In this paper, we introduce a new problem, named audio-visual video parsing, which aims to parse a video into temporal event segments and label them as either audible, visible, or both. Such a problem is essential for a complete understanding of the scene depicted inside a video. To facilitate exploration, we collect a Look, Listen, and Parse (LLP) dataset to investigate audio-visual video parsing in a weakly-supervised manner. This task can be naturally formulated as a Multimodal Multiple Instance Learning (MMIL) problem. Concretely, we propose a novel hybrid attention network to explore unimodal and cross-modal temporal contexts simultaneously. We develop an attentive MMIL pooling method to adaptively explore useful audio and visual content from different temporal extent and modalities. Furthermore, we discover and mitigate modality bias and noisy label issues with an individual-guided learning mechanism and label smoothing technique, respectively. Experimental results show that the challenging audio-visual video parsing can be achieved even with only video-level weak labels. Our proposed framework can effectively leverage unimodal and cross-modal temporal contexts and alleviate modality bias and noisy labels problems. "Paperid:119
Authors:Yuanhao Cai, Zhicheng Wang, Zhengxiong Luo, Binyi Yin, Angang Du, Haoqian Wang, Xiangyu Zhang, Xinyu Zhou, Erjin Zhou, Jian Sun
Title: Learning Delicate Local Representations for Multi-Person Pose Estimation
Abstract:
In this paper, we propose a novel method called Residual Steps Network (RSN). RSN aggregates features with the same spatial size (Intra-level features) efficiently to obtain delicate local representations, which retain rich low-level spatial information and result in precise keypoint localization. Additionally, we observe the output features contribute differently to final performance. To tackle this problem, we propose an efficient attention mechanism - Pose Refine Machine (PRM) to make a trade-off between local and global representations in output features and further refine the keypoint locations. Our approach won the 1st place of COCO Keypoint Challenge 2019 and achieves state-of-the-art results on both COCO and MPII benchmarks, without using extra training data and pretrained model. Our single model achieves 78.6 on COCO test-dev, 93.0 on MPII test dataset. Ensembled models achieve 79.2 on COCO test-dev, 77.1 on COCO test-challenge dataset. The source code is publicly available for further research at https://github.com/caiyuanhao1998/RSN/"Paperid:120
Authors:Edward Beeching, Jilles Dibangoye, Olivier Simonin, Christian Wolf
Title: Learning to Plan with Uncertain Topological Maps
Abstract:
We train an agent to navigate in 3D environments using a hierarchical strategy including a high-level graph based planner and a local policy. Our main contribution is a data driven learning based approach for planning under uncertainty in topological maps, requiring an estimate of shortest paths in valued graphs with a probabilistic structure. Whereas classical symbolic algorithms achieve optimal results on noise-less topologies, or optimal results in a probabilistic sense on graphs with probabilistic structure, we aim to show that machine learning can overcome missing information in the graph by taking into account rich high-dimensional node features, for instance visual information available at each location of the map. Compared to purely learned neural white box algorithms, we structure our neural model with an inductive bias for dynamic programming based shortest path algorithms, and we show that a particular parameterization of our neural model corresponds to the Bellman-Ford algorithm. By performing an empirical analysis of our method in simulated photo-realistic 3D environments, we demonstrate that the inclusion of visual features in the learned neural planner outperforms classical symbolic solutions for graph based planning. "Paperid:121
Authors:Hsin-Ying Lee, Lu Jiang, Irfan Essa, Phuong B Le, Haifeng Gong, Ming-Hsuan Yang, Weilong Yang
Title: Neural Design Network: Graphic Layout Generation with Constraints
Abstract:
Graphic design is essential for visual communication with layouts being fundamental to composing attractive designs. Layout generation differs from pixel-level image synthesis and is unique in terms of the requirement of mutual relations among the desired components. We propose a method for design layout generation that can satisfy user-specified constraints. The proposed neural design network (NDN) consists of three modules. The first module predicts a graph with complete relations from a graph with user-specified relations. The second module generates a layout from the predicted graph. Finally, the third module fine-tunes the predicted layout. Quantitative and qualitative experiments demonstrate that the generated layouts are visually similar to real design layouts. We also construct real designs based on predicted layouts for a better understanding of the visual quality. Finally, we demonstrate a practical application on layout recommendation."Paperid:122
Authors:Guangyao Chen, Limeng Qiao, Yemin Shi, Peixi Peng, Jia Li, Tiejun Huang, Shiliang Pu, Yonghong Tian
Title: Learning Open Set Network with Discriminative Reciprocal Points
Abstract:
Open set recognition is an emerging research area that aims to simultaneously classify samples from predefined classes and identify the rest as 'unknown'. In this process, one of the key challenges is to reduce the risk of generalizing the inherent characteristics of numerous unknown samples learned from a small amount of known data. In this paper, we propose a new concept, Reciprocal Point, which is the potential representation of the extra-class space corresponding to each known category. The sample can be classified to known or unknown by the otherness with reciprocal points. To tackle the open set problem, we offer a novel open space risk regularization term. Based on the bounded space constructed by reciprocal points, the risk of unknown is reduced through multi-category interaction. The novel learning framework called Reciprocal Point Learning (RPL), which can indirectly introduce the unknown information into the learner with only known classes, so as to learn more compact and discriminative representations. Moreover, we further construct a new large-scale challenging aircraft dataset for open set recognition: Aircraft 300 (Air-300). Extensive experiments on multiple benchmark datasets indicate that our framework is significantly superior to other existing approaches and achieves state-of-the-art performance on standard open set benchmarks."Paperid:123
