arXiv Papers of Digital Avatar

Paperid: 1, https://arxiv.org/pdf/2601.13148.pdf   GitHub
Authors:Richard Shaw, Youngkyoon Jang, Athanasios Papaioannou, Arthur Moreau, Helisa Dhamo, Zhensong Zhang, Eduardo Pérez-Pellitero
Title: ICo3D: An Interactive Conversational 3D Virtual Human
Abstract:
This work presents Interactive Conversational 3D Virtual Human (ICo3D), a method for generating an interactive, conversational, and photorealistic 3D human avatar. Based on multi-view captures of a subject, we create an animatable 3D face model and a dynamic 3D body model, both rendered by splatting Gaussian primitives. Once merged together, they represent a lifelike virtual human avatar suitable for real-time user interactions. We equip our avatar with an LLM for conversational ability. During conversation, the audio speech of the avatar is used as a driving signal to animate the face model, enabling precise synchronization. We describe improvements to our dynamic Gaussian models that enhance photorealism: SWinGS++ for body reconstruction and HeadGaS++ for face reconstruction, and provide as well a solution to merge the separate face and body models without artifacts. We also present a demo of the complete system, showcasing several use cases of real-time conversation with the 3D avatar. Our approach offers a fully integrated virtual avatar experience, supporting both oral and written form interactions in immersive environments. ICo3D is applicable to a wide range of fields, including gaming, virtual assistance, and personalized education, among others. Project page: https://ico3d.github.io/
Authors:Anh H. Vo, Tae-Seok Kim, Hulin Jin, Soo-Mi Choi, Yong-Guk Kim
Title: Instruction-Driven 3D Facial Expression Generation and Transition
Abstract:
A 3D avatar typically has one of six cardinal facial expressions. To simulate realistic emotional variation, we should be able to render a facial transition between two arbitrary expressions. This study presents a new framework for instruction-driven facial expression generation that produces a 3D face and, starting from an image of the face, transforms the facial expression from one designated facial expression to another. The Instruction-driven Facial Expression Decomposer (IFED) module is introduced to facilitate multimodal data learning and capture the correlation between textual descriptions and facial expression features. Subsequently, we propose the Instruction to Facial Expression Transition (I2FET) method, which leverages IFED and a vertex reconstruction loss function to refine the semantic comprehension of latent vectors, thus generating a facial expression sequence according to the given instruction. Lastly, we present the Facial Expression Transition model to generate smooth transitions between facial expressions. Extensive evaluation suggests that the proposed model outperforms state-of-the-art methods on the CK+ and CelebV-HQ datasets. The results show that our framework can generate facial expression trajectories according to text instruction. Considering that text prompts allow us to make diverse descriptions of human emotional states, the repertoire of facial expressions and the transitions between them can be expanded greatly. We expect our framework to find various practical applications More information about our project can be found at https://vohoanganh.github.io/tg3dfet/
Authors:Peizhuo Li, Sebastian Starke, Yuting Ye, Olga Sorkine-Hornung
Title: Dancing Points: Synthesizing Ballroom Dancing with Three-Point Inputs
Abstract:
Ballroom dancing is a structured yet expressive motion category. Its highly diverse movement and complex interactions between leader and follower dancers make the understanding and synthesis challenging. We demonstrate that the three-point trajectory available from a virtual reality (VR) device can effectively serve as a dancer's motion descriptor, simplifying the modeling and synthesis of interplay between dancers' full-body motions down to sparse trajectories. Thanks to the low dimensionality, we can employ an efficient MLP network to predict the follower's three-point trajectory directly from the leader's three-point input for certain types of ballroom dancing, addressing the challenge of modeling high-dimensional full-body interaction. It also prevents our method from overfitting thanks to its compact yet explicit representation. By leveraging the inherent structure of the movements and carefully planning the autoregressive procedure, we show a deterministic neural network is able to translate three-point trajectories into a virtual embodied avatar, which is typically considered under-constrained and requires generative models for common motions. In addition, we demonstrate this deterministic approach generalizes beyond small, structured datasets like ballroom dancing, and performs robustly on larger, more diverse datasets such as LaFAN. Our method provides a computationally- and data-efficient solution, opening new possibilities for immersive paired dancing applications. Code and pre-trained models for this paper are available at https://peizhuoli.github.io/dancing-points.
Authors:Cheng Peng, Zhuo Su, Liao Wang, Chen Guo, Zhaohu Li, Chengjiang Long, Zheng Lv, Jingxiang Sun, Chenyangguang Zhang, Yebin Liu
Title: FlexAvatar: Flexible Large Reconstruction Model for Animatable Gaussian Head Avatars with Detailed Deformation
Abstract:
We present FlexAvatar, a flexible large reconstruction model for high-fidelity 3D head avatars with detailed dynamic deformation from single or sparse images, without requiring camera poses or expression labels. It leverages a transformer-based reconstruction model with structured head query tokens as canonical anchor to aggregate flexible input-number-agnostic, camera-pose-free and expression-free inputs into a robust canonical 3D representation. For detailed dynamic deformation, we introduce a lightweight UNet decoder conditioned on UV-space position maps, which can produce detailed expression-dependent deformations in real time. To better capture rare but critical expressions like wrinkles and bared teeth, we also adopt a data distribution adjustment strategy during training to balance the distribution of these expressions in the training set. Moreover, a lightweight 10-second refinement can further enhances identity-specific details in extreme identities without affecting deformation quality. Extensive experiments demonstrate that our FlexAvatar achieves superior 3D consistency, detailed dynamic realism compared with previous methods, providing a practical solution for animatable 3D avatar creation.
Authors:Fan Yang, Heyuan Li, Peihao Li, Weihao Yuan, Lingteng Qiu, Chaoyue Song, Cheng Chen, Yisheng He, Shifeng Zhang, Xiaoguang Han, Steven Hoi, Guosheng Lin
Title: ViSA: 3D-Aware Video Shading for Real-Time Upper-Body Avatar Creation
Abstract:
Generating high-fidelity upper-body 3D avatars from one-shot input image remains a significant challenge. Current 3D avatar generation methods, which rely on large reconstruction models, are fast and capable of producing stable body structures, but they often suffer from artifacts such as blurry textures and stiff, unnatural motion. In contrast, generative video models show promising performance by synthesizing photorealistic and dynamic results, but they frequently struggle with unstable behavior, including body structural errors and identity drift. To address these limitations, we propose a novel approach that combines the strengths of both paradigms. Our framework employs a 3D reconstruction model to provide robust structural and appearance priors, which in turn guides a real-time autoregressive video diffusion model for rendering. This process enables the model to synthesize high-frequency, photorealistic details and fluid dynamics in real time, effectively reducing texture blur and motion stiffness while preventing the structural inconsistencies common in video generation methods. By uniting the geometric stability of 3D reconstruction with the generative capabilities of video models, our method produces high-fidelity digital avatars with realistic appearance and dynamic, temporally coherent motion. Experiments demonstrate that our approach significantly reduces artifacts and achieves substantial improvements in visual quality over leading methods, providing a robust and efficient solution for real-time applications such as gaming and virtual reality. Project page: https://lhyfst.github.io/visa
Authors:Xin Ming, Yuxuan Han, Tianyu Huang, Feng Xu
Title: VGGTFace: Topologically Consistent Facial Geometry Reconstruction in the Wild
Abstract:
Reconstructing topologically consistent facial geometry is crucial for the digital avatar creation pipelines. Existing methods either require tedious manual efforts, lack generalization to in-the-wild data, or are constrained by the limited expressiveness of 3D Morphable Models. To address these limitations, we propose VGGTFace, an automatic approach that innovatively applies the 3D foundation model, i.e. VGGT, for topologically consistent facial geometry reconstruction from in-the-wild multi-view images captured by everyday users. Our key insight is that, by leveraging VGGT, our method naturally inherits strong generalization ability and expressive power from its large-scale training and point map representation. However, it is unclear how to reconstruct a topologically consistent mesh from VGGT, as the topology information is missing in its prediction. To this end, we augment VGGT with Pixel3DMM for injecting topology information via pixel-aligned UV values. In this manner, we convert the pixel-aligned point map of VGGT to a point cloud with topology. Tailored to this point cloud with known topology, we propose a novel Topology-Aware Bundle Adjustment strategy to fuse them, where we construct a Laplacian energy for the Bundle Adjustment objective. Our method achieves high-quality reconstruction in 10 seconds for 16 views on a single NVIDIA RTX 4090. Experiments demonstrate state-of-the-art results on benchmarks and impressive generalization to in-the-wild data. Code is available at https://github.com/grignarder/vggtface.
Authors:Changmin Lee, Jihyun Lee, Tae-Kyun Kim
Title: MPMAvatar: Learning 3D Gaussian Avatars with Accurate and Robust Physics-Based Dynamics
Abstract:
While there has been significant progress in the field of 3D avatar creation from visual observations, modeling physically plausible dynamics of humans with loose garments remains a challenging problem. Although a few existing works address this problem by leveraging physical simulation, they suffer from limited accuracy or robustness to novel animation inputs. In this work, we present MPMAvatar, a framework for creating 3D human avatars from multi-view videos that supports highly realistic, robust animation, as well as photorealistic rendering from free viewpoints. For accurate and robust dynamics modeling, our key idea is to use a Material Point Method-based simulator, which we carefully tailor to model garments with complex deformations and contact with the underlying body by incorporating an anisotropic constitutive model and a novel collision handling algorithm. We combine this dynamics modeling scheme with our canonical avatar that can be rendered using 3D Gaussian Splatting with quasi-shadowing, enabling high-fidelity rendering for physically realistic animations. In our experiments, we demonstrate that MPMAvatar significantly outperforms the existing state-of-the-art physics-based avatar in terms of (1) dynamics modeling accuracy, (2) rendering accuracy, and (3) robustness and efficiency. Additionally, we present a novel application in which our avatar generalizes to unseen interactions in a zero-shot manner-which was not achievable with previous learning-based methods due to their limited simulation generalizability. Our project page is at: https://KAISTChangmin.github.io/MPMAvatar/
Authors:Zhiqi Huang, Dulongkai Cui, Jinglu Hu
Title: SIE3D: Single-image Expressive 3D Avatar generation via Semantic Embedding and Perceptual Expression Loss
Abstract:
Generating high-fidelity 3D head avatars from a single image is challenging, as current methods lack fine-grained, intuitive control over expressions via text. This paper proposes SIE3D, a framework that generates expressive 3D avatars from a single image and descriptive text. SIE3D fuses identity features from the image with semantic embedding from text through a novel conditioning scheme, enabling detailed control. To ensure generated expressions accurately match the text, it introduces an innovative perceptual expression loss function. This loss uses a pre-trained expression classifier to regularize the generation process, guaranteeing expression accuracy. Extensive experiments show SIE3D significantly improves controllability and realism, outperforming competitive methods in identity preservation and expression fidelity on a single consumer-grade GPU. Project page: https://blazingcrystal1747.github.io/SIE3D/
Authors:Zheng Qin, Ruobing Zheng, Yabing Wang, Tianqi Li, Yi Yuan, Jingdong Chen, Le Wang
Title: HumanSense: From Multimodal Perception to Empathetic Context-Aware Responses through Reasoning MLLMs
Abstract:
While Multimodal Large Language Models (MLLMs) show immense promise for achieving truly human-like interactions, progress is hindered by the lack of fine-grained evaluation frameworks for human-centered scenarios, encompassing both the understanding of complex human intentions and the provision of empathetic, context-aware responses. Here we introduce HumanSense, a comprehensive benchmark designed to evaluate the human-centered perception and interaction capabilities of MLLMs, with a particular focus on deep understanding of extended multimodal contexts and the formulation of rational feedback. Our evaluation reveals that leading MLLMs still have considerable room for improvement, particularly for advanced interaction-oriented tasks. Supplementing visual input with audio and text information yields substantial improvements, and Omni-modal models show advantages on these tasks. Furthermore, we argue that appropriate feedback stems from a contextual analysis of the interlocutor's needs and emotions, with reasoning ability serving as the key to unlocking it. Accordingly, we employ a multi-stage, modality-progressive reinforcement learning to enhance the reasoning abilities of an Omni model, achieving substantial gains on evaluation results. Additionally, we observe that successful reasoning processes exhibit highly consistent thought patterns. By designing corresponding prompts, we also enhance the performance of non-reasoning models in a training-free manner. Project page: \textcolor{brightpink}https://digital-avatar.github.io/ai/HumanSense/
Authors:Geonhee Sim, Gyeongsik Moon
Title: PERSONA: Personalized Whole-Body 3D Avatar with Pose-Driven Deformations from a Single Image
Abstract:
Two major approaches exist for creating animatable human avatars. The first, a 3D-based approach, optimizes a NeRF- or 3DGS-based avatar from videos of a single person, achieving personalization through a disentangled identity representation. However, modeling pose-driven deformations, such as non-rigid cloth deformations, requires numerous pose-rich videos, which are costly and impractical to capture in daily life. The second, a diffusion-based approach, learns pose-driven deformations from large-scale in-the-wild videos but struggles with identity preservation and pose-dependent identity entanglement. We present PERSONA, a framework that combines the strengths of both approaches to obtain a personalized 3D human avatar with pose-driven deformations from a single image. PERSONA leverages a diffusion-based approach to generate pose-rich videos from the input image and optimizes a 3D avatar based on them. To ensure high authenticity and sharp renderings across diverse poses, we introduce balanced sampling and geometry-weighted optimization. Balanced sampling oversamples the input image to mitigate identity shifts in diffusion-generated training videos. Geometry-weighted optimization prioritizes geometry constraints over image loss, preserving rendering quality in diverse poses.
Authors:Byungjun Kim, Shunsuke Saito, Giljoo Nam, Tomas Simon, Jason Saragih, Hanbyul Joo, Junxuan Li
Title: HairCUP: Hair Compositional Universal Prior for 3D Gaussian Avatars
Abstract:
We present a universal prior model for 3D head avatars with explicit hair compositionality. Existing approaches to build generalizable priors for 3D head avatars often adopt a holistic modeling approach, treating the face and hair as an inseparable entity. This overlooks the inherent compositionality of the human head, making it difficult for the model to naturally disentangle face and hair representations, especially when the dataset is limited. Furthermore, such holistic models struggle to support applications like 3D face and hairstyle swapping in a flexible and controllable manner. To address these challenges, we introduce a prior model that explicitly accounts for the compositionality of face and hair, learning their latent spaces separately. A key enabler of this approach is our synthetic hairless data creation pipeline, which removes hair from studio-captured datasets using estimated hairless geometry and texture derived from a diffusion prior. By leveraging a paired dataset of hair and hairless captures, we train disentangled prior models for face and hair, incorporating compositionality as an inductive bias to facilitate effective separation. Our model's inherent compositionality enables seamless transfer of face and hair components between avatars while preserving identity. Additionally, we demonstrate that our model can be fine-tuned in a few-shot manner using monocular captures to create high-fidelity, hair-compositional 3D head avatars for unseen subjects. These capabilities highlight the practical applicability of our approach in real-world scenarios, paving the way for flexible and expressive 3D avatar generation.
Authors:Lanmiao Liu, Esam Ghaleb, Aslı Özyürek, Zerrin Yumak
Title: SemGes: Semantics-aware Co-Speech Gesture Generation using Semantic Coherence and Relevance Learning
Abstract:
Creating a virtual avatar with semantically coherent gestures that are aligned with speech is a challenging task. Existing gesture generation research mainly focused on generating rhythmic beat gestures, neglecting the semantic context of the gestures. In this paper, we propose a novel approach for semantic grounding in co-speech gesture generation that integrates semantic information at both fine-grained and global levels. Our approach starts with learning the motion prior through a vector-quantized variational autoencoder. Built on this model, a second-stage module is applied to automatically generate gestures from speech, text-based semantics and speaker identity that ensures consistency between the semantic relevance of generated gestures and co-occurring speech semantics through semantic coherence and relevance modules. Experimental results demonstrate that our approach enhances the realism and coherence of semantic gestures. Extensive experiments and user studies show that our method outperforms state-of-the-art approaches across two benchmarks in co-speech gesture generation in both objective and subjective metrics. The qualitative results of our model, code, dataset and pre-trained models can be viewed at https://semgesture.github.io/.
Authors:Chao He, Jianqiang Ren, Jianjing Xiang, Xiejie Shen
Title: CartoonAlive: Towards Expressive Live2D Modeling from Single Portraits
Abstract:
With the rapid advancement of large foundation models, AIGC, cloud rendering, and real-time motion capture technologies, digital humans are now capable of achieving synchronized facial expressions and body movements, engaging in intelligent dialogues driven by natural language, and enabling the fast creation of personalized avatars. While current mainstream approaches to digital humans primarily focus on 3D models and 2D video-based representations, interactive 2D cartoon-style digital humans have received relatively less attention. Compared to 3D digital humans that require complex modeling and high rendering costs, and 2D video-based solutions that lack flexibility and real-time interactivity, 2D cartoon-style Live2D models offer a more efficient and expressive alternative. By simulating 3D-like motion through layered segmentation without the need for traditional 3D modeling, Live2D enables dynamic and real-time manipulation. In this technical report, we present CartoonAlive, an innovative method for generating high-quality Live2D digital humans from a single input portrait image. CartoonAlive leverages the shape basis concept commonly used in 3D face modeling to construct facial blendshapes suitable for Live2D. It then infers the corresponding blendshape weights based on facial keypoints detected from the input image. This approach allows for the rapid generation of a highly expressive and visually accurate Live2D model that closely resembles the input portrait, within less than half a minute. Our work provides a practical and scalable solution for creating interactive 2D cartoon characters, opening new possibilities in digital content creation and virtual character animation. The project homepage is https://human3daigc.github.io/CartoonAlive_webpage/.
Authors:Luchuan Song, Yang Zhou, Zhan Xu, Yi Zhou, Deepali Aneja, Chenliang Xu
Title: StreamME: Simplify 3D Gaussian Avatar within Live Stream
Abstract:
We propose StreamME, a method focuses on fast 3D avatar reconstruction. The StreamME synchronously records and reconstructs a head avatar from live video streams without any pre-cached data, enabling seamless integration of the reconstructed appearance into downstream applications. This exceptionally fast training strategy, which we refer to as on-the-fly training, is central to our approach. Our method is built upon 3D Gaussian Splatting (3DGS), eliminating the reliance on MLPs in deformable 3DGS and relying solely on geometry, which significantly improves the adaptation speed to facial expression. To further ensure high efficiency in on-the-fly training, we introduced a simplification strategy based on primary points, which distributes the point clouds more sparsely across the facial surface, optimizing points number while maintaining rendering quality. Leveraging the on-the-fly training capabilities, our method protects the facial privacy and reduces communication bandwidth in VR system or online conference. Additionally, it can be directly applied to downstream application such as animation, toonify, and relighting. Please refer to our project page for more details: https://songluchuan.github.io/StreamME/.
Authors:Seungjun Moon, Sangjoon Yu, Gyeong-Moon Park
Title: EPSilon: Efficient Point Sampling for Lightening of Hybrid-based 3D Avatar Generation
Abstract:
The rapid advancement of neural radiance fields (NeRF) has paved the way to generate animatable human avatars from a monocular video. However, the sole usage of NeRF suffers from a lack of details, which results in the emergence of hybrid representation that utilizes SMPL-based mesh together with NeRF representation. While hybrid-based models show photo-realistic human avatar generation qualities, they suffer from extremely slow inference due to their deformation scheme: to be aligned with the mesh, hybrid-based models use the deformation based on SMPL skinning weights, which needs high computational costs on each sampled point. We observe that since most of the sampled points are located in empty space, they do not affect the generation quality but result in inference latency with deformation. In light of this observation, we propose EPSilon, a hybrid-based 3D avatar generation scheme with novel efficient point sampling strategies that boost both training and inference. In EPSilon, we propose two methods to omit empty points at rendering; empty ray omission (ERO) and empty interval omission (EIO). In ERO, we wipe out rays that progress through the empty space. Then, EIO narrows down the sampling interval on the ray, which wipes out the region not occupied by either clothes or mesh. The delicate sampling scheme of EPSilon enables not only great computational cost reduction during deformation but also the designation of the important regions to be sampled, which enables a single-stage NeRF structure without hierarchical sampling. Compared to existing methods, EPSilon maintains the generation quality while using only 3.9% of sampled points and achieves around 20 times faster inference, together with 4 times faster training convergence. We provide video results on https://github.com/seungjun-moon/epsilon.
Authors:Shivangi Aneja, Sebastian Weiss, Irene Baeza, Prashanth Chandran, Gaspard Zoss, Matthias Nießner, Derek Bradley
Title: ScaffoldAvatar: High-Fidelity Gaussian Avatars with Patch Expressions
Abstract:
Generating high-fidelity real-time animated sequences of photorealistic 3D head avatars is important for many graphics applications, including immersive telepresence and movies. This is a challenging problem particularly when rendering digital avatar close-ups for showing character's facial microfeatures and expressions. To capture the expressive, detailed nature of human heads, including skin furrowing and finer-scale facial movements, we propose to couple locally-defined facial expressions with 3D Gaussian splatting to enable creating ultra-high fidelity, expressive and photorealistic 3D head avatars. In contrast to previous works that operate on a global expression space, we condition our avatar's dynamics on patch-based local expression features and synthesize 3D Gaussians at a patch level. In particular, we leverage a patch-based geometric 3D face model to extract patch expressions and learn how to translate these into local dynamic skin appearance and motion by coupling the patches with anchor points of Scaffold-GS, a recent hierarchical scene representation. These anchors are then used to synthesize 3D Gaussians on-the-fly, conditioned by patch-expressions and viewing direction. We employ color-based densification and progressive training to obtain high-quality results and faster convergence for high resolution 3K training images. By leveraging patch-level expressions, ScaffoldAvatar consistently achieves state-of-the-art performance with visually natural motion, while encompassing diverse facial expressions and styles in real time.
Authors:Youliang Zhang, Zhaoyang Li, Duomin Wang, Jiahe Zhang, Deyu Zhou, Zixin Yin, Xili Dai, Gang Yu, Xiu Li
Title: SpeakerVid-5M: A Large-Scale High-Quality Dataset for Audio-Visual Dyadic Interactive Human Generation
Abstract:
The rapid development of large-scale models has catalyzed significant breakthroughs in the digital human domain. These advanced methodologies offer high-fidelity solutions for avatar driving and rendering, leading academia to focus on the next major challenge: audio-visual dyadic interactive virtual human. To facilitate research in this emerging area, we present SpeakerVid-5M dataset, the first large-scale, high-quality dataset designed for audio-visual dyadic interactive virtual human generation. Totaling over 8,743 hours, SpeakerVid-5M contains more than 5.2 million video clips of human portraits. It covers diverse scales and interaction types, including monadic talking, listening, and dyadic conversations. Crucially, the dataset is structured along two key dimensions: interaction type and data quality. First, it is categorized into four types (dialogue branch, single branch, listening branch and multi-turn branch) based on the interaction scenario. Second, it is stratified into a large-scale pre-training subset and a curated, high-quality subset for Supervised Fine-Tuning (SFT). This dual structure accommodates a wide array of 2D virtual human tasks. In addition, we provide an autoregressive (AR)-based video chat baseline trained on this data, accompanied by a dedicated set of metrics and test data to serve as a benchmark VidChatBench for future work. Both the dataset and the corresponding data processing code will be publicly released. Project page: https://dorniwang.github.io/SpeakerVid-5M/
Authors:Hendric Voss, Stefan Kopp
Title: JAX-IK: Real-Time Inverse Kinematics for Generating Multi-Constrained Movements of Virtual Human Characters
Abstract:
Generating accurate and realistic virtual human movements in real-time is of high importance for a variety of applications in computer graphics, interactive virtual environments, robotics, and biomechanics. This paper introduces a novel real-time inverse kinematics (IK) solver specifically designed for realistic human-like movement generation. Leveraging the automatic differentiation and just-in-time compilation of TensorFlow, the proposed solver efficiently handles complex articulated human skeletons with high degrees of freedom. By treating forward and inverse kinematics as differentiable operations, our method effectively addresses common challenges such as error accumulation and complicated joint limits in multi-constrained problems, which are critical for realistic human motion modeling. We demonstrate the solver's effectiveness on the SMPLX human skeleton model, evaluating its performance against widely used iterative-based IK algorithms, like Cyclic Coordinate Descent (CCD), FABRIK, and the nonlinear optimization algorithm IPOPT. Our experiments cover both simple end-effector tasks and sophisticated, multi-constrained problems with realistic joint limits. Results indicate that our IK solver achieves real-time performance, exhibiting rapid convergence, minimal computational overhead per iteration, and improved success rates compared to existing methods. The project code is available at https://github.com/hvoss-techfak/JAX-IK
Authors:Ying Guo, Xi Liu, Cheng Zhen, Pengfei Yan, Xiaoming Wei
Title: ARIG: Autoregressive Interactive Head Generation for Real-time Conversations
Abstract:
Face-to-face communication, as a common human activity, motivates the research on interactive head generation. A virtual agent can generate motion responses with both listening and speaking capabilities based on the audio or motion signals of the other user and itself. However, previous clip-wise generation paradigm or explicit listener/speaker generator-switching methods have limitations in future signal acquisition, contextual behavioral understanding, and switching smoothness, making it challenging to be real-time and realistic. In this paper, we propose an autoregressive (AR) based frame-wise framework called ARIG to realize the real-time generation with better interaction realism. To achieve real-time generation, we model motion prediction as a non-vector-quantized AR process. Unlike discrete codebook-index prediction, we represent motion distribution using diffusion procedure, achieving more accurate predictions in continuous space. To improve interaction realism, we emphasize interactive behavior understanding (IBU) and detailed conversational state understanding (CSU). In IBU, based on dual-track dual-modal signals, we summarize short-range behaviors through bidirectional-integrated learning and perform contextual understanding over long ranges. In CSU, we use voice activity signals and context features of IBU to understand the various states (interruption, feedback, pause, etc.) that exist in actual conversations. These serve as conditions for the final progressive motion prediction. Extensive experiments have verified the effectiveness of our model.
Authors:Wendong Bu, Yang Wu, Qifan Yu, Minghe Gao, Bingchen Miao, Zhenkui Zhang, Kaihang Pan, Yunfei Li, Mengze Li, Wei Ji, Juncheng Li, Siliang Tang, Yueting Zhuang
Title: What Limits Virtual Agent Application? OmniBench: A Scalable Multi-Dimensional Benchmark for Essential Virtual Agent Capabilities
Abstract:
As multimodal large language models (MLLMs) advance, MLLM-based virtual agents have demonstrated remarkable performance. However, existing benchmarks face significant limitations, including uncontrollable task complexity, extensive manual annotation with limited scenarios, and a lack of multidimensional evaluation. In response to these challenges, we introduce OmniBench, a self-generating, cross-platform, graph-based benchmark with an automated pipeline for synthesizing tasks of controllable complexity through subtask composition. To evaluate the diverse capabilities of virtual agents on the graph, we further present OmniEval, a multidimensional evaluation framework that includes subtask-level evaluation, graph-based metrics, and comprehensive tests across 10 capabilities. Our synthesized dataset contains 36k graph-structured tasks across 20 scenarios, achieving a 91\% human acceptance rate. Training on our graph-structured data shows that it can more efficiently guide agents compared to manually annotated data. We conduct multidimensional evaluations for various open-source and closed-source models, revealing their performance across various capabilities and paving the way for future advancements. Our project is available at https://omni-bench.github.io/.
Authors:Yangyi Huang, Ye Yuan, Xueting Li, Jan Kautz, Umar Iqbal
Title: AdaHuman: Animatable Detailed 3D Human Generation with Compositional Multiview Diffusion
Abstract:
Existing methods for image-to-3D avatar generation struggle to produce highly detailed, animation-ready avatars suitable for real-world applications. We introduce AdaHuman, a novel framework that generates high-fidelity animatable 3D avatars from a single in-the-wild image. AdaHuman incorporates two key innovations: (1) A pose-conditioned 3D joint diffusion model that synthesizes consistent multi-view images in arbitrary poses alongside corresponding 3D Gaussian Splats (3DGS) reconstruction at each diffusion step; (2) A compositional 3DGS refinement module that enhances the details of local body parts through image-to-image refinement and seamlessly integrates them using a novel crop-aware camera ray map, producing a cohesive detailed 3D avatar. These components allow AdaHuman to generate highly realistic standardized A-pose avatars with minimal self-occlusion, enabling rigging and animation with any input motion. Extensive evaluation on public benchmarks and in-the-wild images demonstrates that AdaHuman significantly outperforms state-of-the-art methods in both avatar reconstruction and reposing. Code and models will be publicly available for research purposes.
Authors:Yonwoo Choi
Title: SVAD: From Single Image to 3D Avatar via Synthetic Data Generation with Video Diffusion and Data Augmentation
Abstract:
Creating high-quality animatable 3D human avatars from a single image remains a significant challenge in computer vision due to the inherent difficulty of reconstructing complete 3D information from a single viewpoint. Current approaches face a clear limitation: 3D Gaussian Splatting (3DGS) methods produce high-quality results but require multiple views or video sequences, while video diffusion models can generate animations from single images but struggle with consistency and identity preservation. We present SVAD, a novel approach that addresses these limitations by leveraging complementary strengths of existing techniques. Our method generates synthetic training data through video diffusion, enhances it with identity preservation and image restoration modules, and utilizes this refined data to train 3DGS avatars. Comprehensive evaluations demonstrate that SVAD outperforms state-of-the-art (SOTA) single-image methods in maintaining identity consistency and fine details across novel poses and viewpoints, while enabling real-time rendering capabilities. Through our data augmentation pipeline, we overcome the dependency on dense monocular or multi-view training data typically required by traditional 3DGS approaches. Extensive quantitative, qualitative comparisons show our method achieves superior performance across multiple metrics against baseline models. By effectively combining the generative power of diffusion models with both the high-quality results and rendering efficiency of 3DGS, our work establishes a new approach for high-fidelity avatar generation from a single image input.
Authors:Nanjie Yao, Gangjian Zhang, Wenhao Shen, Jian Shu, Hao Wang
Title: Unify3D: An Augmented Holistic End-to-end Monocular 3D Human Reconstruction via Anatomy Shaping and Twins Negotiating
Abstract:
Monocular 3D clothed human reconstruction aims to create a complete 3D avatar from a single image. To tackle the human geometry lacking in one RGB image, current methods typically resort to a preceding model for an explicit geometric representation. For the reconstruction itself, focus is on modeling both it and the input image. This routine is constrained by the preceding model, and overlooks the integrity of the reconstruction task. To address this, this paper introduces a novel paradigm that treats human reconstruction as a holistic process, utilizing an end-to-end network for direct prediction from 2D image to 3D avatar, eliminating any explicit intermediate geometry display. Based on this, we further propose a novel reconstruction framework consisting of two core components: the Anatomy Shaping Extraction module, which captures implicit shape features taking into account the specialty of human anatomy, and the Twins Negotiating Reconstruction U-Net, which enhances reconstruction through feature interaction between two U-Nets of different modalities. Moreover, we propose a Comic Data Augmentation strategy and construct 15k+ 3D human scans to bolster model performance in more complex case input. Extensive experiments on two test sets and many in-the-wild cases show the superiority of our method over SOTA methods. Our demos can be found in : https://e2e3dgsrecon.github.io/e2e3dgsrecon/.
Authors:Shenghao Ren, Yi Lu, Jiayi Huang, Jiayi Zhao, He Zhang, Tao Yu, Qiu Shen, Xun Cao
Title: MotionPRO: Exploring the Role of Pressure in Human MoCap and Beyond
Abstract:
Existing human Motion Capture (MoCap) methods mostly focus on the visual similarity while neglecting the physical plausibility. As a result, downstream tasks such as driving virtual human in 3D scene or humanoid robots in real world suffer from issues such as timing drift and jitter, spatial problems like sliding and penetration, and poor global trajectory accuracy. In this paper, we revisit human MoCap from the perspective of interaction between human body and physical world by exploring the role of pressure. Firstly, we construct a large-scale human Motion capture dataset with Pressure, RGB and Optical sensors (named MotionPRO), which comprises 70 volunteers performing 400 types of motion, encompassing a total of 12.4M pose frames. Secondly, we examine both the necessity and effectiveness of the pressure signal through two challenging tasks: (1) pose and trajectory estimation based solely on pressure: We propose a network that incorporates a small kernel decoder and a long-short-term attention module, and proof that pressure could provide accurate global trajectory and plausible lower body pose. (2) pose and trajectory estimation by fusing pressure and RGB: We impose constraints on orthographic similarity along the camera axis and whole-body contact along the vertical axis to enhance the cross-attention strategy to fuse pressure and RGB feature maps. Experiments demonstrate that fusing pressure with RGB features not only significantly improves performance in terms of objective metrics, but also plausibly drives virtual humans (SMPL) in 3D scene. Furthermore, we demonstrate that incorporating physical perception enables humanoid robots to perform more precise and stable actions, which is highly beneficial for the development of embodied artificial intelligence. Project page is available at: https://nju-cite-mocaphumanoid.github.io/MotionPRO/
Authors:Bingchen Miao, Yang Wu, Minghe Gao, Qifan Yu, Wendong Bu, Wenqiao Zhang, Yunfei Li, Siliang Tang, Tat-Seng Chua, Juncheng Li
Title: Boosting Virtual Agent Learning and Reasoning: A Step-Wise, Multi-Dimensional, and Generalist Reward Model with Benchmark
Abstract:
The development of Generalist Virtual Agents (GVAs) has shown significant promise in autonomous task execution. However, current training paradigms face critical limitations, including reliance on outcome supervision and labor-intensive human annotations. To address these challenges, we propose Similar, a Step-Wise Multi-Dimensional Generalist Reward Model, which offers fine-grained signals for agent training and can choose better action for inference-time scaling. Specifically, we begin by systematically defining five dimensions for evaluating agent actions. Building on this framework, we design an MCTS-P algorithm to automatically collect and annotate step-wise, five-dimensional agent execution data. Using this data, we train Similar with the Triple-M strategy. Furthermore, we introduce the first benchmark in the virtual agent domain for step-wise, multi-dimensional reward model training and evaluation, named SRM. This benchmark consists of two components: SRMTrain, which serves as the training set for Similar, and SRMEval, a manually selected test set for evaluating the reward model. Experimental results demonstrate that Similar, through its step-wise, multi-dimensional assessment and synergistic gain, provides GVAs with effective intermediate signals during both training and inference-time scaling. The project is available at https://github.com/antgroup/Similar.
Authors:Zidu Wang, Jiankuo Zhao, Miao Xu, Xiangyu Zhu, Zhen Lei
Title: SRM-Hair: Single Image Head Mesh Reconstruction via 3D Morphable Hair
Abstract:
3D Morphable Models (3DMMs) have played a pivotal role as a fundamental representation or initialization for 3D avatar animation and reconstruction. However, extending 3DMMs to hair remains challenging due to the difficulty of enforcing vertex-level consistent semantic meaning across hair shapes. This paper introduces a novel method, Semantic-consistent Ray Modeling of Hair (SRM-Hair), for making 3D hair morphable and controlled by coefficients. The key contribution lies in semantic-consistent ray modeling, which extracts ordered hair surface vertices and exhibits notable properties such as additivity for hairstyle fusion, adaptability, flipping, and thickness modification. We collect a dataset of over 250 high-fidelity real hair scans paired with 3D face data to serve as a prior for the 3D morphable hair. Based on this, SRM-Hair can reconstruct a hair mesh combined with a 3D head from a single image. Note that SRM-Hair produces an independent hair mesh, facilitating applications in virtual avatar creation, realistic animation, and high-fidelity hair rendering. Both quantitative and qualitative experiments demonstrate that SRM-Hair achieves state-of-the-art performance in 3D mesh reconstruction. Our project is available at https://github.com/wang-zidu/SRM-Hair
Authors:Jiaxin Ye, Boyuan Cao, Hongming Shan
Title: Emotional Face-to-Speech
Abstract:
How much can we infer about an emotional voice solely from an expressive face? This intriguing question holds great potential for applications such as virtual character dubbing and aiding individuals with expressive language disorders. Existing face-to-speech methods offer great promise in capturing identity characteristics but struggle to generate diverse vocal styles with emotional expression. In this paper, we explore a new task, termed emotional face-to-speech, aiming to synthesize emotional speech directly from expressive facial cues. To that end, we introduce DEmoFace, a novel generative framework that leverages a discrete diffusion transformer (DiT) with curriculum learning, built upon a multi-level neural audio codec. Specifically, we propose multimodal DiT blocks to dynamically align text and speech while tailoring vocal styles based on facial emotion and identity. To enhance training efficiency and generation quality, we further introduce a coarse-to-fine curriculum learning algorithm for multi-level token processing. In addition, we develop an enhanced predictor-free guidance to handle diverse conditioning scenarios, enabling multi-conditional generation and disentangling complex attributes effectively. Extensive experimental results demonstrate that DEmoFace generates more natural and consistent speech compared to baselines, even surpassing speech-driven methods. Demos are shown at https://demoface-ai.github.io/.
Authors:Tianqi Li, Ruobing Zheng, Bonan Li, Zicheng Zhang, Meng Wang, Jingdong Chen, Ming Yang
Title: LokiTalk: Learning Fine-Grained and Generalizable Correspondences to Enhance NeRF-based Talking Head Synthesis
Abstract:
Despite significant progress in talking head synthesis since the introduction of Neural Radiance Fields (NeRF), visual artifacts and high training costs persist as major obstacles to large-scale commercial adoption. We propose that identifying and establishing fine-grained and generalizable correspondences between driving signals and generated results can simultaneously resolve both problems. Here we present LokiTalk, a novel framework designed to enhance NeRF-based talking heads with lifelike facial dynamics and improved training efficiency. To achieve fine-grained correspondences, we introduce Region-Specific Deformation Fields, which decompose the overall portrait motion into lip movements, eye blinking, head pose, and torso movements. By hierarchically modeling the driving signals and their associated regions through two cascaded deformation fields, we significantly improve dynamic accuracy and minimize synthetic artifacts. Furthermore, we propose ID-Aware Knowledge Transfer, a plug-and-play module that learns generalizable dynamic and static correspondences from multi-identity videos, while simultaneously extracting ID-specific dynamic and static features to refine the depiction of individual characters. Comprehensive evaluations demonstrate that LokiTalk delivers superior high-fidelity results and training efficiency compared to previous methods. The code will be released upon acceptance.
Authors:Tianqi Li, Ruobing Zheng, Minghui Yang, Jingdong Chen, Ming Yang
Title: Ditto: Motion-Space Diffusion for Controllable Realtime Talking Head Synthesis
Abstract:
Recent advances in diffusion models have endowed talking head synthesis with subtle expressions and vivid head movements, but have also led to slow inference speed and insufficient control over generated results. To address these issues, we propose Ditto, a diffusion-based talking head framework that enables fine-grained controls and real-time inference. Specifically, we utilize an off-the-shelf motion extractor and devise a diffusion transformer to generate representations in a specific motion space. We optimize the model architecture and training strategy to address the issues in generating motion representations, including insufficient disentanglement between motion and identity, and large internal discrepancies within the representation. Besides, we employ diverse conditional signals while establishing a mapping between motion representation and facial semantics, enabling control over the generation process and correction of the results. Moreover, we jointly optimize the holistic framework to enable streaming processing, real-time inference, and low first-frame delay, offering functionalities crucial for interactive applications such as AI assistants. Extensive experimental results demonstrate that Ditto generates compelling talking head videos and exhibits superiority in both controllability and real-time performance.
Authors:Siddharth Seth, Rishabh Dabral, Diogo Luvizon, Marc Habermann, Ming-Hsuan Yang, Christian Theobalt, Adam Kortylewski
Title: PocoLoco: A Point Cloud Diffusion Model of Human Shape in Loose Clothing
Abstract:
Modeling a human avatar that can plausibly deform to articulations is an active area of research. We present PocoLoco -- the first template-free, point-based, pose-conditioned generative model for 3D humans in loose clothing. We motivate our work by noting that most methods require a parametric model of the human body to ground pose-dependent deformations. Consequently, they are restricted to modeling clothing that is topologically similar to the naked body and do not extend well to loose clothing. The few methods that attempt to model loose clothing typically require either canonicalization or a UV-parameterization and need to address the challenging problem of explicitly estimating correspondences for the deforming clothes. In this work, we formulate avatar clothing deformation as a conditional point-cloud generation task within the denoising diffusion framework. Crucially, our framework operates directly on unordered point clouds, eliminating the need for a parametric model or a clothing template. This also enables a variety of practical applications, such as point-cloud completion and pose-based editing -- important features for virtual human animation. As current datasets for human avatars in loose clothing are far too small for training diffusion models, we release a dataset of two subjects performing various poses in loose clothing with a total of 75K point clouds. By contributing towards tackling the challenging task of effectively modeling loose clothing and expanding the available data for training these models, we aim to set the stage for further innovation in digital humans. The source code is available at https://github.com/sidsunny/pocoloco .
Authors:Yukun Huang, Jianan Wang, Ailing Zeng, Zheng-Jun Zha, Lei Zhang, Xihui Liu
Title: DreamWaltz-G: Expressive 3D Gaussian Avatars from Skeleton-Guided 2D Diffusion
Abstract:
Leveraging pretrained 2D diffusion models and score distillation sampling (SDS), recent methods have shown promising results for text-to-3D avatar generation. However, generating high-quality 3D avatars capable of expressive animation remains challenging. In this work, we present DreamWaltz-G, a novel learning framework for animatable 3D avatar generation from text. The core of this framework lies in Skeleton-guided Score Distillation and Hybrid 3D Gaussian Avatar representation. Specifically, the proposed skeleton-guided score distillation integrates skeleton controls from 3D human templates into 2D diffusion models, enhancing the consistency of SDS supervision in terms of view and human pose. This facilitates the generation of high-quality avatars, mitigating issues such as multiple faces, extra limbs, and blurring. The proposed hybrid 3D Gaussian avatar representation builds on the efficient 3D Gaussians, combining neural implicit fields and parameterized 3D meshes to enable real-time rendering, stable SDS optimization, and expressive animation. Extensive experiments demonstrate that DreamWaltz-G is highly effective in generating and animating 3D avatars, outperforming existing methods in both visual quality and animation expressiveness. Our framework further supports diverse applications, including human video reenactment and multi-subject scene composition.
Authors:Zhangsihao Yang, Mengyi Shan, Mohammad Farazi, Wenhui Zhu, Yanxi Chen, Xuanzhao Dong, Yalin Wang
Title: AMG: Avatar Motion Guided Video Generation
Abstract:
Human video generation task has gained significant attention with the advancement of deep generative models. Generating realistic videos with human movements is challenging in nature, due to the intricacies of human body topology and sensitivity to visual artifacts. The extensively studied 2D media generation methods take advantage of massive human media datasets, but struggle with 3D-aware control; whereas 3D avatar-based approaches, while offering more freedom in control, lack photorealism and cannot be harmonized seamlessly with background scene. We propose AMG, a method that combines the 2D photorealism and 3D controllability by conditioning video diffusion models on controlled rendering of 3D avatars. We additionally introduce a novel data processing pipeline that reconstructs and renders human avatar movements from dynamic camera videos. AMG is the first method that enables multi-person diffusion video generation with precise control over camera positions, human motions, and background style. We also demonstrate through extensive evaluation that it outperforms existing human video generation methods conditioned on pose sequences or driving videos in terms of realism and adaptability.
Authors:Minghe Gao, Wendong Bu, Bingchen Miao, Yang Wu, Yunfei Li, Juncheng Li, Siliang Tang, Qi Wu, Yueting Zhuang, Meng Wang
Title: Generalist Virtual Agents: A Survey on Autonomous Agents Across Digital Platforms
Abstract:
In this paper, we introduce the Generalist Virtual Agent (GVA), an autonomous entity engineered to function across diverse digital platforms and environments, assisting users by executing a variety of tasks. This survey delves into the evolution of GVAs, tracing their progress from early intelligent assistants to contemporary implementations that incorporate large-scale models. We explore both the philosophical underpinnings and practical foundations of GVAs, addressing their developmental challenges and the methodologies currently employed in their design and operation. By presenting a detailed taxonomy of GVA environments, tasks, and capabilities, this paper aims to bridge the theoretical and practical aspects of GVAs, concluding those that operate in environments closely mirroring the real world are more likely to demonstrate human-like intelligence. We discuss potential future directions for GVA research, highlighting the necessity for realistic evaluation metrics and the enhancement of long-sequence decision-making capabilities to advance the field toward more systematic or embodied applications. This work not only synthesizes the existing body of literature but also proposes frameworks for future investigations, contributing significantly to the ongoing development of intelligent systems.
Authors:Jianchun Chen, Jian Wang, Yinda Zhang, Rohit Pandey, Thabo Beeler, Marc Habermann, Christian Theobalt
Title: EgoAvatar: Egocentric View-Driven and Photorealistic Full-body Avatars
Abstract:
Immersive VR telepresence ideally means being able to interact and communicate with digital avatars that are indistinguishable from and precisely reflect the behaviour of their real counterparts. The core technical challenge is two fold: Creating a digital double that faithfully reflects the real human and tracking the real human solely from egocentric sensing devices that are lightweight and have a low energy consumption, e.g. a single RGB camera. Up to date, no unified solution to this problem exists as recent works solely focus on egocentric motion capture, only model the head, or build avatars from multi-view captures. In this work, we, for the first time in literature, propose a person-specific egocentric telepresence approach, which jointly models the photoreal digital avatar while also driving it from a single egocentric video. We first present a character model that is animatible, i.e. can be solely driven by skeletal motion, while being capable of modeling geometry and appearance. Then, we introduce a personalized egocentric motion capture component, which recovers full-body motion from an egocentric video. Finally, we apply the recovered pose to our character model and perform a test-time mesh refinement such that the geometry faithfully projects onto the egocentric view. To validate our design choices, we propose a new and challenging benchmark, which provides paired egocentric and dense multi-view videos of real humans performing various motions. Our experiments demonstrate a clear step towards egocentric and photoreal telepresence as our method outperforms baselines as well as competing methods. For more details, code, and data, we refer to our project page.
Authors:Zicai Cui, Zhouyuan Jian, Weiwen Liu, Weinan Zhang
Title: SoDA: An Efficient Interaction Paradigm for the Agentic Web
Abstract:
As the internet evolves from the mobile App-dominated Attention Economy to the Intent-Interconnection of the Agentic Web era, existing interaction modes fail to address the escalating challenges of data lock-in and cognitive overload. Addressing this, we defines a future-oriented user sovereignty interaction paradigm, aiming to realize a fundamental shift from killing time to saving time. Specifically, we argue that decoupling memory from application logic eliminates the structural basis of data lock-in, while shifting from explicit manual instruction to implicit intent alignment resolves cognitive overload by offloading execution complexity. This paradigm is implemented via the Sovereign Digital Avatar (SoDA), which employs an orthogonal decoupling design of storage, computation, and interaction. This establishes the architectural principle of data as a persistent asset, model as a transient tool, fundamentally breaking the platform monopoly on user memory. To support the operation of this new paradigm in zero-trust environments, we design an Intent-Permission Handshake Mechanism based on A2A protocols, utilizing dual-factor (Sensitivity Coefficient and Strictness Parameter) adaptive routing to achieve active risk governance. Empirical evaluation with a high-fidelity simulation environment indicates that this paradigm reduces token consumption by approximately 27-35\% during cross-platform service migration and complex task execution. Furthermore, in the orchestration of multi-modal complex tasks, it reduces user cognitive load by 72\% compared to standard Retrieval-Augmented Generation (RAG) architectures, by 88\% relative to manual workflows, while significantly boosting the Information Signal-to-Noise Ratio (SNR). These results demonstrate that the SoDA is the essential interaction infrastructure for building an efficient, low-friction, and decentralized Agentic Web.
Authors:Xin Tan, Yuzhou Ji, He Zhu, Yuan Xie
Title: FMLGS: Fast Multilevel Language Embedded Gaussians for Part-level Interactive Agents
Abstract:
The semantically interactive radiance field has long been a promising backbone for 3D real-world applications, such as embodied AI to achieve scene understanding and manipulation. However, multi-granularity interaction remains a challenging task due to the ambiguity of language and degraded quality when it comes to queries upon object components. In this work, we present FMLGS, an approach that supports part-level open-vocabulary query within 3D Gaussian Splatting (3DGS). We propose an efficient pipeline for building and querying consistent object- and part-level semantics based on Segment Anything Model 2 (SAM2). We designed a semantic deviation strategy to solve the problem of language ambiguity among object parts, which interpolates the semantic features of fine-grained targets for enriched information. Once trained, we can query both objects and their describable parts using natural language. Comparisons with other state-of-the-art methods prove that our method can not only better locate specified part-level targets, but also achieve first-place performance concerning both speed and accuracy, where FMLGS is 98 x faster than LERF, 4 x faster than LangSplat and 2.5 x faster than LEGaussians. Meanwhile, we further integrate FMLGS as a virtual agent that can interactively navigate through 3D scenes, locate targets, and respond to user demands through a chat interface, which demonstrates the potential of our work to be further expanded and applied in the future.
Authors:Yanwen Wang, Yiyu Zhuang, Jiawei Zhang, Li Wang, Yifei Zeng, Xun Cao, Xinxin Zuo, Hao Zhu
Title: TeRA: Rethinking Text-guided Realistic 3D Avatar Generation
Abstract:
In this paper, we rethink text-to-avatar generative models by proposing TeRA, a more efficient and effective framework than the previous SDS-based models and general large 3D generative models. Our approach employs a two-stage training strategy for learning a native 3D avatar generative model. Initially, we distill a decoder to derive a structured latent space from a large human reconstruction model. Subsequently, a text-controlled latent diffusion model is trained to generate photorealistic 3D human avatars within this latent space. TeRA enhances the model performance by eliminating slow iterative optimization and enables text-based partial customization through a structured 3D human representation. Experiments have proven our approach's superiority over previous text-to-avatar generative models in subjective and objective evaluation.
Authors:Shanzhi Yin, Bolin Chen, Xinju Wu, Ru-Ling Liao, Jie Chen, Shiqi Wang, Yan Ye
Title: Towards Efficient 3D Gaussian Human Avatar Compression: A Prior-Guided Framework
Abstract:
This paper proposes an efficient 3D avatar coding framework that leverages compact human priors and canonical-to-target transformation to enable high-quality 3D human avatar video compression at ultra-low bit rates. The framework begins by training a canonical Gaussian avatar using articulated splatting in a network-free manner, which serves as the foundation for avatar appearance modeling. Simultaneously, a human-prior template is employed to capture temporal body movements through compact parametric representations. This decomposition of appearance and temporal evolution minimizes redundancy, enabling efficient compression: the canonical avatar is shared across the sequence, requiring compression only once, while the temporal parameters, consisting of just 94 parameters per frame, are transmitted with minimal bit-rate. For each frame, the target human avatar is generated by deforming canonical avatar via Linear Blend Skinning transformation, facilitating temporal coherent video reconstruction and novel view synthesis. Experimental results demonstrate that the proposed method significantly outperforms conventional 2D/3D codecs and existing learnable dynamic 3D Gaussian splatting compression method in terms of rate-distortion performance on mainstream multi-view human video datasets, paving the way for seamless immersive multimedia experiences in meta-verse applications.
Authors:Bolin Chen, Ru-Ling Liao, Yan Ye, Jie Chen, Shanzhi Yin, Xinrui Ju, Shiqi Wang, Yibo Fan
Title: Sparse2Dense: A Keypoint-driven Generative Framework for Human Video Compression and Vertex Prediction
Abstract:
For bandwidth-constrained multimedia applications, simultaneously achieving ultra-low bitrate human video compression and accurate vertex prediction remains a critical challenge, as it demands the harmonization of dynamic motion modeling, detailed appearance synthesis, and geometric consistency. To address this challenge, we propose Sparse2Dense, a keypoint-driven generative framework that leverages extremely sparse 3D keypoints as compact transmitted symbols to enable ultra-low bitrate human video compression and precise human vertex prediction. The key innovation is the multi-task learning-based and keypoint-aware deep generative model, which could encode complex human motion via compact 3D keypoints and leverage these sparse keypoints to estimate dense motion for video synthesis with temporal coherence and realistic textures. Additionally, a vertex predictor is integrated to learn human vertex geometry through joint optimization with video generation, ensuring alignment between visual content and geometric structure. Extensive experiments demonstrate that the proposed Sparse2Dense framework achieves competitive compression performance for human video over traditional/generative video codecs, whilst enabling precise human vertex prediction for downstream geometry applications. As such, Sparse2Dense is expected to facilitate bandwidth-efficient human-centric media transmission, such as real-time motion analysis, virtual human animation, and immersive entertainment.
Authors:Navid Ashrafi, Philipp Graf, Manuela Marquardt, Francesco Vona, Julia Schorlemmer, Jan-Niklas Voigt-Antons
Title: Avatar Appearance Beyond Pixels -- User Ratings and Avatar Preferences within Health Applications
Abstract:
The appearance of a virtual avatar significantly influences its perceived appropriateness and the user's experience, particularly in healthcare applications. This study analyzed interactions with six avatars of varying characteristics in a patient-reported outcome measures (PROMs) application to investigate correlations between avatar ratings and user preferences. Forty-seven participants completed a healthcare survey involving 30 PROMIS items (Global Health and Physical Function) and then rated the avatars on warmth, competence, attractiveness, and human-likeness, as well as their willingness to share personal data. The results showed that competence was the most critical factor in avatar selection, while human-likeness had minimal impact on health data disclosure. Gender did not significantly affect the ratings, but clothing style played a key role, with male avatars in professional attire rated higher in competence due to gender-stereotypical expectations. In contrast, professional female avatars were rated lower in warmth and attractiveness. These findings underline the importance of thoughtful avatar design in healthcare applications to enhance user experience and engagement.
Authors:Navid Ashrafi, Francesco Vona, Carina Ringsdorf, Christian Hertel, Luca Toni, Sarina Kailer, Alice Bartels, Tanja Kojic, Jan-Niklas Voigt-Antons
Title: Enhancing Job Interview Preparation Through Immersive Experiences Using Photorealistic, AI-powered Metahuman Avatars
Abstract:
This study will investigate the user experience while interacting with highly photorealistic virtual job interviewer avatars in Virtual Reality (VR), Augmented Reality (AR), and on a 2D screen. Having a precise speech recognition mechanism, our virtual character performs a mock-up software engineering job interview to adequately immerse the user in a life-like scenario. To evaluate the efficiency of our system, we measure factors such as the provoked level of anxiety, social presence, self-esteem, and intrinsic motivation. This research is a work in progress with a prospective within-subject user study including approximately 40 participants. All users will engage with three job interview conditions (VR, AR, and desktop) and provide their feedback. Additionally, users' bio-physical responses will be collected using a biosensor to measure the level of anxiety during the job interview.
Authors:Tianyu Song, Feng Li, Yuan Bi, Angelos Karlas, Amir Yousefi, Daniela Branzan, Zhongliang Jiang, Ulrich Eck, Nassir Navab
Title: Intelligent Virtual Sonographer (IVS): Enhancing Physician-Robot-Patient Communication
Abstract:
The advancement and maturity of large language models (LLMs) and robotics have unlocked vast potential for human-computer interaction, particularly in the field of robotic ultrasound. While existing research primarily focuses on either patient-robot or physician-robot interaction, the role of an intelligent virtual sonographer (IVS) bridging physician-robot-patient communication remains underexplored. This work introduces a conversational virtual agent in Extended Reality (XR) that facilitates real-time interaction between physicians, a robotic ultrasound system(RUS), and patients. The IVS agent communicates with physicians in a professional manner while offering empathetic explanations and reassurance to patients. Furthermore, it actively controls the RUS by executing physician commands and transparently relays these actions to the patient. By integrating LLM-powered dialogue with speech-to-text, text-to-speech, and robotic control, our system enhances the efficiency, clarity, and accessibility of robotic ultrasound acquisition. This work constitutes a first step toward understanding how IVS can bridge communication gaps in physician-robot-patient interaction, providing more control and therefore trust into physician-robot interaction while improving patient experience and acceptance of robotic ultrasound.
Authors:Xianqi Zhang, Hongliang Wei, Wenrui Wang, Xingtao Wang, Xiaopeng Fan, Debin Zhao
Title: FLAM: Foundation Model-Based Body Stabilization for Humanoid Locomotion and Manipulation
Abstract:
Humanoid robots have attracted significant attention in recent years. Reinforcement Learning (RL) is one of the main ways to control the whole body of humanoid robots. RL enables agents to complete tasks by learning from environment interactions, guided by task rewards. However, existing RL methods rarely explicitly consider the impact of body stability on humanoid locomotion and manipulation. Achieving high performance in whole-body control remains a challenge for RL methods that rely solely on task rewards. In this paper, we propose a Foundation model-based method for humanoid Locomotion And Manipulation (FLAM for short). FLAM integrates a stabilizing reward function with a basic policy. The stabilizing reward function is designed to encourage the robot to learn stable postures, thereby accelerating the learning process and facilitating task completion. Specifically, the robot pose is first mapped to the 3D virtual human model. Then, the human pose is stabilized and reconstructed through a human motion reconstruction model. Finally, the pose before and after reconstruction is used to compute the stabilizing reward. By combining this stabilizing reward with the task reward, FLAM effectively guides policy learning. Experimental results on a humanoid robot benchmark demonstrate that FLAM outperforms state-of-the-art RL methods, highlighting its effectiveness in improving stability and overall performance.
Authors:Eddie Pokming Sheung, Qihao Liu, Wufei Ma, Prakhar Kaushik, Jianwen Xie, Alan Yuille
Title: TriDiff-4D: Fast 4D Generation through Diffusion-based Triplane Re-posing
Abstract:
With the increasing demand for 3D animation, generating high-fidelity, controllable 4D avatars from textual descriptions remains a significant challenge. Despite notable efforts in 4D generative modeling, existing methods exhibit fundamental limitations that impede their broader applicability, including temporal and geometric inconsistencies, perceptual artifacts, motion irregularities, high computational costs, and limited control over dynamics. To address these challenges, we propose TriDiff-4D, a novel 4D generative pipeline that employs diffusion-based triplane re-posing to produce high-quality, temporally coherent 4D avatars. Our model adopts an auto-regressive strategy to generate 4D sequences of arbitrary length, synthesizing each 3D frame with a single diffusion process. By explicitly learning 3D structure and motion priors from large-scale 3D and motion datasets, TriDiff-4D enables skeleton-driven 4D generation that excels in temporal consistency, motion accuracy, computational efficiency, and visual fidelity. Specifically, TriDiff-4D first generates a canonical 3D avatar and a corresponding motion sequence from a text prompt, then uses a second diffusion model to animate the avatar according to the motion sequence, supporting arbitrarily long 4D generation. Experimental results demonstrate that TriDiff-4D significantly outperforms existing methods, reducing generation time from hours to seconds by eliminating the optimization process, while substantially improving the generation of complex motions with high-fidelity appearance and accurate 3D geometry.
Authors:Haocheng Tang, Ruoke Yan, Xinhui Yin, Qi Zhang, Xinfeng Zhang, Siwei Ma, Wen Gao, Chuanmin Jia
Title: HGC-Avatar: Hierarchical Gaussian Compression for Streamable Dynamic 3D Avatars
Abstract:
Recent advances in 3D Gaussian Splatting (3DGS) have enabled fast, photorealistic rendering of dynamic 3D scenes, showing strong potential in immersive communication. However, in digital human encoding and transmission, the compression methods based on general 3DGS representations are limited by the lack of human priors, resulting in suboptimal bitrate efficiency and reconstruction quality at the decoder side, which hinders their application in streamable 3D avatar systems. We propose HGC-Avatar, a novel Hierarchical Gaussian Compression framework designed for efficient transmission and high-quality rendering of dynamic avatars. Our method disentangles the Gaussian representation into a structural layer, which maps poses to Gaussians via a StyleUNet-based generator, and a motion layer, which leverages the SMPL-X model to represent temporal pose variations compactly and semantically. This hierarchical design supports layer-wise compression, progressive decoding, and controllable rendering from diverse pose inputs such as video sequences or text. Since people are most concerned with facial realism, we incorporate a facial attention mechanism during StyleUNet training to preserve identity and expression details under low-bitrate constraints. Experimental results demonstrate that HGC-Avatar provides a streamable solution for rapid 3D avatar rendering, while significantly outperforming prior methods in both visual quality and compression efficiency.
Authors:NVIDIA, :, Chaeyeon Chung, Ilya Fedorov, Michael Huang, Aleksey Karmanov, Dmitry Korobchenko, Roger Ribera, Yeongho Seol
Title: Audio2Face-3D: Audio-driven Realistic Facial Animation For Digital Avatars
Abstract:
Audio-driven facial animation presents an effective solution for animating digital avatars. In this paper, we detail the technical aspects of NVIDIA Audio2Face-3D, including data acquisition, network architecture, retargeting methodology, evaluation metrics, and use cases. Audio2Face-3D system enables real-time interaction between human users and interactive avatars, facilitating facial animation authoring for game characters. To assist digital avatar creators and game developers in generating realistic facial animations, we have open-sourced Audio2Face-3D networks, SDK, training framework, and example dataset.
Authors:Atieh Taheri, Purav Bhardwaj, Arthur Caetano, Alice Zhong, Misha Sra
Title: Virtual Buddy: Redefining Conversational AI Interactions for Individuals with Hand Motor Disabilities
Abstract:
Advances in artificial intelligence have transformed the paradigm of human-computer interaction, with the development of conversational AI systems playing a pivotal role. These systems employ technologies such as natural language processing and machine learning to simulate intelligent and human-like conversations. Driven by the personal experience of an individual with a neuromuscular disease who faces challenges with leaving home and contends with limited hand-motor control when operating digital systems, including conversational AI platforms, we propose a method aimed at enriching their interaction with conversational AI. Our prototype allows the creation of multiple agent personas based on hobbies and interests, to support topic-based conversations. In contrast with existing systems, such as Replika, that offer a 1:1 relation with a virtual agent, our design enables one-to-many relationships, easing the process of interaction for this individual by reducing the need for constant data input. We can imagine our prototype potentially helping others who are in a similar situation with reduced typing/input ability.
Authors:Yin Wang, Zhiying Leng, Haitian Liu, Frederick W. B. Li, Mu Li, Xiaohui Liang
Title: Dynamic Worlds, Dynamic Humans: Generating Virtual Human-Scene Interaction Motion in Dynamic Scenes
Abstract:
Scenes are continuously undergoing dynamic changes in the real world. However, existing human-scene interaction generation methods typically treat the scene as static, which deviates from reality. Inspired by world models, we introduce Dyn-HSI, the first cognitive architecture for dynamic human-scene interaction, which endows virtual humans with three humanoid components. (1)Vision (human eyes): we equip the virtual human with a Dynamic Scene-Aware Navigation, which continuously perceives changes in the surrounding environment and adaptively predicts the next waypoint. (2)Memory (human brain): we equip the virtual human with a Hierarchical Experience Memory, which stores and updates experiential data accumulated during training. This allows the model to leverage prior knowledge during inference for context-aware motion priming, thereby enhancing both motion quality and generalization. (3) Control (human body): we equip the virtual human with Human-Scene Interaction Diffusion Model, which generates high-fidelity interaction motions conditioned on multimodal inputs. To evaluate performance in dynamic scenes, we extend the existing static human-scene interaction datasets to construct a dynamic benchmark, Dyn-Scenes. We conduct extensive qualitative and quantitative experiments to validate Dyn-HSI, showing that our method consistently outperforms existing approaches and generates high-quality human-scene interaction motions in both static and dynamic settings.
Authors:Rihao Chang, He Jiao, Weizhi Nie, Honglin Guo, Keliang Xie, Zhenhua Wu, Lina Zhao, Yunpeng Bai, Yongtao Ma, Lanjun Wang, Yuting Su, Xi Gao, Weijie Wang, Nicu Sebe, Bruno Lepri, Bingwei Sun
Title: Organ-Agents: Virtual Human Physiology Simulator via LLMs
Abstract:
Recent advances in large language models (LLMs) have enabled new possibilities in simulating complex physiological systems. We introduce Organ-Agents, a multi-agent framework that simulates human physiology via LLM-driven agents. Each Simulator models a specific system (e.g., cardiovascular, renal, immune). Training consists of supervised fine-tuning on system-specific time-series data, followed by reinforcement-guided coordination using dynamic reference selection and error correction. We curated data from 7,134 sepsis patients and 7,895 controls, generating high-resolution trajectories across 9 systems and 125 variables. Organ-Agents achieved high simulation accuracy on 4,509 held-out patients, with per-system MSEs <0.16 and robustness across SOFA-based severity strata. External validation on 22,689 ICU patients from two hospitals showed moderate degradation under distribution shifts with stable simulation. Organ-Agents faithfully reproduces critical multi-system events (e.g., hypotension, hyperlactatemia, hypoxemia) with coherent timing and phase progression. Evaluation by 15 critical care physicians confirmed realism and physiological plausibility (mean Likert ratings 3.9 and 3.7). Organ-Agents also enables counterfactual simulations under alternative sepsis treatment strategies, generating trajectories and APACHE II scores aligned with matched real-world patients. In downstream early warning tasks, classifiers trained on synthetic data showed minimal AUROC drops (<0.04), indicating preserved decision-relevant patterns. These results position Organ-Agents as a credible, interpretable, and generalizable digital twin for precision diagnosis, treatment simulation, and hypothesis testing in critical care.
Authors:Yanning Dai, Chenyu Tang, Ruizhi Zhang, Wenyu Yang, Yilan Zhang, Yuhui Wang, Junliang Chen, Xuhang Chen, Ruimou Xie, Yangyue Cao, Qiaoying Li, Jin Cao, Tao Li, Hubin Zhao, Yu Pan, Arokia Nathan, Xin Gao, Peter Smielewski, Shuo Gao
Title: Wearable-informed generative digital avatars predict task-conditioned post-stroke locomotion
Abstract:
Dynamic prediction of locomotor capacity after stroke could enable more individualized rehabilitation, yet current assessments largely provide static impairment scores and do not indicate whether patients can perform specific tasks such as slope walking or stair climbing. Here, we present a wearable-informed data-physics hybrid generative framework that reconstructs a stroke survivor's locomotor control from wearable inertial sensing and predicts task-conditioned post-stroke locomotion in new environments. From a single 20 m level-ground walking trial recorded by five IMUs, the framework personalizes a physics-based digital avatar using a healthy-motion prior and hybrid imitation learning, generating dynamically feasible, patient-specific movements for inclined walking and stair negotiation. Across 11 stroke inpatients, predicted postures reached 82.2% similarity for slopes and 69.9% for stairs, substantially exceeding a physics-only baseline. In a multicentre pilot randomized study (n = 21; 28 days), access to scenario-specific locomotion predictions to support task selection and difficulty titration was associated with larger gains in Fugl-Meyer lower-extremity scores than standard care (mean change 6.0 vs 3.7 points; $p < 0.05$). These results suggest that wearable-informed generative digital avatars may augment individualized gait rehabilitation planning and provide a pathway toward dynamically personalized post-stroke motor recovery strategies.
Authors:Alex Zook, Fan-Yun Sun, Josef Spjut, Valts Blukis, Stan Birchfield, Jonathan Tremblay
Title: GRS: Generating Robotic Simulation Tasks from Real-World Images
Abstract:
We introduce GRS (Generating Robotic Simulation tasks), a system addressing real-to-sim for robotic simulations. GRS creates digital twin simulations from single RGB-D observations with solvable tasks for virtual agent training. Using vision-language models (VLMs), our pipeline operates in three stages: 1) scene comprehension with SAM2 for segmentation and object description, 2) matching objects with simulation-ready assets, and 3) generating appropriate tasks. We ensure simulation-task alignment through generated test suites and introduce a router that iteratively refines both simulation and test code. Experiments demonstrate our system's effectiveness in object correspondence and task environment generation through our novel router mechanism.
Authors:Dongyun Han, Siyeon Bak, So-Hui Kim, Kangsoo Kim, Sun-Jeong Kim, Isaac Cho
Title: What if Virtual Agents Had Scents? Users' Judgments of Virtual Agent Personality and Appeals in Encounters
Abstract:
Incorporating multi-sensory cues into Virtual Reality (VR) can significantly enhance user experiences, mirroring the multi-sensory interactions we encounter in the real-world. Olfaction plays a crucial role in shaping impressions when engaging with others. This study examines how non-verbal cues from virtual agents-specifically olfactory cues, emotional expressions, and gender-influence user perceptions during encounters with virtual agents. Our findings indicate that in unscented, woodsy, and floral scent conditions, participants primarily relied on visually observable cues to form their impressions of virtual agents. Positive emotional expressions, conveyed through facial expressions and gestures, contributed to more favorable impressions, with this effect being stronger for the female agent than the male agent. However, in the unpleasant scent condition, participants consistently formed negative impressions, which overpowered the influence of emotional expressions and gender, suggesting that aversive olfactory stimuli can detrimentally impact user perceptions. Our results emphasize the importance of carefully selecting olfactory stimuli when designing immersive and engaging VR interactions. Finally, we present our findings and outline future research directions for effectively integrating olfactory cues into virtual agents.
Authors:Jialu Li, Yuanzhen Li, Neal Wadhwa, Yael Pritch, David E. Jacobs, Michael Rubinstein, Mohit Bansal, Nataniel Ruiz
Title: Unbounded: A Generative Infinite Game of Character Life Simulation
Abstract:
We introduce the concept of a generative infinite game, a video game that transcends the traditional boundaries of finite, hard-coded systems by using generative models. Inspired by James P. Carse's distinction between finite and infinite games, we leverage recent advances in generative AI to create Unbounded: a game of character life simulation that is fully encapsulated in generative models. Specifically, Unbounded draws inspiration from sandbox life simulations and allows you to interact with your autonomous virtual character in a virtual world by feeding, playing with and guiding it - with open-ended mechanics generated by an LLM, some of which can be emergent. In order to develop Unbounded, we propose technical innovations in both the LLM and visual generation domains. Specifically, we present: (1) a specialized, distilled large language model (LLM) that dynamically generates game mechanics, narratives, and character interactions in real-time, and (2) a new dynamic regional image prompt Adapter (IP-Adapter) for vision models that ensures consistent yet flexible visual generation of a character across multiple environments. We evaluate our system through both qualitative and quantitative analysis, showing significant improvements in character life simulation, user instruction following, narrative coherence, and visual consistency for both characters and the environments compared to traditional related approaches.
Authors:Gangjian Zhang, Jian Shu, Nanjie Yao, Hao Wang
Title: SAT: Supervisor Regularization and Animation Augmentation for Two-process Monocular Texture 3D Human Reconstruction
Abstract:
Monocular texture 3D human reconstruction aims to create a complete 3D digital avatar from just a single front-view human RGB image. However, the geometric ambiguity inherent in a single 2D image and the scarcity of 3D human training data are the main obstacles limiting progress in this field. To address these issues, current methods employ prior geometric estimation networks to derive various human geometric forms, such as the SMPL model and normal maps. However, they struggle to integrate these modalities effectively, leading to view inconsistencies, such as facial distortions. To this end, we propose a two-process 3D human reconstruction framework, SAT, which seamlessly learns various prior geometries in a unified manner and reconstructs high-quality textured 3D avatars as the final output. To further facilitate geometry learning, we introduce a Supervisor Feature Regularization module. By employing a multi-view network with the same structure to provide intermediate features as training supervision, these varied geometric priors can be better fused. To tackle data scarcity and further improve reconstruction quality, we also propose an Online Animation Augmentation module. By building a one-feed-forward animation network, we augment a massive number of samples from the original 3D human data online for model training. Extensive experiments on two benchmarks show the superiority of our approach compared to state-of-the-art methods.
Authors:Shiying Li, Xingqun Qi, Bingkun Yang, Chen Weile, Zezhao Tian, Muyi Sun, Qifeng Liu, Man Zhang, Zhenan Sun
Title: VividListener: Expressive and Controllable Listener Dynamics Modeling for Multi-Modal Responsive Interaction
Abstract:
Generating responsive listener head dynamics with nuanced emotions and expressive reactions is crucial for practical dialogue modeling in various virtual avatar animations. Previous studies mainly focus on the direct short-term production of listener behavior. They overlook the fine-grained control over motion variations and emotional intensity, especially in long-sequence modeling. Moreover, the lack of long-term and large-scale paired speaker-listener corpora including head dynamics and fine-grained multi-modality annotations (e.g., text-based expression descriptions, emotional intensity) also limits the application of dialogue modeling.Therefore, we first newly collect a large-scale multi-turn dataset of 3D dyadic conversation containing more than 1.4M valid frames for multi-modal responsive interaction, dubbed ListenerX. Additionally, we propose VividListener, a novel framework enabling fine-grained, expressive and controllable listener dynamics modeling. This framework leverages multi-modal conditions as guiding principles for fostering coherent interactions between speakers and listeners.Specifically, we design the Responsive Interaction Module (RIM) to adaptively represent the multi-modal interactive embeddings. RIM ensures the listener dynamics achieve fine-grained semantic coordination with textual descriptions and adjustments, while preserving expressive reaction with speaker behavior. Meanwhile, we design the Emotional Intensity Tags (EIT) for emotion intensity editing with multi-modal information integration, applying to both text descriptions and listener motion amplitude.Extensive experiments conducted on our newly collected ListenerX dataset demonstrate that VividListener achieves state-of-the-art performance, realizing expressive and controllable listener dynamics.
Authors:Julian Leichert, Monique Koke, Britta Wrede, Birte Richter
Title: Virtual Agent Tutors in Sheltered Workshops: A Feasibility Study on Attention Training for Individuals with Intellectual Disabilities
Abstract:
In this work, we evaluate the feasibility of socially assistive virtual agent-based cognitive training for people with intellectual disabilities (ID) in a sheltered workshop. The Robo- Camp system, originally developed for children with Attention Deficit Hyperactivity Disorder (ADHD), is adapted based on the results of a pilot study in which we identified barriers and collected feedback from workshop staff. In a subsequent study, we investigate the aspects of usability, technical reliability, attention training capabilities and novelty effect in the feasibility of integrating the RoboCamp system.
Authors:Arthur Moreau, Mohammed Brahimi, Richard Shaw, Athanasios Papaioannou, Thomas Tanay, Zhensong Zhang, Eduardo Pérez-Pellitero
Title: Better Together: Unified Motion Capture and 3D Avatar Reconstruction
Abstract:
We present Better Together, a method that simultaneously solves the human pose estimation problem while reconstructing a photorealistic 3D human avatar from multi-view videos. While prior art usually solves these problems separately, we argue that joint optimization of skeletal motion with a 3D renderable body model brings synergistic effects, i.e. yields more precise motion capture and improved visual quality of real-time rendering of avatars. To achieve this, we introduce a novel animatable avatar with 3D Gaussians rigged on a personalized mesh and propose to optimize the motion sequence with time-dependent MLPs that provide accurate and temporally consistent pose estimates. We first evaluate our method on highly challenging yoga poses and demonstrate state-of-the-art accuracy on multi-view human pose estimation, reducing error by 35% on body joints and 45% on hand joints compared to keypoint-based methods. At the same time, our method significantly boosts the visual quality of animatable avatars (+2dB PSNR on novel view synthesis) on diverse challenging subjects.
Authors:Shengze Wang, Xueting Li, Chao Liu, Matthew Chan, Michael Stengel, Henry Fuchs, Shalini De Mello, Koki Nagano
Title: Coherent3D: Coherent 3D Portrait Video Reconstruction via Triplane Fusion
Abstract:
Recent breakthroughs in single-image 3D portrait reconstruction have enabled telepresence systems to stream 3D portrait videos from a single camera in real-time, democratizing telepresence. However, per-frame 3D reconstruction exhibits temporal inconsistency and forgets the user's appearance. On the other hand, self-reenactment methods can render coherent 3D portraits by driving a 3D avatar built from a single reference image, but fail to faithfully preserve the user's per-frame appearance (e.g., instantaneous facial expression and lighting). As a result, none of these two frameworks is an ideal solution for democratized 3D telepresence. In this work, we address this dilemma and propose a novel solution that maintains both coherent identity and dynamic per-frame appearance to enable the best possible realism. To this end, we propose a new fusion-based method that takes the best of both worlds by fusing a canonical 3D prior from a reference view with dynamic appearance from per-frame input views, producing temporally stable 3D videos with faithful reconstruction of the user's per-frame appearance. Trained only using synthetic data produced by an expression-conditioned 3D GAN, our encoder-based method achieves both state-of-the-art 3D reconstruction and temporal consistency on in-studio and in-the-wild datasets. https://research.nvidia.com/labs/amri/projects/coherent3d
Authors:Nabila Amadou, Kazi Injamamul Haque, Zerrin Yumak
Title: Effect of Appearance and Animation Realism on the Perception of Emotionally Expressive Virtual Humans
Abstract:
3D Virtual Human technology is growing with several potential applications in health, education, business and telecommunications. Investigating the perception of these virtual humans can help guide to develop better and more effective applications. Recent developments show that the appearance of the virtual humans reached to a very realistic level. However, there is not yet adequate analysis on the perception of appearance and animation realism for emotionally expressive virtual humans. In this paper, we designed a user experiment and analyzed the effect of a realistic virtual human's appearance realism and animation realism in varying emotion conditions. We found that higher appearance realism and higher animation realism leads to higher social presence and higher attractiveness ratings. We also found significant effects of animation realism on perceived realism and emotion intensity levels. Our study sheds light into how appearance and animation realism effects the perception of highly realistic virtual humans in emotionally expressive scenarios and points out to future directions.
Authors:Kunhang Li, Jason Naradowsky, Yansong Feng, Yusuke Miyao
Title: How Much Do Large Language Models Know about Human Motion? A Case Study in 3D Avatar Control
Abstract:
We explore the human motion knowledge of Large Language Models (LLMs) through 3D avatar control. Given a motion instruction, we prompt LLMs to first generate a high-level movement plan with consecutive steps (High-level Planning), then specify body part positions in each step (Low-level Planning), which we linearly interpolate into avatar animations. Using 20 representative motion instructions that cover fundamental movements and balance body part usage, we conduct comprehensive evaluations, including human and automatic scoring of both high-level movement plans and generated animations, as well as automatic comparison with oracle positions in low-level planning. Our findings show that LLMs are strong at interpreting high-level body movements but struggle with precise body part positioning. While decomposing motion queries into atomic components improves planning, LLMs face challenges in multi-step movements involving high-degree-of-freedom body parts. Furthermore, LLMs provide reasonable approximations for general spatial descriptions, but fall short in handling precise spatial specifications. Notably, LLMs demonstrate promise in conceptualizing creative motions and distinguishing culturally specific motion patterns.
Authors:Shengbo Gu, Yu-Kun Qiu, Yu-Ming Tang, Ancong Wu, Wei-Shi Zheng
Title: MaintaAvatar: A Maintainable Avatar Based on Neural Radiance Fields by Continual Learning
Abstract:
The generation of a virtual digital avatar is a crucial research topic in the field of computer vision. Many existing works utilize Neural Radiance Fields (NeRF) to address this issue and have achieved impressive results. However, previous works assume the images of the training person are available and fixed while the appearances and poses of a subject could constantly change and increase in real-world scenarios. How to update the human avatar but also maintain the ability to render the old appearance of the person is a practical challenge. One trivial solution is to combine the existing virtual avatar models based on NeRF with continual learning methods. However, there are some critical issues in this approach: learning new appearances and poses can cause the model to forget past information, which in turn leads to a degradation in the rendering quality of past appearances, especially color bleeding issues, and incorrect human body poses. In this work, we propose a maintainable avatar (MaintaAvatar) based on neural radiance fields by continual learning, which resolves the issues by utilizing a Global-Local Joint Storage Module and a Pose Distillation Module. Overall, our model requires only limited data collection to quickly fine-tune the model while avoiding catastrophic forgetting, thus achieving a maintainable virtual avatar. The experimental results validate the effectiveness of our MaintaAvatar model.
Authors:Dianbing Xi, Guoyuan An, Jingsen Zhu, Zhijian Liu, Yuan Liu, Ruiyuan Zhang, Jiayuan Lu, Rui Wang, Yuchi Huo
Title: PFAvatar: Pose-Fusion 3D Personalized Avatar Reconstruction from Real-World Outfit-of-the-Day Photos
Abstract:
We propose PFAvatar (Pose-Fusion Avatar), a new method that reconstructs high-quality 3D avatars from ``Outfit of the Day'' (OOTD) photos, which exhibit diverse poses, occlusions, and complex backgrounds. Our method consists of two stages: (1) fine-tuning a pose-aware diffusion model from few-shot OOTD examples and (2) distilling a 3D avatar represented by a neural radiance field (NeRF). In the first stage, unlike previous methods that segment images into assets (e.g., garments, accessories) for 3D assembly, which is prone to inconsistency, we avoid decomposition and directly model the full-body appearance. By integrating a pre-trained ControlNet for pose estimation and a novel Condition Prior Preservation Loss (CPPL), our method enables end-to-end learning of fine details while mitigating language drift in few-shot training. Our method completes personalization in just 5 minutes, achieving a 48$\times$ speed-up compared to previous approaches. In the second stage, we introduce a NeRF-based avatar representation optimized by canonical SMPL-X space sampling and Multi-Resolution 3D-SDS. Compared to mesh-based representations that suffer from resolution-dependent discretization and erroneous occluded geometry, our continuous radiance field can preserve high-frequency textures (e.g., hair) and handle occlusions correctly through transmittance. Experiments demonstrate that PFAvatar outperforms state-of-the-art methods in terms of reconstruction fidelity, detail preservation, and robustness to occlusions/truncations, advancing practical 3D avatar generation from real-world OOTD albums. In addition, the reconstructed 3D avatar supports downstream applications such as virtual try-on, animation, and human video reenactment, further demonstrating the versatility and practical value of our approach.
Authors:Nenad Tomasev, Matija Franklin, Joel Z. Leibo, Julian Jacobs, William A. Cunningham, Iason Gabriel, Simon Osindero
Title: Virtual Agent Economies
Abstract:
The rapid adoption of autonomous AI agents is giving rise to a new economic layer where agents transact and coordinate at scales and speeds beyond direct human oversight. We propose the "sandbox economy" as a framework for analyzing this emergent system, characterizing it along two key dimensions: its origins (emergent vs. intentional) and its degree of separateness from the established human economy (permeable vs. impermeable). Our current trajectory points toward a spontaneous emergence of a vast and highly permeable AI agent economy, presenting us with opportunities for an unprecedented degree of coordination as well as significant challenges, including systemic economic risk and exacerbated inequality. Here we discuss a number of possible design choices that may lead to safely steerable AI agent markets. In particular, we consider auction mechanisms for fair resource allocation and preference resolution, the design of AI "mission economies" to coordinate around achieving collective goals, and socio-technical infrastructure needed to ensure trust, safety, and accountability. By doing this, we argue for the proactive design of steerable agent markets to ensure the coming technological shift aligns with humanity's long-term collective flourishing.
Authors:Rachmadio Noval Lazuardi, Artem Sevastopolsky, Egor Zakharov, Matthias Niessner, Vanessa Sklyarova
Title: GeomHair: Reconstruction of Hair Strands from Colorless 3D Scans
Abstract:
We propose a novel method that reconstructs hair strands directly from colorless 3D scans by leveraging multi-modal hair orientation extraction. Hair strand reconstruction is a fundamental problem in computer vision and graphics that can be used for high-fidelity digital avatar synthesis, animation, and AR/VR applications. However, accurately recovering hair strands from raw scan data remains challenging due to human hair's complex and fine-grained structure. Existing methods typically rely on RGB captures, which can be sensitive to the environment and can be a challenging domain for extracting the orientation of guiding strands, especially in the case of challenging hairstyles. To reconstruct the hair purely from the observed geometry, our method finds sharp surface features directly on the scan and estimates strand orientation through a neural 2D line detector applied to the renderings of scan shading. Additionally, we incorporate a diffusion prior trained on a diverse set of synthetic hair scans, refined with an improved noise schedule, and adapted to the reconstructed contents via a scan-specific text prompt. We demonstrate that this combination of supervision signals enables accurate reconstruction of both simple and intricate hairstyles without relying on color information. To facilitate further research, we introduce Strands400, the largest publicly available dataset of hair strands with detailed surface geometry extracted from real-world data, which contains reconstructed hair strands from the scans of 400 subjects.
Authors:Julian Rasch, Julia Töws, Teresa Hirzle, Florian Müller, Martin Schmitz
Title: CreepyCoCreator? Investigating AI Representation Modes for 3D Object Co-Creation in Virtual Reality
Abstract:
Generative AI in Virtual Reality offers the potential for collaborative object-building, yet challenges remain in aligning AI contributions with user expectations. In particular, users often struggle to understand and collaborate with AI when its actions are not transparently represented. This paper thus explores the co-creative object-building process through a Wizard-of-Oz study, focusing on how AI can effectively convey its intent to users during object customization in Virtual Reality. Inspired by human-to-human collaboration, we focus on three representation modes: the presence of an embodied avatar, whether the AI's contributions are visualized immediately or incrementally, and whether the areas modified are highlighted in advance. The findings provide insights into how these factors affect user perception and interaction with object-generating AI tools in Virtual Reality as well as satisfaction and ownership of the created objects. The results offer design implications for co-creative world-building systems, aiming to foster more effective and satisfying collaborations between humans and AI in Virtual Reality.
Authors:Sen Peng, Weixing Xie, Zilong Wang, Xiaohu Guo, Zhonggui Chen, Baorong Yang, Xiao Dong
Title: RMAvatar: Photorealistic Human Avatar Reconstruction from Monocular Video Based on Rectified Mesh-embedded Gaussians
Abstract:
We introduce RMAvatar, a novel human avatar representation with Gaussian splatting embedded on mesh to learn clothed avatar from a monocular video. We utilize the explicit mesh geometry to represent motion and shape of a virtual human and implicit appearance rendering with Gaussian Splatting. Our method consists of two main modules: Gaussian initialization module and Gaussian rectification module. We embed Gaussians into triangular faces and control their motion through the mesh, which ensures low-frequency motion and surface deformation of the avatar. Due to the limitations of LBS formula, the human skeleton is hard to control complex non-rigid transformations. We then design a pose-related Gaussian rectification module to learn fine-detailed non-rigid deformations, further improving the realism and expressiveness of the avatar. We conduct extensive experiments on public datasets, RMAvatar shows state-of-the-art performance on both rendering quality and quantitative evaluations. Please see our project page at https://rm-avatar.github.io.
Authors:Antonello Ceravola, Frank Joublin
Title: HyperGraphOS: A Modern Meta-Operating System for the Scientific and Engineering Domains
Abstract:
This paper presents HyperGraphOS, a significant innovation in the domain of operating systems, specifically designed to address the needs of scientific and engineering domains. This platform aims to combine model-based engineering, graph modeling, data containers, and documents, along with tools for handling computational elements. HyperGraphOS functions as an Operating System offering to users an infinite workspace for creating and managing complex models represented as graphs with customizable semantics. By leveraging a web-based architecture, it requires only a modern web browser for access, allowing organization of knowledge, documents, and content into models represented in a network of workspaces. Elements of the workspace are defined in terms of domain-specific languages (DSLs). These DSLs are pivotal for navigating workspaces, generating code, triggering AI components, and organizing information and processes. The models' dual nature as both visual drawings and data structures allows dynamic modifications and inspections both interactively as well as programaticaly. We evaluated HyperGraphOS's efficiency and applicability across a large set of diverse domains, including the design and development of a virtual Avatar dialog system, a robotic task planner based on large language models (LLMs), a new meta-model for feature-based code development and many others. Our findings show that HyperGraphOS offers substantial benefits in the interaction with a computer as information system, as platoform for experiments and data analysis, as streamlined engineering processes, demonstrating enhanced flexibility in managing data, computation and documents, showing an innovative approaches to persistent desktop environments.
Authors:Matus Krajcovic, Peter Demcak, Eduard Kuric
Title: Talking Surveys: How Photorealistic Embodied Conversational Agents Shape Response Quality, Engagement, and Satisfaction
Abstract:
Embodied conversational agents (ECAs) are increasingly more realistic and capable of dynamic conversations. In online surveys, anthropomorphic agents could help address issues like careless responding and satisficing, which originate from the lack of personal engagement and perceived accountability. However, there is a lack of understanding of how ECAs in user experience research may affect participant engagement, satisfaction, and the quality of responses. As a proof of concept, we propose an instrument that enables the incorporation of conversations with a virtual avatar into surveys, using on AI-driven video generation, speech recognition, and Large Language Models. In our between-subjects study, 80 participants (UK, stratified random sample of general population) either talked to a voice-based agent with an animated video avatar, or interacted with a chatbot. Across surveys based on two self-reported psychometric tests, 2,265 conversation responses were obtained. Statistical comparison of results indicates that embodied agents can contribute significantly to more informative, detailed responses, as well as higher yet more time-efficient engagement. Furthermore, qualitative analysis provides valuable insights for causes of no significant change to satisfaction, linked to personal preferences, turn-taking delays and Uncanny Valley reactions. These findings support the pursuit and development of new methods toward human-like agents for the transformation of online surveys into more natural interactions resembling in-person interviews.
Authors:Ethan Wilson, Vincent Bindschaedler, Sophie Jörg, Sean Sheikholeslam, Kevin Butler, Eakta Jain
Title: Towards Privacy-preserving Photorealistic Self-avatars in Mixed Reality
Abstract:
Photorealistic 3D avatar generation has rapidly improved in recent years, and realistic avatars that match a user's true appearance are more feasible in Mixed Reality (MR) than ever before. Yet, there are known risks to sharing one's likeness online, and photorealistic MR avatars could exacerbate these risks. If user likenesses were to be shared broadly, there are risks for cyber abuse or targeted fraud based on user appearances. We propose an alternate avatar rendering scheme for broader social MR -- synthesizing realistic avatars that preserve a user's demographic identity while being distinct enough from the individual user to protect facial biometric information. We introduce a methodology for privatizing appearance by isolating identity within the feature space of identity-encoding generative models. We develop two algorithms that then obfuscate identity: \epsmethod{} provides differential privacy guarantees and \thetamethod{} provides fine-grained control for the level of identity offset. These methods are shown to successfully generate de-identified virtual avatars across multiple generative architectures in 2D and 3D. With these techniques, it is possible to protect user privacy while largely preserving attributes related to sense of self. Employing these techniques in public settings could enable the use of photorealistic avatars broadly in MR, maintaining high realism and immersion without privacy risk.
Authors:Jiawei Hou, Yuting Xiao, Xiangyang Xue, Taiping Zeng
Title: ELA-ZSON: Efficient Layout-Aware Zero-Shot Object Navigation Agent with Hierarchical Planning
Abstract:
We introduce ELA-ZSON, an efficient layout-aware zero-shot object navigation (ZSON) approach designed for complex multi-room indoor environments. By planning hierarchically leveraging a global topologigal map with layout information and local imperative approach with detailed scene representation memory, ELA-ZSON achieves both efficient and effective navigation. The process is managed by an LLM-powered agent, ensuring seamless effective planning and navigation, without the need for human interaction, complex rewards, or costly training. Our experimental results on the MP3D benchmark achieves 85\% object navigation success rate (SR) and 79\% success rate weighted by path length (SPL) (over 40\% point improvement in SR and 60\% improvement in SPL compared to exsisting methods). Furthermore, we validate the robustness of our approach through virtual agent and real-world robotic deployment, showcasing its capability in practical scenarios. See https://anonymous.4open.science/r/ELA-ZSON-C67E/ for details.
Authors:Hong Gao, Haochun Huai, Sena Yildiz-Degirmenci, Maria Bannert, Enkelejda Kasneci
Title: DataliVR: Transformation of Data Literacy Education through Virtual Reality with ChatGPT-Powered Enhancements
Abstract:
Data literacy is essential in today's data-driven world, emphasizing individuals' abilities to effectively manage data and extract meaningful insights. However, traditional classroom-based educational approaches often struggle to fully address the multifaceted nature of data literacy. As education undergoes digital transformation, innovative technologies such as Virtual Reality (VR) offer promising avenues for immersive and engaging learning experiences. This paper introduces DataliVR, a pioneering VR application aimed at enhancing the data literacy skills of university students within a contextual and gamified virtual learning environment. By integrating Large Language Models (LLMs) like ChatGPT as a conversational artificial intelligence (AI) chatbot embodied within a virtual avatar, DataliVR provides personalized learning assistance, enriching user learning experiences. Our study employed an experimental approach, with chatbot availability as the independent variable, analyzing learning experiences and outcomes as dependent variables with a sample of thirty participants. Our approach underscores the effectiveness and user-friendliness of ChatGPT-powered DataliVR in fostering data literacy skills. Moreover, our study examines the impact of the ChatGPT-based AI chatbot on users' learning, revealing significant effects on both learning experiences and outcomes. Our study presents a robust tool for fostering data literacy skills, contributing significantly to the digital advancement of data literacy education through cutting-edge VR and AI technologies. Moreover, our research provides valuable insights and implications for future research endeavors aiming to integrate LLMs (e.g., ChatGPT) into educational VR platforms.
Authors:Hongbin Huang, Junwei Li, Tianxin Xie, Zhuang Li, Cekai Weng, Yaodong Yang, Yue Luo, Li Liu, Jing Tang, Zhijing Shao, Zeyu Wang
Title: Hi-Reco: High-Fidelity Real-Time Conversational Digital Humans
Abstract:
High-fidelity digital humans are increasingly used in interactive applications, yet achieving both visual realism and real-time responsiveness remains a major challenge. We present a high-fidelity, real-time conversational digital human system that seamlessly combines a visually realistic 3D avatar, persona-driven expressive speech synthesis, and knowledge-grounded dialogue generation. To support natural and timely interaction, we introduce an asynchronous execution pipeline that coordinates multi-modal components with minimal latency. The system supports advanced features such as wake word detection, emotionally expressive prosody, and highly accurate, context-aware response generation. It leverages novel retrieval-augmented methods, including history augmentation to maintain conversational flow and intent-based routing for efficient knowledge access. Together, these components form an integrated system that enables responsive and believable digital humans, suitable for immersive applications in communication, education, and entertainment.
Authors:Naruya Kondo, Yuto Asano, Yoichi Ochiai
Title: Instant Skinned Gaussian Avatars for Web, Mobile and VR Applications
Abstract:
We present Instant Skinned Gaussian Avatars, a real-time and cross-platform 3D avatar system. Many approaches have been proposed to animate Gaussian Splatting, but they often require camera arrays, long preprocessing times, or high-end GPUs. Some methods attempt to convert Gaussian Splatting into mesh-based representations, achieving lightweight performance but sacrificing visual fidelity. In contrast, our system efficiently animates Gaussian Splatting by leveraging parallel splat-wise processing to dynamically follow the underlying skinned mesh in real time while preserving high visual fidelity. From smartphone-based 3D scanning to on-device preprocessing, the entire process takes just around five minutes, with the avatar generation step itself completed in only about 30 seconds. Our system enables users to instantly transform their real-world appearance into a 3D avatar, making it ideal for seamless integration with social media and metaverse applications. Website: https://sites.google.com/view/gaussian-vrm
Authors:Meisam Jamshidi Seikavandi, Jostein Fimland, Maria Jung Barrett, Paolo Burelli
Title: Exploring the Temporal Dynamics of Facial Mimicry in Emotion Processing Using Action Units
Abstract:
Facial mimicry - the automatic, unconscious imitation of others' expressions - is vital for emotional understanding. This study investigates how mimicry differs across emotions using Face Action Units from videos and participants' responses. Dynamic Time Warping quantified the temporal alignment between participants' and stimuli's facial expressions, revealing significant emotional variations. Post-hoc tests indicated greater mimicry for 'Fear' than 'Happy' and reduced mimicry for 'Anger' compared to 'Fear'. The mimicry correlations with personality traits like Extraversion and Agreeableness were significant, showcasing subtle yet meaningful connections. These findings suggest specific emotions evoke stronger mimicry, with personality traits playing a secondary role in emotional alignment. Notably, our results highlight how personality-linked mimicry mechanisms extend beyond interpersonal communication to affective computing applications, such as remote human-human interactions and human-virtual-agent scenarios. Insights from temporal facial mimicry - e.g., designing digital agents that adaptively mirror user expressions - enable developers to create empathetic, personalized systems, enhancing emotional resonance and user engagement.
Authors:Tianyu Song, Felix Pabst, Ulrich Eck, Nassir Navab
Title: Enhancing Patient Acceptance of Robotic Ultrasound through Conversational Virtual Agent and Immersive Visualizations
Abstract:
Robotic ultrasound systems can enhance medical diagnostics, but patient acceptance is a challenge. We propose a system combining an AI-powered conversational virtual agent with three mixed reality visualizations to improve trust and comfort. The virtual agent, powered by a large language model, engages in natural conversations and guides the ultrasound robot, enhancing interaction reliability. The visualizations include augmented reality, augmented virtuality, and fully immersive virtual reality, each designed to create patient-friendly experiences. A user study demonstrated significant improvements in trust and acceptance, offering valuable insights for designing mixed reality and virtual agents in autonomous medical procedures.
