Medium Access Control (MAC) protocols, featuring an intelligent agent coexisting with legacy User Equipments (UEs) with varying numbers, protocols, and transmission profiles unknown to the agent for the sake of backward compatibility and privacy. We introduce an adaptive Double and Dueling Deep Q-Learning (D3QL)-based MAC protocol, enriched by a symmetry-aware CL mechanism, which maximizes intelligent agent throughput while ensuring fairness. Mathematical analysis validates the efficiency of our proposed scheme, showcasing superiority over conventional DRL-based techniques in terms of throughput, collision rate, and fairness, coupled with real-time responsiveness in highly dynamic scenarios.
Authors:Zhenhuan Liu, Shuai Liu, Yidong Lu, Yirui Chen, Jie Yang, Wei Liu
Title: Efficient 4D Gaussian Stream with Low Rank Adaptation
Abstract:
Recent methods have made significant progress in synthesizing novel views with long video sequences. This paper proposes a highly scalable method for dynamic novel view synthesis with continual learning. We leverage the 3D Gaussians to represent the scene and a low-rank adaptation-based deformation model to capture the dynamic scene changes. Our method continuously reconstructs the dynamics with chunks of video frames, reduces the streaming bandwidth by $90\%$ while maintaining high rendering quality comparable to the off-line SOTA methods.
Authors:Masoud Shokrnezhad, Tarik Taleb
Title: An Autonomous Network Orchestration Framework Integrating Large Language Models with Continual Reinforcement Learning
Abstract:
6G networks aim to achieve global coverage, massive connectivity, and ultra-stringent requirements. Space-Air-Ground Integrated Networks (SAGINs) and Semantic Communication (SemCom) are essential for realizing these goals, yet they introduce considerable complexity in resource orchestration. Drawing inspiration from research in robotics, a viable solution to manage this complexity is the application of Large Language Models (LLMs). Although the use of LLMs in network orchestration has recently gained attention, existing solutions have not sufficiently addressed LLM hallucinations or their adaptation to network dynamics. To address this gap, this paper proposes a framework called Autonomous Reinforcement Coordination (ARC) for a SemCom-enabled SAGIN. This framework employs an LLM-based Retrieval-Augmented Generator (RAG) monitors services, users, and resources and processes the collected data, while a Hierarchical Action Planner (HAP) orchestrates resources. ARC decomposes orchestration into two tiers, utilizing LLMs for high-level planning and Reinforcement Learning (RL) agents for low-level decision-making, in alignment with the Mixture of Experts (MoE) concept. The LLMs utilize Chain-of-Thought (CoT) reasoning for few-shot learning, empowered by contrastive learning, while the RL agents employ replay buffer management for continual learning, thereby achieving efficiency, accuracy, and adaptability. Simulations are provided to demonstrate the effectiveness of ARC, along with a comprehensive discussion on potential future research directions to enhance and upgrade ARC.
Authors:Botian Wang, Yawen Ouyang, Yaohui Li, Yiqun Wang, Haorui Cui, Jianbing Zhang, Xiaonan Wang, Wei-Ying Ma, Hao Zhou
Title: MoMa: A Modular Deep Learning Framework for Material Property Prediction
Abstract:
Deep learning methods for material property prediction have been widely explored to advance materials discovery. However, the prevailing pre-train then fine-tune paradigm often fails to address the inherent diversity and disparity of material tasks. To overcome these challenges, we introduce MoMa, a Modular framework for Materials that first trains specialized modules across a wide range of tasks and then adaptively composes synergistic modules tailored to each downstream scenario. Evaluation across 17 datasets demonstrates the superiority of MoMa, with a substantial 14% average improvement over the strongest baseline. Few-shot and continual learning experiments further highlight MoMa's potential for real-world applications. Pioneering a new paradigm of modular material learning, MoMa will be open-sourced to foster broader community collaboration.
Authors:Hongbo Li, Lingjie Duan
Title: Theory of Mixture-of-Experts for Mobile Edge Computing
Abstract:
In mobile edge computing (MEC) networks, mobile users generate diverse machine learning tasks dynamically over time. These tasks are typically offloaded to the nearest available edge server, by considering communication and computational efficiency. However, its operation does not ensure that each server specializes in a specific type of tasks and leads to severe overfitting or catastrophic forgetting of previous tasks. To improve the continual learning (CL) performance of online tasks, we are the first to introduce mixture-of-experts (MoE) theory in MEC networks and save MEC operation from the increasing generalization error over time. Our MoE theory treats each MEC server as an expert and dynamically adapts to changes in server availability by considering data transfer and computation time. Unlike existing MoE models designed for offline tasks, ours is tailored for handling continuous streams of tasks in the MEC environment. We introduce an adaptive gating network in MEC to adaptively identify and route newly arrived tasks of unknown data distributions to available experts, enabling each expert to specialize in a specific type of tasks upon convergence. We derived the minimum number of experts required to match each task with a specialized, available expert. Our MoE approach consistently reduces the overall generalization error over time, unlike the traditional MEC approach. Interestingly, when the number of experts is sufficient to ensure convergence, adding more experts delays the convergence time and worsens the generalization error. Finally, we perform extensive experiments on real datasets in deep neural networks (DNNs) to verify our theoretical results.
Authors:Haodong Lu, Chongyang Zhao, Jason Xue, Lina Yao, Kristen Moore, Dong Gong
Title: Adaptive Rank, Reduced Forgetting: Knowledge Retention in Continual Learning Vision-Language Models with Dynamic Rank-Selective LoRA
Abstract:
Continual learning (CL) aims to accumulate knowledge from sequential data and task streams. Leveraging their strong generalization and flexibility, pre-trained vision-language embedding models such as CLIP (Contrastive Language-Image Pre-training) have been widely adopted and validated in CL. In addition to learning new knowledge, we investigate whether the pre-trained knowledge in CLIP, can be retained or even enhanced, in CL, while incorporating new knowledge from a data stream. Existing CL methods primarily focus on continual downstream adaptation using components isolated from the pre-trained model (PTM), increasing inference complexity and limiting improvements to the PTM itself; some also retain knowledge by relying on additional reference data, resulting in high training costs. To address these limitations, we propose a universal and efficient CL approach for CLIP based on Dynamic Rank-Selective LoRA (CoDyRA), which directly improves the PTMs while preserving the existing knowledge from both pre-training and CL. By analyzing how LoRA rank and placement affect learning and forgetting in CL, we design CoDyRA that adaptively performs rank-minimized parameter updates in different modules, based on their importance to the current data. This ensures a balance between knowledge acquisition (plasticity) and forgetting mitigation (stability). Our method operates without explicit domain or distribution prediction and does not rely on reference data, enabling seamless task integration while maintaining pre-trained capabilities. Moreover, CoDyRA preserves the original model architecture and deployment pipeline, introducing no additional inference overhead. Extensive experiments show that our approach enhances representations for new downstream data while retaining pre-trained knowledge, achieving state-of-the-art results.
Authors:Marlon Tobaben, Talal Alrawajfeh, Marcus Klasson, Mikko Heikkilä, Arno Solin, Antti Honkela
Title: Differential Privacy in Continual Learning: Which Labels to Update?
Abstract:
The goal of continual learning (CL) is to retain knowledge across tasks, but this conflicts with strict privacy required for sensitive training data that prevents storing or memorising individual samples. To address that, we combine CL and differential privacy (DP). We highlight that failing to account for privacy leakage through the set of labels a model can output can break the privacy of otherwise valid DP algorithms. This is especially relevant in CL. We show that mitigating the issue with a data-independent overly large label space can have minimal negative impact on utility when fine-tuning a pre-trained model under DP, while learning the labels with a separate DP mechanism risks losing small classes.
Authors:George Jiayuan Gao, Tianyu Li, Nadia Figueroa
Title: Out-of-Distribution Recovery with Object-Centric Keypoint Inverse Policy for Visuomotor Imitation Learning
Abstract:
We propose an object-centric recovery (OCR) framework to address the challenges of out-of-distribution (OOD) scenarios in visuomotor policy learning. Previous behavior cloning (BC) methods rely heavily on a large amount of labeled data coverage, failing in unfamiliar spatial states. Without relying on extra data collection, our approach learns a recovery policy constructed by an inverse policy inferred from the object keypoint manifold gradient in the original training data. The recovery policy serves as a simple add-on to any base visuomotor BC policy, agnostic to a specific method, guiding the system back towards the training distribution to ensure task success even in OOD situations. We demonstrate the effectiveness of our object-centric framework in both simulation and real robot experiments, achieving an improvement of 77.7\% over the base policy in OOD. Furthermore, we show OCR's capacity to autonomously collect demonstrations for continual learning. Overall, we believe this framework represents a step toward improving the robustness of visuomotor policies in real-world settings.
Authors:Riccardo Salami, Pietro Buzzega, Matteo Mosconi, Jacopo Bonato, Luigi Sabetta, Simone Calderara
Title: Closed-form merging of parameter-efficient modules for Federated Continual Learning
Abstract:
Model merging has emerged as a crucial technique in Deep Learning, enabling the integration of multiple models into a unified system while preserving perfor-mance and scalability. In this respect, the compositional properties of low-rank adaptation techniques (e.g., LoRA) have proven beneficial, as simple averaging LoRA modules yields a single model that mostly integrates the capabilities of all individual modules. Building on LoRA, we take a step further by imposing that the merged model matches the responses of all learned modules. Solving this objective in closed form yields an indeterminate system with A and B as unknown variables, indicating the existence of infinitely many closed-form solutions. To address this challenge, we introduce LoRM, an alternating optimization strategy that trains one LoRA matrix at a time. This allows solving for each unknown variable individually, thus finding a unique solution. We apply our proposed methodology to Federated Class-Incremental Learning (FCIL), ensuring alignment of model responses both between clients and across tasks. Our method demonstrates state-of-the-art performance across a range of FCIL scenarios. The code to reproduce our experiments is available at github.com/aimagelab/fed-mammoth.
Authors:Zhenhuan Liu, Shuai Liu, Zhiwei Ning, Jie Yang, Yifan Zuo, Yuming Fang, Wei Liu
Title: CD-NGP: A Fast Scalable Continual Representation for Dynamic Scenes
Abstract:
Novel view synthesis (NVS) in dynamic scenes faces persistent challenges in memory consumption, model complexity, training efficiency, and rendering quality. Offline methods offer high fidelity but suffer from high memory usage and limited scalability, while online approaches often trade quality for speed and compactness. We propose Continual Dynamic Neural Graphics Primitives (CD-NGP), a continual learning framework that reduces memory overhead and enhances scalability through parameter reuse. To avoid feature interference in dynamic scenes and improve rendering quality, our method combines spatial and temporal hash encodings, which compactly represent scene structures and motion patterns. We also introduce a new dataset comprising multi-view, long-duration ($>1200$ frames) videos with both rigid and non-rigid motion, which is not found in existing benchmarks. CD-NGP is evaluated on public datasets and our long video dataset, demonstrating superior scalability and reconstruction quality. It significantly reduces training memory usage to <14GB and requires only 0.4MB/frame in streaming bandwidth on DyNeRF -- substantially lower than most online baselines.
Authors:HuiJeong Son, Hyeongu Kang, Sunho Kim, Subeen Ho, SeongKu Kang, Dongha Lee, Susik Yoon
Title: CREAM: Continual Retrieval on Dynamic Streaming Corpora with Adaptive Soft Memory
Abstract:
Information retrieval (IR) in dynamic data streams is a crucial task, as shifts in data distribution degrade the performance of AI-powered IR systems. To mitigate this issue, memory-based continual learning has been widely adopted for IR. However, existing methods rely on a fixed set of queries with ground-truth documents, which limits generalization to unseen data, making them impractical for real-world applications. To enable more effective learning with unseen topics of a new corpus without ground-truth labels, we propose CREAM, a self-supervised framework for memory-based continual retrieval. CREAM captures the evolving semantics of streaming queries and documents into dynamically structured soft memory and leverages it to adapt to both seen and unseen topics in an unsupervised setting. We realize this through three key techniques: fine-grained similarity estimation, regularized cluster prototyping, and stratified coreset sampling. Experiments on two benchmark datasets demonstrate that CREAM exhibits superior adaptability and retrieval accuracy, outperforming the strongest method in a label-free setting by 27.79% in Success@5 and 44.5% in Recall@10 on average, and achieving performance comparable to or even exceeding that of supervised methods.
Authors:Dianzhi Yu, Conghao Xiong, Yankai Chen, Wenqian Cui, Xinni Zhang, Yifei Zhang, Hao Chen, Joseph J. Y. Sung, Irwin King
Title: ConSurv: Multimodal Continual Learning for Survival Analysis
Abstract:
Survival prediction of cancers is crucial for clinical practice, as it informs mortality risks and influences treatment plans. However, a static model trained on a single dataset fails to adapt to the dynamically evolving clinical environment and continuous data streams, limiting its practical utility. While continual learning (CL) offers a solution to learn dynamically from new datasets, existing CL methods primarily focus on unimodal inputs and suffer from severe catastrophic forgetting in survival prediction. In real-world scenarios, multimodal inputs often provide comprehensive and complementary information, such as whole slide images and genomics; and neglecting inter-modal correlations negatively impacts the performance. To address the two challenges of catastrophic forgetting and complex inter-modal interactions between gigapixel whole slide images and genomics, we propose ConSurv, the first multimodal continual learning (MMCL) method for survival analysis. ConSurv incorporates two key components: Multi-staged Mixture of Experts (MS-MoE) and Feature Constrained Replay (FCR). MS-MoE captures both task-shared and task-specific knowledge at different learning stages of the network, including two modality encoders and the modality fusion component, learning inter-modal relationships. FCR further enhances learned knowledge and mitigates forgetting by restricting feature deviation of previous data at different levels, including encoder-level features of two modalities and the fusion-level representations. Additionally, we introduce a new benchmark integrating four datasets, Multimodal Survival Analysis Incremental Learning (MSAIL), for comprehensive evaluation in the CL setting. Extensive experiments demonstrate that ConSurv outperforms competing methods across multiple metrics.
Authors:Naeem Paeedeh, Mahardhika Pratama, Weiping Ding, Jimmy Cao, Wolfgang Mayer, Ryszard Kowalczyk
Title: Continual Knowledge Consolidation LORA for Domain Incremental Learning
Abstract:
Domain Incremental Learning (DIL) is a continual learning sub-branch that aims to address never-ending arrivals of new domains without catastrophic forgetting problems. Despite the advent of parameter-efficient fine-tuning (PEFT) approaches, existing works create task-specific LoRAs overlooking shared knowledge across tasks. Inaccurate selection of task-specific LORAs during inference results in significant drops in accuracy, while existing works rely on linear or prototype-based classifiers, which have suboptimal generalization powers. Our paper proposes continual knowledge consolidation low rank adaptation (CONEC-LoRA) addressing the DIL problems. CONEC-LoRA is developed from consolidations between task-shared LORA to extract common knowledge and task-specific LORA to embrace domain-specific knowledge. Unlike existing approaches, CONEC-LoRA integrates the concept of a stochastic classifier whose parameters are sampled from a distribution, thus enhancing the likelihood of correct classifications. Last but not least, an auxiliary network is deployed to optimally predict the task-specific LoRAs for inferences and implements the concept of a different-depth network structure in which every layer is connected with a local classifier to take advantage of intermediate representations. This module integrates the ball-generator loss and transformation module to address the synthetic sample bias problem. Our rigorous experiments demonstrate the advantage of CONEC-LoRA over prior arts in 4 popular benchmark problems with over 5% margins.
Authors:Simon Yu, Gang Li, Weiyan Shi, Peng Qi
Title: PolySkill: Learning Generalizable Skills Through Polymorphic Abstraction
Abstract:
Large language models (LLMs) are moving beyond static uses and are now powering agents that learn continually during their interaction with external environments. For example, agents can learn reusable skills while navigating web pages or toggling new tools. However, existing methods for skill learning often create skills that are over-specialized to a single website and fail to generalize. We introduce PolySkill, a new framework that enables agents to learn generalizable and compositional skills. The core idea, inspired by polymorphism in software engineering, is to decouple a skill's abstract goal (what it accomplishes) and its concrete implementation (how it is executed). Experiments show that our method (1) improves skill reuse by 1.7x on seen websites and (2) boosts success rates by up to 9.4% on Mind2Web and 13.9% on unseen websites, while reducing steps by over 20%. (3) In self-exploration settings without specified tasks, our framework improves the quality of proposed tasks and enables agents to learn generalizable skills that work across different sites. By enabling the agent to identify and refine its own goals, the PolySkill enhances the agent's ability to learn a better curriculum, leading to the acquisition of more generalizable skills compared to baseline methods. This work provides a practical path toward building agents capable of continual learning in adaptive environments. Our findings show that separating a skill's goal from its execution is a crucial step toward developing autonomous agents that can learn and generalize across the open web continuously.
Authors:Yufei Li, Yu Fu, Yue Dong, Cong Liu
Title: MACE: A Hybrid LLM Serving System with Colocated SLO-aware Continuous Retraining Alignment
Abstract:
Large language models (LLMs) deployed on edge servers are increasingly used in latency-sensitive applications such as personalized assistants, recommendation, and content moderation. However, the non-stationary nature of user data necessitates frequent retraining, which introduces a fundamental tension between inference latency and model accuracy under constrained GPU resources. Existing retraining strategies either delay model updates, over-commit resources to retraining, or overlook iteration-level retraining granularity. In this paper, we identify that iteration-level scheduling is crucial for adapting retraining frequency to model drift without violating service-level objectives (SLOs). We propose MACE, a hybrid LLM system that colocates concurrent inference (prefill, decode) and fine-tuning, with intelligent memory management to maximize task performance while promising inference throughput. MACE leverages the insight that not all model updates equally affect output alignment and allocates GPU cycles accordingly to balance throughput, latency, and update freshness. Our trace-driven evaluation shows that MACE matches or exceeds continuous retraining while reducing inference latency by up to 63% and maintaining throughput under resource constraints. Compared to periodic retraining, MACE improves latency breakdown across prefill, decode, and finetune stages, and sustains GPU utilization above 85% in NVIDIA AGX Orin. These results demonstrate that iteration-level hybrid scheduling is a promising direction for deploying LLMs with continual learning capabilities on edge platforms.
Authors:Hoang Phan, Sungmin Cha, Tung Lam Tran, Qi Lei
Title: Toward a Holistic Approach to Continual Model Merging
Abstract:
We present a holistic framework for continual model merging that intervenes at three critical stages: pre-merging, during merging, and post-merging-to address two fundamental challenges in continual learning. In particular, conventional approaches either maintain a growing list of per-domain task vectors, leading to scalability issues or rely solely on weight-space merging when old data is inaccessible, thereby losing crucial functional information. Our method overcomes these limitations by first fine-tuning the main model within its tangent space on domain-specific data; this linearization amplifies per-task weight disentanglement, effectively mitigating across-task interference. During merging, we leverage functional information from available optimizer states beyond mere parameter averages to avoid the need to revisit old data. Finally, a post-merging correction aligns the representation discrepancy between pre- and post-merged models, reducing bias and enhancing overall performance-all while operating under constant memory constraints without accessing historical data. Extensive experiments on standard class-incremental and domain-incremental benchmarks demonstrate that our approach not only achieves competitive performance but also provides a scalable and efficient solution to the catastrophic forgetting problem.
Authors:Kaile Du, Zihan Ye, Junzhou Xie, Fan Lyu, Yixi Shen, Yuyang Li, Miaoxuan Zhu, Fuyuan Hu, Ling Shao, Guangcan Liu
Title: DDP: Dual-Decoupled Prompting for Multi-Label Class-Incremental Learning
Abstract:
Prompt-based methods have shown strong effectiveness in single-label class-incremental learning, but their direct extension to multi-label class-incremental learning (MLCIL) performs poorly due to two intrinsic challenges: semantic confusion from co-occurring categories and true-negative-false-positive confusion caused by partial labeling. We propose Dual-Decoupled Prompting (DDP), a replay-free and parameter-efficient framework that explicitly addresses both issues. DDP assigns class-specific positive-negative prompts to disentangle semantics and introduces Progressive Confidence Decoupling (PCD), a curriculum-inspired decoupling strategy that suppresses false positives. Past prompts are frozen as knowledge anchors, and interlayer prompting enhances efficiency. On MS-COCO and PASCAL VOC, DDP consistently outperforms prior methods and is the first replay-free MLCIL approach to exceed 80% mAP and 70% F1 under the standard MS-COCO B40-C10 benchmark.
Authors:Kasra Borazjani, Naji Khosravan, Rajeev Sahay, Bita Akram, Seyyedali Hosseinalipour
Title: Bringing Multi-Modal Multi-Task Federated Foundation Models to Education Domain: Prospects and Challenges
Abstract:
Multi-modal multi-task (M3T) foundation models (FMs) have recently shown transformative potential in artificial intelligence, with emerging applications in education. However, their deployment in real-world educational settings is hindered by privacy regulations, data silos, and limited domain-specific data availability. We introduce M3T Federated Foundation Models (FedFMs) for education: a paradigm that integrates federated learning (FL) with M3T FMs to enable collaborative, privacy-preserving training across decentralized institutions while accommodating diverse modalities and tasks. Subsequently, this position paper aims to unveil M3T FedFMs as a promising yet underexplored approach to the education community, explore its potentials, and reveal its related future research directions. We outline how M3T FedFMs can advance three critical pillars of next-generation intelligent education systems: (i) privacy preservation, by keeping sensitive multi-modal student and institutional data local; (ii) personalization, through modular architectures enabling tailored models for students, instructors, and institutions; and (iii) equity and inclusivity, by facilitating participation from underrepresented and resource-constrained entities. We finally identify various open research challenges, including studying of (i) inter-institution heterogeneous privacy regulations, (ii) the non-uniformity of data modalities' characteristics, (iii) the unlearning approaches for M3T FedFMs, (iv) the continual learning frameworks for M3T FedFMs, and (v) M3T FedFM model interpretability, which must be collectively addressed for practical deployment.
Authors:Yannik Hahn, Jan Voets, Antonin Koenigsfeld, Hasan Tercan, Tobias Meisen
Title: Out of Distribution Detection for Efficient Continual Learning in Quality Prediction for Arc Welding
Abstract:
Modern manufacturing relies heavily on fusion welding processes, including gas metal arc welding (GMAW). Despite significant advances in machine learning-based quality prediction, current models exhibit critical limitations when confronted with the inherent distribution shifts that occur in dynamic manufacturing environments. In this work, we extend the VQ-VAE Transformer architecture - previously demonstrating state-of-the-art performance in weld quality prediction - by leveraging its autoregressive loss as a reliable out-of-distribution (OOD) detection mechanism. Our approach exhibits superior performance compared to conventional reconstruction methods, embedding error-based techniques, and other established baselines. By integrating OOD detection with continual learning strategies, we optimize model adaptation, triggering updates only when necessary and thereby minimizing costly labeling requirements. We introduce a novel quantitative metric that simultaneously evaluates OOD detection capability while interpreting in-distribution performance. Experimental validation in real-world welding scenarios demonstrates that our framework effectively maintains robust quality prediction capabilities across significant distribution shifts, addressing critical challenges in dynamic manufacturing environments where process parameters frequently change. This research makes a substantial contribution to applied artificial intelligence by providing an explainable and at the same time adaptive solution for quality assurance in dynamic manufacturing processes - a crucial step towards robust, practical AI systems in the industrial environment.
Authors:Guiquan Sun, Xikun Zhang, Jingchao Ni, Dongjin Song
Title: Towards Heterogeneous Continual Graph Learning via Meta-knowledge Distillation
Abstract:
Machine learning on heterogeneous graphs has experienced rapid advancement in recent years, driven by the inherently heterogeneous nature of real-world data. However, existing studies typically assume the graphs to be static, while real-world graphs are continuously expanding. This dynamic nature requires models to adapt to new data while preserving existing knowledge. To this end, this work addresses the challenge of continual learning on heterogeneous graphs by introducing the Meta-learning based Knowledge Distillation framework (MKD), designed to mitigate catastrophic forgetting in evolving heterogeneous graph structures. MKD combines rapid task adaptation through meta-learning on limited samples with knowledge distillation to achieve an optimal balance between incorporating new information and maintaining existing knowledge. To improve the efficiency and effectiveness of sample selection, MKD incorporates a novel sampling strategy that selects a small number of target-type nodes based on node diversity and maintains fixed-size buffers for other types. The strategy retrieves first-order neighbors along metapaths and selects important neighbors based on their structural relevance, enabling the sampled subgraphs to retain key topological and semantic information. In addition, MKD introduces a semantic-level distillation module that aligns the attention distributions over different metapaths between teacher and student models, encouraging semantic consistency beyond the logit level. Comprehensive evaluations across three benchmark datasets validate MKD's effectiveness in handling continual learning scenarios on expanding heterogeneous graphs.
Authors:Yifan Wei, Xiaoyan Yu, Ran Song, Hao Peng, Angsheng Li
Title: SetKE: Knowledge Editing for Knowledge Elements Overlap
Abstract:
Large Language Models (LLMs) excel in tasks such as retrieval and question answering but require updates to incorporate new knowledge and reduce inaccuracies and hallucinations. Traditional updating methods, like fine-tuning and incremental learning, face challenges such as overfitting and high computational costs. Knowledge Editing (KE) provides a promising alternative but often overlooks the Knowledge Element Overlap (KEO) phenomenon, where multiple triplets share common elements, leading to editing conflicts. We identify the prevalence of KEO in existing KE datasets and show its significant impact on current KE methods, causing performance degradation in handling such triplets. To address this, we propose a new formulation, Knowledge Set Editing (KSE), and introduce SetKE, a method that edits sets of triplets simultaneously. Experimental results demonstrate that SetKE outperforms existing methods in KEO scenarios on mainstream LLMs. Additionally, we introduce EditSet, a dataset containing KEO triplets, providing a comprehensive benchmark.
Authors:Rupert Mitchell, Antonio Alliegro, Raffaello Camoriano, Dustin Carrión-Ojeda, Antonio Carta, Georgia Chalvatzaki, Nikhil Churamani, Carlo D'Eramo, Samin Hamidi, Robin Hesse, Fabian Hinder, Roshni Ramanna Kamath, Vincenzo Lomonaco, Subarnaduti Paul, Francesca Pistilli, Tinne Tuytelaars, Gido M van de Ven, Kristian Kersting, Simone Schaub-Meyer, Martin Mundt
Title: Continual Learning Should Move Beyond Incremental Classification
Abstract:
Continual learning (CL) is the sub-field of machine learning concerned with accumulating knowledge in dynamic environments. So far, CL research has mainly focused on incremental classification tasks, where models learn to classify new categories while retaining knowledge of previously learned ones. Here, we argue that maintaining such a focus limits both theoretical development and practical applicability of CL methods. Through a detailed analysis of concrete examples - including multi-target classification, robotics with constrained output spaces, learning in continuous task domains, and higher-level concept memorization - we demonstrate how current CL approaches often fail when applied beyond standard classification. We identify three fundamental challenges: (C1) the nature of continuity in learning problems, (C2) the choice of appropriate spaces and metrics for measuring similarity, and (C3) the role of learning objectives beyond classification. For each challenge, we provide specific recommendations to help move the field forward, including formalizing temporal dynamics through distribution processes, developing principled approaches for continuous task spaces, and incorporating density estimation and generative objectives. In so doing, this position paper aims to broaden the scope of CL research while strengthening its theoretical foundations, making it more applicable to real-world problems.
Authors:Xianghu Yue, Yiming Chen, Xueyi Zhang, Xiaoxue Gao, Mengling Feng, Mingrui Lao, Huiping Zhuang, Haizhou Li
Title: PAL: Prompting Analytic Learning with Missing Modality for Multi-Modal Class-Incremental Learning
Abstract:
Multi-modal class-incremental learning (MMCIL) seeks to leverage multi-modal data, such as audio-visual and image-text pairs, thereby enabling models to learn continuously across a sequence of tasks while mitigating forgetting. While existing studies primarily focus on the integration and utilization of multi-modal information for MMCIL, a critical challenge remains: the issue of missing modalities during incremental learning phases. This oversight can exacerbate severe forgetting and significantly impair model performance. To bridge this gap, we propose PAL, a novel exemplar-free framework tailored to MMCIL under missing-modality scenarios. Concretely, we devise modality-specific prompts to compensate for missing information, facilitating the model to maintain a holistic representation of the data. On this foundation, we reformulate the MMCIL problem into a Recursive Least-Squares task, delivering an analytical linear solution. Building upon these, PAL not only alleviates the inherent under-fitting limitation in analytic learning but also preserves the holistic representation of missing-modality data, achieving superior performance with less forgetting across various multi-modal incremental scenarios. Extensive experiments demonstrate that PAL significantly outperforms competitive methods across various datasets, including UPMC-Food101 and N24News, showcasing its robustness towards modality absence and its anti-forgetting ability to maintain high incremental accuracy.
Authors:Xiaoshan Zhou, Carol C. Menassa, Vineet R. Kamat
Title: Interoceptive Robots for Convergent Shared Control in Collaborative Construction Work
Abstract:
Building autonomous mobile robots (AMRs) with optimized efficiency and adaptive capabilities-able to respond to changing task demands and dynamic environments-is a strongly desired goal for advancing construction robotics. Such robots can play a critical role in enabling automation, reducing operational carbon footprints, and supporting modular construction processes. Inspired by the adaptive autonomy of living organisms, we introduce interoception, which centers on the robot's internal state representation, as a foundation for developing self-reflection and conscious learning to enable continual learning and adaptability in robotic agents. In this paper, we factorize internal state variables and mathematical properties as "cognitive dissonance" in shared control paradigms, where human interventions occasionally occur. We offer a new perspective on how interoception can help build adaptive motion planning in AMRs by integrating the legacy of heuristic costs from grid/graph-based algorithms with recent advances in neuroscience and reinforcement learning. Declarative and procedural knowledge extracted from human semantic inputs is encoded into a hypergraph model that overlaps with the spatial configuration of onsite layout for path planning. In addition, we design a velocity-replay module using an encoder-decoder architecture with few-shot learning to enable robots to replicate velocity profiles in contextualized scenarios for multi-robot synchronization and handover collaboration. These "cached" knowledge representations are demonstrated in simulated environments for multi-robot motion planning and stacking tasks. The insights from this study pave the way toward artificial general intelligence in AMRs, fostering their progression from complexity to competence in construction automation.
Authors:Chengyan Liu, Linglan Zhao, Fan Lyu, Kaile Du, Fuyuan Hu, Tao Zhou
Title: CALA: A Class-Aware Logit Adapter for Few-Shot Class-Incremental Learning
Abstract:
Few-Shot Class-Incremental Learning (FSCIL) defines a practical but challenging task where models are required to continuously learn novel concepts with only a few training samples. Due to data scarcity, existing FSCIL methods resort to training a backbone with abundant base data and then keeping it frozen afterward. However, the above operation often causes the backbone to overfit to base classes while overlooking the novel ones, leading to severe confusion between them. To address this issue, we propose Class-Aware Logit Adapter (CALA). Our method involves a lightweight adapter that learns to rectify biased predictions through a pseudo-incremental learning paradigm. In the real FSCIL process, we use the learned adapter to dynamically generate robust balancing factors. These factors can adjust confused novel instances back to their true label space based on their similarity to base classes. Specifically, when confusion is more likely to occur in novel instances that closely resemble base classes, greater rectification is required. Notably, CALA operates on the classifier level, preserving the original feature space, thus it can be flexibly plugged into most of the existing FSCIL works for improved performance. Experiments on three benchmark datasets consistently validate the effectiveness and flexibility of CALA. Codes will be available upon acceptance.
Authors:Yijie Hu, Guanyu Yang, Zhaorui Tan, Xiaowei Huang, Kaizhu Huang, Qiu-Feng Wang
Title: Covariance-based Space Regularization for Few-shot Class Incremental Learning
Abstract:
Few-shot Class Incremental Learning (FSCIL) presents a challenging yet realistic scenario, which requires the model to continually learn new classes with limited labeled data (i.e., incremental sessions) while retaining knowledge of previously learned base classes (i.e., base sessions). Due to the limited data in incremental sessions, models are prone to overfitting new classes and suffering catastrophic forgetting of base classes. To tackle these issues, recent advancements resort to prototype-based approaches to constrain the base class distribution and learn discriminative representations of new classes. Despite the progress, the limited data issue still induces ill-divided feature space, leading the model to confuse the new class with old classes or fail to facilitate good separation among new classes. In this paper, we aim to mitigate these issues by directly constraining the span of each class distribution from a covariance perspective. In detail, we propose a simple yet effective covariance constraint loss to force the model to learn each class distribution with the same covariance matrix. In addition, we propose a perturbation approach to perturb the few-shot training samples in the feature space, which encourages the samples to be away from the weighted distribution of other classes. Regarding perturbed samples as new class data, the classifier is forced to establish explicit boundaries between each new class and the existing ones. Our approach is easy to integrate into existing FSCIL approaches to boost performance. Experiments on three benchmarks validate the effectiveness of our approach, achieving a new state-of-the-art performance of FSCIL.
Authors:Toon Van de Maele, Ozan Catal, Alexander Tschantz, Christopher L. Buckley, Tim Verbelen
Title: Variational Bayes Gaussian Splatting
Abstract:
Recently, 3D Gaussian Splatting has emerged as a promising approach for modeling 3D scenes using mixtures of Gaussians. The predominant optimization method for these models relies on backpropagating gradients through a differentiable rendering pipeline, which struggles with catastrophic forgetting when dealing with continuous streams of data. To address this limitation, we propose Variational Bayes Gaussian Splatting (VBGS), a novel approach that frames training a Gaussian splat as variational inference over model parameters. By leveraging the conjugacy properties of multivariate Gaussians, we derive a closed-form variational update rule, allowing efficient updates from partial, sequential observations without the need for replay buffers. Our experiments show that VBGS not only matches state-of-the-art performance on static datasets, but also enables continual learning from sequentially streamed 2D and 3D data, drastically improving performance in this setting.
Authors:Shristi Das Biswas, Yue Zhang, Anwesan Pal, Radhika Bhargava, Kaushik Roy
Title: ELLA: Efficient Lifelong Learning for Adapters in Large Language Models
Abstract:
Large Language Models (LLMs) suffer severe catastrophic forgetting when adapted sequentially to new tasks in a continual learning (CL) setting. Existing approaches are fundamentally limited: replay-based methods are impractical and privacy-violating, while strict orthogonality-based methods collapse under scale: each new task is projected onto an orthogonal complement, progressively reducing the residual degrees of freedom and eliminating forward transfer by forbidding overlap in shared representations. In this work, we introduce ELLA, a training framework built on the principle of selective subspace de-correlation. Rather than forbidding all overlap, ELLA explicitly characterizes the structure of past updates and penalizes alignments along their high-energy, task-specific directions, while preserving freedom in the low-energy residual subspaces to enable transfer. Formally, this is realized via a lightweight regularizer on a single aggregated update matrix. We prove this mechanism corresponds to an anisotropic shrinkage operator that bounds interference, yielding a penalty that is both memory- and compute-constant regardless of task sequence length. ELLA requires no data replay, no architectural expansion, and negligible storage. Empirically, it achieves state-of-the-art CL performance on three popular benchmarks, with relative accuracy gains of up to $9.6\%$ and a $35\times$ smaller memory footprint. Further, ELLA scales robustly across architectures and actively enhances the model's zero-shot generalization performance on unseen tasks, establishing a principled and scalable solution for constructive lifelong LLM adaptation.
Authors:Shengqin Jiang, Tianqi Kong, Yuankai Qi, Haokui Zhang, Lina Yao, Quan Z. Sheng, Qingshan Liu, Ming-Hsuan Yang
Title: Teaching Prompts to Coordinate: Hierarchical Layer-Grouped Prompt Tuning for Continual Learning
Abstract:
Prompt-based continual learning methods fine-tune only a small set of additional learnable parameters while keeping the pre-trained model's parameters frozen. It enables efficient adaptation to new tasks while mitigating the risk of catastrophic forgetting. These methods typically attach one independent task-specific prompt to each layer of pre-trained models to locally modulate its features, ensuring that the layer's representation aligns with the requirements of the new task. However, although introducing learnable prompts independently at each layer provides high flexibility for adapting to new tasks, this overly flexible tuning could make certain layers susceptible to unnecessary updates. As all prompts till the current task are added together as a final prompt for all seen tasks, the model may easily overwrite feature representations essential to previous tasks, which increases the risk of catastrophic forgetting. To address this issue, we propose a novel hierarchical layer-grouped prompt tuning method for continual learning. It improves model stability in two ways: (i) Layers in the same group share roughly the same prompts, which are adjusted by position encoding. This helps preserve the intrinsic feature relationships and propagation pathways of the pre-trained model within each group. (ii) It utilizes a single task-specific root prompt to learn to generate sub-prompts for each layer group. In this way, all sub-prompts are conditioned on the same root prompt, enhancing their synergy and reducing independence. Extensive experiments across four benchmarks demonstrate that our method achieves favorable performance compared with several state-of-the-art methods.
Authors:Yanjie Li, Yiming Cao, Dong Wang, Bin Xiao
Title: AgentTypo: Adaptive Typographic Prompt Injection Attacks against Black-box Multimodal Agents
Abstract:
Multimodal agents built on large vision-language models (LVLMs) are increasingly deployed in open-world settings but remain highly vulnerable to prompt injection, especially through visual inputs. We introduce AgentTypo, a black-box red-teaming framework that mounts adaptive typographic prompt injection by embedding optimized text into webpage images. Our automatic typographic prompt injection (ATPI) algorithm maximizes prompt reconstruction by substituting captioners while minimizing human detectability via a stealth loss, with a Tree-structured Parzen Estimator guiding black-box optimization over text placement, size, and color. To further enhance attack strength, we develop AgentTypo-pro, a multi-LLM system that iteratively refines injection prompts using evaluation feedback and retrieves successful past examples for continual learning. Effective prompts are abstracted into generalizable strategies and stored in a strategy repository, enabling progressive knowledge accumulation and reuse in future attacks. Experiments on the VWA-Adv benchmark across Classifieds, Shopping, and Reddit scenarios show that AgentTypo significantly outperforms the latest image-based attacks such as AgentAttack. On GPT-4o agents, our image-only attack raises the success rate from 0.23 to 0.45, with consistent results across GPT-4V, GPT-4o-mini, Gemini 1.5 Pro, and Claude 3 Opus. In image+text settings, AgentTypo achieves 0.68 ASR, also outperforming the latest baselines. Our findings reveal that AgentTypo poses a practical and potent threat to multimodal agents and highlight the urgent need for effective defense.
Authors:Yu-Chien Liao, Jr-Jen Chen, Chi-Pin Huang, Ci-Siang Lin, Meng-Lin Wu, Yu-Chiang Frank Wang
Title: Continual Personalization for Diffusion Models
Abstract:
Updating diffusion models in an incremental setting would be practical in real-world applications yet computationally challenging. We present a novel learning strategy of Concept Neuron Selection (CNS), a simple yet effective approach to perform personalization in a continual learning scheme. CNS uniquely identifies neurons in diffusion models that are closely related to the target concepts. In order to mitigate catastrophic forgetting problems while preserving zero-shot text-to-image generation ability, CNS finetunes concept neurons in an incremental manner and jointly preserves knowledge learned of previous concepts. Evaluation of real-world datasets demonstrates that CNS achieves state-of-the-art performance with minimal parameter adjustments, outperforming previous methods in both single and multi-concept personalization works. CNS also achieves fusion-free operation, reducing memory storage and processing time for continual personalization.
Authors:Yangxuan Zhou, Sha Zhao, Jiquan Wang, Haiteng Jiang, Shijian Li, Tao Li, Gang Pan
Title: SPICED: A Synaptic Homeostasis-Inspired Framework for Unsupervised Continual EEG Decoding
Abstract:
Human brain achieves dynamic stability-plasticity balance through synaptic homeostasis. Inspired by this biological principle, we propose SPICED: a neuromorphic framework that integrates the synaptic homeostasis mechanism for unsupervised continual EEG decoding, particularly addressing practical scenarios where new individuals with inter-individual variability emerge continually. SPICED comprises a novel synaptic network that enables dynamic expansion during continual adaptation through three bio-inspired neural mechanisms: (1) critical memory reactivation; (2) synaptic consolidation and (3) synaptic renormalization. The interplay within synaptic homeostasis dynamically strengthens task-discriminative memory traces and weakens detrimental memories. By integrating these mechanisms with continual learning system, SPICED preferentially replays task-discriminative memory traces that exhibit strong associations with newly emerging individuals, thereby achieving robust adaptations. Meanwhile, SPICED effectively mitigates catastrophic forgetting by suppressing the replay prioritization of detrimental memories during long-term continual learning. Validated on three EEG datasets, SPICED show its effectiveness.
Authors:QinZhe Wang, Zixuan Chen, Keke Huang, Xiu Su, Chunhua Yang, Chang Xu
Title: ConCM: Consistency-Driven Calibration and Matching for Few-Shot Class-Incremental Learning
Abstract:
Few-Shot Class-Incremental Learning (FSCIL) requires models to adapt to novel classes with limited supervision while preserving learned knowledge. Existing prospective learning-based space construction methods reserve space to accommodate novel classes. However, prototype deviation and structure fixity limit the expressiveness of the embedding space. In contrast to fixed space reservation, we explore the optimization of feature-structure dual consistency and propose a Consistency-driven Calibration and Matching Framework (ConCM) that systematically mitigate the knowledge conflict inherent in FSCIL. Specifically, inspired by hippocampal associative memory, we design a memory-aware prototype calibration that extracts generalized semantic attributes from base classes and reintegrates them into novel classes to enhance the conceptual center consistency of features. Further, we propose dynamic structure matching, which adaptively aligns the calibrated features to a session-specific optimal manifold space, ensuring cross-session structure consistency. Theoretical analysis shows that our method satisfies both geometric optimality and maximum matching, thereby overcoming the need for class-number priors. On large-scale FSCIL benchmarks including mini-ImageNet and CUB200, ConCM achieves state-of-the-art performance, surpassing current optimal method by 3.20% and 3.68% in harmonic accuracy of incremental sessions.
Authors:Haomiao Qiu, Miao Zhang, Ziyue Qiao, Liqiang Nie
Title: Train with Perturbation, Infer after Merging: A Two-Stage Framework for Continual Learning
Abstract:
Continual Learning (CL) aims to enable models to continuously acquire new knowledge from a sequence of tasks with avoiding the forgetting of learned information. However, existing CL methods only rely on the parameters of the most recent task for inference, which makes them susceptible to catastrophic forgetting. Inspired by the recent success of model merging techniques, we propose \textbf{Perturb-and-Merge (P\&M)}, a novel continual learning framework that integrates model merging into the CL paradigm to mitigate forgetting. Specifically, after training on each task, P\&M constructs a new model by forming a convex combination of the previous model and the newly trained task-specific model. Through theoretical analysis, we minimize the total loss increase across all tasks and derive an analytical solution for the optimal merging coefficient. To further improve the performance of the merged model, we observe that the degradation introduced during merging can be alleviated by a regularization term composed of the task vector and the Hessian matrix of the loss function. Interestingly, we show that this term can be efficiently approximated using second-order symmetric finite differences, and a stochastic perturbation strategy along the task vector direction is accordingly devised which incurs no additional forward or backward passes while providing an effective approximation of the regularization term. Finally, we combine P\&M with LoRA, a parameter-efficient fine-tuning method, to reduce memory overhead. Our proposed approach achieves state-of-the-art performance on several continual learning benchmark datasets.
Authors:Pratibha Kumari, Daniel Reisenbüchler, Afshin Bozorgpour, Nadine S. Schaadt, Friedrich Feuerhake, Dorit Merhof
Title: Attention-based Generative Latent Replay: A Continual Learning Approach for WSI Analysis
Abstract:
Whole slide image (WSI) classification has emerged as a powerful tool in computational pathology, but remains constrained by domain shifts, e.g., due to different organs, diseases, or institution-specific variations. To address this challenge, we propose an Attention-based Generative Latent Replay Continual Learning framework (AGLR-CL), in a multiple instance learning (MIL) setup for domain incremental WSI classification. Our method employs Gaussian Mixture Models (GMMs) to synthesize WSI representations and patch count distributions, preserving knowledge of past domains without explicitly storing original data. A novel attention-based filtering step focuses on the most salient patch embeddings, ensuring high-quality synthetic samples. This privacy-aware strategy obviates the need for replay buffers and outperforms other buffer-free counterparts while matching the performance of buffer-based solutions. We validate AGLR-CL on clinically relevant biomarker detection and molecular status prediction across multiple public datasets with diverse centers, organs, and patient cohorts. Experimental results confirm its ability to retain prior knowledge and adapt to new domains, offering an effective, privacy-preserving avenue for domain incremental continual learning in WSI classification.
Authors:Yaguang Song, Xiaoshan Yang, Dongmei Jiang, Yaowei Wang, Changsheng Xu
Title: Harmony: A Unified Framework for Modality Incremental Learning
Abstract:
Incremental learning aims to enable models to continuously acquire knowledge from evolving data streams while preserving previously learned capabilities. While current research predominantly focuses on unimodal incremental learning and multimodal incremental learning where the modalities are consistent, real-world scenarios often present data from entirely new modalities, posing additional challenges. This paper investigates the feasibility of developing a unified model capable of incremental learning across continuously evolving modal sequences. To this end, we introduce a novel paradigm called Modality Incremental Learning (MIL), where each learning stage involves data from distinct modalities. To address this task, we propose a novel framework named Harmony, designed to achieve modal alignment and knowledge retention, enabling the model to reduce the modal discrepancy and learn from a sequence of distinct modalities, ultimately completing tasks across multiple modalities within a unified framework. Our approach introduces the adaptive compatible feature modulation and cumulative modal bridging. Through constructing historical modal features and performing modal knowledge accumulation and alignment, the proposed components collaboratively bridge modal differences and maintain knowledge retention, even with solely unimodal data available at each learning phase.These components work in concert to establish effective modality connections and maintain knowledge retention, even when only unimodal data is available at each learning stage. Extensive experiments on the MIL task demonstrate that our proposed method significantly outperforms existing incremental learning methods, validating its effectiveness in MIL scenarios.
Authors:Pratibha Kumari, Afshin Bozorgpour, Daniel Reisenbüchler, Edgar Jost, Martina Crysandt, Christian Matek, Dorit Merhof
Title: Domain-incremental White Blood Cell Classification with Privacy-aware Continual Learning
Abstract:
White blood cell (WBC) classification plays a vital role in hematology for diagnosing various medical conditions. However, it faces significant challenges due to domain shifts caused by variations in sample sources (e.g., blood or bone marrow) and differing imaging conditions across hospitals. Traditional deep learning models often suffer from catastrophic forgetting in such dynamic environments, while foundation models, though generally robust, experience performance degradation when the distribution of inference data differs from that of the training data. To address these challenges, we propose a generative replay-based Continual Learning (CL) strategy designed to prevent forgetting in foundation models for WBC classification. Our method employs lightweight generators to mimic past data with a synthetic latent representation to enable privacy-preserving replay. To showcase the effectiveness, we carry out extensive experiments with a total of four datasets with different task ordering and four backbone models including ResNet50, RetCCL, CTransPath, and UNI. Experimental results demonstrate that conventional fine-tuning methods degrade performance on previously learned tasks and struggle with domain shifts. In contrast, our continual learning strategy effectively mitigates catastrophic forgetting, preserving model performance across varying domains. This work presents a practical solution for maintaining reliable WBC classification in real-world clinical settings, where data distributions frequently evolve.
Authors:Zhiwu Wang, Yichen Wu, Renzhen Wang, Haokun Lin, Quanziang Wang, Qian Zhao, Deyu Meng
Title: Singular Value Fine-tuning for Few-Shot Class-Incremental Learning
Abstract:
Class-Incremental Learning (CIL) aims to prevent catastrophic forgetting of previously learned classes while sequentially incorporating new ones. The more challenging Few-shot CIL (FSCIL) setting further complicates this by providing only a limited number of samples for each new class, increasing the risk of overfitting in addition to standard CIL challenges. While catastrophic forgetting has been extensively studied, overfitting in FSCIL, especially with large foundation models, has received less attention. To fill this gap, we propose the Singular Value Fine-tuning for FSCIL (SVFCL) and compared it with existing approaches for adapting foundation models to FSCIL, which primarily build on Parameter Efficient Fine-Tuning (PEFT) methods like prompt tuning and Low-Rank Adaptation (LoRA). Specifically, SVFCL applies singular value decomposition to the foundation model weights, keeping the singular vectors fixed while fine-tuning the singular values for each task, and then merging them. This simple yet effective approach not only alleviates the forgetting problem but also mitigates overfitting more effectively while significantly reducing trainable parameters. Extensive experiments on four benchmark datasets, along with visualizations and ablation studies, validate the effectiveness of SVFCL. The code will be made available.
Authors:Zirun Guo, Shulei Wang, Wang Lin, Weicai Yan, Yangyang Wu, Tao Jin
Title: Efficient Prompting for Continual Adaptation to Missing Modalities
Abstract:
Missing modality issues are common in real-world applications, arising from factors such as equipment failures and privacy concerns. When fine-tuning pre-trained models on downstream datasets with missing modalities, performance can degrade significantly. Current methods often aggregate various missing cases to train recovery modules or align multimodal features, resulting in suboptimal performance, high computational costs, and the risk of catastrophic forgetting in continual environments where data arrives sequentially. In this paper, we formulate the dynamic missing modality problem as a continual learning task and introduce the continual multimodal missing modality task. To address this challenge efficiently, we introduce three types of prompts: modality-specific, task-aware, and task-specific prompts. These prompts enable the model to learn intra-modality, inter-modality, intra-task, and inter-task features. Furthermore, we propose a contrastive task interaction strategy to explicitly learn prompts correlating different modalities. We conduct extensive experiments on three public datasets, where our method consistently outperforms state-of-the-art approaches.
Authors:Xuan-Bac Nguyen, Manuel Serna-Aguilera, Arabinda Kumar Choudhary, Pawan Sinha, Xin Li, Khoa Luu
Title: COBRA: A Continual Learning Approach to Vision-Brain Understanding
Abstract:
Vision-Brain Understanding (VBU) aims to extract visual information perceived by humans from brain activity recorded through functional Magnetic Resonance Imaging (fMRI). Despite notable advancements in recent years, existing studies in VBU continue to face the challenge of catastrophic forgetting, where models lose knowledge from prior subjects as they adapt to new ones. Addressing continual learning in this field is, therefore, essential. This paper introduces a novel framework called Continual Learning for Vision-Brain (COBRA) to address continual learning in VBU. Our approach includes three novel modules: a Subject Commonality (SC) module, a Prompt-based Subject Specific (PSS) module, and a transformer-based module for fMRI, denoted as MRIFormer module. The SC module captures shared vision-brain patterns across subjects, preserving this knowledge as the model encounters new subjects, thereby reducing the impact of catastrophic forgetting. On the other hand, the PSS module learns unique vision-brain patterns specific to each subject. Finally, the MRIFormer module contains a transformer encoder and decoder that learns the fMRI features for VBU from common and specific patterns. In a continual learning setup, COBRA is trained in new PSS and MRIFormer modules for new subjects, leaving the modules of previous subjects unaffected. As a result, COBRA effectively addresses catastrophic forgetting and achieves state-of-the-art performance in both continual learning and vision-brain reconstruction tasks, surpassing previous methods.
Authors:Darshil Chauhan, Adityasinh Solanki, Vansh Patel, Kanav Kapoor, Ritvik Jain, Aditya Bansal, Pratik Narang, Dhruv Kumar
Title: Navigating the Reality Gap: Privacy-Preserving Adaptation of ASR for Challenging Low-Resource Domains
Abstract:
Automatic Speech Recognition (ASR) holds immense potential to assist in clinical documentation and patient report generation, particularly in resource-constrained regions. However, deployment is currently hindered by a technical deadlock: a severe "Reality Gap" between laboratory performance and noisy, real-world clinical audio, coupled with strict privacy and resource constraints. We quantify this gap, showing that a robust multilingual model (IndicWav2Vec) degrades to a 40.94% WER on rural clinical data from India, rendering it unusable. To address this, we explore a zero-data-exfiltration framework enabling localized, continual adaptation via Low-Rank Adaptation (LoRA). We conduct a rigorous investigative study of continual learning strategies, characterizing the trade-offs between data-driven and parameter-driven stability. Our results demonstrate that multi-domain Experience Replay (ER) yields the primary performance gains, achieving a 17.1% relative improvement in target WER and reducing catastrophic forgetting by 55% compared to naive adaptation. Furthermore, we observed that standard Elastic Weight Consolidation (EWC) faced numerical stability challenges when applied to LoRA in noisy environments. Our experiments show that a stabilized, linearized formulation effectively controls gradient magnitudes and enables stable convergence. Finally, we verify via a domain-specific spot check that acoustic adaptation is a fundamental prerequisite for usability which cannot be bypassed by language models alone.
Authors:Guijun Liu, Yuwen Cao, Tomoaki Ohtsuki, Jiguang He, Shahid Mumtaz
Title: Generative Model-Aided Continual Learning for CSI Feedback in FDD mMIMO-OFDM Systems
Abstract:
Deep autoencoder (DAE) frameworks have demonstrated their effectiveness in reducing channel state information (CSI) feedback overhead in massive multiple-input multiple-output (mMIMO) orthogonal frequency division multiplexing (OFDM) systems. However, existing CSI feedback models struggle to adapt to dynamic environments caused by user mobility, requiring retraining when encountering new CSI distributions. Moreover, returning to previously encountered environments often leads to performance degradation due to catastrophic forgetting. Continual learning involves enabling models to incorporate new information while maintaining performance on previously learned tasks. To address these challenges, we propose a generative adversarial network (GAN)-based learning approach for CSI feedback. By using a GAN generator as a memory unit, our method preserves knowledge from past environments and ensures consistently high performance across diverse scenarios without forgetting. Simulation results show that the proposed approach enhances the generalization capability of the DAE framework while maintaining low memory overhead. Furthermore, it can be seamlessly integrated with other advanced CSI feedback models, highlighting its robustness and adaptability.
Authors:Ruilin Tong, Haodong Lu, Yuhang Liu, Dong Gong
Title: Model Inversion with Layer-Specific Modeling and Alignment for Data-Free Continual Learning
Abstract:
Continual learning (CL) aims to incrementally train a model on a sequence of tasks while retaining performance on prior ones. However, storing and replaying data is often infeasible due to privacy or security constraints and impractical for arbitrary pre-trained models. Data-free CL seeks to update models without access to previous data. Beyond regularization, we employ model inversion to synthesize data from the trained model, enabling replay without storing samples. Yet, model inversion in predictive models faces two challenges: (1) generating inputs solely from compressed output labels causes drift between synthetic and real data, and replaying such data can erode prior knowledge; (2) inversion is computationally expensive since each step backpropagates through the full model. These issues are amplified in large pre-trained models such as CLIP. To improve efficiency, we propose Per-layer Model Inversion (PMI), inspired by faster convergence in single-layer optimization. PMI provides strong initialization for full-model inversion, substantially reducing iterations. To mitigate feature shift, we model class-wise features via Gaussian distributions and contrastive model, ensuring alignment between synthetic and real features. Combining PMI and feature modeling, our approach enables continual learning of new classes by generating pseudo-images from semantic-aware projected features, achieving strong effectiveness and compatibility across multiple CL settings.
Authors:Muhammad Tanzil Furqon, Mahardhika Pratama, Igor Škrjanc, Lin Liu, Habibullah Habibullah, Kutluyil Dogancay
Title: Source-Free Cross-Domain Continual Learning
Abstract:
Although existing cross-domain continual learning approaches successfully address many streaming tasks having domain shifts, they call for a fully labeled source domain hindering their feasibility in the privacy constrained environments. This paper goes one step ahead with the problem of source-free cross-domain continual learning where the use of source-domain samples are completely prohibited. We propose the idea of rehearsal-free frequency-aware dynamic prompt collaborations (REFEREE) to cope with the absence of labeled source-domain samples in realm of cross-domain continual learning. REFEREE is built upon a synergy between a source-pre-trained model and a large-scale vision-language model, thus overcoming the problem of sub-optimal generalizations when relying only on a source pre-trained model. The domain shift problem between the source domain and the target domain is handled by a frequency-aware prompting technique encouraging low-frequency components while suppressing high-frequency components. This strategy generates frequency-aware augmented samples, robust against noisy pseudo labels. The noisy pseudo-label problem is further addressed with the uncertainty-aware weighting strategy where the mean and covariance matrix are weighted by prediction uncertainties, thus mitigating the adverse effects of the noisy pseudo label. Besides, the issue of catastrophic forgetting (CF) is overcome by kernel linear discriminant analysis (KLDA) where the backbone network is frozen while the classification is performed using the linear discriminant analysis approach guided by the random kernel method. Our rigorous numerical studies confirm the advantage of our approach where it beats prior arts having access to source domain samples with significant margins.
Authors:Amir Joudaki, Giulia Lanzillotta, Mohammad Samragh Razlighi, Iman Mirzadeh, Keivan Alizadeh, Thomas Hofmann, Mehrdad Farajtabar, Fartash Faghri
Title: Barriers for Learning in an Evolving World: Mathematical Understanding of Loss of Plasticity
Abstract:
Deep learning models excel in stationary data but struggle in non-stationary environments due to a phenomenon known as loss of plasticity (LoP), the degradation of their ability to learn in the future. This work presents a first-principles investigation of LoP in gradient-based learning. Grounded in dynamical systems theory, we formally define LoP by identifying stable manifolds in the parameter space that trap gradient trajectories. Our analysis reveals two primary mechanisms that create these traps: frozen units from activation saturation and cloned-unit manifolds from representational redundancy. Our framework uncovers a fundamental tension: properties that promote generalization in static settings, such as low-rank representations and simplicity biases, directly contribute to LoP in continual learning scenarios. We validate our theoretical analysis with numerical simulations and explore architectural choices or targeted perturbations as potential mitigation strategies.
Authors:Zekun Wang, Anant Gupta, Zihan Dong, Christopher J. MacLellan
Title: Avoid Catastrophic Forgetting with Rank-1 Fisher from Diffusion Models
Abstract:
Catastrophic forgetting remains a central obstacle for continual learning in neural models. Popular approaches -- replay and elastic weight consolidation (EWC) -- have limitations: replay requires a strong generator and is prone to distributional drift, while EWC implicitly assumes a shared optimum across tasks and typically uses a diagonal Fisher approximation. In this work, we study the gradient geometry of diffusion models, which can already produce high-quality replay data. We provide theoretical and empirical evidence that, in the low signal-to-noise ratio (SNR) regime, per-sample gradients become strongly collinear, yielding an empirical Fisher that is effectively rank-1 and aligned with the mean gradient. Leveraging this structure, we propose a rank-1 variant of EWC that is as cheap as the diagonal approximation yet captures the dominant curvature direction. We pair this penalty with a replay-based approach to encourage parameter sharing across tasks while mitigating drift. On class-incremental image generation datasets (MNIST, FashionMNIST, CIFAR-10, ImageNet-1k), our method consistently improves average FID and reduces forgetting relative to replay-only and diagonal-EWC baselines. In particular, forgetting is nearly eliminated on MNIST and FashionMNIST and is roughly halved on ImageNet-1k. These results suggest that diffusion models admit an approximately rank-1 Fisher. With a better Fisher estimate, EWC becomes a strong complement to replay: replay encourages parameter sharing across tasks, while EWC effectively constrains replay-induced drift.
Authors:Daehee Lee, Dongsu Lee, TaeYoon Kwack, Wonje Choi, Honguk Woo
Title: Policy Compatible Skill Incremental Learning via Lazy Learning Interface
Abstract:
Skill Incremental Learning (SIL) is the process by which an embodied agent expands and refines its skill set over time by leveraging experience gained through interaction with its environment or by the integration of additional data. SIL facilitates efficient acquisition of hierarchical policies grounded in reusable skills for downstream tasks. However, as the skill repertoire evolves, it can disrupt compatibility with existing skill-based policies, limiting their reusability and generalization. In this work, we propose SIL-C, a novel framework that ensures skill-policy compatibility, allowing improvements in incrementally learned skills to enhance the performance of downstream policies without requiring policy re-training or structural adaptation. SIL-C employs a bilateral lazy learning-based mapping technique to dynamically align the subtask space referenced by policies with the skill space decoded into agent behaviors. This enables each subtask, derived from the policy's decomposition of a complex task, to be executed by selecting an appropriate skill based on trajectory distribution similarity. We evaluate SIL-C across diverse SIL scenarios and demonstrate that it maintains compatibility between evolving skills and downstream policies while ensuring efficiency throughout the learning process.
Authors:Luca Zanchetta, Lorenzo Papa, Luca Maiano, Irene Amerini
Title: VidCLearn: A Continual Learning Approach for Text-to-Video Generation
Abstract:
Text-to-video generation is an emerging field in generative AI, enabling the creation of realistic, semantically accurate videos from text prompts. While current models achieve impressive visual quality and alignment with input text, they typically rely on static knowledge, making it difficult to incorporate new data without retraining from scratch. To address this limitation, we propose VidCLearn, a continual learning framework for diffusion-based text-to-video generation. VidCLearn features a student-teacher architecture where the student model is incrementally updated with new text-video pairs, and the teacher model helps preserve previously learned knowledge through generative replay. Additionally, we introduce a novel temporal consistency loss to enhance motion smoothness and a video retrieval module to provide structural guidance at inference. Our architecture is also designed to be more computationally efficient than existing models while retaining satisfactory generation performance. Experimental results show VidCLearn's superiority over baseline methods in terms of visual quality, semantic alignment, and temporal coherence.
Authors:Kushal Kapoor, Wyatt Mackey, Yiannis Aloimonos, Xiaomin Lin
Title: HiCL: Hippocampal-Inspired Continual Learning
Abstract:
We propose HiCL, a novel hippocampal-inspired dual-memory continual learning architecture designed to mitigate catastrophic forgetting by using elements inspired by the hippocampal circuitry. Our system encodes inputs through a grid-cell-like layer, followed by sparse pattern separation using a dentate gyrus-inspired module with top-k sparsity. Episodic memory traces are maintained in a CA3-like autoassociative memory. Task-specific processing is dynamically managed via a DG-gated mixture-of-experts mechanism, wherein inputs are routed to experts based on cosine similarity between their normalized sparse DG representations and learned task-specific DG prototypes computed through online exponential moving averages. This biologically grounded yet mathematically principled gating strategy enables differentiable, scalable task-routing without relying on a separate gating network, and enhances the model's adaptability and efficiency in learning multiple sequential tasks. Cortical outputs are consolidated using Elastic Weight Consolidation weighted by inter-task similarity. Crucially, we incorporate prioritized replay of stored patterns to reinforce essential past experiences. Evaluations on standard continual learning benchmarks demonstrate the effectiveness of our architecture in reducing task interference, achieving near state-of-the-art results in continual learning tasks at lower computational costs.
Authors:Shibin Su, Guoqiang Liang, De Cheng, Shizhou Zhang, Lingyan Ran, Yanning Zhang
Title: Multi-level Collaborative Distillation Meets Global Workspace Model: A Unified Framework for OCIL
Abstract:
Online Class-Incremental Learning (OCIL) enables models to learn continuously from non-i.i.d. data streams and samples of the data streams can be seen only once, making it more suitable for real-world scenarios compared to offline learning. However, OCIL faces two key challenges: maintaining model stability under strict memory constraints and ensuring adaptability to new tasks. Under stricter memory constraints, current replay-based methods are less effective. While ensemble methods improve adaptability (plasticity), they often struggle with stability. To overcome these challenges, we propose a novel approach that enhances ensemble learning through a Global Workspace Model (GWM)-a shared, implicit memory that guides the learning of multiple student models. The GWM is formed by fusing the parameters of all students within each training batch, capturing the historical learning trajectory and serving as a dynamic anchor for knowledge consolidation. This fused model is then redistributed periodically to the students to stabilize learning and promote cross-task consistency. In addition, we introduce a multi-level collaborative distillation mechanism. This approach enforces peer-to-peer consistency among students and preserves historical knowledge by aligning each student with the GWM. As a result, student models remain adaptable to new tasks while maintaining previously learned knowledge, striking a better balance between stability and plasticity. Extensive experiments on three standard OCIL benchmarks show that our method delivers significant performance improvement for several OCIL models across various memory budgets.
Authors:Tian Qin, Guang Cheng, Zihan Chen, Yuyang Zhou
Title: PRIME: Plasticity-Robust Incremental Model for Encrypted Traffic Classification in Dynamic Network Environments
Abstract:
With the continuous development of network environments and technologies, ensuring cyber security and governance is increasingly challenging. Network traffic classification(ETC) can analyzes attributes such as application categories and malicious intent, supporting network management services like QoS optimization, intrusion detection, and targeted billing. As the prevalence of traffic encryption increases, deep learning models are relied upon for content-agnostic analysis of packet sequences. However, the emergence of new services and attack variants often leads to incremental tasks for ETC models. To ensure model effectiveness, incremental learning techniques are essential; however, recent studies indicate that neural networks experience declining plasticity as tasks increase. We identified plasticity issues in existing incremental learning methods across diverse traffic samples and proposed the PRIME framework. By observing the effective rank of model parameters and the proportion of inactive neurons, the PRIME architecture can appropriately increase the parameter scale when the model's plasticity deteriorates. Experiments show that in multiple encrypted traffic datasets and different category increment scenarios, the PRIME architecture performs significantly better than other incremental learning algorithms with minimal increase in parameter scale.
Authors:Amit Attia, Matan Schliserman, Uri Sherman, Tomer Koren
Title: Fast Last-Iterate Convergence of SGD in the Smooth Interpolation Regime
Abstract:
We study population convergence guarantees of stochastic gradient descent (SGD) for smooth convex objectives in the interpolation regime, where the noise at optimum is zero or near zero. The behavior of the last iterate of SGD in this setting -- particularly with large (constant) stepsizes -- has received growing attention in recent years due to implications for the training of over-parameterized models, as well as to analyzing forgetting in continual learning and to understanding the convergence of the randomized Kaczmarz method for solving linear systems. We establish that after $T$ steps of SGD on $β$-smooth convex loss functions with stepsize $0 < η< 2/β$, the last iterate exhibits expected excess risk $\widetilde{O}(\frac{1}{η(2-βη) T^{1-βη/2}} + \fracη{(2-βη)^2} T^{βη/2} σ_\star^2)$, where $σ_\star^2$ denotes the variance of the stochastic gradients at the optimum. In particular, for a well-tuned stepsize we obtain a near optimal $\widetilde{O}(1/T + σ_\star/\sqrt{T})$ rate for the last iterate, extending the results of Varre et al. (2021) beyond least squares regression; and when $σ_\star=0$ we obtain a rate of $\smash{O(1/\sqrt T)}$ with $η=1/β$, improving upon the best-known $\smash{O(T^{-1/4})}$ rate recently established by Evron et al. (2025) in the special case of realizable linear regression.
Authors:Minh-Duong Nguyen, Le-Tuan Nguyen, Quoc-Viet Pham
Title: Improving Generalization in Heterogeneous Federated Continual Learning via Spatio-Temporal Gradient Matching with Prototypical Coreset
Abstract:
Federated Continual Learning (FCL) has recently emerged as a crucial research area, as data from distributed clients typically arrives as a stream, requiring sequential learning. This paper explores a more practical and challenging FCL setting, where clients may have unrelated or even conflicting data and tasks. In this scenario, statistical heterogeneity and data noise can create spurious correlations, leading to biased feature learning and catastrophic forgetting. Existing FCL approaches often use generative replay to create pseudo-datasets of previous tasks. However, generative replay itself suffers from catastrophic forgetting and task divergence among clients, leading to overfitting in FCL. Existing FCL approaches often use generative replay to create pseudo-datasets of previous tasks. However, generative replay itself suffers from catastrophic forgetting and task divergence among clients, leading to overfitting in FCL. To address these challenges, we propose a novel approach called Spatio-Temporal grAdient Matching with network-free Prototype (STAMP). Our contributions are threefold: 1) We develop a model-agnostic method to determine subset of samples that effectively form prototypes when using a prototypical network, making it resilient to continual learning challenges; 2) We introduce a spatio-temporal gradient matching approach, applied at both the client-side (temporal) and server-side (spatial), to mitigate catastrophic forgetting and data heterogeneity; 3) We leverage prototypes to approximate task-wise gradients, improving gradient matching on the client-side. Extensive experiments demonstrate our method's superiority over existing baselines.
Authors:Vaggelis Dorovatas, Georgios Paraskevopoulos, Alexandros Potamianos
Title: Auto-Compressing Networks
Abstract:
Deep neural networks with short residual connections have demonstrated remarkable success across domains, but increasing depth often introduces computational redundancy without corresponding improvements in representation quality. We introduce Auto-Compressing Networks (ACNs), an architectural variant where additive long feedforward connections from each layer to the output replace traditional short residual connections. By analyzing the distinct dynamics induced by this modification, we reveal a unique property we coin as auto-compression, the ability of a network to organically compress information during training with gradient descent, through architectural design alone. Through auto-compression, information is dynamically "pushed" into early layers during training, enhancing their representational quality and revealing potential redundancy in deeper ones. We theoretically show that this property emerges from layer-wise training patterns present in ACNs, where layers are dynamically utilized during training based on task requirements. We also find that ACNs exhibit enhanced noise robustness compared to residual networks, superior performance in low-data settings, improved transfer learning capabilities, and mitigate catastrophic forgetting suggesting that they learn representations that generalize better despite using fewer parameters. Our results demonstrate up to 18% reduction in catastrophic forgetting and 30-80% architectural compression while maintaining accuracy across vision transformers, MLP-mixers, and BERT architectures. These findings establish ACNs as a practical approach to developing efficient neural architectures that automatically adapt their computational footprint to task complexity, while learning robust representations suitable for noisy real-world tasks and continual learning scenarios.
Authors:Ran Levinstein, Amit Attia, Matan Schliserman, Uri Sherman, Tomer Koren, Daniel Soudry, Itay Evron
Title: Optimal Rates in Continual Linear Regression via Increasing Regularization
Abstract:
We study realizable continual linear regression under random task orderings, a common setting for developing continual learning theory. In this setup, the worst-case expected loss after $k$ learning iterations admits a lower bound of $Ω(1/k)$. However, prior work using an unregularized scheme has only established an upper bound of $O(1/k^{1/4})$, leaving a significant gap. Our paper proves that this gap can be narrowed, or even closed, using two frequently used regularization schemes: (1) explicit isotropic $\ell_2$ regularization, and (2) implicit regularization via finite step budgets. We show that these approaches, which are used in practice to mitigate forgetting, reduce to stochastic gradient descent (SGD) on carefully defined surrogate losses. Through this lens, we identify a fixed regularization strength that yields a near-optimal rate of $O(\log k / k)$. Moreover, formalizing and analyzing a generalized variant of SGD for time-varying functions, we derive an increasing regularization strength schedule that provably achieves an optimal rate of $O(1/k)$. This suggests that schedules that increase the regularization coefficient or decrease the number of steps per task are beneficial, at least in the worst case.
Authors:Ioannis Pitsiorlas, Nour Jamoussi, Marios Kountouris
Title: A Conformal Predictive Measure for Assessing Catastrophic Forgetting
Abstract:
This work introduces a novel methodology for assessing catastrophic forgetting (CF) in continual learning. We propose a new conformal prediction (CP)-based metric, termed the Conformal Prediction Confidence Factor (CPCF), to quantify and evaluate CF effectively. Our framework leverages adaptive CP to estimate forgetting by monitoring the model's confidence on previously learned tasks. This approach provides a dynamic and practical solution for monitoring and measuring CF of previous tasks as new ones are introduced, offering greater suitability for real-world applications. Experimental results on four benchmark datasets demonstrate a strong correlation between CPCF and the accuracy of previous tasks, validating the reliability and interpretability of the proposed metric. Our results highlight the potential of CPCF as a robust and effective tool for assessing and understanding CF in dynamic learning environments.
Authors:Zhengyi Zhong, Weidong Bao, Ji Wang, Jianguo Chen, Lingjuan Lyu, Wei Yang Bryan Lim
Title: SacFL: Self-Adaptive Federated Continual Learning for Resource-Constrained End Devices
Abstract:
The proliferation of end devices has led to a distributed computing paradigm, wherein on-device machine learning models continuously process diverse data generated by these devices. The dynamic nature of this data, characterized by continuous changes or data drift, poses significant challenges for on-device models. To address this issue, continual learning (CL) is proposed, enabling machine learning models to incrementally update their knowledge and mitigate catastrophic forgetting. However, the traditional centralized approach to CL is unsuitable for end devices due to privacy and data volume concerns. In this context, federated continual learning (FCL) emerges as a promising solution, preserving user data locally while enhancing models through collaborative updates. Aiming at the challenges of limited storage resources for CL, poor autonomy in task shift detection, and difficulty in coping with new adversarial tasks in FCL scenario, we propose a novel FCL framework named SacFL. SacFL employs an Encoder-Decoder architecture to separate task-robust and task-sensitive components, significantly reducing storage demands by retaining lightweight task-sensitive components for resource-constrained end devices. Moreover, $\rm{SacFL}$ leverages contrastive learning to introduce an autonomous data shift detection mechanism, enabling it to discern whether a new task has emerged and whether it is a benign task. This capability ultimately allows the device to autonomously trigger CL or attack defense strategy without additional information, which is more practical for end devices. Comprehensive experiments conducted on multiple text and image datasets, such as Cifar100 and THUCNews, have validated the effectiveness of $\rm{SacFL}$ in both class-incremental and domain-incremental scenarios. Furthermore, a demo system has been developed to verify its practicality.
Authors:Itay Evron, Ran Levinstein, Matan Schliserman, Uri Sherman, Tomer Koren, Daniel Soudry, Nathan Srebro
Title: From Continual Learning to SGD and Back: Better Rates for Continual Linear Models
Abstract:
We theoretically study the common continual learning setup where an overparameterized model is sequentially fitted to a set of jointly realizable tasks. We analyze the forgetting, i.e., loss on previously seen tasks, after $k$ iterations. For continual linear models, we prove that fitting a task is equivalent to a single stochastic gradient descent (SGD) step on a modified objective. We develop novel last-iterate SGD upper bounds in the realizable least squares setup, which we then leverage to derive new results for continual learning. Focusing on random orderings over $T$ tasks, we establish universal forgetting rates, whereas existing rates depend on the problem dimensionality or complexity. Specifically, in continual regression with replacement, we improve the best existing rate from $O((d-r)/k)$ to $O(\min(k^{-1/4}, \sqrt{d-r}/k, \sqrt{Tr}/k))$, where $d$ is the dimensionality and $r$ the average task rank. Furthermore, we establish the first rate for random task orderings without replacement. The obtained rate of $O(\min(T^{-1/4}, (d-r)/T))$ proves for the first time that randomization alone, with no task repetition, can prevent catastrophic forgetting in sufficiently long task sequences. Finally, we prove a matching $O(k^{-1/4})$ forgetting rate for continual linear classification on separable data. Our universal rates apply for broader projection methods, such as block Kaczmarz and POCS, illuminating their loss convergence under i.i.d. and one-pass orderings.
Authors:Xusheng Cao, Haori Lu, Linlan Huang, Fei Yang, Xialei Liu, Ming-Ming Cheng
Title: Knowledge Graph Enhanced Generative Multi-modal Models for Class-Incremental Learning
Abstract:
Continual learning in computer vision faces the critical challenge of catastrophic forgetting, where models struggle to retain prior knowledge while adapting to new tasks. Although recent studies have attempted to leverage the generalization capabilities of pre-trained models to mitigate overfitting on current tasks, models still tend to forget details of previously learned categories as tasks progress, leading to misclassification. To address these limitations, we introduce a novel Knowledge Graph Enhanced Generative Multi-modal model (KG-GMM) that builds an evolving knowledge graph throughout the learning process. Our approach utilizes relationships within the knowledge graph to augment the class labels and assigns different relations to similar categories to enhance model differentiation. During testing, we propose a Knowledge Graph Augmented Inference method that locates specific categories by analyzing relationships within the generated text, thereby reducing the loss of detailed information about old classes when learning new knowledge and alleviating forgetting. Experiments demonstrate that our method effectively leverages relational information to help the model correct mispredictions, achieving state-of-the-art results in both conventional CIL and few-shot CIL settings, confirming the efficacy of knowledge graphs at preserving knowledge in the continual learning scenarios.
Authors:Haori Lu, Xusheng Cao, Linlan Huang, Enguang Wang, Fei Yang, Xialei Liu
Title: Restoring Forgotten Knowledge in Non-Exemplar Class Incremental Learning through Test-Time Semantic Evolution
Abstract:
Continual learning aims to accumulate knowledge over a data stream while mitigating catastrophic forgetting. In Non-exemplar Class Incremental Learning (NECIL), forgetting arises during incremental optimization because old classes are inaccessible, hindering the retention of prior knowledge. To solve this, previous methods struggle in achieving the stability-plasticity balance in the training stages. However, we note that the testing stage is rarely considered among them, but is promising to be a solution to forgetting. Therefore, we propose RoSE, which is a simple yet effective method that \textbf{R}est\textbf{o}res forgotten knowledge through test-time \textbf{S}emantic \textbf{E}volution. Specifically designed for minimizing forgetting, RoSE is a test-time semantic drift compensation framework that enables more accurate drift estimation in a self-supervised manner. Moreover, to avoid incomplete optimization during online testing, we derive an analytical solution as an alternative to gradient descent. We evaluate RoSE on CIFAR-100, TinyImageNet, and ImageNet100 datasets, under both cold-start and warm-start settings. Our method consistently outperforms most state-of-the-art (SOTA) methods across various scenarios, validating the potential and feasibility of test-time evolution in NECIL.
Authors:Gangwei Jiang, Caigao Jiang, Zhaoyi Li, Siqiao Xue, Jun Zhou, Linqi Song, Defu Lian, Ying Wei
Title: Unlocking the Power of Function Vectors for Characterizing and Mitigating Catastrophic Forgetting in Continual Instruction Tuning
Abstract:
Catastrophic forgetting (CF) poses a significant challenge in machine learning, where a model forgets previously learned information upon learning new tasks. Despite the advanced capabilities of Large Language Models (LLMs), they continue to face challenges with CF during continual learning. The majority of existing research focuses on analyzing forgetting patterns through a singular training sequence, thereby overlooking the intricate effects that diverse tasks have on model behavior. Our study explores CF across various settings, discovering that model forgetting is influenced by both the specific training tasks and the models themselves. To this end, we interpret forgetting by examining the function vector (FV), a compact representation of functions in LLMs, offering a model-dependent indicator for the occurrence of CF. Through theoretical and empirical analyses, we demonstrated that CF in LLMs primarily stems from biases in function activation rather than the overwriting of task processing functions. Leveraging these insights, we propose a novel function vector guided training methodology, incorporating a regularization technique to stabilize the FV and mitigate forgetting. Empirical tests on four benchmarks confirm the effectiveness of our proposed training method, substantiating our theoretical framework concerning CF and model function dynamics. We plan to make our code publicly accessible in the near future.
Authors:Weiguo Pian, Shijian Deng, Shentong Mo, Yunhui Guo, Yapeng Tian
Title: Modality-Inconsistent Continual Learning of Multimodal Large Language Models
Abstract:
In this paper, we introduce Modality-Inconsistent Continual Learning (MICL), a new continual learning scenario for Multimodal Large Language Models (MLLMs) that involves tasks with inconsistent modalities (image, audio, or video) and varying task types (captioning or question-answering). Unlike existing vision-only or modality-incremental settings, MICL combines modality and task type shifts, both of which drive catastrophic forgetting. To address these challenges, we propose MoInCL, which employs a Pseudo Targets Generation Module to mitigate forgetting caused by task type shifts in previously seen modalities. It also incorporates Instruction-based Knowledge Distillation to preserve the model's ability to handle previously learned modalities when new ones are introduced. We benchmark MICL using a total of six tasks and conduct experiments to validate the effectiveness of our proposed MoInCL. The experimental results highlight the superiority of MoInCL, showing significant improvements over representative and state-of-the-art continual learning baselines.
Authors:Zhiyan Hou, Haiyun Guo, Haokai Ma, Yandu Sun, Yonghui Yang, Jinqiao Wang
Title: PASs-MoE: Mitigating Misaligned Co-drift among Router and Experts via Pathway Activation Subspaces for Continual Learning
Abstract:
Continual instruction tuning (CIT) requires multimodal large language models (MLLMs) to adapt to a stream of tasks without forgetting prior capabilities. A common strategy is to isolate updates by routing inputs to different LoRA experts. However, existing LoRA-based Mixture-of-Experts (MoE) methods often jointly update the router and experts in an indiscriminate way, causing the router's preferences to co-drift with experts' adaptation pathways and gradually deviate from early-stage input-expert specialization. We term this phenomenon Misaligned Co-drift, which blurs expert responsibilities and exacerbates forgetting.To address this, we introduce the pathway activation subspace (PASs), a LoRA-induced subspace that reflects which low-rank pathway directions an input activates in each expert, providing a capability-aligned coordinate system for routing and preservation. Based on PASs, we propose a fixed-capacity PASs-based MoE-LoRA method with two components: PAS-guided Reweighting, which calibrates routing using each expert's pathway activation signals, and PAS-aware Rank Stabilization, which selectively stabilizes rank directions important to previous tasks. Experiments on a CIT benchmark show that our approach consistently outperforms a range of conventional continual learning baselines and MoE-LoRA variants in both accuracy and anti-forgetting without adding parameters. Our code will be released upon acceptance.
Authors:Yanan Chen, Tieliang Gong, Yunjiao Zhang, Wen Wen
Title: Beyond Sharpness: A Flatness Decomposition Framework for Efficient Continual Learning
Abstract:
Continual Learning (CL) aims to enable models to sequentially learn multiple tasks without forgetting previous knowledge. Recent studies have shown that optimizing towards flatter loss minima can improve model generalization. However, existing sharpness-aware methods for CL suffer from two key limitations: (1) they treat sharpness regularization as a unified signal without distinguishing the contributions of its components. and (2) they introduce substantial computational overhead that impedes practical deployment. To address these challenges, we propose FLAD, a novel optimization framework that decomposes sharpness-aware perturbations into gradient-aligned and stochastic-noise components, and show that retaining only the noise component promotes generalization. We further introduce a lightweight scheduling scheme that enables FLAD to maintain significant performance gains even under constrained training time. FLAD can be seamlessly integrated into various CL paradigms and consistently outperforms standard and sharpness-aware optimizers in diverse experimental settings, demonstrating its effectiveness and practicality in CL.
Authors:Seohyeon Cha, Huancheng Chen, Haris Vikalo
Title: Task-Agnostic Federated Continual Learning via Replay-Free Gradient Projection
Abstract:
Federated continual learning (FCL) enables distributed client devices to learn from streaming data across diverse and evolving tasks. A major challenge to continual learning, catastrophic forgetting, is exacerbated in decentralized settings by the data heterogeneity, constrained communication and privacy concerns. We propose Federated gradient Projection-based Continual Learning with Task Identity Prediction (FedProTIP), a novel FCL framework that mitigates forgetting by projecting client updates onto the orthogonal complement of the subspace spanned by previously learned representations of the global model. This projection reduces interference with earlier tasks and preserves performance across the task sequence. To further address the challenge of task-agnostic inference, we incorporate a lightweight mechanism that leverages core bases from prior tasks to predict task identity and dynamically adjust the global model's outputs. Extensive experiments across standard FCL benchmarks demonstrate that FedProTIP significantly outperforms state-of-the-art methods in average accuracy, particularly in settings where task identities are a priori unknown.
Authors:Jia Tang, Xinrui Wang, Songcan Chen
Title: Global Pre-fixing, Local Adjusting: A Simple yet Effective Contrastive Strategy for Continual Learning
Abstract:
Continual learning (CL) involves acquiring and accumulating knowledge from evolving tasks while alleviating catastrophic forgetting. Recently, leveraging contrastive loss to construct more transferable and less forgetful representations has been a promising direction in CL. Despite advancements, their performance is still limited due to confusion arising from both inter-task and intra-task features. To address the problem, we propose a simple yet effective contrastive strategy named \textbf{G}lobal \textbf{P}re-fixing, \textbf{L}ocal \textbf{A}djusting for \textbf{S}upervised \textbf{C}ontrastive learning (GPLASC). Specifically, to avoid task-level confusion, we divide the entire unit hypersphere of representations into non-overlapping regions, with the centers of the regions forming an inter-task pre-fixed \textbf{E}quiangular \textbf{T}ight \textbf{F}rame (ETF). Meanwhile, for individual tasks, our method helps regulate the feature structure and form intra-task adjustable ETFs within their respective allocated regions. As a result, our method \textit{simultaneously} ensures discriminative feature structures both between tasks and within tasks and can be seamlessly integrated into any existing contrastive continual learning framework. Extensive experiments validate its effectiveness.
Authors:Haiyun Guo, ZhiYan Hou, Yu Chen, Jinghan He, Yandu Sun, Yuzhe Zhou, Shujing Guo, Kuan Zhu, Jinqiao Wang
Title: MLLM-CBench:A Comprehensive Benchmark for Continual Instruction Tuning of Multimodal LLMs with Chain-of-Thought Reasoning Analysis
Abstract:
Multimodal large language models (MLLMs) require continual instruction tuning during their post-training phase to adapt to the dynamic real-world demands. However, the absence of rigorous and systematic benchmarks has hindered progress in this area. To bridge this gap, we introduce \textbf{MLLM-CTBench}, a dataset curating seven challenging tasks from six diverse domains with three contributions. First,to enable fine-grained analysis of continual learning ability, we introduce \textbf{multidimensional evaluation metrics}, which combines final answer accuracy with Chain-of-Thought (CoT) reasoning quality assessment through a carefully trained MLLM evaluator. Then, we conduct a \textbf{comprehensive evaluation of continual learning algorithms}, systematically assessing eight algorithms from four major categories to provide actionable insights for algorithm design and adoption. Finally ,we evaluate the efficacy of \textbf{Reinforcement Fine-tuning (RFT) versus Supervised Fine-tuning (SFT)} in maintaining model performance across sequential tasks during continual instruction tuning. Our experiments demonstrate that reasoning processes in MLLMs exhibit greater resilience than final outputs to forgetting during continual learning, aligning with cognitive theories of hierarchical forgetting. We further show that both model capability and task sequence significantly influence continual learning outcomes, with stronger baseline models exhibiting greater resistance to forgetting. Notably, properly regularized RFT emerges as a more robust approach than SFT for maintaining performance across tasks.One of the key contributing factors is KL-divergence regularization, without which RFT leads to even worse forgetting than SFT on old tasks though may perform better on new tasks.
Authors:Md Zesun Ahmed Mia, Malyaban Bal, Sen Lu, George M. Nishibuchi, Suhas Chelian, Srini Vasan, Abhronil Sengupta
Title: Neuromorphic Cybersecurity with Semi-supervised Lifelong Learning
Abstract:
Inspired by the brain's hierarchical processing and energy efficiency, this paper presents a Spiking Neural Network (SNN) architecture for lifelong Network Intrusion Detection System (NIDS). The proposed system first employs an efficient static SNN to identify potential intrusions, which then activates an adaptive dynamic SNN responsible for classifying the specific attack type. Mimicking biological adaptation, the dynamic classifier utilizes Grow When Required (GWR)-inspired structural plasticity and a novel Adaptive Spike-Timing-Dependent Plasticity (Ad-STDP) learning rule. These bio-plausible mechanisms enable the network to learn new threats incrementally while preserving existing knowledge. Tested on the UNSW-NB15 benchmark in a continual learning setting, the architecture demonstrates robust adaptation, reduced catastrophic forgetting, and achieves $85.3$\% overall accuracy. Furthermore, simulations using the Intel Lava framework confirm high operational sparsity, highlighting the potential for low-power deployment on neuromorphic hardware.
Authors:Yihua Shao, Xiaofeng Lin, Xinwei Long, Siyu Chen, Minxi Yan, Yang Liu, Ziyang Yan, Ao Ma, Hao Tang, Jingcai Guo
Title: ICM-Fusion: In-Context Meta-Optimized LoRA Fusion for Multi-Task Adaptation
Abstract:
Enabling multi-task adaptation in pre-trained Low-Rank Adaptation (LoRA) models is crucial for enhancing their generalization capabilities. Most existing pre-trained LoRA fusion methods decompose weight matrices, sharing similar parameters while merging divergent ones. However, this paradigm inevitably induces inter-weight conflicts and leads to catastrophic domain forgetting. While incremental learning enables adaptation to multiple tasks, it struggles to achieve generalization in few-shot scenarios. Consequently, when the weight data follows a long-tailed distribution, it can lead to forgetting in the fused weights. To address this issue, we propose In-Context Meta LoRA Fusion (ICM-Fusion), a novel framework that synergizes meta-learning with in-context adaptation. The key innovation lies in our task vector arithmetic, which dynamically balances conflicting optimization directions across domains through learned manifold projections. ICM-Fusion obtains the optimal task vector orientation for the fused model in the latent space by adjusting the orientation of the task vectors. Subsequently, the fused LoRA is reconstructed by a self-designed Fusion VAE (F-VAE) to realize multi-task LoRA generation. We have conducted extensive experiments on visual and linguistic tasks, and the experimental results demonstrate that ICM-Fusion can be adapted to a wide range of architectural models and applied to various tasks. Compared to the current pre-trained LoRA fusion method, ICM-Fusion fused LoRA can significantly reduce the multi-tasking loss and can even achieve task enhancement in few-shot scenarios.
Authors:Melika Ayoughi, Mina Ghadimi Atigh, Mohammad Mahdi Derakhshani, Cees G. M. Snoek, Pascal Mettes, Paul Groth
Title: Continual Hyperbolic Learning of Instances and Classes
Abstract:
Continual learning has traditionally focused on classifying either instances or classes, but real-world applications, such as robotics and self-driving cars, require models to handle both simultaneously. To mirror real-life scenarios, we introduce the task of continual learning of instances and classes, at the same time. This task challenges models to adapt to multiple levels of granularity over time, which requires balancing fine-grained instance recognition with coarse-grained class generalization. In this paper, we identify that classes and instances naturally form a hierarchical structure. To model these hierarchical relationships, we propose HyperCLIC, a continual learning algorithm that leverages hyperbolic space, which is uniquely suited for hierarchical data due to its ability to represent tree-like structures with low distortion and compact embeddings. Our framework incorporates hyperbolic classification and distillation objectives, enabling the continual embedding of hierarchical relations. To evaluate performance across multiple granularities, we introduce continual hierarchical metrics. We validate our approach on EgoObjects, the only dataset that captures the complexity of hierarchical object recognition in dynamic real-world environments. Empirical results show that HyperCLIC operates effectively at multiple granularities with improved hierarchical generalization.
Authors:Xufei Wang, Gengxuan Tian, Junqiao Zhao, Siyue Tao, Qiwen Gu, Qiankun Yu, Tiantian Feng
Title: Ranking-aware Continual Learning for LiDAR Place Recognition
Abstract:
Place recognition plays a significant role in SLAM, robot navigation, and autonomous driving applications. Benefiting from deep learning, the performance of LiDAR place recognition (LPR) has been greatly improved. However, many existing learning-based LPR methods suffer from catastrophic forgetting, which severely harms the performance of LPR on previously trained places after training on a new environment. In this paper, we introduce a continual learning framework for LPR via Knowledge Distillation and Fusion (KDF) to alleviate forgetting. Inspired by the ranking process of place recognition retrieval, we present a ranking-aware knowledge distillation loss that encourages the network to preserve the high-level place recognition knowledge. We also introduce a knowledge fusion module to integrate the knowledge of old and new models for LiDAR place recognition. Our extensive experiments demonstrate that KDF can be applied to different networks to overcome catastrophic forgetting, surpassing the state-of-the-art methods in terms of mean Recall@1 and forgetting score.
Authors:Murat Onur Yildirim, Elif Ceren Gok Yildirim, Joaquin Vanschoren
Title: Sculpting [CLS] Features for Pre-Trained Model-Based Class-Incremental Learning
Abstract:
Class-incremental learning requires models to continually acquire knowledge of new classes without forgetting old ones. Although pre-trained models have demonstrated strong performance in class-incremental learning, they remain susceptible to catastrophic forgetting when learning new concepts. Excessive plasticity in the models breaks generalizability and causes forgetting, while strong stability results in insufficient adaptation to new classes. This necessitates effective adaptation with minimal modifications to preserve the general knowledge of pre-trained models. To address this challenge, we first introduce a new parameter-efficient fine-tuning module 'Learn and Calibrate', or LuCA, designed to acquire knowledge through an adapter-calibrator couple, enabling effective adaptation with well-refined feature representations. Second, for each learning session, we deploy a sparse LuCA module on top of the last token just before the classifier, which we refer to as 'Token-level Sparse Calibration and Adaptation', or TOSCA. This strategic design improves the orthogonality between the modules and significantly reduces both training and inference complexity. By leaving the generalization capabilities of the pre-trained models intact and adapting exclusively via the last token, our approach achieves a harmonious balance between stability and plasticity. Extensive experiments demonstrate TOSCA's state-of-the-art performance while introducing ~8 times fewer parameters compared to prior methods.
Authors:Heming Zou, Yunliang Zang, Xiangyang Ji
Title: Structural features of the fly olfactory circuit mitigate the stability-plasticity dilemma in continual learning
Abstract:
Artificial neural networks face the stability-plasticity dilemma in continual learning, while the brain can maintain memories and remain adaptable. However, the biological strategies for continual learning and their potential to inspire learning algorithms in neural networks are poorly understood. This study presents a minimal model of the fly olfactory circuit to investigate the biological strategies that support continual odor learning. We introduce the fly olfactory circuit as a plug-and-play component, termed the Fly Model, which can integrate with modern machine learning methods to address this dilemma. Our findings demonstrate that the Fly Model enhances both memory stability and learning plasticity, overcoming the limitations of current continual learning strategies. We validated its effectiveness across various challenging continual learning scenarios using commonly used datasets. The fly olfactory system serves as an elegant biological circuit for lifelong learning, offering a module that enhances continual learning with minimal additional computational cost for machine learning.
Authors:Sayyed Farid Ahamed, Soumya Banerjee, Sandip Roy, Aayush Kapoor, Marc Vucovich, Kevin Choi, Abdul Rahman, Edward Bowen, Sachin Shetty
Title: Privacy Drift: Evolving Privacy Concerns in Incremental Learning
Abstract:
In the evolving landscape of machine learning (ML), Federated Learning (FL) presents a paradigm shift towards decentralized model training while preserving user data privacy. This paper introduces the concept of ``privacy drift", an innovative framework that parallels the well-known phenomenon of concept drift. While concept drift addresses the variability in model accuracy over time due to changes in the data, privacy drift encapsulates the variation in the leakage of private information as models undergo incremental training. By defining and examining privacy drift, this study aims to unveil the nuanced relationship between the evolution of model performance and the integrity of data privacy. Through rigorous experimentation, we investigate the dynamics of privacy drift in FL systems, focusing on how model updates and data distribution shifts influence the susceptibility of models to privacy attacks, such as membership inference attacks (MIA). Our results highlight a complex interplay between model accuracy and privacy safeguards, revealing that enhancements in model performance can lead to increased privacy risks. We provide empirical evidence from experiments on customized datasets derived from CIFAR-100 (Canadian Institute for Advanced Research, 100 classes), showcasing the impact of data and concept drift on privacy. This work lays the groundwork for future research on privacy-aware machine learning, aiming to achieve a delicate balance between model accuracy and data privacy in decentralized environments.
Authors:Yinlin Zhu, Miao Hu, Di Wu
Title: Federated Continual Graph Learning
Abstract:
Managing evolving graph data presents substantial challenges in storage and privacy, and training graph neural networks (GNNs) on such data often leads to catastrophic forgetting, impairing performance on earlier tasks. Despite existing continual graph learning (CGL) methods mitigating this to some extent, they rely on centralized architectures and ignore the potential of distributed graph databases to leverage collective intelligence. To this end, we propose Federated Continual Graph Learning (FCGL) to adapt GNNs across multiple evolving graphs under storage and privacy constraints. Our empirical study highlights two core challenges: local graph forgetting (LGF), where clients lose prior knowledge when adapting to new tasks, and global expertise conflict (GEC), where the global GNN exhibits sub-optimal performance in both adapting to new tasks and retaining old ones, arising from inconsistent client expertise during server-side parameter aggregation. To address these, we introduce POWER, a framework that preserves experience nodes with maximum local-global coverage locally to mitigate LGF, and leverages pseudo-prototype reconstruction with trajectory-aware knowledge transfer to resolve GEC. Experiments on various graph datasets demonstrate POWER's superiority over federated adaptations of CGL baselines and vision-centric federated continual learning approaches.
Authors:Elif Ceren Gok Yildirim, Murat Onur Yildirim, Joaquin Vanschoren
Title: Continual Learning on a Data Diet
Abstract:
Continual Learning (CL) methods usually learn from all available data. However, this is not the case in human cognition which efficiently focuses on key experiences while disregarding the redundant information. Similarly, not all data points in a dataset have equal potential; some can be more informative than others. This disparity may significantly impact the performance, as both the quality and quantity of samples directly influence the model's generalizability and efficiency. Drawing inspiration from this, we explore the potential of learning from important samples and present an empirical study for evaluating coreset selection techniques in the context of CL to stimulate research in this unexplored area. We train different continual learners on increasing amounts of selected samples and investigate the learning-forgetting dynamics by shedding light on the underlying mechanisms driving their improved stability-plasticity balance. We present several significant observations: learning from selectively chosen samples (i) enhances incremental accuracy, (ii) improves knowledge retention of previous tasks, and (iii) refines learned representations. This analysis contributes to a deeper understanding of selective learning strategies in CL scenarios.
Authors:Xinrui Wang, Chuanxing Geng, Wenhai Wan, Shao-yuan Li, Songcan Chen
Title: Forgetting, Ignorance or Myopia: Revisiting Key Challenges in Online Continual Learning
Abstract:
Online continual learning requires the models to learn from constant, endless streams of data. While significant efforts have been made in this field, most were focused on mitigating the catastrophic forgetting issue to achieve better classification ability, at the cost of a much heavier training workload. They overlooked that in real-world scenarios, e.g., in high-speed data stream environments, data do not pause to accommodate slow models. In this paper, we emphasize that model throughput -- defined as the maximum number of training samples that a model can process within a unit of time -- is equally important. It directly limits how much data a model can utilize and presents a challenging dilemma for current methods. With this understanding, we revisit key challenges in OCL from both empirical and theoretical perspectives, highlighting two critical issues beyond the well-documented catastrophic forgetting: Model's ignorance: the single-pass nature of OCL challenges models to learn effective features within constrained training time and storage capacity, leading to a trade-off between effective learning and model throughput; Model's myopia: the local learning nature of OCL on the current task leads the model to adopt overly simplified, task-specific features and excessively sparse classifier, resulting in the gap between the optimal solution for the current task and the global objective. To tackle these issues, we propose the Non-sparse Classifier Evolution framework (NsCE) to facilitate effective global discriminative feature learning with minimal time cost. NsCE integrates non-sparse maximum separation regularization and targeted experience replay techniques with the help of pre-trained models, enabling rapid acquisition of new globally discriminative features.
Authors:Hongpeng Cao, Yanbing Mao, Yihao Cai, Lui Sha, Marco Caccamo
Title: Simplex-enabled Safe Continual Learning Machine
Abstract:
This paper proposes the SeC-Learning Machine: Simplex-enabled safe continual learning for safety-critical autonomous systems. The SeC-learning machine is built on Simplex logic (that is, ``using simplicity to control complexity'') and physics-regulated deep reinforcement learning (Phy-DRL). The SeC-learning machine thus constitutes HP (high performance)-Student, HA (high assurance)-Teacher, and Coordinator. Specifically, the HP-Student is a pre-trained high-performance but not fully verified Phy-DRL, continuing to learn in a real plant to tune the action policy to be safe. In contrast, the HA-Teacher is a mission-reduced, physics-model-based, and verified design. As a complementary, HA-Teacher has two missions: backing up safety and correcting unsafe learning. The Coordinator triggers the interaction and the switch between HP-Student and HA-Teacher. Powered by the three interactive components, the SeC-learning machine can i) assure lifetime safety (i.e., safety guarantee in any continual-learning stage, regardless of HP-Student's success or convergence), ii) address the Sim2Real gap, and iii) learn to tolerate unknown unknowns in real plants. The experiments on a cart-pole system and a real quadruped robot demonstrate the distinguished features of the SeC-learning machine, compared with continual learning built on state-of-the-art safe DRL frameworks with approaches to addressing the Sim2Real gap.
Authors:Haihua Luo, Xuming Ran, Zhengji Li, Huiyan Xue, Tingting Jiang, Jiangrong Shen, Tommi Kärkkäinen, Qi Xu, Fengyu Cong
Title: Key-Value Pair-Free Continual Learner via Task-Specific Prompt-Prototype
Abstract:
Continual learning aims to enable models to acquire new knowledge while retaining previously learned information. Prompt-based methods have shown remarkable performance in this domain; however, they typically rely on key-value pairing, which can introduce inter-task interference and hinder scalability. To overcome these limitations, we propose a novel approach employing task-specific Prompt-Prototype (ProP), thereby eliminating the need for key-value pairs. In our method, task-specific prompts facilitate more effective feature learning for the current task, while corresponding prototypes capture the representative features of the input. During inference, predictions are generated by binding each task-specific prompt with its associated prototype. Additionally, we introduce regularization constraints during prompt initialization to penalize excessively large values, thereby enhancing stability. Experiments on several widely used datasets demonstrate the effectiveness of the proposed method. In contrast to mainstream prompt-based approaches, our framework removes the dependency on key-value pairs, offering a fresh perspective for future continual learning research.
Authors:Zhifei Li, Yiran Wang, Chenyi Xiong, Yujing Xia, Xiaoju Hou, Yue Zhao, Miao Zhang, Kui Xiao, Bing Yang
Title: MacVQA: Adaptive Memory Allocation and Global Noise Filtering for Continual Visual Question Answering
Abstract:
Visual Question Answering (VQA) requires models to reason over multimodal information, combining visual and textual data. With the development of continual learning, significant progress has been made in retaining knowledge and adapting to new information in the VQA domain. However, current methods often struggle with balancing knowledge retention, adaptation, and robust feature representation. To address these challenges, we propose a novel framework with adaptive memory allocation and global noise filtering called MacVQA for visual question answering. MacVQA fuses visual and question information while filtering noise to ensure robust representations, and employs prototype-based memory allocation to optimize feature quality and memory usage. These designs enable MacVQA to balance knowledge acquisition, retention, and compositional generalization in continual VQA learning. Experiments on ten continual VQA tasks show that MacVQA outperforms existing baselines, achieving 43.38% average accuracy and 2.32% average forgetting on standard tasks, and 42.53% average accuracy and 3.60% average forgetting on novel composition tasks.
Authors:Haoran Chen, Houze Xu, Micah Goldblum, Daoguo Dong, Zuxuan Wu
Title: Preserving Cross-Modal Consistency for CLIP-based Class-Incremental Learning
Abstract:
Class-incremental learning (CIL) enables models to continuously learn new categories from sequential tasks without forgetting previously acquired knowledge. While recent advances in vision-language models such as CLIP have demonstrated strong generalization across domains, extending them to continual settings remains challenging. In particular, learning task-specific soft prompts for newly introduced classes often leads to severe classifier bias, as the text prototypes overfit to recent categories when prior data are unavailable. In this paper, we propose DMC, a simple yet effective two-stage framework for CLIP-based CIL that decouples the adaptation of the vision encoder and the optimization of textual soft prompts. Each stage is trained with the other frozen, allowing one modality to act as a stable semantic anchor for the other to preserve cross-modal alignment. Furthermore, current CLIP-based CIL approaches typically store class-wise Gaussian statistics for generative replay, yet they overlook the distributional drift that arises when the vision encoder is updated over time. To address this issue, we introduce DMC-OT, an enhanced version of DMC that incorporates an optimal-transport guided calibration strategy to align memory statistics across evolving encoders, along with a task-specific prompting design that enhances inter-task separability. Extensive experiments on CIFAR-100, Imagenet-R, CUB-200, and UCF-101 demonstrate that both DMC and DMC-OT achieve state-of-the-art performance, with DMC-OT further improving accuracy by an average of 1.80%.
Authors:Xian Yeow Lee, Lasitha Vidyaratne, Ahmed Farahat, Chetan Gupta
Title: Exploring LLM-based Frameworks for Fault Diagnosis
Abstract:
Large Language Model (LLM)-based systems present new opportunities for autonomous health monitoring in sensor-rich industrial environments. This study explores the potential of LLMs to detect and classify faults directly from sensor data, while producing inherently explainable outputs through natural language reasoning. We systematically evaluate how LLM-system architecture (single-LLM vs. multi-LLM), input representations (raw vs. descriptive statistics), and context window size affect diagnostic performance. Our findings show that LLM systems perform most effectively when provided with summarized statistical inputs, and that systems with multiple LLMs using specialized prompts offer improved sensitivity for fault classification compared to single-LLM systems. While LLMs can produce detailed and human-readable justifications for their decisions, we observe limitations in their ability to adapt over time in continual learning settings, often struggling to calibrate predictions during repeated fault cycles. These insights point to both the promise and the current boundaries of LLM-based systems as transparent, adaptive diagnostic tools in complex environments.
Authors:Eric Nuertey Coleman, Luigi Quarantiello, Samrat Mukherjee, Julio Hurtado, Vincenzo Lomonaco
Title: HAM: Hierarchical Adapter Merging for Scalable Continual Learning
Abstract:
Continual learning is an essential capability of human cognition, yet it poses significant challenges for current deep learning models. The primary issue is that new knowledge can interfere with previously learned information, causing the model to forget earlier knowledge in favor of the new, a phenomenon known as catastrophic forgetting. Although large pre-trained models can partially mitigate forgetting by leveraging their existing knowledge and over-parameterization, they often struggle when confronted with novel data distributions. Parameter-Efficient Fine-Tuning (PEFT) methods, such as LoRA, enable efficient adaptation to new knowledge. However, they still face challenges in scaling to dynamic learning scenarios and long sequences of tasks, as maintaining one adapter per task introduces complexity and increases the potential for interference. In this paper, we introduce Hierarchical Adapters Merging (HAM), a novel framework that dynamically combines adapters from different tasks during training. This approach enables HAM to scale effectively, allowing it to manage more tasks than competing baselines with improved efficiency. To achieve this, HAM maintains a fixed set of groups that hierarchically consolidate new adapters. For each task, HAM trains a low-rank adapter along with an importance scalar, then dynamically groups tasks based on adapter similarity. Within each group, adapters are pruned, scaled and merge, facilitating transfer learning between related tasks. Extensive experiments on three vision benchmarks show that HAM significantly outperforms state-of-the-art methods, particularly as the number of tasks increases.
Authors:Jie Yin, Ke Sun, Han Wu
Title: Unbiased Online Curvature Approximation for Regularized Graph Continual Learning
Abstract:
Graph continual learning (GCL) aims to learn from a continuous sequence of graph-based tasks. Regularization methods are vital for preventing catastrophic forgetting in GCL, particularly in the challenging replay-free, class-incremental setting, where each task consists of a set of unique classes. In this work, we first establish a general regularization framework for GCL based on the curved parameter space induced by the Fisher information matrix (FIM). We show that the dominant Elastic Weight Consolidation (EWC) and its variants are a special case within this framework, using a diagonal approximation of the empirical FIM based on parameters from previous tasks. To overcome their limitations, we propose a new unbiased online curvature approximation of the full FIM based on the model's current learning state. Our method directly estimates the regularization term in an online manner without explicitly evaluating and storing the FIM itself. This enables the model to better capture the loss landscape during learning new tasks while retaining the knowledge learned from previous tasks. Extensive experiments on three graph datasets demonstrate that our method significantly outperforms existing regularization-based methods, achieving a superior trade-off between stability (retaining old knowledge) and plasticity (acquiring new knowledge).
Authors:Yash Shah, Camila Gonzalez, Mohammad H. Abbasi, Qingyu Zhao, Kilian M. Pohl, Ehsan Adeli
Title: Confounder-Free Continual Learning via Recursive Feature Normalization
Abstract:
Confounders are extraneous variables that affect both the input and the target, resulting in spurious correlations and biased predictions. There are recent advances in dealing with or removing confounders in traditional models, such as metadata normalization (MDN), where the distribution of the learned features is adjusted based on the study confounders. However, in the context of continual learning, where a model learns continuously from new data over time without forgetting, learning feature representations that are invariant to confounders remains a significant challenge. To remove their influence from intermediate feature representations, we introduce the Recursive MDN (R-MDN) layer, which can be integrated into any deep learning architecture, including vision transformers, and at any model stage. R-MDN performs statistical regression via the recursive least squares algorithm to maintain and continually update an internal model state with respect to changing distributions of data and confounding variables. Our experiments demonstrate that R-MDN promotes equitable predictions across population groups, both within static learning and across different stages of continual learning, by reducing catastrophic forgetting caused by confounder effects changing over time.
Authors:Chaofan Pan, Xin Yang, Yanhua Li, Wei Wei, Tianrui Li, Bo An, Jiye Liang
Title: A Survey of Continual Reinforcement Learning
Abstract:
Reinforcement Learning (RL) is an important machine learning paradigm for solving sequential decision-making problems. Recent years have witnessed remarkable progress in this field due to the rapid development of deep neural networks. However, the success of RL currently relies on extensive training data and computational resources. In addition, RL's limited ability to generalize across tasks restricts its applicability in dynamic and real-world environments. With the arisen of Continual Learning (CL), Continual Reinforcement Learning (CRL) has emerged as a promising research direction to address these limitations by enabling agents to learn continuously, adapt to new tasks, and retain previously acquired knowledge. In this survey, we provide a comprehensive examination of CRL, focusing on its core concepts, challenges, and methodologies. Firstly, we conduct a detailed review of existing works, organizing and analyzing their metrics, tasks, benchmarks, and scenario settings. Secondly, we propose a new taxonomy of CRL methods, categorizing them into four types from the perspective of knowledge storage and/or transfer. Finally, our analysis highlights the unique challenges of CRL and provides practical insights into future directions.
Authors:Enes Yavuz Ugan, Ngoc-Quan Pham, Alexander Waibel
Title: Weight Factorization and Centralization for Continual Learning in Speech Recognition
Abstract:
Modern neural network based speech recognition models are required to continually absorb new data without re-training the whole system, especially in downstream applications using foundation models, having no access to the original training data. Continually training the models in a rehearsal-free, multilingual, and language agnostic condition, likely leads to catastrophic forgetting, when a seemingly insignificant disruption to the weights can destructively harm the quality of the models. Inspired by the ability of human brains to learn and consolidate knowledge through the waking-sleeping cycle, we propose a continual learning approach with two distinct phases: factorization and centralization, learning and merging knowledge accordingly. Our experiments on a sequence of varied code-switching datasets showed that the centralization stage can effectively prevent catastrophic forgetting by accumulating the knowledge in multiple scattering low-rank adapters.
Authors:Huahui Yi, Wei Xu, Ziyuan Qin, Xi Chen, Xiaohu Wu, Kang Li, Qicheng Lao
Title: iDPA: Instance Decoupled Prompt Attention for Incremental Medical Object Detection
Abstract:
Existing prompt-based approaches have demonstrated impressive performance in continual learning, leveraging pre-trained large-scale models for classification tasks; however, the tight coupling between foreground-background information and the coupled attention between prompts and image-text tokens present significant challenges in incremental medical object detection tasks, due to the conceptual gap between medical and natural domains. To overcome these challenges, we introduce the \method~framework, which comprises two main components: 1) Instance-level Prompt Generation (\ipg), which decouples fine-grained instance-level knowledge from images and generates prompts that focus on dense predictions, and 2) Decoupled Prompt Attention (\dpa), which decouples the original prompt attention, enabling a more direct and efficient transfer of prompt information while reducing memory usage and mitigating catastrophic forgetting. We collect 13 clinical, cross-modal, multi-organ, and multi-category datasets, referred to as \dataset, and experiments demonstrate that \method~outperforms existing SOTA methods, with FAP improvements of 5.44\%, 4.83\%, 12.88\%, and 4.59\% in full data, 1-shot, 10-shot, and 50-shot settings, respectively.
Authors:George Karantaidis, Athanasios Pantsios, Ioannis Kompatsiaris, Symeon Papadopoulos
Title: Few-Shot Class-Incremental Learning For Efficient SAR Automatic Target Recognition
Abstract:
Synthetic aperture radar automatic target recognition (SAR-ATR) systems have rapidly evolved to tackle incremental recognition challenges in operational settings. Data scarcity remains a major hurdle that conventional SAR-ATR techniques struggle to address. To cope with this challenge, we propose a few-shot class-incremental learning (FSCIL) framework based on a dual-branch architecture that focuses on local feature extraction and leverages the discrete Fourier transform and global filters to capture long-term spatial dependencies. This incorporates a lightweight cross-attention mechanism that fuses domain-specific features with global dependencies to ensure robust feature interaction, while maintaining computational efficiency by introducing minimal scale-shift parameters. The framework combines focal loss for class distinction under imbalance and center loss for compact intra-class distributions to enhance class separation boundaries. Experimental results on the MSTAR benchmark dataset demonstrate that the proposed framework consistently outperforms state-of-the-art methods in FSCIL SAR-ATR, attesting to its effectiveness in real-world scenarios.
Authors:Jianheng Tang, Huiping Zhuang, Di Fang, Jiaxu Li, Feijiang Han, Yajiang Huang, Kejia Fan, Leye Wang, Zhanxing Zhu, Shanghang Zhang, Houbing Herbert Song, Yunhuai Liu
Title: ACU: Analytic Continual Unlearning for Efficient and Exact Forgetting with Privacy Preservation
Abstract:
The development of artificial intelligence demands that models incrementally update knowledge by Continual Learning (CL) to adapt to open-world environments. To meet privacy and security requirements, Continual Unlearning (CU) emerges as an important problem, aiming to sequentially forget particular knowledge acquired during the CL phase. However, existing unlearning methods primarily focus on single-shot joint forgetting and face significant limitations when applied to CU. First, most existing methods require access to the retained dataset for re-training or fine-tuning, violating the inherent constraint in CL that historical data cannot be revisited. Second, these methods often suffer from a poor trade-off between system efficiency and model fidelity, making them vulnerable to being overwhelmed or degraded by adversaries through deliberately frequent requests. In this paper, we identify that the limitations of existing unlearning methods stem fundamentally from their reliance on gradient-based updates. To bridge the research gap at its root, we propose a novel gradient-free method for CU, named Analytic Continual Unlearning (ACU), for efficient and exact forgetting with historical data privacy preservation. In response to each unlearning request, our ACU recursively derives an analytical (i.e., closed-form) solution in an interpretable manner using the least squares method. Theoretical and experimental evaluations validate the superiority of our ACU on unlearning effectiveness, model fidelity, and system efficiency.
Authors:Jingren Liu, Shuning Xu, Yun Wang, Zhong Ji, Xiangyu Chen
Title: CCD: Continual Consistency Diffusion for Lifelong Generative Modeling
Abstract:
While diffusion-based models have shown remarkable generative capabilities in static settings, their extension to continual learning (CL) scenarios remains fundamentally constrained by Generative Catastrophic Forgetting (GCF). We observe that even with a rehearsal buffer, new generative skills often overwrite previous ones, degrading performance on earlier tasks. Although some initial efforts have explored this space, most rely on heuristics borrowed from continual classification methods or use trained diffusion models as ad hoc replay generators, lacking a principled, unified solution to mitigating GCF and often conducting experiments under fragmented and inconsistent settings. To address this gap, we introduce the Continual Diffusion Generation (CDG), a structured pipeline that redefines how diffusion models are implemented under CL and enables systematic evaluation of GCF. Beyond the empirical pipeline, we propose the first theoretical foundation for CDG, grounded in a cross-task analysis of diffusion-specific generative dynamics. Our theoretical investigation identifies three fundamental consistency principles essential for preserving knowledge in the rehearsal buffer over time: inter-task knowledge consistency, unconditional knowledge consistency, and prior knowledge consistency. These criteria expose the latent mechanisms through which generative forgetting manifests across sequential tasks. Motivated by these insights, we further propose \textit{Continual Consistency Diffusion} (CCD), a principled training framework that enforces these consistency objectives via hierarchical loss functions: $\mathcal{L}_{IKC}$, $\mathcal{L}_{UKC}$, and $\mathcal{L}_{PKC}$. Extensive experiments show that CCD achieves SOTA performance across various benchmarks, especially improving generative metrics in overlapping-task scenarios.
Authors:Minsu Kim, Seong-Hyeon Hwang, Steven Euijong Whang
Title: GradMix: Gradient-based Selective Mixup for Robust Data Augmentation in Class-Incremental Learning
Abstract:
In the context of continual learning, acquiring new knowledge while maintaining previous knowledge presents a significant challenge. Existing methods often use experience replay techniques that store a small portion of previous task data for training. In experience replay approaches, data augmentation has emerged as a promising strategy to further improve the model performance by mixing limited previous task data with sufficient current task data. However, we theoretically and empirically analyze that training with mixed samples from random sample pairs may harm the knowledge of previous tasks and cause greater catastrophic forgetting. We then propose GradMix, a robust data augmentation method specifically designed for mitigating catastrophic forgetting in class-incremental learning. GradMix performs gradient-based selective mixup using a class-based criterion that mixes only samples from helpful class pairs and not from detrimental class pairs for reducing catastrophic forgetting. Our experiments on various real datasets show that GradMix outperforms data augmentation baselines in accuracy by minimizing the forgetting of previous knowledge.
Authors:Kun He, Zijian Song, Shuoxi Zhang, John E. Hopcroft
Title: Enhancing Pre-Trained Model-Based Class-Incremental Learning through Neural Collapse
Abstract:
Class-Incremental Learning (CIL) is a critical capability for real-world applications, enabling learning systems to adapt to new tasks while retaining knowledge from previous ones. Recent advancements in pre-trained models (PTMs) have significantly advanced the field of CIL, demonstrating superior performance over traditional methods. However, understanding how features evolve and are distributed across incremental tasks remains an open challenge. In this paper, we propose a novel approach to modeling feature evolution in PTM-based CIL through the lens of neural collapse (NC), a striking phenomenon observed in the final phase of training, which leads to a well-separated, equiangular feature space. We explore the connection between NC and CIL effectiveness, showing that aligning feature distributions with the NC geometry enhances the ability to capture the dynamic behavior of continual learning. Based on this insight, we introduce Neural Collapse-inspired Pre-Trained Model-based CIL (NCPTM-CIL), a method that dynamically adjusts the feature space to conform to the elegant NC structure, thereby enhancing the continual learning process. Extensive experiments demonstrate that NCPTM-CIL outperforms state-of-the-art methods across four benchmark datasets. Notably, when initialized with ViT-B/16-IN1K, NCPTM-CIL surpasses the runner-up method by 6.73% on VTAB, 1.25% on CIFAR-100, and 2.5% on OmniBenchmark.
Authors:Eric Nuertey Coleman, Luigi Quarantiello, Ziyue Liu, Qinwen Yang, Samrat Mukherjee, Julio Hurtado, Vincenzo Lomonaco
Title: Parameter-Efficient Continual Fine-Tuning: A Survey
Abstract:
The emergence of large pre-trained networks has revolutionized the AI field, unlocking new possibilities and achieving unprecedented performance. However, these models inherit a fundamental limitation from traditional Machine Learning approaches: their strong dependence on the \textit{i.i.d.} assumption hinders their adaptability to dynamic learning scenarios. We believe the next breakthrough in AI lies in enabling efficient adaptation to evolving environments -- such as the real world -- where new data and tasks arrive sequentially. This challenge defines the field of Continual Learning (CL), a Machine Learning paradigm focused on developing lifelong learning neural models. One alternative to efficiently adapt these large-scale models is known Parameter-Efficient Fine-Tuning (PEFT). These methods tackle the issue of adapting the model to a particular data or scenario by performing small and efficient modifications, achieving similar performance to full fine-tuning. However, these techniques still lack the ability to adjust the model to multiple tasks continually, as they suffer from the issue of Catastrophic Forgetting. In this survey, we first provide an overview of CL algorithms and PEFT methods before reviewing the state-of-the-art on Parameter-Efficient Continual Fine-Tuning (PECFT). We examine various approaches, discuss evaluation metrics, and explore potential future research directions. Our goal is to highlight the synergy between CL and Parameter-Efficient Fine-Tuning, guide researchers in this field, and pave the way for novel future research directions.
Authors:Hanne Say, Suzan Ece Ada, Emre Ugur, Minoru Asada, Erhan Oztop
Title: Interleaved Multitask Learning with Energy Modulated Learning Progress
Abstract:
As humans learn new skills and apply their existing knowledge while maintaining previously learned information, "continual learning" in machine learning aims to incorporate new data while retaining and utilizing past knowledge. However, existing machine learning methods often does not mimic human learning where tasks are intermixed due to individual preferences and environmental conditions. Humans typically switch between tasks instead of completely mastering one task before proceeding to the next. To explore how human-like task switching can enhance learning efficiency, we propose a multi task learning architecture that alternates tasks based on task-agnostic measures such as "learning progress" and "neural computational energy expenditure". To evaluate the efficacy of our method, we run several systematic experiments by using a set of effect-prediction tasks executed by a simulated manipulator robot. The experiments show that our approach surpasses random interleaved and sequential task learning in terms of average learning accuracy. Moreover, by including energy expenditure in the task switching logic, our approach can still perform favorably while reducing neural energy expenditure.
Authors:Seong-Hyeon Hwang, Minsu Kim, Steven Euijong Whang
Title: T-CIL: Temperature Scaling using Adversarial Perturbation for Calibration in Class-Incremental Learning
Abstract:
We study model confidence calibration in class-incremental learning, where models learn from sequential tasks with different class sets. While existing works primarily focus on accuracy, maintaining calibrated confidence has been largely overlooked. Unfortunately, most post-hoc calibration techniques are not designed to work with the limited memories of old-task data typical in class-incremental learning, as retaining a sufficient validation set would be impractical. Thus, we propose T-CIL, a novel temperature scaling approach for class-incremental learning without a validation set for old tasks, that leverages adversarially perturbed exemplars from memory. Directly using exemplars is inadequate for temperature optimization, since they are already used for training. The key idea of T-CIL is to perturb exemplars more strongly for old tasks than for the new task by adjusting the perturbation direction based on feature distance, with the single magnitude determined using the new-task validation set. This strategy makes the perturbation magnitude computed from the new task also applicable to old tasks, leveraging the tendency that the accuracy of old tasks is lower than that of the new task. We empirically show that T-CIL significantly outperforms various baselines in terms of calibration on real datasets and can be integrated with existing class-incremental learning techniques with minimal impact on accuracy.
Authors:Yujie Li, Guannan Lai, Xin Yang, Yonghao Li, Marcello Bonsangue, Tianrui Li
Title: Exploring Open-world Continual Learning with Knowns-Unknowns Knowledge Transfer
Abstract:
Open-World Continual Learning (OWCL) is a challenging paradigm where models must incrementally learn new knowledge without forgetting while operating under an open-world assumption. This requires handling incomplete training data and recognizing unknown samples during inference. However, existing OWCL methods often treat open detection and continual learning as separate tasks, limiting their ability to integrate open-set detection and incremental classification in OWCL. Moreover, current approaches primarily focus on transferring knowledge from known samples, neglecting the insights derived from unknown/open samples. To address these limitations, we formalize four distinct OWCL scenarios and conduct comprehensive empirical experiments to explore potential challenges in OWCL. Our findings reveal a significant interplay between the open detection of unknowns and incremental classification of knowns, challenging a widely held assumption that unknown detection and known classification are orthogonal processes. Building on our insights, we propose \textbf{HoliTrans} (Holistic Knowns-Unknowns Knowledge Transfer), a novel OWCL framework that integrates nonlinear random projection (NRP) to create a more linearly separable embedding space and distribution-aware prototypes (DAPs) to construct an adaptive knowledge space. Particularly, our HoliTrans effectively supports knowledge transfer for both known and unknown samples while dynamically updating representations of open samples during OWCL. Extensive experiments across various OWCL scenarios demonstrate that HoliTrans outperforms 22 competitive baselines, bridging the gap between OWCL theory and practice and providing a robust, scalable framework for advancing open-world learning paradigms.
Authors:Parisa Hamedi, Roozbeh Razavi-Far, Ehsan Hallaji
Title: Federated Continual Learning: Concepts, Challenges, and Solutions
Abstract:
Federated Continual Learning (FCL) has emerged as a robust solution for collaborative model training in dynamic environments, where data samples are continuously generated and distributed across multiple devices. This survey provides a comprehensive review of FCL, focusing on key challenges such as heterogeneity, model stability, communication overhead, and privacy preservation. We explore various forms of heterogeneity and their impact on model performance. Solutions to non-IID data, resource-constrained platforms, and personalized learning are reviewed in an effort to show the complexities of handling heterogeneous data distributions. Next, we review techniques for ensuring model stability and avoiding catastrophic forgetting, which are critical in non-stationary environments. Privacy-preserving techniques are another aspect of FCL that have been reviewed in this work. This survey has integrated insights from federated learning and continual learning to present strategies for improving the efficacy and scalability of FCL systems, making it applicable to a wide range of real-world scenarios.
Authors:Kyi Shin Khant, Hong Yi Lin, Patanamon Thongtanunam
Title: Should Code Models Learn Pedagogically? A Preliminary Evaluation of Curriculum Learning for Real-World Software Engineering Tasks
Abstract:
Learning-based techniques, especially advanced pre-trained models for code have demonstrated capabilities in code understanding and generation, solving diverse software engineering (SE) tasks. Despite the promising results, current training approaches may not fully optimize model performance, as they typically involve learning from randomly shuffled training data. Recent work shows that Curriculum Learning (CL) can improve performance on code-related tasks through incremental learning based on the difficulty of synthetic code. Yet, the effectiveness of CL with conventional difficulty measures in SE tasks remains largely unexplored. In this study, we explore two conventional code metrics: code length and cyclomatic complexity to determine the difficulty levels. We investigate how the pre-trained code model (CodeT5) learns under CL, through the tasks of code clone detection and code summarization. Our empirical study on the CodeXGLUE benchmark showed contrasting results to prior studies, where the model exhibited signs of catastrophic forgetting and shortcut learning. Surprisingly, model performance saturates after only the first quartile of training, potentially indicating a limit in the model's representation capacity and/or the task's inherent difficulty. Future work should further explore various CL strategies with different code models across a wider range of SE tasks for a more holistic understanding.
Authors:Zhongyi Zhou, Yaxin Peng, Pin Yi, Minjie Zhu, Chaomin Shen
Title: Fresh-CL: Feature Realignment through Experts on Hypersphere in Continual Learning
Abstract:
Continual Learning enables models to learn and adapt to new tasks while retaining prior knowledge. Introducing new tasks, however, can naturally lead to feature entanglement across tasks, limiting the model's capability to distinguish between new domain data. In this work, we propose a method called Feature Realignment through Experts on hyperSpHere in Continual Learning (Fresh-CL). By leveraging predefined and fixed simplex equiangular tight frame (ETF) classifiers on a hypersphere, our model improves feature separation both intra and inter tasks. However, the projection to a simplex ETF shifts with new tasks, disrupting structured feature representation of previous tasks and degrading performance. Therefore, we propose a dynamic extension of ETF through mixture of experts, enabling adaptive projections onto diverse subspaces to enhance feature representation. Experiments on 11 datasets demonstrate a 2% improvement in accuracy compared to the strongest baseline, particularly in fine-grained datasets, confirming the efficacy of combining ETF and MoE to improve feature distinction in continual learning scenarios.
Authors:Wenyao Ni, Jiangrong Shen, Qi Xu, Huajin Tang
Title: ALADE-SNN: Adaptive Logit Alignment in Dynamically Expandable Spiking Neural Networks for Class Incremental Learning
Abstract:
Inspired by the human brain's ability to adapt to new tasks without erasing prior knowledge, we develop spiking neural networks (SNNs) with dynamic structures for Class Incremental Learning (CIL). Our comparative experiments reveal that limited datasets introduce biases in logits distributions among tasks. Fixed features from frozen past-task extractors can cause overfitting and hinder the learning of new tasks. To address these challenges, we propose the ALADE-SNN framework, which includes adaptive logit alignment for balanced feature representation and OtoN suppression to manage weights mapping frozen old features to new classes during training, releasing them during fine-tuning. This approach dynamically adjusts the network architecture based on analytical observations, improving feature extraction and balancing performance between new and old tasks. Experiment results show that ALADE-SNN achieves an average incremental accuracy of 75.42 on the CIFAR100-B0 benchmark over 10 incremental steps. ALADE-SNN not only matches the performance of DNN-based methods but also surpasses state-of-the-art SNN-based continual learning algorithms. This advancement enhances continual learning in neuromorphic computing, offering a brain-inspired, energy-efficient solution for real-time data processing.
Authors:Yujin Wang, Quanfeng Liu, Jiaqi Fan, Jinlong Hong, Hongqing Chu, Mengjian Tian, Bingzhao Gao, Hong Chen
Title: RAC3: Retrieval-Augmented Corner Case Comprehension for Autonomous Driving with Vision-Language Models
Abstract:
Understanding and addressing corner cases is essential for ensuring the safety and reliability of autonomous driving systems. Vision-language models (VLMs) play a crucial role in enhancing scenario comprehension, yet they face significant challenges, such as hallucination and insufficient real-world grounding, which compromise their performance in critical driving scenarios. In this work, RAC3, a novel framework designed to enhance the performance of VLMs in corner case comprehension, is proposed. RAC3 integrates a frequency-spatial fusion (FSF) image encoder, a cross-modal alignment training method for embedding models with hard and semi-hard negative mining, and a fast querying and retrieval pipeline based on K-Means clustering and hierarchical navigable small world (HNSW) indexing. A multimodal chain-of-thought (CoT) prompting strategy to guide analogical reasoning and reduce hallucinations during inference is introduced. Moreover, an update mechanism is integrated into RAC3 to ensure continual learning within the framework. Extensive experiments on the CODA and nuScenes datasets demonstrate that RAC3 significantly improves corner case comprehension across multiple downstream tasks. Compared to prior state-of-the-art methods, RAC3 achieves the highest final score of 74.46 on the CODA-LM benchmark and shows consistent performance gains when integrated with end-to-end frameworks like DriveLM. These results demonstrate the effectiveness of retrieval-augmented strategies and cross-modal alignment for safer and more interpretable autonomous driving.
Authors:Anton Alexandrov, Veselin Raychev, Dimitar I. Dimitrov, Ce Zhang, Martin Vechev, Kristina Toutanova
Title: BgGPT 1.0: Extending English-centric LLMs to other languages
Abstract:
We present BgGPT-Gemma-2-27B-Instruct and BgGPT-Gemma-2-9B-Instruct: continually pretrained and fine-tuned versions of Google's Gemma-2 models, specifically optimized for Bulgarian language understanding and generation. Leveraging Gemma-2's multilingual capabilities and over 100 billion tokens of Bulgarian and English text data, our models demonstrate strong performance in Bulgarian language tasks, setting a new standard for language-specific AI models. Our approach maintains the robust capabilities of the original Gemma-2 models, ensuring that the English language performance remains intact. To preserve the base model capabilities, we incorporate continual learning strategies based on recent Branch-and-Merge techniques as well as thorough curation and selection of training data. We provide detailed insights into our methodology, including the release of model weights with a commercial-friendly license, enabling broader adoption by researchers, companies, and hobbyists. Further, we establish a comprehensive set of benchmarks based on non-public educational data sources to evaluate models on Bulgarian language tasks as well as safety and chat capabilities. Our findings demonstrate the effectiveness of fine-tuning state-of-the-art models like Gemma 2 to enhance language-specific AI applications while maintaining cross-lingual capabilities.
Authors:Ziyao Yi, Diego Valsesia, Tiziano Bianchi, Enrico Magli
Title: Deep Lidar-guided Image Deblurring
Abstract:
The rise of portable Lidar instruments, including their adoption in smartphones, opens the door to novel computational imaging techniques. Being an active sensing instrument, Lidar can provide complementary data to passive optical sensors, particularly in situations like low-light imaging where motion blur can affect photos. In this paper, we study if the depth information provided by mobile Lidar sensors is useful for the task of image deblurring and how to integrate it with a general approach that transforms any state-of-the-art neural deblurring model into a depth-aware one. To achieve this, we developed a universal adapter structure that efficiently preprocesses the depth information to modulate image features with depth features. Additionally, we applied a continual learning strategy to pretrained encoder-decoder models, enabling them to incorporate depth information as an additional input with minimal extra data requirements. We demonstrate that utilizing true depth information can significantly boost the effectiveness of deblurring algorithms, as validated on a dataset with real-world depth data captured by a smartphone Lidar.
Authors:Jin-Duk Park, Kyung-Min Kim, Won-Yong Shin
Title: CF-KAN: Kolmogorov-Arnold Network-based Collaborative Filtering to Mitigate Catastrophic Forgetting in Recommender Systems
Abstract:
Collaborative filtering (CF) remains essential in recommender systems, leveraging user--item interactions to provide personalized recommendations. Meanwhile, a number of CF techniques have evolved into sophisticated model architectures based on multi-layer perceptrons (MLPs). However, MLPs often suffer from catastrophic forgetting, and thus lose previously acquired knowledge when new information is learned, particularly in dynamic environments requiring continual learning. To tackle this problem, we propose CF-KAN, a new CF method utilizing Kolmogorov-Arnold networks (KANs). By learning nonlinear functions on the edge level, KANs are more robust to the catastrophic forgetting problem than MLPs. Built upon a KAN-based autoencoder, CF-KAN is designed in the sense of effectively capturing the intricacies of sparse user--item interactions and retaining information from previous data instances. Despite its simplicity, our extensive experiments demonstrate 1) CF-KAN's superiority over state-of-the-art methods in recommendation accuracy, 2) CF-KAN's resilience to catastrophic forgetting, underscoring its effectiveness in both static and dynamic recommendation scenarios, and 3) CF-KAN's edge-level interpretation facilitating the explainability of recommendations.
Authors:Qingyuan Hu, Christopher M. Poskitt, Jun Sun, Yuqi Chen
Title: Developing a Strong CPS Defender: An Evolutionary Approach
Abstract:
Cyber-physical systems (CPSs) are used extensively in critical infrastructure, underscoring the need for anomaly detection systems that are able to catch even the most motivated attackers. Traditional anomaly detection techniques typically do `one-off' training on datasets crafted by experts or generated by fuzzers, potentially limiting their ability to generalize to unseen and more subtle attack strategies. Stopping at this point misses a key opportunity: a defender can actively challenge the attacker to find more nuanced attacks, which in turn can lead to more effective detection capabilities. Building on this concept, we propose Evo-Defender, an evolutionary framework that iteratively strengthens CPS defenses through a dynamic attacker-defender interaction. Evo-Defender includes a smart attacker that employs guided fuzzing to explore diverse, non-redundant attack strategies, while the self-evolving defender uses incremental learning to adapt to new attack patterns. We implement Evo-Defender on two realistic CPS testbeds: the Tennessee Eastman process and a Robotic Arm Assembly Workstation, injecting over 600 attack scenarios. In end-to-end attack detection experiments, Evo-Defender achieves up to 2.7% higher performance than state-of-the-art baselines on unseen scenarios, while utilizing training data more efficiently for faster and more robust detection.
Authors:Giulia Lanzillotta, Damiano Meier, Thomas Hofmann
Title: Asymptotic analysis of shallow and deep forgetting in replay with Neural Collapse
Abstract:
A persistent paradox in continual learning (CL) is that neural networks often retain linearly separable representations of past tasks even when their output predictions fail. We formalize this distinction as the gap between deep feature-space and shallow classifier-level forgetting. We reveal a critical asymmetry in Experience Replay: while minimal buffers successfully anchor feature geometry and prevent deep forgetting, mitigating shallow forgetting typically requires substantially larger buffer capacities. To explain this, we extend the Neural Collapse framework to the sequential setting. We characterize deep forgetting as a geometric drift toward out-of-distribution subspaces and prove that any non-zero replay fraction asymptotically guarantees the retention of linear separability. Conversely, we identify that the "strong collapse" induced by small buffers leads to rank-deficient covariances and inflated class means, effectively blinding the classifier to true population boundaries. By unifying CL with out-of-distribution detection, our work challenges the prevailing reliance on large buffers, suggesting that explicitly correcting these statistical artifacts could unlock robust performance with minimal replay.
Authors:Stef Cuyckens, Xiaoling Yi, Robin Geens, Joren Dumoulin, Martin Wiesner, Chao Fang, Marian Verhelst
Title: Precision-Scalable Microscaling Datapaths with Optimized Reduction Tree for Efficient NPU Integration
Abstract:
Emerging continual learning applications necessitate next-generation neural processing unit (NPU) platforms to support both training and inference operations. The promising Microscaling (MX) standard enables narrow bit-widths for inference and large dynamic ranges for training. However, existing MX multiply-accumulate (MAC) designs face a critical trade-off: integer accumulation requires expensive conversions from narrow floating-point products, while FP32 accumulation suffers from quantization losses and costly normalization. To address these limitations, we propose a hybrid precision-scalable reduction tree for MX MACs that combines the benefits of both approaches, enabling efficient mixed-precision accumulation with controlled accuracy relaxation. Moreover, we integrate an 8x8 array of these MACs into the state-of-the-art (SotA) NPU integration platform, SNAX, to provide efficient control and data transfer to our optimized precision-scalable MX datapath. We evaluate our design both on MAC and system level and compare it to the SotA. Our integrated system achieves an energy efficiency of 657, 1438-1675, and 4065 GOPS/W, respectively, for MXINT8, MXFP8/6, and MXFP4, with a throughput of 64, 256, and 512 GOPS.
Authors:Huijing Zhang, Muyang Cao, Linshan Jiang, Xin Du, Di Yu, Changze Lv, Shuiguang Deng
Title: SAFA-SNN: Sparsity-Aware On-Device Few-Shot Class-Incremental Learning with Fast-Adaptive Structure of Spiking Neural Network
Abstract:
Continuous learning of novel classes is crucial for edge devices to preserve data privacy and maintain reliable performance in dynamic environments. However, the scenario becomes particularly challenging when data samples are insufficient, requiring on-device few-shot class-incremental learning (FSCIL) to maintain consistent model performance. Although existing work has explored parameter-efficient FSCIL frameworks based on artificial neural networks (ANNs), their deployment is still fundamentally constrained by limited device resources. Inspired by neural mechanisms, Spiking neural networks (SNNs) process spatiotemporal information efficiently, offering lower energy consumption, greater biological plausibility, and compatibility with neuromorphic hardware than ANNs. In this work, we present an SNN-based method for On-Device FSCIL, i.e., Sparsity-Aware and Fast Adaptive SNN (SAFA-SNN). We first propose sparsity-conditioned neuronal dynamics, in which most neurons remain stable while a subset stays active, thereby mitigating catastrophic forgetting. To further cope with spike non-differentiability in gradient estimation, we employ zeroth-order optimization. Moreover, during incremental learning sessions, we enhance the discriminability of new classes through subspace projection, which alleviates overfitting to novel classes. Extensive experiments conducted on two standard benchmark datasets (CIFAR100 and Mini-ImageNet) and three neuromorphic datasets (CIFAR-10-DVS, DVS128gesture, and N-Caltech101) demonstrate that SAFA-SNN outperforms baseline methods, specifically achieving at least 4.01% improvement at the last incremental session on Mini-ImageNet and 20% lower energy cost over baseline methods with practical implementation.
Authors:Jiazheng Kang, Le Huang, Cheng Hou, Zhe Zhao, Zhenxiang Yan, Chuan Shi, Ting Bai
Title: Self-Evolving LLMs via Continual Instruction Tuning
Abstract:
In real-world industrial settings, large language models (LLMs) must learn continually to keep pace with diverse and evolving tasks, requiring self-evolution to refine knowledge under dynamic data distributions. However, existing continual learning (CL) approaches, such as replay and parameter isolation, often suffer from catastrophic forgetting: training on new tasks degrades performance on earlier ones by overfitting to the new distribution and weakening generalization.We propose MoE-CL, a parameter-efficient adversarial mixture-of-experts framework for industrial-scale, self-evolving continual instruction tuning of LLMs. MoE-CL uses a dual-expert design: (1) a dedicated LoRA expert per task to preserve task-specific knowledge via parameter independence, mitigating forgetting; and (2) a shared LoRA expert to enable cross-task transfer. To prevent transferring task-irrelevant noise through the shared pathway, we integrate a task-aware discriminator within a GAN. The discriminator encourages the shared expert to pass only task-aligned information during sequential training. Through adversarial learning, the shared expert acquires generalized representations that mimic the discriminator, while dedicated experts retain task-specific details, balancing knowledge retention and cross-task generalization and thereby supporting self-evolution.Extensive experiments on the public MTL5 benchmark and an industrial Tencent3 benchmark validate the effectiveness of MoE-CL for continual instruction tuning. In real-world A/B testing for content compliance review on the Tencent Video platform, MoE-CL reduced manual review costs by 15.3%. These results demonstrate that MoE-CL is practical for large-scale industrial deployment where continual adaptation and stable transfer are critical.
Authors:Jacopo Graldi, Alessandro Breccia, Giulia Lanzillotta, Thomas Hofmann, Lorenzo Noci
Title: The Importance of Being Lazy: Scaling Limits of Continual Learning
Abstract:
Despite recent efforts, neural networks still struggle to learn in non-stationary environments, and our understanding of catastrophic forgetting (CF) is far from complete. In this work, we perform a systematic study on the impact of model scale and the degree of feature learning in continual learning. We reconcile existing contradictory observations on scale in the literature, by differentiating between lazy and rich training regimes through a variable parameterization of the architecture. We show that increasing model width is only beneficial when it reduces the amount of feature learning, yielding more laziness. Using the framework of dynamical mean field theory, we then study the infinite width dynamics of the model in the feature learning regime and characterize CF, extending prior theoretical results limited to the lazy regime. We study the intricate relationship between feature learning, task non-stationarity, and forgetting, finding that high feature learning is only beneficial with highly similar tasks. We identify a transition modulated by task similarity where the model exits an effectively lazy regime with low forgetting to enter a rich regime with significant forgetting. Finally, our findings reveal that neural networks achieve optimal performance at a critical level of feature learning, which depends on task non-stationarity and transfers across model scales. This work provides a unified perspective on the role of scale and feature learning in continual learning.
Authors:Mate Botond Nemeth, Emma Hart, Kevin Sim, Quentin Renau
Title: Class Incremental Learning for Algorithm Selection
Abstract:
Algorithm selection is commonly used to predict the best solver from a portfolio per per-instance. In many real scenarios, instances arrive in a stream: new instances become available over time, while the number of class labels can also grow as new data distributions arrive downstream. As a result, the classification model needs to be periodically updated to reflect additional solvers without catastrophic forgetting of past data. In machine-learning (ML), this is referred to as Class Incremental Learning (CIL). While commonly addressed in ML settings, its relevance to algorithm-selection in optimisation has not been previously studied. Using a bin-packing dataset, we benchmark 8 continual learning methods with respect to their ability to withstand catastrophic forgetting. We find that rehearsal-based methods significantly outperform other CIL methods. While there is evidence of forgetting, the loss is small at around 7%. Hence, these methods appear to be a viable approach to continual learning in streaming optimisation scenarios.
Authors:Stef Cuyckens, Xiaoling Yi, Nitish Satya Murthy, Chao Fang, Marian Verhelst
Title: Efficient Precision-Scalable Hardware for Microscaling (MX) Processing in Robotics Learning
Abstract:
Autonomous robots require efficient on-device learning to adapt to new environments without cloud dependency. For this edge training, Microscaling (MX) data types offer a promising solution by combining integer and floating-point representations with shared exponents, reducing energy consumption while maintaining accuracy. However, the state-of-the-art continuous learning processor, namely Dacapo, faces limitations with its MXINT-only support and inefficient vector-based grouping during backpropagation. In this paper, we present, to the best of our knowledge, the first work that addresses these limitations with two key innovations: (1) a precision-scalable arithmetic unit that supports all six MX data types by exploiting sub-word parallelism and unified integer and floating-point processing; and (2) support for square shared exponent groups to enable efficient weight handling during backpropagation, removing storage redundancy and quantization overhead. We evaluate our design against Dacapo under iso-peak-throughput on four robotics workloads in TSMC 16nm FinFET technology at 400MHz, reaching a 51% lower memory footprint, and 4x higher effective training throughput, while achieving comparable energy efficiency, enabling efficient robotics continual learning at the edge.
Authors:Wenyang Liao, Quanziang Wang, Yichen Wu, Renzhen Wang, Deyu Meng
Title: Data-Distill-Net: A Data Distillation Approach Tailored for Reply-based Continual Learning
Abstract:
Replay-based continual learning (CL) methods assume that models trained on a small subset can also effectively minimize the empirical risk of the complete dataset. These methods maintain a memory buffer that stores a sampled subset of data from previous tasks to consolidate past knowledge. However, this assumption is not guaranteed in practice due to the limited capacity of the memory buffer and the heuristic criteria used for buffer data selection. To address this issue, we propose a new dataset distillation framework tailored for CL, which maintains a learnable memory buffer to distill the global information from the current task data and accumulated knowledge preserved in the previous memory buffer. Moreover, to avoid the computational overhead and overfitting risks associated with parameterizing the entire buffer during distillation, we introduce a lightweight distillation module that can achieve global information distillation solely by generating learnable soft labels for the memory buffer data. Extensive experiments show that, our method can achieve competitive results and effectively mitigates forgetting across various datasets. The source code will be publicly available.
Authors:Zhikang Chen, Abudukelimu Wuerkaixi, Sen Cui, Haoxuan Li, Ding Li, Jingfeng Zhang, Bo Han, Gang Niu, Houfang Liu, Yi Yang, Sifan Yang, Changshui Zhang, Tianling Ren
Title: Learning without Isolation: Pathway Protection for Continual Learning
Abstract:
Deep networks are prone to catastrophic forgetting during sequential task learning, i.e., losing the knowledge about old tasks upon learning new tasks. To this end, continual learning(CL) has emerged, whose existing methods focus mostly on regulating or protecting the parameters associated with the previous tasks. However, parameter protection is often impractical, since the size of parameters for storing the old-task knowledge increases linearly with the number of tasks, otherwise it is hard to preserve the parameters related to the old-task knowledge. In this work, we bring a dual opinion from neuroscience and physics to CL: in the whole networks, the pathways matter more than the parameters when concerning the knowledge acquired from the old tasks. Following this opinion, we propose a novel CL framework, learning without isolation(LwI), where model fusion is formulated as graph matching and the pathways occupied by the old tasks are protected without being isolated. Thanks to the sparsity of activation channels in a deep network, LwI can adaptively allocate available pathways for a new task, realizing pathway protection and addressing catastrophic forgetting in a parameter-efficient manner. Experiments on popular benchmark datasets demonstrate the superiority of the proposed LwI.
Authors:Juncen Guo, Siao Liu, Xiaoguang Zhu, Lianlong Sun, Liangyu Teng, Jingyi Wu, Di Li, Linxiao Gong, Weiwei Jiang, Wei Zhou, Ahmed Ghoneim, Liang Song
Title: CalFuse: Feature Calibration Enhanced Parameter Fusion for Class-Continual Learning
Abstract:
Class-Continual Learning (CCL) enables models to continuously learn new class knowledge while retaining previous classes, facilitating adaptation and evolution in dynamic, real-world environments. Traditional CCL methods primarily rely on visual features, which limits their effectiveness in complex, multimodal scenarios. In contrast, Vision-Language Models (VLMs) show promising potential for enhancing CCL by leveraging pre-trained knowledge and fusing multi-modal semantic cues such as text and vision. However, existing approaches struggle to mitigate catastrophic forgetting while preserving the generalization strengths of VLMs across diverse modalities. To address these challenges, we propose CalFuse, a framework for feature Calibration enhanced parameter Fusion, which enhances dynamic knowledge fusion. CalFuse introduces a dynamic feature calibration mechanism that iteratively adjusts the contribution of original visual features to the final class decision, thereby preserving the model's intrinsic generalization capability across modalities. Simultaneously, a parameter fusion strategy effectively fuses newly acquired knowledge with prior task parameters, maintaining a balance between acquiring new class representations and preserving old knowledge. Experimental results on popular benchmarks (e.g., CIFAR100 and ImageNet100) validate the superiority of the proposed method.
Authors:Dimitri Ognibene, Sabrina Patania, Luca Annese, Cansu Koyuturk, Franca Garzotto, Giuseppe Vizzari, Azzurra Ruggeri, Simone Colombani
Title: SCOOP: A Framework for Proactive Collaboration and Social Continual Learning through Natural Language Interaction andCausal Reasoning
Abstract:
Multimodal information-gathering settings, where users collaborate with AI in dynamic environments, are increasingly common. These involve complex processes with textual and multimodal interactions, often requiring additional structural information via cost-incurring requests. AI helpers lack access to users' true goals, beliefs, and preferences and struggle to integrate diverse information effectively. We propose a social continual learning framework for causal knowledge acquisition and collaborative decision-making. It focuses on autonomous agents learning through dialogues, question-asking, and interaction in open, partially observable environments. A key component is a natural language oracle that answers the agent's queries about environmental mechanisms and states, refining causal understanding while balancing exploration or learning, and exploitation or knowledge use. Evaluation tasks inspired by developmental psychology emphasize causal reasoning and question-asking skills. They complement benchmarks by assessing the agent's ability to identify knowledge gaps, generate meaningful queries, and incrementally update reasoning. The framework also evaluates how knowledge acquisition costs are amortized across tasks within the same environment. We propose two architectures: 1) a system combining Large Language Models (LLMs) with the ReAct framework and question-generation, and 2) an advanced system with a causal world model, symbolic, graph-based, or subsymbolic, for reasoning and decision-making. The latter builds a causal knowledge graph for efficient inference and adaptability under constraints. Challenges include integrating causal reasoning into ReAct and optimizing exploration and question-asking in error-prone scenarios. Beyond applications, this framework models developmental processes combining causal reasoning, question generation, and social learning.
Authors:Kenta Tsukahara, Kanji Tanaka, Daiki Iwata, Jonathan Tay Yu Liang
Title: Continual Multi-Robot Learning from Black-Box Visual Place Recognition Models
Abstract:
In the context of visual place recognition (VPR), continual learning (CL) techniques offer significant potential for avoiding catastrophic forgetting when learning new places. However, existing CL methods often focus on knowledge transfer from a known model to a new one, overlooking the existence of unknown black-box models. We explore a novel multi-robot CL approach that enables knowledge transfer from black-box VPR models (teachers), such as those of local robots encountered by traveler robots (students) in unknown environments. Specifically, we introduce Membership Inference Attack, or MIA, the only major privacy attack applicable to black-box models, and leverage it to reconstruct pseudo training sets, which serve as the key knowledge to be exchanged between robots, from black-box VPR models. Furthermore, we aim to overcome the inherently low sampling efficiency of MIA by leveraging insights on place class prediction distribution and un-learned class detection imported from the VPR literature as a prior distribution. We also analyze both the individual effects of these methods and their combined impact. Experimental results demonstrate that our black-box MIA (BB-MIA) approach is remarkably powerful despite its simplicity, significantly enhancing the VPR capability of lower-performing robots through brief communication with other robots. This study contributes to optimizing knowledge sharing between robots in VPR and enhancing autonomy in open-world environments with multi-robot systems that are fault-tolerant and scalable.
Authors:Amin Heyrani Nobari, Kaveh Alimohammadi, Ali ArjomandBigdeli, Akash Srivastava, Faez Ahmed, Navid Azizan
Title: Activation-Informed Merging of Large Language Models
Abstract:
Model merging, a method that combines the parameters and embeddings of multiple fine-tuned large language models (LLMs), offers a promising approach to enhance model performance across various tasks while maintaining computational efficiency. This paper introduces Activation-Informed Merging (AIM), a technique that integrates the information from the activation space of LLMs into the merging process to improve performance and robustness. AIM is designed as a flexible, complementary solution that is applicable to any existing merging method. It aims to preserve critical weights from the base model, drawing on principles from continual learning (CL) and model compression. Utilizing a task-agnostic calibration set, AIM selectively prioritizes essential weights during merging. We empirically demonstrate that AIM significantly enhances the performance of merged models across multiple benchmarks. Our findings suggest that considering the activation-space information can provide substantial advancements in the model merging strategies for LLMs, with up to a 40% increase in benchmark performance.
Authors:Jie Ying, Tiantian Zhu, Aohan Zheng, Tieming Chen, Mingqi Lv, Yan Chen
Title: METANOIA: A Lifelong Intrusion Detection and Investigation System for Mitigating Concept Drift
Abstract:
As Advanced Persistent Threat (APT) complexity increases, provenance data is increasingly used for detection. Anomaly-based systems are gaining attention due to their attack-knowledge-agnostic nature and ability to counter zero-day vulnerabilities. However, traditional detection paradigms, which train on offline, limited-size data, often overlook concept drift - unpredictable changes in streaming data distribution over time. This leads to high false positive rates. We propose incremental learning as a new paradigm to mitigate this issue. However, we identify FOUR CHALLENGES while integrating incremental learning as a new paradigm. First, the long-running incremental system must combat catastrophic forgetting (C1) and avoid learning malicious behaviors (C2). Then, the system needs to achieve precise alerts (C3) and reconstruct attack scenarios (C4). We present METANOIA, the first lifelong detection system that mitigates the high false positives due to concept drift. It connects pseudo edges to combat catastrophic forgetting, transfers suspicious states to avoid learning malicious behaviors, filters nodes at the path-level to achieve precise alerts, and constructs mini-graphs to reconstruct attack scenarios. Using state-of-the-art benchmarks, we demonstrate that METANOIA improves precision performance at the window-level, graph-level, and node-level by 30%, 54%, and 29%, respectively, compared to previous approaches.
Authors:Jie Jing, Qing Lin, Shuangpeng Han, Lucia Schiatti, Yen-Ling Kuo, Mengmi Zhang
Title: Unforgettable Lessons from Forgettable Images: Intra-Class Memorability Matters in Computer Vision
Abstract:
We introduce intra-class memorability, where certain images within the same class are more memorable than others despite shared category characteristics. To investigate what features make one object instance more memorable than others, we design and conduct human behavior experiments, where participants are shown a series of images, and they must identify when the current image matches the image presented a few steps back in the sequence. To quantify memorability, we propose the Intra-Class Memorability score (ICMscore), a novel metric that incorporates the temporal intervals between repeated image presentations into its calculation. Furthermore, we curate the Intra-Class Memorability Dataset (ICMD), comprising over 5,000 images across ten object classes with their ICMscores derived from 2,000 participants' responses. Subsequently, we demonstrate the usefulness of ICMD by training AI models on this dataset for various downstream tasks: memorability prediction, image recognition, continual learning, and memorability-controlled image editing. Surprisingly, high-ICMscore images impair AI performance in image recognition and continual learning tasks, while low-ICMscore images improve outcomes in these tasks. Additionally, we fine-tune a state-of-the-art image diffusion model on ICMD image pairs with and without masked semantic objects. The diffusion model can successfully manipulate image elements to enhance or reduce memorability. Our contributions open new pathways in understanding intra-class memorability by scrutinizing fine-grained visual features behind the most and least memorable images and laying the groundwork for real-world applications in computer vision. We will release all code, data, and models publicly.
Authors:Jing Wang, Wonho Bae, Jiahong Chen, Kuangen Zhang, Leonid Sigal, Clarence W. de Silva
Title: What Has Been Overlooked in Contrastive Source-Free Domain Adaptation: Leveraging Source-Informed Latent Augmentation within Neighborhood Context
Abstract:
Source-free domain adaptation (SFDA) involves adapting a model originally trained using a labeled dataset ({\em source domain}) to perform effectively on an unlabeled dataset ({\em target domain}) without relying on any source data during adaptation. This adaptation is especially crucial when significant disparities in data distributions exist between the two domains and when there are privacy concerns regarding the source model's training data. The absence of access to source data during adaptation makes it challenging to analytically estimate the domain gap. To tackle this issue, various techniques have been proposed, such as unsupervised clustering, contrastive learning, and continual learning. In this paper, we first conduct an extensive theoretical analysis of SFDA based on contrastive learning, primarily because it has demonstrated superior performance compared to other techniques. Motivated by the obtained insights, we then introduce a straightforward yet highly effective latent augmentation method tailored for contrastive SFDA. This augmentation method leverages the dispersion of latent features within the neighborhood of the query sample, guided by the source pre-trained model, to enhance the informativeness of positive keys. Our approach, based on a single InfoNCE-based contrastive loss, outperforms state-of-the-art SFDA methods on widely recognized benchmark datasets.
Authors:Baocai Yin, Ji Zhao, Huajie Jiang, Ningning Hou, Yongli Hu, Amin Beheshti, Ming-Hsuan Yang, Yuankai Qi
Title: Adapter-Enhanced Semantic Prompting for Continual Learning
Abstract:
Continual learning (CL) enables models to adapt to evolving data streams. A major challenge of CL is catastrophic forgetting, where new knowledge will overwrite previously acquired knowledge. Traditional methods usually retain the past data for replay or add additional branches in the model to learn new knowledge, which has high memory requirements. In this paper, we propose a novel lightweight CL framework, Adapter-Enhanced Semantic Prompting (AESP), which integrates prompt tuning and adapter techniques. Specifically, we design semantic-guided prompts to enhance the generalization ability of visual features and utilize adapters to efficiently fuse the semantic information, aiming to learn more adaptive features for the continual learning task. Furthermore, to choose the right task prompt for feature adaptation, we have developed a novel matching mechanism for prompt selection. Extensive experiments on three CL datasets demonstrate that our approach achieves favorable performance across multiple metrics, showing its potential for advancing CL.
Authors:Lin-Feng Mei, Wang-Ji Yan
Title: DPGIIL: Dirichlet Process-Deep Generative Model-Integrated Incremental Learning for Clustering in Transmissibility-based Online Structural Anomaly Detection
Abstract:
Clustering based on vibration responses, such as transmissibility functions (TFs), is promising in structural anomaly detection, but most existing approaches struggle with determining the optimal cluster number and handling high-dimensional streaming data, while their shallow structures also make them sensitive to manually-engineered feature quality. To bridge this gap, this work proposes the Dirichlet process-deep generative model-integrated incremental learning (DPGIIL) for clustering by combining the advantages of deep generative models (DGMs) in representation learning and the Dirichlet process mixture model (DPMM) in identifying distinct patterns in observed data. By introducing a DPMM prior into the latent space of DGMs, DPGIIL automatically captures dissimilarities in extracted latent representations, enabling both generative modeling and clustering. Within the context of variational Bayesian inference, a lower bound on the log marginal likelihood of DPGIIL, tighter than the evidence lower bound given sufficient training data, is derived analytically, which enables the joint optimization of DGM and DPMM parameters, thereby allowing the DPMM to regularize the DGM's feature extraction process. Additionally, a greedy split-merge scheme-based coordinate ascent variational inference method is devised to accelerate the optimization. The summary statistics of the DPMM, along with the network parameters, are used to retain information about previous data for incremental learning. Notably, this study uses variational autoencoder (VAE) within DPGIIL as an illustrative example, while this framework is adaptable to other DGMs. Two case studies show that the proposed method outperforms some state-of-the-art approaches in structural anomaly detection and clustering, while also dynamically generating new clusters to indicate the emergence of new structural conditions for online monitoring.
Authors:Prajwal Singh, Ashish Tiwari, Gautam Vashishtha, Shanmuganathan Raman
Title: Incremental Multi-Scene Modeling via Continual Neural Graphics Primitives
Abstract:
Neural radiance fields (NeRF) have revolutionized photorealistic rendering of novel views for 3D scenes. Despite their growing popularity and efficiency as 3D resources, NeRFs face scalability challenges due to the need for separate models per scene and the cumulative increase in training time for multiple scenes. The potential for incrementally encoding multiple 3D scenes into a single NeRF model remains largely unexplored. To address this, we introduce Continual-Neural Graphics Primitives (C-NGP), a novel continual learning framework that integrates multiple scenes incrementally into a single neural radiance field. Using a generative replay approach, C-NGP adapts to new scenes without requiring access to old data. We demonstrate that C-NGP can accommodate multiple scenes without increasing the parameter count, producing high-quality novel-view renderings on synthetic and real datasets. Notably, C-NGP models all $8$ scenes from the Real-LLFF dataset together, with only a $2.2\%$ drop in PSNR compared to vanilla NeRF, which models each scene independently. Further, C-NGP allows multiple style edits in the same network.
Authors:Huashan Sun, Yizhe Yang, Yinghao Li, Jiawei Li, Yang Gao
Title: Unveiling and Addressing Pseudo Forgetting in Large Language Models
Abstract:
Although substantial efforts have been made to mitigate catastrophic forgetting in continual learning, the intrinsic mechanisms are not well understood. In this work, we demonstrate the existence of "pseudo forgetting": the performance degradation on previous tasks is not attributed to a loss of capabilities, but rather to the failure of the instructions to activate the appropriate model abilities. We show that the model's performance on previous tasks can be restored through two simple interventions: (1) providing partial external correct rationale, and (2) appending semantically meaningless suffixes to the original instructions, to guide the generation of correct rationales. Through empirical analysis of the internal mechanisms governing rationale generation, we reveal that models exhibiting pseudo forgetting show reduced instruction dependence during rationale generation, leading to suboptimal activation of their inherent capabilities. Based on this insight, we propose Rationale-Guidance Difficulty based Replay (RGD-R) framework that dynamically allocates replay data based on the model's ability to correctly leverage the intrinsic capabilities. Experimental results demonstrate that RGD-R effectively mitigates pseudo forgetting while maintaining model plasticity.
Authors:Howard Chen, Jiayi Geng, Adithya Bhaskar, Dan Friedman, Danqi Chen
Title: Continual Memorization of Factoids in Language Models
Abstract:
As new knowledge rapidly accumulates, language models (LMs) with pretrained knowledge quickly become obsolete. A common approach to updating LMs is fine-tuning them directly on new knowledge. However, recent studies have shown that fine-tuning for memorization may be ineffective in storing knowledge or may exacerbate hallucinations. In this work, we introduce a setting we call continual memorization, where a model must memorize and retain a set of factoids through multiple stages of fine-tuning on subsequent datasets. We characterized the forgetting patterns through extensive experiments and show that LMs widely suffer from forgetting, especially when needing to memorize factoids in the second stage. We posit that forgetting can be alleviated by modifying training dynamics: (1) protecting the memorization process when learning factoids or (2) reducing interference from subsequent training stages. Intriguingly, we find that mixing randomly generated word sequences or generic data sampled from pretraining corpora at different training stages effectively mitigates forgetting REMIX: Random and Generic Data Mixing). REMIX can recover performance from severe forgetting, outperforming replay methods and other continual learning baselines. We analyze how REMIX influences the learning process and find that robust memorization follows a distinct pattern: the model stores factoids in earlier layers than usual and diversifies the layers that retain them, which results in easier recall and manipulate of the learned factoids.
Authors:Hongsheng Zhang, Zhong Ji, Jingren Liu, Yanwei Pang, Jungong Han
Title: Multi-Stage Knowledge Integration of Vision-Language Models for Continual Learning
Abstract:
Vision Language Models (VLMs), pre-trained on large-scale image-text datasets, enable zero-shot predictions for unseen data but may underperform on specific unseen tasks. Continual learning (CL) can help VLMs effectively adapt to new data distributions without joint training, but faces challenges of catastrophic forgetting and generalization forgetting. Although significant progress has been achieved by distillation-based methods, they exhibit two severe limitations. One is the popularly adopted single-teacher paradigm fails to impart comprehensive knowledge, The other is the existing methods inadequately leverage the multimodal information in the original training dataset, instead they rely on additional data for distillation, which increases computational and storage overhead. To mitigate both limitations, by drawing on Knowledge Integration Theory (KIT), we propose a Multi-Stage Knowledge Integration network (MulKI) to emulate the human learning process in distillation methods. MulKI achieves this through four stages, including Eliciting Ideas, Adding New Ideas, Distinguishing Ideas, and Making Connections. During the four stages, we first leverage prototypes to align across modalities, eliciting cross-modal knowledge, then adding new knowledge by constructing fine-grained intra- and inter-modality relationships with prototypes. After that, knowledge from two teacher models is adaptively distinguished and re-weighted. Finally, we connect between models from intra- and inter-task, integrating preceding and new knowledge. Our method demonstrates significant improvements in maintaining zero-shot capabilities while supporting continual learning across diverse downstream tasks, showcasing its potential in adapting VLMs to evolving data distributions.
Authors:Luckeciano C. Melo, Alessandro Abate, Yarin Gal
Title: Temporal-Difference Variational Continual Learning
Abstract:
Machine Learning models in real-world applications must continuously learn new tasks to adapt to shifts in the data-generating distribution. Yet, for Continual Learning (CL), models often struggle to balance learning new tasks (plasticity) with retaining previous knowledge (memory stability). Consequently, they are susceptible to Catastrophic Forgetting, which degrades performance and undermines the reliability of deployed systems. In the Bayesian CL literature, variational methods tackle this challenge by employing a learning objective that recursively updates the posterior distribution while constraining it to stay close to its previous estimate. Nonetheless, we argue that these methods may be ineffective due to compounding approximation errors over successive recursions. To mitigate this, we propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations, preventing individual errors from dominating future posterior updates and compounding over time. We reveal insightful connections between these objectives and Temporal-Difference methods, a popular learning mechanism in Reinforcement Learning and Neuroscience. Experiments on challenging CL benchmarks show that our approach effectively mitigates Catastrophic Forgetting, outperforming strong Variational CL methods.
Authors:Joanna Sliwa, Frank Schneider, Nathanael Bosch, Agustinus Kristiadi, Philipp Hennig
Title: Efficient Weight-Space Laplace-Gaussian Filtering and Smoothing for Sequential Deep Learning
Abstract:
Efficiently learning a sequence of related tasks, such as in continual learning, poses a significant challenge for neural nets due to the delicate trade-off between catastrophic forgetting and loss of plasticity. We address this challenge with a grounded framework for sequentially learning related tasks based on Bayesian inference. Specifically, we treat the model's parameters as a nonlinear Gaussian state-space model and perform efficient inference using Gaussian filtering and smoothing. This general formalism subsumes existing continual learning approaches, while also offering a clearer conceptual understanding of its components. Leveraging Laplace approximations during filtering, we construct Gaussian posterior measures on the weight space of a neural network for each task. We use it as an efficient regularizer by exploiting the structure of the generalized Gauss-Newton matrix (GGN) to construct diagonal plus low-rank approximations. The dynamics model allows targeted control of the learning process and the incorporation of domain-specific knowledge, such as modeling the type of shift between tasks. Additionally, using Bayesian approximate smoothing can enhance the performance of task-specific models without needing to re-access any data.
Authors:Kouki Terashima, Daiki Iwata, Kanji Tanaka
Title: CON: Continual Object Navigation via Data-Free Inter-Agent Knowledge Transfer in Unseen and Unfamiliar Places
Abstract:
This work explores the potential of brief inter-agent knowledge transfer (KT) to enhance the robotic object goal navigation (ON) in unseen and unfamiliar environments. Drawing on the analogy of human travelers acquiring local knowledge, we propose a framework in which a traveler robot (student) communicates with local robots (teachers) to obtain ON knowledge through minimal interactions. We frame this process as a data-free continual learning (CL) challenge, aiming to transfer knowledge from a black-box model (teacher) to a new model (student). In contrast to approaches like zero-shot ON using large language models (LLMs), which utilize inherently communication-friendly natural language for knowledge representation, the other two major ON approaches -- frontier-driven methods using object feature maps and learning-based ON using neural state-action maps -- present complex challenges where data-free KT remains largely uncharted. To address this gap, we propose a lightweight, plug-and-play KT module targeting non-cooperative black-box teachers in open-world settings. Using the universal assumption that every teacher robot has vision and mobility capabilities, we define state-action history as the primary knowledge base. Our formulation leads to the development of a query-based occupancy map that dynamically represents target object locations, serving as an effective and communication-friendly knowledge representation. We validate the effectiveness of our method through experiments conducted in the Habitat environment.
Authors:Simone Marullo, Matteo Tiezzi, Marco Gori, Stefano Melacci
Title: Continual Learning of Conjugated Visual Representations through Higher-order Motion Flows
Abstract:
Learning with neural networks from a continuous stream of visual information presents several challenges due to the non-i.i.d. nature of the data. However, it also offers novel opportunities to develop representations that are consistent with the information flow. In this paper we investigate the case of unsupervised continual learning of pixel-wise features subject to multiple motion-induced constraints, therefore named motion-conjugated feature representations. Differently from existing approaches, motion is not a given signal (either ground-truth or estimated by external modules), but is the outcome of a progressive and autonomous learning process, occurring at various levels of the feature hierarchy. Multiple motion flows are estimated with neural networks and characterized by different levels of abstractions, spanning from traditional optical flow to other latent signals originating from higher-level features, hence called higher-order motions. Continuously learning to develop consistent multi-order flows and representations is prone to trivial solutions, which we counteract by introducing a self-supervised contrastive loss, spatially-aware and based on flow-induced similarity. We assess our model on photorealistic synthetic streams and real-world videos, comparing to pre-trained state-of-the art feature extractors (also based on Transformers) and to recent unsupervised learning models, significantly outperforming these alternatives.
Authors:Idan Shenfeld, Mehul Damani, Jonas Hübotter, Pulkit Agrawal
Title: Self-Distillation Enables Continual Learning
Abstract:
Continual learning, enabling models to acquire new skills and knowledge without degrading existing capabilities, remains a fundamental challenge for foundation models. While on-policy reinforcement learning can reduce forgetting, it requires explicit reward functions that are often unavailable. Learning from expert demonstrations, the primary alternative, is dominated by supervised fine-tuning (SFT), which is inherently off-policy. We introduce Self-Distillation Fine-Tuning (SDFT), a simple method that enables on-policy learning directly from demonstrations. SDFT leverages in-context learning by using a demonstration-conditioned model as its own teacher, generating on-policy training signals that preserve prior capabilities while acquiring new skills. Across skill learning and knowledge acquisition tasks, SDFT consistently outperforms SFT, achieving higher new-task accuracy while substantially reducing catastrophic forgetting. In sequential learning experiments, SDFT enables a single model to accumulate multiple skills over time without performance regression, establishing on-policy distillation as a practical path to continual learning from demonstrations.
Authors:Jiajun Chen, Yue Wu, Kai Huang, Wen Xi, Yangyang Wu, Xiaoye Miao, Mengying Zhu, Meng Xi, Guanjie Cheng
Title: E2PL: Effective and Efficient Prompt Learning for Incomplete Multi-view Multi-Label Class Incremental Learning
Abstract:
Multi-view multi-label classification (MvMLC) is indispensable for modern web applications aggregating information from diverse sources. However, real-world web-scale settings are rife with missing views and continuously emerging classes, which pose significant obstacles to robust learning. Prevailing methods are ill-equipped for this reality, as they either lack adaptability to new classes or incur exponential parameter growth when handling all possible missing-view patterns, severely limiting their scalability in web environments. To systematically address this gap, we formally introduce a novel task, termed \emph{incomplete multi-view multi-label class incremental learning} (IMvMLCIL), which requires models to simultaneously address heterogeneous missing views and dynamic class expansion. To tackle this task, we propose \textsf{E2PL}, an Effective and Efficient Prompt Learning framework for IMvMLCIL. \textsf{E2PL} unifies two novel prompt designs: \emph{task-tailored prompts} for class-incremental adaptation and \emph{missing-aware prompts} for the flexible integration of arbitrary view-missing scenarios. To fundamentally address the exponential parameter explosion inherent in missing-aware prompts, we devise an \emph{efficient prototype tensorization} module, which leverages atomic tensor decomposition to elegantly reduce the prompt parameter complexity from exponential to linear w.r.t. the number of views. We further incorporate a \emph{dynamic contrastive learning} strategy explicitly model the complex dependencies among diverse missing-view patterns, thus enhancing the model's robustness. Extensive experiments on three benchmarks demonstrate that \textsf{E2PL} consistently outperforms state-of-the-art methods in both effectiveness and efficiency. The codes and datasets are available at https://anonymous.4open.science/r/code-for-E2PL.
Authors:Bo Yuan, Danpei Zhao, Wentao Li, Tian Li, Zhiguo Jiang
Title: Evolving Without Ending: Unifying Multimodal Incremental Learning for Continual Panoptic Perception
Abstract:
Continual learning (CL) is a great endeavour in developing intelligent perception AI systems. However, the pioneer research has predominantly focus on single-task CL, which restricts the potential in multi-task and multimodal scenarios. Beyond the well-known issue of catastrophic forgetting, the multi-task CL also brings semantic obfuscation across multimodal alignment, leading to severe model degradation during incremental training steps. In this paper, we extend CL to continual panoptic perception (CPP), integrating multimodal and multi-task CL to enhance comprehensive image perception through pixel-level, instance-level, and image-level joint interpretation. We formalize the CL task in multimodal scenarios and propose an end-to-end continual panoptic perception model. Concretely, CPP model features a collaborative cross-modal encoder (CCE) for multimodal embedding. We also propose a malleable knowledge inheritance module via contrastive feature distillation and instance distillation, addressing catastrophic forgetting from task-interactive boosting manner. Furthermore, we propose a cross-modal consistency constraint and develop CPP+, ensuring multimodal semantic alignment for model updating under multi-task incremental scenarios. Additionally, our proposed model incorporates an asymmetric pseudo-labeling manner, enabling model evolving without exemplar replay. Extensive experiments on multimodal datasets and diverse CL tasks demonstrate the superiority of the proposed model, particularly in fine-grained CL tasks.
Authors:Zhipeng Liu, Peibo Duan, Xuan Tang, Haodong Jing, Mingyang Geng, Yongsheng Huang, Jialu Xu, Bin Zhang, Binwu Wang
Title: We Need a More Robust Classifier: Dual Causal Learning Empowers Domain-Incremental Time Series Classification
Abstract:
The World Wide Web thrives on intelligent services that rely on accurate time series classification, which has recently witnessed significant progress driven by advances in deep learning. However, existing studies face challenges in domain incremental learning. In this paper, we propose a lightweight and robust dual-causal disentanglement framework (DualCD) to enhance the robustness of models under domain incremental scenarios, which can be seamlessly integrated into time series classification models. Specifically, DualCD first introduces a temporal feature disentanglement module to capture class-causal features and spurious features. The causal features can offer sufficient predictive power to support the classifier in domain incremental learning settings. To accurately capture these causal features, we further design a dual-causal intervention mechanism to eliminate the influence of both intra-class and inter-class confounding features. This mechanism constructs variant samples by combining the current class's causal features with intra-class spurious features and with causal features from other classes. The causal intervention loss encourages the model to accurately predict the labels of these variant samples based solely on the causal features. Extensive experiments on multiple datasets and models demonstrate that DualCD effectively improves performance in domain incremental scenarios. We summarize our rich experiments into a comprehensive benchmark to facilitate research in domain incremental time series classification.
Authors:Kexin Baoa, Fanzhao Lin, Zichen Wang, Yong Li, Dan Zeng, Shiming Ge
Title: PKI: Prior Knowledge-Infused Neural Network for Few-Shot Class-Incremental Learning
Abstract:
Few-shot class-incremental learning (FSCIL) aims to continually adapt a model on a limited number of new-class examples, facing two well-known challenges: catastrophic forgetting and overfitting to new classes. Existing methods tend to freeze more parts of network components and finetune others with an extra memory during incremental sessions. These methods emphasize preserving prior knowledge to ensure proficiency in recognizing old classes, thereby mitigating catastrophic forgetting. Meanwhile, constraining fewer parameters can help in overcoming overfitting with the assistance of prior knowledge. Following previous methods, we retain more prior knowledge and propose a prior knowledge-infused neural network (PKI) to facilitate FSCIL. PKI consists of a backbone, an ensemble of projectors, a classifier, and an extra memory. In each incremental session, we build a new projector and add it to the ensemble. Subsequently, we finetune the new projector and the classifier jointly with other frozen network components, ensuring the rich prior knowledge is utilized effectively. By cascading projectors, PKI integrates prior knowledge accumulated from previous sessions and learns new knowledge flexibly, which helps to recognize old classes and efficiently learn new classes. Further, to reduce the resource consumption associated with keeping many projectors, we design two variants of the prior knowledge-infused neural network (PKIV-1 and PKIV-2) to trade off a balance between resource consumption and performance by reducing the number of projectors. Extensive experiments on three popular benchmarks demonstrate that our approach outperforms state-of-the-art methods.
Authors:Kexin Bao, Daichi Zhang, Yong Li, Dan Zeng, Shiming Ge
Title: Divide and Conquer: Static-Dynamic Collaboration for Few-Shot Class-Incremental Learning
Abstract:
Few-shot class-incremental learning (FSCIL) aims to continuously recognize novel classes under limited data, which suffers from the key stability-plasticity dilemma: balancing the retention of old knowledge with the acquisition of new knowledge. To address this issue, we divide the task into two different stages and propose a framework termed Static-Dynamic Collaboration (SDC) to achieve a better trade-off between stability and plasticity. Specifically, our method divides the normal pipeline of FSCIL into Static Retaining Stage (SRS) and Dynamic Learning Stage (DLS), which harnesses old static and incremental dynamic class information, respectively. During SRS, we train an initial model with sufficient data in the base session and preserve the key part as static memory to retain fundamental old knowledge. During DLS, we introduce an extra dynamic projector jointly trained with the previous static memory. By employing both stages, our method achieves improved retention of old knowledge while continuously adapting to new classes. Extensive experiments on three public benchmarks and a real-world application dataset demonstrate that our method achieves state-of-the-art performance against other competitors.
Authors:Shuyu Zhang, Yujie Liu, Xinru Wang, Cheng Zhang, Yanmin Zhu, Bin Li
Title: DarwinTOD: LLM Driven Lifelong Self Evolution for Task Oriented Dialog Systems
Abstract:
Traditional task-oriented dialog systems are unable to evolve from ongoing interactions or adapt to new domains after deployment, that is a critical limitation in real-world dynamic environments. Continual learning approaches depend on episodic retraining with human curated data, failing to achieve autonomy lifelong improvement. While evolutionary computation and LLM driven self improvement offer promising mechanisms for dialog optimization, they lack a unified framework for holistic, iterative strategy refinement. To bridge this gap, we propose DarwinTOD, a lifelong self evolving dialog framework that systematically integrates these two paradigms, enabling continuous strategy optimization from a zero-shot base without task specific fine-tuning. DarwinTOD maintains an Evolvable Strategy Bank and operates through a dual-loop process: online multi-agent dialog execution with peer critique, and offline structured evolutionary operations that refine the strategy bank using accumulated feedback. This closed-loop design enables autonomous continuous improvement without human intervention. Extensive experiments show that DarwinTOD surpasses previous state-of-the-art methods and exhibits continuous performance gains throughout evolution. Our work provides a novel framework for building dialog systems with lifelong self evolution capabilities.
Authors:Kexin Bao, Yong Li, Dan Zeng, Shiming Ge
Title: Few-shot Class-Incremental Learning via Generative Co-Memory Regularization
Abstract:
Few-shot class-incremental learning (FSCIL) aims to incrementally learn models from a small amount of novel data, which requires strong representation and adaptation ability of models learned under few-example supervision to avoid catastrophic forgetting on old classes and overfitting to novel classes. This work proposes a generative co-memory regularization approach to facilitate FSCIL. In the approach, the base learning leverages generative domain adaptation finetuning to finetune a pretrained generative encoder on a few examples of base classes by jointly incorporating a masked autoencoder (MAE) decoder for feature reconstruction and a fully-connected classifier for feature classification, which enables the model to efficiently capture general and adaptable representations. Using the finetuned encoder and learned classifier, we construct two class-wise memories: representation memory for storing the mean features for each class, and weight memory for storing the classifier weights. After that, the memory-regularized incremental learning is performed to train the classifier dynamically on the examples of few-shot classes in each incremental session by simultaneously optimizing feature classification and co-memory regularization. The memories are updated in a class-incremental manner and they collaboratively regularize the incremental learning. In this way, the learned models improve recognition accuracy, while mitigating catastrophic forgetting over old classes and overfitting to novel classes. Extensive experiments on popular benchmarks clearly demonstrate that our approach outperforms the state-of-the-arts.
Authors:Matan Tsipory, Ran Levinstein, Itay Evron, Mark Kong, Deanna Needell, Daniel Soudry
Title: Are Greedy Task Orderings Better Than Random in Continual Linear Regression?
Abstract:
We analyze task orderings in continual learning for linear regression, assuming joint realizability of training data. We focus on orderings that greedily maximize dissimilarity between consecutive tasks, a concept briefly explored in prior work but still surrounded by open questions. Using tools from the Kaczmarz method literature, we formalize such orderings and develop geometric and algebraic intuitions around them. Empirically, we demonstrate that greedy orderings converge faster than random ones in terms of the average loss across tasks, both for linear regression with random data and for linear probing on CIFAR-100 classification tasks. Analytically, in a high-rank regression setting, we prove a loss bound for greedy orderings analogous to that of random ones. However, under general rank, we establish a repetition-dependent separation. Specifically, while prior work showed that for random orderings, with or without replacement, the average loss after $k$ iterations is bounded by $\mathcal{O}(1/\sqrt{k})$, we prove that single-pass greedy orderings may fail catastrophically, whereas those allowing repetition converge at rate $\mathcal{O}(1/\sqrt[3]{k})$. Overall, we reveal nuances within and between greedy and random orderings.
Authors:Marco Paul E. Apolinario, Kaushik Roy
Title: LANCE: Low Rank Activation Compression for Efficient On-Device Continual Learning
Abstract:
On-device learning is essential for personalization, privacy, and long-term adaptation in resource-constrained environments. Achieving this requires efficient learning, both fine-tuning existing models and continually acquiring new tasks without catastrophic forgetting. Yet both settings are constrained by high memory cost of storing activations during backpropagation. Existing activation compression methods reduce this cost but relying on repeated low-rank decompositions, introducing computational overhead. Also, such methods have not been explored for continual learning. We propose LANCE (Low-rank Activation Compression), a framework that performs one-shot higher-order Singular Value Decompsoition (SVD) to obtain a reusable low-rank subspace for activation projection. This eliminates repeated decompositions, reducing both memory and computation. Moreover, fixed low-rank subspaces further enable on-device continual learning by allocating tasks to orthogonal subspaces without storing large task-specific matrices. Experiments show that LANCE reduces activation storage up to 250$\times$ while maintaining accuracy comparable to full backpropagation on CIFAR-10/100, Oxford-IIIT Pets, Flowers102, and CUB-200 datasets. On continual learning benchmarks (Split CIFAR-100, Split MiniImageNet, 5-Datasets), it achieves performance competitive with orthogonal gradient projection methods at a fraction of the memory cost. These results position LANCE as a practical and scalable solution for efficient fine-tuning and continual learning on edge devices.
Authors:Wenxuan Wang, Chenglei Wang, Xuelin Qian
Title: Dynamic Dual-level Defense Routing for Continual Adversarial Training
Abstract:
As adversarial attacks continue to evolve, defense models face the risk of recurrent vulnerabilities, underscoring the importance of continuous adversarial training (CAT). Existing CAT approaches typically balance decision boundaries by either data replay or optimization strategy to constrain shared model parameters. However, due to the diverse and aggressive nature of adversarial examples, these methods suffer from catastrophic forgetting of previous defense knowledge after continual learning. In this paper, we propose a novel framework, called Dual-level Defense Routing or DDeR, that can autonomously select appropriate routers to integrate specific defense experts, thereby adapting to evolving adversarial attacks. Concretely, the first-level defense routing comprises multiple defense experts and routers, with each router dynamically selecting and combining suitable experts to process attacked features. Routers are independently incremented as continuous adversarial training progresses, and their selections are guided by an Adversarial Sentinel Network (ASN) in the second-level defense routing. To compensate for the inability to test due to the independence of routers, we further present a Pseudo-task Substitution Training (PST) strategy, which leverages distributional discrepancy in data to facilitate inter-router communication without storing historical data. Extensive experiments demonstrate that DDeR achieves superior continuous defense performance and classification accuracy compared to existing methods.
Authors:Ziwen He, Zhigang Wang, Yanlong Peng, Pengxu Chang, Hong Yang, Ming Chen
Title: Embodied Intelligence in Disassembly: Multimodal Perception Cross-validation and Continual Learning in Neuro-Symbolic TAMP
Abstract:
With the rapid development of the new energy vehicle industry, the efficient disassembly and recycling of power batteries have become a critical challenge for the circular economy. In current unstructured disassembly scenarios, the dynamic nature of the environment severely limits the robustness of robotic perception, posing a significant barrier to autonomous disassembly in industrial applications. This paper proposes a continual learning framework based on Neuro-Symbolic task and motion planning (TAMP) to enhance the adaptability of embodied intelligence systems in dynamic environments. Our approach integrates a multimodal perception cross-validation mechanism into a bidirectional reasoning flow: the forward working flow dynamically refines and optimizes action strategies, while the backward learning flow autonomously collects effective data from historical task executions to facilitate continual system learning, enabling self-optimization. Experimental results show that the proposed framework improves the task success rate in dynamic disassembly scenarios from 81.68% to 100%, while reducing the average number of perception misjudgments from 3.389 to 1.128. This research provides a new paradigm for enhancing the robustness and adaptability of embodied intelligence in complex industrial environments.
Authors:Federico Fontana, Anxhelo Diko, Romeo Lanzino, Marco Raoul Marini, Bachir Kaddar, Gian Luca Foresti, Luigi Cinque
Title: Revisiting Deepfake Detection: Chronological Continual Learning and the Limits of Generalization
Abstract:
The rapid evolution of deepfake generation technologies poses critical challenges for detection systems, as non-continual learning methods demand frequent and expensive retraining. We reframe deepfake detection (DFD) as a Continual Learning (CL) problem, proposing an efficient framework that incrementally adapts to emerging visual manipulation techniques while retaining knowledge of past generators. Our framework, unlike prior approaches that rely on unreal simulation sequences, simulates the real-world chronological evolution of deepfake technologies in extended periods across 7 years. Simultaneously, our framework builds upon lightweight visual backbones to allow for the real-time performance of DFD systems. Additionally, we contribute two novel metrics: Continual AUC (C-AUC) for historical performance and Forward Transfer AUC (FWT-AUC) for future generalization. Through extensive experimentation (over 600 simulations), we empirically demonstrate that while efficient adaptation (+155 times faster than full retraining) and robust retention of historical knowledge is possible, the generalization of current approaches to future generators without additional training remains near-random (FWT-AUC $\approx$ 0.5) due to the unique imprint characterizing each existing generator. Such observations are the foundation of our newly proposed Non-Universal Deepfake Distribution Hypothesis. \textbf{Code will be released upon acceptance.}
Authors:Jiao Chen, Jiayi He, Fangfang Chen, Zuohong Lv, Jianhua Tang
Title: Forward-Only Continual Learning
Abstract:
Catastrophic forgetting remains a central challenge in continual learning (CL) with pre-trained models. While existing approaches typically freeze the backbone and fine-tune a small number of parameters to mitigate forgetting, they still rely on iterative error backpropagation and gradient-based optimization, which can be computationally intensive and less suitable for resource-constrained environments. To address this, we propose FoRo, a forward-only, gradient-free continual learning method. FoRo consists of a lightweight prompt tuning strategy and a novel knowledge encoding mechanism, both designed without modifying the pre-trained model. Specifically, prompt embeddings are inserted at the input layer and optimized using the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), which mitigates distribution shifts and extracts high-quality task representations. Subsequently, task-specific knowledge is encoded into a knowledge encoding matrix via nonlinear random projection and recursive least squares, enabling incremental updates to the classifier without revisiting prior data. Experiments show that FoRo significantly reduces average forgetting and improves accuracy. Thanks to forward-only learning, FoRo reduces memory usage and run time while maintaining high knowledge retention across long task sequences. These results suggest that FoRo could serve as a promising direction for exploring continual learning with pre-trained models, especially in real-world multimedia applications where both efficiency and effectiveness are critical.
Authors:Sankalp Pandey, Xuan Bac Nguyen, Nicholas Borys, Hugh Churchill, Khoa Luu
Title: CLIFF: Continual Learning for Incremental Flake Features in 2D Material Identification
Abstract:
Identifying quantum flakes is crucial for scalable quantum hardware; however, automated layer classification from optical microscopy remains challenging due to substantial appearance shifts across different materials. In this paper, we propose a new Continual-Learning Framework for Flake Layer Classification (CLIFF). To our knowledge, this is the first systematic study of continual learning in the domain of two-dimensional (2D) materials. Our method enables the model to differentiate between materials and their physical and optical properties by freezing a backbone and base head trained on a reference material. For each new material, it learns a material-specific prompt, embedding, and a delta head. A prompt pool and a cosine-similarity gate modulate features and compute material-specific corrections. Additionally, we incorporate memory replay with knowledge distillation. CLIFF achieves competitive accuracy with significantly lower forgetting than naive fine-tuning and a prompt-based baseline.
Authors:Peng Zhang, Songru Yang, Jinsheng Sun, Weiqing Li, Zhiyong Su
Title: Open-world Point Cloud Semantic Segmentation: A Human-in-the-loop Framework
Abstract:
Open-world point cloud semantic segmentation (OW-Seg) aims to predict point labels of both base and novel classes in real-world scenarios. However, existing methods rely on resource-intensive offline incremental learning or densely annotated support data, limiting their practicality. To address these limitations, we propose HOW-Seg, the first human-in-the-loop framework for OW-Seg. Specifically, we construct class prototypes, the fundamental segmentation units, directly on the query data, avoiding the prototype bias caused by intra-class distribution shifts between the support and query data. By leveraging sparse human annotations as guidance, HOW-Seg enables prototype-based segmentation for both base and novel classes. Considering the lack of granularity of initial prototypes, we introduce a hierarchical prototype disambiguation mechanism to refine ambiguous prototypes, which correspond to annotations of different classes. To further enrich contextual awareness, we employ a dense conditional random field (CRF) upon the refined prototypes to optimize their label assignments. Through iterative human feedback, HOW-Seg dynamically improves its predictions, achieving high-quality segmentation for both base and novel classes. Experiments demonstrate that with sparse annotations (e.g., one-novel-class-one-click), HOW-Seg matches or surpasses the state-of-the-art generalized few-shot segmentation (GFS-Seg) method under the 5-shot setting. When using advanced backbones (e.g., Stratified Transformer) and denser annotations (e.g., 10 clicks per sub-scene), HOW-Seg achieves 85.27% mIoU on S3DIS and 66.37% mIoU on ScanNetv2, significantly outperforming alternatives.
Authors:Zahra Ebrahimi, Raheleh Salehi, Nassir Navab, Carsten Marr, Ario Sadafi
Title: Continual Multiple Instance Learning for Hematologic Disease Diagnosis
Abstract:
The dynamic environment of laboratories and clinics, with streams of data arriving on a daily basis, requires regular updates of trained machine learning models for consistent performance. Continual learning is supposed to help train models without catastrophic forgetting. However, state-of-the-art methods are ineffective for multiple instance learning (MIL), which is often used in single-cell-based hematologic disease diagnosis (e.g., leukemia detection). Here, we propose the first continual learning method tailored specifically to MIL. Our method is rehearsal-based over a selection of single instances from various bags. We use a combination of the instance attention score and distance from the bag mean and class mean vectors to carefully select which samples and instances to store in exemplary sets from previous tasks, preserving the diversity of the data. Using the real-world input of one month of data from a leukemia laboratory, we study the effectiveness of our approach in a class incremental scenario, comparing it to well-known continual learning methods. We show that our method considerably outperforms state-of-the-art methods, providing the first continual learning approach for MIL. This enables the adaptation of models to shifting data distributions over time, such as those caused by changes in disease occurrence or underlying genetic alterations.
Authors:Clare Lyle, Gharda Sokar, Razvan Pascanu, Andras Gyorgy
Title: What Can Grokking Teach Us About Learning Under Nonstationarity?
Abstract:
In continual learning problems, it is often necessary to overwrite components of a neural network's learned representation in response to changes in the data stream; however, neural networks often exhibit \primacy bias, whereby early training data hinders the network's ability to generalize on later tasks. While feature-learning dynamics of nonstationary learning problems are not well studied, the emergence of feature-learning dynamics is known to drive the phenomenon of grokking, wherein neural networks initially memorize their training data and only later exhibit perfect generalization. This work conjectures that the same feature-learning dynamics which facilitate generalization in grokking also underlie the ability to overwrite previous learned features as well, and methods which accelerate grokking by facilitating feature-learning dynamics are promising candidates for addressing primacy bias in non-stationary learning problems. We then propose a straightforward method to induce feature-learning dynamics as needed throughout training by increasing the effective learning rate, i.e. the ratio between parameter and update norms. We show that this approach both facilitates feature-learning and improves generalization in a variety of settings, including grokking, warm-starting neural network training, and reinforcement learning tasks.
Authors:Shishir Muralidhara, Didier Stricker, René Schuster
Title: CLoRA: Parameter-Efficient Continual Learning with Low-Rank Adaptation
Abstract:
In the past, continual learning (CL) was mostly concerned with the problem of catastrophic forgetting in neural networks, that arises when incrementally learning a sequence of tasks. Current CL methods function within the confines of limited data access, without any restrictions imposed on computational resources. However, in real-world scenarios, the latter takes precedence as deployed systems are often computationally constrained. A major drawback of most CL methods is the need to retrain the entire model for each new task. The computational demands of retraining large models can be prohibitive, limiting the applicability of CL in environments with limited resources. Through CLoRA, we explore the applicability of Low-Rank Adaptation (LoRA), a parameter-efficient fine-tuning method for class-incremental semantic segmentation. CLoRA leverages a small set of parameters of the model and uses the same set for learning across all tasks. Results demonstrate the efficacy of CLoRA, achieving performance on par with and exceeding the baseline methods. We further evaluate CLoRA using NetScore, underscoring the need to factor in resource efficiency and evaluate CL methods beyond task performance. CLoRA significantly reduces the hardware requirements for training, making it well-suited for CL in resource-constrained environments after deployment.
Authors:Junsu Kim, Yunhoe Ku, Seungryul Baek
Title: Can Synthetic Images Conquer Forgetting? Beyond Unexplored Doubts in Few-Shot Class-Incremental Learning
Abstract:
Few-shot class-incremental learning (FSCIL) is challenging due to extremely limited training data; while aiming to reduce catastrophic forgetting and learn new information. We propose Diffusion-FSCIL, a novel approach that employs a text-to-image diffusion model as a frozen backbone. Our conjecture is that FSCIL can be tackled using a large generative model's capabilities benefiting from 1) generation ability via large-scale pre-training; 2) multi-scale representation; 3) representational flexibility through the text encoder. To maximize the representation capability, we propose to extract multiple complementary diffusion features to play roles as latent replay with slight support from feature distillation for preventing generative biases. Our framework realizes efficiency through 1) using a frozen backbone; 2) minimal trainable components; 3) batch processing of multiple feature extractions. Extensive experiments on CUB-200, \emph{mini}ImageNet, and CIFAR-100 show that Diffusion-FSCIL surpasses state-of-the-art methods, preserving performance on previously learned classes and adapting effectively to new ones.
Authors:Hongli Yang, Sheng Li, Hao Huang, Ayiduosi Tuohan, Yizhou Peng
Title: Language-Aware Prompt Tuning for Parameter-Efficient Seamless Language Expansion in Multilingual ASR
Abstract:
Recent advancements in multilingual automatic speech recognition (ASR) have been driven by large-scale end-to-end models like Whisper. However, challenges such as language interference and expanding to unseen languages (language expansion) without degrading performance persist. This paper addresses these with three contributions: 1) Entire Soft Prompt Tuning (Entire SPT), which applies soft prompts to both the encoder and decoder, enhancing feature extraction and decoding; 2) Language-Aware Prompt Tuning (LAPT), which leverages cross-lingual similarities to encode shared and language-specific features using lightweight prompt matrices; 3) SPT-Whisper, a toolkit that integrates SPT into Whisper and enables efficient continual learning. Experiments across three languages from FLEURS demonstrate that Entire SPT and LAPT outperform Decoder SPT by 5.0% and 16.0% in language expansion tasks, respectively, providing an efficient solution for dynamic, multilingual ASR models with minimal computational overhead.
Authors:Chongkai Gao, Zixuan Liu, Zhenghao Chi, Junshan Huang, Xin Fei, Yiwen Hou, Yuxuan Zhang, Yudi Lin, Zhirui Fang, Zeyu Jiang, Lin Shao
Title: VLA-OS: Structuring and Dissecting Planning Representations and Paradigms in Vision-Language-Action Models
Abstract:
Recent studies on Vision-Language-Action (VLA) models have shifted from the end-to-end action-generation paradigm toward a pipeline involving task planning followed by action generation, demonstrating improved performance on various complex, long-horizon manipulation tasks. However, existing approaches vary significantly in terms of network architectures, planning paradigms, representations, and training data sources, making it challenging for researchers to identify the precise sources of performance gains and components to be further improved. To systematically investigate the impacts of different planning paradigms and representations isolating from network architectures and training data, in this paper, we introduce VLA-OS, a unified VLA architecture series capable of various task planning paradigms, and design a comprehensive suite of controlled experiments across diverse object categories (rigid and deformable), visual modalities (2D and 3D), environments (simulation and real-world), and end-effectors (grippers and dexterous hands). Our results demonstrate that: 1) visually grounded planning representations are generally better than language planning representations; 2) the Hierarchical-VLA paradigm generally achieves superior or comparable performance than other paradigms on task performance, pretraining, generalization ability, scalability, and continual learning ability, albeit at the cost of slower training and inference speeds.
Authors:Jianheng Tang, Huiping Zhuang, Jingyu He, Run He, Jingchao Wang, Kejia Fan, Anfeng Liu, Tian Wang, Leye Wang, Zhanxing Zhu, Shanghang Zhang, Houbing Herbert Song, Yunhuai Liu
Title: AFCL: Analytic Federated Continual Learning for Spatio-Temporal Invariance of Non-IID Data
Abstract:
Federated Continual Learning (FCL) enables distributed clients to collaboratively train a global model from online task streams in dynamic real-world scenarios. However, existing FCL methods face challenges of both spatial data heterogeneity among distributed clients and temporal data heterogeneity across online tasks. Such data heterogeneity significantly degrades the model performance with severe spatial-temporal catastrophic forgetting of local and past knowledge. In this paper, we identify that the root cause of this issue lies in the inherent vulnerability and sensitivity of gradients to non-IID data. To fundamentally address this issue, we propose a gradient-free method, named Analytic Federated Continual Learning (AFCL), by deriving analytical (i.e., closed-form) solutions from frozen extracted features. In local training, our AFCL enables single-epoch learning with only a lightweight forward-propagation process for each client. In global aggregation, the server can recursively and efficiently update the global model with single-round aggregation. Theoretical analyses validate that our AFCL achieves spatio-temporal invariance of non-IID data. This ideal property implies that, regardless of how heterogeneous the data are distributed across local clients and online tasks, the aggregated model of our AFCL remains invariant and identical to that of centralized joint learning. Extensive experiments show the consistent superiority of our AFCL over state-of-the-art baselines across various benchmark datasets and settings.
Authors:Yongsheng Huang, Peibo Duan, Zhipeng Liu, Kai Sun, Changsheng Zhang, Bin Zhang, Mingkun Xu
Title: CogniSNN: A First Exploration to Random Graph Architecture based Spiking Neural Networks with Enhanced Expandability and Neuroplasticity
Abstract:
Despite advances in spiking neural networks (SNNs) in numerous tasks, their architectures remain highly similar to traditional artificial neural networks (ANNs), restricting their ability to mimic natural connections between biological neurons. This paper develops a new modeling paradigm for SNN with random graph architecture (RGA), termed Cognition-aware SNN (CogniSNN). Furthermore, we improve the expandability and neuroplasticity of CogniSNN by introducing a modified spiking residual neural node (ResNode) to counteract network degradation in deeper graph pathways, as well as a critical path-based algorithm that enables CogniSNN to perform continual learning on new tasks leveraging the features of the data and the RGA learned in the old task. Experiments show that CogniSNN with re-designed ResNode performs outstandingly in neuromorphic datasets with fewer parameters, achieving 95.5% precision in the DVS-Gesture dataset with only 5 timesteps. The critical path-based approach decreases 3% to 5% forgetting while maintaining expected performance in learning new tasks that are similar to or distinct from the old ones. This study showcases the potential of RGA-based SNN and paves a new path for biologically inspired networks based on graph theory.
Authors:Manar D. Samad, Kazi Fuad B. Akhter, Shourav B. Rabbani, Ibna Kowsar
Title: Imputation-free Learning of Tabular Data with Missing Values using Incremental Feature Partitions in Transformer
Abstract:
Tabular data sets with varying missing values are prepared for machine learning using an arbitrary imputation strategy. Synthetic values generated by imputation models often raise concerns about data quality and the reliability of data-driven outcomes. To address these concerns, this article proposes an imputation-free incremental attention learning (IFIAL) method for tabular data. A pair of attention masks is derived and retrofitted to a transformer to directly streamline tabular data without imputing or initializing missing values. The proposed method incrementally learns partitions of overlapping and fixed-size feature sets to enhance the efficiency and performance of the transformer. The average classification performance rank order across 17 diverse tabular data sets highlights the superiority of IFIAL over 11 state-of-the-art learning methods with or without missing value imputations. Further experiments substantiate the robustness of IFIAL against varying missing value types and rates compared to methods involving missing value imputation. Our analysis reveals that a feature partition size of half the original feature space is, both computationally and in terms of accuracy, the best choice for the proposed incremental learning. The proposed method is one of the first solutions to enable deep attention learning of tabular data without requiring missing-value imputation. The source code for this paper is publicly available.
Authors:Kyle Stein, Andrew Arash Mahyari, Guillermo Francia, Eman El-Sheikh
Title: Adaptive Additive Parameter Updates of Vision Transformers for Few-Shot Continual Learning
Abstract:
Integrating new class information without losing previously acquired knowledge remains a central challenge in artificial intelligence, often referred to as catastrophic forgetting. Few-shot class incremental learning (FSCIL) addresses this by first training a model on a robust dataset of base classes and then incrementally adapting it in successive sessions using only a few labeled examples per novel class. However, this approach is prone to overfitting on the limited new data, which can compromise overall performance and exacerbate forgetting. In this work, we propose a simple yet effective novel FSCIL framework that leverages a frozen Vision Transformer (ViT) backbone augmented with parameter-efficient additive updates. Our approach freezes the pre-trained ViT parameters and selectively injects trainable weights into the self-attention modules via an additive update mechanism. This design updates only a small subset of parameters to accommodate new classes without sacrificing the representations learned during the base session. By fine-tuning a limited number of parameters, our method preserves the generalizable features in the frozen ViT while reducing the risk of overfitting. Furthermore, as most parameters remain fixed, the model avoids overwriting previously learned knowledge when small novel data batches are introduced. Extensive experiments on benchmark datasets demonstrate that our approach yields state-of-the-art performance compared to baseline FSCIL methods.
Authors:Zhuoran Tan, Qiyuan Wang, Christos Anagnostopoulos, Shameem P. Parambath, Jeremy Singer, Sam Temple
Title: Distributed Log-driven Anomaly Detection System based on Evolving Decision Making
Abstract:
Effective anomaly detection from logs is crucial for enhancing cybersecurity defenses by enabling the early identification of threats. Despite advances in anomaly detection, existing systems often fall short in areas such as post-detection validation, scalability, and effective maintenance. These limitations not only hinder the detection of new threats but also impair overall system performance. To address these challenges, we propose CEDLog, a novel practical framework that integrates Elastic Weight Consolidation (EWC) for continual learning and implements distributed computing for scalable processing by integrating Apache Airflow and Dask. In CEDLog, anomalies are detected through the synthesis of Multi-layer Perceptron (MLP) and Graph Convolutional Networks (GCNs) using critical features present in event logs. Through comparisons with update strategies on large-scale datasets, we demonstrate the strengths of CEDLog, showcasing efficient updates and low false positives
Authors:Junsu Kim, Yunhoe Ku, Dongyoon Han, Seungryul Baek
Title: Diffusion Meets Few-shot Class Incremental Learning
Abstract:
Few-shot class-incremental learning (FSCIL) is challenging due to extremely limited training data; while aiming to reduce catastrophic forgetting and learn new information. We propose Diffusion-FSCIL, a novel approach that employs a text-to-image diffusion model as a frozen backbone. Our conjecture is that FSCIL can be tackled using a large generative model's capabilities benefiting from 1) generation ability via large-scale pre-training; 2) multi-scale representation; 3) representational flexibility through the text encoder. To maximize the representation capability, we propose to extract multiple complementary diffusion features to play roles as latent replay with slight support from feature distillation for preventing generative biases. Our framework realizes efficiency through 1) using a frozen backbone; 2) minimal trainable components; 3) batch processing of multiple feature extractions. Extensive experiments on CUB-200, miniImageNet, and CIFAR-100 show that Diffusion-FSCIL surpasses state-of-the-art methods, preserving performance on previously learned classes and adapting effectively to new ones.
Authors:Kai Tong, Kang Pan, Xiao Zhang, Erli Meng, Run He, Yawen Cui, Nuoyan Guo, Huiping Zhuang
Title: Analytic Subspace Routing: How Recursive Least Squares Works in Continual Learning of Large Language Model
Abstract:
Large Language Models (LLMs) possess encompassing capabilities that can process diverse language-related tasks. However, finetuning on LLMs will diminish this general skills and continual finetuning will further cause severe degradation on accumulated knowledge. Recently, Continual Learning (CL) in Large Language Models (LLMs) arises which aims to continually adapt the LLMs to new tasks while maintaining previously learned knowledge and inheriting general skills. Existing techniques either leverage previous data to replay, leading to extra computational costs, or utilize a single parameter-efficient module to learn the downstream task, constraining new knowledge absorption with interference between different tasks. Toward these issues, this paper proposes Analytic Subspace Routing(ASR) to address these challenges. For each task, we isolate the learning within a subspace of deep layers' features via low-rank adaptation, eliminating knowledge interference between different tasks. Additionally, we propose an analytic routing mechanism to properly utilize knowledge learned in different subspaces. Our approach employs Recursive Least Squares to train a multi-task router model, allowing the router to dynamically adapt to incoming data without requiring access to historical data. Also, the router effectively assigns the current task to an appropriate subspace and has a non-forgetting property of previously learned tasks with a solid theoretical guarantee. Experimental results demonstrate that our method achieves near-perfect retention of prior knowledge while seamlessly integrating new information, effectively overcoming the core limitations of existing methods. Our code will be released after acceptance.
Authors:Chuyu Zhang, Xueyang Yu, Peiyan Gu, Xuming He
Title: Freeze and Cluster: A Simple Baseline for Rehearsal-Free Continual Category Discovery
Abstract:
This paper addresses the problem of Rehearsal-Free Continual Category Discovery (RF-CCD), which focuses on continuously identifying novel class by leveraging knowledge from labeled data. Existing methods typically train from scratch, overlooking the potential of base models, and often resort to data storage to prevent forgetting. Moreover, because RF-CCD encompasses both continual learning and novel class discovery, previous approaches have struggled to effectively integrate advanced techniques from these fields, resulting in less convincing comparisons and failing to reveal the unique challenges posed by RF-CCD. To address these challenges, we lead the way in integrating advancements from both domains and conducting extensive experiments and analyses. Our findings demonstrate that this integration can achieve state-of-the-art results, leading to the conclusion that in the presence of pre-trained models, the representation does not improve and may even degrade with the introduction of unlabeled data. To mitigate representation degradation, we propose a straightforward yet highly effective baseline method. This method first utilizes prior knowledge of known categories to estimate the number of novel classes. It then acquires representations using a model specifically trained on the base classes, generates high-quality pseudo-labels through k-means clustering, and trains only the classifier layer. We validate our conclusions and methods by conducting extensive experiments across multiple benchmarks, including the Stanford Cars, CUB, iNat, and Tiny-ImageNet datasets. The results clearly illustrate our findings, demonstrate the effectiveness of our baseline, and pave the way for future advancements in RF-CCD.
Authors:Dingkun Zhang, Shuhan Qi, Xinyu Xiao, Kehai Chen, Xuan Wang
Title: Merge then Realign: Simple and Effective Modality-Incremental Continual Learning for Multimodal LLMs
Abstract:
Recent advances in Multimodal Large Language Models (MLLMs) have enhanced their versatility as they integrate a growing number of modalities. Considering the heavy cost of training MLLMs, it is necessary to reuse the existing ones and further extend them to more modalities through Modality-incremental Continual Learning (MCL). However, this often comes with a performance degradation in the previously learned modalities. In this work, we revisit the MCL and investigate a more severe issue it faces in contrast to traditional continual learning, that its degradation comes not only from catastrophic forgetting but also from the misalignment between the modality-agnostic and modality-specific components. To address this problem, we propose an elegantly simple MCL paradigm called "MErge then ReAlign" (MERA). Our method avoids introducing heavy training overhead or modifying the model architecture, hence is easy to deploy and highly reusable in the MLLM community. Extensive experiments demonstrate that, despite the simplicity of MERA, it shows impressive performance, holding up to a 99.84% Backward Relative Gain when extending to four modalities, achieving a nearly lossless MCL performance.
Authors:Md Yousuf Harun, Christopher Kanan
Title: A Good Start Matters: Enhancing Continual Learning with Data-Driven Weight Initialization
Abstract:
To adapt to real-world data streams, continual learning (CL) systems must rapidly learn new concepts while preserving and utilizing prior knowledge. When it comes to adding new information to continually-trained deep neural networks (DNNs), classifier weights for newly encountered categories are typically initialized randomly, leading to high initial training loss (spikes) and instability. Consequently, achieving optimal convergence and accuracy requires prolonged training, increasing computational costs. Inspired by Neural Collapse (NC), we propose a weight initialization strategy to improve learning efficiency in CL. In DNNs trained with mean-squared-error, NC gives rise to a Least-Square (LS) classifier in the last layer, whose weights can be analytically derived from learned features. We leverage this LS formulation to initialize classifier weights in a data-driven manner, aligning them with the feature distribution rather than using random initialization. Our method mitigates initial loss spikes and accelerates adaptation to new tasks. We evaluate our approach in large-scale CL settings, demonstrating faster adaptation and improved CL performance.
Authors:Masih Eskandar, Tooba Imtiaz, Davin Hill, Zifeng Wang, Jennifer Dy
Title: STAR: Stability-Inducing Weight Perturbation for Continual Learning
Abstract:
Humans can naturally learn new and varying tasks in a sequential manner. Continual learning is a class of learning algorithms that updates its learned model as it sees new data (on potentially new tasks) in a sequence. A key challenge in continual learning is that as the model is updated to learn new tasks, it becomes susceptible to catastrophic forgetting, where knowledge of previously learned tasks is lost. A popular approach to mitigate forgetting during continual learning is to maintain a small buffer of previously-seen samples and to replay them during training. However, this approach is limited by the small buffer size, and while forgetting is reduced, it is still present. In this paper, we propose a novel loss function, STAR, that exploits the worst-case parameter perturbation that reduces the KL-divergence of model predictions with that of its local parameter neighborhood to promote stability and alleviate forgetting. STAR can be combined with almost any existing rehearsal-based method as a plug-and-play component. We empirically show that STAR consistently improves the performance of existing methods by up to 15% across varying baselines and achieves superior or competitive accuracy to that of state-of-the-art methods aimed at improving rehearsal-based continual learning.
Authors:Austin Coursey, Marcos Quinones-Grueiro, Gautam Biswas
Title: On the Design of Safe Continual RL Methods for Control of Nonlinear Systems
Abstract:
Reinforcement learning (RL) algorithms have been successfully applied to control tasks associated with unmanned aerial vehicles and robotics. In recent years, safe RL has been proposed to allow the safe execution of RL algorithms in industrial and mission-critical systems that operate in closed loops. However, if the system operating conditions change, such as when an unknown fault occurs in the system, typical safe RL algorithms are unable to adapt while retaining past knowledge. Continual reinforcement learning algorithms have been proposed to address this issue. However, the impact of continual adaptation on the system's safety is an understudied problem. In this paper, we study the intersection of safe and continual RL. First, we empirically demonstrate that a popular continual RL algorithm, online elastic weight consolidation, is unable to satisfy safety constraints in non-linear systems subject to varying operating conditions. Specifically, we study the MuJoCo HalfCheetah and Ant environments with velocity constraints and sudden joint loss non-stationarity. Then, we show that an agent trained using constrained policy optimization, a safe RL algorithm, experiences catastrophic forgetting in continual learning settings. With this in mind, we explore a simple reward-shaping method to ensure that elastic weight consolidation prioritizes remembering both safety and task performance for safety-constrained, non-linear, and non-stationary dynamical systems.
Authors:Shishir Muralidhara, René Schuster, Didier Stricker
Title: Domain-Incremental Semantic Segmentation for Autonomous Driving under Adverse Driving Conditions
Abstract:
Semantic segmentation for autonomous driving is an even more challenging task when faced with adverse driving conditions. Standard models trained on data recorded under ideal conditions show a deteriorated performance in unfavorable weather or illumination conditions. Fine-tuning on the new task or condition would lead to overwriting the previously learned information resulting in catastrophic forgetting. Adapting to the new conditions through traditional domain adaption methods improves the performance on the target domain at the expense of the source domain. Addressing these issues, we propose an architecture-based domain-incremental learning approach called Progressive Semantic Segmentation (PSS). PSS is a task-agnostic, dynamically growing collection of domain-specific segmentation models. The task of inferring the domain and subsequently selecting the appropriate module for segmentation is carried out using a collection of convolutional autoencoders. We extensively evaluate our proposed approach using several datasets at varying levels of granularity in the categorization of adverse driving conditions. Furthermore, we demonstrate the generalization of the proposed approach to similar and unseen domains.
Authors:Chongyang Zhao, Dong Gong
Title: Learning Mamba as a Continual Learner: Meta-learning Selective State Space Models for Efficient Continual Learning
Abstract:
Continual learning (CL) aims to efficiently learn from a non-stationary data stream, without storing or recomputing all seen samples. CL enables prediction on new tasks by incorporating sequential training samples. Building on this connection between CL and sequential modeling, meta-continual learning (MCL) aims to meta-learn an efficient continual learner as a sequence prediction model, with advanced sequence models like Transformers being natural choices. However, despite decent performance, Transformers rely on a linearly growing cache to store all past representations, conflicting with CL's objective of not storing all seen samples and limiting efficiency. In this paper, we focus on meta-learning sequence-prediction-based continual learners without retaining all past representations. While attention-free models with fixed-size hidden states (e.g., Linear Transformers) align with CL's essential goal and efficiency needs, they have shown limited effectiveness in MCL in previous literature. Given Mamba's strong sequence modeling performance and attention-free nature, we explore a key question: Can attention-free models like Mamba perform well on MCL? By formulating Mamba and the SSM for MCL tasks, we propose MambaCL, a meta-learned continual learner. To enhance MambaCL's training, we introduce selectivity regularization, leveraging the connection between Mamba and Transformers to guide its behavior over sequences. Furthermore, we study how Mamba and other models perform across various MCL scenarios through extensive and well-designed experiments. Our results highlight the promising performance and strong generalization of Mamba and attention-free models in MCL, demonstrating its potential for efficient continual learning and adaptation.
Authors:Niharika Hegde, Shishir Muralidhara, René Schuster, Didier Stricker
Title: Modality-Incremental Learning with Disjoint Relevance Mapping Networks for Image-based Semantic Segmentation
Abstract:
In autonomous driving, environment perception has significantly advanced with the utilization of deep learning techniques for diverse sensors such as cameras, depth sensors, or infrared sensors. The diversity in the sensor stack increases the safety and contributes to robustness against adverse weather and lighting conditions. However, the variance in data acquired from different sensors poses challenges. In the context of continual learning (CL), incremental learning is especially challenging for considerably large domain shifts, e.g. different sensor modalities. This amplifies the problem of catastrophic forgetting. To address this issue, we formulate the concept of modality-incremental learning and examine its necessity, by contrasting it with existing incremental learning paradigms. We propose the use of a modified Relevance Mapping Network (RMN) to incrementally learn new modalities while preserving performance on previously learned modalities, in which relevance maps are disjoint. Experimental results demonstrate that the prevention of shared connections in this approach helps alleviate the problem of forgetting within the constraints of a strict continual learning framework.
Authors:Haeyong Kang, Chang D. Yoo
Title: Soft-TransFormers for Continual Learning
Abstract:
Inspired by the Well-initialized Lottery Ticket Hypothesis (WLTH), which provides suboptimal fine-tuning solutions, we propose a novel fully fine-tuned continual learning (CL) method referred to as Soft-TransFormers (Soft-TF). Soft-TF sequentially learns and selects an optimal soft-network for each task. During sequential training in CL, a well-initialized Soft-TF mask optimizes the weights of sparse layers to obtain task-adaptive soft (real-valued) networks, while keeping the well-pre-trained layer parameters frozen. In inference, the identified task-adaptive network of Soft-TF masks the parameters of the pre-trained network, mapping to an optimal solution for each task and minimizing Catastrophic Forgetting (CF) - the soft-masking preserves the knowledge of the pre-trained network. Extensive experiments on the Vision Transformer (ViT) and the Language Transformer (Bert) demonstrate the effectiveness of Soft-TF, achieving state-of-the-art performance across Vision and Language Class Incremental Learning (CIL) scenarios.
Authors:Marco Paul E. Apolinario, Sakshi Choudhary, Kaushik Roy
Title: CODE-CL: Conceptor-Based Gradient Projection for Deep Continual Learning
Abstract:
Continual learning (CL) - the ability to progressively acquire and integrate new concepts - is essential to intelligent systems to adapt to dynamic environments. However, deep neural networks struggle with catastrophic forgetting (CF) when learning tasks sequentially, as training for new tasks often overwrites previously learned knowledge. To address this, recent approaches constrain updates to orthogonal subspaces using gradient projection, effectively preserving important gradient directions for previous tasks. While effective in reducing forgetting, these approaches inadvertently hinder forward knowledge transfer (FWT), particularly when tasks are highly correlated. In this work, we propose Conceptor-based gradient projection for Deep Continual Learning (CODE-CL), a novel method that leverages conceptor matrix representations, a form of regularized reconstruction, to adaptively handle highly correlated tasks. CODE-CL mitigates CF by projecting gradients onto pseudo-orthogonal subspaces of previous task feature spaces while simultaneously promoting FWT. It achieves this by learning a linear combination of shared basis directions, allowing efficient balance between stability and plasticity and transfer of knowledge between overlapping input feature representations. Extensive experiments on continual learning benchmarks validate CODE-CL's efficacy, demonstrating superior performance, reduced forgetting, and improved FWT as compared to state-of-the-art methods.
Authors:Alexandre Galashov, Michalis K. Titsias, András György, Clare Lyle, Razvan Pascanu, Yee Whye Teh, Maneesh Sahani
Title: Non-Stationary Learning of Neural Networks with Automatic Soft Parameter Reset
Abstract:
Neural networks are traditionally trained under the assumption that data come from a stationary distribution. However, settings which violate this assumption are becoming more popular; examples include supervised learning under distributional shifts, reinforcement learning, continual learning and non-stationary contextual bandits. In this work we introduce a novel learning approach that automatically models and adapts to non-stationarity, via an Ornstein-Uhlenbeck process with an adaptive drift parameter. The adaptive drift tends to draw the parameters towards the initialisation distribution, so the approach can be understood as a form of soft parameter reset. We show empirically that our approach performs well in non-stationary supervised and off-policy reinforcement learning settings.
Authors:Jennifer Grannen, Siddharth Karamcheti, Suvir Mirchandani, Percy Liang, Dorsa Sadigh
Title: Vocal Sandbox: Continual Learning and Adaptation for Situated Human-Robot Collaboration
Abstract:
We introduce Vocal Sandbox, a framework for enabling seamless human-robot collaboration in situated environments. Systems in our framework are characterized by their ability to adapt and continually learn at multiple levels of abstraction from diverse teaching modalities such as spoken dialogue, object keypoints, and kinesthetic demonstrations. To enable such adaptation, we design lightweight and interpretable learning algorithms that allow users to build an understanding and co-adapt to a robot's capabilities in real-time, as they teach new behaviors. For example, after demonstrating a new low-level skill for "tracking around" an object, users are provided with trajectory visualizations of the robot's intended motion when asked to track a new object. Similarly, users teach high-level planning behaviors through spoken dialogue, using pretrained language models to synthesize behaviors such as "packing an object away" as compositions of low-level skills $-$ concepts that can be reused and built upon. We evaluate Vocal Sandbox in two settings: collaborative gift bag assembly and LEGO stop-motion animation. In the first setting, we run systematic ablations and user studies with 8 non-expert participants, highlighting the impact of multi-level teaching. Across 23 hours of total robot interaction time, users teach 17 new high-level behaviors with an average of 16 novel low-level skills, requiring 22.1% less active supervision compared to baselines and yielding more complex autonomous performance (+19.7%) with fewer failures (-67.1%). Qualitatively, users strongly prefer Vocal Sandbox systems due to their ease of use (+20.6%) and overall performance (+13.9%). Finally, we pair an experienced system-user with a robot to film a stop-motion animation; over two hours of continuous collaboration, the user teaches progressively more complex motion skills to shoot a 52 second (232 frame) movie.
Authors:Amin Ranem, John Kalkhof, Anirban Mukhopadhyay
Title: NCAdapt: Dynamic adaptation with domain-specific Neural Cellular Automata for continual hippocampus segmentation
Abstract:
Continual learning (CL) in medical imaging presents a unique challenge, requiring models to adapt to new domains while retaining previously acquired knowledge. We introduce NCAdapt, a Neural Cellular Automata (NCA) based method designed to address this challenge. NCAdapt features a domain-specific multi-head structure, integrating adaptable convolutional layers into the NCA backbone for each new domain encountered. After initial training, the NCA backbone is frozen, and only the newly added adaptable convolutional layers, consisting of 384 parameters, are trained along with domain-specific NCA convolutions. We evaluate NCAdapt on hippocampus segmentation tasks, benchmarking its performance against Lifelong nnU-Net and U-Net models with state-of-the-art (SOTA) CL methods. Our lightweight approach achieves SOTA performance, underscoring its effectiveness in addressing CL challenges in medical imaging. Upon acceptance, we will make our code base publicly accessible to support reproducibility and foster further advancements in medical CL.
Authors:Reihaneh Mirjalili, Michael Krawez, Florian Walter, Wolfram Burgard
Title: VLM-Vac: Enhancing Smart Vacuums through VLM Knowledge Distillation and Language-Guided Experience Replay
Abstract:
In this paper, we propose VLM-Vac, a novel framework designed to enhance the autonomy of smart robot vacuum cleaners. Our approach integrates the zero-shot object detection capabilities of a Vision-Language Model (VLM) with a Knowledge Distillation (KD) strategy. By leveraging the VLM, the robot can categorize objects into actionable classes -- either to avoid or to suck -- across diverse backgrounds. However, frequently querying the VLM is computationally expensive and impractical for real-world deployment. To address this issue, we implement a KD process that gradually transfers the essential knowledge of the VLM to a smaller, more efficient model. Our real-world experiments demonstrate that this smaller model progressively learns from the VLM and requires significantly fewer queries over time. Additionally, we tackle the challenge of continual learning in dynamic home environments by exploiting a novel experience replay method based on language-guided sampling. Our results show that this approach is not only energy-efficient but also surpasses conventional vision-based clustering methods, particularly in detecting small objects across diverse backgrounds.
Authors:Jiao Chen, Jiayi He, Fangfang Chen, Zuohong Lv, Jianhua Tang, Weihua Li, Zuozhu Liu, Howard H. Yang, Guangjie Han
Title: Towards General Industrial Intelligence: A Survey of Continual Large Models in Industrial IoT
Abstract:
Industrial AI is transitioning from traditional deep learning models to large-scale transformer-based architectures, with the Industrial Internet of Things (IIoT) playing a pivotal role. IIoT evolves from a simple data pipeline to an intelligent infrastructure, enabling and enhancing these advanced AI systems. This survey explores the integration of IIoT with large models (LMs) and their potential applications in industrial environments. We focus on four primary types of industrial LMs: language-based, vision-based, time-series, and multimodal models. The lifecycle of LMs is segmented into four critical phases: data foundation, model training, model connectivity, and continuous evolution. First, we analyze how IIoT provides abundant and diverse data resources, supporting the training and fine-tuning of LMs. Second, we discuss how IIoT offers an efficient training infrastructure in low-latency and bandwidth-optimized environments. Third, we highlight the deployment advantages of LMs within IIoT, emphasizing IIoT's role as a connectivity nexus fostering emergent intelligence through modular design, dynamic routing, and model merging to enhance system scalability and adaptability. Finally, we demonstrate how IIoT supports continual learning mechanisms, enabling LMs to adapt to dynamic industrial conditions and ensure long-term effectiveness. This paper underscores IIoT's critical role in the evolution of industrial intelligence with large models, offering a theoretical framework and actionable insights for future research.
Authors:Yongqiang Yu, Xuhui Li, Hazza Mahmood, Jinxing Zhou, Haodong Hong, Longtao Jiang, Zhiqiang Xu, Qi Wu, Xiaojun Chang
Title: User-Feedback-Driven Continual Adaptation for Vision-and-Language Navigation
Abstract:
Vision-and-Language Navigation (VLN) requires agents to navigate complex environments by following natural-language instructions. General Scene Adaptation for VLN (GSA-VLN) shifts the focus from zero-shot generalization to continual, environment-specific adaptation, narrowing the gap between static benchmarks and real-world deployment. However, current GSA-VLN frameworks exclude user feedback, relying solely on unsupervised adaptation from repeated environmental exposure. In practice, user feedback offers natural and valuable supervision that can significantly enhance adaptation quality. We introduce a user-feedback-driven adaptation framework that extends GSA-VLN by systematically integrating human interactions into continual learning. Our approach converts user feedback-navigation instructions and corrective signals-into high-quality, environment-aligned training data, enabling efficient and realistic adaptation. A memory-bank warm-start mechanism further reuses previously acquired environmental knowledge, mitigating cold-start degradation and ensuring stable redeployment. Experiments on the GSA-R2R benchmark show that our method consistently surpasses strong baselines such as GR-DUET, improving navigation success and path efficiency. The memory-bank warm start stabilizes early navigation and reduces performance drops after updates. Results under both continual and hybrid adaptation settings confirm the robustness and generality of our framework, demonstrating sustained improvement across diverse deployment conditions.
Authors:Yongkang Hu, Yu Cheng, Yushuo Zhang, Yuan Xie, Zhaoxia Yin
Title: SAIDO: Generalizable Detection of AI-Generated Images via Scene-Aware and Importance-Guided Dynamic Optimization in Continual Learning
Abstract:
The widespread misuse of image generation technologies has raised security concerns, driving the development of AI-generated image detection methods. However, generalization has become a key challenge and open problem: existing approaches struggle to adapt to emerging generative methods and content types in real-world scenarios. To address this issue, we propose a Scene-Aware and Importance-Guided Dynamic Optimization detection framework with continual learning (SAIDO). Specifically, we design Scene-Awareness-Based Expert Module (SAEM) that dynamically identifies and incorporates new scenes using VLLMs. For each scene, independent expert modules are dynamically allocated, enabling the framework to capture scene-specific forgery features better and enhance cross-scene generalization. To mitigate catastrophic forgetting when learning from multiple image generative methods, we introduce Importance-Guided Dynamic Optimization Mechanism (IDOM), which optimizes each neuron through an importance-guided gradient projection strategy, thereby achieving an effective balance between model plasticity and stability. Extensive experiments on continual learning tasks demonstrate that our method outperforms the current SOTA method in both stability and plasticity, achieving 44.22\% and 40.57\% relative reductions in average detection error rate and forgetting rate, respectively. On open-world datasets, it improves the average detection accuracy by 9.47\% compared to the current SOTA method.
Authors:Mohammad Marufur Rahman, Guanchu Wang, Kaixiong Zhou, Minghan Chen, Fan Yang
Title: Catastrophic Forgetting in Kolmogorov-Arnold Networks
Abstract:
Catastrophic forgetting is a longstanding challenge in continual learning, where models lose knowledge from earlier tasks when learning new ones. While various mitigation strategies have been proposed for Multi-Layer Perceptrons (MLPs), recent architectural advances like Kolmogorov-Arnold Networks (KANs) have been suggested to offer intrinsic resistance to forgetting by leveraging localized spline-based activations. However, the practical behavior of KANs under continual learning remains unclear, and their limitations are not well understood. To address this, we present a comprehensive study of catastrophic forgetting in KANs and develop a theoretical framework that links forgetting to activation support overlap and intrinsic data dimension. We validate these analyses through systematic experiments on synthetic and vision tasks, measuring forgetting dynamics under varying model configurations and data complexity. Further, we introduce KAN-LoRA, a novel adapter design for parameter-efficient continual fine-tuning of language models, and evaluate its effectiveness in knowledge editing tasks. Our findings reveal that while KANs exhibit promising retention in low-dimensional algorithmic settings, they remain vulnerable to forgetting in high-dimensional domains such as image classification and language modeling. These results advance the understanding of KANs' strengths and limitations, offering practical insights for continual learning system design.
Authors:Chenhao Wang, Shanshan Feng, Lisi Chen, Fan Li, Shuo Shang
Title: Efficient Model-Agnostic Continual Learning for Next POI Recommendation
Abstract:
Next point-of-interest (POI) recommendation improves personalized location-based services by predicting users' next destinations based on their historical check-ins. However, most existing methods rely on static datasets and fixed models, limiting their ability to adapt to changes in user behavior over time. To address this limitation, we explore a novel task termed continual next POI recommendation, where models dynamically adapt to evolving user interests through continual updates. This task is particularly challenging, as it requires capturing shifting user behaviors while retaining previously learned knowledge. Moreover, it is essential to ensure efficiency in update time and memory usage for real-world deployment. To this end, we propose GIRAM (Generative Key-based Interest Retrieval and Adaptive Modeling), an efficient, model-agnostic framework that integrates context-aware sustained interests with recent interests. GIRAM comprises four components: (1) an interest memory to preserve historical preferences; (2) a context-aware key encoding module for unified interest key representation; (3) a generative key-based retrieval module to identify diverse and relevant sustained interests; and (4) an adaptive interest update and fusion module to update the interest memory and balance sustained and recent interests. In particular, GIRAM can be seamlessly integrated with existing next POI recommendation models. Experiments on three real-world datasets demonstrate that GIRAM consistently outperforms state-of-the-art methods while maintaining high efficiency in both update time and memory consumption.
Authors:Bowen Wang, Haiyuan Wan, Liwen Shi, Chen Yang, Peng He, Yue Ma, Haochen Han, Wenhao Li, Tiao Tan, Yongjian Li, Fangming Liu, Yifan Gong, Sheng Zhang
Title: RECALL: REpresentation-aligned Catastrophic-forgetting ALLeviation via Hierarchical Model Merging
Abstract:
We unveil that internal representations in large language models (LLMs) serve as reliable proxies of learned knowledge, and propose RECALL, a novel representation-aware model merging framework for continual learning without access to historical data. RECALL computes inter-model similarity from layer-wise hidden representations over clustered typical samples, and performs adaptive, hierarchical parameter fusion to align knowledge across models. This design enables the preservation of domain-general features in shallow layers while allowing task-specific adaptation in deeper layers. Unlike prior methods that require task labels or incur performance trade-offs, RECALL achieves seamless multi-domain integration and strong resistance to catastrophic forgetting. Extensive experiments across five NLP tasks and multiple continual learning scenarios show that RECALL outperforms baselines in both knowledge retention and generalization, providing a scalable and data-free solution for evolving LLMs.
Authors:Luigi Quarantiello, Elia Piccoli, Jack Bell, Malio Li, Giacomo Carfì, Eric Nuertey Coleman, Gerlando Gramaglia, Lanpei Li, Mauro Madeddu, Irene Testa, Vincenzo Lomonaco
Title: A Compositional Paradigm for Foundation Models: Towards Smarter Robotic Agents
Abstract:
The birth of Foundation Models brought unprecedented results in a wide range of tasks, from language to vision, to robotic control. These models are able to process huge quantities of data, and can extract and develop rich representations, which can be employed across different domains and modalities. However, they still have issues in adapting to dynamic, real-world scenarios without retraining the entire model from scratch. In this work, we propose the application of Continual Learning and Compositionality principles to foster the development of more flexible, efficient and smart AI solutions.
Authors:Mohamad Abou Ali, Fadi Dornaika
Title: Edge Artificial Intelligence: A Systematic Review of Evolution, Taxonomic Frameworks, and Future Horizons
Abstract:
Edge Artificial Intelligence (Edge AI) embeds intelligence directly into devices at the network edge, enabling real-time processing with improved privacy and reduced latency by processing data close to its source. This review systematically examines the evolution, current landscape, and future directions of Edge AI through a multi-dimensional taxonomy including deployment location, processing capabilities such as TinyML and federated learning, application domains, and hardware types. Following PRISMA guidelines, the analysis traces the field from early content delivery networks and fog computing to modern on-device intelligence. Core enabling technologies such as specialized hardware accelerators, optimized software, and communication protocols are explored. Challenges including resource limitations, security, model management, power consumption, and connectivity are critically assessed. Emerging opportunities in neuromorphic hardware, continual learning algorithms, edge-cloud collaboration, and trustworthiness integration are highlighted, providing a comprehensive framework for researchers and practitioners.
Authors:Aopeng Wang, Ke Deng, Yongli Ren, Jun Luo
Title: Rehearsal-free and Task-free Online Continual Learning With Contrastive Prompt
Abstract:
The main challenge of continual learning is \textit{catastrophic forgetting}. Because of processing data in one pass, online continual learning (OCL) is one of the most difficult continual learning scenarios. To address catastrophic forgetting in OCL, some existing studies use a rehearsal buffer to store samples and replay them in the later learning process, other studies do not store samples but assume a sequence of learning tasks so that the task identities can be explored. However, storing samples may raise data security or privacy concerns and it is not always possible to identify the boundaries between learning tasks in one pass of data processing. It motivates us to investigate rehearsal-free and task-free OCL (F2OCL). By integrating prompt learning with an NCM classifier, this study has effectively tackled catastrophic forgetting without storing samples and without usage of task boundaries or identities. The extensive experimental results on two benchmarks have demonstrated the effectiveness of the proposed method.
Authors:Tomoyuki Kagaya, Subramanian Lakshmi, Anbang Ye, Thong Jing Yuan, Jayashree Karlekar, Sugiri Pranata, Natsuki Murakami, Akira Kinose, Yang You
Title: ViReSkill: Vision-Grounded Replanning with Skill Memory for LLM-Based Planning in Lifelong Robot Learning
Abstract:
Robots trained via Reinforcement Learning (RL) or Imitation Learning (IL) often adapt slowly to new tasks, whereas recent Large Language Models (LLMs) and Vision-Language Models (VLMs) promise knowledge-rich planning from minimal data. Deploying LLMs/VLMs for motion planning, however, faces two key obstacles: (i) symbolic plans are rarely grounded in scene geometry and object physics, and (ii) model outputs can vary for identical prompts, undermining execution reliability. We propose ViReSkill, a framework that pairs vision-grounded replanning with a skill memory for accumulation and reuse. When a failure occurs, the replanner generates a new action sequence conditioned on the current scene, tailored to the observed state. On success, the executed plan is stored as a reusable skill and replayed in future encounters without additional calls to LLMs/VLMs. This feedback loop enables autonomous continual learning: each attempt immediately expands the skill set and stabilizes subsequent executions. We evaluate ViReSkill on simulators such as LIBERO and RLBench as well as on a physical robot. Across all settings, it consistently outperforms conventional baselines in task success rate, demonstrating robust sim-to-real generalization.
Authors:Reza Rahimi Azghan, Gautham Krishna Gudur, Mohit Malu, Edison Thomaz, Giulia Pedrielli, Pavan Turaga, Hassan Ghasemzadeh
Title: CLAD-Net: Continual Activity Recognition in Multi-Sensor Wearable Systems
Abstract:
The rise of deep learning has greatly advanced human behavior monitoring using wearable sensors, particularly human activity recognition (HAR). While deep models have been widely studied, most assume stationary data distributions - an assumption often violated in real-world scenarios. For example, sensor data from one subject may differ significantly from another, leading to distribution shifts. In continual learning, this shift is framed as a sequence of tasks, each corresponding to a new subject. Such settings suffer from catastrophic forgetting, where prior knowledge deteriorates as new tasks are learned. This challenge is compounded by the scarcity and inconsistency of labeled data in human studies. To address these issues, we propose CLAD-Net (Continual Learning with Attention and Distillation), a framework enabling wearable-sensor models to be updated continuously without sacrificing performance on past tasks. CLAD-Net integrates a self-supervised transformer, acting as long-term memory, with a supervised Convolutional Neural Network (CNN) trained via knowledge distillation for activity classification. The transformer captures global activity patterns through cross-attention across body-mounted sensors, learning generalizable representations without labels. Meanwhile, the CNN leverages knowledge distillation to retain prior knowledge during subject-wise fine-tuning. On PAMAP2, CLAD-Net achieves 91.36 percent final accuracy with only 8.78 percent forgetting, surpassing memory-based and regularization-based baselines such as Experience Replay and Elastic Weight Consolidation. In semi-supervised settings with only 10-20 percent labeled data, CLAD-Net still delivers strong performance, demonstrating robustness to label scarcity. Ablation studies further validate each module's contribution.
Authors:Giuseppe Serra, Florian Buettner
Title: DATS: Distance-Aware Temperature Scaling for Calibrated Class-Incremental Learning
Abstract:
Continual Learning (CL) is recently gaining increasing attention for its ability to enable a single model to learn incrementally from a sequence of new classes. In this scenario, it is important to keep consistent predictive performance across all the classes and prevent the so-called Catastrophic Forgetting (CF). However, in safety-critical applications, predictive performance alone is insufficient. Predictive models should also be able to reliably communicate their uncertainty in a calibrated manner - that is, with confidence scores aligned to the true frequencies of target events. Existing approaches in CL address calibration primarily from a data-centric perspective, relying on a single temperature shared across all tasks. Such solutions overlook task-specific differences, leading to large fluctuations in calibration error across tasks. For this reason, we argue that a more principled approach should adapt the temperature according to the distance to the current task. However, the unavailability of the task information at test time/during deployment poses a major challenge to achieve the intended objective. For this, we propose Distance-Aware Temperature Scaling (DATS), which combines prototype-based distance estimation with distance-aware calibration to infer task proximity and assign adaptive temperatures without prior task information. Through extensive empirical evaluation on both standard benchmarks and real-world, imbalanced datasets taken from the biomedical domain, our approach demonstrates to be stable, reliable and consistent in reducing calibration error across tasks compared to state-of-the-art approaches.
Authors:Lucas Mansilla, Rodrigo Echeveste, Camila Gonzalez, Diego H. Milone, Enzo Ferrante
Title: BM-CL: Bias Mitigation through the lens of Continual Learning
Abstract:
Biases in machine learning pose significant challenges, particularly when models amplify disparities that affect disadvantaged groups. Traditional bias mitigation techniques often lead to a {\itshape leveling-down effect}, whereby improving outcomes of disadvantaged groups comes at the expense of reduced performance for advantaged groups. This study introduces Bias Mitigation through Continual Learning (BM-CL), a novel framework that leverages the principles of continual learning to address this trade-off. We postulate that mitigating bias is conceptually similar to domain-incremental continual learning, where the model must adjust to changing fairness conditions, improving outcomes for disadvantaged groups without forgetting the knowledge that benefits advantaged groups. Drawing inspiration from techniques such as Learning without Forgetting and Elastic Weight Consolidation, we reinterpret bias mitigation as a continual learning problem. This perspective allows models to incrementally balance fairness objectives, enhancing outcomes for disadvantaged groups while preserving performance for advantaged groups. Experiments on synthetic and real-world image datasets, characterized by diverse sources of bias, demonstrate that the proposed framework mitigates biases while minimizing the loss of original knowledge. Our approach bridges the fields of fairness and continual learning, offering a promising pathway for developing machine learning systems that are both equitable and effective.
Authors:Zirui Li, Yunlong Lin, Guodong Du, Xiaocong Zhao, Cheng Gong, Chen Lv, Chao Lu, Jianwei Gong
Title: Complementary Learning System Empowers Online Continual Learning of Vehicle Motion Forecasting in Smart Cities
Abstract:
Artificial intelligence underpins most smart city services, yet deep neural network (DNN) that forecasts vehicle motion still struggle with catastrophic forgetting, the loss of earlier knowledge when models are updated. Conventional fixes enlarge the training set or replay past data, but these strategies incur high data collection costs, sample inefficiently and fail to balance long- and short-term experience, leaving them short of human-like continual learning. Here we introduce Dual-LS, a task-free, online continual learning paradigm for DNN-based motion forecasting that is inspired by the complementary learning system of the human brain. Dual-LS pairs two synergistic memory rehearsal replay mechanisms to accelerate experience retrieval while dynamically coordinating long-term and short-term knowledge representations. Tests on naturalistic data spanning three countries, over 772,000 vehicles and cumulative testing mileage of 11,187 km show that Dual-LS mitigates catastrophic forgetting by up to 74.31\% and reduces computational resource demand by up to 94.02\%, markedly boosting predictive stability in vehicle motion forecasting without inflating data requirements. Meanwhile, it endows DNN-based vehicle motion forecasting with computation efficient and human-like continual learning adaptability fit for smart cities.
Authors:Alejandro Rodriguez-Garcia, Anindya Ghosh, Srikanth Ramaswamy
Title: Noradrenergic-inspired gain modulation attenuates the stability gap in joint training
Abstract:
Recent studies in continual learning have identified a transient drop in performance on mastered tasks when assimilating new ones, known as the stability gap. Such dynamics contradict the objectives of continual learning, revealing a lack of robustness in mitigating forgetting, and notably, persisting even under an ideal joint-loss regime. Examining this gap within this idealized joint training context is critical to isolate it from other sources of forgetting. We argue that it reflects an imbalance between rapid adaptation and robust retention at task boundaries, underscoring the need to investigate mechanisms that reconcile plasticity and stability within continual learning frameworks. Biological brains navigate a similar dilemma by operating concurrently on multiple timescales, leveraging neuromodulatory signals to modulate synaptic plasticity. However, artificial networks lack native multitimescale dynamics, and although optimizers like momentum-SGD and Adam introduce implicit timescale regularization, they still exhibit stability gaps. Inspired by locus coeruleus mediated noradrenergic bursts, which transiently enhance neuronal gain under uncertainty to facilitate sensory assimilation, we propose uncertainty-modulated gain dynamics - an adaptive mechanism that approximates a two-timescale optimizer and dynamically balances integration of knowledge with minimal interference on previously consolidated information. We evaluate our mechanism on domain-incremental and class-incremental variants of the MNIST and CIFAR benchmarks under joint training, demonstrating that uncertainty-modulated gain dynamics effectively attenuate the stability gap. Finally, our analysis elucidates how gain modulation replicates noradrenergic functions in cortical circuits, offering mechanistic insights into reducing stability gaps and enhance performance in continual learning tasks.
Authors:James P Jun, Vijay Marupudi, Raj Sanjay Shah, Sashank Varma
Title: A Neural Network Model of Complementary Learning Systems: Pattern Separation and Completion for Continual Learning
Abstract:
Learning new information without forgetting prior knowledge is central to human intelligence. In contrast, neural network models suffer from catastrophic forgetting: a significant degradation in performance on previously learned tasks when acquiring new information. The Complementary Learning Systems (CLS) theory offers an explanation for this human ability, proposing that the brain has distinct systems for pattern separation (encoding distinct memories) and pattern completion (retrieving complete memories from partial cues). To capture these complementary functions, we leverage the representational generalization capabilities of variational autoencoders (VAEs) and the robust memory storage properties of Modern Hopfield networks (MHNs), combining them into a neurally plausible continual learning model. We evaluate this model on the Split-MNIST task, a popular continual learning benchmark, and achieve close to state-of-the-art accuracy (~90%), substantially reducing forgetting. Representational analyses empirically confirm the functional dissociation: the VAE underwrites pattern completion, while the MHN drives pattern separation. By capturing pattern separation and completion in scalable architectures, our work provides a functional template for modeling memory consolidation, generalization, and continual learning in both biological and artificial systems.
Authors:Zahid Ullah, Jihie Kim
Title: Exploring Kolmogorov-Arnold Network Expansions in Vision Transformers for Mitigating Catastrophic Forgetting in Continual Learning
Abstract:
Continual learning (CL), the ability of a model to learn new tasks without forgetting previously acquired knowledge, remains a critical challenge in artificial intelligence, particularly for vision transformers (ViTs) utilizing Multilayer Perceptrons (MLPs) for global representation learning. Catastrophic forgetting, where new information overwrites prior knowledge, is especially problematic in these models. This research proposes replacing MLPs in ViTs with Kolmogorov-Arnold Network (KANs) to address this issue. KANs leverage local plasticity through spline-based activations, ensuring that only a subset of parameters is updated per sample, thereby preserving previously learned knowledge. The study investigates the efficacy of KAN-based ViTs in CL scenarios across benchmark datasets (MNIST, CIFAR100), focusing on their ability to retain accuracy on earlier tasks while adapting to new ones. Experimental results demonstrate that KAN-based ViTs significantly mitigate catastrophic forgetting, outperforming traditional MLP-based ViTs in knowledge retention and task adaptation. This novel integration of KANs into ViTs represents a promising step toward more robust and adaptable models for dynamic environments.
Authors:Luigi Quarantiello, Andrea Cossu, Vincenzo Lomonaco
Title: Task-Agnostic Experts Composition for Continual Learning
Abstract:
Compositionality is one of the fundamental abilities of the human reasoning process, that allows to decompose a complex problem into simpler elements. Such property is crucial also for neural networks, especially when aiming for a more efficient and sustainable AI framework. We propose a compositional approach by ensembling zero-shot a set of expert models, assessing our methodology using a challenging benchmark, designed to test compositionality capabilities. We show that our Expert Composition method is able to achieve a much higher accuracy than baseline algorithms while requiring less computational resources, hence being more efficient.
Authors:Akhil Singampalli, Danish Gufran, Sudeep Pasricha
Title: DAILOC: Domain-Incremental Learning for Indoor Localization using Smartphones
Abstract:
Wi-Fi fingerprinting-based indoor localization faces significant challenges in real-world deployments due to domain shifts arising from device heterogeneity and temporal variations within indoor environments. Existing approaches often address these issues independently, resulting in poor generalization and susceptibility to catastrophic forgetting over time. In this work, we propose DAILOC, a novel domain-incremental learning framework that jointly addresses both temporal and device-induced domain shifts. DAILOC introduces a novel disentanglement strategy that separates domain shifts from location-relevant features using a multi-level variational autoencoder. Additionally, we introduce a novel memory-guided class latent alignment mechanism to address the effects of catastrophic forgetting over time. Experiments across multiple smartphones, buildings, and time instances demonstrate that DAILOC significantly outperforms state-of-the-art methods, achieving up to 2.74x lower average error and 4.6x lower worst-case error.
Authors:Jack Bell, Luigi Quarantiello, Eric Nuertey Coleman, Lanpei Li, Malio Li, Mauro Madeddu, Elia Piccoli, Vincenzo Lomonaco
Title: The Future of Continual Learning in the Era of Foundation Models: Three Key Directions
Abstract:
Continual learning--the ability to acquire, retain, and refine knowledge over time--has always been fundamental to intelligence, both human and artificial. Historically, different AI paradigms have acknowledged this need, albeit with varying priorities: early expert and production systems focused on incremental knowledge consolidation, while reinforcement learning emphasised dynamic adaptation. With the rise of deep learning, deep continual learning has primarily focused on learning robust and reusable representations over time to solve sequences of increasingly complex tasks. However, the emergence of Large Language Models (LLMs) and foundation models has raised the question: Do we still need continual learning when centralised, monolithic models can tackle diverse tasks with access to internet-scale knowledge? We argue that continual learning remains essential for three key reasons: (i) continual pre-training is still necessary to ensure foundation models remain up to date, mitigating knowledge staleness and distribution shifts while integrating new information; (ii) continual fine-tuning enables models to specialise and personalise, adapting to domain-specific tasks, user preferences, and real-world constraints without full retraining, avoiding the need for computationally expensive long context-windows; (iii) continual compositionality offers a scalable and modular approach to intelligence, enabling the orchestration of foundation models and agents to be dynamically composed, recombined, and adapted. While continual pre-training and fine-tuning are explored as niche research directions, we argue it is continual compositionality that will mark the rebirth of continual learning. The future of AI will not be defined by a single static model but by an ecosystem of continually evolving and interacting models, making continual learning more relevant than ever.
Authors:Zenghao Guan, Guojun Zhu, Yucan Zhou, Wu Liu, Weiping Wang, Jiebo Luo, Xiaoyan Gu
Title: STSA: Federated Class-Incremental Learning via Spatial-Temporal Statistics Aggregation
Abstract:
Federated Class-Incremental Learning (FCIL) enables Class-Incremental Learning (CIL) from distributed data. Existing FCIL methods typically integrate old knowledge preservation into local client training. However, these methods cannot avoid spatial-temporal client drift caused by data heterogeneity and often incur significant computational and communication overhead, limiting practical deployment. To address these challenges simultaneously, we propose a novel approach, Spatial-Temporal Statistics Aggregation (STSA), which provides a unified framework to aggregate feature statistics both spatially (across clients) and temporally (across stages). The aggregated feature statistics are unaffected by data heterogeneity and can be used to update the classifier in closed form at each stage. Additionally, we introduce STSA-E, a communication-efficient variant with theoretical guarantees, achieving similar performance to STSA-E with much lower communication overhead. Extensive experiments on three widely used FCIL datasets, with varying degrees of data heterogeneity, show that our method outperforms state-of-the-art FCIL methods in terms of performance, flexibility, and both communication and computation efficiency.
Authors:Daniel Waxman, Fernando Llorente, Petar M. Djurić
Title: Bayesian Ensembling: Insights from Online Optimization and Empirical Bayes
Abstract:
We revisit the classical problem of Bayesian ensembles and address the challenge of learning optimal combinations of Bayesian models in an online, continual learning setting. To this end, we reinterpret existing approaches such as Bayesian model averaging (BMA) and Bayesian stacking through a novel empirical Bayes lens, shedding new light on the limitations and pathologies of BMA. Further motivated by insights from online optimization, we propose Online Bayesian Stacking (OBS), a method that optimizes the log-score over predictive distributions to adaptively combine Bayesian models. A key contribution of our work is establishing a novel connection between OBS and portfolio selection, bridging Bayesian ensemble learning with a rich, well-studied theoretical framework that offers efficient algorithms and extensive regret analysis. We further clarify the relationship between OBS and online BMA, showing that they optimize related but distinct cost functions. Through theoretical analysis and empirical evaluation, we identify scenarios where OBS outperforms online BMA and provide principled guidance on when practitioners should prefer one approach over the other.
Authors:Md. Naimur Asif Borno, Md Sakib Hossain Shovon, Asmaa Soliman Al-Moisheer, Mohammad Ali Moni
Title: Replay-Based Continual Learning with Dual-Layered Distillation and a Streamlined U-Net for Efficient Text-to-Image Generation
Abstract:
Recent advancements in text-to-image diffusion models are hindered by high computational demands, limiting accessibility and scalability. This paper introduces KDC-Diff, a novel stable diffusion framework that enhances efficiency while maintaining image quality. KDC-Diff features a streamlined U-Net architecture with nearly half the parameters of the original U-Net (482M), significantly reducing model complexity. We propose a dual-layered distillation strategy to ensure high-fidelity generation, transferring semantic and structural insights from a teacher to a compact student model while minimizing quality degradation. Additionally, replay-based continual learning is integrated to mitigate catastrophic forgetting, allowing the model to retain prior knowledge while adapting to new data. Despite operating under extremely low computational resources, KDC-Diff achieves state-of-the-art performance on the Oxford Flowers and Butterflies & Moths 100 Species datasets, demonstrating competitive metrics such as FID, CLIP, and LPIPS. Moreover, it significantly reduces inference time compared to existing models. These results establish KDC-Diff as a highly efficient and adaptable solution for text-to-image generation, particularly in computationally constrained environments.
Authors:Hengyuan Zhao, Ziqin Wang, Qixin Sun, Kaiyou Song, Yilin Li, Xiaolin Hu, Qingpei Guo, Si Liu
Title: LLaVA-CMoE: Towards Continual Mixture of Experts for Large Vision-Language Models
Abstract:
Mixture of Experts (MoE) architectures have recently advanced the scalability and adaptability of large language models (LLMs) for continual multimodal learning. However, efficiently extending these models to accommodate sequential tasks remains challenging. As new tasks arrive, naive model expansion leads to rapid parameter growth, while modifying shared routing components often causes catastrophic forgetting, undermining previously learned knowledge. To address these issues, we propose LLaVA-CMoE, a continual learning framework for LLMs that requires no replay data of previous tasks and ensures both parameter efficiency and robust knowledge retention. Our approach introduces a Probe-Guided Knowledge Extension mechanism, which uses probe experts to dynamically determine when and where new experts should be added, enabling adaptive and minimal parameter expansion tailored to task complexity. Furthermore, we present a Probabilistic Task Locator that assigns each task a dedicated, lightweight router. To handle the practical issue that task labels are unknown during inference, we leverage a VAE-based reconstruction strategy to identify the most suitable router by matching input distributions, allowing automatic and accurate expert allocation. This design mitigates routing conflicts and catastrophic forgetting, enabling robust continual learning without explicit task labels. Extensive experiments on the CoIN benchmark, covering eight diverse VQA tasks, demonstrate that LLaVA-CMoE delivers strong continual learning performance with a compact model size, significantly reducing forgetting and parameter overhead compared to prior methods. These results showcase the effectiveness and scalability of our approach for parameter-efficient continual learning in large language models. Our code will be open-sourced soon.
Authors:Yingfei Sun, Xu Gu, Wei Ji, Hanbin Zhao, Yifang Yin, Roger Zimmermann
Title: TAIL: Text-Audio Incremental Learning
Abstract:
Many studies combine text and audio to capture multi-modal information but they overlook the model's generalization ability on new datasets. Introducing new datasets may affect the feature space of the original dataset, leading to catastrophic forgetting. Meanwhile, large model parameters can significantly impact training performance. To address these limitations, we introduce a novel task called Text-Audio Incremental Learning (TAIL) task for text-audio retrieval, and propose a new method, PTAT, Prompt Tuning for Audio-Text incremental learning. This method utilizes prompt tuning to optimize the model parameters while incorporating an audio-text similarity and feature distillation module to effectively mitigate catastrophic forgetting. We benchmark our method and previous incremental learning methods on AudioCaps, Clotho, BBC Sound Effects and Audioset datasets, and our method outperforms previous methods significantly, particularly demonstrating stronger resistance to forgetting on older datasets. Compared to the full-parameters Finetune (Sequential) method, our model only requires 2.42\% of its parameters, achieving 4.46\% higher performance.
Authors:Yuyang Huang, Yuhan Liu, Haryadi S. Gunawi, Beibin Li, Changho Hwang
Title: Alchemist: Towards the Design of Efficient Online Continual Learning System
Abstract:
Continual learning has become a promising solution to refine large language models incrementally by leveraging user feedback. In particular, online continual learning - iteratively training the model with small batches of user feedback - has demonstrated notable performance improvements. However, the existing practice of separating training and serving processes forces the online trainer to recompute the intermediate results already done during serving. Such redundant computations can account for 30%-42% of total training time. In this paper, we propose Alchemist, to the best of our knowledge, the first online continual learning system that efficiently reuses serving activations to increase training throughput. Alchemist introduces two key techniques: (1) recording and storing activations and KV cache only during the prefill phase to minimize latency and memory overhead; and (2) smart activation offloading and hedging. Evaluations with inputs of varied token length sampled from ShareGPT dataset show that compared with a separate training cluster, Alchemist significantly increases training throughput by up to 1.72x, reduces up to 47% memory usage during training, and supports up to 2x more training tokens - all while maintaining negligible impact on serving latency.
Authors:Jingzhi Hu, Xin Li, Zhou Su, Jun Luo
Title: Cross-Domain Continual Learning for Edge Intelligence in Wireless ISAC Networks
Abstract:
In wireless networks with integrated sensing and communications (ISAC), edge intelligence (EI) is expected to be developed at edge devices (ED) for sensing user activities based on channel state information (CSI). However, due to the CSI being highly specific to users' characteristics, the CSI-activity relationship is notoriously domain dependent, essentially demanding EI to learn sufficient datasets from various domains in order to gain cross-domain sensing capability. This poses a crucial challenge owing to the EDs' limited resources, for which storing datasets across all domains will be a significant burden. In this paper, we propose the EdgeCL framework, enabling the EI to continually learn-then-discard each incoming dataset, while remaining resilient to catastrophic forgetting. We design a transformer-based discriminator for handling sequences of noisy and nonequispaced CSI samples. Besides, we propose a distilled core-set based knowledge retention method with robustness-enhanced optimization to train the discriminator, preserving its performance for previous domains while preventing future forgetting. Experimental evaluations show that EdgeCL achieves 89% of performance compared to cumulative training while consuming only 3% of its memory, mitigating forgetting by 79%.
Authors:Aojun Lu, Junchao Ke, Chunhui Ding, Jiahao Fan, Jiancheng Lv, Yanan Sun
Title: Achieving Deep Continual Learning via Evolution
Abstract:
Deep neural networks, despite their remarkable success, remain fundamentally limited in their ability to perform Continual Learning (CL). While most current methods aim to enhance the capabilities of a single model, Inspired by the collective learning mechanisms of human populations, we introduce Evolving Continual Learning (ECL), a framework that maintains and evolves a diverse population of neural network models. ECL continually searches for an optimal architecture for each introduced incremental task. This tailored model is trained on the corresponding task and archived as a specialized expert, contributing to a growing collection of skills. This approach inherently resolves the core CL challenges: stability is achieved through the isolation of expert models, while plasticity is greatly enhanced by evolving unique, task-specific architectures. Experimental results demonstrate that ECL significantly outperforms state-of-the-art individual-level CL methods. By shifting the focus from individual adaptation to collective evolution, ECL presents a novel path toward AI systems capable of CL.
Authors:Yixin Cui, Shuo Yang, Chi Wan, Xincheng Li, Jiaming Xing, Yuanjian Zhang, Yanjun Huang, Hong Chen
Title: Continual Adaptation for Autonomous Driving with the Mixture of Progressive Experts Network
Abstract:
Learning-based autonomous driving requires continuous integration of diverse knowledge in complex traffic , yet existing methods exhibit significant limitations in adaptive capabilities. Addressing this gap demands autonomous driving systems that enable continual adaptation through dynamic adjustments to evolving environmental interactions. This underscores the necessity for enhanced continual learning capabilities to improve system adaptability. To address these challenges, the paper introduces a dynamic progressive optimization framework that facilitates adaptation to variations in dynamic environments, achieved by integrating reinforcement learning and supervised learning for data aggregation. Building on this framework, we propose the Mixture of Progressive Experts (MoPE) network. The proposed method selectively activates multiple expert models based on the distinct characteristics of each task and progressively refines the network architecture to facilitate adaptation to new tasks. Simulation results show that the MoPE model outperforms behavior cloning methods, achieving up to a 7.8% performance improvement in intricate urban road environments.
Authors:Shengbo Gu, Yu-Kun Qiu, Yu-Ming Tang, Ancong Wu, Wei-Shi Zheng
Title: MaintaAvatar: A Maintainable Avatar Based on Neural Radiance Fields by Continual Learning
Abstract:
The generation of a virtual digital avatar is a crucial research topic in the field of computer vision. Many existing works utilize Neural Radiance Fields (NeRF) to address this issue and have achieved impressive results. However, previous works assume the images of the training person are available and fixed while the appearances and poses of a subject could constantly change and increase in real-world scenarios. How to update the human avatar but also maintain the ability to render the old appearance of the person is a practical challenge. One trivial solution is to combine the existing virtual avatar models based on NeRF with continual learning methods. However, there are some critical issues in this approach: learning new appearances and poses can cause the model to forget past information, which in turn leads to a degradation in the rendering quality of past appearances, especially color bleeding issues, and incorrect human body poses. In this work, we propose a maintainable avatar (MaintaAvatar) based on neural radiance fields by continual learning, which resolves the issues by utilizing a Global-Local Joint Storage Module and a Pose Distillation Module. Overall, our model requires only limited data collection to quickly fine-tune the model while avoiding catastrophic forgetting, thus achieving a maintainable virtual avatar. The experimental results validate the effectiveness of our MaintaAvatar model.
Authors:Rui Sun, Yumin Zhang, Varun Ojha, Tejal Shah, Haoran Duan, Bo Wei, Rajiv Ranjan
Title: Exemplar-condensed Federated Class-incremental Learning
Abstract:
We propose Exemplar-Condensed federated class-incremental learning (ECoral) to distil the training characteristics of real images from streaming data into informative rehearsal exemplars. The proposed method eliminates the limitations of exemplar selection in replay-based approaches for mitigating catastrophic forgetting in federated continual learning (FCL). The limitations particularly related to the heterogeneity of information density of each summarized data. Our approach maintains the consistency of training gradients and the relationship to past tasks for the summarized exemplars to represent the streaming data compared to the original images effectively. Additionally, our approach reduces the information-level heterogeneity of the summarized data by inter-client sharing of the disentanglement generative model. Extensive experiments show that our ECoral outperforms several state-of-the-art methods and can be seamlessly integrated with many existing approaches to enhance performance.
Authors:Andor Diera, Lukas Galke, Fabian Karl, Ansgar Scherp
Title: Efficient Continual Learning for Small Language Models with a Discrete Key-Value Bottleneck
Abstract:
Continual learning remains a challenge across various natural language processing (NLP) tasks, as models updated with new training data often risk catastrophic forgetting of previously acquired knowledge. We introduce a discrete key-value bottleneck (DKVB) for encoder-only language models, enabling efficient continual learning through localized updates. Inspired by a discrete key-value bottleneck in vision, we consider new and NLP-specific challenges. We compare different bottleneck architectures for NLP and introduce a new, task-independent initialization technique for the discrete keys. We evaluate our DKVB for NLP in four continual learning scenarios and show that it alleviates catastrophic forgetting. Our experiments demonstrate that the proposed approach achieves competitive performance compared to popular continual learning methods while incurring lower computational costs. Furthermore, we show that DKVB remains effective even in challenging single-head continual learning scenarios where no task ID is provided.
Authors:Raymond Chua, Arna Ghosh, Christos Kaplanis, Blake A. Richards, Doina Precup
Title: Learning Successor Features the Simple Way
Abstract:
In Deep Reinforcement Learning (RL), it is a challenge to learn representations that do not exhibit catastrophic forgetting or interference in non-stationary environments. Successor Features (SFs) offer a potential solution to this challenge. However, canonical techniques for learning SFs from pixel-level observations often lead to representation collapse, wherein representations degenerate and fail to capture meaningful variations in the data. More recent methods for learning SFs can avoid representation collapse, but they often involve complex losses and multiple learning phases, reducing their efficiency. We introduce a novel, simple method for learning SFs directly from pixels. Our approach uses a combination of a Temporal-difference (TD) loss and a reward prediction loss, which together capture the basic mathematical definition of SFs. We show that our approach matches or outperforms existing SF learning techniques in both 2D (Minigrid), 3D (Miniworld) mazes and Mujoco, for both single and continual learning scenarios. As well, our technique is efficient, and can reach higher levels of performance in less time than other approaches. Our work provides a new, streamlined technique for learning SFs directly from pixel observations, with no pretraining required.
Authors:Dongjun Hwang, Yejin Kim, Minyoung Lee, Seong Joon Oh, Junsuk Choe
Title: OVS Meets Continual Learning: Towards Sustainable Open-Vocabulary Segmentation
Abstract:
Open-Vocabulary Segmentation (OVS) aims to segment classes that are not present in the training dataset. However, most existing studies assume that the training data is fixed in advance, overlooking more practical scenarios where new datasets are continuously collected over time. To address this, we first analyze how existing OVS models perform under such conditions. In this context, we explore several approaches such as retraining, fine-tuning, and continual learning but find that each of them has clear limitations. To address these issues, we propose ConOVS, a novel continual learning method based on a Mixture-of-Experts framework. ConOVS dynamically combines expert decoders based on the probability that an input sample belongs to the distribution of each incremental dataset. Through extensive experiments, we show that ConOVS consistently outperforms existing methods across pre-training, incremental, and zero-shot test datasets, effectively expanding the recognition capabilities of OVS models when data is collected sequentially.
Authors:Tianchi Xie, Jiangning Zhu, Guozu Ma, Minzhi Lin, Wei Chen, Weikai Yang, Shixia Liu
Title: Structural-Entropy-Based Sample Selection for Efficient and Effective Learning
Abstract:
Sample selection improves the efficiency and effectiveness of machine learning models by providing informative and representative samples. Typically, samples can be modeled as a sample graph, where nodes are samples and edges represent their similarities. Most existing methods are based on local information, such as the training difficulty of samples, thereby overlooking global information, such as connectivity patterns. This oversight can result in suboptimal selection because global information is crucial for ensuring that the selected samples well represent the structural properties of the graph. To address this issue, we employ structural entropy to quantify global information and losslessly decompose it from the whole graph to individual nodes using the Shapley value. Based on the decomposition, we present $\textbf{S}$tructural-$\textbf{E}$ntropy-based sample $\textbf{S}$election ($\textbf{SES}$), a method that integrates both global and local information to select informative and representative samples. SES begins by constructing a $k$NN-graph among samples based on their similarities. It then measures sample importance by combining structural entropy (global metric) with training difficulty (local metric). Finally, SES applies importance-biased blue noise sampling to select a set of diverse and representative samples. Comprehensive experiments on three learning scenarios -- supervised learning, active learning, and continual learning -- clearly demonstrate the effectiveness of our method.
Authors:Zechao Sun, Shuying Piao, Haolin Jin, Chang Dong, Lin Yue, Weitong Chen, Luping Zhou
Title: AWF: Adaptive Weight Fusion for Enhanced Class Incremental Semantic Segmentation
Abstract:
Class Incremental Semantic Segmentation (CISS) aims to mitigate catastrophic forgetting by maintaining a balance between previously learned and newly introduced knowledge. Existing methods, primarily based on regularization techniques like knowledge distillation, help preserve old knowledge but often face challenges in effectively integrating new knowledge, resulting in limited overall improvement. Endpoints Weight Fusion (EWF) method, while simple, effectively addresses some of these limitations by dynamically fusing the model weights from previous steps with those from the current step, using a fusion parameter alpha determined by the relative number of previously known classes and newly introduced classes. However, the simplicity of the alpha calculation may limit its ability to fully capture the complexities of different task scenarios, potentially leading to suboptimal fusion outcomes. In this paper, we propose an enhanced approach called Adaptive Weight Fusion (AWF), which introduces an alternating training strategy for the fusion parameter, allowing for more flexible and adaptive weight integration. AWF achieves superior performance by better balancing the retention of old knowledge with the learning of new classes, significantly improving results on benchmark CISS tasks compared to the original EWF. And our experiment code will be released on Github.
Authors:Kexin Bao, Daichi Zhang, Hansong Zhang, Yong Li, Yutao Yue, Shiming Ge
Title: CD^2: Constrained Dataset Distillation for Few-Shot Class-Incremental Learning
Abstract:
Few-shot class-incremental learning (FSCIL) receives significant attention from the public to perform classification continuously with a few training samples, which suffers from the key catastrophic forgetting problem. Existing methods usually employ an external memory to store previous knowledge and treat it with incremental classes equally, which cannot properly preserve previous essential knowledge. To solve this problem and inspired by recent distillation works on knowledge transfer, we propose a framework termed \textbf{C}onstrained \textbf{D}ataset \textbf{D}istillation (\textbf{CD$^2$}) to facilitate FSCIL, which includes a dataset distillation module (\textbf{DDM}) and a distillation constraint module~(\textbf{DCM}). Specifically, the DDM synthesizes highly condensed samples guided by the classifier, forcing the model to learn compacted essential class-related clues from a few incremental samples. The DCM introduces a designed loss to constrain the previously learned class distribution, which can preserve distilled knowledge more sufficiently. Extensive experiments on three public datasets show the superiority of our method against other state-of-the-art competitors.
Authors:Sherman Wong, Zhenting Qi, Zhaodong Wang, Nathan Hu, Samuel Lin, Jun Ge, Erwin Gao, Wenlin Chen, Yilun Du, Minlan Yu, Ying Zhang
Title: Confucius Code Agent: Scalable Agent Scaffolding for Real-World Codebases
Abstract:
Real-world software engineering tasks require coding agents that can operate over massive repositories, sustain long-horizon sessions, and reliably coordinate complex toolchains at test time. Existing research-grade coding agents offer transparency but struggle when scaled to heavier, production-level workloads, while production-grade systems achieve strong practical performance but provide limited extensibility, interpretability, and controllability. We introduce the Confucius Code Agent (CCA), a software engineering agent that can operate at large-scale codebases. CCA is built on top of the Confucius SDK, an agent development platform structured around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK integrates a unified orchestrator with hierarchical working memory for long-context reasoning, a persistent note-taking system for cross-session continual learning, and a modular extension system for reliable tool use. In addition, we introduce a meta-agent that automates the synthesis, evaluation, and refinement of agent configurations through a build-test-improve loop, enabling rapid adaptation to new tasks, environments, and tool stacks. Instantiated with these mechanisms, CCA demonstrates strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA reaches a Resolve@1 of 54.3%, exceeding prior research baselines and comparing favorably to commercial results, under identical repositories, model backends, and tool access.
Authors:Susmit Agrawal, Krishn Vishwas Kher, Saksham Mittal, Swarnim Maheshwari, Vineeth N. Balasubramanian
Title: Memory-Integrated Reconfigurable Adapters: A Unified Framework for Settings with Multiple Tasks
Abstract:
Organisms constantly pivot between tasks such as evading predators, foraging, traversing rugged terrain, and socializing, often within milliseconds. Remarkably, they preserve knowledge of once-learned environments sans catastrophic forgetting, a phenomenon neuroscientists hypothesize, is due to a singular neural circuitry dynamically overlayed by neuromodulatory agents such as dopamine and acetylcholine. In parallel, deep learning research addresses analogous challenges via domain generalization (DG) and continual learning (CL), yet these methods remain siloed, despite the brains ability to perform them seamlessly. In particular, prior work has not explored architectures involving associative memories (AMs), which are an integral part of biological systems, to jointly address these tasks. We propose Memory-Integrated Reconfigurable Adapters (MIRA), a unified framework that integrates Hopfield-style associative memory modules atop a shared backbone. Associative memory keys are learned post-hoc to index and retrieve an affine combination of stored adapter updates for any given task or domain on a per-sample basis. By varying only the task-specific objectives, we demonstrate that MIRA seamlessly accommodates domain shifts and sequential task exposures under one roof. Empirical evaluations on standard benchmarks confirm that our AM-augmented architecture significantly enhances adaptability and retention: in DG, MIRA achieves SoTA out-of-distribution accuracy, and in incremental learning settings, it outperforms architectures explicitly designed to handle catastrophic forgetting using generic CL algorithms. By unifying adapter-based modulation with biologically inspired associative memory, MIRA delivers rapid task switching and enduring knowledge retention in a single extensible architecture, charting a path toward more versatile and memory-augmented AI systems.
Authors:Songze Li, Mingyu Gao, Tonghua Su, Xu-Yao Zhang, Zhongjie Wang
Title: Multimodal Continual Instruction Tuning with Dynamic Gradient Guidance
Abstract:
Multimodal continual instruction tuning enables multimodal large language models to sequentially adapt to new tasks while building upon previously acquired knowledge. However, this continual learning paradigm faces the significant challenge of catastrophic forgetting, where learning new tasks leads to performance degradation on previous ones. In this paper, we introduce a novel insight into catastrophic forgetting by conceptualizing it as a problem of missing gradients from old tasks during new task learning. Our approach approximates these missing gradients by leveraging the geometric properties of the parameter space, specifically using the directional vector between current parameters and previously optimal parameters as gradient guidance. This approximated gradient can be further integrated with real gradients from a limited replay buffer and regulated by a Bernoulli sampling strategy that dynamically balances model stability and plasticity. Extensive experiments on multimodal continual instruction tuning datasets demonstrate that our method achieves state-of-the-art performance without model expansion, effectively mitigating catastrophic forgetting while maintaining a compact architecture.
Authors:Cooper Simpson, Stephen Becker, Alireza Doostan
Title: In Situ Training of Implicit Neural Compressors for Scientific Simulations via Sketch-Based Regularization
Abstract:
Focusing on implicit neural representations, we present a novel in situ training protocol that employs limited memory buffers of full and sketched data samples, where the sketched data are leveraged to prevent catastrophic forgetting. The theoretical motivation for our use of sketching as a regularizer is presented via a simple Johnson-Lindenstrauss-informed result. While our methods may be of wider interest in the field of continual learning, we specifically target in situ neural compression using implicit neural representation-based hypernetworks. We evaluate our method on a variety of complex simulation data in two and three dimensions, over long time horizons, and across unstructured grids and non-Cartesian geometries. On these tasks, we show strong reconstruction performance at high compression rates. Most importantly, we demonstrate that sketching enables the presented in situ scheme to approximately match the performance of the equivalent offline method.
Authors:Derda Kaymak, Gyuhak Kim, Tomoya Kaichi, Tatsuya Konishi, Bing Liu
Title: Learning After Model Deployment
Abstract:
In classic supervised learning, once a model is deployed in an application, it is fixed. No updates will be made to it during the application. This is inappropriate for many dynamic and open environments, where unexpected samples from unseen classes may appear. In such an environment, the model should be able to detect these novel samples from unseen classes and learn them after they are labeled. We call this paradigm Autonomous Learning after Model Deployment (ALMD). The learning here is continuous and involves no human engineers. Labeling in this scenario is performed by human co-workers or other knowledgeable agents, which is similar to what humans do when they encounter an unfamiliar object and ask another person for its name. In ALMD, the detection of novel samples is dynamic and differs from traditional out-of-distribution (OOD) detection in that the set of in-distribution (ID) classes expands as new classes are learned during application, whereas ID classes is fixed in traditional OOD detection. Learning is also different from classic supervised learning because in ALMD, we learn the encountered new classes immediately and incrementally. It is difficult to retrain the model from scratch using all the past data from the ID classes and the novel samples from newly discovered classes, as this would be resource- and time-consuming. Apart from these two challenges, ALMD faces the data scarcity issue because instances of new classes often appear sporadically in real-life applications. To address these issues, we propose a novel method, PLDA, which performs dynamic OOD detection and incremental learning of new classes on the fly. Empirical evaluations will demonstrate the effectiveness of PLDA.
Authors:Naicheng He, Kaicheng Guo, Arjun Prakash, Saket Tiwari, Ruo Yu Tao, Tyrone Serapio, Amy Greenwald, George Konidaris
Title: Spectral Collapse Drives Loss of Plasticity in Deep Continual Learning
Abstract:
We investigate why deep neural networks suffer from loss of plasticity in deep continual learning, failing to learn new tasks without reinitializing parameters. We show that this failure is preceded by Hessian spectral collapse at new-task initialization, where meaningful curvature directions vanish and gradient descent becomes ineffective. To characterize the necessary condition for successful training, we introduce the notion of $τ$-trainability and show that current plasticity preserving algorithms can be unified under this framework. Targeting spectral collapse directly, we then discuss the Kronecker factored approximation of the Hessian, which motivates two regularization enhancements: maintaining high effective feature rank and applying L2 penalties. Experiments on continual supervised and reinforcement learning tasks confirm that combining these two regularizers effectively preserves plasticity.
Authors:Alejandro Dopico-Castro, Oscar Fontenla-Romero, Bertha Guijarro-Berdiñas, Amparo Alonso-Betanzos
Title: Efficient Single-Step Framework for Incremental Class Learning in Neural Networks
Abstract:
Incremental learning remains a critical challenge in machine learning, as models often struggle with catastrophic forgetting -the tendency to lose previously acquired knowledge when learning new information. These challenges are even more pronounced in resource-limited settings. Many existing Class Incremental Learning (CIL) methods achieve high accuracy by continually adapting their feature representations; however, they often require substantial computational resources and complex, iterative training procedures. This work introduces CIFNet (Class Incremental and Frugal Network), a novel CIL approach that addresses these limitations by offering a highly efficient and sustainable solution. CIFNet's key innovation lies in its novel integration of several existing, yet separately explored, components: a pre-trained and frozen feature extractor, a compressed data buffer, and an efficient non-iterative one-layer neural network for classification. A pre-trained and frozen feature extractor eliminates computationally expensive fine-tuning of the backbone. This, combined with a compressed buffer for efficient memory use, enables CIFNet to perform efficient class-incremental learning through a single-step optimization process on fixed features, minimizing computational overhead and training time without requiring multiple weight updates. Experiments on benchmark datasets confirm that CIFNet effectively mitigates catastrophic forgetting at the classifier level, achieving high accuracy comparable to that of existing state-of-the-art methods, while substantially improving training efficiency and sustainability. CIFNet represents a significant advancement in making class-incremental learning more accessible and pragmatic in environments with limited resources, especially when strong pre-trained feature extractors are available.
Authors:Thanh Thi Nguyen, Campbell Wilson, Janis Dalins
Title: Aligning Large Vision-Language Models by Deep Reinforcement Learning and Direct Preference Optimization
Abstract:
Large Vision-Language Models (LVLMs) or multimodal large language models represent a significant advancement in artificial intelligence, enabling systems to understand and generate content across both visual and textual modalities. While large-scale pretraining has driven substantial progress, fine-tuning these models for aligning with human values or engaging in specific tasks or behaviors remains a critical challenge. Deep Reinforcement Learning (DRL) and Direct Preference Optimization (DPO) offer promising frameworks for this aligning process. While DRL enables models to optimize actions using reward signals instead of relying solely on supervised preference data, DPO directly aligns the policy with preferences, eliminating the need for an explicit reward model. This overview explores paradigms for fine-tuning LVLMs, highlighting how DRL and DPO techniques can be used to align models with human preferences and values, improve task performance, and enable adaptive multimodal interaction. We categorize key approaches, examine sources of preference data, reward signals, and discuss open challenges such as scalability, sample efficiency, continual learning, generalization, and safety. The goal is to provide a clear understanding of how DRL and DPO contribute to the evolution of robust and human-aligned LVLMs.
Authors:Pujan Thapa, Alexander Ororbia, Travis Desell
Title: Class Incremental Continual Learning with Self-Organizing Maps and Variational Autoencoders Using Synthetic Replay
Abstract:
This work introduces a novel generative continual learning framework based on self-organizing maps (SOMs) and variational autoencoders (VAEs) to enable memory-efficient replay, eliminating the need to store raw data samples or task labels. For high-dimensional input spaces, such as of CIFAR-10 and CIFAR-100, we design a scheme where the SOM operates over the latent space learned by a VAE, whereas, for lower-dimensional inputs, such as those found in MNIST and FashionMNIST, the SOM operates in a standalone fashion. Our method stores a running mean, variance, and covariance for each SOM unit, from which synthetic samples are then generated during future learning iterations. For the VAE-based method, generated samples are then fed through the decoder to then be used in subsequent replay. Experimental results on standard class-incremental benchmarks show that our approach performs competitively with state-of-the-art memory-based methods and outperforms memory-free methods, notably improving over best state-of-the-art single class incremental performance on CIFAR-10 and CIFAR-100 by nearly $10$\% and $7$\%, respectively. Our methodology further facilitates easy visualization of the learning process and can also be utilized as a generative model post-training. Results show our method's capability as a scalable, task-label-free, and memory-efficient solution for continual learning.
Authors:Jongseo Lee, Kyungho Bae, Kyle Min, Gyeong-Moon Park, Jinwoo Choi
Title: ESSENTIAL: Episodic and Semantic Memory Integration for Video Class-Incremental Learning
Abstract:
In this work, we tackle the problem of video classincremental learning (VCIL). Many existing VCIL methods mitigate catastrophic forgetting by rehearsal training with a few temporally dense samples stored in episodic memory, which is memory-inefficient. Alternatively, some methods store temporally sparse samples, sacrificing essential temporal information and thereby resulting in inferior performance. To address this trade-off between memory-efficiency and performance, we propose EpiSodic and SEmaNTIc memory integrAtion for video class-incremental Learning (ESSENTIAL). ESSENTIAL consists of episodic memory for storing temporally sparse features and semantic memory for storing general knowledge represented by learnable prompts. We introduce a novel memory retrieval (MR) module that integrates episodic memory and semantic prompts through cross-attention, enabling the retrieval of temporally dense features from temporally sparse features. We rigorously validate ESSENTIAL on diverse datasets: UCF-101, HMDB51, and Something-Something-V2 from the TCD benchmark and UCF-101, ActivityNet, and Kinetics-400 from the vCLIMB benchmark. Remarkably, with significantly reduced memory, ESSENTIAL achieves favorable performance on the benchmarks.
Authors:Thinh Nguyen, Le Huy Khiem, Van-Tuan Tran, Khoa D Doan, Nitesh V Chawla, Kok-Seng Wong
Title: pFedDSH: Enabling Knowledge Transfer in Personalized Federated Learning through Data-free Sub-Hypernetwork
Abstract:
Federated Learning (FL) enables collaborative model training across distributed clients without sharing raw data, offering a significant privacy benefit. However, most existing Personalized Federated Learning (pFL) methods assume a static client participation, which does not reflect real-world scenarios where new clients may continuously join the federated system (i.e., dynamic client onboarding). In this paper, we explore a practical scenario in which a new batch of clients is introduced incrementally while the learning task remains unchanged. This dynamic environment poses various challenges, including preserving performance for existing clients without retraining and enabling efficient knowledge transfer between client batches. To address these issues, we propose Personalized Federated Data-Free Sub-Hypernetwork (pFedDSH), a novel framework based on a central hypernetwork that generates personalized models for each client via embedding vectors. To maintain knowledge stability for existing clients, pFedDSH incorporates batch-specific masks, which activate subsets of neurons to preserve knowledge. Furthermore, we introduce a data-free replay strategy motivated by DeepInversion to facilitate backward transfer, enhancing existing clients' performance without compromising privacy. Extensive experiments conducted on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that pFedDSH outperforms the state-of-the-art pFL and Federated Continual Learning baselines in our investigation scenario. Our approach achieves robust performance stability for existing clients, as well as adaptation for new clients and efficient utilization of neural resources.
Authors:Jiazhen Chen, Zheng Ma, Sichao Fu, Mingbin Feng, Tony S. Wirjanto, Weihua Ou
Title: Towards Effective Open-set Graph Class-incremental Learning
Abstract:
Graph class-incremental learning (GCIL) allows graph neural networks (GNNs) to adapt to evolving graph analytical tasks by incrementally learning new class knowledge while retaining knowledge of old classes. Existing GCIL methods primarily focus on a closed-set assumption, where all test samples are presumed to belong to previously known classes. Such an assumption restricts their applicability in real-world scenarios, where unknown classes naturally emerge during inference, and are absent during training. In this paper, we explore a more challenging open-set graph class-incremental learning scenario with two intertwined challenges: catastrophic forgetting of old classes, which impairs the detection of unknown classes, and inadequate open-set recognition, which destabilizes the retention of learned knowledge. To address the above problems, a novel OGCIL framework is proposed, which utilizes pseudo-sample embedding generation to effectively mitigate catastrophic forgetting and enable robust detection of unknown classes. To be specific, a prototypical conditional variational autoencoder is designed to synthesize node embeddings for old classes, enabling knowledge replay without storing raw graph data. To handle unknown classes, we employ a mixing-based strategy to generate out-of-distribution (OOD) samples from pseudo in-distribution and current node embeddings. A novel prototypical hypersphere classification loss is further proposed, which anchors in-distribution embeddings to their respective class prototypes, while repelling OOD embeddings away. Instead of assigning all unknown samples into one cluster, our proposed objective function explicitly models them as outliers through prototype-aware rejection regions, ensuring a robust open-set recognition. Extensive experiments on five benchmarks demonstrate the effectiveness of OGCIL over existing GCIL and open-set GNN methods.
Authors:Étienne Künzel, Achref Jaziri, Visvanathan Ramesh
Title: A Simple Baseline for Stable and Plastic Neural Networks
Abstract:
Continual learning in computer vision requires that models adapt to a continuous stream of tasks without forgetting prior knowledge, yet existing approaches often tip the balance heavily toward either plasticity or stability. We introduce RDBP, a simple, low-overhead baseline that unites two complementary mechanisms: ReLUDown, a lightweight activation modification that preserves feature sensitivity while preventing neuron dormancy, and Decreasing Backpropagation, a biologically inspired gradient-scheduling scheme that progressively shields early layers from catastrophic updates. Evaluated on the Continual ImageNet benchmark, RDBP matches or exceeds the plasticity and stability of state-of-the-art methods while reducing computational cost. RDBP thus provides both a practical solution for real-world continual learning and a clear benchmark against which future continual learning strategies can be measured.
Authors:Lars Möllenbrok, Behnood Rasti, Begüm Demir
Title: Continual Self-Supervised Learning with Masked Autoencoders in Remote Sensing
Abstract:
The development of continual learning (CL) methods, which aim to learn new tasks in a sequential manner from the training data acquired continuously, has gained great attention in remote sensing (RS). The existing CL methods in RS, while learning new tasks, enhance robustness towards catastrophic forgetting. This is achieved by using a large number of labeled training samples, which is costly and not always feasible to gather in RS. To address this problem, we propose a novel continual self-supervised learning method in the context of masked autoencoders (denoted as CoSMAE). The proposed CoSMAE consists of two components: i) data mixup; and ii) model mixup knowledge distillation. Data mixup is associated with retaining information on previous data distributions by interpolating images from the current task with those from the previous tasks. Model mixup knowledge distillation is associated with distilling knowledge from past models and the current model simultaneously by interpolating their model weights to form a teacher for the knowledge distillation. The two components complement each other to regularize the MAE at the data and model levels to facilitate better generalization across tasks and reduce the risk of catastrophic forgetting. Experimental results show that CoSMAE achieves significant improvements of up to 4.94% over state-of-the-art CL methods applied to MAE. Our code is publicly available at: https://git.tu-berlin.de/rsim/CoSMAE.
Authors:Nikolas Belle, Dakota Barnes, Alfonso Amayuelas, Ivan Bercovich, Xin Eric Wang, William Wang
Title: Agents of Change: Self-Evolving LLM Agents for Strategic Planning
Abstract:
We address the long-horizon gap in large language model (LLM) agents by enabling them to sustain coherent strategies in adversarial, stochastic environments. Settlers of Catan provides a challenging benchmark: success depends on balancing short- and long-term goals amid randomness, trading, expansion, and blocking. Prompt-centric LLM agents (e.g., ReAct, Reflexion) must re-interpret large, evolving game states each turn, quickly saturating context windows and losing strategic consistency. We propose HexMachina, a continual learning multi-agent system that separates environment discovery (inducing an adapter layer without documentation) from strategy improvement (evolving a compiled player through code refinement and simulation). This design preserves executable artifacts, allowing the LLM to focus on high-level strategy rather than per-turn reasoning. In controlled Catanatron experiments, HexMachina learns from scratch and evolves players that outperform the strongest human-crafted baseline (AlphaBeta), achieving a 54% win rate and surpassing prompt-driven and no-discovery baselines. Ablations confirm that isolating pure strategy learning improves performance. Overall, artifact-centric continual learning transforms LLMs from brittle stepwise deciders into stable strategy designers, advancing long-horizon autonomy.
Authors:Yaxiong Lei, Mingyue Zhao, Yuheng Wang, Shijing He, Yusuke Sugano, Mohamed Khamis, Juan Ye
Title: MAC-Gaze: Motion-Aware Continual Calibration for Mobile Gaze Tracking
Abstract:
Mobile gaze tracking faces a fundamental challenge: maintaining accuracy as users naturally change their postures and device orientations. Traditional calibration approaches, like one-off, fail to adapt to these dynamic conditions, leading to degraded performance over time. We present MAC-Gaze, a Motion-Aware continual Calibration approach that leverages smartphone Inertial measurement unit (IMU) sensors and continual learning techniques to automatically detect changes in user motion states and update the gaze tracking model accordingly. Our system integrates a pre-trained visual gaze estimator and an IMU-based activity recognition model with a clustering-based hybrid decision-making mechanism that triggers recalibration when motion patterns deviate significantly from previously encountered states. To enable accumulative learning of new motion conditions while mitigating catastrophic forgetting, we employ replay-based continual learning, allowing the model to maintain performance across previously encountered motion conditions. We evaluate our system through extensive experiments on the publicly available RGBDGaze dataset and our own 10-hour multimodal MotionGaze dataset (481K+ images, 800K+ IMU readings), encompassing a wide range of postures under various motion conditions including sitting, standing, lying, and walking. Results demonstrate that our method reduces gaze estimation error by 19.9% on RGBDGaze (from 1.73 cm to 1.41 cm) and by 31.7% on MotionGaze (from 2.81 cm to 1.92 cm) compared to traditional calibration approaches. Our framework provides a robust solution for maintaining gaze estimation accuracy in mobile scenarios.
Authors:Shrey Pandit, Ashwin Vinod, Liu Leqi, Ying Ding
Title: Teaching with Lies: Curriculum DPO on Synthetic Negatives for Hallucination Detection
Abstract:
Aligning large language models (LLMs) to accurately detect hallucinations remains a significant challenge due to the sophisticated nature of hallucinated text. Recognizing that hallucinated samples typically exhibit higher deceptive quality than traditional negative samples, we use these carefully engineered hallucinations as negative examples in the DPO alignment procedure. Our method incorporates a curriculum learning strategy, gradually transitioning the training from easier samples, identified based on the greatest reduction in probability scores from independent fact checking models, to progressively harder ones. This structured difficulty scaling ensures stable and incremental learning. Experimental evaluation demonstrates that our HaluCheck models, trained with curriculum DPO approach and high quality negative samples, significantly improves model performance across various metrics, achieving improvements of upto 24% on difficult benchmarks like MedHallu and HaluEval. Additionally, HaluCheck models demonstrate robustness in zero-shot settings, significantly outperforming larger state-of-the-art models across various benchmarks.
Authors:Zeki Doruk Erden, Donia Gasmi, Boi Faltings
Title: Continual Reinforcement Learning via Autoencoder-Driven Task and New Environment Recognition
Abstract:
Continual learning for reinforcement learning agents remains a significant challenge, particularly in preserving and leveraging existing information without an external signal to indicate changes in tasks or environments. In this study, we explore the effectiveness of autoencoders in detecting new tasks and matching observed environments to previously encountered ones. Our approach integrates policy optimization with familiarity autoencoders within an end-to-end continual learning system. This system can recognize and learn new tasks or environments while preserving knowledge from earlier experiences and can selectively retrieve relevant knowledge when re-encountering a known environment. Initial results demonstrate successful continual learning without external signals to indicate task changes or reencounters, showing promise for this methodology.
Authors:Xu Pan, Ely Hahami, Zechen Zhang, Haim Sompolinsky
Title: Memorization and Knowledge Injection in Gated LLMs
Abstract:
Large Language Models (LLMs) currently struggle to sequentially add new memories and integrate new knowledge. These limitations contrast with the human ability to continuously learn from new experiences and acquire knowledge throughout life. Most existing approaches add memories either through large context windows or external memory buffers (e.g., Retrieval-Augmented Generation), and studies on knowledge injection rarely test scenarios resembling everyday life events. In this work, we introduce a continual learning framework, Memory Embedded in Gated LLMs (MEGa), which injects event memories directly into the weights of LLMs. Each memory is stored in a dedicated set of gated low-rank weights. During inference, a gating mechanism activates relevant memory weights by matching query embeddings to stored memory embeddings. This enables the model to both recall entire memories and answer related questions. On two datasets - fictional characters and Wikipedia events - MEGa outperforms baseline approaches in mitigating catastrophic forgetting. Our model draws inspiration from the complementary memory system of the human brain.
Authors:Djohan Bonnet, Kellian Cottart, Tifenn Hirtzlin, Tarcisius Januel, Thomas Dalgaty, Elisa Vianello, Damien Querlioz
Title: Bayesian continual learning and forgetting in neural networks
Abstract:
Biological synapses effortlessly balance memory retention and flexibility, yet artificial neural networks still struggle with the extremes of catastrophic forgetting and catastrophic remembering. Here, we introduce Metaplasticity from Synaptic Uncertainty (MESU), a Bayesian framework that updates network parameters according their uncertainty. This approach allows a principled combination of learning and forgetting that ensures that critical knowledge is preserved while unused or outdated information is gradually released. Unlike standard Bayesian approaches -- which risk becoming overly constrained, and popular continual-learning methods that rely on explicit task boundaries, MESU seamlessly adapts to streaming data. It further provides reliable epistemic uncertainty estimates, allowing out-of-distribution detection, the only computational cost being to sample the weights multiple times to provide proper output statistics. Experiments on image-classification benchmarks demonstrate that MESU mitigates catastrophic forgetting, while maintaining plasticity for new tasks. When training 200 sequential permuted MNIST tasks, MESU outperforms established continual learning techniques in terms of accuracy, capability to learn additional tasks, and out-of-distribution data detection. Additionally, due to its non-reliance on task boundaries, MESU outperforms conventional learning techniques on the incremental training of CIFAR-100 tasks consistently in a wide range of scenarios. Our results unify ideas from metaplasticity, Bayesian inference, and Hessian-based regularization, offering a biologically-inspired pathway to robust, perpetual learning.
Authors:Songze Li, Tonghua Su, Xu-Yao Zhang, Qixing Xu, Zhongjie Wang
Title: DUKAE: DUal-level Knowledge Accumulation and Ensemble for Pre-Trained Model-Based Continual Learning
Abstract:
Pre-trained model-based continual learning (PTMCL) has garnered growing attention, as it enables more rapid acquisition of new knowledge by leveraging the extensive foundational understanding inherent in pre-trained model (PTM). Most existing PTMCL methods use Parameter-Efficient Fine-Tuning (PEFT) to learn new knowledge while consolidating existing memory. However, they often face some challenges. A major challenge lies in the misalignment of classification heads, as the classification head of each task is trained within a distinct feature space, leading to inconsistent decision boundaries across tasks and, consequently, increased forgetting. Another critical limitation stems from the restricted feature-level knowledge accumulation, with feature learning typically restricted to the initial task only, which constrains the model's representation capabilities. To address these issues, we propose a method named DUal-level Knowledge Accumulation and Ensemble (DUKAE) that leverages both feature-level and decision-level knowledge accumulation by aligning classification heads into a unified feature space through Gaussian distribution sampling and introducing an adaptive expertise ensemble to fuse knowledge across feature subspaces. Extensive experiments on CIFAR-100, ImageNet-R, CUB-200, and Cars-196 datasets demonstrate the superior performance of our approach.
Authors:Kishansingh Rajput, Sen Lin, Auralee Edelen, Willem Blokland, Malachi Schram
Title: Outlook Towards Deployable Continual Learning for Particle Accelerators
Abstract:
Particle Accelerators are high power complex machines. To ensure uninterrupted operation of these machines, thousands of pieces of equipment need to be synchronized, which requires addressing many challenges including design, optimization and control, anomaly detection and machine protection. With recent advancements, Machine Learning (ML) holds promise to assist in more advance prognostics, optimization, and control. While ML based solutions have been developed for several applications in particle accelerators, only few have reached deployment and even fewer to long term usage, due to particle accelerator data distribution drifts caused by changes in both measurable and non-measurable parameters. In this paper, we identify some of the key areas within particle accelerators where continual learning can allow maintenance of ML model performance with distribution drifts. Particularly, we first discuss existing applications of ML in particle accelerators, and their limitations due to distribution drift. Next, we review existing continual learning techniques and investigate their potential applications to address data distribution drifts in accelerators. By identifying the opportunities and challenges in applying continual learning, this paper seeks to open up the new field and inspire more research efforts towards deployable continual learning for particle accelerators.
Authors:Lars Möllenbrok, Behnood Rasti, Begüm Demir
Title: A Plasticity-Aware Method for Continual Self-Supervised Learning in Remote Sensing
Abstract:
Continual self-supervised learning (CSSL) methods have gained increasing attention in remote sensing (RS) due to their capability to learn new tasks sequentially from continuous streams of unlabeled data. Existing CSSL methods, while learning new tasks, focus on preventing catastrophic forgetting. To this end, most of them use regularization strategies to retain knowledge of previous tasks. This reduces the model's ability to adapt to the data of new tasks (i.e., learning plasticity), which can degrade performance. To address this problem, in this paper, we propose a novel CSSL method that aims to learn tasks sequentially, while achieving high learning plasticity. To this end, the proposed method uses a knowledge distillation strategy with an integrated decoupling mechanism. The decoupling is achieved by first dividing the feature dimensions into task-common and task-specific parts. Then, the task-common features are forced to be correlated to ensure memory stability while the task-specific features are forced to be de-correlated facilitating the learning of new features. Experimental results show the effectiveness of the proposed method compared to CaSSLe, which is a widely used CSSL framework, with improvements of up to 1.12% in average accuracy and 2.33% in intransigence in a task-incremental scenario, and 1.24% in average accuracy and 2.01% in intransigence in a class-incremental scenario.
Authors:Zeki Doruk Erden, Boi Faltings
Title: A Proposal for Networks Capable of Continual Learning
Abstract:
We analyze the ability of computational units to retain past responses after parameter updates, a key property for system-wide continual learning. Neural networks trained with gradient descent lack this capability, prompting us to propose Modelleyen, an alternative approach with inherent response preservation. We demonstrate through experiments on modeling the dynamics of a simple environment and on MNIST that, despite increased computational complexity and some representational limitations at its current stage, Modelleyen achieves continual learning without relying on sample replay or predefined task boundaries.
Authors:Yuanlong Wu, Mingxing Nie, Tao Zhu, Liming Chen, Huansheng Ning, Yaping Wan
Title: PTMs-TSCIL Pre-Trained Models Based Class-Incremental Learning
Abstract:
Class-incremental learning (CIL) for time series data faces critical challenges in balancing stability against catastrophic forgetting and plasticity for new knowledge acquisition, particularly under real-world constraints where historical data access is restricted. While pre-trained models (PTMs) have shown promise in CIL for vision and NLP domains, their potential in time series class-incremental learning (TSCIL) remains underexplored due to the scarcity of large-scale time series pre-trained models. Prompted by the recent emergence of large-scale pre-trained models (PTMs) for time series data, we present the first exploration of PTM-based Time Series Class-Incremental Learning (TSCIL). Our approach leverages frozen PTM backbones coupled with incrementally tuning the shared adapter, preserving generalization capabilities while mitigating feature drift through knowledge distillation. Furthermore, we introduce a Feature Drift Compensation Network (DCN), designed with a novel two-stage training strategy to precisely model feature space transformations across incremental tasks. This allows for accurate projection of old class prototypes into the new feature space. By employing DCN-corrected prototypes, we effectively enhance the unified classifier retraining, mitigating model feature drift and alleviating catastrophic forgetting. Extensive experiments on five real-world datasets demonstrate state-of-the-art performance, with our method yielding final accuracy gains of 1.4%-6.1% across all datasets compared to existing PTM-based approaches. Our work establishes a new paradigm for TSCIL, providing insights into stability-plasticity optimization for continual learning systems.
Authors:Yixiang Sun, Haotian Fu, Michael Littman, George Konidaris
Title: Knowledge Retention for Continual Model-Based Reinforcement Learning
Abstract:
We propose DRAGO, a novel approach for continual model-based reinforcement learning aimed at improving the incremental development of world models across a sequence of tasks that differ in their reward functions but not the state space or dynamics. DRAGO comprises two key components: Synthetic Experience Rehearsal, which leverages generative models to create synthetic experiences from past tasks, allowing the agent to reinforce previously learned dynamics without storing data, and Regaining Memories Through Exploration, which introduces an intrinsic reward mechanism to guide the agent toward revisiting relevant states from prior tasks. Together, these components enable the agent to maintain a comprehensive and continually developing world model, facilitating more effective learning and adaptation across diverse environments. Empirical evaluations demonstrate that DRAGO is able to preserve knowledge across tasks, achieving superior performance in various continual learning scenarios.
Authors:Haoming Yang, Ali Hasan, Vahid Tarokh
Title: Parabolic Continual Learning
Abstract:
Regularizing continual learning techniques is important for anticipating algorithmic behavior under new realizations of data. We introduce a new approach to continual learning by imposing the properties of a parabolic partial differential equation (PDE) to regularize the expected behavior of the loss over time. This class of parabolic PDEs has a number of favorable properties that allow us to analyze the error incurred through forgetting and the error induced through generalization. Specifically, we do this through imposing boundary conditions where the boundary is given by a memory buffer. By using the memory buffer as a boundary, we can enforce long term dependencies by bounding the expected error by the boundary loss. Finally, we illustrate the empirical performance of the method on a series of continual learning tasks.
Authors:Zeki Doruk Erden, Boi Faltings
Title: Continually Learning Structured Visual Representations via Network Refinement with Rerelation
Abstract:
Current machine learning paradigm relies on continuous representations like neural networks, which iteratively adjust parameters to approximate outcomes rather than directly learning the structure of problem. This spreads information across the network, causing issues like information loss and incomprehensibility Building on prior work in environment dynamics modeling, we propose a method that learns visual space in a structured, continual manner. Our approach refines networks to capture the core structure of objects while representing significant subvariants in structure efficiently. We demonstrate this with 2D shape detection, showing incremental learning on MNIST without overwriting knowledge and creating compact, comprehensible representations. These results offer a promising step toward a transparent, continually learning alternative to traditional neural networks for visual processing.
Authors:Thinh Nguyen, Cuong N. Nguyen, Quang Pham, Binh T. Nguyen, Savitha Ramasamy, Xiaoli Li, Cuong V. Nguyen
Title: Sequence Transferability and Task Order Selection in Continual Learning
Abstract:
In continual learning, understanding the properties of task sequences and their relationships to model performance is important for developing advanced algorithms with better accuracy. However, efforts in this direction remain underdeveloped despite encouraging progress in methodology development. In this work, we investigate the impacts of sequence transferability on continual learning and propose two novel measures that capture the total transferability of a task sequence, either in the forward or backward direction. Based on the empirical properties of these measures, we then develop a new method for the task order selection problem in continual learning. Our method can be shown to offer a better performance than the conventional strategy of random task selection.
Authors:Zeki Doruk Erden, Boi Faltings
Title: Agential AI for Integrated Continual Learning, Deliberative Behavior, and Comprehensible Models
Abstract:
Contemporary machine learning paradigm excels in statistical data analysis, solving problems that classical AI couldn't. However, it faces key limitations, such as a lack of integration with planning, incomprehensible internal structure, and inability to learn continually. We present the initial design for an AI system, Agential AI (AAI), in principle operating independently or on top of statistical methods, designed to overcome these issues. AAI's core is a learning method that models temporal dynamics with guarantees of completeness, minimality, and continual learning, using component-level variation and selection to learn the structure of the environment. It integrates this with a behavior algorithm that plans on a learned model and encapsulates high-level behavior patterns. Preliminary experiments on a simple environment show AAI's effectiveness and potential.
Authors:Niklas Babendererde, Haozhe Zhu, Moritz Fuchs, Jonathan Stieber, Anirban Mukhopadhyay
Title: Federated-Continual Dynamic Segmentation of Histopathology guided by Barlow Continuity
Abstract:
Federated- and Continual Learning have been established as approaches to enable privacy-aware learning on continuously changing data, as required for deploying AI systems in histopathology images. However, data shifts can occur in a dynamic world, spatially between institutions and temporally, due to changing data over time. This leads to two issues: Client Drift, where the central model degrades from aggregating data from clients trained on shifted data, and Catastrophic Forgetting, from temporal shifts such as changes in patient populations. Both tend to degrade the model's performance of previously seen data or spatially distributed training. Despite both problems arising from the same underlying problem of data shifts, existing research addresses them only individually. In this work, we introduce a method that can jointly alleviate Client Drift and Catastrophic Forgetting by using our proposed Dynamic Barlow Continuity that evaluates client updates on a public reference dataset and uses this to guide the training process to a spatially and temporally shift-invariant model. We evaluate our approach on the histopathology datasets BCSS and Semicol and prove our method to be highly effective by jointly improving the dice score as much as from 15.8% to 71.6% in Client Drift and from 42.5% to 62.8% in Catastrophic Forgetting. This enables Dynamic Learning by establishing spatio-temporal shift-invariance.
Authors:Yewon Byun, Sanket Vaibhav Mehta, Saurabh Garg, Emma Strubell, Michael Oberst, Bryan Wilder, Zachary C. Lipton
Title: Expert Routing with Synthetic Data for Continual Learning
Abstract:
In many real-world settings, regulations and economic incentives permit the sharing of models but not data across institutional boundaries. In such scenarios, practitioners might hope to adapt models to new domains, without losing performance on previous domains (so-called catastrophic forgetting). While any single model may struggle to achieve this goal, learning an ensemble of domain-specific experts offers the potential to adapt more closely to each individual institution. However, a core challenge in this context is determining which expert to deploy at test time. In this paper, we propose Generate to Discriminate (G2D), a domain-incremental continual learning method that leverages synthetic data to train a domain-discriminator that routes samples at inference time to the appropriate expert. Surprisingly, we find that leveraging synthetic data in this capacity is more effective than using the samples to \textit{directly} train the downstream classifier (the more common approach to leveraging synthetic data in the lifelong learning literature). We observe that G2D outperforms competitive domain-incremental learning methods on tasks in both vision and language modalities, providing a new perspective on the use of synthetic data in the lifelong learning literature.
Authors:Sahar Rahimi Malakshan, Mohammad Saeed Ebrahimi Saadabadi, Ali Dabouei, Nasser M. Nasrabadi
Title: Decomposed Distribution Matching in Dataset Condensation
Abstract:
Dataset Condensation (DC) aims to reduce deep neural networks training efforts by synthesizing a small dataset such that it will be as effective as the original large dataset. Conventionally, DC relies on a costly bi-level optimization which prohibits its practicality. Recent research formulates DC as a distribution matching problem which circumvents the costly bi-level optimization. However, this efficiency sacrifices the DC performance. To investigate this performance degradation, we decomposed the dataset distribution into content and style. Our observations indicate two major shortcomings of: 1) style discrepancy between original and condensed data, and 2) limited intra-class diversity of condensed dataset. We present a simple yet effective method to match the style information between original and condensed data, employing statistical moments of feature maps as well-established style indicators. Moreover, we enhance the intra-class diversity by maximizing the Kullback-Leibler divergence within each synthetic class, i.e., content. We demonstrate the efficacy of our method through experiments on diverse datasets of varying size and resolution, achieving improvements of up to 4.1% on CIFAR10, 4.2% on CIFAR100, 4.3% on TinyImageNet, 2.0% on ImageNet-1K, 3.3% on ImageWoof, 2.5% on ImageNette, and 5.5% in continual learning accuracy.
Authors:Zeki Doruk Erden, Boi Faltings
Title: Directed Structural Adaptation to Overcome Statistical Conflicts and Enable Continual Learning
Abstract:
Adaptive networks today rely on overparameterized fixed topologies that cannot break through the statistical conflicts they encounter in the data they are exposed to, and are prone to "catastrophic forgetting" as the network attempts to reuse the existing structures to learn new task. We propose a structural adaptation method, DIRAD, that can complexify as needed and in a directed manner without being limited by statistical conflicts within a dataset. We then extend this method and present the PREVAL framework, designed to prevent "catastrophic forgetting" in continual learning by detection of new data and assigning encountered data to suitable models adapted to process them, without needing task labels anywhere in the workflow. We show the reliability of the DIRAD in growing a network with high performance and orders-of-magnitude simpler than fixed topology networks; and demonstrate the proof-of-concept operation of PREVAL, in which continual adaptation to new tasks is observed while being able to detect and discern previously-encountered tasks.
Authors:Reece Shuttleworth, Jacob Andreas, Antonio Torralba, Pratyusha Sharma
Title: LoRA vs Full Fine-tuning: An Illusion of Equivalence
Abstract:
Fine-tuning is a crucial paradigm for adapting pre-trained large language models to downstream tasks. Recently, methods like Low-Rank Adaptation (LoRA) have been shown to effectively fine-tune LLMs with an extreme reduction in trainable parameters. But, \emph{are their learned solutions really equivalent?} We study how LoRA and full-finetuning change pre-trained models by analyzing the model's weight matrices through the lens of their spectral properties. We find that LoRA and full fine-tuning yield weight matrices whose singular value decompositions exhibit very different structure: weight matrices trained with LoRA have new, high-ranking singular vectors, which we call \emph{intruder dimensions}, while those trained with full fine-tuning do not. Further, we extend the finding that LoRA forgets less than full fine-tuning and find its forgetting is vastly localized to the intruder dimension -- by causally intervening on the intruder dimensions by changing their associated singular values post-fine-tuning, we show that they cause forgetting. Moreover, scaling them down significantly improves modeling of the pre-training distribution with a minimal drop in downstream task performance. Given this, we should expect accumulating intruder dimensions to be harmful and lead to more forgetting. This will be amplified during continual learning because of sequentially fine-tuning, and we show that LoRA models do accumulate intruder dimensions here tend to perform worse in this setting, emphasizing the practicality of our findings.
Authors:Chaoxi Niu, Guansong Pang, Ling Chen, Bing Liu
Title: Replay-and-Forget-Free Graph Class-Incremental Learning: A Task Profiling and Prompting Approach
Abstract:
Class-incremental learning (CIL) aims to continually learn a sequence of tasks, with each task consisting of a set of unique classes. Graph CIL (GCIL) follows the same setting but needs to deal with graph tasks (e.g., node classification in a graph). The key characteristic of CIL lies in the absence of task identifiers (IDs) during inference, which causes a significant challenge in separating classes from different tasks (i.e., inter-task class separation). Being able to accurately predict the task IDs can help address this issue, but it is a challenging problem. In this paper, we show theoretically that accurate task ID prediction on graph data can be achieved by a Laplacian smoothing-based graph task profiling approach, in which each graph task is modeled by a task prototype based on Laplacian smoothing over the graph. It guarantees that the task prototypes of the same graph task are nearly the same with a large smoothing step, while those of different tasks are distinct due to differences in graph structure and node attributes. Further, to avoid the catastrophic forgetting of the knowledge learned in previous graph tasks, we propose a novel graph prompting approach for GCIL which learns a small discriminative graph prompt for each task, essentially resulting in a separate classification model for each task. The prompt learning requires the training of a single graph neural network (GNN) only once on the first task, and no data replay is required thereafter, thereby obtaining a GCIL model being both replay-free and forget-free. Extensive experiments on four GCIL benchmarks show that i) our task prototype-based method can achieve 100% task ID prediction accuracy on all four datasets, ii) our GCIL model significantly outperforms state-of-the-art competing methods by at least 18% in average CIL accuracy, and iii) our model is fully free of forgetting on the four datasets.
Authors:Chen Cai, Zheng Wang, Jianjun Gao, Wenyang Liu, Ye Lu, Runzhong Zhang, Kim-Hui Yap
Title: Empowering Large Language Model for Continual Video Question Answering with Collaborative Prompting
Abstract:
In recent years, the rapid increase in online video content has underscored the limitations of static Video Question Answering (VideoQA) models trained on fixed datasets, as they struggle to adapt to new questions or tasks posed by newly available content. In this paper, we explore the novel challenge of VideoQA within a continual learning framework, and empirically identify a critical issue: fine-tuning a large language model (LLM) for a sequence of tasks often results in catastrophic forgetting. To address this, we propose Collaborative Prompting (ColPro), which integrates specific question constraint prompting, knowledge acquisition prompting, and visual temporal awareness prompting. These prompts aim to capture textual question context, visual content, and video temporal dynamics in VideoQA, a perspective underexplored in prior research. Experimental results on the NExT-QA and DramaQA datasets show that ColPro achieves superior performance compared to existing approaches, achieving 55.14\% accuracy on NExT-QA and 71.24\% accuracy on DramaQA, highlighting its practical relevance and effectiveness.
Authors:Francesco Mori, Stefano Sarao Mannelli, Francesca Mignacco
Title: Optimal Protocols for Continual Learning via Statistical Physics and Control Theory
Abstract:
Artificial neural networks often struggle with catastrophic forgetting when learning multiple tasks sequentially, as training on new tasks degrades the performance on previously learned tasks. Recent theoretical work has addressed this issue by analysing learning curves in synthetic frameworks under predefined training protocols. However, these protocols relied on heuristics and lacked a solid theoretical foundation assessing their optimality. In this paper, we fill this gap by combining exact equations for training dynamics, derived using statistical physics techniques, with optimal control methods. We apply this approach to teacher-student models for continual learning and multi-task problems, obtaining a theory for task-selection protocols maximising performance while minimising forgetting. Our theoretical analysis offers non-trivial yet interpretable strategies for mitigating catastrophic forgetting, shedding light on how optimal learning protocols modulate established effects, such as the influence of task similarity on forgetting. Finally, we validate our theoretical findings with experiments on real-world data.
Authors:Steven Vander Eeckt, Hugo Van hamme
Title: Efficient Rehearsal for Continual Learning in ASR via Singular Value Tuning
Abstract:
Continual Learning (CL) in Automatic Speech Recognition (ASR) suffers from catastrophic forgetting when adapting to new tasks, domains, or speakers. A common strategy to mitigate this is to store a subset of past data in memory for rehearsal. However, rehearsal-based methods face key limitations: storing data is often costly, infeasible with pre-trained models, or restricted by privacy regulations. Running existing rehearsal-based methods with smaller memory sizes to alleviate these issues usually leads to degraded performance. We propose a rehearsal-based CL method that remains effective even with minimal memory. It operates in two stages: first, fine-tuning on the new task; second, applying Singular Value Decomposition (SVD) to the changes in linear layers and, in a parameter-efficient manner, retraining only gating vectors on the singular values, which control to extent to which updates from the first stage are accepted, using rehearsal. We extensively test and analyze our method on two monolingual and two multilingual benchmarks. Our method reduces forgetting and outperforms state-of-the-art CL approaches for ASR, even when limited to a single utterance per previous task.
Authors:Hengyi Wu, Zhenyi Wang, Heng Huang
Title: Dynamic Feedback Engines: Layer-Wise Control for Self-Regulating Continual Learning
Abstract:
Continual learning aims to acquire new tasks while preserving performance on previously learned ones, but most methods struggle with catastrophic forgetting. Existing approaches typically treat all layers uniformly, often trading stability for plasticity or vice versa. However, different layers naturally exhibit varying levels of uncertainty (entropy) when classifying tasks. High-entropy layers tend to underfit by failing to capture task-specific patterns, while low-entropy layers risk overfitting by becoming overly confident and specialized. To address this imbalance, we propose an entropy-aware continual learning method that employs a dynamic feedback mechanism to regulate each layer based on its entropy. Specifically, our approach reduces entropy in high-entropy layers to mitigate underfitting and increases entropy in overly confident layers to alleviate overfitting. This adaptive regulation encourages the model to converge to wider local minima, which have been shown to improve generalization. Our method is general and can be seamlessly integrated with both replay- and regularization-based approaches. Experiments on various datasets demonstrate substantial performance gains over state-of-the-art continual learning baselines.
Authors:Henrik C. M. Frederiksen, Junya Shiraishi, Cedomir Stefanovic, Hei Victor Cheng, Shashi Raj Pandey
Title: Link-Aware Energy-Frugal Continual Learning for Fault Detection in IoT Networks
Abstract:
The use of lightweight machine learning (ML) models in internet of things (IoT) networks enables resource constrained IoT devices to perform on-device inference for several critical applications. However, the inference accuracy deteriorates due to the non-stationarity in the IoT environment and limited initial training data. To counteract this, the deployed models can be updated occasionally with new observed data samples. However, this approach consumes additional energy, which is undesirable for energy constrained IoT devices. This letter introduces an event-driven communication framework that strategically integrates continual learning (CL) in IoT networks for energy-efficient fault detection. Our framework enables the IoT device and the edge server (ES) to collaboratively update the lightweight ML model by adapting to the wireless link conditions for communication and the available energy budget. Evaluation on real-world datasets show that the proposed approach can outperform both periodic sampling and non-adaptive CL in terms of inference recall; our proposed approach achieves up to a 42.8% improvement, even under tight energy and bandwidth constraint.
Authors:Thomas Cook, Kelly Patel, Sivapriya Vellaichamy, Saba Rahimi, Zhen Zeng, Sumitra Ganesh
Title: Continual Learning of Domain Knowledge from Human Feedback in Text-to-SQL
Abstract:
Large Language Models (LLMs) can generate SQL queries from natural language questions but struggle with database-specific schemas and tacit domain knowledge. We introduce a framework for continual learning from human feedback in text-to-SQL, where a learning agent receives natural language feedback to refine queries and distills the revealed knowledge for reuse on future tasks. This distilled knowledge is stored in a structured memory, enabling the agent to improve execution accuracy over time. We design and evaluate multiple variations of a learning agent architecture that vary in how they capture and retrieve past experiences. Experiments on the BIRD benchmark Dev set show that memory-augmented agents, particularly the Procedural Agent, achieve significant accuracy gains and error reduction by leveraging human-in-the-loop feedback. Our results highlight the importance of transforming tacit human expertise into reusable knowledge, paving the way for more adaptive, domain-aware text-to-SQL systems that continually learn from a human-in-the-loop.
Authors:Yu Wang, Hui Wang, Jiake Ge, Xin Wang
Title: Efficient Distributed Exact Subgraph Matching via GNN-PE: Load Balancing, Cache Optimization, and Query Plan Ranking
Abstract:
Exact subgraph matching on large-scale graphs remains a challenging problem due to high computational complexity and distributed system constraints. Existing GNN-based path embedding (GNN-PE) frameworks achieve efficient exact matching on single machines but lack scalability and optimization for distributed environments. To address this gap, we propose three core innovations to extend GNN-PE to distributed systems: (1) a lightweight dynamic correlation-aware load balancing and hot migration mechanism that fuses multi-dimensional metrics (CPU, communication, memory) and guarantees index consistency; (2) an online incremental learning-based multi-GPU collaborative dynamic caching strategy with heterogeneous GPU adaptation and graph-structure-aware replacement; (3) a query plan ranking method driven by dominance embedding pruning potential (PE-score) that optimizes execution order. Through METIS partitioning, parallel offline preprocessing, and lightweight metadata management, our approach achieves "minimum edge cut + load balancing + non-interruptible queries" in distributed scenarios (tens of machines), significantly improving the efficiency and stability of distributed subgraph matching.
Authors:Xiaofan Zhou, Lu Cheng
Title: Robust Uncertainty Quantification for Self-Evolving Large Language Models via Continual Domain Pretraining
Abstract:
Continual Learning (CL) is essential for enabling self-evolving large language models (LLMs) to adapt and remain effective amid rapid knowledge growth. Yet, despite its importance, little attention has been given to establishing statistical reliability guarantees for LLMs under CL, particularly in the setting of continual domain pretraining (CDP). Conformal Prediction (CP) has shown promise in offering correctness guarantees for LLMs, but it faces major challenges in CDP: testing data often stems from unknown or shifting domain distributions, under which CP may no longer provide valid guarantees. Moreover, when high coverage is required, CP can yield excessively large prediction sets for unanswerable queries, reducing informativeness. To address these challenges, we introduce an adaptive rejection and non-exchangeable CP framework. Our method first estimates the distribution of questions across domains in the test set using transformer-based clustering, then reweights or resamples the calibration data accordingly. Building on this, adaptive rejection CP allows the LLM to selectively abstain from answering when its confidence or competence shifts significantly. Extensive experiments demonstrate that our framework enhances both the effectiveness and reliability of CP under CDP scenarios. Our code is available at: https://anonymous.4open.science/r/CPCL-8C12/
Authors:Xiequn Wang, Zhan Zhuang, Yu Zhang
Title: PLAN: Proactive Low-Rank Allocation for Continual Learning
Abstract:
Continual learning (CL) requires models to continuously adapt to new tasks without forgetting past knowledge. In this work, we propose \underline{P}roactive \underline{L}ow-rank \underline{A}llocatio\underline{N} (PLAN), a framework that extends Low-Rank Adaptation (LoRA) to enable efficient and interference-aware fine-tuning of large pre-trained models in CL settings. PLAN proactively manages the allocation of task-specific subspaces by introducing orthogonal basis vectors for each task and optimizing them through a perturbation-based strategy that minimizes conflicts with previously learned parameters. Furthermore, PLAN incorporates a novel selection mechanism that identifies and assigns basis vectors with minimal sensitivity to interference, reducing the risk of degrading past knowledge while maintaining efficient adaptation to new tasks. Empirical results on standard CL benchmarks demonstrate that PLAN consistently outperforms existing methods, establishing a new state-of-the-art for continual learning with foundation models.
Authors:Bingrong Liu, Jun Shi, Yushan Zheng
Title: EndoCIL: A Class-Incremental Learning Framework for Endoscopic Image Classification
Abstract:
Class-incremental learning (CIL) for endoscopic image analysis is crucial for real-world clinical applications, where diagnostic models should continuously adapt to evolving clinical data while retaining performance on previously learned ones. However, existing replay-based CIL methods fail to effectively mitigate catastrophic forgetting due to severe domain discrepancies and class imbalance inherent in endoscopic imaging. To tackle these challenges, we propose EndoCIL, a novel and unified CIL framework specifically tailored for endoscopic image diagnosis. EndoCIL incorporates three key components: Maximum Mean Discrepancy Based Replay (MDBR), employing a distribution-aligned greedy strategy to select diverse and representative exemplars, Prior Regularized Class Balanced Loss (PRCBL), designed to alleviate both inter-phase and intra-phase class imbalance by integrating prior class distributions and balance weights into the loss function, and Calibration of Fully-Connected Gradients (CFG), which adjusts the classifier gradients to mitigate bias toward new classes. Extensive experiments conducted on four public endoscopic datasets demonstrate that EndoCIL generally outperforms state-of-the-art CIL methods across varying buffer sizes and evaluation metrics. The proposed framework effectively balances stability and plasticity in lifelong endoscopic diagnosis, showing promising potential for clinical scalability and deployment.
Authors:Md Hasibul Amin, Tamzid Tanvi Alam
Title: Continual Learning for Adaptive AI Systems
Abstract:
Continual learning the ability of a neural network to learn multiple sequential tasks without losing previously acquired knowledge remains a significant obstacle to developing truly adaptive artificial intelligence. Deep learning models have achieved remarkable results in various applications, but overfitting remains a common issue. Regularization techniques can help prevent overfitting by adding constraints to the model's parameters. To prevent catastrophic forgetting, in this paper we introduce a novel regularization technique based on inter-cluster separation (ICS) in the loss function, which penalizes the model for producing outputs that are far away from the centroids of the clusters formed by the data from previous tasks. We also performed hyperparameter tuning to find the optimal weighting of the proposed regularization term. This ensures clearer separation between tasks in the neural network's internal representation, reducing overlap and mitigating forgetting. Using the standard 5-task Split CIFAR-10 benchmark and a ResNet-18 architecture, we demonstrate ICS's effectiveness in maintaining strong performance on initial tasks. However, our results also highlight limitations in long-term knowledge retention, particularly when the number of tasks increases. This underscores the complexity and trade-offs inherent in continual learning and points toward avenues for further research.
Authors:Hossein Taheri, Avishek Ghosh, Arya Mazumdar
Title: On the Theory of Continual Learning with Gradient Descent for Neural Networks
Abstract:
Continual learning, the ability of a model to adapt to an ongoing sequence of tasks without forgetting the earlier ones, is a central goal of artificial intelligence. To shed light on its underlying mechanisms, we analyze the limitations of continual learning in a tractable yet representative setting. In particular, we study one-hidden-layer quadratic neural networks trained by gradient descent on an XOR cluster dataset with Gaussian noise, where different tasks correspond to different clusters with orthogonal means. Our results obtain bounds on the rate of forgetting during train and test-time in terms of the number of iterations, the sample size, the number of tasks, and the hidden-layer size. Our results reveal interesting phenomena on the role of different problem parameters in the rate of forgetting. Numerical experiments across diverse setups confirm our results, demonstrating their validity beyond the analyzed settings.
Authors:Juan Sebastian Rojas, Chi-Guhn Lee
Title: Ergodic Risk Measures: Towards a Risk-Aware Foundation for Continual Reinforcement Learning
Abstract:
Continual reinforcement learning (continual RL) seeks to formalize the notions of lifelong learning and endless adaptation in RL. In particular, the aim of continual RL is to develop RL agents that can maintain a careful balance between retaining useful information and adapting to new situations. To date, continual RL has been explored almost exclusively through the lens of risk-neutral decision-making, in which the agent aims to optimize the expected (or mean) long-run performance. In this work, we present the first formal theoretical treatment of continual RL through the lens of risk-aware decision-making, in which the agent aims to optimize a reward-based measure of long-run performance beyond the mean. In particular, we show that the classical theory of risk measures, widely used as a theoretical foundation in non-continual risk-aware RL, is, in its current form, incompatible with the continual setting. Then, building on this insight, we extend risk measure theory into the continual setting by introducing a new class of ergodic risk measures that are compatible with continual learning. Finally, we provide a case study of risk-aware continual learning, along with empirical results, which show the intuitive appeal and theoretical soundness of ergodic risk measures.
Authors:Abi Aryan, Zac Liu, Aaron Childress
Title: AbideGym: Turning Static RL Worlds into Adaptive Challenges
Abstract:
Agents trained with reinforcement learning often develop brittle policies that fail when dynamics shift, a problem amplified by static benchmarks. AbideGym, a dynamic MiniGrid wrapper, introduces agent-aware perturbations and scalable complexity to enforce intra-episode adaptation. By exposing weaknesses in static policies and promoting resilience, AbideGym provides a modular, reproducible evaluation framework for advancing research in curriculum learning, continual learning, and robust generalization.
Authors:Xinyi Chen, Xi Chen, Zhenyu Weng, Yang Xiao
Title: AFT: An Exemplar-Free Class Incremental Learning Method for Environmental Sound Classification
Abstract:
As sounds carry rich information, environmental sound classification (ESC) is crucial for numerous applications such as rare wild animals detection. However, our world constantly changes, asking ESC models to adapt to new sounds periodically. The major challenge here is catastrophic forgetting, where models lose the ability to recognize old sounds when learning new ones. Many methods address this using replay-based continual learning. This could be impractical in scenarios such as data privacy concerns. Exemplar-free methods are commonly used but can distort old features, leading to worse performance. To overcome such limitations, we propose an Acoustic Feature Transformation (AFT) technique that aligns the temporal features of old classes to the new space, including a selectively compressed feature space. AFT mitigates the forgetting of old knowledge without retaining past data. We conducted experiments on two datasets, showing consistent improvements over baseline models with accuracy gains of 3.7\% to 3.9\%.
Authors:Mohammad Saleh Vahdatpour, Huaiyuan Chu, Yanqing Zhang
Title: The Energy-Efficient Hierarchical Neural Network with Fast FPGA-Based Incremental Learning
Abstract:
The rising computational and energy demands of deep learning, particularly in large-scale architectures such as foundation models and large language models (LLMs), pose significant challenges to sustainability. Traditional gradient-based training methods are inefficient, requiring numerous iterative updates and high power consumption. To address these limitations, we propose a hybrid framework that combines hierarchical decomposition with FPGA-based direct equation solving and incremental learning. Our method divides the neural network into two functional tiers: lower layers are optimized via single-step equation solving on FPGAs for efficient and parallelizable feature extraction, while higher layers employ adaptive incremental learning to support continual updates without full retraining. Building upon this foundation, we introduce the Compound LLM framework, which explicitly deploys LLM modules across both hierarchy levels. The lower-level LLM handles reusable representation learning with minimal energy overhead, while the upper-level LLM performs adaptive decision-making through energy-aware updates. This integrated design enhances scalability, reduces redundant computation, and aligns with the principles of sustainable AI. Theoretical analysis and architectural insights demonstrate that our method reduces computational costs significantly while preserving high model performance, making it well-suited for edge deployment and real-time adaptation in energy-constrained environments.
Authors:Mohammad Saleh Vahdatpour, Maryam Eyvazi, Yanqing Zhang
Title: Forecasting and Visualizing Air Quality from Sky Images with Vision-Language Models
Abstract:
Air pollution remains a critical threat to public health and environmental sustainability, yet conventional monitoring systems are often constrained by limited spatial coverage and accessibility. This paper proposes an AI-driven agent that predicts ambient air pollution levels from sky images and synthesizes realistic visualizations of pollution scenarios using generative modeling. Our approach combines statistical texture analysis with supervised learning for pollution classification, and leverages vision-language model (VLM)-guided image generation to produce interpretable representations of air quality conditions. The generated visuals simulate varying degrees of pollution, offering a foundation for user-facing interfaces that improve transparency and support informed environmental decision-making. These outputs can be seamlessly integrated into intelligent applications aimed at enhancing situational awareness and encouraging behavioral responses based on real-time forecasts. We validate our method using a dataset of urban sky images and demonstrate its effectiveness in both pollution level estimation and semantically consistent visual synthesis. The system design further incorporates human-centered user experience principles to ensure accessibility, clarity, and public engagement in air quality forecasting. To support scalable and energy-efficient deployment, future iterations will incorporate a green CNN architecture enhanced with FPGA-based incremental learning, enabling real-time inference on edge platforms.
Authors:Jiantao Tan, Peixian Ma, Kanghao Chen, Zhiming Dai, Ruixuan Wang
Title: Augmenting Continual Learning of Diseases with LLM-Generated Visual Concepts
Abstract:
Continual learning is essential for medical image classification systems to adapt to dynamically evolving clinical environments. The integration of multimodal information can significantly enhance continual learning of image classes. However, while existing approaches do utilize textual modality information, they solely rely on simplistic templates with a class name, thereby neglecting richer semantic information. To address these limitations, we propose a novel framework that harnesses visual concepts generated by large language models (LLMs) as discriminative semantic guidance. Our method dynamically constructs a visual concept pool with a similarity-based filtering mechanism to prevent redundancy. Then, to integrate the concepts into the continual learning process, we employ a cross-modal image-concept attention module, coupled with an attention loss. Through attention, the module can leverage the semantic knowledge from relevant visual concepts and produce class-representative fused features for classification. Experiments on medical and natural image datasets show our method achieves state-of-the-art performance, demonstrating the effectiveness and superiority of our method. We will release the code publicly.
Authors:Juntae Lee, Munawar Hayat, Sungrack Yun
Title: Tripartite Weight-Space Ensemble for Few-Shot Class-Incremental Learning
Abstract:
Few-shot class incremental learning (FSCIL) enables the continual learning of new concepts with only a few training examples. In FSCIL, the model undergoes substantial updates, making it prone to forgetting previous concepts and overfitting to the limited new examples. Most recent trend is typically to disentangle the learning of the representation from the classification head of the model. A well-generalized feature extractor on the base classes (many examples and many classes) is learned, and then fixed during incremental learning. Arguing that the fixed feature extractor restricts the model's adaptability to new classes, we introduce a novel FSCIL method to effectively address catastrophic forgetting and overfitting issues. Our method enables to seamlessly update the entire model with a few examples. We mainly propose a tripartite weight-space ensemble (Tri-WE). Tri-WE interpolates the base, immediately previous, and current models in weight-space, especially for the classification heads of the models. Then, it collaboratively maintains knowledge from the base and previous models. In addition, we recognize the challenges of distilling generalized representations from the previous model from scarce data. Hence, we suggest a regularization loss term using amplified data knowledge distillation. Simply intermixing the few-shot data, we can produce richer data enabling the distillation of critical knowledge from the previous model. Consequently, we attain state-of-the-art results on the miniImageNet, CUB200, and CIFAR100 datasets.
Authors:Zhiyi Wan, Wanrou Du, Liang Li, Miao Pan, Xiaoqi Qin
Title: Budget-Adaptive Adapter Tuning in Orthogonal Subspaces for Continual Learning in LLMs
Abstract:
Large language models (LLMs) often suffer from catastrophic forgetting in continual learning (CL) scenarios, where performance on previously learned tasks degrades severely while training on sequentially arriving tasks. Although pioneering CL approaches using orthogonal subspaces can mitigate task interference, they typically employ fixed budget allocation, neglecting the varying complexity across tasks and layers. Besides, recent budget-adaptive tuning methods for LLMs often adopt multi-stage paradigms that decouple optimization and budget allocation. Such decoupling results in potential misalignment, which hinders those approaches' practical application in CL scenarios. To address these limitations, we propose OA-Adapter, a novel parameter-efficient approach for continual learning in LLMs that unifies dynamic budget adaptation with orthogonal subspace learning in a single end-to-end training stage. Specifically, OA-Adapter introduces a dynamic bottleneck dimension adaptation mechanism that simultaneously allocates an efficient parameter budget and optimizes task objectives without misalignment. To effectively preserve previously acquired knowledge while coordinating with the dynamic budget allocation, orthogonal constraints are applied specifically between the parameter subspace of the current task and the dynamically allocated parameter subspaces of historical tasks. Experimental results on continual learning benchmarks demonstrate that OA-Adapter outperforms state-of-the-art methods in both accuracy and parameter efficiency, achieving higher average accuracy while using 58.5% fewer parameters on the standard CL benchmark.
Authors:Doanh C. Bui, Hoai Luan Pham, Vu Trung Duong Le, Tuan Hai Vu, Van Duy Tran, Khang Nguyen, Yasuhiko Nakashima
Title: Lifelong Whole Slide Image Analysis: Online Vision-Language Adaptation and Past-to-Present Gradient Distillation
Abstract:
Whole Slide Images (WSIs) play a crucial role in accurate cancer diagnosis and prognosis, as they provide tissue details at the cellular level. However, the rapid growth of computational tasks involving WSIs poses significant challenges. Given that WSIs are gigapixels in size, they present difficulties in terms of storage, processing, and model training. Therefore, it is essential to develop lifelong learning approaches for WSI analysis. In scenarios where slides are distributed across multiple institutes, we aim to leverage them to develop a unified online model as a computational tool for cancer diagnosis in clinical and hospital settings. In this study, we introduce ADaFGrad, a method designed to enhance lifelong learning for whole-slide image (WSI) analysis. First, we leverage pathology vision-language foundation models to develop a framework that enables interaction between a slide's regional tissue features and a predefined text-based prototype buffer. Additionally, we propose a gradient-distillation mechanism that mimics the gradient of a logit with respect to the classification-head parameters across past and current iterations in a continual-learning setting. We construct a sequence of six TCGA datasets for training and evaluation. Experimental results show that ADaFGrad outperforms both state-of-the-art WSI-specific and conventional continual-learning methods after only a few training epochs, exceeding them by up to +5.068% in the class-incremental learning scenario while exhibiting the least forgetting (i.e., retaining the most knowledge from previous tasks). Moreover, ADaFGrad surpasses its baseline by as much as +40.084% in accuracy, further demonstrating the effectiveness of the proposed modules.
Authors:Doanh C. Bui, Hoai Luan Pham, Vu Trung Duong Le, Tuan Hai Vu, Van Duy Tran, Yasuhiko Nakashima
Title: ZeroSlide: Is Zero-Shot Classification Adequate for Lifelong Learning in Whole-Slide Image Analysis in the Era of Pathology Vision-Language Foundation Models?
Abstract:
Lifelong learning for whole slide images (WSIs) poses the challenge of training a unified model to perform multiple WSI-related tasks, such as cancer subtyping and tumor classification, in a distributed, continual fashion. This is a practical and applicable problem in clinics and hospitals, as WSIs are large, require storage, processing, and transfer time. Training new models whenever new tasks are defined is time-consuming. Recent work has applied regularization- and rehearsal-based methods to this setting. However, the rise of vision-language foundation models that align diagnostic text with pathology images raises the question: are these models alone sufficient for lifelong WSI learning using zero-shot classification, or is further investigation into continual learning strategies needed to improve performance? To our knowledge, this is the first study to compare conventional continual-learning approaches with vision-language zero-shot classification for WSIs. Our source code and experimental results will be available soon.
Authors:Steven Vander Eeckt, Hugo Van hamme
Title: Continual Learning With Quasi-Newton Methods
Abstract:
Catastrophic forgetting remains a major challenge when neural networks learn tasks sequentially. Elastic Weight Consolidation (EWC) attempts to address this problem by introducing a Bayesian-inspired regularization loss to preserve knowledge of previously learned tasks. However, EWC relies on a Laplace approximation where the Hessian is simplified to the diagonal of the Fisher information matrix, assuming uncorrelated model parameters. This overly simplistic assumption often leads to poor Hessian estimates, limiting its effectiveness. To overcome this limitation, we introduce Continual Learning with Sampled Quasi-Newton (CSQN), which leverages Quasi-Newton methods to compute more accurate Hessian approximations. CSQN captures parameter interactions beyond the diagonal without requiring architecture-specific modifications, making it applicable across diverse tasks and architectures. Experimental results across four benchmarks demonstrate that CSQN consistently outperforms EWC and other state-of-the-art baselines, including rehearsal-based methods. CSQN reduces EWC's forgetting by 50 percent and improves its performance by 8 percent on average. Notably, CSQN achieves superior results on three out of four benchmarks, including the most challenging scenarios, highlighting its potential as a robust solution for continual learning.
Authors:Weixi Zheng, Aoling Huang, Jingping Yuan, Haoyu Zhao, Zhou Zhao, Yongchao Xu, Thierry Géraud
Title: Pathological Prior-Guided Multiple Instance Learning For Mitigating Catastrophic Forgetting in Breast Cancer Whole Slide Image Classification
Abstract:
In histopathology, intelligent diagnosis of Whole Slide Images (WSIs) is essential for automating and objectifying diagnoses, reducing the workload of pathologists. However, diagnostic models often face the challenge of forgetting previously learned data during incremental training on datasets from different sources. To address this issue, we propose a new framework PaGMIL to mitigate catastrophic forgetting in breast cancer WSI classification. Our framework introduces two key components into the common MIL model architecture. First, it leverages microscopic pathological prior to select more accurate and diverse representative patches for MIL. Secondly, it trains separate classification heads for each task and uses macroscopic pathological prior knowledge, treating the thumbnail as a prompt guide (PG) to select the appropriate classification head. We evaluate the continual learning performance of PaGMIL across several public breast cancer datasets. PaGMIL achieves a better balance between the performance of the current task and the retention of previous tasks, outperforming other continual learning methods. Our code will be open-sourced upon acceptance.
Authors:Megan Ung, Alicia Sun, Samuel J. Bell, Bhaktipriya Radharapu, Levent Sagun, Adina Williams
Title: Chained Tuning Leads to Biased Forgetting
Abstract:
Large language models (LLMs) are often fine-tuned for use on downstream tasks, though this can degrade capabilities learned during previous training. This phenomenon, often referred to as catastrophic forgetting, has important potential implications for the safety of deployed models. In this work, we first show that models trained on downstream tasks forget their safety tuning to a greater extent than models trained in the opposite order. Second, we show that forgetting disproportionately impacts safety information about certain groups. To quantify this phenomenon, we define a new metric we term biased forgetting. We conduct a systematic evaluation of the effects of task ordering on forgetting and apply mitigations that can help the model recover from the forgetting observed. We hope our findings can better inform methods for chaining the finetuning of LLMs in continual learning settings to enable training of safer and less toxic models.
Authors:Saleh Momeni, Sahisnu Mazumder, Zixuan Ke, Bing Liu
Title: In-context Continual Learning Assisted by an External Continual Learner
Abstract:
Existing continual learning (CL) methods mainly rely on fine-tuning or adapting large language models (LLMs). They still suffer from catastrophic forgetting (CF). Little work has been done to exploit in-context learning (ICL) to leverage the extensive knowledge within LLMs for CL without updating any parameters. However, incrementally learning each new task in ICL necessitates adding training examples from each class of the task to the prompt, which hampers scalability as the prompt length increases. This issue not only leads to excessively long prompts that exceed the input token limit of the underlying LLM but also degrades the model's performance due to the overextended context. To address this, we introduce InCA, a novel approach that integrates an external continual learner (ECL) with ICL to enable scalable CL without CF. The ECL is built incrementally to pre-select a small subset of likely classes for each test instance. By restricting the ICL prompt to only these selected classes, InCA prevents prompt lengths from becoming excessively long, while maintaining high performance. Experimental results demonstrate that InCA significantly outperforms existing CL baselines, achieving substantial performance gains.
Authors:Jiabao Qiu, Zixuan Ke, Bing Liu
Title: Continual Learning Using Only Large Language Model Prompting
Abstract:
We introduce CLOB, a novel continual learning (CL) paradigm wherein a large language model (LLM) is regarded as a black box. Learning is done incrementally via only verbal prompting. CLOB does not fine-tune any part of the LLM or add any trainable parameters to it. It is particularly suitable for LLMs that are accessible via APIs. We also propose a new CL technique, called CIS, based on incremental summarization that also overcomes the LLM's input length limit. Experiments show CIS outperforms baselines by a very large margin.
Authors:Pengfei Fang, Yongchun Qin, Hui Xue
Title: On Distilling the Displacement Knowledge for Few-Shot Class-Incremental Learning
Abstract:
Few-shot Class-Incremental Learning (FSCIL) addresses the challenges of evolving data distributions and the difficulty of data acquisition in real-world scenarios. To counteract the catastrophic forgetting typically encountered in FSCIL, knowledge distillation is employed as a way to maintain the knowledge from learned data distribution. Recognizing the limitations of generating discriminative feature representations in a few-shot context, our approach incorporates structural information between samples into knowledge distillation. This structural information serves as a remedy for the low quality of features. Diverging from traditional structured distillation methods that compute sample similarity, we introduce the Displacement Knowledge Distillation (DKD) method. DKD utilizes displacement rather than similarity between samples, incorporating both distance and angular information to significantly enhance the information density retained through knowledge distillation. Observing performance disparities in feature distribution between base and novel classes, we propose the Dual Distillation Network (DDNet). This network applies traditional knowledge distillation to base classes and DKD to novel classes, challenging the conventional integration of novel classes with base classes. Additionally, we implement an instance-aware sample selector during inference to dynamically adjust dual branch weights, thereby leveraging the complementary strengths of each approach. Extensive testing on three benchmarks demonstrates that DDNet achieves state-of-the-art results. Moreover, through rigorous experimentation and comparison, we establish the robustness and general applicability of our proposed DKD method.
Authors:Maorong Wang, Jiafeng Mao, Xueting Wang, Toshihiko Yamasaki
Title: Reward Incremental Learning in Text-to-Image Generation
Abstract:
The recent success of denoising diffusion models has significantly advanced text-to-image generation. While these large-scale pretrained models show excellent performance in general image synthesis, downstream objectives often require fine-tuning to meet specific criteria such as aesthetics or human preference. Reward gradient-based strategies are promising in this context, yet existing methods are limited to single-reward tasks, restricting their applicability in real-world scenarios that demand adapting to multiple objectives introduced incrementally over time. In this paper, we first define this more realistic and unexplored problem, termed Reward Incremental Learning (RIL), where models are desired to adapt to multiple downstream objectives incrementally. Additionally, while the models adapt to the ever-emerging new objectives, we observe a unique form of catastrophic forgetting in diffusion model fine-tuning, affecting both metric-wise and visual structure-wise image quality. To address this catastrophic forgetting challenge, we propose Reward Incremental Distillation (RID), a method that mitigates forgetting with minimal computational overhead, enabling stable performance across sequential reward tasks. The experimental results demonstrate the efficacy of RID in achieving consistent, high-quality generation in RIL scenarios. The source code of our work will be publicly available upon acceptance.
Authors:Sanchar Palit, Biplab Banerjee, Subhasis Chaudhuri
Title: Revised Regularization for Efficient Continual Learning through Correlation-Based Parameter Update in Bayesian Neural Networks
Abstract:
We propose a Bayesian neural network-based continual learning algorithm using Variational Inference, aiming to overcome several drawbacks of existing methods. Specifically, in continual learning scenarios, storing network parameters at each step to retain knowledge poses challenges. This is compounded by the crucial need to mitigate catastrophic forgetting, particularly given the limited access to past datasets, which complicates maintaining correspondence between network parameters and datasets across all sessions. Current methods using Variational Inference with KL divergence risk catastrophic forgetting during uncertain node updates and coupled disruptions in certain nodes. To address these challenges, we propose the following strategies. To reduce the storage of the dense layer parameters, we propose a parameter distribution learning method that significantly reduces the storage requirements. In the continual learning framework employing variational inference, our study introduces a regularization term that specifically targets the dynamics and population of the mean and variance of the parameters. This term aims to retain the benefits of KL divergence while addressing related challenges. To ensure proper correspondence between network parameters and the data, our method introduces an importance-weighted Evidence Lower Bound term to capture data and parameter correlations. This enables storage of common and distinctive parameter hyperspace bases. The proposed method partitions the parameter space into common and distinctive subspaces, with conditions for effective backward and forward knowledge transfer, elucidating the network-parameter dataset correspondence. The experimental results demonstrate the effectiveness of our method across diverse datasets and various combinations of sequential datasets, yielding superior performance compared to existing approaches.
Authors:Jared Fernandez, Yonatan Bisk, Emma Strubell
Title: Gradient Localization Improves Lifelong Pretraining of Language Models
Abstract:
Large Language Models (LLMs) trained on web-scale text corpora have been shown to capture world knowledge in their parameters. However, the mechanism by which language models store different types of knowledge is poorly understood. In this work, we examine two types of knowledge relating to temporally sensitive entities and demonstrate that each type is localized to different sets of parameters within the LLMs. We hypothesize that the lack of consideration of the locality of knowledge in existing continual learning methods contributes to both: the failed uptake of new information, and catastrophic forgetting of previously learned information. We observe that sequences containing references to updated and newly mentioned entities exhibit larger gradient norms in a subset of layers. We demonstrate that targeting parameter updates to these relevant layers can improve the performance of continually pretraining on language containing temporal drift.
Authors:Jinchao Ge, Bowen Zhang, Akide Liu, Minh Hieu Phan, Qi Chen, Yangyang Shu, Yang Zhao
Title: CIT: Rethinking Class-incremental Semantic Segmentation with a Class Independent Transformation
Abstract:
Class-incremental semantic segmentation (CSS) requires that a model learn to segment new classes without forgetting how to segment previous ones: this is typically achieved by distilling the current knowledge and incorporating the latest data. However, bypassing iterative distillation by directly transferring outputs of initial classes to the current learning task is not supported in existing class-specific CSS methods. Via Softmax, they enforce dependency between classes and adjust the output distribution at each learning step, resulting in a large probability distribution gap between initial and current tasks. We introduce a simple, yet effective Class Independent Transformation (CIT) that converts the outputs of existing semantic segmentation models into class-independent forms with negligible cost or performance loss. By utilizing class-independent predictions facilitated by CIT, we establish an accumulative distillation framework, ensuring equitable incorporation of all class information. We conduct extensive experiments on various segmentation architectures, including DeepLabV3, Mask2Former, and SegViTv2. Results from these experiments show minimal task forgetting across different datasets, with less than 5% for ADE20K in the most challenging 11 task configurations and less than 1% across all configurations for the PASCAL VOC 2012 dataset.
Authors:Munsif Ali, Leonardo Rossi, Massimo Bertozzi
Title: CFTS-GAN: Continual Few-Shot Teacher Student for Generative Adversarial Networks
Abstract:
Few-shot and continual learning face two well-known challenges in GANs: overfitting and catastrophic forgetting. Learning new tasks results in catastrophic forgetting in deep learning models. In the case of a few-shot setting, the model learns from a very limited number of samples (e.g. 10 samples), which can lead to overfitting and mode collapse. So, this paper proposes a Continual Few-shot Teacher-Student technique for the generative adversarial network (CFTS-GAN) that considers both challenges together. Our CFTS-GAN uses an adapter module as a student to learn a new task without affecting the previous knowledge. To make the student model efficient in learning new tasks, the knowledge from a teacher model is distilled to the student. In addition, the Cross-Domain Correspondence (CDC) loss is used by both teacher and student to promote diversity and to avoid mode collapse. Moreover, an effective strategy of freezing the discriminator is also utilized for enhancing performance. Qualitative and quantitative results demonstrate more diverse image synthesis and produce qualitative samples comparatively good to very stronger state-of-the-art models.
Authors:Shuo Yang, Kun-Peng Ning, Yu-Yang Liu, Jia-Yu Yao, Yong-Hong Tian, Yi-Bing Song, Li Yuan
Title: Is Parameter Collision Hindering Continual Learning in LLMs?
Abstract:
Large Language Models (LLMs) often suffer from catastrophic forgetting when learning multiple tasks sequentially, making continual learning (CL) essential for their dynamic deployment. Existing state-of-the-art (SOTA) methods, such as O-LoRA, typically focus on constructing orthogonality tasks to decouple parameter interdependence from various domains.In this paper, we reveal that building non-collision parameters is a more critical factor in addressing CL challenges. Our theoretical and experimental analyses demonstrate that non-collision parameters can provide better task orthogonality, which is a sufficient but unnecessary condition. Furthermore, knowledge from multiple domains will be preserved in non-collision parameter subspaces, making it more difficult to forget previously seen data. Leveraging this insight, we propose Non-collision Low-Rank Adaptation (N-LoRA), a simple yet effective approach leveraging low collision rates to enhance CL in LLMs. Experimental results on multiple CL benchmarks indicate that N-LoRA achieves superior performance (+2.9), higher task orthogonality (*4.1 times), and lower parameter collision (*58.1 times) than SOTA methods.
Authors:Yun-Jie Ho, Zih-Yun Chiu, Yuheng Zhi, Michael C. Yip
Title: SurgIRL: Towards Life-Long Learning for Surgical Automation by Incremental Reinforcement Learning
Abstract:
Surgical automation holds immense potential to improve the outcome and accessibility of surgery. Recent studies use reinforcement learning to learn policies that automate different surgical tasks. However, these policies are developed independently and are limited in their reusability when the task changes, making it more time-consuming when robots learn to solve multiple tasks. Inspired by how human surgeons build their expertise, we train surgical automation policies through Surgical Incremental Reinforcement Learning (SurgIRL). SurgIRL aims to (1) acquire new skills by referring to external policies (knowledge) and (2) accumulate and reuse these skills to solve multiple unseen tasks incrementally (incremental learning). Our SurgIRL framework includes three major components. We first define an expandable knowledge set containing heterogeneous policies that can be helpful for surgical tasks. Then, we propose Knowledge Inclusive Attention Network with mAximum Coverage Exploration (KIAN-ACE), which improves learning efficiency by maximizing the coverage of the knowledge set during the exploration process. Finally, we develop incremental learning pipelines based on KIAN-ACE to accumulate and reuse learned knowledge and solve multiple surgical tasks sequentially. Our simulation experiments show that KIAN-ACE efficiently learns to automate ten surgical tasks separately or incrementally. We also evaluate our learned policies on the da Vinci Research Kit (dVRK) and demonstrate successful sim-to-real transfers.
Authors:Nicholas Soures, Peter Helfer, Anurag Daram, Tej Pandit, Dhireesha Kudithipudi
Title: TACOS: Task Agnostic Continual Learning in Spiking Neural Networks
Abstract:
Catastrophic interference, the loss of previously learned information when learning new information, remains a major challenge in machine learning. Since living organisms do not seem to suffer from this problem, researchers have taken inspiration from biology to improve memory retention in artificial intelligence systems. However, previous attempts to use bio-inspired mechanisms have typically resulted in systems that rely on task boundary information during training and/or explicit task identification during inference, information that is not available in real-world scenarios. Here, we show that neuro-inspired mechanisms such as synaptic consolidation and metaplasticity can mitigate catastrophic interference in a spiking neural network, using only synapse-local information, with no need for task awareness, and with a fixed memory size that does not need to be increased when training on new tasks. Our model, TACOS, combines neuromodulation with complex synaptic dynamics to enable new learning while protecting previous information. We evaluate TACOS on sequential image recognition tasks and demonstrate its effectiveness in reducing catastrophic interference. Our results show that TACOS outperforms existing regularization techniques in domain-incremental learning scenarios. We also report the results of an ablation study to elucidate the contribution of each neuro-inspired mechanism separately.
Authors:Sergi Masip, Gido M. van de Ven, Javier Ferrando, Tinne Tuytelaars
Title: Putting a Face to Forgetting: Continual Learning meets Mechanistic Interpretability
Abstract:
Catastrophic forgetting in continual learning is often measured at the performance or last-layer representation level, overlooking the underlying mechanisms. We introduce a mechanistic framework that offers a geometric interpretation of catastrophic forgetting as the result of transformations to the encoding of individual features. These transformations can lead to forgetting by reducing the allocated capacity of features (worse representation) and disrupting their readout by downstream computations. Analysis of a tractable model formalizes this view, allowing us to identify best- and worst-case scenarios. Through experiments on this model, we empirically test our formal analysis and highlight the detrimental effect of depth. Finally, we demonstrate how our framework can be used in the analysis of practical models through the use of Crosscoders. We present a case study of a Vision Transformer trained on sequential CIFAR-10. Our work provides a new, feature-centric vocabulary for continual learning.
Authors:Fuli Qiao, Mehrdad Mahdavi
Title: Merge before Forget: A Single LoRA Continual Learning via Continual Merging
Abstract:
Parameter-efficient continual learning has emerged as a promising approach for large language models (LLMs) to mitigate catastrophic forgetting while enabling adaptation to new tasks. Current Low-Rank Adaptation (LoRA) continual learning techniques often retain and freeze previously learned LoRAs or generate data representations to overcome forgetting, typically utilizing these to support new LoRAs learn new tasks. However, these methods not only ignore growing computational memory with tasks and limited storage space but also suffer from potential task interference due to the lack of effective LoRA merging mechanisms. In this paper, we propose a novel continual learning method that orthogonally initializes and sequentially merges LoRAs updates into a single unified LoRA. Our method leverages orthogonal basis extraction from previously learned LoRA to initialize the learning of new tasks, further exploits the intrinsic asymmetry property of LoRA components by using a time-aware scaling mechanism to balance new and old knowledge during continual merging. Our approach maintains constant memory complexity with respect to the number of tasks, minimizes interference between past and new tasks via orthogonal basis initialization, and improves performance over asymmetric LoRA merging via adaptive scaling. We provide theoretical analysis to justify our design and conduct extensive experiments across diverse continual learning benchmarks using various Llama models, demonstrating the effectiveness and efficiency of our method.
Authors:Yueer Zhou, Yichen Wu, Ying Wei
Title: Resolving Conflicts in Lifelong Learning via Aligning Updates in Subspaces
Abstract:
Low-Rank Adaptation (LoRA) enables efficient Continual Learning but often suffers from catastrophic forgetting due to destructive interference between tasks. Our analysis reveals that this degradation is primarily driven by antagonistic directional updates where new task gradients directly oppose the historical weight trajectory. To address this, we propose PS-LoRA (Parameter Stability LoRA), a framework designed to resolve conflicts by aligning updates within the optimization subspace. Our approach employs a dual-regularization objective that penalizes conflicting directions and constrains magnitude deviations to ensure consistency with prior knowledge. Additionally, we implement a magnitude-based merging strategy to consolidate sequential adapters into a robust representation without retraining. Experiments on NLP and Vision benchmarks show that PS-LoRA outperforms state-of-the-art methods by preserving the stability of learned representations while efficiently adapting to new domains.
Authors:Lixing He, Yunqi Guo, Haozheng Hou, Zhenyu Yan
Title: VibOmni: Towards Scalable Bone-conduction Speech Enhancement on Earables
Abstract:
Earables, such as True Wireless Stereo earphones and VR/AR headsets, are increasingly popular, yet their compact design poses challenges for robust voice-related applications like telecommunication and voice assistant interactions in noisy environments. Existing speech enhancement systems, reliant solely on omnidirectional microphones, struggle with ambient noise like competing speakers. To address these issues, we propose VibOmni, a lightweight, end-to-end multi-modal speech enhancement system for earables that leverages bone-conducted vibrations captured by widely available Inertial Measurement Units (IMUs). VibOmni integrates a two-branch encoder-decoder deep neural network to fuse audio and vibration features. To overcome the scarcity of paired audio-vibration datasets, we introduce a novel data augmentation technique that models Bone Conduction Functions (BCFs) from limited recordings, enabling synthetic vibration data generation with only 4.5% spectrogram similarity error. Additionally, a multi-modal SNR estimator facilitates continual learning and adaptive inference, optimizing performance in dynamic, noisy settings without on-device back-propagation. Evaluated on real-world datasets from 32 volunteers with different devices, VibOmni achieves up to 21% improvement in Perceptual Evaluation of Speech Quality (PESQ), 26% in Signal-to-Noise Ratio (SNR), and about 40% WER reduction with much less latency on mobile devices. A user study with 35 participants showed 87% preferred VibOmni over baselines, demonstrating its effectiveness for deployment in diverse acoustic environments.
Authors:Ziyuan Gao, Philippe Morel
Title: Prompt-Aware Adaptive Elastic Weight Consolidation for Continual Learning in Medical Vision-Language Models
Abstract:
Medical AI systems face catastrophic forgetting when deployed in clinical settings, where models must learn new imaging protocols while retaining prior diagnostic capabilities. This challenge is particularly acute for medical vision-language models that must preserve complex cross-modal alignments between medical images and clinical terminology across diverse imaging modalities. We introduce Prompt- Aware Adaptive Elastic Weight Consolidation (PA-EWC), a novel continual learning approach that addresses catastrophic forgetting through prompt-guided parameter specialization. Our method systematically categorizes model parameters based on their functional roles in processing visual-descriptive, spatial-guided, and medical-semantic information, enabling targeted protection of critical knowledge while allowing adaptation to new clinical requirements. PA-EWC incorporates adaptive Fisher Information computation with gradient stability analysis and develops weighted complexity metrics based on medical terminology density. We evaluate our approach across five medical imaging datasets (Kvasir-SEG, ISIC 2018, CheXlocalize, BUSI, CAMUS) representing diverse modalities including endoscopy, dermoscopy, radiography, and ultrasound. Experimental results demonstrate that PA-EWC reduces catastrophic forgetting by up to 17.58% compared to baseline methods, with performance improvements of 4.30% on chest X-ray pathology localization and 6.06% on polyp segmentation.
Authors:Hao Shen, Jikang Cheng, Renye Yan, Zhongyuan Wang, Wei Peng, Baojin Huang
Title: When Generative Replay Meets Evolving Deepfakes: Domain-Aware Relative Weighting for Incremental Face Forgery Detection
Abstract:
The rapid advancement of face generation techniques has led to a growing variety of forgery methods. Incremental forgery detection aims to gradually update existing models with new forgery data, yet current sample replay-based methods are limited by low diversity and privacy concerns. Generative replay offers a potential solution by synthesizing past data, but its feasibility for forgery detection remains unclear. In this work, we systematically investigate generative replay and identify two scenarios: when the replay generator closely resembles the new forgery model, generated real samples blur the domain boundary, creating domain-risky samples; when the replay generator differs significantly, generated samples can be safely supervised, forming domain-safe samples. To exploit generative replay effectively, we propose a novel Domain-Aware Relative Weighting (DARW) strategy. DARW directly supervises domain-safe samples while applying a Relative Separation Loss to balance supervision and potential confusion for domain-risky samples. A Domain Confusion Score dynamically adjusts this tradeoff according to sample reliability. Extensive experiments demonstrate that DARW consistently improves incremental learning performance for forgery detection under different generative replay settings and alleviates the adverse impact of domain overlap.
Authors:Hanchen David Wang, Siwoo Bae, Zirong Chen, Meiyi Ma
Title: Learning with Preserving for Continual Multitask Learning
Abstract:
Artificial intelligence systems in critical fields like autonomous driving and medical imaging analysis often continually learn new tasks using a shared stream of input data. For instance, after learning to detect traffic signs, a model may later need to learn to classify traffic lights or different types of vehicles using the same camera feed. This scenario introduces a challenging setting we term Continual Multitask Learning (CMTL), where a model sequentially learns new tasks on an underlying data distribution without forgetting previously learned abilities. Existing continual learning methods often fail in this setting because they learn fragmented, task-specific features that interfere with one another. To address this, we introduce Learning with Preserving (LwP), a novel framework that shifts the focus from preserving task outputs to maintaining the geometric structure of the shared representation space. The core of LwP is a Dynamically Weighted Distance Preservation (DWDP) loss that prevents representation drift by regularizing the pairwise distances between latent data representations. This mechanism of preserving the underlying geometric structure allows the model to retain implicit knowledge and support diverse tasks without requiring a replay buffer, making it suitable for privacy-conscious applications. Extensive evaluations on time-series and image benchmarks show that LwP not only mitigates catastrophic forgetting but also consistently outperforms state-of-the-art baselines in CMTL tasks. Notably, our method shows superior robustness to distribution shifts and is the only approach to surpass the strong single-task learning baseline, underscoring its effectiveness for real-world dynamic environments.
Authors:Chuanqing Pu, Feilong Fan, Nengling Tai, Yan Xu, Wentao Huang, Honglin Wen
Title: Predict-then-Optimize for Seaport Power-Logistics Scheduling: Generalization across Varying Tasks Stream
Abstract:
Power-logistics scheduling in modern seaports typically follow a predict-then-optimize pipeline. To enhance the decision quality of forecasts, decision-focused learning has been proposed, which aligns the training of forecasting models with downstream decision outcomes. However, this end-to-end design inherently restricts the value of forecasting models to only a specific task structure, and thus generalize poorly to evolving tasks induced by varying seaport vessel arrivals. We address this gap with a decision-focused continual learning framework that adapts online to a stream of scheduling tasks. Specifically, we introduce Fisher information based regularization to enhance cross-task generalization by preserving parameters critical to prior tasks. A differentiable convex surrogate is also developed to stabilize gradient backpropagation. The proposed approach enables learning a decision-aligned forecasting model across a varying tasks stream with a sustainable long-term computational burden. Experiments calibrated to the Jurong Port demonstrate superior decision performance and generalization over existing methods with reduced computational cost.