Authors:Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, Andreas Geiger
Title: Convolutional Occupancy Networks
Abstract:
Recently, implicit neural representations have gained popularity for learning-based 3D reconstruction. While demonstrating promising results, most implicit approaches are limited to comparably simple geometry of single objects and do not scale to more complicated or large-scale scenes. The key limiting factor of implicit methods is their simple fully-connected network architecture which does not allow for integrating local information in the observations or incorporating inductive biases such as translational equivariance. In this paper, we propose Convolutional Occupancy Networks, a more flexible implicit representation for detailed reconstruction of objects and 3D scenes. By combining convolutional encoders with implicit occupancy decoders, our model incorporates inductive biases, enabling structured reasoning in 3D space. We investigate the effectiveness of the proposed representation by reconstructing complex geometry from noisy point clouds and low-resolution voxel representations. We empirically find that our method enables the fine-grained implicit 3D reconstruction of single objects, scales to large indoor scenes, and generalizes well from synthetic to real data."Paperid:124
Authors:He Chen, Pengfei Guo, Pengfei Li, Gim Hee Lee, Gregory Chirikjian
Title: Multi-person 3D Pose Estimation in Crowded Scenes Based on Multi-View Geometry
Abstract:
Epipolar constraints are at the core of feature matching and depth estimation in current multi-person multi-camera 3D human pose estimation methods. Despite the satisfactory performance of this formulation in sparser crowd scenes, its effectiveness is frequently challenged under denser crowd circumstances mainly due to two sources of ambiguity. The first is the mismatch of human joints resulting from the simple cues provided by the Euclidean distances between joints and epipolar lines. The second is the lack of robustness from the naive formulation of the problem as a least squares minimization. In this paper, we depart from the multi-person 3D pose estimation formulation, and instead reformulate it as crowd pose estimation. Our method consists of two key components: a graph model for fast cross-view matching, and a maximum a posteriori (MAP) estimator for the reconstruction of the 3D human poses. We demonstrate the effectiveness and superiority of our proposed method on four benchmark datasets."Paperid:125
Authors:Daniel Bolya, Sean Foley, James Hays, Judy Hoffman
Title: TIDE: A General Toolbox for Identifying Object Detection Errors
Abstract:
We introduce TIDE, a framework and associated toolbox for analyzing the sources of error in object detection and instance segmentation algorithms. Importantly, our framework is applicable across datasets and can be applied directly to output prediction files without required knowledge of the underlying prediction system. Thus, our framework can be used as a drop-in replacement for the standard mAP computation while providing a comprehensive analysis of each model's strengths and weaknesses. We segment errors into six types and, crucially, are the first to introduce a technique for measuring the contribution of each error in a way that isolates its effect on overall performance. We show that such a representation is critical for drawing accurate, comprehensive conclusions through in-depth analysis across 4 datasets and 7 recognition models."Paperid:126
Authors:Saining Xie, Jiatao Gu, Demi Guo, Charles R. Qi, Leonidas Guibas, Or Litany
Title: PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding
Abstract:
Arguably one of the top success stories of deep learning is transfer learning. The finding that pre-training a network on a rich source set (g, ImageNet) can help boost performance once fine-tuned on a usually much smaller target set, has been instrumental to many applications in language and vision. Yet, very little is known about its usefulness in 3D point cloud understanding. We see this as an opportunity considering the effort required for annotating data in 3D. In this work, we aim at facilitating research on 3D representation learning. Different from previous works, we focus on high-level scene understanding tasks. To this end, we select a suit of diverse datasets and tasks to measure the effect of unsupervised pre-training on a large source set of 3D scenes. Our findings are extremely encouraging: using a unified triplet of architecture, source dataset, and contrastive loss for pre-training, we achieve improvement over recent best results in segmentation and detection across 6 different benchmarks for indoor and outdoor, real and synthetic datasets -- demonstrating that the learned representation can generalize across domains. Furthermore, the improvement was similar to supervised pre-training, suggesting that future efforts should favor scaling data collection over more detailed annotation. We hope these findings will encourage more research on unsupervised pretext task design for 3D deep learning."Paperid:127
Authors:Xuefei Ning, Tianchen Zhao, Wenshuo Li, Peng Lei, Yu Wang, Huazhong Yang
Title: DSA: More Efficient Budgeted Pruning via Differentiable Sparsity Allocation
Abstract:
Budgeted pruning is the problem of pruning under resource constraints. In budgeted pruning, how to distribute the resources across layers (i.e., sparsity allocation) is the key problem. Traditional methods solve it by discretely searching for the layer-wise pruning ratios, which lacks efficiency. In this paper, we propose Differentiable Sparsity Allocation (DSA), an efficient end-to-end budgeted pruning flow. Utilizing a novel differentiable pruning process, DSA finds the layer-wise pruning ratios with gradient-based optimization. It allocates sparsity in continuous space, which is more efficient than methods based on discrete evaluation and search. Furthermore, DSA could work in a pruning-from-scratch manner, whereas traditional budgeted pruning methods are applied to pre-trained models. Experimental results on CIFAR-10 and ImageNet show that DSA could achieve superior performance than current iterative budgeted pruning methods, and shorten the time cost of the overall pruning process by at least 1.5x in the meantime."Paperid: