arXiv Papers of High Resolution Visual Generation
Authors:Qihang Rao, Borui Zhang, Wenzhao Zheng, Jie Zhou, Jiwen Lu
Abstract:
Recent advances in multimodal models highlight the pivotal role of image tokenization in high-resolution image generation. By compressing images into compact latent representations, tokenizers enable generative models to operate in lower-dimensional spaces, thereby improving computational efficiency and reducing complexity. Discrete tokenizers naturally align with the autoregressive paradigm but still lag behind continuous ones, limiting their adoption in multimodal systems. To address this, we propose \textbf{SFTok}, a discrete tokenizer that incorporates a multi-step iterative mechanism for precise reconstruction. By integrating \textbf{self-forcing guided visual reconstruction} and \textbf{debias-and-fitting training strategy}, SFTok resolves the training-inference inconsistency in multi-step process, significantly enhancing image reconstruction quality. At a high compression rate of only 64 tokens per image, SFTok achieves state-of-the-art reconstruction quality on ImageNet (rFID = 1.21) and demonstrates exceptional performance in class-to-image generation tasks (gFID = 2.29).
Authors:Shuai Zhang, Bao Tang, Siyuan Yu, Yueting Zhu, Jingfeng Yao, Ya Zou, Shanglin Yuan, Li Yu, Wenyu Liu, Xinggang Wang
Abstract:
Recently, video generation has witnessed rapid advancements, drawing increasing attention to image-to-video (I2V) synthesis on mobile devices. However, the substantial computational complexity and slow generation speed of diffusion models pose significant challenges for real-time, high-resolution video generation on resource-constrained mobile devices. In this work, we propose MobileI2V, a 270M lightweight diffusion model for real-time image-to-video generation on mobile devices. The core lies in: (1) We analyzed the performance of linear attention modules and softmax attention modules on mobile devices, and proposed a linear hybrid architecture denoiser that balances generation efficiency and quality. (2) We design a time-step distillation strategy that compresses the I2V sampling steps from more than 20 to only two without significant quality loss, resulting in a 10-fold increase in generation speed. (3) We apply mobile-specific attention optimizations that yield a 2-fold speed-up for attention operations during on-device inference. MobileI2V enables, for the first time, fast 720p image-to-video generation on mobile devices, with quality comparable to existing models. Under one-step conditions, the generation speed of each frame of 720p video is less than 100 ms. Our code is available at: https://github.com/hustvl/MobileI2V.
Authors:Yunfeng Wu, Jiayi Song, Zhenxiong Tan, Zihao He, Songhua Liu
Abstract:
The quadratic time and memory complexity of the attention mechanism in modern Transformer based video generators makes end-to-end training for ultra high resolution videos prohibitively expensive. Motivated by this limitation, we introduce a training-free approach that leverages video Diffusion Transformers pretrained at their native scale to synthesize higher resolution videos without any additional training or adaptation. At the core of our method lies an inward sliding window attention mechanism, which originates from a key observation: maintaining each query token's training scale receptive field is crucial for preserving visual fidelity and detail. However, naive local window attention, unfortunately, often leads to repetitive content and exhibits a lack of global coherence in the generated results. To overcome this challenge, we devise a dual-path pipeline that backs up window attention with a novel cross-attention override strategy, enabling the semantic content produced by local attention to be guided by another branch with a full receptive field and, therefore, ensuring holistic consistency. Furthermore, to improve efficiency, we incorporate a cross-attention caching strategy for this branch to avoid the frequent computation of full 3D attention. Extensive experiments demonstrate that our method delivers ultra-high-resolution videos with fine-grained visual details and high efficiency in a training-free paradigm. Meanwhile, it achieves superior performance on VBench, even compared to training-based alternatives, with competitive or improved efficiency. Codes are available at: https://github.com/WillWu111/FreeSwim
Authors:Noam Issachar, Guy Yariv, Sagie Benaim, Yossi Adi, Dani Lischinski, Raanan Fattal
Abstract:
Diffusion Transformer models can generate images with remarkable fidelity and detail, yet training them at ultra-high resolutions remains extremely costly due to the self-attention mechanism's quadratic scaling with the number of image tokens. In this paper, we introduce Dynamic Position Extrapolation (DyPE), a novel, training-free method that enables pre-trained diffusion transformers to synthesize images at resolutions far beyond their training data, with no additional sampling cost. DyPE takes advantage of the spectral progression inherent to the diffusion process, where low-frequency structures converge early, while high-frequencies take more steps to resolve. Specifically, DyPE dynamically adjusts the model's positional encoding at each diffusion step, matching their frequency spectrum with the current stage of the generative process. This approach allows us to generate images at resolutions that exceed the training resolution dramatically, e.g., 16 million pixels using FLUX. On multiple benchmarks, DyPE consistently improves performance and achieves state-of-the-art fidelity in ultra-high-resolution image generation, with gains becoming even more pronounced at higher resolutions. Project page is available at https://noamissachar.github.io/DyPE/.
Authors:Shumpei Takezaki, Ryoma Bise, Shinnosuke Matsuo
Abstract:
In this study, we propose a novel data augmentation method that introduces the concept of CutMix into the generation process of diffusion models, thereby exploiting both the ability of diffusion models to generate natural and high-resolution images and the characteristic of CutMix, which combines features from two classes to create diverse augmented data. Representative data augmentation methods for combining images from multiple classes include CutMix and MixUp. However, techniques like CutMix often result in unnatural boundaries between the two images due to contextual differences. Therefore, in this study, we propose a method, called NoiseCutMix, to achieve natural, high-resolution image generation featuring the fused characteristics of two classes by partially combining the estimated noise corresponding to two different classes in a diffusion model. In the classification experiments, we verified the effectiveness of the proposed method by comparing it with conventional data augmentation techniques that combine multiple classes, random image generation using Stable Diffusion, and combinations of these methods. Our codes are available at: https://github.com/shumpei-takezaki/NoiseCutMix
Authors:Haonan Qiu, Ning Yu, Ziqi Huang, Paul Debevec, Ziwei Liu
Abstract:
Visual diffusion models achieve remarkable progress, yet they are typically trained at limited resolutions due to the lack of high-resolution data and constrained computation resources, hampering their ability to generate high-fidelity images or videos at higher resolutions. Recent efforts have explored tuning-free strategies to exhibit the untapped potential higher-resolution visual generation of pre-trained models. However, these methods are still prone to producing low-quality visual content with repetitive patterns. The key obstacle lies in the inevitable increase in high-frequency information when the model generates visual content exceeding its training resolution, leading to undesirable repetitive patterns deriving from the accumulated errors. In this work, we propose CineScale, a novel inference paradigm to enable higher-resolution visual generation. To tackle the various issues introduced by the two types of video generation architectures, we propose dedicated variants tailored to each. Unlike existing baseline methods that are confined to high-resolution T2I and T2V generation, CineScale broadens the scope by enabling high-resolution I2V and V2V synthesis, built atop state-of-the-art open-source video generation frameworks. Extensive experiments validate the superiority of our paradigm in extending the capabilities of higher-resolution visual generation for both image and video models. Remarkably, our approach enables 8k image generation without any fine-tuning, and achieves 4k video generation with only minimal LoRA fine-tuning. Generated video samples are available at our website: https://eyeline-labs.github.io/CineScale/.
Authors:Zahra TehraniNasab, Hujun Ni, Amar Kumar, Tal Arbel
Abstract:
Medical image synthesis presents unique challenges due to the inherent complexity and high-resolution details required in clinical contexts. Traditional generative architectures such as Generative Adversarial Networks (GANs) or Variational Auto Encoder (VAEs) have shown great promise for high-resolution image generation but struggle with preserving fine-grained details that are key for accurate diagnosis. To address this issue, we introduce Pixel Perfect MegaMed, the first vision-language foundation model to synthesize images at resolutions of 1024x1024. Our method deploys a multi-scale transformer architecture designed specifically for ultra-high resolution medical image generation, enabling the preservation of both global anatomical context and local image-level details. By leveraging vision-language alignment techniques tailored to medical terminology and imaging modalities, Pixel Perfect MegaMed bridges the gap between textual descriptions and visual representations at unprecedented resolution levels. We apply our model to the CheXpert dataset and demonstrate its ability to generate clinically faithful chest X-rays from text prompts. Beyond visual quality, these high-resolution synthetic images prove valuable for downstream tasks such as classification, showing measurable performance gains when used for data augmentation, particularly in low-data regimes. Our code is accessible through the project website - https://tehraninasab.github.io/pixelperfect-megamed.
Authors:Xu Ma, Peize Sun, Haoyu Ma, Hao Tang, Chih-Yao Ma, Jialiang Wang, Kunpeng Li, Xiaoliang Dai, Yujun Shi, Xuan Ju, Yushi Hu, Artsiom Sanakoyeu, Felix Juefei-Xu, Ji Hou, Junjiao Tian, Tao Xu, Tingbo Hou, Yen-Cheng Liu, Zecheng He, Zijian He, Matt Feiszli, Peizhao Zhang, Peter Vajda, Sam Tsai, Yun Fu
Abstract:
Autoregressive (AR) models, long dominant in language generation, are increasingly applied to image synthesis but are often considered less competitive than Diffusion-based models. A primary limitation is the substantial number of image tokens required for AR models, which constrains both training and inference efficiency, as well as image resolution. To address this, we present Token-Shuffle, a novel yet simple method that reduces the number of image tokens in Transformer. Our key insight is the dimensional redundancy of visual vocabularies in Multimodal Large Language Models (MLLMs), where low-dimensional visual codes from visual encoder are directly mapped to high-dimensional language vocabularies. Leveraging this, we consider two key operations: token-shuffle, which merges spatially local tokens along channel dimension to decrease the input token number, and token-unshuffle, which untangles the inferred tokens after Transformer blocks to restore the spatial arrangement for output. Jointly training with textual prompts, our strategy requires no additional pretrained text-encoder and enables MLLMs to support extremely high-resolution image synthesis in a unified next-token prediction way while maintaining efficient training and inference. For the first time, we push the boundary of AR text-to-image generation to a resolution of 2048x2048 with gratifying generation performance. In GenAI-benchmark, our 2.7B model achieves 0.77 overall score on hard prompts, outperforming AR models LlamaGen by 0.18 and diffusion models LDM by 0.15. Exhaustive large-scale human evaluations also demonstrate our prominent image generation ability in terms of text-alignment, visual flaw, and visual appearance. We hope that Token-Shuffle can serve as a foundational design for efficient high-resolution image generation within MLLMs.
Authors:Jingjing Ren, Wenbo Li, Zhongdao Wang, Haoze Sun, Bangzhen Liu, Haoyu Chen, Jiaqi Xu, Aoxue Li, Shifeng Zhang, Bin Shao, Yong Guo, Lei Zhu
Abstract:
Demand for 2K video synthesis is rising with increasing consumer expectations for ultra-clear visuals. While diffusion transformers (DiTs) have demonstrated remarkable capabilities in high-quality video generation, scaling them to 2K resolution remains computationally prohibitive due to quadratic growth in memory and processing costs. In this work, we propose Turbo2K, an efficient and practical framework for generating detail-rich 2K videos while significantly improving training and inference efficiency. First, Turbo2K operates in a highly compressed latent space, reducing computational complexity and memory footprint, making high-resolution video synthesis feasible. However, the high compression ratio of the VAE and limited model size impose constraints on generative quality. To mitigate this, we introduce a knowledge distillation strategy that enables a smaller student model to inherit the generative capacity of a larger, more powerful teacher model. Our analysis reveals that, despite differences in latent spaces and architectures, DiTs exhibit structural similarities in their internal representations, facilitating effective knowledge transfer. Second, we design a hierarchical two-stage synthesis framework that first generates multi-level feature at lower resolutions before guiding high-resolution video generation. This approach ensures structural coherence and fine-grained detail refinement while eliminating redundant encoding-decoding overhead, further enhancing computational efficiency.Turbo2K achieves state-of-the-art efficiency, generating 5-second, 24fps, 2K videos with significantly reduced computational cost. Compared to existing methods, Turbo2K is up to 20$\times$ faster for inference, making high-resolution video generation more scalable and practical for real-world applications.
Authors:Gene Chou, Wenqi Xian, Guandao Yang, Mohamed Abdelfattah, Bharath Hariharan, Noah Snavely, Ning Yu, Paul Debevec
Abstract:
A versatile video depth estimation model should (1) be accurate and consistent across frames, (2) produce high-resolution depth maps, and (3) support real-time streaming. We propose FlashDepth, a method that satisfies all three requirements, performing depth estimation on a 2044x1148 streaming video at 24 FPS. We show that, with careful modifications to pretrained single-image depth models, these capabilities are enabled with relatively little data and training. We evaluate our approach across multiple unseen datasets against state-of-the-art depth models, and find that ours outperforms them in terms of boundary sharpness and speed by a significant margin, while maintaining competitive accuracy. We hope our model will enable various applications that require high-resolution depth, such as video editing, and online decision-making, such as robotics. We release all code and model weights at https://github.com/Eyeline-Research/FlashDepth
Authors:Jiazi Bu, Pengyang Ling, Yujie Zhou, Pan Zhang, Tong Wu, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Dahua Lin, Jiaqi Wang
Abstract:
Text-to-image (T2I) diffusion/flow models have drawn considerable attention recently due to their remarkable ability to deliver flexible visual creations. Still, high-resolution image synthesis presents formidable challenges due to the scarcity and complexity of high-resolution content. Recent approaches have investigated training-free strategies to enable high-resolution image synthesis with pre-trained models. However, these techniques often struggle with generating high-quality visuals and tend to exhibit artifacts or low-fidelity details, as they typically rely solely on the endpoint of the low-resolution sampling trajectory while neglecting intermediate states that are critical for preserving structure and synthesizing finer detail. To this end, we present HiFlow, a training-free and model-agnostic framework to unlock the resolution potential of pre-trained flow models. Specifically, HiFlow establishes a virtual reference flow within the high-resolution space that effectively captures the characteristics of low-resolution flow information, offering guidance for high-resolution generation through three key aspects: initialization alignment for low-frequency consistency, direction alignment for structure preservation, and acceleration alignment for detail fidelity. By leveraging such flow-aligned guidance, HiFlow substantially elevates the quality of high-resolution image synthesis of T2I models and demonstrates versatility across their personalized variants. Extensive experiments validate HiFlow's capability in achieving superior high-resolution image quality over state-of-the-art methods.
Authors:Ruonan Yu, Songhua Liu, Zhenxiong Tan, Xinchao Wang
Abstract:
Text-to-image diffusion models have achieved remarkable progress in recent years. However, training models for high-resolution image generation remains challenging, particularly when training data and computational resources are limited. In this paper, we explore this practical problem from two key perspectives: data and parameter efficiency, and propose a set of key guidelines for ultra-resolution adaptation termed \emph{URAE}. For data efficiency, we theoretically and empirically demonstrate that synthetic data generated by some teacher models can significantly promote training convergence. For parameter efficiency, we find that tuning minor components of the weight matrices outperforms widely-used low-rank adapters when synthetic data are unavailable, offering substantial performance gains while maintaining efficiency. Additionally, for models leveraging guidance distillation, such as FLUX, we show that disabling classifier-free guidance, \textit{i.e.}, setting the guidance scale to 1 during adaptation, is crucial for satisfactory performance. Extensive experiments validate that URAE achieves comparable 2K-generation performance to state-of-the-art closed-source models like FLUX1.1 [Pro] Ultra with only 3K samples and 2K iterations, while setting new benchmarks for 4K-resolution generation. Codes are available \href{https://github.com/Huage001/URAE}{here}.
Authors:Jiaqi Liu, Jichao Zhang, Paolo Rota, Nicu Sebe
Abstract:
The Latent Diffusion Model (LDM) has demonstrated strong capabilities in high-resolution image generation and has been widely employed for Pose-Guided Person Image Synthesis (PGPIS), yielding promising results. However, the compression process of LDM often results in the deterioration of details, particularly in sensitive areas such as facial features and clothing textures. In this paper, we propose a Multi-focal Conditioned Latent Diffusion (MCLD) method to address these limitations by conditioning the model on disentangled, pose-invariant features from these sensitive regions. Our approach utilizes a multi-focal condition aggregation module, which effectively integrates facial identity and texture-specific information, enhancing the model's ability to produce appearance realistic and identity-consistent images. Our method demonstrates consistent identity and appearance generation on the DeepFashion dataset and enables flexible person image editing due to its generation consistency. The code is available at https://github.com/jqliu09/mcld.
Authors:Shilong Zhang, Wenbo Li, Shoufa Chen, Chongjian Ge, Peize Sun, Yida Zhang, Yi Jiang, Zehuan Yuan, Binyue Peng, Ping Luo
Abstract:
DiT diffusion models have achieved great success in text-to-video generation, leveraging their scalability in model capacity and data scale. High content and motion fidelity aligned with text prompts, however, often require large model parameters and a substantial number of function evaluations (NFEs). Realistic and visually appealing details are typically reflected in high resolution outputs, further amplifying computational demands especially for single stage DiT models. To address these challenges, we propose a novel two stage framework, FlashVideo, which strategically allocates model capacity and NFEs across stages to balance generation fidelity and quality. In the first stage, prompt fidelity is prioritized through a low resolution generation process utilizing large parameters and sufficient NFEs to enhance computational efficiency. The second stage establishes flow matching between low and high resolutions, effectively generating fine details with minimal NFEs. Quantitative and visual results demonstrate that FlashVideo achieves state-of-the-art high resolution video generation with superior computational efficiency. Additionally, the two-stage design enables users to preview the initial output and accordingly adjust the prompt before committing to full-resolution generation, thereby significantly reducing computational costs and wait times as well as enhancing commercial viability.
Authors:Kaiwen Zha, Lijun Yu, Alireza Fathi, David A. Ross, Cordelia Schmid, Dina Katabi, Xiuye Gu
Abstract:
Image tokenization, the process of transforming raw image pixels into a compact low-dimensional latent representation, has proven crucial for scalable and efficient image generation. However, mainstream image tokenization methods generally have limited compression rates, making high-resolution image generation computationally expensive. To address this challenge, we propose to leverage language for efficient image tokenization, and we call our method Text-Conditioned Image Tokenization (TexTok). TexTok is a simple yet effective tokenization framework that leverages language to provide a compact, high-level semantic representation. By conditioning the tokenization process on descriptive text captions, TexTok simplifies semantic learning, allowing more learning capacity and token space to be allocated to capture fine-grained visual details, leading to enhanced reconstruction quality and higher compression rates. Compared to the conventional tokenizer without text conditioning, TexTok achieves average reconstruction FID improvements of 29.2% and 48.1% on ImageNet-256 and -512 benchmarks respectively, across varying numbers of tokens. These tokenization improvements consistently translate to 16.3% and 34.3% average improvements in generation FID. By simply replacing the tokenizer in Diffusion Transformer (DiT) with TexTok, our system can achieve a 93.5x inference speedup while still outperforming the original DiT using only 32 tokens on ImageNet-512. TexTok with a vanilla DiT generator achieves state-of-the-art FID scores of 1.46 and 1.62 on ImageNet-256 and -512 respectively. Furthermore, we demonstrate TexTok's superiority on the text-to-image generation task, effectively utilizing the off-the-shelf text captions in tokenization. Project page is at: https://kaiwenzha.github.io/textok/.
Authors:Rui Tian, Qi Dai, Jianmin Bao, Kai Qiu, Yifan Yang, Chong Luo, Zuxuan Wu, Yu-Gang Jiang
Abstract:
Commercial video generation models have exhibited realistic, high-fidelity results but are still restricted to limited access. One crucial obstacle for large-scale applications is the expensive training and inference cost. In this paper, we argue that videos contain significantly more redundant information than images, allowing them to be encoded with very few motion latents. Towards this goal, we design an image-conditioned VAE that projects videos into extremely compressed latent space and decode them based on content images. This magic Reducio charm enables 64x reduction of latents compared to a common 2D VAE, without sacrificing the quality. Building upon Reducio-VAE, we can train diffusion models for high-resolution video generation efficiently. Specifically, we adopt a two-stage generation paradigm, first generating a condition image via text-to-image generation, followed by text-image-to-video generation with the proposed Reducio-DiT. Extensive experiments show that our model achieves strong performance in evaluation. More importantly, our method significantly boosts the training and inference efficiency of video LDMs. Reducio-DiT is trained in just 3.2K A100 GPU hours in total and can generate a 16-frame 1024$\times$1024 video clip within 15.5 seconds on a single A100 GPU. Code released at https://github.com/microsoft/Reducio-VAE .
Authors:Boyuan Cao, Jiaxin Ye, Yujie Wei, Hongming Shan
Abstract:
Latent diffusion models (LDMs), such as Stable Diffusion, often experience significant structural distortions when directly generating high-resolution (HR) images that exceed their original training resolutions. A straightforward and cost-effective solution is to adapt pre-trained LDMs for HR image generation; however, existing methods often suffer from poor image quality and long inference time. In this paper, we propose an Attentive and Progressive LDM (AP-LDM), a novel, training-free framework aimed at enhancing HR image quality while accelerating the generation process. AP-LDM decomposes the denoising process of LDMs into two stages: (i) attentive training-resolution denoising, and (ii) progressive high-resolution denoising. The first stage generates a latent representation of a higher-quality training-resolution image through the proposed attentive guidance, which utilizes a novel parameter-free self-attention mechanism to enhance the structural consistency. The second stage progressively performs upsampling in pixel space, alleviating the severe artifacts caused by latent space upsampling. Leveraging the effective initialization from the first stage enables denoising at higher resolutions with significantly fewer steps, enhancing overall efficiency. Extensive experimental results demonstrate that AP-LDM significantly outperforms state-of-the-art methods, delivering up to a 5x speedup in HR image generation, thereby highlighting its substantial advantages for real-world applications. Code is available at https://github.com/kmittle/AP-LDM.
Authors:Songhua Liu, Weihao Yu, Zhenxiong Tan, Xinchao Wang
Abstract:
Modern diffusion models, particularly those utilizing a Transformer-based UNet for denoising, rely heavily on self-attention operations to manage complex spatial relationships, thus achieving impressive generation performance. However, this existing paradigm faces significant challenges in generating high-resolution visual content due to its quadratic time and memory complexity with respect to the number of spatial tokens. To address this limitation, we aim at a novel linear attention mechanism as an alternative in this paper. Specifically, we begin our exploration from recently introduced models with linear complexity, e.g., Mamba2, RWKV6, Gated Linear Attention, etc, and identify two key features--attention normalization and non-causal inference--that enhance high-resolution visual generation performance. Building on these insights, we introduce a generalized linear attention paradigm, which serves as a low-rank approximation of a wide spectrum of popular linear token mixers. To save the training cost and better leverage pre-trained models, we initialize our models and distill the knowledge from pre-trained StableDiffusion (SD). We find that the distilled model, termed LinFusion, achieves performance on par with or superior to the original SD after only modest training, while significantly reducing time and memory complexity. Extensive experiments on SD-v1.5, SD-v2.1, and SD-XL demonstrate that LinFusion enables satisfactory and efficient zero-shot cross-resolution generation, accommodating ultra-resolution images like 16K on a single GPU. Moreover, it is highly compatible with pre-trained SD components and pipelines, such as ControlNet, IP-Adapter, DemoFusion, DistriFusion, etc, requiring no adaptation efforts. Codes are available at https://github.com/Huage001/LinFusion.
Authors:Junhao Song, Yichao Zhang, Ziqian Bi, Tianyang Wang, Keyu Chen, Ming Li, Qian Niu, Junyu Liu, Benji Peng, Sen Zhang, Ming Liu, Jiawei Xu, Xuanhe Pan, Jinlang Wang, Pohsun Feng, Yizhu Wen, Lawrence K. Q. Yan, Hong-Ming Tseng, Xinyuan Song, Jintao Ren, Silin Chen, Yunze Wang, Weiche Hsieh, Bowen Jing, Junjie Yang, Jun Zhou, Zheyu Yao, Chia Xin Liang
Abstract:
Generative Adversarial Networks (GAN) have greatly influenced the development of computer vision and artificial intelligence in the past decade and also connected art and machine intelligence together. This book begins with a detailed introduction to the fundamental principles and historical development of GANs, contrasting them with traditional generative models and elucidating the core adversarial mechanisms through illustrative Python examples. The text systematically addresses the mathematical and theoretical underpinnings including probability theory, statistics, and game theory providing a solid framework for understanding the objectives, loss functions, and optimisation challenges inherent to GAN training. Subsequent chapters review classic variants such as Conditional GANs, DCGANs, InfoGAN, and LAPGAN before progressing to advanced training methodologies like Wasserstein GANs, GANs with gradient penalty, least squares GANs, and spectral normalisation techniques. The book further examines architectural enhancements and task-specific adaptations in generators and discriminators, showcasing practical implementations in high resolution image generation, artistic style transfer, video synthesis, text to image generation and other multimedia applications. The concluding sections offer insights into emerging research trends, including self-attention mechanisms, transformer-based generative models, and a comparative analysis with diffusion models, thus charting promising directions for future developments in both academic and applied settings.
Authors:Kling Team, Jialu Chen, Yikang Ding, Zhixue Fang, Kun Gai, Yuan Gao, Kang He, Jingyun Hua, Boyuan Jiang, Mingming Lao, Xiaohan Li, Hui Liu, Jiwen Liu, Xiaoqiang Liu, Yuan Liu, Shun Lu, Yongsen Mao, Yingchao Shao, Huafeng Shi, Xiaoyu Shi, Peiqin Sun, Songlin Tang, Pengfei Wan, Chao Wang, Xuebo Wang, Haoxian Zhang, Yuanxing Zhang, Yan Zhou
Abstract:
Avatar video generation models have achieved remarkable progress in recent years. However, prior work exhibits limited efficiency in generating long-duration high-resolution videos, suffering from temporal drifting, quality degradation, and weak prompt following as video length increases. To address these challenges, we propose KlingAvatar 2.0, a spatio-temporal cascade framework that performs upscaling in both spatial resolution and temporal dimension. The framework first generates low-resolution blueprint video keyframes that capture global semantics and motion, and then refines them into high-resolution, temporally coherent sub-clips using a first-last frame strategy, while retaining smooth temporal transitions in long-form videos. To enhance cross-modal instruction fusion and alignment in extended videos, we introduce a Co-Reasoning Director composed of three modality-specific large language model (LLM) experts. These experts reason about modality priorities and infer underlying user intent, converting inputs into detailed storylines through multi-turn dialogue. A Negative Director further refines negative prompts to improve instruction alignment. Building on these components, we extend the framework to support ID-specific multi-character control. Extensive experiments demonstrate that our model effectively addresses the challenges of efficient, multimodally aligned long-form high-resolution video generation, delivering enhanced visual clarity, realistic lip-teeth rendering with accurate lip synchronization, strong identity preservation, and coherent multimodal instruction following.
Authors:Haotian Ye, Kaiwen Zheng, Jiashu Xu, Puheng Li, Huayu Chen, Jiaqi Han, Sheng Liu, Qinsheng Zhang, Hanzi Mao, Zekun Hao, Prithvijit Chattopadhyay, Dinghao Yang, Liang Feng, Maosheng Liao, Junjie Bai, Ming-Yu Liu, James Zou, Stefano Ermon
Abstract:
Aligning generative diffusion models with human preferences via reinforcement learning (RL) is critical yet challenging. Most existing algorithms are often vulnerable to reward hacking, such as quality degradation, over-stylization, or reduced diversity. Our analysis demonstrates that this can be attributed to the inherent limitations of their regularization, which provides unreliable penalties. We introduce Data-regularized Diffusion Reinforcement Learning (DDRL), a novel framework that uses the forward KL divergence to anchor the policy to an off-policy data distribution. Theoretically, DDRL enables robust, unbiased integration of RL with standard diffusion training. Empirically, this translates into a simple yet effective algorithm that combines reward maximization with diffusion loss minimization. With over a million GPU hours of experiments and ten thousand double-blind human evaluations, we demonstrate on high-resolution video generation tasks that DDRL significantly improves rewards while alleviating the reward hacking seen in baselines, achieving the highest human preference and establishing a robust and scalable paradigm for diffusion post-training.
Authors:Teng Hu, Jiangning Zhang, Zihan Su, Ran Yi
Abstract:
Recent advances in video generation have made it possible to produce visually compelling videos, with wide-ranging applications in content creation, entertainment, and virtual reality. However, most existing diffusion transformer based video generation models are limited to low-resolution outputs (<=720P) due to the quadratic computational complexity of the attention mechanism with respect to the output width and height. This computational bottleneck makes native high-resolution video generation (1080P/2K/4K) impractical for both training and inference. To address this challenge, we present UltraGen, a novel video generation framework that enables i) efficient and ii) end-to-end native high-resolution video synthesis. Specifically, UltraGen features a hierarchical dual-branch attention architecture based on global-local attention decomposition, which decouples full attention into a local attention branch for high-fidelity regional content and a global attention branch for overall semantic consistency. We further propose a spatially compressed global modeling strategy to efficiently learn global dependencies, and a hierarchical cross-window local attention mechanism to reduce computational costs while enhancing information flow across different local windows. Extensive experiments demonstrate that UltraGen can effectively scale pre-trained low-resolution video models to 1080P and even 4K resolution for the first time, outperforming existing state-of-the-art methods and super-resolution based two-stage pipelines in both qualitative and quantitative evaluations.
Authors:Fanjiang Ye, Zepeng Zhao, Yi Mu, Jucheng Shen, Renjie Li, Kaijian Wang, Desen Sun, Saurabh Agarwal, Myungjin Lee, Triston Cao, Aditya Akella, Arvind Krishnamurthy, T. S. Eugene Ng, Zhengzhong Tu, Yuke Wang
Abstract:
Diffusion models have recently achieved remarkable success in generative tasks (e.g., image and video generation), and the demand for high-quality content (e.g., 2K/4K videos) is rapidly increasing across various domains. However, generating ultra-high-resolution videos on existing standard-resolution (e.g., 720p) platforms remains challenging due to the excessive re-training requirements and prohibitively high computational and memory costs. To this end, we introduce SuperGen, an efficient tile-based framework for ultra-high-resolution video generation. SuperGen features a novel training-free algorithmic innovation with tiling to successfully support a wide range of resolutions without additional training efforts while significantly reducing both memory footprint and computational complexity. Moreover, SuperGen incorporates a tile-tailored, adaptive, region-aware caching strategy that accelerates video generation by exploiting redundancy across denoising steps and spatial regions. SuperGen also integrates cache-guided, communication-minimized tile parallelism for enhanced throughput and minimized latency. Evaluations demonstrate that SuperGen harvests the maximum performance gains while achieving high output quality across various benchmarks.
Authors:Qian Wang, Ziqi Huang, Ruoxi Jia, Paul Debevec, Ning Yu
Abstract:
Despite recent advances, long-sequence video generation frameworks still suffer from significant limitations: poor assistive capability, suboptimal visual quality, and limited expressiveness. To mitigate these limitations, we propose MAViS, an end-to-end multi-agent collaborative framework for long-sequence video storytelling. MAViS orchestrates specialized agents across multiple stages, including script writing, shot designing, character modeling, keyframe generation, video animation, and audio generation. In each stage, agents operate under the 3E Principle -- Explore, Examine, and Enhance -- to ensure the completeness of intermediate outputs. Considering the capability limitations of current generative models, we propose the Script Writing Guidelines to optimize compatibility between scripts and generative tools. Experimental results demonstrate that MAViS achieves state-of-the-art performance in assistive capability, visual quality, and video expressiveness. Its modular framework further enables scalability with diverse generative models and tools. With just a brief user prompt, MAViS is capable of producing high-quality, expressive long-sequence video storytelling, enriching inspirations and creativity for users. To the best of our knowledge, MAViS is the only framework that provides multimodal design output -- videos with narratives and background music.
Authors:Feng Zhou, Pu Cao, Yiyang Ma, Lu Yang, Jianqin Yin
Abstract:
Denoising higher-resolution latents via a pre-trained U-Net leads to repetitive and disordered image patterns. Although recent studies make efforts to improve generative quality by aligning denoising process across original and higher resolutions, the root cause of suboptimal generation is still lacking exploration. Through comprehensive analysis of position encoding in U-Net, we attribute it to inconsistent position encoding, sourced by the inadequate propagation of position information from zero-padding to latent features in convolution layers as resolution increases. To address this issue, we propose a novel training-free approach, introducing a Progressive Boundary Complement (PBC) method. This method creates dynamic virtual image boundaries inside the feature map to enhance position information propagation, enabling high-quality and rich-content high-resolution image synthesis. Extensive experiments demonstrate the superiority of our method.
Authors:Abul Ehtesham, Saket Kumar, Aditi Singh, Tala Talaei Khoei
Abstract:
Generative AI is reshaping the media landscape, enabling unprecedented capabilities in video creation, personalization, and scalability. This paper presents a comprehensive SWOT analysis of Metas Movie Gen, a cutting-edge generative AI foundation model designed to produce 1080p HD videos with synchronized audio from simple text prompts. We explore its strengths, including high-resolution video generation, precise editing, and seamless audio integration, which make it a transformative tool across industries such as filmmaking, advertising, and education. However, the analysis also addresses limitations, such as constraints on video length and potential biases in generated content, which pose challenges for broader adoption. In addition, we examine the evolving regulatory and ethical considerations surrounding generative AI, focusing on issues like content authenticity, cultural representation, and responsible use. Through comparative insights with leading models like DALL-E and Google Imagen, this paper highlights Movie Gens unique features, such as video personalization and multimodal synthesis, while identifying opportunities for innovation and areas requiring further research. Our findings provide actionable insights for stakeholders, emphasizing both the opportunities and challenges of deploying generative AI in media production. This work aims to guide future advancements in generative AI, ensuring scalability, quality, and ethical integrity in this rapidly evolving field.
Authors:Chun Xie, Yuichi Yoshii, Itaru Kitahara
Abstract:
X-ray imaging is a rapid and cost-effective tool for visualizing internal human anatomy. While multi-view X-ray imaging provides complementary information that enhances diagnosis, intervention, and education, acquiring images from multiple angles increases radiation exposure and complicates clinical workflows. To address these challenges, we propose a novel view-conditioned diffusion model for synthesizing multi-view X-ray images from a single view. Unlike prior methods, which are limited in angular range, resolution, and image quality, our approach leverages the Diffusion Transformer to preserve fine details and employs a weak-to-strong training strategy for stable high-resolution image generation. Experimental results demonstrate that our method generates higher-resolution outputs with improved control over viewing angles. This capability has significant implications not only for clinical applications but also for medical education and data extension, enabling the creation of diverse, high-quality datasets for training and analysis. Our code is available at GitHub.
Authors:Haosen Yang, Adrian Bulat, Isma Hadji, Hai X. Pham, Xiatian Zhu, Georgios Tzimiropoulos, Brais Martinez
Abstract:
Diffusion models are proficient at generating high-quality images. They are however effective only when operating at the resolution used during training. Inference at a scaled resolution leads to repetitive patterns and structural distortions. Retraining at higher resolutions quickly becomes prohibitive. Thus, methods enabling pre-existing diffusion models to operate at flexible test-time resolutions are highly desirable. Previous works suffer from frequent artifacts and often introduce large latency overheads. We propose two simple modules that combine to solve these issues. We introduce a Frequency Modulation (FM) module that leverages the Fourier domain to improve the global structure consistency, and an Attention Modulation (AM) module which improves the consistency of local texture patterns, a problem largely ignored in prior works. Our method, coined Fam diffusion, can seamlessly integrate into any latent diffusion model and requires no additional training. Extensive qualitative results highlight the effectiveness of our method in addressing structural and local artifacts, while quantitative results show state-of-the-art performance. Also, our method avoids redundant inference tricks for improved consistency such as patch-based or progressive generation, leading to negligible latency overheads.
Authors:Shaoyi Zheng, Wenbo Lu, Yuxuan Xia, Haomin Liu, Shengjie Wang
Abstract:
Designing sparse attention for diffusion transformers requires reconciling two-dimensional spatial locality with GPU efficiency, a trade-off that current methods struggle to achieve. Existing approaches enforce two-dimensional spatial locality but often incur uncoalesced memory access. We present HilbertA, a 2D-aware and GPU-efficient sparse attention mechanism. HilbertA reorders image tokens along Hilbert curves to achieve a contiguous memory layout while preserving spatial neighborhoods, and employs a sliding schedule across layers to enable long-range information propagation without repeated or uncoalesced memory access. To further enhance cross-tile communication and positional awareness, HilbertA introduces a small central shared region. Implemented in Triton, HilbertA delivers comparable image quality with significant acceleration over prior methods on Flux.1-dev, demonstrating the feasibility of hardware-aligned two-dimensional sparse attention for high-resolution image generation. HilbertA delivers attention speedups of $2.3\times$ when generating $1024\times 1024$ images, and up to $4.17\times$ at $2048\times 2048$, while achieving image quality comparable to or surpassing baselines.
Authors:Haonan Qiu, Shikun Liu, Zijian Zhou, Zhaochong An, Weiming Ren, Zhiheng Liu, Jonas Schult, Sen He, Shoufa Chen, Yuren Cong, Tao Xiang, Ziwei Liu, Juan-Manuel Perez-Rua
Abstract:
High-resolution video generation, while crucial for digital media and film, is computationally bottlenecked by the quadratic complexity of diffusion models, making practical inference infeasible. To address this, we introduce HiStream, an efficient autoregressive framework that systematically reduces redundancy across three axes: i) Spatial Compression: denoising at low resolution before refining at high resolution with cached features; ii) Temporal Compression: a chunk-by-chunk strategy with a fixed-size anchor cache, ensuring stable inference speed; and iii) Timestep Compression: applying fewer denoising steps to subsequent, cache-conditioned chunks. On 1080p benchmarks, our primary HiStream model (i+ii) achieves state-of-the-art visual quality while demonstrating up to 76.2x faster denoising compared to the Wan2.1 baseline and negligible quality loss. Our faster variant, HiStream+, applies all three optimizations (i+ii+iii), achieving a 107.5x acceleration over the baseline, offering a compelling trade-off between speed and quality, thereby making high-resolution video generation both practical and scalable.
Authors:Luigi Sigillo, Shengfeng He, Danilo Comminiello
Abstract:
High-resolution image synthesis remains a core challenge in generative modeling, particularly in balancing computational efficiency with the preservation of fine-grained visual detail. We present Latent Wavelet Diffusion (LWD), a lightweight training framework that significantly improves detail and texture fidelity in ultra-high-resolution (2K-4K) image synthesis. LWD introduces a novel, frequency-aware masking strategy derived from wavelet energy maps, which dynamically focuses the training process on detail-rich regions of the latent space. This is complemented by a scale-consistent VAE objective to ensure high spectral fidelity. The primary advantage of our approach is its efficiency: LWD requires no architectural modifications and adds zero additional cost during inference, making it a practical solution for scaling existing models. Across multiple strong baselines, LWD consistently improves perceptual quality and FID scores, demonstrating the power of signal-driven supervision as a principled and efficient path toward high-resolution generative modeling.
Authors:Yuyao Zhang, Yu-Wing Tai
Abstract:
Ultra-high-resolution text-to-image generation demands both fine-grained texture synthesis and globally coherent structure, yet current diffusion models remain constrained to sub-$1K \times 1K$ resolutions due to the prohibitive quadratic complexity of attention and the scarcity of native $4K$ training data. We present \textbf{Scale-DiT}, a new diffusion framework that introduces hierarchical local attention with low-resolution global guidance, enabling efficient, scalable, and semantically coherent image synthesis at ultra-high resolutions. Specifically, high-resolution latents are divided into fixed-size local windows to reduce attention complexity from quadratic to near-linear, while a low-resolution latent equipped with scaled positional anchors injects global semantics. A lightweight LoRA adaptation bridges global and local pathways during denoising, ensuring consistency across structure and detail. To maximize inference efficiency, we repermute token sequence in Hilbert curve order and implement a fused-kernel for skipping masked operations, resulting in a GPU-friendly design. Extensive experiments demonstrate that Scale-DiT achieves more than $2\times$ faster inference and lower memory usage compared to dense attention baselines, while reliably scaling to $4K \times 4K$ resolution without requiring additional high-resolution training data. On both quantitative benchmarks (FID, IS, CLIP Score) and qualitative comparisons, Scale-DiT delivers superior global coherence and sharper local detail, matching or outperforming state-of-the-art methods that rely on native 4K training. Taken together, these results highlight hierarchical local attention with guided low-resolution anchors as a promising and effective approach for advancing ultra-high-resolution image generation.
Authors:Tobias Vontobel, Seyedmorteza Sadat, Farnood Salehi, Romann M. Weber
Abstract:
Diffusion models have emerged as the leading approach for image synthesis, demonstrating exceptional photorealism and diversity. However, training diffusion models at high resolutions remains computationally prohibitive, and existing zero-shot generation techniques for synthesizing images beyond training resolutions often produce artifacts, including object duplication and spatial incoherence. In this paper, we introduce HiWave, a training-free, zero-shot approach that substantially enhances visual fidelity and structural coherence in ultra-high-resolution image synthesis using pretrained diffusion models. Our method employs a two-stage pipeline: generating a base image from the pretrained model followed by a patch-wise DDIM inversion step and a novel wavelet-based detail enhancer module. Specifically, we first utilize inversion methods to derive initial noise vectors that preserve global coherence from the base image. Subsequently, during sampling, our wavelet-domain detail enhancer retains low-frequency components from the base image to ensure structural consistency, while selectively guiding high-frequency components to enrich fine details and textures. Extensive evaluations using Stable Diffusion XL demonstrate that HiWave effectively mitigates common visual artifacts seen in prior methods, achieving superior perceptual quality. A user study confirmed HiWave's performance, where it was preferred over the state-of-the-art alternative in more than 80% of comparisons, highlighting its effectiveness for high-quality, ultra-high-resolution image synthesis without requiring retraining or architectural modifications.
Authors:Yuan Yao, Yicong Hong, Difan Liu, Long Mai, Feng Liu, Jiebo Luo
Abstract:
The quadratic computational complexity of self-attention in diffusion transformers (DiT) introduces substantial computational costs in high-resolution image generation. While the linear-complexity Mamba model emerges as a potential alternative, direct Mamba training remains empirically challenging. To address this issue, this paper introduces diffusion transformer-to-mamba distillation (T2MD), forming an efficient training pipeline that facilitates the transition from the self-attention-based transformer to the linear complexity state-space model Mamba. We establish a diffusion self-attention and Mamba hybrid model that simultaneously achieves efficiency and global dependencies. With the proposed layer-level teacher forcing and feature-based knowledge distillation, T2MD alleviates the training difficulty and high cost of a state space model from scratch. Starting from the distilled 512$\times$512 resolution base model, we push the generation towards 2048$\times$2048 images via lightweight adaptation and high-resolution fine-tuning. Experiments demonstrate that our training path leads to low overhead but high-quality text-to-image generation. Importantly, our results also justify the feasibility of using sequential and causal Mamba models for generating non-causal visual output, suggesting the potential for future exploration.
Authors:Sangmin Han, Jinho Jeong, Jinwoo Kim, Seon Joo Kim
Abstract:
Latent Diffusion Models (LDMs) are generally trained at fixed resolutions, limiting their capability when scaling up to high-resolution images. While training-based approaches address this limitation by training on high-resolution datasets, they require large amounts of data and considerable computational resources, making them less practical. Consequently, training-free methods, particularly patch-based approaches, have become a popular alternative. These methods divide an image into patches and fuse the denoising paths of each patch, showing strong performance on high-resolution generation. However, we observe two critical issues for patch-based approaches, which we call ``patch-level distribution shift" and ``increased patch monotonicity." To address these issues, we propose Adaptive Path Tracing (APT), a framework that combines Statistical Matching to ensure patch distributions remain consistent in upsampled latents and Scale-aware Scheduling to deal with the patch monotonicity. As a result, APT produces clearer and more refined details in high-resolution images. In addition, APT enables a shortcut denoising process, resulting in faster sampling with minimal quality degradation. Our experimental results confirm that APT produces more detailed outputs with improved inference speed, providing a practical approach to high-resolution image generation.
Authors:Jinjin Zhang, Qiuyu Huang, Junjie Liu, Xiefan Guo, Di Huang
Abstract:
In this paper, we present Diffusion-4K, a novel framework for direct ultra-high-resolution image synthesis using text-to-image diffusion models. The core advancements include: (1) Aesthetic-4K Benchmark: addressing the absence of a publicly available 4K image synthesis dataset, we construct Aesthetic-4K, a comprehensive benchmark for ultra-high-resolution image generation. We curated a high-quality 4K dataset with carefully selected images and captions generated by GPT-4o. Additionally, we introduce GLCM Score and Compression Ratio metrics to evaluate fine details, combined with holistic measures such as FID, Aesthetics and CLIPScore for a comprehensive assessment of ultra-high-resolution images. (2) Wavelet-based Fine-tuning: we propose a wavelet-based fine-tuning approach for direct training with photorealistic 4K images, applicable to various latent diffusion models, demonstrating its effectiveness in synthesizing highly detailed 4K images. Consequently, Diffusion-4K achieves impressive performance in high-quality image synthesis and text prompt adherence, especially when powered by modern large-scale diffusion models (e.g., SD3-2B and Flux-12B). Extensive experimental results from our benchmark demonstrate the superiority of Diffusion-4K in ultra-high-resolution image synthesis.
Authors:Ziji Shi, Jialin Li, Yang You
Abstract:
Recent advances in Generative Artificial Intelligence have fueled numerous applications, particularly those involving Generative Adversarial Networks (GANs), which are essential for synthesizing realistic photos and videos. However, efficiently training GANs remains a critical challenge due to their computationally intensive and numerically unstable nature. Existing methods often require days or even weeks for training, posing significant resource and time constraints.
In this work, we introduce ParaGAN, a scalable distributed GAN training framework that leverages asynchronous training and an asymmetric optimization policy to accelerate GAN training. ParaGAN employs a congestion-aware data pipeline and hardware-aware layout transformation to enhance accelerator utilization, resulting in over 30% improvements in throughput. With ParaGAN, we reduce the training time of BigGAN from 15 days to 14 hours while achieving 91% scaling efficiency. Additionally, ParaGAN enables unprecedented high-resolution image generation using BigGAN.
Authors:Dawid KopeÄ, Wojciech KozÅowski, Maciej Wizerkaniuk, Dawid Krutul, Jan KocoÅ, Maciej ZiÄba
Abstract:
In this work, we present SupResDiffGAN, a novel hybrid architecture that combines the strengths of Generative Adversarial Networks (GANs) and diffusion models for super-resolution tasks. By leveraging latent space representations and reducing the number of diffusion steps, SupResDiffGAN achieves significantly faster inference times than other diffusion-based super-resolution models while maintaining competitive perceptual quality. To prevent discriminator overfitting, we propose adaptive noise corruption, ensuring a stable balance between the generator and the discriminator during training. Extensive experiments on benchmark datasets show that our approach outperforms traditional diffusion models such as SR3 and I$^2$SB in efficiency and image quality. This work bridges the performance gap between diffusion- and GAN-based methods, laying the foundation for real-time applications of diffusion models in high-resolution image generation.
Authors:Andrew Kiruluta
Abstract:
Variational Autoencoders (VAEs) are powerful generative models capable of learning compact latent representations. However, conventional VAEs often generate relatively blurry images due to their assumption of an isotropic Gaussian latent space and constraints in capturing high-frequency details. In this paper, we explore a novel wavelet-based approach (Wavelet-VAE) in which the latent space is constructed using multi-scale Haar wavelet coefficients. We propose a comprehensive method to encode the image features into multi-scale detail and approximation coefficients and introduce a learnable noise parameter to maintain stochasticity. We thoroughly discuss how to reformulate the reparameterization trick, address the KL divergence term, and integrate wavelet sparsity principles into the training objective. Our experimental evaluation on CIFAR-10 and other high-resolution datasets demonstrates that the Wavelet-VAE improves visual fidelity and recovers higher-resolution details compared to conventional VAEs. We conclude with a discussion of advantages, potential limitations, and future research directions for wavelet-based generative modeling.
Authors:Siddharth Roheda
Abstract: In recent years, image synthesis has achieved remarkable advancements, enabling diverse applications in content creation, virtual reality, and beyond. We introduce a novel approach to image generation using Auto-Regressive (AR) modeling, which leverages a next-detail prediction strategy for enhanced fidelity and scalability. While AR models have achieved transformative success in language modeling, replicating this success in vision tasks has presented unique challenges due to the inherent spatial dependencies in images. Our proposed method addresses these challenges by iteratively adding finer details to an image compositionally, constructing it as a hierarchical combination of base and detail image factors. This strategy is shown to be more effective than the conventional next-token prediction and even surpasses the state-of-the-art next-scale prediction approaches. A key advantage of this method is its scalability to higher resolutions without requiring full model retraining, making it a versatile solution for high-resolution image generation.