Authors:Farnaz Nouraei, Zhuorui Yong, Timothy Bickmore
Title: HealthDial: A No-Code LLM-Assisted Dialogue Authoring Tool for Healthcare Virtual Agents
Abstract:
We introduce HealthDial, a dialogue authoring tool that helps healthcare providers and educators create virtual agents that deliver health education and counseling to patients over multiple conversations. HealthDial leverages large language models (LLMs) to automatically create an initial session-based plan and conversations for each session using text-based patient health education materials as input. Authored dialogue is output in the form of finite state machines for virtual agent delivery so that all content can be validated and no unsafe advice is provided resulting from LLM hallucinations. LLM-drafted dialogue structure and language can be edited by the author in a no-code user interface to ensure validity and optimize clarity and impact. We conducted a feasibility and usability study with counselors and students to test our approach with an authoring task for cancer screening education. Participants used HealthDial and then tested their resulting dialogue by interacting with a 3D-animated virtual agent delivering the dialogue. Through participants' evaluations of the task experience and final dialogues, we show that HealthDial provides a promising first step for counselors to ensure full coverage of their health education materials, while creating understandable and actionable virtual agent dialogue with patients.
Authors:Yue Wu, Yufan Wu, Wen Li, Yuxi Lu, Kairui Feng, Xuanhong Chen
Title: FastAvatar: Towards Unified Fast High-Fidelity 3D Avatar Reconstruction with Large Gaussian Reconstruction Transformers
Abstract:
Despite significant progress in 3D avatar reconstruction, it still faces challenges such as high time complexity, sensitivity to data quality, and low data utilization. We propose FastAvatar, a feedforward 3D avatar framework capable of flexibly leveraging diverse daily recordings (e.g., a single image, multi-view observations, or monocular video) to reconstruct a high-quality 3D Gaussian Splatting (3DGS) model within seconds, using only a single unified model. FastAvatar's core is a Large Gaussian Reconstruction Transformer featuring three key designs: First, a variant VGGT-style transformer architecture aggregating multi-frame cues while injecting initial 3D prompt to predict an aggregatable canonical 3DGS representation; Second, multi-granular guidance encoding (camera pose, FLAME expression, head pose) mitigating animation-induced misalignment for variable-length inputs; Third, incremental Gaussian aggregation via landmark tracking and sliced fusion losses. Integrating these features, FastAvatar enables incremental reconstruction, i.e., improving quality with more observations, unlike prior work wasting input data. This yields a quality-speed-tunable paradigm for highly usable avatar modeling. Extensive experiments show that FastAvatar has higher quality and highly competitive speed compared to existing methods.
Authors:Mikko Korkiakoski, Saeid Sheikhi, Jesper Nyman, Jussi Saariniemi, Kalle Tapio, Panos Kostakos
Title: An Empirical Evaluation of AI-Powered Non-Player Characters' Perceived Realism and Performance in Virtual Reality Environments
Abstract:
Advancements in artificial intelligence (AI) have significantly enhanced the realism and interactivity of non-player characters (NPCs) in virtual reality (VR), creating more engaging and believable user experiences. This paper evaluates AI-driven NPCs within a VR interrogation simulator, focusing on their perceived realism, usability, and system performance. The simulator features two AI-powered NPCs, a suspect, and a partner, using GPT-4 Turbo to engage participants in a scenario to determine the suspect's guilt or innocence. A user study with 18 participants assessed the system using the System Usability Scale (SUS), Game Experience Questionnaire (GEQ), and a Virtual Agent Believability Questionnaire, alongside latency measurements for speech-to-text (STT), text-to-speech (TTS), OpenAI GPT-4 Turbo, and overall (cycle) latency. Results showed an average cycle latency of 7 seconds, influenced by the increasing conversational context. Believability scored 6.67 out of 10, with high ratings in behavior, social relationships, and intelligence but moderate scores in emotion and personality. The system achieved a SUS score of 79.44, indicating good usability. These findings demonstrate the potential of large language models to improve NPC realism and interaction in VR while highlighting challenges in reducing system latency and enhancing emotional depth. This research contributes to the development of more sophisticated AI-driven NPCs, revealing the need for performance optimization to achieve increasingly immersive virtual experiences.
Authors:Haojie Yu, Zhaonian Wang, Yihan Pan, Meng Cheng, Hao Yang, Chao Wang, Tao Xie, Xiaoming Xu, Xiaoming Wei, Xunliang Cai
Title: LLIA -- Enabling Low-Latency Interactive Avatars: Real-Time Audio-Driven Portrait Video Generation with Diffusion Models
Abstract:
Diffusion-based models have gained wide adoption in the virtual human generation due to their outstanding expressiveness. However, their substantial computational requirements have constrained their deployment in real-time interactive avatar applications, where stringent speed, latency, and duration requirements are paramount. We present a novel audio-driven portrait video generation framework based on the diffusion model to address these challenges. Firstly, we propose robust variable-length video generation to reduce the minimum time required to generate the initial video clip or state transitions, which significantly enhances the user experience. Secondly, we propose a consistency model training strategy for Audio-Image-to-Video to ensure real-time performance, enabling a fast few-step generation. Model quantization and pipeline parallelism are further employed to accelerate the inference speed. To mitigate the stability loss incurred by the diffusion process and model quantization, we introduce a new inference strategy tailored for long-duration video generation. These methods ensure real-time performance and low latency while maintaining high-fidelity output. Thirdly, we incorporate class labels as a conditional input to seamlessly switch between speaking, listening, and idle states. Lastly, we design a novel mechanism for fine-grained facial expression control to exploit our model's inherent capacity. Extensive experiments demonstrate that our approach achieves low-latency, fluid, and authentic two-way communication. On an NVIDIA RTX 4090D, our model achieves a maximum of 78 FPS at a resolution of 384x384 and 45 FPS at a resolution of 512x512, with an initial video generation latency of 140 ms and 215 ms, respectively.
Authors:Yiqian Wu, Malte Prinzler, Xiaogang Jin, Siyu Tang
Title: Text-based Animatable 3D Avatars with Morphable Model Alignment
Abstract:
The generation of high-quality, animatable 3D head avatars from text has enormous potential in content creation applications such as games, movies, and embodied virtual assistants. Current text-to-3D generation methods typically combine parametric head models with 2D diffusion models using score distillation sampling to produce 3D-consistent results. However, they struggle to synthesize realistic details and suffer from misalignments between the appearance and the driving parametric model, resulting in unnatural animation results. We discovered that these limitations stem from ambiguities in the 2D diffusion predictions during 3D avatar distillation, specifically: i) the avatar's appearance and geometry is underconstrained by the text input, and ii) the semantic alignment between the predictions and the parametric head model is insufficient because the diffusion model alone cannot incorporate information from the parametric model. In this work, we propose a novel framework, AnimPortrait3D, for text-based realistic animatable 3DGS avatar generation with morphable model alignment, and introduce two key strategies to address these challenges. First, we tackle appearance and geometry ambiguities by utilizing prior information from a pretrained text-to-3D model to initialize a 3D avatar with robust appearance, geometry, and rigging relationships to the morphable model. Second, we refine the initial 3D avatar for dynamic expressions using a ControlNet that is conditioned on semantic and normal maps of the morphable model to ensure accurate alignment. As a result, our method outperforms existing approaches in terms of synthesis quality, alignment, and animation fidelity. Our experiments show that the proposed method advances the state of the art in text-based, animatable 3D head avatar generation.
Authors:Prashant Raina, Felix Taubner, Mathieu Tuli, Eu Wern Teh, Kevin Ferreira
Title: PrismAvatar: Real-time animated 3D neural head avatars on edge devices
Abstract:
We present PrismAvatar: a 3D head avatar model which is designed specifically to enable real-time animation and rendering on resource-constrained edge devices, while still enjoying the benefits of neural volumetric rendering at training time. By integrating a rigged prism lattice with a 3D morphable head model, we use a hybrid rendering model to simultaneously reconstruct a mesh-based head and a deformable NeRF model for regions not represented by the 3DMM. We then distill the deformable NeRF into a rigged mesh and neural textures, which can be animated and rendered efficiently within the constraints of the traditional triangle rendering pipeline. In addition to running at 60 fps with low memory usage on mobile devices, we find that our trained models have comparable quality to state-of-the-art 3D avatar models on desktop devices.
Authors:Josep Lopez Camunas, Cristina Bustos, Yanjun Zhu, Raquel Ros, Agata Lapedriza
Title: Experimenting with Affective Computing Models in Video Interviews with Spanish-speaking Older Adults
Abstract:
Understanding emotional signals in older adults is crucial for designing virtual assistants that support their well-being. However, existing affective computing models often face significant limitations: (1) limited availability of datasets representing older adults, especially in non-English-speaking populations, and (2) poor generalization of models trained on younger or homogeneous demographics. To address these gaps, this study evaluates state-of-the-art affective computing models -- including facial expression recognition, text sentiment analysis, and smile detection -- using videos of older adults interacting with either a person or a virtual avatar. As part of this effort, we introduce a novel dataset featuring Spanish-speaking older adults engaged in human-to-human video interviews. Through three comprehensive analyses, we investigate (1) the alignment between human-annotated labels and automatic model outputs, (2) the relationships between model outputs across different modalities, and (3) individual variations in emotional signals. Using both the Wizard of Oz (WoZ) dataset and our newly collected dataset, we uncover limited agreement between human annotations and model predictions, weak consistency across modalities, and significant variability among individuals. These findings highlight the shortcomings of generalized emotion perception models and emphasize the need of incorporating personal variability and cultural nuances into future systems.
Authors:Farnaz Nouraei, Keith Rebello, Mina Fallah, Prasanth Murali, Haley Matuszak, Valerie Jap, Andrea Parker, Michael Paasche-Orlow, Timothy Bickmore
Title: Virtual Agent-Based Communication Skills Training to Facilitate Health Persuasion Among Peers
Abstract:
Many laypeople are motivated to improve the health behavior of their family or friends but do not know where to start, especially if the health behavior is potentially stigmatizing or controversial. We present an approach that uses virtual agents to coach community-based volunteers in health counseling techniques, such as motivational interviewing, and allows them to practice these skills in role-playing scenarios. We use this approach in a virtual agent-based system to increase COVID-19 vaccination by empowering users to influence their social network. In a between-subjects comparative design study, we test the effects of agent system interactivity and role-playing functionality on counseling outcomes, with participants evaluated by standardized patients and objective judges. We find that all versions are effective at producing peer counselors who score adequately on a standardized measure of counseling competence, and that participants were significantly more satisfied with interactive virtual agents compared to passive viewing of the training material. We discuss design implications for interpersonal skills training systems based on our findings.
Authors:Fan Zhang, Siyuan Zhao, Naye Ji, Zhaohan Wang, Jingmei Wu, Fuxing Gao, Zhenqing Ye, Leyao Yan, Lanxin Dai, Weidong Geng, Xin Lyu, Bozuo Zhao, Dingguo Yu, Hui Du, Bin Hu
Title: DiM-Gestor: Co-Speech Gesture Generation with Adaptive Layer Normalization Mamba-2
Abstract:
Speech-driven gesture generation using transformer-based generative models represents a rapidly advancing area within virtual human creation. However, existing models face significant challenges due to their quadratic time and space complexities, limiting scalability and efficiency. To address these limitations, we introduce DiM-Gestor, an innovative end-to-end generative model leveraging the Mamba-2 architecture. DiM-Gestor features a dual-component framework: (1) a fuzzy feature extractor and (2) a speech-to-gesture mapping module, both built on the Mamba-2. The fuzzy feature extractor, integrated with a Chinese Pre-trained Model and Mamba-2, autonomously extracts implicit, continuous speech features. These features are synthesized into a unified latent representation and then processed by the speech-to-gesture mapping module. This module employs an Adaptive Layer Normalization (AdaLN)-enhanced Mamba-2 mechanism to uniformly apply transformations across all sequence tokens. This enables precise modeling of the nuanced interplay between speech features and gesture dynamics. We utilize a diffusion model to train and infer diverse gesture outputs. Extensive subjective and objective evaluations conducted on the newly released Chinese Co-Speech Gestures dataset corroborate the efficacy of our proposed model. Compared with Transformer-based architecture, the assessments reveal that our approach delivers competitive results and significantly reduces memory usage, approximately 2.4 times, and enhances inference speeds by 2 to 4 times. Additionally, we released the CCG dataset, a Chinese Co-Speech Gestures dataset, comprising 15.97 hours (six styles across five scenarios) of 3D full-body skeleton gesture motion performed by professional Chinese TV broadcasters.
Authors:Gaofeng Liu, Hengsen Li, Ruoyu Gao, Xuetong Li, Zhiyuan Ma, Tao Fang
Title: Dream3DAvatar: Text-Controlled 3D Avatar Reconstruction from a Single Image
Abstract:
With the rapid advancement of 3D representation techniques and generative models, substantial progress has been made in reconstructing full-body 3D avatars from a single image. However, this task remains fundamentally ill-posedness due to the limited information available from monocular input, making it difficult to control the geometry and texture of occluded regions during generation. To address these challenges, we redesign the reconstruction pipeline and propose Dream3DAvatar, an efficient and text-controllable two-stage framework for 3D avatar generation. In the first stage, we develop a lightweight, adapter-enhanced multi-view generation model. Specifically, we introduce the Pose-Adapter to inject SMPL-X renderings and skeletal information into SDXL, enforcing geometric and pose consistency across views. To preserve facial identity, we incorporate ID-Adapter-G, which injects high-resolution facial features into the generation process. Additionally, we leverage BLIP2 to generate high-quality textual descriptions of the multi-view images, enhancing text-driven controllability in occluded regions. In the second stage, we design a feedforward Transformer model equipped with a multi-view feature fusion module to reconstruct high-fidelity 3D Gaussian Splat representations (3DGS) from the generated images. Furthermore, we introduce ID-Adapter-R, which utilizes a gating mechanism to effectively fuse facial features into the reconstruction process, improving high-frequency detail recovery. Extensive experiments demonstrate that our method can generate realistic, animation-ready 3D avatars without any post-processing and consistently outperforms existing baselines across multiple evaluation metrics.
Authors:Juyeong Hwang, Seong-Eun Hon, JaeYoung Seon, Hyeongyeop Kang
Title: How Does a Virtual Agent Decide Where to Look? -- Symbolic Cognitive Reasoning for Embodied Head Rotation
Abstract:
Natural head rotation is critical for believable embodied virtual agents, yet this micro-level behavior remains largely underexplored. While head-rotation prediction algorithms could, in principle, reproduce this behavior, they typically focus on visually salient stimuli and overlook the cognitive motives that guide head rotation. This yields agents that look at conspicuous objects while overlooking obstacles or task-relevant cues, diminishing realism in a virtual environment. We introduce SCORE, a Symbolic Cognitive Reasoning framework for Embodied Head Rotation, a data-agnostic framework that produces context-aware head movements without task-specific training or hand-tuned heuristics. A controlled VR study (N=20) identifies five motivational drivers of human head movements: Interest, Information Seeking, Safety, Social Schema, and Habit. SCORE encodes these drivers as symbolic predicates, perceives the scene with a Vision-Language Model (VLM), and plans head poses with a Large Language Model (LLM). The framework employs a hybrid workflow: the VLM-LLM reasoning is executed offline, after which a lightweight FastVLM performs online validation to suppress hallucinations while maintaining responsiveness to scene dynamics. The result is an agent that predicts not only where to look but also why, generalizing to unseen scenes and multi-agent crowds while retaining behavioral plausibility.
Authors:Zhizhuo Yin, Yuk Hang Tsui, Pan Hui
Title: M3G: Multi-Granular Gesture Generator for Audio-Driven Full-Body Human Motion Synthesis
Abstract:
Generating full-body human gestures encompassing face, body, hands, and global movements from audio is a valuable yet challenging task in virtual avatar creation. Previous systems focused on tokenizing the human gestures framewisely and predicting the tokens of each frame from the input audio. However, one observation is that the number of frames required for a complete expressive human gesture, defined as granularity, varies among different human gesture patterns. Existing systems fail to model these gesture patterns due to the fixed granularity of their gesture tokens. To solve this problem, we propose a novel framework named Multi-Granular Gesture Generator (M3G) for audio-driven holistic gesture generation. In M3G, we propose a novel Multi-Granular VQ-VAE (MGVQ-VAE) to tokenize motion patterns and reconstruct motion sequences from different temporal granularities. Subsequently, we proposed a multi-granular token predictor that extracts multi-granular information from audio and predicts the corresponding motion tokens. Then M3G reconstructs the human gestures from the predicted tokens using the MGVQ-VAE. Both objective and subjective experiments demonstrate that our proposed M3G framework outperforms the state-of-the-art methods in terms of generating natural and expressive full-body human gestures.
Authors:Kurtis Haut, Masum Hasan, Thomas Carroll, Ronald Epstein, Taylan Sen, Ehsan Hoque
Title: AI Standardized Patient Improves Human Conversations in Advanced Cancer Care
Abstract:
Serious illness communication (SIC) in end-of-life care faces challenges such as emotional stress, cultural barriers, and balancing hope with honesty. Despite its importance, one of the few available ways for clinicians to practice SIC is with standardized patients, which is expensive, time-consuming, and inflexible. In this paper, we present SOPHIE, an AI-powered standardized patient simulation and automated feedback system. SOPHIE combines large language models (LLMs), a lifelike virtual avatar, and automated, personalized feedback based on clinical literature to provide remote, on-demand SIC training. In a randomized control study with healthcare students and professionals, SOPHIE users demonstrated significant improvement across three critical SIC domains: Empathize, Be Explicit, and Empower. These results suggest that AI-driven tools can enhance complex interpersonal communication skills, offering scalable, accessible solutions to address a critical gap in clinician education.
Authors:Michael Yin, Chenxinran Shen, Robert Xiao
Title: Entertainers Between Real and Virtual -- Investigating Viewer Interaction, Engagement, and Relationships with Avatarized Virtual Livestreamers
Abstract:
Virtual YouTubers (VTubers) are avatar-based livestreamers that are voiced and played by human actors. VTubers have been popular in East Asia for years and have more recently seen widespread international growth. Despite their emergent popularity, research has been scarce into the interactions and relationships that exist between avatarized VTubers and their viewers, particularly in contrast to non-avatarized streamers. To address this gap, we performed in-depth interviews with self-reported VTuber viewers (n=21). Our findings first reveal that the avatarized nature of VTubers fosters new forms of theatrical engagement, as factors of the virtual blend with the real to create a mixture of fantasy and realism in possible livestream interactions. Avatarization furthermore results in a unique audience perception regarding the identity of VTubers - an identity which comprises a dynamic, distinct mix of the real human (the voice actor/actress) and the virtual character. Our findings suggest that each of these dual identities both individually and symbiotically affect viewer interactions and relationships with VTubers. Whereas the performer's identity mediates social factors such as intimacy, relatability, and authenticity, the virtual character's identity offers feelings of escapism, novelty in interactions, and a sense of continuity beyond the livestream. We situate our findings within existing livestreaming literature to highlight how avatarization drives unique, character-based interactions as well as reshapes the motivations and relationships that viewers form with livestreamers. Finally, we provide suggestions and recommendations for areas of future exploration to address the challenges involved in present livestreamed avatarized entertainment.
Authors:Shiqi Xin, Xiaolin Zhang, Yanbin Liu, Peng Zhang, Caifeng Shan
Title: AvatarBack: Back-Head Generation for Complete 3D Avatars from Front-View Images
Abstract:
Recent advances in Gaussian Splatting have significantly boosted the reconstruction of head avatars, enabling high-quality facial modeling by representing an 3D avatar as a collection of 3D Gaussians. However, existing methods predominantly rely on frontal-view images, leaving the back-head poorly constructed. This leads to geometric inconsistencies, structural blurring, and reduced realism in the rear regions, ultimately limiting the fidelity of reconstructed avatars. To address this challenge, we propose AvatarBack, a novel plug-and-play framework specifically designed to reconstruct complete and consistent 3D Gaussian avatars by explicitly modeling the missing back-head regions. AvatarBack integrates two core technical innovations,i.e., the Subject-specific Generator (SSG) and the Adaptive Spatial Alignment Strategy (ASA). The former leverages a generative prior to synthesize identity-consistent, plausible back-view pseudo-images from sparse frontal inputs, providing robust multi-view supervision. To achieve precise geometric alignment between these synthetic views and the 3D Gaussian representation, the later employs learnable transformation matrices optimized during training, effectively resolving inherent pose and coordinate discrepancies. Extensive experiments on NeRSemble and K-hairstyle datasets, evaluated using geometric, photometric, and GPT-4o-based perceptual metrics, demonstrate that AvatarBack significantly enhances back-head reconstruction quality while preserving frontal fidelity. Moreover, the reconstructed avatars maintain consistent visual realism under diverse motions and remain fully animatable.
Authors:Ana Müller, Anja Richert
Title: The Space Between Us: A Methodological Framework for Researching Bonding and Proxemics in Situated Group-Agent Interactions
Abstract:
This paper introduces a multimethod framework for studying spatial and social dynamics in real-world group-agent interactions with socially interactive agents. Drawing on proxemics and bonding theories, the method combines subjective self-reports and objective spatial tracking. Applied in two field studies in a museum (N = 187) with a robot and a virtual agent, the paper addresses the challenges in aligning human perception and behavior. We focus on presenting an open source, scalable, and field-tested toolkit for future studies.
Authors:Ana Müller, Sabina Jeschke, Anja Richert
Title: Are We Generalizing from the Exception? An In-the-Wild Study on Group-Sensitive Conversation Design in Human-Agent Interactions
Abstract:
This paper investigates the impact of a group-adaptive conversation design in two socially interactive agents (SIAs) through two real-world studies. Both SIAs - Furhat, a social robot, and MetaHuman, a virtual agent - were equipped with a conversational artificial intelligence (CAI) backend combining hybrid retrieval and generative models. The studies were carried out in an in-the-wild setting with a total of $N = 188$ participants who interacted with the SIAs - in dyads, triads or larger groups - at a German museum. Although the results did not reveal a significant effect of the group-sensitive conversation design on perceived satisfaction, the findings provide valuable insights into the challenges of adapting CAI for multi-party interactions and across different embodiments (robot vs.\ virtual agent), highlighting the need for multimodal strategies beyond linguistic pluralization. These insights contribute to the fields of Human-Agent Interaction (HAI), Human-Robot Interaction (HRI), and broader Human-Machine Interaction (HMI), providing insights for future research on effective dialogue adaptation in group settings.
Authors:Rim Rekik, Stefanie Wuhrer, Ludovic Hoyet, Katja Zibrek, Anne-Hélène Olivier
Title: Quality assessment of 3D human animation: Subjective and objective evaluation
Abstract:
Virtual human animations have a wide range of applications in virtual and augmented reality. While automatic generation methods of animated virtual humans have been developed, assessing their quality remains challenging. Recently, approaches introducing task-oriented evaluation metrics have been proposed, leveraging neural network training. However, quality assessment measures for animated virtual humans that are not generated with parametric body models have yet to be developed. In this context, we introduce a first such quality assessment measure leveraging a novel data-driven framework. First, we generate a dataset of virtual human animations together with their corresponding subjective realism evaluation scores collected with a user study. Second, we use the resulting dataset to learn predicting perceptual evaluation scores. Results indicate that training a linear regressor on our dataset results in a correlation of 90%, which outperforms a state of the art deep learning baseline.
Authors:Pilseo Park, Ze Zhang, Michel Sarkis, Ning Bi, Xiaoming Liu, Yiying Tong
Title: Refined Geometry-guided Head Avatar Reconstruction from Monocular RGB Video
Abstract:
High-fidelity reconstruction of head avatars from monocular videos is highly desirable for virtual human applications, but it remains a challenge in the fields of computer graphics and computer vision. In this paper, we propose a two-phase head avatar reconstruction network that incorporates a refined 3D mesh representation. Our approach, in contrast to existing methods that rely on coarse template-based 3D representations derived from 3DMM, aims to learn a refined mesh representation suitable for a NeRF that captures complex facial nuances. In the first phase, we train 3DMM-stored NeRF with an initial mesh to utilize geometric priors and integrate observations across frames using a consistent set of latent codes. In the second phase, we leverage a novel mesh refinement procedure based on an SDF constructed from the density field of the initial NeRF. To mitigate the typical noise in the NeRF density field without compromising the features of the 3DMM, we employ Laplace smoothing on the displacement field. Subsequently, we apply a second-phase training with these refined meshes, directing the learning process of the network towards capturing intricate facial details. Our experiments demonstrate that our method further enhances the NeRF rendering based on the initial mesh and achieves performance superior to state-of-the-art methods in reconstructing high-fidelity head avatars with such input.
Authors:Zhe Chang, Haodong Jin, Ying Sun, Yan Song, Hui Yu
Title: GAT-NeRF: Geometry-Aware-Transformer Enhanced Neural Radiance Fields for High-Fidelity 4D Facial Avatars
Abstract:
High-fidelity 4D dynamic facial avatar reconstruction from monocular video is a critical yet challenging task, driven by increasing demands for immersive virtual human applications. While Neural Radiance Fields (NeRF) have advanced scene representation, their capacity to capture high-frequency facial details, such as dynamic wrinkles and subtle textures from information-constrained monocular streams, requires significant enhancement. To tackle this challenge, we propose a novel hybrid neural radiance field framework, called Geometry-Aware-Transformer Enhanced NeRF (GAT-NeRF) for high-fidelity and controllable 4D facial avatar reconstruction, which integrates the Transformer mechanism into the NeRF pipeline. GAT-NeRF synergistically combines a coordinate-aligned Multilayer Perceptron (MLP) with a lightweight Transformer module, termed as Geometry-Aware-Transformer (GAT) due to its processing of multi-modal inputs containing explicit geometric priors. The GAT module is enabled by fusing multi-modal input features, including 3D spatial coordinates, 3D Morphable Model (3DMM) expression parameters, and learnable latent codes to effectively learn and enhance feature representations pertinent to fine-grained geometry. The Transformer's effective feature learning capabilities are leveraged to significantly augment the modeling of complex local facial patterns like dynamic wrinkles and acne scars. Comprehensive experiments unequivocally demonstrate GAT-NeRF's state-of-the-art performance in visual fidelity and high-frequency detail recovery, forging new pathways for creating realistic dynamic digital humans for multimedia applications.
Authors:Von Ralph Dane Marquez Herbuela, Yukie Nagai
Title: Realtime Multimodal Emotion Estimation using Behavioral and Neurophysiological Data
Abstract:
Many individuals especially those with autism spectrum disorder (ASD), alexithymia, or other neurodivergent profiles face challenges in recognizing, expressing, or interpreting emotions. To support more inclusive and personalized emotion technologies, we present a real-time multimodal emotion estimation system that combines neurophysiological EEG, ECG, blood volume pulse (BVP), and galvanic skin response (GSR/EDA) and behavioral modalities (facial expressions, and speech) in a unified arousal-valence 2D interface to track moment-to-moment emotional states. This architecture enables interpretable, user-specific analysis and supports applications in emotion education, neuroadaptive feedback, and interaction support for neurodiverse users. Two demonstration scenarios illustrate its application: (1) passive media viewing (2D or VR videos) reveals cortical and autonomic responses to affective content, and (2) semi-scripted conversations with a facilitator or virtual agent capture real-time facial and vocal expressions. These tasks enable controlled and naturalistic emotion monitoring, making the system well-suited for personalized feedback and neurodiversity-informed interaction design.
Authors:Qiong Wu, Yan Dong, Zipeng Zhang, Ruochen Hu
Title: The Effect of Scale Consistency between Real and Virtual Spaces on Immersion in Exhibition Hybrid Spaces
Abstract:
In exhibition hybrid spaces, scale consistency between real and virtual spaces is crucial for user immersion. However, there is currently a lack of systematic research to determine appropriate virtual-to-real mapping ratios. This study developed an immersive interaction system based on Intel 3D Athlete Tracking body mapping technology. Two experiments investigated the impact of virtual space and virtual avatar scale on immersion. Experiment 1 investigated 30 participants' preferences for virtual space scale, while Experiment 2 tested the effect of 6 different virtual avatar sizes (25%-150%) on immersion. A 5-point Likert scale was used to assess immersion, followed by analysis of variance and Tukey HSD post-hoc tests. Experiment 1 showed that participants preferred a virtual space ratio of 130% (mean 127.29%, SD 8.55%). Experiment 2 found that virtual avatar sizes within the 75%-100% range produced optimal immersion (p < 0.05). Immersion decreased significantly when virtual avatar sizes deviated from users' actual height (below 50% or above 125%). Participants were more sensitive to size changes in the 25%-75% range, while perception was weaker for changes in the 75%-100% range. Virtual environments slightly larger than real space (130%) and virtual avatars slightly smaller than users (75%-100%) optimize user immersion. These findings have been applied in the Intel Global Trade Center exhibition hall, demonstrating actionable insights for designing hybrid spaces that enhance immersion and coherence.
Authors:Amin Fadaeinejad, Abdallah Dib, Luiz Gustavo Hafemann, Emeline Got, Trevor Anderson, Amaury Depierre, Nikolaus F. Troje, Marcus A. Brubaker, Marc-André Carbonneau
Title: Geometry-Aware Texture Generation for 3D Head Modeling with Artist-driven Control
Abstract:
Creating realistic 3D head assets for virtual characters that match a precise artistic vision remains labor-intensive. We present a novel framework that streamlines this process by providing artists with intuitive control over generated 3D heads. Our approach uses a geometry-aware texture synthesis pipeline that learns correlations between head geometry and skin texture maps across different demographics. The framework offers three levels of artistic control: manipulation of overall head geometry, adjustment of skin tone while preserving facial characteristics, and fine-grained editing of details such as wrinkles or facial hair. Our pipeline allows artists to make edits to a single texture map using familiar tools, with our system automatically propagating these changes coherently across the remaining texture maps needed for realistic rendering. Experiments demonstrate that our method produces diverse results with clean geometries. We showcase practical applications focusing on intuitive control for artists, including skin tone adjustments and simplified editing workflows for adding age-related details or removing unwanted features from scanned models. This integrated approach aims to streamline the artistic workflow in virtual character creation.
Authors:Jiayang Huang, Lingjie Li, Kang Zhang, David Yip
Title: The Dream Within Huang Long Cave: AI-Driven Interactive Narrative for Family Storytelling and Emotional Reflection
Abstract:
This paper introduces the art project The Dream Within Huang Long Cave, an AI-driven interactive and immersive narrative experience. The project offers new insights into AI technology, artistic practice, and psychoanalysis. Inspired by actual geographical landscapes and familial archetypes, the work combines psychoanalytic theory and computational technology, providing an artistic response to the concept of the non-existence of the Big Other. The narrative is driven by a combination of a large language model (LLM) and a realistic digital character, forming a virtual agent named YELL. Through dialogue and exploration within a cave automatic virtual environment (CAVE), the audience is invited to unravel the language puzzles presented by YELL and help him overcome his life challenges. YELL is a fictional embodiment of the Big Other, modeled after the artist's real father. Through a cross-temporal interaction with this digital father, the project seeks to deconstruct complex familial relationships. By demonstrating the non-existence of the Big Other, we aim to underscore the authenticity of interpersonal emotions, positioning art as a bridge for emotional connection and understanding within family dynamics.
Authors:Madhurananda Pahar, Fuxiang Tao, Bahman Mirheidari, Nathan Pevy, Rebecca Bright, Swapnil Gadgil, Lise Sproson, Dorota Braun, Caitlin Illingworth, Daniel Blackburn, Heidi Christensen
Title: CognoSpeak: an automatic, remote assessment of early cognitive decline in real-world conversational speech
Abstract:
The early signs of cognitive decline are often noticeable in conversational speech, and identifying those signs is crucial in dealing with later and more serious stages of neurodegenerative diseases. Clinical detection is costly and time-consuming and although there has been recent progress in the automatic detection of speech-based cues, those systems are trained on relatively small databases, lacking detailed metadata and demographic information. This paper presents CognoSpeak and its associated data collection efforts. CognoSpeak asks memory-probing long and short-term questions and administers standard cognitive tasks such as verbal and semantic fluency and picture description using a virtual agent on a mobile or web platform. In addition, it collects multimodal data such as audio and video along with a rich set of metadata from primary and secondary care, memory clinics and remote settings like people's homes. Here, we present results from 126 subjects whose audio was manually transcribed. Several classic classifiers, as well as large language model-based classifiers, have been investigated and evaluated across the different types of prompts. We demonstrate a high level of performance; in particular, we achieved an F1-score of 0.873 using a DistilBERT model to discriminate people with cognitive impairment (dementia and people with mild cognitive impairment (MCI)) from healthy volunteers using the memory responses, fluency tasks and cookie theft picture description. CognoSpeak is an automatic, remote, low-cost, repeatable, non-invasive and less stressful alternative to existing clinical cognitive assessments.
Authors:Annalena Bea Aicher, Yuki Matsuda, Keichii Yasumoto, Wolfgang Minker, Elisabeth André, Stefan Ultes
Title: Exploring the Impact of Non-Verbal Virtual Agent Behavior on User Engagement in Argumentative Dialogues
Abstract:
Engaging in discussions that involve diverse perspectives and exchanging arguments on a controversial issue is a natural way for humans to form opinions. In this process, the way arguments are presented plays a crucial role in determining how engaged users are, whether the interaction takes place solely among humans or within human-agent teams. This is of great importance as user engagement plays a crucial role in determining the success or failure of cooperative argumentative discussions. One main goal is to maintain the user's motivation to participate in a reflective opinion-building process, even when addressing contradicting viewpoints. This work investigates how non-verbal agent behavior, specifically co-speech gestures, influences the user's engagement and interest during an ongoing argumentative interaction. The results of a laboratory study conducted with 56 participants demonstrate that the agent's co-speech gestures have a substantial impact on user engagement and interest and the overall perception of the system. Therefore, this research offers valuable insights for the design of future cooperative argumentative virtual agents.
Authors:Wenqing Wang, Yun Fu
Title: EmoGene: Audio-Driven Emotional 3D Talking-Head Generation
Abstract:
Audio-driven talking-head generation is a crucial and useful technology for virtual human interaction and film-making. While recent advances have focused on improving image fidelity and lip synchronization, generating accurate emotional expressions remains underexplored. In this paper, we introduce EmoGene, a novel framework for synthesizing high-fidelity, audio-driven video portraits with accurate emotional expressions. Our approach employs a variational autoencoder (VAE)-based audio-to-motion module to generate facial landmarks, which are concatenated with emotional embedding in a motion-to-emotion module to produce emotional landmarks. These landmarks drive a Neural Radiance Fields (NeRF)-based emotion-to-video module to render realistic emotional talking-head videos. Additionally, we propose a pose sampling method to generate natural idle-state (non-speaking) videos for silent audio inputs. Extensive experiments demonstrate that EmoGene outperforms previous methods in generating high-fidelity emotional talking-head videos.
Authors:Sung Park, Daeho Yoon, Jungmin Lee
Title: The Effect of Empathic Expression Levels in Virtual Human Interaction: A Controlled Experiment
Abstract:
As artificial intelligence (AI) systems become increasingly embedded in everyday life, the ability of interactive agents to express empathy has become critical for effective human-AI interaction, particularly in emotionally sensitive contexts. Rather than treating empathy as a binary capability, this study examines how different levels of empathic expression in virtual human interaction influence user experience. We conducted a between-subject experiment (n = 70) in a counseling-style interaction context, comparing three virtual human conditions: a neutral dialogue-based agent, a dialogue-based empathic agent, and a video-based empathic agent that incorporates users' facial cues. Participants engaged in a 15-minute interaction and subsequently evaluated their experience using subjective measures of empathy and interaction quality. Results from analysis of variance (ANOVA) revealed significant differences across conditions in affective empathy, perceived naturalness of facial movement, and appropriateness of facial expression. The video-based empathic expression condition elicited significantly higher affective empathy than the neutral baseline (p < .001) and marginally higher levels than the dialogue-based condition (p < .10). In contrast, cognitive empathy did not differ significantly across conditions. These findings indicate that empathic expression in virtual humans should be conceptualized as a graded design variable, rather than a binary capability, with visually grounded cues playing a decisive role in shaping affective user experience.
Authors:Bokyung Jang, Eunho Jung, Yoonsang Lee
Title: B2F: End-to-End Body-to-Face Motion Generation with Style Reference
Abstract:
Human motion naturally integrates body movements and facial expressions, forming a unified perception. If a virtual character's facial expression does not align well with its body movements, it may weaken the perception of the character as a cohesive whole. Motivated by this, we propose B2F, a model that generates facial motions aligned with body movements. B2F takes a facial style reference as input, generating facial animations that reflect the provided style while maintaining consistency with the associated body motion. To achieve this, B2F learns a disentangled representation of content and style, using alignment and consistency-based objectives. We represent style using discrete latent codes learned via the Gumbel-Softmax trick, enabling diverse expression generation with a structured latent representation. B2F outputs facial motion in the FLAME format, making it compatible with SMPL-X characters, and supports ARKit-style avatars through a dedicated conversion module. Our evaluations show that B2F generates expressive and engaging facial animations that synchronize with body movements and style intent, while mitigating perceptual dissonance from mismatched cues, and generalizing across diverse characters and styles.
Authors:Eric Godden, Jacquie Groenewegen, Michael Wheeler, Matthew K. X. J. Pan
Title: Social-Physical Interactions with Virtual Characters: Evaluating the Impact of Physicality through Encountered-Type Haptics
Abstract:
This work investigates how robot-mediated physicality influences the perception of social-physical interactions with virtual characters. ETHOS (Encountered-Type Haptics for On-demand Social interaction) is an encountered-type haptic display that integrates a torque-controlled manipulator and interchangeable props with a VR headset to enable three gestures: object handovers, fist bumps, and high fives. We conducted a user study to examine how ETHOS adds physicality to virtual character interactions and how this affects presence, realism, enjoyment, and connection metrics. Each participant experienced one interaction under three conditions: no physicality (NP), static physicality (SP), and dynamic physicality (DP). SP extended the purely virtual baseline (NP) by introducing tangible props for direct contact, while DP further incorporated motion and impact forces to emulate natural touch. Results show presence increased stepwise from NP to SP to DP. Realism, enjoyment, and connection also improved with added physicality, though differences between SP and DP were not significant. Comfort remained consistent across conditions, indicating no added psychological friction. These findings demonstrate the experiential value of ETHOS and motivate the integration of encountered-type haptics into socially meaningful VR experiences.
Authors:Dalton Omens, Allise Thurman, Jihun Yu, Ronald Fedkiw
Title: Improving Facial Rig Semantics for Tracking and Retargeting
Abstract:
In this paper, we consider retargeting a tracked facial performance to either another person or to a virtual character in a game or virtual reality (VR) environment. We remove the difficulties associated with identifying and retargeting the semantics of one rig framework to another by utilizing the same framework (3DMM, FLAME, MetaHuman, etc.) for both subjects. Although this does not constrain the choice of framework when retargeting from one person to another, it does force the tracker to use the game/VR character rig when retargeting to a game/VR character. We utilize volumetric morphing in order to fit facial rigs to both performers and targets; in addition, a carefully chosen set of Simon-Says expressions is used to calibrate each rig to the motion signatures of the relevant performer or target. Although a uniform set of Simon-Says expressions can likely be used for all person to person retargeting, we argue that person to game/VR character retargeting benefits from Simon-Says expressions that capture the distinct motion signature of the game/VR character rig. The Simon-Says calibrated rigs tend to produce the desired expressions when exercising animation controls (as expected). Unfortunately, these well-calibrated rigs still lead to undesirable controls when tracking a performance (a well-behaved function can have an arbitrarily ill-conditioned inverse), even though they typically produce acceptable geometry reconstructions. Thus, we propose a fine-tuning approach that modifies the rig used by the tracker in order to promote the output of more semantically meaningful animation controls, facilitating high efficacy retargeting. In order to better address real-world scenarios, the fine-tuning relies on implicit differentiation so that the tracker can be treated as a (potentially non-differentiable) black box.