Authors:Hassan Hizeh, Rim Chighri, Muhammad Mahboob Ur Rahman, Mohamed A. Bahloul, Ali Muqaibel, Tareq Y. Al-Naffouri
Title: Towards Human-AI-Robot Collaboration and AI-Agent based Digital Twins for Parkinson's Disease Management: Review and Outlook
Abstract:
The current body of research on Parkinson's disease (PD) screening, monitoring, and management has evolved along two largely independent trajectories. The first research community focuses on multimodal sensing of PD-related biomarkers using noninvasive technologies such as inertial measurement units (IMUs), force/pressure insoles, electromyography (EMG), electroencephalography (EEG), speech and acoustic analysis, and RGB/RGB-D motion capture systems. These studies emphasize data acquisition, feature extraction, and machine learning-based classification for PD screening, diagnosis, and disease progression modeling. In parallel, a second research community has concentrated on robotic intervention and rehabilitation, employing socially assistive robots (SARs), robot-assisted rehabilitation (RAR) systems, and virtual reality (VR)-integrated robotic platforms for improving motor and cognitive function, enhancing social engagement, and supporting caregivers. Despite the complementary goals of these two domains, their methodological and technological integration remains limited, with minimal data-level or decision-level coupling between the two. With the advent of advanced artificial intelligence (AI), including large language models (LLMs), agentic AI systems, a unique opportunity now exists to unify these research streams. We envision a closed-loop sensor-AI-robot framework in which multimodal sensing continuously guides the interaction between the patient, caregiver, humanoid robot (and physician) through AI agents that are powered by a multitude of AI models such as robotic and wearables foundation models, LLM-based reasoning, reinforcement learning, and continual learning. Such closed-loop system enables personalized, explainable, and context-aware intervention, forming the basis for digital twin of the PD patient that can adapt over time to deliver intelligent, patient-centered PD care.
Authors:Frédéric LIN, Biruk Abere Ambaw, Adrian Popescu, Hejer Ammar, Romaric Audigier, Hervé Le Borgne
Title: CaMiT: A Time-Aware Car Model Dataset for Classification and Generation
Abstract:
AI systems must adapt to evolving visual environments, especially in domains where object appearances change over time. We introduce Car Models in Time (CaMiT), a fine-grained dataset capturing the temporal evolution of car models, a representative class of technological artifacts. CaMiT includes 787K labeled samples of 190 car models (2007-2023) and 5.1M unlabeled samples (2005-2023), supporting both supervised and self-supervised learning. Static pretraining on in-domain data achieves competitive performance with large-scale generalist models while being more resource-efficient, yet accuracy declines when models are tested across years. To address this, we propose a time-incremental classification setting, a realistic continual learning scenario with emerging, evolving, and disappearing classes. We evaluate two strategies: time-incremental pretraining, which updates the backbone, and time-incremental classifier learning, which updates only the final layer, both improving temporal robustness. Finally, we explore time-aware image generation that leverages temporal metadata during training, yielding more realistic outputs. CaMiT offers a rich benchmark for studying temporal adaptation in fine-grained visual recognition and generation.
Authors:Levy Chaves, Eduardo Valle, Sandra Avila
Title: Weight Weaving: Parameter Pooling for Data-Free Model Merging
Abstract:
Model merging provides a cost-effective and data-efficient combination of specialized deep neural networks through parameter integration. This technique leverages expert models across downstream tasks without requiring retraining. Most model merging approaches critically depend on scaling hyper-parameters $λ$, which weight each model's contribution globally or individually. Principled approaches for setting scaling factors without accessing any data (data-free) are scarce, often leading researchers to tune $λ$ using privileged data from the evaluation set, which is obviously unfeasible in practice. To address this limitation, we introduce Weight Weaving, a plug-and-play technique that pools model weights across $λ$ values search space using user-defined pooling functions, such as averaging, random selection, or even existing model merging methods. Our method demonstrates high modularity, imposing minimal constraints on the search space. It operates orthogonally to existing model merging methods and eliminates evaluation data requirements. We validate Weight Weaving across three ViT variants in three experimental setups: vision multi-task learning, vision continual learning, and domain generalization. Our method consistently improves the performance of several model merging methods, achieving average accuracy gains of up to 15.9 percentage points in a data-free setting.
Authors:NVJK Kartik, Garvit Sapra, Rishav Hada, Nikhil Pareek
Title: AgentCompass: Towards Reliable Evaluation of Agentic Workflows in Production
Abstract:
With the growing adoption of Large Language Models (LLMs) in automating complex, multi-agent workflows, organizations face mounting risks from errors, emergent behaviors, and systemic failures that current evaluation methods fail to capture. We present AgentCompass, the first evaluation framework designed specifically for post-deployment monitoring and debugging of agentic workflows. AgentCompass models the reasoning process of expert debuggers through a structured, multi-stage analytical pipeline: error identification and categorization, thematic clustering, quantitative scoring, and strategic summarization. The framework is further enhanced with a dual memory system-episodic and semantic-that enables continual learning across executions. Through collaborations with design partners, we demonstrate the framework's practical utility on real-world deployments, before establishing its efficacy against the publicly available TRAIL benchmark. AgentCompass achieves state-of-the-art results on key metrics, while uncovering critical issues missed in human annotations, underscoring its role as a robust, developer-centric tool for reliable monitoring and improvement of agentic systems in production.
Authors:Liang Bai, Hong Song, Jinfu Li, Yucong Lin, Jingfan Fan, Tianyu Fu, Danni Ai, Deqiang Xiao, Jian Yang
Title: Sculpting Margin Penalty: Intra-Task Adapter Merging and Classifier Calibration for Few-Shot Class-Incremental Learning
Abstract:
Real-world applications often face data privacy constraints and high acquisition costs, making the assumption of sufficient training data in incremental tasks unrealistic and leading to significant performance degradation in class-incremental learning. Forward-compatible learning, which prospectively prepares for future tasks during base task training, has emerged as a promising solution for Few-Shot Class-Incremental Learning (FSCIL). However, existing methods still struggle to balance base-class discriminability and new-class generalization. Moreover, limited access to original data during incremental tasks often results in ambiguous inter-class decision boundaries. To address these challenges, we propose SMP (Sculpting Margin Penalty), a novel FSCIL method that strategically integrates margin penalties at different stages within the parameter-efficient fine-tuning paradigm. Specifically, we introduce the Margin-aware Intra-task Adapter Merging (MIAM) mechanism for base task learning. MIAM trains two sets of low-rank adapters with distinct classification losses: one with a margin penalty to enhance base-class discriminability, and the other without margin constraints to promote generalization to future new classes. These adapters are then adaptively merged to improve forward compatibility. For incremental tasks, we propose a Margin Penalty-based Classifier Calibration (MPCC) strategy to refine decision boundaries by fine-tuning classifiers on all seen classes' embeddings with a margin penalty. Extensive experiments on CIFAR100, ImageNet-R, and CUB200 demonstrate that SMP achieves state-of-the-art performance in FSCIL while maintaining a better balance between base and new classes.
Authors:Jingjie Wang, Shunli Zhang, Xiang Wei, Senmao Tian
Title: GaitAdapt: Continual Learning for Evolving Gait Recognition
Abstract:
Current gait recognition methodologies generally necessitate retraining when encountering new datasets. Nevertheless, retrained models frequently encounter difficulties in preserving knowledge from previous datasets, leading to a significant decline in performance on earlier test sets. To tackle these challenges, we present a continual gait recognition task, termed GaitAdapt, which supports the progressive enhancement of gait recognition capabilities over time and is systematically categorized according to various evaluation scenarios. Additionally, we propose GaitAdapter, a non-replay continual learning approach for gait recognition. This approach integrates the GaitPartition Adaptive Knowledge (GPAK) module, employing graph neural networks to aggregate common gait patterns from current data into a repository constructed from graph vectors. Subsequently, this repository is used to improve the discriminability of gait features in new tasks, thereby enhancing the model's ability to effectively recognize gait patterns. We also introduce a Euclidean Distance Stability Method (EDSN) based on negative pairs, which ensures that newly added gait samples from different classes maintain similar relative spatial distributions across both previous and current gait tasks, thereby alleviating the impact of task changes on the distinguishability of original domain features. Extensive evaluations demonstrate that GaitAdapter effectively retains gait knowledge acquired from diverse tasks, exhibiting markedly superior discriminative capability compared to alternative methods.
Authors:Zheng Wen, Doina Precup, Benjamin Van Roy, Satinder Singh
Title: Capacity-Constrained Continual Learning
Abstract:
Any agents we can possibly build are subject to capacity constraints, as memory and compute resources are inherently finite. However, comparatively little attention has been dedicated to understanding how agents with limited capacity should allocate their resources for optimal performance. The goal of this paper is to shed some light on this question by studying a simple yet relevant continual learning problem: the capacity-constrained linear-quadratic-Gaussian (LQG) sequential prediction problem. We derive a solution to this problem under appropriate technical conditions. Moreover, for problems that can be decomposed into a set of sub-problems, we also demonstrate how to optimally allocate capacity across these sub-problems in the steady state. We view the results of this paper as a first step in the systematic theoretical study of learning under capacity constraints.
Authors:Anushka Tiwari, Sayantan Pal, Rohini K. Srihari, Kaiyi Ji
Title: Task-Agnostic Continual Prompt Tuning with Gradient-Based Selection and Decoding
Abstract:
Prompt-based continual learning (CL) offers a parameter-efficient way to adapt large language models (LLMs) across task sequences. However, most existing methods assume task-aware inference and maintain a growing list of task-specific prompts, which limits scalability and hides latent forgetting. In this work, we introduce GRID, a unified framework that addresses two key limitations: (1) latent forgetting under task-agnostic inference, and (2) prompt memory explosion as task sequences grow. GRID integrates a task-aware decoding mechanism that improves backward transfer by leveraging representative inputs, automatic task identification, and constrained decoding. Additionally, we propose a gradient-based prompt selection strategy that compresses less informative prompts into a single aggregated representation, enabling scalable and memory-efficient lifelong learning. Extensive experiments across short-sequence, long-sequence, and negative transfer benchmarks show that GRID significantly improves backward transfer, achieves competitive forward transfer, and reduces forgotten tasks by up to 80\%, outperforming state-of-the-art methods on T5 and Flan-T5 backbones.
Authors:Hyunsik Yoo, SeongKu Kang, Hanghang Tong
Title: Continual Recommender Systems
Abstract:
Modern recommender systems operate in uniquely dynamic settings: user interests, item pools, and popularity trends shift continuously, and models must adapt in real time without forgetting past preferences. While existing tutorials on continual or lifelong learning cover broad machine learning domains (e.g., vision and graphs), they do not address recommendation-specific demands-such as balancing stability and plasticity per user, handling cold-start items, and optimizing recommendation metrics under streaming feedback. This tutorial aims to make a timely contribution by filling that gap. We begin by reviewing the background and problem settings, followed by a comprehensive overview of existing approaches. We then highlight recent efforts to apply continual learning to practical deployment environments, such as resource-constrained systems and sequential interaction settings. Finally, we discuss open challenges and future research directions. We expect this tutorial to benefit researchers and practitioners in recommender systems, data mining, AI, and information retrieval across academia and industry.
Authors:Munish Monga, Vishal Chudasama, Pankaj Wasnik, Biplab Banerjee
Title: DuET: Dual Incremental Object Detection via Exemplar-Free Task Arithmetic
Abstract:
Real-world object detection systems, such as those in autonomous driving and surveillance, must continuously learn new object categories and simultaneously adapt to changing environmental conditions. Existing approaches, Class Incremental Object Detection (CIOD) and Domain Incremental Object Detection (DIOD) only address one aspect of this challenge. CIOD struggles in unseen domains, while DIOD suffers from catastrophic forgetting when learning new classes, limiting their real-world applicability. To overcome these limitations, we introduce Dual Incremental Object Detection (DuIOD), a more practical setting that simultaneously handles class and domain shifts in an exemplar-free manner. We propose DuET, a Task Arithmetic-based model merging framework that enables stable incremental learning while mitigating sign conflicts through a novel Directional Consistency Loss. Unlike prior methods, DuET is detector-agnostic, allowing models like YOLO11 and RT-DETR to function as real-time incremental object detectors. To comprehensively evaluate both retention and adaptation, we introduce the Retention-Adaptability Index (RAI), which combines the Average Retention Index (Avg RI) for catastrophic forgetting and the Average Generalization Index for domain adaptability into a common ground. Extensive experiments on the Pascal Series and Diverse Weather Series demonstrate DuET's effectiveness, achieving a +13.12% RAI improvement while preserving 89.3% Avg RI on the Pascal Series (4 tasks), as well as a +11.39% RAI improvement with 88.57% Avg RI on the Diverse Weather Series (3 tasks), outperforming existing methods.
Authors:Quynh Nguyen-Phuong Vu, Luciano Sebastian Martinez-Rau, Yuxuan Zhang, Nho-Duc Tran, Bengt Oelmann, Michele Magno, Sebastian Bader
Title: Efficient Continual Learning in Keyword Spotting using Binary Neural Networks
Abstract:
Keyword spotting (KWS) is an essential function that enables interaction with ubiquitous smart devices. However, in resource-limited devices, KWS models are often static and can thus not adapt to new scenarios, such as added keywords. To overcome this problem, we propose a Continual Learning (CL) approach for KWS built on Binary Neural Networks (BNNs). The framework leverages the reduced computation and memory requirements of BNNs while incorporating techniques that enable the seamless integration of new keywords over time. This study evaluates seven CL techniques on a 16-class use case, reporting an accuracy exceeding 95% for a single additional keyword and up to 86% for four additional classes. Sensitivity to the amount of training samples in the CL phase, and differences in computational complexities are being evaluated. These evaluations demonstrate that batch-based algorithms are more sensitive to the CL dataset size, and that differences between the computational complexities are insignificant. These findings highlight the potential of developing an effective and computationally efficient technique for continuously integrating new keywords in KWS applications that is compatible with resource-constrained devices.
Authors:Usevalad Milasheuski, Luca Barbieri, Sanaz Kianoush, Monica Nicoli, Stefano Savazzi
Title: Bayesian Federated Learning for Continual Training
Abstract:
Bayesian Federated Learning (BFL) enables uncertainty quantification and robust adaptation in distributed learning. In contrast to the frequentist approach, it estimates the posterior distribution of a global model, offering insights into model reliability. However, current BFL methods neglect continual learning challenges in dynamic environments where data distributions shift over time. We propose a continual BFL framework applied to human sensing with radar data collected over several days. Using Stochastic Gradient Langevin Dynamics (SGLD), our approach sequentially updates the model, leveraging past posteriors to construct the prior for the new tasks. We assess the accuracy, the expected calibration error (ECE) and the convergence speed of our approach against several baselines. Results highlight the effectiveness of continual Bayesian updates in preserving knowledge and adapting to evolving data.
Authors:Jinhui Pang, Changqing Lin, Hao Lin, Zhihui Zhang, Weiping Ding, Yu Liu, Xiaoshuai Hao
Title: MEGA: Second-Order Gradient Alignment for Catastrophic Forgetting Mitigation in GFSCIL
Abstract:
Graph Few-Shot Class-Incremental Learning (GFSCIL) enables models to continually learn from limited samples of novel tasks after initial training on a large base dataset. Existing GFSCIL approaches typically utilize Prototypical Networks (PNs) for metric-based class representations and fine-tune the model during the incremental learning stage. However, these PN-based methods oversimplify learning via novel query set fine-tuning and fail to integrate Graph Continual Learning (GCL) techniques due to architectural constraints. To address these challenges, we propose a more rigorous and practical setting for GFSCIL that excludes query sets during the incremental training phase. Building on this foundation, we introduce Model-Agnostic Meta Graph Continual Learning (MEGA), aimed at effectively alleviating catastrophic forgetting for GFSCIL. Specifically, by calculating the incremental second-order gradient during the meta-training stage, we endow the model to learn high-quality priors that enhance incremental learning by aligning its behaviors across both the meta-training and incremental learning stages. Extensive experiments on four mainstream graph datasets demonstrate that MEGA achieves state-of-the-art results and enhances the effectiveness of various GCL methods in GFSCIL. We believe that our proposed MEGA serves as a model-agnostic GFSCIL paradigm, paving the way for future research.
Authors:Hyunji Jung, Hanseul Cho, Chulhee Yun
Title: Convergence and Implicit Bias of Gradient Descent on Continual Linear Classification
Abstract:
We study continual learning on multiple linear classification tasks by sequentially running gradient descent (GD) for a fixed budget of iterations per task. When all tasks are jointly linearly separable and are presented in a cyclic/random order, we show the directional convergence of the trained linear classifier to the joint (offline) max-margin solution. This is surprising because GD training on a single task is implicitly biased towards the individual max-margin solution for the task, and the direction of the joint max-margin solution can be largely different from these individual solutions. Additionally, when tasks are given in a cyclic order, we present a non-asymptotic analysis on cycle-averaged forgetting, revealing that (1) alignment between tasks is indeed closely tied to catastrophic forgetting and backward knowledge transfer and (2) the amount of forgetting vanishes to zero as the cycle repeats. Lastly, we analyze the case where the tasks are no longer jointly separable and show that the model trained in a cyclic order converges to the unique minimum of the joint loss function.
Authors:Esraa Elelimy, David Szepesvari, Martha White, Michael Bowling
Title: Rethinking the Foundations for Continual Reinforcement Learning
Abstract:
In the traditional view of reinforcement learning, the agent's goal is to find an optimal policy that maximizes its expected sum of rewards. Once the agent finds this policy, the learning ends. This view contrasts with \emph{continual reinforcement learning}, where learning does not end, and agents are expected to continually learn and adapt indefinitely. Despite the clear distinction between these two paradigms of learning, much of the progress in continual reinforcement learning has been shaped by foundations rooted in the traditional view of reinforcement learning. In this paper, we first examine whether the foundations of traditional reinforcement learning are suitable for the continual reinforcement learning paradigm. We identify four key pillars of the traditional reinforcement learning foundations that are antithetical to the goals of continual learning: the Markov decision process formalism, the focus on atemporal artifacts, the expected sum of rewards as an evaluation metric, and episodic benchmark environments that embrace the other three foundations. We then propose a new formalism that sheds the first and the third foundations and replaces them with the history process as a mathematical formalism and a new definition of deviation regret, adapted for continual learning, as an evaluation metric. Finally, we discuss possible approaches to shed the other two foundations.
Authors:Huitong Chen, Yu Wang, Yan Fan, Guosong Jiang, Qinghua Hu
Title: Reducing Class-wise Confusion for Incremental Learning with Disentangled Manifolds
Abstract:
Class incremental learning (CIL) aims to enable models to continuously learn new classes without catastrophically forgetting old ones. A promising direction is to learn and use prototypes of classes during incremental updates. Despite simplicity and intuition, we find that such methods suffer from inadequate representation capability and unsatisfied feature overlap. These two factors cause class-wise confusion and limited performance. In this paper, we develop a Confusion-REduced AuTo-Encoder classifier (CREATE) for CIL. Specifically, our method employs a lightweight auto-encoder module to learn compact manifold for each class in the latent subspace, constraining samples to be well reconstructed only on the semantically correct auto-encoder. Thus, the representation stability and capability of class distributions are enhanced, alleviating the potential class-wise confusion problem. To further distinguish the overlapped features, we propose a confusion-aware latent space separation loss that ensures samples are closely distributed in their corresponding low-dimensional manifold while keeping away from the distributions of features from other classes. Our method demonstrates stronger representational capacity and discrimination ability by learning disentangled manifolds and reduces class confusion. Extensive experiments on multiple datasets and settings show that CREATE outperforms other state-of-the-art methods up to 5.41%.
Authors:Javier Del Ser, Jesus L. Lobo, Heimo Müller, Andreas Holzinger
Title: World Models in Artificial Intelligence: Sensing, Learning, and Reasoning Like a Child
Abstract:
World Models help Artificial Intelligence (AI) predict outcomes, reason about its environment, and guide decision-making. While widely used in reinforcement learning, they lack the structured, adaptive representations that even young children intuitively develop. Advancing beyond pattern recognition requires dynamic, interpretable frameworks inspired by Piaget's cognitive development theory. We highlight six key research areas -- physics-informed learning, neurosymbolic learning, continual learning, causal inference, human-in-the-loop AI, and responsible AI -- as essential for enabling true reasoning in AI. By integrating statistical learning with advances in these areas, AI can evolve from pattern recognition to genuine understanding, adaptation and reasoning capabilities.
Authors:Wanyi Li, Wei Wei, Yongkang Luo, Peng Wang
Title: Brain-inspired analogical mixture prototypes for few-shot class-incremental learning
Abstract:
Few-shot class-incremental learning (FSCIL) poses significant challenges for artificial neural networks due to the need to efficiently learn from limited data while retaining knowledge of previously learned tasks. Inspired by the brain's mechanisms for categorization and analogical learning, we propose a novel approach called Brain-inspired Analogical Mixture Prototypes (BAMP). BAMP has three components: mixed prototypical feature learning, statistical analogy, and soft voting. Starting from a pre-trained Vision Transformer (ViT), mixed prototypical feature learning represents each class using a mixture of prototypes and fine-tunes these representations during the base session. The statistical analogy calibrates the mean and covariance matrix of prototypes for new classes according to similarity to the base classes, and computes classification score with Mahalanobis distance. Soft voting combines both merits of statistical analogy and an off-shelf FSCIL method. Our experiments on benchmark datasets demonstrate that BAMP outperforms state-of-the-art on both traditional big start FSCIL setting and challenging small start FSCIL setting. The study suggests that brain-inspired analogical mixture prototypes can alleviate catastrophic forgetting and over-fitting problems in FSCIL.
Authors:Junliang Luo, Xue Liu
Title: Optimizing Blockchain Analysis: Tackling Temporality and Scalability with an Incremental Approach with Metropolis-Hastings Random Walks
Abstract:
Blockchain technology, with implications in the financial domain, offers data in the form of large-scale transaction networks. Analyzing transaction networks facilitates fraud detection, market analysis, and supports government regulation. Despite many graph representation learning methods for transaction network analysis, we pinpoint two salient limitations that merit more investigation. Existing methods predominantly focus on the snapshots of transaction networks, sidelining the evolving nature of blockchain transaction networks. Existing methodologies may not sufficiently emphasize efficient, incremental learning capabilities, which are essential for addressing the scalability challenges in ever-expanding large-scale transaction networks. To address these challenges, we employed an incremental approach for random walk-based node representation learning in transaction networks. Further, we proposed a Metropolis-Hastings-based random walk mechanism for improved efficiency. The empirical evaluation conducted on blockchain transaction datasets reveals comparable performance in node classification tasks while reducing computational overhead. Potential applications include transaction network monitoring, the efficient classification of blockchain addresses for fraud detection or the identification of specialized address types within the network.
Authors:Shugang Hao, Lingjie Duan
Title: Algorithm Design for Continual Learning in IoT Networks
Abstract:
Continual learning (CL) is a new online learning technique over sequentially generated streaming data from different tasks, aiming to maintain a small forgetting loss on previously-learned tasks. Existing work focuses on reducing the forgetting loss under a given task sequence. However, if similar tasks continuously appear to the end time, the forgetting loss is still huge on prior distinct tasks. In practical IoT networks, an autonomous vehicle to sample data and learn different tasks can route and alter the order of task pattern at increased travelling cost. To our best knowledge, we are the first to study how to opportunistically route the testing object and alter the task sequence in CL. We formulate a new optimization problem and prove it NP-hard. We propose a polynomial-time algorithm to achieve approximation ratios of $\frac{3}{2}$ for underparameterized case and $\frac{3}{2} + r^{1-T}$ for overparameterized case, respectively, where $r:=1-\frac{n}{m}$ is a parameter of feature number $m$ and sample number $n$ and $T$ is the task number. Simulation results verify our algorithm's close-to-optimum performance.
Authors:Amanda S. Rios, Ibrahima J. Ndiour, Parual Datta, Jaroslaw Sydir, Omesh Tickoo, Nilesh Ahuja
Title: Uncertainty Quantification in Continual Open-World Learning
Abstract:
AI deployed in the real-world should be capable of autonomously adapting to novelties encountered after deployment. Yet, in the field of continual learning, the reliance on novelty and labeling oracles is commonplace albeit unrealistic. This paper addresses a challenging and under-explored problem: a deployed AI agent that continuously encounters unlabeled data - which may include both unseen samples of known classes and samples from novel (unknown) classes - and must adapt to it continuously. To tackle this challenge, we propose our method COUQ "Continual Open-world Uncertainty Quantification", an iterative uncertainty estimation algorithm tailored for learning in generalized continual open-world multi-class settings. We rigorously apply and evaluate COUQ on key sub-tasks in the Continual Open-World: continual novelty detection, uncertainty guided active learning, and uncertainty guided pseudo-labeling for semi-supervised CL. We demonstrate the effectiveness of our method across multiple datasets, ablations, backbones and performance superior to state-of-the-art.
Authors:Amanda Rios, Ibrahima Ndiour, Parual Datta, Omesh Tickoo, Nilesh Ahuja
Title: CONCLAD: COntinuous Novel CLAss Detector
Abstract:
In the field of continual learning, relying on so-called oracles for novelty detection is commonplace albeit unrealistic. This paper introduces CONCLAD ("COntinuous Novel CLAss Detector"), a comprehensive solution to the under-explored problem of continual novel class detection in post-deployment data. At each new task, our approach employs an iterative uncertainty estimation algorithm to differentiate between known and novel class(es) samples, and to further discriminate between the different novel classes themselves. Samples predicted to be from a novel class with high-confidence are automatically pseudo-labeled and used to update our model. Simultaneously, a tiny supervision budget is used to iteratively query ambiguous novel class predictions, which are also used during update. Evaluation across multiple datasets, ablations and experimental settings demonstrate our method's effectiveness at separating novel and old class samples continuously. We will release our code upon acceptance.
Authors:Logan Frank, Jim Davis
Title: What Makes a Good Dataset for Knowledge Distillation?
Abstract:
Knowledge distillation (KD) has been a popular and effective method for model compression. One important assumption of KD is that the teacher's original dataset will also be available when training the student. However, in situations such as continual learning and distilling large models trained on company-withheld datasets, having access to the original data may not always be possible. This leads practitioners towards utilizing other sources of supplemental data, which could yield mixed results. One must then ask: "what makes a good dataset for transferring knowledge from teacher to student?" Many would assume that only real in-domain imagery is viable, but is that the only option? In this work, we explore multiple possible surrogate distillation datasets and demonstrate that many different datasets, even unnatural synthetic imagery, can serve as a suitable alternative in KD. From examining these alternative datasets, we identify and present various criteria describing what makes a good dataset for distillation. Source code will be available in the future.
Authors:Yayong Li, Peyman Moghadam, Can Peng, Nan Ye, Piotr Koniusz
Title: Inductive Graph Few-shot Class Incremental Learning
Abstract:
Node classification with Graph Neural Networks (GNN) under a fixed set of labels is well known in contrast to Graph Few-Shot Class Incremental Learning (GFSCIL), which involves learning a GNN classifier as graph nodes and classes growing over time sporadically. We introduce inductive GFSCIL that continually learns novel classes with newly emerging nodes while maintaining performance on old classes without accessing previous data. This addresses the practical concern of transductive GFSCIL, which requires storing the entire graph with historical data. Compared to the transductive GFSCIL, the inductive setting exacerbates catastrophic forgetting due to inaccessible previous data during incremental training, in addition to overfitting issue caused by label sparsity. Thus, we propose a novel method, called Topology-based class Augmentation and Prototype calibration (TAP). To be specific, it first creates a triple-branch multi-topology class augmentation method to enhance model generalization ability. As each incremental session receives a disjoint subgraph with nodes of novel classes, the multi-topology class augmentation method helps replicate such a setting in the base session to boost backbone versatility. In incremental learning, given the limited number of novel class samples, we propose an iterative prototype calibration to improve the separation of class prototypes. Furthermore, as backbone fine-tuning poses the feature distribution drift, prototypes of old classes start failing over time, we propose the prototype shift method for old classes to compensate for the drift. We showcase the proposed method on four datasets.
Authors:Anselme Ndikumana, Kim Khoa Nguyen, Mohamed Cheriet
Title: Renewable Energy Powered and Open RAN-based Architecture for 5G Fixed Wireless Access Provisioning in Rural Areas
Abstract:
Due to the high costs of optical fiber deployment in Low-Density and Rural Areas (LDRAs), 5G Fixed Wireless Access (5G FWA) recently emerged as an affordable solution. A widely adopted deployment scenario of 5G FWA includes edge cloud that supports computing services and Radio Access Network (RAN) functions. Such edge cloud requires network and energy resources for 5G FWA. This paper proposes renewable energy powered and Open RAN-based architecture for 5G FWA serving LDRAs using three-level closed-loops. Open RAN is a new 5G RAN architecture allowing Open Central Unit and Open Distributed Unit to be distributed in virtualized environment. The first closed-loop distributes radio resources to Open RAN instances and slices at the edge cloud. The second closed-loop allocates radio resources to houses. We design a new energy model that leverages renewable energy. We jointly optimize radio and energy resource allocation in closed-loop 3. We formulate ultra-small and small-time scale optimization problems that link closed-loops to maximize communication utility while minimizing energy costs. We propose reinforcement learning and successive convex approximation to solve the formulated problems. Then, we use solution data and continual learning to improve resource allocation on a large timescale. Our proposal satisfies 97.14% slice delay budget.
Authors:Wojciech Łapacz, Daniel Marczak, Filip Szatkowski, Tomasz Trzciński
Title: Exploring the Stability Gap in Continual Learning: The Role of the Classification Head
Abstract:
Continual learning (CL) has emerged as a critical area in machine learning, enabling neural networks to learn from evolving data distributions while mitigating catastrophic forgetting. However, recent research has identified the stability gap -- a phenomenon where models initially lose performance on previously learned tasks before partially recovering during training. Such learning dynamics are contradictory to the intuitive understanding of stability in continual learning where one would expect the performance to degrade gradually instead of rapidly decreasing and then partially recovering later. To better understand and alleviate the stability gap, we investigate it at different levels of the neural network architecture, particularly focusing on the role of the classification head. We introduce the nearest-mean classifier (NMC) as a tool to attribute the influence of the backbone and the classification head on the stability gap. Our experiments demonstrate that NMC not only improves final performance, but also significantly enhances training stability across various continual learning benchmarks, including CIFAR100, ImageNet100, CUB-200, and FGVC Aircrafts. Moreover, we find that NMC also reduces task-recency bias. Our analysis provides new insights into the stability gap and suggests that the primary contributor to this phenomenon is the linear head, rather than the insufficient representation learning.
Authors:Liang Bai, Hong Song, Yucong Lin, Tianyu Fu, Deqiang Xiao, Danni Ai, Jingfan Fan, Jian Yang
Title: Efficient Non-Exemplar Class-Incremental Learning with Retrospective Feature Synthesis
Abstract:
Despite the outstanding performance in many individual tasks, deep neural networks suffer from catastrophic forgetting when learning from continuous data streams in real-world scenarios. Current Non-Exemplar Class-Incremental Learning (NECIL) methods mitigate forgetting by storing a single prototype per class, which serves to inject previous information when sequentially learning new classes. However, these stored prototypes or their augmented variants often fail to simultaneously capture spatial distribution diversity and precision needed for representing old classes. Moreover, as the model acquires new knowledge, these prototypes gradually become outdated, making them less effective. To overcome these limitations, we propose a more efficient NECIL method that replaces prototypes with synthesized retrospective features for old classes. Specifically, we model each old class's feature space using a multivariate Gaussian distribution and generate deep representations by sampling from high-likelihood regions. Additionally, we introduce a similarity-based feature compensation mechanism that integrates generated old class features with similar new class features to synthesize robust retrospective representations. These retrospective features are then incorporated into our incremental learning framework to preserve the decision boundaries of previous classes while learning new ones. Extensive experiments on CIFAR-100, TinyImageNet, and ImageNet-Subset demonstrate that our method significantly improves the efficiency of non-exemplar class-incremental learning and achieves state-of-the-art performance.
Authors:Haiyuan Li, Hari Madhukumar, Peizheng Li, Yuelin Liu, Yiran Teng, Yulei Wu, Ning Wang, Shuangyi Yan, Dimitra Simeonidou
Title: Towards Practical Operation of Deep Reinforcement Learning Agents in Real-World Network Management at Open RAN Edges
Abstract:
Deep Reinforcement Learning (DRL) has emerged as a powerful solution for meeting the growing demands for connectivity, reliability, low latency and operational efficiency in advanced networks. However, most research has focused on theoretical analysis and simulations, with limited investigation into real-world deployment. To bridge the gap and support practical DRL deployment for network management, we first present an orchestration framework that integrates ETSI Multi-access Edge Computing (MEC) with Open RAN, enabling seamless adoption of DRL-based strategies across different time scales while enhancing agent lifecycle management. We then identify three critical challenges hindering DRL's real-world deployment, including (1) asynchronous requests from unpredictable or bursty traffic, (2) adaptability and generalization across heterogeneous topologies and evolving service demands, and (3) prolonged convergence and service interruptions due to exploration in live operational environments. To address these challenges, we propose a three-fold solution strategy: (a) advanced time-series integration for handling asynchronized traffic, (b) flexible architecture design such as multi-agent DRL and incremental learning to support heterogeneous scenarios, and (c) simulation-driven deployment with transfer learning to reduce convergence time and service disruptions. Lastly, the feasibility of the MEC-O-RAN architecture is validated on an urban-wide testing infrastructure, and two real-world use cases are presented, showcasing the three identified challenges and demonstrating the effectiveness of the proposed solutions.
Authors:Wenbo Xu, Yanan Wu, Haoran Jiang, Yang Wang, Qiang Wu, Jian Zhang
Title: Task Consistent Prototype Learning for Incremental Few-shot Semantic Segmentation
Abstract:
Incremental Few-Shot Semantic Segmentation (iFSS) tackles a task that requires a model to continually expand its segmentation capability on novel classes using only a few annotated examples. Typical incremental approaches encounter a challenge that the objective of the base training phase (fitting base classes with sufficient instances) does not align with the incremental learning phase (rapidly adapting to new classes with less forgetting). This disconnect can result in suboptimal performance in the incremental setting. This study introduces a meta-learning-based prototype approach that encourages the model to learn how to adapt quickly while preserving previous knowledge. Concretely, we mimic the incremental evaluation protocol during the base training session by sampling a sequence of pseudo-incremental tasks. Each task in the simulated sequence is trained using a meta-objective to enable rapid adaptation without forgetting. To enhance discrimination among class prototypes, we introduce prototype space redistribution learning, which dynamically updates class prototypes to establish optimal inter-prototype boundaries within the prototype space. Extensive experiments on iFSS datasets built upon PASCAL and COCO benchmarks show the advanced performance of the proposed approach, offering valuable insights for addressing iFSS challenges.
Authors:Shreyank N Gowda, Davide Moltisanti, Laura Sevilla-Lara
Title: Continual Learning Improves Zero-Shot Action Recognition
Abstract:
Zero-shot action recognition requires a strong ability to generalize from pre-training and seen classes to novel unseen classes. Similarly, continual learning aims to develop models that can generalize effectively and learn new tasks without forgetting the ones previously learned. The generalization goals of zero-shot and continual learning are closely aligned, however techniques from continual learning have not been applied to zero-shot action recognition. In this paper, we propose a novel method based on continual learning to address zero-shot action recognition. This model, which we call {\em Generative Iterative Learning} (GIL) uses a memory of synthesized features of past classes, and combines these synthetic features with real ones from novel classes. The memory is used to train a classification model, ensuring a balanced exposure to both old and new classes. Experiments demonstrate that {\em GIL} improves generalization in unseen classes, achieving a new state-of-the-art in zero-shot recognition across multiple benchmarks. Importantly, {\em GIL} also boosts performance in the more challenging generalized zero-shot setting, where models need to retain knowledge about classes seen before fine-tuning.
Authors:Jaeyoung Park, Minsu Kim, Steven Euijong Whang
Title: Fair Class-Incremental Learning using Sample Weighting
Abstract:
Model fairness is becoming important in class-incremental learning for Trustworthy AI. While accuracy has been a central focus in class-incremental learning, fairness has been relatively understudied. However, naively using all the samples of the current task for training results in unfair catastrophic forgetting for certain sensitive groups including classes. We theoretically analyze that forgetting occurs if the average gradient vector of the current task data is in an "opposite direction" compared to the average gradient vector of a sensitive group, which means their inner products are negative. We then propose a fair class-incremental learning framework that adjusts the training weights of current task samples to change the direction of the average gradient vector and thus reduce the forgetting of underperforming groups and achieve fairness. For various group fairness measures, we formulate optimization problems to minimize the overall losses of sensitive groups while minimizing the disparities among them. We also show the problems can be solved with linear programming and propose an efficient Fairness-aware Sample Weighting (FSW) algorithm. Experiments show that FSW achieves better accuracy-fairness tradeoff results than state-of-the-art approaches on real datasets.
Authors:Vihang Patil, Andreas Radler, Daniel Klotz, Sepp Hochreiter
Title: Simplified priors for Object-Centric Learning
Abstract:
Humans excel at abstracting data and constructing \emph{reusable} concepts, a capability lacking in current continual learning systems. The field of object-centric learning addresses this by developing abstract representations, or slots, from data without human supervision. Different methods have been proposed to tackle this task for images, whereas most are overly complex, non-differentiable, or poorly scalable. In this paper, we introduce a conceptually simple, fully-differentiable, non-iterative, and scalable method called SAMP Simplified Slot Attention with Max Pool Priors). It is implementable using only Convolution and MaxPool layers and an Attention layer. Our method encodes the input image with a Convolutional Neural Network and then uses a branch of alternating Convolution and MaxPool layers to create specialized sub-networks and extract primitive slots. These primitive slots are then used as queries for a Simplified Slot Attention over the encoded image. Despite its simplicity, our method is competitive or outperforms previous methods on standard benchmarks.
Authors:Zhi Chen, Lingxiao Jiang
Title: Promise and Peril of Collaborative Code Generation Models: Balancing Effectiveness and Memorization
Abstract:
In the rapidly evolving field of machine learning, training models with datasets from various locations and organizations presents significant challenges due to privacy and legal concerns. The exploration of effective collaborative training settings capable of leveraging valuable knowledge from distributed and isolated datasets is increasingly crucial. This study investigates key factors that impact the effectiveness of collaborative training methods in code next-token prediction, as well as the correctness and utility of the generated code, demonstrating the promise of such methods. Additionally, we evaluate the memorization of different participant training data across various collaborative training settings, including centralized, federated, and incremental training, highlighting their potential risks in leaking data. Our findings indicate that the size and diversity of code datasets are pivotal factors influencing the success of collaboratively trained code models. We show that federated learning achieves competitive performance compared to centralized training while offering better data protection, as evidenced by lower memorization ratios in the generated code. However, federated learning can still produce verbatim code snippets from hidden training data, potentially violating privacy or copyright. Our study further explores effectiveness and memorization patterns in incremental learning, emphasizing the sequence in which individual participant datasets are introduced. We also identify cross-organizational clones as a prevalent challenge in both centralized and federated learning scenarios. Our findings highlight the persistent risk of data leakage during inference, even when training data remains unseen. We conclude with recommendations for practitioners and researchers to optimize multisource datasets, propelling cross-organizational collaboration forward.
Authors:Xinyuan Qian, Xianghu Yue, Jiadong Wang, Huiping Zhuang, Haizhou Li
Title: Analytic Class Incremental Learning for Sound Source Localization with Privacy Protection
Abstract:
Sound Source Localization (SSL) enabling technology for applications such as surveillance and robotics. While traditional Signal Processing (SP)-based SSL methods provide analytic solutions under specific signal and noise assumptions, recent Deep Learning (DL)-based methods have significantly outperformed them. However, their success depends on extensive training data and substantial computational resources. Moreover, they often rely on large-scale annotated spatial data and may struggle when adapting to evolving sound classes. To mitigate these challenges, we propose a novel Class Incremental Learning (CIL) approach, termed SSL-CIL, which avoids serious accuracy degradation due to catastrophic forgetting by incrementally updating the DL-based SSL model through a closed-form analytic solution. In particular, data privacy is ensured since the learning process does not revisit any historical data (exemplar-free), which is more suitable for smart home scenarios. Empirical results in the public SSLR dataset demonstrate the superior performance of our proposal, achieving a localization accuracy of 90.9%, surpassing other competitive methods.
Authors:Pratibha Kumari, Daniel Reisenbüchler, Lucas Luttner, Nadine S. Schaadt, Friedrich Feuerhake, Dorit Merhof
Title: Continual Domain Incremental Learning for Privacy-aware Digital Pathology
Abstract:
In recent years, there has been remarkable progress in the field of digital pathology, driven by the ability to model complex tissue patterns using advanced deep-learning algorithms. However, the robustness of these models is often severely compromised in the presence of data shifts (e.g., different stains, organs, centers, etc.). Alternatively, continual learning (CL) techniques aim to reduce the forgetting of past data when learning new data with distributional shift conditions. Specifically, rehearsal-based CL techniques, which store some past data in a buffer and then replay it with new data, have proven effective in medical image analysis tasks. However, privacy concerns arise as these approaches store past data, prompting the development of our novel Generative Latent Replay-based CL (GLRCL) approach. GLRCL captures the previous distribution through Gaussian Mixture Models instead of storing past samples, which are then utilized to generate features and perform latent replay with new data. We systematically evaluate our proposed framework under different shift conditions in histopathology data, including stain and organ shift. Our approach significantly outperforms popular buffer-free CL approaches and performs similarly to rehearsal-based CL approaches that require large buffers causing serious privacy violations.
Authors:Youngeun Kim, Jun Fang, Qin Zhang, Zhaowei Cai, Yantao Shen, Rahul Duggal, Dripta S. Raychaudhuri, Zhuowen Tu, Yifan Xing, Onkar Dabeer
Title: Open-World Dynamic Prompt and Continual Visual Representation Learning
Abstract:
The open world is inherently dynamic, characterized by ever-evolving concepts and distributions. Continual learning (CL) in this dynamic open-world environment presents a significant challenge in effectively generalizing to unseen test-time classes. To address this challenge, we introduce a new practical CL setting tailored for open-world visual representation learning. In this setting, subsequent data streams systematically introduce novel classes that are disjoint from those seen in previous training phases, while also remaining distinct from the unseen test classes. In response, we present Dynamic Prompt and Representation Learner (DPaRL), a simple yet effective Prompt-based CL (PCL) method. Our DPaRL learns to generate dynamic prompts for inference, as opposed to relying on a static prompt pool in previous PCL methods. In addition, DPaRL jointly learns dynamic prompt generation and discriminative representation at each training stage whereas prior PCL methods only refine the prompt learning throughout the process. Our experimental results demonstrate the superiority of our approach, surpassing state-of-the-art methods on well-established open-world image retrieval benchmarks by an average of 4.7% improvement in Recall@1 performance.
Authors:Yuze Wang, Junyi Wang, Chen Wang, Wantong Duan, Yongtang Bao, Yue Qi
Title: SCARF: Scalable Continual Learning Framework for Memory-efficient Multiple Neural Radiance Fields
Abstract:
This paper introduces a novel continual learning framework for synthesising novel views of multiple scenes, learning multiple 3D scenes incrementally, and updating the network parameters only with the training data of the upcoming new scene. We build on Neural Radiance Fields (NeRF), which uses multi-layer perceptron to model the density and radiance field of a scene as the implicit function. While NeRF and its extensions have shown a powerful capability of rendering photo-realistic novel views in a single 3D scene, managing these growing 3D NeRF assets efficiently is a new scientific problem. Very few works focus on the efficient representation or continuous learning capability of multiple scenes, which is crucial for the practical applications of NeRF. To achieve these goals, our key idea is to represent multiple scenes as the linear combination of a cross-scene weight matrix and a set of scene-specific weight matrices generated from a global parameter generator. Furthermore, we propose an uncertain surface knowledge distillation strategy to transfer the radiance field knowledge of previous scenes to the new model. Representing multiple 3D scenes with such weight matrices significantly reduces memory requirements. At the same time, the uncertain surface distillation strategy greatly overcomes the catastrophic forgetting problem and maintains the photo-realistic rendering quality of previous scenes. Experiments show that the proposed approach achieves state-of-the-art rendering quality of continual learning NeRF on NeRF-Synthetic, LLFF, and TanksAndTemples datasets while preserving extra low storage cost.
Authors:Mutian Yang, Zisen Zhan, Yutong Chen, Haolin Li, Kaiwen Wang, Kaili Zheng, Yuguang Wang, Qi Wang, Jiandong Gao, Ji Wu
Title: Learning the Mechanism of Catastrophic Forgetting: A Perspective from Gradient Similarity
Abstract:
Catastrophic forgetting during knowledge injection severely undermines the continual learning capability of large language models (LLMs). Although existing methods attempt to mitigate this issue, they often lack a foundational theoretical explanation. We establish a gradient-based theoretical framework to explain catastrophic forgetting. We first prove that strongly negative gradient similarity is a fundamental cause of forgetting. We then use gradient similarity to identify two types of neurons: conflicting neurons that induce forgetting and account for 50%-75% of neurons, and collaborative neurons that mitigate forgetting and account for 25%-50%. Based on this analysis, we propose a knowledge injection method, Collaborative Neural Learning (CNL). By freezing conflicting neurons and updating only collaborative neurons, CNL theoretically eliminates catastrophic forgetting under an infinitesimal learning rate eta and an exactly known mastered set. Experiments on five LLMs, four datasets, and four optimizers show that CNL achieves zero forgetting in in-set settings and reduces forgetting by 59.1%-81.7% in out-of-set settings.
Authors:Fatema Siddika, Md Anwar Hossen, Tanwi Mallick, Ali Jannesari
Title: Split-on-Share: Mixture of Sparse Experts for Task-Agnostic Continual Learning
Abstract:
Continual learning in Large Language Models (LLMs) is hindered by the plasticity-stability dilemma, where acquiring new capabilities often leads to catastrophic forgetting of previous knowledge. Existing methods typically treat parameters uniformly, failing to distinguish between specific task knowledge and shared capabilities. We introduce Mixture of Sparse Experts for Task-Agnostic Continual Learning, referred to as SETA, a framework that resolves the plasticity-stability conflict by decomposing the model into modular subspaces. Unlike standard updates, where tasks compete for the same parameters, SETA separates knowledge into unique experts, designed to isolate task-specific patterns, and shared experts, responsible for capturing common features. This structure is maintained through elastic weight anchoring, which protects critical shared knowledge and enables a unified gating network to automatically retrieve the correct expert combination for each task during inference. Extensive experiments across diverse domain-specific and general benchmarks demonstrate that SETA consistently outperforms state-of-the-art parameter-efficient fine-tuning-based continual learning methods.
Authors:Sixian Jia, Ruo-Syuan Mei, Chenhui Shao
Title: Adaptive few-shot learning for robust part quality classification in two-photon lithography
Abstract:
Two-photon lithography (TPL) is an advanced additive manufacturing (AM) technique for fabricating high-precision micro-structures. While computer vision (CV) is proofed for automated quality control, existing models are often static, rendering them ineffective in dynamic manufacturing environments. These models typically cannot detect new, unseen defect classes, be efficiently updated from scarce data, or adapt to new part geometries. To address this gap, this paper presents an adaptive CV framework for the entire life-cycle of quality model maintenance. The proposed framework is built upon a same, scale-robust backbone model and integrates three key methodologies: (1) a statistical hypothesis testing framework based on Linear Discriminant Analysis (LDA) for novelty detection, (2) a two-stage, rehearsal-based strategy for few-shot incremental learning, and (3) a few-shot Domain-Adversarial Neural Network (DANN) for few-shot domain adaptation. The framework was evaluated on a TPL dataset featuring hemisphere as source domain and cube as target domain structures, with each domain categorized into good, minor damaged, and damaged quality classes. The hypothesis testing method successfully identified new class batches with 99-100% accuracy. The incremental learning method integrated a new class to 92% accuracy using only K=20 samples. The domain adaptation model bridged the severe domain gap, achieving 96.19% accuracy on the target domain using only K=5 shots. These results demonstrate a robust and data-efficient solution for deploying and maintaining CV models in evolving production scenarios.
Authors:Xiangzhe Yuan, Jiajun Wang, Huanchen Wang, Qian Wan, Siying Hu
Title: ImmuniFraug: A Metacognitive Intervention Anti-Fraud Approach to Enhance Undergraduate Students' Cyber Fraud Awareness
Abstract:
Cyber fraud now constitutes over half of criminal cases in China, with undergraduate students experiencing a disproportionate rise in victimization. Traditional anti-fraud training remains predominantly passive, yielding limited engagement and retention. This paper introduces ImmuniFraug, a Large Language Model (LLM)-based metacognitive intervention that delivers immersive, multimodal fraud simulations integrating text, voice, and visual avatars across ten prevalent fraud types. Each scenario is designed to replicate real-world persuasion tactics and psychological pressure, while post-interaction debriefs provide grounded feedback in protection motivation theory and reflective prompts to reinforce learning. In a controlled study with 846 Chinese undergraduates, ImmuniFraug was compared to official text-based materials. Linear Mixed-Effects Modeling (LMEM) reveals that the interactive intervention significantly improved fraud awareness (p = 0.026), successfully providing incremental learning value even when controlling for participants' extensive prior exposure to anti-fraud education, alongside high narrative immersion (M = 56.95/77). Thematic analysis of interviews revealed key effectiveness factors: perceived realism, adaptive deception, enforced time pressure, emotional manipulation awareness, and enhanced self-efficacy. Findings demonstrate that by shifting the focus from passive knowledge acquisition to active metacognitive engagement, LLM-based simulations offer a scalable and ecologically valid new paradigm for anti-fraud training and fostering fraud resilience.
Authors:Alex Lewandowski, Adtiya A. Ramesh, Edan Meyer, Dale Schuurmans, Marlos C. Machado
Title: The World Is Bigger! A Computationally-Embedded Perspective on the Big World Hypothesis
Abstract:
Continual learning is often motivated by the idea, known as the big world hypothesis, that "the world is bigger" than the agent. Recent problem formulations capture this idea by explicitly constraining an agent relative to the environment. These constraints lead to solutions in which the agent continually adapts to best use its limited capacity, rather than converging to a fixed solution. However, explicit constraints can be ad hoc, difficult to incorporate, and may limit the effectiveness of scaling up the agent's capacity. In this paper, we characterize a problem setting in which an agent, regardless of its capacity, is constrained by being embedded in the environment. In particular, we introduce a computationally-embedded perspective that represents an embedded agent as an automaton simulated within a universal (formal) computer. Such an automaton is always constrained; we prove that it is equivalent to an agent that interacts with a partially observable Markov decision process over a countably infinite state-space. We propose an objective for this setting, which we call interactivity, that measures an agent's ability to continually adapt its behaviour by learning new predictions. We then develop a model-based reinforcement learning algorithm for interactivity-seeking, and use it to construct a synthetic problem to evaluate continual learning capability. Our results show that deep nonlinear networks struggle to sustain interactivity, whereas deep linear networks sustain higher interactivity as capacity increases.
Authors:Abdullah M. Zyarah, Dhireesha Kudithipudi
Title: M2RU: Memristive Minion Recurrent Unit for On-Chip Continual Learning at the Edge
Abstract:
Continual learning on edge platforms remains challenging because recurrent networks depend on energy-intensive training procedures and frequent data movement that are impractical for embedded deployments. This work introduces M2RU, a mixed-signal architecture that implements the minion recurrent unit for efficient temporal processing with on-chip continual learning. The architecture integrates weighted-bit streaming, which enables multi-bit digital inputs to be processed in crossbars without high-resolution conversion, and an experience replay mechanism that stabilizes learning under domain shifts. M2RU achieves 15 GOPS at 48.62 mW, corresponding to 312 GOPS per watt, and maintains accuracy within 5 percent of software baselines on sequential MNIST and CIFAR-10 tasks. Compared with a CMOS digital design, the accelerator provides 29X improvement in energy efficiency. Device-aware analysis shows an expected operational lifetime of 12.2 years under continual learning workloads. These results establish M2RU as a scalable and energy-efficient platform for real-time adaptation in edge-level temporal intelligence.
Authors:Thibault Geoffroy, Myriam Maumy, Lionel Prevost
Title: Feature Aggregation for Efficient Continual Learning of Complex Facial Expressions
Abstract:
As artificial intelligence (AI) systems become increasingly embedded in our daily life, the ability to recognize and adapt to human emotions is essential for effective human-computer interaction. Facial expression recognition (FER) provides a primary channel for inferring affective states, but the dynamic and culturally nuanced nature of emotions requires models that can learn continuously without forgetting prior knowledge. In this work, we propose a hybrid framework for FER in a continual learning setting that mitigates catastrophic forgetting. Our approach integrates two complementary modalities: deep convolutional features and facial Action Units (AUs) derived from the Facial Action Coding System (FACS). The combined representation is modelled through Bayesian Gaussian Mixture Models (BGMMs), which provide a lightweight, probabilistic solution that avoids retraining while offering strong discriminative power. Using the Compound Facial Expression of Emotion (CFEE) dataset, we show that our model can first learn basic expressions and then progressively recognize compound expressions. Experiments demonstrate improved accuracy, stronger knowledge retention, and reduced forgetting. This framework contributes to the development of emotionally intelligent AI systems with applications in education, healthcare, and adaptive user interfaces.
Authors:Jiantao Tan, Peixian Ma, Tong Yu, Wentao Zhang, Ruixuan Wang
Title: Representation Calibration and Uncertainty Guidance for Class-Incremental Learning based on Vision Language Model
Abstract:
Class-incremental learning requires a learning system to continually learn knowledge of new classes and meanwhile try to preserve previously learned knowledge of old classes. As current state-of-the-art methods based on Vision-Language Models (VLMs) still suffer from the issue of differentiating classes across learning tasks. Here a novel VLM-based continual learning framework for image classification is proposed. In this framework, task-specific adapters are added to the pre-trained and frozen image encoder to learn new knowledge, and a novel cross-task representation calibration strategy based on a mixture of light-weight projectors is used to help better separate all learned classes in a unified feature space, alleviating class confusion across tasks. In addition, a novel inference strategy guided by prediction uncertainty is developed to more accurately select the most appropriate image feature for class prediction. Extensive experiments on multiple datasets under various settings demonstrate the superior performance of our method compared to existing ones.
Authors:Satoshi Hashimoto, Tatsuya Konishi, Tomoya Kaichi, Kazunori Matsumoto, Mori Kurokawa
Title: CADE: Continual Weakly-supervised Video Anomaly Detection with Ensembles
Abstract:
Video anomaly detection (VAD) has long been studied as a crucial problem in public security and crime prevention. In recent years, weakly-supervised VAD (WVAD) have attracted considerable attention due to their easy annotation process and promising research results. While existing WVAD methods tackle mainly on static datasets, the possibility that the domain of data can vary has been neglected. To adapt such domain-shift, the continual learning (CL) perspective is required because otherwise additional training only with new coming data could easily cause performance degradation for previous data, i.e., forgetting. Therefore, we propose a brand-new approach, called Continual Anomaly Detection with Ensembles (CADE) that is the first work combining CL and WVAD viewpoints. Specifically, CADE uses the Dual-Generator(DG) to address data imbalance and label uncertainty in WVAD. We also found that forgetting exacerbates the "incompleteness'' where the model becomes biased towards certain anomaly modes, leading to missed detections of various anomalies. To address this, we propose to ensemble Multi-Discriminator (MD) that capture missed anomalies in past scenes due to forgetting, using multiple models. Extensive experiments show that CADE significantly outperforms existing VAD methods on the common multi-scene VAD datasets, such as ShanghaiTech and Charlotte Anomaly datasets.
Authors:Sumeyye Bas, Kiymet Kaya, Elif Ak, Sule Gunduz Oguducu
Title: Adaptive Intrusion Detection for Evolving RPL IoT Attacks Using Incremental Learning
Abstract:
The routing protocol for low-power and lossy networks (RPL) has become the de facto routing standard for resource-constrained IoT systems, but its lightweight design exposes critical vulnerabilities to a wide range of routing-layer attacks such as hello flood, decreased rank, and version number manipulation. Traditional countermeasures, including protocol-level modifications and machine learning classifiers, can achieve high accuracy against known threats, yet they fail when confronted with novel or zero-day attacks unless fully retrained, an approach that is impractical for dynamic IoT environments. In this paper, we investigate incremental learning as a practical and adaptive strategy for intrusion detection in RPL-based networks. We systematically evaluate five model families, including ensemble models and deep learning models. Our analysis highlights that incremental learning not only restores detection performance on new attack classes but also mitigates catastrophic forgetting of previously learned threats, all while reducing training time compared to full retraining. By combining five diverse models with attack-specific analysis, forgetting behavior, and time efficiency, this study provides systematic evidence that incremental learning offers a scalable pathway to maintain resilient intrusion detection in evolving RPL-based IoT networks.
Authors:Yasas Senarath, Hemant Purohit
Title: Knowledge-guided Continual Learning for Behavioral Analytics Systems
Abstract:
User behavior on online platforms is evolving, reflecting real-world changes in how people post, whether it's helpful messages or hate speech. Models that learn to capture this content can experience a decrease in performance over time due to data drift, which can lead to ineffective behavioral analytics systems. However, fine-tuning such a model over time with new data can be detrimental due to catastrophic forgetting. Replay-based approaches in continual learning offer a simple yet efficient method to update such models, minimizing forgetting by maintaining a buffer of important training instances from past learned tasks. However, the main limitation of this approach is the fixed size of the buffer. External knowledge bases can be utilized to overcome this limitation through data augmentation. We propose a novel augmentation-based approach to incorporate external knowledge in the replay-based continual learning framework. We evaluate several strategies with three datasets from prior studies related to deviant behavior classification to assess the integration of external knowledge in continual learning and demonstrate that augmentation helps outperform baseline replay-based approaches.
Authors:Hongwei Yan, Guanglong Sun, Zhiqi Kang, Yi Zhong, Liyuan Wang
Title: Domain Generalizable Continual Learning
Abstract:
To adapt effectively to dynamic real-world environments, intelligent systems must continually acquire new skills while generalizing them to diverse, unseen scenarios. Here, we introduce a novel and realistic setting named domain generalizable continual learning (DGCL): a model learns sequential tasks with each involving a single domain, aiming to perform well across all encountered tasks and domains. This setting poses unique challenges in acquiring, retaining, and leveraging both semantic- and domain-relevant information for robust generalization. Although state-of-the-art continual learning (CL) methods have employed pre-trained models (PTMs) to enhance task-specific generalization, they typically assume identical training and testing domains for each task and therefore perform poorly in DGCL. To this end, we propose adaptive Domain Transformation (DoT), an innovative PTMs-based approach tailored to DGCL. Inspired by the distributed-plus-hub theory of the human brain, DoT disentangles semantic- and domain-relevant information in representation learning, and adaptively transforms task representations across various domains for output alignment, ensuring balanced and generalized predictions. DoT serves as a plug-in strategy that greatly facilitates state-of-the-art CL baselines under both full parameter tuning and parameter-efficient tuning paradigms in DGCL, validated by extensive experiments. Also, DoT is shown to accumulate domain-generalizable knowledge from DGCL, and ensure resource efficiency with a lightweight implementation.
Authors:Thibault Geoffroy, gauthier Gerspacher, Lionel Prevost
Title: High Semantic Features for the Continual Learning of Complex Emotions: a Lightweight Solution
Abstract:
Incremental learning is a complex process due to potential catastrophic forgetting of old tasks when learning new ones. This is mainly due to transient features that do not fit from task to task. In this paper, we focus on complex emotion recognition. First, we learn basic emotions and then, incrementally, like humans, complex emotions. We show that Action Units, describing facial muscle movements, are non-transient, highly semantical features that outperform those extracted by both shallow and deep convolutional neural networks. Thanks to this ability, our approach achieves interesting results when learning incrementally complex, compound emotions with an accuracy of 0.75 on the CFEE dataset and can be favorably compared to state-of-the-art results. Moreover, it results in a lightweight model with a small memory footprint.
Authors:Junlin Zeng, Xin Zhang, Xiang Zhao, Yan Pan
Title: A $1000\times$ Faster LLM-enhanced Algorithm For Path Planning in Large-scale Grid Maps
Abstract:
Path planning in grid maps, arising from various applications, has garnered significant attention. Existing methods, such as A*, Dijkstra, and their variants, work well for small-scale maps but fail to address large-scale ones due to high search time and memory consumption. Recently, Large Language Models (LLMs) have shown remarkable performance in path planning but still suffer from spatial illusion and poor planning performance. Among all the works, LLM-A* \cite{meng2024llm} leverages LLM to generate a series of waypoints and then uses A* to plan the paths between the neighboring waypoints. In this way, the complete path is constructed. However, LLM-A* still suffers from high computational time for large-scale maps. To fill this gap, we conducted a deep investigation into LLM-A* and found its bottleneck, resulting in limited performance. Accordingly, we design an innovative LLM-enhanced algorithm, abbr. as iLLM-A*. iLLM-A* includes 3 carefully designed mechanisms, including the optimization of A*, an incremental learning method for LLM to generate high-quality waypoints, and the selection of the appropriate waypoints for A* for path planning. Finally, a comprehensive evaluation on various grid maps shows that, compared with LLM-A*, iLLM-A* \textbf{1) achieves more than $1000\times$ speedup on average, and up to $2349.5\times$ speedup in the extreme case, 2) saves up to $58.6\%$ of the memory cost, 3) achieves both obviously shorter path length and lower path length standard deviation.}
Authors:Jiazheng Sun, Te Yang, Jiayang Niu, Mingxuan Li, Yongyong Lu, Ruimeng Yang, Xin Peng
Title: Fairy: Interactive Mobile Assistant to Real-world Tasks via LMM-based Multi-agent
Abstract:
Large multi-modal models (LMMs) have advanced mobile GUI agents. However, existing methods struggle with real-world scenarios involving diverse app interfaces and evolving user needs. End-to-end methods relying on model's commonsense often fail on long-tail apps, and agents without user interaction act unilaterally, harming user experience. To address these limitations, we propose Fairy, an interactive multi-agent mobile assistant capable of continuously accumulating app knowledge and self-evolving during usage. Fairy enables cross-app collaboration, interactive execution, and continual learning through three core modules:(i) a Global Task Planner that decomposes user tasks into sub-tasks from a cross-app view; (ii) an App-Level Executor that refines sub-tasks into steps and actions based on long- and short-term memory, achieving precise execution and user interaction via four core agents operating in dual loops; and (iii) a Self-Learner that consolidates execution experience into App Map and Tricks. To evaluate Fairy, we introduce RealMobile-Eval, a real-world benchmark with a comprehensive metric suite, and LMM-based agents for automated scoring. Experiments show that Fairy with GPT-4o backbone outperforms the previous SoTA by improving user requirement completion by 33.7% and reducing redundant steps by 58.5%, showing the effectiveness of its interaction and self-learning.
Authors:Gunbir Singh Baveja, Mark Schmidt
Title: A Unified Noise-Curvature View of Loss of Trainability
Abstract:
Loss of trainability (LoT) in continual learning occurs when gradient steps no longer yield improvement as tasks evolve, so accuracy stalls or degrades despite adequate capacity and supervision. We analyze LoT incurred with Adam through an optimization lens and find that single indicators such as Hessian rank, sharpness level, weight or gradient norms, gradient-to-parameter ratios, and unit-sign entropy are not reliable predictors. Instead we introduce two complementary criteria: a batch-size-aware gradient-noise bound and a curvature volatility-controlled bound that combine into a per-layer predictive threshold that anticipates trainability behavior. Using this threshold, we build a simple per-layer scheduler that keeps each layers effective step below a safe limit, stabilizing training and improving accuracy across concatenated ReLU (CReLU), Wasserstein regularization, and L2 weight decay, with learned learning-rate trajectories that mirror canonical decay.
Authors:Vedant Karia, Abdullah Zyarah, Dhireesha Kudithipudi
Title: Genesis: A Spiking Neuromorphic Accelerator With On-chip Continual Learning
Abstract:
Continual learning, the ability to acquire and transfer knowledge through a models lifetime, is critical for artificial agents that interact in real-world environments. Biological brains inherently demonstrate these capabilities while operating within limited energy and resource budgets. Achieving continual learning capability in artificial systems considerably increases memory and computational demands, and even more so when deploying on platforms with limited resources. In this work, Genesis, a spiking continual learning accelerator, is proposed to address this gap. The architecture supports neurally inspired mechanisms, such as activity-dependent metaplasticity, to alleviate catastrophic forgetting. It integrates low-precision continual learning parametersand employs a custom data movement strategy to accommodate the sparsely distributed spikes. Furthermore, the architecture features a memory mapping technique that places metaplasticity parameters and synaptic weights in a single address location for faster memory access. Results show that the mean classification accuracy for Genesis is 74.6% on a task-agnostic split-MNIST benchmark with power consumption of 17.08mW in a 65nm technology node.
Authors:Zhangyue Shi, Zekai Wang, Yuxuan Li
Title: Unsupervised Identification and Replay-based Detection (UIRD) for New Category Anomaly Detection in ECG Signal
Abstract:
In clinical practice, automatic analysis of electrocardiogram (ECG) is widely applied to identify irregular heart rhythms and other electrical anomalies of the heart, enabling timely intervention and potentially improving clinical outcomes. However, due to the limited samples in certain types of ECG signals, the class imbalance issues pose a challenge for ECG-based detection. In addition, as the volume of patient data grows, long-term storage of all historical data becomes increasingly burdensome as training samples to recognize new patterns and classify existing ECG signals accurately. Therefore, to enhance the performance of anomaly detection while addressing storage limitations, we propose a pseudo-replay based semi-supervised continual learning framework, which consists of two components: unsupervised identification and replay-based detection. For unsupervised identification, an unsupervised generative adversarial network (GAN)-based framework is integrated to detect novel patterns. Besides, instead of directly storing all historical data, a pseudo replay-based learning strategy is proposed which utilizes a generator to learn the data distribution for each individual task. When a new task arises, the generator synthesizes pseudo data representative of previous learnt classes, enabling the model to detect both the existed patterns and the newly presented anomalies. The effectiveness of the proposed framework is validated in four public ECG datasets, which leverages supervised classification problems for anomaly detection. The experimental results show that the developed approach is very promising in identifying novel anomalies while maintaining good performance on detecting existing ECG signals.
Authors:Seungwon Oh, Sangyeon Park, Isaac Han, Kyung-Joong Kim
Title: Recovering Plasticity of Neural Networks via Soft Weight Rescaling
Abstract:
Recent studies have shown that as training progresses, neural networks gradually lose their capacity to learn new information, a phenomenon known as plasticity loss. An unbounded weight growth is one of the main causes of plasticity loss. Furthermore, it harms generalization capability and disrupts optimization dynamics. Re-initializing the network can be a solution, but it results in the loss of learned information, leading to performance drops. In this paper, we propose Soft Weight Rescaling (SWR), a novel approach that prevents unbounded weight growth without losing information. SWR recovers the plasticity of the network by simply scaling down the weight at each step of the learning process. We theoretically prove that SWR bounds weight magnitude and balances weight magnitude between layers. Our experiment shows that SWR improves performance on warm-start learning, continual learning, and single-task learning setups on standard image classification benchmarks.
Authors:Byung Hyun Lee, Wongi Jeong, Woojae Han, Kyoungbun Lee, Se Young Chun
Title: Continual Multiple Instance Learning with Enhanced Localization for Histopathological Whole Slide Image Analysis
Abstract:
Multiple instance learning (MIL) significantly reduced annotation costs via bag-level weak labels for large-scale images, such as histopathological whole slide images (WSIs). However, its adaptability to continual tasks with minimal forgetting has been rarely explored, especially on instance classification for localization. Weakly incremental learning for semantic segmentation has been studied for continual localization, but it focused on natural images, leveraging global relationships among hundreds of small patches (e.g., $16 \times 16$) using pre-trained models. This approach seems infeasible for MIL localization due to enormous amounts ($\sim 10^5$) of large patches (e.g., $256 \times 256$) and no available global relationships such as cancer cells. To address these challenges, we propose Continual Multiple Instance Learning with Enhanced Localization (CoMEL), an MIL framework for both localization and adaptability with minimal forgetting. CoMEL consists of (1) Grouped Double Attention Transformer (GDAT) for efficient instance encoding, (2) Bag Prototypes-based Pseudo-Labeling (BPPL) for reliable instance pseudo-labeling, and (3) Orthogonal Weighted Low-Rank Adaptation (OWLoRA) to mitigate forgetting in both bag and instance classification. Extensive experiments on three public WSI datasets demonstrate superior performance of CoMEL, outperforming the prior arts by up to $11.00\%$ in bag-level accuracy and up to $23.4\%$ in localization accuracy under the continual MIL setup.
Authors:Arthicha Srisuchinnawong, Poramate Manoonpong
Title: Growable and Interpretable Neural Control with Online Continual Learning for Autonomous Lifelong Locomotion Learning Machines
Abstract:
Continual locomotion learning faces four challenges: incomprehensibility, sample inefficiency, lack of knowledge exploitation, and catastrophic forgetting. Thus, this work introduces Growable Online Locomotion Learning Under Multicondition (GOLLUM), which exploits the interpretability feature to address the aforementioned challenges. GOLLUM has two dimensions of interpretability: layer-wise interpretability for neural control function encoding and column-wise interpretability for robot skill encoding. With this interpretable control structure, GOLLUM utilizes neurogenesis to unsupervisely increment columns (ring-like networks); each column is trained separately to encode and maintain a specific primary robot skill. GOLLUM also transfers the parameters to new skills and supplements the learned combination of acquired skills through another neural mapping layer added (layer-wise) with online supplementary learning. On a physical hexapod robot, GOLLUM successfully acquired multiple locomotion skills (e.g., walking, slope climbing, and bouncing) autonomously and continuously within an hour using a simple reward function. Furthermore, it demonstrated the capability of combining previous learned skills to facilitate the learning process of new skills while preventing catastrophic forgetting. Compared to state-of-the-art locomotion learning approaches, GOLLUM is the only approach that addresses the four challenges above mentioned without human intervention. It also emphasizes the potential exploitation of interpretability to achieve autonomous lifelong learning machines.
Authors:Matteo Gambella, Manuel Roveri
Title: SEAL: Searching Expandable Architectures for Incremental Learning
Abstract:
Incremental learning is a machine learning paradigm where a model learns from a sequential stream of tasks. This setting poses a key challenge: balancing plasticity (learning new tasks) and stability (preserving past knowledge). Neural Architecture Search (NAS), a branch of AutoML, automates the design of the architecture of Deep Neural Networks and has shown success in static settings. However, existing NAS-based approaches to incremental learning often rely on expanding the model at every task, making them impractical in resource-constrained environments. In this work, we introduce SEAL, a NAS-based framework tailored for data-incremental learning, a scenario where disjoint data samples arrive sequentially and are not stored for future access. SEAL adapts the model structure dynamically by expanding it only when necessary, based on a capacity estimation metric. Stability is preserved through cross-distillation training after each expansion step. The NAS component jointly searches for both the architecture and the optimal expansion policy. Experiments across multiple benchmarks demonstrate that SEAL effectively reduces forgetting and enhances accuracy while maintaining a lower model size compared to prior methods. These results highlight the promise of combining NAS and selective expansion for efficient, adaptive learning in incremental scenarios.
Authors:Diogo Risca, Afonso Lourenço, Goreti Marreiros
Title: Continual learning for rotating machinery fault diagnosis with cross-domain environmental and operational variations
Abstract:
Although numerous machine learning models exist to detect issues like rolling bearing strain and deformation, typically caused by improper mounting, overloading, or poor lubrication, these models often struggle to isolate faults from the noise of real-world operational and environmental variability. Conditions such as variable loads, high temperatures, stress, and rotational speeds can mask early signs of failure, making reliable detection challenging. To address these limitations, this work proposes a continual deep learning approach capable of learning across domains that share underlying structure over time. This approach goes beyond traditional accuracy metrics by addressing four second-order challenges: catastrophic forgetting (where new learning overwrites past knowledge), lack of plasticity (where models fail to adapt to new data), forward transfer (using past knowledge to improve future learning), and backward transfer (refining past knowledge with insights from new domains). The method comprises a feature generator and domain-specific classifiers, allowing capacity to grow as new domains emerge with minimal interference, while an experience replay mechanism selectively revisits prior domains to mitigate forgetting. Moreover, nonlinear dependencies across domains are exploited by prioritizing replay from those with the highest prior errors, refining models based on most informative past experiences. Experiments show high average domain accuracy (up to 88.96%), with forgetting measures as low as .0027 across non-stationary class-incremental environments.
Authors:Xiaobing Yu, Jin Yang, Xiao Wu, Peijie Qiu, Xiaofeng Liu
Title: FM-LoRA: Factorized Low-Rank Meta-Prompting for Continual Learning
Abstract:
How to adapt a pre-trained model continuously for sequential tasks with different prediction class labels and domains and finally learn a generalizable model across diverse tasks is a long-lasting challenge. Continual learning (CL) has emerged as a promising approach to leverage pre-trained models (e.g., Transformers) for sequential tasks. While many existing CL methods incrementally store additional learned structures, such as Low-Rank Adaptation (LoRA) adapters or prompts and sometimes even preserve features from previous samples to maintain performance. This leads to unsustainable parameter growth and escalating storage costs as the number of tasks increases. Moreover, current approaches often lack task similarity awareness, which further hinders the models ability to effectively adapt to new tasks without interfering with previously acquired knowledge. To address these challenges, we propose FM-LoRA, a novel and efficient low-rank adaptation method that integrates both a dynamic rank selector (DRS) and dynamic meta-prompting (DMP). This framework allocates model capacity more effectively across tasks by leveraging a shared low-rank subspace critical for preserving knowledge, thereby avoiding continual parameter expansion. Extensive experiments on various CL benchmarks, including ImageNet-R, CIFAR100, and CUB200 for class-incremental learning (CIL), and DomainNet for domain-incremental learning (DIL), with Transformers backbone demonstrate that FM-LoRA effectively mitigates catastrophic forgetting while delivering robust performance across a diverse range of tasks and domains.
Authors:Diogo Risca, Afonso Lourenço, Goreti Marreiros
Title: Boosting-inspired online learning with transfer for railway maintenance
Abstract:
The integration of advanced sensor technologies with deep learning algorithms has revolutionized fault diagnosis in railway systems, particularly at the wheel-track interface. Although numerous models have been proposed to detect irregularities such as wheel out-of-roundness, they often fall short in real-world applications due to the dynamic and nonstationary nature of railway operations. This paper introduces BOLT-RM (Boosting-inspired Online Learning with Transfer for Railway Maintenance), a model designed to address these challenges using continual learning for predictive maintenance. By allowing the model to continuously learn and adapt as new data become available, BOLT-RM overcomes the issue of catastrophic forgetting that often plagues traditional models. It retains past knowledge while improving predictive accuracy with each new learning episode, using a boosting-like knowledge sharing mechanism to adapt to evolving operational conditions such as changes in speed, load, and track irregularities. The methodology is validated through comprehensive multi-domain simulations of train-track dynamic interactions, which capture realistic railway operating conditions. The proposed BOLT-RM model demonstrates significant improvements in identifying wheel anomalies, establishing a reliable sequence for maintenance interventions.
Authors:Agil Aghasanli, Yi Li, Plamen Angelov
Title: Prototype-Based Continual Learning with Label-free Replay Buffer and Cluster Preservation Loss
Abstract:
Continual learning techniques employ simple replay sample selection processes and use them during subsequent tasks. Typically, they rely on labeled data. In this paper, we depart from this by automatically selecting prototypes stored without labels, preserving cluster structures in the latent space across tasks. By eliminating label dependence in the replay buffer and introducing cluster preservation loss, it is demonstrated that the proposed method can maintain essential information from previously encountered tasks while ensuring adaptation to new tasks. "Push-away" and "pull-toward" mechanisms over previously learned prototypes are also introduced for class-incremental and domain-incremental scenarios. These mechanisms ensure the retention of previously learned information as well as adaptation to new classes or domain shifts. The proposed method is evaluated on several benchmarks, including SplitCIFAR100, SplitImageNet32, SplitTinyImageNet, and SplitCaltech256 for class-incremental, as well as R-MNIST and CORe50 for domain-incremental setting using pre-extracted DINOv2 features. Experimental results indicate that the label-free replay-based technique outperforms state-of-the-art continual learning methods and, in some cases, even surpasses offline learning. An unsupervised variant of the proposed technique for the class-incremental setting, avoiding labels use even on incoming data, also demonstrated competitive performance, outperforming particular supervised baselines in some cases. These findings underscore the effectiveness of the proposed framework in retaining prior information and facilitating continual adaptation.
Authors:Haoran Li, Jingfeng Wu, Vladimir Braverman
Title: Memory-Statistics Tradeoff in Continual Learning with Structural Regularization
Abstract:
We study the statistical performance of a continual learning problem with two linear regression tasks in a well-specified random design setting. We consider a structural regularization algorithm that incorporates a generalized $\ell_2$-regularization tailored to the Hessian of the previous task for mitigating catastrophic forgetting. We establish upper and lower bounds on the joint excess risk for this algorithm. Our analysis reveals a fundamental trade-off between memory complexity and statistical efficiency, where memory complexity is measured by the number of vectors needed to define the structural regularization. Specifically, increasing the number of vectors in structural regularization leads to a worse memory complexity but an improved excess risk, and vice versa. Furthermore, our theory suggests that naive continual learning without regularization suffers from catastrophic forgetting, while structural regularization mitigates this issue. Notably, structural regularization achieves comparable performance to joint training with access to both tasks simultaneously. These results highlight the critical role of curvature-aware regularization for continual learning.
Authors:Jiahao Qin, Feng Liu, Lu Zong
Title: Ancestral Mamba: Enhancing Selective Discriminant Space Model with Online Visual Prototype Learning for Efficient and Robust Discriminant Approach
Abstract:
In the realm of computer graphics, the ability to learn continuously from non-stationary data streams while adapting to new visual patterns and mitigating catastrophic forgetting is of paramount importance. Existing approaches often struggle to capture and represent the essential characteristics of evolving visual concepts, hindering their applicability to dynamic graphics tasks. In this paper, we propose Ancestral Mamba, a novel approach that integrates online prototype learning into a selective discriminant space model for efficient and robust online continual learning. The key components of our approach include Ancestral Prototype Adaptation (APA), which continuously refines and builds upon learned visual prototypes, and Mamba Feedback (MF), which provides targeted feedback to adapt to challenging visual patterns. APA enables the model to continuously adapt its prototypes, building upon ancestral knowledge to tackle new challenges, while MF acts as a targeted feedback mechanism, focusing on challenging classes and refining their representations. Extensive experiments on graphics-oriented datasets, such as CIFAR-10 and CIFAR-100, demonstrate the superior performance of Ancestral Mamba compared to state-of-the-art baselines, achieving significant improvements in accuracy and forgetting mitigation.
Authors:Abdullah M. Zyarah, Dhireesha Kudithipudi
Title: Minion Gated Recurrent Unit for Continual Learning
Abstract:
The increasing demand for continual learning in sequential data processing has led to progressively complex training methodologies and larger recurrent network architectures. Consequently, this has widened the knowledge gap between continual learning with recurrent neural networks (RNNs) and their ability to operate on devices with limited memory and compute. To address this challenge, we investigate the effectiveness of simplifying RNN architectures, particularly gated recurrent unit (GRU), and its impact on both single-task and multitask sequential learning. We propose a new variant of GRU, namely the minion recurrent unit (MiRU). MiRU replaces conventional gating mechanisms with scaling coefficients to regulate dynamic updates of hidden states and historical context, reducing computational costs and memory requirements. Despite its simplified architecture, MiRU maintains performance comparable to the standard GRU while achieving 2.90x faster training and reducing parameter usage by 2.88x, as demonstrated through evaluations on sequential image classification and natural language processing benchmarks. The impact of model simplification on its learning capacity is also investigated by performing continual learning tasks with a rehearsal-based strategy and global inhibition. We find that MiRU demonstrates stable performance in multitask learning even when using only rehearsal, unlike the standard GRU and its variants. These features position MiRU as a promising candidate for edge-device applications.
Authors:Devon Jarvis, Sebastian Lee, Clémentine Carla Juliette Dominé, Andrew M Saxe, Stefano Sarao Mannelli
Title: A Theory of Initialisation's Impact on Specialisation
Abstract:
Prior work has demonstrated a consistent tendency in neural networks engaged in continual learning tasks, wherein intermediate task similarity results in the highest levels of catastrophic interference. This phenomenon is attributed to the network's tendency to reuse learned features across tasks. However, this explanation heavily relies on the premise that neuron specialisation occurs, i.e. the emergence of localised representations. Our investigation challenges the validity of this assumption. Using theoretical frameworks for the analysis of neural networks, we show a strong dependence of specialisation on the initial condition. More precisely, we show that weight imbalance and high weight entropy can favour specialised solutions. We then apply these insights in the context of continual learning, first showing the emergence of a monotonic relation between task-similarity and forgetting in non-specialised networks. {Finally, we show that specialization by weight imbalance is beneficial on the commonly employed elastic weight consolidation regularisation technique.
Authors:Mingdai Yang, Fan Yang, Yanhui Guo, Shaoyuan Xu, Tianchen Zhou, Yetian Chen, Simone Shao, Jia Liu, Yan Gao
Title: PCL: Prompt-based Continual Learning for User Modeling in Recommender Systems
Abstract:
User modeling in large e-commerce platforms aims to optimize user experiences by incorporating various customer activities. Traditional models targeting a single task often focus on specific business metrics, neglecting the comprehensive user behavior, and thus limiting their effectiveness. To develop more generalized user representations, some existing work adopts Multi-task Learning (MTL)approaches. But they all face the challenges of optimization imbalance and inefficiency in adapting to new tasks. Continual Learning (CL), which allows models to learn new tasks incrementally and independently, has emerged as a solution to MTL's limitations. However, CL faces the challenge of catastrophic forgetting, where previously learned knowledge is lost when the model is learning the new task. Inspired by the success of prompt tuning in Pretrained Language Models (PLMs), we propose PCL, a Prompt-based Continual Learning framework for user modeling, which utilizes position-wise prompts as external memory for each task, preserving knowledge and mitigating catastrophic forgetting. Additionally, we design contextual prompts to capture and leverage inter-task relationships during prompt tuning. We conduct extensive experiments on real-world datasets to demonstrate PCL's effectiveness.
Authors:Nicolas Michel, Maorong Wang, Jiangpeng He, Toshihiko Yamasaki
Title: From Offline to Online Memory-Free and Task-Free Continual Learning via Fine-Grained Hypergradients
Abstract:
Continual Learning (CL) aims to learn from a non-stationary data stream where the underlying distribution changes over time. While recent advances have produced efficient memory-free methods in the offline CL (offCL) setting, where tasks are known in advance and data can be revisited, online CL (onCL) remains dominated by memory-based approaches. The transition from offCL to onCL is challenging, as many offline methods rely on (1) prior knowledge of task boundaries and (2) sophisticated scheduling or optimization schemes, both of which are unavailable when data arrives sequentially and can be seen only once. In this paper, we investigate the adaptation of state-of-the-art memory-free offCL methods to the online setting. We first show that augmenting these methods with lightweight prototypes significantly improves performance, albeit at the cost of increased Gradient Imbalance, resulting in a biased learning towards earlier tasks. To address this issue, we introduce Fine-Grained Hypergradients, an online mechanism for rebalancing gradient updates during training. Our experiments demonstrate that the synergy between prototype memory and hypergradient reweighting substantially enhances the performance of memory-free methods in onCL and surpasses onCL baselines. Code will be released upon acceptance.
Authors:Afonso Lourenço, João Rodrigo, João Gama, Goreti Marreiros
Title: On-device edge learning for IoT data streams: a survey
Abstract:
This literature review explores continual learning methods for on-device training in the context of neural networks (NNs) and decision trees (DTs) for classification tasks on smart environments. We highlight key constraints, such as data architecture (batch vs. stream) and network capacity (cloud vs. edge), which impact TinyML algorithm design, due to the uncontrolled natural arrival of data streams. The survey details the challenges of deploying deep learners on resource-constrained edge devices, including catastrophic forgetting, data inefficiency, and the difficulty of handling IoT tabular data in open-world settings. While decision trees are more memory-efficient for on-device training, they are limited in expressiveness, requiring dynamic adaptations, like pruning and meta-learning, to handle complex patterns and concept drifts. We emphasize the importance of multi-criteria performance evaluation tailored to edge applications, which assess both output-based and internal representation metrics. The key challenge lies in integrating these building blocks into autonomous online systems, taking into account stability-plasticity trade-offs, forward-backward transfer, and model convergence.
Authors:Adjovi Sim, Zhengkui Wang, Aik Beng Ng, Shalini De Mello, Simon See, Wonmin Byeon
Title: Feature-based Graph Attention Networks Improve Online Continual Learning
Abstract:
Online continual learning for image classification is crucial for models to adapt to new data while retaining knowledge of previously learned tasks. This capability is essential to address real-world challenges involving dynamic environments and evolving data distributions. Traditional approaches predominantly employ Convolutional Neural Networks, which are limited to processing images as grids and primarily capture local patterns rather than relational information. Although the emergence of transformer architectures has improved the ability to capture relationships, these models often require significantly larger resources. In this paper, we present a novel online continual learning framework based on Graph Attention Networks (GATs), which effectively capture contextual relationships and dynamically update the task-specific representation via learned attention weights. Our approach utilizes a pre-trained feature extractor to convert images into graphs using hierarchical feature maps, representing information at varying levels of granularity. These graphs are then processed by a GAT and incorporate an enhanced global pooling strategy to improve classification performance for continual learning. In addition, we propose the rehearsal memory duplication technique that improves the representation of the previous tasks while maintaining the memory budget. Comprehensive evaluations on benchmark datasets, including SVHN, CIFAR10, CIFAR100, and MiniImageNet, demonstrate the superiority of our method compared to the state-of-the-art methods.
Authors:Giacomo Cignoni, Andrea Cossu, Alex Gomez-Villa, Joost van de Weijer, Antonio Carta
Title: Replay-free Online Continual Learning with Self-Supervised MultiPatches
Abstract:
Online Continual Learning (OCL) methods train a model on a non-stationary data stream where only a few examples are available at a time, often leveraging replay strategies. However, usage of replay is sometimes forbidden, especially in applications with strict privacy regulations. Therefore, we propose Continual MultiPatches (CMP), an effective plug-in for existing OCL self-supervised learning strategies that avoids the use of replay samples. CMP generates multiple patches from a single example and projects them into a shared feature space, where patches coming from the same example are pushed together without collapsing into a single point. CMP surpasses replay and other SSL-based strategies on OCL streams, challenging the role of replay as a go-to solution for self-supervised OCL.
Authors:Aristeidis Panos, Rahaf Aljundi, Daniel Olmeda Reino, Richard E. Turner
Title: Efficient Few-Shot Continual Learning in Vision-Language Models
Abstract:
Vision-language models (VLMs) excel in tasks such as visual question answering and image captioning. However, VLMs are often limited by their use of pretrained image encoders, like CLIP, leading to image understanding errors that hinder overall performance. On top of that, real-world applications often require the model to be continuously adapted as new and often limited data continuously arrive. To address this, we propose LoRSU (Low-Rank Adaptation with Structured Updates), a robust and computationally efficient method for selectively updating image encoders within VLMs. LoRSU introduces structured and localized parameter updates, effectively correcting performance on previously error-prone data while preserving the model's general robustness. Our approach leverages theoretical insights to identify and update only the most critical parameters, achieving significant resource efficiency. Specifically, we demonstrate that LoRSU reduces computational overhead by over 25x compared to full VLM updates, without sacrificing performance. Experimental results on VQA tasks in the few-shot continual learning setting, validate LoRSU's scalability, efficiency, and effectiveness, making it a compelling solution for image encoder adaptation in resource-constrained environments.
Authors:Sangyeon Park, Isaac Han, Seungwon Oh, Kyung-Joong Kim
Title: Activation by Interval-wise Dropout: A Simple Way to Prevent Neural Networks from Plasticity Loss
Abstract:
Plasticity loss, a critical challenge in neural network training, limits a model's ability to adapt to new tasks or shifts in data distribution. This paper introduces AID (Activation by Interval-wise Dropout), a novel method inspired by Dropout, designed to address plasticity loss. Unlike Dropout, AID generates subnetworks by applying Dropout with different probabilities on each preactivation interval. Theoretical analysis reveals that AID regularizes the network, promoting behavior analogous to that of deep linear networks, which do not suffer from plasticity loss. We validate the effectiveness of AID in maintaining plasticity across various benchmarks, including continual learning tasks on standard image classification datasets such as CIFAR10, CIFAR100, and TinyImageNet. Furthermore, we show that AID enhances reinforcement learning performance in the Arcade Learning Environment benchmark.
Authors:Sana Rahmani, Reetam Chatterjee, Ali Etemad, Javad Hashemi
Title: Dynamic Prototype Rehearsal for Continual Learning in ECG Arrhythmia Detection
Abstract:
Continual Learning (CL) methods aim to learn from a sequence of tasks while avoiding the challenge of forgetting previous knowledge. We present DREAM-CL, a novel CL method for ECG arrhythmia detection that introduces dynamic prototype rehearsal memory. DREAM-CL selects representative prototypes by clustering data based on learning behavior during each training session. Within each cluster, we apply a smooth sorting operation that ranks samples by training difficulty, compressing extreme values and removing outliers. The more challenging samples are then chosen as prototypes for the rehearsal memory, ensuring effective knowledge retention across sessions. We evaluate our method on time-incremental, class-incremental, and lead-incremental scenarios using two widely used ECG arrhythmia datasets, Chapman and PTB-XL. The results demonstrate that DREAM-CL outperforms the state-of-the-art in CL for ECG arrhythmia detection. Detailed ablation and sensitivity studies are performed to validate the different design choices of our method.
Authors:Verónica Álvarez, Santiago Mazuelas, Jose A. Lozano
Title: Supervised Learning with Evolving Tasks and Performance Guarantees
Abstract:
Multiple supervised learning scenarios are composed by a sequence of classification tasks. For instance, multi-task learning and continual learning aim to learn a sequence of tasks that is either fixed or grows over time. Existing techniques for learning tasks that are in a sequence are tailored to specific scenarios, lacking adaptability to others. In addition, most of existing techniques consider situations in which the order of the tasks in the sequence is not relevant. However, it is common that tasks in a sequence are evolving in the sense that consecutive tasks often have a higher similarity. This paper presents a learning methodology that is applicable to multiple supervised learning scenarios and adapts to evolving tasks. Differently from existing techniques, we provide computable tight performance guarantees and analytically characterize the increase in the effective sample size. Experiments on benchmark datasets show the performance improvement of the proposed methodology in multiple scenarios and the reliability of the presented performance guarantees.
Authors:Haifeng Zhao, Yuguang Jin, Leilei Ma
Title: Dynamic Prompt Adjustment for Multi-Label Class-Incremental Learning
Abstract:
Significant advancements have been made in single label incremental learning (SLCIL),yet the more practical and challenging multi label class incremental learning (MLCIL) remains understudied. Recently,visual language models such as CLIP have achieved good results in classification tasks. However,directly using CLIP to solve MLCIL issue can lead to catastrophic forgetting. To tackle this issue, we integrate an improved data replay mechanism and prompt loss to curb knowledge forgetting. Specifically,our model enhances the prompt information to better adapt to multi-label classification tasks and employs confidence-based replay strategy to select representative samples. Moreover, the prompt loss significantly reduces the model's forgetting of previous knowledge. Experimental results demonstrate that our method has substantially improved the performance of MLCIL tasks across multiple benchmark datasets,validating its effectiveness.
Authors:Chenqi Li, Boyan Gao, Gabriel Jones, Timothy Denison, Tingting Zhu
Title: AnchorInv: Few-Shot Class-Incremental Learning of Physiological Signals via Representation Space Guided Inversion
Abstract:
Deep learning models have demonstrated exceptional performance in a variety of real-world applications. These successes are often attributed to strong base models that can generalize to novel tasks with limited supporting data while keeping prior knowledge intact. However, these impressive results are based on the availability of a large amount of high-quality data, which is often lacking in specialized biomedical applications. In such fields, models are usually developed with limited data that arrive incrementally with novel categories. This requires the model to adapt to new information while preserving existing knowledge. Few-Shot Class-Incremental Learning (FSCIL) methods offer a promising approach to addressing these challenges, but they also depend on strong base models that face the same aforementioned limitations. To overcome these constraints, we propose AnchorInv following the straightforward and efficient buffer-replay strategy. Instead of selecting and storing raw data, AnchorInv generates synthetic samples guided by anchor points in the feature space. This approach protects privacy and regularizes the model for adaptation. When evaluated on three public physiological time series datasets, AnchorInv exhibits efficient knowledge forgetting prevention and improved adaptation to novel classes, surpassing state-of-the-art baselines.
Authors:Boyu Zhang, Triet H. M. Le, M. Ali Babar
Title: MVD: A Multi-Lingual Software Vulnerability Detection Framework
Abstract:
Software vulnerabilities can result in catastrophic cyberattacks that increasingly threaten business operations. Consequently, ensuring the safety of software systems has become a paramount concern for both private and public sectors. Recent literature has witnessed increasing exploration of learning-based approaches for software vulnerability detection. However, a key limitation of these techniques is their primary focus on a single programming language, such as C/C++, which poses constraints considering the polyglot nature of modern software projects. Further, there appears to be an oversight in harnessing the synergies of vulnerability knowledge across varied languages, potentially underutilizing the full capabilities of these methods. To address the aforementioned issues, we introduce MVD - an innovative multi-lingual vulnerability detection framework. This framework acquires the ability to detect vulnerabilities across multiple languages by concurrently learning from vulnerability data of various languages, which are curated by our specialized pipeline. We also incorporate incremental learning to enable the detection capability of MVD to be extended to new languages, thus augmenting its practical utility. Extensive experiments on our curated dataset of more than 11K real-world multi-lingual vulnerabilities substantiate that our framework significantly surpasses state-of-the-art methods in multi-lingual vulnerability detection by 83.7% to 193.6% in PR-AUC. The results also demonstrate that MVD detects vulnerabilities well for new languages without compromising the detection performance of previously trained languages, even when training data for the older languages is unavailable. Overall, our findings motivate and pave the way for the prediction of multi-lingual vulnerabilities in modern software systems.
Authors:Yue Ma, Huantao Ren, Boyu Wang, Jingang Jin, Senem Velipasalar, Qinru Qiu
Title: LVP-CLIP:Revisiting CLIP for Continual Learning with Label Vector Pool
Abstract:
Continual learning aims to update a model so that it can sequentially learn new tasks without forgetting previously acquired knowledge. Recent continual learning approaches often leverage the vision-language model CLIP for its high-dimensional feature space and cross-modality feature matching. Traditional CLIP-based classification methods identify the most similar text label for a test image by comparing their embeddings. However, these methods are sensitive to the quality of text phrases and less effective for classes lacking meaningful text labels. In this work, we rethink CLIP-based continual learning and introduce the concept of Label Vector Pool (LVP). LVP replaces text labels with training images as similarity references, eliminating the need for ideal text descriptions. We present three variations of LVP and evaluate their performance on class and domain incremental learning tasks. Leveraging CLIP's high dimensional feature space, LVP learning algorithms are task-order invariant. The new knowledge does not modify the old knowledge, hence, there is minimum forgetting. Different tasks can be learned independently and in parallel with low computational and memory demands. Experimental results show that proposed LVP-based methods outperform the current state-of-the-art baseline by a significant margin of 40.7%.
Authors:Zhibo Chu, Zichong Wang, Qitao Qin
Title: Leveraging Prior Experience: An Expandable Auxiliary Knowledge Base for Text-to-SQL
Abstract:
Large Language Models (LLMs) exhibit impressive problem-solving skills across many tasks, but they still underperform compared to humans in various downstream applications, such as text-to-SQL. On the BIRD benchmark leaderboard, human performance achieves an accuracy of 92.96\%, whereas the top-performing method reaches only 72.39\%. Notably, these state-of-the-art (SoTA) methods predominantly rely on in-context learning to simulate human-like reasoning. However, they overlook a critical human skill: continual learning. Inspired by the educational practice of maintaining mistake notebooks during our formative years, we propose LPE-SQL (Leveraging Prior Experience: An Expandable Auxiliary Knowledge Base for Text-to-SQL), a novel framework designed to augment LLMs by enabling continual learning without requiring parameter fine-tuning. LPE-SQL consists of four modules that \textbf{i)} retrieve relevant entries, \textbf{ii)} efficient sql generation, \textbf{iii)} generate the final result through a cross-consistency mechanism and \textbf{iv)} log successful and failed tasks along with their reasoning processes or reflection-generated tips. Importantly, the core module of LPE-SQL is the fourth one, while the other modules employ foundational methods, allowing LPE-SQL to be easily integrated with SoTA technologies to further enhance performance. Our experimental results demonstrate that this continual learning approach yields substantial performance gains, with the smaller Llama-3.1-70B model with surpassing the performance of the larger Llama-3.1-405B model using SoTA methods.
Authors:Gerardo Duran-Martin, Leandro Sánchez-Betancourt, Alexander Y. Shestopaloff, Kevin Murphy
Title: A unifying framework for generalised Bayesian online learning in non-stationary environments
Abstract:
We propose a unifying framework for methods that perform probabilistic online learning in non-stationary environments. We call the framework BONE, which stands for generalised (B)ayesian (O)nline learning in (N)on-stationary (E)nvironments. BONE provides a common structure to tackle a variety of problems, including online continual learning, prequential forecasting, and contextual bandits. The framework requires specifying three modelling choices: (i) a model for measurements (e.g., a neural network), (ii) an auxiliary process to model non-stationarity (e.g., the time since the last changepoint), and (iii) a conditional prior over model parameters (e.g., a multivariate Gaussian). The framework also requires two algorithmic choices, which we use to carry out approximate inference under this framework: (i) an algorithm to estimate beliefs (posterior distribution) about the model parameters given the auxiliary variable, and (ii) an algorithm to estimate beliefs about the auxiliary variable. We show how the modularity of our framework allows for many existing methods to be reinterpreted as instances of BONE, and it allows us to propose new methods. We compare experimentally existing methods with our proposed new method on several datasets, providing insights into the situations that make each method more suitable for a specific task. We provide a Jax open source library to facilitate the adoption of this framework.
Authors:Ermanno Bartoli, Fethiye Irmak Dogan, Iolanda Leite
Title: STREAK: Streaming Network for Continual Learning of Object Relocations under Household Context Drifts
Abstract:
In real-world settings, robots are expected to assist humans across diverse tasks and still continuously adapt to dynamic changes over time. For example, in domestic environments, robots can proactively help users by fetching needed objects based on learned routines, which they infer by observing how objects move over time. However, data from these interactions are inherently non-independent and non-identically distributed (non-i.i.d.), e.g., a robot assisting multiple users may encounter varying data distributions as individuals follow distinct habits. This creates a challenge: integrating new knowledge without catastrophic forgetting. To address this, we propose STREAK (Spatio Temporal RElocation with Adaptive Knowledge retention), a continual learning framework for real-world robotic learning. It leverages a streaming graph neural network with regularization and rehearsal techniques to mitigate context drifts while retaining past knowledge. Our method is time- and memory-efficient, enabling long-term learning without retraining on all past data, which becomes infeasible as data grows in real-world interactions. We evaluate STREAK on the task of incrementally predicting human routines over 50+ days across different households. Results show that it effectively prevents catastrophic forgetting while maintaining generalization, making it a scalable solution for long-term human-robot interactions.
Authors:Yanyi Zhang, Binglin Qiu, Qi Jia, Yu Liu, Ran He
Title: Not Just Object, But State: Compositional Incremental Learning without Forgetting
Abstract:
Most incremental learners excessively prioritize coarse classes of objects while neglecting various kinds of states (e.g. color and material) attached to the objects. As a result, they are limited in the ability to reason fine-grained compositionality of state-object pairs. To remedy this limitation, we propose a novel task called Compositional Incremental Learning (composition-IL), enabling the model to recognize state-object compositions as a whole in an incremental learning fashion. Since the lack of suitable benchmarks, we re-organize two existing datasets and make them tailored for composition-IL. Then, we propose a prompt-based Composition Incremental Learner (CompILer), to overcome the ambiguous composition boundary problem which challenges composition-IL largely. Specifically, we exploit multi-pool prompt learning, which is regularized by inter-pool prompt discrepancy and intra-pool prompt diversity. Besides, we devise object-injected state prompting by using object prompts to guide the selection of state prompts. Furthermore, we fuse the selected prompts by a generalized-mean strategy, to eliminate irrelevant information learned in the prompts. Extensive experiments on two datasets exhibit state-of-the-art performance achieved by CompILer.
Authors:Xuchen Xie, Yiqiao Qiu, Run Lin, Weishi Zheng, Ruixuan Wang
Title: Class Incremental Learning with Task-Specific Batch Normalization and Out-of-Distribution Detection
Abstract:
This study focuses on incremental learning for image classification, exploring how to reduce catastrophic forgetting of all learned knowledge when access to old data is restricted due to memory or privacy constraints. The challenge of incremental learning lies in achieving an optimal balance between plasticity, the ability to learn new knowledge, and stability, the ability to retain old knowledge. Based on whether the task identifier (task-ID) of an image can be obtained during the test stage, incremental learning for image classifcation is divided into two main paradigms, which are task incremental learning (TIL) and class incremental learning (CIL). The TIL paradigm has access to the task-ID, allowing it to use multiple task-specific classification heads selected based on the task-ID. Consequently, in CIL, where the task-ID is unavailable, TIL methods must predict the task-ID to extend their application to the CIL paradigm. Our previous method for TIL adds task-specific batch normalization and classification heads incrementally. This work extends the method by predicting task-ID through an "unknown" class added to each classification head. The head with the lowest "unknown" probability is selected, enabling task-ID prediction and making the method applicable to CIL. The task-specific batch normalization (BN) modules effectively adjust the distribution of output feature maps across different tasks, enhancing the model's plasticity.Moreover, since BN has much fewer parameters compared to convolutional kernels, by only modifying the BN layers as new tasks arrive, the model can effectively manage parameter growth while ensuring stability across tasks. The innovation of this study lies in the first-time introduction of task-specific BN into CIL and verifying the feasibility of extending TIL methods to CIL through task-ID prediction with state-of-the-art performance on multiple datasets.
Authors:Alex Lewandowski, Dale Schuurmans, Marlos C. Machado
Title: Plastic Learning with Deep Fourier Features
Abstract:
Deep neural networks can struggle to learn continually in the face of non-stationarity. This phenomenon is known as loss of plasticity. In this paper, we identify underlying principles that lead to plastic algorithms. In particular, we provide theoretical results showing that linear function approximation, as well as a special case of deep linear networks, do not suffer from loss of plasticity. We then propose deep Fourier features, which are the concatenation of a sine and cosine in every layer, and we show that this combination provides a dynamic balance between the trainability obtained through linearity and the effectiveness obtained through the nonlinearity of neural networks. Deep networks composed entirely of deep Fourier features are highly trainable and sustain their trainability over the course of learning. Our empirical results show that continual learning performance can be drastically improved by replacing ReLU activations with deep Fourier features. These results hold for different continual learning scenarios (e.g., label noise, class incremental learning, pixel permutations) on all major supervised learning datasets used for continual learning research, such as CIFAR10, CIFAR100, and tiny-ImageNet.
Authors:Asma Yamani, Malak Baslyman
Title: Text-to-Image Representativity Fairness Evaluation Framework
Abstract:
Text-to-Image generative systems are progressing rapidly to be a source of advertisement and media and could soon serve as image searches or artists. However, there is a significant concern about the representativity bias these models embody and how these biases can propagate in the social fabric after fine-tuning them. Therefore, continuously monitoring and evaluating these models for fairness is important. To address this issue, we propose Text-to-Image (TTI) Representativity Fairness Evaluation Framework. In this framework, we evaluate three aspects of a TTI system; diversity, inclusion, and quality. For each aspect, human-based and model-based approaches are proposed and evaluated for their ability to capture the bias and whether they can substitute each other. The framework starts by suggesting the prompts for generating the images for the evaluation based on the context and the sensitive attributes under study. Then the three aspects are evaluated using the proposed approaches. Based on the evaluation, a decision is made regarding the representativity bias within the TTI system. The evaluation of our framework on Stable Diffusion shows that the framework can effectively capture the bias in TTI systems. The results also confirm that our proposed model based-approaches can substitute human-based approaches in three out of four components with high correlation, which could potentially reduce costs and automate the process. The study suggests that continual learning of the model on more inclusive data across disadvantaged minorities such as Indians and Middle Easterners is essential to mitigate current stereotyping and lack of inclusiveness.
Authors:Walker Byrnes, Miroslav Bogdanovic, Avi Balakirsky, Stephen Balakirsky, Animesh Garg
Title: CLIMB: Language-Guided Continual Learning for Task Planning with Iterative Model Building
Abstract:
Intelligent and reliable task planning is a core capability for generalized robotics, requiring a descriptive domain representation that sufficiently models all object and state information for the scene. We present CLIMB, a continual learning framework for robot task planning that leverages foundation models and execution feedback to guide domain model construction. CLIMB can build a model from a natural language description, learn non-obvious predicates while solving tasks, and store that information for future problems. We demonstrate the ability of CLIMB to improve performance in common planning environments compared to baseline methods. We also develop the BlocksWorld++ domain, a simulated environment with an easily usable real counterpart, together with a curriculum of tasks with progressing difficulty for evaluating continual learning. Additional details and demonstrations for this system can be found at https://plan-with-climb.github.io/ .
Authors:Jintao Zhang, Chao Zhang, Guoliang Li, Chengliang Chai
Title: AutoCE: An Accurate and Efficient Model Advisor for Learned Cardinality Estimation
Abstract:
Cardinality estimation (CE) plays a crucial role in many database-related tasks such as query generation, cost estimation, and join ordering. Lately, we have witnessed the emergence of numerous learned CE models. However, no single CE model is invincible when it comes to the datasets with various data distributions. To facilitate data-intensive applications with accurate and efficient cardinality estimation, it is important to have an approach that can judiciously and efficiently select the most suitable CE model for an arbitrary dataset. In this paper, we study a new problem of selecting the best CE models for a variety of datasets. This problem is rather challenging as it is hard to capture the relationship from various datasets to the performance of disparate models. To address this problem, we propose a model advisor, named AutoCE, which can adaptively select the best model for a dataset. The main contribution of AutoCE is the learning-based model selection, where deep metric learning is used to learn a recommendation model and incremental learning is proposed to reduce the labeling overhead and improve the model robustness. We have integrated AutoCE into PostgreSQL and evaluated its impact on query optimization. The results showed that AutoCE achieved the best performance (27% better) and outperformed the baselines concerning accuracy (2.1 times better) and efficacy (4.2 times better).
Authors:Shuai Huang, Xuhan Lin, Yuwu Lu
Title: CASP: Few-Shot Class-Incremental Learning with CLS Token Attention Steering Prompts
Abstract:
Few-shot class-incremental learning (FSCIL) presents a core challenge in continual learning, requiring models to rapidly adapt to new classes with very limited samples while mitigating catastrophic forgetting. Recent prompt-based methods, which integrate pretrained backbones with task-specific prompts, have made notable progress. However, under extreme few-shot incremental settings, the model's ability to transfer and generalize becomes critical, and it is thus essential to leverage pretrained knowledge to learn feature representations that can be shared across future categories during the base session. Inspired by the mechanism of the CLS token, which is similar to human attention and progressively filters out task-irrelevant information, we propose the CLS Token Attention Steering Prompts (CASP). This approach introduces class-shared trainable bias parameters into the query, key, and value projections of the CLS token to explicitly modulate the self-attention weights. To further enhance generalization, we also design an attention perturbation strategy and perform Manifold Token Mixup in the shallow feature space, synthesizing potential new class features to improve generalization and reserve the representation capacity for upcoming tasks. Experiments on the CUB200, CIFAR100, and ImageNet-R datasets demonstrate that CASP outperforms state-of-the-art methods in both standard and fine-grained FSCIL settings without requiring fine-tuning during incremental phases and while significantly reducing the parameter overhead.
Authors:Huiyan Xue, Xuming Ran, Yaxin Li, Qi Xu, Enhui Li, Yi Xu, Qiang Zhang
Title: Distillation-Guided Structural Transfer for Continual Learning Beyond Sparse Distributed Memory
Abstract:
Sparse neural systems are gaining traction for efficient continual learning due to their modularity and low interference. Architectures such as Sparse Distributed Memory Multi-Layer Perceptrons (SDMLP) construct task-specific subnetworks via Top-K activation and have shown resilience against catastrophic forgetting. However, their rigid modularity limits cross-task knowledge reuse and leads to performance degradation under high sparsity. We propose Selective Subnetwork Distillation (SSD), a structurally guided continual learning framework that treats distillation not as a regularizer but as a topology-aligned information conduit. SSD identifies neurons with high activation frequency and selectively distills knowledge within previous Top-K subnetworks and output logits, without requiring replay or task labels. This enables structural realignment while preserving sparse modularity. Experiments on Split CIFAR-10, CIFAR-100, and MNIST demonstrate that SSD improves accuracy, retention, and representation coverage, offering a structurally grounded solution for sparse continual learning.
Authors:Daniil Zverev, A. Sophia Koepke, Joao F. Henriques
Title: On the Dangers of Bootstrapping Generation for Continual Learning and Beyond
Abstract:
The use of synthetically generated data for training models is becoming a common practice. While generated data can augment the training data, repeated training on synthetic data raises concerns about distribution drift and degradation of performance due to contamination of the dataset. We investigate the consequences of this bootstrapping process through the lens of continual learning, drawing a connection to Generative Experience Replay (GER) methods. We present a statistical analysis showing that synthetic data introduces significant bias and variance into training objectives, weakening the reliability of maximum likelihood estimation. We provide empirical evidence showing that popular generative models collapse under repeated training with synthetic data. We quantify this degradation and show that state-of-the-art GER methods fail to maintain alignment in the latent space. Our findings raise critical concerns about the use of synthetic data in continual learning.
Authors:Afonso Lourenço, João Gama, Eric P. Xing, Goreti Marreiros
Title: Bridging Streaming Continual Learning via In-Context Large Tabular Models
Abstract:
In streaming scenarios, models must learn continuously, adapting to concept drifts without erasing previously acquired knowledge. However, existing research communities address these challenges in isolation. Continual Learning (CL) focuses on long-term retention and mitigating catastrophic forgetting, often without strict real-time constraints. Stream Learning (SL) emphasizes rapid, efficient adaptation to high-frequency data streams, but typically neglects forgetting. Recent efforts have tried to combine these paradigms, yet no clear algorithmic overlap exists. We argue that large in-context tabular models (LTMs) provide a natural bridge for Streaming Continual Learning (SCL). In our view, unbounded streams should be summarized on-the-fly into compact sketches that can be consumed by LTMs. This recovers the classical SL motivation of compressing massive streams with fixed-size guarantees, while simultaneously aligning with the experience-replay desiderata of CL. To clarify this bridge, we show how the SL and CL communities implicitly adopt a divide-to-conquer strategy to manage the tension between plasticity (performing well on the current distribution) and stability (retaining past knowledge), while also imposing a minimal complexity constraint that motivates diversification (avoiding redundancy in what is stored) and retrieval (re-prioritizing past information when needed). Within this perspective, we propose structuring SCL with LTMs around two core principles of data selection for in-context learning: (1) distribution matching, which balances plasticity and stability, and (2) distribution compression, which controls memory size through diversification and retrieval mechanisms.
Authors:Sijia Chen, Baochun Li, Di Niu
Title: rSIM: Incentivizing Reasoning Capabilities of LLMs via Reinforced Strategy Injection
Abstract:
Large language models (LLMs) are post-trained through reinforcement learning (RL) to evolve into Reasoning Language Models (RLMs), where the hallmark of this advanced reasoning is ``aha'' moments when they start to perform strategies, such as self-reflection and deep thinking, within chain of thoughts (CoTs). Motivated by this, this paper proposes a novel reinforced strategy injection mechanism (rSIM), that enables any LLM to become an RLM by employing a small planner to guide the LLM's CoT through the adaptive injection of reasoning strategies. To achieve this, the planner (leader agent) is jointly trained with an LLM (follower agent) using multi-agent RL (MARL), based on a leader-follower framework and straightforward rule-based rewards. Experimental results show that rSIM enables Qwen2.5-0.5B to become an RLM and significantly outperform Qwen2.5-14B. Moreover, the planner is generalizable: it only needs to be trained once and can be applied as a plug-in to substantially improve the reasoning capabilities of existing LLMs. In addition, the planner supports continual learning across various tasks, allowing its planning abilities to gradually improve and generalize to a wider range of problems.
Authors:Dan Li, Hye-Bin Shin, Yeon-Woo Choi
Title: Prototype-Guided Non-Exemplar Continual Learning for Cross-subject EEG Decoding
Abstract:
Due to the significant variability in electroencephalogram (EEG) signals across individuals, knowledge acquired from previous subjects is often overwritten as new subjects are introduced in continual EEG decoding task. Current works mainly rely on storing the historical data of seen subjects as a replay buffer to prevent forgetting. However, privacy concerns or memory constraints make keeping such data impractical. Instead, we propose a Prototype-guided Non-Exemplar Continual Learning (ProNECL)framework that preserves prior knowledge without accessing any historical EEG samples. ProNECL constructs class-level prototypes to summarize discriminative representations from each subject and incrementally aligns new feature spaces with the global prototype memory through cross-subject feature alignment and knowledge distillation. Validated on the BCI Competition IV 2a and 2b datasets, our framework effectively balances knowledge retention and adaptability, achieving superior performance in cross-subject continual EEG decoding tasks.
Authors:Saleh Momeni, Changnan Xiao, Bing Liu
Title: AnaCP: Toward Upper-Bound Continual Learning via Analytic Contrastive Projection
Abstract:
This paper studies the problem of class-incremental learning (CIL), a core setting within continual learning where a model learns a sequence of tasks, each containing a distinct set of classes. Traditional CIL methods, which do not leverage pre-trained models (PTMs), suffer from catastrophic forgetting (CF) due to the need to incrementally learn both feature representations and the classifier. The integration of PTMs into CIL has recently led to efficient approaches that treat the PTM as a fixed feature extractor combined with analytic classifiers, achieving state-of-the-art performance. However, they still face a major limitation: the inability to continually adapt feature representations to best suit the CIL tasks, leading to suboptimal performance. To address this, we propose AnaCP (Analytic Contrastive Projection), a novel method that preserves the efficiency of analytic classifiers while enabling incremental feature adaptation without gradient-based training, thereby eliminating the CF caused by gradient updates. Our experiments show that AnaCP not only outperforms existing baselines but also achieves the accuracy level of joint training, which is regarded as the upper bound of CIL.
Authors:Wanhao Yu, Zheng Wang, Shuteng Niu, Sen Lin, Li Yang
Title: More Than Memory Savings: Zeroth-Order Optimization Mitigates Forgetting in Continual Learning
Abstract:
Zeroth-order (ZO) optimization has gained attention as a memory-efficient alternative to first-order (FO) methods, particularly in settings where gradient computation is expensive or even impractical. Beyond its memory efficiency, in this work, we investigate ZO optimization for continual learning (CL) as a novel approach to address the plasticity-stability-efficiency trilemma. Through theoretical analysis and empirical evidence, we show that ZO optimization naturally leads to flatter loss landscapes, which in turn reduce forgetting in CL. However, this stability comes at a cost of plasticity: due to its imprecise gradient estimates and slower convergence, ZO optimization tends to be less effective than FO in acquiring new task-specific knowledge, particularly under constrained training budgets. To better understand this trade-off, we conduct a holistic evaluation of ZO optimization applied to various existing CL methods. Our findings reveal that ZO optimization enhances stability but often undermines plasticity, particularly when used with learnable classifiers. Motivated by this insight, we propose ZO-FC, a simple but effective approach that applies ZO optimization to a single adapter-based PEFT module with FO optimized classifier. This design leverages the stability benefits of ZO while preserving the adaptability of FO updates with negligible memory overhead. Experiments demonstrate that ZO-FC achieves an effective balance between stability and plasticity, offering a practical and memory-efficient solution for on-device CL.
Authors:Trung-Anh Dang, Vincent Nguyen, Ngoc-Son Vu, Christel Vrain
Title: SAMix: Calibrated and Accurate Continual Learning via Sphere-Adaptive Mixup and Neural Collapse
Abstract:
While most continual learning methods focus on mitigating forgetting and improving accuracy, they often overlook the critical aspect of network calibration, despite its importance. Neural collapse, a phenomenon where last-layer features collapse to their class means, has demonstrated advantages in continual learning by reducing feature-classifier misalignment. Few works aim to improve the calibration of continual models for more reliable predictions. Our work goes a step further by proposing a novel method that not only enhances calibration but also improves performance by reducing overconfidence, mitigating forgetting, and increasing accuracy. We introduce Sphere-Adaptive Mixup (SAMix), an adaptive mixup strategy tailored for neural collapse-based methods. SAMix adapts the mixing process to the geometric properties of feature spaces under neural collapse, ensuring more robust regularization and alignment. Experiments show that SAMix significantly boosts performance, surpassing SOTA methods in continual learning while also improving model calibration. SAMix enhances both across-task accuracy and the broader reliability of predictions, making it a promising advancement for robust continual learning systems.
Authors:Bertram Taetz, Gal Bordelius
Title: Continual Learning for Image Captioning through Improved Image-Text Alignment
Abstract:
Generating accurate and coherent image captions in a continual learning setting remains a major challenge due to catastrophic forgetting and the difficulty of aligning evolving visual concepts with language over time. In this work, we propose a novel multi-loss framework for continual image captioning that integrates semantic guidance through prompt-based continual learning and contrastive alignment. Built upon a pretrained ViT-GPT-2 backbone, our approach combines standard cross-entropy loss with three additional components: (1) a prompt-based cosine similarity loss that aligns image embeddings with synthetically constructed prompts encoding objects, attributes, and actions; (2) a CLIP-style loss that promotes alignment between image embeddings and target caption embedding; and (3) a language-guided contrastive loss that employs a triplet loss to enhance class-level discriminability between tasks. Notably, our approach introduces no additional overhead at inference time and requires no prompts during caption generation. We find that this approach mitigates catastrophic forgetting, while achieving better semantic caption alignment compared to state-of-the-art methods. The code can be found via the following link https://github.com/ Gepardius/Taetz_Bordelius_Continual_ImageCaptioning.
Authors:Victor Enescu, Hichem Sahbi
Title: Deep Generative Continual Learning using Functional LoRA: FunLoRA
Abstract:
Continual adaptation of deep generative models holds tremendous potential and critical importance, given their rapid and expanding usage in text and vision based applications. Incremental training, however, remains highly challenging due to catastrophic forgetting phenomenon, which makes it difficult for neural networks to effectively incorporate new knowledge. A common strategy consists in retraining the generative model on its own synthetic data in order to mitigate forgetting. Yet, such an approach faces two major limitations: (i) the continually increasing training time eventually becomes intractable, and (ii) reliance on synthetic data inevitably leads to long-term performance degradation, since synthetic samples lack the richness of real training data. In this paper, we attenuate these issues by designing a novel and more expressive conditioning mechanism for generative models based on low rank adaptation (LoRA), that exclusively employs rank 1 matrices, whose reparametrized matrix rank is functionally increased using carefully selected functions -- and dubbed functional LoRA: FunLoRA. Using this dynamic conditioning, the generative model is guaranteed to avoid catastrophic forgetting and needs only to be trained on data from the current task. Extensive experiments using flow-matching based models trained from scratch, showcase that our proposed parameter-efficient fine-tuning (PEFT) method surpasses prior state-of-the-art results based on diffusion models, reaching higher classification accuracy scores, while only requiring a fraction of the memory cost and sampling time.
Authors:Basem Rizk, Joel Walsh, Mark Core, Benjamin Nye
Title: From Videos to Indexed Knowledge Graphs -- Framework to Marry Methods for Multimodal Content Analysis and Understanding
Abstract:
Analysis of multi-modal content can be tricky, computationally expensive, and require a significant amount of engineering efforts. Lots of work with pre-trained models on static data is out there, yet fusing these opensource models and methods with complex data such as videos is relatively challenging. In this paper, we present a framework that enables efficiently prototyping pipelines for multi-modal content analysis. We craft a candidate recipe for a pipeline, marrying a set of pre-trained models, to convert videos into a temporal semi-structured data format. We translate this structure further to a frame-level indexed knowledge graph representation that is query-able and supports continual learning, enabling the dynamic incorporation of new domain-specific knowledge through an interactive medium.
Authors:Gautham Bekal, Ashish Pujari, Scott David Kelly
Title: Continual Learning with Query-Only Attention
Abstract:
Continual learning involves learning from a stream of data without repetition of data points, a scenario that is inherently complex due to distributional shift across tasks. We propose a query-only attention mechanism that discards keys and values, yet preserves the core inductive bias of transformer architectures. In continual learning scenarios, this simplified mechanism significantly mitigates both loss of plasticity and catastrophic forgetting, outperforming baselines such as selective re-initialization. We establish a conceptual link between query-only attention, full transformer attention, and model agnostic meta-learning, framing them as instances of meta-learning. We further provide intuition for why query-based models and attention networks help preserve plasticity in continual settings. Finally, through preliminary Hessian spectrum analysis, we observe that models maintaining higher curvature rank across tasks tend to retain plasticity. Our findings suggest that full attention may not be essential for capturing the benefits of meta-learning in continual learning.
Authors:Cheonjin Park, Victoria Manfredi, Xiaolan Zhang, Chengyi Liu, Alicia P Wolfe, Dongjin Song, Sarah Tasneem, Bing Wang
Title: Continual Learning to Generalize Forwarding Strategies for Diverse Mobile Wireless Networks
Abstract:
Deep reinforcement learning (DRL) has been successfully used to design forwarding strategies for multi-hop mobile wireless networks. While such strategies can be used directly for networks with varied connectivity and dynamic conditions, developing generalizable approaches that are effective on scenarios significantly different from the training environment remains largely unexplored. In this paper, we propose a framework to address the challenge of generalizability by (i) developing a generalizable base model considering diverse mobile network scenarios, and (ii) using the generalizable base model for new scenarios, and when needed, fine-tuning the base model using a small amount of data from the new scenarios. To support this framework, we first design new features to characterize network variation and feature quality, thereby improving the information used in DRL-based forwarding decisions. We then develop a continual learning (CL) approach able to train DRL models across diverse network scenarios without ``catastrophic forgetting.'' Using extensive evaluation, including real-world scenarios in two cities, we show that our approach is generalizable to unseen mobility scenarios. Compared to a state-of-the-art heuristic forwarding strategy, it leads to up to 78% reduction in delay, 24% improvement in delivery rate, and comparable or slightly higher number of forwards.
Authors:Lute Lillo, Nick Cheney
Title: Activation Function Design Sustains Plasticity in Continual Learning
Abstract:
In independent, identically distributed (i.i.d.) training regimes, activation functions have been benchmarked extensively, and their differences often shrink once model size and optimization are tuned. In continual learning, however, the picture is different: beyond catastrophic forgetting, models can progressively lose the ability to adapt (referred to as loss of plasticity) and the role of the non-linearity in this failure mode remains underexplored. We show that activation choice is a primary, architecture-agnostic lever for mitigating plasticity loss. Building on a property-level analysis of negative-branch shape and saturation behavior, we introduce two drop-in nonlinearities (Smooth-Leaky and Randomized Smooth-Leaky) and evaluate them in two complementary settings: (i) supervised class-incremental benchmarks and (ii) reinforcement learning with non-stationary MuJoCo environments designed to induce controlled distribution and dynamics shifts. We also provide a simple stress protocol and diagnostics that link the shape of the activation to the adaptation under change. The takeaway is straightforward: thoughtful activation design offers a lightweight, domain-general way to sustain plasticity in continual learning without extra capacity or task-specific tuning.
Authors:Zeyu He, Shuai Huang, Yuwu Lu, Ming Zhao
Title: MoTiC: Momentum Tightness and Contrast for Few-Shot Class-Incremental Learning
Abstract:
Few-Shot Class-Incremental Learning (FSCIL) must contend with the dual challenge of learning new classes from scarce samples while preserving old class knowledge. Existing methods use the frozen feature extractor and class-averaged prototypes to mitigate against catastrophic forgetting and overfitting. However, new-class prototypes suffer significant estimation bias due to extreme data scarcity, whereas base-class prototypes benefit from sufficient data. In this work, we theoretically demonstrate that aligning the new-class priors with old-class statistics via Bayesian analysis reduces variance and improves prototype accuracy. Furthermore, we propose large-scale contrastive learning to enforce cross-category feature tightness. To further enrich feature diversity and inject prior information for new-class prototypes, we integrate momentum self-supervision and virtual categories into the Momentum Tightness and Contrast framework (MoTiC), constructing a feature space with rich representations and enhanced interclass cohesion. Experiments on three FSCIL benchmarks produce state-of-the-art performances, particularly on the fine-grained task CUB-200, validating our method's ability to reduce estimation bias and improve incremental learning robustness.
Authors:Jiaxin Dai, Xiang Xiang
Title: Hyperbolic Coarse-to-Fine Few-Shot Class-Incremental Learning
Abstract:
In the field of machine learning, hyperbolic space demonstrates superior representation capabilities for hierarchical data compared to conventional Euclidean space. This work focuses on the Coarse-To-Fine Few-Shot Class-Incremental Learning (C2FSCIL) task. Our study follows the Knowe approach, which contrastively learns coarse class labels and subsequently normalizes and freezes the classifier weights of learned fine classes in the embedding space. To better interpret the "coarse-to-fine" paradigm, we propose embedding the feature extractor into hyperbolic space. Specifically, we employ the Poincaré ball model of hyperbolic space, enabling the feature extractor to transform input images into feature vectors within the Poincaré ball instead of Euclidean space. We further introduce hyperbolic contrastive loss and hyperbolic fully-connected layers to facilitate model optimization and classification in hyperbolic space. Additionally, to enhance performance under few-shot conditions, we implement maximum entropy distribution in hyperbolic space to estimate the probability distribution of fine-class feature vectors. This allows generation of augmented features from the distribution to mitigate overfitting during training with limited samples. Experiments on C2FSCIL benchmarks show that our method effectively improves both coarse and fine class accuracies.
Authors:Robert Long, Rongxin Jiang, Mingrui Yan
Title: Contextualized Multimodal Lifelong Person Re-Identification in Hybrid Clothing States
Abstract:
Person Re-Identification (ReID) has several challenges in real-world surveillance systems due to clothing changes (CCReID) and the need for maintaining continual learning (LReID). Previous existing methods either develop models specifically for one application, which is mostly a same-cloth (SC) setting or treat CCReID as its own separate sub-problem. In this work, we will introduce the LReID-Hybrid task with the goal of developing a model to achieve both SC and CC while learning in a continual setting. Mismatched representations and forgetting from one task to the next are significant issues, we address this with CMLReID, a CLIP-based framework composed of two novel tasks: (1) Context-Aware Semantic Prompt (CASP) that generates adaptive prompts, and also incorporates context to align richly multi-grained visual cues with semantic text space; and (2) Adaptive Knowledge Fusion and Projection (AKFP) which produces robust SC/CC prototypes through the use of a dual-path learner that aligns features with our Clothing-State-Aware Projection Loss. Experiments performed on a wide range of datasets and illustrate that CMLReID outperforms all state-of-the-art methods with strong robustness and generalization despite clothing variations and a sophisticated process of sequential learning.
Authors:Kefan Cao, Shuaicheng Wu
Title: Orthogonal Low-rank Adaptation in Lie Groups for Continual Learning of Large Language Models
Abstract:
Large language models (LLMs) are prone to catastrophic forgetting in sequential multi-task settings. Parameter regularization methods such as O-LoRA and N-LoRA alleviate task interference by enforcing low-rank subspace orthogonality, but they overlook the fact that conventional additive fine-tuning disrupts the intrinsic geometric structure of LLM parameters, limiting performance. Our key insight is that the parameter space of LLMs possesses a geometric structure, which must be preserved in addition to enforcing orthogonality. Based on this, we propose Orthogonal Low-rank Adaptation in Lie Groups (OLieRA), which introduces Lie group theory into LLM fine-tuning: leveraging multiplicative updates to preserve parameter geometry while applying orthogonality constraints to task subspaces. Experiments demonstrate that OLieRA achieves state-of-the-art results on the Standard CL benchmark and remains among the top-performing methods in the Large Number of Tasks setting.
Authors:Nattapong Kurpukdee, Adrian G. Bors
Title: Unsupervised Video Continual Learning via Non-Parametric Deep Embedded Clustering
Abstract:
We propose a realistic scenario for the unsupervised video learning where neither task boundaries nor labels are provided when learning a succession of tasks. We also provide a non-parametric learning solution for the under-explored problem of unsupervised video continual learning. Videos represent a complex and rich spatio-temporal media information, widely used in many applications, but which have not been sufficiently explored in unsupervised continual learning. Prior studies have only focused on supervised continual learning, relying on the knowledge of labels and task boundaries, while having labeled data is costly and not practical. To address this gap, we study the unsupervised video continual learning (uVCL). uVCL raises more challenges due to the additional computational and memory requirements of processing videos when compared to images. We introduce a general benchmark experimental protocol for uVCL by considering the learning of unstructured video data categories during each task. We propose to use the Kernel Density Estimation (KDE) of deep embedded video features extracted by unsupervised video transformer networks as a non-parametric probabilistic representation of the data. We introduce a novelty detection criterion for the incoming new task data, dynamically enabling the expansion of memory clusters, aiming to capture new knowledge when learning a succession of tasks. We leverage the use of transfer learning from the previous tasks as an initial state for the knowledge transfer to the current learning task. We found that the proposed methodology substantially enhances the performance of the model when successively learning many tasks. We perform in-depth evaluations on three standard video action recognition datasets, including UCF101, HMDB51, and Something-to-Something V2, without using any labels or class boundaries.
Authors:Hancheng Min, René Vidal
Title: Understanding Incremental Learning with Closed-form Solution to Gradient Flow on Overparamerterized Matrix Factorization
Abstract:
Many theoretical studies on neural networks attribute their excellent empirical performance to the implicit bias or regularization induced by first-order optimization algorithms when training networks under certain initialization assumptions. One example is the incremental learning phenomenon in gradient flow (GF) on an overparamerterized matrix factorization problem with small initialization: GF learns a target matrix by sequentially learning its singular values in decreasing order of magnitude over time. In this paper, we develop a quantitative understanding of this incremental learning behavior for GF on the symmetric matrix factorization problem, using its closed-form solution obtained by solving a Riccati-like matrix differential equation. We show that incremental learning emerges from some time-scale separation among dynamics corresponding to learning different components in the target matrix. By decreasing the initialization scale, these time-scale separations become more prominent, allowing one to find low-rank approximations of the target matrix. Lastly, we discuss the possible avenues for extending this analysis to asymmetric matrix factorization problems.
Authors:Lecheng Kong, Theodore Vasiloudis, Seongjun Yun, Han Xie, Xiang Song
Title: Dynamic Mixture-of-Experts for Incremental Graph Learning
Abstract:
Graph incremental learning is a learning paradigm that aims to adapt trained models to continuously incremented graphs and data over time without the need for retraining on the full dataset. However, regular graph machine learning methods suffer from catastrophic forgetting when applied to incremental learning settings, where previously learned knowledge is overridden by new knowledge. Previous approaches have tried to address this by treating the previously trained model as an inseparable unit and using techniques to maintain old behaviors while learning new knowledge. These approaches, however, do not account for the fact that previously acquired knowledge at different timestamps contributes differently to learning new tasks. Some prior patterns can be transferred to help learn new data, while others may deviate from the new data distribution and be detrimental. To address this, we propose a dynamic mixture-of-experts (DyMoE) approach for incremental learning. Specifically, a DyMoE GNN layer adds new expert networks specialized in modeling the incoming data blocks. We design a customized regularization loss that utilizes data sequence information so existing experts can maintain their ability to solve old tasks while helping the new expert learn the new data effectively. As the number of data blocks grows over time, the computational cost of the full mixture-of-experts (MoE) model increases. To address this, we introduce a sparse MoE approach, where only the top-$k$ most relevant experts make predictions, significantly reducing the computation time. Our model achieved 4.92\% relative accuracy increase compared to the best baselines on class incremental learning, showing the model's exceptional power.
Authors:Jialu Zhou, Dianxi Shi, Shaowu Yang, Xinyu Wei, Mingyue Yang, Leqian Li, Mengzhu Wang, Chunping Qiu
Title: Separation and Collaboration: Two-Level Routing Grouped Mixture-of-Experts for Multi-Domain Continual Learning
Abstract:
Multi-Domain Continual Learning (MDCL) acquires knowledge from sequential tasks with shifting class sets and distribution. Despite the Parameter-Efficient Fine-Tuning (PEFT) methods can adapt for this dual heterogeneity, they still suffer from catastrophic forgetting and forward forgetting. To address these challenges, we propose a Two-Level Routing Grouped Mixture-of-Experts (TRGE) method. Firstly, TRGE dynamically expands the pre-trained CLIP model, assigning specific expert group for each task to mitigate catastrophic forgetting. With the number of experts continually grows in this process, TRGE maintains the static experts count within the group and introduces the intra-group router to alleviate routing overfitting caused by the increasing routing complexity. Meanwhile, we design an inter-group routing policy based on task identifiers and task prototype distance, which dynamically selects relevant expert groups and combines their outputs to enhance inter-task collaboration. Secondly, to get the correct task identifiers, we leverage Multimodal Large Language Models (MLLMs) which own powerful multimodal comprehension capabilities to generate semantic task descriptions and recognize the correct task identifier. Finally, to mitigate forward forgetting, we dynamically fuse outputs for unseen samples from the frozen CLIP model and TRGE adapter based on training progress, leveraging both pre-trained and learned knowledge. Through extensive experiments across various settings, our method outperforms other advanced methods with fewer trainable parameters.
Authors:Mohamed Elkhayat, Mohamed Mahmoud, Jamil Fayyad, Nourhan Bayasi
Title: Foundation Models as Class-Incremental Learners for Dermatological Image Classification
Abstract:
Class-Incremental Learning (CIL) aims to learn new classes over time without forgetting previously acquired knowledge. The emergence of foundation models (FM) pretrained on large datasets presents new opportunities for CIL by offering rich, transferable representations. However, their potential for enabling incremental learning in dermatology remains largely unexplored. In this paper, we systematically evaluate frozen FMs pretrained on large-scale skin lesion datasets for CIL in dermatological disease classification. We propose a simple yet effective approach where the backbone remains frozen, and a lightweight MLP is trained incrementally for each task. This setup achieves state-of-the-art performance without forgetting, outperforming regularization, replay, and architecture based methods. To further explore the capabilities of frozen FMs, we examine zero training scenarios using nearest mean classifiers with prototypes derived from their embeddings. Through extensive ablation studies, we demonstrate that this prototype based variant can also achieve competitive results. Our findings highlight the strength of frozen FMs for continual learning in dermatology and support their broader adoption in real world medical applications. Our code and datasets are available here.
Authors:Tahir Javed, Kaushal Bhogale, Mitesh M. Khapra
Title: NIRANTAR: Continual Learning with New Languages and Domains on Real-world Speech Data
Abstract:
We introduce Nirantar, a comprehensive framework for evaluating continual learning (CL) in multilingual and multi-domain ASR. Designed to reflect real-world CL challenges, Nirantar leverages data collected incrementally across 22 languages and 208 districts in India through natural episodes. This enables evaluation across Language-Incremental (LIL), Domain-Incremental (DIL), and the novel Language-Incremental Domain-Incremental Learning (LIDIL) scenarios. Unlike prior work that relies on simulated episodes, Nirantar presents dynamic, non-uniform language and domain shifts, making it an ideal testbed for CL research. With 3250 hours of human-transcribed speech, including 1720 hours newly introduced in this work, our framework enables systematic benchmarking of CL methods. We evaluate existing approaches and demonstrate that no single method performs consistently well, underscoring the need for more robust CL strategies.
Authors:Zheng Wang, Wanhao Yu, Li Yang, Sen Lin
Title: Rethinking Continual Learning with Progressive Neural Collapse
Abstract:
Continual Learning (CL) seeks to build an agent that can continuously learn a sequence of tasks, where a key challenge, namely Catastrophic Forgetting, persists due to the potential knowledge interference among different tasks. On the other hand, deep neural networks (DNNs) are shown to converge to a terminal state termed Neural Collapse during training, where all class prototypes geometrically form a static simplex equiangular tight frame (ETF). These maximally and equally separated class prototypes make the ETF an ideal target for model learning in CL to mitigate knowledge interference. Thus inspired, several studies have emerged very recently to leverage a fixed global ETF in CL, which however suffers from key drawbacks, such as impracticability and limited performance.To address these challenges and fully unlock the potential of ETF in CL, we propose Progressive Neural Collapse (ProNC), a novel framework that completely removes the need of a fixed global ETF in CL. Specifically, ProNC progressively expands the ETF target in a principled way by adding new class prototypes as vertices for new tasks, ensuring maximal separability across all encountered classes with minimal shifts from the previous ETF. We next develop a new CL framework by plugging ProNC into commonly used CL algorithm designs, where distillation is further leveraged to balance between target shifting for old classes and target aligning for new classes. Extensive experiments show that our approach significantly outperforms related baselines while maintaining superior flexibility, simplicity, and efficiency.
Authors:Victor Enescu, Hichem Sahbi
Title: Frugal Incremental Generative Modeling using Variational Autoencoders
Abstract:
Continual or incremental learning holds tremendous potential in deep learning with different challenges including catastrophic forgetting. The advent of powerful foundation and generative models has propelled this paradigm even further, making it one of the most viable solution to train these models. However, one of the persisting issues lies in the increasing volume of data particularly with replay-based methods. This growth introduces challenges with scalability since continuously expanding data becomes increasingly demanding as the number of tasks grows. In this paper, we attenuate this issue by devising a novel replay-free incremental learning model based on Variational Autoencoders (VAEs). The main contribution of this work includes (i) a novel incremental generative modelling, built upon a well designed multi-modal latent space, and also (ii) an orthogonality criterion that mitigates catastrophic forgetting of the learned VAEs. The proposed method considers two variants of these VAEs: static and dynamic with no (or at most a controlled) growth in the number of parameters. Extensive experiments show that our method is (at least) an order of magnitude more ``memory-frugal'' compared to the closely related works while achieving SOTA accuracy scores.
Authors:Arooj Zaidi, Giulia Barbareschi, Kai Kunze, Yun Suen Pai, Junichi Yamaoka
Title: TIEboard: A Digital Educational Tool for Kids Geometric Learning
Abstract:
Tangible User Interfaces have shown potential in supporting the acquisition of key concepts in computing and mathematics while fostering engagement in young learners, but these approaches are less commonly utilised in the context of geometry. In this paper we introduce TIEboard, an interactive device to promote early learning of basic geometry concepts. TIEboard draws inspiration from traditional geoboards and lacing toys to leverage children's familiarity with these traditional tools. It employs instructional lights to guide children in creating shapes using colourful threads of optical fiber. The use of conductive materials allows the system to detect lacing activity and provide feedback in real-time. TIEboard incorporates six interaction modes of varying difficulty based on an incremental learning framework. The study evaluated TIEboard's effectiveness in supporting early geometric learning, facilitating creativity and promoting collaboration among 16 children aged 5-9.
Authors:Ozan Özdenizci, Elmar Rueckert, Robert Legenstein
Title: Privacy-Aware Lifelong Learning
Abstract:
Lifelong learning algorithms enable models to incrementally acquire new knowledge without forgetting previously learned information. Contrarily, the field of machine unlearning focuses on explicitly forgetting certain previous knowledge from pretrained models when requested, in order to comply with data privacy regulations on the right-to-be-forgotten. Enabling efficient lifelong learning with the capability to selectively unlearn sensitive information from models presents a critical and largely unaddressed challenge with contradicting objectives. We address this problem from the perspective of simultaneously preventing catastrophic forgetting and allowing forward knowledge transfer during task-incremental learning, while ensuring exact task unlearning and minimizing memory requirements, based on a single neural network model to be adapted. Our proposed solution, privacy-aware lifelong learning (PALL), involves optimization of task-specific sparse subnetworks with parameter sharing within a single architecture. We additionally utilize an episodic memory rehearsal mechanism to facilitate exact unlearning without performance degradations. We empirically demonstrate the scalability of PALL across various architectures in image classification, and provide a state-of-the-art solution that uniquely integrates lifelong learning and privacy-aware unlearning mechanisms for responsible AI applications.
Authors:Neil De La Fuente, Maria Pilligua, Daniel Vidal, Albin Soutiff, Cecilia Curreli, Daniel Cremers, Andrey Barsky
Title: Prototype Augmented Hypernetworks for Continual Learning
Abstract:
Continual learning (CL) aims to learn a sequence of tasks without forgetting prior knowledge, but gradient updates for a new task often overwrite the weights learned earlier, causing catastrophic forgetting (CF). We propose Prototype-Augmented Hypernetworks (PAH), a framework where a single hypernetwork, conditioned on learnable task prototypes, dynamically generates task-specific classifier heads on demand. To mitigate forgetting, PAH combines cross-entropy with dual distillation losses, one to align logits and another to align prototypes, ensuring stable feature representations across tasks. Evaluations on Split-CIFAR100 and TinyImageNet demonstrate that PAH achieves state-of-the-art performance, reaching 74.5 % and 63.7 % accuracy with only 1.7 % and 4.4 % forgetting, respectively, surpassing prior methods without storing samples or heads.
Authors:Linhao Li, Yongzhang Tan, Siyuan Yang, Hao Cheng, Yongfeng Dong, Liang Yang
Title: Adaptive Decision Boundary for Few-Shot Class-Incremental Learning
Abstract:
Few-Shot Class-Incremental Learning (FSCIL) aims to continuously learn new classes from a limited set of training samples without forgetting knowledge of previously learned classes. Conventional FSCIL methods typically build a robust feature extractor during the base training session with abundant training samples and subsequently freeze this extractor, only fine-tuning the classifier in subsequent incremental phases. However, current strategies primarily focus on preventing catastrophic forgetting, considering only the relationship between novel and base classes, without paying attention to the specific decision spaces of each class. To address this challenge, we propose a plug-and-play Adaptive Decision Boundary Strategy (ADBS), which is compatible with most FSCIL methods. Specifically, we assign a specific decision boundary to each class and adaptively adjust these boundaries during training to optimally refine the decision spaces for the classes in each session. Furthermore, to amplify the distinctiveness between classes, we employ a novel inter-class constraint loss that optimizes the decision boundaries and prototypes for each class. Extensive experiments on three benchmarks, namely CIFAR100, miniImageNet, and CUB200, demonstrate that incorporating our ADBS method with existing FSCIL techniques significantly improves performance, achieving overall state-of-the-art results.
Authors:Yadong Xie, Fan Li, Yue Wu, Yu Wang
Title: HearFit+: Personalized Fitness Monitoring via Audio Signals on Smart Speakers
Abstract:
Fitness can help to strengthen muscles, increase resistance to diseases, and improve body shape. Nowadays, a great number of people choose to exercise at home/office rather than at the gym due to lack of time. However, it is difficult for them to get good fitness effects without professional guidance. Motivated by this, we propose the first personalized fitness monitoring system, HearFit+, using smart speakers at home/office. We explore the feasibility of using acoustic sensing to monitor fitness. We design a fitness detection method based on Doppler shift and adopt the short time energy to segment fitness actions. Based on deep learning, HearFit+ can perform fitness classification and user identification at the same time. Combined with incremental learning, users can easily add new actions. We design 4 evaluation metrics (i.e., duration, intensity, continuity, and smoothness) to help users to improve fitness effects. Through extensive experiments including over 9,000 actions of 10 types of fitness from 12 volunteers, HearFit+ can achieve an average accuracy of 96.13% on fitness classification and 91% accuracy for user identification. All volunteers confirm that HearFit+ can help improve the fitness effect in various environments.
Authors:Guodong Ding, Rongyu Chen, Angela Yao
Title: Condensing Action Segmentation Datasets via Generative Network Inversion
Abstract:
This work presents the first condensation approach for procedural video datasets used in temporal action segmentation. We propose a condensation framework that leverages generative prior learned from the dataset and network inversion to condense data into compact latent codes with significant storage reduced across temporal and channel aspects. Orthogonally, we propose sampling diverse and representative action sequences to minimize video-wise redundancy. Our evaluation on standard benchmarks demonstrates consistent effectiveness in condensing TAS datasets and achieving competitive performances. Specifically, on the Breakfast dataset, our approach reduces storage by over 500$\times$ while retaining 83% of the performance compared to training with the full dataset. Furthermore, when applied to a downstream incremental learning task, it yields superior performance compared to the state-of-the-art.
Authors:Rong Li, Tao Deng, Siwei Feng, He Huang, Juncheng Jia, Di Yuan, Keqin Li
Title: WECAR: An End-Edge Collaborative Inference and Training Framework for WiFi-Based Continuous Human Activity Recognition
Abstract:
WiFi-based human activity recognition (HAR) holds significant promise for ubiquitous sensing in smart environments. A critical challenge lies in enabling systems to dynamically adapt to evolving scenarios, learning new activities without catastrophic forgetting of prior knowledge, while adhering to the stringent computational constraints of edge devices. Current approaches struggle to reconcile these requirements due to prohibitive storage demands for retaining historical data and inefficient parameter utilization. We propose WECAR, an end-edge collaborative inference and training framework for WiFi-based continuous HAR, which decouples computational workloads to overcome these limitations. In this framework, edge devices handle model training, lightweight optimization, and updates, while end devices perform efficient inference. WECAR introduces two key innovations, i.e., dynamic continual learning with parameter efficiency and hierarchical distillation for end deployment. For the former, we propose a transformer-based architecture enhanced by task-specific dynamic model expansion and stability-aware selective retraining. For the latter, we propose a dual-phase distillation mechanism that includes multi-head self-attention relation distillation and prefix relation distillation. We implement WECAR based on heterogeneous hardware using Jetson Nano as edge devices and the ESP32 as end devices, respectively. Our experiments across three public WiFi datasets reveal that WECAR not only outperforms several state-of-the-art methods in performance and parameter efficiency, but also achieves a substantial reduction in the model's parameter count post-optimization without sacrificing accuracy. This validates its practicality for resource-constrained environments.
Authors:Arvin Hosseinzadeh, Ladan Khoshnevisan, Mohammad Pirani, Shojaeddin Chenouri, Amir Khajepour
Title: An Efficient Continual Learning Framework for Multivariate Time Series Prediction Tasks with Application to Vehicle State Estimation
Abstract:
In continual time series analysis using neural networks, catastrophic forgetting (CF) of previously learned models when training on new data domains has always been a significant challenge. This problem is especially challenging in vehicle estimation and control, where new information is sequentially introduced to the model. Unfortunately, existing work on continual learning has not sufficiently addressed the adverse effects of catastrophic forgetting in time series analysis, particularly in multivariate output environments. In this paper, we present EM-ReSeleCT (Efficient Multivariate Representative Selection for Continual Learning in Time Series Tasks), an enhanced approach designed to handle continual learning in multivariate environments. Our approach strategically selects representative subsets from old and historical data and incorporates memory-based continual learning techniques with an improved optimization algorithm to adapt the pre-trained model on new information while preserving previously acquired information. Additionally, we develop a sequence-to-sequence transformer model (autoregressive model) specifically designed for vehicle state estimation. Moreover, we propose an uncertainty quantification framework using conformal prediction to assess the sensitivity of the memory size and to showcase the robustness of the proposed method. Experimental results from tests on an electric Equinox vehicle highlight the superiority of our method in continually learning new information while retaining prior knowledge, outperforming state-of-the-art continual learning methods. Furthermore, EM-ReSeleCT significantly reduces training time, a critical advantage in continual learning applications.
Authors:Thiem Nguyen, Anh Nguyen, Quyen Tran, Tu Vu, Diep Nguyen, Linh Ngo, Thien Nguyen
Title: Few-shot Continual Relation Extraction via Open Information Extraction
Abstract:
Typically, Few-shot Continual Relation Extraction (FCRE) models must balance retaining prior knowledge while adapting to new tasks with extremely limited data. However, real-world scenarios may also involve unseen or undetermined relations that existing methods still struggle to handle. To address these challenges, we propose a novel approach that leverages the Open Information Extraction concept of Knowledge Graph Construction (KGC). Our method not only exposes models to all possible pairs of relations, including determined and undetermined labels not available in the training set, but also enriches model knowledge with diverse relation descriptions, thereby enhancing knowledge retention and adaptability in this challenging scenario. In the perspective of KGC, this is the first work explored in the setting of Continual Learning, allowing efficient expansion of the graph as the data evolves. Experimental results demonstrate our superior performance compared to other state-of-the-art FCRE baselines, as well as the efficiency in handling dynamic graph construction in this setting.
Authors:M. Anwar Ma'sum, Mahardhika Pratama, Igor Skrjanc
Title: Latest Advancements Towards Catastrophic Forgetting under Data Scarcity: A Comprehensive Survey on Few-Shot Class Incremental Learning
Abstract:
Data scarcity significantly complicates the continual learning problem, i.e., how a deep neural network learns in dynamic environments with very few samples. However, the latest progress of few-shot class incremental learning (FSCIL) methods and related studies show insightful knowledge on how to tackle the problem. This paper presents a comprehensive survey on FSCIL that highlights several important aspects i.e. comprehensive and formal objectives of FSCIL approaches, the importance of prototype rectifications, the new learning paradigms based on pre-trained model and language-guided mechanism, the deeper analysis of FSCIL performance metrics and evaluation, and the practical contexts of FSCIL in various areas. Our extensive discussion presents the open challenges, potential solutions, and future directions of FSCIL.
Authors:Tianqi Wang, Jingcai Guo, Depeng Li, Zhi Chen
Title: On the Discrimination and Consistency for Exemplar-Free Class Incremental Learning
Abstract:
Exemplar-free class incremental learning (EF-CIL) is a nontrivial task that requires continuously enriching model capability with new classes while maintaining previously learned knowledge without storing and replaying any old class exemplars. An emerging theory-guided framework for CIL trains task-specific models for a shared network, shifting the pressure of forgetting to task-id prediction. In EF-CIL, task-id prediction is more challenging due to the lack of inter-task interaction (e.g., replays of exemplars). To address this issue, we conduct a theoretical analysis of the importance and feasibility of preserving a discriminative and consistent feature space, upon which we propose a novel method termed DCNet. Concretely, it progressively maps class representations into a hyperspherical space, in which different classes are orthogonally distributed to achieve ample inter-class separation. Meanwhile, it also introduces compensatory training to adaptively adjust supervision intensity, thereby aligning the degree of intra-class aggregation. Extensive experiments and theoretical analysis verified the superiority of the proposed DCNet.
Authors:Jaehyun Park, Dongmin Park, Jae-Gil Lee
Title: Active Learning for Continual Learning: Keeping the Past Alive in the Present
Abstract:
Continual learning (CL) enables deep neural networks to adapt to ever-changing data distributions. In practice, there may be scenarios where annotation is costly, leading to active continual learning (ACL), which performs active learning (AL) for the CL scenarios when reducing the labeling cost by selecting the most informative subset is preferable. However, conventional AL strategies are not suitable for ACL, as they focus solely on learning the new knowledge, leading to catastrophic forgetting of previously learned tasks. Therefore, ACL requires a new AL strategy that can balance the prevention of catastrophic forgetting and the ability to quickly learn new tasks. In this paper, we propose AccuACL, Accumulated informativeness-based Active Continual Learning, by the novel use of the Fisher information matrix as a criterion for sample selection, derived from a theoretical analysis of the Fisher-optimality preservation properties within the framework of ACL, while also addressing the scalability issue of Fisher information-based AL. Extensive experiments demonstrate that AccuACL significantly outperforms AL baselines across various CL algorithms, increasing the average accuracy and forgetting by 23.8% and 17.0%, respectively, on average.
Authors:Lingzhi Zhao, Ying Cui, Yuhang Jia, Yunfei Zhang, Klara Nahrstedt
Title: Enhancing Neural Adaptive Wireless Video Streaming via Lower-Layer Information Exposure and Online Tuning
Abstract:
Deep reinforcement learning (DRL) demonstrates its promising potential in the realm of adaptive video streaming and has recently received increasing attention. However, existing DRL-based methods for adaptive video streaming use only application (APP) layer information, adopt heuristic training methods, and train generalized neural networks with pre-collected data. This paper aims to boost the quality of experience (QoE) of adaptive wireless video streaming by using lower-layer information, deriving a rigorous training method, and adopting online tuning with real-time data. First, we formulate a more comprehensive and accurate adaptive wireless video streaming problem as an infinite stage discounted Markov decision process (MDP) problem by additionally incorporating past and lower-layer information, allowing a flexible tradeoff between QoE and costs for obtaining system information and solving the problem. In the offline scenario (only with pre-collected data), we propose an enhanced asynchronous advantage actor-critic (eA3C) method by jointly optimizing the parameters of parameterized policy and value function. Specifically, we build an eA3C network consisting of a policy network and a value network that can utilize cross-layer, past, and current information and jointly train the eA3C network using pre-collected samples. In the online scenario (with additional real-time data), we propose two continual learning-based online tuning methods for designing better policies for a specific user with different QoE and training time tradeoffs. Finally, experimental results show that the proposed offline policy can improve the QoE by 6.8~14.4% compared to the state-of-arts in the offline scenario, and the proposed online policies can further achieve 6~28% gains in QoE over the proposed offline policy in the online scenario.
Authors:Huanting Wang, Patrick Lenihan, Zheng Wang
Title: Enhancing Deployment-Time Predictive Model Robustness for Code Analysis and Optimization
Abstract:
Supervised machine learning techniques have shown promising results in code analysis and optimization problems. However, a learning-based solution can be brittle because minor changes in hardware or application workloads -- such as facing a new CPU architecture or code pattern -- may jeopardize decision accuracy, ultimately undermining model robustness. We introduce Prom, an open-source library to enhance the robustness and performance of predictive models against such changes during deployment. Prom achieves this by using statistical assessments to identify test samples prone to mispredictions and using feedback on these samples to improve a deployed model. We showcase Prom by applying it to 13 representative machine learning models across 5 code analysis and optimization tasks. Our extensive evaluation demonstrates that Prom can successfully identify an average of 96% (up to 100%) of mispredictions. By relabeling up to 5% of the Prom-identified samples through incremental learning, Prom can help a deployed model achieve a performance comparable to that attained during its model training phase.
Authors:Zeqing Wang, Kangye Ji, Di Wang, Haibin Zhang, Fei Cheng
Title: SAMCL: Empowering SAM to Continually Learn from Dynamic Domains with Extreme Storage Efficiency
Abstract:
Segment Anything Model (SAM) struggles in open-world scenarios with diverse domains. In such settings, naive fine-tuning with a well-designed learning module is inadequate and often causes catastrophic forgetting issue when learning incrementally. To address this issue, we propose a novel continual learning (CL) method for SAM, termed SAMCL. Rather than relying on a fixed learning module, our method decomposes incremental knowledge into separate modules and trains a selector to choose the appropriate one during inference. However, this intuitive design introduces two key challenges: ensuring effective module learning and selection, and managing storage as tasks accumulate. To tackle these, we introduce two components: AugModule and Module Selector. AugModule reduces the storage of the popular LoRA learning module by sharing parameters across layers while maintaining accuracy. It also employs heatmaps-generated from point prompts-to further enhance domain adaptation with minimal additional cost. Module Selector leverages the observation that SAM's embeddings can effectively distinguish domains, enabling high selection accuracy by training on low-consumed embeddings instead of raw images. Experiments show that SAMCL outperforms state-of-the-art methods, achieving only 0.19% forgetting and at least 2.5% gain on unseen domains. Each AugModule requires just 0.233 MB, reducing storage by at least 24.3% over other fine-tuning approaches. The buffer storage for Module Selector is further reduced by up to 256$\times$.
Authors:Trung-Anh Dang, Vincent Nguyen, Ngoc-Son Vu, Christel Vrain
Title: Memory-efficient Continual Learning with Neural Collapse Contrastive
Abstract:
Contrastive learning has significantly improved representation quality, enhancing knowledge transfer across tasks in continual learning (CL). However, catastrophic forgetting remains a key challenge, as contrastive based methods primarily focus on "soft relationships" or "softness" between samples, which shift with changing data distributions and lead to representation overlap across tasks. Recently, the newly identified Neural Collapse phenomenon has shown promise in CL by focusing on "hard relationships" or "hardness" between samples and fixed prototypes. However, this approach overlooks "softness", crucial for capturing intra-class variability, and this rigid focus can also pull old class representations toward current ones, increasing forgetting. Building on these insights, we propose Focal Neural Collapse Contrastive (FNC^2), a novel representation learning loss that effectively balances both soft and hard relationships. Additionally, we introduce the Hardness-Softness Distillation (HSD) loss to progressively preserve the knowledge gained from these relationships across tasks. Our method outperforms state-of-the-art approaches, particularly in minimizing memory reliance. Remarkably, even without the use of memory, our approach rivals rehearsal-based methods, offering a compelling solution for data privacy concerns.
Authors:Jiayi Cong, Guoliang Cheng, Changsheng You, Xinyu Huang, Wen Wu
Title: Two-Timescale Digital Twin Assisted Model Interference and Retraining over Wireless Network
Abstract:
In this paper, we investigate a resource allocation and model retraining problem for dynamic wireless networks by utilizing incremental learning, in which the digital twin (DT) scheme is employed for decision making. A two-timescale framework is proposed for computation resource allocation, mobile user association, and incremental training of user models. To obtain an optimal resource allocation and incremental learning policy, we propose an efficient two-timescale scheme based on hybrid DT-physical architecture with the objective to minimize long-term system delay. Specifically, in the large-timescale, base stations will update the user association and implement incremental learning decisions based on statistical state information from the DT system. Then, in the short timescale, an effective computation resource allocation and incremental learning data generated from the DT system is designed based on deep reinforcement learning (DRL), thus reducing the network system's delay in data transmission, data computation, and model retraining steps. Simulation results demonstrate the effectiveness of the proposed two-timescale scheme compared with benchmark schemes.
Authors:Boqi Li, Haojie Zhu, Henry X. Liu
Title: DECODE: Domain-aware Continual Domain Expansion for Motion Prediction
Abstract:
Motion prediction is critical for autonomous vehicles to effectively navigate complex environments and accurately anticipate the behaviors of other traffic participants. As autonomous driving continues to evolve, the need to assimilate new and varied driving scenarios necessitates frequent model updates through retraining. To address these demands, we introduce DECODE, a novel continual learning framework that begins with a pre-trained generalized model and incrementally develops specialized models for distinct domains. Unlike existing continual learning approaches that attempt to develop a unified model capable of generalizing across diverse scenarios, DECODE uniquely balances specialization with generalization, dynamically adjusting to real-time demands. The proposed framework leverages a hypernetwork to generate model parameters, significantly reducing storage requirements, and incorporates a normalizing flow mechanism for real-time model selection based on likelihood estimation. Furthermore, DECODE merges outputs from the most relevant specialized and generalized models using deep Bayesian uncertainty estimation techniques. This integration ensures optimal performance in familiar conditions while maintaining robustness in unfamiliar scenarios. Extensive evaluations confirm the effectiveness of the framework, achieving a notably low forgetting rate of 0.044 and an average minADE of 0.584 m, significantly surpassing traditional learning strategies and demonstrating adaptability across a wide range of driving conditions.
Authors:Md Mahedi Hasan, Shoaib Meraj Sami, Nasser Nasrabadi
Title: CLFace: A Scalable and Resource-Efficient Continual Learning Framework for Lifelong Face Recognition
Abstract:
An important aspect of deploying face recognition (FR) algorithms in real-world applications is their ability to learn new face identities from a continuous data stream. However, the online training of existing deep neural network-based FR algorithms, which are pre-trained offline on large-scale stationary datasets, encounter two major challenges: (I) catastrophic forgetting of previously learned identities, and (II) the need to store past data for complete retraining from scratch, leading to significant storage constraints and privacy concerns. In this paper, we introduce CLFace, a continual learning framework designed to preserve and incrementally extend the learned knowledge. CLFace eliminates the classification layer, resulting in a resource-efficient FR model that remains fixed throughout lifelong learning and provides label-free supervision to a student model, making it suitable for open-set face recognition during incremental steps. We introduce an objective function that employs feature-level distillation to reduce drift between feature maps of the student and teacher models across multiple stages. Additionally, it incorporates a geometry-preserving distillation scheme to maintain the orientation of the teacher model's feature embedding. Furthermore, a contrastive knowledge distillation is incorporated to continually enhance the discriminative power of the feature representation by matching similarities between new identities. Experiments on several benchmark FR datasets demonstrate that CLFace outperforms baseline approaches and state-of-the-art methods on unseen identities using both in-domain and out-of-domain datasets.
Authors:Hai-Jian Ke, Kun-Peng Ning, Yu-Yang Liu, Jia-Yu Yao, Yong-Hong Tian, Li Yuan
Title: Sparse Orthogonal Parameters Tuning for Continual Learning
Abstract:
Continual learning methods based on pre-trained models (PTM) have recently gained attention which adapt to successive downstream tasks without catastrophic forgetting. These methods typically refrain from updating the pre-trained parameters and instead employ additional adapters, prompts, and classifiers. In this paper, we from a novel perspective investigate the benefit of sparse orthogonal parameters for continual learning. We found that merging sparse orthogonality of models learned from multiple streaming tasks has great potential in addressing catastrophic forgetting. Leveraging this insight, we propose a novel yet effective method called SoTU (Sparse Orthogonal Parameters TUning). We hypothesize that the effectiveness of SoTU lies in the transformation of knowledge learned from multiple domains into the fusion of orthogonal delta parameters. Experimental evaluations on diverse CL benchmarks demonstrate the effectiveness of the proposed approach. Notably, SoTU achieves optimal feature representation for streaming data without necessitating complex classifier designs, making it a Plug-and-Play solution.
Authors:Vivek F. Farias, Adam D. Jozefiak
Title: Self-Normalized Resets for Plasticity in Continual Learning
Abstract:
Plasticity Loss is an increasingly important phenomenon that refers to the empirical observation that as a neural network is continually trained on a sequence of changing tasks, its ability to adapt to a new task diminishes over time. We introduce Self-Normalized Resets (SNR), a simple adaptive algorithm that mitigates plasticity loss by resetting a neuron's weights when evidence suggests its firing rate has effectively dropped to zero. Across a battery of continual learning problems and network architectures, we demonstrate that SNR consistently attains superior performance compared to its competitor algorithms. We also demonstrate that SNR is robust to its sole hyperparameter, its rejection percentile threshold, while competitor algorithms show significant sensitivity. SNR's threshold-based reset mechanism is motivated by a simple hypothesis test that we derive. Seen through the lens of this hypothesis test, competing reset proposals yield suboptimal error rates in correctly detecting inactive neurons, potentially explaining our experimental observations. We also conduct a theoretical investigation of the optimization landscape for the problem of learning a single ReLU. We show that even when initialized adversarially, an idealized version of SNR learns the target ReLU, while regularization-based approaches can fail to learn.
Authors:Zhen Guo, Abhinav Kumar, Reza Tourani
Title: Persistent Backdoor Attacks in Continual Learning
Abstract:
Backdoor attacks pose a significant threat to neural networks, enabling adversaries to manipulate model outputs on specific inputs, often with devastating consequences, especially in critical applications. While backdoor attacks have been studied in various contexts, little attention has been given to their practicality and persistence in continual learning, particularly in understanding how the continual updates to model parameters, as new data distributions are learned and integrated, impact the effectiveness of these attacks over time. To address this gap, we introduce two persistent backdoor attacks-Blind Task Backdoor and Latent Task Backdoor-each leveraging minimal adversarial influence. Our blind task backdoor subtly alters the loss computation without direct control over the training process, while the latent task backdoor influences only a single task's training, with all other tasks trained benignly. We evaluate these attacks under various configurations, demonstrating their efficacy with static, dynamic, physical, and semantic triggers. Our results show that both attacks consistently achieve high success rates across different continual learning algorithms, while effectively evading state-of-the-art defenses, such as SentiNet and I-BAU.
Authors:Yi Yang, Lei Zhong, Huiping Zhuang
Title: ReFu: Recursive Fusion for Exemplar-Free 3D Class-Incremental Learning
Abstract:
We introduce a novel Recursive Fusion model, dubbed ReFu, designed to integrate point clouds and meshes for exemplar-free 3D Class-Incremental Learning, where the model learns new 3D classes while retaining knowledge of previously learned ones. Unlike existing methods that either rely on storing historical data to mitigate forgetting or focus on single data modalities, ReFu eliminates the need for exemplar storage while utilizing the complementary strengths of both point clouds and meshes. To achieve this, we introduce a recursive method which continuously accumulates knowledge by updating the regularized auto-correlation matrix. Furthermore, we propose a fusion module, featuring a Pointcloud-guided Mesh Attention Layer that learns correlations between the two modalities. This mechanism effectively integrates point cloud and mesh features, leading to more robust and stable continual learning. Experiments across various datasets demonstrate that our proposed framework outperforms existing methods in 3D class-incremental learning.
Authors:Zexia Fan, Yu Chen, Qiquan Zhang, Kainan Chen, Xinyuan Qian
Title: Analytic Incremental Learning For Sound Source Localization With Imbalance Rectification
Abstract:
Sound source localization (SSL) demonstrates remarkable results in controlled settings but struggles in real-world deployment due to dual imbalance challenges: intra-task imbalance arising from long-tailed direction-of-arrival (DoA) distributions, and inter-task imbalance induced by cross-task skews and overlaps. These often lead to catastrophic forgetting, significantly degrading the localization accuracy. To mitigate these issues, we propose a unified framework with two key innovations. Specifically, we design a GCC-PHAT-based data augmentation (GDA) method that leverages peak characteristics to alleviate intra-task distribution skews. We also propose an Analytic dynamic imbalance rectifier (ADIR) with task-adaption regularization, which enables analytic updates that adapt to inter-task dynamics. On the SSLR benchmark, our proposal achieves state-of-the-art (SoTA) results of 89.0% accuracy, 5.3° mean absolute error, and 1.6 backward transfer, demonstrating robustness to evolving imbalances without exemplar storage.
Authors:Xiaodi Li, Dingcheng Li, Rujun Gao, Mahmoud Zamani, Feng Mi, Latifur Khan
Title: PPSEBM: An Energy-Based Model with Progressive Parameter Selection for Continual Learning
Abstract:
Continual learning remains a fundamental challenge in machine learning, requiring models to learn from a stream of tasks without forgetting previously acquired knowledge. A major obstacle in this setting is catastrophic forgetting, where performance on earlier tasks degrades as new tasks are learned. In this paper, we introduce PPSEBM, a novel framework that integrates an Energy-Based Model (EBM) with Progressive Parameter Selection (PPS) to effectively address catastrophic forgetting in continual learning for natural language processing tasks. In PPSEBM, progressive parameter selection allocates distinct, task-specific parameters for each new task, while the EBM generates representative pseudo-samples from prior tasks. These generated samples actively inform and guide the parameter selection process, enhancing the model's ability to retain past knowledge while adapting to new tasks. Experimental results on diverse NLP benchmarks demonstrate that PPSEBM outperforms state-of-the-art continual learning methods, offering a promising and robust solution to mitigate catastrophic forgetting.
Authors:Haoyu Ren, Kay Koehle, Kirill Dorofeev, Darko Anicic
Title: On-Device Continual Learning for Unsupervised Visual Anomaly Detection in Dynamic Manufacturing
Abstract:
In modern manufacturing, Visual Anomaly Detection (VAD) is essential for automated inspection and consistent product quality. Yet, increasingly dynamic and flexible production environments introduce key challenges: First, frequent product changes in small-batch and on-demand manufacturing require rapid model updates. Second, legacy edge hardware lacks the resources to train and run large AI models. Finally, both anomalous and normal training data are often scarce, particularly for newly introduced product variations. We investigate on-device continual learning for unsupervised VAD with localization, extending the PatchCore to incorporate online learning for real-world industrial scenarios. The proposed method leverages a lightweight feature extractor and an incremental coreset update mechanism based on k-center selection, enabling rapid, memory-efficient adaptation from limited data while eliminating costly cloud retraining. Evaluations on an industrial use case are conducted using a testbed designed to emulate flexible production with frequent variant changes in a controlled environment. Our method achieves a 12% AUROC improvement over the baseline, an 80% reduction in memory usage, and faster training compared to batch retraining. These results confirm that our method delivers accurate, resource-efficient, and adaptive VAD suitable for dynamic and smart manufacturing.
Authors:Federico Di Valerio, Michela Proietti, Alessio Ragno, Roberto Capobianco
Title: CIP-Net: Continual Interpretable Prototype-based Network
Abstract:
Continual learning constrains models to learn new tasks over time without forgetting what they have already learned. A key challenge in this setting is catastrophic forgetting, where learning new information causes the model to lose its performance on previous tasks. Recently, explainable AI has been proposed as a promising way to better understand and reduce forgetting. In particular, self-explainable models are useful because they generate explanations during prediction, which can help preserve knowledge. However, most existing explainable approaches use post-hoc explanations or require additional memory for each new task, resulting in limited scalability. In this work, we introduce CIP-Net, an exemplar-free self-explainable prototype-based model designed for continual learning. CIP-Net avoids storing past examples and maintains a simple architecture, while still providing useful explanations and strong performance. We demonstrate that CIPNet achieves state-of-the-art performances compared to previous exemplar-free and self-explainable methods in both task- and class-incremental settings, while bearing significantly lower memory-related overhead. This makes it a practical and interpretable solution for continual learning.
Authors:Tomoki Doi, Masaru Isonuma, Hitomi Yanaka
Title: Investigating Training and Generalization in Faithful Self-Explanations of Large Language Models
Abstract:
Large language models have the potential to generate explanations for their own predictions in a variety of styles based on user instructions. Recent research has examined whether these self-explanations faithfully reflect the models' actual behavior and has found that they often lack faithfulness. However, the question of how to improve faithfulness remains underexplored. Moreover, because different explanation styles have superficially distinct characteristics, it is unclear whether improvements observed in one style also arise when using other styles. This study analyzes the effects of training for faithful self-explanations and the extent to which these effects generalize, using three classification tasks and three explanation styles. We construct one-word constrained explanations that are likely to be faithful using a feature attribution method, and use these pseudo-faithful self-explanations for continual learning on instruction-tuned models. Our experiments demonstrate that training can improve self-explanation faithfulness across all classification tasks and explanation styles, and that these improvements also show signs of generalization to the multi-word settings and to unseen tasks. Furthermore, we find consistent cross-style generalization among three styles, suggesting that training may contribute to a broader improvement in faithful self-explanation ability.
Authors:Leo Elmecker-Plakolm, Pierre Fasterling, Philip Sosnin, Calvin Tsay, Matthew Wicker
Title: Provably Safe Model Updates
Abstract:
Safety-critical environments are inherently dynamic. Distribution shifts, emerging vulnerabilities, and evolving requirements demand continuous updates to machine learning models. Yet even benign parameter updates can have unintended consequences, such as catastrophic forgetting in classical models or alignment drift in foundation models. Existing heuristic approaches (e.g., regularization, parameter isolation) can mitigate these effects but cannot certify that updated models continue to satisfy required performance specifications. We address this problem by introducing a framework for provably safe model updates. Our approach first formalizes the problem as computing the largest locally invariant domain (LID): a connected region in parameter space where all points are certified to satisfy a given specification. While exact maximal LID computation is intractable, we show that relaxing the problem to parameterized abstract domains (orthotopes, zonotopes) yields a tractable primal-dual formulation. This enables efficient certification of updates - independent of the data or algorithm used - by projecting them onto the safe domain. Our formulation further allows computation of multiple approximately optimal LIDs, incorporation of regularization-inspired biases, and use of lookahead data buffers. Across continual learning and foundation model fine-tuning benchmarks, our method matches or exceeds heuristic baselines for avoiding forgetting while providing formal safety guarantees.
Authors:Taehoon Kim, Donghwan Jang, Bohyung Han
Title: Merge and Bound: Direct Manipulations on Weights for Class Incremental Learning
Abstract:
We present a novel training approach, named Merge-and-Bound (M&B) for Class Incremental Learning (CIL), which directly manipulates model weights in the parameter space for optimization. Our algorithm involves two types of weight merging: inter-task weight merging and intra-task weight merging. Inter-task weight merging unifies previous models by averaging the weights of models from all previous stages. On the other hand, intra-task weight merging facilitates the learning of current task by combining the model parameters within current stage. For reliable weight merging, we also propose a bounded update technique that aims to optimize the target model with minimal cumulative updates and preserve knowledge from previous tasks; this strategy reveals that it is possible to effectively obtain new models near old ones, reducing catastrophic forgetting. M&B is seamlessly integrated into existing CIL methods without modifying architecture components or revising learning objectives. We extensively evaluate our algorithm on standard CIL benchmarks and demonstrate superior performance compared to state-of-the-art methods.
Authors:Akbar Anbar Jafari, Cagri Ozcinar, Gholamreza Anbarjafari
Title: Dynamic Nested Hierarchies: Pioneering Self-Evolution in Machine Learning Architectures for Lifelong Intelligence
Abstract:
Contemporary machine learning models, including large language models, exhibit remarkable capabilities in static tasks yet falter in non-stationary environments due to rigid architectures that hinder continual adaptation and lifelong learning. Building upon the nested learning paradigm, which decomposes models into multi-level optimization problems with fixed update frequencies, this work proposes dynamic nested hierarchies as the next evolutionary step in advancing artificial intelligence and machine learning. Dynamic nested hierarchies empower models to autonomously adjust the number of optimization levels, their nesting structures, and update frequencies during training or inference, inspired by neuroplasticity to enable self-evolution without predefined constraints. This innovation addresses the anterograde amnesia in existing models, facilitating true lifelong learning by dynamically compressing context flows and adapting to distribution shifts. Through rigorous mathematical formulations, theoretical proofs of convergence, expressivity bounds, and sublinear regret in varying regimes, alongside empirical demonstrations of superior performance in language modeling, continual learning, and long-context reasoning, dynamic nested hierarchies establish a foundational advancement toward adaptive, general-purpose intelligence.
Authors:Jiaxin Qi, Yan Cui, Jianqiang Huang, Gaogang Xie
Title: Gene Incremental Learning for Single-Cell Transcriptomics
Abstract:
Classes, as fundamental elements of Computer Vision, have been extensively studied within incremental learning frameworks. In contrast, tokens, which play essential roles in many research fields, exhibit similar characteristics of growth, yet investigations into their incremental learning remain significantly scarce. This research gap primarily stems from the holistic nature of tokens in language, which imposes significant challenges on the design of incremental learning frameworks for them. To overcome this obstacle, in this work, we turn to a type of token, gene, for a large-scale biological dataset--single-cell transcriptomics--to formulate a pipeline for gene incremental learning and establish corresponding evaluations. We found that the forgetting problem also exists in gene incremental learning, thus we adapted existing class incremental learning methods to mitigate the forgetting of genes. Through extensive experiments, we demonstrated the soundness of our framework design and evaluations, as well as the effectiveness of our method adaptations. Finally, we provide a complete benchmark for gene incremental learning in single-cell transcriptomics.
Authors:Gerard Pons, Besim Bilalli, Anna Queralt
Title: Improving Continual Learning of Knowledge Graph Embeddings via Informed Initialization
Abstract:
Many Knowledege Graphs (KGs) are frequently updated, forcing their Knowledge Graph Embeddings (KGEs) to adapt to these changes. To address this problem, continual learning techniques for KGEs incorporate embeddings for new entities while updating the old ones. One necessary step in these methods is the initialization of the embeddings, as an input to the KGE learning process, which can have an important impact in the accuracy of the final embeddings, as well as in the time required to train them. This is especially relevant for relatively small and frequent updates. We propose a novel informed embedding initialization strategy, which can be seamlessly integrated into existing continual learning methods for KGE, that enhances the acquisition of new knowledge while reducing catastrophic forgetting. Specifically, the KG schema and the previously learned embeddings are utilized to obtain initial representations for the new entities, based on the classes the entities belong to. Our extensive experimental analysis shows that the proposed initialization strategy improves the predictive performance of the resulting KGEs, while also enhancing knowledge retention. Furthermore, our approach accelerates knowledge acquisition, reducing the number of epochs, and therefore time, required to incrementally learn new embeddings. Finally, its benefits across various types of KGE learning models are demonstrated.
Authors:Joana Tirana, Dimitra Tsigkari, David Solans Noguero, Nicolas Kourtellis
Title: Data Heterogeneity and Forgotten Labels in Split Federated Learning
Abstract:
In Split Federated Learning (SFL), the clients collaboratively train a model with the help of a server by splitting the model into two parts. Part-1 is trained locally at each client and aggregated by the aggregator at the end of each round. Part-2 is trained at a server that sequentially processes the intermediate activations received from each client. We study the phenomenon of catastrophic forgetting (CF) in SFL in the presence of data heterogeneity. In detail, due to the nature of SFL, local updates of part-1 may drift away from global optima, while part-2 is sensitive to the processing sequence, similar to forgetting in continual learning (CL). Specifically, we observe that the trained model performs better in classes (labels) seen at the end of the sequence. We investigate this phenomenon with emphasis on key aspects of SFL, such as the processing order at the server and the cut layer. Based on our findings, we propose Hydra, a novel mitigation method inspired by multi-head neural networks and adapted for the SFL's setting. Extensive numerical evaluations show that Hydra outperforms baselines and methods from the literature.
Authors:Jin-woo Lee, Junhwa Choi, Bongkyu Hwang, Jinho Choo, Bogun Kim, JeongSeon Yi, Joonseok Lee, DongYoung Jung, Jaeseon Park, Kyoungwon Park, Suk-hoon Jung
Title: SCALE: Upscaled Continual Learning of Large Language Models
Abstract:
We revisit continual pre-training for large language models and argue that progress now depends more on scaling the right structure than on scaling parameters alone. We introduce SCALE, a width upscaling architecture that inserts lightweight expansion into linear modules while freezing all pre-trained parameters. This preserves the residual and attention topologies and increases capacity without perturbing the base model's original functionality. SCALE is guided by two principles: Persistent Preservation, which maintains the base model's behavior via preservation-oriented initialization and freezing of the pre-trained weights, and Collaborative Adaptation, which selectively trains a subset of expansion components to acquire new knowledge with minimal interference. We instantiate these ideas as SCALE-Preserve (preservation-first), SCALE-Adapt (adaptation-first), and SCALE-Route, an optional routing extension that performs token-level routing between preservation and adaptation heads. On a controlled synthetic biography benchmark, SCALE mitigates the severe forgetting observed with depth expansion while still acquiring new knowledge. In continual pre-training on a Korean corpus, SCALE variants achieve less forgetting on English evaluations and competitive gains on Korean benchmarks, with these variants offering the best overall stability-plasticity trade-off. Accompanying analysis clarifies when preservation provably holds and why the interplay between preservation and adaptation stabilizes optimization compared to standard continual learning setups.
Authors:John J. Vastola, Samuel J. Gershman, Kanaka Rajan
Title: Gradient Descent as Loss Landscape Navigation: a Normative Framework for Deriving Learning Rules
Abstract:
Learning rules -- prescriptions for updating model parameters to improve performance -- are typically assumed rather than derived. Why do some learning rules work better than others, and under what assumptions can a given rule be considered optimal? We propose a theoretical framework that casts learning rules as policies for navigating (partially observable) loss landscapes, and identifies optimal rules as solutions to an associated optimal control problem. A range of well-known rules emerge naturally within this framework under different assumptions: gradient descent from short-horizon optimization, momentum from longer-horizon planning, natural gradients from accounting for parameter space geometry, non-gradient rules from partial controllability, and adaptive optimizers like Adam from online Bayesian inference of loss landscape shape. We further show that continual learning strategies like weight resetting can be understood as optimal responses to task uncertainty. By unifying these phenomena under a single objective, our framework clarifies the computational structure of learning and offers a principled foundation for designing adaptive algorithms.
Authors:Md. Mehedi Hasan, Ziaur Rahman, Rafid Mostafiz, Md. Abir Hossain
Title: Sentra-Guard: A Multilingual Human-AI Framework for Real-Time Defense Against Adversarial LLM Jailbreaks
Abstract:
This paper presents a real-time modular defense system named Sentra-Guard. The system detects and mitigates jailbreak and prompt injection attacks targeting large language models (LLMs). The framework uses a hybrid architecture with FAISS-indexed SBERT embedding representations that capture the semantic meaning of prompts, combined with fine-tuned transformer classifiers, which are machine learning models specialized for distinguishing between benign and adversarial language inputs. It identifies adversarial prompts in both direct and obfuscated attack vectors. A core innovation is the classifier-retriever fusion module, which dynamically computes context-aware risk scores that estimate how likely a prompt is to be adversarial based on its content and context. The framework ensures multilingual resilience with a language-agnostic preprocessing layer. This component automatically translates non-English prompts into English for semantic evaluation, enabling consistent detection across over 100 languages. The system includes a HITL feedback loop, where decisions made by the automated system are reviewed by human experts for continual learning and rapid adaptation under adversarial pressure. Sentra-Guard maintains an evolving dual-labeled knowledge base of benign and malicious prompts, enhancing detection reliability and reducing false positives. Evaluation results show a 99.96% detection rate (AUC = 1.00, F1 = 1.00) and an attack success rate (ASR) of only 0.004%. This outperforms leading baselines such as LlamaGuard-2 (1.3%) and OpenAI Moderation (3.7%). Unlike black-box approaches, Sentra-Guard is transparent, fine-tunable, and compatible with diverse LLM backends. Its modular design supports scalable deployment in both commercial and open-source environments. The system establishes a new state-of-the-art in adversarial LLM defense.
Authors:Junda Wang, Minghui Hu, Ning Li, Abdulaziz Al-Ali, Ponnuthurai Nagaratnam Suganthan
Title: Randomized Neural Network with Adaptive Forward Regularization for Online Task-free Class Incremental Learning
Abstract:
Class incremental learning (CIL) requires an agent to learn distinct tasks consecutively with knowledge retention against forgetting. Problems impeding the practical applications of CIL methods are twofold: (1) non-i.i.d batch streams and no boundary prompts to update, known as the harsher online task-free CIL (OTCIL) scenario; (2) CIL methods suffer from memory loss in learning long task streams, as shown in Fig. 1 (a). To achieve efficient decision-making and decrease cumulative regrets during the OTCIL process, a randomized neural network (Randomized NN) with forward regularization (-F) is proposed to resist forgetting and enhance learning performance. This general framework integrates unsupervised knowledge into recursive convex optimization, has no learning dissipation, and can outperform the canonical ridge style (-R) in OTCIL. Based on this framework, we derive the algorithm of the ensemble deep random vector functional link network (edRVFL) with adjustable forward regularization (-kF), where k mediates the intensity of the intervention. edRVFL-kF generates one-pass closed-form incremental updates and variable learning rates, effectively avoiding past replay and catastrophic forgetting while achieving superior performance. Moreover, to curb unstable penalties caused by non-i.i.d and mitigate intractable tuning of -kF in OTCIL, we improve it to the plug-and-play edRVFL-kF-Bayes, enabling all hard ks in multiple sub-learners to be self-adaptively determined based on Bayesian learning. Experiments were conducted on 2 image datasets including 6 metrics, dynamic performance, ablation tests, and compatibility, which distinctly validates the efficacy of our OTCIL frameworks with -kF-Bayes and -kF styles.
Authors:Pavan Kalyan, Shubhra Mishra, Satya Lokam, Navin Goyal
Title: CurLL: A Developmental Framework to Evaluate Continual Learning in Language Models
Abstract:
We introduce a comprehensive continual learning dataset and benchmark (CurlL) grounded in human developmental trajectories from ages 5-10, enabling systematic and fine-grained assessment of models' ability to progressively acquire new skills. CurlL spans five developmental stages (0-4) covering ages 5-10, supported by a skill graph that breaks down broad skills into smaller abilities, concrete goals, and measurable indicators, while also capturing which abilities build on others. We generate a 23.4B-token synthetic dataset with controlled skill progression, vocabulary complexity, and format diversity, comprising paragraphs, comprehension-based QA (CQA), skill-testing QA (CSQA), and instruction-response (IR) pairs. Stage-wise token counts range from 2.12B to 6.78B tokens, supporting precise analysis of forgetting, forward transfer, and backward transfer. Using a 135M-parameter transformer trained under independent, joint, and sequential (continual) setups, we show trade-offs in skill retention and transfer efficiency. By mirroring human learning patterns and providing fine-grained control over skill dependencies, this work advances continual learning evaluations for language models.
Authors:Ansh Tiwari, Ayush Chauhan
Title: Local Timescale Gates for Timescale-Robust Continual Spiking Neural Networks
Abstract:
Spiking neural networks (SNNs) promise energy-efficient artificial intelligence on neuromorphic hardware but struggle with tasks requiring both fast adaptation and long-term memory, especially in continual learning. We propose Local Timescale Gating (LT-Gate), a neuron model that combines dual time-constant dynamics with an adaptive gating mechanism. Each spiking neuron tracks information on a fast and a slow timescale in parallel, and a learned gate locally adjusts their influence. This design enables individual neurons to preserve slow contextual information while responding to fast signals, addressing the stability-plasticity dilemma. We further introduce a variance-tracking regularization that stabilizes firing activity, inspired by biological homeostasis. Empirically, LT-Gate yields significantly improved accuracy and retention in sequential learning tasks: on a challenging temporal classification benchmark it achieves about 51 percent final accuracy, compared to about 46 percent for a recent Hebbian continual-learning baseline and lower for prior SNN methods. Unlike approaches that require external replay or expensive orthogonalizations, LT-Gate operates with local updates and is fully compatible with neuromorphic hardware. In particular, it leverages features of Intel's Loihi chip (multiple synaptic traces with different decay rates) for on-chip learning. Our results demonstrate that multi-timescale gating can substantially enhance continual learning in SNNs, narrowing the gap between spiking and conventional deep networks on lifelong-learning tasks.
Authors:Yi-Chung Chen, David I. Inouye, Jing Gao
Title: Your VAR Model is Secretly an Efficient and Explainable Generative Classifier
Abstract:
Generative classifiers, which leverage conditional generative models for classification, have recently demonstrated desirable properties such as robustness to distribution shifts. However, recent progress in this area has been largely driven by diffusion-based models, whose substantial computational cost severely limits scalability. This exclusive focus on diffusion-based methods has also constrained our understanding of generative classifiers. In this work, we propose a novel generative classifier built on recent advances in visual autoregressive (VAR) modeling, which offers a new perspective for studying generative classifiers. To further enhance its performance, we introduce the Adaptive VAR Classifier$^+$ (A-VARC$^+$), which achieves a superior trade-off between accuracy and inference speed, thereby significantly improving practical applicability. Moreover, we show that the VAR-based method exhibits fundamentally different properties from diffusion-based methods. In particular, due to its tractable likelihood, the VAR-based classifier enables visual explainability via token-wise mutual information and demonstrates inherent resistance to catastrophic forgetting in class-incremental learning tasks.
Authors:Yuandou Wang, Filip Gunnarsson, Rihan Hai
Title: IMLP: An Energy-Efficient Continual Learning Method for Tabular Data Streams
Abstract:
Tabular data streams are rapidly emerging as a dominant modality for real-time decision-making in healthcare, finance, and the Internet of Things (IoT). These applications commonly run on edge and mobile devices, where energy budgets, memory, and compute are strictly limited. Continual learning (CL) addresses such dynamics by training models sequentially on task streams while preserving prior knowledge and consolidating new knowledge. While recent CL work has advanced in mitigating catastrophic forgetting and improving knowledge transfer, the practical requirements of energy and memory efficiency for tabular data streams remain underexplored. In particular, existing CL solutions mostly depend on replay mechanisms whose buffers grow over time and exacerbate resource costs. We propose a context-aware incremental Multi-Layer Perceptron (IMLP), a compact continual learner for tabular data streams. IMLP incorporates a windowed scaled dot-product attention over a sliding latent feature buffer, enabling constant-size memory and avoiding storing raw data. The attended context is concatenated with current features and processed by shared feed-forward layers, yielding lightweight per-segment updates. To assess practical deployability, we introduce NetScore-T, a tunable metric coupling balanced accuracy with energy for Pareto-aware comparison across models and datasets. IMLP achieves up to $27.6\times$ higher energy efficiency than TabNet and $85.5\times$ higher than TabPFN, while maintaining competitive average accuracy. Overall, IMLP provides an easy-to-deploy, energy-efficient alternative to full retraining for tabular data streams.
Authors:Roy Siegelmann, Enrique Mallada
Title: Data-driven Practical Stabilization of Nonlinear Systems via Chain Policies: Sample Complexity and Incremental Learning
Abstract:
We propose a method for data-driven practical stabilization of nonlinear systems with provable guarantees, based on the concept of Nonparametric Chain Policies (NCPs). The approach employs a normalized nearest-neighbor rule to assign, at each state, a finite-duration control signal derived from stored data, after which the process repeats. Unlike recent works that model the system as linear, polynomial, or polynomial fraction, we only assume the system to be locally Lipschitz. Our analysis builds on the framework of Recurrent Lyapunov Functions (RLFs), which enable data-driven certification of practical stability using standard norm functions instead of requiring the explicit construction of a classical Lyapunov function. To extend this framework, we introduce the concept of Recurrent Control Lyapunov Functions (R-CLFs), which can certify the existence of an NCP that practically stabilizes an arbitrarily small c-neighborhood of an equilibrium point. We also provide an explicit sample complexity guarantee of O((3/rho)^d log(R/c)) number of trajectories, where R is the domain radius, d the state dimension, and rho a system-dependent constant. The proposed Chain Policies are nonparametric, thus allowing new verified data to be readily incorporated into the policy to either improve convergence rate or enlarge the certified region. Numerical experiments illustrate and validate these properties.
Authors:Sota Nishiyama, Masaaki Imaizumi
Title: Precise Dynamics of Diagonal Linear Networks: A Unifying Analysis by Dynamical Mean-Field Theory
Abstract:
Diagonal linear networks (DLNs) are a tractable model that captures several nontrivial behaviors in neural network training, such as initialization-dependent solutions and incremental learning. These phenomena are typically studied in isolation, leaving the overall dynamics insufficiently understood. In this work, we present a unified analysis of various phenomena in the gradient flow dynamics of DLNs. Using Dynamical Mean-Field Theory (DMFT), we derive a low-dimensional effective process that captures the asymptotic gradient flow dynamics in high dimensions. Analyzing this effective process yields new insights into DLN dynamics, including loss convergence rates and their trade-off with generalization, and systematically reproduces many of the previously observed phenomena. These findings deepen our understanding of DLNs and demonstrate the effectiveness of the DMFT approach in analyzing high-dimensional learning dynamics of neural networks.
Authors:Kai Gu, Weishi Shi
Title: Diagnosing Shortcut-Induced Rigidity in Continual Learning: The Einstellung Rigidity Index (ERI)
Abstract:
Deep neural networks frequently exploit shortcut features, defined as incidental correlations between inputs and labels without causal meaning. Shortcut features undermine robustness and reduce reliability under distribution shifts. In continual learning (CL), the consequences of shortcut exploitation can persist and intensify: weights inherited from earlier tasks bias representation reuse toward whatever features most easily satisfied prior labels, mirroring the cognitive Einstellung effect, a phenomenon where past habits block optimal solutions. Whereas catastrophic forgetting erodes past skills, shortcut-induced rigidity throttles the acquisition of new ones. We introduce the Einstellung Rigidity Index (ERI), a compact diagnostic that disentangles genuine transfer from cue-inflated performance using three interpretable facets: (i) Adaptation Delay (AD), (ii) Performance Deficit (PD), and (iii) Relative Suboptimal Feature Reliance (SFR_rel). On a two-phase CIFAR-100 CL benchmark with a deliberately spurious magenta patch in Phase 2, we evaluate Naive fine-tuning (SGD), online Elastic Weight Consolidation (EWC_on), Dark Experience Replay (DER++), Gradient Projection Memory (GPM), and Deep Generative Replay (DGR). Across these continual learning methods, we observe that CL methods reach accuracy thresholds earlier than a Scratch-T2 baseline (negative AD) but achieve slightly lower final accuracy on patched shortcut classes (positive PD). Masking the patch improves accuracy for CL methods while slightly reducing Scratch-T2, yielding negative SFR_rel. This pattern indicates the patch acted as a distractor for CL models in this setting rather than a helpful shortcut.
Authors:Mateusz Żarski, Sławomir Nowaczyk
Title: Neuroplasticity-inspired dynamic ANNs for multi-task demand forecasting
Abstract:
This paper introduces a novel approach to Dynamic Artificial Neural Networks (D-ANNs) for multi-task demand forecasting called Neuroplastic Multi-Task Network (NMT-Net). Unlike conventional methods focusing on inference-time dynamics or computational efficiency, our proposed method enables structural adaptability of the computational graph during training, inspired by neuroplasticity as seen in biological systems. Each new task triggers a dynamic network adaptation, including similarity-based task identification and selective training of candidate ANN heads, which are then assessed and integrated into the model based on their performance. We evaluated our framework using three real-world multi-task demand forecasting datasets from Kaggle. We demonstrated its superior performance and consistency, achieving lower RMSE and standard deviation compared to traditional baselines and state-of-the-art multi-task learning methods. NMT-Net offers a scalable, adaptable solution for multi-task and continual learning in time series prediction. The complete code for NMT-Net is available from our GitHub repository.
Authors:Matteo Cardoni, Sam Leroux
Title: Predictive Coding-based Deep Neural Network Fine-tuning for Computationally Efficient Domain Adaptation
Abstract:
As deep neural networks are increasingly deployed in dynamic, real-world environments, relying on a single static model is often insufficient. Changes in input data distributions caused by sensor drift or lighting variations necessitate continual model adaptation. In this paper, we propose a hybrid training methodology that enables efficient on-device domain adaptation by combining the strengths of Backpropagation and Predictive Coding. The method begins with a deep neural network trained offline using Backpropagation to achieve high initial performance. Subsequently, Predictive Coding is employed for online adaptation, allowing the model to recover accuracy lost due to shifts in the input data distribution. This approach leverages the robustness of Backpropagation for initial representation learning and the computational efficiency of Predictive Coding for continual learning, making it particularly well-suited for resource-constrained edge devices or future neuromorphic accelerators. Experimental results on the MNIST and CIFAR-10 datasets demonstrate that this hybrid strategy enables effective adaptation with a reduced computational overhead, offering a promising solution for maintaining model performance in dynamic environments.
Authors:Eric Petit, Denis Chêne
Title: Robust and continuous machine learning of usage habits to adapt digital interfaces to user needs
Abstract:
The paper presents a machine learning approach to design digital interfaces that can dynamically adapt to different users and usage strategies. The algorithm uses Bayesian statistics to model users' browsing behavior, focusing on their habits rather than group preferences. It is distinguished by its online incremental learning, allowing reliable predictions even with little data and in the case of a changing environment. This inference method generates a task model, providing a graphical representation of navigation with the usage statistics of the current user. The algorithm learns new tasks while preserving prior knowledge. The theoretical framework is described, and simulations show the effectiveness of the approach in stationary and non-stationary environments. In conclusion, this research paves the way for adaptive systems that improve the user experience by helping them to better navigate and act on their interface.
Authors:Sayanta Adhikari, Vishnuprasadh Kumaravelu, P. K. Srijith
Title: An Unlearning Framework for Continual Learning
Abstract:
Growing concerns surrounding AI safety and data privacy have driven the development of Machine Unlearning as a potential solution. However, current machine unlearning algorithms are designed to complement the offline training paradigm. The emergence of the Continual Learning (CL) paradigm promises incremental model updates, enabling models to learn new tasks sequentially. Naturally, some of those tasks may need to be unlearned to address safety or privacy concerns that might arise. We find that applying conventional unlearning algorithms in continual learning environments creates two critical problems: performance degradation on retained tasks and task relapse, where previously unlearned tasks resurface during subsequent learning. Furthermore, most unlearning algorithms require data to operate, which conflicts with CL's philosophy of discarding past data. A clear need arises for unlearning algorithms that are data-free and mindful of future learning. To that end, we propose UnCLe, an Unlearning framework for Continual Learning. UnCLe employs a hypernetwork that learns to generate task-specific network parameters, using task embeddings. Tasks are unlearned by aligning the corresponding generated network parameters with noise, without requiring any data. Empirical evaluations on several vision data sets demonstrate UnCLe's ability to sequentially perform multiple learning and unlearning operations with minimal disruption to previously acquired knowledge.
Authors:David Schiff, Ofir Lindenbaum, Yonathan Efroni
Title: Gradient Free Deep Reinforcement Learning With TabPFN
Abstract:
Gradient based optimization is fundamental to most modern deep reinforcement learning algorithms, however, it introduces significant sensitivity to hyperparameters, unstable training dynamics, and high computational costs. We propose TabPFN RL, a novel gradient free deep RL framework that repurposes the meta trained transformer TabPFN as a Q function approximator. Originally developed for tabular classification, TabPFN is a transformer pre trained on millions of synthetic datasets to perform inference on new unseen datasets via in context learning. Given an in context dataset of sample label pairs and new unlabeled data, it predicts the most likely labels in a single forward pass, without gradient updates or task specific fine tuning. We use TabPFN to predict Q values using inference only, thereby eliminating the need for back propagation at both training and inference. To cope with the model's fixed context budget, we design a high reward episode gate that retains only the top 5% of trajectories. Empirical evaluations on the Gymnasium classic control suite demonstrate that TabPFN RL matches or surpasses Deep Q Network on CartPole v1, MountainCar v0, and Acrobot v1, without applying gradient descent or any extensive hyperparameter tuning. We discuss the theoretical aspects of how bootstrapped targets and non stationary visitation distributions violate the independence assumptions encoded in TabPFN's prior, yet the model retains a surprising generalization capacity. We further formalize the intrinsic context size limit of in context RL algorithms and propose principled truncation strategies that enable continual learning when the context is full. Our results establish prior fitted networks such as TabPFN as a viable foundation for fast and computationally efficient RL, opening new directions for gradient free RL with large pre trained transformers.
Authors:Ege Süalp, Mina Rezaei
Title: Mitigating Catastrophic Forgetting in Continual Learning through Model Growth
Abstract:
Catastrophic forgetting is a significant challenge in continual learning, in which a model loses prior knowledge when it is fine-tuned on new tasks. This problem is particularly critical for large language models (LLMs) undergoing continual learning, as retaining performance across diverse domains is important for their general utility. In this paper, we explore model growth, a promising strategy that leverages smaller models to expedite and structure the training of larger ones for mitigating the catastrophic forgetting problem. Although growth-based pretraining, particularly via transformer stacking, has shown promise in accelerating convergence, its impact on forgetting remains under-explored. Therefore, we evaluate whether growth-based models can retain previously learned capabilities more effectively across a sequence of fine-tuning tasks involving domain knowledge, reasoning, reading comprehension, and bias. Our findings show that both models -- one trained with growth (Stack LLM) and one without (LLM) -- exhibit improvements in domain knowledge. However, reasoning and reading comprehension degrade over time, indicating signs of catastrophic forgetting. Stack LLM consistently shows less degradation, especially in reading comprehension, suggesting enhanced retention capabilities. Interestingly, in bias evaluation, the baseline LLM becomes progressively more neutral with continued fine-tuning, while Stack LLM maintains a steady bias ratio around 60--61\%. These results indicate that growth-based pretraining may deliver modest improvements in resisting catastrophic forgetting, though trade-offs remain in handling social biases.
Authors:Francesco Caravelli, Gianluca Milano, Adam Z. Stieg, Carlo Ricciardi, Simon Anthony Brown, Zdenka Kuncic
Title: Self-Organising Memristive Networks as Physical Learning Systems
Abstract:
Learning with physical systems is an emerging paradigm that seeks to harness the intrinsic nonlinear dynamics of physical substrates for learning. The impetus for a paradigm shift in how hardware is used for computational intelligence stems largely from the unsustainability of artificial neural network software implemented on conventional transistor-based hardware. This Perspective highlights one promising approach using physical networks comprised of resistive memory nanoscale components with dynamically reconfigurable, self-organising electrical circuitry. Experimental advances have revealed the non-trivial interactions within these Self-Organising Memristive Networks (SOMNs), offering insights into their collective nonlinear and adaptive dynamics, and how these properties can be harnessed for learning using different hardware implementations. Theoretical approaches, including mean-field theory, graph theory, and concepts from disordered systems, reveal deeper insights into the dynamics of SOMNs, especially during transitions between different conductance states where criticality and other dynamical phase transitions emerge in both experiments and models. Furthermore, parallels between adaptive dynamics in SOMNs and plasticity in biological neuronal networks suggest the potential for realising energy-efficient, brain-like continual learning. SOMNs thus offer a promising route toward embedded edge intelligence, unlocking real-time decision-making for autonomous systems, dynamic sensing, and personalised healthcare, by enabling embedded learning in resource-constrained environments. The overarching aim of this Perspective is to show how the convergence of nanotechnology, statistical physics, complex systems, and self-organising principles offers a unique opportunity to advance a new generation of physical intelligence technologies.
Authors:Chun-Peng Chang, Chen-Yu Wang, Julian Schmidt, Holger Caesar, Alain Pagani
Title: Seeing Clearly, Forgetting Deeply: Revisiting Fine-Tuned Video Generators for Driving Simulation
Abstract:
Recent advancements in video generation have substantially improved visual quality and temporal coherence, making these models increasingly appealing for applications such as autonomous driving, particularly in the context of driving simulation and so-called "world models". In this work, we investigate the effects of existing fine-tuning video generation approaches on structured driving datasets and uncover a potential trade-off: although visual fidelity improves, spatial accuracy in modeling dynamic elements may degrade. We attribute this degradation to a shift in the alignment between visual quality and dynamic understanding objectives. In datasets with diverse scene structures within temporal space, where objects or perspective shift in varied ways, these objectives tend to highly correlated. However, the very regular and repetitive nature of driving scenes allows visual quality to improve by modeling dominant scene motion patterns, without necessarily preserving fine-grained dynamic behavior. As a result, fine-tuning encourages the model to prioritize surface-level realism over dynamic accuracy. To further examine this phenomenon, we show that simple continual learning strategies, such as replay from diverse domains, can offer a balanced alternative by preserving spatial accuracy while maintaining strong visual quality.
Authors:Haris Khan, Sadia Asif, Shumaila Asif
Title: Modular Delta Merging with Orthogonal Constraints: A Scalable Framework for Continual and Reversible Model Composition
Abstract:
In real-world machine learning deployments, models must be continually updated, composed, and when required, selectively undone. However, existing approaches to model merging and continual learning often suffer from task interference, catastrophic forgetting, or lack of reversibility. We propose Modular Delta Merging with Orthogonal Constraints (MDM-OC), a novel framework that enables scalable, interference-free, and reversible composition of fine-tuned models. Each task-specific model is encoded as a delta from a shared base and projected into an orthogonal subspace to eliminate conflict. These projected deltas are then merged via gradient-based optimization to form a unified model that retains performance across tasks. Our approach supports continual integration of new models, structured unmerging for compliance such as GDPR requirements, and model stability via elastic weight consolidation and synthetic replay. Extensive experiments on vision and natural language processing benchmarks demonstrate that MDM-OC outperforms prior baselines in accuracy, backward transfer, and unmerge fidelity, while remaining memory-efficient and computationally tractable. This framework offers a principled solution for modular and compliant AI system design.
Authors:Tiantian Peng, Yuyang Liu, Shuo Yang, Qiuhe Hong, YongHong Tian
Title: GNSP: Gradient Null Space Projection for Preserving Cross-Modal Alignment in VLMs Continual Learning
Abstract:
Contrastive Language-Image Pretraining has demonstrated remarkable zero-shot generalization by aligning visual and textual modalities in a shared embedding space. However, when continuously fine-tuned on diverse tasks, CLIP suffers from catastrophic forgetting and degradation of its embedding alignment, undermining its zero-shot capabilities. In this work, we propose Gradient Null Space Projection (GNSP), an efficient continual learning method that projects task-specific gradients onto the null space of previously learned knowledge. This orthogonal projection mathematically prevents interference with previous tasks without relying on rehearsal or architectural modification. Furthermore, to preserve the inherent generalization property of CLIP, we introduce knowledge distillation and combine it with a modality alignment preservation loss inspired by CLIP pre-training to stabilize the structure of the multimodal embedding space during fine-tuning. On the MTIL benchmark consisting of 11 tasks, our method achieved SOTA performance on both the Average and Last key metrics. More importantly, experiments show that our method successfully maintains the original modality gap and cross-modal retrieval performance of CLIP, confirming its effectiveness in maintaining a robust visual-language space throughout the continual learning process.
Authors:Haris Khan, Shumaila Asif, Hassan Nasir, Kamran Aziz Bhatti, Shahzad Amin Sheikh
Title: Advances in Intelligent Hearing Aids: Deep Learning Approaches to Selective Noise Cancellation
Abstract:
The integration of artificial intelligence into hearing assistance marks a paradigm shift from traditional amplification-based systems to intelligent, context-aware audio processing. This systematic literature review evaluates advances in AI-driven selective noise cancellation (SNC) for hearing aids, highlighting technological evolution, implementation challenges, and future research directions. We synthesize findings across deep learning architectures, hardware deployment strategies, clinical validation studies, and user-centric design. The review traces progress from early machine learning models to state-of-the-art deep networks, including Convolutional Recurrent Networks for real-time inference and Transformer-based architectures for high-accuracy separation. Key findings include significant gains over traditional methods, with recent models achieving up to 18.3 dB SI-SDR improvement on noisy-reverberant benchmarks, alongside sub-10 ms real-time implementations and promising clinical outcomes. Yet, challenges remain in bridging lab-grade models with real-world deployment - particularly around power constraints, environmental variability, and personalization. Identified research gaps include hardware-software co-design, standardized evaluation protocols, and regulatory considerations for AI-enhanced hearing devices. Future work must prioritize lightweight models, continual learning, contextual-based classification and clinical translation to realize transformative hearing solutions for millions globally.
Authors:Patryk Krukowski, Łukasz Gorczyca, Piotr Helm, Kamil Książek, Przemysław Spurek
Title: SHIELD: Secure Hypernetworks for Incremental Expansion Learning Defense
Abstract:
Continual learning under adversarial conditions remains an open problem, as existing methods often compromise either robustness, scalability, or both. We propose a novel framework that integrates Interval Bound Propagation (IBP) with a hypernetwork-based architecture to enable certifiably robust continual learning across sequential tasks. Our method, SHIELD, generates task-specific model parameters via a shared hypernetwork conditioned solely on compact task embeddings, eliminating the need for replay buffers or full model copies and enabling efficient over time. To further enhance robustness, we introduce Interval MixUp, a novel training strategy that blends virtual examples represented as $\ell_{\infty}$ balls centered around MixUp points. Leveraging interval arithmetic, this technique guarantees certified robustness while mitigating the wrapping effect, resulting in smoother decision boundaries. We evaluate SHIELD under strong white-box adversarial attacks, including PGD and AutoAttack, across multiple benchmarks. It consistently outperforms existing robust continual learning methods, achieving state-of-the-art average accuracy while maintaining both scalability and certification. These results represent a significant step toward practical and theoretically grounded continual learning in adversarial settings.
Authors:Chaofan Pan, Jiafen Liu, Yanhua Li, Linbo Xiong, Fan Min, Wei Wei, Xin Yang
Title: Action-Adaptive Continual Learning: Enabling Policy Generalization under Dynamic Action Spaces
Abstract:
Continual Learning (CL) is a powerful tool that enables agents to learn a sequence of tasks, accumulating knowledge learned in the past and using it for problem-solving or future task learning. However, existing CL methods often assume that the agent's capabilities remain static within dynamic environments, which doesn't reflect real-world scenarios where capabilities dynamically change. This paper introduces a new and realistic problem: Continual Learning with Dynamic Capabilities (CL-DC), posing a significant challenge for CL agents: How can policy generalization across different action spaces be achieved? Inspired by the cortical functions, we propose an Action-Adaptive Continual Learning framework (AACL) to address this challenge. Our framework decouples the agent's policy from the specific action space by building an action representation space. For a new action space, the encoder-decoder of action representations is adaptively fine-tuned to maintain a balance between stability and plasticity. Furthermore, we release a benchmark based on three environments to validate the effectiveness of methods for CL-DC. Experimental results demonstrate that our framework outperforms popular methods by generalizing the policy across action spaces.
Authors:Yasaman Mahdaviyeh, James Lucas, Mengye Ren, Andreas S. Tolias, Richard Zemel, Toniann Pitassi
Title: Replay Can Provably Increase Forgetting
Abstract:
Continual learning seeks to enable machine learning systems to solve an increasing corpus of tasks sequentially. A critical challenge for continual learning is forgetting, where the performance on previously learned tasks decreases as new tasks are introduced. One of the commonly used techniques to mitigate forgetting, sample replay, has been shown empirically to reduce forgetting by retaining some examples from old tasks and including them in new training episodes. In this work, we provide a theoretical analysis of sample replay in an over-parameterized continual linear regression setting, where each task is given by a linear subspace and with enough replay samples, one would be able to eliminate forgetting. Our analysis focuses on sample replay and highlights the role of the replayed samples and the relationship between task subspaces. Surprisingly, we find that, even in a noiseless setting, forgetting can be non-monotonic with respect to the number of replay samples. We present tasks where replay can be harmful with respect to worst-case settings, and also in distributional settings where replay of randomly selected samples increases forgetting in expectation. We also give empirical evidence that harmful replay is not limited to training with linear models by showing similar behavior for a neural networks equipped with SGD. Through experiments on a commonly used benchmark, we provide additional evidence that, even in seemingly benign scenarios, performance of the replay heavily depends on the choice of replay samples and the relationship between tasks.
Authors:Xu Li, Fan Lyu
Title: MM-Prompt: Cross-Modal Prompt Tuning for Continual Visual Question Answering
Abstract:
Continual Visual Question Answering (CVQA) based on pre-trained models(PTMs) has achieved promising progress by leveraging prompt tuning to enable continual multi-modal learning. However, most existing methods adopt cross-modal prompt isolation, constructing visual and textual prompts separately, which exacerbates modality imbalance and leads to degraded performance over time. To tackle this issue, we propose MM-Prompt, a novel framework incorporating cross-modal prompt query and cross-modal prompt recovery. The former enables balanced prompt selection by incorporating cross-modal signals during query formation, while the latter promotes joint prompt reconstruction through iterative cross-modal interactions, guided by an alignment loss to prevent representational drift. Extensive experiments show that MM-Prompt surpasses prior approaches in accuracy and knowledge retention, while maintaining balanced modality engagement throughout continual learning.
Authors:Jędrzej Kozal, Jan Wasilewski, Alif Ashrafee, Bartosz Krawczyk, Michał Woźniak
Title: What is the role of memorization in Continual Learning?
Abstract:
Memorization impacts the performance of deep learning algorithms. Prior works have studied memorization primarily in the context of generalization and privacy. This work studies the memorization effect on incremental learning scenarios. Forgetting prevention and memorization seem similar. However, one should discuss their differences. We designed extensive experiments to evaluate the impact of memorization on continual learning. We clarified that learning examples with high memorization scores are forgotten faster than regular samples. Our findings also indicated that memorization is necessary to achieve the highest performance. However, at low memory regimes, forgetting regular samples is more important. We showed that the importance of a high-memorization score sample rises with an increase in the buffer size. We introduced a memorization proxy and employed it in the buffer policy problem to showcase how memorization could be used during incremental training. We demonstrated that including samples with a higher proxy memorization score is beneficial when the buffer size is large.
Authors:Yan-Shuo Liang, Wu-Jun Li
Title: Gated Integration of Low-Rank Adaptation for Continual Learning of Language Models
Abstract:
Continual learning (CL), which requires the model to learn multiple tasks sequentially, is crucial for language models (LMs). Recently, low-rank adaptation (LoRA), one of the most representative parameter-efficient fine-tuning (PEFT) methods, has gained increasing attention in CL of LMs. However, most existing CL methods based on LoRA typically expand a new LoRA branch to learn each new task and force the new and old LoRA branches to contribute equally to old tasks, potentially leading to forgetting. In this work, we propose a new method, called gated integration of low-rank adaptation (GainLoRA), for CL of LMs. GainLoRA expands a new LoRA branch for each new task and introduces gating modules to integrate the new and old LoRA branches. Furthermore, GainLoRA leverages the new gating module to minimize the contribution from the new LoRA branch to old tasks, effectively mitigating forgetting and improving the model's overall performance. Experimental results on CL benchmarks demonstrate that GainLoRA outperforms existing state-of-the-art methods.
Authors:Akarsh Kumar, Jeff Clune, Joel Lehman, Kenneth O. Stanley
Title: Questioning Representational Optimism in Deep Learning: The Fractured Entangled Representation Hypothesis
Abstract:
Much of the excitement in modern AI is driven by the observation that scaling up existing systems leads to better performance. But does better performance necessarily imply better internal representations? While the representational optimist assumes it must, this position paper challenges that view. We compare neural networks evolved through an open-ended search process to networks trained via conventional stochastic gradient descent (SGD) on the simple task of generating a single image. This minimal setup offers a unique advantage: each hidden neuron's full functional behavior can be easily visualized as an image, thus revealing how the network's output behavior is internally constructed neuron by neuron. The result is striking: while both networks produce the same output behavior, their internal representations differ dramatically. The SGD-trained networks exhibit a form of disorganization that we term fractured entangled representation (FER). Interestingly, the evolved networks largely lack FER, even approaching a unified factored representation (UFR). In large models, FER may be degrading core model capacities like generalization, creativity, and (continual) learning. Therefore, understanding and mitigating FER could be critical to the future of representation learning.
Authors:Liangzu Peng, René Vidal
Title: Mathematics of Continual Learning
Abstract:
Continual learning is an emerging subject in machine learning that aims to solve multiple tasks presented sequentially to the learner without forgetting previously learned tasks. Recently, many deep learning based approaches have been proposed for continual learning, however the mathematical foundations behind existing continual learning methods remain underdeveloped. On the other hand, adaptive filtering is a classic subject in signal processing with a rich history of mathematically principled methods. However, its role in understanding the foundations of continual learning has been underappreciated. In this tutorial, we review the basic principles behind both continual learning and adaptive filtering, and present a comparative analysis that highlights multiple connections between them. These connections allow us to enhance the mathematical foundations of continual learning based on existing results for adaptive filtering, extend adaptive filtering insights using existing continual learning methods, and discuss a few research directions for continual learning suggested by the historical developments in adaptive filtering.
Authors:Chao Qi, Jianqin Yin, Ren Zhang
Title: CMIP-CIL: A Cross-Modal Benchmark for Image-Point Class Incremental Learning
Abstract:
Image-point class incremental learning helps the 3D-points-vision robots continually learn category knowledge from 2D images, improving their perceptual capability in dynamic environments. However, some incremental learning methods address unimodal forgetting but fail in cross-modal cases, while others handle modal differences within training/testing datasets but assume no modal gaps between them. We first explore this cross-modal task, proposing a benchmark CMIP-CIL and relieving the cross-modal catastrophic forgetting problem. It employs masked point clouds and rendered multi-view images within a contrastive learning framework in pre-training, empowering the vision model with the generalizations of image-point correspondence. In the incremental stage, by freezing the backbone and promoting object representations close to their respective prototypes, the model effectively retains and generalizes knowledge across previously seen categories while continuing to learn new ones. We conduct comprehensive experiments on the benchmark datasets. Experiments prove that our method achieves state-of-the-art results, outperforming the baseline methods by a large margin.
Authors:Chao Qi, Jianqin Yin, Meng Chen, Yingchun Niu, Yuan Sun
Title: Boosting the Class-Incremental Learning in 3D Point Clouds via Zero-Collection-Cost Basic Shape Pre-Training
Abstract:
Existing class-incremental learning methods in 3D point clouds rely on exemplars (samples of former classes) to resist the catastrophic forgetting of models, and exemplar-free settings will greatly degrade the performance. For exemplar-free incremental learning, the pre-trained model methods have achieved state-of-the-art results in 2D domains. However, these methods cannot be migrated to the 3D domains due to the limited pre-training datasets and insufficient focus on fine-grained geometric details. This paper breaks through these limitations, proposing a basic shape dataset with zero collection cost for model pre-training. It helps a model obtain extensive knowledge of 3D geometries. Based on this, we propose a framework embedded with 3D geometry knowledge for incremental learning in point clouds, compatible with exemplar-free (-based) settings. In the incremental stage, the geometry knowledge is extended to represent objects in point clouds. The class prototype is calculated by regularizing the data representation with the same category and is kept adjusting in the learning process. It helps the model remember the shape features of different categories. Experiments show that our method outperforms other baseline methods by a large margin on various benchmark datasets, considering both exemplar-free (-based) settings.
Authors:Seungyoon Woo, Junhyeog Yun, Gunhee Kim
Title: Meta-Continual Learning of Neural Fields
Abstract:
Neural Fields (NF) have gained prominence as a versatile framework for complex data representation. This work unveils a new problem setting termed \emph{Meta-Continual Learning of Neural Fields} (MCL-NF) and introduces a novel strategy that employs a modular architecture combined with optimization-based meta-learning. Focused on overcoming the limitations of existing methods for continual learning of neural fields, such as catastrophic forgetting and slow convergence, our strategy achieves high-quality reconstruction with significantly improved learning speed. We further introduce Fisher Information Maximization loss for neural radiance fields (FIM-NeRF), which maximizes information gains at the sample level to enhance learning generalization, with proved convergence guarantee and generalization bound. We perform extensive evaluations across image, audio, video reconstruction, and view synthesis tasks on six diverse datasets, demonstrating our method's superiority in reconstruction quality and speed over existing MCL and CL-NF approaches. Notably, our approach attains rapid adaptation of neural fields for city-scale NeRF rendering with reduced parameter requirement.
Authors:S Balasubramanian, Yedu Krishna P, Talasu Sai Sriram, M Sai Subramaniam, Manepalli Pranav Phanindra Sai, Darshan Gera
Title: S2IL: Structurally Stable Incremental Learning
Abstract:
Feature Distillation (FD) strategies are proven to be effective in mitigating Catastrophic Forgetting (CF) seen in Class Incremental Learning (CIL). However, current FD approaches enforce strict alignment of feature magnitudes and directions across incremental steps, limiting the model's ability to adapt to new knowledge. In this paper we propose Structurally Stable Incremental Learning(S22IL), a FD method for CIL that mitigates CF by focusing on preserving the overall spatial patterns of features which promote flexible (plasticity) yet stable representations that preserve old knowledge (stability). We also demonstrate that our proposed method S2IL achieves strong incremental accuracy and outperforms other FD methods on SOTA benchmark datasets CIFAR-100, ImageNet-100 and ImageNet-1K. Notably, S2IL outperforms other methods by a significant margin in scenarios that have a large number of incremental tasks.
Authors:Xin Zhang, Liang Bai, Xian Yang, Jiye Liang
Title: C-LoRA: Continual Low-Rank Adaptation for Pre-trained Models
Abstract:
Low-Rank Adaptation (LoRA) is an efficient fine-tuning method that has been extensively applied in areas such as natural language processing and computer vision. Existing LoRA fine-tuning approaches excel in static environments but struggle in dynamic learning due to reliance on multiple adapter modules, increasing overhead and complicating inference. We propose Continual Low-Rank Adaptation (C-LoRA), a novel extension of LoRA for continual learning. C-LoRA uses a learnable routing matrix to dynamically manage parameter updates across tasks, ensuring efficient reuse of learned subspaces while enforcing orthogonality to minimize interference and forgetting. Unlike existing approaches that require separate adapters for each task, C-LoRA enables a integrated approach for task adaptation, achieving both scalability and parameter efficiency in sequential learning scenarios. C-LoRA achieves state-of-the-art accuracy and parameter efficiency on benchmarks while providing theoretical insights into its routing matrix's role in retaining and transferring knowledge, establishing a scalable framework for continual learning.
Authors:Rong Li, Tao Deng, Siwei Feng, Mingjie Sun, Juncheng Jia
Title: ConSense: Continually Sensing Human Activity with WiFi via Growing and Picking
Abstract:
WiFi-based human activity recognition (HAR) holds significant application potential across various fields. To handle dynamic environments where new activities are continuously introduced, WiFi-based HAR systems must adapt by learning new concepts without forgetting previously learned ones. Furthermore, retaining knowledge from old activities by storing historical exemplar is impractical for WiFi-based HAR due to privacy concerns and limited storage capacity of edge devices. In this work, we propose ConSense, a lightweight and fast-adapted exemplar-free class incremental learning framework for WiFi-based HAR. The framework leverages the transformer architecture and involves dynamic model expansion and selective retraining to preserve previously learned knowledge while integrating new information. Specifically, during incremental sessions, small-scale trainable parameters that are trained specifically on the data of each task are added in the multi-head self-attention layer. In addition, a selective retraining strategy that dynamically adjusts the weights in multilayer perceptron based on the performance stability of neurons across tasks is used. Rather than training the entire model, the proposed strategies of dynamic model expansion and selective retraining reduce the overall computational load while balancing stability on previous tasks and plasticity on new tasks. Evaluation results on three public WiFi datasets demonstrate that ConSense not only outperforms several competitive approaches but also requires fewer parameters, highlighting its practical utility in class-incremental scenarios for HAR.
Authors:Saleh Momeni, Bing Liu
Title: Achieving Upper Bound Accuracy of Joint Training in Continual Learning
Abstract:
Continual learning has been an active research area in machine learning, focusing on incrementally learning a sequence of tasks. A key challenge is catastrophic forgetting (CF), and most research efforts have been directed toward mitigating this issue. However, a significant gap remains between the accuracy achieved by state-of-the-art continual learning algorithms and the ideal or upper-bound accuracy achieved by training all tasks together jointly. This gap has hindered or even prevented the adoption of continual learning in applications, as accuracy is often of paramount importance. Recently, another challenge, termed inter-task class separation (ICS), was also identified, which spurred a theoretical study into principled approaches for solving continual learning. Further research has shown that by leveraging the theory and the power of large foundation models, it is now possible to achieve upper-bound accuracy, which has been empirically validated using both text and image classification datasets. Continual learning is now ready for real-life applications. This paper surveys the main research leading to this achievement, justifies the approach both intuitively and from neuroscience research, and discusses insights gained.
Authors:Mohammad Saidur Rahman, Scott Coull, Qi Yu, Matthew Wright
Title: MADAR: Efficient Continual Learning for Malware Analysis with Distribution-Aware Replay
Abstract:
Millions of new pieces of malicious software (i.e., malware) are introduced each year. This poses significant challenges for antivirus vendors, who use machine learning to detect and analyze malware, and must keep up with changes in the distribution while retaining knowledge of older variants. Continual learning (CL) holds the potential to address this challenge by reducing the storage and computational costs of regularly retraining over all the collected data. Prior work, however, shows that CL techniques, which are designed primarily for computer vision tasks, fare poorly when applied to malware classification. To address these issues, we begin with an exploratory analysis of a typical malware dataset, which reveals that malware families are diverse and difficult to characterize, requiring a wide variety of samples to learn a robust representation. Based on these findings, we propose $\underline{M}$alware $\underline{A}$nalysis with $\underline{D}$istribution-$\underline{A}$ware $\underline{R}$eplay (MADAR), a CL framework that accounts for the unique properties and challenges of the malware data distribution. Through extensive evaluation on large-scale Windows and Android malware datasets, we show that MADAR significantly outperforms prior work. This highlights the importance of understanding domain characteristics when designing CL techniques and demonstrates a path forward for the malware classification domain.
Authors:Yanlai Yang, Mengye Ren
Title: Memory Storyboard: Leveraging Temporal Segmentation for Streaming Self-Supervised Learning from Egocentric Videos
Abstract:
Self-supervised learning holds the promise of learning good representations from real-world continuous uncurated data streams. However, most existing works in visual self-supervised learning focus on static images or artificial data streams. Towards exploring a more realistic learning substrate, we investigate streaming self-supervised learning from long-form real-world egocentric video streams. Inspired by the event segmentation mechanism in human perception and memory, we propose "Memory Storyboard" that groups recent past frames into temporal segments for more effective summarization of the past visual streams for memory replay. To accommodate efficient temporal segmentation, we propose a two-tier memory hierarchy: the recent past is stored in a short-term memory, and the storyboard temporal segments are then transferred to a long-term memory. Experiments on real-world egocentric video datasets including SAYCam and KrishnaCam show that contrastive learning objectives on top of storyboard frames result in semantically meaningful representations that outperform those produced by state-of-the-art unsupervised continual learning methods.
Authors:Xiaodan Chen, Alexandre Pitti, Mathias Quoy, Nancy F Chen
Title: Developmental Predictive Coding Model for Early Infancy Mono and Bilingual Vocal Continual Learning
Abstract:
Understanding how infants perceive speech sounds and language structures is still an open problem. Previous research in artificial neural networks has mainly focused on large dataset-dependent generative models, aiming to replicate language-related phenomena such as ''perceptual narrowing''. In this paper, we propose a novel approach using a small-sized generative neural network equipped with a continual learning mechanism based on predictive coding for mono-and bilingual speech sound learning (referred to as language sound acquisition during ''critical period'') and a compositional optimization mechanism for generation where no learning is involved (later infancy sound imitation). Our model prioritizes interpretability and demonstrates the advantages of online learning: Unlike deep networks requiring substantial offline training, our model continuously updates with new data, making it adaptable and responsive to changing inputs. Through experiments, we demonstrate that if second language acquisition occurs during later infancy, the challenges associated with learning a foreign language after the critical period amplify, replicating the perceptual narrowing effect.
Authors:Yuanda Hu, Xing Liu, Meiying Li, Yate Ge, Xiaohua Sun, Weiwei Guo
Title: Video Domain Incremental Learning for Human Action Recognition in Home Environments
Abstract:
It is significantly challenging to recognize daily human actions in homes due to the diversity and dynamic changes in unconstrained home environments. It spurs the need to continually adapt to various users and scenes. Fine-tuning current video understanding models on newly encountered domains often leads to catastrophic forgetting, where the models lose their ability to perform well on previously learned scenarios. To address this issue, we formalize the problem of Video Domain Incremental Learning (VDIL), which enables models to learn continually from different domains while maintaining a fixed set of action classes. Existing continual learning research primarily focuses on class-incremental learning, while the domain incremental learning has been largely overlooked in video understanding. In this work, we introduce a novel benchmark of domain incremental human action recognition for unconstrained home environments. We design three domain split types (user, scene, hybrid) to systematically assess the challenges posed by domain shifts in real-world home settings. Furthermore, we propose a baseline learning strategy based on replay and reservoir sampling techniques without domain labels to handle scenarios with limited memory and task agnosticism. Extensive experimental results demonstrate that our simple sampling and replay strategy outperforms most existing continual learning methods across the three proposed benchmarks.
Authors:Anthony Kobanda, Rémy Portelas, Odalric-Ambrym Maillard, Ludovic Denoyer
Title: Hierarchical Subspaces of Policies for Continual Offline Reinforcement Learning
Abstract:
We consider a Continual Reinforcement Learning setup, where a learning agent must continuously adapt to new tasks while retaining previously acquired skill sets, with a focus on the challenge of avoiding forgetting past gathered knowledge and ensuring scalability with the growing number of tasks. Such issues prevail in autonomous robotics and video game simulations, notably for navigation tasks prone to topological or kinematic changes. To address these issues, we introduce HiSPO, a novel hierarchical framework designed specifically for continual learning in navigation settings from offline data. Our method leverages distinct policy subspaces of neural networks to enable flexible and efficient adaptation to new tasks while preserving existing knowledge. We demonstrate, through a careful experimental study, the effectiveness of our method in both classical MuJoCo maze environments and complex video game-like navigation simulations, showcasing competitive performances and satisfying adaptability with respect to classical continual learning metrics, in particular regarding the memory usage and efficiency.
Authors:Yuhong Chen, Ailin Song, Huifeng Yin, Shuai Zhong, Fuhai Chen, Qi Xu, Shiping Wang, Mingkun Xu
Title: Multi-View Incremental Learning with Structured Hebbian Plasticity for Enhanced Fusion Efficiency
Abstract:
The rapid evolution of multimedia technology has revolutionized human perception, paving the way for multi-view learning. However, traditional multi-view learning approaches are tailored for scenarios with fixed data views, falling short of emulating the intricate cognitive procedures of the human brain processing signals sequentially. Our cerebral architecture seamlessly integrates sequential data through intricate feed-forward and feedback mechanisms. In stark contrast, traditional methods struggle to generalize effectively when confronted with data spanning diverse domains, highlighting the need for innovative strategies that can mimic the brain's adaptability and dynamic integration capabilities. In this paper, we propose a bio-neurologically inspired multi-view incremental framework named MVIL aimed at emulating the brain's fine-grained fusion of sequentially arriving views. MVIL lies two fundamental modules: structured Hebbian plasticity and synaptic partition learning. The structured Hebbian plasticity reshapes the structure of weights to express the high correlation between view representations, facilitating a fine-grained fusion of view representations. Moreover, synaptic partition learning is efficient in alleviating drastic changes in weights and also retaining old knowledge by inhibiting partial synapses. These modules bionically play a central role in reinforcing crucial associations between newly acquired information and existing knowledge repositories, thereby enhancing the network's capacity for generalization. Experimental results on six benchmark datasets show MVIL's effectiveness over state-of-the-art methods.
Authors:Jack Belham, Aryan Bhosale, Samrat Mukherjee, Biplab Banerjee, Fabio Cuzzolin
Title: Deep evolving semi-supervised anomaly detection
Abstract:
The aim of this paper is to formalise the task of continual semi-supervised anomaly detection (CSAD), with the aim of highlighting the importance of such a problem formulation which assumes as close to real-world conditions as possible. After an overview of the relevant definitions of continual semi-supervised learning, its components, anomaly detection extension, and the training protocols; the paper introduces a baseline model of a variational autoencoder (VAE) to work with semi-supervised data along with a continual learning method of deep generative replay with outlier rejection. The results show that such a use of extreme value theory (EVT) applied to anomaly detection can provide promising results even in comparison to an upper baseline of joint training. The results explore the effects of how much labelled and unlabelled data is present, of which class, and where it is located in the data stream. Outlier rejection shows promising initial results where it often surpasses a baseline method of Elastic Weight Consolidation (EWC). A baseline for CSAD is put forward along with the specific dataset setups used for reproducability and testability for other practitioners. Future research directions include other CSAD settings and further research into efficient continual hyperparameter tuning.
Authors:Xiaohe Li, Feilong Huang, Zide Fan, Fangli Mou, Leilei Lin, Yingyan Hou, Lijie Wen
Title: C$^{2}$INet: Realizing Incremental Trajectory Prediction with Prior-Aware Continual Causal Intervention
Abstract:
Trajectory prediction for multi-agents in complex scenarios is crucial for applications like autonomous driving. However, existing methods often overlook environmental biases, which leads to poor generalization. Additionally, hardware constraints limit the use of large-scale data across environments, and continual learning settings exacerbate the challenge of catastrophic forgetting. To address these issues, we propose the Continual Causal Intervention (C$^{2}$INet) method for generalizable multi-agent trajectory prediction within a continual learning framework. Using variational inference, we align environment-related prior with posterior estimator of confounding factors in the latent space, thereby intervening in causal correlations that affect trajectory representation. Furthermore, we store optimal variational priors across various scenarios using a memory queue, ensuring continuous debiasing during incremental task training. The proposed C$^{2}$INet enhances adaptability to diverse tasks while preserving previous task information to prevent catastrophic forgetting. It also incorporates pruning strategies to mitigate overfitting. Comparative evaluations on three real and synthetic complex datasets against state-of-the-art methods demonstrate that our proposed method consistently achieves reliable prediction performance, effectively mitigating confounding factors unique to different scenarios. This highlights the practical value of our method for real-world applications.
Authors:Pooja Aslami, Kejun Chen, Timothy M. Hansen, Malik Hassanaly
Title: Continual Adversarial Reinforcement Learning (CARL) of False Data Injection detection: forgetting and explainability
Abstract:
False data injection attacks (FDIAs) on smart inverters are a growing concern linked to increased renewable energy production. While data-based FDIA detection methods are also actively developed, we show that they remain vulnerable to impactful and stealthy adversarial examples that can be crafted using Reinforcement Learning (RL). We propose to include such adversarial examples in data-based detection training procedure via a continual adversarial RL (CARL) approach. This way, one can pinpoint the deficiencies of data-based detection, thereby offering explainability during their incremental improvement. We show that a continual learning implementation is subject to catastrophic forgetting, and additionally show that forgetting can be addressed by employing a joint training strategy on all generated FDIA scenarios.
Authors:Satish Kumar Keshri, Nazreen Shah, Ranjitha Prasad
Title: On the Convergence of Continual Federated Learning Using Incrementally Aggregated Gradients
Abstract:
The holy grail of machine learning is to enable Continual Federated Learning (CFL) to enhance the efficiency, privacy, and scalability of AI systems while learning from streaming data. The primary challenge of a CFL system is to overcome global catastrophic forgetting, wherein the accuracy of the global model trained on new tasks declines on the old tasks. In this work, we propose Continual Federated Learning with Aggregated Gradients (C-FLAG), a novel replay-memory based federated strategy consisting of edge-based gradient updates on memory and aggregated gradients on the current data. We provide convergence analysis of the C-FLAG approach which addresses forgetting and bias while converging at a rate of $O(1/\sqrt{T})$ over $T$ communication rounds. We formulate an optimization sub-problem that minimizes catastrophic forgetting, translating CFL into an iterative algorithm with adaptive learning rates that ensure seamless learning across tasks. We empirically show that C-FLAG outperforms several state-of-the-art baselines on both task and class-incremental settings with respect to metrics such as accuracy and forgetting.
Authors:Zihang Qiu, Chaojie Li, Zhongyang Wang, Renyou Xie, Borui Zhang, Huadong Mo, Guo Chen, Zhaoyang Dong
Title: EF-LLM: Energy Forecasting LLM with AI-assisted Automation, Enhanced Sparse Prediction, Hallucination Detection
Abstract:
Accurate prediction helps to achieve supply-demand balance in energy systems, supporting decision-making and scheduling. Traditional models, lacking AI-assisted automation, rely on experts, incur high costs, and struggle with sparse data prediction. To address these challenges, we propose the Energy Forecasting Large Language Model (EF-LLM), which integrates domain knowledge and temporal data for time-series forecasting, supporting both pre-forecast operations and post-forecast decision-support. EF-LLM's human-AI interaction capabilities lower the entry barrier in forecasting tasks, reducing the need for extra expert involvement. To achieve this, we propose a continual learning approach with updatable LoRA and a multi-channel architecture for aligning heterogeneous multimodal data, enabling EF-LLM to continually learn heterogeneous multimodal knowledge. In addition, EF-LLM enables accurate predictions under sparse data conditions through its ability to process multimodal data. We propose Fusion Parameter-Efficient Fine-Tuning (F-PEFT) method to effectively leverage both time-series data and text for this purpose. EF-LLM is also the first energy-specific LLM to detect hallucinations and quantify their occurrence rate, achieved via multi-task learning, semantic similarity analysis, and ANOVA. We have achieved success in energy prediction scenarios for load, photovoltaic, and wind power forecast.
Authors:S Balasubramanian, M Sai Subramaniam, Sai Sriram Talasu, Yedu Krishna P, Manepalli Pranav Phanindra Sai, Ravi Mukkamala, Darshan Gera
Title: EXACFS -- A CIL Method to mitigate Catastrophic Forgetting
Abstract:
Deep neural networks (DNNS) excel at learning from static datasets but struggle with continual learning, where data arrives sequentially. Catastrophic forgetting, the phenomenon of forgetting previously learned knowledge, is a primary challenge. This paper introduces EXponentially Averaged Class-wise Feature Significance (EXACFS) to mitigate this issue in the class incremental learning (CIL) setting. By estimating the significance of model features for each learned class using loss gradients, gradually aging the significance through the incremental tasks and preserving the significant features through a distillation loss, EXACFS effectively balances remembering old knowledge (stability) and learning new knowledge (plasticity). Extensive experiments on CIFAR-100 and ImageNet-100 demonstrate EXACFS's superior performance in preserving stability while acquiring plasticity.
Authors:Xueying Bai, Yifan Sun, Niranjan Balasubramanian
Title: Does RoBERTa Perform Better than BERT in Continual Learning: An Attention Sink Perspective
Abstract:
Continual learning (CL) aims to train models that can sequentially learn new tasks without forgetting previous tasks' knowledge. Although previous works observed that pre-training can benefit CL, it remains unclear whether a pre-trained model with higher downstream capacity also performs better in CL. In this paper, we observe that pre-trained models may allocate high attention scores to some 'sink' tokens, such as [SEP] tokens, which are ubiquitous across various tasks. Such attention sinks may lead to models' over-smoothing in single-task learning and interference in sequential tasks' learning, which may compromise the models' CL performance despite their high pre-trained capabilities. To reduce these effects, we propose a pre-scaling mechanism that encourages attention diversity across all tokens. Specifically, it first scales the task's attention to the non-sink tokens in a probing stage, and then fine-tunes the model with scaling. Experiments show that pre-scaling yields substantial improvements in CL without experience replay, or progressively storing parameters from previous tasks.
Authors:Indu Solomon, Aye Phyu Phyu Aung, Uttam Kumar, Senthilnath Jayavelu
Title: Continual learning with task specialist
Abstract:
Continual learning (CL) adapt the deep learning scenarios with timely updated datasets. However, existing CL models suffer from the catastrophic forgetting issue, where new knowledge replaces past learning. In this paper, we propose Continual Learning with Task Specialists (CLTS) to address the issues of catastrophic forgetting and limited labelled data in real-world datasets by performing class incremental learning of the incoming stream of data. The model consists of Task Specialists (T S) and Task Predictor (T P ) with pre-trained Stable Diffusion (SD) module. Here, we introduce a new specialist to handle a new task sequence and each T S has three blocks; i) a variational autoencoder (V AE) to learn the task distribution in a low dimensional latent space, ii) a K-Means block to perform data clustering and iii) Bootstrapping Language-Image Pre-training (BLIP ) model to generate a small batch of captions from the input data. These captions are fed as input to the pre-trained stable diffusion model (SD) for the generation of task samples. The proposed model does not store any task samples for replay, instead uses generated samples from SD to train the T P module. A comparison study with four SOTA models conducted on three real-world datasets shows that the proposed model outperforms all the selected baselines
Authors:Keshav Bimbraw, Jack Rothenberg, Haichong K. Zhang
Title: Improving Intersession Reproducibility for Forearm Ultrasound based Hand Gesture Classification through an Incremental Learning Approach
Abstract:
Ultrasound images of the forearm can be used to classify hand gestures towards developing human machine interfaces. In our previous work, we have demonstrated gesture classification using ultrasound on a single subject without removing the probe before evaluation. This has limitations in usage as once the probe is removed and replaced, the accuracy declines since the classifier performance is sensitive to the probe location on the arm. In this paper, we propose training a model on multiple data collection sessions to create a generalized model, utilizing incremental learning through fine tuning. Ultrasound data was acquired for 5 hand gestures within a session (without removing and putting the probe back on) and across sessions. A convolutional neural network (CNN) with 5 cascaded convolution layers was used for this study. A pre-trained CNN was fine tuned with the convolution blocks acting as a feature extractor, and the parameters of the remaining layers updated in an incremental fashion. Fine tuning was done using different session splits within a session and between multiple sessions. We found that incremental fine tuning can help enhance classification accuracy with more fine tuning sessions. After 2 fine tuning sessions for each experiment, we found an approximate 10% increase in classification accuracy. This work demonstrates that incremental learning through fine tuning on ultrasound based hand gesture classification can be used improves accuracy while saving storage, processing power, and time. It can be expanded to generalize between multiple subjects and towards developing personalized wearable devices.
Authors:Rongzihan Song, Zhenyu Weng, Huiping Zhuang, Jinchang Ren, Yongming Chen, Zhiping Lin
Title: FACT: Feature Adaptive Continual-learning Tracker for Multiple Object Tracking
Abstract:
Multiple object tracking (MOT) involves identifying multiple targets and assigning them corresponding IDs within a video sequence, where occlusions are often encountered. Recent methods address occlusions using appearance cues through online learning techniques to improve adaptivity or offline learning techniques to utilize temporal information from videos. However, most existing online learning-based MOT methods are unable to learn from all past tracking information to improve adaptivity on long-term occlusions while maintaining real-time tracking speed. On the other hand, temporal information-based offline learning methods maintain a long-term memory to store past tracking information, but this approach restricts them to use only local past information during tracking. To address these challenges, we propose a new MOT framework called the Feature Adaptive Continual-learning Tracker (FACT), which enables real-time tracking and feature learning for targets by utilizing all past tracking information. We demonstrate that the framework can be integrated with various state-of-the-art feature-based trackers, thereby improving their tracking ability. Specifically, we develop the feature adaptive continual-learning (FAC) module, a neural network that can be trained online to learn features adaptively using all past tracking information during tracking. Moreover, we also introduce a two-stage association module specifically designed for the proposed continual learning-based tracking. Extensive experiment results demonstrate that the proposed method achieves state-of-the-art online tracking performance on MOT17 and MOT20 benchmarks. The code will be released upon acceptance.
Authors:Erik B. Terres-Escudero, Javier Del Ser, Pablo Garcia Bringas
Title: A Contrastive Symmetric Forward-Forward Algorithm (SFFA) for Continual Learning Tasks
Abstract:
The so-called Forward-Forward Algorithm (FFA) has recently gained momentum as an alternative to the conventional back-propagation algorithm for neural network learning, yielding competitive performance across various modeling tasks. By replacing the backward pass of gradient back-propagation with two contrastive forward passes, the FFA avoids several shortcomings undergone by its predecessor (e.g., vanishing/exploding gradient) by enabling layer-wise training heuristics. In classification tasks, this contrastive method has been proven to effectively create a latent sparse representation of the input data, ultimately favoring discriminability. However, FFA exhibits an inherent asymmetric gradient behavior due to an imbalanced loss function between positive and negative data, adversely impacting on the model's generalization capabilities and leading to an accuracy degradation. To address this issue, this work proposes the Symmetric Forward-Forward Algorithm (SFFA), a novel modification of the original FFA which partitions each layer into positive and negative neurons. This allows the local fitness function to be defined as the ratio between the activation of positive neurons and the overall layer activity, resulting in a symmetric loss landscape during the training phase. To evaluate the enhanced convergence of our method, we conduct several experiments using multiple image classification benchmarks, comparing the accuracy of models trained with SFFA to those trained with its FFA counterpart. As a byproduct of this reformulation, we explore the advantages of using a layer-wise training algorithm for Continual Learning (CL) tasks. The specialization of neurons and the sparsity of their activations induced by layer-wise training algorithms enable efficient CL strategies that incorporate new knowledge (classes) into the neural network, while preventing catastrophic forgetting of previously...
Authors:Marcus Rüb, Philipp Tuchel, Axel Sikora, Daniel Mueller-Gritschneder
Title: A Continual and Incremental Learning Approach for TinyML On-device Training Using Dataset Distillation and Model Size Adaption
Abstract:
A new algorithm for incremental learning in the context of Tiny Machine learning (TinyML) is presented, which is optimized for low-performance and energy efficient embedded devices. TinyML is an emerging field that deploys machine learning models on resource-constrained devices such as microcontrollers, enabling intelligent applications like voice recognition, anomaly detection, predictive maintenance, and sensor data processing in environments where traditional machine learning models are not feasible. The algorithm solve the challenge of catastrophic forgetting through the use of knowledge distillation to create a small, distilled dataset. The novelty of the method is that the size of the model can be adjusted dynamically, so that the complexity of the model can be adapted to the requirements of the task. This offers a solution for incremental learning in resource-constrained environments, where both model size and computational efficiency are critical factors. Results show that the proposed algorithm offers a promising approach for TinyML incremental learning on embedded devices. The algorithm was tested on five datasets including: CIFAR10, MNIST, CORE50, HAR, Speech Commands. The findings indicated that, despite using only 43% of Floating Point Operations (FLOPs) compared to a larger fixed model, the algorithm experienced a negligible accuracy loss of just 1%. In addition, the presented method is memory efficient. While state-of-the-art incremental learning is usually very memory intensive, the method requires only 1% of the original data set.
Authors:Edoardo Urettini, Daniele Atzeni, Ioanna-Yvonni Tsaknaki, Antonio Carta
Title: Online Continual Learning for Time Series: a Natural Score-driven Approach
Abstract:
Online continual learning (OCL) methods adapt to changing environments without forgetting past knowledge. Similarly, online time series forecasting (OTSF) is a real-world problem where data evolve in time and success depends on both rapid adaptation and long-term memory. Indeed, time-varying and regime-switching forecasting models have been extensively studied, offering a strong justification for the use of OCL in these settings. Building on recent work that applies OCL to OTSF, this paper aims to strengthen the theoretical and practical connections between time series methods and OCL. First, we reframe neural network optimization as a parameter filtering problem, showing that natural gradient descent is a score-driven method and proving its information-theoretic optimality. Then, we show that using a Student's t likelihood in addition to natural gradient induces a bounded update, which improves robustness to outliers. Finally, we introduce Natural Score-driven Replay (NatSR), which combines our robust optimizer with a replay buffer and a dynamic scale heuristic that improves fast adaptation at regime drifts. Empirical results demonstrate that NatSR achieves stronger forecasting performance than more complex state-of-the-art methods.
Authors:Anay Sinhal, Arpana Sinhal, Amit Sinhal
Title: Federated Continual Learning for Privacy-Preserving Hospital Imaging Classification
Abstract:
Deep learning models for radiology interpretation increasingly rely on multi-institutional data, yet privacy regulations and distribution shift across hospitals limit central data pooling. Federated learning (FL) allows hospitals to collaboratively train models without sharing raw images, but current FL algorithms typically assume a static data distribution. In practice, hospitals experience continual evolution in case mix, annotation protocols, and imaging devices, which leads to catastrophic forgetting when models are updated sequentially. Federated continual learning (FCL) aims to reconcile these challenges but existing methods either ignore the stringent privacy constraints of healthcare or rely on replay buffers and public surrogate datasets that are difficult to justify in clinical settings. We study FCL for chest radiography classification in a setting where hospitals are clients that receive temporally evolving streams of cases and labels. We introduce DP-FedEPC (Differentially Private Federated Elastic Prototype Consolidation), a method that combines elastic weight consolidation (EWC), prototype-based rehearsal, and client-side differential privacy within a standard FedAvg framework. EWC constrains updates along parameters deemed important for previous tasks, while a memory of latent prototypes preserves class structure without storing raw images. Differentially private stochastic gradient descent (DP-SGD) at each client adds calibrated Gaussian noise to clipped gradients, providing formal privacy guarantees for individual radiographs.
Authors:Basile Tousside, Janis Mohr, Jörg Frochte
Title: Group and Exclusive Sparse Regularization-based Continual Learning of CNNs
Abstract:
We present a regularization-based approach for continual learning (CL) of fixed capacity convolutional neural networks (CNN) that does not suffer from the problem of catastrophic forgetting when learning multiple tasks sequentially. This method referred to as Group and Exclusive Sparsity based Continual Learning (GESCL) avoids forgetting of previous tasks by ensuring the stability of the CNN via a stability regularization term, which prevents filters detected as important for past tasks to deviate too much when learning a new task. On top of that, GESCL makes the network plastic via a plasticity regularization term that leverage the over-parameterization of CNNs to efficiently sparsify the network and tunes unimportant filters making them relevant for future tasks. Doing so, GESCL deals with significantly less parameters and computation compared to CL approaches that either dynamically expand the network or memorize past tasks' data. Experiments on popular CL vision benchmarks show that GESCL leads to significant improvements over state-of-the-art method in terms of overall CL performance, as measured by classification accuracy as well as in terms of avoiding catastrophic forgetting.
Authors:Qiaolin Qin, Ronnie de Souza Santos, Rodrigo Spinola
Title: On the Role and Impact of GenAI Tools in Software Engineering Education
Abstract:
Context. The rise of generative AI (GenAI) tools like ChatGPT and GitHub Copilot has transformed how software is learned and written. In software engineering (SE) education, these tools offer new opportunities for support, but also raise concerns about over-reliance, ethical use, and impacts on learning. Objective. This study investigates how undergraduate SE students use GenAI tools, focusing on the benefits, challenges, ethical concerns, and instructional expectations that shape their experiences. Method. We conducted a survey with 130 undergraduate students from two universities. The survey combined structured Likert-scale items and open-ended questions to investigate five dimensions: usage context, perceived benefits, challenges, ethical and instructional perceptions. Results. Students most often use GenAI for incremental learning and advanced implementation, reporting benefits such as brainstorming support and confidence-building. At the same time, they face challenges including unclear rationales and difficulty adapting outputs. Students highlight ethical concerns around fairness and misconduct, and call for clearer instructional guidance. Conclusion. GenAI is reshaping SE education in nuanced ways. Our findings underscore the need for scaffolding, ethical policies, and adaptive instructional strategies to ensure that GenAI supports equitable and effective learning.
Authors:Hari Chandana Kuchibhotla, K S Ananth, Vineeth N Balasubramanian
Title: Annotation-Free Class-Incremental Learning
Abstract:
Despite significant progress in continual learning ranging from architectural novelty to clever strategies for mitigating catastrophic forgetting most existing methods rest on a strong but unrealistic assumption the availability of labeled data throughout the learning process. In real-world scenarios, however, data often arrives sequentially and without annotations, rendering conventional approaches impractical. In this work, we revisit the fundamental assumptions of continual learning and ask: Can current systems adapt when labels are absent and tasks emerge incrementally over time? To this end, we introduce Annotation-Free Class-Incremental Learning (AFCIL), a more realistic and challenging paradigm where unlabeled data arrives continuously, and the learner must incrementally acquire new classes without any supervision. To enable effective learning under AFCIL, we propose CrossWorld CL, a Cross Domain World Guided Continual Learning framework that incorporates external world knowledge as a stable auxiliary source. The method retrieves semantically related ImageNet classes for each downstream category, maps downstream and ImageNet features through a cross domain alignment strategy and finally introduce a novel replay strategy. This design lets the model uncover semantic structure without annotations while keeping earlier knowledge intact. Across four datasets, CrossWorld-CL surpasses CLIP baselines and existing continual and unlabeled learning methods, underscoring the benefit of world knowledge for annotation free continual learning.
Authors:Akhil Singampalli, Sudeep Pasricha
Title: Unified Class and Domain Incremental Learning with Mixture of Experts for Indoor Localization
Abstract:
Indoor localization using machine learning has gained traction due to the growing demand for location-based services. However, its long-term reliability is hindered by hardware/software variations across mobile devices, which shift the model's input distribution to create domain shifts. Further, evolving indoor environments can introduce new locations over time, expanding the output space to create class shifts, making static machine learning models ineffective over time. To address these challenges, we propose a novel unified continual learning framework for indoor localization called MOELO that, for the first time, jointly addresses domain-incremental and class-incremental learning scenarios. MOELO enables a lightweight, robust, and adaptive localization solution that can be deployed on resource-limited mobile devices and is capable of continual learning in dynamic, heterogeneous real-world settings. This is made possible by a mixture-of-experts architecture, where experts are incrementally trained per region and selected through an equiangular tight frame based gating mechanism ensuring efficient routing, and low-latency inference, all within a compact model footprint. Experimental evaluations show that MOELO achieves improvements of up to 25.6x in mean localization error, 44.5x in worst-case localization error, and 21.5x lesser forgetting compared to state-of-the-art frameworks across diverse buildings, mobile devices, and learning scenarios.
Authors:Patryk Krukowski, Jan Miksa, Piotr Helm, Jacek Tabor, Paweł Wawrzyński, Przemysław Spurek
Title: InTAct: Interval-based Task Activation Consolidation for Continual Learning
Abstract:
Continual learning aims to enable neural networks to acquire new knowledge without forgetting previously learned information. While recent prompt-based methods perform strongly in class-incremental settings, they remain vulnerable under domain shifts, where the input distribution changes but the label space remains fixed. This exposes a persistent problem known as representation drift. Shared representations evolve in ways that overwrite previously useful features and cause forgetting even when prompts isolate task-specific parameters. To address this issue, we introduce InTAct, a method that preserves functional behavior in shared layers without freezing parameters or storing past data. InTAct captures the characteristic activation ranges associated with previously learned tasks and constrains updates to ensure the network remains consistent within these regions, while still allowing for flexible adaptation elsewhere. In doing so, InTAct stabilizes the functional role of important neurons rather than directly restricting parameter values. The approach is architecture-agnostic and integrates seamlessly into existing prompt-based continual learning frameworks. By regulating representation changes where past knowledge is encoded, InTAct achieves a principled balance between stability and plasticity. Across diverse domain-incremental benchmarks, including DomainNet and ImageNet-R, InTAct consistently reduces representation drift and improves performance, increasing Average Accuracy by up to 8 percentage points over state-of-the-art baselines.
Authors:Yu-Qin Chen, Shi-Xin Zhang
Title: Intrinsic preservation of plasticity in continual quantum learning
Abstract:
Artificial intelligence in dynamic, real-world environments requires the capacity for continual learning. However, standard deep learning suffers from a fundamental issue: loss of plasticity, in which networks gradually lose their ability to learn from new data. Here we show that quantum learning models naturally overcome this limitation, preserving plasticity over long timescales. We demonstrate this advantage systematically across a broad spectrum of tasks from multiple learning paradigms, including supervised learning and reinforcement learning, and diverse data modalities, from classical high-dimensional images to quantum-native datasets. Although classical models exhibit performance degradation correlated with unbounded weight and gradient growth, quantum neural networks maintain consistent learning capabilities regardless of the data or task. We identify the origin of the advantage as the intrinsic physical constraints of quantum models. Unlike classical networks where unbounded weight growth leads to landscape ruggedness or saturation, the unitary constraints confine the optimization to a compact manifold. Our results suggest that the utility of quantum computing in machine learning extends beyond potential speedups, offering a robust pathway for building adaptive artificial intelligence and lifelong learners.
Authors:Kim N. Nolle, Ivana Dusparic, Rhodri Cusack, Vinny Cahill
Title: Continual Reinforcement Learning for Cyber-Physical Systems: Lessons Learned and Open Challenges
Abstract:
Continual learning (CL) is a branch of machine learning that aims to enable agents to adapt and generalise previously learned abilities so that these can be reapplied to new tasks or environments. This is particularly useful in multi-task settings or in non-stationary environments, where the dynamics can change over time. This is particularly relevant in cyber-physical systems such as autonomous driving. However, despite recent advances in CL, successfully applying it to reinforcement learning (RL) is still an open problem. This paper highlights open challenges in continual RL (CRL) based on experiments in an autonomous driving environment. In this environment, the agent must learn to successfully park in four different scenarios corresponding to parking spaces oriented at varying angles. The agent is successively trained in these four scenarios one after another, representing a CL environment, using Proximal Policy Optimisation (PPO). These experiments exposed a number of open challenges in CRL: finding suitable abstractions of the environment, oversensitivity to hyperparameters, catastrophic forgetting, and efficient use of neural network capacity. Based on these identified challenges, we present open research questions that are important to be addressed for creating robust CRL systems. In addition, the identified challenges call into question the suitability of neural networks for CL. We also identify the need for interdisciplinary research, in particular between computer science and neuroscience.
Authors:Tao Hu, Lan Li, Zhen-Hao Xie, Da-Wei Zhou
Title: Hierarchical Semantic Tree Anchoring for CLIP-Based Class-Incremental Learning
Abstract:
Class-Incremental Learning (CIL) enables models to learn new classes continually while preserving past knowledge. Recently, vision-language models like CLIP offer transferable features via multi-modal pre-training, making them well-suited for CIL. However, real-world visual and linguistic concepts are inherently hierarchical: a textual concept like "dog" subsumes fine-grained categories such as "Labrador" and "Golden Retriever," and each category entails its images. But existing CLIP-based CIL methods fail to explicitly capture this inherent hierarchy, leading to fine-grained class features drift during incremental updates and ultimately to catastrophic forgetting. To address this challenge, we propose HASTEN (Hierarchical Semantic Tree Anchoring) that anchors hierarchical information into CIL to reduce catastrophic forgetting. First, we employ an external knowledge graph as supervision to embed visual and textual features in hyperbolic space, effectively preserving hierarchical structure as data evolves. Second, to mitigate catastrophic forgetting, we project gradients onto the null space of the shared hyperbolic mapper, preventing interference with prior tasks. These two steps work synergistically to enable the model to resist forgetting by maintaining hierarchical relationships. Extensive experiments show that HASTEN consistently outperforms existing methods while providing a unified structured representation.
Authors:Genglin Liu, Shijie Geng, Sha Li, Hejie Cui, Sarah Zhang, Xin Liu, Tianyi Liu
Title: WebCoach: Self-Evolving Web Agents with Cross-Session Memory Guidance
Abstract:
Multimodal LLM-powered agents have recently demonstrated impressive capabilities in web navigation, enabling agents to complete complex browsing tasks across diverse domains. However, current agents struggle with repetitive errors and lack the ability to learn from past experiences across sessions, limiting their long-term robustness and sample efficiency. We introduce WebCoach, a model-agnostic self-evolving framework that equips web browsing agents with persistent cross-session memory, enabling improved long-term planning, reflection, and continual learning without retraining. WebCoach consists of three key components: (1) a WebCondenser, which standardizes raw navigation logs into concise summaries; (2) an External Memory Store, which organizes complete trajectories as episodic experiences; and (3) a Coach, which retrieves relevant experiences based on similarity and recency, and decides whether to inject task-specific advice into the agent via runtime hooks. This design empowers web agents to access long-term memory beyond their native context window, improving robustness in complex browsing tasks. Moreover, WebCoach achieves self-evolution by continuously curating episodic memory from new navigation trajectories, enabling agents to improve over time without retraining. Evaluations on the WebVoyager benchmark demonstrate that WebCoach consistently improves the performance of browser-use agents across three different LLM backbones. With a 38B model, it increases task success rates from 47% to 61% while reducing or maintaining the average number of steps. Notably, smaller base models with WebCoach achieve performance comparable to the same web agent using GPT-4o.
Authors:Taifeng Liu, Xinjing Liu, Liangqiu Dong, Yang Liu, Yilong Yang, Zhuo Ma
Title: Improving Sustainability of Adversarial Examples in Class-Incremental Learning
Abstract:
Current adversarial examples (AEs) are typically designed for static models. However, with the wide application of Class-Incremental Learning (CIL), models are no longer static and need to be updated with new data distributed and labeled differently from the old ones. As a result, existing AEs often fail after CIL updates due to significant domain drift. In this paper, we propose SAE to enhance the sustainability of AEs against CIL. The core idea of SAE is to enhance the robustness of AE semantics against domain drift by making them more similar to the target class while distinguishing them from all other classes. Achieving this is challenging, as relying solely on the initial CIL model to optimize AE semantics often leads to overfitting. To resolve the problem, we propose a Semantic Correction Module. This module encourages the AE semantics to be generalized, based on a visual-language model capable of producing universal semantics. Additionally, it incorporates the CIL model to correct the optimization direction of the AE semantics, guiding them closer to the target class. To further reduce fluctuations in AE semantics, we propose a Filtering-and-Augmentation Module, which first identifies non-target examples with target-class semantics in the latent space and then augments them to foster more stable semantics. Comprehensive experiments demonstrate that SAE outperforms baselines by an average of 31.28% when updated with a 9-fold increase in the number of classes.
Authors:Jay Mohta, Kenan Emir Ak, Dimitrios Dimitriadis, Yan Xu, Mingwei Shen
Title: Dynamic Routing Between Experts: A Data-Efficient Approach to Continual Learning in Vision-Language Models
Abstract:
Vision-Language Models (VLMs) suffer from catastrophic forgetting when sequentially fine-tuned on new tasks, degrading performance on previously learned foundational and task-specific capabilities. While multi-task learning can mitigate forgetting, it requires simultaneous access to all datasets and imposes computational overhead that scales linearly with the number of tasks. In this work, we introduce a routing-based approach that enables the integration of new tasks while preserving the foundational knowledge acquired during pretraining. We evaluate our method using InternVL-2 models (2B and 8B parameters) and demonstrate that routing preserves the model's foundational capabilities by maintaining performance on general-purpose benchmarks such as ChartQA, MMBench, and DocVQA, while simultaneously improving accuracy on specialized tasks. Importantly, our approach achieves this without requiring concurrent access to data from all tasks, avoiding the significant computational and data overhead associated with traditional multi-task learning. We further conduct extensive ablation studies to evaluate the scalability and robustness of routing-based learning, showing that the approach is resilient to a growing number of tasks and performs particularly well when new tasks are semantically related. Finally, we show that the routing mechanism enables superior cross-modal transfer between language and vision capabilities, allowing knowledge learned in one modality to enhance performance in another capability not achieved by existing continual learning methods.
Authors:Yujin Jo, Taesup Kim
Title: Memory-Free Continual Learning with Null Space Adaptation for Zero-Shot Vision-Language Models
Abstract:
Pre-trained vision-language models (VLMs), such as CLIP, have demonstrated remarkable zero-shot generalization, enabling deployment in a wide range of real-world tasks without additional task-specific training. However, in real deployment scenarios with evolving environments or emerging classes, these models inevitably face distributional shifts and novel tasks. In such contexts, static zero-shot capabilities are insufficient, and there is a growing need for continual learning methods that allow models to adapt over time while avoiding catastrophic forgetting. We introduce NuSA-CL (Null Space Adaptation for Continual Learning), a lightweight memory-free continual learning framework designed to address this challenge. NuSA-CL employs low-rank adaptation and constrains task-specific weight updates to lie within an approximate null space of the model's current parameters. This strategy minimizes interference with previously acquired knowledge, effectively preserving the zero-shot capabilities of the original model. Unlike methods relying on replay buffers or costly distillation, NuSA-CL imposes minimal computational and memory overhead, making it practical for deployment in resource-constrained, real-world continual learning environments. Experiments show that our framework not only effectively preserves zero-shot transfer capabilities but also achieves highly competitive performance on continual learning benchmarks. These results position NuSA-CL as a practical and scalable solution for continually evolving zero-shot VLMs in real-world applications.
Authors:Haolin Li, Hoda Bidkhori
Title: FedGTEA: Federated Class-Incremental Learning with Gaussian Task Embedding and Alignment
Abstract:
We introduce a novel framework for Federated Class Incremental Learning, called Federated Gaussian Task Embedding and Alignment (FedGTEA). FedGTEA is designed to capture task-specific knowledge and model uncertainty in a scalable and communication-efficient manner. At the client side, the Cardinality-Agnostic Task Encoder (CATE) produces Gaussian-distributed task embeddings that encode task knowledge, address statistical heterogeneity, and quantify data uncertainty. Importantly, CATE maintains a fixed parameter size regardless of the number of tasks, which ensures scalability across long task sequences. On the server side, FedGTEA utilizes the 2-Wasserstein distance to measure inter-task gaps between Gaussian embeddings. We formulate the Wasserstein loss to enforce inter-task separation. This probabilistic formulation not only enhances representation learning but also preserves task-level privacy by avoiding the direct transmission of latent embeddings, aligning with the privacy constraints in federated learning. Extensive empirical evaluations on popular datasets demonstrate that FedGTEA achieves superior classification performance and significantly mitigates forgetting, consistently outperforming strong existing baselines.
Authors:Jiawen Xu, Odej Kao
Title: Empirical Evidences for the Effects of Feature Diversity in Open Set Recognition and Continual Learning
Abstract:
Open set recognition (OSR) and continual learning are two critical challenges in machine learning, focusing respectively on detecting novel classes at inference time and updating models to incorporate the new classes. While many recent approaches have addressed these problems, particularly OSR, by heuristically promoting feature diversity, few studies have directly examined the role that feature diversity plays in tackling them. In this work, we provide empirical evidence that enhancing feature diversity improves the recognition of open set samples. Moreover, increased feature diversity also facilitates both the retention of previously learned data and the integration of new data in continual learning. We hope our findings can inspire further research into both practical methods and theoretical understanding in these domains.
Authors:Istabrak Abbes, Gopeshh Subbaraj, Matthew Riemer, Nizar Islah, Benjamin Therien, Tsuguchika Tabaru, Hiroaki Kingetsu, Sarath Chandar, Irina Rish
Title: Revisiting Replay and Gradient Alignment for Continual Pre-Training of Large Language Models
Abstract:
Training large language models (LLMs) typically involves pre-training on massive corpora, only to restart the process entirely when new data becomes available. A more efficient and resource-conserving approach would be continual pre-training, where models are updated with new data rather than retraining from scratch. However, the introduction of new data often causes distribution shifts, leading to performance degradation on previously learned tasks. In this paper, we take a deeper look at two popular proposals for addressing this distribution shift within the continual learning literature: experience replay and gradient alignment. We consider continual pre-training of models within the Llama family of architectures at a large scale across languages with 100 billion tokens of training data in each language, finding that both replay and gradient alignment lead to more stable learning without forgetting. This conclusion holds both as we vary the model scale and as we vary the number and diversity of tasks. Moreover, we are the first to demonstrate the effectiveness of gradient alignment techniques in the context of LLM pre-training and propose an efficient implementation of meta-experience replay (MER) that imbues experience replay with the benefits of gradient alignment despite negligible compute and memory overhead. Our scaling analysis across model sizes and replay rates indicates that small rates of replaying old examples are definitely a more valuable use of compute than investing in model size, but that it is more compute efficient to scale the size of the model than invest in high rates of replaying old examples.
Authors:Timm Hess, Gido M van de Ven, Tinne Tuytelaars
Title: Forgetting of task-specific knowledge in model merging-based continual learning
Abstract:
This paper investigates the linear merging of models in the context of continual learning (CL). Using controlled visual cues in computer vision experiments, we demonstrate that merging largely preserves or enhances shared knowledge, while unshared task-specific knowledge rapidly degrades. We further find that merging models from an incremental training process consistently outperforms merging models trained in parallel.
Authors:Luca Salvatore Lorello, Nikolaos Manginas, Marco Lippi, Stefano Melacci
Title: LTLZinc: a Benchmarking Framework for Continual Learning and Neuro-Symbolic Temporal Reasoning
Abstract:
Neuro-symbolic artificial intelligence aims to combine neural architectures with symbolic approaches that can represent knowledge in a human-interpretable formalism. Continual learning concerns with agents that expand their knowledge over time, improving their skills while avoiding to forget previously learned concepts. Most of the existing approaches for neuro-symbolic artificial intelligence are applied to static scenarios only, and the challenging setting where reasoning along the temporal dimension is necessary has been seldom explored. In this work we introduce LTLZinc, a benchmarking framework that can be used to generate datasets covering a variety of different problems, against which neuro-symbolic and continual learning methods can be evaluated along the temporal and constraint-driven dimensions. Our framework generates expressive temporal reasoning and continual learning tasks from a linear temporal logic specification over MiniZinc constraints, and arbitrary image classification datasets. Fine-grained annotations allow multiple neural and neuro-symbolic training settings on the same generated datasets. Experiments on six neuro-symbolic sequence classification and four class-continual learning tasks generated by LTLZinc, demonstrate the challenging nature of temporal learning and reasoning, and highlight limitations of current state-of-the-art methods. We release the LTLZinc generator and ten ready-to-use tasks to the neuro-symbolic and continual learning communities, in the hope of fostering research towards unified temporal learning and reasoning frameworks.
Authors:Hao Dai, Chong Tang, Jagmohan Chauhan
Title: ViRN: Variational Inference and Distribution Trilateration for Long-Tailed Continual Representation Learning
Abstract:
Continual learning (CL) with long-tailed data distributions remains a critical challenge for real-world AI systems, where models must sequentially adapt to new classes while retaining knowledge of old ones, despite severe class imbalance. Existing methods struggle to balance stability and plasticity, often collapsing under extreme sample scarcity. To address this, we propose ViRN, a novel CL framework that integrates variational inference (VI) with distributional trilateration for robust long-tailed learning. First, we model class-conditional distributions via a Variational Autoencoder to mitigate bias toward head classes. Second, we reconstruct tail-class distributions via Wasserstein distance-based neighborhood retrieval and geometric fusion, enabling sample-efficient alignment of tail-class representations. Evaluated on six long-tailed classification benchmarks, including speech (e.g., rare acoustic events, accents) and image tasks, ViRN achieves a 10.24% average accuracy gain over state-of-the-art methods.
Authors:Niels Leadholm, Viviane Clay, Scott Knudstrup, Hojae Lee, Jeff Hawkins
Title: Thousand-Brains Systems: Sensorimotor Intelligence for Rapid, Robust Learning and Inference
Abstract:
Current AI systems achieve impressive performance on many tasks, yet they lack core attributes of biological intelligence, including rapid, continual learning, representations grounded in sensorimotor interactions, and structured knowledge that enables efficient generalization. Neuroscience theory suggests that mammals evolved flexible intelligence through the replication of a semi-independent, sensorimotor module, a functional unit known as a cortical column. To address the disparity between biological and artificial intelligence, thousand-brains systems were proposed as a means of mirroring the architecture of cortical columns and their interactions. In the current work, we evaluate the unique properties of Monty, the first implementation of a thousand-brains system. We focus on 3D object perception, and in particular, the combined task of object recognition and pose estimation. Utilizing the YCB dataset of household objects, we first assess Monty's use of sensorimotor learning to build structured representations, finding that these enable robust generalization. These representations include an emphasis on classifying objects by their global shape, as well as a natural ability to detect object symmetries. We then explore Monty's use of model-free and model-based policies to enable rapid inference by supporting principled movements. We find that such policies complement Monty's modular architecture, a design that can accommodate communication between modules to further accelerate inference speed via a novel `voting' algorithm. Finally, we examine Monty's use of associative, Hebbian-like binding to enable rapid, continual, and computationally efficient learning, properties that compare favorably to current deep learning architectures. While Monty is still in a nascent stage of development, these findings support thousand-brains systems as a powerful and promising new approach to AI.
Authors:Pranta Saha, Joyce Reimer, Brook Byrns, Connor Burbridge, Neeraj Dhar, Jeffrey Chen, Steven Rayan, Gordon Broderick
Title: Reconstructing Biological Pathways by Applying Selective Incremental Learning to (Very) Small Language Models
Abstract:
The use of generative artificial intelligence (AI) models is becoming ubiquitous in many fields. Though progress continues to be made, general purpose large language AI models (LLM) show a tendency to deliver creative answers, often called "hallucinations", which have slowed their application in the medical and biomedical fields where accuracy is paramount. We propose that the design and use of much smaller, domain and even task-specific LM may be a more rational and appropriate use of this technology in biomedical research. In this work we apply a very small LM by today's standards to the specialized task of predicting regulatory interactions between molecular components to fill gaps in our current understanding of intracellular pathways. Toward this we attempt to correctly posit known pathway-informed interactions recovered from manually curated pathway databases by selecting and using only the most informative examples as part of an active learning scheme. With this example we show that a small (~110 million parameters) LM based on a Bidirectional Encoder Representations from Transformers (BERT) architecture can propose molecular interactions relevant to tuberculosis persistence and transmission with over 80% accuracy using less than 25% of the ~520 regulatory relationships in question. Using information entropy as a metric for the iterative selection of new tuning examples, we also find that increased accuracy is driven by favoring the use of the incorrectly assigned statements with the highest certainty (lowest entropy). In contrast, the concurrent use of correct but least certain examples contributed little and may have even been detrimental to the learning rate.
Authors:Erliang Lin, Wenbin Luo, Wei Jia, Yu Chen, Shaofu Yang
Title: Online Continual Learning via Spiking Neural Networks with Sleep Enhanced Latent Replay
Abstract:
Edge computing scenarios necessitate the development of hardware-efficient online continual learning algorithms to be adaptive to dynamic environment. However, existing algorithms always suffer from high memory overhead and bias towards recently trained tasks. To tackle these issues, this paper proposes a novel online continual learning approach termed as SESLR, which incorporates a sleep enhanced latent replay scheme with spiking neural networks (SNNs). SESLR leverages SNNs' binary spike characteristics to store replay features in single bits, significantly reducing memory overhead. Furthermore, inspired by biological sleep-wake cycles, SESLR introduces a noise-enhanced sleep phase where the model exclusively trains on replay samples with controlled noise injection, effectively mitigating classification bias towards new classes. Extensive experiments on both conventional (MNIST, CIFAR10) and neuromorphic (NMNIST, CIFAR10-DVS) datasets demonstrate SESLR's effectiveness. On Split CIFAR10, SESLR achieves nearly 30% improvement in average accuracy with only one-third of the memory consumption compared to baseline methods. On Split CIFAR10-DVS, it improves accuracy by approximately 10% while reducing memory overhead by a factor of 32. These results validate SESLR as a promising solution for online continual learning in resource-constrained edge computing scenarios.
Authors:Lapo Frati, Neil Traft, Jeff Clune, Nick Cheney
Title: How Weight Resampling and Optimizers Shape the Dynamics of Continual Learning and Forgetting in Neural Networks
Abstract:
Recent work in continual learning has highlighted the beneficial effect of resampling weights in the last layer of a neural network (``zapping"). Although empirical results demonstrate the effectiveness of this approach, the underlying mechanisms that drive these improvements remain unclear. In this work, we investigate in detail the pattern of learning and forgetting that take place inside a convolutional neural network when trained in challenging settings such as continual learning and few-shot transfer learning, with handwritten characters and natural images. Our experiments show that models that have undergone zapping during training more quickly recover from the shock of transferring to a new domain. Furthermore, to better observe the effect of continual learning in a multi-task setting we measure how each individual task is affected. This shows that, not only zapping, but the choice of optimizer can also deeply affect the dynamics of learning and forgetting, causing complex patterns of synergy/interference between tasks to emerge when the model learns sequentially at transfer time.
Authors:Grey Kuling, Marinka Zitnik
Title: Ken Utilization Layer: Hebbian Replay Within a Student's Ken for Adaptive Knowledge Tracing
Abstract:
We introduce KUL-KT, a biologically inspired architecture for knowledge tracing (KT), combining Hebbian memory encoding with gradient-based consolidation in a scalable, input-agnostic framework. KUL-KT adapts the principle of memory consolidation in neural systems, to student modeling by introducing two key innovations: (i) a time-decaying Hebbian memory update that enables graceful forgetting, and (ii) a novel Loss-aligned Internal Target (LIT) method to compute an ideal internal state, allowing continual learning without backpropagation through time. The architecture consists of a fast Hebbian memory that captures each learner interaction via a single associative update, and a slower linear network that consolidates recalled samples through gradient descent. This design enables few-shot personalization and natural forgetting without storing raw data or relying on large cohort training. Operating entirely in embedding space, KUL-KT supports both structured (tabular) and unstructured (short-answer) inputs. Empirically, KUL-KT outperforms strong baselines on ten public KT benchmarks in rank-sensitive metrics such as nDCG and Recall@10. In a classroom deployment, KUL-KT personalized quizzes from short-answer data, leading to improved learner-perceived helpfulness and reduced difficulty (p < 0.05). Ablation studies confirm that Hebbian decay and LIT are critical for continual adaptation. Compared to a strong graph-based KT model, KUL-KT trains 1.75x faster and uses 99.01\% less memory. These results position KUL-KT as a biologically grounded, memory-efficient, and input-flexible framework for personalized learning at scale.
Authors:Duc Thanh Pham, Hong Dang Nguyen, Nhat Minh Nguyen Quoc, Linh Ngo Van, Sang Dinh Viet, Duc Anh Nguyen
Title: Hierarchical Neural Collapse Detection Transformer for Class Incremental Object Detection
Abstract:
Recently, object detection models have witnessed notable performance improvements, particularly with transformer-based models. However, new objects frequently appear in the real world, requiring detection models to continually learn without suffering from catastrophic forgetting. Although Incremental Object Detection (IOD) has emerged to address this challenge, these existing models are still not practical due to their limited performance and prolonged inference time. In this paper, we introduce a novel framework for IOD, called Hier-DETR: Hierarchical Neural Collapse Detection Transformer, ensuring both efficiency and competitive performance by leveraging Neural Collapse for imbalance dataset and Hierarchical relation of classes' labels.
Authors:Joonkyu Kim, Yejin Kim, Jy-yong Sohn
Title: Measuring Representational Shifts in Continual Learning: A Linear Transformation Perspective
Abstract:
In continual learning scenarios, catastrophic forgetting of previously learned tasks is a critical issue, making it essential to effectively measure such forgetting. Recently, there has been growing interest in focusing on representation forgetting, the forgetting measured at the hidden layer. In this paper, we provide the first theoretical analysis of representation forgetting and use this analysis to better understand the behavior of continual learning. First, we introduce a new metric called representation discrepancy, which measures the difference between representation spaces constructed by two snapshots of a model trained through continual learning. We demonstrate that our proposed metric serves as an effective surrogate for the representation forgetting while remaining analytically tractable. Second, through mathematical analysis of our metric, we derive several key findings about the dynamics of representation forgetting: the forgetting occurs more rapidly to a higher degree as the layer index increases, while increasing the width of the network slows down the forgetting process. Third, we support our theoretical findings through experiments on real image datasets, including Split-CIFAR100 and ImageNet1K.
Authors:Viet Anh Khoa Tran, Emre Neftci, Willem. A. M. Wybo
Title: Contrastive Consolidation of Top-Down Modulations Achieves Sparsely Supervised Continual Learning
Abstract:
Biological brains learn continually from a stream of unlabeled data, while integrating specialized information from sparsely labeled examples without compromising their ability to generalize. Meanwhile, machine learning methods are susceptible to catastrophic forgetting in this natural learning setting, as supervised specialist fine-tuning degrades performance on the original task. We introduce task-modulated contrastive learning (TMCL), which takes inspiration from the biophysical machinery in the neocortex, using predictive coding principles to integrate top-down information continually and without supervision. We follow the idea that these principles build a view-invariant representation space, and that this can be implemented using a contrastive loss. Then, whenever labeled samples of a new class occur, new affine modulations are learned that improve separation of the new class from all others, without affecting feedforward weights. By co-opting the view-invariance learning mechanism, we then train feedforward weights to match the unmodulated representation of a data sample to its modulated counterparts. This introduces modulation invariance into the representation space, and, by also using past modulations, stabilizes it. Our experiments show improvements in both class-incremental and transfer learning over state-of-the-art unsupervised approaches, as well as over comparable supervised approaches, using as few as 1% of available labels. Taken together, our work suggests that top-down modulations play a crucial role in balancing stability and plasticity.
Authors:Xianrui Li, Yufei Cui, Jun Li, Antoni B. Chan
Title: Advancing Multiple Instance Learning with Continual Learning for Whole Slide Imaging
Abstract:
Advances in medical imaging and deep learning have propelled progress in whole slide image (WSI) analysis, with multiple instance learning (MIL) showing promise for efficient and accurate diagnostics. However, conventional MIL models often lack adaptability to evolving datasets, as they rely on static training that cannot incorporate new information without extensive retraining. Applying continual learning (CL) to MIL models is a possible solution, but often sees limited improvements. In this paper, we analyze CL in the context of attention MIL models and find that the model forgetting is mainly concentrated in the attention layers of the MIL model. Using the results of this analysis we propose two components for improving CL on MIL: Attention Knowledge Distillation (AKD) and the Pseudo-Bag Memory Pool (PMP). AKD mitigates catastrophic forgetting by focusing on retaining attention layer knowledge between learning sessions, while PMP reduces the memory footprint by selectively storing only the most informative patches, or ``pseudo-bags'' from WSIs. Experimental evaluations demonstrate that our method significantly improves both accuracy and memory efficiency on diverse WSI datasets, outperforming current state-of-the-art CL methods. This work provides a foundation for CL in large-scale, weakly annotated clinical datasets, paving the way for more adaptable and resilient diagnostic models.
Authors:Adnan Ahmad, Bahareh Nakisa, Mohammad Naim Rastgoo
Title: Robust Emotion Recognition via Bi-Level Self-Supervised Continual Learning
Abstract:
Emotion recognition through physiological signals such as electroencephalogram (EEG) has become an essential aspect of affective computing and provides an objective way to capture human emotions. However, physiological data characterized by cross-subject variability and noisy labels hinder the performance of emotion recognition models. Existing domain adaptation and continual learning methods struggle to address these issues, especially under realistic conditions where data is continuously streamed and unlabeled. To overcome these limitations, we propose a novel bi-level self-supervised continual learning framework, SSOCL, based on a dynamic memory buffer. This bi-level architecture iteratively refines the dynamic buffer and pseudo-label assignments to effectively retain representative samples, enabling generalization from continuous, unlabeled physiological data streams for emotion recognition. The assigned pseudo-labels are subsequently leveraged for accurate emotion prediction. Key components of the framework, including a fast adaptation module and a cluster-mapping module, enable robust learning and effective handling of evolving data streams. Experimental validation on two mainstream EEG tasks demonstrates the framework's ability to adapt to continuous data streams while maintaining strong generalization across subjects, outperforming existing approaches.
Authors:Milad Khademi Nori, Il-Min Kim, Guanghui Wang
Title: Autoencoder-Based Hybrid Replay for Class-Incremental Learning
Abstract:
In class-incremental learning (CIL), effective incremental learning strategies are essential to mitigate task confusion and catastrophic forgetting, especially as the number of tasks $t$ increases. Current exemplar replay strategies impose $\mathcal{O}(t)$ memory/compute complexities. We propose an autoencoder-based hybrid replay (AHR) strategy that leverages our new hybrid autoencoder (HAE) to function as a compressor to alleviate the requirement for large memory, achieving $\mathcal{O}(0.1 t)$ at the worst case with the computing complexity of $\mathcal{O}(t)$ while accomplishing state-of-the-art performance. The decoder later recovers the exemplar data stored in the latent space, rather than in raw format. Additionally, HAE is designed for both discriminative and generative modeling, enabling classification and replay capabilities, respectively. HAE adopts the charged particle system energy minimization equations and repulsive force algorithm for the incremental embedding and distribution of new class centroids in its latent space. Our results demonstrate that AHR consistently outperforms recent baselines across multiple benchmarks while operating with the same memory/compute budgets. The source code is included in the supplementary material and will be open-sourced upon publication.
Authors:Sriram Mandalika, Harsha Vardhan, Athira Nambiar
Title: Replay to Remember (R2R): An Efficient Uncertainty-driven Unsupervised Continual Learning Framework Using Generative Replay
Abstract:
Continual Learning entails progressively acquiring knowledge from new data while retaining previously acquired knowledge, thereby mitigating ``Catastrophic Forgetting'' in neural networks. Our work presents a novel uncertainty-driven Unsupervised Continual Learning framework using Generative Replay, namely ``Replay to Remember (R2R)''. The proposed R2R architecture efficiently uses unlabelled and synthetic labelled data in a balanced proportion using a cluster-level uncertainty-driven feedback mechanism and a VLM-powered generative replay module. Unlike traditional memory-buffer methods that depend on pretrained models and pseudo-labels, our R2R framework operates without any prior training. It leverages visual features from unlabeled data and adapts continuously using clustering-based uncertainty estimation coupled with dynamic thresholding. Concurrently, a generative replay mechanism along with DeepSeek-R1 powered CLIP VLM produces labelled synthetic data representative of past experiences, resembling biological visual thinking that replays memory to remember and act in new, unseen tasks. Extensive experimental analyses are carried out in CIFAR-10, CIFAR-100, CINIC-10, SVHN and TinyImageNet datasets. Our proposed R2R approach improves knowledge retention, achieving a state-of-the-art performance of 98.13%, 73.06%, 93.41%, 95.18%, 59.74%, respectively, surpassing state-of-the-art performance by over 4.36%.
Authors:Zhikai Wang, Yanyan Shen
Title: A Framework for Elastic Adaptation of User Multiple Intents in Sequential Recommendation
Abstract:
Recently, substantial research has been conducted on sequential recommendation, with the objective of forecasting the subsequent item by leveraging a user's historical sequence of interacted items. Prior studies employ both capsule networks and self-attention techniques to effectively capture diverse underlying intents within a user's interaction sequence, thereby achieving the most advanced performance in sequential recommendation. However, users could potentially form novel intents from fresh interactions as the lengths of user interaction sequences grow. Consequently, models need to be continually updated or even extended to adeptly encompass these emerging user intents, referred as incremental multi-intent sequential recommendation. % We refer to this problem as incremental multi-intent sequential recommendation, which has not yet been well investigated in the existing literature. In this paper, we propose an effective Incremental learning framework for user Multi-intent Adaptation in sequential recommendation called IMA, which augments the traditional fine-tuning strategy with the existing-intents retainer, new-intents detector, and projection-based intents trimmer to adaptively expand the model to accommodate user's new intents and prevent it from forgetting user's existing intents. Furthermore, we upgrade the IMA into an Elastic Multi-intent Adaptation (EMA) framework which can elastically remove inactive intents and compress user intent vectors under memory space limit. Extensive experiments on real-world datasets verify the effectiveness of the proposed IMA and EMA on incremental multi-intent sequential recommendation, compared with various baselines.
Authors:Arash Mahboubi, Hamed Aboutorab, Seyit Camtepe, Hang Thanh Bui, Khanh Luong, Keyvan Ansari, Shenlu Wang, Bazara Barry
Title: Data Encryption Battlefield: A Deep Dive into the Dynamic Confrontations in Ransomware Attacks
Abstract:
In the rapidly evolving landscape of cybersecurity threats, ransomware represents a significant challenge. Attackers increasingly employ sophisticated encryption methods, such as entropy reduction through Base64 encoding, and partial or intermittent encryption to evade traditional detection methods. This study explores the dynamic battle between adversaries who continuously refine encryption strategies and defenders developing advanced countermeasures to protect vulnerable data. We investigate the application of online incremental machine learning algorithms designed to predict file encryption activities despite adversaries evolving obfuscation techniques. Our analysis utilizes an extensive dataset of 32.6 GB, comprising 11,928 files across multiple formats, including Microsoft Word documents (doc), PowerPoint presentations (ppt), Excel spreadsheets (xlsx), image formats (jpg, jpeg, png, tif, gif), PDFs (pdf), audio (mp3), and video (mp4) files. These files were encrypted by 75 distinct ransomware families, facilitating a robust empirical evaluation of machine learning classifiers effectiveness against diverse encryption tactics. Results highlight the Hoeffding Tree algorithms superior incremental learning capability, particularly effective in detecting traditional and AES-Base64 encryption methods employed to lower entropy. Conversely, the Random Forest classifier with warm-start functionality excels at identifying intermittent encryption methods, demonstrating the necessity of tailored machine learning solutions to counter sophisticated ransomware strategies.
Authors:Sara Yavari, Jacob Furst
Title: Mitigating Catastrophic Forgetting in the Incremental Learning of Medical Images
Abstract:
This paper proposes an Incremental Learning (IL) approach to enhance the accuracy and efficiency of deep learning models in analyzing T2-weighted (T2w) MRI medical images prostate cancer detection using the PI-CAI dataset. We used multiple health centers' artificial intelligence and radiology data, focused on different tasks that looked at prostate cancer detection using MRI (PI-CAI). We utilized Knowledge Distillation (KD), as it employs generated images from past tasks to guide the training of models for subsequent tasks. The approach yielded improved performance and faster convergence of the models. To demonstrate the versatility and robustness of our approach, we evaluated it on the PI-CAI dataset, a diverse set of medical imaging modalities including OCT and PathMNIST, and the benchmark continual learning dataset CIFAR-10. Our results indicate that KD can be a promising technique for IL in medical image analysis in which data is sourced from individual health centers and the storage of large datasets is not feasible. By using generated images from prior tasks, our method enables the model to retain and apply previously acquired knowledge without direct access to the original data.
Authors:Joshua Hatherley, Robert Sparrow
Title: Diachronic and synchronic variation in the performance of adaptive machine learning systems: The ethical challenges
Abstract:
Objectives: Machine learning (ML) has the potential to facilitate "continual learning" in medicine, in which an ML system continues to evolve in response to exposure to new data over time, even after being deployed in a clinical setting. In this paper, we provide a tutorial on the range of ethical issues raised by the use of such "adaptive" ML systems in medicine that have, thus far, been neglected in the literature. Target audience: The target audiences for this tutorial are the developers of machine learning AI systems, healthcare regulators, the broader medical informatics community, and practicing clinicians. Scope: Discussions of adaptive ML systems to date have overlooked the distinction between two sorts of variance that such systems may exhibit -- diachronic evolution (change over time) and synchronic variation (difference between cotemporaneous instantiations of the algorithm at different sites) -- and under-estimated the significance of the latter. We highlight the challenges that diachronic evolution and synchronic variation present for the quality of patient care, informed consent, and equity, and discuss the complex ethical trade-offs involved in the design of such systems.
Authors:Haosheng Li, Yuecong Xu, Junjie Chen, Kemi Ding
Title: ProtoGuard-guided PROPEL: Class-Aware Prototype Enhancement and Progressive Labeling for Incremental 3D Point Cloud Segmentation
Abstract:
3D point cloud semantic segmentation technology has been widely used. However, in real-world scenarios, the environment is evolving. Thus, offline-trained segmentation models may lead to catastrophic forgetting of previously seen classes. Class-incremental learning (CIL) is designed to address the problem of catastrophic forgetting. While point clouds are common, we observe high similarity and unclear boundaries between different classes. Meanwhile, they are known to be imbalanced in class distribution. These lead to issues including misclassification between similar classes and the long-tail problem, which have not been adequately addressed in previous CIL methods. We thus propose ProtoGuard and PROPEL (Progressive Refinement Of PsEudo-Labels). In the base-class training phase, ProtoGuard maintains geometric and semantic prototypes for each class, which are combined into prototype features using an attention mechanism. In the novel-class training phase, PROPEL inherits the base feature extractor and classifier, guiding pseudo-label propagation and updates based on density distribution and semantic similarity. Extensive experiments show that our approach achieves remarkable results on both the S3DIS and ScanNet datasets, improving the mIoU of 3D point cloud segmentation by a maximum of 20.39% under the 5-step CIL scenario on S3DIS.
Authors:Octi Zhang, Quanquan Peng, Rosario Scalise, Bryon Boots
Title: Parental Guidance: Efficient Lifelong Learning through Evolutionary Distillation
Abstract:
Developing robotic agents that can perform well in diverse environments while showing a variety of behaviors is a key challenge in AI and robotics. Traditional reinforcement learning (RL) methods often create agents that specialize in narrow tasks, limiting their adaptability and diversity. To overcome this, we propose a preliminary, evolution-inspired framework that includes a reproduction module, similar to natural species reproduction, balancing diversity and specialization. By integrating RL, imitation learning (IL), and a coevolutionary agent-terrain curriculum, our system evolves agents continuously through complex tasks. This approach promotes adaptability, inheritance of useful traits, and continual learning. Agents not only refine inherited skills but also surpass their predecessors. Our initial experiments show that this method improves exploration efficiency and supports open-ended learning, offering a scalable solution where sparse reward coupled with diverse terrain environments induces a multi-task setting.
Authors:Nilay Kushawaha, Radan Pathan, Niccolò Pagliarani, Matteo Cianchetti, Egidio Falotico
Title: Adaptive Drift Compensation for Soft Sensorized Finger Using Continual Learning
Abstract:
Strain sensors are gaining popularity in soft robotics for acquiring tactile data due to their flexibility and ease of integration. Tactile sensing plays a critical role in soft grippers, enabling them to safely interact with unstructured environments and precisely detect object properties. However, a significant challenge with these systems is their high non-linearity, time-varying behavior, and long-term signal drift. In this paper, we introduce a continual learning (CL) approach to model a soft finger equipped with piezoelectric-based strain sensors for proprioception. To tackle the aforementioned challenges, we propose an adaptive CL algorithm that integrates a Long Short-Term Memory (LSTM) network with a memory buffer for rehearsal and includes a regularization term to keep the model's decision boundary close to the base signal while adapting to time-varying drift. We conduct nine different experiments, resetting the entire setup each time to demonstrate signal drift. We also benchmark our algorithm against two other methods and conduct an ablation study to assess the impact of different components on the overall performance.
Authors:Jacob Comeau, Mathieu Bazinet, Pascal Germain, Cem Subakan
Title: Sample Compression for Self Certified Continual Learning
Abstract:
Continual learning algorithms aim to learn from a sequence of tasks, making the training distribution non-stationary. The majority of existing continual learning approaches in the literature rely on heuristics and do not provide learning guarantees. In this paper, we present a new method called Continual Pick-to-Learn (CoP2L), which is able to retain the most representative samples for each task in an efficient way. CoP2L combines the Pick-to-Learn algorithm (rooted in the sample compression theory) and the experience replay continual learning scheme. This allows us to provide non-vacuous upper bounds on the generalization loss of the learned predictors, numerically computable after each task. We empirically evaluate our approach on several standard continual learning benchmarks across Class-Incremental, Task-Incremental, and Domain-Incremental settings. Our results show that CoP2L is highly competitive across all setups, often outperforming existing baselines, and significantly mitigating catastrophic forgetting compared to vanilla experience replay in the Class-Incremental setting. It is possible to leverage the bounds provided by CoP2L in practical scenarios to certify the predictor reliability on previously learned tasks, in order to improve the trustworthiness of the continual learning algorithm.
Authors:Bo-Yi Liu, Zhi-Xuan Liu, Kuan Lun Chen, Shih-Yu Tsai, Jie Gao, Hao-Tsung Yang
Title: Understanding Endogenous Data Drift in Adaptive Models with Recourse-Seeking Users
Abstract:
Deep learning models are widely used in decision-making and recommendation systems, where they typically rely on the assumption of a static data distribution between training and deployment. However, real-world deployment environments often violate this assumption. Users who receive negative outcomes may adapt their features to meet model criteria, i.e., recourse action. These adaptive behaviors create shifts in the data distribution and when models are retrained on this shifted data, a feedback loop emerges: user behavior influences the model, and the updated model in turn reshapes future user behavior. Despite its importance, this bidirectional interaction between users and models has received limited attention. In this work, we develop a general framework to model user strategic behaviors and their interactions with decision-making systems under resource constraints and competitive dynamics. Both the theoretical and empirical analyses show that user recourse behavior tends to push logistic and MLP models toward increasingly higher decision standards, resulting in higher recourse costs and less reliable recourse actions over time. To mitigate these challenges, we propose two methods--Fair-top-k and Dynamic Continual Learning (DCL)--which significantly reduce recourse cost and improve model robustness. Our findings draw connections to economic theories, highlighting how algorithmic decision-making can unintentionally reinforce a higher standard and generate endogenous barriers to entry.
Authors:Eli Verwimp, Guy Hacohen, Tinne Tuytelaars
Title: Same accuracy, twice as fast: continuous training surpasses retraining from scratch
Abstract:
Continual learning aims to enable models to adapt to new datasets without losing performance on previously learned data, often assuming that prior data is no longer available. However, in many practical scenarios, both old and new data are accessible. In such cases, good performance on both datasets is typically achieved by abandoning the model trained on the previous data and re-training a new model from scratch on both datasets. This training from scratch is computationally expensive. In contrast, methods that leverage the previously trained model and old data are worthy of investigation, as they could significantly reduce computational costs. Our evaluation framework quantifies the computational savings of such methods while maintaining or exceeding the performance of training from scratch. We identify key optimization aspects -- initialization, regularization, data selection, and hyper-parameters -- that can each contribute to reducing computational costs. For each aspect, we propose effective first-step methods that already yield substantial computational savings. By combining these methods, we achieve up to 2.7x reductions in computation time across various computer vision tasks, highlighting the potential for further advancements in this area.
Authors:Zelin Tao, Hao Deng, Mingqing Liu, Lijun Zhang, Shengjie Zhao
Title: PVBF: A Framework for Mitigating Parameter Variation Imbalance in Online Continual Learning
Abstract:
Online continual learning (OCL), which enables AI systems to adaptively learn from non-stationary data streams, is commonly achieved using experience replay (ER)-based methods that retain knowledge by replaying stored past during training. However, these methods face challenges of prediction bias, stemming from deviations in parameter update directions during task transitions. This paper identifies parameter variation imbalance as a critical factor contributing to prediction bias in ER-based OCL. Specifically, using the proposed parameter variation evaluation method, we highlight two types of imbalance: correlation-induced imbalance, where certain parameters are disproportionately updated across tasks, and layer-wise imbalance, where output layer parameters update faster than those in preceding layers. To mitigate the above imbalances, we propose the Parameter Variation Balancing Framework (PVBF), which incorporates: 1) a novel method to compute parameter correlations with previous tasks based on parameter variations, 2) an encourage-and-consolidate (E&C) method utilizing parameter correlations to perform gradient adjustments across all parameters during training, 3) a dual-layer copy weights with reinit (D-CWR) strategy to slowly update output layer parameters for frequently occuring sample categories. Experiments on short and long task sequences demonstrate that PVBF significantly reduces prediction bias and improves OCL performance, achieving up to 47\% higher accuracy compared to existing ER-based methods.
Authors:Edoardo Urettini, Antonio Carta
Title: Online Curvature-Aware Replay: Leveraging $\mathbf{2^{nd}}$ Order Information for Online Continual Learning
Abstract:
Online Continual Learning (OCL) models continuously adapt to nonstationary data streams, usually without task information. These settings are complex and many traditional CL methods fail, while online methods (mainly replay-based) suffer from instabilities after the task shift. To address this issue, we formalize replay-based OCL as a second-order online joint optimization with explicit KL-divergence constraints on replay data. We propose Online Curvature-Aware Replay (OCAR) to solve the problem: a method that leverages second-order information of the loss using a K-FAC approximation of the Fisher Information Matrix (FIM) to precondition the gradient. The FIM acts as a stabilizer to prevent forgetting while also accelerating the optimization in non-interfering directions. We show how to adapt the estimation of the FIM to a continual setting stabilizing second-order optimization for non-iid data, uncovering the role of the Tikhonov regularization in the stability-plasticity tradeoff. Empirical results show that OCAR outperforms state-of-the-art methods in continual metrics achieving higher average accuracy throughout the training process in three different benchmarks.
Authors:Milad Khademi Nori, Il-Min Kim, Guanghui Wang
Title: Federated Class-Incremental Learning: A Hybrid Approach Using Latent Exemplars and Data-Free Techniques to Address Local and Global Forgetting
Abstract:
Federated Class-Incremental Learning (FCIL) refers to a scenario where a dynamically changing number of clients collaboratively learn an ever-increasing number of incoming tasks. FCIL is known to suffer from local forgetting due to class imbalance at each client and global forgetting due to class imbalance across clients. We develop a mathematical framework for FCIL that formulates local and global forgetting. Then, we propose an approach called Hybrid Rehearsal (HR), which utilizes latent exemplars and data-free techniques to address local and global forgetting, respectively. HR employs a customized autoencoder designed for both data classification and the generation of synthetic data. To determine the embeddings of new tasks for all clients in the latent space of the encoder, the server uses the Lennard-Jones Potential formulations. Meanwhile, at the clients, the decoder decodes the stored low-dimensional latent space exemplars back to the high-dimensional input space, used to address local forgetting. To overcome global forgetting, the decoder generates synthetic data. Furthermore, our mathematical framework proves that our proposed approach HR can, in principle, tackle the two local and global forgetting challenges. In practice, extensive experiments demonstrate that while preserving privacy, our proposed approach outperforms the state-of-the-art baselines on multiple FCIL benchmarks with low compute and memory footprints.
Authors:KaiHui Huang, RunQing Wu, JinHui Shen, HanYi Zhang, Ling Ge, JiGuo Yu, Fei Ye
Title: Learning Dynamic Representations via An Optimally-Weighted Maximum Mean Discrepancy Optimization Framework for Continual Learning
Abstract:
Continual learning has emerged as a pivotal area of research, primarily due to its advantageous characteristic that allows models to persistently acquire and retain information. However, catastrophic forgetting can severely impair model performance. In this study, we address network forgetting by introducing a novel framework termed Optimally-Weighted Maximum Mean Discrepancy (OWMMD), which imposes penalties on representation alterations via a Multi-Level Feature Matching Mechanism (MLFMM). Furthermore, we propose an Adaptive Regularization Optimization (ARO) strategy to refine the adaptive weight vectors, which autonomously assess the significance of each feature layer throughout the optimization process, The proposed ARO approach can relieve the over-regularization problem and promote the future task learning. We conduct a comprehensive series of experiments, benchmarking our proposed method against several established baselines. The empirical findings indicate that our approach achieves state-of-the-art performance.
Authors:Runqing Wu, Fei Ye, Qihe Liu, Guoxi Huang, Jinyu Guo, Rongyao Hu
Title: Incrementally Learning Multiple Diverse Data Domains via Multi-Source Dynamic Expansion Model
Abstract:
Continual Learning seeks to develop a model capable of incrementally assimilating new information while retaining prior knowledge. However, current research predominantly addresses a straightforward learning context, wherein all data samples originate from a singular data domain. This paper shifts focus to a more complex and realistic learning environment, characterized by data samples sourced from multiple distinct domains. We tackle this intricate learning challenge by introducing a novel methodology, termed the Multi-Source Dynamic Expansion Model (MSDEM), which leverages various pre-trained models as backbones and progressively establishes new experts based on them to adapt to emerging tasks. Additionally, we propose an innovative dynamic expandable attention mechanism designed to selectively harness knowledge from multiple backbones, thereby accelerating the new task learning. Moreover, we introduce a dynamic graph weight router that strategically reuses all previously acquired parameters and representations for new task learning, maximizing the positive knowledge transfer effect, which further improves generalization performance. We conduct a comprehensive series of experiments, and the empirical findings indicate that our proposed approach achieves state-of-the-art performance.
Authors:RunQing Wu, KaiHui Huang, HanYi Zhang, QiHe Liu, GuoJin Yu, JingSong Deng, Fei Ye
Title: Information-Theoretic Dual Memory System for Continual Learning
Abstract:
Continuously acquiring new knowledge from a dynamic environment is a fundamental capability for animals, facilitating their survival and ability to address various challenges. This capability is referred to as continual learning, which focuses on the ability to learn a sequence of tasks without the detriment of previous knowledge. A prevalent strategy to tackle continual learning involves selecting and storing numerous essential data samples from prior tasks within a fixed-size memory buffer. However, the majority of current memory-based techniques typically utilize a single memory buffer, which poses challenges in concurrently managing newly acquired and previously learned samples. Drawing inspiration from the Complementary Learning Systems (CLS) theory, which defines rapid and gradual learning mechanisms for processing information, we propose an innovative dual memory system called the Information-Theoretic Dual Memory System (ITDMS). This system comprises a fast memory buffer designed to retain temporary and novel samples, alongside a slow memory buffer dedicated to preserving critical and informative samples. The fast memory buffer is optimized employing an efficient reservoir sampling process. Furthermore, we introduce a novel information-theoretic memory optimization strategy that selectively identifies and retains diverse and informative data samples for the slow memory buffer. Additionally, we propose a novel balanced sample selection procedure that automatically identifies and eliminates redundant memorized samples, thus freeing up memory capacity for new data acquisitions, which can deal with a growing array of tasks. Our methodology is rigorously assessed through a series of continual learning experiments, with empirical results underscoring the effectiveness of the proposed system.
Authors:Anat Kleiman, Gintare Karolina Dziugaite, Jonathan Frankle, Sham Kakade, Mansheej Paul
Title: Soup to go: mitigating forgetting during continual learning with model averaging
Abstract:
In continual learning, where task data arrives in a sequence, fine-tuning on later tasks will often lead to performance degradation on earlier tasks. This is especially pronounced when these tasks come from diverse domains. In this setting, how can we mitigate catastrophic forgetting of earlier tasks and retain what the model has learned with minimal computational expenses? Inspired by other merging methods, and L2-regression, we propose Sequential Fine-tuning with Averaging (SFA), a method that merges currently training models with earlier checkpoints during the course of training. SOTA approaches typically maintain a data buffer of past tasks or impose a penalty at each gradient step. In contrast, our method achieves comparable results without the need to store past data, or multiple copies of parameters for each gradient step. Furthermore, our method outperforms common merging techniques such as Task Arithmetic, TIES Merging, and WiSE-FT, as well as other penalty methods like L2 and Elastic Weight Consolidation. In turn, our method offers insight into the benefits of merging partially-trained models during training across both image and language domains.
Authors:Xiaodi Li, Dingcheng Li, Rujun Gao, Mahmoud Zamani, Latifur Khan
Title: LSEBMCL: A Latent Space Energy-Based Model for Continual Learning
Abstract:
Continual learning has become essential in many practical applications such as online news summaries and product classification. The primary challenge is known as catastrophic forgetting, a phenomenon where a model inadvertently discards previously learned knowledge when it is trained on new tasks. Existing solutions involve storing exemplars from previous classes, regularizing parameters during the fine-tuning process, or assigning different model parameters to each task. The proposed solution LSEBMCL (Latent Space Energy-Based Model for Continual Learning) in this work is to use energy-based models (EBMs) to prevent catastrophic forgetting by sampling data points from previous tasks when training on new ones. The EBM is a machine learning model that associates an energy value with each input data point. The proposed method uses an EBM layer as an outer-generator in the continual learning framework for NLP tasks. The study demonstrates the efficacy of EBM in NLP tasks, achieving state-of-the-art results in all experiments.
Authors:Hongye Xu, Jan Wasilewski, Bartosz Krawczyk
Title: Balanced Gradient Sample Retrieval for Enhanced Knowledge Retention in Proxy-based Continual Learning
Abstract:
Continual learning in deep neural networks often suffers from catastrophic forgetting, where representations for previous tasks are overwritten during subsequent training. We propose a novel sample retrieval strategy from the memory buffer that leverages both gradient-conflicting and gradient-aligned samples to effectively retain knowledge about past tasks within a supervised contrastive learning framework. Gradient-conflicting samples are selected for their potential to reduce interference by re-aligning gradients, thereby preserving past task knowledge. Meanwhile, gradient-aligned samples are incorporated to reinforce stable, shared representations across tasks. By balancing gradient correction from conflicting samples with alignment reinforcement from aligned ones, our approach increases the diversity among retrieved instances and achieves superior alignment in parameter space, significantly enhancing knowledge retention and mitigating proxy drift. Empirical results demonstrate that using both sample types outperforms methods relying solely on one sample type or random retrieval. Experiments on popular continual learning benchmarks in computer vision validate our method's state-of-the-art performance in mitigating forgetting while maintaining competitive accuracy on new tasks.
Authors:Ruiheng Liu, Jinyu Zhang, Yanqi Song, Yu Zhang, Bailong Yang
Title: Filling Memory Gaps: Enhancing Continual Semantic Parsing via SQL Syntax Variance-Guided LLMs without Real Data Replay
Abstract:
Continual Semantic Parsing (CSP) aims to train parsers to convert natural language questions into SQL across tasks with limited annotated examples, adapting to the real-world scenario of dynamically updated databases. Previous studies mitigate this challenge by replaying historical data or employing parameter-efficient tuning (PET), but they often violate data privacy or rely on ideal continual learning settings. To address these problems, we propose a new Large Language Model (LLM)-Enhanced Continuous Semantic Parsing method, named LECSP, which alleviates forgetting while encouraging generalization, without requiring real data replay or ideal settings. Specifically, it first analyzes the commonalities and differences between tasks from the SQL syntax perspective to guide LLMs in reconstructing key memories and improving memory accuracy through a calibration strategy. Then, it uses a task-aware dual-teacher distillation framework to promote the accumulation and transfer of knowledge during sequential training. Experimental results on two CSP benchmarks show that our method significantly outperforms existing methods, even those utilizing data replay or ideal settings. Additionally, we achieve generalization performance beyond the upper limits, better adapting to unseen tasks.
Authors:Geoffrey Tyndall, Kurniawati Azizah, Dipta Tanaya, Ayu Purwarianti, Dessi Puji Lestari, Sakriani Sakti
Title: Continual Learning in Machine Speech Chain Using Gradient Episodic Memory
Abstract:
Continual learning for automatic speech recognition (ASR) systems poses a challenge, especially with the need to avoid catastrophic forgetting while maintaining performance on previously learned tasks. This paper introduces a novel approach leveraging the machine speech chain framework to enable continual learning in ASR using gradient episodic memory (GEM). By incorporating a text-to-speech (TTS) component within the machine speech chain, we support the replay mechanism essential for GEM, allowing the ASR model to learn new tasks sequentially without significant performance degradation on earlier tasks. Our experiments, conducted on the LJ Speech dataset, demonstrate that our method outperforms traditional fine-tuning and multitask learning approaches, achieving a substantial error rate reduction while maintaining high performance across varying noise conditions. We showed the potential of our semi-supervised machine speech chain approach for effective and efficient continual learning in speech recognition.
Authors:Nazia Tasnim, Bryan A. Plummer
Title: RECAST: Reparameterized, Compact weight Adaptation for Sequential Tasks
Abstract:
Incremental learning aims to adapt to new sets of categories over time with minimal computational overhead. Prior work often addresses this task by training efficient task-specific adaptors that modify frozen layer weights or features to capture relevant information without affecting predictions on previously learned categories. While these adaptors are generally more efficient than finetuning the entire network, they still require tens to hundreds of thousands of task-specific trainable parameters even for relatively small networks, making it challenging to operate on resource-constrained environments with high communication costs like edge devices or mobile phones. Thus, we propose Reparameterized, Compact weight Adaptation for Sequential Tasks (RECAST), a novel method that dramatically reduces task-specific trainable parameters to fewer than 50 - several orders of magnitude less than competing methods like LoRA. RECAST accomplishes this efficiency by learning to decompose layer weights into a soft parameter-sharing framework consisting of shared weight templates and very few module-specific scaling factors or coefficients. This soft parameter-sharing framework allows for effective task-wise reparameterization by tuning only these coefficients while keeping templates frozen.A key innovation of RECAST is the novel weight reconstruction pipeline called Neural Mimicry, which eliminates the need for pretraining from scratch. This allows for high-fidelity emulation of existing pretrained weights within our framework and provides quick adaptability to any model scale and architecture. Extensive experiments across six datasets demonstrate RECAST outperforms the state-of-the-art by up to 3% across various scales, architectures, and parameter spaces Moreover, we show that RECAST's architecture-agnostic nature allows for seamless integration with existing methods, further boosting performance.
Authors:Milad Khademi Nori, Il-Min Kim
Title: Task Confusion and Catastrophic Forgetting in Class-Incremental Learning: A Mathematical Framework for Discriminative and Generative Modelings
Abstract:
In class-incremental learning (class-IL), models must classify all previously seen classes at test time without task-IDs, leading to task confusion. Despite being a key challenge, task confusion lacks a theoretical understanding. We present a novel mathematical framework for class-IL and prove the Infeasibility Theorem, showing optimal class-IL is impossible with discriminative modeling due to task confusion. However, we establish the Feasibility Theorem, demonstrating that generative modeling can achieve optimal class-IL by overcoming task confusion. We then assess popular class-IL strategies, including regularization, bias-correction, replay, and generative classifier, using our framework. Our analysis suggests that adopting generative modeling, either for generative replay or direct classification (generative classifier), is essential for optimal class-IL.
Authors:Marco Mistretta, Andrew D. Bagdanov
Title: RE-tune: Incremental Fine Tuning of Biomedical Vision-Language Models for Multi-label Chest X-ray Classification
Abstract:
In this paper we introduce RE-tune, a novel approach for fine-tuning pre-trained Multimodal Biomedical Vision-Language models (VLMs) in Incremental Learning scenarios for multi-label chest disease diagnosis. RE-tune freezes the backbones and only trains simple adaptors on top of the Image and Text encoders of the VLM. By engineering positive and negative text prompts for diseases, we leverage the ability of Large Language Models to steer the training trajectory. We evaluate RE-tune in three realistic incremental learning scenarios: class-incremental, label-incremental, and data-incremental. Our results demonstrate that Biomedical VLMs are natural continual learners and prevent catastrophic forgetting. RE-tune not only achieves accurate multi-label classification results, but also prioritizes patient privacy and it distinguishes itself through exceptional computational efficiency, rendering it highly suitable for broad adoption in real-world healthcare settings.
Authors:Jiangtao Kong, Jiacheng Shi, Ashley Gao, Shaohan Hu, Tianyi Zhou, Huajie Shao
Title: Hybrid Memory Replay: Blending Real and Distilled Data for Class Incremental Learning
Abstract:
Incremental learning (IL) aims to acquire new knowledge from current tasks while retaining knowledge learned from previous tasks. Replay-based IL methods store a set of exemplars from previous tasks in a buffer and replay them when learning new tasks. However, there is usually a size-limited buffer that cannot store adequate real exemplars to retain the knowledge of previous tasks. In contrast, data distillation (DD) can reduce the exemplar buffer's size, by condensing a large real dataset into a much smaller set of more information-compact synthetic exemplars. Nevertheless, DD's performance gain on IL quickly vanishes as the number of synthetic exemplars grows. To overcome the weaknesses of real-data and synthetic-data buffers, we instead optimize a hybrid memory including both types of data. Specifically, we propose an innovative modification to DD that distills synthetic data from a sliding window of checkpoints in history (rather than checkpoints on multiple training trajectories). Conditioned on the synthetic data, we then optimize the selection of real exemplars to provide complementary improvement to the DD objective. The optimized hybrid memory combines the strengths of synthetic and real exemplars, effectively mitigating catastrophic forgetting in Class IL (CIL) when the buffer size for exemplars is limited. Notably, our method can be seamlessly integrated into most existing replay-based CIL models. Extensive experiments across multiple benchmarks demonstrate that our method significantly outperforms existing replay-based baselines.
Authors:Hossein Rezaei, Mohammad Sabokrou
Title: Continual Learning: Less Forgetting, More OOD Generalization via Adaptive Contrastive Replay
Abstract:
Machine learning models often suffer from catastrophic forgetting of previously learned knowledge when learning new classes. Various methods have been proposed to mitigate this issue. However, rehearsal-based learning, which retains samples from previous classes, typically achieves good performance but tends to memorize specific instances, struggling with Out-of-Distribution (OOD) generalization. This often leads to high forgetting rates and poor generalization. Surprisingly, the OOD generalization capabilities of these methods have been largely unexplored. In this paper, we highlight this issue and propose a simple yet effective strategy inspired by contrastive learning and data-centric principles to address it. We introduce Adaptive Contrastive Replay (ACR), a method that employs dual optimization to simultaneously train both the encoder and the classifier. ACR adaptively populates the replay buffer with misclassified samples while ensuring a balanced representation of classes and tasks. By refining the decision boundary in this way, ACR achieves a balance between stability and plasticity. Our method significantly outperforms previous approaches in terms of OOD generalization, achieving an improvement of 13.41\% on Split CIFAR-100, 9.91\% on Split Mini-ImageNet, and 5.98\% on Split Tiny-ImageNet.
Authors:Hossein Resani, Behrooz Nasihatkon
Title: MIRACLE3D: Memory-efficient Integrated Robust Approach for Continual Learning on Point Clouds via Shape Model Construction
Abstract:
In this paper, we introduce a novel framework for memory-efficient and privacy-preserving continual learning in 3D object classification. Unlike conventional memory-based approaches in continual learning that require storing numerous exemplars, our method constructs a compact shape model for each class, retaining only the mean shape along with a few key modes of variation. This strategy not only enables the generation of diverse training samples while drastically reducing memory usage but also enhances privacy by eliminating the need to store original data. To further improve model robustness against input variations, an issue common in 3D domains due to the absence of strong backbones and limited training data, we incorporate Gradient Mode Regularization. This technique enhances model stability and broadens classification margins, resulting in accuracy improvements. We validate our approach through extensive experiments on the ModelNet40, ShapeNet, and ScanNet datasets, where we achieve state-of-the-art performance. Notably, our method consumes only 15% of the memory required by competing methods on the ModelNet40 and ShapeNet, while achieving comparable performance on the challenging ScanNet dataset with just 8.5% of the memory. These results underscore the scalability, effectiveness, and privacy-preserving strengths of our framework for 3D object classification.
Authors:Xuming Ran, Juntao Yao, Yusong Wang, Mingkun Xu, Dianbo Liu
Title: Brain-inspired continual pre-trained learner via silent synaptic consolidation
Abstract:
Pre-trained models have demonstrated impressive generalization capabilities, yet they remain vulnerable to catastrophic forgetting when incrementally trained on new tasks. Existing architecture-based strategies encounter two primary challenges: 1) Integrating a pre-trained network with a trainable sub-network complicates the delicate balance between learning plasticity and memory stability across evolving tasks during learning. 2) The absence of robust interconnections between pre-trained networks and various sub-networks limits the effective retrieval of pertinent information during inference. In this study, we introduce the Artsy, inspired by the activation mechanisms of silent synapses via spike-timing-dependent plasticity observed in mature brains, to enhance the continual learning capabilities of pre-trained models. The Artsy integrates two key components: During training, the Artsy mimics mature brain dynamics by maintaining memory stability for previously learned knowledge within the pre-trained network while simultaneously promoting learning plasticity in task-specific sub-networks. During inference, artificial silent and functional synapses are utilized to establish precise connections between the pre-synaptic neurons in the pre-trained network and the post-synaptic neurons in the sub-networks, facilitated through synaptic consolidation, thereby enabling effective extraction of relevant information from test samples. Comprehensive experimental evaluations reveal that our model significantly outperforms conventional methods on class-incremental learning tasks, while also providing enhanced biological interpretability for architecture-based approaches. Moreover, we propose that the Artsy offers a promising avenue for simulating biological synaptic mechanisms, potentially advancing our understanding of neural plasticity in both artificial and biological systems.
Authors:Kaushik Roy, Akila Dissanayake, Brendan Tidd, Peyman Moghadam
Title: M2Distill: Multi-Modal Distillation for Lifelong Imitation Learning
Abstract:
Lifelong imitation learning for manipulation tasks poses significant challenges due to distribution shifts that occur in incremental learning steps. Existing methods often focus on unsupervised skill discovery to construct an ever-growing skill library or distillation from multiple policies, which can lead to scalability issues as diverse manipulation tasks are continually introduced and may fail to ensure a consistent latent space throughout the learning process, leading to catastrophic forgetting of previously learned skills. In this paper, we introduce M2Distill, a multi-modal distillation-based method for lifelong imitation learning focusing on preserving consistent latent space across vision, language, and action distributions throughout the learning process. By regulating the shifts in latent representations across different modalities from previous to current steps, and reducing discrepancies in Gaussian Mixture Model (GMM) policies between consecutive learning steps, we ensure that the learned policy retains its ability to perform previously learned tasks while seamlessly integrating new skills. Extensive evaluations on the LIBERO lifelong imitation learning benchmark suites, including LIBERO-OBJECT, LIBERO-GOAL, and LIBERO-SPATIAL, demonstrate that our method consistently outperforms prior state-of-the-art methods across all evaluated metrics.
Authors:Nilay Kushawaha, Egidio Falotico
Title: Continual Learning for Multimodal Data Fusion of a Soft Gripper
Abstract:
Continual learning (CL) refers to the ability of an algorithm to continuously and incrementally acquire new knowledge from its environment while retaining previously learned information. A model trained on one data modality often fails when tested with a different modality. A straightforward approach might be to fuse the two modalities by concatenating their features and training the model on the fused data. However, this requires retraining the model from scratch each time it encounters a new domain. In this paper, we introduce a continual learning algorithm capable of incrementally learning different data modalities by leveraging both class-incremental and domain-incremental learning scenarios in an artificial environment where labeled data is scarce, yet non-iid (independent and identical distribution) unlabeled data from the environment is plentiful. The proposed algorithm is efficient and only requires storing prototypes for each class. We evaluate the algorithm's effectiveness on a challenging custom multimodal dataset comprising of tactile data from a soft pneumatic gripper, and visual data from non-stationary images of objects extracted from video sequences. Additionally, we conduct an ablation study on the custom dataset and the Core50 dataset to highlight the contributions of different components of the algorithm. To further demonstrate the robustness of the algorithm, we perform a real-time experiment for object classification using the soft gripper and an external independent camera setup, all synchronized with the Robot Operating System (ROS) framework.
Authors:Cuiwei Liu, Siang Xu, Huaijun Qiu, Jing Zhang, Zhi Liu, Liang Zhao
Title: Few-Shot Class-Incremental Learning with Non-IID Decentralized Data
Abstract:
Few-shot class-incremental learning is crucial for developing scalable and adaptive intelligent systems, as it enables models to acquire new classes with minimal annotated data while safeguarding the previously accumulated knowledge. Nonetheless, existing methods deal with continuous data streams in a centralized manner, limiting their applicability in scenarios that prioritize data privacy and security. To this end, this paper introduces federated few-shot class-incremental learning, a decentralized machine learning paradigm tailored to progressively learn new classes from scarce data distributed across multiple clients. In this learning paradigm, clients locally update their models with new classes while preserving data privacy, and then transmit the model updates to a central server where they are aggregated globally. However, this paradigm faces several issues, such as difficulties in few-shot learning, catastrophic forgetting, and data heterogeneity. To address these challenges, we present a synthetic data-driven framework that leverages replay buffer data to maintain existing knowledge and facilitate the acquisition of new knowledge. Within this framework, a noise-aware generative replay module is developed to fine-tune local models with a balance of new and replay data, while generating synthetic data of new classes to further expand the replay buffer for future tasks. Furthermore, a class-specific weighted aggregation strategy is designed to tackle data heterogeneity by adaptively aggregating class-specific parameters based on local models performance on synthetic data. This enables effective global model optimization without direct access to client data. Comprehensive experiments across three widely-used datasets underscore the effectiveness and preeminence of the introduced framework.
Authors:Hossein Resani, Behrooz Nasihatkon, Mohammadreza Alimoradi Jazi
Title: Continual Learning in 3D Point Clouds: Employing Spectral Techniques for Exemplar Selection
Abstract:
We introduce a novel framework for Continual Learning in 3D object classification. Our approach, CL3D, is based on the selection of prototypes from each class using spectral clustering. For non-Euclidean data such as point clouds, spectral clustering can be employed as long as one can define a distance measure between pairs of samples. Choosing the appropriate distance measure enables us to leverage 3D geometric characteristics to identify representative prototypes for each class. We explore the effectiveness of clustering in the input space (3D points), local feature space (1024-dimensional points), and global feature space. We conduct experiments on the ModelNet40, ShapeNet, and ScanNet datasets, achieving state-of-the-art accuracy exclusively through the use of input space features. By leveraging the combined input, local, and global features, we have improved the state-of-the-art on ModelNet and ShapeNet, utilizing nearly half the memory used by competing approaches. For the challenging ScanNet dataset, our method enhances accuracy by 4.1% while consuming just 28% of the memory used by our competitors, demonstrating the scalability of our approach.
Authors:Yifei Yao, Hanrong Zhang
Title: From Uncertainty to Clarity: Uncertainty-Guided Class-Incremental Learning for Limited Biomedical Samples via Semantic Expansion
Abstract:
In real-world clinical settings, data distributions evolve over time, with a continuous influx of new, limited disease cases. Therefore, class incremental learning is of great significance, i.e., deep learning models are required to learn new class knowledge while maintaining accurate recognition of previous diseases. However, traditional deep neural networks often suffer from severe forgetting of prior knowledge when adapting to new data unless trained from scratch, which undesirably costs much time and computational burden. Additionally, the sample sizes for different diseases can be highly imbalanced, with newly emerging diseases typically having much fewer instances, consequently causing the classification bias. To tackle these challenges, we are the first to propose a class-incremental learning method under limited samples in the biomedical field. First, we propose a novel cumulative entropy prediction module to measure the uncertainty of the samples, of which the most uncertain samples are stored in a memory bank as exemplars for the model's later review. Furthermore, we theoretically demonstrate its effectiveness in measuring uncertainty. Second, we developed a fine-grained semantic expansion module through various augmentations, leading to more compact distributions within the feature space and creating sufficient room for generalization to new classes. Besides, a cosine classifier is utilized to mitigate classification bias caused by imbalanced datasets. Across four imbalanced data distributions over two datasets, our method achieves optimal performance, surpassing state-of-the-art methods by as much as 53.54% in accuracy.
Authors:Weiwei Gu, Suresh Kondepudi, Lixiao Huang, Nakul Gopalan
Title: Continual Skill and Task Learning via Dialogue
Abstract:
Continual and interactive robot learning is a challenging problem as the robot is present with human users who expect the robot to learn novel skills to solve novel tasks perpetually with sample efficiency. In this work we present a framework for robots to query and learn visuo-motor robot skills and task relevant information via natural language dialog interactions with human users. Previous approaches either focus on improving the performance of instruction following agents, or passively learn novel skills or concepts. Instead, we used dialog combined with a language-skill grounding embedding to query or confirm skills and/or tasks requested by a user. To achieve this goal, we developed and integrated three different components for our agent. Firstly, we propose a novel visual-motor control policy ACT with Low Rank Adaptation (ACT-LoRA), which enables the existing SoTA ACT model to perform few-shot continual learning. Secondly, we develop an alignment model that projects demonstrations across skill embodiments into a shared embedding allowing us to know when to ask questions and/or demonstrations from users. Finally, we integrated an existing LLM to interact with a human user to perform grounded interactive continual skill learning to solve a task. Our ACT-LoRA model learns novel fine-tuned skills with a 100% accuracy when trained with only five demonstrations for a novel skill while still maintaining a 74.75% accuracy on pre-trained skills in the RLBench dataset where other models fall significantly short. We also performed a human-subjects study with 8 subjects to demonstrate the continual learning capabilities of our combined framework. We achieve a success rate of 75% in the task of sandwich making with the real robot learning from participant data demonstrating that robots can learn novel skills or task knowledge from dialogue with non-expert users using our approach.
Authors:Zhiyuan Li, Yanfeng Lu, Yao Mu, Hong Qiao
Title: Cog-GA: A Large Language Models-based Generative Agent for Vision-Language Navigation in Continuous Environments
Abstract:
Vision Language Navigation in Continuous Environments (VLN-CE) represents a frontier in embodied AI, demanding agents to navigate freely in unbounded 3D spaces solely guided by natural language instructions. This task introduces distinct challenges in multimodal comprehension, spatial reasoning, and decision-making. To address these challenges, we introduce Cog-GA, a generative agent founded on large language models (LLMs) tailored for VLN-CE tasks. Cog-GA employs a dual-pronged strategy to emulate human-like cognitive processes. Firstly, it constructs a cognitive map, integrating temporal, spatial, and semantic elements, thereby facilitating the development of spatial memory within LLMs. Secondly, Cog-GA employs a predictive mechanism for waypoints, strategically optimizing the exploration trajectory to maximize navigational efficiency. Each waypoint is accompanied by a dual-channel scene description, categorizing environmental cues into 'what' and 'where' streams as the brain. This segregation enhances the agent's attentional focus, enabling it to discern pertinent spatial information for navigation. A reflective mechanism complements these strategies by capturing feedback from prior navigation experiences, facilitating continual learning and adaptive replanning. Extensive evaluations conducted on VLN-CE benchmarks validate Cog-GA's state-of-the-art performance and ability to simulate human-like navigation behaviors. This research significantly contributes to the development of strategic and interpretable VLN-CE agents.
Authors:Zirui Zhu, Xiangyang Li
Title: QCL-IDS: Quantum Continual Learning for Intrusion Detection with Fidelity-Anchored Stability and Generative Replay
Abstract:
Continual intrusion detection must absorb newly emerging attack stages while retaining legacy detection capability under strict operational constraints, including bounded compute and qubit budgets and privacy rules that preclude long-term storage of raw telemetry. We propose QCL-IDS, a quantum-centric continual-learning framework that co-designs stability and privacy-governed rehearsal for NISQ-era pipelines. Its core component, Q-FISH (Quantum Fisher Anchors), enforces retention using a compact anchor coreset through (i) sensitivity-weighted parameter constraints and (ii) a fidelity-based functional anchoring term that directly limits decision drift on representative historical traffic. To regain plasticity without retaining sensitive flows, QCL-IDS further introduces privacy-preserved quantum generative replay (QGR) via frozen, task-conditioned generator snapshots that synthesize bounded rehearsal samples. Across a three-stage attack stream on UNSW-NB15 and CICIDS2017, QCL-IDS consistently attains the best retention-adaptation trade-off: the gradient-anchor configuration achieves mean Attack-F1 = 0.941 with forgetting = 0.005 on UNSW-NB15 and mean Attack-F1 = 0.944 with forgetting = 0.004 on CICIDS2017, versus 0.800/0.138 and 0.803/0.128 for sequential fine-tuning, respectively.
Authors:Sixing Tan, Xianmin Liu
Title: Knowledge-Aware Evolution for Streaming Federated Continual Learning with Category Overlap and without Task Identifiers
Abstract:
Federated Continual Learning (FCL) leverages inter-client collaboration to balance new knowledge acquisition and prior knowledge retention in non-stationary data. However, existing batch-based FCL methods lack adaptability to streaming scenarios featuring category overlap between old and new data and absent task identifiers, leading to indistinguishability of old and new knowledge, uncertain task assignments for samples, and knowledge confusion.To address this, we propose streaming federated continual learning setting: per federated learning (FL) round, clients process streaming data with disjoint samples and potentially overlapping categories without task identifiers, necessitating sustained inference capability for all prior categories after each FL round.Next, we introduce FedKACE: 1) an adaptive inference model switching mechanism that enables unidirectional switching from local model to global model to achieve a trade-off between personalization and generalization; 2) a adaptive gradient-balanced replay scheme that reconciles new knowledge learning and old knowledge retention under overlapping-class scenarios; 3) a kernel spectral boundary buffer maintenance that preserves high-information and high-boundary-influence samples to optimize cross-round knowledge retention. Experiments across multiple scenarios and regret analysis demonstrate the effectiveness of FedKACE.
Authors:Zhi Wang, Zhongbin Wu, Yanni Li, Bing Liu, Guangxi Li, Yuping Wang
Title: Continual Learning of Achieving Forgetting-free and Positive Knowledge Transfer
Abstract:
Existing research on continual learning (CL) of a sequence of tasks focuses mainly on dealing with catastrophic forgetting (CF) to balance the learning plasticity of new tasks and the memory stability of old tasks. However, an ideal CL agent should not only be able to overcome CF, but also encourage positive forward and backward knowledge transfer (KT), i.e., using the learned knowledge from previous tasks for the new task learning (namely FKT), and improving the previous tasks' performance with the knowledge of the new task (namely BKT). To this end, this paper first models CL as an optimization problem in which each sequential learning task aims to achieve its optimal performance under the constraint that both FKT and BKT should be positive. It then proposes a novel Enhanced Task Continual Learning (ETCL) method, which achieves forgetting-free and positive KT. Furthermore, the bounds that can lead to negative FKT and BKT are estimated theoretically. Based on the bounds, a new strategy for online task similarity detection is also proposed to facilitate positive KT. To overcome CF, ETCL learns a set of task-specific binary masks to isolate a sparse sub-network for each task while preserving the performance of a dense network for the task. At the beginning of a new task learning, ETCL tries to align the new task's gradient with that of the sub-network of the previous most similar task to ensure positive FKT. By using a new bi-objective optimization strategy and an orthogonal gradient projection method, ETCL updates only the weights of previous similar tasks at the classification layer to achieve positive BKT. Extensive evaluations demonstrate that the proposed ETCL markedly outperforms strong baselines on dissimilar, similar, and mixed task sequences.
Authors:Johannes C. Bauer, Paul Geng, Stephan Trattnig, Petr Dokládal, Rüdiger Daub
Title: Multi-Level Feature Fusion for Continual Learning in Visual Quality Inspection
Abstract:
Deep neural networks show great potential for automating various visual quality inspection tasks in manufacturing. However, their applicability is limited in more volatile scenarios, such as remanufacturing, where the inspected products and defect patterns often change. In such settings, deployed models require frequent adaptation to novel conditions, effectively posing a continual learning problem. To enable quick adaptation, the necessary training processes must be computationally efficient while still avoiding effects like catastrophic forgetting. This work presents a multi-level feature fusion (MLFF) approach that aims to improve both aspects simultaneously by utilizing representations from different depths of a pretrained network. We show that our approach is able to match the performance of end-to-end training for different quality inspection problems while using significantly less trainable parameters. Furthermore, it reduces catastrophic forgetting and improves generalization robustness to new product types or defects.
Authors:Bartłomiej Olber, Jakub Winter, Paweł Wawrzyński, Andrii Gamalii, Daniel Górniak, Marcin Łojek, Robert Nowak, Krystian Radlak
Title: Semi-Supervised Diversity-Aware Domain Adaptation for 3D Object detection
Abstract:
3D object detectors are fundamental components of perception systems in autonomous vehicles. While these detectors achieve remarkable performance on standard autonomous driving benchmarks, they often struggle to generalize across different domains - for instance, a model trained in the U.S. may perform poorly in regions like Asia or Europe. This paper presents a novel lidar domain adaptation method based on neuron activation patterns, demonstrating that state-of-the-art performance can be achieved by annotating only a small, representative, and diverse subset of samples from the target domain if they are correctly selected. The proposed approach requires very small annotation budget and, when combined with post-training techniques inspired by continual learning prevent weight drift from the original model. Empirical evaluation shows that the proposed domain adaptation approach outperforms both linear probing and state-of-the-art domain adaptation techniques.
Authors:Jin Wu, Chanjin Zheng
Title: MetaCD: A Meta Learning Framework for Cognitive Diagnosis based on Continual Learning
Abstract:
Cognitive diagnosis is an essential research topic in intelligent education, aimed at assessing the level of mastery of different skills by students. So far, many research works have used deep learning models to explore the complex interactions between students, questions, and skills. However, the performance of existing method is frequently limited by the long-tailed distribution and dynamic changes in the data. To address these challenges, we propose a meta-learning framework for cognitive diagnosis based on continual learning (MetaCD). This framework can alleviate the long-tailed problem by utilizing meta-learning to learn the optimal initialization state, enabling the model to achieve good accuracy on new tasks with only a small amount of data. In addition, we utilize a continual learning method named parameter protection mechanism to give MetaCD the ability to adapt to new skills or new tasks, in order to adapt to dynamic changes in data. MetaCD can not only improve the plasticity of our model on a single task, but also ensure the stability and generalization of the model on sequential tasks. Comprehensive experiments on five real-world datasets show that MetaCD outperforms other baselines in both accuracy and generalization.
Authors:Hesham G. Moussa, Aroosa Hameed, Arashmid Akhavain
Title: Sequencing to Mitigate Catastrophic Forgetting in Continual Learning
Abstract:
To cope with real-world dynamics, an intelligent system needs to incrementally acquire, update, and exploit knowledge throughout its lifetime. This ability, known as Continual learning, provides a foundation for AI systems to develop themselves adaptively. Catastrophic forgetting is a major challenge to the progress of Continual Learning approaches, where learning a new task usually results in a dramatic performance drop on previously learned ones. Many approaches have emerged to counteract the impact of CF. Most of the proposed approaches can be categorized into five classes: replay-based, regularization-based, optimization-based, representation-based, and architecture-based. In this work, we approach the problem from a different angle, specifically by considering the optimal sequencing of tasks as they are presented to the model. We investigate the role of task sequencing in mitigating CF and propose a method for determining the optimal task order. The proposed method leverages zero-shot scoring algorithms inspired by neural architecture search (NAS). Results demonstrate that intelligent task sequencing can substantially reduce CF. Moreover, when combined with traditional continual learning strategies, sequencing offers enhanced performance and robustness against forgetting. Additionally, the presented approaches can find applications in other fields, such as curriculum learning.
Authors:Hasan Burhan Beytur, Gustavo de Veciana, Haris Vikalo, Kevin S Chan
Title: Optimal Resource Allocation for ML Model Training and Deployment under Concept Drift
Abstract:
We study how to allocate resources for training and deployment of machine learning (ML) models under concept drift and limited budgets. We consider a setting in which a model provider distributes trained models to multiple clients whose devices support local inference but lack the ability to retrain those models, placing the burden of performance maintenance on the provider. We introduce a model-agnostic framework that captures the interaction between resource allocation, concept drift dynamics, and deployment timing. We show that optimal training policies depend critically on the aging properties of concept durations. Under sudden concept changes, we derive optimal training policies subject to budget constraints when concept durations follow distributions with Decreasing Mean Residual Life (DMRL), and show that intuitive heuristics are provably suboptimal under Increasing Mean Residual Life (IMRL). We further study model deployment under communication constraints, prove that the associated optimization problem is quasi-convex under mild conditions, and propose a randomized scheduling strategy that achieves near-optimal client-side performance. These results offer theoretical and algorithmic foundations for cost-efficient ML model management under concept drift, with implications for continual learning, distributed inference, and adaptive ML systems.
Authors:Sauda Maryam, Sara Nadeem, Faisal Qureshi, Mohsen Ali
Title: Prompt-Based Continual Compositional Zero-Shot Learning
Abstract:
We tackle continual adaptation of vision-language models to new attributes, objects, and their compositions in Compositional Zero-Shot Learning (CZSL), while preventing forgetting of prior knowledge. Unlike classical continual learning where classes are disjoint, CCZSL is more complex as attributes and objects may reoccur across sessions while compositions remain unique. Built on a frozen VLM backbone, we propose the first Prompt-based Continual Compositional Zero-Shot Learning (PromptCCZSL) framework that retains prior knowledge through recency-weighted multi-teacher distillation. It employs session-aware compositional prompts to fuse multimodal features for new compositions, while attribute and object prompts are learned through session-agnostic fusion to maintain global semantic consistency, which is further stabilized by a Cosine Anchor Loss (CAL) to preserve prior knowledge. To enhance adaptation in the current session, an Orthogonal Projection Loss (OPL) ensures that new attribute and object embeddings remain distinct from previous ones, preventing overlap, while an Intra-Session Diversity Loss (IDL) promotes variation among current-session embeddings for richer, more discriminative representations. We also introduce a comprehensive protocol that jointly measures catastrophic forgetting and compositional generalization. Extensive experiments on UT-Zappos and C-GQA benchmarks demonstrate that PromptCCZSL achieves substantial improvements over prior VLM-based and non-VLM baselines, setting a new benchmark for CCZSL in closed-world settings.
Authors:Gaganpreet Jhajj, Fuhua Lin
Title: Elastic Weight Consolidation for Knowledge Graph Continual Learning: An Empirical Evaluation
Abstract:
Knowledge graphs (KGs) require continual updates as new information emerges, but neural embedding models suffer from catastrophic forgetting when learning new tasks sequentially. We evaluate Elastic Weight Consolidation (EWC), a regularization-based continual learning method, on KG link prediction using TransE embeddings on FB15k-237. Across multiple experiments with five random seeds, we find that EWC reduces catastrophic forgetting from 12.62% to 6.85%, a 45.7% reduction compared to naive sequential training. We observe that the task partitioning strategy affects the magnitude of forgetting: relation-based partitioning (grouping triples by relation type) exhibits 9.8 percentage points higher forgetting than randomly partitioned tasks (12.62% vs 2.81%), suggesting that task construction influences evaluation outcomes. While focused on a single embedding model and dataset, our results demonstrate that EWC effectively mitigates catastrophic forgetting in KG continual learning and highlight the importance of evaluation protocol design.
Authors:Goutham Nalagatla, Shreyas Grandhe
Title: Neuroscience-Inspired Memory Replay for Continual Learning: A Comparative Study of Predictive Coding and Backpropagation-Based Strategies
Abstract:
Continual learning remains a fundamental challenge in artificial intelligence, with catastrophic forgetting posing a significant barrier to deploying neural networks in dynamic environments. Inspired by biological memory consolidation mechanisms, we propose a novel framework for generative replay that leverages predictive coding principles to mitigate forgetting. We present a comprehensive comparison between predictive coding-based and backpropagation-based gen- erative replay strategies, evaluating their effectiveness on task retention and transfer efficiency across multiple benchmark datasets. Our experimental results demonstrate that predictive coding-based replay achieves superior retention performance (average 15.3% improvement) while maintaining competitive transfer efficiency, suggesting that biologically-inspired mechanisms can offer principled solutions to continual learning challenges. The proposed framework provides insights into the relationship between biological memory processes and artificial learning systems, opening new avenues for neuroscience-inspired AI research.
Authors:Paraskevi-Antonia Theofilou, Anuhya Thota, Stefanos Kollias, Mamatha Thota
Title: Stable-Drift: A Patient-Aware Latent Drift Replay Method for Stabilizing Representations in Continual Learning
Abstract:
When deep learning models are sequentially trained on new data, they tend to abruptly lose performance on previously learned tasks, a critical failure known as catastrophic forgetting. This challenge severely limits the deployment of AI in medical imaging, where models must continually adapt to data from new hospitals without compromising established diagnostic knowledge. To address this, we introduce a latent drift-guided replay method that identifies and replays samples with high representational instability. Specifically, our method quantifies this instability via latent drift, the change in a sample internal feature representation after naive domain adaptation. To ensure diversity and clinical relevance, we aggregate drift at the patient level, our memory buffer stores the per patient slices exhibiting the greatest multi-layer representation shift. Evaluated on a cross-hospital COVID-19 CT classification task using state-of-the-art CNN and Vision Transformer backbones, our method substantially reduces forgetting compared to naive fine-tuning and random replay. This work highlights latent drift as a practical and interpretable replay signal for advancing robust continual learning in real world medical settings.
Authors:Xinli Tao, Xin Dong, Xuezhong Zhou
Title: OEMA: Ontology-Enhanced Multi-Agent Collaboration Framework for Zero-Shot Clinical Named Entity Recognition
Abstract:
With the rapid expansion of unstructured clinical texts in electronic health records (EHRs), clinical named entity recognition (NER) has become a crucial technique for extracting medical information. However, traditional supervised models such as CRF and BioClinicalBERT suffer from high annotation costs. Although zero-shot NER based on large language models (LLMs) reduces the dependency on labeled data, challenges remain in aligning example selection with task granularity and effectively integrating prompt design with self-improvement frameworks. To address these limitations, we propose OEMA, a novel zero-shot clinical NER framework based on multi-agent collaboration. OEMA consists of three core components: (1) a self-annotator that autonomously generates candidate examples; (2) a discriminator that leverages SNOMED CT to filter token-level examples by clinical relevance; and (3) a predictor that incorporates entity-type descriptions to enhance inference accuracy. Experimental results on two benchmark datasets, MTSamples and VAERS, demonstrate that OEMA achieves state-of-the-art performance under exact-match evaluation. Moreover, under related-match criteria, OEMA performs comparably to the supervised BioClinicalBERT model while significantly outperforming the traditional CRF method. OEMA improves zero-shot clinical NER, achieving near-supervised performance under related-match criteria. Future work will focus on continual learning and open-domain adaptation to expand its applicability in clinical NLP.
Authors:Yao Zhang, Souza Leite Clayton, Yu Xiao
Title: Efficient Online Continual Learning in Sensor-Based Human Activity Recognition
Abstract:
Machine learning models for sensor-based human activity recognition (HAR) are expected to adapt post-deployment to recognize new activities and different ways of performing existing ones. To address this need, Online Continual Learning (OCL) mechanisms have been proposed, allowing models to update their knowledge incrementally as new data become available while preserving previously acquired information. However, existing OCL approaches for sensor-based HAR are computationally intensive and require extensive labeled samples to represent new changes. Recently, pre-trained model-based (PTM-based) OCL approaches have shown significant improvements in performance and efficiency for computer vision applications. These methods achieve strong generalization capabilities by pre-training complex models on large datasets, followed by fine-tuning on downstream tasks for continual learning. However, applying PTM-based OCL approaches to sensor-based HAR poses significant challenges due to the inherent heterogeneity of HAR datasets and the scarcity of labeled data in post-deployment scenarios. This paper introduces PTRN-HAR, the first successful application of PTM-based OCL to sensor-based HAR. Unlike prior PTM-based OCL approaches, PTRN-HAR pre-trains the feature extractor using contrastive loss with a limited amount of data. This extractor is then frozen during the streaming stage. Furthermore, it replaces the conventional dense classification layer with a relation module network. Our design not only significantly reduces the resource consumption required for model training while maintaining high performance, but also improves data efficiency by reducing the amount of labeled data needed for effective continual learning, as demonstrated through experiments on three public datasets, outperforming the state-of-the-art. The code can be found here: https://anonymous.4open.science/r/PTRN-HAR-AF60/
Authors:Elvin Hajizada, Danielle Rager, Timothy Shea, Leobardo Campos-Macias, Andreas Wild, Eyke Hüllermeier, Yulia Sandamirskaya, Mike Davies
Title: Real-time Continual Learning on Intel Loihi 2
Abstract:
AI systems on edge devices face a critical challenge in open-world environments: adapting when data distributions shift and novel classes emerge. While offline training dominates current paradigms, online continual learning (OCL)--where models learn incrementally from non-stationary streams without catastrophic forgetting--remains challenging in power-constrained settings. We present a neuromorphic solution called CLP-SNN: a spiking neural network architecture for Continually Learning Prototypes and its implementation on Intel's Loihi 2 chip. Our approach introduces three innovations: (1) event-driven and spatiotemporally sparse local learning, (2) a self-normalizing three-factor learning rule maintaining weight normalization, and (3) integrated neurogenesis and metaplasticity for capacity expansion and forgetting mitigation. On OpenLORIS few-shot learning experiments, CLP-SNN achieves accuracy competitive with replay methods while being rehearsal-free. CLP-SNN delivers transformative efficiency gains: 70\times faster (0.33ms vs 23.2ms), and 5,600\times more energy efficient (0.05mJ vs 281mJ) than the best alternative OCL on edge GPU. This demonstrates that co-designed brain-inspired algorithms and neuromorphic hardware can break traditional accuracy-efficiency trade-offs for future edge AI systems.
Authors:Karma Phuntsho, Abdullah, Kyungmi Lee, Ickjai Lee, Euijoon Ahn
Title: Adaptation of Foundation Models for Medical Image Analysis: Strategies, Challenges, and Future Directions
Abstract:
Foundation models (FMs) have emerged as a transformative paradigm in medical image analysis, offering the potential to provide generalizable, task-agnostic solutions across a wide range of clinical tasks and imaging modalities. Their capacity to learn transferable representations from large-scale data has the potential to address the limitations of conventional task-specific models. However, adaptation of FMs to real-world clinical practice remains constrained by key challenges, including domain shifts, limited availability of high-quality annotated data, substantial computational demands, and strict privacy requirements. This review presents a comprehensive assessment of strategies for adapting FMs to the specific demands of medical imaging. We examine approaches such as supervised fine-tuning, domain-specific pretraining, parameter-efficient fine-tuning, self-supervised learning, hybrid methods, and multimodal or cross-modal frameworks. For each, we evaluate reported performance gains, clinical applicability, and limitations, while identifying trade-offs and unresolved challenges that prior reviews have often overlooked. Beyond these established techniques, we also highlight emerging directions aimed at addressing current gaps. These include continual learning to enable dynamic deployment, federated and privacy-preserving approaches to safeguard sensitive data, hybrid self-supervised learning to enhance data efficiency, data-centric pipelines that combine synthetic generation with human-in-the-loop validation, and systematic benchmarking to assess robust generalization under real-world clinical variability. By outlining these strategies and associated research gaps, this review provides a roadmap for developing adaptive, trustworthy, and clinically integrated FMs capable of meeting the demands of real-world medical imaging.
Authors:Nicki Barari, Edward Kim, Christopher MacLellan
Title: Explaining Robustness to Catastrophic Forgetting Through Incremental Concept Formation
Abstract:
Catastrophic forgetting remains a central challenge in continual learning, where models are required to integrate new knowledge over time without losing what they have previously learned. In prior work, we introduced Cobweb/4V, a hierarchical concept formation model that exhibited robustness to catastrophic forgetting in visual domains. Motivated by this robustness, we examine three hypotheses regarding the factors that contribute to such stability: (1) adaptive structural reorganization enhances knowledge retention, (2) sparse and selective updates reduce interference, and (3) information-theoretic learning based on sufficiency statistics provides advantages over gradient-based backpropagation. To test these hypotheses, we compare Cobweb/4V with neural baselines, including CobwebNN, a neural implementation of the Cobweb framework introduced in this work. Experiments on datasets of varying complexity (MNIST, Fashion-MNIST, MedMNIST, and CIFAR-10) show that adaptive restructuring enhances learning plasticity, sparse updates help mitigate interference, and the information-theoretic learning process preserves prior knowledge without revisiting past data. Together, these findings provide insight into mechanisms that can mitigate catastrophic forgetting and highlight the potential of concept-based, information-theoretic approaches for building stable and adaptive continual learning systems.
Authors:Khaled Hallak, Oudom Kem
Title: Benchmarking Catastrophic Forgetting Mitigation Methods in Federated Time Series Forecasting
Abstract:
Catastrophic forgetting (CF) poses a persistent challenge in continual learning (CL), especially within federated learning (FL) environments characterized by non-i.i.d. time series data. While existing research has largely focused on classification tasks in vision domains, the regression-based forecasting setting prevalent in IoT and edge applications remains underexplored. In this paper, we present the first benchmarking framework tailored to investigate CF in federated continual time series forecasting. Using the Beijing Multi-site Air Quality dataset across 12 decentralized clients, we systematically evaluate several CF mitigation strategies, including Replay, Elastic Weight Consolidation, Learning without Forgetting, and Synaptic Intelligence. Key contributions include: (i) introducing a new benchmark for CF in time series FL, (ii) conducting a comprehensive comparative analysis of state-of-the-art methods, and (iii) releasing a reproducible open-source framework. This work provides essential tools and insights for advancing continual learning in federated time-series forecasting systems.
Authors:Sizhe Rao, Runqiu Zhang, Sajal Saha, Liang Chen
Title: An Ensembled Penalized Federated Learning Framework for Falling People Detection
Abstract:
Falls among elderly and disabled individuals remain a leading cause of injury and mortality worldwide, necessitating robust, accurate, and privacy-aware fall detection systems. Traditional fall detection approaches, whether centralized or point-wise, often struggle with key challenges such as limited generalizability, data privacy concerns, and variability in individual movement behaviors. To address these limitations, we propose EPFL-an Ensembled Penalized Federated Learning framework that integrates continual learning, personalized modeling, and a novel Specialized Weighted Aggregation (SWA) strategy. EPFL leverages wearable sensor data to capture sequential motion patterns while preserving user privacy through homomorphic encryption and federated training. Unlike existing federated models, EPFL incorporates both penalized local training and ensemble-based inference to improve inter-client consistency and adaptability to behavioral differences. Extensive experiments on a benchmark fall detection dataset demonstrate the effectiveness of our approach, achieving a Recall of 88.31 percent and an F1-score of 89.94 percent, significantly outperforming both centralized and baseline models. This work presents a scalable, secure, and accurate solution for real-world fall detection in healthcare settings, with strong potential for continuous improvement via its adaptive feedback mechanism.
Authors:Haozhe Shan, Sun Minni, Lea Duncker
Title: Separating the what and how of compositional computation to enable reuse and continual learning
Abstract:
The ability to continually learn, retain and deploy skills to accomplish goals is a key feature of intelligent and efficient behavior. However, the neural mechanisms facilitating the continual learning and flexible (re-)composition of skills remain elusive. Here, we study continual learning and the compositional reuse of learned computations in recurrent neural network (RNN) models using a novel two-system approach: one system that infers what computation to perform, and one that implements how to perform it. We focus on a set of compositional cognitive tasks commonly studied in neuroscience. To construct the what system, we first show that a large family of tasks can be systematically described by a probabilistic generative model, where compositionality stems from a shared underlying vocabulary of discrete task epochs. The shared epoch structure makes these tasks inherently compositional. We first show that this compositionality can be systematically described by a probabilistic generative model. Furthermore, We develop an unsupervised online learning approach that can learn this model on a single-trial basis, building its vocabulary incrementally as it is exposed to new tasks, and inferring the latent epoch structure as a time-varying computational context within a trial. We implement the how system as an RNN whose low-rank components are composed according to the context inferred by the what system. Contextual inference facilitates the creation, learning, and reuse of low-rank RNN components as new tasks are introduced sequentially, enabling continual learning without catastrophic forgetting. Using an example task set, we demonstrate the efficacy and competitive performance of this two-system learning framework, its potential for forward and backward transfer, as well as fast compositional generalization to unseen tasks.
Authors:Xin Lian, Kenneth D. Forbus
Title: LLM-Augmented Symbolic NLU System for More Reliable Continuous Causal Statement Interpretation
Abstract:
Despite the broad applicability of large language models (LLMs), their reliance on probabilistic inference makes them vulnerable to errors such as hallucination in generated facts and inconsistent output structure in natural language understanding (NLU) tasks. By contrast, symbolic NLU systems provide interpretable understanding grounded in curated lexicons, semantic resources, and syntactic & semantic interpretation rules. They produce relational representations that can be used for accurate reasoning and planning, as well as incremental debuggable learning. However, symbolic NLU systems tend to be more limited in coverage than LLMs and require scarce knowledge representation and linguistics skills to extend and maintain. This paper explores a hybrid approach that integrates the broad-coverage language processing of LLMs with the symbolic NLU capabilities of producing structured relational representations to hopefully get the best of both approaches. We use LLMs for rephrasing and text simplification, to provide broad coverage, and as a source of information to fill in knowledge gaps more automatically. We use symbolic NLU to produce representations that can be used for reasoning and for incremental learning. We evaluate this approach on the task of extracting and interpreting quantities and causal laws from commonsense science texts, along with symbolic- and LLM-only pipelines. Our results suggest that our hybrid method works significantly better than the symbolic-only pipeline.
Authors:Xirui Zhang, Philippe de La Chevasnerie, Benoit Fabre
Title: Diagnosing Representation Dynamics in NER Model Extension
Abstract:
Extending Named Entity Recognition (NER) models to new PII entities in noisy spoken-language data is a common need. We find that jointly fine-tuning a BERT model on standard semantic entities (PER, LOC, ORG) and new pattern-based PII (EMAIL, PHONE) results in minimal degradation for original classes. We investigate this "peaceful coexistence," hypothesizing that the model uses independent semantic vs. morphological feature mechanisms. Using an incremental learning setup as a diagnostic tool, we measure semantic drift and find two key insights. First, the LOC (location) entity is uniquely vulnerable due to a representation overlap with new PII, as it shares pattern-like features (e.g., postal codes). Second, we identify a "reverse O-tag representation drift." The model, initially trained to map PII patterns to 'O', blocks new learning. This is resolved only by unfreezing the 'O' tag's classifier, allowing the background class to adapt and "release" these patterns. This work provides a mechanistic diagnosis of NER model adaptation, highlighting feature independence, representation overlap, and 'O' tag plasticity. Work done based on data gathered by https://www.papernest.com
Authors:Pengcheng Hao, Menghao Waiyan William Zhu, Ercan Engin Kuruoglu
Title: Monte Carlo Functional Regularisation for Continual Learning
Abstract:
Continual learning (CL) is crucial for the adaptation of neural network models to new environments. Although outperforming weight-space regularisation approaches, the functional regularisation-based CL methods suffer from high computational costs and large linear approximation errors. In this work, we present a new functional regularisation CL framework, called MCFRCL, which approximates model prediction distributions by Monte Carlo (MC) sampling. Moreover, three continuous distributions are leveraged to capture the statistical characteristics of the MC samples via moment-based methods. Additionally, both the Wasserstein distance and the Kullback-Leibler (KL) distance are employed to construct the regularisation function. The proposed MCFRCL is evaluated against multiple benchmark methods on the MNIST and CIFAR datasets, with simulation results highlighting its effectiveness in both prediction accuracy and training efficiency.
Authors:Parsa Omidi, Xingshuai Huang, Axel Laborieux, Bahareh Nikpour, Tianyu Shi, Armaghan Eshaghi
Title: Memory-Augmented Transformers: A Systematic Review from Neuroscience Principles to Enhanced Model Architectures
Abstract:
Memory is fundamental to intelligence, enabling learning, reasoning, and adaptability across biological and artificial systems. While Transformer architectures excel at sequence modeling, they face critical limitations in long-range context retention, continual learning, and knowledge integration. This review presents a unified framework bridging neuroscience principles, including dynamic multi-timescale memory, selective attention, and consolidation, with engineering advances in Memory-Augmented Transformers. We organize recent progress through three taxonomic dimensions: functional objectives (context extension, reasoning, knowledge integration, adaptation), memory representations (parameter-encoded, state-based, explicit, hybrid), and integration mechanisms (attention fusion, gated control, associative retrieval). Our analysis of core memory operations (reading, writing, forgetting, and capacity management) reveals a shift from static caches toward adaptive, test-time learning systems. We identify persistent challenges in scalability and interference, alongside emerging solutions including hierarchical buffering and surprise-gated updates. This synthesis provides a roadmap toward cognitively-inspired, lifelong-learning Transformer architectures.
Authors:Linpu He, Yanan Li, Bingze Li, Elvis Han Cui, Donghui Wang
Title: DSS-Prompt: Dynamic-Static Synergistic Prompting for Few-Shot Class-Incremental Learning
Abstract:
Learning from large-scale pre-trained models with strong generalization ability has shown remarkable success in a wide range of downstream tasks recently, but it is still underexplored in the challenging few-shot class-incremental learning (FSCIL) task. It aims to continually learn new concepts from limited training samples without forgetting the old ones at the same time. In this paper, we introduce DSS-Prompt, a simple yet effective approach that transforms the pre-trained Vision Transformer with minimal modifications in the way of prompts into a strong FSCIL classifier. Concretely, we synergistically utilize two complementary types of prompts in each Transformer block: static prompts to bridge the domain gap between the pre-training and downstream datasets, thus enabling better adaption; and dynamic prompts to capture instance-aware semantics, thus enabling easy transfer from base to novel classes. Specially, to generate dynamic prompts, we leverage a pre-trained multi-modal model to extract input-related diverse semantics, thereby generating complementary input-aware prompts, and then adaptively adjust their importance across different layers. In this way, on top of the prompted visual embeddings, a simple prototype classifier can beat state-of-the-arts without further training on the incremental tasks. We conduct extensive experiments on four benchmarks to validate the effectiveness of our DSS-Prompt and show that it consistently achieves better performance than existing approaches on all datasets and can alleviate the catastrophic forgetting issue as well.
Authors:Iing Muttakhiroh, Thomas Fevens
Title: Enhancing Memory Recall in LLMs with Gauss-Tin: A Hybrid Instructional and Gaussian Replay Approach
Abstract:
Despite the significant advancements in Large Language Models (LLMs), catastrophic forgetting remains a substantial challenge, where models lose previously acquired knowledge upon learning new information. Continual learning (CL) strategies have emerged as a potential solution to this problem, with replay-based techniques demonstrating superior performance in preserving learned knowledge. In this context, we introduce Gauss-Tin, a novel approach that integrates the replay strategy with a Gaussian mixture model to enhance the quality of sample selection during training, supplemented by instructional guidance to facilitate the generation of past learning. This method aims to improve LLMs' retention capabilities by strategically reinforcing important past learnings while accommodating new information. Our experimental results indicate a promising 6\% improvement in retention metrics over traditional methods, suggesting that Gauss-Tin is an effective strategy for mitigating catastrophic forgetting in LLMs. This study underscores the potential of hybrid models in enhancing the robustness and adaptability of LLMs in dynamic learning environments.
Authors:Xinjia Lu, Chuhan Wang, Qian Zhao, Lixing Zhu, Xuehu Zhu
Title: Statistical Theory of Multi-stage Newton Iteration Algorithm for Online Continual Learning
Abstract:
We focus on the critical challenge of handling non-stationary data streams in online continual learning environments, where constrained storage capacity prevents complete retention of historical data, leading to catastrophic forgetting during sequential task training. To more effectively analyze and address the problem of catastrophic forgetting in continual learning, we propose a novel continual learning framework from a statistical perspective. Our approach incorporates random effects across all model parameters and allows the dimension of parameters to diverge to infinity, offering a general formulation for continual learning problems. To efficiently process streaming data, we develop a Multi-step Newton Iteration algorithm that significantly reduces computational costs in certain scenarios by alleviating the burden of matrix inversion. Theoretically, we derive the asymptotic normality of the estimator, enabling subsequent statistical inference. Comprehensive validation through synthetic data experiments and two real datasets analyses demonstrates the effectiveness of our proposed method.
Authors:Iing Muttakhiroh, Thomas Fevens
Title: Tackling Distribution Shift in LLM via KILO: Knowledge-Instructed Learning for Continual Adaptation
Abstract:
Large Language Models (LLMs) often suffer from performance degradation when faced with domain shifts, primarily due to catastrophic forgetting. In this work, we propose KILO (Knowledge-Instructed Learning for Continual Adaptation), a novel continual learning framework that integrates dynamic knowledge graphs with instruction tuning. By leveraging retrieved domain-specific knowledge as guidance during training, KILO enhances both adaptability to new domains and retention of previously acquired knowledge. We pretrain our model on WikiText-103 and evaluate sequential adaptation across four diverse target domains: BioASQ, SciQ, TweetEval, and MIND. Our experiments demonstrate that KILO consistently outperforms strong baselines, including continual fine-tuning, ERNIE 2.0, and CPT, in terms of backward transfer, forward transfer, F1 score, retention rate, and training efficiency. These results highlight the effectiveness of combining structured knowledge retrieval and instruction prompting to overcome domain shift challenges in continual learning scenarios.
Authors:Mingyu Wang, Haojie Liu, Zhiyong Li, Wei Jiang
Title: Pr$^2$R: Information-Fused and Style-Aware Privacy-Preserving Replay for Lifelong Person Re-Identification
Abstract:
Lifelong person re-identification (LReID) aims to incrementally accumulate knowledge across a sequence of tasks under domain shifts. Recently, replay-based methods have demonstrated strong effectiveness in LReID by rehearsing past samples stored in an auxiliary memory. However, storing historical exemplars raises concerns over data privacy. To avoid this, exemplar-free approaches attempt to match the distribution of past data without storing raw samples. Despite being privacy-friendly, these methods often suffer from performance degradation due to the forgetting of specific past knowledge representations. To this end, we propose to fuse information from sequential data into the pixel space in the replay memory, enabling Privacy-Preserving Replay (Pr$^2$R). More specifically, by distilling the training characteristics of multiple real images into a single image, the fused samples undergo pixel-level changes. This not only protects the privacy of the original data but also makes the replay samples more representative for sequential tasks. During the style replay phase, we align the current domain to the previous one while simultaneously adapting the replay samples to match the style of the current domain. This dual-alignment strategy effectively mitigates both class-incremental challenges and forgetting caused by domain shifts. Extensive experiments on multiple benchmarks show that the proposed method significantly improves replay effectiveness while preserving data privacy. Specifically, Pr$^2$R achieves 4% and 6% higher accuracy on sequential tasks compared to the current state-of-the-art and other replay-based methods, respectively.
Authors:Hyundong Jin, Hyung Jin Chang, Eunwoo Kim
Title: Instruction-Grounded Visual Projectors for Continual Learning of Generative Vision-Language Models
Abstract:
Continual learning enables pre-trained generative vision-language models (VLMs) to incorporate knowledge from new tasks without retraining data from previous ones. Recent methods update a visual projector to translate visual information for new tasks, connecting pre-trained vision encoders with large language models. However, such adjustments may cause the models to prioritize visual inputs over language instructions, particularly learning tasks with repetitive types of textual instructions. To address the neglect of language instructions, we propose a novel framework that grounds the translation of visual information on instructions for language models. We introduce a mixture of visual projectors, each serving as a specialized visual-to-language translation expert based on the given instruction context to adapt to new tasks. To avoid using experts for irrelevant instruction contexts, we propose an expert recommendation strategy that reuses experts for tasks similar to those previously learned. Additionally, we introduce expert pruning to alleviate interference from the use of experts that cumulatively activated in previous tasks. Extensive experiments on diverse vision-language tasks demonstrate that our method outperforms existing continual learning approaches by generating instruction-following responses.
Authors:Louise Guillon, Soheib Biga, Yendoube E. Kantchire, Mouhamadou Lamine Sane, Grégoire Pasquier, Kossi Yakpa, Stéphane E. Sossou, Marc Thellier, Laurent Bonnardot, Laurence Lachaud, Renaud Piarroux, Ameyo M. Dorkenoo
Title: Towards Field-Ready AI-based Malaria Diagnosis: A Continual Learning Approach
Abstract:
Malaria remains a major global health challenge, particularly in low-resource settings where access to expert microscopy may be limited. Deep learning-based computer-aided diagnosis (CAD) systems have been developed and demonstrate promising performance on thin blood smear images. However, their clinical deployment may be hindered by limited generalization across sites with varying conditions. Yet very few practical solutions have been proposed. In this work, we investigate continual learning (CL) as a strategy to enhance the robustness of malaria CAD models to domain shifts. We frame the problem as a domain-incremental learning scenario, where a YOLO-based object detector must adapt to new acquisition sites while retaining performance on previously seen domains. We evaluate four CL strategies, two rehearsal-based and two regularization-based methods, on real-life conditions thanks to a multi-site clinical dataset of thin blood smear images. Our results suggest that CL, and rehearsal-based methods in particular, can significantly improve performance. These findings highlight the potential of continual learning to support the development of deployable, field-ready CAD tools for malaria.
Authors:Pedro R. Pires, Gregorio F. Azevedo, Pietro L. Campos, Rafael T. Sereicikas, Tiago A. Almeida
Title: Exploitation Over Exploration: Unmasking the Bias in Linear Bandit Recommender Offline Evaluation
Abstract:
Multi-Armed Bandit (MAB) algorithms are widely used in recommender systems that require continuous, incremental learning. A core aspect of MABs is the exploration-exploitation trade-off: choosing between exploiting items likely to be enjoyed and exploring new ones to gather information. In contextual linear bandits, this trade-off is particularly central, as many variants share the same linear regression backbone and differ primarily in their exploration strategies. Despite its prevalent use, offline evaluation of MABs is increasingly recognized for its limitations in reliably assessing exploration behavior. This study conducts an extensive offline empirical comparison of several linear MABs. Strikingly, across over 90% of various datasets, a greedy linear model, with no type of exploration, consistently achieves top-tier performance, often outperforming or matching its exploratory counterparts. This observation is further corroborated by hyperparameter optimization, which consistently favors configurations that minimize exploration, suggesting that pure exploitation is the dominant strategy within these evaluation settings. Our results expose significant inadequacies in offline evaluation protocols for bandits, particularly concerning their capacity to reflect true exploratory efficacy. Consequently, this research underscores the urgent necessity for developing more robust assessment methodologies, guiding future investigations into alternative evaluation frameworks for interactive learning in recommender systems.
Authors:Alif Ashrafee, Jedrzej Kozal, Michal Wozniak, Bartosz Krawczyk
Title: Holistic Continual Learning under Concept Drift with Adaptive Memory Realignment
Abstract:
Traditional continual learning methods prioritize knowledge retention and focus primarily on mitigating catastrophic forgetting, implicitly assuming that the data distribution of previously learned tasks remains static. This overlooks the dynamic nature of real-world data streams, where concept drift permanently alters previously seen data and demands both stability and rapid adaptation. We introduce a holistic framework for continual learning under concept drift that simulates realistic scenarios by evolving task distributions. As a baseline, we consider Full Relearning (FR), in which the model is retrained from scratch on newly labeled samples from the drifted distribution. While effective, this approach incurs substantial annotation and computational overhead. To address these limitations, we propose Adaptive Memory Realignment (AMR), a lightweight alternative that equips rehearsal-based learners with a drift-aware adaptation mechanism. AMR selectively removes outdated samples of drifted classes from the replay buffer and repopulates it with a small number of up-to-date instances, effectively realigning memory with the new distribution. This targeted resampling matches the performance of FR while reducing the need for labeled data and computation by orders of magnitude. To enable reproducible evaluation, we introduce four concept-drift variants of standard vision benchmarks: Fashion-MNIST-CD, CIFAR10-CD, CIFAR100-CD, and Tiny-ImageNet-CD, where previously seen classes reappear with shifted representations. Comprehensive experiments on these datasets using several rehearsal-based baselines show that AMR consistently counters concept drift, maintaining high accuracy with minimal overhead. These results position AMR as a scalable solution that reconciles stability and plasticity in non-stationary continual learning environments.
Authors:Denis Larionov, Nikolay Bazenkov, Mikhail Kiselev
Title: Continual Learning with Columnar Spiking Neural Networks
Abstract:
Continual learning is a key feature of biological neural systems, but artificial neural networks often suffer from catastrophic forgetting. Instead of backpropagation, biologically plausible learning algorithms may enable stable continual learning. This study proposes columnar-organized spiking neural networks (SNNs) with local learning rules for continual learning and catastrophic forgetting. Using CoLaNET (Columnar Layered Network), we show that its microcolumns adapt most efficiently to new tasks when they lack shared structure with prior learning. We demonstrate how CoLaNET hyperparameters govern the trade-off between retaining old knowledge (stability) and acquiring new information (plasticity). We evaluate CoLaNET on two benchmarks: Permuted MNIST (ten sequential pixel-permuted tasks) and a two-task MNIST/EMNIST setup. Our model learns ten sequential tasks effectively, maintaining 92% accuracy on each. It shows low forgetting, with only 4% performance degradation on the first task after training on nine subsequent tasks.
Authors:Guyang Zhang, Waleed Abdulla
Title: Class-Incremental Learning for Honey Botanical Origin Classification with Hyperspectral Images: A Study with Continual Backpropagation
Abstract:
Honey is an important commodity in the global market. Honey types of different botanical origins provide diversified flavors and health benefits, thus having different market values. Developing accurate and effective botanical origin-distinguishing techniques is crucial to protect consumers' interests. However, it is impractical to collect all the varieties of honey products at once to train a model for botanical origin differentiation. Therefore, researchers developed class-incremental learning (CIL) techniques to address this challenge. This study examined and compared multiple CIL algorithms on a real-world honey hyperspectral imaging dataset. A novel technique is also proposed to improve the performance of class-incremental learning algorithms by combining with a continual backpropagation (CB) algorithm. The CB method addresses the issue of loss-of-plasticity by reinitializing a proportion of less-used hidden neurons to inject variability into neural networks. Experiments showed that CB improved the performance of most CIL methods by 1-7\%.
Authors:Bonpagna Kann, Sandra Castellanos-Paez, Romain Rombourg, Philippe Lalanda
Title: TaskVAE: Task-Specific Variational Autoencoders for Exemplar Generation in Continual Learning for Human Activity Recognition
Abstract:
As machine learning based systems become more integrated into daily life, they unlock new opportunities but face the challenge of adapting to dynamic data environments. Various forms of data shift-gradual, abrupt, or cyclic-threaten model accuracy, making continual adaptation essential. Continual Learning (CL) enables models to learn from evolving data streams while minimizing forgetting of prior knowledge. Among CL strategies, replay-based methods have proven effective, but their success relies on balancing memory constraints and retaining old class accuracy while learning new classes. This paper presents TaskVAE, a framework for replay-based CL in class-incremental settings. TaskVAE employs task-specific Variational Autoencoders (VAEs) to generate synthetic exemplars from previous tasks, which are then used to train the classifier alongside new task data. In contrast to traditional methods that require prior knowledge of the total class count or rely on a single VAE for all tasks, TaskVAE adapts flexibly to increasing tasks without such constraints. We focus on Human Activity Recognition (HAR) using IMU sensor-equipped devices. Unlike previous HAR studies that combine data across all users, our approach focuses on individual user data, better reflecting real-world scenarios where a person progressively learns new activities. Extensive experiments on 5 different HAR datasets show that TaskVAE outperforms experience replay methods, particularly with limited data, and exhibits robust performance as dataset size increases. Additionally, memory footprint of TaskVAE is minimal, being equivalent to only 60 samples per task, while still being able to generate an unlimited number of synthetic samples. The contributions lie in balancing memory constraints, task-specific generation, and long-term stability, making it a reliable solution for real-world applications in domains like HAR.
Authors:Douwe den Blanken, Charlotte Frenkel
Title: Chameleon: A MatMul-Free Temporal Convolutional Network Accelerator for End-to-End Few-Shot and Continual Learning from Sequential Data
Abstract:
On-device learning at the edge enables low-latency, private personalization with improved long-term robustness and reduced maintenance costs. Yet, achieving scalable, low-power end-to-end on-chip learning, especially from real-world sequential data with a limited number of examples, is an open challenge. Indeed, accelerators supporting error backpropagation optimize for learning performance at the expense of inference efficiency, while simplified learning algorithms often fail to reach acceptable accuracy targets. In this work, we present Chameleon, leveraging three key contributions to solve these challenges. (i) A unified learning and inference architecture supports few-shot learning (FSL), continual learning (CL) and inference at only 0.5% area overhead to the inference logic. (ii) Long temporal dependencies are efficiently captured with temporal convolutional networks (TCNs), enabling the first demonstration of end-to-end on-chip FSL and CL on sequential data and inference on 16-kHz raw audio. (iii) A dual-mode, matrix-multiplication-free compute array allows either matching the power consumption of state-of-the-art inference-only keyword spotting (KWS) accelerators or enabling $4.3\times$ higher peak GOPS. Fabricated in 40-nm CMOS, Chameleon sets new accuracy records on Omniglot for end-to-end on-chip FSL (96.8%, 5-way 1-shot, 98.8%, 5-way 5-shot) and CL (82.2% final accuracy for learning 250 classes with 10 shots), while maintaining an inference accuracy of 93.3% on the 12-class Google Speech Commands dataset at an extreme-edge power budget of 3.1 $μ$W.
Authors:Galen Pogoncheff, Michael Beyeler
Title: BIRD: Behavior Induction via Representation-structure Distillation
Abstract:
Human-aligned deep learning models exhibit behaviors consistent with human values, such as robustness, fairness, and honesty. Transferring these behavioral properties to models trained on different tasks or data distributions remains challenging: aligned behavior is easily forgotten during fine-tuning, and collecting task-specific data that preserves this behavior can be prohibitively costly. We introduce BIRD (Behavior Induction via Representation-structure Distillation), a flexible framework for transferring aligned behavior by matching the internal representation structure of a student model to that of a teacher. Applied to out-of-distribution robustness in image classification, BIRD outperforms fine-tuning, transfer learning, and continual learning methods, improving robust accuracy by up to 16% over the next strongest baseline. It remains effective even when the teacher is trained on a much simpler dataset and is $25 \times$ smaller than the student. In a large-scale study of over 400 teacher-student pairs, we show that three interpretable and computable properties of the teacher's representations (i.e., task relevance, behavioral relevance, and complementary knowledge) explain up to 85% of the variance in transfer success. These insights offer practical guidance for teacher selection and design. BIRD turns small, well-aligned models into scalable alignment seeds, removing a key bottleneck in deploying safe AI systems in the wild.
Authors:Jianing Wang, Zheng Hua, Wan Zhang, Shengjia Hao, Yuqiong Yao, Maoguo Gong
Title: CL-BioGAN: Biologically-Inspired Cross-Domain Continual Learning for Hyperspectral Anomaly Detection
Abstract:
Memory stability and learning flexibility in continual learning (CL) is a core challenge for cross-scene Hyperspectral Anomaly Detection (HAD) task. Biological neural networks can actively forget history knowledge that conflicts with the learning of new experiences by regulating learning-triggered synaptic expansion and synaptic convergence. Inspired by this phenomenon, we propose a novel Biologically-Inspired Continual Learning Generative Adversarial Network (CL-BioGAN) for augmenting continuous distribution fitting ability for cross-domain HAD task, where Continual Learning Bio-inspired Loss (CL-Bio Loss) and self-attention Generative Adversarial Network (BioGAN) are incorporated to realize forgetting history knowledge as well as involving replay strategy in the proposed BioGAN. Specifically, a novel Bio-Inspired Loss composed with an Active Forgetting Loss (AF Loss) and a CL loss is designed to realize parameters releasing and enhancing between new task and history tasks from a Bayesian perspective. Meanwhile, BioGAN loss with L2-Norm enhances self-attention (SA) to further balance the stability and flexibility for better fitting background distribution for open scenario HAD (OHAD) tasks. Experiment results underscore that the proposed CL-BioGAN can achieve more robust and satisfying accuracy for cross-domain HAD with fewer parameters and computation cost. This dual contribution not only elevates CL performance but also offers new insights into neural adaptation mechanisms in OHAD task.
Authors:Jianing Wang, Siying Guo, Zheng Hua, Runhu Huang, Jinyu Hu, Maoguo Gong
Title: CL-CaGAN: Capsule differential adversarial continuous learning for cross-domain hyperspectral anomaly detection
Abstract:
Anomaly detection (AD) has attracted remarkable attention in hyperspectral image (HSI) processing fields, and most existing deep learning (DL)-based algorithms indicate dramatic potential for detecting anomaly samples through specific training process under current scenario. However, the limited prior information and the catastrophic forgetting problem indicate crucial challenges for existing DL structure in open scenarios cross-domain detection. In order to improve the detection performance, a novel continual learning-based capsule differential generative adversarial network (CL-CaGAN) is proposed to elevate the cross-scenario learning performance for facilitating the real application of DL-based structure in hyperspectral AD (HAD) task. First, a modified capsule structure with adversarial learning network is constructed to estimate the background distribution for surmounting the deficiency of prior information. To mitigate the catastrophic forgetting phenomenon, clustering-based sample replay strategy and a designed extra self-distillation regularization are integrated for merging the history and future knowledge in continual AD task, while the discriminative learning ability from previous detection scenario to current scenario is retained by the elaborately designed structure with continual learning (CL) strategy. In addition, the differentiable enhancement is enforced to augment the generation performance of the training data. This further stabilizes the training process with better convergence and efficiently consolidates the reconstruction ability of background samples. To verify the effectiveness of our proposed CL-CaGAN, we conduct experiments on several real HSIs, and the results indicate that the proposed CL-CaGAN demonstrates higher detection performance and continuous learning capacity for mitigating the catastrophic forgetting under cross-domain scenarios.
Authors:Zhenrong Liu, Janne M. J. Huttunen, Mikko Honkala
Title: Low-Complexity Inference in Continual Learning via Compressed Knowledge Transfer
Abstract:
Continual learning (CL) aims to train models that can learn a sequence of tasks without forgetting previously acquired knowledge. A core challenge in CL is balancing stability -- preserving performance on old tasks -- and plasticity -- adapting to new ones. Recently, large pre-trained models have been widely adopted in CL for their ability to support both, offering strong generalization for new tasks and resilience against forgetting. However, their high computational cost at inference time limits their practicality in real-world applications, especially those requiring low latency or energy efficiency. To address this issue, we explore model compression techniques, including pruning and knowledge distillation (KD), and propose two efficient frameworks tailored for class-incremental learning (CIL), a challenging CL setting where task identities are unavailable during inference. The pruning-based framework includes pre- and post-pruning strategies that apply compression at different training stages. The KD-based framework adopts a teacher-student architecture, where a large pre-trained teacher transfers downstream-relevant knowledge to a compact student. Extensive experiments on multiple CIL benchmarks demonstrate that the proposed frameworks achieve a better trade-off between accuracy and inference complexity, consistently outperforming strong baselines. We further analyze the trade-offs between the two frameworks in terms of accuracy and efficiency, offering insights into their use across different scenarios.
Authors:Renye Zhang, Yimin Yin, Jinghua Zhang
Title: Partitioned Memory Storage Inspired Few-Shot Class-Incremental learning
Abstract:
Current mainstream deep learning techniques exhibit an over-reliance on extensive training data and a lack of adaptability to the dynamic world, marking a considerable disparity from human intelligence. To bridge this gap, Few-Shot Class-Incremental Learning (FSCIL) has emerged, focusing on continuous learning of new categories with limited samples without forgetting old knowledge. Existing FSCIL studies typically use a single model to learn knowledge across all sessions, inevitably leading to the stability-plasticity dilemma. Unlike machines, humans store varied knowledge in different cerebral cortices. Inspired by this characteristic, our paper aims to develop a method that learns independent models for each session. It can inherently prevent catastrophic forgetting. During the testing stage, our method integrates Uncertainty Quantification (UQ) for model deployment. Our method provides a fresh viewpoint for FSCIL and demonstrates the state-of-the-art performance on CIFAR-100 and mini-ImageNet datasets.
Authors:Shunjie Wen, Thomas Heinis, Dong-Wan Choi
Title: Inclusive Training Separation and Implicit Knowledge Interaction for Balanced Online Class-Incremental Learning
Abstract:
Online class-incremental learning (OCIL) focuses on gradually learning new classes (called plasticity) from a stream of data in a single-pass, while concurrently preserving knowledge of previously learned classes (called stability). The primary challenge in OCIL lies in maintaining a good balance between the knowledge of old and new classes within the continually updated model. Most existing methods rely on explicit knowledge interaction through experience replay, and often employ exclusive training separation to address bias problems. Nevertheless, it still remains a big challenge to achieve a well-balanced learner, as these methods often exhibit either reduced plasticity or limited stability due to difficulties in continually integrating knowledge in the OCIL setting. In this paper, we propose a novel replay-based method, called Balanced Online Incremental Learning (BOIL), which can achieve both high plasticity and stability, thus ensuring more balanced performance in OCIL. Our BOIL method proposes an inclusive training separation strategy using dual classifiers so that knowledge from both old and new classes can effectively be integrated into the model, while introducing implicit approaches for transferring knowledge across the two classifiers. Extensive experimental evaluations over three widely-used OCIL benchmark datasets demonstrate the superiority of BOIL, showing more balanced yet better performance compared to state-of-the-art replay-based OCIL methods.
Authors:Edison Mucllari, Aswin Raghavan, Zachary Alan Daniels
Title: Noise-Tolerant Coreset-Based Class Incremental Continual Learning
Abstract:
Many applications of computer vision require the ability to adapt to novel data distributions after deployment. Adaptation requires algorithms capable of continual learning (CL). Continual learners must be plastic to adapt to novel tasks while minimizing forgetting of previous tasks.However, CL opens up avenues for noise to enter the training pipeline and disrupt the CL. This work focuses on label noise and instance noise in the context of class-incremental learning (CIL), where new classes are added to a classifier over time, and there is no access to external data from past classes. We aim to understand the sensitivity of CL methods that work by replaying items from a memory constructed using the idea of Coresets. We derive a new bound for the robustness of such a method to uncorrelated instance noise under a general additive noise threat model, revealing several insights. Putting the theory into practice, we create two continual learning algorithms to construct noise-tolerant replay buffers. We empirically compare the effectiveness of prior memory-based continual learners and the proposed algorithms under label and uncorrelated instance noise on five diverse datasets. We show that existing memory-based CL are not robust whereas the proposed methods exhibit significant improvements in maximizing classification accuracy and minimizing forgetting in the noisy CIL setting.
Authors:Runqing Wu, Kaihui Huang, Hanyi Zhang, Fei Ye
Title: Self-Controlled Dynamic Expansion Model for Continual Learning
Abstract:
Continual Learning (CL) epitomizes an advanced training paradigm wherein prior data samples remain inaccessible during the acquisition of new tasks. Numerous investigations have delved into leveraging a pre-trained Vision Transformer (ViT) to enhance model efficacy in continual learning. Nonetheless, these approaches typically utilize a singular, static backbone, which inadequately adapts to novel tasks, particularly when engaging with diverse data domains, due to a substantial number of inactive parameters. This paper addresses this limitation by introducing an innovative Self-Controlled Dynamic Expansion Model (SCDEM), which orchestrates multiple distinct trainable pre-trained ViT backbones to furnish diverse and semantically enriched representations. Specifically, by employing the multi-backbone architecture as a shared module, the proposed SCDEM dynamically generates a new expert with minimal parameters to accommodate a new task. A novel Collaborative Optimization Mechanism (COM) is introduced to synergistically optimize multiple backbones by harnessing prediction signals from historical experts, thereby facilitating new task learning without erasing previously acquired knowledge. Additionally, a novel Feature Distribution Consistency (FDC) approach is proposed to align semantic similarity between previously and currently learned representations through an optimal transport distance-based mechanism, effectively mitigating negative knowledge transfer effects. Furthermore, to alleviate over-regularization challenges, this paper presents a novel Dynamic Layer-Wise Feature Attention Mechanism (DLWFAM) to autonomously determine the penalization intensity on each trainable representation layer. An extensive series of experiments have been conducted to evaluate the proposed methodology's efficacy, with empirical results corroborating that the approach attains state-of-the-art performance.
Authors:Mohamed Abbas Hedjazi, Oussama Hadjerci, Adel Hafiane
Title: Enhancing knowledge retention for continual learning with domain-specific adapters and features gating
Abstract:
Continual learning empowers models to learn from a continuous stream of data while preserving previously acquired knowledge, effectively addressing the challenge of catastrophic forgetting. In this study, we propose a new approach that integrates adapters within the self-attention mechanisms of Vision Transformers to enhance knowledge retention when sequentially adding datasets from different domains. Unlike previous methods that continue learning with only one dataset, our approach introduces domain-specific output heads and feature gating, allowing the model to maintain high accuracy on previously learned tasks while incorporating only the essential information from multiple domains. The proposed method is compared to prominent parameter-efficient fine-tuning methods in the current state of the art. The results provide evidence that our method effectively alleviates the limitations of previous works. Furthermore, we conduct a comparative analysis using three datasets, CIFAR-100, Flowers102, and DTD, each representing a distinct domain, to investigate the impact of task order on model performance. Our findings underscore the critical role of dataset sequencing in shaping learning outcomes, demonstrating that strategic ordering can significantly improve the model's ability to adapt to evolving data distributions over time while preserving the integrity of previously learned knowledge.
Authors:Thomas Tsouparopoulos, Iordanis Koutsopoulos
Title: Explainability and Continual Learning meet Federated Learning at the Network Edge
Abstract:
As edge devices become more capable and pervasive in wireless networks, there is growing interest in leveraging their collective compute power for distributed learning. However, optimizing learning at the network edge entails unique challenges, particularly when moving beyond conventional settings and objectives. While Federated Learning (FL) has emerged as a key paradigm for distributed model training, critical challenges persist. First, existing approaches often overlook the trade-off between predictive accuracy and interpretability. Second, they struggle to integrate inherently explainable models such as decision trees because their non-differentiable structure makes them not amenable to backpropagation-based training algorithms. Lastly, they lack meaningful mechanisms for continual Machine Learning (ML) model adaptation through Continual Learning (CL) in resource-limited environments. In this paper, we pave the way for a set of novel optimization problems that emerge in distributed learning at the network edge with wirelessly interconnected edge devices, and we identify key challenges and future directions. Specifically, we discuss how Multi-objective optimization (MOO) can be used to address the trade-off between predictive accuracy and explainability when using complex predictive models. Next, we discuss the implications of integrating inherently explainable tree-based models into distributed learning settings. Finally, we investigate how CL strategies can be effectively combined with FL to support adaptive, lifelong learning when limited-size buffers are used to store past data for retraining. Our approach offers a cohesive set of tools for designing privacy-preserving, adaptive, and trustworthy ML solutions tailored to the demands of edge computing and intelligent services.
Authors:Isabelle Aguilar, Luis Fernando Herbozo Contreras, Omid Kavehei
Title: Stochastic Engrams for Efficient Continual Learning with Binarized Neural Networks
Abstract:
The ability to learn continuously in artificial neural networks (ANNs) is often limited by catastrophic forgetting, a phenomenon in which new knowledge becomes dominant. By taking mechanisms of memory encoding in neuroscience (aka. engrams) as inspiration, we propose a novel approach that integrates stochastically-activated engrams as a gating mechanism for metaplastic binarized neural networks (mBNNs). This method leverages the computational efficiency of mBNNs combined with the robustness of probabilistic memory traces to mitigate forgetting and maintain the model's reliability. Previously validated metaplastic optimization techniques have been incorporated to enhance synaptic stability further. Compared to baseline binarized models and benchmark fully connected continual learning approaches, our method is the only strategy capable of reaching average accuracies over 20% in class-incremental scenarios and achieving comparable domain-incremental results to full precision state-of-the-art methods. Furthermore, we achieve a significant reduction in peak GPU and RAM usage, under 5% and 20%, respectively. Our findings demonstrate (A) an improved stability vs. plasticity trade-off, (B) a reduced memory intensiveness, and (C) an enhanced performance in binarized architectures. By uniting principles of neuroscience and efficient computing, we offer new insights into the design of scalable and robust deep learning systems.
Authors:Yuci Han, Charles Toth, Alper Yilmaz
Title: UAS Visual Navigation in Large and Unseen Environments via a Meta Agent
Abstract:
The aim of this work is to develop an approach that enables Unmanned Aerial System (UAS) to efficiently learn to navigate in large-scale urban environments and transfer their acquired expertise to novel environments. To achieve this, we propose a meta-curriculum training scheme. First, meta-training allows the agent to learn a master policy to generalize across tasks. The resulting model is then fine-tuned on the downstream tasks. We organize the training curriculum in a hierarchical manner such that the agent is guided from coarse to fine towards the target task. In addition, we introduce Incremental Self-Adaptive Reinforcement learning (ISAR), an algorithm that combines the ideas of incremental learning and meta-reinforcement learning (MRL). In contrast to traditional reinforcement learning (RL), which focuses on acquiring a policy for a specific task, MRL aims to learn a policy with fast transfer ability to novel tasks. However, the MRL training process is time consuming, whereas our proposed ISAR algorithm achieves faster convergence than the conventional MRL algorithm. We evaluate the proposed methodologies in simulated environments and demonstrate that using this training philosophy in conjunction with the ISAR algorithm significantly improves the convergence speed for navigation in large-scale cities and the adaptation proficiency in novel environments.
Authors:Kamil Książek, Hubert Jastrzębski, Bartosz Trojan, Krzysztof Pniaczek, Michał Karp, Jacek Tabor
Title: FeNeC: Enhancing Continual Learning via Feature Clustering with Neighbor- or Logit-Based Classification
Abstract:
The ability of deep learning models to learn continuously is essential for adapting to new data categories and evolving data distributions. In recent years, approaches leveraging frozen feature extractors after an initial learning phase have been extensively studied. Many of these methods estimate per-class covariance matrices and prototypes based on backbone-derived feature representations. Within this paradigm, we introduce FeNeC (Feature Neighborhood Classifier) and FeNeC-Log, its variant based on the log-likelihood function. Our approach generalizes the existing concept by incorporating data clustering to capture greater intra-class variability. Utilizing the Mahalanobis distance, our models classify samples either through a nearest neighbor approach or trainable logit values assigned to consecutive classes. Our proposition may be reduced to the existing approaches in a special case while extending them with the ability of more flexible adaptation to data. We demonstrate that two FeNeC variants achieve competitive performance in scenarios where task identities are unknown and establish state-of-the-art results on several benchmarks.
Authors:Amin Banayeeanzade, Mohammad Rostami
Title: Hybrid Learners Do Not Forget: A Brain-Inspired Neuro-Symbolic Approach to Continual Learning
Abstract:
Continual learning is crucial for creating AI agents that can learn and improve themselves autonomously. A primary challenge in continual learning is to learn new tasks without losing previously learned knowledge. Current continual learning methods primarily focus on enabling a neural network with mechanisms that mitigate forgetting effects. Inspired by the two distinct systems in the human brain, System 1 and System 2, we propose a Neuro-Symbolic Brain-Inspired Continual Learning (NeSyBiCL) framework that incorporates two subsystems to solve continual learning: A neural network model responsible for quickly adapting to the most recent task, together with a symbolic reasoner responsible for retaining previously acquired knowledge from previous tasks. Moreover, we design an integration mechanism between these components to facilitate knowledge transfer from the symbolic reasoner to the neural network. We also introduce two compositional continual learning benchmarks and demonstrate that NeSyBiCL is effective and leads to superior performance compared to continual learning methods that merely rely on neural architectures to address forgetting.
Authors:Yanis Basso-Bert, Anca Molnos, Romain Lemaire, William Guicquero, Antoine Dupret
Title: Generative Binary Memory: Pseudo-Replay Class-Incremental Learning on Binarized Embeddings
Abstract:
In dynamic environments where new concepts continuously emerge, Deep Neural Networks (DNNs) must adapt by learning new classes while retaining previously acquired ones. This challenge is addressed by Class-Incremental Learning (CIL). This paper introduces Generative Binary Memory (GBM), a novel CIL pseudo-replay approach which generates synthetic binary pseudo-exemplars. Relying on Bernoulli Mixture Models (BMMs), GBM effectively models the multi-modal characteristics of class distributions, in a latent, binary space. With a specifically-designed feature binarizer, our approach applies to any conventional DNN. GBM also natively supports Binary Neural Networks (BNNs) for highly-constrained model sizes in embedded systems. The experimental results demonstrate that GBM achieves higher than state-of-the-art average accuracy on CIFAR100 (+2.9%) and TinyImageNet (+1.5%) for a ResNet-18 equipped with our binarizer. GBM also outperforms emerging CIL methods for BNNs, with +3.1% in final accuracy and x4.7 memory reduction, on CORE50.
Authors:Hanbyul Lee, Juneho Yi
Title: Few-Shot Class-Incremental Model Attribution Using Learnable Representation From CLIP-ViT Features
Abstract:
Recently, images that distort or fabricate facts using generative models have become a social concern. To cope with continuous evolution of generative artificial intelligence (AI) models, model attribution (MA) is necessary beyond just detection of synthetic images. However, current deep learning-based MA methods must be trained from scratch with new data to recognize unseen models, which is time-consuming and data-intensive. This work proposes a new strategy to deal with persistently emerging generative models. We adapt few-shot class-incremental learning (FSCIL) mechanisms for MA problem to uncover novel generative AI models. Unlike existing FSCIL approaches that focus on object classification using high-level information, MA requires analyzing low-level details like color and texture in synthetic images. Thus, we utilize a learnable representation from different levels of CLIP-ViT features. To learn an effective representation, we propose Adaptive Integration Module (AIM) to calculate a weighted sum of CLIP-ViT block features for each image, enhancing the ability to identify generative models. Extensive experiments show our method effectively extends from prior generative models to recent ones.
Authors:Hyundong Jin, Eunwoo Kim
Title: Continual Learning for Multiple Modalities
Abstract:
Continual learning aims to learn knowledge of tasks observed in sequential time steps while mitigating the forgetting of previously learned knowledge. Existing methods were designed to learn a single modality (e.g., image) over time, which limits their applicability in scenarios involving multiple modalities. In this work, we propose a novel continual learning framework that accommodates multiple modalities (image, video, audio, depth, and text). We train a model to align various modalities with text, leveraging its rich semantic information. However, this increases the risk of forgetting previously learned knowledge, exacerbated by the differing input traits across tasks. To alleviate the overwriting of previous knowledge of modalities, we propose a framework that consolidates intra-modal knowledge while incorporating relevant inter-modal information. This is achieved by self-regulating shifts in learned representations to gradually integrating novel knowledge into the information retained across modalities. Simultaneously, it mitigates inter-modal interference by selectively integrating knowledge from previously encountered modalities based on their mutual relevance. Furthermore, we introduce a strategy to re-align modality embeddings, effectively addressing biased alignment between modalities. We evaluate the proposed method in a wide range of continual learning scenarios using multiple datasets with different modalities. Extensive experiments demonstrate that ours outperforms existing methods in the scenarios, regardless of whether the identity of the modality is given.
Authors:Siyuan Mu, Sen Lin
Title: A Comprehensive Survey of Mixture-of-Experts: Algorithms, Theory, and Applications
Abstract:
Artificial intelligence (AI) has achieved astonishing successes in many domains, especially with the recent breakthroughs in the development of foundational large models. These large models, leveraging their extensive training data, provide versatile solutions for a wide range of downstream tasks. However, as modern datasets become increasingly diverse and complex, the development of large AI models faces two major challenges: (1) the enormous consumption of computational resources and deployment difficulties, and (2) the difficulty in fitting heterogeneous and complex data, which limits the usability of the models. Mixture of Experts (MoE) models has recently attracted much attention in addressing these challenges, by dynamically selecting and activating the most relevant sub-models to process input data. It has been shown that MoEs can significantly improve model performance and efficiency with fewer resources, particularly excelling in handling large-scale, multimodal data. Given the tremendous potential MoE has demonstrated across various domains, it is urgent to provide a comprehensive summary of recent advancements of MoEs in many important fields. Existing surveys on MoE have their limitations, e.g., being outdated or lacking discussion on certain key areas, and we aim to address these gaps. In this paper, we first introduce the basic design of MoE, including gating functions, expert networks, routing mechanisms, training strategies, and system design. We then explore the algorithm design of MoE in important machine learning paradigms such as continual learning, meta-learning, multi-task learning, and reinforcement learning. Additionally, we summarize theoretical studies aimed at understanding MoE and review its applications in computer vision and natural language processing. Finally, we discuss promising future research directions.
Authors:Menghao Waiyan William Zhu, Pengcheng Hao, Ercan Engin Kuruoğlu
Title: Sequential Function-Space Variational Inference via Gaussian Mixture Approximation
Abstract:
Continual learning in neural networks aims to learn new tasks without forgetting old tasks. Sequential function-space variational inference (SFSVI) uses a Gaussian variational distribution to approximate the distribution of the outputs of the neural network corresponding to a finite number of selected inducing points. Since the posterior distribution of a neural network is multi-modal, a Gaussian distribution could only match one mode of the posterior distribution, and a Gaussian mixture distribution could be used to better approximate the posterior distribution. We propose an SFSVI method based on a Gaussian mixture variational distribution. We also compare different types of variational inference methods with a fixed pre-trained feature extractor (where continual learning is performed on the final layer) and without a fixed pre-trained feature extractor (where continual learning is performed on all layers). We find that in terms of final average accuracy, likelihood-focused Gaussian mixture SFSVI outperforms other sequential variational inference methods, especially in the latter case.
Authors:Yanis Basso-Bert, Anca Molnos, Romain Lemaire, William Guicquero, Antoine Dupret
Title: Towards Experience Replay for Class-Incremental Learning in Fully-Binary Networks
Abstract:
Binary Neural Networks (BNNs) are a promising approach to enable Artificial Neural Network (ANN) implementation on ultra-low power edge devices. Such devices may compute data in highly dynamic environments, in which the classes targeted for inference can evolve or even novel classes may arise, requiring continual learning. Class Incremental Learning (CIL) is a common type of continual learning for classification problems, that has been scarcely addressed in the context of BNNs. Furthermore, most of existing BNNs models are not fully binary, as they require several real-valued network layers, at the input, the output, and for batch normalization. This paper goes a step further, enabling class incremental learning in Fully-Binarized NNs (FBNNs) through four main contributions. We firstly revisit the FBNN design and its training procedure that is suitable to CIL. Secondly, we explore loss balancing, a method to trade-off the performance of past and current classes. Thirdly, we propose a semi-supervised method to pre-train the feature extractor of the FBNN for transferable representations. Fourthly, two conventional CIL methods, \ie, Latent and Native replay, are thoroughly compared. These contributions are exemplified first on the CIFAR100 dataset, before being scaled up to address the CORE50 continual learning benchmark. The final results based on our 3Mb FBNN on CORE50 exhibit at par and better performance than conventional real-valued larger NN models.
Authors:Federico Mazzoni, Riccardo Guidotti, Alessio Malizia
Title: A Frank System for Co-Evolutionary Hybrid Decision-Making
Abstract:
We introduce Frank, a human-in-the-loop system for co-evolutionary hybrid decision-making aiding the user to label records from an un-labeled dataset. Frank employs incremental learning to ``evolve'' in parallel with the user's decisions, by training an interpretable machine learning model on the records labeled by the user. Furthermore, Frank advances state-of-the-art approaches by offering inconsistency controls, explanations, fairness checks, and bad-faith safeguards simultaneously. We evaluate our proposal by simulating the users' behavior with various levels of expertise and reliance on Frank's suggestions. The experiments show that Frank's intervention leads to improvements in the accuracy and the fairness of the decisions.
Authors:Bin Wu, Wuxuan Shi, Jinqiao Wang, Mang Ye
Title: Synthetic Data is an Elegant GIFT for Continual Vision-Language Models
Abstract:
Pre-trained Vision-Language Models (VLMs) require Continual Learning (CL) to efficiently update their knowledge and adapt to various downstream tasks without retraining from scratch. However, for VLMs, in addition to the loss of knowledge previously learned from downstream tasks, pre-training knowledge is also corrupted during continual fine-tuning. This issue is exacerbated by the unavailability of original pre-training data, leaving VLM's generalization ability degrading. In this paper, we propose GIFT, a novel continual fine-tuning approach that utilizes synthetic data to overcome catastrophic forgetting in VLMs. Taking advantage of recent advances in text-to-image synthesis, we employ a pre-trained diffusion model to recreate both pre-training and learned downstream task data. In this way, the VLM can revisit previous knowledge through distillation on matching diffusion-generated images and corresponding text prompts. Leveraging the broad distribution and high alignment between synthetic image-text pairs in VLM's feature space, we propose a contrastive distillation loss along with an image-text alignment constraint. To further combat in-distribution overfitting and enhance distillation performance with limited amount of generated data, we incorporate adaptive weight consolidation, utilizing Fisher information from these synthetic image-text pairs and achieving a better stability-plasticity balance. Extensive experiments demonstrate that our method consistently outperforms previous state-of-the-art approaches across various settings.
Authors:Benedikt Tscheschner, Eduardo Veas, Marc Masana
Title: Incremental Learning with Repetition via Pseudo-Feature Projection
Abstract:
Incremental Learning scenarios do not always represent real-world inference use-cases, which tend to have less strict task boundaries, and exhibit repetition of common classes and concepts in their continual data stream. To better represent these use-cases, new scenarios with partial repetition and mixing of tasks are proposed, where the repetition patterns are innate to the scenario and unknown to the strategy. We investigate how exemplar-free incremental learning strategies are affected by data repetition, and we adapt a series of state-of-the-art approaches to analyse and fairly compare them under both settings. Further, we also propose a novel method (Horde), able to dynamically adjust an ensemble of self-reliant feature extractors, and align them by exploiting class repetition. Our proposed exemplar-free method achieves competitive results in the classic scenario without repetition, and state-of-the-art performance in the one with repetition.
Authors:Karolina Bogacka, Maximilian Höfler, Maria Ganzha, Wojciech Samek, Katarzyna Wasielewska-Michniewska
Title: ReReLRP -- Remembering and Recognizing Tasks with LRP
Abstract:
Deep neural networks have revolutionized numerous research fields and applications. Despite their widespread success, a fundamental limitation known as catastrophic forgetting remains, where models fail to retain their ability to perform previously learned tasks after being trained on new ones. This limitation is particularly acute in certain continual learning scenarios, where models must integrate the knowledge from new domains with their existing capabilities. Traditional approaches to mitigate this problem typically rely on memory replay mechanisms, storing either original data samples, prototypes, or activation patterns. Although effective, these methods often introduce significant computational overhead, raise privacy concerns, and require the use of dedicated architectures. In this work we present ReReLRP (Remembering and Recognizing with LRP), a novel solution that leverages Layerwise Relevance Propagation (LRP) to preserve information across tasks. Our contribution provides increased privacy of existing replay-free methods while additionally offering built-in explainability, flexibility of model architecture and deployment, and a new mechanism to increase memory storage efficiency. We validate our approach on a wide variety of datasets, demonstrating results comparable with a well-known replay-based method in selected scenarios.
Authors:Daniel Goldfarb, Paul Hand
Title: Analysis of Overparameterization in Continual Learning under a Linear Model
Abstract:
Autonomous machine learning systems that learn many tasks in sequence are prone to the catastrophic forgetting problem. Mathematical theory is needed in order to understand the extent of forgetting during continual learning. As a foundational step towards this goal, we study continual learning and catastrophic forgetting from a theoretical perspective in the simple setting of gradient descent with no explicit algorithmic mechanism to prevent forgetting. In this setting, we analytically demonstrate that overparameterization alone can mitigate forgetting in the context of a linear regression model. We consider a two-task setting motivated by permutation tasks, and show that as the overparameterization ratio becomes sufficiently high, a model trained on both tasks in sequence results in a low-risk estimator for the first task. As part of this work, we establish a non-asymptotic bound of the risk of a single linear regression task, which may be of independent interest to the field of double descent theory.
Authors:Christopher Angelini, Nidhal Bouaynaya
Title: Dynamic Continual Learning: Harnessing Parameter Uncertainty for Improved Network Adaptation
Abstract:
When fine-tuning Deep Neural Networks (DNNs) to new data, DNNs are prone to overwriting network parameters required for task-specific functionality on previously learned tasks, resulting in a loss of performance on those tasks. We propose using parameter-based uncertainty to determine which parameters are relevant to a network's learned function and regularize training to prevent change in these important parameters. We approach this regularization in two ways: (1), we constrain critical parameters from significant changes by associating more critical parameters with lower learning rates, thereby limiting alterations in those parameters; (2), important parameters are restricted from change by imposing a higher regularization weighting, causing parameters to revert to their states prior to the learning of subsequent tasks. We leverage a Bayesian Moment Propagation framework which learns network parameters concurrently with their associated uncertainties while allowing each parameter to contribute uncertainty to the network's predictive distribution, avoiding the pitfalls of existing sampling-based methods. The proposed approach is evaluated for common sequential benchmark datasets and compared to existing published approaches from the Continual Learning community. Ultimately, we show improved Continual Learning performance for Average Test Accuracy and Backward Transfer metrics compared to sampling-based methods and other non-uncertainty-based approaches.
Authors:Parinita Nema, Vinod K Kurmi
Title: Strategic Base Representation Learning via Feature Augmentations for Few-Shot Class Incremental Learning
Abstract:
Few-shot class incremental learning implies the model to learn new classes while retaining knowledge of previously learned classes with a small number of training instances. Existing frameworks typically freeze the parameters of the previously learned classes during the incorporation of new classes. However, this approach often results in suboptimal class separation of previously learned classes, leading to overlap between old and new classes. Consequently, the performance of old classes degrades on new classes. To address these challenges, we propose a novel feature augmentation driven contrastive learning framework designed to enhance the separation of previously learned classes to accommodate new classes. Our approach involves augmenting feature vectors and assigning proxy labels to these vectors. This strategy expands the feature space, ensuring seamless integration of new classes within the expanded space. Additionally, we employ a self-supervised contrastive loss to improve the separation between previous classes. We validate our framework through experiments on three FSCIL benchmark datasets: CIFAR100, miniImageNet, and CUB200. The results demonstrate that our Feature Augmentation driven Contrastive Learning framework significantly outperforms other approaches, achieving state-of-the-art performance.
Authors:Yuxin Fan, Yuxiang Wang, Lipeng Liu, Xirui Tang, Na Sun, Zidong Yu
Title: Research on the Online Update Method for Retrieval-Augmented Generation (RAG) Model with Incremental Learning
Abstract:
In the contemporary context of rapid advancements in information technology and the exponential growth of data volume, language models are confronted with significant challenges in effectively navigating the dynamic and ever-evolving information landscape to update and adapt to novel knowledge in real time. In this work, an online update method is proposed, which is based on the existing Retrieval Enhanced Generation (RAG) model with multiple innovation mechanisms. Firstly, the dynamic memory is used to capture the emerging data samples, and then gradually integrate them into the core model through a tunable knowledge distillation strategy. At the same time, hierarchical indexing and multi-layer gating mechanism are introduced into the retrieval module to ensure that the retrieved content is more targeted and accurate. Finally, a multi-stage network structure is established for different types of inputs in the generation stage, and cross-attention matching and screening are carried out on the intermediate representations of each stage to ensure the effective integration and iterative update of new and old knowledge. Experimental results show that the proposed method is better than the existing mainstream comparison models in terms of knowledge retention and inference accuracy.
Authors:Jamil Ispahany, MD Rafiqul Islam, M. Arif Khan, MD Zahidul Islam
Title: A Sysmon Incremental Learning System for Ransomware Analysis and Detection
Abstract:
In the face of increasing cyber threats, particularly ransomware attacks, there is a pressing need for advanced detection and analysis systems that adapt to evolving malware behaviours. Throughout the literature, using machine learning (ML) to obviate ransomware attacks has increased in popularity. Unfortunately, most of these proposals leverage non-incremental learning approaches that require the underlying models to be updated from scratch to detect new ransomware, wasting time and resources. This approach is problematic because it leaves sensitive data vulnerable to attack during retraining, as newly emerging ransomware strains may go undetected until the model is updated. Furthermore, most of these approaches are not designed to detect ransomware in real-time data streams, limiting their effectiveness in complex network environments. To address this challenge, we present the Sysmon Incremental Learning System for Ransomware Analysis and Detection (SILRAD), which enables continuous updates to the underlying model and effectively closes the training gap. By leveraging the capabilities of Sysmon for detailed monitoring of system activities, our approach integrates online incremental learning techniques to enhance the adaptability and efficiency of ransomware detection. The most valuable features for detection were selected using the Pearson Correlation Coefficient (PCC), and concept drift detection was implemented through the ADWIN algorithm, ensuring that the model remains responsive to changes in ransomware behaviour. We compared our results to other popular techniques, such as Hoeffding Trees (HT) and Leveraging Bagging Classifier (LB), observing a detection accuracy of 98.89% and a Matthews Correlation Coefficient (MCC) rate of 94.11%, demonstrating the effectiveness of our technique.
Authors:Jamil Ispahany, MD Rafiqul Islam, M. Arif Khan, MD Zahidul Islam
Title: iCNN-LSTM: A batch-based incremental ransomware detection system using Sysmon
Abstract:
In response to the increasing ransomware threat, this study presents a novel detection system that integrates Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. By leveraging Sysmon logs, the system enables real-time analysis on Windows-based endpoints. Our approach overcomes the limitations of traditional models by employing batch-based incremental learning, allowing the system to continuously adapt to new ransomware variants without requiring complete retraining. The proposed model achieved an impressive average F2-score of 99.61\%, with low false positive and false negative rates of 0.17\% and 4.69\%, respectively, within a highly imbalanced dataset. This demonstrates exceptional accuracy in identifying malicious behaviour. The dynamic detection capabilities of Sysmon enhance the model's effectiveness by providing a reliable stream of security events, mitigating the vulnerabilities associated with static detection methods. Furthermore, the parallel processing of LSTM modules, combined with attention mechanisms, significantly improves training efficiency and reduces latency, making our system well-suited for real-world applications. These findings underscore the potential of our CNN-LSTM framework as a robust solution for real-time ransomware detection, ensuring adaptability and resilience in the face of evolving cyber threats.
Authors:Wei Chen, Yi Zhou
Title: Make Domain Shift a Catastrophic Forgetting Alleviator in Class-Incremental Learning
Abstract:
In the realm of class-incremental learning (CIL), alleviating the catastrophic forgetting problem is a pivotal challenge. This paper discovers a counter-intuitive observation: by incorporating domain shift into CIL tasks, the forgetting rate is significantly reduced. Our comprehensive studies demonstrate that incorporating domain shift leads to a clearer separation in the feature distribution across tasks and helps reduce parameter interference during the learning process. Inspired by this observation, we propose a simple yet effective method named DisCo to deal with CIL tasks. DisCo introduces a lightweight prototype pool that utilizes contrastive learning to promote distinct feature distributions for the current task relative to previous ones, effectively mitigating interference across tasks. DisCo can be easily integrated into existing state-of-the-art class-incremental learning methods. Experimental results show that incorporating our method into various CIL methods achieves substantial performance improvements, validating the benefits of our approach in enhancing class-incremental learning by separating feature representation and reducing interference. These findings illustrate that DisCo can serve as a robust fashion for future research in class-incremental learning.
Authors:Sharad Duwal, Suraj Prasai, Suresh Manandhar
Title: Domain-adaptative Continual Learning for Low-resource Tasks: Evaluation on Nepali
Abstract:
Continual learning has emerged as an important research direction due to the infeasibility of retraining large language models (LLMs) from scratch in the event of new data availability. Of great interest is the domain-adaptive pre-training (DAPT) paradigm, which focuses on continually training a pre-trained language model to adapt it to a domain it was not originally trained on. In this work, we evaluate the feasibility of DAPT in a low-resource setting, namely the Nepali language. We use synthetic data to continue training Llama 3 8B to adapt it to the Nepali language in a 4-bit QLoRA setting. We evaluate the adapted model on its performance, forgetting, and knowledge acquisition. We compare the base model and the final model on their Nepali generation abilities, their performance on popular benchmarks, and run case-studies to probe their linguistic knowledge in Nepali. We see some unsurprising forgetting in the final model, but also surprisingly find that increasing the number of shots during evaluation yields better percent increases in the final model (as high as 19.29% increase) compared to the base model (4.98%), suggesting latent retention. We also explore layer-head self-attention heatmaps to establish dependency resolution abilities of the final model in Nepali.
Authors:Anestis Kaimakamidis, Ioannis Pitas
Title: FCL-ViT: Task-Aware Attention Tuning for Continual Learning
Abstract:
Continual Learning (CL) involves adapting the prior Deep Neural Network (DNN) knowledge to new tasks, without forgetting the old ones. However, modern CL techniques focus on provisioning memory capabilities to existing DNN models rather than designing new ones that are able to adapt according to the task at hand. This paper presents the novel Feedback Continual Learning Vision Transformer (FCL-ViT) that uses a feedback mechanism to generate real-time dynamic attention features tailored to the current task. The FCL-ViT operates in two Phases. In phase 1, the generic image features are produced and determine where the Transformer should attend on the current image. In phase 2, task-specific image features are generated that leverage dynamic attention. To this end, Tunable self-Attention Blocks (TABs) and Task Specific Blocks (TSBs) are introduced that operate in both phases and are responsible for tuning the TABs attention, respectively. The FCL-ViT surpasses state-of-the-art performance on Continual Learning compared to benchmark methods, while retaining a small number of trainable DNN parameters.
Authors:Deepa Anand, Bipul Das, Vyshnav Dangeti, Antony Jerald, Rakesh Mullick, Uday Patil, Pakhi Sharma, Prasad Sudhakar
Title: Label Sharing Incremental Learning Framework for Independent Multi-Label Segmentation Tasks
Abstract:
In a setting where segmentation models have to be built for multiple datasets, each with its own corresponding label set, a straightforward way is to learn one model for every dataset and its labels. Alternatively, multi-task architectures with shared encoders and multiple segmentation heads or shared weights with compound labels can also be made use of. This work proposes a novel label sharing framework where a shared common label space is constructed and each of the individual label sets are systematically mapped to the common labels. This transforms multiple datasets with disparate label sets into a single large dataset with shared labels, and therefore all the segmentation tasks can be addressed by learning a single model. This eliminates the need for task specific adaptations in network architectures and also results in parameter and data efficient models. Furthermore, label sharing framework is naturally amenable for incremental learning where segmentations for new datasets can be easily learnt. We experimentally validate our method on various medical image segmentation datasets, each involving multi-label segmentation. Furthermore, we demonstrate the efficacy of the proposed method in terms of performance and incremental learning ability vis-a-vis alternative methods.
Authors:Paweł Skierś, Kamil Deja
Title: Joint Diffusion models in Continual Learning
Abstract:
In this work, we introduce JDCL - a new method for continual learning with generative rehearsal based on joint diffusion models. Neural networks suffer from catastrophic forgetting defined as abrupt loss in the model's performance when retrained with additional data coming from a different distribution. Generative-replay-based continual learning methods try to mitigate this issue by retraining a model with a combination of new and rehearsal data sampled from a generative model. In this work, we propose to extend this idea by combining a continually trained classifier with a diffusion-based generative model into a single - jointly optimized neural network. We show that such shared parametrization, combined with the knowledge distillation technique allows for stable adaptation to new tasks without catastrophic forgetting. We evaluate our approach on several benchmarks, where it outperforms recent state-of-the-art generative replay techniques. Additionally, we extend our method to the semi-supervised continual learning setup, where it outperforms competing buffer-based replay techniques, and evaluate, in a self-supervised manner, the quality of trained representations.
Authors:George Potter, Gertjan Burghouts, Joris Sijs
Title: Incremental Learning of Affordances using Markov Logic Networks
Abstract:
Affordances enable robots to have a semantic understanding of their surroundings. This allows them to have more acting flexibility when completing a given task. Capturing object affordances in a machine learning model is a difficult task, because of their dependence on contextual information. Markov Logic Networks (MLN) combine probabilistic reasoning with logic that is able to capture such context. Mobile robots operate in partially known environments wherein unseen object affordances can be observed. This new information must be incorporated into the existing knowledge, without having to retrain the MLN from scratch. We introduce the MLN Cumulative Learning Algorithm (MLN-CLA). MLN-CLA learns new relations in various knowledge domains by retaining knowledge and only updating the changed knowledge, for which the MLN is retrained. We show that MLN-CLA is effective for accumulative learning and zero-shot affordance inference, outperforming strong baselines.
Authors:Anthony Bazhenov, Pahan Dewasurendra, Giri P. Krishnan, Jean Erik Delanois
Title: Unsupervised Replay Strategies for Continual Learning with Limited Data
Abstract:
Artificial neural networks (ANNs) show limited performance with scarce or imbalanced training data and face challenges with continuous learning, such as forgetting previously learned data after new tasks training. In contrast, the human brain can learn continuously and from just a few examples. This research explores the impact of 'sleep', an unsupervised phase incorporating stochastic activation with local Hebbian learning rules, on ANNs trained incrementally with limited and imbalanced datasets, specifically MNIST and Fashion MNIST. We discovered that introducing a sleep phase significantly enhanced accuracy in models trained with limited data. When a few tasks were trained sequentially, sleep replay not only rescued previously learned information that had been catastrophically forgetting following new task training but often enhanced performance in prior tasks, especially those trained with limited data. This study highlights the multifaceted role of sleep replay in augmenting learning efficiency and facilitating continual learning in ANNs.
Authors:Anestis Kaimakamidis, Ioannis Mademlis, Ioannis Pitas
Title: Collaborative Knowledge Distillation via a Learning-by-Education Node Community
Abstract:
A novel Learning-by-Education Node Community framework (LENC) for Collaborative Knowledge Distillation (CKD) is presented, which facilitates continual collective learning through effective knowledge exchanges among diverse deployed Deep Neural Network (DNN) peer nodes. These DNNs dynamically and autonomously adopt either the role of a student, seeking knowledge, or that of a teacher, imparting knowledge, fostering a collaborative learning environment. The proposed framework enables efficient knowledge transfer among participating DNN nodes as needed, while enhancing their learning capabilities and promoting their collaboration. LENC addresses the challenges of handling diverse training data distributions and the limitations of individual DNN node learning abilities. It ensures the exploitation of the best available teacher knowledge upon learning a new task and protects the DNN nodes from catastrophic forgetting. Additionally, it innovates by enabling collaborative multitask knowledge distillation, while addressing the problem of task-agnostic continual learning, as DNN nodes have no information on task boundaries. Experimental evaluation on a proof-of-concept implementation demonstrates the LENC framework's functionalities and benefits across multiple DNN learning and inference scenarios. The conducted experiments showcase its ability to gradually maximize the average test accuracy of the community of interacting DNN nodes in image classification problems, by appropriately leveraging the collective knowledge of all node peers. The LENC framework achieves state-of-the-art performance in on-line unlabelled CKD.
Authors:Clémentine C. J. Dominé, Nicolas Anguita, Alexandra M. Proca, Lukas Braun, Daniel Kunin, Pedro A. M. Mediano, Andrew M. Saxe
Title: From Lazy to Rich: Exact Learning Dynamics in Deep Linear Networks
Abstract:
Biological and artificial neural networks develop internal representations that enable them to perform complex tasks. In artificial networks, the effectiveness of these models relies on their ability to build task specific representation, a process influenced by interactions among datasets, architectures, initialization strategies, and optimization algorithms. Prior studies highlight that different initializations can place networks in either a lazy regime, where representations remain static, or a rich/feature learning regime, where representations evolve dynamically. Here, we examine how initialization influences learning dynamics in deep linear neural networks, deriving exact solutions for lambda-balanced initializations-defined by the relative scale of weights across layers. These solutions capture the evolution of representations and the Neural Tangent Kernel across the spectrum from the rich to the lazy regimes. Our findings deepen the theoretical understanding of the impact of weight initialization on learning regimes, with implications for continual learning, reversal learning, and transfer learning, relevant to both neuroscience and practical applications.
Authors:Zhiyuan Li, Yanfeng Lv, Ziqin Tu, Di Shang, Hong Qiao
Title: Vision-Language Navigation with Continual Learning
Abstract:
Vision-language navigation (VLN) is a critical domain within embedded intelligence, requiring agents to navigate 3D environments based on natural language instructions. Traditional VLN research has focused on improving environmental understanding and decision accuracy. However, these approaches often exhibit a significant performance gap when agents are deployed in novel environments, mainly due to the limited diversity of training data. Expanding datasets to cover a broader range of environments is impractical and costly. We propose the Vision-Language Navigation with Continual Learning (VLNCL) paradigm to address this challenge. In this paradigm, agents incrementally learn new environments while retaining previously acquired knowledge. VLNCL enables agents to maintain an environmental memory and extract relevant knowledge, allowing rapid adaptation to new environments while preserving existing information. We introduce a novel dual-loop scenario replay method (Dual-SR) inspired by brain memory replay mechanisms integrated with VLN agents. This method facilitates consolidating past experiences and enhances generalization across new tasks. By utilizing a multi-scenario memory buffer, the agent efficiently organizes and replays task memories, thereby bolstering its ability to adapt quickly to new environments and mitigating catastrophic forgetting. Our work pioneers continual learning in VLN agents, introducing a novel experimental setup and evaluation metrics. We demonstrate the effectiveness of our approach through extensive evaluations and establish a benchmark for the VLNCL paradigm. Comparative experiments with existing continual learning and VLN methods show significant improvements, achieving state-of-the-art performance in continual learning ability and highlighting the potential of our approach in enabling rapid adaptation while preserving prior knowledge.
Authors:Qiang Zhang, Zhipeng Teng, Disheng Wu, Jiayin Wang
Title: An Enhanced Batch Query Architecture in Real-time Recommendation
Abstract:
In industrial recommendation systems on websites and apps, it is essential to recall and predict top-n results relevant to user interests from a content pool of billions within milliseconds. To cope with continuous data growth and improve real-time recommendation performance, we have designed and implemented a high-performance batch query architecture for real-time recommendation systems. Our contributions include optimizing hash structures with a cacheline-aware probing method to enhance coalesced hashing, as well as the implementation of a hybrid storage key-value service built upon it. Our experiments indicate this approach significantly surpasses conventional hash tables in batch query throughput, achieving up to 90% of the query throughput of random memory access when incorporating parallel optimization. The support for NVMe, integrating two-tier storage for hot and cold data, notably reduces resource consumption. Additionally, the system facilitates dynamic updates, automated sharding of attributes and feature embedding tables, and introduces innovative protocols for consistency in batch queries, thereby enhancing the effectiveness of real-time incremental learning updates. This architecture has been deployed and in use in the bilibili recommendation system for over a year, a video content community with hundreds of millions of users, supporting 10x increase in model computation with minimal resource growth, improving outcomes while preserving the system's real-time performance.
Authors:Allyson Hahn, Krishnan Raghavan
Title: The Effect of Architecture During Continual Learning
Abstract:
Continual learning is a challenge for models with static architecture, as they fail to adapt to when data distributions evolve across tasks. We introduce a mathematical framework that jointly models architecture and weights in a Sobolev space, enabling a rigorous investigation into the role of neural network architecture in continual learning and its effect on the forgetting loss. We derive necessary conditions for the continual learning solution and prove that learning only model weights is insufficient to mitigate catastrophic forgetting under distribution shifts. Consequently, we prove that by learning the architecture and weights simultaneously at each task, we can reduce catastrophic forgetting. To learn weights and architecture simultaneously, we formulate continual learning as a bilevel optimization problem: the upper level selects an optimal architecture for a given task, while the lower level computes optimal weights via dynamic programming over all tasks. To solve the upper level problem, we introduce a derivative-free direct search algorithm to determine the optimal architecture. Once found, we must transfer knowledge from the current architecture to the optimal one. However, the optimal architecture will result in a weights parameter space different from the current architecture (i.e., dimensions of weights matrices will not match). To bridge the dimensionality gap, we develop a low-rank transfer mechanism to map knowledge across architectures of mismatched dimensions. Empirical studies across regression and classification problems, including feedforward, convolutional, and graph neural networks, demonstrate that learning the optimal architecture and weights simultaneously yields substantially improved performance (up to two orders of magnitude), reduced forgetting, and enhanced robustness to noise compared with static architecture approaches.
Authors:Zijing Hui, Wenhan Lyu, Shusen Wang, Li Chen, Chu Wang
Title: Real-Time Trend Prediction via Continually-Aligned LLM Query Generation
Abstract:
Trending news detection in low-traffic search environments faces a fundamental cold-start problem, where a lack of query volume prevents systems from identifying emerging or long-tail trends. Existing methods relying on keyword frequency or query spikes are inherently slow and ineffective in these sparse settings, lagging behind real-world shifts in attention. We introduce RTTP, a novel Real-Time Trending Prediction framework that generates search queries directly from news content instead of waiting for users to issue them. RTTP leverages a continual learning LLM (CL-LLM) that converts posts into search-style queries and scores them using engagement strength + creator authority, enabling early trend surfacing before search volume forms. To ensure adaptation without degrading reasoning, we propose Mix-Policy DPO, a new preference-based continual learning approach that combines on-policy stability with off-policy novelty to mitigate catastrophic forgetting during model upgrades. Deployed at production scale on Facebook and Meta AI products, RTTP delivers +91.4% improvement in tail-trend detection precision@500 and +19% query generation accuracy over industry baselines, while sustaining stable performance after multi-week online training. This work demonstrates that LLM-generated synthetic search signals, when aligned and continually updated, unlock timely trend understanding in low-traffic search environments.
Authors:Prakash Dhungana, Sayed Ahmad Salehi
Title: Domain-Incremental Continual Learning for Robust and Efficient Keyword Spotting in Resource Constrained Systems
Abstract:
Keyword Spotting (KWS) systems with small footprint models deployed on edge devices face significant accuracy and robustness challenges due to domain shifts caused by varying noise and recording conditions. To address this, we propose a comprehensive framework for continual learning designed to adapt to new domains while maintaining computational efficiency. The proposed pipeline integrates a dual-input Convolutional Neural Network, utilizing both Mel Frequency Cepstral Coefficients (MFCC) and Mel-spectrogram features, supported by a multi-stage denoising process, involving discrete wavelet transform and spectral subtraction techniques, plus model and prototype update blocks. Unlike prior methods that restrict updates to specific layers, our approach updates the complete quantized model, made possible due to compact model architecture. A subset of input samples are selected during runtime using class prototypes and confidence-driven filtering, which are then pseudo-labeled and combined with rehearsal buffer for incremental model retraining. Experimental results on noisy test dataset demonstrate the framework's effectiveness, achieving 99.63\% accuracy on clean data and maintaining robust performance (exceeding 94\% accuracy) across diverse noisy environments, even at -10 dB Signal-to-Noise Ratio. The proposed framework work confirms that integrating efficient denoising with prototype-based continual learning enables KWS models to operate autonomously and robustly in resource-constrained, dynamic environments.
Authors:Seoyeon Kim, Jaehyung Kim
Title: SPRInG: Continual LLM Personalization via Selective Parametric Adaptation and Retrieval-Interpolated Generation
Abstract:
Personalizing Large Language Models typically relies on static retrieval or one-time adaptation, assuming user preferences remain invariant over time. However, real-world interactions are dynamic, where user interests continuously evolve, posing a challenge for models to adapt to preference drift without catastrophic forgetting. Standard continual learning approaches often struggle in this context, as they indiscriminately update on noisy interaction streams, failing to distinguish genuine preference shifts from transient contexts. To address this, we introduce SPRInG, a novel semi-parametric framework designed for effective continual personalization. During training, SPRInG employs drift-driven selective adaptation, which utilizes a likelihood-based scoring function to identify high-novelty interactions. This allows the model to selectively update the user-specific adapter on drift signals while preserving hard-to-learn residuals in a replay buffer. During inference, we apply strict relevance gating and fuse parametric knowledge with retrieved history via logit interpolation. Experiments on the long-form personalized generation benchmark demonstrate that SPRInG outperforms existing baselines, validating its robustness for real-world continual personalization.
Authors:Josh Li, Fow-sen Choa
Title: A Backpropagation-Free Feedback-Hebbian Network for Continual Learning Dynamics
Abstract:
Feedback-rich neural architectures can regenerate earlier representations and inject temporal context, making them a natural setting for strictly local synaptic plasticity. Existing literature raises doubt about whether a minimal, backpropagation-free feedback-Hebbian system can already express interpretable continual-learning-relevant behaviors under controlled training schedules. In this work, we introduce a compact prediction-reconstruction architecture with a dedicated feedback pathway providing lightweight, locally trainable temporal context for continual adaptation. All synapses are updated by a unified local rule combining centered Hebbian covariance, Oja-style stabilization, and a local supervised drive where targets are available. With a simple two-pair association task, learning is characterized through layer-wise activity snapshots, connectivity trajectories (row and column means of learned weights), and a normalized retention index across phases. Under sequential A to B training, forward output connectivity exhibits a long-term depression (LTD)-like suppression of the earlier association, while feedback connectivity preserves an A-related trace during acquisition of B. Under an alternating sequence, both associations are concurrently maintained rather than sequentially suppressed. Architectural controls and rule-term ablations isolate the role of dedicated feedback in regeneration and co-maintenance, alongside the role of the local supervised term in output selectivity and unlearning. Together, the results show that a compact feedback pathway trained with local plasticity can support regeneration and continual-learning-relevant dynamics in a minimal, mechanistically transparent setting.
Authors:Santosh Srinath K, Mudit Somani, Varun Reddy Padala, Prajna Devi Upadhyay, Abhijit Das
Title: Continual-learning for Modelling Low-Resource Languages from Large Language Models
Abstract:
Modelling a language model for a multi-lingual scenario includes several potential challenges, among which catastrophic forgetting is the major challenge. For example, small language models (SLM) built for low-resource languages by adapting large language models (LLMs) pose the challenge of catastrophic forgetting. This work proposes to employ a continual learning strategy using parts-of-speech (POS)-based code-switching along with a replay adapter strategy to mitigate the identified gap of catastrophic forgetting while training SLM from LLM. Experiments conducted on vision language tasks such as visual question answering and language modelling task exhibits the success of the proposed architecture.
Authors:Brian Tekmen, Jason Yin, Qianqian Tong
Title: GEM-Style Constraints for PEFT with Dual Gradient Projection in LoRA
Abstract:
Full fine-tuning of Large Language Models (LLMs) is computationally costly, motivating Continual Learning (CL) approaches that utilize parameter-efficient adapters. We revisit Gradient Episodic Memory (GEM) within the Low-Rank Adapter (LoRA) subspace and introduce I-GEM: a fixed-budget, GPU-resident dual projected-gradient approximation to GEM's quadratic projection. By constraining non-interference solely within the adapter parameters, I-GEM preserves GEM-like stability with orders-of-magnitude lower mean projection overhead. On a 3-task AG News split with induced domain drift, using GPT-2 (355M) and LoRA ($r=8$), I-GEM matches GEM's average accuracy (within $\sim\!0.04$ pts) and outperforms A-GEM by $\sim\!1.4$ pts. Crucially, it reduces projection time vs.\ GEM by a factor of $\sim\!10^3$. These results suggest that applying GEM constraints in the LoRA subspace is a practical pathway for continual learning at the LLM scale.
Authors:Pengchao Han, Xi Huang, Yi Fang, Guojun Han
Title: Rethinking Knowledge Distillation in Collaborative Machine Learning: Memory, Knowledge, and Their Interactions
Abstract:
Collaborative learning has emerged as a key paradigm in large-scale intelligent systems, enabling distributed agents to cooperatively train their models while addressing their privacy concerns. Central to this paradigm is knowledge distillation (KD), a technique that facilitates efficient knowledge transfer among agents. However, the underlying mechanisms by which KD leverages memory and knowledge across agents remain underexplored. This paper aims to bridge this gap by offering a comprehensive review of KD in collaborative learning, with a focus on the roles of memory and knowledge. We define and categorize memory and knowledge within the KD process and explore their interrelationships, providing a clear understanding of how knowledge is extracted, stored, and shared in collaborative settings. We examine various collaborative learning patterns, including distributed, hierarchical, and decentralized structures, and provide insights into how memory and knowledge dynamics shape the effectiveness of KD in collaborative learning. Particularly, we emphasize task heterogeneity in distributed learning pattern covering federated learning (FL), multi-agent domain adaptation (MADA), federated multi-modal learning (FML), federated continual learning (FCL), federated multi-task learning (FMTL), and federated graph knowledge embedding (FKGE). Additionally, we highlight model heterogeneity, data heterogeneity, resource heterogeneity, and privacy concerns of these tasks. Our analysis categorizes existing work based on how they handle memory and knowledge. Finally, we discuss existing challenges and propose future directions for advancing KD techniques in the context of collaborative learning.
Authors:Malihe Dahmardeh, Francesco Setti
Title: MECAD: A multi-expert architecture for continual anomaly detection
Abstract:
In this paper we propose MECAD, a novel approach for continual anomaly detection using a multi-expert architecture. Our system dynamically assigns experts to object classes based on feature similarity and employs efficient memory management to preserve the knowledge of previously seen classes. By leveraging an optimized coreset selection and a specialized replay buffer mechanism, we enable incremental learning without requiring full model retraining. Our experimental evaluation on the MVTec AD dataset demonstrates that the optimal 5-expert configuration achieves an average AUROC of 0.8259 across 15 diverse object categories while significantly reducing knowledge degradation compared to single-expert approaches. This framework balances computational efficiency, specialized knowledge retention, and adaptability, making it well-suited for industrial environments with evolving product types.
Authors:Pablo García-Santaclara, Bruno Fernández-Castro, Rebeca P. Díaz-Redondo, Carlos Calvo-Moa, Henar Mariño-Bodelón
Title: Continual Learning at the Edge: An Agnostic IIoT Architecture
Abstract:
The exponential growth of Internet-connected devices has presented challenges to traditional centralized computing systems due to latency and bandwidth limitations. Edge computing has evolved to address these difficulties by bringing computations closer to the data source. Additionally, traditional machine learning algorithms are not suitable for edge-computing systems, where data usually arrives in a dynamic and continual way. However, incremental learning offers a good solution for these settings. We introduce a new approach that applies the incremental learning philosophy within an edge-computing scenario for the industrial sector with a specific purpose: real time quality control in a manufacturing system. Applying continual learning we reduce the impact of catastrophic forgetting and provide an efficient and effective solution.
Authors:Ayush Vaibhav Bhatti, Deniz Karakay, Debottama Das, Nilotpal Rajbongshi, Yuito Sugimoto
Title: Open Horizons: Evaluating Deep Models in the Wild
Abstract:
Open-world deployment requires models to recognize both known categories and remain reliable when novel classes appear. We present a unified experimental study spanning open-set recognition (OSR) and few-shot class-incremental learning (FSCIL) on CIFAR-10. For OSR, we compare three pretrained frozen visual encoders: ResNet-50, ConvNeXt-Tiny and CLIP ViT-B/16,using a linear probe and four post-hoc scoring functions, namely MSP, Energy, Mahalanobis and kNN. Across metrics,such as, AUROC, AUPR, FPR@95, and OSCR, CLIP consistently yields the strongest separability between known and unknown samples, with Energy providing the most stable performance across backbones. For FSCIL, we compare modified SPPR, OrCo, and ConCM using partially frozen ResNet-50 across 1-, 5-, and 10-shot scenarios. ConCM achieves 84.7% accuracy in the 10-shot setting with the cleanest confusion matrix, while all methods show saturation beyond 5 shots. Our controlled evaluation reveals how the backbone architecture and scoring mechanisms affect unknown detection and how prototype-based methods mitigate catastrophic forgetting during incremental adaptation.
Authors:Tingxu Yan, Ye Yuan
Title: Condensation-Concatenation Framework for Dynamic Graph Continual Learning
Abstract:
Dynamic graphs are prevalent in real-world scenarios, where continuous structural changes induce catastrophic forgetting in graph neural networks (GNNs). While continual learning has been extended to dynamic graphs, existing methods overlook the effects of topological changes on existing nodes. To address it, we propose a novel framework for continual learning on dynamic graphs, named Condensation-Concatenation-based Continual Learning (CCC). Specifically, CCC first condenses historical graph snapshots into compact semantic representations while aiming to preserve the original label distribution and topological properties. Then it concatenates these historical embeddings with current graph representations selectively. Moreover, we refine the forgetting measure (FM) to better adapt to dynamic graph scenarios by quantifying the predictive performance degradation of existing nodes caused by structural updates. CCC demonstrates superior performance over state-of-the-art baselines across four real-world datasets in extensive experiments.
Authors:Jianyu Wang, Jacob Nean-Hua Sheikh, Cat P. Le, Hoda Bidkhori
Title: Task-Aware Multi-Expert Architecture For Lifelong Deep Learning
Abstract:
Lifelong deep learning (LDL) trains neural networks to learn sequentially across tasks while preserving prior knowledge. We propose Task-Aware Multi-Expert (TAME), a continual learning algorithm that leverages task similarity to guide expert selection and knowledge transfer. TAME maintains a pool of pretrained neural networks and activates the most relevant expert for each new task. A shared dense layer integrates features from the chosen expert to generate predictions. To reduce catastrophic forgetting, TAME uses a replay buffer that stores representative samples and embeddings from previous tasks and reuses them during training. An attention mechanism further prioritizes the most relevant stored information for each prediction. Together, these components allow TAME to adapt flexibly while retaining important knowledge across evolving task sequences. Experiments on binary classification tasks derived from CIFAR-100 show that TAME improves accuracy on new tasks while sustaining performance on earlier ones, highlighting its effectiveness in balancing adaptation and retention in lifelong learning settings.
Authors:Neha, Tarunpreet Bhatia
Title: Adaptive Intrusion Detection System Leveraging Dynamic Neural Models with Adversarial Learning for 5G/6G Networks
Abstract:
Intrusion Detection Systems (IDS) are critical components in safeguarding 5G/6G networks from both internal and external cyber threats. While traditional IDS approaches rely heavily on signature-based methods, they struggle to detect novel and evolving attacks. This paper presents an advanced IDS framework that leverages adversarial training and dynamic neural networks in 5G/6G networks to enhance network security by providing robust, real-time threat detection and response capabilities. Unlike conventional models, which require costly retraining to update knowledge, the proposed framework integrates incremental learning algorithms, reducing the need for frequent retraining. Adversarial training is used to fortify the IDS against poisoned data. By using fewer features and incorporating statistical properties, the system can efficiently detect potential threats. Extensive evaluations using the NSL- KDD dataset demonstrate that the proposed approach provides better accuracy of 82.33% for multiclass classification of various network attacks while resisting dataset poisoning. This research highlights the potential of adversarial-trained, dynamic neural networks for building resilient IDS solutions.
Authors:Salvador Carrión, Francisco Casacuberta
Title: Efficient Continual Learning in Neural Machine Translation: A Low-Rank Adaptation Approach
Abstract:
Continual learning in Neural Machine Translation (NMT) faces the dual challenges of catastrophic forgetting and the high computational cost of retraining. This study establishes Low-Rank Adaptation (LoRA) as a parameter-efficient framework to address these challenges in dedicated NMT architectures. We first demonstrate that LoRA-based fine-tuning adapts NMT models to new languages and domains with performance on par with full-parameter techniques, while utilizing only a fraction of the parameter space. Second, we propose an interactive adaptation method using a calibrated linear combination of LoRA modules. This approach functions as a gate-free mixture of experts, enabling real-time, user-controllable adjustments to domain and style without retraining. Finally, to mitigate catastrophic forgetting, we introduce a novel gradient-based regularization strategy specifically designed for low-rank decomposition matrices. Unlike methods that regularize the full parameter set, our approach weights the penalty on the low-rank updates using historical gradient information. Experimental results indicate that this strategy efficiently preserves prior domain knowledge while facilitating the acquisition of new tasks, offering a scalable paradigm for interactive and continual NMT.
Authors:Xiaoyu Lan, Jalil Taghia, Hannes Larsson, Andreas Johnsson
Title: Multi-Generator Continual Learning for Robust Delay Prediction in 6G
Abstract:
In future 6G networks, dependable networks will enable telecommunication services such as remote control of robots or vehicles with strict requirements on end-to-end network performance in terms of delay, delay variation, tail distributions, and throughput. With respect to such networks, it is paramount to be able to determine what performance level the network segment can guarantee at a given point in time. One promising approach is to use predictive models trained using machine learning (ML). Predicting performance metrics such as one-way delay (OWD), in a timely manner, provides valuable insights for the network, user equipments (UEs), and applications to address performance trends, deviations, and violations. Over the course of time, a dynamic network environment results in distributional shifts, which causes catastrophic forgetting and drop of ML model performance. In continual learning (CL), the model aims to achieve a balance between stability and plasticity, enabling new information to be learned while preserving previously learned knowledge. In this paper, we target on the challenges of catastrophic forgetting of OWD prediction model. We propose a novel approach which introducing the concept of multi-generator for the state-of-the-art CL generative replay framework, along with tabular variational autoencoders (TVAE) as generators. The domain knowledge of UE capabilities is incorporated into the learning process for determining generator setup and relevance. The proposed approach is evaluated across a diverse set of scenarios with data that is collected in a realistic 5G testbed, demonstrating its outstanding performance in comparison to baselines.
Authors:Haidong Kang, Wei Wu, Hanling Wang
Title: Automatic Attack Discovery for Few-Shot Class-Incremental Learning via Large Language Models
Abstract:
Few-shot class incremental learning (FSCIL) is a more realistic and challenging paradigm in continual learning to incrementally learn unseen classes and overcome catastrophic forgetting on base classes with only a few training examples. Previous efforts have primarily centered around studying more effective FSCIL approaches. By contrast, less attention was devoted to thinking the security issues in contributing to FSCIL. This paper aims to provide a holistic study of the impact of attacks on FSCIL. We first derive insights by systematically exploring how human expert-designed attack methods (i.e., PGD, FGSM) affect FSCIL. We find that those methods either fail to attack base classes, or suffer from huge labor costs due to relying on huge expert knowledge. This highlights the need to craft a specialized attack method for FSCIL. Grounded in these insights, in this paper, we propose a simple yet effective ACraft method to automatically steer and discover optimal attack methods targeted at FSCIL by leveraging Large Language Models (LLMs) without human experts. Moreover, to improve the reasoning between LLMs and FSCIL, we introduce a novel Proximal Policy Optimization (PPO) based reinforcement learning to optimize learning, making LLMs generate better attack methods in the next generation by establishing positive feedback. Experiments on mainstream benchmarks show that our ACraft significantly degrades the performance of state-of-the-art FSCIL methods and dramatically beyond human expert-designed attack methods while maintaining the lowest costs of attack.
Authors:Ankur Gupta, Anshul Rai, Archit Bansal, Vipul Arora
Title: Continual Learning for Singing Voice Separation with Human in the Loop Adaptation
Abstract:
Deep learning-based works for singing voice separation have performed exceptionally well in the recent past. However, most of these works do not focus on allowing users to interact with the model to improve performance. This can be crucial when deploying the model in real-world scenarios where music tracks can vary from the original training data in both genre and instruments. In this paper, we present a deep learning-based interactive continual learning framework for singing voice separation that allows users to fine-tune the vocal separation model to conform it to new target songs. We use a U-Net-based base model architecture that produces a mask for separating vocals from the spectrogram, followed by a human-in-the-loop task where the user provides feedback by marking a few false positives, i.e., regions in the extracted vocals that should have been silence. We propose two continual learning algorithms. Experiments substantiate the improvement in singing voice separation performance by the proposed algorithms over the base model in intra-dataset and inter-dataset settings.
Authors:Mengzhu Xu, Hanzhi Liu, Ningkang Peng, Qianyu Chen, Canran Xiao
Title: Affordance-First Decomposition for Continual Learning in Video-Language Understanding
Abstract:
Continual learning for video--language understanding is increasingly important as models face non-stationary data, domains, and query styles, yet prevailing solutions blur what should stay stable versus what should adapt, rely on static routing/capacity, or require replaying past videos. We aim to explicitly specify where stability lives and where plasticity should be focused under realistic memory and privacy constraints. We introduce Affordance-First Decomposition (AFD): videos are mapped to slowly varying affordance tokens that form a shared, time-aligned substrate, while a lightweight, query-routed, conflict-aware scheduler concentrates adaptation and grows capacity only when needed. The substrate is stabilized via weak alignment and teacher consistency, and training uses question-only replay. AFD achieves state-of-the-art across protocols: 51.6% average accuracy with -1.8% forgetting on domain-incremental VideoQA, ViLCo R@1@0.5 of 29.6% (MQ) and 20.7% (NLQ) with 18.4% stAP@0.25 (VQ), and 39.5% accuracy with -1.6% forgetting on time-incremental iVQA. Overall, AFD offers an explicit, interpretable split between a stable interaction-centered substrate and targeted adaptation.
Authors:Monique Louise Monteiro, George G. Cabral, Adriano L. I. OLiveira
Title: CodeFlowLM: Incremental Just-In-Time Defect Prediction with Pretrained Language Models and Exploratory Insights into Defect Localization
Abstract:
This work introduces CodeFlowLM, an incremental learning framework for Just-In-Time Software Defect Prediction (JIT-SDP) that leverages pre-trained language models (PLMs). Unlike traditional online learners, CodeFlowLM employs continual fine-tuning to address concept drift, class imbalance, and verification latency without retraining from scratch. We evaluated encoder-only and encoder-decoder PLMs (notably CodeT5+ and UniXCoder) in JIT-SDP scenarios within and between projects, comparing them with the incremental baseline BORB. The results show that CodeFlowLM achieves up to 68% G-Mean gains, confirming its superior adaptability and robustness in evolving software environments. We further extend the analysis to Just-in-Time Defect Localization (JIT-DL), benchmarking Large Language Models (LLMs) such as GPT-5, Claude Sonnet 4.5, and Gemini 2.5 Pro against attention-based models. GPT-5 delivers comparable performance for Recall@20% and Effort@20% with higher stability, although attention-based methods retain an advantage in fine-grained ranking metrics (Top-k, IFA). A qualitative error analysis reveals that most false positives arise from (1) human-like conservative bias, (2) insufficient contextual information in diff-based prompts, and (3) potential dataset mislabeling in JIT-Defects4J. These findings highlight both the promise and the current limitations of LLM reasoning in defect localization. False negatives occur in smaller proportions. Overall, CodeFlowLM significantly advances the state of the art in incremental JIT-SDP, demonstrating superior adaptability and robustness in evolving software environments. Furthermore, our exploratory analysis of LLMs in JIT-DL not only benchmarks their performance against established attention-based models but also provides critical insights into the current limitations of prompt-based defect reasoning.
Authors:Jianzhe Lin, Zeyu Pan, Yun Zhu, Ruiqi Song, Jining Yang
Title: Towards Continuous Intelligence Growth: Self-Training, Continual Learning, and Dual-Scale Memory in SuperIntelliAgent
Abstract:
We introduce SuperIntelliAgent, an agentic learning framework that couples a trainable small diffusion model (the learner) with a frozen large language model (the verifier) to enable continual intelligence growth through self-supervised interaction. Unlike conventional supervised fine-tuning, SuperIntelliAgent learns autonomously without annotation: the learner generates candidate outputs, the verifier evaluates them through step-by-step reasoning, and their interaction produces chosen/rejected pairs for Direct Preference Optimization (DPO). This converts each input into a pseudo-training signal for continual improvement. The framework integrates dual-scale memory: short-term in-context memory that preserves reasoning traces across refinement cycles, and long-term memory that consolidates acquired knowledge through lightweight on-the-fly fine-tuning. A replay buffer retains samples that show verifiable progress and replays them as auxiliary supervision, reinforcing recent learning while forming adaptive curricula. SuperIntelliAgent is infrastructure-agnostic and can be plugged into existing agentic frameworks while turning ordinary inference loops into a lifelong optimization process. We posit that pairing a trainable learner with a reasoning-capable verifier forms a minimal reliable unit of growing intelligence, as paired feedback and partial-history replay yield richer learning curricula and stronger preference alignment. With a small number of automatically generated DPO pairs, the learner improves across all benchmarks, indicating that this mechanism provides a promising direction for continual intelligence accumulation and real-world deployment.
Authors:Jitendra Parmar, Praveen Singh Thakur
Title: OpenCML: End-to-End Framework of Open-world Machine Learning to Learn Unknown Classes Incrementally
Abstract:
Open-world machine learning is an emerging technique in artificial intelligence, where conventional machine learning models often follow closed-world assumptions, which can hinder their ability to retain previously learned knowledge for future tasks. However, automated intelligence systems must learn about novel classes and previously known tasks. The proposed model offers novel learning classes in an open and continuous learning environment. It consists of two different but connected tasks. First, it discovers unknown classes in the data and creates novel classes; next, it learns how to perform class incrementally for each new class. Together, they enable continual learning, allowing the system to expand its understanding of the data and improve over time. The proposed model also outperformed existing approaches in open-world learning. Furthermore, it demonstrated strong performance in continuous learning, achieving a highest average accuracy of 82.54% over four iterations and a minimum accuracy of 65.87%.
Authors:Haidong Kang, Ketong Qian, Yi Lu
Title: Breaking Forgetting: Training-Free Few-Shot Class-Incremental Learning via Conditional Diffusion
Abstract:
Efforts to overcome catastrophic forgetting in Few-Shot Class-Incremental Learning (FSCIL) have primarily focused on developing more effective gradient-based optimization strategies. In contrast, little attention has been paid to the training cost explosion that inevitably arises as the number of novel classes increases, a consequence of relying on gradient learning even under extreme data scarcity. More critically, since FSCIL typically provides only a few samples for each new class, gradient-based updates not only induce severe catastrophic forgetting on base classes but also hinder adaptation to novel ones. This paper seeks to break this long-standing limitation by asking: Can we design a training-free FSCIL paradigm that entirely removes gradient optimization? We provide an affirmative answer by uncovering an intriguing connection between gradient-based optimization and the Conditional Diffusion process. Building on this observation, we propose a Conditional Diffusion-driven FSCIL (CD-FSCIL) framework that substitutes the conventional gradient update process with a diffusion-based generative transition, enabling training-free incremental adaptation while effectively mitigating forgetting. Furthermore, to enhance representation under few-shot constraints, we introduce a multimodal learning strategy that integrates visual features with natural language descriptions automatically generated by Large Language Models (LLMs). This synergy substantially alleviates the sample scarcity issue and improves generalization across novel classes. Extensive experiments on mainstream FSCIL benchmarks demonstrate that our method not only achieves state-of-the-art performance but also drastically reduces computational and memory overhead, marking a paradigm shift toward training-free continual adaptation.
Authors:Massimiliano Manenti, Andrea Iannelli
Title: Convergence and stability of Q-learning in Hierarchical Reinforcement Learning
Abstract:
Hierarchical Reinforcement Learning promises, among other benefits, to efficiently capture and utilize the temporal structure of a decision-making problem and to enhance continual learning capabilities, but theoretical guarantees lag behind practice. In this paper, we propose a Feudal Q-learning scheme and investigate under which conditions its coupled updates converge and are stable. By leveraging the theory of Stochastic Approximation and the ODE method, we present a theorem stating the convergence and stability properties of Feudal Q-learning. This provides a principled convergence and stability analysis tailored to Feudal RL. Moreover, we show that the updates converge to a point that can be interpreted as an equilibrium of a suitably defined game, opening the door to game-theoretic approaches to Hierarchical RL. Lastly, experiments based on the Feudal Q-learning algorithm support the outcomes anticipated by theory.
Authors:Hyung-Jun Moon, Sung-Bae Cho
Title: Expandable and Differentiable Dual Memories with Orthogonal Regularization for Exemplar-free Continual Learning
Abstract:
Continual learning methods used to force neural networks to process sequential tasks in isolation, preventing them from leveraging useful inter-task relationships and causing them to repeatedly relearn similar features or overly differentiate them. To address this problem, we propose a fully differentiable, exemplar-free expandable method composed of two complementary memories: One learns common features that can be used across all tasks, and the other combines the shared features to learn discriminative characteristics unique to each sample. Both memories are differentiable so that the network can autonomously learn latent representations for each sample. For each task, the memory adjustment module adaptively prunes critical slots and minimally expands capacity to accommodate new concepts, and orthogonal regularization enforces geometric separation between preserved and newly learned memory components to prevent interference. Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet show that the proposed method outperforms 14 state-of-the-art methods for class-incremental learning, achieving final accuracies of 55.13\%, 37.24\%, and 30.11\%, respectively. Additional analysis confirms that, through effective integration and utilization of knowledge, the proposed method can increase average performance across sequential tasks, and it produces feature extraction results closest to the upper bound, thus establishing a new milestone in continual learning.
Authors:Valentin Tablan, Scott Taylor, Gabriel Hurtado, Kristoffer Bernhem, Anders Uhrenholt, Gabriele Farei, Karo Moilanen
Title: Smarter Together: Creating Agentic Communities of Practice through Shared Experiential Learning
Abstract:
The transition from human-centric to agent-centric software development practices is disrupting existing knowledge sharing environments for software developers. Traditional peer-to-peer repositories and developer communities for shared technical knowledge and best practice have witnessed dramatic drops in participation in a short period of time. At the same time, agentic functional equivalents are yet to emerge leaving AI agents, which already generate a significant proportion of all new software code produced, without access to repositories of valuable shared learning. In this paper, we introduce Spark, a novel shared agentic memory architecture which is designed to emulate the collective intelligence and know-how of human developer communities. Spark enables AI coding agents to both contribute to and draw from a persistent and continuously evolving experiential memory. Agents operating in the same general problem space use the Spark shared memory as a repository of new knowledge to achieve collective continual learning. We evaluate Spark as a coach for AI coding agents performing software development tasks. We demonstrate that recommendations made by Spark improve the quality of code generated by generic code generation models at varying sizes and capability tiers. Boosted by Spark, a small open-weights model with 30 billion parameters was able to match the code quality afforded by a much larger state-of-the-art model. Separately, we measure the intrinsic quality of recommendations generated by Spark against a wide range of criteria inspired by software development best practice, and achieve helpfulness levels of up to 98.2% in the top two (out of five) qualitative helpfulness bands.
Authors:Raphaël Bayle, Martial Mermillod, Robert M. French
Title: The Online Patch Redundancy Eliminator (OPRE): A novel approach to online agnostic continual learning using dataset compression
Abstract:
In order to achieve Continual Learning (CL), the problem of catastrophic forgetting, one that has plagued neural networks since their inception, must be overcome. The evaluation of continual learning methods relies on splitting a known homogeneous dataset and learning the associated tasks one after the other. We argue that most CL methods introduce a priori information about the data to come and cannot be considered agnostic. We exemplify this point with the case of methods relying on pretrained feature extractors, which are still used in CL. After showing that pretrained feature extractors imply a loss of generality with respect to the data that can be learned by the model, we then discuss other kinds of a priori information introduced in other CL methods. We then present the Online Patch Redundancy Eliminator (OPRE), an online dataset compression algorithm, which, along with the training of a classifier at test time, yields performance on CIFAR-10 and CIFAR-100 superior to a number of other state-of-the-art online continual learning methods. Additionally, OPRE requires only minimal and interpretable hypothesis on the data to come. We suggest that online dataset compression could well be necessary to achieve fully agnostic CL.
Authors:Shaunak Bhandarkar, James L. McClelland
Title: Neural Computation Without Slots: Steps Towards Biologically Plausible Memory and Attention in Natural and Artificial Intelligence
Abstract:
Many models used in artificial intelligence and cognitive science rely on multi-element patterns stored in "slots" - dedicated storage locations - in a digital computer. As biological brains likely lack slots, we consider how they might achieve similar functional outcomes without them by building on the neurally-inspired modern Hopfield network (MHN; Krotov & Hopfield, 2021), which stores patterns in the connection weights of an individual neuron. We propose extensions of this approach to increase its biological plausibility as a model of memory and to capture an important advantage of slot-based computation in contemporary language models. For memory, neuroscience research suggests that the weights of overlapping sparse ensembles of neurons, rather than a dedicated individual neuron, are used to store a memory. We introduce the K-winner MHN, extending the approach to ensembles, and find that within a continual learning regime, the ensemble-based MHN exhibits greater retention of older memories, as measured by the graded sensitivity measure d', than a standard (one-neuron) MHN. Next, we consider the powerful use of slot-based memory in contemporary language models. These models use slots to store long sequences of past inputs and their learned encodings, supporting later predictions and allowing error signals to be transported backward in time to adjust weights underlying the learned encodings of these past inputs. Inspired by these models' successes, we show how the MHN can be extended to capture both of these important functional outcomes. Collectively, our modeling approaches constitute steps towards understanding how biologically plausible mechanisms can support computations that have enabled AI systems to capture human-like abilities that no prior models have been able to achieve.
Authors:Aman Jaglan, Jarrod Barnes
Title: Continual Learning, Not Training: Online Adaptation For Agents
Abstract:
Continual Learning (CL) methods have traditionally focused on mitigating catastrophic forgetting through gradient-based retraining, an approach ill-suited for deployed agents that must adapt in real time. We introduce our Adaptive Teaching and Learning System (ATLAS), a dual-agent architecture that decouples reasoning (Teacher) from execution (Student) and incorporates a persistent learning memory that stores distilled guidance from experience. This informs the orchestration layer, enabling the system to dynamically adjust its operational strategies, such as supervision level or initial plan selection, at inference time. In doing so, ATLAS achieves gradient-free continual learning, shifting the locus of adaptation from model parameters to system-level orchestration. We formulate this as a system-centric paradigm for continual learning, where the objective is adaptive efficiency: maximizing task success while minimizing computational cost through inference-time orchestration rather than parameter updates. Evaluated on Microsoft's ExCyTIn-Bench, an open-source benchmark simulating complex cyberthreat investigation, ATLAS achieves 54.1% success with GPT-5-mini as its Student, outperforming the larger GPT-5 (High) by 13% while reducing cost by 86%. Cross-incident validation demonstrates generalization: frozen pamphlets from Incident #5 improve accuracy from 28% to 41% with zero retraining, while shifting output composition from verbose exploration to structured reasoning. Together, these findings establish gradient-free continual learning as a viable path toward adaptive, deployable AI systems and provide causally annotated traces valuable for training explicit world models.
Authors:Rodrigo Matos Carnier, Laura Lahesoo, Kensuke Fukuda
Title: Binary Anomaly Detection in Streaming IoT Traffic under Concept Drift
Abstract:
With the growing volume of Internet of Things (IoT) network traffic, machine learning (ML)-based anomaly detection is more relevant than ever. Traditional batch learning models face challenges such as high maintenance and poor adaptability to rapid anomaly changes, known as concept drift. In contrast, streaming learning integrates online and incremental learning, enabling seamless updates and concept drift detection to improve robustness. This study investigates anomaly detection in streaming IoT traffic as binary classification, comparing batch and streaming learning approaches while assessing the limitations of current IoT traffic datasets. We simulated heterogeneous network data streams by carefully mixing existing datasets and streaming the samples one by one. Our results highlight the failure of batch models to handle concept drift, but also reveal persisting limitations of current datasets to expose model limitations due to low traffic heterogeneity. We also investigated the competitiveness of tree-based ML algorithms, well-known in batch anomaly detection, and compared it to non-tree-based ones, confirming the advantages of the former. Adaptive Random Forest achieved F1-score of 0.990 $\pm$ 0.006 at one-third the computational cost of its batch counterpart. Hoeffding Adaptive Tree reached F1-score of 0.910 $\pm$ 0.007, reducing computational cost by four times, making it a viable choice for online applications despite a slight trade-off in stability.
Authors:Parnian Alikhani, Nico Brinkel, Wouter Schram, Ioannis Lampropoulos, Wilfried van Sark
Title: A Comprehensive Incremental and Ensemble Learning Approach for Forecasting Individual Electric Vehicle Charging Parameters
Abstract:
Electric vehicles (EVs) have the potential to reduce grid stress through smart charging strategies while simultaneously meeting user demand. This requires accurate forecasts of key charging parameters, such as energy demand and connection time. Although previous studies have made progress in this area, they have overlooked the importance of dynamic training to capture recent patterns and have excluded EV sessions with limited information, missing potential opportunities to use these data. To address these limitations, this study proposes a dual-model approach incorporating incremental learning with six machine-learning models to predict EV charging session parameters. This approach includes dynamic training updates, optimal features, and hyperparameter set selection for each model to make it more robust and inclusive. Using a data set of 170,000 measurements from the real world electric vehicle session, week-long charging parameters were predicted over a one-year period. The findings reveal a significant difference between workplace and residential charging locations regarding connection duration predictability, with workplace sessions being more predictable. The proposed stacking ensemble learning method enhanced forecasting accuracy, improving R2 by 2.83% to 43.44% across all parameters and location settings. A comparison of the two models reveals that incorporating user IDs as a feature, along with the associated historical data, is the most significant factor influencing the accuracy of the forecast. Forecasts can be used effectively in smart charging and grid management applications by incorporating uncertainty quantification techniques, allowing charge point operators to optimize charging schedules and energy management.
Authors:Abdelmoula El-Yazizi, Yaroslav Koshka
Title: Investigation of D-Wave quantum annealing for training Restricted Boltzmann Machines and mitigating catastrophic forgetting
Abstract:
Modest statistical differences between the sampling performances of the D-Wave quantum annealer (QA) and the classical Markov Chain Monte Carlo (MCMC), when applied to Restricted Boltzmann Machines (RBMs), are explored to explain, and possibly address, the absence of significant and consistent improvements in RBM trainability when the D-Wave sampling was used in previous investigations. A novel hybrid sampling approach, combining the classical and the QA contributions, is investigated as a promising way to benefit from the modest differences between the two sampling methods. No improvements in the RBM training are achieved in this work, thereby suggesting that the differences between the QA-based and MCMC sampling, mainly found in the medium-to-low probability regions of the distribution, which are less important for the quality of the sample, are insufficient to benefit the training. Difficulties in achieving sufficiently high quality of embedding RBMs into the lattice of the newer generation of D-Wave hardware could be further complicating the task. On the other hand, the ability to generate samples of sufficient variety from lower-probability parts of the distribution has a potential to benefit other machine learning applications, such as the mitigation of catastrophic forgetting (CF) during incremental learning. The feasibility of using QA-generated patterns of desirable classes for CF mitigation by the generative replay is demonstrated in this work for the first time. While the efficiency of the CF mitigation using the D-Wave QA was comparable to that of the classical mitigation, both the speed of generating a large number of distinct desirable patterns and the potential for further improvement make this approach promising for a variety of challenging machine learning applications.
Authors:Yihan Zhao, Wenqing Su, Ying Yang
Title: High-dimensional Asymptotics of Generalization Performance in Continual Ridge Regression
Abstract:
Continual learning is motivated by the need to adapt to real-world dynamics in tasks and data distribution while mitigating catastrophic forgetting. Despite significant advances in continual learning techniques, the theoretical understanding of their generalization performance lags behind. This paper examines the theoretical properties of continual ridge regression in high-dimensional linear models, where the dimension is proportional to the sample size in each task. Using random matrix theory, we derive exact expressions of the asymptotic prediction risk, thereby enabling the characterization of three evaluation metrics of generalization performance in continual learning: average risk, backward transfer, and forward transfer. Furthermore, we present the theoretical risk curves to illustrate the trends in these evaluation metrics throughout the continual learning process. Our analysis reveals several intriguing phenomena in the risk curves, demonstrating how model specifications influence the generalization performance. Simulation studies are conducted to validate our theoretical findings.
Authors:Yoshimasa Kubo, Jean Erik Delanois, Maxim Bazhenov
Title: Toward Lifelong Learning in Equilibrium Propagation: Sleep-like and Awake Rehearsal for Enhanced Stability
Abstract:
Recurrent neural networks (RNNs) trained using Equilibrium Propagation (EP), a biologically plausible training algorithm, have demonstrated strong performance in various tasks such as image classification and reinforcement learning. However, these networks face a critical challenge in continuous learning: catastrophic forgetting, where previously acquired knowledge is overwritten when new tasks are learned. This limitation contrasts with the human brain's ability to retain and integrate both old and new knowledge, aided by processes like memory consolidation during sleep through the replay of learned information. To address this challenge in RNNs, here we propose a sleep-like replay consolidation (SRC) algorithm for EP-trained RNNs. We found that SRC significantly improves RNN's resilience to catastrophic forgetting in continuous learning scenarios. In class-incremental learning with SRC implemented after each new task training, the EP-trained multilayer RNN model (MRNN-EP) performed significantly better compared to feedforward networks incorporating several well-established regularization techniques. The MRNN-EP performed on par with MRNN trained using Backpropagation Through Time (BPTT) when both were equipped with SRC on MNIST data and surpassed BPTT-based models on the Fashion MNIST, Kuzushiji-MNIST, CIFAR10, and ImageNet datasets. Combining SRC with rehearsal, also known as "awake replay", further boosted the network's ability to retain long-term knowledge while continuing to learn new tasks. Our study reveals the applicability of sleep-like replay techniques to RNNs and highlights the potential for integrating human-like learning behaviors into artificial neural networks (ANNs).
Authors:Gyutae Oh, Jitae Shin
Title: Towards Efficient Prompt-based Continual Learning in Distributed Medical AI
Abstract:
Modern AI models achieve state-of-the-art performance with large-scale, high-quality datasets; however, ethical, social, and institutional constraints in the medical domain severely restrict data sharing, rendering centralized learning nearly impossible. Each institution must incrementally update models using only local data. Traditional training overfits new samples and suffers from catastrophic forgetting, losing previously acquired knowledge. Medical data distributions also shift due to varying diagnostic equipment and demographics. Although continual learning (CL) has advanced, most methods address natural images, leaving medical-domain-specific CL underexplored. We propose a prompt-based continual learning (PCL) approach featuring a unified prompt pool with a minimal expansion strategy: by expanding and freezing a subset of prompts, our method reduces computational overhead, and a novel regularization term balances retention and adaptation. Experiments on three diabetic retinopathy datasets Aptos2019, LI2019, and Diabetic Retinopathy Detection show our model improves final classification accuracy by at least 10% and F1-score by 9 points over state-of-the-art approaches while lowering inference cost. We anticipate this study will drive sustainable medical AI advances, enabling real-time diagnosis, patient monitoring, and telemedicine applications in distributed healthcare. Code will be released upon acceptance
Authors:Supriyo Chakraborty, Krishnan Raghavan
Title: On Understanding of the Dynamics of Model Capacity in Continual Learning
Abstract:
The stability-plasticity dilemma, closely related to a neural network's (NN) capacity-its ability to represent tasks-is a fundamental challenge in continual learning (CL). Within this context, we introduce CL's effective model capacity (CLEMC) that characterizes the dynamic behavior of the stability-plasticity balance point. We develop a difference equation to model the evolution of the interplay between the NN, task data, and optimization procedure. We then leverage CLEMC to demonstrate that the effective capacity-and, by extension, the stability-plasticity balance point is inherently non-stationary. We show that regardless of the NN architecture or optimization method, a NN's ability to represent new tasks diminishes when incoming task distributions differ from previous ones. We conduct extensive experiments to support our theoretical findings, spanning a range of architectures-from small feedforward network and convolutional networks to medium-sized graph neural networks and transformer-based large language models with millions of parameters.
Authors:Shivani Mall, Joao F. Henriques
Title: CRAM: Large-scale Video Continual Learning with Bootstrapped Compression
Abstract:
Continual learning (CL) promises to allow neural networks to learn from continuous streams of inputs, instead of IID (independent and identically distributed) sampling, which requires random access to a full dataset. This would allow for much smaller storage requirements and self-sufficiency of deployed systems that cope with natural distribution shifts, similarly to biological learning. We focus on video CL employing a rehearsal-based approach, which reinforces past samples from a memory buffer. We posit that part of the reason why practical video CL is challenging is the high memory requirements of video, further exacerbated by long-videos and continual streams, which are at odds with the common rehearsal-buffer size constraints. To address this, we propose to use compressed vision, i.e. store video codes (embeddings) instead of raw inputs, and train a video classifier by IID sampling from this rolling buffer. Training a video compressor online (so not depending on any pre-trained networks) means that it is also subject to catastrophic forgetting. We propose a scheme to deal with this forgetting by refreshing video codes, which requires careful decompression with a previous version of the network and recompression with a new one. We name our method Continually Refreshed Amodal Memory (CRAM). We expand current video CL benchmarks to large-scale settings, namely EpicKitchens-100 and Kinetics-700, storing thousands of relatively long videos in under 2 GB, and demonstrate empirically that our video CL method outperforms prior art with a significantly reduced memory footprint.
Authors:Doanh Cao Bui, Jin Tae Kwak
Title: Welcome New Doctor: Continual Learning with Expert Consultation and Autoregressive Inference for Whole Slide Image Analysis
Abstract:
Whole Slide Image (WSI) analysis, with its ability to reveal detailed tissue structures in magnified views, plays a crucial role in cancer diagnosis and prognosis. Due to their giga-sized nature, WSIs require substantial storage and computational resources for processing and training predictive models. With the rapid increase in WSIs used in clinics and hospitals, there is a growing need for a continual learning system that can efficiently process and adapt existing models to new tasks without retraining or fine-tuning on previous tasks. Such a system must balance resource efficiency with high performance. In this study, we introduce COSFormer, a Transformer-based continual learning framework tailored for multi-task WSI analysis. COSFormer is designed to learn sequentially from new tasks wile avoiding the need to revisit full historical datasets. We evaluate COSFormer on a sequence of seven WSI datasets covering seven organs and six WSI-related tasks under both class-incremental and task-incremental settings. The results demonstrate COSFormer's superior generalizability and effectiveness compared to existing continual learning frameworks, establishing it as a robust solution for continual WSI analysis in clinical applications.
Authors:Kiseong Hong, Gyeong-hyeon Kim, Eunwoo Kim
Title: RainbowPrompt: Diversity-Enhanced Prompt-Evolving for Continual Learning
Abstract:
Prompt-based continual learning provides a rehearsal-free solution by tuning small sets of parameters while keeping pre-trained models frozen. To meet the complex demands of sequential tasks, it is crucial to integrate task-specific knowledge within prompts effectively. However, existing works rely on either fixed learned prompts (i.e., prompts whose representations remain unchanged during new task learning) or on prompts generated from an entangled task-shared space, limiting the representational diversity of the integrated prompt. To address this issue, we propose a novel prompt-evolving mechanism to adaptively aggregate base prompts (i.e., task-specific prompts) into a unified prompt while ensuring diversity. By transforming and aligning base prompts, both previously learned and newly introduced, our approach continuously evolves accumulated knowledge to facilitate learning new tasks. We further introduce a learnable probabilistic gate that adaptively determines which layers to activate during the evolution process. We validate our method on image classification and video action recognition tasks in class-incremental learning, achieving average gains of 9.07% and 7.40% over existing methods across all scenarios.
Authors:Kotha Kartheek, Lingamaneni Gnanesh Chowdary, Snehasis Mukherjee
Title: Continual Learning-Based Unified Model for Unpaired Image Restoration Tasks
Abstract:
Restoration of images contaminated by different adverse weather conditions such as fog, snow, and rain is a challenging task due to the varying nature of the weather conditions. Most of the existing methods focus on any one particular weather conditions. However, for applications such as autonomous driving, a unified model is necessary to perform restoration of corrupted images due to different weather conditions. We propose a continual learning approach to propose a unified framework for image restoration. The proposed framework integrates three key innovations: (1) Selective Kernel Fusion layers that dynamically combine global and local features for robust adaptive feature selection; (2) Elastic Weight Consolidation (EWC) to enable continual learning and mitigate catastrophic forgetting across multiple restoration tasks; and (3) a novel Cycle-Contrastive Loss that enhances feature discrimination while preserving semantic consistency during domain translation. Further, we propose an unpaired image restoration approach to reduce the dependance of the proposed approach on the training data. Extensive experiments on standard benchmark datasets for dehazing, desnowing and deraining tasks demonstrate significant improvements in PSNR, SSIM, and perceptual quality over the state-of-the-art.
Authors:Sonny T. Jones, Grange M. Simpson, Patrick M. Pilarski, Ashley N. Dalrymple
Title: Hierarchical Reinforcement Learning Framework for Adaptive Walking Control Using General Value Functions of Lower-Limb Sensor Signals
Abstract:
Rehabilitation technology is a natural setting to study the shared learning and decision-making of human and machine agents. In this work, we explore the use of Hierarchical Reinforcement Learning (HRL) to develop adaptive control strategies for lower-limb exoskeletons, aiming to enhance mobility and autonomy for individuals with motor impairments. Inspired by prominent models of biological sensorimotor processing, our investigated HRL approach breaks down the complex task of exoskeleton control adaptation into a higher-level framework for terrain strategy adaptation and a lower-level framework for providing predictive information; this latter element is implemented via the continual learning of general value functions (GVFs). GVFs generated temporal abstractions of future signal values from multiple wearable lower-limb sensors, including electromyography, pressure insoles, and goniometers. We investigated two methods for incorporating actual and predicted sensor signals into a policy network with the intent to improve the decision-making capacity of the control system of a lower-limb exoskeleton during ambulation across varied terrains. As a key result, we found that the addition of predictions made from GVFs increased overall network accuracy. Terrain-specific performance increases were seen while walking on even ground, uneven ground, up and down ramps, and turns, terrains that are often misclassified without predictive information. This suggests that predictive information can aid decision-making during uncertainty, e.g., on terrains that have a high chance of being misclassified. This work, therefore, contributes new insights into the nuances of HRL and the future development of exoskeletons to facilitate safe transitioning and traversing across different walking environments.
Authors:Yuzhi Liu, Zixuan Chen, Zirui Zhang, Yufei Liu, Giulia Lanzillotta
Title: Reactivation: Empirical NTK Dynamics Under Task Shifts
Abstract:
The Neural Tangent Kernel (NTK) offers a powerful tool to study the functional dynamics of neural networks. In the so-called lazy, or kernel regime, the NTK remains static during training and the network function is linear in the static neural tangents feature space. The evolution of the NTK during training is necessary for feature learning, a key driver of deep learning success. The study of the NTK dynamics has led to several critical discoveries in recent years, in generalization and scaling behaviours. However, this body of work has been limited to the single task setting, where the data distribution is assumed constant over time. In this work, we present a comprehensive empirical analysis of NTK dynamics in continual learning, where the data distribution shifts over time. Our findings highlight continual learning as a rich and underutilized testbed for probing the dynamics of neural training. At the same time, they challenge the validity of static-kernel approximations in theoretical treatments of continual learning, even at large scale.
Authors:Kaihong Wang, Donghyun Kim, Margrit Betke
Title: LoRA-Loop: Closing the Synthetic Replay Cycle for Continual VLM Learning
Abstract:
Continual learning for vision-language models has achieved remarkable performance through synthetic replay, where samples are generated using Stable Diffusion to regularize during finetuning and retain knowledge. However, real-world downstream applications often exhibit domain-specific nuances and fine-grained semantics not captured by generators, causing synthetic-replay methods to produce misaligned samples that misguide finetuning and undermine retention of prior knowledge. In this work, we propose a LoRA-enhanced synthetic-replay framework that injects task-specific low-rank adapters into a frozen Stable Diffusion model, efficiently capturing each new task's unique visual and semantic patterns. Specifically, we introduce a two-stage, confidence-based sample selection: we first rank real task data by post-finetuning VLM confidence to focus LoRA finetuning on the most representative examples, then generate synthetic samples and again select them by confidence for distillation. Our approach integrates seamlessly with existing replay pipelines-simply swap in the adapted generator to boost replay fidelity. Extensive experiments on the Multi-domain Task Incremental Learning (MTIL) benchmark show that our method outperforms previous synthetic-replay techniques, achieving an optimal balance among plasticity, stability, and zero-shot capability. These results demonstrate the effectiveness of generator adaptation via LoRA for robust continual learning in VLMs.
Authors:Farideh Majidi, Ziaeddin Beheshtifard
Title: Cross-lingual Few-shot Learning for Persian Sentiment Analysis with Incremental Adaptation
Abstract:
This research examines cross-lingual sentiment analysis using few-shot learning and incremental learning methods in Persian. The main objective is to develop a model capable of performing sentiment analysis in Persian using limited data, while getting prior knowledge from high-resource languages. To achieve this, three pre-trained multilingual models (XLM-RoBERTa, mDeBERTa, and DistilBERT) were employed, which were fine-tuned using few-shot and incremental learning approaches on small samples of Persian data from diverse sources, including X, Instagram, Digikala, Snappfood, and Taaghche. This variety enabled the models to learn from a broad range of contexts. Experimental results show that the mDeBERTa and XLM-RoBERTa achieved high performances, reaching 96% accuracy on Persian sentiment analysis. These findings highlight the effectiveness of combining few-shot learning and incremental learning with multilingual pre-trained models.
Authors:Brandon Shuen Yi Loke, Filippo Quadri, Gabriel Vivanco, Maximilian Casagrande, Saúl Fenollosa
Title: Overcoming catastrophic forgetting in neural networks
Abstract:
Catastrophic forgetting is the primary challenge that hinders continual learning, which refers to a neural network ability to sequentially learn multiple tasks while retaining previously acquired knowledge. Elastic Weight Consolidation, a regularization-based approach inspired by synaptic consolidation in biological neural systems, has been used to overcome this problem. In this study prior research is replicated and extended by evaluating EWC in supervised learning settings using the PermutedMNIST and RotatedMNIST benchmarks. Through systematic comparisons with L2 regularization and stochastic gradient descent (SGD) without regularization, we analyze how different approaches balance knowledge retention and adaptability. Our results confirm what was shown in previous research, showing that EWC significantly reduces forgetting compared to naive training while slightly compromising learning efficiency on new tasks. Moreover, we investigate the impact of dropout regularization and varying hyperparameters, offering insights into the generalization of EWC across diverse learning scenarios. These results underscore EWC's potential as a viable solution for lifelong learning in neural networks.
Authors:Yuxin Ye, Yan Liu, Shujian Yu
Title: Dual-Alignment Knowledge Retention for Continual Medical Image Segmentation
Abstract:
Continual learning in medical image segmentation involves sequential data acquisition across diverse domains (e.g., clinical sites), where task interference between past and current domains often leads to catastrophic forgetting. Existing continual learning methods fail to capture the complex dependencies between tasks. We introduce a novel framework that mitigates forgetting by establishing and enhancing complex dependencies between historical data and the network in the present task. Our framework features a dual-alignment strategy, the cross-network alignment (CNA) module aligns the features extracted from the bottleneck layers of the current and previous networks, respectively, while the cross-representation alignment (CRA) module aligns the features learned by the current network from historical buffered data and current input data, respectively. Implementing both types of alignment is a non-trivial task. To address this, we further analyze the linear and nonlinear forms of the well-established Hilbert-Schmidt Independence Criterion (HSIC) and deliberately design feature mapping and feature pairing blocks within the CRA module. Experiments on medical image segmentation task demonstrate our framework's effectiveness in mitigating catastrophic forgetting under domain shifts.
Authors:Amara Zuffer, Michael Burke, Mehrtash Harandi
Title: Advancements and Challenges in Continual Reinforcement Learning: A Comprehensive Review
Abstract:
The diversity of tasks and dynamic nature of reinforcement learning (RL) require RL agents to be able to learn sequentially and continuously, a learning paradigm known as continuous reinforcement learning. This survey reviews how continual learning transforms RL agents into dynamic continual learners. This enables RL agents to acquire and retain useful and reusable knowledge seamlessly. The paper delves into fundamental aspects of continual reinforcement learning, exploring key concepts, significant challenges, and novel methodologies. Special emphasis is placed on recent advancements in continual reinforcement learning within robotics, along with a succinct overview of evaluation environments utilized in prominent research, facilitating accessibility for newcomers to the field. The review concludes with a discussion on limitations and promising future directions, providing valuable insights for researchers and practitioners alike.
Authors:Massimiliano Tamborski, David Abel
Title: Memory Allocation in Resource-Constrained Reinforcement Learning
Abstract:
Resource constraints can fundamentally change both learning and decision-making. We explore how memory constraints influence an agent's performance when navigating unknown environments using standard reinforcement learning algorithms. Specifically, memory-constrained agents face a dilemma: how much of their limited memory should be allocated to each of the agent's internal processes, such as estimating a world model, as opposed to forming a plan using that model? We study this dilemma in MCTS- and DQN-based algorithms and examine how different allocations of memory impact performance in episodic and continual learning settings.
Authors:Sheng-Kai Huang, Jiun-Feng Chang, Chun-Rong Huang
Title: DPFormer: Dynamic Prompt Transformer for Continual Learning
Abstract:
In continual learning, solving the catastrophic forgetting problem may make the models fall into the stability-plasticity dilemma. Moreover, inter-task confusion will also occur due to the lack of knowledge exchanges between different tasks. In order to solve the aforementioned problems, we propose a novel dynamic prompt transformer (DPFormer) with prompt schemes. The prompt schemes help the DPFormer memorize learned knowledge of previous classes and tasks, and keep on learning new knowledge from new classes and tasks under a single network structure with a nearly fixed number of model parameters. Moreover, they also provide discrepant information to represent different tasks to solve the inter-task confusion problem. Based on prompt schemes, a unified classification module with the binary cross entropy loss, the knowledge distillation loss and the auxiliary loss is proposed to train the whole model in an end-to-end trainable manner. Compared with state-of-the-art methods, our method achieves the best performance in the CIFAR-100, ImageNet100 and ImageNet1K datasets under different class-incremental settings in continual learning. The source code will be available at our GitHub after acceptance.
Authors:Olimjon Toirov, Wei Yu
Title: Non-Intrusive Load Monitoring Based on Image Load Signatures and Continual Learning
Abstract:
Non-Intrusive Load Monitoring (NILM) identifies the operating status and energy consumption of each electrical device in the circuit by analyzing the electrical signals at the bus, which is of great significance for smart power management. However, the complex and changeable load combinations and application environments lead to the challenges of poor feature robustness and insufficient model generalization of traditional NILM methods. To this end, this paper proposes a new non-intrusive load monitoring method that integrates "image load signature" and continual learning. This method converts multi-dimensional power signals such as current, voltage, and power factor into visual image load feature signatures, and combines deep convolutional neural networks to realize the identification and classification of multiple devices; at the same time, self-supervised pre-training is introduced to improve feature generalization, and continual online learning strategies are used to overcome model forgetting to adapt to the emergence of new loads. This paper conducts a large number of experiments on high-sampling rate load datasets, and compares a variety of existing methods and model variants. The results show that the proposed method has achieved significant improvements in recognition accuracy.
Authors:Shriraj P. Sawant, Krishna P. Miyapuram
Title: EWGN: Elastic Weight Generation and Context Switching in Deep Learning
Abstract:
The ability to learn and retain a wide variety of tasks is a hallmark of human intelligence that has inspired research in artificial general intelligence. Continual learning approaches provide a significant step towards achieving this goal. It has been known that task variability and context switching are challenging for learning in neural networks. Catastrophic forgetting refers to the poor performance on retention of a previously learned task when a new task is being learned. Switching between different task contexts can be a useful approach to mitigate the same by preventing the interference between the varying task weights of the network. This paper introduces Elastic Weight Generative Networks (EWGN) as an idea for context switching between two different tasks. The proposed EWGN architecture uses an additional network that generates the weights of the primary network dynamically while consolidating the weights learned. The weight generation is input-dependent and thus enables context switching. Using standard computer vision datasets, namely MNIST and fashion-MNIST, we analyse the retention of previously learned task representations in Fully Connected Networks, Convolutional Neural Networks, and EWGN architectures with Stochastic Gradient Descent and Elastic Weight Consolidation learning algorithms. Understanding dynamic weight generation and context-switching ability can be useful in enabling continual learning for improved performance.
Authors:Dipanwita Saha, Anis Zaman, Hua Zou, Ning Chen, Xinxin Shu, Nadia Vase, Abraham Bagherjeiran
Title: Improving Ad matching via Cluster-Adaptive Keyword Expansion and Relevance tuning
Abstract:
In search advertising, keyword matching connects user queries with relevant ads. While token-based matching increases ad coverage, it can reduce relevance due to overly permissive semantic expansion. This work extends keyword reach through document-side semantic keyword expansion, using a language model to broaden token-level matching without altering queries. We propose a solution using a pre-trained siamese model to generate dense vector representations of ad keywords and identify semantically related variants through nearest neighbor search. To maintain precision, we introduce a cluster-based thresholding mechanism that adjusts similarity cutoffs based on local semantic density. Each expanded keyword maps to a group of seller-listed items, which may only partially align with the original intent. To ensure relevance, we enhance the downstream relevance model by adapting it to the expanded keyword space using an incremental learning strategy with a lightweight decision tree ensemble. This system improves both relevance and click-through rate (CTR), offering a scalable, low-latency solution adaptable to evolving query behavior and advertising inventory.
Authors:Aleksandr Tsymbalov, Mikhail Khovrichev
Title: Large Language Models in the Task of Automatic Validation of Text Classifier Predictions
Abstract:
Machine learning models for text classification are trained to predict a class for a given text. To do this, training and validation samples must be prepared: a set of texts is collected, and each text is assigned a class. These classes are usually assigned by human annotators with different expertise levels, depending on the specific classification task. Collecting such samples from scratch is labor-intensive because it requires finding specialists and compensating them for their work; moreover, the number of available specialists is limited, and their productivity is constrained by human factors. While it may not be too resource-intensive to collect samples once, the ongoing need to retrain models (especially in incremental learning pipelines) to address data drift (also called model drift) makes the data collection process crucial and costly over the model's entire lifecycle. This paper proposes several approaches to replace human annotators with Large Language Models (LLMs) to test classifier predictions for correctness, helping ensure model quality and support high-quality incremental learning.
Authors:David Minkwan Kim, Soeun Lee, Byeongkeun Kang
Title: Completely Weakly Supervised Class-Incremental Learning for Semantic Segmentation
Abstract:
This work addresses the task of completely weakly supervised class-incremental learning for semantic segmentation to learn segmentation for both base and additional novel classes using only image-level labels. While class-incremental semantic segmentation (CISS) is crucial for handling diverse and newly emerging objects in the real world, traditional CISS methods require expensive pixel-level annotations for training. To overcome this limitation, partially weakly-supervised approaches have recently been proposed. However, to the best of our knowledge, this is the first work to introduce a completely weakly-supervised method for CISS. To achieve this, we propose to generate robust pseudo-labels by combining pseudo-labels from a localizer and a sequence of foundation models based on their uncertainty. Moreover, to mitigate catastrophic forgetting, we introduce an exemplar-guided data augmentation method that generates diverse images containing both previous and novel classes with guidance. Finally, we conduct experiments in three common experimental settings: 15-5 VOC, 10-10 VOC, and COCO-to-VOC, and in two scenarios: disjoint and overlap. The experimental results demonstrate that our completely weakly supervised method outperforms even partially weakly supervised methods in the 15-5 VOC and 10-10 VOC settings while achieving competitive accuracy in the COCO-to-VOC setting.
Authors:Seyed Roozbeh Razavi Rohani, Khashayar Khajavi, Wesley Chung, Mo Chen, Sharan Vaswani
Title: Preserving Plasticity in Continual Learning with Adaptive Linearity Injection
Abstract:
Loss of plasticity in deep neural networks is the gradual reduction in a model's capacity to incrementally learn and has been identified as a key obstacle to learning in non-stationary problem settings. Recent work has shown that deep linear networks tend to be resilient towards loss of plasticity. Motivated by this observation, we propose Adaptive Linearization (AdaLin), a general approach that dynamically adapts each neuron's activation function to mitigate plasticity loss. Unlike prior methods that rely on regularization or periodic resets, AdaLin equips every neuron with a learnable parameter and a gating mechanism that injects linearity into the activation function based on its gradient flow. This adaptive modulation ensures sufficient gradient signal and sustains continual learning without introducing additional hyperparameters or requiring explicit task boundaries. When used with conventional activation functions like ReLU, Tanh, and GeLU, we demonstrate that AdaLin can significantly improve performance on standard benchmarks, including Random Label and Permuted MNIST, Random Label and Shuffled CIFAR-10, and Class-Split CIFAR-100. Furthermore, its efficacy is shown in more complex scenarios, such as class-incremental learning on CIFAR-100 with a ResNet-18 backbone, and in mitigating plasticity loss in off-policy reinforcement learning agents. We perform a systematic set of ablations that show that neuron-level adaptation is crucial for good performance and analyze a number of metrics in the network that might be correlated to loss of plasticity.
Authors:Michael A. Helcig, Stefan Nastic
Title: FedCCL: Federated Clustered Continual Learning Framework for Privacy-focused Energy Forecasting
Abstract:
Privacy-preserving distributed model training is crucial for modern machine learning applications, yet existing Federated Learning approaches struggle with heterogeneous data distributions and varying computational capabilities. Traditional solutions either treat all participants uniformly or require costly dynamic clustering during training, leading to reduced efficiency and delayed model specialization. We present FedCCL (Federated Clustered Continual Learning), a framework specifically designed for environments with static organizational characteristics but dynamic client availability. By combining static pre-training clustering with an adapted asynchronous FedAvg algorithm, FedCCL enables new clients to immediately profit from specialized models without prior exposure to their data distribution, while maintaining reduced coordination overhead and resilience to client disconnections. Our approach implements an asynchronous Federated Learning protocol with a three-tier model topology - global, cluster-specific, and local models - that efficiently manages knowledge sharing across heterogeneous participants. Evaluation using photovoltaic installations across central Europe demonstrates that FedCCL's location-based clustering achieves an energy prediction error of 3.93% (+-0.21%), while maintaining data privacy and showing that the framework maintains stability for population-independent deployments, with 0.14 percentage point degradation in performance for new installations. The results demonstrate that FedCCL offers an effective framework for privacy-preserving distributed learning, maintaining high accuracy and adaptability even with dynamic participant populations.
Authors:Rajeev Gupta, Suhani Gupta, Ronak Parikh, Divya Gupta, Amir Javaheri, Jairaj Singh Shaktawat
Title: Personalized Artificial General Intelligence (AGI) via Neuroscience-Inspired Continuous Learning Systems
Abstract:
Artificial Intelligence has made remarkable advancements in recent years, primarily driven by increasingly large deep learning models. However, achieving true Artificial General Intelligence (AGI) demands fundamentally new architectures rather than merely scaling up existing models. Current approaches largely depend on expanding model parameters, which improves task-specific performance but falls short in enabling continuous, adaptable, and generalized learning. Achieving AGI capable of continuous learning and personalization on resource-constrained edge devices is an even bigger challenge. This paper reviews the state of continual learning and neuroscience-inspired AI, and proposes a novel architecture for Personalized AGI that integrates brain-like learning mechanisms for edge deployment. We review literature on continuous lifelong learning, catastrophic forgetting, and edge AI, and discuss key neuroscience principles of human learning, including Synaptic Pruning, Hebbian plasticity, Sparse Coding, and Dual Memory Systems, as inspirations for AI systems. Building on these insights, we outline an AI architecture that features complementary fast-and-slow learning modules, synaptic self-optimization, and memory-efficient model updates to support on-device lifelong adaptation. Conceptual diagrams of the proposed architecture and learning processes are provided. We address challenges such as catastrophic forgetting, memory efficiency, and system scalability, and present application scenarios for mobile AI assistants and embodied AI systems like humanoid robots. We conclude with key takeaways and future research directions toward truly continual, personalized AGI on the edge. While the architecture is theoretical, it synthesizes diverse findings and offers a roadmap for future implementation.
Authors:Aydoğan Soylu, Tufan Kumbasar
Title: Capturing Aerodynamic Characteristics of ATTAS Aircraft with Evolving Intelligent System
Abstract:
Accurate modeling of aerodynamic coefficients is crucial for understanding and optimizing the performance of modern aircraft systems. This paper presents the novel deployment of an Evolving Type-2 Quantum Fuzzy Neural Network (eT2QFNN) for modeling the aerodynamic coefficients of the ATTAS aircraft to express the aerodynamic characteristics. eT2QFNN can represent the nonlinear aircraft model by creating multiple linear submodels with its rule-based structure through an incremental learning strategy rather than a traditional batch learning approach. Moreover, it enhances robustness to uncertainties and data noise through its quantum membership functions, as well as its automatic rule-learning and parameter-tuning capabilities. During the estimation of the aerodynamic coefficients via the flight data of the ATTAS, two different studies are conducted in the training phase: one with a large amount of data and the other with a limited amount of data. The results show that the modeling performance of the eT2QFNN is superior in comparison to baseline counterparts. Furthermore, eT2QFNN estimated the aerodynamic model with fewer rules compared to Type-1 fuzzy counterparts. In addition, by applying the Delta method to the proposed approach, the stability and control derivatives of the aircraft are analyzed. The results prove the superiority of the proposed eT2QFNN in representing aerodynamic coefficients.
Authors:Jia Liu, Cheng Jinguo, Xia Fang, Zhenyuan Ma, Yuankai Wu
Title: Evaluating Temporal Plasticity in Foundation Time Series Models for Incremental Fine-tuning
Abstract:
Time series foundation models excel at diverse time series forecasting tasks, but their capacity for continuous improvement through incremental learning remains unexplored. We present the first comprehensive study investigating these models' temporal plasticity - their ability to progressively enhance performance through continual learning while maintaining existing capabilities. Through experiments on real-world datasets exhibiting distribution shifts, we evaluate both conventional deep learning models and foundation models using a novel continual learning framework. Our findings reveal that while traditional models struggle with performance deterioration during incremental fine-tuning, foundation models like Time-MoE and Chronos demonstrate sustained improvement in predictive accuracy. This suggests that optimizing foundation model fine-tuning strategies may be more valuable than developing domain-specific small models. Our research introduces new evaluation methodologies and insights for developing foundation time series models with robust continuous learning capabilities.
Authors:Alireza Fathalizadeh, Roozbeh Razavi-Far
Title: Proxy-Anchor and EVT-Driven Continual Learning Method for Generalized Category Discovery
Abstract:
Continual generalized category discovery has been introduced and studied in the literature as a method that aims to continuously discover and learn novel categories in incoming data batches while avoiding catastrophic forgetting of previously learned categories. A key component in addressing this challenge is the model's ability to separate novel samples, where Extreme Value Theory (EVT) has been effectively employed. In this work, we propose a novel method that integrates EVT with proxy anchors to define boundaries around proxies using a probability of inclusion function, enabling the rejection of unknown samples. Additionally, we introduce a novel EVT-based loss function to enhance the learned representation, achieving superior performance compared to other deep-metric learning methods in similar settings. Using the derived probability functions, novel samples are effectively separated from previously known categories. However, category discovery within these novel samples can sometimes overestimate the number of new categories. To mitigate this issue, we propose a novel EVT-based approach to reduce the model size and discard redundant proxies. We also incorporate experience replay and knowledge distillation mechanisms during the continual learning stage to prevent catastrophic forgetting. Experimental results demonstrate that our proposed approach outperforms state-of-the-art methods in continual generalized category discovery scenarios.
Authors:Ajay Sivakumar, Shalini, Vasantha Raj, Sebastian Sylvester
Title: The Self-Learning Agent with a Progressive Neural Network Integrated Transformer
Abstract:
This paper introduces a self-learning agent that integrates LLaMA 3.2 with a Progressive Neural Network (PNN) for continual learning in conversational AI and code generation. The framework dynamically collects data, fine-tunes tasks with minimal samples, and leverages Meta-Learning for rapid adaptation. LoRA optimizes fine-tuning, while Elastic Weight Consolidation (EWC) enhances knowledge retention. Experimental results demonstrate improved adaptability and memory stability, positioning this approach as a scalable step toward Artificial General Intelligence (AGI).
Authors:Hanwen Xing, Christopher Yau
Title: Continual learning via probabilistic exchangeable sequence modelling
Abstract:
Continual learning (CL) refers to the ability to continuously learn and accumulate new knowledge while retaining useful information from past experiences. Although numerous CL methods have been proposed in recent years, it is not straightforward to deploy them directly to real-world decision-making problems due to their computational cost and lack of uncertainty quantification. To address these issues, we propose CL-BRUNO, a probabilistic, Neural Process-based CL model that performs scalable and tractable Bayesian update and prediction. Our proposed approach uses deep-generative models to create a unified probabilistic framework capable of handling different types of CL problems such as task- and class-incremental learning, allowing users to integrate information across different CL scenarios using a single model. Our approach is able to prevent catastrophic forgetting through distributional and functional regularisation without the need of retaining any previously seen samples, making it appealing to applications where data privacy or storage capacity is of concern. Experiments show that CL-BRUNO outperforms existing methods on both natural image and biomedical data sets, confirming its effectiveness in real-world applications.
Authors:Gautham Udayakumar Bekal, Ahmed Ghareeb, Ashish Pujari
Title: Continual Reinforcement Learning for HVAC Systems Control: Integrating Hypernetworks and Transfer Learning
Abstract:
Buildings with Heating, Ventilation, and Air Conditioning (HVAC) systems play a crucial role in ensuring indoor comfort and efficiency. While traditionally governed by physics-based models, the emergence of big data has enabled data-driven methods like Deep Reinforcement Learning (DRL). However, Reinforcement Learning (RL)-based techniques often suffer from sample inefficiency and limited generalization, especially across varying HVAC systems. We introduce a model-based reinforcement learning framework that uses a Hypernetwork to continuously learn environment dynamics across tasks with different action spaces. This enables efficient synthetic rollout generation and improved sample usage. Our approach demonstrates strong backward transfer in a continual learning setting after training on a second task, minimal fine-tuning on the first task allows rapid convergence within just 5 episodes and thus outperforming Model Free Reinforcement Learning (MFRL) and effectively mitigating catastrophic forgetting. These findings have significant implications for reducing energy consumption and operational costs in building management, thus supporting global sustainability goals. Keywords: Deep Reinforcement Learning, HVAC Systems Control, Hypernetworks, Transfer and Continual Learning, Catastrophic Forgetting
Authors:Xuan Liu, Xiaobin Chang
Title: LoRA Subtraction for Drift-Resistant Space in Exemplar-Free Continual Learning
Abstract:
In continual learning (CL), catastrophic forgetting often arises due to feature drift. This challenge is particularly prominent in the exemplar-free continual learning (EFCL) setting, where samples from previous tasks cannot be retained, making it difficult to preserve prior knowledge. To address this issue, some EFCL methods aim to identify feature spaces that minimize the impact on previous tasks while accommodating new ones. However, they rely on static features or outdated statistics stored from old tasks, which prevents them from capturing the dynamic evolution of the feature space in CL, leading to performance degradation over time. In this paper, we introduce the Drift-Resistant Space (DRS), which effectively handles feature drifts without requiring explicit feature modeling or the storage of previous tasks. A novel parameter-efficient fine-tuning approach called Low-Rank Adaptation Subtraction (LoRA-) is proposed to develop the DRS. This method subtracts the LoRA weights of old tasks from the initial pre-trained weight before processing new task data to establish the DRS for model training. Therefore, LoRA- enhances stability, improves efficiency, and simplifies implementation. Furthermore, stabilizing feature drifts allows for better plasticity by learning with a triplet loss. Our method consistently achieves state-of-the-art results, especially for long task sequences, across multiple datasets.
Authors:Peiyi Lin, Fukai Zhang, Kai Niu, Hao Fu
Title: Towards Automatic Continual Learning: A Self-Adaptive Framework for Continual Instruction Tuning
Abstract:
Continual instruction tuning enables large language models (LLMs) to learn incrementally while retaining past knowledge, whereas existing methods primarily focus on how to retain old knowledge rather than on selecting which new knowledge to learn. In domain-specific contexts, maintaining data quality and managing system constraints remain key challenges. To address these issues, we propose an automated continual instruction tuning framework that dynamically filters incoming data, which identify and reduce redundant data across successive updates. Our approach utilizes a small proxy model for efficient perplexity-based filtering, and updates the proxy to ensure that the filtering criteria remain aligned with the evolving state of the deployed model. Compared to existing static data selection methods, our framework can effectively handle incrementally acquired data and shifting distributions. Additionally, it addresses practical deployment challenges by enabling seamless model updates, supporting version rollback and incorporating automatic checkpoint evaluation. We evaluated the system in real-world medical scenarios. It reduced computational costs by 66.7% and improved model performance, and achieved autonomous updates, thus demonstrating its effectiveness for automatic continual instruction tuning.
Authors:Hong Qing Yu, Frank McQuade
Title: RAG-KG-IL: A Multi-Agent Hybrid Framework for Reducing Hallucinations and Enhancing LLM Reasoning through RAG and Incremental Knowledge Graph Learning Integration
Abstract:
This paper presents RAG-KG-IL, a novel multi-agent hybrid framework designed to enhance the reasoning capabilities of Large Language Models (LLMs) by integrating Retrieval-Augmented Generation (RAG) and Knowledge Graphs (KGs) with an Incremental Learning (IL) approach. Despite recent advancements, LLMs still face significant challenges in reasoning with structured data, handling dynamic knowledge evolution, and mitigating hallucinations, particularly in mission-critical domains. Our proposed RAG-KG-IL framework addresses these limitations by employing a multi-agent architecture that enables continuous knowledge updates, integrates structured knowledge, and incorporates autonomous agents for enhanced explainability and reasoning. The framework utilizes RAG to ensure the generated responses are grounded in verifiable information, while KGs provide structured domain knowledge for improved consistency and depth of understanding. The Incremental Learning approach allows for dynamic updates to the knowledge base without full retraining, significantly reducing computational overhead and improving the model's adaptability. We evaluate the framework using real-world case studies involving health-related queries, comparing it to state-of-the-art models like GPT-4o and a RAG-only baseline. Experimental results demonstrate that our approach significantly reduces hallucination rates and improves answer completeness and reasoning accuracy. The results underscore the potential of combining RAG, KGs, and multi-agent systems to create intelligent, adaptable systems capable of real-time knowledge integration and reasoning in complex domains.
Authors:Xinyan Wang, Jinshuo Liu, Kaijian Xie, Meng Wang, Cheng Bi, Juan Deng, Jeff Pan
Title: STCKGE:Continual Knowledge Graph Embedding Based on Spatial Transformation
Abstract:
Current Continual Knowledge Graph Embedding (CKGE) methods primarily rely on translation-based embedding approaches, leveraging previously acquired knowledge to initialize new facts. While these methods often integrate fine-tuning or continual learning strategies to enhance efficiency, they compromise prediction accuracy and lack support for complex relational structures (e.g., multi-hop relations). To address these limitations, we propose STCKGE, a novel CKGE framework based on spatial transformation. In this framework, entity positions are jointly determined by base position vectors and offset vectors, enabling the model to represent complex relations more effectively while supporting efficient embedding updates for both new and existing knowledge through simple spatial operations, without relying on traditional continual learning techniques. Furthermore, we introduce a bidirectional collaborative update strategy and a balanced embedding method to guide parameter updates, effectively minimizing training costs while improving model accuracy. We comprehensively evaluate our model on seven public datasets and a newly constructed dataset (MULTI) focusing on multi-hop relationships. Experimental results confirm STCKGE's strong performance in multi-hop relationship learning and prediction accuracy, with an average MRR improvement of 5.4\%.
Authors:Hassan Kazemi Tehrani, Jun Cai, Abbas Yekanlou, Sylvia Santosa
Title: Personalized Class Incremental Context-Aware Food Classification for Food Intake Monitoring Systems
Abstract:
Accurate food intake monitoring is crucial for maintaining a healthy diet and preventing nutrition-related diseases. With the diverse range of foods consumed across various cultures, classic food classification models have limitations due to their reliance on fixed-sized food datasets. Studies show that people consume only a small range of foods across the existing ones, each consuming a unique set of foods. Existing class-incremental models have low accuracy for the new classes and lack personalization. This paper introduces a personalized, class-incremental food classification model designed to overcome these challenges and improve the performance of food intake monitoring systems. Our approach adapts itself to the new array of food classes, maintaining applicability and accuracy, both for new and existing classes by using personalization. Our model's primary focus is personalization, which improves classification accuracy by prioritizing a subset of foods based on an individual's eating habits, including meal frequency, times, and locations. A modified version of DSN is utilized to expand on the appearance of new food classes. Additionally, we propose a comprehensive framework that integrates this model into a food intake monitoring system. This system analyzes meal images provided by users, makes use of a smart scale to estimate food weight, utilizes a nutrient content database to calculate the amount of each macro-nutrient, and creates a dietary user profile through a mobile application. Finally, experimental evaluations on two new benchmark datasets FOOD101-Personal and VFN-Personal, personalized versions of well-known datasets for food classification, are conducted to demonstrate the effectiveness of our model in improving the classification accuracy of both new and existing classes, addressing the limitations of both conventional and class-incremental food classification models.
Authors:Mohammad Ali Vahedifar, Qi Zhang
Title: No Forgetting Learning: Memory-free Continual Learning
Abstract:
Continual Learning (CL) remains a central challenge in deep learning, where models must sequentially acquire new knowledge while mitigating Catastrophic Forgetting (CF) of prior tasks. Existing approaches often struggle with efficiency and scalability, requiring extensive memory or model buffers. This work introduces ``No Forgetting Learning" (NFL), a memory-free CL framework that leverages knowledge distillation to maintain stability while preserving plasticity. Memory-free means the NFL does not rely on any memory buffer. Through extensive evaluations of three benchmark datasets, we demonstrate that NFL achieves competitive performance while utilizing approximately 14.75 times less memory than state-of-the-art methods. Furthermore, we introduce a new metric to better assess CL's plasticity-stability trade-off.
Authors:Yukang Huo, Hao Tang
Title: When Continue Learning Meets Multimodal Large Language Model: A Survey
Abstract:
Recent advancements in Artificial Intelligence have led to the development of Multimodal Large Language Models (MLLMs). However, adapting these pre-trained models to dynamic data distributions and various tasks efficiently remains a challenge. Fine-tuning MLLMs for specific tasks often causes performance degradation in the model's prior knowledge domain, a problem known as 'Catastrophic Forgetting'. While this issue has been well-studied in the Continual Learning (CL) community, it presents new challenges for MLLMs. This review paper, the first of its kind in MLLM continual learning, presents an overview and analysis of 440 research papers in this area.The review is structured into four sections. First, it discusses the latest research on MLLMs, covering model innovations, benchmarks, and applications in various fields. Second, it categorizes and overviews the latest studies on continual learning, divided into three parts: non-large language models unimodal continual learning (Non-LLM Unimodal CL), non-large language models multimodal continual learning (Non-LLM Multimodal CL), and continual learning in large language models (CL in LLM). The third section provides a detailed analysis of the current state of MLLM continual learning research, including benchmark evaluations, architectural innovations, and a summary of theoretical and empirical studies.Finally, the paper discusses the challenges and future directions of continual learning in MLLMs, aiming to inspire future research and development in the field. This review connects the foundational concepts, theoretical insights, method innovations, and practical applications of continual learning for multimodal large models, providing a comprehensive understanding of the research progress and challenges in this field, aiming to inspire researchers in the field and promote the advancement of related technologies.
Authors:Rim Slama, Wael Rabah, Hazem Wannous
Title: Online hand gesture recognition using Continual Graph Transformers
Abstract:
Online continuous action recognition has emerged as a critical research area due to its practical implications in real-world applications, such as human-computer interaction, healthcare, and robotics. Among various modalities, skeleton-based approaches have gained significant popularity, demonstrating their effectiveness in capturing 3D temporal data while ensuring robustness to environmental variations. However, most existing works focus on segment-based recognition, making them unsuitable for real-time, continuous recognition scenarios. In this paper, we propose a novel online recognition system designed for real-time skeleton sequence streaming. Our approach leverages a hybrid architecture combining Spatial Graph Convolutional Networks (S-GCN) for spatial feature extraction and a Transformer-based Graph Encoder (TGE) for capturing temporal dependencies across frames. Additionally, we introduce a continual learning mechanism to enhance model adaptability to evolving data distributions, ensuring robust recognition in dynamic environments. We evaluate our method on the SHREC'21 benchmark dataset, demonstrating its superior performance in online hand gesture recognition. Our approach not only achieves state-of-the-art accuracy but also significantly reduces false positive rates, making it a compelling solution for real-time applications. The proposed system can be seamlessly integrated into various domains, including human-robot collaboration and assistive technologies, where natural and intuitive interaction is crucial.
Authors:Biqing Zeng, Zehan Li, Aladdin Ayesh
Title: Neural Networks Remember More: The Power of Parameter Isolation and Combination
Abstract:
Catastrophic forgetting is a pervasive issue for pre-trained language models (PLMs) during continual learning, where models lose previously acquired knowledge when sequentially trained on a series of tasks. The model's ability to retain old tasks is referred to as stability, while its adaptability to new tasks is called plasticity. Therefore, the key to solving this problem is to find a trade-off between the plasticity and stability of the model. To address this issue, in this paper, we propose a novel method to achieve a balance between model stability and plasticity, thereby mitigating catastrophic forgetting. More specifically, our proposed approach leverages parameter isolation and a subsequent combination strategy. Initially, in the training stage, the model adapts to each downstream task via a parameter isolation method to prevent potential interference among different tasks. We then combine all trained parameters, which contain acquired knowledge, using the task arithmetic method and finally apply them to the backbone model. Empirical evaluations on continual language learning benchmarks substantiate the effectiveness of our approach, revealing a marked enhancement over existing state-of-the-art approaches.
Authors:Ziyan Li, Naoki Hiratani
Title: Optimal Task Order for Continual Learning of Multiple Tasks
Abstract:
Continual learning of multiple tasks remains a major challenge for neural networks. Here, we investigate how task order influences continual learning and propose a strategy for optimizing it. Leveraging a linear teacher-student model with latent factors, we derive an analytical expression relating task similarity and ordering to learning performance. Our analysis reveals two principles that hold under a wide parameter range: (1) tasks should be arranged from the least representative to the most typical, and (2) adjacent tasks should be dissimilar. We validate these rules on both synthetic data and real-world image classification datasets (Fashion-MNIST, CIFAR-10, CIFAR-100), demonstrating consistent performance improvements in both multilayer perceptrons and convolutional neural networks. Our work thus presents a generalizable framework for task-order optimization in task-incremental continual learning.
Authors:Michael W. Spratling, Heiko H. Schütt
Title: A margin-based replacement for cross-entropy loss
Abstract:
Cross-entropy (CE) loss is the de-facto standard for training deep neural networks to perform classification. However, CE-trained deep neural networks struggle with robustness and generalisation issues. To alleviate these issues, we propose high error margin (HEM) loss, a variant of multi-class margin loss that overcomes the training issues of other margin-based losses. We evaluate HEM extensively on a range of architectures and datasets. We find that HEM loss is more effective than cross-entropy loss across a wide range of tasks: unknown class rejection, adversarial robustness, learning with imbalanced data, continual learning, and semantic segmentation (a pixel-level classification task). Despite all training hyper-parameters being chosen for CE loss, HEM is inferior to CE only in terms of clean accuracy and this difference is insignificant. We also compare HEM to specialised losses that have previously been proposed to improve performance on specific tasks. LogitNorm, a loss achieving state-of-the-art performance on unknown class rejection, produces similar performance to HEM for this task, but is much poorer for continual learning and semantic segmentation. Logit-adjusted loss, designed for imbalanced data, has superior results to HEM for that task, but performs more poorly on unknown class rejection and semantic segmentation. DICE, a popular loss for semantic segmentation, is inferior to HEM loss on all tasks, including semantic segmentation. Thus, HEM often out-performs specialised losses, and in contrast to them, is a general-purpose replacement for CE loss.
Authors:Tetsuya Hoya, Shunpei Morita
Title: Automatic Construction of Pattern Classifiers Capable of Continuous Incremental Learning and Unlearning Tasks Based on Compact-Sized Probabilistic Neural Network
Abstract:
This paper proposes a novel approach to pattern classification using a probabilistic neural network model. The strategy is based on a compact-sized probabilistic neural network capable of continuous incremental learning and unlearning tasks. The network is constructed/reconstructed using a simple, one-pass network-growing algorithm with no hyperparameter tuning. Then, given the training dataset, its structure and parameters are automatically determined and can be dynamically varied in continual incremental and decremental learning situations. The algorithm proposed in this work involves no iterative or arduous matrix-based parameter approximations but a simple data-driven updating scheme. Simulation results using nine publicly available databases demonstrate the effectiveness of this approach, showing that compact-sized probabilistic neural networks constructed have a much smaller number of hidden units compared to the original probabilistic neural network model and yet can achieve a similar classification performance to that of multilayer perceptron neural networks in standard classification tasks, while also exhibiting sufficient capability in continuous class incremental learning and unlearning tasks.
Authors:Kevin Luong, Michael Thielscher
Title: Hierarchically Gated Experts for Efficient Online Continual Learning
Abstract:
Continual Learning models aim to learn a set of tasks under the constraint that the tasks arrive sequentially with no way to access data from previous tasks. The Online Continual Learning framework poses a further challenge where the tasks are unknown and instead the data arrives as a single stream. Building on existing work, we propose a method for identifying these underlying tasks: the Gated Experts (GE) algorithm, where a dynamically growing set of experts allows for new knowledge to be acquired without catastrophic forgetting. Furthermore, we extend GE to Hierarchically Gated Experts (HGE), a method which is able to efficiently select the best expert for each data sample by organising the experts into a hierarchical structure. On standard Continual Learning benchmarks, GE and HGE are able to achieve results comparable with current methods, with HGE doing so more efficiently.
Authors:Yiqin Luo, Tianlong Gu
Title: FairDD: Enhancing Fairness with domain-incremental learning in dermatological disease diagnosis
Abstract:
With the rapid advancement of deep learning technologies, artificial intelligence has become increasingly prevalent in the research and application of dermatological disease diagnosis. However, this data-driven approach often faces issues related to decision bias. Existing fairness enhancement techniques typically come at a substantial cost to accuracy. This study aims to achieve a better trade-off between accuracy and fairness in dermatological diagnostic models. To this end, we propose a novel fair dermatological diagnosis network, named FairDD, which leverages domain incremental learning to balance the learning of different groups by being sensitive to changes in data distribution. Additionally, we incorporate the mixup data augmentation technique and supervised contrastive learning to enhance the network's robustness and generalization. Experimental validation on two dermatological datasets demonstrates that our proposed method excels in both fairness criteria and the trade-off between fairness and performance.
Authors:Dario Di Domenico, Nicolò Boccardo, Andrea Marinelli, Michele Canepa, Emanuele Gruppioni, Matteo Laffranchi, Raffaello Camoriano
Title: Long-Term Upper-Limb Prosthesis Myocontrol via High-Density sEMG and Incremental Learning
Abstract:
Noninvasive human-machine interfaces such as surface electromyography (sEMG) have long been employed for controlling robotic prostheses. However, classical controllers are limited to few degrees of freedom (DoF). More recently, machine learning methods have been proposed to learn personalized controllers from user data. While promising, they often suffer from distribution shift during long-term usage, requiring costly model re-training. Moreover, most prosthetic sEMG sensors have low spatial density, which limits accuracy and the number of controllable motions. In this work, we address both challenges by introducing a novel myoelectric prosthetic system integrating a high density-sEMG (HD-sEMG) setup and incremental learning methods to accurately control 7 motions of the Hannes prosthesis. First, we present a newly designed, compact HD-sEMG interface equipped with 64 dry electrodes positioned over the forearm. Then, we introduce an efficient incremental learning system enabling model adaptation on a stream of data. We thoroughly analyze multiple learning algorithms across 7 subjects, including one with limb absence, and 6 sessions held in different days covering an extended period of several months. The size and time span of the collected data represent a relevant contribution for studying long-term myocontrol performance. Therefore, we release the DELTA dataset together with our experimental code.
Authors:Xudong Zhou, Wenhao He
Title: SAM-IF: Leveraging SAM for Incremental Few-Shot Instance Segmentation
Abstract:
We propose SAM-IF, a novel method for incremental few-shot instance segmentation leveraging the Segment Anything Model (SAM). SAM-IF addresses the challenges of class-agnostic instance segmentation by introducing a multi-class classifier and fine-tuning SAM to focus on specific target objects. To enhance few-shot learning capabilities, SAM-IF employs a cosine-similarity-based classifier, enabling efficient adaptation to novel classes with minimal data. Additionally, SAM-IF supports incremental learning by updating classifier weights without retraining the decoder. Our method achieves competitive but more reasonable results compared to existing approaches, particularly in scenarios requiring specific object segmentation with limited labeled data.
Authors:Dupati Srikar Chandra, P. K. Srijith, Dana Rezazadegan, Chris McCarthy
Title: Linked Adapters: Linking Past and Future to Present for Effective Continual Learning
Abstract:
Continual learning allows the system to learn and adapt to new tasks while retaining the knowledge acquired from previous tasks. However, deep learning models suffer from catastrophic forgetting of knowledge learned from earlier tasks while learning a new task. Moreover, retraining large models like transformers from scratch for every new task is costly. An effective approach to address continual learning is to use a large pre-trained model with task-specific adapters to adapt to the new tasks. Though this approach can mitigate catastrophic forgetting, they fail to transfer knowledge across tasks as each task is learning adapters separately. To address this, we propose a novel approach Linked Adapters that allows knowledge transfer through a weighted attention mechanism to other task-specific adapters. Linked adapters use a multi-layer perceptron (MLP) to model the attention weights, which overcomes the challenge of backward knowledge transfer in continual learning in addition to modeling the forward knowledge transfer. During inference, our proposed approach effectively leverages knowledge transfer through MLP-based attention weights across all the lateral task adapters. Through numerous experiments conducted on diverse image classification datasets, we effectively demonstrated the improvement in performance on the continual learning tasks using Linked Adapters.
Authors:Suresh Kumar Amalapuram, Shreya Kumar, Bheemarjuna Reddy Tamma, Sumohana Channappayya
Title: SOUL: A Semi-supervised Open-world continUal Learning method for Network Intrusion Detection
Abstract:
Fully supervised continual learning methods have shown improved attack traffic detection in a closed-world learning setting. However, obtaining fully annotated data is an arduous task in the security domain. Further, our research finds that after training a classifier on two days of network traffic, the performance decay of attack class detection over time (computed using the area under the time on precision-recall AUC of the attack class) drops from 0.985 to 0.506 on testing with three days of new test samples. In this work, we focus on label scarcity and open-world learning (OWL) settings to improve the attack class detection of the continual learning-based network intrusion detection (NID). We formulate OWL for NID as a semi-supervised continual learning-based method, dubbed SOUL, to achieve the classifier performance on par with fully supervised models while using limited annotated data. The proposed method is motivated by our empirical observation that using gradient projection memory (constructed using buffer memory samples) can significantly improve the detection performance of the attack (minority) class when trained using partially labeled data. Further, using the classifier's confidence in conjunction with buffer memory, SOUL generates high-confidence labels whenever it encounters OWL tasks closer to seen tasks, thus acting as a label generator. Interestingly, SOUL efficiently utilizes samples in the buffer memory for sample replay to avoid catastrophic forgetting, construct the projection memory, and assist in generating labels for unseen tasks. The proposed method is evaluated on four standard network intrusion detection datasets, and the performance results are closer to the fully supervised baselines using at most 20% labeled data while reducing the data annotation effort in the range of 11 to 45% for unseen data.
Authors:Chengxin Wang, Gary Tan, Swagato Barman Roy, Beng Chin Ooi
Title: Distribution-aware Online Continual Learning for Urban Spatio-Temporal Forecasting
Abstract:
Urban spatio-temporal (ST) forecasting is crucial for various urban applications such as intelligent scheduling and trip planning. Previous studies focus on modeling ST correlations among urban locations in offline settings, which often neglect the non-stationary nature of urban ST data, particularly, distribution shifts over time. This oversight can lead to degraded performance in real-world scenarios. In this paper, we first analyze the distribution shifts in urban ST data, and then introduce DOST, a novel online continual learning framework tailored for ST data characteristics. DOST employs an adaptive ST network equipped with a variable-independent adapter to address the unique distribution shifts at each urban location dynamically. Further, to accommodate the gradual nature of these shifts, we also develop an awake-hibernate learning strategy that intermittently fine-tunes the adapter during the online phase to reduce computational overhead. This strategy integrates a streaming memory update mechanism designed for urban ST sequential data, enabling effective network adaptation to new patterns while preventing catastrophic forgetting. Experimental results confirm DOST's superiority over state-of-the-art models on four real-world datasets, providing online forecasts within an average of 0.1 seconds and achieving a 12.89% reduction in forecast errors compared to baseline models.
Authors:Rishit Kapoor, Jesher Joshua, Muralidharan Vijayarangan, Natarajan B
Title: FedCL-Ensemble Learning: A Framework of Federated Continual Learning with Ensemble Transfer Learning Enhanced for Alzheimer's MRI Classifications while Preserving Privacy
Abstract:
This research work introduces a novel approach to the classification of Alzheimer's disease by using the advanced deep learning techniques combined with secure data processing methods. This research work primary uses transfer learning models such as ResNet, ImageNet, and VNet to extract high-level features from medical image data. Thereafter, these pre-trained models were fine-tuned for Alzheimer's related subtle patterns such that the model is capable of robust feature extraction over varying data sources. Further, the federated learning approaches were incorporated to tackle a few other challenges related to classification, aimed to provide better prediction performance and protect data privacy. The proposed model was built using federated learning without sharing sensitive patient data. This way, the decentralized model benefits from the large and diversified dataset that it is trained upon while ensuring confidentiality. The cipher-based encryption mechanism is added that allows us to secure the transportation of data and further ensure the privacy and integrity of patient information throughout training and classification. The results of the experiments not only help to improve the accuracy of the classification of Alzheimer's but at the same time provides a framework for secure and collaborative analysis of health care data.
Authors:Xiufeng Yan, Dianhui Wang
Title: Deeper Insights into Learning Performance of Stochastic Configuration Networks
Abstract:
Stochastic Configuration Networks (SCNs) are a class of randomized neural networks that integrate randomized algorithms within an incremental learning framework. A defining feature of SCNs is the supervisory mechanism, which adaptively adjusts the distribution to generate effective random basis functions, thereby enabling error-free learning. In this paper, we present a comprehensive analysis of the impact of the supervisory mechanism on the learning performance of SCNs. Our findings reveal that the current SCN framework evaluates the effectiveness of each random basis function in reducing residual errors using a lower bound on its error reduction potential, which constrains SCNs' overall learning efficiency. Specifically, SCNs may fail to consistently select the most effective random candidate as the new basis function during each training iteration. To overcome this problem, we propose a novel method for evaluating the hidden layer's output matrix, supported by a new supervisory mechanism that accurately assesses the error reduction potential of random basis functions without requiring the computation of the Moore-Penrose inverse of the output matrix. This approach enhances the selection of basis functions, reducing computational complexity and improving the overall scalability and learning capabilities of SCNs. We introduce a Recursive Moore-Penrose Inverse-SCN (RMPI-SCN) training scheme based on the new supervisory mechanism and demonstrate its effectiveness through simulations over some benchmark datasets. Experiments show that RMPI-SCN outperforms the conventional SCN in terms of learning capability, underscoring its potential to advance the SCN framework for large-scale data modeling applications.
Authors:Pascal Janetzky, Tobias Schlagenhauf, Stefan Feuerriegel
Title: Slowing Down Forgetting in Continual Learning
Abstract:
A common challenge in continual learning (CL) is catastrophic forgetting, where the performance on old tasks drops after new, additional tasks are learned. In this paper, we propose a novel framework called ReCL to slow down forgetting in CL. Our framework exploits an implicit bias of gradient-based neural networks due to which these converge to margin maximization points. Such convergence points allow us to reconstruct old data from previous tasks, which we then combine with the current training data. Our framework is flexible and can be applied on top of existing, state-of-the-art CL methods. We further demonstrate the performance gain from our framework across a large series of experiments, including two challenging CL scenarios (class incremental and domain incremental learning), different datasets (MNIST, CIFAR10, TinyImagenet), and different network architectures. Across all experiments, we find large performance gains through ReCL. To the best of our knowledge, our framework is the first to address catastrophic forgetting by leveraging models in CL as their own memory buffers.
Authors:Young Jo Choi, Min Kyoon Yoo, Yu Rang Park
Title: Reducing catastrophic forgetting of incremental learning in the absence of rehearsal memory with task-specific token
Abstract:
Deep learning models generally display catastrophic forgetting when learning new data continuously. Many incremental learning approaches address this problem by reusing data from previous tasks while learning new tasks. However, the direct access to past data generates privacy and security concerns. To address these issues, we present a novel method that preserves previous knowledge without storing previous data. This method is inspired by the architecture of a vision transformer and employs a unique token capable of encapsulating the compressed knowledge of each task. This approach generates task-specific embeddings by directing attention differently based on the task associated with the data, thereby effectively mimicking the impact of having multiple models through tokens. Our method incorporates a distillation process that ensures efficient interactions even after multiple additional learning steps, thereby optimizing the model against forgetting. We measured the performance of our model in terms of accuracy and backward transfer using a benchmark dataset for different task-incremental learning scenarios. Our results demonstrate the superiority of our approach, which achieved the highest accuracy and lowest backward transfer among the compared methods. In addition to presenting a new model, our approach lays the foundation for various extensions within the spectrum of vision-transformer architectures.
Authors:Mrinal Rawat, Hithesh Sankararaman, Victor Barres
Title: Controllable Discovery of Intents: Incremental Deep Clustering Using Semi-Supervised Contrastive Learning
Abstract:
Deriving value from a conversational AI system depends on the capacity of a user to translate the prior knowledge into a configuration. In most cases, discovering the set of relevant turn-level speaker intents is often one of the key steps. Purely unsupervised algorithms provide a natural way to tackle discovery problems but make it difficult to incorporate constraints and only offer very limited control over the outcomes. Previous work has shown that semi-supervised (deep) clustering techniques can allow the system to incorporate prior knowledge and constraints in the intent discovery process. However they did not address how to allow for control through human feedback. In our Controllable Discovery of Intents (CDI) framework domain and prior knowledge are incorporated using a sequence of unsupervised contrastive learning on unlabeled data followed by fine-tuning on partially labeled data, and finally iterative refinement of clustering and representations through repeated clustering and pseudo-label fine-tuning. In addition, we draw from continual learning literature and use learning-without-forgetting to prevent catastrophic forgetting across those training stages. Finally, we show how this deep-clustering process can become part of an incremental discovery strategy with human-in-the-loop. We report results on both CLINC and BANKING datasets. CDI outperforms previous works by a significant margin: 10.26% and 11.72% respectively.
Authors:Yuntian Gu, Xuzheng Chen
Title: Towards Differentiable Multilevel Optimization: A Gradient-Based Approach
Abstract:
Multilevel optimization has gained renewed interest in machine learning due to its promise in applications such as hyperparameter tuning and continual learning. However, existing methods struggle with the inherent difficulty of efficiently handling the nested structure. This paper introduces a novel gradient-based approach for multilevel optimization that overcomes these limitations by leveraging a hierarchically structured decomposition of the full gradient and employing advanced propagation techniques. Extending to n-level scenarios, our method significantly reduces computational complexity while improving both solution accuracy and convergence speed. We demonstrate the effectiveness of our approach through numerical experiments, comparing it with existing methods across several benchmarks. The results show a notable improvement in solution accuracy. To the best of our knowledge, this is one of the first algorithms to provide a general version of implicit differentiation with both theoretical guarantees and superior empirical performance.
Authors:Ping Li, Hongbo Wang, Lei Lu
Title: Task Adaptive Feature Distribution Based Network for Few-shot Fine-grained Target Classification
Abstract:
Metric-based few-shot fine-grained classification has shown promise due to its simplicity and efficiency. However, existing methods often overlook task-level special cases and struggle with accurate category description and irrelevant sample information. To tackle these, we propose TAFD-Net: a task adaptive feature distribution network. It features a task-adaptive component for embedding to capture task-level nuances, an asymmetric metric for calculating feature distribution similarities between query samples and support categories, and a contrastive measure strategy to boost performance. Extensive experiments have been conducted on three datasets and the experimental results show that our proposed algorithm outperforms recent incremental learning algorithms.
Authors:Timo Braun, Anders Kvellestad, Riccardo De Bin
Title: GPTreeO: An R package for continual regression with dividing local Gaussian processes
Abstract:
We introduce GPTreeO, a flexible R package for scalable Gaussian process (GP) regression, particularly tailored to continual learning problems. GPTreeO builds upon the Dividing Local Gaussian Processes (DLGP) algorithm, in which a binary tree of local GP regressors is dynamically constructed using a continual stream of input data. In GPTreeO we extend the original DLGP algorithm by allowing continual optimisation of the GP hyperparameters, incorporating uncertainty calibration, and introducing new strategies for how the local partitions are created. Moreover, the modular code structure allows users to interface their favourite GP library to perform the local GP regression in GPTreeO. The flexibility of GPTreeO gives the user fine-grained control of the balance between computational speed, accuracy, stability and smoothness. We conduct a sensitivity analysis to show how GPTreeO's configurable features impact the regression performance in a continual learning setting.
Authors:David Castillo-Bolado, Joseph Davidson, Finlay Gray, Marek Rosa
Title: Beyond Prompts: Dynamic Conversational Benchmarking of Large Language Models
Abstract:
We introduce a dynamic benchmarking system for conversational agents that evaluates their performance through a single, simulated, and lengthy user$\leftrightarrow$agent interaction. The interaction is a conversation between the user and agent, where multiple tasks are introduced and then undertaken concurrently. We context switch regularly to interleave the tasks, which constructs a realistic testing scenario in which we assess the Long-Term Memory, Continual Learning, and Information Integration capabilities of the agents. Results from both proprietary and open-source Large-Language Models show that LLMs in general perform well on single-task interactions, but they struggle on the same tasks when they are interleaved. Notably, short-context LLMs supplemented with an LTM system perform as well as or better than those with larger contexts. Our benchmark suggests that there are other challenges for LLMs responding to more natural interactions that contemporary benchmarks have heretofore not been able to capture.
Authors:Jialin Liu, Jianhua Wu, Jie Liu, Yutai Duan
Title: Learning Attentional Mixture of LoRAs for Language Model Continual Learning
Abstract:
Fine-tuning large language models (LLMs) with Low-Rank adaption (LoRA) is widely acknowledged as an effective approach for continual learning for new tasks. However, it often suffers from catastrophic forgetting when dealing with multiple tasks sequentially. To this end, we propose Attentional Mixture of LoRAs (AM-LoRA), a continual learning approach tailored for LLMs. Specifically, AM-LoRA learns a sequence of LoRAs for a series of tasks to continually learn knowledge from different tasks. The key of our approach is that we devise an attention mechanism as a knowledge mixture module to adaptively integrate information from each LoRA. With the attention mechanism, AM-LoRA can efficiently leverage the distinctive contributions of each LoRA, while mitigating the risk of mutually negative interactions among them that may lead to catastrophic forgetting. Moreover, we further introduce $L1$ norm in the learning process to make the attention vector more sparse. The sparse constraints can enable the model to lean towards selecting a few highly relevant LoRAs, rather than aggregating and weighting all LoRAs collectively, which can further reduce the impact stemming from mutual interference. Experimental results on continual learning benchmarks indicate the superiority of our proposed method.
Authors:Max Koster, Jude Kukla
Title: Neural Network Plasticity and Loss Sharpness
Abstract:
In recent years, continual learning, a prediction setting in which the problem environment may evolve over time, has become an increasingly popular research field due to the framework's gearing towards complex, non-stationary objectives. Learning such objectives requires plasticity, or the ability of a neural network to adapt its predictions to a different task. Recent findings indicate that plasticity loss on new tasks is highly related to loss landscape sharpness in non-stationary RL frameworks. We explore the usage of sharpness regularization techniques, which seek out smooth minima and have been touted for their generalization capabilities in vanilla prediction settings, in efforts to combat plasticity loss. Our findings indicate that such techniques have no significant effect on reducing plasticity loss.
Authors:Yu Wang, Wenchuan Jia, Yi Sun, Dong He
Title: Behavior evolution-inspired approach to walking gait reinforcement training for quadruped robots
Abstract:
Reinforcement learning method is extremely competitive in gait generation techniques for quadrupedal robot, which is mainly due to the fact that stochastic exploration in reinforcement training is beneficial to achieve an autonomous gait. Nevertheless, although incremental reinforcement learning is employed to improve training success and movement smoothness by relying on the continuity inherent during limb movements, challenges remain in adapting gait policy to diverse terrain and external disturbance. Inspired by the association between reinforcement learning and the evolution of animal motion behavior, a self-improvement mechanism for reference gait is introduced in this paper to enable incremental learning of action and self-improvement of reference action together to imitate the evolution of animal motion behavior. Further, a new framework for reinforcement training of quadruped gait is proposed. In this framework, genetic algorithm is specifically adopted to perform global probabilistic search for the initial value of the arbitrary foot trajectory to update the reference trajectory with better fitness. Subsequently, the improved reference gait is used for incremental reinforcement learning of gait. The above process is repeatedly and alternatively executed to finally train the gait policy. The analysis considering terrain, model dimensions, and locomotion condition is presented in detail based on simulation, and the results show that the framework is significantly more adaptive to terrain compared to regular incremental reinforcement learning.
Authors:Cameron Taylor, Vassilis Vassiliades, Constantine Dovrolis
Title: Patch-Based Contrastive Learning and Memory Consolidation for Online Unsupervised Continual Learning
Abstract:
We focus on a relatively unexplored learning paradigm known as {\em Online Unsupervised Continual Learning} (O-UCL), where an agent receives a non-stationary, unlabeled data stream and progressively learns to identify an increasing number of classes. This paradigm is designed to model real-world applications where encountering novelty is the norm, such as exploring a terrain with several unknown and time-varying entities. Unlike prior work in unsupervised, continual, or online learning, O-UCL combines all three areas into a single challenging and realistic learning paradigm. In this setting, agents are frequently evaluated and must aim to maintain the best possible representation at any point of the data stream, rather than at the end of pre-specified offline tasks. The proposed approach, called \textbf{P}atch-based \textbf{C}ontrastive learning and \textbf{M}emory \textbf{C}onsolidation (PCMC), builds a compositional understanding of data by identifying and clustering patch-level features. Embeddings for these patch-level features are extracted with an encoder trained via patch-based contrastive learning. PCMC incorporates new data into its distribution while avoiding catastrophic forgetting, and it consolidates memory examples during ``sleep" periods. We evaluate PCMC's performance on streams created from the ImageNet and Places365 datasets. Additionally, we explore various versions of the PCMC algorithm and compare its performance against several existing methods and simple baselines.
Authors:Zhongren Yao, Xiaobin Chang
Title: Adaptive Margin Global Classifier for Exemplar-Free Class-Incremental Learning
Abstract:
Exemplar-free class-incremental learning (EFCIL) presents a significant challenge as the old class samples are absent for new task learning. Due to the severe imbalance between old and new class samples, the learned classifiers can be easily biased toward the new ones. Moreover, continually updating the feature extractor under EFCIL can compromise the discriminative power of old class features, e.g., leading to less compact and more overlapping distributions across classes. Existing methods mainly focus on handling biased classifier learning. In this work, both cases are considered using the proposed method. Specifically, we first introduce a Distribution-Based Global Classifier (DBGC) to avoid bias factors in existing methods, such as data imbalance and sampling. More importantly, the compromised distributions of old classes are simulated via a simple operation, variance enlarging (VE). Incorporating VE based on DBGC results in a novel classification loss for EFCIL. This loss is proven equivalent to an Adaptive Margin Softmax Cross Entropy (AMarX). The proposed method is thus called Adaptive Margin Global Classifier (AMGC). AMGC is simple yet effective. Extensive experiments show that AMGC achieves superior image classification results on its own under a challenging EFCIL setting. Detailed analysis is also provided for further demonstration.
Authors:Kotaro Nagata, Hiromu Ono, Kazuhiro Hotta
Title: Reducing Catastrophic Forgetting in Online Class Incremental Learning Using Self-Distillation
Abstract:
In continual learning, there is a serious problem of catastrophic forgetting, in which previous knowledge is forgotten when a model learns new tasks. Various methods have been proposed to solve this problem. Replay methods which replay data from previous tasks in later training, have shown good accuracy. However, replay methods have a generalizability problem from a limited memory buffer. In this paper, we tried to solve this problem by acquiring transferable knowledge through self-distillation using highly generalizable output in shallow layer as a teacher. Furthermore, when we deal with a large number of classes or challenging data, there is a risk of learning not converging and not experiencing overfitting. Therefore, we attempted to achieve more efficient and thorough learning by prioritizing the storage of easily misclassified samples through a new method of memory update. We confirmed that our proposed method outperformed conventional methods by experiments on CIFAR10, CIFAR100, and MiniimageNet datasets.
Authors:Sayan Rakshit, Hmrishav Bandyopadhyay, Nibaran Das, Biplab Banerjee
Title: Incremental Open-set Domain Adaptation
Abstract:
Catastrophic forgetting makes neural network models unstable when learning visual domains consecutively. The neural network model drifts to catastrophic forgetting-induced low performance of previously learnt domains when training with new domains. We illuminate this current neural network model weakness and develop a forgetting-resistant incremental learning strategy. Here, we propose a new unsupervised incremental open-set domain adaptation (IOSDA) issue for image classification. Open-set domain adaptation adds complexity to the incremental domain adaptation issue since each target domain has more classes than the Source domain. In IOSDA, the model learns training with domain streams phase by phase in incremented time. Inference uses test data from all target domains without revealing their identities. We proposed IOSDA-Net, a two-stage learning pipeline, to solve the problem. The first module replicates prior domains from random noise using a generative framework and creates a pseudo source domain. In the second step, this pseudo source is adapted to the present target domain. We test our model on Office-Home, DomainNet, and UPRN-RSDA, a newly curated optical remote sensing dataset.
Authors:Chuan-Chi Lai
Title: Spatiotemporal Continual Learning for Mobile Edge UAV Networks: Mitigating Catastrophic Forgetting
Abstract:
This paper addresses the critical challenge of coordinating mobile edge UAV networks to maintain robust service in highly dynamic spatiotemporal environments. Conventional Deep Reinforcement Learning (DRL) approaches often suffer from catastrophic forgetting when transitioning between distinct task scenarios, such as moving from dense urban clusters to sparse rural areas. These transitions typically necessitate computationally expensive retraining or model resets to adapt to new user distributions, leading to service interruptions. To overcome these limitations, we propose a computationally efficient Spatiotemporal Continual Learning (STCL) framework realized through a Group-Decoupled Multi-Agent Proximal Policy Optimization (G-MAPPO) algorithm. Our approach integrates a novel Group-Decoupled Policy Optimization (GDPO) mechanism that utilizes dynamic $z$-score normalization to autonomously balance heterogeneous objectives, including energy efficiency, user fairness, and coverage. This mechanism effectively mitigates gradient conflicts induced by concept drifts without requiring offline retraining. Furthermore, the framework leverages the 3D mobility of UAVs as a spatial compensation layer, enabling the swarm to autonomously adjust altitudes to accommodate extreme density fluctuations. Extensive simulations demonstrate that the proposed STCL framework achieves superior resilience, characterized by an elastic recovery of service reliability to approximately 0.95 during phase transitions. Compared to the MADDPG baseline, G-MAPPO not only prevents knowledge forgetting but also delivers an effective capacity gain of 20\% under extreme traffic loads, validating its potential as a scalable solution for edge-enabled aerial swarms.
Authors:Fei Meng
Title: Beyond Retention: Orchestrating Structural Safety and Plasticity in Continual Learning for LLMs
Abstract:
Continual learning in Large Language Models (LLMs) faces the critical challenge of balancing stability (retaining old knowledge) and plasticity (learning new tasks). While Experience Replay (ER) is a standard countermeasure against catastrophic forgetting, its impact across diverse capabilities remains underexplored. In this work, we uncover a critical dichotomy in ER's behavior: while it induces positive backward transfer on robust, unstructured tasks (e.g., boosting performance on previous NLP classification tasks through repeated rehearsal), it causes severe negative transfer on fragile, structured domains like code generation (e.g., a significant relative drop in coding accuracy). This reveals that ER trades structural integrity for broad consolidation. To address this dilemma, we propose \textbf{Orthogonal Subspace Wake-up (OSW)}. OSW identifies essential parameter subspaces of previous tasks via a brief "wake-up" phase and enforces orthogonal updates for new tasks, providing a mathematically grounded "safety guarantee" for established knowledge structures. Empirical results across a diverse four-task sequence demonstrate that OSW uniquely succeeds in preserving fragile coding abilities where Replay fails, while simultaneously maintaining high plasticity for novel tasks. Our findings emphasize the necessity of evaluating structural safety alongside average retention in LLM continual learning.
Authors:Timofey Tomashevskiy
Title: Safe Continual Reinforcement Learning Methods for Nonstationary Environments. Towards a Survey of the State of the Art
Abstract:
This work provides a state-of-the-art survey of continual safe online reinforcement learning (COSRL) methods. We discuss theoretical aspects, challenges, and open questions in building continual online safe reinforcement learning algorithms. We provide the taxonomy and the details of continual online safe reinforcement learning methods based on the type of safe learning mechanism that takes adaptation to nonstationarity into account. We categorize safety constraints formulation for online reinforcement learning algorithms, and finally, we discuss prospects for creating reliable, safe online learning algorithms. Keywords: safe RL in nonstationary environments, safe continual reinforcement learning under nonstationarity, HM-MDP, NSMDP, POMDP, safe POMDP, constraints for continual learning, safe continual reinforcement learning review, safe continual reinforcement learning survey, safe continual reinforcement learning, safe online learning under distribution shift, safe continual online adaptation, safe reinforcement learning, safe exploration, safe adaptation, constrained Markov decision processes, safe reinforcement learning, partially observable Markov decision process, safe reinforcement learning and hidden Markov decision processes, Safe Online Reinforcement Learning, safe online reinforcement learning, safe online reinforcement learning, safe meta-learning, safe meta-reinforcement learning, safe context-based reinforcement learning, formulating safety constraints for continual learning
Authors:Weiwei Wang
Title: Real Time Detection and Quantitative Analysis of Spurious Forgetting in Continual Learning
Abstract:
Catastrophic forgetting remains a fundamental challenge in continual learning for large language models. Recent work revealed that performance degradation may stem from spurious forgetting caused by task alignment disruption rather than true knowledge loss. However, this work only qualitatively describes alignment, relies on post-hoc analysis, and lacks automatic distinction mechanisms. We introduce the shallow versus deep alignment framework, providing the first quantitative characterization of alignment depth. We identify that current task alignment approaches suffer from shallow alignment - maintained only over the first few output tokens (approximately 3-5) - making models vulnerable to forgetting. This explains why spurious forgetting occurs, why it is reversible, and why fine-tuning attacks are effective. We propose a comprehensive framework addressing all gaps: (1) quantitative metrics (0-1 scale) to measure alignment depth across token positions; (2) real-time detection methods for identifying shallow alignment during training; (3) specialized analysis tools for visualization and recovery prediction; and (4) adaptive mitigation strategies that automatically distinguish forgetting types and promote deep alignment. Extensive experiments on multiple datasets and model architectures (Qwen2.5-3B to Qwen2.5-32B) demonstrate 86.2-90.6% identification accuracy and show that promoting deep alignment improves robustness against forgetting by 3.3-7.1% over baselines.
Authors:Xin Li
Title: The Geometry of Abstraction: Continual Learning via Recursive Quotienting
Abstract:
Continual learning systems operating in fixed-dimensional spaces face a fundamental geometric barrier: the flat manifold problem. When experience is represented as a linear trajectory in Euclidean space, the geodesic distance between temporal events grows linearly with time, forcing the required covering number to diverge. In fixed-dimensional hardware, this volume expansion inevitably forces trajectory overlap, manifesting as catastrophic interference. In this work, we propose a geometric resolution to this paradox based on Recursive Metric Contraction. We formalize abstraction not as symbolic grouping, but as a topological deformation: a quotient map that collapses the metric tensor within validated temporal neighborhoods, effectively driving the diameter of local sub-manifolds to zero. We substantiate our framework with four rigorous results. First, the Bounded Capacity Theorem establishes that recursive quotient maps allow the embedding of arbitrarily long trajectories into bounded representational volumes, trading linear metric growth for logarithmic topological depth. Second, the Topological Collapse Separability Theorem, derived via Urysohn's Lemma, proves that recursive quotienting renders non-linearly separable temporal sequences linearly separable in the limit, bypassing the need for infinite-dimensional kernel projections. Third, the Parity-Partitioned Stability Theorem solves the catastrophic forgetting problem by proving that if the state space is partitioned into orthogonal flow and scaffold manifolds, the metric deformations of active learning do not disturb the stability of stored memories. Our analysis reveals that tokens in neural architectures are physically realizable as singularities or wormholes, regions of extreme positive curvature that bridge distant points in the temporal manifold.
Authors:Yang Xiao
Title: Continual Learning for Acoustic Event Classification
Abstract:
Continuously learning new classes without catastrophic forgetting is a challenging problem for on-device acoustic event classification given the restrictions on computation resources (e.g., model size, running memory). To alleviate such an issue, we propose two novel diversity-aware incremental learning method for Spoken Keyword Spotting and Environmental Sound Classification. Our method selects the historical data for the training by measuring the per-sample classification uncertainty. For the Spoken Keyword Spotting application, the proposed RK approach introduces a diversity-aware sampler to select a diverse set from historical and incoming keywords by calculating classification uncertainty. As a result, the RK approach can incrementally learn new tasks without forgetting prior knowledge. Besides, the RK approach also proposes data augmentation and knowledge distillation loss function for efficient memory management on the edge device. For the Environmental Sound Classification application, we measure the uncertainty by observing how the classification probability of data fluctuates against the parallel perturbations added to the classifier embedding. In this way, the computation cost can be significantly reduced compared with adding perturbation to the raw data. Experimental results show that the proposed RK approach achieves 4.2% absolute improvement in terms of average accuracy over the best baseline on Google Speech Command dataset with less required memory. Experimental results on the DCASE 2019 Task 1 and ESC-50 dataset show that our proposed method outperforms baseline continual learning methods on classification accuracy and computational efficiency, indicating our method can efficiently and incrementally learn new classes without the catastrophic forgetting problem for on-device environmental sound classification
Authors:Zhongpan Tang
Title: Compression is Routing: Reconstruction Error as an Intrinsic Signal for Modular Language Models
Abstract:
Current Large Language Models (LLMs) face three major challenges: context length limitations, high inference costs, and catastrophic forgetting during continual learning. While Mixture-of-Experts (MoE) architectures mitigate some of these conflicts, their routing mechanisms typically rely on explicitly trained auxiliary classifiers. This not only increases system complexity but also often lacks interpretability when handling mixed-domain inputs. Building upon the premise that ``Compression is Intelligence,'' this paper proposes a novel architectural philosophy: Compression is Routing. We trained an 87M-parameter end-to-end Transformer Autoencoder, achieving a 64x sequence length compression (compressing 512 tokens into 8 latent vectors). Experimental results demonstrate that this compressor possesses extreme domain discriminative capability: it achieves a reconstruction accuracy of 99.47% on the in-domain (code) validation set; accuracy drops sharply to 47.76% on a semi-out-of-distribution domain (Wiki text); and further plummets to just 0.57% on a fully out-of-distribution domain (random sequences). This extreme and systematic performance discrepancy establishes the validity of reconstruction error as an Intrinsic Distribution Fingerprint. Based on this, we propose that expert modules can be automatically scheduled using reconstruction residuals directly, without the need for explicit gating networks. This mechanism offers excellent scalability. Furthermore, this architecture provides a new perspective on ``VRAM compression'' for handling ultra-long contexts. This report aims to verify the physical validity of this foundational architecture, offering a new research perspective for the next generation of scalable modular neural networks.
Authors:Erik Hoel
Title: A Disproof of Large Language Model Consciousness: The Necessity of Continual Learning for Consciousness
Abstract:
The requirements for a falsifiable and non-trivial theory of consciousness significantly constrain such theories. Specifically, recent research on the Unfolding Argument and the Substitution Argument has given us formal tools to analyze requirements for a theory of consciousness. I show via a new Proximity Argument that these requirements especially constrain the potential consciousness of contemporary Large Language Models (LLMs) because of their proximity to systems that are equivalent to LLMs in terms of input/output function; yet, for these functionally equivalent systems, there cannot be any non-trivial theory of consciousness that judges them conscious. This forms the basis of a disproof of contemporary LLM consciousness. I then show a positive result, which is that theories of consciousness based on (or requiring) continual learning do satisfy the stringent formal constraints for a theory of consciousness in humans. Intriguingly, this work supports a hypothesis: If continual learning is linked to consciousness in humans, the current limitations of LLMs (which do not continually learn) are intimately tied to their lack of consciousness.
Authors:Dev Vyas
Title: MoB: Mixture of Bidders
Abstract:
Mixture of Experts (MoE) architectures have demonstrated remarkable success in scaling neural networks, yet their application to continual learning remains fundamentally limited by a critical vulnerability: the learned gating network itself suffers from catastrophic forgetting. We introduce Mixture of Bidders (MoB), a novel framework that reconceptualizes expert routing as a decentralized economic mechanism. MoB replaces learned gating networks with Vickrey-Clarke-Groves (VCG) auctions, where experts compete for each data batch by bidding their true cost -- a principled combination of execution cost (predicted loss) and forgetting cost (Elastic Weight Consolidation penalty). This game-theoretic approach provides three key advantages: (1) {stateless routing that is immune to catastrophic forgetting, (2) \textbf{truthful bidding} guaranteed by dominant-strategy incentive compatibility, and (3) emergent specialization without explicit task boundaries. On Split-MNIST benchmarks, MoB achieves 88.77% average accuracy compared to 19.54% for Gated MoE and 27.96% for Monolithic EWC, representing a 4.5 times improvement over the strongest baseline. We further extend MoB with autonomous self-monitoring experts that detect their own knowledge consolidation boundaries, eliminating the need for explicit task demarcation.
Authors:Donghu Kim
Title: Dynamic Mixture of Experts Against Severe Distribution Shifts
Abstract:
The challenge of building neural networks that can continuously learn and adapt to evolving data streams is central to the fields of continual learning (CL) and reinforcement learning (RL). This lifelong learning problem is often framed in terms of the plasticity-stability dilemma, focusing on issues like loss of plasticity and catastrophic forgetting. Unlike neural networks, biological brains maintain plasticity through capacity growth, inspiring researchers to explore similar approaches in artificial networks, such as adding capacity dynamically. Prior solutions often lack parameter efficiency or depend on explicit task indices, but Mixture-of-Experts (MoE) architectures offer a promising alternative by specializing experts for distinct distributions. This paper aims to evaluate a DynamicMoE approach for continual and reinforcement learning environments and benchmark its effectiveness against existing network expansion methods.
Authors:Hiroto Honda
Title: Adversarial Pseudo-replay for Exemplar-free Class-incremental Learning
Abstract:
Exemplar-free class-incremental learning (EFCIL) aims to retain old knowledge acquired in the previous task while learning new classes, without storing the previous images due to storage constraints or privacy concerns. In EFCIL, the plasticity-stability dilemma, learning new tasks versus catastrophic forgetting, is a significant challenge, primarily due to the unavailability of images from earlier tasks. In this paper, we introduce adversarial pseudo-replay (APR), a method that perturbs the images of the new task with adversarial attack, to synthesize the pseudo-replay images online without storing any replay samples. During the new task training, the adversarial attack is conducted on the new task images with augmented old class mean prototypes as targets, and the resulting images are used for knowledge distillation to prevent semantic drift. Moreover, we calibrate the covariance matrices to compensate for the semantic drift after each task, by learning a transfer matrix on the pseudo-replay samples. Our method reconciles stability and plasticity, achieving state-of-the-art on challenging cold-start settings of the standard EFCIL benchmarks.
Authors:Wenzhang Du
Title: Mitigating Catastrophic Forgetting in Streaming Generative and Predictive Learning via Stateful Replay
Abstract:
Many deployed learning systems must update models on streaming data under memory constraints. The default strategy, sequential fine-tuning on each new phase, is architecture-agnostic but often suffers catastrophic forgetting when later phases correspond to different sub-populations or tasks. Replay with a finite buffer is a simple alternative, yet its behaviour across generative and predictive objectives is not well understood. We present a unified study of stateful replay for streaming autoencoding, time series forecasting, and classification. We view both sequential fine-tuning and replay as stochastic gradient methods for an ideal joint objective, and use a gradient alignment analysis to show when mixing current and historical samples should reduce forgetting. We then evaluate a single replay mechanism on six streaming scenarios built from Rotated MNIST, ElectricityLoadDiagrams 2011-2014, and Airlines delay data, using matched training budgets and three seeds. On heterogeneous multi task streams, replay reduces average forgetting by a factor of two to three, while on benign time based streams both methods perform similarly. These results position stateful replay as a strong and simple baseline for continual learning in streaming environments.
Authors:Ziyuan Gao
Title: MedPEFT-CL: Dual-Phase Parameter-Efficient Continual Learning with Medical Semantic Adapter and Bidirectional Memory Consolidation
Abstract:
Medical vision-language segmentation models suffer from catastrophic forgetting when adapting to new anatomical structures, requiring complete retraining that limits their clinical deployment. Although continual learning approaches have been studied for various applications, targeted research on continual learning approaches specifically designed for medical vision-language tasks remains underexplored. We propose MedPEFT-CL, a parameter-efficient continual learning framework that addresses both efficient learning of new tasks and preservation of previous knowledge through a dual-phase architecture based on CLIPSeg. Our dual-phase architecture features an adaptive learning phase that employs semantic similarity-based adapter allocation and parameter-efficient fine-tuning for medical tasks through prompt similarity analysis, and a knowledge consolidation phase employing bi-directional Fisher-memory coordination. This creates a reinforcing cycle: consolidation directs replay priorities while new tasks provide challenging samples that improve retention strategies. Our key contributions are: (1) a semantic-driven adapter allocation mechanism that enables efficient learning of new medical tasks, (2) a bi-modal LoRA adaptation that significantly reduces trainable parameters while maintaining cross-modal learning, and (3) bidirectional Fisher-memory coordination that prevents catastrophic forgetting from previous medical tasks. Extensive experiments across diverse medical datasets demonstrate superior forgetting mitigation and performance retention with minimal parameter overhead, making the framework effective for continual learning in medical vision-language scenarios.
Authors:Haeyong Kang
Title: Mixtures of SubExperts for Large Language Continual Learning
Abstract:
Adapting Large Language Models (LLMs) to a continuous stream of tasks is a critical yet challenging endeavor. While Parameter-Efficient Fine-Tuning (PEFT) methods have become a standard for this, they face a fundamental dilemma in continual learning. Reusing a single set of PEFT parameters for new tasks often leads to catastrophic forgetting of prior knowledge. Conversely, allocating distinct parameters for each task prevents forgetting but results in a linear growth of the model's size and fails to facilitate knowledge transfer between related tasks. To overcome these limitations, we propose a novel adaptive PEFT method referred to as \textit{Mixtures of SubExperts (MoSEs)}, a novel continual learning framework designed for minimal forgetting and efficient scalability. MoSEs integrate a sparse Mixture of SubExperts into the transformer layers, governed by a task-specific routing mechanism. This architecture allows the model to isolate and protect knowledge within dedicated SubExperts, thereby minimizing parameter interference and catastrophic forgetting. Crucially, the router can adaptively select and combine previously learned sparse parameters for new tasks, enabling effective knowledge transfer while ensuring that the model's capacity grows sublinearly. We evaluate MoSEs on the comprehensive TRACE benchmark datasets. Our experiments demonstrate that MoSEs significantly outperform conventional continual learning approaches in both knowledge retention and scalability to new tasks, achieving state-of-the-art performance with substantial memory and computational savings.
Authors:Brennen A. Hill
Title: Structural Plasticity as Active Inference: A Biologically-Inspired Architecture for Homeostatic Control
Abstract:
Traditional neural networks, while powerful, rely on biologically implausible learning mechanisms such as global backpropagation. This paper introduces the Structurally Adaptive Predictive Inference Network (SAPIN), a novel computational model inspired by the principles of active inference and the morphological plasticity observed in biological neural cultures. SAPIN operates on a 2D grid where processing units, or cells, learn by minimizing local prediction errors. The model features two primary, concurrent learning mechanisms: a local, Hebbian-like synaptic plasticity rule based on the temporal difference between a cell's actual activation and its learned expectation, and a structural plasticity mechanism where cells physically migrate across the grid to optimize their information-receptive fields. This dual approach allows the network to learn both how to process information (synaptic weights) and also where to position its computational resources (network topology). We validated the SAPIN model on the classic Cart Pole reinforcement learning benchmark. Our results demonstrate that the architecture can successfully solve the CartPole task, achieving robust performance. The network's intrinsic drive to minimize prediction error and maintain homeostasis was sufficient to discover a stable balancing policy. We also found that while continual learning led to instability, locking the network's parameters after achieving success resulted in a stable policy. When evaluated for 100 episodes post-locking (repeated over 100 successful agents), the locked networks maintained an average 82% success rate.
Authors:Rathin Chandra Shit
Title: Path-Coordinated Continual Learning with Neural Tangent Kernel-Justified Plasticity: A Theoretical Framework with Near State-of-the-Art Performance
Abstract:
Catastrophic forgetting is one of the fundamental issues of continual learning because neural networks forget the tasks learned previously when trained on new tasks. The proposed framework is a new path-coordinated framework of continual learning that unites the Neural Tangent Kernel (NTK) theory of principled plasticity bounds, statistical validation by Wilson confidence intervals, and evaluation of path quality by the use of multiple metrics. Experimental evaluation shows an average accuracy of 66.7% at the cost of 23.4% catastrophic forgetting on Split-CIFAR10, a huge improvement over the baseline and competitive performance achieved, which is very close to state-of-the-art results. Further, it is found out that NTK condition numbers are predictive indicators of learning capacity limits, showing the existence of a critical threshold at condition number $>10^{11}$. It is interesting to note that the proposed strategy shows a tendency of lowering forgetting as the sequence of tasks progresses (27% to 18%), which is a system stabilization. The framework validates 80% of discovered paths with a rigorous statistical guarantee and maintains 90-97% retention on intermediate tasks. The core capacity limits of the continual learning environment are determined in the analysis, and actionable insights to enhance the adaptive regularization are offered.
Authors:Di Zhang
Title: The Neural Differential Manifold: An Architecture with Explicit Geometric Structure
Abstract:
This paper introduces the Neural Differential Manifold (NDM), a novel neural network architecture that explicitly incorporates geometric structure into its fundamental design. Departing from conventional Euclidean parameter spaces, the NDM re-conceptualizes a neural network as a differentiable manifold where each layer functions as a local coordinate chart, and the network parameters directly parameterize a Riemannian metric tensor at every point. The architecture is organized into three synergistic layers: a Coordinate Layer implementing smooth chart transitions via invertible transformations inspired by normalizing flows, a Geometric Layer that dynamically generates the manifold's metric through auxiliary sub-networks, and an Evolution Layer that optimizes both task performance and geometric simplicity through a dual-objective loss function. This geometric regularization penalizes excessive curvature and volume distortion, providing intrinsic regularization that enhances generalization and robustness. The framework enables natural gradient descent optimization aligned with the learned manifold geometry and offers unprecedented interpretability by endowing internal representations with clear geometric meaning. We analyze the theoretical advantages of this approach, including its potential for more efficient optimization, enhanced continual learning, and applications in scientific discovery and controllable generative modeling. While significant computational challenges remain, the Neural Differential Manifold represents a fundamental shift towards geometrically structured, interpretable, and efficient deep learning systems.
Authors:Jaya Krishna Mandivarapu
Title: COLA: Continual Learning via Autoencoder Retrieval of Adapters
Abstract:
Learning a set of tasks over time, also known as continual learning (CL), is one of the most challenging problems in artificial intelligence due to catastrophic forgetting. Large language models (LLMs) are often impractical to frequent re-training and continual learning , due to high cost of computational resources for training. Moreover, LLM are not suitable for continual learning as updating these models over time for acquiring new knowledge leads to overwrites existing knowledge leading to common phenomenon know as \textit{catastrophic forgetting}. In this paper, we aim to address these concerns using a novel framework , COLA that employs an autoencoder to learn capture low-dimensional embeddings of the weights associated with various tasks. Our approach facilitates the transfer of knowledge to new tasks while preventing catastrophic forgetting, all without using data replay or a substantial set of task-specific parameters. Our approach, COLA, makes the LLM efficiently learn new tasks with minimal training, insignificant performance degradation on previous tasks, and eliminates the need for retaining earlier training data. Empirical evaluation on different datasets ranging from task oriented dialouge system to intent classsfication datasets showcases that our method not only overcomes catastrophic forgetting but also achieves significant reduction in parameter usage and memory size, across multiple tasks and outperforming the existing state of the art methods across multiple datasets.
Authors:Lin Wang
Title: Information Theory in Open-world Machine Learning Foundations, Frameworks, and Future Direction
Abstract:
Open world Machine Learning (OWML) aims to develop intelligent systems capable of recognizing known categories, rejecting unknown samples, and continually learning from novel information. Despite significant progress in open set recognition, novelty detection, and continual learning, the field still lacks a unified theoretical foundation that can quantify uncertainty, characterize information transfer, and explain learning adaptability in dynamic, nonstationary environments. This paper presents a comprehensive review of information theoretic approaches in open world machine learning, emphasizing how core concepts such as entropy, mutual information, and Kullback Leibler divergence provide a mathematical language for describing knowledge acquisition, uncertainty suppression, and risk control under open world conditions. We synthesize recent studies into three major research axes: information theoretic open set recognition enabling safe rejection of unknowns, information driven novelty discovery guiding new concept formation, and information retentive continual learning ensuring stable long term adaptation. Furthermore, we discuss theoretical connections between information theory and provable learning frameworks, including PAC Bayes bounds, open-space risk theory, and causal information flow, to establish a pathway toward provable and trustworthy open world intelligence. Finally, the review identifies key open problems and future research directions, such as the quantification of information risk, development of dynamic mutual information bounds, multimodal information fusion, and integration of information theory with causal reasoning and world model learning.
Authors:Jiajing Wang
Title: Incremental Hybrid Ensemble with Graph Attention and Frequency-Domain Features for Stable Long-Term Credit Risk Modeling
Abstract:
Predicting long-term loan defaults is hard because borrower behavior often changes and data distributions shift over time. This paper presents HYDRA-EI, a hybrid ensemble incremental learning framework. It uses several stages of feature processing and combines multiple models. The framework builds relational, cross, and frequency-based features. It uses graph attention, automatic cross-feature creation, and transformations from the frequency domain. HYDRA-EI updates weekly using new data and adjusts the model weights with a simple performance-based method. It works without frequent manual changes or fixed retraining. HYDRA-EI improves model stability and generalization, which makes it useful for long-term credit risk tasks.
Authors:Sashank Makanaboyina
Title: SER-Diff: Synthetic Error Replay Diffusion for Incremental Brain Tumor Segmentation
Abstract:
Incremental brain tumor segmentation is critical for models that must adapt to evolving clinical datasets without retraining on all prior data. However, catastrophic forgetting, where models lose previously acquired knowledge, remains a major obstacle. Recent incremental learning frameworks with knowledge distillation partially mitigate forgetting but rely heavily on generative replay or auxiliary storage. Meanwhile, diffusion models have proven effective for refining tumor segmentations, but have not been explored in incremental learning contexts. We propose Synthetic Error Replay Diffusion (SER-Diff), the first framework that unifies diffusion-based refinement with incremental learning. SER-Diff leverages a frozen teacher diffusion model to generate synthetic error maps from past tasks, which are replayed during training on new tasks. A dual-loss formulation combining Dice loss for new data and knowledge distillation loss for replayed errors ensures both adaptability and retention. Experiments on BraTS2020, BraTS2021, and BraTS2023 demonstrate that SER-Diff consistently outperforms prior methods. It achieves the highest Dice scores of 95.8\%, 94.9\%, and 94.6\%, along with the lowest HD95 values of 4.4 mm, 4.7 mm, and 4.9 mm, respectively. These results indicate that SER-Diff not only mitigates catastrophic forgetting but also delivers more accurate and anatomically coherent segmentations across evolving datasets.
Authors:Thomas Y. Chen
Title: Rate-Distortion Limits for Multimodal Retrieval: Theory, Optimal Codes, and Finite-Sample Guarantees
Abstract:
We establish the first information-theoretic limits for multimodal retrieval. Casting ranking as lossy source coding, we derive a single-letter rate-distortion function $R(D)$ for reciprocal-rank distortion and prove a converse bound that splits into a modality-balanced term plus a skew penalty $κ\,ΔH$ capturing entropy imbalance and cross-modal redundancy. We then construct an explicit entropy-weighted stochastic quantizer with an adaptive, per-modality temperature decoder; a Blahut-Arimoto argument shows this scheme achieves distortion within $O(n^{-1})$ of $R(D)$ using $n$ training triples. A VC-type analysis yields the first finite-sample excess-risk bound whose complexity scales sub-linearly in both the number of modalities and the entropy gap. Experiments on controlled Gaussian mixtures and Flickr30k confirm that our adaptive codes sit within two percentage points of the theoretical frontier, while fixed-temperature and naive CLIP baselines lag significantly. Taken together, our results give a principled answer to "how many bits per query are necessary" for high-quality multimodal retrieval and provide design guidance for entropy-aware contrastive objectives, continual-learning retrievers, and retrieval-augmented generators.
Authors:Aoi Otani
Title: Mitigating Catastrophic Forgetting and Mode Collapse in Text-to-Image Diffusion via Latent Replay
Abstract:
Continual learning -- the ability to acquire knowledge incrementally without forgetting previous skills -- is fundamental to natural intelligence. While the human brain excels at this, artificial neural networks struggle with "catastrophic forgetting," where learning new tasks erases previously acquired knowledge. This challenge is particularly severe for text-to-image diffusion models, which generate images from textual prompts. Additionally, these models face "mode collapse," where their outputs become increasingly repetitive over time. To address these challenges, we apply Latent Replay, a neuroscience-inspired approach, to diffusion models. Traditional replay methods mitigate forgetting by storing and revisiting past examples, typically requiring large collections of images. Latent Replay instead retains only compact, high-level feature representations extracted from the model's internal architecture. This mirrors the hippocampal process of storing neural activity patterns rather than raw sensory inputs, reducing memory usage while preserving critical information. Through experiments with five sequentially learned visual concepts, we demonstrate that Latent Replay significantly outperforms existing methods in maintaining model versatility. After learning all concepts, our approach retained 77.59% Image Alignment (IA) on the earliest concept, 14% higher than baseline methods, while maintaining diverse outputs. Surprisingly, random selection of stored latent examples outperforms similarity-based strategies. Our findings suggest that Latent Replay enables efficient continual learning for generative AI models, paving the way for personalized text-to-image models that evolve with user needs without excessive computational costs.
Authors:Justin Arndt
Title: Holographic Knowledge Manifolds: A Novel Pipeline for Continual Learning Without Catastrophic Forgetting in Large Language Models
Abstract:
We introduce the Holographic Knowledge Manifold (HKM), a four-phase pipeline that achieves zero catastrophic forgetting in AI knowledge representation while maintaining minimal memory growth and high efficiency. Leveraging fractal quantization, probabilistic entanglement, and dynamic diffraction chipping, HKM compresses knowledge substrates by 3x with 67% storage savings, integrates holographically at 100%, and supports over 1,020 updates with 1% growth per increment. In experiments on combined WikiText and FB15k datasets (scaled to 2,997 nodes), we demonstrate industry-leading performance: 0% forgetting (infinite improvement over GEM baselines), 3x compression, and 53% training time reduction on consumer GPU hardware. Hypothetical cost analyses project $92.4M savings over 5 years at petabyte scale, with 21.2% energy reduction and 33% lower carbon footprint. This work hypothesizes a paradigm shift for public large language models (LLMs), enabling "eternal" adaptation without retraining. Future extensions to multimodal fusion and quantum hardware could further democratize scalable AI, potentially reducing fine-tuning costs by 60-80% for models like Llama-3 or Grok-4. Code, datasets, and full results are publicly available for reproducibility.
Authors:Chandan Kumar Sah
Title: PerFairX: Is There a Balance Between Fairness and Personality in Large Language Model Recommendations?
Abstract:
The integration of Large Language Models (LLMs) into recommender systems has enabled zero-shot, personality-based personalization through prompt-based interactions, offering a new paradigm for user-centric recommendations. However, incorporating user personality traits via the OCEAN model highlights a critical tension between achieving psychological alignment and ensuring demographic fairness. To address this, we propose PerFairX, a unified evaluation framework designed to quantify the trade-offs between personalization and demographic equity in LLM-generated recommendations. Using neutral and personality-sensitive prompts across diverse user profiles, we benchmark two state-of-the-art LLMs, ChatGPT and DeepSeek, on movie (MovieLens 10M) and music (Last.fm 360K) datasets. Our results reveal that personality-aware prompting significantly improves alignment with individual traits but can exacerbate fairness disparities across demographic groups. Specifically, DeepSeek achieves stronger psychological fit but exhibits higher sensitivity to prompt variations, while ChatGPT delivers stable yet less personalized outputs. PerFairX provides a principled benchmark to guide the development of LLM-based recommender systems that are both equitable and psychologically informed, contributing to the creation of inclusive, user-centric AI applications in continual learning contexts.
Authors:Jina Kim
Title: Teaching AI to Remember: Insights from Brain-Inspired Replay in Continual Learning
Abstract:
Artificial neural networks (ANNs) continue to face challenges in continual learning, particularly due to catastrophic forgetting, the loss of previously learned knowledge when acquiring new tasks. Inspired by memory consolidation in the human brain, we investigate the internal replay mechanism proposed by~\citep{brain_inspired_replay1}, which reactivates latent representations of prior experiences during learning. As internal replay was identified as the most influential component among the brain-inspired mechanisms in their framework, it serves as the central focus of our in-depth investigation. Using the CIFAR-100 dataset in a class-incremental setting, we evaluate the effectiveness of internal replay, both in isolation and in combination with Synaptic Intelligence (SI). Our experiments show that internal replay significantly mitigates forgetting, especially when paired with SI, but at the cost of reduced initial task accuracy, highlighting a trade-off between memory stability and learning plasticity. Further analyses using log-likelihood distributions, reconstruction errors, silhouette scores, and UMAP projections reveal that internal replay increases representational overlap in latent space, potentially limiting task-specific differentiation. These results underscore the limitations of current brain-inspired methods and suggest future directions for balancing retention and adaptability in continual learning systems.
Authors:Lucas Rakotoarivony
Title: Unsupervised Incremental Learning Using Confidence-Based Pseudo-Labels
Abstract:
Deep learning models have achieved state-of-the-art performance in many computer vision tasks. However, in real-world scenarios, novel classes that were unseen during training often emerge, requiring models to acquire new knowledge incrementally. Class-Incremental Learning (CIL) methods enable a model to learn novel classes while retaining knowledge of previous classes. However, these methods make the strong assumption that the incremental dataset is fully labeled, which is unrealistic in practice. In this work, we propose an unsupervised Incremental Learning method using Confidence-based Pseudo-labels (ICPL), which replaces human annotations with pseudo-labels, enabling incremental learning from unlabeled datasets. We integrate these pseudo-labels into various CIL methods with confidence-based selection and evaluate performance degradation on CIFAR100 and ImageNet100. Then, we compare our approach to popular Class Incremental Novel Category Discovery (class-iNCD) methods addressing similar challenges. Additionally, we apply our method to fine-grained datasets to demonstrate its real-world practicality and measure its computational complexity to validate its suitability for resource-constrained environments. ICPL achieves competitive results compared to supervised methods and outperforms state-of-the-art class-iNCD methods by more than 5% in final accuracy.
Authors:Krisanu Sarkar
Title: Adaptive Variance-Penalized Continual Learning with Fisher Regularization
Abstract:
The persistent challenge of catastrophic forgetting in neural networks has motivated extensive research in continual learning . This work presents a novel continual learning framework that integrates Fisher-weighted asymmetric regularization of parameter variances within a variational learning paradigm. Our method dynamically modulates regularization intensity according to parameter uncertainty, achieving enhanced stability and performance. Comprehensive evaluations on standard continual learning benchmarks including SplitMNIST, PermutedMNIST, and SplitFashionMNIST demonstrate substantial improvements over existing approaches such as Variational Continual Learning and Elastic Weight Consolidation . The asymmetric variance penalty mechanism proves particularly effective in maintaining knowledge across sequential tasks while improving model accuracy. Experimental results show our approach not only boosts immediate task performance but also significantly mitigates knowledge degradation over time, effectively addressing the fundamental challenge of catastrophic forgetting in neural networks
Authors:Dhruv Atreja
Title: ALAS: Autonomous Learning Agent for Self-Updating Language Models
Abstract:
Large language models (LLMs) often have a fixed knowledge cutoff, limiting their accuracy on emerging information. We present ALAS (Autonomous Learning Agent System), a modular pipeline that continuously updates an LLM's knowledge with minimal human intervention. ALAS autonomously generates a learning curriculum for a target domain, retrieves up-to-date information from the web (with citations), distills this into question-answer training data, and fine-tunes the model through supervised fine-tuning (SFT) and direct preference optimization (DPO). It iteratively evaluates performance and revises the curriculum, enabling long-term continual learning. We demonstrate ALAS's ability to self-improve a model on rapidly evolving domains (e.g., new Python releases, latest security CVEs, academic trends), significantly boosting post-cutoff question answering accuracy (from 15% to 90% on average) without manual dataset curation. The system emphasizes modularity and reproducibility: each component (planning, retrieval, distillation, memory, fine-tuning) is interchangeable and built on standard APIs. We discuss comparative baselines (e.g., retrieval-augmented generation vs. fine-tuning) and show that ALAS achieves 90% accuracy on knowledge-updated queries with minimal engineering overhead. Finally, we outline limitations (cost, dependency on source quality) and future directions for autonomous lifelong learning in LLMs.
Authors:Zhe Ren
Title: Prompt Tuning for Few-Shot Continual Learning Named Entity Recognition
Abstract:
Knowledge distillation has been successfully applied to Continual Learning Named Entity Recognition (CLNER) tasks, by using a teacher model trained on old-class data to distill old-class entities present in new-class data as a form of regularization, thereby avoiding catastrophic forgetting. However, in Few-Shot CLNER (FS-CLNER) tasks, the scarcity of new-class entities makes it difficult for the trained model to generalize during inference. More critically, the lack of old-class entity information hinders the distillation of old knowledge, causing the model to fall into what we refer to as the Few-Shot Distillation Dilemma. In this work, we address the above challenges through a prompt tuning paradigm and memory demonstration template strategy. Specifically, we designed an expandable Anchor words-oriented Prompt Tuning (APT) paradigm to bridge the gap between pre-training and fine-tuning, thereby enhancing performance in few-shot scenarios. Additionally, we incorporated Memory Demonstration Templates (MDT) into each training instance to provide replay samples from previous tasks, which not only avoids the Few-Shot Distillation Dilemma but also promotes in-context learning. Experiments show that our approach achieves competitive performances on FS-CLNER.
Authors:Hong Su
Title: Method-Based Reasoning for Large Language Models: Extraction, Reuse, and Continuous Improvement
Abstract:
Large language models (LLMs) have shown impressive capabilities across a wide range of language tasks. However, their reasoning process is primarily guided by statistical patterns in training data, which limits their ability to handle novel problems and perform consistent logical reasoning. In this paper, we propose a method-based model that enhances LLMs with explicit, reusable procedures extracted from training content, generated responses, and user interactions. Each method is represented as a pair consisting of a problem and its corresponding solution, stored externally and ranked based on feedback. When a new query is received, the system retrieves and applies the most relevant methods to guide the LLM's response. Our model enables continual learning, method reuse, and logical consistency beyond next-token prediction. Experimental results demonstrate that the system improves factual verification and generalization in complex prompts, and that newly learned methods can outperform earlier ones through user-driven refinement.
Authors:Prital Bamnodkar
Title: Task-Focused Consolidation with Spaced Recall: Making Neural Networks Learn like College Students
Abstract:
Deep neural networks often suffer from a critical limitation known as catastrophic forgetting, where performance on past tasks degrades after learning new ones. This paper introduces a novel continual learning approach inspired by human learning strategies like Active Recall, Deliberate Practice, and Spaced Repetition, named Task-Focused Consolidation with Spaced Recall (TFC-SR). TFC-SR enhances the standard experience replay framework with a mechanism we term the Active Recall Probe. It is a periodic, task-aware evaluation of the model's memory that stabilizes the representations of past knowledge. We test TFC-SR on the Split MNIST and the Split CIFAR-100 benchmarks against leading regularization-based and replay-based baselines. Our results show that TFC-SR performs significantly better than these methods. For instance, on the Split CIFAR-100, it achieves a final accuracy of 13.17% compared to Standard Experience Replay's 7.40%. We demonstrate that this advantage comes from the stabilizing effect of the probe itself, and not from the difference in replay volume. Additionally, we analyze the trade-off between memory size and performance and show that while TFC-SR performs better in memory-constrained environments, higher replay volume is still more effective when available memory is abundant. We conclude that TFC-SR is a robust and efficient approach, highlighting the importance of integrating active memory retrieval mechanisms into continual learning systems.
Authors:Tameem Adel
Title: The Bayesian Approach to Continual Learning: An Overview
Abstract:
Continual learning is an online paradigm where a learner continually accumulates knowledge from different tasks encountered over sequential time steps. Importantly, the learner is required to extend and update its knowledge without forgetting about the learning experience acquired from the past, and while avoiding the need to retrain from scratch. Given its sequential nature and its resemblance to the way humans think, continual learning offers an opportunity to address several challenges which currently stand in the way of widening the range of applicability of deep models to further real-world problems. The continual need to update the learner with data arriving sequentially strikes inherent congruence between continual learning and Bayesian inference which provides a principal platform to keep updating the prior beliefs of a model given new data, without completely forgetting the knowledge acquired from the old data. This survey inspects different settings of Bayesian continual learning, namely task-incremental learning and class-incremental learning. We begin by discussing definitions of continual learning along with its Bayesian setting, as well as the links with related fields, such as domain adaptation, transfer learning and meta-learning. Afterwards, we introduce a taxonomy offering a comprehensive categorization of algorithms belonging to the Bayesian continual learning paradigm. Meanwhile, we analyze the state-of-the-art while zooming in on some of the most prominent Bayesian continual learning algorithms to date. Furthermore, we shed some light on links between continual learning and developmental psychology, and correspondingly introduce analogies between both fields. We follow that with a discussion of current challenges, and finally conclude with potential areas for future research on Bayesian continual learning.
Authors:A. Bochkov
Title: Growing Transformers: Modular Composition and Layer-wise Expansion on a Frozen Substrate
Abstract:
The prevailing paradigm for scaling large language models (LLMs) involves monolithic, end-to-end training, a resource-intensive process that lacks flexibility. This paper explores an alternative, constructive approach to model development, built upon the foundation of non-trainable, deterministic input embeddings. In prior [1], we established that high-level semantic reasoning can emerge in Transformers using frozen embeddings derived from the visual structure of Unicode glyphs. Here, we demonstrate that this fixed representational substrate acts as a universal "docking port," enabling two powerful and efficient scaling paradigms: seamless modular composition and progressive layer-wise growth. First, we show that specialist models trained on disparate datasets (e.g., Russian and Chinese text) can be merged into a single, more capable Mixture-of-Experts (MoE) model, post-training, with zero architectural modification. This is achieved by simply averaging their output logits. The resulting MoE model exhibits immediate performance improvements on reasoning benchmarks like MMLU, surpassing its constituent experts without catastrophic forgetting. Second, we introduce a layer-wise constructive training methodology, where a deep Transformer is "grown" by progressively stacking and training one layer at a time. This method demonstrates stable convergence and a clear correlation between model depth and the emergence of complex reasoning abilities, such as those required for SQuAD. Our findings suggest a paradigm shift from monolithic optimization towards a more biological or constructive model of AI development, where complexity is built incrementally and modules can be composed freely. This opens new avenues for resource-efficient scaling, continual learning, and a more democratized ecosystem for building powerful AI systems. We release all code and models to facilitate further research.
Authors:Mohammad Emtiyaz Khan
Title: Knowledge Adaptation as Posterior Correction
Abstract:
Adaptation is the holy grail of intelligence, but even the best AI models lack the adaptability of toddlers. In spite of great progress, little is known about the mechanisms by which machines can learn to adapt as fast as humans and animals. Here, we cast adaptation as `correction' of old posteriors and show that a wide-variety of existing adaptation methods follow this very principle, including those used for continual learning, federated learning, unlearning, and model merging. In all these settings, more accurate posteriors often lead to smaller corrections and can enable faster adaptation. Posterior correction is derived by using the dual representation of the Bayesian Learning Rule of Khan and Rue (2023), where the interference between the old representation and new information is quantified by using the natural-gradient mismatch. We present many examples demonstrating how machines can learn to adapt quickly by using posterior correction.
Authors:Dylan Kline
Title: Human-like Forgetting Curves in Deep Neural Networks
Abstract:
This study bridges cognitive science and neural network design by examining whether artificial models exhibit human-like forgetting curves. Drawing upon Ebbinghaus' seminal work on memory decay and principles of spaced repetition, we propose a quantitative framework to measure information retention in neural networks. Our approach computes the recall probability by evaluating the similarity between a network's current hidden state and previously stored prototype representations. This retention metric facilitates the scheduling of review sessions, thereby mitigating catastrophic forgetting during deployment and enhancing training efficiency by prompting targeted reviews. Our experiments with Multi-Layer Perceptrons reveal human-like forgetting curves, with knowledge becoming increasingly robust through scheduled reviews. This alignment between neural network forgetting curves and established human memory models identifies neural networks as an architecture that naturally emulates human memory decay and can inform state-of-the-art continual learning algorithms.
Authors:Salil Patel
Title: The Latent Space Hypothesis: Toward Universal Medical Representation Learning
Abstract:
Medical data range from genomic sequences and retinal photographs to structured laboratory results and unstructured clinical narratives. Although these modalities appear disparate, many encode convergent information about a single underlying physiological state. The Latent Space Hypothesis frames each observation as a projection of a unified, hierarchically organized manifold -- much like shadows cast by the same three-dimensional object. Within this learned geometric representation, an individual's health status occupies a point, disease progression traces a trajectory, and therapeutic intervention corresponds to a directed vector. Interpreting heterogeneous evidence in a shared space provides a principled way to re-examine eponymous conditions -- such as Parkinson's or Crohn's -- that often mask multiple pathophysiological entities and involve broader anatomical domains than once believed. By revealing sub-trajectories and patient-specific directions of change, the framework supplies a quantitative rationale for personalised diagnosis, longitudinal monitoring, and tailored treatment, moving clinical practice away from grouping by potentially misleading labels toward navigation of each person's unique trajectory. Challenges remain -- bias amplification, data scarcity for rare disorders, privacy, and the correlation-causation divide -- but scale-aware encoders, continual learning on longitudinal data streams, and perturbation-based validation offer plausible paths forward.
Authors:Truman Hickok
Title: Scalable Strategies for Continual Learning with Replay
Abstract:
Future deep learning models will be distinguished by systems that perpetually learn through interaction, imagination, and cooperation, blurring the line between training and inference. This makes continual learning a critical challenge, as methods that efficiently maximize bidirectional transfer across learning trajectories will be essential. Replay is on track to play a foundational role in continual learning, allowing models to directly reconcile new information with past knowledge. In practice, however, replay is quite unscalable, doubling the cost of continual learning when applied naively. Moreover, the continual learning literature has not fully synchronized with the multi-task fine-tuning literature, having not fully integrated highly scalable techniques like model merging and low rank adaptation into a replay-enabled toolset that can produce a unified model in the face of many sequential tasks. In this paper, we begin by applying and analyzing low rank adaptation in a continual learning setting. Next, we introduce consolidation, a phasic approach to replay which leads to up to 55\% less replay samples being needed for a given performance target. Then, we propose sequential merging, an offshoot of task arithmetic which is tailored to the continual learning setting and is shown to work well in combination with replay. Finally, we demonstrate that the developed strategies can operate synergistically, resulting in a highly scalable toolset that outperforms standalone variants.
Authors:Gerardo Duran-Martin
Title: Adaptive, Robust and Scalable Bayesian Filtering for Online Learning
Abstract:
In this thesis, we introduce Bayesian filtering as a principled framework for tackling diverse sequential machine learning problems, including online (continual) learning, prequential (one-step-ahead) forecasting, and contextual bandits. To this end, this thesis addresses key challenges in applying Bayesian filtering to these problems: adaptivity to non-stationary environments, robustness to model misspecification and outliers, and scalability to the high-dimensional parameter space of deep neural networks. We develop novel tools within the Bayesian filtering framework to address each of these challenges, including: (i) a modular framework that enables the development adaptive approaches for online learning; (ii) a novel, provably robust filter with similar computational cost to standard filters, that employs Generalised Bayes; and (iii) a set of tools for sequentially updating model parameters using approximate second-order optimisation methods that exploit the overparametrisation of high-dimensional parametric models such as neural networks. Theoretical analysis and empirical results demonstrate the improved performance of our methods in dynamic, high-dimensional, and misspecified models.
Authors:Taisuke Kobayashi
Title: Improvements of Dark Experience Replay and Reservoir Sampling towards Better Balance between Consolidation and Plasticity
Abstract:
Continual learning is the one of the most essential abilities for autonomous agents, which can incrementally learn daily-life skills. For this ultimate goal, a simple but powerful method, dark experience replay (DER), has been proposed recently. DER mitigates catastrophic forgetting, in which the skills acquired in the past are unintentionally forgotten, by stochastically storing the streaming data in a reservoir sampling (RS) buffer and by relearning them or retaining the past outputs for them. However, since DER considers multiple objectives, it will not function properly without appropriate weighting of them. In addition, the ability to retain past outputs inhibits learning if the past outputs are incorrect due to distribution shift or other effects. This is due to a tradeoff between memory consolidation and plasticity. The tradeoff is hidden even in the RS buffer, which gradually stops storing new data for new skills in it as data is continuously passed to it. To alleviate the tradeoff and achieve better balance, this paper proposes improvement strategies to each of DER and RS. Specifically, DER is improved with automatic adaptation of weights, block of replaying erroneous data, and correction of past outputs. RS is also improved with generalization of acceptance probability, stratification of plural buffers, and intentional omission of unnecessary data. These improvements are verified through multiple benchmarks including regression, classification, and reinforcement learning problems. As a result, the proposed methods achieve steady improvements in learning performance by balancing the memory consolidation and plasticity.
Authors:Sneh Pillai
Title: Replay to Remember: Retaining Domain Knowledge in Streaming Language Models
Abstract:
Continual learning in large language models (LLMs) typically encounters the critical challenge of catastrophic forgetting, where previously acquired knowledge deteriorates upon exposure to new data. While techniques like replay buffers and parameter-efficient tuning (e.g., Low-Rank Adaptation or LoRA) have been proposed, few studies investigate real-time domain adaptation under strict computational and data-stream constraints. In this paper, we demonstrate a lightweight method combining LoRA and a minimal replay mechanism in a realistic streaming setting across three diverse knowledge domains: medical question answering, genetics, and law. Using perplexity, semantic similarity, and GPT-based human-like evaluation metrics, we quantify the model's adaptation, forgetting, and recovery over time. Our experiments reveal that while catastrophic forgetting naturally occurs, even minimal replay significantly stabilizes and partially restores domain-specific knowledge. This study contributes practical insights for deploying adaptable LLMs in resource-constrained, real-world scenarios.
Authors:Yegor Klochkov
Title: A mean teacher algorithm for unlearning of language models
Abstract:
One of the goals of language model unlearning is to reduce memorization of selected text instances while retaining the model's general abilities. Despite various proposed methods, reducing memorization of large datasets without noticeable degradation in model utility remains challenging. In this paper, we investigate the mean teacher algorithm (Tarvainen & Valpola, 2017), a simple proximal optimization method from continual learning literature that gradually modifies the teacher model. We show that the mean teacher can approximate a trajectory of a slow natural gradient descent (NGD), which inherently seeks low-curvature updates that are less likely to degrade the model utility. While slow NGD can suffer from vanishing gradients, we introduce a new unlearning loss called "negative log-unlikelihood" (NLUL) that avoids this problem. We show that the combination of mean teacher and NLUL improves some metrics on the MUSE benchmarks (Shi et al., 2024).
Authors:Vivek Yelleti
Title: ROSFD: Robust Online Streaming Fraud Detection with Resilience to Concept Drift in Data Streams
Abstract:
Continuous generation of streaming data from diverse sources, such as online transactions and digital interactions, necessitates timely fraud detection. Traditional batch processing methods often struggle to capture the rapidly evolving patterns of fraudulent activities. This paper highlights the critical importance of processing streaming data for effective fraud detection. To address the inherent challenges of latency, scalability, and concept drift in streaming environments, we propose a robust online streaming fraud detection (ROSFD) framework. Our proposed framework comprises two key stages: (i) Stage One: Offline Model Initialization. In this initial stage, a model is built in offline settings using incremental learning principles to overcome the "cold-start" problem. (ii) Stage Two: Real-time Model Adaptation. In this dynamic stage, drift detection algorithms (viz.,, DDM, EDDM, and ADWIN) are employed to identify concept drift in the incoming data stream and incrementally train the model accordingly. This "train-only-when-required" strategy drastically reduces the number of retrains needed without significantly impacting the area under the receiver operating characteristic curve (AUC). Overall, ROSFD utilizing ADWIN as the drift detection method demonstrated the best performance among the employed methods. In terms of model efficacy, Adaptive Random Forest consistently outperformed other models, achieving the highest AUC in four out of five datasets.
Authors:Naimul Haque
Title: Catastrophic Forgetting in LLMs: A Comparative Analysis Across Language Tasks
Abstract:
Large Language Models (LLMs) have significantly advanced Natural Language Processing (NLP), particularly in Natural Language Understanding (NLU) tasks. As we progress toward an agentic world where LLM-based agents autonomously handle specialized tasks, it becomes crucial for these models to adapt to new tasks without forgetting previously learned information - a challenge known as catastrophic forgetting. This study evaluates the continual fine-tuning of various open-source LLMs with different parameter sizes (specifically models under 10 billion parameters) on key NLU tasks from the GLUE benchmark, including SST-2, MRPC, CoLA, and MNLI. By employing prompt engineering and task-specific adjustments, we assess and compare the models' abilities to retain prior knowledge while learning new tasks. Our results indicate that models such as Phi-3.5-mini exhibit minimal forgetting while maintaining strong learning capabilities, making them well-suited for continual learning environments. Additionally, models like Orca-2-7b and Qwen2.5-7B demonstrate impressive learning abilities and overall performance after fine-tuning. This work contributes to understanding catastrophic forgetting in LLMs and highlights prompting engineering to optimize model performance for continual learning scenarios.
Authors:Grzegorz Rypeść
Title: Gradient-free Continual Learning
Abstract:
Continual learning (CL) presents a fundamental challenge in training neural networks on sequential tasks without experiencing catastrophic forgetting. Traditionally, the dominant approach in CL has been gradient-based optimization, where updates to the network parameters are performed using stochastic gradient descent (SGD) or its variants. However, a major limitation arises when previous data is no longer accessible, as is often assumed in CL settings. In such cases, there is no gradient information available for past data, leading to uncontrolled parameter changes and consequently severe forgetting of previously learned tasks. By shifting focus from data availability to gradient availability, this work opens up new avenues for addressing forgetting in CL. We explore the hypothesis that gradient-free optimization methods can provide a robust alternative to conventional gradient-based continual learning approaches. We discuss the theoretical underpinnings of such method, analyze their potential advantages and limitations, and present empirical evidence supporting their effectiveness. By reconsidering the fundamental cause of forgetting, this work aims to contribute a fresh perspective to the field of continual learning and inspire novel research directions.
Authors:Marinela Adam
Title: An experimental approach on Few Shot Class Incremental Learning
Abstract:
Few-Shot Class-Incremental Learning (FSCIL) represents a cutting-edge paradigm within the broader scope of machine learning, designed to empower models with the ability to assimilate new classes of data with limited examples while safeguarding existing knowledge. The paper will present different solutions which contain extensive experiments across large-scale datasets, domain shifts, and network architectures to evaluate and compare the selected methods. We highlight their advantages and then present an experimental approach with the purpose of improving the most promising one by replacing the visual-language (V-L) model (CLIP) with another V-L model (CLOOB) that seem to outperform it on zero-shot learning tasks. The aim of this report is to present an experimental method for FSCIL that would improve its performance. We also plan to offer an overview followed by an analysis of the recent advancements in FSCIL domain, focusing on various strategies to mitigate catastrophic forgetting and improve the adaptability of models to evolving tasks and datasets.
Authors:Yuxuan Zhang
Title: SECURA: Sigmoid-Enhanced CUR Decomposition with Uninterrupted Retention and Low-Rank Adaptation in Large Language Models
Abstract:
With the rapid development of large language models (LLMs), fully fine-tuning (FT) these models is becoming increasingly infeasible due to high computational demands. Moreover, FT also increases the risk of catastrophic forgetting. As an alternative, Low-Rank Adaptation (LoRA) has been proposed. By fine-tuning only a small subset of parameters, LoRA achieves performance similar to FT while significantly reducing resource requirements. However, since LoRA inherits FT's design, the issue of catastrophic forgetting still remains. To address these limitations, we propose SECURA: Sigmoid-Enhanced CUR Decomposition LoRA, a novel PEFT variant designed to mitigate catastrophic forgetting while improving fine-tuning performance. Our method introduces a novel normalization technique, Sigmoid-based Magnitude Norm (S-MagNorm), which enhances parameter retention and fine-tuning efficiency. SECURA has been evaluated on a diverse range of tasks, including mathematical problem-solving (GSM8K), complex question-answering (CNNDM), translation (NewsDE), and complex multiple-choice reasoning (LogiQA). Experimental results demonstrate that it achieves an average fine-tuning improvement of 3.59% across four MCQ tasks and 2.51% across five QA tasks on Gemma2 2B, Qwen2 1.5B, Qwen2 7B, Llama3 8B, and Llama3.1 8B, outperforming DoRA. Additionally, SECURA demonstrates superior knowledge retention capabilities, achieving state-of-the-art performance in 16 continual learning tests and maintaining more than 70% accuracy on LLMs' basic knowledge compared to Experience Replay (ER), sequential learning (SEQ), EWC, I-LoRA, and CUR-LoRA.
Authors:Gido M. van de Ven
Title: On the Computation of the Fisher Information in Continual Learning
Abstract:
One of the most popular methods for continual learning with deep neural networks is Elastic Weight Consolidation (EWC), which involves computing the Fisher Information. The exact way in which the Fisher Information is computed is however rarely described, and multiple different implementations for it can be found online. This blog post discusses and empirically compares several often-used implementations, which highlights that many currently reported results for EWC could likely be improved by changing the way the Fisher Information is computed.
Authors:M. Murat Yaslioglu
Title: Attention is All You Need Until You Need Retention
Abstract:
This work introduces a novel Retention Layer mechanism for Transformer based architectures, addressing their inherent lack of intrinsic retention capabilities. Unlike human cognition, which can encode and dynamically recall symbolic templates, Generative Pretrained Transformers rely solely on fixed pretrained weights and ephemeral context windows, limiting their adaptability. The proposed Retention Layer incorporates a persistent memory module capable of real time data population, dynamic recall, and guided output generation. This enhancement allows models to store, update, and reuse observed patterns across sessions, enabling incremental learning and bridging the gap between static pretraining and dynamic, context sensitive adaptation. The Retention Layer design parallels social learning processes, encompassing attention, retention, reproduction, and motivation stages. Technically, it integrates a memory attention mechanism and episodic buffers to manage memory scalability, mitigate overfitting, and ensure efficient recall. Applications span adaptive personal assistants, real time fraud detection, autonomous robotics, content moderation, and healthcare diagnostics. In each domain, the retention mechanism enables systems to learn incrementally, personalize outputs, and respond to evolving real world challenges effectively. By emulating key aspects of human learning, this retention enhanced architecture fosters a more fluid and responsive AI paradigm, paving the way for dynamic, session aware models that extend the capabilities of traditional Transformers into domains requiring continual adaptation.
Authors:Sina Ahmadi
Title: Adaptive Cybersecurity: Dynamically Retrainable Firewalls for Real-Time Network Protection
Abstract:
The growing complexity of cyber attacks has necessitated the evolution of firewall technologies from static models to adaptive, machine learning-driven systems. This research introduces "Dynamically Retrainable Firewalls", which respond to emerging threats in real-time. Unlike traditional firewalls that rely on static rules to inspect traffic, these advanced systems leverage machine learning algorithms to analyze network traffic pattern dynamically and identify threats. The study explores architectures such as micro-services and distributed systems for real-time adaptability, data sources for model retraining, and dynamic threat identification through reinforcement and continual learning. It also discusses strategies to improve performance, reduce latency, optimize resource utilization, and address integration issues with present-day concepts such as Zero Trust and mixed environments. By critically assessing the literature, analyzing case studies, and elucidating areas of future research, this work suggests dynamically retrainable firewalls as a more robust form of network security. Additionally, it considers emerging trends such as advancements in AI and quantum computing, ethical issues, and other regulatory questions surrounding future AI systems. These findings provide valuable information on the future state of adaptive cyber security, focusing on the need for proactive and adaptive measures that counter cyber threats that continue to evolve.
Authors:Thanh-Dat Truong
Title: Towards Robust and Fair Vision Learning in Open-World Environments
Abstract:
The dissertation presents four key contributions toward fairness and robustness in vision learning. First, to address the problem of large-scale data requirements, the dissertation presents a novel Fairness Domain Adaptation approach derived from two major novel research findings of Bijective Maximum Likelihood and Fairness Adaptation Learning. Second, to enable the capability of open-world modeling of vision learning, this dissertation presents a novel Open-world Fairness Continual Learning Framework. The success of this research direction is the result of two research lines, i.e., Fairness Continual Learning and Open-world Continual Learning. Third, since visual data are often captured from multiple camera views, robust vision learning methods should be capable of modeling invariant features across views. To achieve this desired goal, the research in this thesis will present a novel Geometry-based Cross-view Adaptation framework to learn robust feature representations across views. Finally, with the recent increase in large-scale videos and multimodal data, understanding the feature representations and improving the robustness of large-scale visual foundation models is critical. Therefore, this thesis will present novel Transformer-based approaches to improve the robust feature representations against multimodal and temporal data. Then, a novel Domain Generalization Approach will be presented to improve the robustness of visual foundation models. The research's theoretical analysis and experimental results have shown the effectiveness of the proposed approaches, demonstrating their superior performance compared to prior studies. The contributions in this dissertation have advanced the fairness and robustness of machine vision learning.
Authors:Ram Zaveri
Title: Investigating Plausibility of Biologically Inspired Bayesian Learning in ANNs
Abstract:
Catastrophic forgetting has been the leading issue in the domain of lifelong learning in artificial systems. Current artificial systems are reasonably good at learning domains they have seen before; however, as soon as they encounter something new, they either go through a significant performance deterioration or if you try to teach them the new distribution of data, they forget what they have learned before. Additionally, they are also prone to being overly confident when performing inference on seen as well as unseen data, causing significant reliability issues when lives are at stake. Therefore, it is extremely important to dig into this problem and formulate an approach that will be continually adaptable as well as reliable. If we move away from the engineering domain of such systems and look into biological systems, we can realize that these very systems are very efficient at computing the reliance as well as the uncertainty of accurate predictions that further help them refine the inference in a life-long setting. These systems are not perfect; however, they do give us a solid understanding of the reasoning under uncertainty which takes us to the domain of Bayesian reasoning. We incorporate this Bayesian inference with thresholding mechanism as to mimic more biologically inspired models, but only at spatial level. Further, we reproduce a recent study on Bayesian Inference with Spiking Neural Networks for Continual Learning to compare against it as a suitable biologically inspired Bayesian framework. Overall, we investigate the plausibility of biologically inspired Bayesian Learning in artificial systems on a vision dataset, MNIST, and show relative performance improvement under the conditions when the model is forced to predict VS when the model is not.
Authors:Biraj Silwal
Title: Interpretable Syntactic Representations Enable Hierarchical Word Vectors
Abstract:
The distributed representations currently used are dense and uninterpretable, leading to interpretations that themselves are relative, overcomplete, and hard to interpret. We propose a method that transforms these word vectors into reduced syntactic representations. The resulting representations are compact and interpretable allowing better visualization and comparison of the word vectors and we successively demonstrate that the drawn interpretations are in line with human judgment. The syntactic representations are then used to create hierarchical word vectors using an incremental learning approach similar to the hierarchical aspect of human learning. As these representations are drawn from pre-trained vectors, the generation process and learning approach are computationally efficient. Most importantly, we find out that syntactic representations provide a plausible interpretation of the vectors and subsequent hierarchical vectors outperform the original vectors in benchmark tests.
Authors:Sebastian Basterrech
Title: Unsupervised Assessment of Landscape Shifts Based on Persistent Entropy and Topological Preservation
Abstract:
In Continual Learning (CL) contexts, concept drift typically refers to the analysis of changes in data distribution. A drift in the input data can have negative consequences on a learning predictor and the system's stability. The majority of concept drift methods emphasize the analysis of statistical changes in non-stationary data over time. In this context, we consider another perspective, where the concept drift also integrates substantial changes in the topological characteristics of the data stream. In this article, we introduce a novel framework for monitoring changes in multi-dimensional data streams. We explore variations in the topological structures of the data, presenting another angle on the standard concept drift. Our developed approach is based on persistent entropy and topology-preserving projections in a continual learning scenario. The framework operates in both unsupervised and supervised environments. To show the utility of the proposed framework, we analyze the model across three scenarios using data streams generated with MNIST samples. The obtained results reveal the potential of applying topological data analysis for shift detection and encourage further research in this area.
Authors:Rithvik Prakki
Title: Demonstrating the Continual Learning Capabilities and Practical Application of Discrete-Time Active Inference
Abstract:
Active inference is a mathematical framework for understanding how agents (biological or artificial) interact with their environments, enabling continual adaptation and decision-making. It combines Bayesian inference and free energy minimization to model perception, action, and learning in uncertain and dynamic contexts. Unlike reinforcement learning, active inference integrates exploration and exploitation seamlessly by minimizing expected free energy. In this paper, we present a continual learning framework for agents operating in discrete time environments, using active inference as the foundation. We derive the mathematical formulations of variational and expected free energy and apply them to the design of a self-learning research agent. This agent updates its beliefs and adapts its actions based on new data without manual intervention. Through experiments in changing environments, we demonstrate the agent's ability to relearn and refine its models efficiently, making it suitable for complex domains like finance and healthcare. The paper concludes by discussing how the proposed framework generalizes to other systems, positioning active inference as a flexible approach for adaptive AI.
Authors:Wei-Chang Yeh
Title: Applying Incremental Learning in Binary-Addition-Tree Algorithm for Dynamic Binary-State Network Reliability
Abstract:
This paper presents a novel approach to enhance the Binary-Addition-Tree algorithm (BAT) by integrating incremental learning techniques. BAT, known for its simplicity in development, implementation, and application, is a powerful implicit enumeration method for solving network reliability and optimization problems. However, it traditionally struggles with dynamic and large-scale networks due to its static nature. By introducing incremental learning, we enable the BAT to adapt and improve its performance iteratively as it encounters new data or network changes. This integration allows for more efficient computation, reduced redundancy without searching minimal paths and cuts, and improves overall performance in dynamic environments. Experimental results demonstrate the effectiveness of the proposed method, showing significant improvements in both computational efficiency and solution quality compared to the traditional BAT and indirect algorithms, such as MP-based algorithms and MC-based algorithms.
Authors:Michele Laurelli
Title: Brain Surgery: Ensuring GDPR Compliance in Large Language Models via Concept Erasure
Abstract:
As large-scale AI systems proliferate, ensuring compliance with data privacy laws such as the General Data Protection Regulation (GDPR) has become critical. This paper introduces Brain Surgery, a transformative methodology for making every local AI model GDPR-ready by enabling real-time privacy management and targeted unlearning. Building on advanced techniques such as Embedding-Corrupted Prompts (ECO Prompts), blockchain-based privacy management, and privacy-aware continual learning, Brain Surgery provides a modular solution that can be deployed across various AI architectures. This tool not only ensures compliance with privacy regulations but also empowers users to define their own privacy limits, creating a new paradigm in AI ethics and governance.