Authors:Megha Quamara, Viktor Schmuck, Cristina Iani, Axel Primavesi, Alexander Plaum, Luca Vigano
Title: Evaluating Social Acceptance of eXtended Reality (XR) Agent Technology: A User Study (Extended Version)
Abstract:
In this paper, we present the findings of a user study that evaluated the social acceptance of eXtended Reality (XR) agent technology, focusing on a remotely accessible, web-based XR training system developed for journalists. This system involves user interaction with a virtual avatar, enabled by a modular toolkit. The interactions are designed to provide tailored training for journalists in digital-remote settings, especially for sensitive or dangerous scenarios, without requiring specialized end-user equipment like headsets. Our research adapts and extends the Almere model, representing social acceptance through existing attributes such as perceived ease of use and perceived usefulness, along with added ones like dependability and security in the user-agent interaction. The XR agent was tested through a controlled experiment in a real-world setting, with data collected on users' perceptions. Our findings, based on quantitative and qualitative measurements involving questionnaires, contribute to the understanding of user perceptions and acceptance of XR agent solutions within a specific social context, while also identifying areas for the improvement of XR systems.
Authors:Hanxi Liu, Yifang Men, Zhouhui Lian
Title: Creating Your Editable 3D Photorealistic Avatar with Tetrahedron-constrained Gaussian Splatting
Abstract:
Personalized 3D avatar editing holds significant promise due to its user-friendliness and availability to applications such as AR/VR and virtual try-ons. Previous studies have explored the feasibility of 3D editing, but often struggle to generate visually pleasing results, possibly due to the unstable representation learning under mixed optimization of geometry and texture in complicated reconstructed scenarios. In this paper, we aim to provide an accessible solution for ordinary users to create their editable 3D avatars with precise region localization, geometric adaptability, and photorealistic renderings. To tackle this challenge, we introduce a meticulously designed framework that decouples the editing process into local spatial adaptation and realistic appearance learning, utilizing a hybrid Tetrahedron-constrained Gaussian Splatting (TetGS) as the underlying representation. TetGS combines the controllable explicit structure of tetrahedral grids with the high-precision rendering capabilities of 3D Gaussian Splatting and is optimized in a progressive manner comprising three stages: 3D avatar instantiation from real-world monocular videos to provide accurate priors for TetGS initialization; localized spatial adaptation with explicitly partitioned tetrahedrons to guide the redistribution of Gaussian kernels; and geometry-based appearance generation with a coarse-to-fine activation strategy. Both qualitative and quantitative experiments demonstrate the effectiveness and superiority of our approach in generating photorealistic 3D editable avatars.
Authors:Young-Ho Bae, Casey C. Bennett
Title: Multimodal Transformer Models for Turn-taking Prediction: Effects on Conversational Dynamics of Human-Agent Interaction during Cooperative Gameplay
Abstract:
This study investigates multimodal turn-taking prediction within human-agent interactions (HAI), particularly focusing on cooperative gaming environments. It comprises both model development and subsequent user study, aiming to refine our understanding and improve conversational dynamics in spoken dialogue systems (SDSs). For the modeling phase, we introduce a novel transformer-based deep learning (DL) model that simultaneously integrates multiple modalities - text, vision, audio, and contextual in-game data to predict turn-taking events in real-time. Our model employs a Crossmodal Transformer architecture to effectively fuse information from these diverse modalities, enabling more comprehensive turn-taking predictions. The model demonstrates superior performance compared to baseline models, achieving 87.3% accuracy and 83.0% macro F1 score. A human user study was then conducted to empirically evaluate the turn-taking DL model in an interactive scenario with a virtual avatar while playing the game "Dont Starve Together", comparing a control condition without turn-taking prediction (n=20) to an experimental condition with our model deployed (n=40). Both conditions included a mix of English and Korean speakers, since turn-taking cues are known to vary by culture. We then analyzed the interaction quality, examining aspects such as utterance counts, interruption frequency, and participant perceptions of the avatar. Results from the user study suggest that our multimodal turn-taking model not only enhances the fluidity and naturalness of human-agent conversations, but also maintains a balanced conversational dynamic without significantly altering dialogue frequency. The study provides in-depth insights into the influence of turn-taking abilities on user perceptions and interaction quality, underscoring the potential for more contextually adaptive and responsive conversational agents.
Authors:Cindy Xu, Mengyu Chen, Pranav Deshpande, Elvir Azanli, Runqing Yang, Joseph Ligman
Title: Enabling Data-Driven and Empathetic Interactions: A Context-Aware 3D Virtual Agent in Mixed Reality for Enhanced Financial Customer Experience
Abstract:
In this paper, we introduce a novel system designed to enhance customer service in the financial and retail sectors through a context-aware 3D virtual agent, utilizing Mixed Reality (MR) and Vision Language Models (VLMs). Our approach focuses on enabling data-driven and empathetic interactions that ensure customer satisfaction by introducing situational awareness of the physical location, personalized interactions based on customer profiles, and rigorous privacy and security standards. We discuss our design considerations critical for deployment in real-world customer service environments, addressing challenges in user data management and sensitive information handling. We also outline the system architecture and key features unique to banking and retail environments. Our work demonstrates the potential of integrating MR and VLMs in service industries, offering practical insights in customer service delivery while maintaining high standards of security and personalization.
Authors:Kureha Hamagashira, Miyuki Azuma, Sotaro Shimada
Title: Positive Narrativity Enhances Sense of Agency toward a VR Avatar
Abstract:
The full-body illusion (FBI) refers to the experience of perceiving a virtual avatar as one's own body. In virtual reality (VR) environments, inducing the FBI has been shown to modulate users' bodily experiences and behavior. Previous studies have demonstrated that embodying avatars with specific characteristics can influence users' actions, largely through the activation of implicit stereotypes. However, few studies have explicitly manipulated users' impressions of an avatar by introducing narrative context. The present study investigated how avatar narrativity, induced through contextual narratives, affects the FBI. Healthy participants embodied a powerful artificial lifeform avatar in VR after listening to either a positive narrative, in which the avatar used its abilities to protect others, or a negative narrative, in which it misused its power. Participants' impressions of the avatar and indices of bodily self-consciousness were subsequently assessed. The results showed that positive narratives significantly enhanced the sense of agency (SoA), and that SoA was positively correlated with participants' perceived personal familiarity with the avatar. These findings suggest that the avatar narrativity can modulate embodiment in VR.
Authors:Vinayak Regmi, Christos Mousas
Title: LLM-Based Authoring of Agent-Based Narratives through Scene Descriptions
Abstract:
This paper presents a system for procedurally generating agent-based narratives using large language models (LLMs). Users could drag and drop multiple agents and objects into a scene, with each entity automatically assigned semantic metadata describing its identity, role, and potential interactions. The scene structure is then serialized into a natural language prompt and sent to an LLM, which returns a structured string describing a sequence of actions and interactions among agents and objects. The returned string encodes who performed which actions, when, and how. A custom parser interprets this string and triggers coordinated agent behaviors, animations, and interaction modules. The system supports agent-based scenes, dynamic object manipulation, and diverse interaction types. Designed for ease of use and rapid iteration, the system enables the generation of virtual agent activity suitable for prototyping agent narratives. The performance of the developed system was evaluated using four popular lightweight LLMs. Each model's process and response time were measured under multiple complexity scenarios. The collected data were analyzed to compare consistency across the examined scenarios and to highlight the relative efficiency and suitability of each model for procedural agent-based narratives generation. The results demonstrate that LLMs can reliably translate high-level scene descriptions into executable agent-based behaviors.
Authors:Birgit Nierula, Mustafa Tevfik Lafci, Anna Melnik, Mert Akgül, Farelle Toumaleu Siewe, Sebastian Bosse
Title: Differential Physiological Responses to Proxemic and Facial Threats in Virtual Avatar Interactions
Abstract:
Proxemics, the study of spatial behavior, is fundamental to social interaction and increasingly relevant for virtual reality (VR) applications. While previous research has established that users respond to personal space violations in VR similarly as in real-world settings, phase-specific physiological responses and the modulating effects of facial expressions remain understudied. We investigated physiological and subjective responses to personal space violations by virtual avatars, to understand how threatening facial expressions and interaction phases (approach vs. standing) influence these responses. Sixteen participants experienced a 2x2 factorial design manipulating Personal Space (intrusion vs. respect) and Facial Expression (neutral vs. angry) while we recorded skin conductance response (SCR), heart rate variability (HRV), and discomfort ratings. Personal space boundaries were individually calibrated using a stop-distance procedure. Results show that SCR responses are significantly higher during the standing phase compared to the approach phase when personal space was violated, indicating that prolonged proximity within personal space boundaries is more physiologically arousing than the approach itself. Angry facial expressions significantly reduced HRV, reflecting decreased parasympathetic activity, and increased discomfort ratings, but did not amplify SCR responses. These findings demonstrate that different physiological modalities capture distinct aspects of proxemic responses: SCR primarily reflects spatial boundary violations, while HRV responds to facial threat cues. Our results provide insights for developing comprehensive multi-modal assessments of social behavior in virtual environments and inform the design of more realistic avatar interactions.
Authors:Alexandre Symeonidis-Herzig, Özge Mercanoğlu Sincan, Richard Bowden
Title: VisualSpeaker: Visually-Guided 3D Avatar Lip Synthesis
Abstract:
Realistic, high-fidelity 3D facial animations are crucial for expressive avatar systems in human-computer interaction and accessibility. Although prior methods show promising quality, their reliance on the mesh domain limits their ability to fully leverage the rapid visual innovations seen in 2D computer vision and graphics. We propose VisualSpeaker, a novel method that bridges this gap using photorealistic differentiable rendering, supervised by visual speech recognition, for improved 3D facial animation. Our contribution is a perceptual lip-reading loss, derived by passing photorealistic 3D Gaussian Splatting avatar renders through a pre-trained Visual Automatic Speech Recognition model during training. Evaluation on the MEAD dataset demonstrates that VisualSpeaker improves both the standard Lip Vertex Error metric by 56.1% and the perceptual quality of the generated animations, while retaining the controllability of mesh-driven animation. This perceptual focus naturally supports accurate mouthings, essential cues that disambiguate similar manual signs in sign language avatars.
Authors:Ghazanfar Ali, Hong-Quan Le, Junho Kim, Seoung-won Hwang, Jae-In Hwang
Title: Design of Seamless Multi-modal Interaction Framework for Intelligent Virtual Agents in Wearable Mixed Reality Environment
Abstract:
In this paper, we present the design of a multimodal interaction framework for intelligent virtual agents in wearable mixed reality environments, especially for interactive applications at museums, botanical gardens, and similar places. These places need engaging and no-repetitive digital content delivery to maximize user involvement. An intelligent virtual agent is a promising mode for both purposes. Premises of framework is wearable mixed reality provided by MR devices supporting spatial mapping. We envisioned a seamless interaction framework by integrating potential features of spatial mapping, virtual character animations, speech recognition, gazing, domain-specific chatbot and object recognition to enhance virtual experiences and communication between users and virtual agents. By applying a modular approach and deploying computationally intensive modules on cloud-platform, we achieved a seamless virtual experience in a device with limited resources. Human-like gaze and speech interaction with a virtual agent made it more interactive. Automated mapping of body animations with the content of a speech made it more engaging. In our tests, the virtual agents responded within 2-4 seconds after the user query. The strength of the framework is flexibility and adaptability. It can be adapted to any wearable MR device supporting spatial mapping.
Authors:Yifan Wang, Ivan Molodetskikh, Ondrej Texler, Dimitar Dinev
Title: 3D Engine-ready Photorealistic Avatars via Dynamic Textures
Abstract:
As the digital and physical worlds become more intertwined, there has been a lot of interest in digital avatars that closely resemble their real-world counterparts. Current digitization methods used in 3D production pipelines require costly capture setups, making them impractical for mass usage among common consumers. Recent academic literature has found success in reconstructing humans from limited data using implicit representations (e.g., voxels used in NeRFs), which are able to produce impressive videos. However, these methods are incompatible with traditional rendering pipelines, making it difficult to use them in applications such as games. In this work, we propose an end-to-end pipeline that builds explicitly-represented photorealistic 3D avatars using standard 3D assets. Our key idea is the use of dynamically-generated textures to enhance the realism and visually mask deficiencies in the underlying mesh geometry. This allows for seamless integration with current graphics pipelines while achieving comparable visual quality to state-of-the-art 3D avatar generation methods.
Authors:Parisa Ghanad Torshizi, Laura B. Hensel, Ari Shapiro, Stacy C. Marsella
Title: Large Language Models for Virtual Human Gesture Selection
Abstract:
Co-speech gestures convey a wide variety of meanings and play an important role in face-to-face human interactions. These gestures significantly influence the addressee's engagement, recall, comprehension, and attitudes toward the speaker. Similarly, they impact interactions between humans and embodied virtual agents. The process of selecting and animating meaningful gestures has thus become a key focus in the design of these agents. However, automating this gesture selection process poses a significant challenge. Prior gesture generation techniques have varied from fully automated, data-driven methods, which often struggle to produce contextually meaningful gestures, to more manual approaches that require crafting specific gesture expertise and are time-consuming and lack generalizability. In this paper, we leverage the semantic capabilities of Large Language Models to develop a gesture selection approach that suggests meaningful, appropriate co-speech gestures. We first describe how information on gestures is encoded into GPT-4. Then, we conduct a study to evaluate alternative prompting approaches for their ability to select meaningful, contextually relevant gestures and to align them appropriately with the co-speech utterance. Finally, we detail and demonstrate how this approach has been implemented within a virtual agent system, automating the selection and subsequent animation of the selected gestures for enhanced human-agent interactions.
Authors:Bora Tarlan, Nisa Erdal
Title: How Can I Assist You Today?: A Comparative Analysis of a Humanoid Robot and a Virtual Human Avatar in Human Perception
Abstract:
This study explores human perceptions of intelligent agents by comparing interactions with a humanoid robot and a virtual human avatar, both utilizing GPT-3 for response generation. The study aims to understand how physical and virtual embodiments influence perceptions of anthropomorphism, animacy, likeability, and perceived intelligence. The uncanny valley effect was also investigated in the scope of this study based on the two agents' human-likeness and affinity. Conducted with ten participants from Sabanci University, the experiment involved tasks that sought advice, followed by assessments using the Godspeed Questionnaire Series and structured interviews. Results revealed no significant difference in anthropomorphism between the humanoid robot and the virtual human avatar, but the humanoid robot was perceived as more likable and slightly more intelligent, highlighting the importance of physical presence and interactive gestures. These findings suggest that while virtual avatars can achieve high human-likeness, physical embodiment enhances likeability and perceived intelligence. However, the study's scope was insufficient to claim the existence of the uncanny valley effect in the participants' interactions. The study offers practical insights for designing future intelligent assistants, emphasizing the need for integrating physical elements and sophisticated communicative behaviors to improve user experience and acceptance.
Authors:Leon O. H. Kroczek, Alexander May, Selina Hettenkofer, Andreas Ruider, Bernd Ludwig, Andreas Mühlberger
Title: The influence of persona and conversational task on social interactions with a LLM-controlled embodied conversational agent
Abstract:
Large Language Models (LLMs) have demonstrated remarkable capabilities in conversational tasks. Embodying an LLM as a virtual human allows users to engage in face-to-face social interactions in Virtual Reality. However, the influence of person- and task-related factors in social interactions with LLM-controlled agents remains unclear. In this study, forty-six participants interacted with a virtual agent whose persona was manipulated as extravert or introvert in three different conversational tasks (small talk, knowledge test, convincing). Social-evaluation, emotional experience, and realism were assessed using ratings. Interactive engagement was measured by quantifying participants' words and conversational turns. Finally, we measured participants' willingness to ask the agent for help during the knowledge test. Our findings show that the extraverted agent was more positively evaluated, elicited a more pleasant experience and greater engagement, and was assessed as more realistic compared to the introverted agent. Whereas persona did not affect the tendency to ask for help, participants were generally more confident in the answer when they had help of the LLM. Variation of personality traits of LLM-controlled embodied virtual agents, therefore, affects social-emotional processing and behavior in virtual interactions. Embodied virtual agents allow the presentation of naturalistic social encounters in a virtual environment.
Authors:Ana Christina Almada Campos, Bruno Vilhena Adorno
Title: A study on the effects of mixed explicit and implicit communications in human-virtual-agent interactions
Abstract:
Communication between humans and robots (or virtual agents) is essential for interaction and often inspired by human communication, which uses gestures, facial expressions, gaze direction, and other explicit and implicit means. This work presents an interaction experiment where humans and virtual agents interact through explicit (gestures, manual entries using mouse and keyboard, voice, sound, and information on screen) and implicit (gaze direction, location, facial expressions, and raise of eyebrows) communication to evaluate the effect of mixed explicit-implicit communication against purely explicit communication. Results obtained using Bayesian parameter estimation show that the number of errors and task execution time did not significantly change when mixed explicit and implicit communications were used, and neither the perceived efficiency of the interaction. In contrast, acceptance, sociability, and transparency of the virtual agent increased when using mixed communication modalities (88.3%, 92%, and 92.9% of the effect size posterior distribution of each variable, respectively, were above the upper limit of the region of practical equivalence). This suggests that task-related measures, such as time, number of errors, and perceived efficiency of the interaction, have not been influenced by the communication type in our particular experiment. However, the improvement of subjective measures related to the virtual agent, such as acceptance, sociability, and transparency, suggests that humans are more receptive to mixed explicit and implicit communications.
Authors:Jennifer Hu
Title: The Trusted Caregiver: The Influence of Eye and Mouth Design Incorporating the Baby Schema Effect in Virtual Humanoid Agents on Older Adults Users' Perception of Trustworthiness
Abstract:
The increasing proportion of the older adult population has made the smart home care industry one of the critical markets for virtual human-like agents. It is crucial to effectively promote a trustworthy human-computer partnership with older adults, enhancing service acceptance and effectiveness. However, few studies have focused on the facial features of the agents themselves, where the "baby schema" effect plays a vital role in enhancing trustworthiness. The eyes and mouth, in particular, attract most of the audience's attention and are especially significant. This study explores the impact of eye and mouth design on users' perception of trustworthiness. Specifically, a virtual humanoid agents model was developed, and based on this, 729 virtual facial images of children were designed. Participants (N=162) were asked to evaluate the impact of variations in the size and positioning of the eyes and mouth regions on the perceived credibility of these virtual agents. The results revealed that when the facial aspect ratio (width and height denoted as W and H, respectively) aligned with the "baby schema" effect (eye size at 0.25W, mouth size at 0.27W, eye height at 0.64H, eye distance at 0.43W, mouth height at 0.74H, and smile arc at 0.043H), the virtual agents achieved the highest facial credibility. This study proposes a design paradigm for the main facial features of virtual humanoid agents, which can increase the trust of older adults during interactions and significantly contribute to the research on the trustworthiness of virtual humanoid agents.